
The Transform and Data Compression Handbook
Ed. K. R. Rao and P.C. Yip.
Boca Raton, CRC Press LLC, 2001

"Frontmatter"

THE
TRANSFORM
AND DATA

COMPRESSION
HANDBOOK

THE ELECTRICAL ENGINEERING
AND SIGNAL PROCESSING SERIES

Edited by Alexander Poularikas and Richard C. Dorf

Handbook of Antennas in Wireless Communications
Lal Chand Godara

Propagation Data Handbook for Wireless Communications
Robert Crane

The Digital Color Imaging Handbook
Guarav Sharma

Handbook of Neural Network Signal Processing
Yu Hen Hu and Jeng-Neng Hwang

Handbook of Multisensor Data Fusion
David Hall

The Advanced Signal Processing Handbook:
Theory and Implementation for Radar, Sonar,

and Medical Imaging Real Time Systems
Stergios Stergiopoulos

The Transform and Data Compression Handbook
K.R. Rao and P.C. Yip

The Encyclopedia of Signal Processing
Alexander Poularikas

Applications in Time Frequency Signal Processing
Antonia Papandreou-Suppappola

Boca Raton London New York Washington, D.C.
CRC Press

THE
TRANSFORM
AND DATA

COMPRESSION
HANDBOOK

Edited by

K.R. RAO
University of Texas at Arlington

AND

P.C. YIP
McMaster University

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or
internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page
photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923
USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-3692-
9/00/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-3692-9

Library of Congress Card Number 00-057149
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

The transform and data compression handbook / editors, P.C. Yip, K.R. Rao.
p. cm.--(Electrical engineering and signal processing series)

Includes bibliographical references and index.
ISBN 0-8493-3692-9 (alk. paper)
1. Data transmission systems--Handbooks, manuals, etc.. 2. Data compression

 (Telecommunication)--Handbooks, manuals, etc. I. Yip, P.C. (Pat C.) II. Rao, K.
Ramamohan (Kamisetty Ramamohan) III. Series

TK5105 .T72 2000
621.382--dc21 00-057149

Preface

While this handbook is an exposition of different discrete transforms and their ever-
expanding applications in the general area of signal processing, the overriding task is
to maintain the continuity and connectivity among the chapters. This task is accom-
plished by the common theme of data compression. The handbook seeks to provide
the reader with a wealth of information regarding the transforms (some have been
widely used while others have great potential) as well as a demonstration of their
power and practicality in data compression. Such compression is a necessary and
desirable ingredient in today’s world of massive data storage and data transmission.
By providing a plethora of Web sites, ftp locations, and references to general review
papers, the chapter authors have expanded the usefulness of this handbook for the
common reader. The clear and concise presentations of the ideas and concepts, as
well as the detailed descriptions of the algorithms, provide important insights into the
applications and their limitations. With the understanding of these concepts, readers
can apply the techniques presented in this handbook to their own areas of interest
and improve on the performance by marrying this with their own expertise. We are
confident that this handbook will be a valuable addition to the bookshelf of anyone
actively engaged in or studying the art and science of signal processing.

The Transform and Data Compression Handbook is aimed at providing a descrip-
tion of various discrete transforms and their applications in different disciplines. In
view of the proliferation of digital data (images, video, text, documents, audio, mu-
sic, graphics, etc.), it is imperative that the data be mapped from the data domain (in
which there are usually redundancies) to a different one (the transform domain) for
efficient and economical storage and/or transmission. Transforms by themselves do
not provide any compression. However, by reallocation of the energy in the data,
transforms provide the possibilities for compression. Techniques such as adaptive
quantization and entropy coding applied to the transform coefficients can result in
significant reduction in bit rates. Depending on the quality levels required by the end
user, other parameters such as human visual/acoustic sensitivity, adaptive scanning,
statistical modeling, and variable length coding would further contribute to the bit rate
reduction. Generally transforms, wavelet transforms in particular, are well suited for
scalable coding (in spatial or temporal domains, or in SNR). This concept facilitates
data transmission in embedded bit-stream format, providing for multi-resolution (spa-

tial/temporal) and multiquality (SNR) end products, subject to bandwidth limitation,
processing power, and cost constraints.

Many international standards relating to audio, video, and data, such as JPEG,
H.261, H.262, MPEG-1, MPEG-2, MPEG-4, HDTV, and JPEG-2000, utilize trans-
forms in their overall compression schemes. A number of consumer and commercial
products, such as video-CD, DVD, videophone, set-top boxes, digital TV, and digital
camera/VCR, have been made possible because of signal compression. Other elec-
tronic innovations, such as MP3, video-streaming, and wireless PCS, are completely
dependent on the reduction of bit rates made possible by compression. It is not ex-
aggerating to say that data compression is one of the main contributing factors in the
explosive growth in information technology.

While different coding schemes can accomplish an amazing amount of compres-
sion, the cornerstone is still undoubtedly the underlying transform. It is for this reason
that the definitions and properties for each of the transforms dealt with in this hand-
book are presented with such care and detail. The bibliography sections and Web
sites provide further sources of information.

Outline of Chapters

Chapter 1 The Karhunen-Loève Transform

The first transform described in this handbook is the Karhunen-Loève transform
(KLT). It takes its rightful place as the leadoff transform to be discussed. Dony does
an excellent job of interpreting this statistically optimal transform. The simple and
yet elegant explanation of rotation of axes in the data domain to achieve the “principal
components” representation underscores the significant energy compaction provided
by this transform. Other properties of the transform follow, and the chapter is rounded
off with descriptions of applications in chest radiographs and other monochrome and
color images. Web sites and software download locations are listed as well.

Chapter 2 The Discrete Fourier Transform

Discrete Fourier transform (DFT), the best known and arguably the most universally
applied transform, is presented by Selesnick and Schuller. Following an exposition
of the definitions and properties of the DFT, it is shown that by a symmetric extension
of the sequence, the DFT can lead to the discrete cosine transform (DCT), another
favorite transform described in Chapter 4. The authors then go on to develop the
fast Fourier transform (FFT) algorithms, a catalyst for all DFT applications. A novel
feature of this chapter is the linkage provided by the authors between DFT and filter-
banks, which are used extensively in audio coders. Cosine-modulated filter-banks
and complex DFT-based filter-banks are the byproducts of the DFT that are used in
Moving Picture Expert Group (MPEG) audio coders. There is an extensive list of
Web sites providing information for available software, algorithms, and applications,
as well as other related links.

Chapter 3 Comparametric Transforms for Transmitting Eye Tap Video
with Picture Transfer Protocol (PTP)

This is a unique, challenging, and provocative chapter written by Mann, the inven-
tor of the wearable computer (WearComp), the Eye Tap camera, and reality mediator.
This chapter takes us to the forefront of the multimedia revolution with a new compu-
tational/communications device that subsumes the functionality of the videophone,
digital camera, and other wireless personal electronics innovations. Mann’s invention
functions as a true extension of the mind and body and causes the eye to function
as if it were a camera. His invention has given rise to a whole new philosophical
and mathematical approach to image compression and image storage, and it gives
a refreshingly new definition of functionality in image transmission and processing.
The new Eye Tap genre of video is best processed and compressed by comparametric
equations, essentially equations representing projections and tone scale adjustments
of images. Traditionally image compression has been directed to ensure a certain
minimum quality or reliability (e.g., worst case scenario). The author instead makes
a compelling argument in favour of “best case” scenario; Mann argues that being able
to broadcast even intermittent still images to the Internet can provide a measure of
security unmatched by conventional “robust” security systems. These arguments are
based on a definition of “fear of functionality,” a completely novel approach to the
idea of security. The author has set up a Web site from which computer programs can
be freely downloaded. Such a generous spirit is to be commended. It is also inter-
esting to note that this chapter was typeset using LaTex running on a small wearable
computer designed and built by the author.

Chapter 4 Discrete Cosine and Sine Transforms

Next to the DFT, discrete cosine transform (DCT) is probably the most used trans-
form in digital signal processing work. DCT is one of a family of trigonometric
transforms including the discrete sine transform (DST). In this chapter, Britanak
presents a unified treatment of the family of DCTs and DSTs starting with the def-
initions, properties, and fast algorithms. This chapter is particularly relevant as the
DCT has been adopted in several international standards for image/video coding. In
modified form, both DCT and DST have been used in MDCT/MDST audio coding.
Computer programs in C (listed in Sections 4.3 and 4.4) that can be implemented
to perform the transforms are very useful in all signal processing applications. The
chapter concludes with a specific application in a Joint Photographic Experts Group
(JPEG) base line system (Fig. 4.3) using the standard test image of Lena.

Chapter 5 Lapped Transforms for Image Compression

Lapped transforms (LTs), developed originally to eliminate or reduce the blocking
artifacts of block transforms such as DCT in low bit rate image/video coding, are
presented by de Queiroz and Tran. Several versions of the LTs, such as orthogonal
and nonorthogonal LTs, tree-structured hierarchical, symmetric, bi-orthogonal, and
variable length LTs, are defined, and their properties and factorization schemes are

described. Generalized versions of the lapped orthogonal transform (LOT), called
GenLOT, are developed in Sections 5.6.3–4 while cosine-modulated LTs, otherwise
known as MLT or ELT, are discussed in Section 5.8. To demonstrate the promise
and potential for LTs in image coding, well known image compression algorithms
are applied to standard test images, with DCT or the wavelet transform replaced by
LTs. Comparative analysis shows the elimination of ringing and blocking artifacts
that are characteristic of the DCT based coders and also performance rivaling that of
the wavelet transforms.

Chapter 6 Wavelet-Based Image Compression

This is another highly valuable chapter as it addresses wavelet-based image com-
pression. Wavelet-based transforms give a time-frequency decomposition of the sig-
nal, which has multi-resolution characteristics. The transforms have superior energy
compaction and compatibility with Human Visual System (HVS). They make possi-
ble the embedded bit-stream coding corresponding to various subbands (the basis for
fast browsing of images or databases over the Internet). Discrete wavelet transforms
(DWT) and its variants have been adopted both by the FBI in the use of fingerprint
image compression and the international standards groups (JPEG-2000 and MPEG-4
still frame image coding). It is highly possible that wavelets may eventually replace
DCT in all the coders. Walker and Nguyen provide a clear explanation of the mul-
tiresolution aspects of DWT and its implementation using a 2-channel filter bank.
Some of the recent enhancements of the basic DWT, such as EZW, SPIHT, WDR,
and ASWDR, are enumerated, followed by their implementation in image coding and
subsequent evaluation. Various Web sites that provide software, literature, simulation
results, and innumerable other details further strengthen the chapter’s utility.

Chapter 7 Fractal-Based Image and Video Compression

The concepts and techniques of fractal-based image/video compression are intro-
duced in this chapter by Lu. The seminal work by Mandelbrot forms the basis of many
treatises of fractal applications, made popular by movie scenes generated graphically
by the use of fractals. Fractal-based signal analysis is currently at the forefront of
research. Although compression techniques based on affine transforms or iterated
function systems (IFS) may not have caught the attention of every researcher, their
attractive properties making possible high compression ratios and asymmetric coding
certainly deserve further study. With the advent of super HDTV, wireless cellular
multimedia phones, and interactive services on the Internet, fractal transform and its
variants such as IFS, QPIFS, and PIFS will find their rightful place in the compression
arena. Starting with the basic properties of fractals, Lu demonstrates the compres-
sion property of fractals using the encoding/decoding procedures. The capabilities
of fractals are illustrated using images and video. As with the other chapters, Web
and ftp sites, mostly maintained by universities, provide access to software, literature,
products, R&D, and applications to the interested readers.

Chapter 8 Compression of Wavelet Transform Coefficients

The concluding chapter presents a philosophical and thoughtful argument for the
effectiveness of transforms in general and wavelets in particular for bandwidth re-
duction. The superiority of wavelet transform over others, including the widely used
DCT, is clearly demonstrated by the characteristics of the DWT. From the chapter’s
title, the reader may get a wrong impression of duplication with Chapter 6. On the
contrary, this chapter complements the topics in Chapter 6 by a clear exposition of
the superior performance of the DWT over other transforms. The subband decom-
position inherent in dyadic wavelet transform, preservation of spatial signal features
in subbands of different scales, and self similarities among subbands of the spatial
orientation are some of the reasons for this superiority. These self-similarities are
conducive to statistical context modeling and adaptive entropy coding of wavelet co-
efficients. By a lucid presentation of these concepts aided by implementation on test
images, Wu convincingly demonstrates the validity of the DWT adopted in JPEG-
2000 and MPEG-4 and the bright future it has in other applications.

Acknowledgements

The editors have been entrusted with the organizational and administrative process
in compiling this handbook. Needless to say, without the expertise and efforts of the
individual chapter authors, this handbook would never have seen the light of day. The
editors sincerely acknowledge the energetic contributions from the chapter authors,
whose uniform excellence has made this an outstanding volume. The editors thank
the authors for their prompt and timely responses in spite of their heavy commitments
in their daily academic or professional lives. It is hoped that the completion of this
handbook will elicit a sense of pride and accomplishment, a well-earned and well-
deserved reward for their efforts. The editors would also like to thank their families
for the patience and perseverance they showed during the months of preparation of
this handbook.

List of Acronyms

AFB Analysis filter bank
ASPEC Audio spectral perceptual entropy coding
ASWDR Adaptively scanned wavelet difference reduction
bpp Bits per pixel
CREW Compression by reversible embedded wavelets
DCT Discrete cosine transform
DFT Discrete Fourier transform
DPCM Differential pulse code modulation
DSP Digital signal processing
DST Discrete sine transform
DTFT Discrete time Fourier transform
DWP Discrete wavelet packet
DWT Discrete wavelet transform
ECECOW Embedded conditional entropy coding of wavelet
ECG Electrocardiogram
ELT Extended lapped transform
EZC Embedded zerotree coding
EZW Embedded zerotree wavelet
FAQ Frequently asked questions
FFT Fast Fourier transform
FIR Finite impulse response
FLT Fast lapped transform
FoF Fear of functionality
FPGA Field programmable gate array
GenLOT Generalized LOT
GNU GNU’s Not Unix
GNUX GNU-Linux
H.261 Standard for compression of videotelephony and teleconferencing
H.263 Standard for visual communication via telephone lines
HDTV High definition TV
HLT Hierarchical lapped transform
HSI Hue, saturation, intensity
HV Horizontal vertical
HVS Human visual system
IDFT Inverse discrete Fourier transform
IFS Iterated function systems

ISO International Standards Organization
ITU International Telecommunication Union
JBIG Joint Binary Image Group
JPEG Joint Photographic Experts Group
JPEG-LS JPEG-Lossless
KLT Karhunen-Loève transform
LBT Lapped bi-orthogonal transform
LOT Lapped orthogonal transform
LT Lapped transform
LZC Layered zero coding
MC Motion compensated
MDCT Modified discrete cosine transform
MDST Modified discrete sine transform
MIMO Multi-input multi-output
MLT Modulated lapped transform
MOS Mean opinion score
MP3 MPEG-Layer 3
MPEG Moving Pictures Expert Group
MPEG-AAC MPEG advanced audio coder
MSE Mean squares error
PAC Perceptual audio coder
PCA Principal component analysis
PIFS Partitioned iterated function systems
PR Perfect reconstruction
PSD Personal safety device
PSNR Peak signal to noise ratio
PTM Polyphase transfer matrix
PTP Picture transfer protocol
QCLS Quadratic-constrained least squares
QM Cute sound
QPIFS Quadtree partitioned iterated function systems
RGB Red, green, and blue
RLC Run-length coding
RLD Run-length decoder
ROI Region of interest
RTT Round trip time
SDF Symmetric delay factorization
SFB Synthesis filter bank
SPIHT Set partitioning of hierarchical tree
STW Spatial orientation tree wavelet
SVD Singular value decomposition
TDAC Time domain aliasing cancellation
TF Time-frequency
VLC Variable-length coding
VLD Variable-length decoder
VQ Vector quantization
WDR Wavelet difference reduction
YIQ Luminance, in-phase, and quadrature-phase chrominance

Contributors

Vladimir Britanak

Institute of Control Theory and Robotics, Slovak Acad-
emy of Sciences, Bratislava, Slovak Republic

Ricardo L. de Queiroz

Digital Imaging Technology Center, Xerox Corpora-
tion, Webster, New York

R.D. Dony

School of Engineering, University of Guelph, Guelph, Ontario,
Canada

Guojun Lu

Gippsland School of Computing and Information Technology,
Monash University, Churchill, Victoria, Australia

Steve Mann

Department of Electrical and Computer Engineering, Univer-
sity of Toronto, Toronto, Ontario, Canada

Truong Q. Nguyen

Department of Electrical and Computer Engineering,
Boston University, Boston, Massachusetts

Gerald Schuller

Bell Labs, Lucent Technologies, Murray Hill, New Jersey

Ivan W. Selesnick

Department of Electrical Engineering, Polytechnic Uni-
versity, Brooklyn, New York

Trac D. Tran

Department of Electrical and Computer Engineering, The
Johns Hopkins University, Baltimore, Maryland

James S. Walker

Department of Mathematics, University of Wisconsin-Eau
Claire, Eau Claire, Wisconsin

Xiaolin Wu

Department of Computer Science, University of Western On-
tario, London, Ontario, Canada

Contents

1 Karhunen-Loève Transform
1.1 Introduction
1.2 Data Decorrelation

1.2.1 Calculation of the KLT
1.3 Performance of Transforms

1.3.1 Information Theory
1.3.2 Quantization
1.3.3 Truncation Error
1.3.4 Block Size

1.4 Examples
1.4.1 Calculation of KLT
1.4.2 Quantization and Encoding
1.4.3 Generalization
1.4.4 Markov-1 Solution
1.4.5 Medical Imaging
1.4.6 Color Images

1.5 Summary
References

2 The Discrete Fourier Transform
2.1 Introduction
2.2 The DFT Matrix
2.3 An Example
2.4 DFT Frequency Analysis
2.5 Selected Properties of the DFT

2.5.1 Symmetry Properties
2.6 Real-Valued DFT-Based Transforms
2.7 The Fast Fourier Transform
2.8 The DFT in Coding Applications
2.9 The DFT and Filter Banks

2.9.1 Cosine-Modulated Filter Banks
2.9.2 Complex DFT-Based Filter Banks

2.10 Conclusion
2.11 FFT Web sites
References

3 Comparametric Transforms for Transmitting Eye Tap Video with Picture
Transfer Protocol (PTP)
3.1 Introduction: Wearable Cybernetics

3.1.1 Historical Overview of WearComp
3.1.2 Eye Tap Video

3.2 The Edgertonian Image Sequence
3.2.1 Edgertonian versus Nyquist Thinking
3.2.2 Frames versus Rows, Columns, and Pixels

3.3 Picture Transfer Protocol (PTP)
3.4 Best Case Imaging and Fear of Functionality
3.5 Comparametric Image Sequence Analysis

3.5.1 Camera, Eye, or Head Motion: Common Assumptions and
Terminology

3.5.2 VideoOrbits
3.6 Framework: Comparameter Estimation and Optical Flow

3.6.1 Feature-Based Methods
3.6.2 Featureless Methods Based on Generalized Cross-Correlation
3.6.3 Featureless Methods Based on Spatio-Temporal Derivatives

3.7 Multiscale Projective Flow Comparameter Estimation
3.7.1 Four Point Method for Relating Approximate Model to Exact

Model
3.7.2 Overview of the New Projective Flow Algorithm
3.7.3 Multiscale Repetitive Implementation
3.7.4 Exploiting Commutativity for Parameter Estimation

3.8 Performance/Applications
3.8.1 A Paradigm Reversal in Resolution Enhancement
3.8.2 Increasing Resolution in the “Pixel Sense”

3.9 Summary
3.10 Acknowledgements
References

4 Discrete Cosine and Sine Transforms
4.1 Introduction
4.2 The Family of DCTs and DSTs

4.2.1 Definitions of DCTs and DSTs
4.2.2 Mathematical Properties
4.2.3 Relations to the KLT

4.3 A Unified Fast Computation of DCTs and DSTs
4.3.1 Definitions of Even-Odd Matrices
4.3.2 DCT-II/DST-II and DCT-III/DST-III Computation
4.3.3 DCT-I and DST-I Computation

4.3.4 DCT-IV/DST-IV Computation
4.3.5 Implementation of the Unified Fast Computation of DCTs

and DSTs
4.4 The 2-D DCT/DST Universal Computational Structure

4.4.1 The Fast Direct 2-D DCT/DST Computation
4.4.2 Implementation of the Direct 2-D DCT/DST Computation

4.5 DCT and Data Compression
4.5.1 DCT-Based Image Compression/Decompression
4.5.2 Data Structures for Compression/Decompression
4.5.3 Setting the Quantization Table
4.5.4 Standard Huffman Coding/Decoding Tables
4.5.5 Compression of One Sub-Image Block
4.5.6 Decompression of One Sub-Image Block
4.5.7 Image Compression/Decompression
4.5.8 Compression of Color Images
4.5.9 Results of Image Compression

4.6 Summary
References

5 Lapped Transforms for Image Compression
5.1 Introduction

5.1.1 Notation
5.1.2 Brief History
5.1.3 Block Transforms
5.1.4 Factorization of Discrete Transforms
5.1.5 Discrete MIMO Linear Systems
5.1.6 Block Transform as a MIMO System

5.2 Lapped Transforms
5.2.1 Orthogonal Lapped Transforms
5.2.2 Nonorthogonal Lapped Transforms

5.3 LTs as MIMO Systems
5.4 Factorization of Lapped Transforms
5.5 Hierarchical Connection of LTs: An Introduction

5.5.1 Time-Frequency Diagram
5.5.2 Tree-Structured Hierarchical Lapped Transforms
5.5.3 Variable-Length LTs

5.6 Practical Symmetric LTs
5.6.1 The Lapped Orthogonal Transform: LOT
5.6.2 The Lapped Bi-Orthogonal Transform: LBT
5.6.3 The Generalized LOT: GenLOT
5.6.4 The General Factorization: GLBT

5.7 The Fast Lapped Transform: FLT
5.8 Modulated LTs
5.9 Finite-Length Signals

5.9.1 Overall Transform

5.9.2 Recovering Distorted Samples
5.9.3 Symmetric Extensions

5.10 Design Issues for Compression
5.11 Transform-Based Image Compression Systems

5.11.1 JPEG
5.11.2 Embedded Zerotree Coding
5.11.3 Other Coders

5.12 Performance Analysis
5.12.1 JPEG
5.12.2 Embedded Zerotree Coding

5.13 Conclusions
References

6 Wavelet-Based Image Compression
6.1 Introduction
6.2 Dyadic Wavelet Transform

6.2.1 Two-Channel Perfect-Reconstruction Filter Bank
6.2.2 Dyadic Wavelet Transform, Multiresolution Representation
6.2.3 Wavelet Smoothness

6.3 Wavelet-Based Image Compression
6.3.1 Lossy Compression
6.3.2 EZW Algorithm
6.3.3 SPIHT Algorithm
6.3.4 WDR Algorithm
6.3.5 ASWDR Algorithm
6.3.6 Lossless Compression
6.3.7 Color Images
6.3.8 Other Compression Algorithms
6.3.9 Ringing Artifacts and Postprocessing Algorithms

References

7 Fractal-Based Image and Video Compression
7.1 Introduction
7.2 Basic Properties of Fractals and Image Compression
7.3 Contractive Affine Transforms, Iterated Function Systems, and Image

Generation
7.4 Image Compression Directly Based on the IFS Theory
7.5 Image Compression Based on IFS Library
7.6 Image Compression Based on Partitioned IFS

7.6.1 Image Partitions
7.6.2 Distortion Measure
7.6.3 A Class of Discrete Image Transformation
7.6.4 Encoding and Decoding Procedures
7.6.5 Experimental Results

7.7 Image Coding Using Quadtree Partitioned IFS (QPIFS)

7.7.1 RMS Tolerance Selection
7.7.2 A Compact Storage Scheme
7.7.3 Experimental Results

7.8 Image Coding by Exploiting Scalability of Fractals
7.8.1 Image Spatial Sub-Sampling
7.8.2 Decoding to a Larger Image
7.8.3 Experimental Results

7.9 Video Sequence Compression using Quadtree PIFS
7.9.1 Definitions of Types of Range Blocks
7.9.2 Encoding and Decoding Processes
7.9.3 Storage Requirements
7.9.4 Experimental Results
7.9.5 Discussion

7.10 Other Fractal-Based Image Compression Techniques
7.10.1 Segmentation-Based Coding Using Fractal Dimension
7.10.2 Yardstick Coding

7.11 Conclusions
References

8 Compression of Wavelet Transform Coefficients
8.1 Introduction
8.2 Embedded Coefficient Coding
8.3 Statistical Context Modeling of Embedded Bit Stream
8.4 Context Dilution Problem
8.5 Context Formation
8.6 Context Quantization
8.7 Optimization of Context Quantization
8.8 Dynamic Programming for Minimum Conditional Entropy
8.9 Fast Algorithms for High-Order Context Modeling

8.9.1 Context Formation via Convolution
8.9.2 Shared Modeling Context for Signs and Textures

8.10 Experimental Results
8.10.1 Lossy Case
8.10.2 Lossless Case

8.11 Summary
References

The Transform and Data Compression Handbook
Ed. K. R. Rao and P.C. Yip.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 1

Karhunen-Loève Transform

R.D. Dony

University of Guelph

1.1 Introduction

The goal of image compression is to store an image in a more compact form, i.e.,
a representation that requires fewer bits for encoding than the original image. This is
possible for images because, in their “raw” form, they contain a high degree of redun-
dant data. Most images are not haphazard collections of arbitrary intensity transitions.
Every image we see contains some form of structure. As a result, there is some cor-
relation between neighboring pixels. If one can find a reversible transformation that
removes the redundancy by decorrelating the data, then an image can be stored more
efficiently. The Karhunen-Loève Transform (KLT) is the linear transformation that
accomplishes this.

In Section 1.2 we show how pixels are correlated in typical images. With the pixel
values forming the axes of a vector space, a rotation of this space can remove this
correlation. The basis vectors of the new space define the linear transformation of
the data. The basis vectors of the KLT are the eigenvectors of the image covariance
matrix. Its effect is to diagonalize the covariance matrix, removing the correlation of
neighboring pixels.

As presented in Section 1.3, the KLT minimizes the theoretical bound on bit rate
as given by the signal entropy. The entropy for both discrete random variables and
continuous random processes is defined. The KLT also maximizes the coding gain
defined as the ratio of the arithmetic mean of the coefficient variances to their geo-
metric mean. Further, the effects of truncation, block size, and interblock correlation
are also presented. Section 1.4 presents the results of using the KLT for a number of
examples.

1.2 Data Decorrelation

Data from neighboring pixels are highly correlated for most images. Fig. 1.1 shows
a typical gray scale image. The image is 512×512 pixels in size with each gray level
brightness value of pixel being represented by an 8-bit value for a range of [0–255].
This particular image is commonly used in evaluations and is often referred to as
the Lena image. Even with a large degree of detail in many regions, the gray level
value of any given pixel tends to be similar to its neighboring pixels. To illustrate this
relationship, one can plot the gray level values of pairs of adjacent pixels as shown
in Fig. 1.2. Each dot represents a pixel in the image with the x coordinate being its
gray level value and the y coordinate being the gray level value of its neighbor to the
right. The strong diagonal relationship about the x = y line clearly shows the strong
correlation between neighboring pixels.

If we were to block the image into nonoverlapping 1 × 2 pixel blocks as shown in
Fig. 1.3, we can represent an image by a collection of two-dimensional vectors xi .
The scatter plot of this collection is equivalent to Fig. 1.2. Looking at the distributions
of the values for each of the two components as shown in Fig. 1.4, we see that they
are relatively wide and cover most of the 0–255 range. In fact, the distributions of
each component would be quite similar to the overall distribution of individual pixels
in the image.

Now, what would happen if we rotated the distribution shown in Fig. 1.2 by 45◦
about the center? The result is shown in Fig. 1.5. The two components are now
decorrelated, i.e., knowing the value of the first component does not help in estimating
the value of the second. The distributions of the new components are shown in Fig. 1.6.
The first component, save for the shift and a scaling factor of

√
2, is still quite similar

to the previous distributions — quite broad and covering most of the dynamic range
of the original individual pixels. The second component, however, is quite different.
It is much narrower, with a strong peak at 0. Because it has a smaller dynamic range,
we could encode its value with fewer bits. So even with a decorrelation by a simple
rotation of the axis, we can reduce the number of bits required for encoding an image.

In general, a process is decorrelated when, for zero mean random variables xi and
xj , the expectation of their product, the covariance, is zero if i �= j , i.e.,

E
(
xixj

) =
{

0 i �= j ,

σ 2
i i = j ,

(1.1)

where E(·) is the expectation operator. Using vector notations, we may define the
vector of the values of an image block of N pixels as

x = [x1 x2 . . . xN]T . (1.2)

We can then define the covariance matrix as

[C]x = E
[
(x − m) (x − m)T

]
, (1.3)

FIGURE 1.1
Example “Lena”image. Reproduced by Special Permission of Playboy maga-
zine. Copyright©1972, 2000 by Playboy.

where m = E(x) is the mean. For notational convenience, we will assume zero mean
input for the rest of this chapter. In practice, the mean can simply be removed from
the data before processing.

We wish to find a linear transformation matrix, [W], whose transpose, [W]T , will
rotate x to produce a diagonal covariance matrix for the transformed variable y,

y = [W]T x . (1.4)

Each column vector, wi , of [W] is a basis vector of the new space. So, alternatively,
each element, yi , of y is calculated as

yi = wT
i x . (1.5)

FIGURE 1.2
Scatter plot of adjacent pixel value pairs.

For simple rotations with no scaling, the matrix [W] must be orthonormal, that is

[W]T [W] = [I] = [W][W]T (1.6)

where [I] is the identity matrix. This means that the column vectors of the matrix are
mutually orthogonal and are of unit norm. From Eq. (1.6), it follows that the inverse
of an orthonormal matrix is simply its transpose, [W]T = [W]−1. The inverse
transformation is then calculated as

x = [W]y . (1.7)

FIGURE 1.3
Image blocking with 1 × 2 pixel nonoverlapping blocks.

Further, the total energy under the transformation is preserved

‖y‖2 = yT y

=
(
[W]T x

)T ([W]T x
)

= xT [W][W]T x

= xT x

= ‖x‖2 ,

(1.8)

where ‖x‖ is the norm of the vector x defined as

‖x‖ =
√

xT x

=
√√√√ N∑

i=1

x2
i .

(1.9)

For the above example where N = 2, by inspection, the matrix [W] is simply a

FIGURE 1.4
Distributions for each component.

rotation by 45◦

[W] =
[

cos 45◦ − sin 45◦
sin 45◦ cos 45◦

]
. (1.10)

For an arbitrary covariance matrix, the problem of finding the appropriate transfor-
mation is the orthonormal eigenvector problem. Since the covariance matrix is real
and symmetric, we can find its real eigenvalues and corresponding eigenvectors. Let
[C]y be the desired diagonal covariance matrix of the transformed variable y which
will be of the form

[C]y =
 λ1 0

. . .

0 λN

 , (1.11)

where the diagonal elements are the variances of the transformed data. The diagonal

-

-

-

-
- - - -

FIGURE 1.5
Scatter plot of pixel value pairs rotated by 45◦.

matrix can be calculated from the original covariance matrix, [C]x , as

[C]y = E
[
yyT

]
= E

[(
[W]T x

) (
[W]T x

)T]
= E

[
[W]T

(
xxT

)
[W]

]
= [W]T [C]x[W] ,

(1.12)

or equivalently,

[C]x[W] = [W][C]y . (1.13)

FIGURE 1.6
Distributions for each component of the rotated pixel value pairs.

Since the desired [C]y is diagonal, Eq. (1.13) can be rewritten for each column vector,
wi , of [W] as

[C]xwi = λiwi . (1.14)

The solutions for λi and wi with i = 1, . . . , N in Eq. (1.14) are the N eigenvalue,
eigenvector pairs of the matrix [C]x of dimension N × N . That is, each column
vector of [W] is an eigenvector of the covariance matrix, [C]x , of the original data.
To ensure that [W] is orthonormal, Gram-Schmidt orthogonalization may be applied
to the eigenvectors as they are obtained.

This transformation defined by the eigenvalues of the covariance matrix is the
Karhunen-Loève transform (KLT), named after Karhunen [17] and Loève [19] who
developed the continuous version of the transformation for decorrelating signals.
Earlier, Hotelling [15] had developed a “method of principal components” for re-
moving the correlation from the discrete elements of a random variable. As a result,
the method is also referred to as the Hotelling transform or principal components
analysis (PCA).

1.2.1 Calculation of the KLT

Estimation of Covariance

The calculation of the KLT is typically performed by finding the eigenvectors of the
covariance matrix, which, of course, requires an estimate of the covariance matrix. If
the entire signal is available, as is the case for coding a single image, the covariance
matrix can be estimated from n data samples as

[Ĉ]x = 1

n

n∑
i=1

xixTi , (1.15)

where xi is a sample data vector. If only portions of the signal are available, care
must be taken to ensure that the estimate is representative of the entire signal. In the
extreme, if only one data vector is used then only one nonzero eigenvalue exists, and
its eigenvector is simply the scaled version of the data vector. For typical images, it
is rarely the case that their covariance matrix has any zero eigenvalues. For a data
vector of dimension N , a good rule of thumb is that at least 10 × N representative
samples from the various regions within an image be used to ensure a good estimate
if it is not feasible to use the entire image.

Calculation of Eigenvectors

While it is beyond the scope of this chapter to provide a detailed discussion of the
algorithms for extracting the eigenvalues and eigenvectors, we will present a brief
overview of the general methods commonly used. The reader is referred to [16, 28]
for more detailed explanations. For actual implementations of the methods, many
numerical packages such as LAPACK [22] (which is based on EISPACK [21] and
LINPACK [23]), MATLAB [20], IDL [31], and Octave [11], and the routines in
“cookbooks,” such as that by Press et al. [28], provide routines for the solution of
eigensystems.

A simple approach is the Jacobi method. It develops a sequence of rotation matrices,
[P]i , that diagonalizes [C] as

[D] = [V]T [C][V] , (1.16)

where [D] is the desired diagonal matrix and [V] = [P]1[P]2[P]3 · · · . Each [P]i
rotates in one plane to remove one of the off-diagonal elements. It is an iterative
technique which is terminated when the off-diagonal values are close to zero within
some tolerance. Upon termination, the matrix [D] contains the eigenvalues on the
diagonals and the columns of [V] are the basis vectors of the KLT.

While this technique is quite simple, for larger matrices it can take a large number
of calculations for convergence. A more efficient approach for larger, symmetric
matrices divides the problem into two stages. The Householder algorithm can be
applied to reduce a symmetric matrix into a tridiagonal form in a finite number of
steps. Once the matrix is in this simpler form, an iterative method such as QL
factorization can be used to generate the eigenvalues and eigenvectors. The advantage

of this approach is that the factorization on the simplified tridiagonal matrix typically
requires fewer iterations than the Jacobi method.

Recently, there has been some interest in iterative methods of principal components
extraction that do not require the calculation of a covariance matrix [7, 14, 26]. These
techniques update the estimate of the eigenvectors for each input training vector. One
such method developed by Oja [25] is of the form

ŵ(t + 1) = ŵ(t) + α
[
y(t)x(t) − y2(t)ŵ(t)

]
, (1.17)

where x is an input vector, ŵ(t) is the current estimate of the basis vector, y = wT x
is the coefficient value, and α is a learning-rate parameter. Eq. (1.17) has been
shown to converge to the largest principal component [14, 27]. This algorithm can be
generalized through deflation to extract any or all of the principal components [7, 33].
Also, adaptive schemes have been based on this method [8]. While these algorithms
have some advantages over covariance-based methods, there are still some concerns
over stability and convergence [3, 4, 35].

Markov-1 Solution

The calculation of the eigenvectors for an arbitrary covariance matrix can still
require a large number of computations. However, there is a special class of matrix
that has an analytical solution for its eigenvectors and eigenvalues [29, 30]. If a
process were to have a covariance function of the form

[C]ij = σ 2ρ|i−j | , (1.18)

where ρ is the correlation coefficient such that 0 < ρ < 1, such a process is referred
to as a first order stationary Markov process or simply Markov-1. The solution for
the ith element of the j th basis vector for N -dimensional data is given by

wij =
[

2(
N + µj

)]1/2

sin

{
rj

[
(i + 1) − (N + 1)

2

]
+ (j + 1)

π

2

}
, (1.19)

where µj is the j th eigenvalue calculated as

µj =
(

1 − ρ2
) [

1 − 2 cos
(
rj
)+ ρ2

]
, (1.20)

and rj is the j th real positive root of the transcendental equation

tan (Nr) = −
(
1 − ρ2

)
sin (r)

cos (r) − 2ρ + ρ2 cos (r)
. (1.21)

To extend this to two-dimensional data, one can assume a separable transform. The
horizontal and vertical correlation coefficients, ρH and ρV , are estimated from the im-
age to calculate a horizontal basis set, w(H)

ij , and vertical basis set, w(V)
ij , respectively.

Then, the i, j element of the kth two-dimensional basis vector, wijk , is calculated as
the product of the two:

wijk = w
(H)
ik w

(V)
jk . (1.22)

As many images exhibit a Markov-1 structure, this solution to the KLT can be quite
useful due to its ease of generation.

1.3 Performance of Transforms

On its own, an orthonormal transformation does not effect data compression. The
blocks of pixels are simply transformed from one set of values to another and, for
reversible transformations, back again on reconstruction. To reduce the number of bits
for representing an image, the coefficients are quantized, incurring some irreversible
loss, and then encoded for more efficient representation. By decorrelating the data
before these steps using the KLT, more data compaction can be achieved.

To examine the effects of this extra efficiency, we can make use of Shannon’s
information measures [34].

1.3.1 Information Theory

The information conveyed by an observation of some random process is related
to its probability of occurrence. If an observation were all but certain to occur,
i.e., its probability were close to 1, it would not be very informative. However, if
it were quite unexpected, the observation would convey much more information.
Shannon formalized this relationship between the probability of an event, P(x), and
its information content, I (x), as

I (x) = − logP(x) . (1.23)

If the logarithm is taken with respect to base 2, the information, I (x), is measured in
units of bits.

A random variable, x, is a collection of all possible events and their associated
probabilities. The average information for a random variable can be calculated as

H(x) =
∑
i

P (xi) I (xi)

= −
∑
i

P (xi) logP (xi) ,
(1.24)

where the sum is taken through all possible events. The average information is called
the entropy of the process.

Entropy is useful in determining theoretical performance measures of compression
methods. Shannon showed that entropy gives a lower bound on the average number
of bits required to encode the events of a random process without introducing error.
In other words, one needs at least as many bits per event, on average, as the entropy
to represent a set of observations.

However, these measures are not directly applicable to the coefficients of an arbi-
trary transformation. They are defined for discrete events whereas the coefficients,
since they are floating-point values, must be considered real-valued samples of con-
tinuous distributions. Since the probability of any such real-valued sample is zero,
the (discrete) entropy is undefined. Instead, we define the differential entropy [13] as

h(x) = −
∫ ∞

−∞
p(s) logp(s)ds . (1.25)

For simple distributions such as the Gaussian, uniform, or Laplacian distributions the
differential entropy is of the form

h(x) = 1

2
log σ 2

x + k , (1.26)

where σ 2
x is the variance of the random variable and k is a distribution-dependent

constant (e.g., for a Gaussian, k = 1
2 log2 2πe) [1].

A good transformation, then, should minimize the sum of the differential entropies
for the resulting coefficients. Due to the logarithmic term, this is equivalent to mini-
mizing the product of the variances of the coefficients. However, recall that for any
orthonormal transformation, the total energy is preserved, so the sum of the coeffi-
cient variances is fixed. One measure of the efficiency of the transform is the coding
gain [10] defined as the ratio between the algebraic mean of the variances, which
is independent of the transform, and the geometric mean of the variances, which is
transform dependent:

GW =

1

N

N∑
i=1

σ 2
yi(

N∏
i=1

σ 2
yi

)1/N
. (1.27)

For the raw signal, before any transformation, all the variances are approximately
equal giving a unity coding gain. Any increase in one of the coefficient variances
must be matched by an equal decrease in one or more of the other variances for an
orthonormal transform. The arithmetic mean is therefore the same, but the geometric
mean decreases resulting in a coding gain of greater than one.

For a given energy of the signal, minimizing the product of the variances maximizes
the coding gain. Conversely, maximizing the coding gain minimizes the lower bound
on the number of bits required to encode the image. So, to minimize the product
of the variances given a fixed sum, one should maximize the variance of the first

coefficient. Next, subject to the orthonormality constraint, maximize the variance of
the second coefficient, and so on. This procedure is nothing more than extracting the
principal components or, equivalently, generating the KLT. Therefore, the KLT, by
decorrelating the data, produces a set of coefficients that minimizes the differential
entropy of the data.

1.3.2 Quantization

In transform coding, the transform coefficients are quantized to effect the data
reduction. While the transformation is reversible, quantization is not, and therefore
introduces error. Let ŷ be the set of quantized coefficient values for a block. On
reconstruction, the block is calculated as

x̂ = [W]ŷ . (1.28)

The squared error for the block is calculated as

ε2 = ∥∥x̂ − x
∥∥2

= (
x̂ − x

)T (x̂ − x
)

= ([W]ŷ − [W]y)T ([W]ŷ − [W]y)
= (

ŷ − y
)T [W]T [W] (ŷ − y

)
= (

ŷ − y
)T (ŷ − y

)
= ∥∥ŷ − y

∥∥2
.

(1.29)

So, the squared error on reconstruction is the same as the squared error of the coeffi-
cients for orthonormal transformations.

The quantized coefficients are typically encoded using a lossless method, such as
arithmetic coding or Huffman coding. These methods can, at best, reduce the average
number of bits to the entropy of the quantized coefficients.

To illustrate the advantage of performing the KLT before quantization, we calculate
the total entropy for a number of quantization intervals on both the original data and
the transformed data. For this example, a midstep, uniform quantizer is used where
the quantized value is calculated as

ŷ = q round (y/q) , (1.30)

based on the width of the quantization interval, q, where the function round(x)
returns the nearest integer to the real value x. The results are shown in Fig. 1.7. For
a given squared error due to quantization, the entropy in bits per pixel is less for the
transformed data than for the original data.

1.3.3 Truncation Error

Another approach to reducing the data and hence introducing error is the complete
removal of a number of the coefficients before quantization. Say only M of the N

coefficients were to be retained. The resulting expected squared error is calculated as

FIGURE 1.7
Plot of mean squared error (MSE) versus entropy in bits per pixel for a number
of quantization widths.

E
[
ε2
]

= E

[
1

N

N∑
i=1

(
yi − ŷi

)2]

= 1

N
E

 M∑
i=1

(yi − yi)
2 +

N∑
i=M+1

(yi − 0)2

 (1.31)

= 1

N
E

 N∑
i=M+1

y2
i

= 1

N

N∑
i=M+1

σ 2
i .

Recall that for the KLT the variances of the coefficients, σ 2
i , are the eigenvalues, λi ,

of the covariance matrix. To minimize the expected squared error, the M coefficients
corresponding to the M largest eigenvalues should be kept.

Notice that the above minimization is valid for any transformation whose M basis
vectors span the M-dimensional subspace defined by the M largest principal compo-
nents (eigenvectors for the M largest eigenvalues). However, only the KLT ensures
that the remaining coefficients can be coded with the minimum number of bits since
it minimizes the differential entropy of the coefficients. To illustrate this point, let
us generate the 64 KLT basis vectors for an 8 × 8 blocking of the test image and
keep only the first four. The variances of the resulting coefficients are shown in the
first column of Table 1.1. The MSE due to the removal of the 60 lowest variance
coefficients is 96.1. Now, let us generate another set of 4 basis vectors by taking
random linear combinations of the first 4 KLT basis vectors. The new set still spans
the space defined by the original 4 KLT basis vectors. As a result, the MSE due to
truncation and the sum of the remaining variances are identical to those of the KLT
bases. However, the product of the variances is much higher, and, as a result, the
coding gain is much smaller than for the KLT bases. This means that the representa-
tion is less efficient and will require more bits to encode the coefficients for the same
degree of distortion.

Table 1.1 Performance Differences
Between First Four Basis Vectors of KLT and
a Random Combination of Them

KLT bases Random span

σ 2
1 113995 20876

σ 2
2 6880 18236

σ 2
3 2727 79310

σ 2
4 1691 6873

4∑
i=1

σ 2
i 125294 125294

64∑
i=5

σ 2
i 6147 6147

Truncation MSE 96.1 96.1
4∏

i=1

σ 2
i 3.6 × 1015 207.5 × 1015

Coding gain 4.04 1.47

1.3.4 Block Size

The question remains of what size to use for the image blocks. The larger the block,
the greater the decorrelation, hence the greater the coding gain. However, the number

of arithmetic operations for the forward and inverse transformations increases linearly
with the number of pixels in the block. Furthermore, the size of the covariance matrix
is the square of the number of pixels. Not only does the calculation of the eigenvectors
require more resources, but the number of samples to get a reasonable estimate of the
covariance matrix increases significantly. As well, if the set of KLT basis vectors is to
be kept with the image for reconstruction, the size of the basis set is also of concern.
Therefore, there is a trade-off between computational requirements and the degree of
decorrelation in determining the block size.

Fig. 1.8 shows the coding gain as a function of block size for the test image. It
clearly shows that the use of larger block sizes results in larger coding gains. For
example, increasing the block size from 4 × 4 to 8 × 8 increases the gain from 27
to 39. However, the number of floating point operations per pixel increases by a factor
of four from 32 to 128.

FIGURE 1.8
Coding gain as a function of block size for test image.

Of course, using a block the same size as the image results in a perfect coding
gain since the entire image can be represented by a single component. Unfortunately,
this representation is so image specific that the transform basis itself must also be
included with the compressed image to enable reconstruction. Since the basis vector
is the image, one is no further ahead. However, such full-frame transform coding
may be appropriate for sequences or collections of similar images.

Interblock Correlation

The KLT produces decorrelated coefficients within the image blocks. There is no
assurance, however, that the coefficients from block-to-block are also decorrelated.
In fact, for most images there is a significant correlation between the first coefficients
for adjacent blocks. For example, Fig. 1.9 shows the scatter plot of adjacent pairs of
the first coefficient for the 8 × 8 KLT of the test image. Note the strong correlation
between the adjacent values. In contrast, Fig. 1.10 shows little if any correlation
between adjacent second coefficients.

A simple method of reducing such correlation is to encode only the difference
between adjacent coefficients after initially encoding the first. This method is known
as differential pulse code modulation (DPCM). The use of DPCM on the first coeffi-
cients significantly increases the overall coding efficiency by reducing the variance of
the coefficient. For example, performing DPCM on the first coefficient of the above
8 × 8 KLT coefficients reduces the variance from 113995 to 51676. The resulting
scatter plot of the adjacent pairs of differences is shown in Fig. 1.11. The use of
DPCM has removed the correlation between adjacent values of the first coefficient.

1.4 Examples

1.4.1 Calculation of KLT

To calculate the KLT of an image, the covariance matrix is first estimated. The
estimate is calculated from the set of sequential nonoverlapping blocks for the image.
For the following examples, blocks of 8 × 8 pixels are used. For the “Lena” image,
this results in 4096 blocks. The eigenvalues and the corresponding eigenvectors
are extracted from the covariance matrix. Because the matrix is symmetric, the
eigenvalues and eigenvectors can be calculated using the tridiagonalization and QL
factorization approach.

The resulting 64 basis vectors are shown in Fig. 1.12 as two-dimensional basis
images or blocks. The bases are in order from the largest variance at the top left to
the lowest at the bottom right. Dark pixels represent negative values and light pixels
represent positive values. The first basis is almost flat due to the similarity of pixel
values within most blocks. As was the case for the two-dimensional scatter plot of
Fig. 1.2, the 64-dimensional scatter plot would show a strong concentration of points
along the diagonal line x1 = x2 = · · · = x64. As this is true for most images, the

-

-

-

-
- - - -

FIGURE 1.9
Scatter plot of adjacent pairs of the first coefficient.

first component of the KLT tends to be constant or d.c. As the variance increases, the
degree of variation, or frequency, increases. This relationship generally agrees with
the form of the KLT solution for a Markov-1 process as shown in Eq. (1.19) where
the frequency increases as the basis index increases. Again, as most images have an
approximate Markov-1 structure, the form of the KLT bases are similar.

1.4.2 Quantization and Encoding

Once the coefficients are calculated, they are quantized and then losslessly encoded.
There are numerous such methods, but a discussion and comparison of them would be
beyond the scope of this chapter. For illustrative purposes, we will use an encoding
scheme similar to that adopted by the JPEG standard [36]. The coefficients are
quantized by a midstep uniform quantizer as defined in Eq. (1.30). For simplicity, the

-

-

-
- - -

FIGURE 1.10
Scatter plot of adjacent pairs of the second coefficient.

same quantization step size, q, is used for all coefficients, unlike the JPEG standard
that varies the degree of quantization for each coefficient according to the visibility of
error as judged by human observers. Each quantized coefficient is encoded first by a
Huffman encoded value for the number of bits required by the coefficient followed by
the minimum number of bits for the coefficient value itself. Zero-valued coefficients
from adjacent blocks are run-length encoded for further compaction.

The results for various degrees of quantization are shown in Table 1.2. As the
coarseness of quantization increases, the size of the file decreases resulting in greater
compression. The equivalent average number of bits per pixel is also shown. For
comparison to show the efficiency of the coefficient encoding, the entropy of the
quantized coefficient values is also shown. The actual bit rate and the entropy are
very similar. At high compression the actual bit rate is slightly lower than the entropy
because of the run-length encoding of zero values.

-

-

-

-
- - - -

FIGURE 1.11
Scatter plot of adjacent pairs of differences of the first coefficient.

As the bit-rate decreases, distortion increases. Table 1.2 shows the distortion in
two equivalent common measures [6]. The mean squared error (MSE) is defined as

MSE = E
[(
x − x̂

)2]
, (1.32)

where x is the original pixel value and x̂ is the reconstructed value. The peak signal-
to-noise ratio (PSNR) is a logarithmic measure of distortion given in decibels (dB)
and is defined as

PSNR = 10 log10
(255)2

E
[(
x − x̂

)2] , (1.33)

where 255 is the peak value of an 8-bit image. The larger the PSNR value, the better
the accuracy of reconstruction. The plot of the distortion as PSNR versus the bit

FIGURE 1.12
KLT basis images for “Lena” image.

rate is shown in Fig. 1.13. From rate-distortion theory, for a stationary memoryless
Gaussian source, the bit rate, R, as a function of the squared error distortion, ε2, is
given by [1]

R(ε) =
{

1
2 log2

(
σ 2/ε2

)
0 ≤ ε2 < σ 2 ,

0 σ 2 ≤ ε2 .
(1.34)

For high bit rates, the rate-distortion curve follows the logarithmic relationship be-
tween the squared error and the bit rate. As the quantization interval increases, the
distortion overtakes the variance for more coefficients. As a result, the curve begins
to drop sharply as the distortion increases without a corresponding further reduction
in bit rate. In the limit as the quantization interval increases, the bit rate becomes zero

Table 1.2 Compression of “Lena” Image Using KLT
Quantizer File Size Bits/pixel Entropy MSE PSNR

Width (bytes) (bits) (dB)

2 139948 4.27 4.08 0.42 51.95
4 109141 3.33 3.11 1.42 46.62
8 78820 2.41 2.18 5.19 40.98

16 42245 1.29 1.28 15.01 36.37
24 27196 0.83 0.90 23.78 34.37
36 18375 0.56 0.64 36.27 32.54
48 13893 0.42 0.50 48.45 31.28
64 10548 0.32 0.39 64.70 30.02
92 7547 0.23 0.28 93.68 28.41

128 5492 0.17 0.21 130.19 26.98
192 3797 0.12 0.15 199.21 25.14
256 2831 0.09 0.11 273.42 23.76
512 1457 0.04 0.06 638.18 20.08

and the squared error is then simply the variance.

Fig. 1.14 shows the reconstructed image after a compression of 10:1 (0.8 bits per
pixel). Overall, very little distortion is visible. Areas of constant brightness, edges,
lines, and textured regions are all reproduced quite faithfully. Even on closer examina-
tion, little distortion is evident, as shown by comparing Figs. 1.15(a) and (b). At 10:1
compression, some minor distortion is seen as spurious texture in the background.
As well, the lone feather piece in the center-left region is somewhat distorted. As the
compression ratio increases, though, the distortion becomes more apparent, as shown
by Figs. 1.15(c) and (d) for ratios of 20:1 and 40:1, respectively. The texture of the hat
is lost in areas at 20:1, while artifacts in the background region are more pronounced.
The edges of the hat, however, are still rather crisp and the textured region of the
feathers on the brim does not seem as distorted as the hat texture. Because the set of
bases is image specific, certain features, such as these, may be well represented and
be somewhat resistant to distortion at moderate compression ratios. By 40:1, though,
the image is quite distorted. This type of distortion is sometimes referred to as “block
effect distortion” because the block boundaries used in block transform coding are
visible.

1.4.3 Generalization

In theory, the transform basis set for the KLT is specific to a particular image.
However, in practice the statistics of images at the block-size level of detail tend to be
similar. As a result, the KLT computed from one set of image data performs quite well
on another set. For example, the above results were based on the KLT computed from
the covariance matrix of the set of sequential, nonoverlapping blocks from the image.
These blocks are the exact data that are used to encode the image. If the covariance

FIGURE 1.13
Plot of distortion (PSNR) versus bit rate showing both the entropy and actual
coding rates.

matrix were to be calculated from randomly chosen blocks from arbitrary locations
on the image, the data for generating the KLT would be different from the data used
in encoding the image. Fig. 1.16 shows the results for both the KLT generated from
the sequential set of blocks and a set of 4096 randomly chosen blocks. While the
transform generated from the same data to be coded performs better, the improvement
is not significant.

What happens if the KLT is generated based on an image completely different from
the one being encoded? A second test image, “Goldhill,” is shown in Fig. 1.17. This
image was encoded using the KLT generated from the image and the KLT originally
generated from the “Lena” image. The rate-distortion curves are shown for both
cases in Fig. 1.18. As expected, using the same data for generating the transform as
for encoding results in better performance than using different data to generate the
transform. However, as the figure shows, this increase is only minor. In this case, the
transformation based on the “Lena” image generalizes well to the other image.

FIGURE 1.14
Image after compression of 10:1, MSE = 24.8, PSNR = 34.2 dB. Reproduced by
Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

1.4.4 Markov-1 Solution

To compare the usefulness of the Markov-1 solution to the KLT, we first look at
the autocorrelation of the image. As shown in Table 1.3, the autocorrelation does
appear to follow the Markov-1 model of E[xixj] = E[x2]ρ|i−j | with ρH = 0.9543
for horizontally neighboring pixels. A similar relationship also holds for vertically
neighboring pixels with ρV = 0.9768. For simplicity we will assume a separable,
isotropic distribution and choose ρ = 0.9543 for both directions. The resulting KLT
bases are shown in Fig. 1.19. Note the strong sinusoidal nature of the basis images.
The rate-distortion results for using this set of KLT bases are shown in Fig. 1.20 along
with the original results for the KLT generated from the image itself. Since the two

FIGURE 1.15
Details of image before and after 10:1, 20:1, and 40:1 compression. (a) Original,
(b) Compressed 10:1, (c) Compressed 20:1, (d) Compressed 40:1. Reproduced
by Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

curves are almost identical, the savings in computational resources from having a
closed form solution for the Markov-1 case incurs little if any cost in performance.

1.4.5 Medical Imaging
One of the most demanding application areas for the use of image compression

is the compression of medical images. The implications of introducing any sort of
distortion in this class of images are grave. There are numerous legal and regulatory
issues which consequently are of concern [37]. As a result, there is an argument for

FIGURE 1.16
Plot of distortion versus bit rate for KLT calculated from both randomly chosen
blocks and sequential blocks.

the use of lossless compression in this field; however, such an approach is of limited
usefulness due to the theoretical limits on the maximum allowable compression.

The question, of course, is how much compression can be achieved? For lossy
image compression methods, this is the same as asking how much distortion can be
introduced in the reconstructed image. To answer this question, the end-use of the
images must properly be defined. For the following example, as originally presented
in Dony et al. [9], the application is for educational use. Currently, radiology residents
acquire their diagnostic skills through examining actual clinical images of normal
patients as well as those with various pathologies. With the growth in digital imaging,
it is now possible to store such a library of images digitally in a computer database.
The residents would be free to call up any of the images and examine them at their
convenience. The evaluation criteria for this environment are quite different from, say,
a diagnostic environment. In the educational environment, the diagnosis or pathology
is given beforehand. It is sufficient that an image show clearly the pathology in
question or the characteristics of a normal image. So, it is the overall quality of the
image and the visibility of the pathology as judged by an experienced radiologist
which must be measured.

FIGURE 1.17
Second test image, “Goldhill.”

Nine digital chest radiographs (X-rays) obtained for clinical reasons were selected
for evaluation as being representative of both normal anatomy and pathology. A
sample image is shown in Fig. 1.21. Each of the nine images was compressed using
an adaptive variation of the KLT at 10:1, 20:1, 30:1, and 40:1, and the five versions of
each image were presented simultaneously to each of seven radiologists, in random
order and without the evaluator knowing the degree of compression. The radiologists
were asked to rank image quality and visibility of pathology in the context of their
suitability for educational use. Possible ratings varied from excellent, good, and fair
— acceptable — and poor or bad — unacceptable. A mean opinion score (MOS) was
calculated by assigning a numeric value to each rating, e.g., excellent scored 5 points
and bad 1 point [24].

FIGURE 1.18
Distortion versus bit rate for “Goldhill” image using KLT from both “Goldhill”
image and “Lena” image.

The results of evaluation are summarized in Fig. 1.22 which shows the plot of the
mean opinion score for both scoring criteria. The figure shows that the MOS at the
various degrees of compression remains quite close to that of the original. For image
quality, the MOS for the original is 4.28 and drops only to 4.01 at 40:1. The MOS
for the pathology visibility is 4.33 for the original and 4.10 for the 40:1 compression
ratio. Therefore the use of a compression method based on the KLT results in usable
images at even relatively high compression.

1.4.6 Color Images

Another application of the decorrelation abilities of the KLT is the compression
of color images. Color images can be represented by three color components per
pixel. Typically these are the three primary colors, red, green, and blue (RGB),
corresponding to the responses of the three color receptors in the retina of the human
eye. Similarly, in most color vision systems, three color filters of red, green, and blue
are used to produce, respectively, the three color components per pixel. From the
original RGB data, there are numerous transformations that can represent color values

Table 1.3 Correlation Between First 8
Neighboring Pixels on the Rows

E[xixj] E[xixj]/E[xi−1xj]
|i − j | = 0 2657 -
|i − j | = 1 2589 0.9744
|i − j | = 2 2472 0.9546
|i − j | = 3 2338 0.9460
|i − j | = 4 2223 0.9510
|i − j | = 5 2111 0.9492
|i − j | = 6 2010 0.9524
|i − j | = 7 1914 0.9523

in different coordinate spaces [18]. Some, for example HSI, express the components
in a form that follows more closely the human perceptions of color qualities such as
hue, saturation, and intensity. Others, for example YIQ, attempt to decorrelate the
chromatic and intensity information. For the following example, we will explore the
use of the decorrelation property of the KLT on the raw RGB data.

A simple approach to compression would be to treat each of the three RGB com-
ponents as separate images. However, this method does not exploit the correlation
between the three color values at each pixel. An alternative is to include all three
component pixel values within a block. For example, an 8 × 8 block will contain 192
individual values. The KLT can then decorrelate the component values allowing
improved coding.

To show the difference in coding performance between combining and not com-
bining the three component values, the image shown in Fig. 1.23 is used as a test
image. The image is 512 × 768 pixels in size and each pixel has 3 RGB values of
8 bits each for a total of 24 bits per pixel. For the separate encoding, three transforms
were calculated and applied, one for each component. The resulting rate-distortion
relationship is shown as the dashed curve in Fig. 1.24. The bit rate combines the file
sizes of all three components and the distortion is the mean across the components.
For the combined method, the image was divided into blocks of 8×8 pixels×3 com-
ponents for a total input dimension of 192. The performance of the KLT generated
from this data is shown by the solid curve of Fig. 1.24. The figure shows that the
difference in performance is substantial. For example, at a compression of 12:1 (2
bits per pixel), allowing the transform to decorrelate the RGB components results in a
4 dB increase in fidelity. Again, this example shows that the greater the decorrelation,
the better the performance of the transform.

FIGURE 1.19
KLT basis images for Markov-1 model, ρ = 0.9543.

1.5 Summary

The Karhunen-Loève transform (KLT) is defined as the linear transformation whose
basis vectors are the eigenvectors of the covariance matrix of the data. As it diagonal-
izes the covariance matrix, it decorrelates the data. The resulting set of coefficients
can be encoded with fewer bits for a given distortion than the raw data.

The KLT is the optimal transformation in terms of minimizing the bit rate. The
use of eigenvectors as the basis vectors ensures that the variance of the first coeffi-
cient is maximized, and, subject to the orthogonality of basis vectors, all subsequent
coefficient variances are maximized in order. Maximizing each variance means that

FIGURE 1.20
Plot of distortion (PSNR) versus bit rate for the KLT from the image covariance
matrix and the KLT generated from the Markov-1 model.

the product of all the variances is minimized due to the energy preserving nature of
any orthonormal transformation. Since the total differential entropy for the blocks
increases with the product of the variances, the KLT minimizes the entropy thereby
minimizing the bound on the bit rate.

The transform has a number of important performance characteristics for image
compression. At moderate compression ratios, very little distortion is visible. As the
compression ratio increases, more distortion becomes evident. However, because the
transform is based on data from the image, some areas remain faithfully reproduced
at even relatively low bit rates. The most prominent feature of the distortion as the
compression ratio increases is the blocking effects of using finite sized blocks. While
the KLT is calculated from the covariance matrix of an image and the covariances
of different images are rarely identical, the transform based on one image can still
perform well on a different image since the second order statistics of many images are
rather similar. Even the use of the quite general Markov-1 model for the covariance
results in performance almost as effective as the strictly image-specific transformation.
As well, the decorrelating property of the transform can be used successfully on pixel

FIGURE 1.21
Sample chest radiograph for medical image compression evaluation.

data with more than one component, such as the three RGB components in color
images.

While the KLT has the theoretically optimal decorrelation property, it has seldom
been used in practice. While the transform can generalize well, the basis vectors must
accompany an image or set of images for reconstruction if the Markov-1 model is
not used. There are also the additional computational requirements of estimating the
covariance and solving the eigensystem to extract the principal components. Further,
the computation of the forward and inverse transform is considered “slow,” requiring
an order of O(N2) operations per block of N pixels or O(N × p) for an image of
p pixels. Finally, while the transform may be optimal from an information-theoretic
basis, the distortion criterion may not correspond well with our visual perception of
distortion. For example, the block effect distortion is quite visible at high compression

FIGURE 1.22
Mean opinion score across all images and evaluators.

FIGURE 1.23
Color test image, “Monarch.”

FIGURE 1.24
Distortion versus bit rate for “Monarch” image for encoding the RGB compo-
nents separately and together.

ratios, yet it is not accounted for in the distortion criteria. A full frame KLT is
theoretically possible, but it is only practical for sets of quite small images.

References

[1] Berger, T., Rate Distortion Theory, Prentice-Hall, Englewood Cliffs, NJ, 1971.

[2] Castleman, K.R., Digital Image Processing, Prentice-Hall, Englewood Cliffs,
NJ, 1996.

[3] Chatterjee, C., Roychowdhury, V.P., and Chong, E.K.P., On relative conver-
gence properties of principal component analysis algorithms, IEEE Trans.
Neural Networks, 9(2):319–329, 1998.

[4] Chen, T., Hua, Y., and Yan, W.-Y., Global convergence of Oja’s subspace
algorithm for principal component extraction, IEEE Trans. Neural Networks,
9(1):58–67, 1998.

[5] Clarke, R.J., Transform Coding of Images, Academic Press, San Diego, CA,
1985.

[6] Clarke, R.J., Digital Compression of Still Images and Video, Academic Press,
San Diego, CA, 1995.

[7] Diamantaras, K.I. and Kung, S.Y., Principal Component Neural Networks:
Theory and Applications, John Wiley & Sons, New York, 1996.

[8] Dony, R.D. and Haykin, S., Optimally adaptive transform coding, IEEE Trans.
Image Processing, 4(10):1358–1370, 1995.

[9] Dony, R.D., Haykin, S., Coblentz, C., and Nahmias, C., Compression of digital
chest radiographs using a mixture of principal components neural network: an
evaluation of performance, RadioGraphics, 16, 1996.

[10] Gersho, A. and Gray, R.M., Vector Quantization and Signal Compression,
Kluwer Academic Publishers, Norwell, MA, 1992.

[11] GNU Octave, http://www.che.wisc.edu/octave.

[12] Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Addison-Wesley,
Reading, MA, 1993.

[13] Gray, R.M., Source Coding Theory, Kluwer Academic Publishers, Norwell,
MA, 1990.

[14] Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan, New
York, 1994.

[15] Hotelling, H., Analysis of a complex of statistical variables into principal
components, J. Educ. Psychol., 24:417–447, 498–520, 1933.

[16] Jolliffe, I., Principal Component Analysis, Springer-Verlag, New York, 1986.

[17] Karhunen, K., Über lineare methoden in der wahrscheinlich-keitsrechnung.
Ann. Acad. Sci. Fennicea, Ser. A137, 1947. (Translated by Selin, I. in “On
Linear Methods in Probability Theory,” Doc. T-131, The RAND Corp., Santa
Monica, CA, 1960.)

[18] Levkowitz, H., Color Theory and Modeling for Computer Graphics, Visual-
ization, and Multimedia Applications, Kluwer Academic Publishers, Norwell,
MA, 1997.

[19] Loève, M., Fonctions Aléatoires de second order, In Lévy, P., Ed., Processus
Stochastiques et Movement Brownien, Hermann, Paris, 1948.

[20] MathWorks, http://www.mathworks.com.

[21] Netlib Repository, http://www.netlib.org/eispack.

[22] Netlib Repository, http://www.netlib.org/lapack.

[23] Netlib Repository, http://www.netlib.org/linpack.

[24] Netravali, A.N. and Haskell, B.G., Digital Pictures: Representation and Com-
pression, Plenum Press, New York, 1988.

[25] Oja, E., A simplified neuron model as a principal component analyzer, J. Math.
Biology, 15:267–273, 1982.

[26] Oja, E., Neural networks, principal components, and subspaces, Int. J. Neural
Systems, 1(1):61–68, 1989.

[27] Oja, E. and Karhunen, J., On stochastic approximation of the eigenvectors
and eigenvalues of the expectation of a random matrix, J. Math. Analysis and
Applications, 106:69–84, 1985.

[28] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press,
Cambridge, UK, 1988.

[29] Rao, K.R. and Yip, P., Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, New York, 1990.

[30] Ray, W. and Driver, R.M., Further decomposition of the Karhunen-Loève
series representation of a stationary random process, IEEE Trans. Information
Theory, IT-16:663–668, 1970.

[31] Research Systems, http://www.rsinc.com.

[32] Rosenfeld, A. and Kak, A.C., Digital Picture Processing, Vol. I & II, 2nd ed.,
Academic Press, San Diego, CA, 1982.

[33] Sanger, T.D., Optimal unsupervised learning in a single-layer linear feedfor-
ward neural network, Neural Networks, 2:459–473, 1989.

[34] Shannon, C.E., A mathematical theory of communication, The Bell System
Technical J., 27(3):379–423, 623–656, 1948.

[35] Solo, V. and Kong, X., Performance analysis of adaptive eigenanalysis algo-
rithms, IEEE Trans. Signal Processing, 46(3):636–645, 1998.

[36] Wallace, G.K., The JPEG still image compression standard, Communications
of the ACM, 34(4):30–44, 1991.

[37] Wong, S., Zaremba, L., Gooden, D., and Huang, H.K., Radiologic image
compression — A review, Proc. IEEE, 83(2):194–219, 1995.

Ivan W. Selesnick et al. "The Discrete Fourier Transform"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 2

The Discrete Fourier Transform

Ivan W. Selesnick
Polytechnic University

Gerald Schuller
Bell Labs

2.1 Introduction

The discrete Fourier transform (DFT) is a fundamental transform in digital signal
processing, with applications in frequency analysis, fast convolution, image process-
ing, etc. Moreover, fast algorithms exist that make it possible to compute the DFT very
efficiently. The algorithms for the efficient computation of the DFT are collectively
called fast Fourier transforms (FFTs). The historic paper by Cooley and Tukey [15]
made well known an FFT of complexity N log2 N , where N is the length of the data
vector. A sequence of early papers [3, 11, 13, 14, 15] still serves as a good reference
for the DFT and FFT. In addition to texts on digital signal processing, a number of
books devote special attention to the DFT and FFT [4, 7, 10, 20, 28, 33, 36, 39, 48].

The importance of Fourier analysis in general is put forth very well by Leon Co-
hen [12]:

. . . Bunsen and Kirchhoff, observed (around 1865) that light spectra
can be used for recognition, detection, and classification of substances
because they are unique to each substance.

This idea, along with its extension to other waveforms and the invention
of the tools needed to carry out spectral decomposition, certainly ranks
as one of the most important discoveries in the history of mankind.

The kth DFT coefficient of a length N sequence {x(n)} is defined as

X(k) =
N−1∑
n=0

x(n)Wkn
N , k = 0, . . . , N − 1 (2.1)

where

WN = e−j2π/N = cos

(
2π

N

)
− j sin

(
2π

N

)

is the principal N -th root of unity. Because Wnk
N as a function of k has a period of

N , the DFT coefficients {X(k)} are periodic with period N when k is taken outside
the range k = 0, . . . , N − 1. The original sequence {x(n)} can be retrieved by the
inverse discrete Fourier transform (IDFT)

x(n) = 1

N

N−1∑
k=0

X(k)W−kn
N , n = 0, . . . , N − 1 .

The inverse DFT can be verified by using a simple observation regarding the principal
N -th root of unity WN . Namely,

N−1∑
n=0

Wnk
N = N · δ(k), k = 0, . . . , N − 1 ,

where δ(k) is the Kronecker delta function defined as

δ(n) =
{

1 n = 0
0 n �= 0 .

For example, with N = 5 and k = 0, the sum gives

1 + 1 + 1 + 1 + 1 = 5 .

For k = 1, the sum gives

1 + W5 + W 2
5 + W 3

5 + W 4
5 = 0

which can be graphically illustrated as:

The sums can also be visualized by looking at the illustration of the DFT matrix in
Fig. 2.1. Because Wnk

N as a function of k is periodic with period N , we can write

N−1∑
n=0

Wnk
N = N · δ (〈k〉N)

where 〈k〉N denotes the remainder when k is divided by N , i.e., 〈k〉N is k modulo N .
To verify the inversion formula, we can substitute the DFT into the expression for

the IDFT:

x(n) = 1

N

N−1∑
k=0

(
N−1∑
l=0

x(l)Wkl
N

)
W−kn

N , (2.2)

= 1

N

N−1∑
l=0

x(l)

N−1∑
k=0

W
k(n−l)
N , (2.3)

= 1

N

N−1∑
l=0

x(l)N δ (〈n − l〉N) , (2.4)

= x(n) . (2.5)

2.2 The DFT Matrix

The DFT of a length N sequence {x(n)} can be represented as a matrix-vector
product. For example, a length 5 DFT can be represented as

X(0)
X(1)
X(2)
X(3)
X(4)

 =

1 1 1 1 1
1 W W 2 W 3 W 4

1 W 2 W 4 W 6 W 8

1 W 3 W 6 W 9 W 12

1 W 4 W 8 W 12 W 16

x(0)
x(1)
x(2)
x(3)
x(4)

where W = W5, or as

X = FN · x ,

where FN is the N × N DFT matrix whose elements are given by

(FN)l,m = Wlm
N 0 ≤ l, m ≤ N − 1 .

As the IDFT and DFT formulae are very similar, the IDFT represented as a matrix is
closely related to FN ,

F−1
N = 1

N
F∗
N

where F∗
N represents the complex conjugate of FN .

It is very useful to illustrate the entries of the matrix FN as in Fig. 2.1, where each
complex value is shown as a vector. In Fig. 2.1, it can be seen that in the kth row of the
matrix the elements consist of a vector rotating clockwise with a constant increment
of 2πk/N . In the first row k = 0 and the vector rotates in increments of 0. In the
second row k = 1 and the vector rotates in increments of 2π/N .

FIGURE 2.1
The 16-point DFT matrix.

2.3 An Example

The DFT is especially useful for efficiently representing signals that are comprised
of a few frequency components. For example, the length 2048 signal shown in Fig. 2.2
is an electrocardiogram (ECG) recording from a dog1. The DFT of this real signal,
shown in Fig. 2.2, is greatest at specific frequencies corresponding to the fundamental
frequency and its harmonics. Clearly, the signal {x(n)} can be represented well even
when many of the small DFT {X(k)} coefficients are set to zero. By discarding, or
coarsely quantizing, the DFT coefficients that are small in absolute value, one obtains a

1The dog ECG data is available from the Signal Processing Information Base (SPIB) at URL
http://spib.rice.edu/.

more efficient representation of {x(n)}. Fig. 2.3 illustrates the DFT coefficients when
the 409 coefficients that are largest in absolute value are kept, and the remaining
1639 DFT coefficients are set to zero. Fig. 2.3 also shows the signal reconstructed
from this truncated DFT. It can be seen that the reconstructed signal is a fairly accurate
depiction of the original signal {x(n)}. For signals that are made up primarily of a
few strong frequency components, the DFT is even more suitable for compression
purposes.

FIGURE 2.2
2048 samples recorded of a dog heart and its DFT coefficients. The magnitudes
of the DFT coefficients are shown (see property 1 in Section 2.5.1).

2.4 DFT Frequency Analysis

To formalize the type of frequency analysis accomplished by the DFT, it is useful
to view each DFT value {X(k)} as the output of a length N FIR filter hk(n). The

FIGURE 2.3
The truncated DFT coefficients and the time signal reconstructed from the trun-
cated DFT.

output of the filter is given by the convolution sum

yk(l) =
l∑

n=0

x(n) hk(l − n) .

When the output yk(l) is evaluated at time l = N − 1, one has

yk(N − 1) =
N−1∑
n=0

x(n) hk(N − 1 − n) .

If the filter coefficients hk(n) are defined as

hk(n) =
{

W
k(N−1−n)
N 0 ≤ n ≤ N − 1

0 otherwise
(2.6)

then one has

yk(N − 1) =
N−1∑
n=0

x(n)Wkn
N , (2.7)

= X(k) . (2.8)

Note that hk(n) = W
k(N−1−n)
N represents a reversal of the values Wkn

N for n =
0, . . . , N − 1, which in turn is the k-th row of the DFT matrix. Therefore, the DFT
of a length N sequence {x(n)} can be interpreted as the output of a bank of N FIR
filters each of length N sampled at time l = N − 1.

Moreover, the impulse responses hk(n) are directly related to each other through
DFT-modulation:

hk(n) = W
k(N−1−n)
N · p(n)

where the filter h0(n) = p(n) is given by

p(n) =
{

1 0 ≤ n ≤ N − 1
0 otherwise .

(2.9)

This filter is called a rectangular window as it is not tapered at its ends. It follows
that the Z-transforms of the filters are also simply related:

Hk(z) =
N−1∑
n=0

hk(n) z
−n (2.10)

=
N−1∑
n=0

W
k(N−1−n)
N p(n) z−n (2.11)

= W−k
N

N−1∑
n=0

W−kn
N p(n) z−n (2.12)

= W−k
N

N−1∑
n=0

p(n)
(
Wk

Nz
)−n

(2.13)

= W−k
N P

(
Wk

Nz
)

(2.14)

where P(z) = ∑N−1
n=0 p(n) z−n. That is, if each filter hk(n) in an N -channel fil-

ter bank is taken to be the time-flip of the k-th row of the DFT matrix, then their
Z-transforms are given by Hk(z) = W−k

N P (Wk
Nz). H0(z) = P(z), H1(z) =

W−1
N P (WNz), etc. It is instructive to view the frequency responses of the N fil-

ters hk(n), as the frequency responses of the filters Hk(z) indicate the effect of the
DFT on a sequence. The magnitude of the frequency response of Hk(z) and the zero
plot in the z-plane are given in Fig. 2.4. Note that the zeros of Hk(z) in the z-plane
are simply rotated by 2π/N , and that the frequency responses are shifted by the same

FIGURE 2.4
The magnitude of the frequency response of the filters hk(n) for k = 0, . . . , 5,
corresponding to a 6-point DFT. Shown on the right are the zeros of Hk(z).

amount. The figure makes clear the way in which the DFT performs a frequency
decomposition of a signal.

The frequency response of the filter hk is given by Hk(e
jω), the discrete-time

Fourier transform (DTFT) of the impulse response:

Hk(e
jω) =

N−1∑
n=0

hk(n) e
−jωn . (2.15)

The frequency response of the rectangular window p(n) is given by

P
(
ejω

)
=

N−1∑
n=0

1 · e−jωn (2.16)

= 1 − e−jNω

1 − e−jω
(2.17)

= e−jωN/2
(
ejωN/2 − e−jωN/2

)
e−jω/2

(
ejω/2 − e−jω/2

) (2.18)

= e−jω(N−1)/2 · sin N
2 ω

sin 1
2ω

. (2.19)

The function sin (N2 ω)/ sin (1
2ω) is called the digital sinc function, for its resemblance

to the usual sinc function.

2.5 Selected Properties of the DFT

Of the many properties the DFT possesses, the symmetry properties are some of
the most useful when using the DFT for compression.

Because the DFT operates on finite-length data sequences, it is useful to define two
types of symmetries as follows. When {x(n)} is periodically extended outside the
range n = 0, . . . , N − 1, the following definitions for symmetric and anti-symmetric
sequences are consistent with their usual definitions for sequences that are not finite
in length.

Symmetry: Let {x(n)} be a real-valued length N data sequence, for n = 0, . . . ,
N − 1, then {x(n)} is symmetric if

x(N − n) = x(n), n = 1, . . . , N − 1 .

Note that an even-length N symmetric sequence {x(n)} is fully described by its first
N/2 + 1 values. For example, a length 6 symmetric sequence is fully determined
by its first 4 values as illustrated in Fig. 2.5. On the other hand, an odd-length N
symmetric sequence {x(n)} is fully described by its first (N + 1)/2 values. For

-

FIGURE 2.5
Illustration of even-length symmetric sequence.

-

FIGURE 2.6
Illustration of odd-length symmetric sequence.

example, a length 7 symmetric sequence is fully determined by its first 4 values as
illustrated in Fig. 2.6. For both even- and odd-length sequences, the number of values
that determine a length N symmetric sequence is N/2 + 1� where k� denotes the
greatest integer smaller than or equal to k.

Anti-symmetry: A real-valued length N data sequence is anti-symmetric if

x(0) = 0 and x(N − n) = −x(n), n = 1, . . . , N − 1 .

Note that an even-length N anti-symmetric sequence {x(n)} is fully described by
N/2 −1 values. For example, a length 6 anti-symmetric sequence is fully determined
by 2 values (see Fig. 2.7). On the other hand, an odd-length N anti-symmetric
sequence {x(n)} is fully described by (N − 1)/2 values. For example, a length 7
anti-symmetric sequence is fully determined by 3 values (see Fig. 2.8). For both
even- and odd-length sequences, the number of values that determine a length N

anti-symmetric sequence is �N/2−1� where �k� denotes the smallest integer greater
than or equal to k.

-

FIGURE 2.7
Illustration of even-length anti-symmetric sequence.

-

FIGURE 2.8
Illustration of odd-length anti-symmetric sequence.

2.5.1 Symmetry Properties

To state the symmetry properties of the DFT, it is useful to introduce the notation
{Xr(k)} and {Xi(k)} for the real and imaginary parts of {X(k)}. Similarly, {xr(n)}
and {xi(n)} are used to denote the real and imaginary parts of {x(n)}.

If {x(n)} is a length N data vector and . . .

1. if {x(n)} is real-valued, then

X(k) = X∗(N − k), k = 1, . . . , N − 1 ,

i.e., the real part of {X(k)} is symmetric, and the imaginary part of {X(k)} is
anti-symmetric.

2. if {x(n)} is real-valued and symmetric, then

X(k) = Xr(k) = Xr(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely real and symmetric.

3. if {x(n)} is real-valued and anti-symmetric, then

X(k) = j Xi(k) = −j Xi(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely imaginary and anti-symmetric.

4. if {x(n)} is purely imaginary, then

X(k) = −X∗(N − k), k = 1, . . . , N − 1 ,

i.e., the real part of {X(k)} is anti-symmetric, and the imaginary part of {X(k)}
is symmetric.

5. if {x(n)} is purely imaginary and {xi(n)} is symmetric, then

X(k) = j Xi(k) = j Xi(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely imaginary and symmetric.

6. if {x(n)} is purely imaginary and {xi(n)} is anti-symmetric, then

X(k) = Xr(k) = −Xr(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely real and anti-symmetric.

These properties are summarized in Table 2.1.
These properties explain why the total number of parameters needed to describe the

original data sequence {x(n)} is the same after the DFT is performed. For example,
consider a real-valued length 6 sequence {x(n)} and its DFT:

x =

1
3
5
6
7
2

X =

24.0000
−8.5000
−1.5000

2.0000
−1.5000
−8.5000

+ j

0
0.8660

−2.5981
0

2.5981
−0.8660

.

It is clear that there are a total of 6 distinct values in the DFT coefficients {X(k)} for
this example.

In general, for a length N real-valued sequence {x(n)}, the symmetric {Xr(k)} is
determined by N/2 + 1� values, and the anti-symmetric {Xi(k)} is determined by
�N/2 − 1� values. Therefore, even though the DFT {X(k)} of a length N real-valued
sequence {x(n)} is complex-valued, it is fully determined by exactly N values. The
number of parameters is the same in both {x(n)} and {X(k)}.

Recall that an even-length real-valued symmetric sequence {x(n)} is determined
by its first N/2 + 1 values. By the symmetry property above, the same is true for the
DFT {X(k)}. An odd-length real-valued symmetric sequence {x(n)} is determined
by its first (N + 1)/2 values. By the symmetry property above, the same is true for
the DFT {X(k)}. The symmetry properties for real-valued symmetric sequences are
especially useful because they can be used to develop useful DFT-based transforms
that yield real-valued coefficients.

Table 2.1 DFT Symmetry Properties
x is purely real Xr is symmetric, Xi is anti-symmetric

x is purely real, xr is symmetric Xr is symmetric, X is purely real

x is purely real, xr is anti-symmetric X is purely imaginary, Xi is anti-symmetric

x is purely imaginary Xr is anti-symmetric, Xi is symmetric

x is purely imaginary, xi is symmetric X is purely imaginary, Xi is symmetric

x is purely imaginary, xi is anti-symmetric Xr is anti-symmetric, X is purely real

-

FIGURE 2.9
Illustration of DFT symmetry property for an even-length sequence.

-

FIGURE 2.10
Illustration of DFT symmetry property for an odd-length sequence.

2.6 Real-Valued DFT-Based Transforms

In most applications the data are real-valued. For this reason, it can be beneficial to
use the DFT in a specialized way so that it gives real values. This can be accomplished
by suitably extending the given data sequence {x(n)} so that it exhibits the necessary
symmetry that makes the DFT {X(k)} real-valued.

For example, given a length N real-valued sequence {x(n)}, which does not nec-
essarily possess any symmetries, one can construct a symmetric sequence by sym-
metrically extending {x(n)}. There is more than one way to symmetrically extend a
given sequence, depending on how the end points are treated. Different symmetric

extensions give rise to the different types of DFT-based signal transforms that map
real-valued sequences to real-valued sequences. One class of DFT-based real trans-
forms is the discrete cosine and sine transforms. In fact, 16 different cosine and sine
transforms are described in [32].

One way to symmetrically extend a finite length N sequence is illustrated in
Fig. 2.11. The result is a symmetric sequence {x1(n)} of even length 2N−2. {X1(k)},

FIGURE 2.11
Illustration of symmetric extension.

the DFT of {x1(n)}, is therefore real-valued symmetric and is determined by its first
N values (see Fig. 2.12). Because {X1(k)} is determined by its first N values, this
procedure gives an N -point real transform. The inverse of this transform is obtained
by performing the same steps in reverse sequence. Given the firstN values of {X1(k)},
construct a symmetric extension as above to obtain a length 2N−2 sequence {X1(k)},
take the inverse DFT of the resulting sequence to obtain the length 2N − 2 sequence
{x1(n)}, from which {x(n)} can be extracted.

FIGURE 2.12
Illustration of symmetric extension.

The transform formulae can be found explicitly using the DFT formulae together
with the symmetric extension.

X1(k) = DFT {x1(n)} (2.20)

=
2N−3∑
n=0

x1(n)W
kn
2N−2 (2.21)

= x(0) +
N−2∑
n=1

x(n)
[
Wnk

2N−2 + W 2N−2−n
2N−2

]
+ x(N − 1)W(N−1)k

2N−2 (2.22)

= x(0) + 2
N−2∑
n=1

x(n) cos

(
nkπ

N − 1

)
+ (−1)kx(N − 1) (2.23)

where we have used the simplification W
k(2N−2−n)
2N−2 = W−nk

2N−2. Often the first and

last values, x(0) and x(N − 1), are scaled by
√

2 so that the transform is orthogonal.
The inverse can also be derived in a similar way.

It is very interesting to look at the type of frequency analysis this type of discrete
cosine transform (DCT) [1, 42, 61] performs, as was done for the DFT in Fig. 2.4. In
Fig. 2.13, the frequency responses corresponding to this DCT are shown. Note that
the plots of zeros in the z-plane are especially simple.

Another way to symmetrically extend a finite length N sequence is illustrated in
Fig. 2.14. The result is a symmetric sequence {x2(n)} of odd length 2N −1. {X2(k)},
the DFT of {x2(n)}, is therefore real-valued symmetric and is determined by its first
N values (see Fig. 2.15). Because {X2(k)} is determined by its first N values, this
procedure gives an N -point real transform. The inverse of this transform is obtained
by performing the same steps in reverse sequence. Given the firstN values of {X2(k)},
construct a symmetric extension as above to obtain a length 2N−1 sequence {X2(k)},
and take the inverse DFT of the resulting sequence to obtain the length 2N−1 sequence
{x2(n)}, from which {x(n)} can be extracted.

Now consider a symmetric extension by simply mirroring the entire length N

sequence,

{x1(n)} = [x(0), . . . , x(N − 1), x(N − 1), . . . , x(0)]

FIGURE 2.13
The discrete cosine transform (I) basis vectors illustrated in the frequency do-
main and in the z-plane. N = 6.

FIGURE 2.14
Illustration of DFT symmetry property.

FIGURE 2.15
Illustration of DFT symmetry property.

for 0 ≤ n ≤ 2N − 1 (a length 2N sequence). The DFT of this sequence becomes

X1(k) = DFT {x1(n)} (2.24)

=
2N−1∑
n=0

x1(n)W
kn
2N (2.25)

=
N−1∑
n=0

x(n)
[
Wkn

2N + W
k(2N−1−n)
2N

]
(2.26)

=
N−1∑
n=0

x(n)W−0.5k
2N

[
W

k(n+0.5)
2N + W

k(2N−0.5−n)
2N

]
(2.27)

= W−0.5k
2N

N−1∑
n=0

x(n) cos
(π
N

· k · (n + 0.5)
)

(2.28)

The phase factor W−0.5k
2N can be neglected in applications since it carries no informa-

tion about the signal. Since the transform length is N , the frequency index has the
range k = 0, . . . , N −1, so that a quadratic cosine transform matrix is obtained. The

DCT thus obtained is a so-called DCT type II. Its transform matrix is

DII (k, n) := √
2/N cos

(π
N
k(n − 0.5)

)

for n, k = 0, . . . , N − 1. To make this transform matrix orthogonal, its first row is
usually scaled to

DII (0, n) := √
1/N

for k = 0. This transform divides the frequency axis as illustrated in Fig. 2.16. It can
be seen that the width of the resulting frequency bins or bands is π/N , except for the
lowest band for k = 0, as it is centered around DC. This results in a lowpass filter
bandwidth of 1/(2N). The highest band for k = N − 1 is centered at π(1 − 1/N),
which means the required bandwidth to cover the entire frequency axis up to π is
2/N . This means that for the design of filter banks with uniform frequency width for
all bands, a shift of the frequency grid by 1/2 would be suitable, so that the lowest
band covers more bandwidth, and the highest band needs to cover less, as illustrated
in Fig. 2.17. This results in a DCT type IV; its orthogonal transform matrix is

DIV (k, n) := √
2/N cos

(π
N
(k + 0.5)(n + 0.5)

)
. (2.29)

Similarly a discrete sine transform of types II and IV are obtained by applying a
DFT to the sequence

{x1} = [x(0), . . . , x(N − 1),−x(N − 1), . . . ,−x(0)]

for 0 ≤ n ≤ 2N − 1. The resulting transform matrix for a DST type IV is

SIV (k, n) := √
2/N sin

(π
N
(k + 0.5)(n + 0.5)

)
. (2.30)

Efficient ways to obtain DCTs with the help of FFTs can be found, for example, in
Malvar [31].

FIGURE 2.16
The distribution of bands with a DCT II. Horizontally is the normalized fre-
quency �/π . The band edges are marked with long vertical lines, and the band
centers with short lines.

FIGURE 2.17
The distribution of bands with a DCT IV. The band edges are again marked with
long vertical lines, and the band centers with short lines.

2.7 The Fast Fourier Transform

A fast Fourier transform (FFT) is any fast algorithm for computing the DFT. As
stated earlier, FFT algorithms have a tremendous impact on computational aspects of
signal processing. To introduce the FFT, recall the definition of the DFT in Eq. (2.1)
and suppose the data vector {x(n)} is of even length N . The basic derivation of the
FFT begins by splitting the sum into two parts — one part for the even-indexed values
{x(2n)} and one part for the odd-indexed values {x(2n + 1)}

X(k) =
N−1∑
n=0
n even

x(n)Wnk
N +

N−1∑
n=0
n odd

x(n)Wnk
N

which can be written as

X(k) =
N/2−1∑
n=0

x(2n)W 2nk
N +

N/2−1∑
n=0

x(2n + 1)W(2n+1)k
N

or as

X(k) =
N/2−1∑
n=0

x(2n)W 2nk
N + Wk

N

N/2−1∑
n=0

x(2n + 1)W 2nk
N .

Note that W 2nk
N can be rewritten as follows:

W 2nk
N = e−j2π(2nk)/N (2.31)

= e−j2π(nk)/(N/2) (2.32)

= Wnk
N/2 . (2.33)

Hence the DFT values {X(k)} can be written as

X(k) =
N/2−1∑
n=0

x(2n)Wnk
N/2 + Wk

N

N/2−1∑
n=0

x(2n + 1)Wnk
N/2 .

Note that the first sum is the length N/2 DFT of the sequence {x(2n)} and the second
sum is the length N/2 DFT of the sequence {x(2n + 1)}. Defining these sequences
as {x0(n)} = {x(2n)} and {x1(n)} = {x(2n + 1)} for n = 0, . . . , N − 1 makes them
both sequences of length N/2. Then one has

X(k) = X0(k) + Wk
NX1(k), k = 0, . . . , N − 1 ,

where {X0(k)} and {X1(k)} are the DFTs of {x0(n)} and {x1(n)}, respectively. It
should be noted that in the definition of the length N DFT, {X(k)} was defined for
k = 0, . . . N − 1. As {x0(n)} is a sequence of length N/2, its DFT is also of length
N/2, and therefore {X0(k)} would be defined for k = 0, . . . , N/2 − 1. However,
as noted in Section 2.1, when k is taken outside this range, the DFT coefficients are
periodic — so X0(k) = X0(k − N/2) for values of k from N/2 to N − 1. Likewise
for X1(k).

This expression shows how a length N DFT can be computed using two length
N/2 DFTs. After taking the two length N/2 DFTs it remains only to multiply the
result of the second DFT with the terms Wk

N and to add the results. The multipliers
Wk

N are known as twiddle factors.
IfN/2 can be further divided by 2, then the same procedure can be used to calculate

the length N/2 DFTs. To determine the arithmetic complexity of this algorithm for
computing the DFT, let A(N) denote the number of complex additions for computing
the DFT of a length N complex sequence {x(n)}. Let N be a power of 2, N = 2K .
Then, according to the above procedure, one has

A(N) = 2A(N/2) + N

as N complex additions are required to put the two length N/2 DFTs back together.
Note that a length 2 DFT is simply a sum and difference:

X(0) = x(0) + x(1)

X(1) = x(0) − x(1) .

Hence, the starting condition is A(2) = 2. [Or one can use A(1) = 0.] Then solving
the recursive equation yields

A(N) = N log2 N complex additions.

Similarly, one has a recursive formula for complex multiplications:

M(N) = 2M(N/2) + N/2

which gives

M(N) = N

2
log2 N complex multiplications.

In fact, this number can be reduced by a more careful examination of the multipliers
Wk

N (the twiddle factors). In particular, the numbers 1, −1, j , and −j will be among

the twiddle factors Wk
N , when k is a multiple of N/4 — and so these multiplications

need not be performed. Taking this into account, one has the following formulae for
the number of real additions and real multiplications of the DFT of a sequence whose
length is a power of 2:

Ar(N) = 7
N

2
log2 N − 5N + 8 (2.34)

Mr(N) = 3
N

2
log2 N − 5N + 8 (2.35)

where a complex addition counts as two real additions, and a complex multiplication
counts as three real additions and three real multiplications.

The advantage of the efficient algorithm for computing the DFT is a reduction from
an arithmetic complexity of N2 for direct calculation to a complexity of N log2 N .
This is a fundamental improvement in the complexity, and historically it led to many
new developments in signal processing that would not otherwise have been possible
or practical. Due to its fundamental quickening in calculating the DFT, the efficient
algorithm for its computation is called the fast Fourier transform or FFT.

Many variations and enhancements of this basic algorithm have been developed in
the literature and used in practice, and they are collectively called FFTs. Of particular
note is the split radix FFT [16, 50, 56], which is a refinement of the algorithm that
attains the lowest computational complexity of practical FFT variants for lengths that
are powers of 2. FFT algorithms can be developed for lengths that are not powers
of 2. Some types of FFTs, called prime factor FFTs, do not require the use of
twiddle factors [9, 52, 53] and therefore have a reduced computational complexity
(this is possible when the length N is factored into relatively prime integers. It is
not applicable for lengths that are powers of 2). Implementations of the FFT for
real-valued data are described in Sorenson et al. [51]. Most FFT algorithms depend
on the ability to factor N , the length of the data vector {x(n)}; for prime-length DFTs
a separate approach is needed to combine shorter FFTs. The algorithms for prime-
length FFTs are based on work by Rader and Winograd [40, 60, 59]. FFT programs for
prime lengths are discussed in several publications [25, 29, 46]. Descriptions of the
different types of FFTs are available in several books [4, 7, 20, 10, 33, 35, 36, 54, 28]
and book chapters [8, 18, 19, 49]. The complexity theory associated with the FFT
is described in Winograd [60] and Heideman [22]. A comparison of different FFT
implementations on DSP chips is described in Meyer and Schwarz [34].

A relevant issue in practice is the trade-off between computational complexity and
implementation complexity. The right balance must be obtained for the best results
and some FFT algorithms with improved computational complexity are more complex
to implement than others. Moreover, for the fastest results, the variant of the FFT
chosen should be matched to the hardware on which it will run. Methods for choosing
the best variant of the FFT from among a family of FFTs have been the subject of
recent research [23, 24, 21].

2.8 The DFT in Coding Applications

In coding applications the DFT is used in two broad classes — in power spec-
trum estimation and in subband coding, where it is used in the implementation of
complex-, cosine- or sine-modulated filter banks. As an illustration, audio coding
will be considered in the following.

In audio coding, the real-valued audio signal is decomposed into a number of
subbands with a filter bank. The subband signals are then adaptively quantized and
encoded [47, 6]. The subband decomposition has the purpose of obtaining a more effi-
cient description of the signal (redundancy reduction) and applying a psycho-acoustic
model to control the quantization noise such that it will be inaudible (irrelevance re-
duction); see Fig. 2.18.

FIGURE 2.18
Audio coding based on filter banks, AFB: analysis filter bank, SFB: synthesis
filter bank.

In audio coding, the subband decomposition is usually obtained with a filter bank
called modified discrete cosine transform MDCT. It can often be switched between
differing numbers of bands, for example, between 128 and 1024 bands. The MDCT
is used, for example, in ASPEC, MPEG, MUSICAM, and PAC audio coders [30].
ASPEC and MUSICAM were later combined into MPEG-1 layer III, also known as
MP3.

One way in which the DFT is used in subband coding is for the implementation of
filter banks. Since the filters hk(n) = ej2πkn/N , n = 0, . . . , N−1, k = 0, . . . , N−1,
can be seen as a rectangular window of length N multiplied with the exponential, the

frequency localization is not very good, as can be seen in Fig. 2.4. Since this frequency
localization is very important in coding applications, the DFT is used only indirectly
in coding applications, e.g., for implementing the MDCT. The output of the MDCT
is real valued for real-valued inputs, and its subband filter impulse responses hk(n)
are longer and have a nonrectangular shape, such that the frequency localization is
better than for the DFT. The MDCT filter bank can be implemented using a DCT of
length N , which in turn can be implemented using FFTs of length N/2 [31].

In audio coding the DFT is also used as a complex filter bank. The psycho-acoustic
model, used to control the quantization step size, needs to detect and estimate signals
(sinusoids) in the subbands, i.e., it needs a reliable estimate of the time-varying power
spectrum, with a time and frequency resolution as similar to the MDCT as possible.
This is most reliably done with a complex valued spectral decomposition because it
provides the phase and magnitude of signals in the subbands at every time step. To
estimate the spectrum, only the magnitude of the subband signal is needed.

This would not be possible with a real-valued filter bank because in such a filter
bank a sinusoid in a subband is still a sinusoid after filtering, which will pass through
zero at certain times — so it may not be detected. That is, the estimated power
of the signal at that frequency and time would be lower than it should be. That is
why some audio coders [e.g., MPEG-AAC (Advanced Audio Coder) [30]] possess
an FFT parallel to the MDCT as input to the psycho-acoustic model. But a problem
is the insufficient frequency localization of the FFT, which reduces the accuracy of
the psycho-acoustic model.

The so called Balian-Low theorem states that the rectangular window of the DFT
gives rise to the only orthogonal FIR filter bank with complex Fourier modulation and
critical sampling [57] (every N input samples produce N output samples). However,
for the time-varying spectral estimation required for the psycho-acoustic model, crit-
ical sampling is not a constraint. That is why, for example, in the perceptual audio
coder (PAC) [30] the input of the psycho-acoustic model is a complex signal, which is
taken from two filter banks. The real part of the signal is the output of the real-valued
MDCT filter bank with a cosine modulation function. Hence, only an appropriate
imaginary part corresponding to this signal is needed to obtain a complete complex
subband signal — which will have improved frequency localization and therefore
a more accurate psycho-acoustic model. This imaginary part of the subband signal
can be obtained by using a second filter bank which is based on the same window
function as the MDCT, but with a sine modulation function instead of a cosine modu-
lation function. Interestingly, this sine-modulated filter bank alone is again a perfect
reconstruction (PR) filter bank, as is the cosine-modulated MDCT filter bank. These
two filter banks, in parallel, can be seen as one complex filter bank which is twice
oversampled. Hence the limitation the Balian-Low theorem no longer applies, as the
filter bank system is not critically sampled.

2.9 The DFT and Filter Banks

Because the frequency content of many signals changes with time, it is often more
desirable to first partition a signal into blocks and then apply the DFT to each block
individually. This block-wise DFT leads to a point of view based on filter banks. If
the independent variable of the input signal is time (e.g., an audio signal), then this
results in a time-frequency representation. If the input data is arranged in a matrix

x =

x(0) x(N) x(2N) · · ·
x(1) x(N + 1) x(2N + 1) · · ·
...

x(N − 1) x(2N − 1) x(3N − 1) · · ·

and FN is the DFT matrix, then the block-wise DFT can be written as

X = FN · x (2.36)

where each column of the matrix X is a DFT spectrum. Clearly this operation is
easily inverted with

x = (FN)
−1 · X . (2.37)

Depending on the amount of data, the matrices for X and x can be quite large. To
simplify the mathematical description and to obtain a more general formulation, the
Z-transform can be used. Then each block, or time frame, of X and x is associated
with a power of z−1, and the data becomes a vector of polynomials in z−1,

x(z) =

x(0) + x(N) z−1 + x(2N) z−2 + · · ·
x(1) + x(N + 1) z−1 + x(2N + 1) z−2 + · · ·
...

x(N − 1) + x(N + N − 1) z−1 + x(2N + N − 1) z−2 + · · ·

 .

This leads to

X(z) = FN · x(z) (2.38)

and

x(z) = (FN)
−1 · X(z) . (2.39)

These equations are quite similar to Eqs. (2.36) and (2.37), but now the data x and X
are in the form of a simple vector instead of a possibly infinite matrix. The operation
of applying the DFT to blocks of the signal can now also be viewed as a filter bank, as
seen in Fig. 2.19. The symbol ↓N means a downsampling operation, i.e., only every
N -th sample is let through. This figure shows an analysis filter bank on the left which

corresponds to Eq. (2.36), and a synthesis filter bank on the right which corresponds
to Eq. (2.37). Since the DFT is invertible, the signal {x(n)} can be directly obtained
from the block-wise DFT coefficients using the inverse DFT on each block. This
inverse can also be interpreted in terms of filter banks as illustrated by the synthesis
filter bank in Fig. 2.19.

FIGURE 2.19
An N -channel filter bank with critical downsampling, perfect reconstruction,
and a system delay of nd samples.

Because the analysis filter bank is invertible, it is said to have the perfect recon-
struction (PR) property. Because the total number of samples in the input signal
{x(n)} equals the total number of samples in the subbands (the N channels), it is said
to be critically sampled. In coding applications, critical downsampling is important
because it leads to an accurate and complete description of a signal with the least pos-
sible number of samples, and it leads to computationally efficient implementations.
The analysis filter bank is used in the encoder, and the synthesis filter bank in the
decoder.

To see that the matrix formulation can also be represented by a filter bank structure
(see also Vaidyanathan [55]), consider the following. For simplicity, we assume a
time-shifted sequence {x(n+N −1)}. The filtering (convolution) and downsampling
operation can be written as

yk(m) =
∑
n

hk(n) · x(mN + N − 1 − n), 0 ≤ k ≤ N − 1 . (2.40)

On the other hand, Eq. (2.36) can also be written as

Xk,m =
N−1∑
n=0

Wkn
N · x(mN + n), 0 ≤ k ≤ N − 1 . (2.41)

If this equation is compared to Eq. (2.40), it can be seen by a substitution of the index
variable that they are identical if the filters {hk(n)} are defined as

hk(n) = W
k(N−1−n)
N = W−k

N W−kn
N for n = 0, . . . N − 1

and

hk(n) = 0 otherwise

[see also Eq. (2.6)]. It was noted in Section 2.4 that these filters are complex-
modulated versions of the rectangular window function. The resulting frequency
responses of {hk(n)} are frequency-shifted versions of the frequency response of the
rectangular window function p(n), as can also be seen in Fig. 2.4. The block-wise
interpretation of this DFT-modulated filter bank leads to an efficient algorithm for its
implementation using an FFT.

The rectangular window does not have a good frequency localization because of
its limited length and its rectangular shape. Fig. 2.4 shows that the main lobe of the
frequency response (its passband) is quite wide, and the side lobes are not very low —
the stopband attenuation is not very high. A solution is to increase the window length
and to give it a different shape, such that the passband becomes more narrow and the
stopband attenuation is improved (see Bellanger [2]). To this end, first consider a
general window function {p(n)} of length N , the shape of which is not necessarily
rectangular. ({p(n)} denotes the analysis prototype filter or window function; the
synthesis prototype filter will be denoted by {q(n)}.) The filters {hk(n)} in this case
are given by

hk(n) = W−k
N · W−kn

N · p(n) (2.42)

or in terms of Z-transforms, as

Hk(z) = W−k
N Ha

(
Wk

Nz
)
.

The analysis equation can then be written using a diagonal matrix as

X(z) = FN ·

p(N − 1) 0 · · · 0

0 p(N − 2)
...

...
. . .

0 · · · p(0)

 · x(z) . (2.43)

The diagonal matrix is also called a filter matrix, denoted by Fa for the analysis. The
inverse gives the equation for the synthesis stage

x(z) =

1/p(N − 1) 0 · · · 0

0 1/p(N − 2)
...

...
. . .

0 · · · 1/p(0)

 · F−1

N · X(z) . (2.44)

The analysis window function p(n) leads to a synthesis window function of 1/p(n),
e.g., the synthesis window is the point-wise inverse of the analysis window. Con-
sequently, a window with improved frequency localization properties in the analysis
stage can lead to worse frequency localization in the synthesis stage, which is often
not desired. Also, the limited length of N of the window still is an important limiting
factor in the design of better window functions.

When the filter p(n) is longer than N , say LN , then Eq. (2.41) becomes

Xk,m =
LN−1∑
n=0

Wkn
N · p(LN − 1 − n) x(mN + n) .

Since W
k(n+N)
N = Wkn

N , we can replace n by lN + n to obtain

Xk,m =
N−1∑
n=0

Wkn
N ·

L∑
l=0

p(LN − 1 − n − lN) x(mN + n + lN) .

The inner sum can be interpreted as a convolution, which is written as a product in
the z-domain, with

Pn(z) =
L−1∑
l=0

p(n + lN) · z−l

Xn(z) =
∞∑
l=0

x(n + lN) · z−l .

This leads to

Xk(z) =
N−1∑
n=0

Wkn
N · PN−1−n(z) · Xn(z)

so that Eq. (2.43) becomes

X(z) = FN ·

PN−1(z) 0 0 · · ·
0 PN−2(z) 0 · · ·
...

0 · · · 0 P0(z)

 · x(z) . (2.45)

At this point it becomes clear that the synthesis requires the inverse functions
1/Pn(z), which represent IIR filters, whose stability is difficult to control. Conse-
quently, a critically sampled filter bank based on filters {hk(n)} that are related through
DFT modulation, as in Eq. (2.42), can have the perfect reconstruction property with
FIR filters in both the analysis stage and the synthesis stage only if the filters are not
longer than the downsampling rate N and have no overlap in time with neighboring
blocks. To obtain FIR synthesis for longer filters, the filter bank must have a different
structure.

2.9.1 Cosine-Modulated Filter Banks

We saw that a discrete cosine transform is obtained by applying a DFT to a symmet-
rically extended real valued signal. This suggests that a DCT would lead to a different

filter matrix Fa , with elements off the diagonal. In many applications, as in video,
audio, or speech coding, the signal is indeed represented as real values. Now it would
be interesting to see the shape of the resulting filter matrix for a filter bank based on
a DCT IV modulation [compare to Eq. (2.29)]. In this case, the filters {hk(n)} are
modulated with cosine functions (the factor

√
2/N is neglected for simplicity),

hk(n) = cos
(π
N
(k + 0.5)(n + 0.5)

)
· p(LN − 1 − n) , (2.46)

and the transform (the subband signals) can be written as

Xk,m =
LN−1∑
n=0

cos
(π
N
(k + 0.5)(n + 0.5)

)
· p(LN − 1 − n) x(mN + n) . (2.47)

We will exploit the symmetries embodied in the identities

cos
(π
N
(k + 0.5)((n + N) + 0.5)

)
= − cos

(π
N
(k + 0.5)((N − 1 − n) + 0.5)

)
(2.48)

and

cos
(π
N
(k + 0.5)((n + 2N) + 0.5)

)
= − cos

(π
N
(k + 0.5)(n + 0.5)

)
(2.49)

This means that every second block of N input samples “reverses the direction” of
the cosine transform. A close examination of these symmetries and replacing n by
n + 2lN and n + N + 2lN shows that the analysis equation (2.47) can be written
as a type of folding operation followed by a cosine transform, as can be seen in the
following.

Again the filtering can be written more easily in the z-domain, with

Pn(z) =
L−1∑
l=0

p(n + 2lN) · z−l

with n = 0, . . . , N − 1,

Xn(z) =
∞∑
l=0

x(n + lN) · z−l .

with n = 0, . . . , 2N − 1. Using DIV as the DCT IV matrix leads to

X(z) = DIV · Fa(z) · x(z)

where

Fa(z) =

z−1P2N−1

(
−z2

)
0 P0

(
−z2

)
.

.

z−1PN+N/2

(
−z2

)
PN/2−1

(
−z2

)
0 PN/2

(
−z2

)
z−1PN+N/2−1

(
−z2

)
0

. .
. . . .

PN−1

(
−z2

)
0 z−1PN

(
−z2

)

.

(2.50)

This form of Fa(z) assumes that the window length factor L is even, which can
always be obtained by appending zeros. The filter matrix Fa(z) has a bi-diagonal
structure, i.e., it has nonzero elements not only on the diagonal but also on the antidi-
agonal. This means a window function can be designed such that the inverse of the
filter matrix leads to FIR filters. An example is the classical MDCT or TDAC filter
bank [37]. It results from inserting an additional phase shift of N/2 in the modulating
cosine function:

Xk,m =
2N−1∑
n=0

cos
(π
N
(k + 0.5)(n + 0.5 + N/2)

)
· p(LN − 1 − n) x(mN + n) .

This phase shift leads to a shift of the structure of the filter matrix downwards by
N/2. For example, for a window function p(n) for n = 0, . . . , 2N − 1, the filter
matrix has the following form,

Fa(z) =

0 z−1p(1.5N) z−1p(1.5N − 1) 0

. .
. . . .

z−1p(2N − 1) 0 z−1p(N)

p(N − 1) −p(0)
.

.

0 p(N/2) − p(N/2 − 1) 0

The inverse for the synthesis matrix is

z−1F−1
a (z) =

0 q(0) z−1q(N) 0

. .
. . . .

q(N/2 − 1) 0 z−1q(1.5N − 1)
q(N/2) −z−1q(1.5N)

.
.

0 q(N − 1) − z−1q(2N − 1) 0

with

q(n) = p(n)

p(2N − 1 − n)p(n) + p(N − 1 − n)p(N + n)

q(N + n) = p(N + n)

p(2N − 1 − n)p(n) + p(N − 1 − n)p(N + n)

wheren = 0, . . . , N−1. This inverse is used in the synthesis filter bank to reconstruct
the signal, e.g., in a decoder. The synthesis side has a filter matrix with the same shape
as the analysis side, so the synthesis filter bank is again a cosine-modulated filter bank,
with q(n) as its window function. Observe that q(n) = p(n) if the denominator for
the computation of the inverse becomes one.

The DCT leads to a filter matrix which has a form enabling us to design filter
banks with critical sampling and FIR filters for analysis as well as for the synthesis.
Therefore filter banks based on DCTs are the predominant tools for time-frequency
decomposition in audio coding.

To design filter banks with longer filters and more freedom in the design process, the
filter matrix Eq. (2.50) can be written as a product of simpler matrices. These simpler
matrices can be unitary, such that the product is a unitary matrix, whose inverse is
then obtained by simply transposing it and replacing z by z−1 [31]. Or these simpler
matrices can be bi-orthogonal, so that the resulting filter bank is bi-orthogonal [45].
The latter is a more general solution, which enables us to design, for example, filter
banks with a lower end-to-end delay than unitary or orthogonal filter banks [43, 44].

2.9.2 Complex DFT-Based Filter Banks

A disadvantage of the DCT is that it delivers no phase or magnitude information, as
the DFT does. For example, in audio coding the magnitudes of the subband signals are
needed as inputs to psycho-acoustic models which control the quantization process,
as seen in Fig. 2.18. Such is the basic structure of, for example, the PAC audio coder.
The DCT can be seen as the real part of a DFT of a real valued signal, so what is needed
is the imaginary part to obtain complex subband signals and hence their magnitudes.
The imaginary part can be obtained by using a filter bank based on a DST. For a
cosine-modulated filter bank with a DCT IV, the corresponding sine-modulated filter
bank uses a DST IV (2.30). The equality

sin
(π
N
(k + 0.5)(n + 0.5)

)
= cos

(π
N
(k + 0.5)(n − N + 0.5)

)
shows, that the sine modulation function has the same symmetries in time n as the
cosine modulation function [Eqs. (2.48) and (2.49)] but is shifted by N samples. This
leads to the same conditions on the window function for perfect reconstruction, so
the same window function can be used for the cosine- and the sine-modulated filter
banks, hence for the real and imaginary parts of the resulting complex valued filter
bank. This is important for obtaining the precise magnitude and phase information
of a signal.

In audio coding, the signal consists of real values. If the input signal to the complex
filter bank consists of complex values, as in applications such as synthetic aperture
radar (SAR) [30], the filter bank needs to cover positive as well as negative frequencies
to obtain perfect reconstruction. If AFBC is the output of the cosine-modulated
analysis filter bank, and AFBS is the output of the sine-modulated filter bank, then
the positive frequencies are obtained by taking AFBC − jAFBS and the negative
frequencies by AFBC + jAFBS , similar to the DFT. This means the analysis filter
bank consists of 2N bands

[AFBC − jAFBS,AFBC + jAFBS] .

The synthesis filter bank for perfect reconstruction has an analogous structure,

[SFBC + jSFBS, SFBC − jSFBS] ,

where SFBC, SFBS are the outputs of the synthesis filter banks.
It is easy to see that this synthesis filter bank leads to perfect reconstruction if the

cosine and sine filter banks have the perfect reconstruction property of their own.
Observe that this is not the only solution for perfect reconstruction since the filter
bank is, in effect, oversampled at twice the rate. But this solution for the synthesis
has an advantage because it has an analogous structure, hence similar properties, as
the analysis part, which is often desirable in coding applications.

Figs. 2.21–2.23 show a comparison of the frequency responses of the window
functions of a direct FFT approach, as used in the MPEG-AAC audio coder as input
for the psycho-acoustic model, and the complex filter bank. Fig. 2.22 shows the
frequency response of a 1024 band FFT filter bank, and Fig. 2.21 shows the frequency
response of a complex low-delay filter bank with 1024 bands, an analysis/synthesis
delay of 2047 samples, and filter length of 4096 taps. Figs. 2.23 and 2.24 show an
enlargement with the passband on the left. The passband of the complex filter bank
is narrower, and the stopband attenuation is much higher than with the direct FFT
application.

Figs. 2.25–2.27 show an application example for a stereo audio signal that is en-
coded and decoded at two different bit rates. Fig. 2.25 shows a piece of the original
audio signal (jazz music), the left channel, sampled at 32000 samples/s. In this un-
compressed representation, each sample is represented with a 16 bit integer number,
which leads to a bit rate of 16 · 2 · 32000 = 1024 kb/s. Fig. 2.26 shows that signal,
but coded and decoded with a bit rate of 67 kb/s for the stereo signal (i.e., 35 kb/s per
channel, or a compression ratio of over 14). The resulting audio quality is comparable
to FM radio. It can be seen that there are slight differences to the original, but most
of the differences are still inaudible because of the application of the psycho-acoustic
model. Fig. 2.27 shows the signal at 30 kb/s stereo (a compression ratio of over 34).
The resulting quality is comparable to AM radio. There are now more pronounced
differences to the original; it is much smoother, which means it contains fewer high
frequencies. Here the difference to the original is easy to hear, but the psycho-acoustic
model is used such that the audible distortions are minimized.

FIGURE 2.20
Audio coding based on filter banks, AFB: analysis filter bank, SFB: synthesis
filter bank.

2.10 Conclusion

This chapter introduced the DFT and some of its basic properties. Even though
it is a complex-valued transform, because of its symmetry properties, the DFT of
a real-valued N -point signal can be represented again by N real values. A set of
real-valued discrete cosine transforms can be derived using the DFT. The derivation
of a fast algorithm for computing the DFT (the FFT) was also described here.

The DFT has many applications in coding. For example, the FFT is used for
the efficient implementation of DCTs, the MDCT, and low delay filter banks. Fur-
thermore, the complex output is used for power spectrum estimation, in particular,
to drive psycho-acoustic models in audio coding, and it can be used to implement
complex-valued filter banks for improved power spectrum estimation.

0 0.2 0.4 0.6 0.8 1
-140

-120

-100

-80

-60

-40

-20

0
d

B

FIGURE 2.21
Magnitude of the frequency response of the rectangular window of a DFT of
length 1024.

FIGURE 2.22
Magnitude of the frequency response of the window of a low delay filter bank
with 1024 bands and filter length 4096.

–

–

–

–

–

–

–

FIGURE 2.23
Enlargement of the first part of the magnitude of the frequency response of the
rectangular window of the DFT.

0 0.02 0.04 0.06 0.08 0.1
-140

-120

-100

-80

-60

-40

-20

0

d
B

FIGURE 2.24
Enlargement of the first part of the magnitude of the frequency response of the
window of the low delay filter bank.

–

–

–

–

FIGURE 2.25
A piece of an example audio signal, sampled at 32 khz. Shown is the left channel
of the stereo signal.

FIGURE 2.26
The stereo audio signal, coded and decoded with 67 kb/s. The left channel is
shown.

–

–

–

–

FIGURE 2.27
The left channel of the stereo audio signal, coded and decoded, but with 30 kb/s.

2.11 FFT Web sites

The following list reflects some of the available software and information on Web
sites devoted to the FFT (September 1999).

• FFTW
http://www.fftw.org/index.html
http://www.fftw.org/benchfft/doc/ffts.html

• FFTPACK
http://www.netlib.org/fftpack/

• FFT for Pentium (Bernstein)
ftp://koobera.math.uic.edu/www/djbfft.html

• FFT software (comp.speech FAQ Q2.4)
http://svr-www.eng.cam.ac.uk/comp.speech/
Section2/Q2.4.html

• One-dimensional real fast Fourier transforms
http://www.hr/josip/DSP/fft.html

• FXT package FFT code (Arndt)
http://www.jjj.de/fxt/

• FFT (Don Cross)
http://www.intersrv.com/˜dcross/fft.html

• Public domain FFT code
http://risc1.numis.nwu.edu/ftp/pub/transforms/
http://risc1.numis.nwu.edu/fft/

• DFT (Paul Bourke)
http://www.swin.edu.au/astronomy/pbourke/
sigproc/dft/

• FFT code for TMS320 processors
ftp://ftp.ti.com/mirrors/tms320bbs/

• Fast Fourier Transforms (Kifowit)
http://ourworld.compuserve.com/homepages/
steve_kifowit/fft.htm

• Nielsen’s MIXFFT page
http://home.get2net.dk/jjn/fft.htm

• Parallel FFT homepage
http://www.arc.unm.edu/Workshop/FFT/fft/fft.html

• FFT public domain algorithms
http://www.arc.unm.edu/Workshop/FFT/fft/fft.html

• Numerical recipes
http://www.nr.com/

• General purpose FFT package
http://momonga.t.u-tokyo.ac.jp/õoura/fft.html

• FFT links
http://momonga.t.u-tokyo.ac.jp/õoura/fftlinks.html

• FFT, performance, accuracy, and code (Mayer)
http://www.geocities.com/ResearchTriangle/8869/
fft_summary.html

• Prime-length FFT
http://www.dsp.rice.edu/software/RU-FFT/
pfft/pfft.html

• Notes on the FFT (Burrus)
http://www.dsp.rice.edu/research/fft/fftnote.asc

• Yahoo FFT Web site list
http://dir.yahoo.com/Science/Mathematics/Software/
Fast_Fourier_Transform__FFT_/

References

[1] Ahmed, N., Natarajan, T., and Rao, K.R., Discrete cosine transform, IEEE
Trans. Comput., 23:90–93, 1974, also in [41].

[2] Bellanger, M., Digital Processing of Signals, Theory and Practice, John Wiley
& Sons, Chichester, NY, 1989.

[3] Bergland, G.D., A guided tour of the fast Fourier transform, IEEE Spectrum,
6:41–52, 1969, also in [39].

[4] Blahut, R.E., Fast Algorithms for Digital Signal Processing. Addison-Wesley,
Reading, MA, 1985.

[5] Bracewell, R.N., The Fourier Transform and its Applications, McGraw Hill,
Reading, MA, 1986.

[6] Brandenburg, K. and Bosi, M., Overview of MPEG audio: current and future
standards for low bit rate audio coding, J. Audio Eng. Soc., 45(1/2):4–21, 1997.

[7] Brigham, E.O., The Fast Fourier Transform and its Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[8] Burrus, C.S., Efficient Fourier transform and convolution algorithms, in Lim,
J.S. and Oppenheim, A.V., Eds., Advanced Topics in Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[9] Burrus, C.S. and Eschenbacher, P.W., An in-place, in-order prime factor FFT
algorithm, IEEE Trans. on Acoust., Speech, Signal Proc., 29(4):806–817, 1981.

[10] Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms, John
Wiley & Sons, Chichester, NY, 1985.

[11] Cochran, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling,
G.C., Nelson, D.E., Rader, C.M., and Welch, P.D., What is the fast Fourier
transform?, IEEE Trans. Audio Electroacoust., 15:45–55, 1967, also in [39].

[12] Cohen, L., Time-Frequency Analysis. Prentice-Hall, Englewood Cliffs, NJ,
1995.

[13] Cooley, J.W., Lewis, P.A.W., and Welch, P.D., Historical notes on the fast
Fourier transform, IEEE Trans. Audio Electroacoust., 15:76–79, 1967, also
in [39].

[14] Cooley, J.W., Lewis, P.A.W., and Welch, P.D., The finite Fourier transform,
IEEE Trans. Audio Electroacoust., 17:77–85, 1969, also in [39].

[15] Cooley, J.W. and Tukey, J.W., An algorithm for the machine calculation of
complex Fourier series, Mathematics of Computation, 19(90):297–301, 1965,
also in [39].

[16] Duhamel, P., Implementation of “split radix” FFT algorithm, IEEE Trans. on
Acoust., Speech, Signal Proc., 34(2):285–295, 1986.

[17] Duhamel, P. and Vetterli, M., Fast Fourier transforms: a tutorial review and a
state of the art, Signal Processing, 19:259–299, 1990, also in [18].

[18] Duhamel, P. and Vetterli, M., Fast Fourier transforms: a tutorial review and a
state of the art, in Madisetti, V.K. and Williams, D.B., Eds., The Digital Signal
Processing Handbook, chapter 7, CRC Press, 1998, also appears as [17].

[19] Elliott, D.F., Fast Fourier transforms, in Elliott, D.F., Ed., Handbook of Digital
Signal Processing, Chapter 7, pages 527–631, Academic Press, New York,
1987.

[20] Elliott, D.F. and Rao, K.R., Fast Transforms: Algorithms, Analyses, Applica-
tions, Academic Press, New York, 1982.

[21] Frigo, M. and Johnson, S.G., FFTW, FFT software developed at MIT,
http://www.fftw.org/index.html.

[22] Heideman, M.T., Multiplicative Complexity, Convolution, and the DFT,
Springer-Verlag, New York, Berlin, 1988.

[23] Johnson, H.W. and Burrus, C.S., The design of optimal DFT algorithms us-
ing dynamic programming, IEEE Trans. on Acoust., Speech, Signal Proc.,
31(2):378–387, 1983.

[24] Johnson, J., Automatic implementation and generation of FFT algorithms,
SIAM parallel processing FFT session, March 1999, see SPIRAL webpage
http://www.ece.cmu.edu/˜spiral/.

[25] Jones, K.J., Prime number DFT computation via parallel circular convolvers,
IEE Proceedings, Part F, 137(3):205–212, 1990.

[26] Karp, T. and Fliege, N.J., MDFT filter banks with perfect reconstruction, in
IEEE International Symposium on Circuits and Systems, Seattle, WA, 1995.

[27] Lim, J.S. and Oppenheim, A.V., Advanced Topics in Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[28] Van Loan, C., Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, PA, 1992.

[29] Lu, C., Cooley, J.W., and Tolimieri, R., FFT algorithms for prime transform
sizes and their implementations on VAX, IBM3090VF, and IBM RS/6000,
IEEE Trans. on Acoust., Speech, Signal Proc., 41(2):638–648, 1993.

[30] Madisetti, V.K. and Williams, D.B., The Digital Signal Processing Handbook,
CRC Press and IEEE Press, Boca Raton, FL, 1997.

[31] Malvar, H., Signal Processing with Lapped Transforms, Artech House, Boston,
MA, London, 1992.

[32] Martucci, S., Symmetric convolution and the discrete sine and cosine trans-
forms, IEEE Trans. on Signal Processing, 42:1038–1051, 1994.

[33] McClellan, J.H. and Rader, C.M., Number Theory in Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1979.

[34] Meyer, R. and Schwarz, K., FFT implementation on DSP-chips, theory and
practice, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP),
1503–1506, April 1990.

[35] Myers, D.G., Digital Signal Processing: Efficient Convolution and Fourier
Transform Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[36] Nussbaumer, H.J., Fast Fourier Transform and Convolution Algorithms,
Springer-Verlag, New York, Berlin, 1982.

[37] Princen, J.P. and Bradley, A.B., Analysis/synthesis filter bank design based
on time domain aliasing cancellation, IEEE Trans. on Signal Processing,
34(10):1153–1161, 1986.

[38] Proakis, J.G., Rader, C.M., Ling, F., and Nikias, C.L., Advanced Digital Signal
Processing, Macmillan, New York, 1992.

[39] Rabiner, L.R. and Rader, C.M., Eds., Digital Signal Processing, IEEE Press,
Piscataway, NJ, 1972.

[40] Rader, C.M., Discrete Fourier transform when the number of data samples is
prime, Proc. IEEE, 56(6):1107–1108, 1968.

[41] Rao, K.R., Ed., Discrete Transforms and Their Applications, Krieger, Malabar,
FL, 1990.

[42] Rao, K.R. and Yip, P., Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, New York, 1990.

[43] Schuller, G., Time-varying filter banks with variable system delay, in Proc.
IEEE ICASSP, Vol. 3, 2469–2472, Munich, Germany, 1997.

[44] Schuller, G. and Karp, T., Modulated filter banks with arbitrary system delay:
efficient implementations and the time-varying case, IEEE Trans. on Signal
Processing, 48(3), 2000.

[45] Schuller, G.D.T. and Smith, M.J.T., New framework for modulated perfect
reconstruction filter banks, IEEE Trans. on Signal Processing, 44(8):1942–
1954, 1996.

[46] Selesnick, I.W. and Burrus, C.S., Automatic generation of prime length FFT
programs, IEEE Trans. on Signal Processing, 44(1):14–24, 1996.

[47] Sinha, D., Johnston, J.D., Dorward, S., and Quackenbush, S., The perceptual
audio coder (PAC), in Madisetti, V. and Williams, D.B., Eds., The Digital Signal
Processing Handbook, chapter 42, CRC Press and IEEE Press, Boca Raton, FL,
1997.

[48] Smith, W.W. and Smith, J.M., Handbook of Real-Time Fast Fourier Transforms,
IEEE Press, Piscataway, NJ, 1995.

[49] Sorensen, H.V. and Burrus, C.S., Fast DFT and convolution algorithms, in
Mitra, S.K. and Kaiser, J.F., Eds., Handbook For Digital Signal Processing,
chapter 8, 491–610, John Wiley & Sons, New York, 1993.

[50] Sorenson, H.V., Heideman, M.T., and Burrus, C.S., On computing the split-
radix FFT, IEEE Trans. on Acoust., Speech, Signal Proc., 34(1):152–156, 1986.

[51] Sorenson, H.V., Jones, D.L., Heideman, M.T., and Burrus, C.S., Real-valued
fast Fourier transform algorithms, IEEE Trans. on Acoust., Speech, Signal Proc.,
35(6):849–863, 1987.

[52] Temperton, C., Implementation of a self-sorting in-place prime factor FFT
algorithm, J. of Computational Physics, 58:283–299, 1985.

[53] Temperton, C., Self-sorting in-place fast Fourier transforms, SIAM J. on Scien-
tific and Statistical Computing, 12(4):808–823, 1991.

[54] Tolimieri, R., An, M., and Lu, C., Algorithms for Discrete Fourier Transform
and Convolution, Springer-Verlag, New York, Berlin, 1989.

[55] Vaidyanathan, P.P., Multirate Systems and Filter Banks, Prentice-Hall, Engle-
wood Cliffs, NJ, 1992.

[56] Vetterli, M. and Duhamel, P., Split-radix algorithms for length-pm DFTs, IEEE
Trans. on Acoust., Speech, Signal Proc., 37(1):57–64, 1989.

[57] Vetterli, M. and Kovačević, J., Wavelets and Subband Coding, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[58] Wickershauser, M.L., Adapted Wavelet Analysis from Theory to Software,
A.K. Peters, Wellesley, MA, 1994.

[59] Winograd, S., Some bilinear forms whose multiplicative complexity depends
on the field of constants, Mathematical Systems Theory, 10:169–180, 1977.

[60] Winograd, S., Arithmetic Complexity of Computations, SIAM, Philadelphia,
PA, 1980.

[61] Yip, P. and Rao, K.R., Fast discrete transforms, in Elliott, D.F., Ed., Handbook
of Digital Signal Processing, chapter 6, 481–525, Academic Press, New York,
1987.

W. Steve G. Mann "Comparametric Transforms for Transmitting ..."
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 3

Comparametric Transforms for Transmitting
Eye Tap Video with Picture Transfer Protocol
(PTP)

W. Steve G. Mann

University of Toronto

Eye Tap video is a new genre of video imaging facilitated by and for the apparatus
of the author’s eyeglass-based “wearable computer” invention [1]. This invention
gives rise to a new genre of video that is best processed and compressed by way of
comparametric equations, and comparametric image processing. These new meth-
ods are based on an Edgertonian philosophy, in sharp departure from the traditional
Nyquist philosophy of signal processing. A new technique is given for estimating
the comparameters (relative parameters between successive frames of an image se-
quence) taken with a camera (or Eye Tap device) that is free to pan, tilt, rotate about
its optical axis, and zoom. This technique solves the problem for two cases of static
scenes: images taken from the same location of an arbitrary 3-D scene and images
taken from arbitrary locations of a flat scene, where it is assumed that the gaze pattern
of the eye sweeps on a much faster time scale than the movement of the body (e.g.,
an assumption that image flow across the retina induced by change in eye location is
small compared to that induced by gaze pattern).

3.1 Introduction: Wearable Cybernetics

Wearable cybernetics is based on the WearComp invention of the 1970s, originally
intended as a wearable electronic photographer’s assistant [2].

3.1.1 Historical Overview of WearComp

A goal of the author’s WearComp/WearCam (wearable computer and personal
imaging) inventions of the 1970s and early 1980s (Fig. 3.1) was to make the metaphor
of technology as an extension of the mind and body into a reality. In some sense,
these inventions transformed the body into not just a camera, but also a networked
cybernetic entity. The body thus became part of a system always seeking the best
picture, in all facets of ordinary day-to-day living. These systems served to illustrate
the concept of the camera as a true extension of the mind and body of the wearer.

FIGURE 3.1
Personal Imaging in the 1970s and 1980s: Early embodiments of the author’s
WearComp invention that functioned as a “photographer’s assistant” for use in
the field of personal imaging. (a) Author’s early headgear. (b) Author’s early
“smart clothing” including cybernetic jacket and cybernetic pants (continued).

3.1.2 Eye Tap Video

Eye Tap video [3] is video captured from the pencil of rays that would otherwise
pass through the center of the lens of the eye. The Eye Tap device is typically worn
like eyeglasses.

FIGURE 3.1
(Cont.) (c) Author’s 1970s chording keyboard comprising switches mounted to
a light source, similar to the mid 1980s version depicted in author’s right hand
in (b).

3.2 The Edgertonian Image Sequence

Traditional image sequence compression, such as MPEG [4, 5] (see, for example,
the Moving Picture Expert Group FAQ), is based on processing frames of video as
a continuum. The integrity of motion is often regarded as being more important
than, or at least as important as, the integrity of each individual frame of the image
sequence. However, it can be argued that temporal integrity is not always of the
utmost importance and can, in fact, often be sacrificed with good reason.

3.2.1 Edgertonian versus Nyquist Thinking

Consider the very typical situation in which the frame rate of a picture acquisi-
tion process vastly exceeds the frame rate at which it is possible to send pictures of
satisfactory quality over a given bandwidth-limited communications channel. This

situation arises, for example, with Web-based cameras, including the Wearable Wire-
less Webcam [6].

Suppose that the camera provides 30 pictures per second, but the channel allows us
to send only one picture per second (ignore for the moment the fact that we can trade
spatial resolution, temporal resolution, and compression quality to adjust the frame
rate). In order to downsample our 30 pictures per second to one picture per second,
the “Nyquist school of thought” would suggest that we temporally lowpass filter
the image sequence in order to remove any temporal frequencies that would exceed
the Nyquist frequency. To apply this standard “lowpass filter then downsample”
approach, we might average each 30 successive pictures to obtain one output picture.
Thus, fast moving objects would be blurred to prevent temporal aliasing.

We might be tempted to think that this blurring is desirable, given temporal alias-
ing that would otherwise result. However, cinematographers and others who produce
motion pictures often disregard concepts’ temporal aliasing. Most notably, Harold E.
Edgerton [7], inventor of the electronic flash and known for his movies of high speed
events in which objects are “frozen” in time, has produced movies and other artifacts
that defy any avoidance of temporal aliasing. Edgerton’s movies provide us with a
temporal sampling that is more like a Dirac comb (downsampling of reality) than a
lowpass-filtered and then downsampled version of reality. For the example of down-
sampling from 30 frames per second to one frame per second, an Edgertonian thinker
would likely advocate simply taking every 30th frame from the original sequence and
throwing all the others away.

The Edgertonian downsampling philosophy gives rise to image sequences in which
propeller blades or wagon wheel spokes appear to spin backwards or stand still. The
Nyquist philosophy, on the other hand, gives rise to image sequences in which the
propeller blades or wagon wheel spokes visually disappear. The author believes
that it is preferable that the propeller blades and wagon wheel spokes appear to spin
backwards, or stand still, rather than visually disappear. More generally, an important
assumption upon which the thesis of this chapter rests is that it is preferable to have a
series of crisp well-defined “snapshots” of reality, rather than the blur of images that
one would get by following the antialiasing approach of traditional signal processing.

The author’s personal experience with his wearable Eye Tap video camera inven-
tion, wearing the camera often 8 to 16 hours a day, led to an understanding of how
the world looks through Web-based video. On this system, it was possible to choose
from among various combinations of Edgertonian and Nyquist sampling strategies.
It was found that experiencing the world through “Edgertonian eyes” was generally
preferable to the Nyquist approach.

3.2.2 Frames versus Rows, Columns, and Pixels

There is a trend now toward processing sequences of images as spatio-temporal
volumes, e.g., as a function f (x, y, t). Within this conceptual framework, motion
pictures are treated as static three-dimensional volumes of data. So-called spatio-
temporal filters h(x, y, t) are applied to these spatio-temporal volumes f (x, y, t).

However, this unified treatment of the three dimensions (discretized to row, col-
umn, and frame number) ignores the fact that the time dimension has a much dif-
ferent intuitive meaning than the other two dimensions. Apart from the progressive
(forward-only) direction of time, there is the more important fact (even for stored
image sequences) that a snapshot in time (a still picture selected from the sequence)
often has immediate meaning to the human observer. A single row of pixels across
a picture or a single column of pixels down a picture do not generally have similar
significance to the human observer. Likewise, a single pixel means little to the human
observer in the absence of surrounding pixels.

Notwithstanding their utility, slices of the formf (x, y0, t) or of the formf (x0, y, t)

are often confusing at best, compared to the still picture f (x, y, t0) that remains as an
extraction from a picture sequence which is far more meaningful to a typical human
observer. Thus the author believes that downsampling across rows or downsampling
down columns of an image should be preceded by lowpass filtering, whereas temporal
downsampling should not.

There is, therefore, a special significance to the notion of a “snapshot in time” and
the processing, storage, transmission, etc. of a motion picture as a sequence of such
snapshots. The object of this chapter is to better understand the relationship between
individual sharply defined frames of an Edgertonian sequence of pictures.

3.3 Picture Transfer Protocol (PTP)

When applying data compression to a stream of individual pictures that will be
viewed in real-time (for example, in videoconferencing, such as the first-person-
perspective videoconferencing of the wearable Eye Tap device), it is helpful to con-
sider the manner in which the data will be sent. Most notably, pictures are typically
sent over a packet-based communications channel. For example, Wearable Wireless
Webcam used the AX25 Amateur Radio [8] protocol. Accordingly, packets typically
arrive either intact or corrupted. Packets that are corrupt traditionally would be resent.
An interesting approach is to provide data compression on a per-image basis, and to
vary the degree of compression so that the size of each picture in the image sequence
is exactly equal to the length of one packet.

Together with the prior assumption (that images are acquired at a rate that exceeds
the channel capacity), it will generally be true that by the time we know that a packet
(which is a complete picture) is corrupt at the receiver, a newer picture will have
already been acquired. For example, if the round trip time (RTT) were 100 ms
(which is equal to the time it takes to generate three pictures), there would be little
sense in resending a picture that was taken three pictures ago. The commonly arising
situation in which pictures are captured at a rate that exceeds the RTT suggests that
there will always be newer picture information at the transmit site than what would
be resent in the event of a lost packet.

This approach forms the basis for the Picture Transfer Protocol (PTP) proposed
by the author. In particular, PTP is based on the idea of treating each snapshot in
time as a single entity, in isolation, and compressing it into a single packet, so it will
have either arrived in its entirety or not arrived at all (and therefore can be discarded).
It should be clear that the philosophical underpinnings of PTP are closely related to
those of Edgertonian downsampling.

3.4 Best Case Imaging and Fear of Functionality

A direct result of Edgertonian sampling is that a single picture from a picture
sequence has a high degree of relevance and meaning even when it is taken in isolation.
Similarly, a direct result of PTP is that a single packet from a packet sequence has a
high degree of relevance and meaning even when it is taken in isolation (for example,
when the packets before and after it have been corrupted). It is therefore apparent
that if a system were highly unreliable, to the extent that pictures could be transmitted
only occasionally and unpredictably, then the Edgertonian sampling combined with
PTP would provide a system that would degrade gracefully.

Indeed, if we were to randomly select just a few frames from one of Edgerton’s
motion pictures, we would likely have a good summary of the motion picture, since
any given frame would provide us with a sharp picture in which subject matter of
interest could be clearly discerned. Likewise, if we were to randomly select a few
packets from a stream of thousands of packets of PTP, we would have data that would
provide a much more meaningful interpretation to the human observer than if all we
had were randomly selected packets from an MPEG sequence.

Personal imaging systems are characterized by a wearable incidentalist “always
ready” mode of operation in which the system need not always be functioning to be
of benefit. It is the potential functionality, rather than the actual functionality, of
such a system that makes it so different from other imaging systems such as hand-
held cameras and the like. Accordingly, an object of the personal imaging project
is to provide a system that transmits pictures in harsh or hostile environments. One
application of such a system is the personal safety device (PSD) [9]. The PSD differs
from other wireless data transmission systems in the sense that it was designed for
“best case” operation. Ordinarily, wireless transmissions are designed for worst
case scenarios, such as might guarantee a certain minimum level of performance
throughout a large metropolitan area. The PSD, however, is designed to make it hard
for an adversary to guarantee total nonperformance.

It is not a goal of the PSD to guarantee connectivity in the presence of hostile
jamming of the radio spectrum but, rather, to make it difficult for the adversary to
guarantee the absence of connectivity. Therefore, an otherwise potential perpetrator of
a crime would never be able to be certain that the wearer’s device was nonoperational
and would therefore need to be on his or her best behavior at all times.

Traditional surveillance networks, based on so-called public safety camera systems,
have been proposed to reduce the allegedly rising levels of crime. However, building
such surveillance superhighways may do little to prevent, for example, crime by
representatives of the surveillance state, or those who maintain the database of images.
Human rights violations can continue, or even increase, in a police state of total state
surveillance. The same can be true of owners of an establishment where surveillance
systems are installed and maintained by these establishment owners. An example is
the famous Latasha Harlins case, in which a shopper was falsely accused of shoplifting
by a shopkeeper and was then shot dead by the shopkeeper. Therefore, what is needed
is a PSD to function as a crime deterrent, particularly with regard to crimes perpetrated
by those further up the organizational hierarchy.

Since there is the possibility that only one packet, which contains just one picture,
would provide incriminating evidence of wrongdoing, individuals can wear a PSD
to protect themselves from criminals, assailants, and attackers, notwithstanding any
public or corporate video surveillance system already in place.

An important aspect of this paradigm is the fear of functionality (FoF) model. The
balance is usually tipped in favor of the state or large organization in the sense that
state- or corporate-owned surveillance cameras are typically mounted on fixed mount
points and networked by way of high bandwidth land lines. The PSD, on the other
hand, would be connected by way of wireless communication channels of limited
bandwidth and limited reliability. For example, in the basement of a department
store, the individual has a lesser chance of getting a reliable data connection than
does the store-owned surveillance cameras. Just as many department stores use a
mixture of fake, nonfunctional cameras and real ones, so the customer never knows
whether or not a given camera is operational, what is needed is a similar means of best
case video transmission. Not knowing whether or not one is being held accountable
for his actions, one must be on his best behavior at all times. Thus, a new philosophy,
based on FoF, can become the basis of design for image compression, transmission,
and representation.

Fig. 3.2(a) illustrates an example of a comparison between two systems, SYSTEM
A, and SYSTEM B. These systems are depicted as two plots, in a hypothetical pa-
rameter space. The parameter space could be time, position, or the like. For example,
SYSTEM A might work acceptably (e.g., meet a certain guaranteed degree of func-
tionality FGUAR) everywhere at all times, whereas SYSTEM B might work very well
sometimes and poorly at others. Much engineering is motivated by an articulability
model, i.e., that one can make an articulable basis for choosing SYSTEM A because
it gives the higher worst case degree of functionality.

A new approach, however, reverses this argument by regarding functionality as a
bad thing — bad for the perpetrator of a crime — rather than a good thing. Thus we
turn the whole graph on its head, and, looking at the problem in this reversed light,
come to a new solution, namely that SYSTEM B is better because there are times
when it works really well.

Imagine, for example, a user in the sub-basement of a building, inside an elevator.
Suppose SYSTEM A would have no hope of connecting to the outside world. SYS-

FIGURE 3.2
Fear of Functionality (FoF): (a) Given two different systems, SYSTEM A having
a guaranteed minimum level of functionality FGUAR that exceeds that of SYS-
TEM B, an articulable basis for selecting SYSTEM A can be made. Such an
articulable basis might appeal to lawyers, insurance agents, and others who are
in the business of guaranteeing easily defined articulable boundaries. However,
a thesis of this chapter is that SYSTEM B might be a better choice. Moreover,
given that we are designing and building a system like SYSTEM B, traditional
worst case engineering would suggest focusing on the lowest point of functionality
of SYSTEM B (continued).

TEM B, however, through some strange quirk of luck, might actually work, but we
don’t know in advance one way or the other.

The fact of the matter, however, is that one who was hoping that the system would
not function, would be more afraid of SYSTEM B than SYSTEM A because it would
take more effort to ensure that SYSTEM B would be nonfunctional.

The FoF model means that if the possibility exists that the system might function
part of the time, a would-be perpetrator of a crime against the wearer of the PSD must
be on his or her best behavior at all times.

Fig. 3.2(b) depicts what we might do to further improve the “fear factor” of SYS-
TEM B, to arrive at a new SYSTEM B̃. The new SYSTEM B̃ is characterized by
being even more idiosyncratic; the occasional times that SYSTEM B̃ works, it works
very well, but most of the time it either doesn’t work at all or works very poorly.

Other technologies, such as the Internet, have been constructed to be robust enough
to resist the hegemony of central authority (or an attack of war). However, an impor-

FIGURE 3.2
(Cont.) (b) Instead, it is proposed that one might focus one’s efforts on the highest
point of functionality of SYSTEM B, to make it even higher, at the expense
of further degrading the SYSTEM B worst case, and even at the expense of
decreasing the overall average performance. The new SYSTEM B̃ is thus sharply
serendipitous (peaked in its space of various system parameters).

tant difference here is that the FoF paradigm is not suggesting the design of robust
data compression and transmission networks.

Quite the opposite is true!
The FoF paradigm suggests the opposite of robustness in that SYSTEM B̃ is even

more sensitive to mild perturbations in the parameter space about the optimal operating
point, POPT , than is SYSTEM B. In this sense, our preferred SYSTEM B̃ is actually
much less robust than SYSTEM B. Clearly it is not robustness, in and of itself, that the
author is proposing here. The PSD doesn’t need to work constantly but rather must
simply present criminals with the possibility that it could work sometimes or even
just occasionally. This scenario forms the basis for best-case design as an alternative
to the usual worst-case design paradigm.

The personal imaging system therefore transmits video, but the design of the system
is such that it will, at the very least, occasionally transmit a meaningful still image.
Likewise, the philosophy for data compression and transforms needs to be completely
rethought for this FoF model.

This rethinking extends from the transforms and compression approach right down
to the physical hardware. For example, typically the wearer’s jacket functions as a
large low frequency antenna, providing transmission capability in a frequency band

that is very hard to stop. For example, the 10-meter band is a good choice because
of its unpredictable performance (owing to various “skip” phenomena, etc.). How-
ever, other frequencies are also used in parallel. For example, a peer-to-peer form
of infrared communication is also included to “infect” other participants with the
possibility of having received an image. In this way, it becomes nearly impossible
for a police state to suppress the signal because of the possibility that an image may
have escaped an iron-fisted regime.

It is not necessary to have a large aggregate bandwidth to support an FoF network.
In fact, quite the opposite. Since it is not necessary that everyone transmit everything
they see, at all times, very little bandwidth is needed. It is only necessary that
anyone could transmit a picture at any time. This potential transmission (e.g., fear
of transmission) does not even need to be done on the Internet; for example, it could
simply be from one person to another.

3.5 Comparametric Image Sequence Analysis

Video sequences from the PSD are generally collected and assembled into a small
number of still images, each still image being robust to the presence or absence of
individual constituent frames of the video sequence from which it is composed.

Processing video sequences from the apparatus of the author’s Eye Tap camera
requires finding the coordinate transformation between two images of the same scene
or object. Whether to recover gaze motion between video frames, stabilize retinal
images, relate or recognize Eye Tap images taken from two different eyes, compute
depth within a 3-D scene, or align images for lookpainting (high-resolution enhance-
ment resulting from looking around), it is desired to have both a precise description
of the coordinate transformation between a pair of Eye Tap video frames, and some
indication as to its accuracy.

Traditional block matching [10] (such as used in motion estimation) is really a
special case of a more general coordinate transformation. This chapter proposes
a solution to the motion estimation problem using this more general estimation of
a coordinate transformation, together with a technique for automatically finding the
comparametric projective coordinate transformation that relates two frames taken of
the same static scene. The technique takes two frames as input and automatically
outputs the comparameters of the exact model to align the frames. It does not require
the tracking or correspondence of explicit features, yet it is computationally practical.
Although the theory presented makes the typical assumptions of static scene and no
parallax, the estimation technique is robust to deviations from these assumptions. In
particular, the technique is applied to image resolution enhancement and lookpaint-
ing [11], illustrating its success on a variety of practical and difficult cases, including
some that violate the nonparallax and static scene assumptions.

A coordinate transformation maps the image coordinates, x = [x, y]T , to a new
set of coordinates, x̃ = [x̃, ỹ]T . Generally, the approach to finding the coordinate
transformation relies on assuming that it will take one of the models in Table 3.1,
and then estimating the two to twelve scalar parameters of the chosen model. An
illustration showing the effects possible with each of these models is given in Fig. 3.3.

Table 3.1 Image Coordinate Transformations Discussed in this Chapter: The
Translation, Affine, and Projective Models Are Expressed in Vector Form; e.g.,
x = [x, y]T is a Vector of dimension 2, and A ∈ R

2×2 is a Matrix of Dimension 2 by 2,
etc.

Model Coordinate transformation from x to x̃ Parameters

Translation x̃ = x + b b ∈ R
2

Affine x̃ = Ax + b A ∈ R
2×2,b ∈ R

2

Bilinear x̃ = qx̃xyxy + qx̃xx + qx̃yy + qx̃
ỹ = qỹxyxy + qỹxx + qỹyy + qỹ q∗ ∈ R

Projective x̃ = Ax+b
cT x+1

A ∈ R
2×2,b, c ∈ R

2

Pseudopers- x̃ = qx̃xx + qx̃yy + qx̃ + qαx
2 + qβxy

pective ỹ = qỹxx + qỹyy + qỹ + qαxy + qβy
2 q∗ ∈ R

Biquadratic x̃ = qx̃x2x
2 + qx̃xyxy + qx̃y2y

2 + qx̃xx + qx̃yy + qx̃

ỹ = qỹx2x
2 + qỹxyxy + qỹy2y

2 + qỹxx + qỹyy + qỹ q∗ ∈ R

FIGURE 3.3
Pictorial effects of the six coordinate transformations of Table 3.1, arranged left
to right by number of parameters. Note that translation leaves the original house
unchanged, except in its location. Most importantly, only the three coordinate
transformations at the right affect the periodicity of the window spacing (e.g., in-
duce the desired “chirping” which corresponds to what we see in the real world).
Of these, only the projective coordinate transformation preserves straight lines.
The 8-parameter projective coordinate transformation “exactly” describes the
possible camera motions.

The most common assumption (especially in motion estimation for coding and
optical flow for computer vision) is that the coordinate transformation between frames

is a translation. Tekalp, Ozkan, and Sezan [12] have applied this assumption to high-
resolution image reconstruction. Although translation is the least constraining and
simplest to implement of the six coordinate transformations in Table 3.1, it is poor at
handling large changes due to camera zoom, rotation, pan, and tilt.

Zheng and Chellappa [13] considered a subset of the affine model — translation,
rotation, and scale — in image registration. Other researchers [14, 15] have assumed
affine motion (six parameters) between frames. For the assumptions of static scene
and no parallax, the affine model exactly describes rotation about the optical axis of
the camera, zoom of the camera, and pure shear, which the camera does not do except
in the limit as the lens focal length approaches infinity. The affine model cannot
capture camera pan and tilt and, therefore, cannot accurately express the “chirping”
and “keystoning” seen in the real world (see Fig. 3.3). Consequently, the affine model
tries to fit the wrong parameters to these effects. When the parameter estimation is
not done properly to align the images, a greater burden is placed on designing post-
processing to enhance the poorly aligned images.

The 8-parameter projective model gives the exact eight desired parameters to ac-
count for all the possible camera motions. However, its parameters have traditionally
been mathematically and computationally too hard to find. Consequently, a variety
of approximations have been proposed. Before the solution to estimating the projec-
tive parameters is presented, it will be helpful to better understand these approximate
models.

Going from first order (affine) to second order gives the 12-parameter biquadratic
model. This model properly captures both the chirping (change in spatial frequency
with position) and converging lines (keystoning) effects associated with projective
coordinate transformations, although, despite its larger number of parameters, there
is still considerable discrepancy between a projective coordinate transformation and
the best-fit biquadratic coordinate transformation. Why stop at second order? Why
not use a 20-parameter bicubic model? While an increase in the number of model pa-
rameters will result in a better fit, there is a tradeoff where the model begins to fit noise.
The physical camera model fits exactly in the 8-parameter projective group; therefore,
we know that “eight is enough.” Hence, it is appealing to find an approximate model
with only eight parameters.

The 8-parameter bilinear model is perhaps the most widely used [16] in the fields
of image processing, medical imaging, remote sensing, and computer graphics. This
model is easily obtained from the biquadratic model by removing the four x2 and y2

terms. Although the resulting bilinear model captures the effect of converging lines,
it completely fails to capture the effect of chirping.

The 8-parameter pseudo-perspective model [17] does, in fact, capture both the con-
verging lines and the chirping of a projective coordinate transformation. This model
may first be thought of as the removal of two of the quadratic terms (qx̃y2 = qỹx2 = 0),
which results in a 10-parameter model (the q-chirp of Navab and Mann [18]) and then
the constraining of the four remaining quadratic parameters to have two degrees of
freedom. These constraints force the chirping effect (captured by qx̃x2 and qỹy2) and
the converging effect (captured by qx̃xy and qỹxy) to work together in the “right”

way to match, as closely as possible, the effect of a projective coordinate transfor-
mation. By setting qα = qx̃x2 = qỹxy , the chirping in the x-direction is forced to
correspond with the converging of parallel lines in the x-direction (and likewise for
the y-direction). Therefore, of the 8-parameter approximations to the true projective,
we would expect the pseudo-perspective model to perform the best.

Of course, the desired “exact” eight parameters come from the projective model,
but they have been notoriously difficult to estimate. The parameters for this model
have been solved by Tsai and Huang [19], but their solution assumed that features had
been identified in the two frames, along with their correspondences. In this chapter,
a simple featureless means of registering images by estimating their comparameters
is presented.

Other researchers have looked at projective estimation in the context of obtaining
3-D models. Faugeras and Lustman [20], Shashua and Navab [21], and Sawhney [22]
have considered the problem of estimating the projective parameters while computing
the motion of a rigid planar patch, as part of a larger problem of finding 3-D motion
and structure using parallax relative to an arbitrary plane in the scene. Kumar, Anan-
dan, and Hanna [23] have also euggested registering frames of video by computing
the flow along the epipolar lines, for which there is also an initial step of calculating
the gross camera movement assuming no parallax. However, these methods have
relied on feature correspondences and were aimed at 3-D scene modeling. Our focus
is not on recovering the 3-D scene model, but on aligning 2-D images of 3-D scenes.
Feature correspondences greatly simplify the problem; however, they also have many
problems which are reviewed below. The focus of this chapter is a simple feature-
less approach to estimating the projective coordinate transformation between image
frames.

Two similar efforts exist to the new work presented here. Mann [24] and Szeliski
and Coughlan [25] independently proposed featureless registration and compositing
of either pictures of a nearly flat object or pictures taken from approximately the same
location. Both used a 2-D projective model and searched over its 8-parameter space to
minimize the mean square error (or maximize the inner product) between one frame
and a 2-D projective coordinate transformation of the next frame. However, in both
these earlier works, the algorithm relies on nonlinear optimization techniques which
we are able to avoid with the new technique presented here.

3.5.1 Camera, Eye, or Head Motion:
Common Assumptions and Terminology

Two assumptions are relevant to this work. The first is that the scene is relatively
constant — changes of scene content and lighting are small between frames, relative to
changes that are induced by camera, eye, or head motion (e.g., a person can turn his or
her head, hence turning an Eye Tap camera, and induce a much greater image flowfield
than that induced by movement of objects in the scene). The second assumption is
that of an ideal pinhole camera — implying unlimited depth of field with everything in

focus (infinite resolution) and implying that straight lines map to straight lines.1 This
assumption is particularly valid for laser Eye Tap cameras which actually do have
infinite depth of focus. Consequently, the camera, eye, or head has three degrees of
freedom in 2-D space and eight degrees of freedom in 3-D space: translation (X, Y,Z),
zoom (scale in each of the image coordinates x and y), and rotation (rotation about
the optical axis, pan, and tilt).

In this chapter, an “uncalibrated camera” refers to one in which the principal point2

is not necessarily at the center (origin) of the image and the scale is not necessarily
isotropic. It is assumed that the film, sensor, retina, or the like is flat (although we
know in fact that the retina is curved).

It is assumed that the zoom is continually adjustable by the camera user, and that
we do not know the zoom setting or if it changed between recording frames of the
image sequence. We also assume that each element in the camera sensor array returns
a quantity that is linearly proportional to the quantity of light received.3

3.5.2 VideoOrbits

Tsai and Huang [19] noted that the elements of the projective group give the true
camera motions with respect to a planar surface. They explored the group structure
associated with images of a 3-D rigid planar patch, as well as the associated Lie al-
gebra, although they assume that the correspondence problem has been solved. The
solution presented in this chapter (which does not require prior solution of correspon-
dence) also relies on projective group theory. We briefly review the basics of this
theory, before presenting the new solution in the next section.

Projective Group in 1-D

For simplicity, the theory is first reviewed for the projective coordinate transforma-
tion in one dimension:4 x̃ = (ax + b)/(cx + 1), where the images are functions of
one variable, x. The set of all projective coordinate transformations for which a 	= 0
forms a group, P, the projective group. When a 	= 0 and c = 0, it is the affine group.
When a = 1 and c = 0, it becomes the translation group.

Of the six coordinate transformations in the previous section, only the projective,
affine, and translation operations form groups. A group of operators together with
the set of 1-D images (operands) form a group operation.5 The new set of images

1When using low cost wide-angle lenses, there is usually some barrel distortion which we correct using
the method of Campbell and Bobick [26].
2The principal point is where the optical axis intersects the film, retina, sensor, or the like, as the case may
be.
3This condition can be enforced over a wide range of light intensity levels, by using the Wyckoff princi-
ple [27, 28].
4In a 2-D world, the “camera” consists of a center of projection (pinhole lens) and a line (1-D sensor array
or 1-D “film”).
5Also known as a group action or G-set [29].

that results from applying all possible operators from the group to a particular image
from the original set is called the orbit of that image under the group operation [29].

A camera at a fixed location, and free to zoom and pan, gives rise to a resulting pair
of 1-D frames taken by the camera, which are related by the coordinate transformation
from x1 to x2, given by [30]:

x2 = z2 tan (arctan (x1/z1) − θ) , ∀x1 	= o1

= (ax1 + b) / (cx1 + 1) , ∀x1 	= o1 (3.1)

where a = z2/z1, b = −z2 tan(θ), c = tan(θ)/z1, and o1 = z1 tan(π/2+θ) = −1/c
is the location of the singularity in the domain. We should emphasize that c, the degree
of perspective, has been given the interpretation of a chirp-rate [30]. The coordinate
transformations of Eq. (3.1) form a group operation. This result and the proof of this
group’s isomorphism to the group corresponding to nonsingular projections of a flat
object are given in Mann and Picard [31].

Projective Group in 2-D

The theory for the projective, affine, and translation groups also holds for the
familiar 2-D images taken of the 3-D world. The video orbit of a given 2-D frame
is defined to be the set of all images that can be produced by applying operators
from the 2-D projective group to the given image. Hence, we restate the coordinate
transformation problem: given a set of images that lie in the same orbit of the group,
we wish to find for each image pair that operator in the group which takes one image
to the other image.

If two frames, say f1 and f2, are in the same orbit, then there is a group operation
p such that the mean squared error (MSE) between f1 and f ′

2 = p ◦f2 is zero, where
the symbol ◦ denotes the operation of p acting on frame f2. In practice, however, we
find which element of the group takes one image “nearest” the other, for there will
be a certain amount of parallax, noise, interpolation error, edge effects, changes in
lighting, depth of focus, etc. Fig. 3.4 illustrates the operator p acting on frame f2 to
move it nearest to frame f1. (This figure does not, however, reveal the precise shape
of the orbit, which occupies an 8-D space.)

The primary assumptions in these cases are that of no parallax and of a static
scene. Because the 8-parameter projective model is “exact,” it is theoretically the
right model to use for estimating the coordinate transformation. The examples that
follow demonstrate that it also performs better in practice than the other proposed
models. In the next section, a new technique for estimating its eight parameters is
shown.

FIGURE 3.4
Video orbits. (a) The orbit of frame 1 is the set of all images that can be produced
by acting on frame 1 with any element of the operator group. Assuming that
frames 1 and 2 are from the same scene, frame 2 will be close to one of the possible
projective coordinate transformations of frame 1. In other words, frame 2 lies
near the orbit of frame 1. (b) By bringing frame 2 along its orbit (which is nearly
the same orbit as the orbit of frame 1), we can determine how closely the two
orbits come together at frame 1.

3.6 Framework: Comparameter Estimation and Optical Flow

Before the new results are presented, existing methods of comparameter estimation
for coordinate transformations are reviewed. Comparameters refer to the relative
parameters that transform one image into another, between a pair of images from an
image sequence. Estimation of comparameters in a pairwise fashion can be dealt with
globally based on the group properties, assuming the parameters in question trace an
orbit of a group.

We classify existing methods into two categories: feature-based and featureless. Of
the featureless methods, consider two subcategories: methods based on minimizing
MSE (generalized correlation, direct nonlinear optimization) and methods based on
spatio-temporal derivatives and optical flow. Note that variations such as multiscale
have been omitted from these categories; multiscale analysis can be applied to any
of them. The new algorithm developed in this chapter (with final form given in
Section 3.7) is featureless and is based on multiscale spatio-temporal derivatives.

Some of the descriptions below are presented for hypothetical 1-D images taken in a
2-D space. This simplification yields a clearer comparison of the estimation methods.
The new theory and applications will be presented subsequently for 2-D images taken
in a 3-D space.

3.6.1 Feature-Based Methods

Feature-based methods [32, 33] assume that point correspondences in both images
are available. In the projective case, given at least three correspondences between
point pairs in the two 1-D images, we find the element p = {a, b, c} ∈ P that maps the

second image into the first. Let xk, k = 1, 2, 3, . . . be the points in one image, and let
x̃k be the corresponding points in the other image. Then, x̃k = (axk + b)/(cxk + 1).
Rearranging yields axk + b− xkx̃kc = x̃k , so that a, b, and c can be found by solving
k ≥ 3 linear equations in three unknowns:

[
xk 1 −x̃kxk

] [
a b c

]T = [
x̃k

]
(3.2)

using least squares if there are more than three correspondence points. The extension
from 1-D images to 2-D images is conceptually identical; for the affine and projective
models, the minimum number of correspondence points needed in 2-D is three and
four, respectively.

A major difficulty with feature-based methods is finding the features. Good features
are often hand-selected or computed, possibly with some degree of human interven-
tion [34]. A second problem with features is their sensitivity to noise and occlusion.
Even if reliable features exist between frames, these features may be subject to signal
noise and occlusion. The emphasis in the rest of this chapter is on robust featureless
methods.

3.6.2 Featureless Methods Based on Generalized Cross-Correlation

Cross-correlation of two frames is a featureless method of recovering translation
model comparameters. Affine and projective comparameters can also be recovered
using generalized forms of cross-correlation between two images (e.g., comparing
two images using cross correlation and related methods).

Generalized cross-correlation is based on an inner-product formulation which es-
tablishes a similarity metric between two functions, such as g and h, where h ≈ p◦g
is an approximately coordinate-transformed version of g but the comparameters of
the coordinate transformation p are unknown.6 We can find, by exhaustive search
(applying all possible operators, p, to h), the “best” p as the one that maximizes the
inner product:

∫ ∞

−∞
g(x)

p−1 ◦ h(x)∫ ∞
−∞ p−1 ◦ h(x)dx

dx (3.3)

where we have normalized the energy of each coordinate-transformedhbefore making
the comparison. Equivalently, instead of maximizing a similarity metric, we can

minimize an anti-similarity metric, such as MSE, given by
∫ ∞
−∞

(
g(x) − p−1 ◦ h(x)

)2

dx. Solving Eq. (3.3) has an advantage over finding MSE when one image is not only
a coordinate-transformed version of the other but is also an amplitude-scaled version,
as generally happens when there is an automatic gain control or an automatic iris in
the camera.

6In the presence of additive white Gaussian noise, this method, also known as “matched filtering,” leads
to a maximum likelihood estimate of the parameters [35].

In 1-D, the affine model permits only dilation and translation. Given h, an affine
coordinate-transformed version of g, generalized correlation amounts to estimating
the parameters for dilation a and translation b by exhaustive search. The collection
of all possible coordinate transformations, when applied to one of the images (say, h)
serves to produce a family of templates to which the other image, g, can be compared.
If we normalize each template so that all have the same energy

ha,b(x) = 1√
a
h(ax + b)

then the maximum likelihood estimate corresponds to selecting the member of the
family that gives the largest inner product:

〈g(x), ha,b(x)〉 =
∫ ∞

−∞
g(x)ha,b(x)dx

This result is known as a cross-wavelet transform. A computationally efficient
algorithm for the cross-wavelet transform has recently been presented [36]. (See
Weiss [37] for a good review on wavelet-based estimation of affine coordinate trans-
formations.)

Just like the cross-correlation for the translation group and the cross-wavelet for the
affine group, the cross-chirplet can be used to find the comparameters of a projective
coordinate transformation in 1-D, searching over a 3-parameter space. The chirplet
transform [38] is a generalization of the wavelet transform. The projective-chirplet
has the form

ha,b,c = h

(
ax + b

cx + 1

)
(3.4)

where h is the mother chirplet, analogous to the mother wavelet of wavelet theory.
Members of this family of functions are related to one another by projective coordinate
transformations.

With 2-D images, the search is over an 8-parameter space. A dense sampling of this
volume is computationally prohibitive. Consequently, combinations of coarse-to-fine
and iterative or repetitive gradient-based search procedures are required. Adaptive
variants of the chirplet transform have been previously reported in the literature [39].
However, there are still many problems with the adaptive chirplet approach; thus,
featureless methods based on spatio-temporal derivatives are now considered.

3.6.3 Featureless Methods Based on Spatio-Temporal Derivatives

Optical Flow — Translation Flow

When the change from one image to another is small, optical flow [40] may be
used. In 1-D, the traditional optical flow formulation assumes each point x in frame t

is a translated version of the corresponding point in frame t +$t , and that $x and$t

are chosen in the ratio $x/$t = uf , the translational flow velocity of the point in
question. The image brightness E(x, t) is described by

E(x, t) = E(x + $x, t + $t), ∀(x, t) . (3.5)

In the case of pure translation, uf is constant across the entire image. More generally
though, a pair of 1-D images are related by a quantity, uf (x) at each point in one of
the images.

Expanding the right side of Eq. (3.5) in a Taylor series and cancelling 0th order
terms give the well-known optical flow equation ufEx +Et + h.o.t. = 0, where Ex

and Et are the spatial and temporal derivatives, respectively, and h.o.t. denotes higher
order terms. Typically, the higher order terms are neglected, giving the expression
for the optical flow at each point in one of the two images:

ufEx + Et ≈ 0 . (3.6)

Affine Fit and Affine Flow: a New Relationship

Given the optical flow between two images, g and h, we wish to find the coordinate
transformation to apply to h to make it look most like g. We now describe two
approaches based on the affine model: (1) finding the optical flow at every point and
then fitting this flow with an affine model (affine fit), and (2) rewriting the optical flow
equation in terms of an affine (not translation) motion model (affine flow).

Wang and Adelson have proposed fitting an affine model to an optical flow field [41]
of 2-D images. We briefly examine their approach with 1-D images (1-D images sim-
plify analysis and comparison to other methods). Denote coordinates in the original
image, g, by x, and in the new image, h, by x̃. Suppose that h is a dilated and
translated version of g, so x̃ = ax + b for every corresponding pair (x̃, x). Equiva-
lently, the affine model of velocity (normalizing $t = 1), um = x̃ − x, is given by
um = (a − 1)x + b. We can expect a discrepancy between the flow velocity, uf ,
and the model velocity, um, due to either errors in the flow calculation or errors in the
affine model assumption. Accordingly, we apply linear regression to obtain the best
least-squares fit by minimizing:

εf it =
∑
x

(
um − uf

)2 =
∑

(um + Et/Ex)
2 . (3.7)

The constants a and b that minimize εf it over the entire patch are found by differ-
entiating Eq. (3.7), and setting the derivatives to zero. This results in the affine fit
equations [42]:

[∑
x x

2,
∑

x x∑
x x,

∑
x 1

] [
a − 1
b

]
= −

[∑
x xEt/Ex∑
x Et/Ex

]
. (3.8)

Alternatively, the affine coordinate transformation may be directly incorporated
into the brightness change constraint equation (3.5). Bergen et al. [43] have proposed
this method, which has been called affine flow to distinguish it from the affine fit

model of Wang and Adelson Eq. (3.8). Let us show how affine flow and affine fit are
related. Substituting um = (ax + b) − x directly into Eq. (3.6) in place of uf and
summing the squared error

εflow =
∑
x

(umEx + Et)
2 (3.9)

over the whole image, differentiating, and equating the result to zero gives a linear
solution for both a and b:[∑

x x
2E2

x,
∑

x xE
2
x∑

x xE
2
x,

∑
x E

2
x

] [
a − 1
b

]
= −

[∑
x xExEt∑
x ExEt

]
. (3.10)

To see how this result compares to the affine fit we rewrite Eq. (3.7)

εf it =
∑
x

(
umEx + Et

Ex

)2

(3.11)

and observe, comparing Eqs. (3.9) and (3.11), that affine flow is equivalent to a
weighted least-squares fit, where the weighting is given by E2

x . Thus the affine flow
method tends to put more emphasis on areas of the image that are spatially varying
than does the affine fit method. Of course, one is free to separately choose the
weighting for each method in such a way that affine fit and affine flow methods both
give the same result. Practical experience tends to favor the affine flow weighting, but,
more generally, perhaps we should ask, “what is the best weighting?” For example,
maybe there is an even better answer than the choice among these two. Lucas and
Kanade [44], among others, have considered weighting issues.

Another approach to the affine fit involves computation of the optical flow field
using the multiscale iterative method of Lucas and Kanade, and then fitting to the affine
model. An analogous variant of the affine flow method involves multiscale iteration
as well, but in this case the iteration and multiscale hierarchy are incorporated directly
into the affine estimator [43]. With the addition of multiscale analysis, the fit and
flow methods differ in additional respects beyond just the weighting. Experience
indicates that the direct multiscale affine flow performs better than the affine fit to
the multiscale flow. Multiscale optical flow makes the assumption that blocks of
the image are moving with pure translational motion, and then, paradoxically, the
affine fit refutes this pure-translation assumption. However, fit provides some utility
over flow when it is desired to segment the image into regions undergoing different
motions [45], or to gain robustness by rejecting portions of the image not obeying the
assumed model.

Projective Fit and Projective Flow: New Techniques

Analogous to the affine fit and affine flow of the previous section, two new methods
are proposed: projective fit and projective flow. For the 1-D affine coordinate trans-
formation, the graph of the range coordinate as a function of the domain coordinate
is a straight line; for the projective coordinate transformation, the graph of the range

coordinate as a function of the domain coordinate is a rectangular hyperbola [31].
The affine fit case used linear regression; however, in the projective case hyperbolic
regression is used. Consider the flow velocity given by Eq. (3.6) and the model
velocity:

um = x̃ − x = ax + b

cx + 1
− x (3.12)

and minimize the sum of the squared difference paralleling Eq. (3.9):

ε =
∑
x

(
ax + b

cx + 1
− x + Et

Ex

)2

. (3.13)

For projective-flow (p-flow) we use, as for affine flow, the Taylor series of um:

um + x = b + (a − bc)x + (bc − a)cx2 + (a − bc)c2x3 + · · · (3.14)

and again use the first three terms, obtaining enough degrees of freedom to account
for the 3 comparameters being estimated. Letting ε = ∑

(−h.o.t.)2 = ∑
((b +

(a − bc − 1)x + (bc − a)cx2)Ex + Et)
2, q2 = (bc − a)c, q1 = a − bc − 1,

and q0 = b, and differentiating with respect to each of the 3 comparameters of q,
setting the derivatives equal to zero, and verifying with the second derivatives, gives
the linear system of equations for projective flow:

∑
x4E2

x

∑
x3E2

x

∑
x2E2

x∑
x3E2

x

∑
x2E2

x

∑
xE2

x∑
x2E2

x

∑
xE2

x

∑
E2

x

 q2

q1
q0

=−

∑
x2ExEt∑
xExEt∑
ExEt

 (3.15)

In Section 3.7 we extend this derivation to 2-D images and show how a repetitive
approach may be used to compute the parameters, p, of the exact model. A feedback
system is used where the feedforward loop involves computation of the approximate
parameters, q, in the extension of Eq. (3.15) to 2-D.

As with the affine case, projective fit and projective flow Eq. (3.15) differ only
in the weighting assumed, although projective fit provides the added advantage of
enabling the motion within an arbitrary subregion of the image to be easily found.
In this chapter only global image motion is considered, for which the projective flow
model has been found to be best [42].

3.7 Multiscale Projective Flow Comparameter Estimation

In the previous section, two new techniques, p-fit and p-flow, were proposed. Now
we describe our algorithm for estimating the projective coordinate transformation
for 2-D images using p-flow. We begin with the brightness constancy constraint

equation for 2-D images [40] which gives the flow velocity components in the x and
y directions, analogous to Eq. (3.6):

ufEx + vf Ey + Et ≈ 0 . (3.16)

As is well known [40], the optical flow field in 2-D is underconstrained.7 The
model of pure translation at every point has two comparameters, but there is only
one equation (3.16) to solve. Thus it is common practice to compute the optical flow
over some neighborhood, which must be at least two pixels but is generally taken
over a small block, 3 × 3, 5 × 5, or sometimes larger (e.g., the entire image, as in this
chapter).

Our task is not to deal with the 2-D translation flow but with the 2-D projective
flow, estimating the eight comparameters in the coordinate transformation:

x̃ =
[
x̃

ỹ

]
= A[x, y]T + b

cT [x, y]T + 1
= Ax + b

cT x + 1
. (3.17)

The desired eight scalar parameters are denoted by p = [A,b; c, 1], A ∈ R
2×2,

b ∈ R
2×1, and c ∈ R

2×1.

As with the 1-D images, we make similar assumptions in expanding Eq. (3.17)
in its own Taylor series, analogous to Eq. (3.14). If we take the Taylor series up
to second order terms, we obtain the biquadratic model mentioned in Section 3.5.
As mentioned there, by appropriately constraining the twelve parameters of the bi-
quadratic model, we obtain a variety of 8-parameter approximate models. In our
algorithm for estimating the exact projective group parameters, we will use one of
these approximate models in an intermediate step.8 We illustrate the algorithm below
using the bilinear approximate model since it has the simplest notation.9 First, we
incorporate the approximate model directly into the generalized fit or generalized
flow. The Taylor series for the bilinear case gives

um + x = qx̃xyxy + (qx̃x + 1) x + qx̃yy + qx̃

vm + y = qỹxyxy + qỹxx + (
qỹy + 1

)
y + qỹ (3.18)

Incorporating these into the flow criteria yields a simple set of eight scalar “linear”

7Optical flow in 1-D did not suffer from this problem.
8Use of an approximate model that does not capture chirping or preserve straight lines can still lead to the
true projective parameters as long as the model captures at least eight degrees of freedom.
9The pseudo-perspective gives slightly better performance; its development is the same but with more
notation.

(correctly speaking, affine) equations in eight scalar unknowns, for “bilinear flow”:

∑
x2y2E2

x ,
∑

x2yE2
x ,

∑
xy2E2

x ,
∑

xyEx,
∑

x2y2EyEx,
∑

x2yEyEx,
∑

xy2EyEx,
∑

EyxyEx∑
x2yE2

x ,
∑

x2E2
x ,

∑
xyE2

x ,
∑

xE2
x ,

∑
x2yEyEx,

∑
x2EyEx,

∑
xyEyEx,

∑
EyxEx∑

xy2E2
x ,

∑
xyE2

x ,
∑

y2E2
x ,

∑
yE2

x ,
∑

xy2EyEx,
∑

xyEyEx,
∑

y2EyEx,
∑

EyyEx∑
xyE2

x ,
∑

xE2
x ,

∑
yE2

x ,
∑

E2
x ,

∑
xyEyEx,

∑
xEyEx,

∑
yEyEx,

∑
EyEx∑

x2y2ExEy,
∑

x2yExEy,
∑

xy2ExEy,
∑

ExxyEy,
∑

x2y2E2
y ,

∑
x2yE2

y ,
∑

xy2E2
y ,

∑
xyE2

y∑
x2yExEy,

∑
x2ExEy,

∑
xyExEy,

∑
ExxEy,

∑
x2yE2

y ,
∑

x2E2
y ,

∑
xyE2

y ,
∑

xE2
y∑

xy2ExEy,
∑

xyExEy,
∑

y2ExEy,
∑

ExyEy,
∑

xy2E2
y ,

∑
xyE2

y ,
∑

y2E2
y ,

∑
yE2

y∑
xyExEy,

∑
xExEy,

∑
yExEy,

∑
ExEy,

∑
xyE2

y ,
∑

xE2
y ,

∑
yE2

y ,
∑

E2
y

qx̃xy
qx̃x
qx̃y
qx̃

qỹxy
qỹx
qỹy
qỹ

= − [
∑

Et xyEx,
∑

Et xEx,
∑

Et yEx,
∑

EtEx,
∑

Et xyEy,
∑

Et xEy,
∑

Et yEy,
∑

EtEy]T

(3.19)

The summations are over the entire image (all x and y) if computing global motion
(as is done in this chapter), or over a windowed patch if computing local motion. This
equation looks similar to the 6 × 6 matrix equation presented in Bergen et al. [43],
except that it serves to address projective geometry rather than the affine geometry of
Bergen et al. [43].

In order to see how well the model describes the coordinate transformation between
2 images, say g and h, one might warp10 h to g, using the estimated motion model,
and then compute some quantity that indicates how different the resampled version
of h is from g. The MSE between the reference image and the warped image might
serve as a good measure of similarity. However, since we are really interested in how
the exact model describes the coordinate transformation, we assess the goodness of fit
by first relating the parameters of the approximate model to the exact model, and then
find the MSE between the reference image and the comparison image after applying
the coordinate transformation of the exact model. A method of finding the parameters
of the exact model, given the approximate model, is presented in Section 3.7.1.

3.7.1 Four Point Method for Relating Approximate Model to Exact
Model

Any of the approximations above, after being related to the exact projective model,
tend to behave well in the neighborhood of the identity, A = I,b = 0, c = 0. In 1-D,
we explicitly expanded the Taylor series model about the identity; here, although we
do not explicitly do this, we assume that the terms of the Taylor series of the model
correspond to those taken about the identity. In the 1-D case, we solve the three linear
equations in three unknowns to estimate the comparameters of the approximate motion
model, and then we relate the terms in this Taylor series to the exact comparameters,

10The term warp is appropriate here, since the approximate model does not preserve straight lines.

a, b, and c (which involves solving another set of three equations in three unknowns,
the second set being nonlinear, although very easy to solve).

In the extension to 2-D, the estimate step is straightforward, but the relate step is
more difficult because we now have eight nonlinear equations in eight unknowns,
relating the terms in the Taylor series of the approximate model to the desired exact
model parameters. Instead of solving these equations directly, we now propose a
simple procedure for relating the parameters of the approximate model to those of
the exact model, which we call the four point method:

1. Select four ordered pairs (such as the four corners of the bounding box contain-
ing the region under analysis, or the four corners of the image if the whole image
is under analysis). Here suppose, for simplicity, that these points are the corners
of the unit square: s = [s1, s2, s3, s4] = [(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T].

2. Apply the coordinate transformation using the Taylor series for the approximate
model [e.g., Eq. (3.18)] to these points: r = um(s).

3. Finally, the correspondences between r and s are treated just like features. This
results in four easy-to-solve linear equations:[

x̃k
ỹk

]
=

[
xk,yk,1,0,0,0,−xkx̃k,−ykx̃k
0,0,0,xk,yk,1,−xkỹk,−ykỹk

]
[
ax̃x,ax̃y,bx̃ ,aỹx,aỹy,bỹ ,cx,cy

]
T (3.20)

where 1 ≤ k ≤ 4 is resulting in the exact eight parameters, p.

We remind the reader that the four corners are not feature correspondences as used
in the feature-based methods of Section 3.6.1, but, rather, are used so that the two
featureless models (approximate and exact) can be related to one another.

It is important to realize the full benefit of finding the exact parameters. While the
approximate model is sufficient for small deviations from the identity, it is not adequate
to describe large changes in perspective. However, if we use it to track small changes
incrementally, and each time relate these small changes to the exact model Eq. (3.17),
then we can accumulate these small changes using the law of composition afforded
by the group structure. This is an especially favorable contribution of the group
framework. For example, with a video sequence, we can accommodate very large
accumulated changes in perspective in this manner. The problems with cumulative
error can be eliminated, for the most part, by constantly propagating forward the true
values, computing the residual using the approximate model, and each time relating
this to the exact model to obtain a goodness-of-fit estimate.

3.7.2 Overview of the New Projective Flow Algorithm

Below is an outline of the new algorithm for estimation of projective flow. Details
of each step are in subsequent sections.

Frames from an image sequence are compared pairwise to test whether or not they
lie in the same orbit:

1. A Gaussian pyramid of three or four levels is constructed for each frame in the
sequence.

2. The comparameters p are estimated at the top of the pyramid, between the two
lowest-resolution images of a frame pair, g and h, using the repetitive method
depicted in Fig. 3.5.

3. The estimated p is applied to the next higher-resolution (finer) image in the
pyramid, p ◦ g, to make the two images at that level of the pyramid nearly
congruent before estimating the p between them.

4. The process continues down the pyramid until the highest-resolution image in
the pyramid is reached.

FIGURE 3.5
Method of computation of eight comparameters p between two images from the
same pyramid level, g and h. The approximate model parameters q are related
to the exact model parameters p in a feedback system.

3.7.3 Multiscale Repetitive Implementation

The Taylor-series formulations we have used implicitly assume smoothness; the
performance is improved if the images are blurred before estimation. To accomplish
this, we do not downsample critically after lowpass filtering in the pyramid. How-
ever, after estimation we use the original (unblurred) images when applying the final
coordinate transformation.

The strategy we present differs from the multiscale iterative (affine) strategy of
Bergen et al. in one important respect beyond simply an increase from six to eight
parameters. The difference is the fact that we have two motion models, the “exact
motion model” Eq. (3.17) and the “approximate motion model,” namely the Taylor
series approximation to the motion model itself. The approximate motion model is
used to iteratively converge to the exact motion model, using the algebraic law of
composition afforded by the exact projective group model. In this strategy, the exact
parameters are determined at each level of the pyramid, and passed to the next level.
The steps involved are summarized schematically in Fig. 3.5, and described below:

1. Initialize: set h0 = h and set p0,0 to the identity operator.

2. Iterate (k = 1 . . . K):

(a) Estimate: estimate the 8 or more terms of the approximate model be-
tween two image frames, g and hk−1. This results in approximate model
parameters qk .

(b) Relate: relate the approximate parameters qk to the exact parameters
using the “four point method.” The resulting exact parameters are pk .

(c) Resample: apply the law of composition to accumulate the effect of the
pk’s. Denote these composite parameters by p0,k = pk ◦p0,k−1. Then set
hk = p0,k ◦h. (This should have nearly the same effect as applying pk to
hk−1, except that it will avoid additional interpolation and anti-aliasing
errors you would get by resampling an already resampled image [16].)

Repeat until either the error between hk and g falls below a threshold, or until
some maximum number of repetitions is achieved. After the first repetition, the
parameters q2 tend to be near identity since they account for the residual between the
“perspective-corrected” image h1 and the “true” image g. We find that only two or
three repetitions are usually needed for frames from nearly the same orbit.

A rectangular image assumes the shape of an arbitrary quadrilateral when it un-
dergoes a projective coordinate transformation. In coding the algorithm, we pad the
undefined portions with the quantity NaN, a standard IEEE arithmetic [46] value, so
that any calculations involving these values automatically inherit NaN without slow-
ing down the computations. The algorithm, running in Matlab on an HP 735, takes
about six seconds per repetition for a pair of 320x240 images. A C language version,
optimized, compiled, and running on the wearable computer portion of various PSDs
built by the author, typically runs in a fraction of a second, in some cases on the order
of 1/10th of a second or so. A Xilinx FPGA-based version of the PSD is currently
being built by the author, together with Professor Jonathan Rose and others at the
University of Toronto, and is expected to run the entire process in less than 1/60th of
a second.

3.7.4 Exploiting Commutativity for Parameter Estimation

A fundamental uncertainty [47] is involved in the simultaneous estimation of pa-
rameters of a noncommutative group, akin to the Heisenberg uncertainty relation of
quantum mechanics. In contrast, for a commutative11 group (in the absence of noise),
we can obtain the exact coordinate transformation.

Segman, Rubinstein, and Zeevi [48] considered the problem of estimating the
parameters of a commutative group of coordinate transformations, in particular, the

11A commutative (or Abelian) group is one in which elements of the group commute. For example,
translation along the x-axis commutes with translation along the y-axis, so the 2-D translation group is
commutative.

parameters of the affine group [49]. Their work also deals with noncommutative
groups, in particular, in the incorporation of scale in the Heisenberg group12 [50].

Estimating the parameters of a commutative group is computationally efficient,
e.g., through the use of Fourier cross-spectra [51]. We exploit this commutativity
for estimating the parameters of the noncommutative 2-D projective group by first
estimating the parameters that commute. For example, we improve performance if
we first estimate the two parameters of translation, correct for the translation, and
then proceed to estimate the eight projective parameters. We can also simultaneously
estimate both the isotropic-zoom and the rotation about the optical axis by applying a
log-polar coordinate transformation followed by a translation estimator. This process
may also be achieved by a direct application of the Fourier-Mellin transform [52].
Similarly, if the only difference between g and h is a camera pan, then the pan may
be estimated through a coordinate transformation to cylindrical coordinates, followed
by a translation estimator.

In practice, we run through the following commutative initialization before esti-
mating the parameters of the projective group of coordinate transformations:

1. Assume that h is merely a translated version of g.

(a) Estimate this translation using the method of Girod and Kuo [51].

(b) Shift h by the amount indicated by this estimate.

(c) Compute the MSE between the shiftedh andg and compare to the original
MSE before shifting.

(d) If an improvement has resulted, use the shifted h from now on.

2. Assume that h is merely a rotated and isotropically zoomed version of g.

(a) Estimate the two parameters of this coordinate transformation.

(b) Apply these parameters to h.

(c) If an improvement has resulted, use the coordinate-transformed (rotated
and scaled) h from now on.

3. Assume that h is merely an x-chirped (panned) version of g and similarly x-
dechirped h. If an improvement results, use the x-dechirped h from now on.
Repeat for y (tilt.)

Compensating for one step may cause a change in choice of an earlier step. Thus it
might seem desirable to run through the commutative estimates repetitively. However,
our experience on lots of real video indicates that a single pass usually suffices and, in
particular, will catch frequent situations where there is a pure zoom, pure pan, pure tilt,
etc. both saving the rest of the algorithm computational effort, as well as accounting
for simple coordinate transformations such as when one image is an upside-down

12While the Heisenberg group deals with translation and frequency-translation (modulation), some of the
concepts could be carried over to other more relevant group structures.

version of the other. (Any of these pure cases corresponds to a single parameter
group, which is commutative.) Without the commutative initialization step, these
parameter estimation algorithms are prone to getting caught in local optima and thus
never converging to the global optimum.

3.8 Performance/Applications

3.8.1 A Paradigm Reversal in Resolution Enhancement

Much of the previous work on resolution enhancement [14, 53, 54] has been di-
rected toward military applications, where one cannot get close to the subject matter;
therefore, lenses of very long focal lengths were generally used. In this case, there
was very little change in perspective and the motion could be adequately approxi-
mated as affine. Budgets also permitted lenses of exceptionally high quality, so the
resolving power of the lens far exceeded the resolution of the sensor array.

Sensor arrays in earlier applications generally had a small number of pixels com-
pared to today’s sensors, leaving considerable “dead space” between pixels. Conse-
quently, using multiple frames from the image sequence to fill in gaps between pixels
was perhaps the single most important consideration in combining multiple frames
of video.

We argue that in the current age of consumer video, the exact opposite is generally
true: subject matter generally subtends a larger angle (e.g., is either closer, or more
panoramic in content), and the desire for low cost has led to cheap plastic lenses
that have very large distortion. Moreover, sensor arrays have improved dramatically.
Accurate solution of the projective model is more important than ever in these new
applications.

In addition to consumer video, there will be a large market in the future for small
wearable wireless cameras. A prototype, the wearable wireless webcam (an eyeglass-
based video production facility uplinked to the Internet [11]) has provided one of the
most extreme testbeds for the algorithms explored in this research, as it captures noisy
transmitted video frames, grabbed by a camera attached to a human head, free to move
at the will of the individual. The projective model is especially well-suited to this new
application, as people can turn their heads (camera rotation about an approximately
fixed center of projection) much faster than they can undergo locomotion (camera
translation). The new algorithm described in this chapter has consistently performed
well on noisy data gathered from the headcam, even when the scene is not static and
there is parallax.

Four Ways by which Resolution May be Enhanced:

1. Sub-pixel — “Filling in the gaps.”

2. Scene widening — Increased spatial extent; stitching together images in a
panorama.

3. Saliency — Suppose we have a wide shot of a scene, and then zoom into one
person’s face in the scene. In order to insert the face without downsampling it,
we need to upsample the wide shot, increasing the meaningful pixel count of
the whole image.

4. Perspective — In order to seamlessly mosaic images from panning with a wide
angle lens, images need to be brought into a common system of coordinates
resulting in a keystoning effect on the previously rectangular image boundary.
Thus, we must hold the pixel resolution constant on the “squashed” side and
upsample on the “stretched” side, resulting in increased pixel resolution of the
entire mosaic.

The first of these four may arise from either microscopic camera movement (induc-
ing image motion on the order of a pixel or less) or macroscopic camera movement
(inducing motion on the order of many pixels). However, as movement increases,
errors in registration will tend to increase, and enhancement due to sub-pixels will
be reduced, while the enhancement due to scene widening, saliency, and perspective
will increase.

Results of applying the proposed method to subpixel resolution enhancement are
not presented in this chapter but may be found in Mann and Picard [31].

3.8.2 Increasing Resolution in the “Pixel Sense”

Fig. 3.6 shows some frames from a typical image sequence. Fig. 3.7 shows the
same frames transformed into the coordinate system of frame (c); that is, the middle
frame was chosen as the reference frame.

Given that we have established a means of estimating the projective coordinate
transformation between any pair of images, there are two basic methods we use for
finding the coordinate transformations between all pairs of a longer image sequence.
Because of the group structure of the projective coordinate transformations, it suffices
to arbitrarily select one frame and find the coordinate transformation between every
other frame and this frame. The two basic methods are:

1. Differential comparameter estimation: the coordinate transformations be-
tween successive pairs of images, p0,1, p1,2, p2,3, . . . , estimated.

2. Cumulative comparameter estimation: the coordinate transformation be-
tween each image and the reference image is estimated directly. Without loss
of generality, select frame zero (E0) as the reference frame and denote these
coordinate transformations as p0,1, p0,2, p0,3, . . .

Theoretically, the two methods are equivalent:

E0 = p0,1 ◦ p1,2 ◦ . . . ◦ pn−1,nEn — differential method

E0 = p0,nEn — cumulative method (3.21)

FIGURE 3.6
Received frames of image sequence transformed by way of comparameters with
respect to frame (c). Frames from original image orbit, sent from the apparatus
of the author’s WearComp (“wearable computer”) invention [1], connected to
eyeglass-based imaging apparatus. (Note the apparatus captures a sideways
view so that it can “paint” out the image canvas with a wider “brush,” when
sweeping across for a panorama.) The entire sequence, consisting of all 20 color
frames, is available (see note at end of the references section), together with
examples of applying the proposed algorithm to this data.

FIGURE 3.7
Received frames from image video orbit, transformed by way of comparameters
with respect to frame (c). This transformed sequence involves moving them
along the orbit to the reference frame (c). The coordinate-transformed images
are alike except for the region over which they are defined. Note that the regions
are not parallelograms; thus, methods based on the traditional affine model fail.

However, in practice the two methods differ for two reasons:

1. Cumulative error: in practice, the estimated coordinate transformations be-
tween pairs of images register them only approximately, due to violations of
the assumptions (e.g., objects moving in the scene, center of projection not
fixed, camera swings around to bright window and automatic iris closes, etc.).
When a large number of estimated parameters are composed, cumulative error
sets in.

2. Finite spatial extent of image plane: theoretically, the images extend infinitely
in all directions, but, in practice, images are cropped to a rectangular bounding
box. Therefore, a given pair of images (especially if they are far from adjacent
in the orbit) may not overlap at all; hence, it is not possible to estimate the
parameters of the coordinate transformation using those two frames.

The frames of Fig. 3.6 were brought into register using the differential parameter
estimation and “cemented” together seamlessly on a common canvas. Cementing
involves piecing the frames together, for example by median, mean, or trimmed
mean, or combining on a subpixel grid [31]. (Trimmed mean was used here, but the
particular method made little visible difference.) Fig. 3.8 shows this result (projec-
tive/projective), with a comparison to two nonprojective cases. The first comparison
is to affine/affine where affine parameters were estimated (also multiscale) and used
for the coordinate transformation. The second comparison, affine/projective, uses the
six affine parameters found by estimating the eight projective parameters and ignor-
ing the two chirp parameters c (which capture the essence of tilt and pan). These six
parameters A, b are more accurate than those obtained using the affine estimation,
as the affine estimation tries to fit its shear parameters to the camera pan and tilt. In
other words, the affine estimation does worse than the six affine parameters within
the projective estimation. The affine coordinate transform is finally applied, giving
the image shown. Note that the coordinate-transformed frames in the affine case are
parallelograms.

3.9 Summary

Some new connections between different motion estimation approaches, in par-
ticular a relation between affine fit and affine flow have been presented. This led to
the proposal of two new techniques, projective fit and projective flow which estimate
the projective comparameters (coordinate transformation) between pairs of images,
taken with a camera that is free to pan, tilt, rotate about its optical axis and zoom.

A new multiscale repetitive algorithm for projective flow was presented and applied
to comparametric transformations for sending images over a serendipitous communi-
cations channel. The algorithm solves for the 8 parameters of the “exact” model (the
projective group of coordinate transformations), is fully automatic, and converges
quickly.

The proposed method was found to work well on image data collected from both
good-quality and poor-quality video under a wide variety of transmission conditions
(noisy communications channels, etc.) as well as a wide variety of visual conditions
(sunny, cloudy, day, night). It has been tested primarily with an eyeglass-mounted
PSD, and performs successfully even in the presence of noise, interference, scene
motion (such as people walking through the scene), and parallax (such as the author’s
head moving freely.)

FIGURE 3.8
Frames of Fig. 3.7 “cemented” together on single image “canvas,” with com-
parison of affine and projective models. Note the good registration and nice
appearance of the projective/projective image despite the noise in the serendipi-
tous transmitter of the wearable Personal Safety Device, wind-blown trees, and
the fact that the rotation of the camera was not actually about its center of pro-
jection. To see this image in color, see http://wearcam.org/orbitswhere
additional examples (e.g., some where the algorithm still worked despite “crowd
noise” where many people were entering and leaving the building) also appear.
Selecting just a few of the 20 frames produces approximately the same picture.
In this way the methodology makes it difficult for a criminal to jam or prevent
the operation of the Personal Safety Device. Note also that the affine model fails
to properly estimate the motion parameters (affine/affine), and even if the “ex-
act” projective model is used to estimate the affine parameters, there is no affine
coordinate transformation that will properly register all of the image frames.

By looking at image sequences as collections of still pictures related to one another
by global comparameters, the images were expressed as part of the orbit of a group of
coordinate transformations. This comparametric philosophy for transforms, image
sequence coding, and transmission suggests that rather than sending every frame of
a video sequence, we might send a reference frame, and the comparameters relating
this reference frame to the other frames. More generally, we can send a photoquanti-
graphic image composite [1], along with a listing of the comparameters from which
each image in the sequence may be drawn.

A new framework for constructing transforms, based on an Edgertonian rather
than a Nyquist sampling philosophy, was proposed. Concomitant with Edgertonian
sampling, was the principle of Fear of Functionality (FoF). By putting ourselves in the
shoes of one who would regard functionality as undesirable, a new framework emerges
in which unpredictability is a good thing. While the FoF framework seems at first

paradoxical, it leads the way to new kinds of image transforms and image compression
schemes. For example, the proposed comparametric image compression is based on
a best case FoF model.

This model of comparametric compression is best suited to a wearable serendipitous
personal imaging system, especially one that naturally taps the mind’s eye, with the
possibility that at any time what goes in the eye might also go into an indestructible
(e.g., distributed on the World Wide Web) photographic/videographic memory recall
system.

In the future, it is expected that many people will wear personal imaging devices,
and that there will be a growing market for EyeTap (TM) video cameras once they are
manufactured in mass production. The fundamental issue of limited bandwidth over
wireless networks will make it desirable to further develop and refine this compara-
metric image compression and transmission approach. Moreover, a robust best-case
wireless network may well supplant the current worst-case engineering approach used
with many wireless networks.

PTP, a lossy, connectionless, serendipitously updated transmission protocol, will
find new applications in the future world of ubiquitous Eye Tap video transmissions
of first-person experiences.

3.10 Acknowledgements

This work was made possible by assistance from Kodak, Digital Equipment Cor-
poration, Xybernaut Corp., CITO, NSERC, CLEARnet, and many others.

The author would also like to express thanks to many individuals for suggestions
and encouragement. In particular, thanks goes to Roz Picard, Jonathan Rose, Will
Waites, Robert Erlich, Lee Campbell, Shawn Becker, John Wang, Nassir Navab,
Ujjaval Desai, Chris Graczyk, Walter Bender, Fang Liu, Constantine Sapuntzakis,
Alex Drukarev, and Jeanne Wiseman. Some of the programs to implement the p-
chirp models were developed in collaboration with Shawn Becker.

James Fung, Jordan Melzer, Eric Moncrieff, and Felix Tang are currently contribut-
ing further effort to this project.

Much of the success of this project can be attributed to the Free Source movement
in general, of which the GNU project is one of the best examples. Richard Stallman,
founder of the GNU effort, deserves acknowledgement for having set forth the general
philosophy upon which many of these ideas are based.

Free computer programs distributed under the GNU General Public License (GPL)
to implement the VideoOrbits work described in this article are available from
http: //wearcam.org/orbits/index.html or
http://wearcomp.org/ orbits/index.html.

This work was funded, in part, by the Canadian government, using taxpayer
dollars. Accordingly, every attempt was made to ensure that the fruits of this la-

bor made are freely available to any taxpayer, without the need to purchase any
computer programs or use computer programs in which the principle of operation
of the programs has been deliberately obfuscated (see http://wearcam.org/
publicparks/index.html). Accordingly, the above computer programs were
developed for use under the GNUX (GNU + Linux) operating system and environment
which may be downloaded freely from various sites, such as http://gnux.org.

This manuscript was typeset using LaTeX running on a small wearable computer
designed and built by the author. LaTeX is free and runs under GNUX. The computer
programs to conduct this research and produce the results contained herein were also
free and run under the GNUX system.

References

[1] Mann, S., Humanistic intelligence/humanistic computing: “wearcomp” as a
new framework for intelligent signal processing, Proceedings of the IEEE, 86,
2123–2151, Nov. 1998, http://wearcam. org/procieee.htm.

[2] Mann, S., An historical account of the “WearComp” and “WearCam” projects
developed for “personal imaging,” in International Symposium on Wearable
Computing, IEEE, Cambridge, MA, October 13–14, 1997.

[3] Mann, S., Eyeglass mounted wireless video: computer-supported collabora-
tion for photojournalism and everyday use, IEEE ComSoc, 144–151, 1998,
special issue on wireless video.

[4] Moving pictures expert group, mpeg standard, http://www.wearcam.
org/mpeg/.

[5] Rosenberg, J., Kraut, R.E., Gomez, L., and Buzzard, C.A., Multimedia com-
munications for users, IEEE Communications Magazine, 20-36, 1992.

[6] Mann, S., Wearable Wireless Webcam, 1994, http://wearcam.org.

[7] Edgerton, H.E., Electronic flash, strobe, MIT Press, Cambridge, MA, 1979.

[8] Terry Dawson, V., Ax.25 amateur packet-radio link-layer protocol, and ax25-
howto, amateur radio, 1984, http://www.wearcam.org/ax25/.

[9] Mann, S., Smart clothing: the wearable computer and wearcam, Personal
Technologies, 1(1), 21–27, 1997,

[10] Xu, J.B., Po, L.M., and Cheung, C.K., Adaptive motion tracking block match-
ing algorithms for video coding, IEEE Trans. Circ. Syst. and Video Technol.,
97, 1025–1029, 1999.

[11] Mann, S., Personal imaging and lookpainting as tools for personal documen-
tary and investigative photojournalism, ACM Mobile Networking, 4(1), 23–36,
1999, special issue on wearable computing.

[12] Tekalp, A., Ozkan, M., and Sezan, M., High-resolution image reconstruction
from lower-resolution image sequences and space-varying image restoration,
in Proc. of the Int. Conf. on Acoust., Speech and Sig. Proc., III-169, IEEE, San
Francisco, CA, Mar. 23–26, 1992.

[13] Zheng, Q. and Chellappa, R., A computational vision approach to image reg-
istration, IEEE Transactions Image Processing, 2(3), 311–325, 1993.

[14] Irani, M. and Peleg, S., Improving resolution by image registration, CVGIP,
53, 231–239, 1991.

[15] Teodosio, L. and Bender, W., Salient video stills: content and context pre-
served, Proc. ACM Multimedia Conf., 39–46, August 1993.

[16] Wolberg, G., Digital Image Warping, IEEE Computer Society Press, Los
Alamitos, CA, 1990, IEEE Computer Society Press Monograph.

[17] Adiv, G., Determining 3D motion and structure from optical flow generated
by several moving objects, IEEE Trans. Pattern Anal. Machine Intell., PAMI-
7(4), 384–401, 1985.

[18] Navab, N. and Mann, S., Recovery of relative affine structure using the motion
flow field of a rigid planar patch, Mustererkennung 1994, Tagungsband., 1994.

[19] Tsai, R.Y., and Huang, T.S., Estimating three-dimensional motion parame-
ters of a rigid planar patch I, IEEE Trans. Accoust., Speech, and Sig. Proc.,
ASSP(29), 1147–1152, 1981.

[20] Faugeras, O.D. and Lustman, F., Motion and structure from motion in a piece-
wise planar environment, International Journal of Pattern Recognition and
Artificial Intelligence, 2(3), 485–508, 1988.

[21] Shashua, A. and Navab, N., Relative affine: theory and application to 3D
reconstruction from perspective views, Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 1994.

[22] Sawhney, H., Simplifying motion and structure analysis using planar parallax
and image warping, ICPR, 1, 403–8, 1994, 12th IAPR.

[23] Kumar, R., Anandan, P., and Hanna, K., Shape recovery from multiple views:
a parallax based approach, ARPA Image Understanding Workshop, Nov. 10,
1994.

[24] Mann, S. Compositing multiple pictures of the same scene, in Proc. 46th
Annual IS&T Conference, 50–52, The Society of Imaging Science and Tech-
nology, Cambridge, MA, May 9–14, 1993.

[25] Szeliski, R. and Coughlan, J., Hierarchical spline-based image registration,
CVPR, 194–201, 1994.

[26] Campbell, L. and Bobick, A., Correcting for radial lens distortion: a simple
implementation, TR 322, M.I.T. Media Lab Perceptual Computing Section,
Cambridge, MA, 1995.

[27] Wyckoff, C.W., An experimental extended response film, S.P.I.E. Newsletter,
16–20, 1962.

[28] Mann, S. and Picard, R., Being “undigital” with digital cameras: extend-
ing dynamic range by combining differently exposed pictures, Tech. Rep.
323, M.I.T. Media Lab Perceptual Computing Section, Cambridge, MA,
1994. (Also in IS&T’s 48th annual conference, 422–428, May 7–11, 1995,
http://wearcam.org/ist95.htm, Washington, DC.)

[29] Artin, M., Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[30] Mann, S., Wavelets and chirplets: time-frequency perspectives, with applica-
tions, in Advances in Machine Vision, Strategies and Applications, Archibald,
P., Ed., World Scientific Series in Computer Science, 32, World Scientific,
Singapore, New Jersey, London, Hong Kong, 1992.

[31] Mann, S. and Picard, R.W., Virtual bellows: constructing high-quality images
from video, in Proc. IEEE First International Conference on Image Processing,
363–367, Austin, TX, Nov. 13–16, 1994.

[32] Tsai, R.Y. and Huang, T.S., Multiframe image restoration and registration, in
Advances in Computer Vision and Image Processing, JAI, 1, 317–339, 1984.

[33] Huang, T.S. and Netravali, A.N., Motion and structure from feature correspon-
dences: a review, Proc. IEEE, 82(2), 252–268, 1984.

[34] Navab, N. and Shashua, A., Algebraic description of relative affine structure:
connections to euclidean, affine and projective structure, MIT Media Lab Memo
No. 270, 1994.

[35] Van Trees, H.L., Detection, Estimation, and Modulation Theory (Part I), John
Wiley & Sons, New York, 1968.

[36] Young, R.K., Wavelet Theory and Its Applications, Kluwer Academic Pub-
lishers, Boston, 1993.

[37] Weiss, L.G., Wavelets and wideband correlation processing, IEEE Signal Pro-
cessing Magazine, 13–32, 1994.

[38] Mann, S. and Haykin, S., The chirplet transform — a generalization of Gabor’s
logon transform, Vision Interface ’91, June 3–7, 1991.

[39] Mann, S. and Haykin, S., Adaptive chirplet transform: an adaptive general-
ization of the wavelet transform, Optical Engineering, 31, 1243–1256, 1992.

[40] Horn, B. and Schunk, B., Determining optical flow, Artificial Intelligence, 17,
185–203, 1981.

[41] Wang, J.Y. and Adelson, E.H., Spatio-temporal segmentation of video data, in
SPIE Image and Video Processing II, 120–128, San Jose, CA, February 7–9,
1994.

[42] Mann, S. and Picard, R.W., Video orbits of the projective group; a simple
approach to featureless estimation of parameters, TR 338, MIT, Cambridge,
MA, see http://hi.eecg.toronto.edu/tip.html 1995. (Also
appears in IEEE Trans. Image Proc., Sept 1997, 6(9), 1281–1295.)

[43] Bergen, J., Burt, P.J., Hingorini, R., and Peleg, S., Computing two motions
from three frames, in Proc. Third Int’l Conf. Comput. Vision, 27–32, Osaka,
Japan, December 1990.

[44] Lucas, B.D. and Kanade, T., An iterative image-registration technique with
an application to stereo vision, in Image Understanding Workshop, 121–130,
1981.

[45] Wang, J.Y.A. and Adelson, E.H., Representing moving images with layers,
Image Processing Spec. Iss: Image Seq. Compression, 12, 625–638, 1994.

[46] Hennessy, J.L. and Patterson, D.A., Computer Architecture: A Quantitative
Approach. Morgan Kauffman, 2nd ed., 1995.

[47] Wilson, R. and Granlund, G.H., The uncertainty principle in image processing,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 758–767,
1984.

[48] Segman, J., Rubinstein, J., and Zeevi, Y.Y., The canonical coordinates method
for pattern deformation: theoretical and computational considerations, IEEE
Trans. on Patt. Anal. and Mach. Intell., 14, 1171–1183, 1992.

[49] Segman, J., Fourier cross correlation and invariance transformations for an
optimal recognition of functions deformed by affine groups, Journal of the
Optical Society of America, A, 9, 895–902, 1992.

[50] Segman, J. and Schempp, W., Two methods of incorporating scale in the
Heisenberg group, JMIV special issue on wavelets, 1993.

[51] Girod, B. and Kuo, D., Direct estimation of displacement histograms, OSA
Meeting on Image Understanding and Machine Vision, 1989.

[52] Sheng, Y., Lejeune, C., and Arsenault, H.H., Frequency-domain Fourier-
Mellin descriptors for invariant pattern recognition, Optical Engineering, 27,
354–7, 1988.

[53] Burt, P.J. and Anandan, P., Image stabilization by registration to a reference
mosaic, ARPA Image Understanding Workshop, Nov. 10, 1994.

[54] Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt, P.J., Real-
time scene stabilization and mosaic construction, ARPA Image Understanding
Workshop, Nov. 10, 1994.

Vladimir Britanak "Discrete Cosine and Sine Transforms"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 4

Discrete Cosine and Sine Transforms

Vladimir Britanak

Slovak Academy of Sciences

4.1 Introduction

The discrete cosine transform (DCT) and discrete sine transform (DST) are mem-
bers of a family of sinusoidal unitary transforms. They have found applications in
digital signal and image processing and particularly in transform coding systems for
data compression/decompression. Among the various versions of DCT, types II and
III have received much attention in digital signal processing. Besides being real,
orthogonal, and separable, its properties are relevant to data compression and fast
algorithms for its computation have proved to be of practical value. Recently, DCT
has been employed as the main processing tool for data compression/decompression
in international image and video coding standards [31]. An alternative transform used
in transform coding systems is DST. In fact, the alternate use of modified forms of
DST and DCT has been adopted in the international audio coding standards MPEG-1
and MPEG-2 (Moving Picture Experts Group) [31].

In this chapter, the definitions and basic mathematical properties of four even
types of DCT and the DST are discussed. Then, the properties of DCT and DST
relevant to data compression are briefly outlined. For each DCT and DST, a fast
computational algorithm is described, and a corresponding regular generalized signal
flow graph is shown, followed by its implementation in C. Finally, to illustrate the
compression capability of DCT, a real DCT-based data compression application is
considered. The simple and efficient JPEG (Joint Photographic Experts Group) DCT-
based image compression and decompression system [31] and its implementation is
described in detail. Generally, this chapter contains many implemented algorithms
that can be useful not only in data compression applications but also in any other
DCT- and DST-related applications.

4.2 The Family of DCTs and DSTs

DCTs and DSTs are members of the class of sinusoidal unitary transforms devel-
oped by Jain [1]. A sinusoidal unitary transform is an invertible linear transform
whose kernel describes a set of complete, orthogonal discrete cosine and/or sine ba-
sis functions. The well-known Karhunen–Loève transform (KLT) [30], generalized
discrete Fourier transform [2], generalized discrete Hartley transform [3] or equiva-
lently generalized discrete W transform [4], and various types of the DCT and DST
are members of this class of unitary transforms.

The set of DCTs and DSTs introduced by Jain [1] is not complete. The complete set
of DCTs and DSTs, so-called discrete trigonometric transforms, has been described
by Wang and Hunt [4]. The family of discrete trigonometric transforms consists of
8 versions of DCT and corresponding 8 versions of DST [13, 14]. Each transform
is identified as even or odd and of type I, II, III, and IV. All present digital signal
and image processing applications (mainly transform coding and digital filtering of
signals) involve only even types of the DCT and DST. Therefore, this chapter considers
four even types of DCT and DST.

4.2.1 Definitions of DCTs and DSTs

In subsequent sections, N is assumed to be an integer power of 2, i.e., N = 2m. A
subscript of a matrix denotes its order, while a superscript denotes the version number.

Four normalized even types of DCT in the matrix form are defined as [4]

DCT − I :
[
C

I

N+1

]
nk

=
√

2

N

[
εn εk cos

πnk

N

]
, (4.1a)

n, k = 0, 1, . . . , N,

DCT − II :
[
C

II

N

]
nk

=
√

2

N

[
εk cos

π(2n + 1)k

2N

]
, (4.1b)

n, k = 0, 1, . . . , N − 1,

DCT − III :
[
C

III

N

]
nk

=
√

2

N

[
εn cos

π(2k + 1)n

2N

]
, (4.1c)

n, k = 0, 1, . . . , N − 1,

DCT − IV :
[
C

IV

N

]
nk

=
√

2

N

[
cos

π(2n + 1)(2k + 1)

4N

]
, (4.1d)

n, k = 0, 1, . . . , N − 1,

where

εp =
{

1√
2

p = 0 or p = N

1 otherwise

and the corresponding four normalized even types of the DST are defined as [4]

DST − I :
[
S
I

N−1

]
nk

=
√

2

N

[
sin

π(n + 1)(k + 1)

N

]
, (4.2a)

n, k = 0, 1, . . . , N − 2,

DST − II :
[
S
II

N

]
nk

=
√

2

N

[
εk sin

π(2n + 1)(k + 1)

2N

]
, (4.2b)

n, k = 0, 1, . . . , N − 1,

DST − III :
[
S
III

N

]
nk

=
√

2

N

[
εn sin

π(2k + 1)(n + 1)

2N

]
, (4.2c)

n, k = 0, 1, . . . , N − 1,

DST − IV :
[
S
IV

N

]
nk

=
√

2

N

[
sin

π(2n + 1)(2k + 1)

4N

]
, (4.2d)

n, k = 0, 1, . . . , N − 1,

where

εq =
{

1√
2

q = N − 1

1 otherwise.

The DCT-I introduced by Wang and Hunt [5] is defined for the order N + 1. It can be
considered a special case of symmetric cosine transform introduced by Kitajima [6].
The DST-I introduced by Jain [7] is defined for the order N − 1 and constitutes the
basis of a technique called recursive block coding [35]. The DCT-II and its inverse,
DCT-III, first reported by Ahmed, Natarajan, and Rao [8], has an excellent energy
compaction property, and among the currently known unitary transforms it is the
best approximation for the optimal KLT. The DST-II and its inverse, DST-III, have
been introduced by Kekre and Solanki [9]. DST-II is a complementary or alternative
transform to DCT-II used in transform coding. DCT-IV and DST-IV introduced by
Jain [1] have found applications in the fast implementation of lapped orthogonal
transform for the efficient transform/subband coding [12].

4.2.2 Mathematical Properties

The basic mathematical properties of discrete transforms are fundamental for their
use in practical applications. Thus, properties such as scaling, shifting, and convo-
lution are readily applied in the discrete transform domain. In the following, we
briefly summarize the most relevant mathematical properties of the family of DCTs
and DSTs.

DCT and DST matrices are real and orthogonal. All DCTs and DSTs are separa-
ble transforms; the multidimensional transform can be decomposed into successive
application of one-dimensional (1-D) transforms in the appropriate directions.

The Unitarity Property

The following relations hold for inverse DCT matrices[
C

I

N+1

]−1 =
[
C

I

N+1

]T =
[
C

I

N+1

]
(4.3a)[

C
II

N

]−1 =
[
C

II

N

]T =
[
C

III

N

]
(4.3b)[

C
III

N

]−1 =
[
C

III

N

]T =
[
C

II

N

]
(4.3c)[

C
IV

N

]−1 =
[
C

IV

N

]T =
[
C

IV

N

]
(4.3d)

and for inverse DST matrices[
S
I

N−1

]−1 =
[
S
I

N−1

]T =
[
S
I

N−1

]
(4.4a)[

S
II

N

]−1 =
[
S
II

N

]T =
[
S
III

N

]
(4.4b)[

S
III

N

]−1 =
[
S
III

N

]T =
[
S
II

N

]
(4.4c)[

S
IV

N

]−1 =
[
S
IV

N

]T =
[
S
IV

N

]
(4.4d)

If the nonsingular matrix is real and orthogonal, its inverse is obtained as its trans-
pose. In the definitions of DCT and DST, matrices given by Eqs. (4.1a)–(4.1d) and
Eqs. (4.2a)–(4.2d), respectively, the normalization factors

√
(2/N) can be merged

as 2/N , and it can be moved to either the forward or inverse transform. By merg-
ing these normalization factors, the family of DCT and DST matrices are no longer
orthonormal. They are, however, still orthogonal. The DCT-I, DCT-IV, DST-I, and
DST-IV matrices are involutory, i.e., they are orthogonal and symmetric. The sym-
metry of an orthogonal matrix indicates that algorithms for the forward and inverse
transform computation will be the same except for the normalization. On the other
hand, DCT-II and DCT-III are inverses of each other. The same property holds for
DST-II and DST-III.

The Linearity Property

Since matrix multiplication is a linear operation, i.e.,

M (α g + β f) = α M g + β M f (4.5)

for a matrix M , constants α and β, and vectors g and f , all DCTs and DSTs are linear
transforms.

The Convolution-Multiplication Property

All DCTs and DSTs possess convolution — multiplication property which is a
powerful tool for performing digital filtering in the transform domain. The convolu-
tion operation in the transform domain realized by taking an inverse transform of the

product of forward transforms of two data sequences is equivalent to symmetric con-
volution of those symmetrically extended sequences in the spatial domain [13, 14].
Let {xn} and {yn} be two input data sequences to be convolved. Generally, the relation
between the symmetric convolution and transform domain convolution-multiplication
property can be expressed by the following equation

{xn} < sc > {yn} = T −1

c [Ta {xn} × Tb {yn}] , (4.6)

where < sc > is the operator of symmetric convolution, × denotes element-by-
element multiplication of its operands, and Ta{xn} denotes a specified transform Ta
of the sequence {xn}. As an example, the convolution-multiplication property for

the DCT-II is obtained by substituting Ta = Tb = [CII

N] and Tc = [CI

N+1]
−1

into
Eq. (4.6). Definition of the symmetric convolution and convolution-multiplication
properties for the entire family of discrete trigonometric transforms are given in
references [13, 14], and [15].

The Shift Property, Scaling, and Difference Property

For the family of DCTs and DSTs, the reader can find the complete derivations of
the shift property in references [10, 11], and [30] and scaling in time and the difference
property in [30].

4.2.3 Relations to the KLT

The performance of DCTs and DSTs, particularly important in transform coding,
is associated with the KLT. KLT is an optimal transform for data compression in a
statistical sense because it decorrelates a signal in the transform domain, packs the
most information in a few coefficients, and minimizes mean-square error between the
reconstructed and original signal compared to any other transform. However, KLT is
constructed from the eigenvalues and the corresponding eigenvectors of a covariance
matrix of the data to be transformed; it is signal-dependent, and there is no general
algorithm for its fast computation. There is asymptotic equivalence of the family of
DCTs and DSTs with respect to KLT for a first-order stationary Markov process in
terms of the transform size and the adjacent (interelement) correlation coefficient ρ.
For finite length data, DCTs and DSTs provide different approximations to KLT, and
the best approximating transform varies with the value of correlation coefficient ρ.
For example, when ρ = 1 the KLT is reduced to DCT-II (DCT-III) [16, 17, 30], for
ρ = 0 the KLT is reduced to DST-I [7, 17, 18], and for ρ = −1 it is reduced to
DST-II (DST-III) [19]. On the other hand, if the transform size N increases (i.e., N
tends to infinity), it can be shown that KLT is reduced to DCT-I or DCT-IV [30]. This
asymptotic behavior implies that DCTs and DSTs can be used as substitutes for KLT
of certain random processes.

In general, there are several characteristics that are desirable in a transform when
it is used for the purpose of data compression [36]:

• Data decorrelation: The ideal transform completely decorrelates the data in a
sequence/block; i.e., it packs the most amount of energy in the fewest number of
coefficients. In this way, many coefficients can be discarded after quantization
and prior to encoding. It is important to note that the transform operation itself
does not achieve any compression. It aims at decorrelating the original data and
compacting a large fraction of the signal energy into relatively few transform
coefficients.

• Data-independent basis functions: Owing to the large statistical variations
among data, the optimum transform usually depends on the data, and finding
the basis functions of such transform is a computationally intensive task. This
is particularly a problem if the data blocks are highly nonstationary, which
necessitates the use of more than one set of basis functions to achieve high
decorrelation. Therefore, it is desirable to trade optimum performance for a
transform whose basis functions are data-independent.

• Fast implementation: The number of operations required for an n-point trans-
form is generally of the order O(n2). Some transforms have fast implementa-
tions, which reduce the number of operations to O(n log n). For a separable
n × n 2-D transform, performing the row and column 1-D transforms succes-
sively reduces the number of operations from O(n4) to O(2n2 log n).

Among the family of DCTs and DSTs, the performance of DCT-II is closest to
the statistically optimal KLT based on a number of performance criteria (variance
distribution, energy packing efficiency, residual correlation, rate distortion, and max-
imum reducible bits and generalized Wiener filtering) [30]. The importance of DCT-
II is further accentuated by its superiority in bandwidth compression (redundancy
reduction) of a wide range of signals and by existence of fast algorithms for its im-
plementation. Owing to powerful performance in the bit-rate reduction, DCT-II and
its inversion, DCT-III, have been employed in the international image/video coding
standards: JPEG for compression of still images, MPEG for compression of motion
video including HDTV (High Definition Television), H.261 for compression of video
telephony and teleconferencing, and H.263 for visual communication over ordinary
telephone lines [31].

4.3 A Unified Fast Computation of DCTs and DSTs

The DCT and DST matrices defined in Section 4.2 are orthonormal. The normal-
ization factor

√
(2/N) in the forward and the inverse transforms can be merged as

2/N and moved to the forward transform. By merging these normalization factors
the family of DCT and DST matrices are orthogonal. Without loss of generality, in
this section orthogonal DCT and DST matrices will be considered.

A unified fast computation of even types of DCT (DCT-I, -II, -III, -IV) and DST
(DST-I, -II, -III, -IV) is based on a universal computational structure both for DCT-

II/DST-II and DCT-III/DST-III computation [26]. This DCT-II/DST-II (DCT-III/
DST-III) universal computational structure is used as the basic computational unit (a
potential DCT/DST processor) in fast algorithms defined by sparse matrix factoriza-
tions. The fast algorithms are simple, numerically stable and efficient. For each type
of the DCT and DST computation, the corresponding regular generalized signal flow
graph is shown. Generalized signal flow graphs are enabled to realize computation
of given DCT and DST for any N = 2m, m > 0 (N being the length of the data
sequence). The unified fast computation of DCTs and DSTs provides simple and
compact transform building blocks. Finally, computer programs for each even type
of the DCT and DST computation are presented.

4.3.1 Definitions of Even-Odd Matrices

Even-Odd Transform Matrix

AJ =

I J−1
2

Ī J−1
2

1
Ī J−1

2
−I J−1

2

 for J odd , (4.7)

where IN is the identity matrix. Blanks in the even-odd transform matrix Eq. (4.7)
represent null submatrices and

ĪN =

0 · · · 0 0 0 1
0 · · · 0 0 1 0
0 · · · 0 1 0 0
0 · · · 1 0 0 0
...

...
...

...
...

1 · · · 0 0 0 0

(4.8)

is the reflection matrix. The orthogonal even-odd transform matrix Eq. (4.7) converts
data sequences into their symmetric (even) and anti-symmetric (odd) parts.

Even-Odd Permutation Matrices

PJ =

1 0 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 0 1 · · · 0 0 0

...
...

0 0 0 0 0 · · · 0 1 0
0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 · · · 1 0 0

...
...

0 0 0 1 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0

for J even , (4.9a)

PJ =

1 0 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 0 1 · · · 0 0 0

...
...

0 0 0 0 0 · · · 1 0 0
0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 · · · 0 1 0

...
...

0 0 0 1 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0

for J odd . (4.9b)

The permutation matrix PJ reorders the data sequence such that the first half of even-
numbered data is arranged in the natural order, while the last half of odd-numbered
data is arranged in the reversed order.

4.3.2 DCT-II/DST-II and DCT-III/DST-III Computation

The DCT-II for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [8]

z
II

k = 2εk
N

N−1∑
n=0

xn cos

[
π(2n + 1)k

2N

]
, k = 0, 1, . . . , N − 1 (4.10)

and the inverse DCT-II (DCT-III) is defined by

xn =
N−1∑
k=0

εkz
II

k cos

[
π(2n + 1)k

2N

]
, n = 0, 1, . . . , N − 1 , (4.11)

where

εk =
{

1√
2

k = 0

1 otherwise.

DCT-II and its inverse, DCT-III, given by Eqs. (4.10) and (4.11), respectively, can be
rewritten as [23]

z
II

k = 2εk
N

N−1∑
n=0

x̃n cos

[
π(4n + 1)k

2N

]
, k = 0, 1, . . . , N − 1 , (4.12)

x̃n =
N−1∑
k=0

εkz
II

k cos

[
π(4n + 1)k

2N

]
, n = 0, 1, . . . , N − 1 , (4.13)

where

x̃n = x2n

x̃N−n−1 = x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.14)

The reordering in Eq. (4.14) corresponds to the permutation matrix PN given by
Eq. (4.9a) applied to the input data vector.

Let C
II

N be the N ×N orthogonal DCT-II matrix. Then a reordered DCT-II matrix

Ĉ
II

N with permuted rows and columns is given by

Ĉ
II

N = RN C
II

N [PN]T , (4.15)

where RN is the bit reversal permutation matrix and [PN]T is the transpose of the
permutation matrixPN . A fast, recursive algorithm for DCT-II (DCT-III) computation
with a regular structure is based on a block matrix factorization of the reordered DCT-
II matrix Ĉ

II

N . The reordered DCT-II matrix Ĉ
II

N has a recursive structure; higher order
matrices can be generated from lower order ones, and its block matrix factorization
has the following form [28, 30]

Ĉ
II

N =
[

IN
2

0

0 KN
2

]
 Ĉ

II

N
2

0

0 Ĉ
II

N
2

 [

IN
2

0

0 QN
2

] [
IN

2
IN

2

IN
2

−IN
2

]
, (4.16)

where KN
2

is an N
2 × N

2 matrix given by

KN
2

= RN
2
LN

2
RN

2
, (4.17)

where RN
2

is the bit reversal permutation matrix, LN
2

is the lower triangular matrix

LN
2

=

1 0 0 0 · · · 0
−1 2 0 0 · · · 0

1 −2 2 0 · · · 0
−1 2 −2 2 · · · 0
...

...
...

...
...

−1 2 −2 2 · · · 2

,

QN
2

is the N
2 × N

2 diagonal matrix

QN
2

= diag [cosφm] ,

φm =
(
m + 1

4

) (
2π

N

)
, m = 0, 1, . . . ,

N

2
− 1 . (4.18)

The block matrix factorization Eq. (4.16) defines Hou’s fast, recursive, and numer-
ically stable algorithm for DCT-II (DCT-III) computation which can be represented
in the matrix form as [23]

 ẑ
II

e

ẑ
II

o

 = 2

N
Ĉ

II

N

 x̃p

x̃r

 , (4.19)

where

x̃p = [
x0, x2, x4, . . . , xN−4, xN−2

]T
,

x̃r = [
xN−1, xN−3, xN−5, . . . , x3, x1

]T
,

ẑ
II

e = RN
2

z
II

e ,

ẑ
II

o = RN
2

z
II

o ,

z
II

e = [
z0, z2, z4, . . . , zN−4, zN−2

]T
,

z
II

o = [
z1, z3, z5, . . . , zN−3, zN−1

]T
,

where z
II

e is the even half and z
II

o is the odd half of the DCT-II transformed sequence
both arranged in the natural order. T denotes transposition.

A regular generalized signal flow graph based on this algorithm for DCT-II and
its inverse, DCT-III, for any N = 2m, m > 0 has been described by Britanak [24].
It is shown for N = 16 in Fig. 4.1. Full lines represent transfer factors +1, while
broken lines represent transfer factors −1. © represents addition, ↓ represents mul-
tiplication by cosine coefficients C

k

n = cos(kφn), φn = π(4n+1)
2N , and → represents

multiplication by 2. The normalization factor is not included in the signal flow graph.
The generalized signal flow graph consists of two regular parts. The first part is
related to the butterfly structure, and the second one, after bit-reversal permutation,
is mapped into a pipeline structure. This pipeline structure is related to a simple
recurrent relation for any N = 2m, m > 0 [24].

The DST-II for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [9]

s
II

k = 2εk
N

N−1∑
n=0

xn sin

[
π(2n + 1)(k + 1)

2N

]
, k = 0, 1, . . . , N − 1 (4.20)

and the inverse DST-II (DST-III) is defined as

xn =
N−1∑
k=0

εks
II

k sin

[
π(2n + 1)(k + 1)

2N

]
, n = 0, 1, . . . , N − 1 , (4.21)

where

εk =
{

1√
2

k = N − 1

1 otherwise.

Let C
II

N and S
II

N be orthogonal N × N DCT-II and DST-II matrices, respectively.

According to Wang [20] S
II

N is related to C
II

N by

S
II

N = ĪN C
II

N DN , (4.22)

FIGURE 4.1
DCT-II/DST-II (DCT-III/DST-III) universal computational structure for N =
16. ©Slovak Academic Press Ltd.

N is the diagonal odd sign-changing matrix

DN =

1 0 0 0 · · · 0
0 −1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 −1 · · · 0
...

...
...

...
...

0 0 0 0 · · · −1

. (4.23)

The DN matrix applied to the input data sequence given by Eq. (4.14) corresponds
to the reordering and sign changes:

x̃n = x2n

x̃N−n−1 = − x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.24)

From Eq. (4.22) it follows that the generalized signal flow graph for the DCT-II
computation can also be used for the DST-II computation for any N = 2m, m >

0. The output DST-II transformed sequence, after the DCT-II computation for the
input data sequence given by Eq. (4.24), is in reversed order; i.e., the final DST-II
transformed sequence is obtained as

s
II

k = z
II

N−1−k, k = 0, 1, . . . , N − 1 . (4.25)

Hence, by the same computational structure, both the DCT-II and DST-II computation
can be effectively realized for any N = 2m, m > 0 simply by changing the input and
output data sequences. Because both DCT-II and DST-II are orthogonal transforms,
the algorithm for DST-III computation is obtained by transposing of Eq. (4.22). The
generalized signal flow graph for DCT-II/DST-II and their inverse computations, so
called DCT-II/DST-II (DCT-III/DST-III) universal computational structure, is shown
forN = 16 in Fig. 4.1. The symbols in brackets correspond to DST-II (DST-III) com-
putation. DCT-II/DST-II (DCT-III/DST-III) universal computational structure [25]
represents the unified DCT-II/DST-II and their inverse computations, DCT-III/DST-
III for any N = 2m, m > 0. The universality of DCT-II/DST-II computational
structure is related to the fact that it can be used as the basic computational unit
for the fast implementation of the entire class of discrete sinusoidal transforms, i.e.,
generalized discrete Fourier transform, generalized discrete Hartley transforms, and
the other types of the DCT and DST, respectively [26, 27]. We note that for fast
computation of other discrete sinusoidal transforms, the bidirectional DCT-II/DST-II
(DCT-III/DST-III) universal computational structure is used without the proper nor-
malization. If DCT-II (DCT-III) or DST-II (DST-III) computation is required, the
proper normalization should be applied to the input and output data sequences.

4.3.3 DCT-I and DST-I Computation

DCT-I for a given data sequence {xn}, n = 0, 1, . . . , N is defined as [5]

z
I

k = 2εk
N

N∑
n=0

εnxn cos

[
πnk

N

]
, k = 0, 1, . . . , N (4.26)

and the inverse DCT-I (IDCT-I) is defined by

xn = εn

N∑
k=0

εkz
I

k cos

[
πnk

N

]
, n = 0, 1, . . . , N , (4.27)

where

εp =
{

1√
2

p = 0 or p = N

1 otherwise.

DCT-I and IDCT-I are defined for data sequences of length N + 1. Let C
I

N+1 be the

orthogonal DCT-I matrix of order N + 1. Then for N = 2m, m ≥ 1, C
I

N+1 can be
decomposed into the following recursive matrix form [21]

C
I

N+1 = PN+1

 C

I

N
2 +1

0

0 Ī N
2
C

III

N
2
Ī N

2

AN+1 , (4.28)

where AN+1 and PN+1 are matrices given by Eq. (4.7) and Eq. (4.9b), respectively.
C

I

N
2 +1

is the DCT-I matrix of order N
2 + 1. The matrix product Ī N

2
C

III

N
2
Ī N

2
denotes

N
2 × N

2 DCT-III matrix with reversed order for both its rows and columns. The
permutation matrix PN+1 applied to the data vector corresponds to the reordering:

x̃0 = x0

x̃n+1 = x2n+2

x̃N−n = x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.29)

Because C
I

N+1 is a symmetric matrix, the algorithms for the DCT-I and IDCT-I
computation are the same except for the normalization. The generalized signal flow
graph for the DCT-I and IDCT-I computation for N + 1 = 17 is shown in Fig. 4.2.
Here α = 1√

2
, and the normalization factor is again not incl uded in the signal flow

graph.
The DST-I for a given data sequence {xn}, n = 0, 1, . . . , N − 2 is defined as [7]

s
I

k = 2

N

N−2∑
n=0

xn sin

[
π(n + 1)(k + 1)

N

]
, k = 0, 1, . . . , N − 2 , (4.30)

FIGURE 4.2
DCT-I and IDCT-I generalized signal flow graph for N + 1 = 17. ©Slovak
Academic Press Ltd.

and the inverse DST-I (IDST-I) is defined by

xn =
N−2∑
k=0

sIk sin

[
π(n + 1)(k + 1)

N

]
, n = 0, 1, . . . , N − 2 . (4.31)

DST-I and IDST-I are defined for data sequences of length N − 1. Let S
I

N−1 be the

orthogonal DST-I matrix of order N − 1. Then for N = 2m, m > 1, S
I

N−1 can be

decomposed into the following recursive matrix form [21]

S
I

N−1 = PN−1

 S

III

N
2

0

0 Ī N
2 −1S

I

N
2 −1

Ī N
2 −1

AN−1 , (4.32)

where S
III

N
2

is the N
2 × N

2 DST-III matrix. The matrix product Ī N
2 −1S

I

N
2 −1

Ī N
2 −1 denotes

the DST-I matrix of order N
2 − 1 with reversed order for both its rows and columns.

The permutation matrixPN−1 applied to the data vector corresponds to the reordering

x̃0 = x0

x̃n+1 = x2n+2

x̃N−2−n = x2n+1, n = 0, 1, . . . ,
N

2
− 2 . (4.33)

Because S
I

N−1 is a symmetric matrix, the algorithms for the DST-I and IDST-I are the
same except for the normalization. The generalized signal flow graph for the DST-I
and IDST-I computation for N − 1 = 15 is shown in Fig. 4.3. The normalization
factor is not included in the signal flow graph.

4.3.4 DCT-IV/DST-IV Computation

The DCT-IV for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [1]

z
IV

k = 2

N

N−1∑
n=0

xn cos

[
π(2n + 1)(2k + 1)

4N

]
, k = 0, 1, . . . , N − 1 (4.34)

and the inverse DCT-IV (IDCT-IV) is defined by

xn =
N−1∑
k=0

z
IV

k cos

[
π(2n + 1)(2k + 1)

4N

]
, n = 0, 1, . . . , N − 1 . (4.35)

Let C
IV

N be the orthogonal N × N DCT-IV matrix. Then for N = 2m, m ≥ 1, C
IV

N

can be decomposed into the following sparse matrix product [22]

C
IV

N = TN

 C

III

N
2

0

0 Ī N
2
S
III

N
2
Ī N

2

PN BN , (4.36)

where C
III

N
2

is the N
2 × N

2 DCT-III matrix. The matrix product Ī N
2
S
III

N
2
Ī N

2
denotes

N
2 × N

2 DST-III matrix with reversed order for both its rows and columns. TN is the

FIGURE 4.3
DST-I and IDST-I generalized signal flow graph for N − 1 = 15. ©Slovak
Academic Press Ltd.

rotation matrix given by

TN =

cos π
4N sin π

4N
. .

cos (N−1)π
4N sin (N−1)π

4N

sin (N−1)π
4N − cos (N−1)π

4N
. .

sin π
4N − cos π

4N

(4.37)

and BN is the tridiagonal matrix given by

BN =

1 0 0 0 · · · 0
0 1 −1 0 · · · 0
0 1 1 0 · · · 0
...

. . .
...

0 · · · 0 1 −1 0
0 · · · 0 1 1 0
0 · · · 0 0 0 1

. (4.38)

As can be seen, the decomposition of the matrix C
IV

N depends on the DCT-III and

DST-III matrices of half size. Because C
IV

N is a symmetric matrix, the algorithms
for the DCT-IV and IDCT-IV computation are the same except for the normalization.
The generalized signal flow graph for the DCT-IV and IDCT-IV computation for
N = 16 is shown in Fig. 4.4. The normalization factor is not included in the signal
flow graph. The matrix product PNBN can be realized by one butterfly stage in the
generalized signal flow graph.

The DST-IV for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [1]

s
IV

k = 2

N

N−1∑
n=0

xn sin

[
π(2n + 1)(2k + 1)

4N

]
, k = 0, 1, . . . , N − 1 , (4.39)

and the inverse DST-IV (IDST-IV) is defined by

xn =
N−1∑
k=0

s
IV

k sin

[
π(2n + 1)(2k + 1)

4N

]
, n = 0, 1, . . . , N − 1 . (4.40)

Let C
IV

N and S
IV

N be the N × N DCT-IV and DST-IV matrices, respectively. The

matrix S
IV

N is related to C
IV

N by [21]

S
IV

N = ĪN C
IV

N DN . (4.41)

Because S
IV

N is also a symmetric matrix, the algorithms for the DST-IV and IDST-IV
computation are the same except for the normalization. From relation Eq. (4.41) it
follows that the generalized signal flow graph for the DCT-IV computation can be
also used for the DST-IV computation by changing only the input and output data
sequences. The output DST-IV transformed sequence, after the DCT-IV computation
for the input data sequence given by Eq. (4.24), is order reversed; the final DST-IV
transformed data sequence is obtained as

s
IV

k = z
IV

N−1−k, k = 0, 1, . . . , N − 1 . (4.42)

The generalized signal flow graph for the DCT-IV/DST-IV and IDCT-IV/IDST-IV
computation for N = 16 is shown in Fig. 4.4, where the symbols in brackets cor-
respond to DST-IV/IDST-IV computation. This generalized signal flow graph rep-
resents the unified DCT-IV/DST-IV and their inverse computations for any N =
2m,m > 0.

FIGURE 4.4
DCT-IV/DST-IV and IDCT-IV/IDST-IV generalized signal flow graph for N =
16. ©Slovak Academic Press Ltd.

4.3.5 Implementation of the Unified Fast Computation of DCTs and
DSTs

All developed algorithms have been implemented in the C language, and they
can be used in practical applications. Implemented algorithms are able to compute
the DCT/DST orthogonal transform of a given type for real data sequence up to

size 1024. By minor modification (macro SIZE and LOG2SIZE) in program modules,
any DCT/DST can be computed for the required size. In the implementation of DCT-
II/DST-II (DCT-III/DST-III) universal computational structure, the normalization is
optional. All computations are performed in double precision.

The orthonormal versions of the DCT and DST have the normalization factor√
2/N in both the forward and inverse transforms. Therefore, for the computation of

orthonormal DCTs and DSTs, the implemented algorithms can be easily modified.

Computer Program for the Fast DCT-II/DST-II and DCT-III/DST-III Compu-
tation

/*---*
*Module: The 1-D Fast Discrete Cosine II and III *
* Transform (DCT) and Discrete Sine II *
* and III Transform (DST) *
* *
*Algorithm: DCT/DST universal computational *
* structure for the 1-D DCT-II/DST-II and *
* DCT-III/DST-III Transform Computation *
* *
*Note that the DCT/DST universal computational *
*structure in algorithms for discrete sinusoidal *
*transforms computation is used without the *
*normalization. This module simulates a potential *
*DCT/DST processor. *
---/

/*--- Prototypes to be included in calling program---*/
int dct_processor (
double *pdct, /* input/output vector of length 2**m */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int norm, /* norm = 0 normalization is disabled

norm != 0 normalization is enabled */
int flag); /* Transform computation:

flag = 1 1-D DCT-II
flag = -1 1-D DCT-III
flag = 2 1-D DST-II
flag = -2 1-D DST-III */

/* NOTE: Function returns into calling program
following value:

0 - successful processing
-1 - invalid length of input vector or

invalid type transform computation */
/*------------------- Includes ----------------------*/
#include <math.h>
/*-------------------- Defines ----------------------*/
#define SIZE 1024 /* max length 1024 */
#define LOG2SIZE 10 /* log_2 (SIZE) */
#define PI 3.141592653589793 /* pi */
#define DCT_II 1
#define DCT_III -1
/*---------------- Local Variables ------------------*/
static double ac [SIZE]; /* working vector */
static double cs [SIZE-1];/*table of cos coefficients*/
static int length;
/* --- Beginning of the DCT/DST processor module ---*/

int dct_processor(double *pdct, int m, int norm,
int flag)

{
int i,j,k,n,n1,n2,r,s,f0,f1,f2,f3,ip,ic,half,base;
double arg,fi,scale,tmp,*pc1,*pc2,*pac = &ac [0];
/* Verification of the input vector length (SIZE) */
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Verification of the transform type computation */
if (flag < -2 || flag == 0 || flag > 2)

return (-1);
/* Initialize input vector length and variables */
n = 1 << m;
n1 = n - 1;
n2 = n >> 1;
/* Generate the table of cosine coefficients Table

is updated for new value of N */
if (length != n)
{

scale = 1.0 / (double) (n << 1);
for (s = base = 0; s < m; s++, base += ip)
{

half = n >> s;
ip = half >> 1;
ic = n / half;
arg = (double) ic * PI * scale;
for (i = 0; i < ip; i++)
{

fi = (double) (4 * i + 1) * arg;
cs [base+i] = cos (fi);

}
}
length = n;

}
/* Test type of computation - Forward or Inverse

transform */
if (flag < 0)

goto inv;
/*

==
THE 1-D FAST DCT-II OR DST-II TRANSFORM==

*/
/* Reordering of the original input data sequence */
for (i = 0; i < n2; i++)
{

*(pac + i) = *(pdct + 2 * i);
if (flag == DCT_II)

*(pac + n - 1 - i) = *(pdct + 2 * i + 1);
else

*(pac + n - 1 - i) = - *(pdct + 2 * i + 1);
}
/* Implementation of the butterfly structure */
for (s = base = 0; s < m; s++, base += ip)
{

half = n >> s;
ip = half >> 1;
for (j = 0; j < ip; j++)

for (i = j; i < n; i += half)

{
pc1 = pac + i;
pc2 = pc1 + ip;
tmp = *pc1 + *pc2;
*pc2 = (*pc1 - *pc2) * cs [base+j];
*pc1 = tmp;

}
}
/* Bit reversal permutation */
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = *(pac + i);
*(pac + i) = *(pac + j);
*(pac + j) = tmp;

}
}
/* Implementation of the pipeline structure */
if (m > 1)
{

for (i = 0; i < m - 1; i++)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
pc1 = pac + ip;
pc2 = pac + ic;
*pc1 += *pc1 - *pc2;
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
pc1 = pac + ip;
pc2 = pac + ic;
*pc1 += *pc1 - *pc2;
k++;

}
}

}
}

/*--
The normalization of the transformed data sequence.
If DCT-II/DST-II transform is required, then parameter
norm != 0. The block is not used for other discrete
sinusoidal transforms computation. Then norm = 0.
---*/

if (norm)
{

scale = 2.0 / (double) n;
*pac *= 1.0 / sqrt (2.0);
for (i = 0; i < n; i++)

*(pac + i) *= scale;
}
/* Reverse order of the data sequence for DST-II */
if (flag == DCT_II)

for (i = 0; i < n; i++)
*(pdct + i) = *(pac + i);

else
for (i = 0; i < n; i++)

*(pdct + i) = *(pac + n - 1 - i);
return (0);

/*
===

THE 1-D FAST DCT-III OR DST-III TRANSFORM===
*/
inv:

/* Reverse order of the data sequence for DST-III */
if (flag == DCT_III)

for (i = 0; i < n; i++)
*(pac + i) = *(pdct + i);

else
for (i = 0; i < n; i++)

*(pac + n - 1 - i) = *(pdct + i);
/*--

The normalization of the DC term. If DCT-III/DST-III
transform is required, then parameter norm != 0. The
block is not used for other discrete sinusoidal
transforms computation. Then norm = 0.

---*/
if (norm)

*pac *= 1.0 / sqrt (2.0);
/* Implementation of the pipeline structure */
if (m > 1)
{

for (i = m - 2; i >= 0; i--)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = f2; j > 0; j--)
{

k = f3;
ip = f0 - j + k * f1;
ic = f1 - j + k * f1;
pc1 = pac + ic;
pc2 = pac + ip;
*pc1 -= *pc2;
*pc2 += *pc2;
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
pc1 = pac + ic;
pc2 = pac + ip;

*pc1 -= *pc2;
*pc2 += *pc2;

}
}

}
}
/* Bit reversal permutation */
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = *(pac + i);
*(pac + i) = *(pac + j);
*(pac + j) = tmp;

}
}

/* Implementation of the butterfly structure */
for (s = 0, base = n - 2; s < m; s++, base -= half)

{
half = 1 << (s + 1);
ip = half >> 1;
for (j = 0; j < ip; j++)

for (i = j; i < n; i += half)
{

pc1 = pac + i;
pc2 = pc1 + ip;
tmp = *pc2 * cs [base+j];
*pc2 = *pc1 - tmp;
*pc1 = *pc1 + tmp;

}
}

/* Reordering of output samples for DCT-III/DST-III */
for (i = 0; i < n2; i++)
{

*(pdct + 2 * i) = *(pac + i);
if (flag == DCT_III)

*(pdct + 2 * i + 1) = *(pac + n - 1 - i);
else

*(pdct + 2 * i + 1) = - *(pac + n - 1 - i);
}
return (0);

}
/*------- End of the DCT/DST processor module -------*/

Computer Program for the Fast DCT-I Computation

/*--*
*Module: The 1-D Fast Discrete Cosine I Transform *
* *
*Algorithm: The Forward and Inverse 1-D DCT-I *
* Transform Computation *
* *
*Note that the DCT-I matrix of order N + 1 and it is *
*symmetric. Thus, the forward and inverse transforms *

*are the same except for the normalization. *
--/
/*--- Prototypes to be included in calling program ---*/
int fdcti1d (

double *x, /* input/output vector of length 2**m+1 */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int flag); /* Forward or Inverse DCT-I computation:

flag = 0 Forward 1-D DCT-I
flag = 1 Inverse 1-D DCT-I */

/* NOTE: Function returns into calling program
following

value:
0 - successful processing
-1 - invalid length of input vector

/*------------------- Includes -----------------------*/
#include <math.h>
/*-------------------- Defines -----------------------*/
#define SIZE 1024 /* max length SIZE+1*/
#define LOG2SIZE 10 /* log_2 (SIZE) */
/* NOTE: Actual transform size is SIZE + 1 */
int dct_processor (double *, int, int, int);
/*------------------ Local Variables -----------------*/
static double y [SIZE+1];

/*working vector of length N+1*/
/*------ Beginning of the 1-D Fast DCT-I module-------*/
int fdcti1d (double *x, int m, int flag)
{

int i,j,n,n1,n2,n3,nc;
double scale,tmp;
/* Verification of the input vector length (SIZE+1)*/
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Initialize the input vector length */
n = 1 << m;
/* Multiply x[0] and x [n] by 1 / sqrt(2) */
scale = 1.0 / sqrt (2.0);
x [0] *= scale;
x [n] *= scale;

/* Implementation of generalized signal flow graph */
n1 = n >> 1;
n2 = n;
n3 = n << 1;
nc = m - 1;
do
{

/* Butterflies for even-odd transform matrix A(N) */
for (i = 0; i < n1; i++)

{
tmp = x [i];
x [i] = tmp + x [n2 - i];
x [n2 - i] = tmp - x [n2 - i];

}
/* Reverse order of the input data sequence */
for (i = n1 + 1, j = i + n1 - 1; i < j; i++, j--)

{
tmp = x [i];
x [i] = x [j];

x [j] = tmp;
}

/* Compute the DCT-III transform */
dct_processor (&x [n1+1],nc,0,-1);

/* Reverse order of the transformed data sequence */
for (i = n1 + 1, j = i + n1 - 1; i < j; i++, j--)

{
tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}
n1 >>= 1;
n2 >>= 1;
nc--;

/* The last butterfly - 2x2 transform matrix */
if (n2 == 1)
{

tmp = x [0];
x [0] = tmp + x [1];
x [1] = tmp - x [1];

}
}
while (n2 > 1);

/* Reorder data sequence by permutation matrix P(N) */
n2 = 2;
n1 = n2 >> 1;
do
{

for (i = 0; i < n2 + 1; i++)
y [i] = x [i];

for (i = 0; i < n1; i++)
{

x [2 * i + 2] = y [i + 1];
x [2 * i + 1] = y [n2 - i];

}
n2 <<= 1;
n1 <<= 1;

}
while (n2 < n3);
/* Multiply x[0] and x [n] by 1 / sqrt(2) */
x [0] *= scale;
x [n] *= scale;

/* Normalization of the transformed data sequence */
if (!flag)
{

scale = 2.0 / (double) n;
for (i = 0; i < n + 1; i++)

x [i] *= scale;
}
return (0);

}
/*--------- End of the 1-D Fast DCT-I module--------*/

Computer Program for the Fast DST-I Computation

/*--*
*Module: The 1-D Fast Discrete Sine I Transform *
* *
*Algorithm: The Forward and Inverse 1-D DST-I *
* Transform Computation *

* *
*Note that the DST-I matrix of order N - 1 and it is *
*symmetric. Thus, the forward and inverse transforms *
*are the same except for the normalization. *
--/
/*--- Prototypes to be included in calling program ---*/
int fdsti1d (

double *x, /* input/output vector of length 2**m-1 */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int flag); /* Forward or Inverse DST-I computation:

flag = 0 Forward 1-D DST-I
flag = 1 Inverse 1-D DST-I */

/*NOTE: Function returns into calling program following
value:
0 - successful processing
-1 - invalid length of input vector

/*------------------ Defines -------------------------*/
#define SIZE 1024 /* max length SIZE-1*/
#define LOG2SIZE 10 /* log_2 (SIZE) */
/* NOTE: Actual transform size is SIZE - 1 */
int dct_processor (double *, int, int, int);
/*----------------- Local Variables ------------------*/
static double y [SIZE-1];

/* working vector of length N-1*/
/*------ Beginning of the 1-D Fast DST-I module-------*/
int fdsti1d (double *x, int m, int flag)
{

int i,j,n,n1,n2,nb,nc;
double scale,tmp;
/* Verification of the input vector length (SIZE-1)*/
if (m < 2 || m > LOG2SIZE)

return (-1);
/* Trivial case m = 1 */
if (m == 1)

return (0);
/* Initialize the input vector length */
n = 1 << m;
/* Implementation of generalized signal flow graph */
n1 = n >> 1;
n2 = n;
nc = m - 1;
nb = 0;
while (n2 > 2)
{
/* Butterflies for even-odd transform matrix A(N) */

if (n == n2)
for (i = 0; i < n1 - 1; i++)
{

tmp = x [i];
x [i] = tmp + x [n - 2 - i];
x [n - 2 - i] = tmp - x [n - 2 - i];

}
/* Butterflies for even-odd transform matrix A(N)

with reversed order of its columns */
else

for (i = 0; i < n1 - 1; i++)
{

tmp = x [nb + i];
x [nb + i] = x [n - 2 - i] + tmp;
x [n - 2 - i] = x [n - 2 - i] - tmp;

}
/* Compute the DST-III transform */

dct_processor (&x [nb],nc,0,-2);
n2 >>= 1;
n1 >>= 1;
nb += (1 << nc);
nc--;

}
/* Reorder of data sequence by permutation matrix P(N)*/

n2 = 2;
nc = 1;
nb = n - 2 - (1 << nc);
while (n2 < n)
{

for (i = nb; i < n - 1; i++)
y [i] = x [i];

for (i = 0; i < n2 - 1; i++)
{

x [nb + 2 * i + 2] = y [nb + i + 1];
x [nb + 2 * i + 1] = y [n - 2 - i];

}
/* Reverse order of the permuted data sequence */

if (nb != 0)
for (i = nb, j = n - 2; i < j; i++, j--)
{

tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}
n2 <<= 1;
nc++;
nb -= (1 << nc);

}
/* Normalization of the transformed data sequence */
if (!flag)
{

scale = 2.0 / (double) n;
for (i = 0; i < n - 1; i++)

x [i] *= scale;
}
return (0);

}
/*--------- End of the 1-D Fast DST-I module---------*/

Computer Program for the Fast DCT-IV/DST-IV Computation

/*--*
*Module: The 1-D Fast Discrete Cosine IV and *
* Discrete Sine IV Transform *
* *
Algorithm: The Forward and Inverse 1-D DCT-IV/DST-IV
* Transform Computation *
* *
*Note that the DCT-IV and DST-IV matrices are *
*symmetric. Thus, the forward and inverse transforms *
*are the same except for the normalization. *
--/

/* --- Prototypes to be included in calling program --*/
int fdcstiv1d (

double *x, /* input/output vector of length 2**m */
int m, /* log_2 vector length

E.g. N = 256 --> m = 8 */
int flag); /* Forward or Inverse DCT-IV/DST-IV

computation:
flag = 1 Forward 1-D DCT-IV
flag = -1 Inverse 1-D DCT-IV
flag = 2 Forward 1-D DST-IV
flag = -2 Inverse 1-D DST-IV */

/* NOTE: Function returns into calling program
following

value:
0 - successful processing
-1 - invalid length of input vector

invalid type transform computation */
/* -------------------- Includes ---------------------*/
#include <math.h>
/* --------------------- Defines ---------------------*/
#define SIZE 1024 /* max length 1024 */
#define LOG2SIZE 10 /* log_2 (SIZE) */
#define PI 3.141592653589793 /* pi */
int dct_processor (double *, int, int, int);
/* ---------------- Local Variables ----------------- */
static double y [SIZE]; /* working vector of length N */
static double as [SIZE/2];/* table of sine values */
static double cc [SIZE/2];

/* table of cosine+sine values*/
static double ss [SIZE/2];

/* table of sine-cosine values*/
static int length;
/*-- Beginning of the 1-D Fast DCT-IV/DST-IV module --*/
int fdcstiv1d (double *x, int m, int flag)
{

int i,j,n,n2,n4;
double arg,dev,argc,args,scale,tmp;
/* Verification of the input vector length (SIZE) */
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Verification of the type transform computation */

if (flag < -2 || flag == 0 || flag > 2)
return (-1);

/* Initialize the input vector length and variables */
n = 1 << m;
n2 = n >> 1;
n4 = n >> 2;

/* Generate tables of sines and cosines for rotation
matrix R(N). Table is updated for new value of N */
if (length != n)
{

arg = PI / (double) (n << 2);
dev = PI / (double) (n << 1);
for (i = 0; i < n2; i++, arg += dev)
{

argc = cos (arg);
args = sin (arg);
as [i] = args;

cc [i] = argc + args;
ss [i] = args - argc;

}
length = n;

}
/* Reordering of data sequence by permutation matrix

P(N). For DST-IV computation odd-numbered samples
are sign-changed */
for (i = 0; i < n2; i++)
{

y [i] = x [2 * i];
if (flag == 1 || flag == -1)

y [n - 1 - i] = x [2 * i + 1];
else

y [n - 1 - i] = - x [2 * i + 1];
}

/* Butterflies corresponding to the matrix product
P(N) B(N) */

for (i = 1; i < n2; i++)
{

tmp = y [n - i] - y [i];
y [i] = y [n - i] + y [i];
y [n - i] = tmp;

}
/* Get DCT-III transform of the first n/2 samples */

dct_processor (&y [0],m-1,0,-1);
/* Reverse order of the last n/2 samples */

for (i = n2, j = n - 1; i < j; i++, j--)
{

tmp = y [i];
y [i] = y [j];
y [j] = tmp;

}
/* Get the DST-III of the last n/2 samples */

dct_processor (&y [n2],m-1,0,-2);
/* Reverse order of the last n/2 samples */

for (i = n2, j = n - 1; i < j; i++, j--)
{

tmp = y [i];
y [i] = y [j];
y [j] = tmp;

}
/* Butterflies for the rotation matrix T(N) */

for (i = 0; i < n2; i++)
{

tmp = (y [i] - y [n - 1 - i]) * as [i];
x [i] = y [i] * cc [i] - tmp;
x [n - 1 - i] = y [n - 1 - i] * ss [i] + tmp;

}
/* DST-IV computation -

reverse order of data sequence */
if (flag == 2 || flag == -2)

for (i = 0, j = n - 1; i < j; i++, j--)
{

tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}

/* Normalization of the transformed data sequence */
if (flag > 0)
{

scale = 2.0 / (double) n;
for (i = 0; i < n; i++)

x [i] *= scale;
}
return (0);

}
/*---- End of the 1-D Fast DCT-IV/DST-IV module ----*/

4.4 The 2-D DCT/DST Universal Computational Structure

Section 4.3 presented fast algorithms for 1-D computation of a given type of
DCT/DST (I, II, III, IV) together with their implementations. For digital image pro-
cessing applications, the fast 2-D algorithms are more significant than 1-D ones. For
simplicity, in this section DCT and DST refer to types II and III only. The 2-D DCT
and its inverse are used as the basic processing elements in international image/video
coding standards [31].

Generally, there are two approaches to computation of the 2-D DCT: indirect and
direct. In the indirect approach, the 2-D DCT computation can be realized via other
2-D discrete orthogonal transforms, such as the discrete Fourier transform or the
Walsh–Hadamard transform [30]. There are two methods of direct approach which is
based on direct 2-D DCT computation. The first, a so called row-column method, is
based on the separability property of the 2-D DCT kernel, which sequentially uses any
fast 1-D DCT algorithm on rows and columns of the input data matrix. The second is a
vector radix method which uses a 2-D decomposition process. An algorithm obtained
by this method outperforms the conventional row-column method in computational
efficiency and works directly on 2-D data sets.

In this section, a generalized signal flow graph, the 2-D DCT/DST universal compu-
tational structure, is described. It represents a unified approach to the direct 2-D DCT
and 2-D DST computation and their inverses for any square block of size 2m × 2m.
The computer program implementing the direct 2-D DCT/DST is also presented.

4.4.1 The Fast Direct 2-D DCT/DST Computation

The 2-D DCT for an N × N input data matrix {xm,n}, m, n = 0, 1, . . . , N − 1 is
defined by the following relation [30]

zk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

xm,n cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, (4.43)

k, l = 0, 1, . . . , N − 1,

and the inverse 2-D DCT (2-D IDCT)

xm,n =
N−1∑
k=0

N−1∑
l=0

εkεlzk,l cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, (4.44)

m, n = 0, 1, . . . , N − 1,

where

εp =
{

1√
2

p = 0

1 otherwise

and N is assumed to be an integer power of 2. The corresponding 2-D DST is defined
by

sk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

xm,n sin

[
π(2m + 1)(k + 1)

2N

]
sin

[
π(2n + 1)(l + 1)

2N

]
,

k, l = 0, 1, . . . , N − 1, (4.45)

and the inverse 2-D DST (2-D IDST)

xm,n =
N−1∑
k=0

N−1∑
l=0

εkεlsk,l sin

[
π(2m + 1)(k + 1)

2N

]
sin

[
π(2n + 1)(l + 1)

2N

]
,

m, n = 0, 1, . . . , N − 1, (4.46)

where

εp =
{

1√
2

p = N − 1,

1 otherwise.

The recursive 1-D DCT/DST algorithm and its corresponding generalized signal flow
graph with regular structure for any value of N = 2m (1-D DCT/DST universal
computational structure) enable the formulation by the vector radix method of direct
2-D DCT/DST fast, recursive algorithm that possesses a regular structure for any
N ×N block size. By extension of reordering Eq. (4.14) to a 2-D case, the 2-D DCT
and 2-D IDCT defined by Eqs. (4.43) and (4.44), respectively, can be rewritten in the
following form [30]

zk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

x̃m,n cos

[
π(4m + 1)k

2N

]
cos

[
π(4n + 1)l

2N

]
, (4.47)

k, l = 0, 1, . . . , N − 1 ,

x̃m,n =
N−1∑
k=0

N−1∑
l=0

εkεlzk,l cos

[
π(4m + 1)k

2N

]
cos

[
π(4n + 1)l

2N

]
, (4.48)

m, n = 0, 1, . . . , N − 1 ,

where

x̃m,n = x2m,2n

x̃m,N−n−1 = x2m,2n+1

x̃N−m−1,n = x2m+1,2n (4.49)

x̃N−m−1,N−n−1 = x2m+1,2n+1, m, n = 0, 1, . . . ,
N

2
− 1 .

By reordering Eq. (4.49) anN×N input data matrix X is decomposed into four N
2 × N

2
submatrices, as even-even, even-odd, odd-even, and odd-odd indexed elements. After
reordering the input data and output transform matrix, a fast recursive algorithm for
direct N × N 2-D DCT/DST computation is given in matrix form as [28]

ẑee
ẑeo
ẑoe
ẑoo

 = (ĈN ⊗ ĈN)

x̃pp
x̃pr
x̃rp
x̃rr

 , (4.50)

where

ẑe = (R ⊗ R) ze, ẑe =
[

ẑee
ẑeo

]
, ze =

[
zee
zeo

]
,

ẑo = (R ⊗ R) zo, ẑo =
[

ẑoe
ẑoo

]
, zo =

[
zoe
zoo

]
,

x̃ =

x̃pp
x̃pr
x̃rp
x̃rr

 = (PN ⊗ PN) x .

⊗ denotes the Kronecker matrix product. ze and zo are vectors consisting of trans-
posed even and odd row vectors of the output transform matrix, both of which are
arranged in the natural order, respectively. x denotes the vector consisting of trans-
posed row vectors of the input data matrix. The direct product R ⊗ R performs
2-D bit reversal permutation, and PN ⊗ PN performs 2-D rearrangement defined by

Eq. (4.49). For clarity of Eq. (4.50), an example for N = 4 is shown

z00
z02
z01
z03
−−
z20
z22
z21
z23
−−
z10
z12
z11
z13
−−
z30
z32
z31
z33

=
(
Ĉ4 ⊗ Ĉ4

)

x00
x02
x03
x01
−−
x20
x22
x23
x21
−−
x30
x32
x33
x31
−−
x10
x12
x13
x11

.

Substituting the block matrix factorization of the DCT matrix ĈN Eq. (4.16) into
Eq. (4.50) and using properties of the Kronecker matrix product the direct, fast and
recursive 2-D DCT/DST algorithm is developed [28]

ĈN ⊗ ĈN ={[
IN

2
0

0 KN
2

]
⊗

[
IN

2
0

0 KN
2

]} {[
Ĉ N

2
0

0 Ĉ N
2

]
⊗

[
Ĉ N

2
0

0 Ĉ N
2

]}
{[

IN
2

0

0 QN
2

]
⊗

[
IN

2
0

0 QN
2

]} {[
IN

2
IN

2

IN
2

−IN
2

]
⊗

[
IN

2
IN

2

IN
2

−IN
2

]}
,

(4.51)

where KN
2

and QN
2

are N
2 × N

2 matrices given by Eqs. (4.17) and (4.18), respectively.

From Eq. (4.22) it follows that by this algorithm the direct 2-D DST computation can
be realized merely by sign changes on the input data matrix (direct productDN ⊗DN)
and after the 2-D DCT computation, reversing order along both rows and columns of
the output transformed DCT data matrix (direct product ĪN ⊗ ĪN).

The detailed analysis of the intrinsic structure of the algorithm given by Eqs. (4.50)
and (4.51) results in a highly regular 2-D DCT/DST generalized signal flow graph,
the 2-D DCT/DST universal computational structure, representing the unified di-
rect 2-D DCT and 2-D DST computation and their inverses for any N × N block
size [29]. It is shown for a 16 × 16 block in Fig. 4.6. The 2-D DCT/DST univer-
sal computational structure consists of two regular parts. The first part is related to

FIGURE 4.5
1-D DCT/DST universal computational structure forN = 16. ©Springer–Verlag
London Ltd.

FIGURE 4.6
2-D DCT/DST universal computational structure for 16 × 16 block size.
©Springer–Verlag London Ltd.

the 2-D butterfly structure, and the second one, after the 2-D bit reversal permuta-
tion, is mapped into a 2-D pipeline structure. This 2-D pipeline structure can be
represented by a regular computational scheme of the same type for any block size
2m × 2m [29]. In order to show a one-to-one relationship between the 2-D DCT/DST
universal computational structure and its 1-D counterpart, for a given N × N block
size it is partitioned into blocks 2-D BN×N

i , 2-D T N×N
i , i = 1, 2, . . . , log2 N

related to the 2-D butterfly structure and the block 2-D V N×N related to the 2-
D pipeline structure. All blocks indicated by BN

i , T N
i , i = 1, 2, . . . , log2 N

and the block V N are defined in the 1-D DCT/DST universal computational struc-
ture (Fig. 4.5). Heavy lines in Fig. 4.6 denote vector operations on rows of the
input data matrix, xi = [xi,0, xi,2, . . . , xi,N−2, xi,N−1, . . . , xi,3, xi,1]T and zi =
[zi,0, zi,1, . . . , zi,N−2, zi,N−1]T for i = 0, 1, . . . , N − 1. The symbols in brackets
correspond to the 2-D DST computation and z̄ = Ī z.

Recall that in the international image/video coding standards [31] the 2-D DCT
and its inverse are defined for fixed 8 × 8 blocks as [43]

zk,l = εkεl

4

7∑
m=0

7∑
n=0

xm,n cos

[
π(2m + 1)k

16

]
cos

[
π(2n + 1)l

16

]
, (4.52)

k, l = 0, 1, . . . , 7

xm,n = 1

4

7∑
k=0

7∑
l=0

εkεlzk,l cos

[
π(2m + 1)k

16

]
cos

[
π(2n + 1)l

16

]
, (4.53)

m, n = 0, 1, . . . , 7

The 2-D DCT given by Eq. (4.52) is identical to Eq. (4.43) for N = 8 except for a
scaling factor of 4.

4.4.2 Implementation of the Direct 2-D DCT/DST Computation

The 2-D DCT/DST universal computational structure has been implemented in C. It
can compute 2-D DCT or 2-D DST and their inverses for any square 2m×2m, m > 0
block size. The cosine coefficients for a given N = 2m are precomputed and stored
in tables. The tables are updated if the program calls for a new value of N . If
a larger block size is required for 2-D DCT/DST computation, then macros SIZE
and LOG2SIZE should be redefined in the program. In the implementation of the
2-D DCT/DST universal computational structure, the normalization is optional. All
computations are performed in double precision.

The transposition of the input data matrix required in Eq. (4.50) and its reordering
given by Eq. (4.49) can be realized simultaneously as follows:

x̃n,m = x2m,2n

x̃n,N−m−1 = x2m,2n+1

x̃N−n−1,m = x2m+1,2n (4.54)

x̃N−n−1,N−m−1 = x2m+1,2n+1, m, n = 0, 1, . . . ,
N

2
− 1 .

/*--*
* Module: The 2-D Fast Discrete Cosine/Sine *
* Transform (2-D DCT/DST Universal *
* Computational Structure) *
* *
* Algorithm: The Forward and Inverse 2-D DCT/DST *
* computation by vector-radix structured *
* approach for block sizes N x N, i.e., *
* square blocks. N is assumed to be an *
* integer powers of 2. *
--/

/* --- Prototypes to be included in calling program --*/
int fdcst2d (

double **x, /* input/output matrix of dimension NxN */
int m, /* m = log_2 (N) for N x N block size

e.g., length = 8 -> m = 3 */
int norm, /* norm = 0 normalization is disabled

norm != 0 normalization is enabled */
int flag); /* Forward or Inverse DCT/DST computation:

flag = 1 2-D DCT-II
flag = -1 2-D DCT-III
flag = 2 2-D DST-II
flag = -2 2-D DST-III

DECLARATION OF THE INPUT MATRIX: Let N = 8 --> then
m = 3. Input matrix 8x8 must be declared in calling
program as follows:

double block [8*8]; /declarations
double *x [8];
for (i = 0; i < 8; i++)

x [i] = block + i * 8; /pointers to rows
of the block

fdcst2d (&x,3,1, 1); / DCT-II computation
fdcst2d (&x,3,1,-1); /IDCT-II computation
fdcst2d (&x,3,1, 2); / DST-II computation
fdcst2d (&x,3,1,-2); /IDST-II computation

NOTE: Function returns into calling program following

value:
0 - successful processing
-1 - invalid dimension of input matrix
-2 - invalid transform type */

/* --------------------- Includes --------------------*/
#include <math.h>
/* ---------------------- Defines --------------------*/
#define SIZE 32 /* max dimension 32x32 */
#define LOG2SIZE 5 /* log_2 max dimension */
#define PI 3.141592653589793 /* pi */
#define SQRT2 0.707106781186547 /* sqr (1/2) */
#define DCT 1
#define IDCT -1
/* ----------------- Local Variables -----------------*/
static double ac [SIZE*SIZE]; /* working array */
static double *z [SIZE]; /* array of pointers */
static int ntab_cs = 0;
static double tc1 [SIZE-1];

/* tables of cos coefficients*/
static double tc2 [SIZE*SIZE/3];
static int tab1_len = 0;
static int tab2_len = 0;

/*---- Beginning of the Fast 2-D DCT/DST module ----- */
int fdcst2d (double **x, int m, int norm, int flag)
{

int i,j,k,n,n1,n2,r,s,t,u,f0,f1,f2,f3,ip,ic,half;
int b1,b2;
double arg,fi1,fi2,scale,scl,tmp,*ptr,*z1,*z2;
/* Verification of the input matrix dimension

(SIZE x SIZE) */
if (m < 0 || m > LOG2SIZE)

return (-1);
/* Verification of the transform type computation */
if (flag < -2 || flag == 0 || flag > 2)

return (-2);
/* Trivial transform if m = 0 */
if (m == 0)

return (0);
/* Initialize input matrix dimension and variables */
n = 1 << m;
n1 = n - 1;
n2 = n >> 1;
/* Initialize pointers on rows of the input matrix */
for (i = 0; i < n; i++)

z [i] = ac + i * n;
/* Compute tables of cosine coefficients for new

value of N */
if (ntab_cs != n)
{

b1 = b2 = tab1_len = tab2_len = 0;
scale = 1.0 / (double) (n << 1);
for (s = ip = 1; s <= m; s++, ip <<= 1)
{

ic = n >> s;
arg = (double) ip * PI * scale;
for (i = 0; i < ic; i++)
{

fi1 = (double) (4 * i + 1) * arg;
tc1 [b1+i] = cos (fi1);
tab1_len++;

}
for (i = u = 0; i < ic; i++, u = i * ic)

for (j = 0; j < ic; j++)
{
fi2 = (double) (4 * j + 1) * arg;
tc2 [b2+u+j] = tc1 [b1+i] * cos (fi2);
tab2_len++;

}
b1 += ic;
b2 += ic * ic;

}
ntab_cs = n;

}
/* Test type of 2-D DCT/DST computation */
if (flag < 0)

goto inv;
/*

===
THE 2-D FAST FORWARD DISCRETE COSINE/SINE TRANSFORM
===

*/

/* Reordering and transposition of input data matrix
--- */
for (i = 0; i < n2; i++)

for (j = 0; j < n2; j++)
{

z [j] [i] = x [2*i] [2*j];
z [n-j-1] [n-i-1] = x [2*i+1] [2*j+1];
if (flag == DCT)
{

z [n-j-1] [i] = x [2*i] [2*j+1];
z [j] [n-i-1] = x [2*i+1] [2*j];

}
else
{

z [n-j-1] [i] = -x [2*i] [2*j+1];
z [j] [n-i-1] = -x [2*i+1] [2*j];

}
}

/* Implementation of the 2-D butterfly structure
-- */

for (s = b1 = b2 = 0; s < m; s++)
{

half = n >> s;
ip = half >> 1;

/* Butterflies along rows of the data matrix */
for (i = 0, z1 = z [0]; i < n; i++, z1 = z [i])

for (j = 0; j < ip; j++)
for (k = j; k < n; k += half)
{

tmp = z1 [k] + z1 [k+ip];
z1 [k+ip] = z1 [k] - z1 [k+ip];
z1 [k] = tmp;

}
/* Butterflies between rows of the data matrix */

for (j = u = 0; j < ip; j++, u = j*ip)
for (k = j; k < n; k += half)
{

z1 = z [k];
z2 = z [k+ip];
for (i = 0; i < n; i++)
{

tmp = *z1 + *z2;
*z2++ = *z1 - *z2;
*z1++ = tmp;

}
/* Multiplications by cosine coefficients */

z1 = z [k];
z2 = z [k+ip];
for (r = 0; r < ip; r++)

for (t = r; t < n; t += half)
{

z1 [t+ip] *= tc1 [b1+r];
z2 [t] *= tc1 [b1+j];
z2 [t+ip] *= tc2 [b2+u+r];

}
}
b1 += ip;
b2 += ip * ip;

}

/* The 2-D bit reversal permutation
------------------------------- */

for (t = 0, z1 = z [0]; t < n; t++, z1 = z [t])
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = z1 [i];
z1 [i] = z1 [j];
z1 [j] = tmp;

}
}

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

ptr = z [i];
z [i] = z [j];
z [j] = ptr;

}
}
/* Implementation of the 2-D pipeline structure

--- */
if (m > 1)
{

/* Pipelines along rows of the data matrix */
for (i = 0; i < m - 1; i++)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
z1 = z [0];
for (t = 0; t < n; t++, z1 = z [t])

for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
z1 [ip] += z1 [ip] - z1 [ic];
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
z1 [ip] += z1 [ip] - z1 [ic];
k++;

}
}

/* Pipelines between rows of the data matrix */
for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z1++)

*z1 += *z1 - *z2++;
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z1++)

*z1 += *z1 - *z2++;
k++;

}
}

}
}

/*--
The normalization of the transformed data sequence.
If DCT-II/DST-II is required, then parameter
norm != 0. The block is not used for other discrete
sinusoidal transforms computation. Then norm = 0.
--*/

if (norm)
{

scale = 4.0 / ((double) n * (double) n);
for (i = 0, z [0] [0] *= SQRT2; i < n; i++)

for (j = 0; j < n; j++)
{

z [i] [j] *= scale;
if (i == 0 || j == 0)

z [i] [j] *= SQRT2;
}

}
/* Reverse rows and columns of the transformed data

matrix for the DST
-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n; j++)
if (flag == DCT)
{

x [j] [i] = z [i] [j];
x [n-1-j] [n-1-i] = z [n-1-i] [n-1-j];

}
else
{

x [j] [i] = z [n-1-i] [n-1-j];
x [n-1-j] [n-1-i] = z [i] [j];

}
return (0);

/*
==
THE 2-D FAST INVERSE DISCRETE COSINE/SINE TRANSFORM
==

*/
inv:

/* Reverse rows and columns of the transformed data
matrix for the IDST
-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n; j++)
if (flag == IDCT)
{

z [j] [i] = x [i] [j];
z [n-1-j] [n-1-i] = x [n-1-i] [n-1-j];

}
else
{

z [j] [i] = x [n-1-i] [n-1-j];
z [n-1-j] [n-1-i] = x [i] [j];

}
/* --

The normalization of the DC term. If DCT-III/DST-III
is required, then parameter norm != 0. The block is
not used for other discrete sinusoidal transforms
computation. Then norm = 0.
--*/

if (norm)
for (i = 0, z [0] [0] *= SQRT2; i < n; i++)

for (j = 0; j < n; j++)
if (i == 0 || j == 0)

z [i] [j] *= SQRT2;
/* Implementation of the 2-D pipeline structure

--- */
if (m > 1)
{
/* Pipelines between rows of the data matrix */

for (i = m - 2; i >= 0; i--)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = f2; j > 0; j--)
{

k = f3;
u = k * f1;
ip = f0 - j + u;
ic = f1 - j + u;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z2++)
{

*z2 -= *z1;
*z1 += *z1++;

}
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z2++)

{
*z2 -= *z1;
*z1 += *z1++;

}
}

}
/* Pipelines along rows of the data matrix */

z1 = z [0];
for (t = 0; t < n; t++, z1 = z [t])

for (j = f2; j > 0; j--)
{

k = f3;
u = k * f1;
ip = f0 - j + u;
ic = f1 - j + u;
z1 [ic] -= z1 [ip];
z1 [ip] += z1 [ip];
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
z1 [ic] -= z1 [ip];
z1 [ip] += z1 [ip];

}
}

}
}
/* The 2-D bit reversal permutation

------------------------------- */
for (t = 0, z1 = z [0]; t < n; t++, z1 = z [t])

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = z1 [i];
z1 [i] = z1 [j];
z1 [j] = tmp;

}
}

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

ptr = z [i];
z [i] = z [j];
z [j] = ptr;

}

}
/* Implementation of the 2-D Butterfly structure

-- */
b1 = tab1_len;
b2 = tab2_len;
for (s = 0; s < m; s++)
{

half = 1 << (s + 1);
ip = half >> 1;
b1 -= ip;
b2 -= ip * ip;

/* Multiplications by cosine coefficients */
for (j = u = 0; j < ip; j++, u = j*ip)

for (k = j; k < n; k += half)
{

z1 = z [k];
z2 = z [k+ip];
for (r = 0; r < ip; r++)

for (t = r; t < n; t += half)
{

z1 [t+ip] *= tc1 [b1+r];
z2 [t] *= tc1 [b1+j];
z2 [t+ip] *= tc2 [b2+u+r];

}
/* Butterflies between rows of the data matrix */

z1 = z [k];
z2 = z [k+ip];
for (i = 0; i < n; i++)
{

tmp = *z2;
*z2++ = *z1 - tmp;
*z1++ = *z1 + tmp;

}
}

/* Butterflies along rows of the data matrix */
z1 = z [0];
for (i = 0; i < n; i++, z1 = z [i])

for (j = 0; j < ip; j++)
for (k = j; k < n; k += half)
{

tmp = z1 [k+ip];
z1 [k+ip] = z1 [k] - tmp;
z1 [k] = z1 [k] + tmp;

}
}

/* Reordering and transposition of DCT/DST output
data matrix

-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n2; j++)
{

x [2*i] [2*j] = z [j] [i];
x [2*i+1] [2*j+1] = z [n-j-1] [n-i-1];

if (flag == IDCT)
{
x [2*i] [2*j+1] = z [n-j-1] [i];
x [2*i+1] [2*j] = z [j] [n-i-1];
}
else

{
x [2*i] [2*j+1] = -z [n-j-1] [i];
x [2*i+1] [2*j] = -z [j] [n-i-1];
}

}
return (0);

}
/*-------- End of Fast 2-D DCT/DST module ----------- */

4.5 DCT and Data Compression

The amount of information in its many forms (images, text, speech, video, audio,
etc.) that is handled is increasing at a phenomenal rate. As a result, the ability to
access, store, and transmit information in an efficient manner has become crucial,
particularly in the case of digital images. Although representing images in digital
form allows visual information to be easily manipulated in useful and novel ways,
there is one potential problem with digital images — the large number of bits required
to represent even a single digital image directly. In order to utilize digital images
effectively, specific techniques are needed to reduce the number of bits required for
their representation. Fortunately, digital images in their canonical representation
generally contain a significant amount of redundancy (spatial, spectral, or temporal
redundancy). Image data compression (the art/science of efficient coding of the
picture data) aims at taking advantage of this redundancy to reduce the number of bits
required to represent an image. This can result in significantly reducing the memory
needed for image storage and channel capacity for image transmission [36].

The need for image compression becomes apparent when we compute the number
of bits per image resulting from typical sampling and quantization schemes. We
consider the amount of storage for the “Lena” digital image shown in Fig. 4.7. The
monochrome (grayscale) version of this image with a resolution 512 × 512 × 8
bits/pixel requires a total of 2,097,152 bits, or equivalently 262,144 bytes. The color
version of the same image in RGB format (red, green, and blue color bands) with a
resolution of 8 bits/color requires a total of 6,291,456 bits, or 786,432 bytes. Such
an image should be compressed for efficient storage or transmission.

Image compression methods can be classified into two fundamental groups: loss-
less and lossy [34, 36, 37]. In lossless compression, the reconstructed image after
compression is identical to the original image. However, only a modest amount of
compression is possible; typically 1:2 or 1:3 compression ratios are achieved. In lossy
compression, the reconstructed image contains degradations relative to the original.
Generally, more compression is obtained at the expense of more distortion. As a re-
sult, much higher compression can be achieved by lossy techniques than by lossless
techniques. The most used lossy compression technique is transform coding [32]. A
general transform coding scheme involves subdividing an N ×N image into smaller
nonoverlapping n× n sub-image blocks and performing a unitary transform on each

FIGURE 4.7
Monochrome 512 × 512 × 8 bits/pixel “Lena” digital image. Reproduced by
Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

block. The transform operation itself does not achieve any compression. It aims at
decorrelating the original data and compacting a large fraction of the signal energy
into a relatively small set of transform coefficients (energy packing property). In this
way, many coefficients can be discarded after quantization and prior to encoding.

Most practical transform coding systems are based on DCT of types II and III,
which provides good compromise between energy packing ability and computational
complexity. The energy packing property of DCT is superior to that of any other
unitary transform. Transforms that redistribute or pack the most information into the
fewest coefficients provide the best sub-image approximations and, consequently, the
smallest reconstruction errors. DCT basis images are fixed (image independent) as
opposed to the optimal KLT which is data dependent. Moreover, when compared
to the other image independent transforms, DCT has the advantages of having been
implemented in a single integrated circuit [30] and minimizing the blocklike appear-
ance (blocking artifact) that results when the boundaries between sub-image blocks
become visible. This last property is particularly important in comparison with the
other sinusoidal transforms [34]. Important properties of DCT have proved to be of
practical value, and, therefore, it has become the basic processing unit for data com-
pression in the international image/video coding standards [30, 31, 39, 40, 41, 42].

4.5.1 DCT-Based Image Compression/Decompression

For the purposes of using DCT in real data compression applications, we have se-
lected the JPEG DCT-based image compression and decompression technique. There
are several reasons for this selection. JPEG is the first established/emerging inter-
national digital compression standard for continuous-tone (multilevel) still images,
both monochrome and color [31, 43, 44]. It has been recently recognized as the

most popular, simple, and efficient transform coding technique that yields a satis-
factory solution to most of the practical image coding problems. Furthermore, the
JPEG standard played a considerable role in the development of other international
video coding standards. From the methodological viewpoint, the JPEG standard en-
ables one to simply illustrate the compression capability of DCT. Finally, the JPEG
DCT-based coding approach is the basis of hybrid intraframe/interframe MC (motion
compensated)/DPCM (differential pulse code modulation)/DCT coding scheme used
in the international video coding standards: H.261 video coder, MPEG-1 audiovisual
coder for digital storage media, MPEG-2/H.262 digital video coder, MPEG-4 and
H.263 coders for very low-bit rate video coding, digital HDTV standards, and the
CMTT.723 digital broadcasting standard for transmission of television signals [31].

The JPEG standard specifies the basic encoding and decoding operations by means
of specific functions and defines the syntax and semantics of encoded bit stream [31,
43, 44]. Detailed requirements such as file format, spatial resolution, and color space
are not defined by the standard. It is only necessary that the encoding processes
comply with the functions defined by the standard and they produce the valid bit
stream. Thus, there is freedom and flexibility in the actual design and development
of the JPEG compression and decompression system.

The JPEG standard has four main processing modes: sequential, progressive, loss-
less, and hierarchical. The sequential mode provides the variability of coding oper-
ations from a baseline system to an extended one. For simplicity, we consider the
JPEG sequential baseline system. The extended system allows the baseline system to
satisfy a broader range of applications. Input and output data precision in the baseline
system is limited to 8 bits. RGB color images prior to compression are converted
into a monochrome compatible luminance component and two chrominance compo-
nents. The luminance component contains the shades of gray and is a monochrome
image. Two chrominance components together contain the color information. En-
coding/decoding operations in the JPEG baseline system are performed for luminance
and chrominance components.

All compression systems consist of two distinct structural blocks: an encoder and
a decoder. An input image is fed into the encoder, which creates encoded com-
pressed representation of the input data. After transmission over the channel, the
encoded representation is fed into the decoder, where the reconstructed output image
is generated.

The block diagram of the encoder and decoder for JPEG DCT-based image com-
pression and decompression is shown in Fig. 4.8. For processing the luminance
component of an image the algorithm generally consists of the following steps [31,
34, 36, 43, 47]:

• The source image is partitioned into nonoverlapping n× n pixel blocks which
are processed sequentially in a raster scan fashion, left to right and top to bottom.
The JPEG standard uses the fixed block size 8 × 8. Each block is first level
shifted and transformed using DCT. In principle, DCT introduces no loss to
the source samples, it merely transforms them to a domain in which they can
be more efficiently encoded.

FIGURE 4.8
Block diagram of encoder and decoder for JPEG DCT-based image compression
and decompression.

• The 2-D DCT array of coefficients is uniformly quantized. The top left coeffi-
cient in the 2-D DCT array with zero frequency in both dimensions is referred
to as the DC coefficient, and it is proportional to the average brightness of the
spatial block. The remaining coefficients are called the AC coefficients. Prior to
quantization, transform coefficients can be weighted according to their visual
importance using HVS (Human Visual System) sensitivity models [47, 48].

• The quantization of the AC coefficients produces many zeros, especially at
the higher frequencies. To take advantage of these zeros, the 2-D DCT array
of quantized coefficients is reordered using a zigzag pattern [see Fig. 4.9(a)]
to form a 1-D sequence. This rearranges the coefficients in approximately
decreasing order of their average energy (as well as in order of increasing
spatial frequency) with the aim of creating large runs of zero values. The
quantization is a key operation because the combination of the quantization
and runlength coding contributes to most of the compression.

• The final processing step at the encoder is entropy coding. This step achieves
additional compression losslessly by encoding the quantized coefficients more
compactly based on their statistical characteristics. The quantized DCT co-
efficients are variable-length coded using two global different predetermined
Huffman coding tables, one for DC and one for AC coefficients.

At the decoder, after the encoded bit stream is Huffman decoded and the 2-D array
of quantized DCT coefficients is recovered and dezigzag reordered, each coefficient
is inverse quantized. The resulting array is transformed by inverse 2-D DCT and
inverse level shifted to yield an approximation of the original sub-image block. The
same quantization table and Huffman coding tables are used in both the encoder and
decoder.

Each chrominance component of a color image is processed and encoded indepen-
dently in the same way as the luminance component, except that it is downsampled
by a factor of two or four in both horizontal and vertical directions prior to DCT
operation. At the decoder, the reconstructed chrominance component is bilinearly
interpolated to the original size.

The following sections describe the JPEG DCT-based image compression and
decompression system. The description is restricted to one sub-image block only
because the same encoding and decoding operations are performed on each block.
Although required algorithms in the JPEG standard are based on fixed block size
(8 × 8), the system described in this chapter can use larger blocks. In fact, the 2-D
DCT/DST universal computational structure offers the flexibility of computing the
2-D DCT and its inverse for any 2m × 2m block size. The encoding and decoding op-
erations are described in detail followed by an implementation in C. Where necessary,
the input and output data samples are provided; they can be useful for verification of
the correctness of a given program module. Low-level routines — setting quantiza-
tion table, computation of Huffman coding/decoding tables, Huffman encoding and
Huffman decoding — are based on shareware generated by Independent JPEG group
(Thomas G. Lane) [49]. Program modules together provide the simple, efficient, and

low-cost image compression and decompression system which the reader can use in
his or her own data compression applications.

4.5.2 Data Structures for Compression/Decompression

One of the most important aspects of image/video coding standards is to define
data structures so that a decoder can decode the received bit stream efficiently and
without any ambiguity. This section shows header files that contain definitions and
declarations of data structures for an image compression and decompression system.

The header file JPEGDEF.H contains macro definitions and the definition of data
structure for the Huffman coding/decoding table.

/*
JPEGDEF.H

*/
#define SIZE 16 /* max dimension of the block */
#define I_LEVEL 256 /* the number of gray levels */
#define DCT 1 /* 2-D DCT computation */
#define DISABLE_NORM 0 /* disable DCT normalization */
#define SQRT2 0.707106781186547 /* sqrt (2) */
#define LOOKAHEAD 8 /* # of bits of lookahead */
#define MIN_GET_BITS 15 /* minimum allowable value */
/* --- */
/* Huffman coding and decoding table */
/* --*/
struct huff_table {
/* bits [k] = # of symbols with codes of length k bits,

bits [0] is unused */
unsigned char bits [17];
/* Symbols in order of incremental code length */
unsigned char hufval [256];
/* ENCODING TABLES */
unsigned int hufcode [256]; /* code for each symbol */
char hufsize [256]; /* and its length */
/* DECODING TABLES */
/* Basic tables: element [0] of each array is unused */
long int mincode [17]; /* smallest code of length k */
long int maxcode [18];

/* and largest code (-1 if none) */
/* Index of 1st symbol of length k */
int valptr [17];

/* Lookahead tables: indexed by the next
LOOKAHEAD bits of the input data stream. If the next
Huffman code is no more than LOOKAHEAD bits long, it
can be obtained its length and the corresponding
symbol directly from these tables */

int look_nbits [1<<LOOKAHEAD];
/* # bits,or 0 if too long */

unsigned int look_sym [1<<LOOKAHEAD];
/* symbol,or unused */

};

The header file JPEGDATA.H contains declarations of variables and arrays for the
image compression and decompression system. Declarations for JPEG luminance
sample quantization table, zigzag, and dezigzag scanning patterns are shown for 8×8

block size only. For larger block sizes, the user must specify the corresponding arrays
for a given block size. The JPEG DCT-based image compression and decompression
system has two optional parameters: the block size and a quality factor for scaling
the quantization table.

/*
JPEGDATA.H

*/
unsigned char out_buffer [256];

/* output bit stream buffer */
int bytes_in_buf;

/* and # of bytes in it */
int encode_bits;

/* # of bits for compressed block */
int exp_val; /* log2 value of block size */
int blk_size; /* block size */
int center_samp; /* center sample value */
int tdc_last; /* the last DC value for encoder */
int rdc_last; /* the last DC value for decoder */
int q_factor; /* quality factor */
long int total_bits;

/* total # of bits for original data */
long int total_bytes;

/* total # of bytes for original data */
long int cmprs_bits;

/* total # of bits for compressed data */
long int cmprs_bytes;

/* total # of bytes for compressed data */
double dct_block [SIZE*SIZE];

/* 2-D DCT block of coefficients */
double *dctptr [SIZE]; /* pointers to its rows */
double scaling; /* scale factor for DCT normalization */
double bit_rate; /* the # of bits per pixel (bpp) */
double cmprs_ratio; /* compression ratio */
/* # of symbols with codes of length k bits

(lumbits [k]) and symbols in order of incremental
code length (lumval [k]) for DC luminance
values - valid for 8-bit data precision */

unsigned char dc_lumbits [17] =
{0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};

unsigned int dc_lumval [12]
= {0,1,2,3,4,5,6,7,8,9,10,11};

/* # of symbols with codes of length k bits
(lumbits [k]) and symbols in order of incremental
code length (lumval [k]) for AC luminance
values - valid for 8-bit data precision */

unsigned char ac_lumbits [17] =
{0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d};

unsigned char ac_lumval [162] =
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,

0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,

0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };

struct huff_table dc_table; /* Huffman DC code table */
struct huff_table ac_table; /* Huffman AC code table */
/* luminance sample quantization table for 8 x 8 DCT */
int qbase8_tbl [8*8] =

{ 16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 59, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99 };

/* zigzag scanning pattern for an 8 x 8 DCT transform */
int zag8 [8*8] =

{ 0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63 };

/* dezigzag scanning pattern for an
8 x 8 DCT transform */

int dezag8 [8*8] =
{ 0, 1, 8, 16, 9, 2, 3, 10,

17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63 };

4.5.3 Setting the Quantization Table

JPEG gives simple and easy quantization methods and suggests informative tables
for DC and AC coefficients [31]. One such informative quantization table for the
luminance component is shown in the header file JPEGDATA.H. Although default
quantization tables are provided by the JPEG standard for both luminance and chromi-
nance processing, the user is free to design custom tables which can be adapted to the
characteristics of the image to be compressed.

The quantization of the DCT coefficients is based on properties of the HVS which
tolerates more quantization errors at higher frequencies than at lower frequencies. It
means that the transform coefficients have different visual sensitivities; visual per-

ception is less sensitive to the high frequency coefficients and more sensitive to low
frequency coefficients. Thus, the weighting factors are selected to produce coarser
quantization of high frequency coefficients and finer quantization of the low frequency
coefficients.

The quantization table can be scaled to provide a variety of compression levels.
JPEG specifies the following possible bit rates and quality rates [31]:

0.25 ∼ 0.50 bpp: moderate to good quality
0.50 ∼ 0.75 bpp: good to very good quality
0.75 ∼ 1.50 bpp: excellent images
1.50 ∼ 2.00 bpp: indistinguishable images (visually lossless)

The quantization table in the JPEG DCT-based image compression and decompres-
sion system is scaled according to a specified quality factor. The quality factor takes
values in the range 0–100 (given as percentage) with the scaling value of 50 corre-
sponding to the basic quantization table. The value of 100 will cause elements of
the quantization table to be equal to 1 for an 8 × 8 block size and to equal to 2 for a
16 × 16 block size. The elements of the quantization table are in the range from 1
to 255.

The following program sets the user quantization table according to the specified
quality factor.

/*--
SET USER QUANTIZATION TABLE ACCORDING TO DEFINED
’QUALITY’
Set a quantization table equal to the basic table times
a scale factor (given as a percentage). The basic table
is used as-is (scaling 100) for a quality of 50. Values
of the basic table produce "good" quality, and when
divided by 2, "very good" quality. These two settings
are selected by quality = 50 and quality = 75,
respectively. Qualities 50 ... 100 are converted to
scaling percentage 200 - 2*Q. Note that at Q = 100 the
scaling is 0, which will cause qnt_tbl to make all the
table entries 1 (no quantization loss).
--
*/
#include "jpegdef.h"
void set_qtable (

int *qnt_tbl, /* user quantization table */
int blksize, /* block size */
int *qbase_tbl, /* basic quantization table */
int quality) /* quality factor */

{
int i;
long int temp;

/* Safety limit on quality factor (convert 0 to 1 to
avoid zero divide) */
if (quality <= 0)

quality = 1;
else

if (quality > 100)

quality = 100;
/* Convert a user-specified quality rating 0-100 to a

percentage scaling factor. Qualities 1 ... 50 are
converted to scaling percentage 5000/Q */
if (quality < 50)

quality = 5000 / quality;
else

quality = 200 - quality * 2;
/* Set quantization table equal to the qbasic_tbl

times a scale factor. Limit the values to the
valid range */
for (i = 0; i < blksize * blksize; i++)
{
temp = ((long int) qbase_tbl [i]

* quality + 50L) / 100L;
if (temp <= 0L)
{

temp = 1L;
if (blksize == SIZE)

temp = 2L;
}

if (temp > 255L)
temp = 255L;

qnt_tbl [i] = (int) temp;
}

}

4.5.4 Standard Huffman Coding/Decoding Tables

The JPEG baseline system uses only the Huffman coding method for encoding the
quantized DCT coefficients, and it suggests standard Huffman coding tables for the
luminance and chrominance DCT coefficients, two DC and two AC Huffman coding
tables [31].

Based on data structures defined in the header file JPEGDATA.H for DC and AC
luminance values (structures specifying the number of symbols with codes of length
k bits and code symbols), the following program generates standard Huffman cod-
ing/decoding tables. The program must be called separately for the DC and AC coding
tables (see Section 4.5.7). These DC and AC Huffman coding/decoding tables are
valid for 8-bit data precision and can be found in Rao and Hwang [31].

/*---
COMPUTE HUFFMAN CODING AND DECODING TABLES---

*/
#include <string.h>
#include "jpegdef.h"
void fix_huftbl (

struct huff_table *htbl) /* Huffman code table */
{

int p,i,j,k,lastp,size,lookbits;
char huffsize [257];
unsigned int huffcode [257],code;

/* Make table of Huffman code length for each symbol
in code-length order */
for (k = 1, p = 0; k <= 16; k++)

for (i = 1; i <= (int) htbl->bits [k]; i++)
huffsize [p++] = (char) k;

huffsize [p] = 0;
lastp = p;

/* Generate the codes themselves in code-length order */
code = p = 0;
size = huffsize [0];
while (huffsize [p])
{

while (((int) huffsize [p]) == size)
{

huffcode [p++] = code;
code++;

}
code <<= 1;
size++;

}
/* Generate encoding tables. These are code and size

indexed by symbol value. Set any codeless symbols
to have code length 0. This allows emit_bits () to
detect any attempt to emit such symbols */
memset (htbl->hufsize,0,sizeof (htbl->hufsize));
for (p = 0; p < lastp; p++)
{

htbl->hufcode [htbl->hufval [p]] = huffcode [p];
htbl->hufsize [htbl->hufval [p]] = huffsize [p];

}
/* Generate decoding tables for bit-sequential

decoding */
for (k = 1, p = 0; k <= 16; k++)

if (htbl->bits [k])
{
htbl->valptr [k] = p;
htbl->mincode [k] = huffcode [p]; /* min code */
p += htbl->bits [k];
htbl->maxcode [k] = huffcode [p-1];/* max code */
}
else
htbl->maxcode [k] = -1; /* -1 if no codes */

/* Ensures that huff_decode () terminates */
htbl->maxcode [17] = 0xFFFFFL;

/* Compute lookahead tables to speed up decoding.
First set all the table entries to 0, indicating
"too long"; then iterate through the Huffman codes
that are short enough and fill in all the entries
that correspond to bit sequences starting with that
code; k = current code’s length, p = its index in
hufcode [] & hufval []. Generate left-justified code
followed by all possible bit sequences */

memset (htbl->look_nbits,0,sizeof (htbl->look_nbits));
for (k = 1, p = 0; k <= LOOKAHEAD; k++)

for (i = 1; i <= (int) htbl->bits [k]; i++, p++)
{

lookbits = huffcode [p] << (LOOKAHEAD - k);
for (j = 1 << (LOOKAHEAD - k); j > 0; j--)
{
htbl->look_nbits [lookbits] = k;
htbl->look_sym [lookbits] = htbl->hufval [p];

lookbits++;
}

}
}

4.5.5 Compression of One Sub-Image Block

Having defined and prepared all required data structures, we can concentrate on
the image compression process. For simplicity, we consider the compression of one
sub-image block because the same operations are performed for each extracted block
from the source image. For processing the luminance component of the image, the
following steps are performed at the encoder for each block.

1. The data in the block is first level shifted by subtracting the quantity 2p−1, where
2p is the maximum number of gray levels and p is the precision parameter of
the image intensity in bits. In the JPEG baseline system, p = 8 and the level
shift is 128.

2. The level-shifted block is transformed by the forward 2-D DCT.

3. The 2-D DCT array of coefficients is uniformly quantized by rounding to the
nearest integer. Specifically, the quantized DCT coefficients, C̄uv , are defined
by the following equation:

C̄uv = nearest integer

(
Cuv

Quv

)
, (4.55)

where Cuv is the DCT coefficient and Quv is the corresponding element in the
quantization table.

4. The 2-D array of quantized DCT coefficients is scanned and formatted into a
1-D sequence using the zigzag pattern shown in Fig. 4.9(a). The DC coefficient
is sensitive to spatial frequency response of the HVS and is treated separately
from the remaining AC coefficients. Prior to encoding, the DC coefficient is
differenced by the following first-order prediction:

DIFF = DCi − DCi−1 , (4.56)

where DCi and DCi−1 are DC coefficients in the current and previous blocks,
respectively. The initial starting DC value at the beginning of the image is set
to zero.

We note that in international image/video coding standards two scan methods of
quantized DCT coefficients are used: the zigzag scan [Fig. 4.9(a)] which is typi-
cal for progressive (noninterlaced) mode processing (in JPEG, MPEG-1, and H.261
standards) and alternate scan [Fig. 4.9(b)] which is more efficient for interlaced video
format (adopted in MPEG-2 and HDTV standards). The structure of an alternate scan
seems like a vertical scan since the correlation along the horizontal direction is higher
than along the vertical direction [31].

DC coefficient DC coefficient

FIGURE 4.9
Scanning patterns of quantized DCT coefficients: (a) zigzag scan; (b) alternate
scan.

The following program compresses one sub-image block according to steps de-
scribed previously.

/*---
COMPRESSION OF ONE SUB-IMAGE BLOCK

Level shifting, forward 2-D DCT, quantization, zigzag
reordering and Huffman encoding the quantized
coefficients.---
*/
#include "jpegdef.h"
extern int exp_val; /* log2 value of block size*/
extern int center_samp; /* center sample value */
extern double scaling;/* scaling for DCT normalization*/
extern int tdc_last;/*the last DC value for encoder*/
extern int encode_bits;

/* # of bits for compressed block */
void cmprs_blk (

int *qnt_blk,
/* input/quantized data block */

int blksize,
/* block size */

int *qnt_tbl,
/* user quantization table */

int *zigzag, /* zigzag pattern */
double **dctb, /* 2-D DCT block */
struct huff_table *dctbl,/* DC Huffman code table */
struct huff_table *actbl)/* AC Huffman code table*/

{
int i,j,k,temp,*q_ptr;

double coef,*dctptr;
/* Level shift of samples in the sub-image block */

for (i = 0, q_ptr = qnt_blk; i < blksize; i++)
for (j = 0, dctptr = dctb [i]; j < blksize; j++)

*dctptr++ = (double) (*q_ptr++ - center_samp);
/* Perform forward 2-D DCT computation and

normalization of transform coefficients */
fdcst2d (dctb,exp_val,DISABLE_NORM,DCT);
for (i = 0, dctb [0] [0] *= SQRT2; i < blksize; i++)

for (j = 0; j < blksize; j++)
{

dctb [i] [j] *= scaling;
if ((i == 0) || (j == 0))

dctb [i] [j] *= SQRT2;
}

/* Quantization of the transform DCT coefficients
and zigzag reordering */
for (i = k = 0; i < blksize; i++)

for (j = 0, dctptr = dctb [i]; j < blksize; j++)
if ((coef = *dctptr++ / *qnt_tbl++) > 0.0)

qnt_blk [zigzag [k++]] = (int) (coef + 0.5);
else
qnt_blk [zigzag [k++]] = (int) (coef - 0.5);

/* Huffman encoding the quantized coefficients. The DC
coefficient is converted to a difference value */
temp = qnt_blk [0];
qnt_blk [0] -= tdc_last;
tdc_last = temp;
encode_bits = encode_blk(qnt_blk, blksize,

dctbl,actbl);
}

As an example, the following 8 × 8 data block is selected from the “Lena” digital
image [31]:

79 75 79 82 82 86 94 94
76 78 76 82 83 86 85 94
72 75 67 78 80 78 74 82
74 76 75 75 86 80 81 79
73 70 75 67 78 78 79 85
69 63 68 69 75 78 82 80
76 76 71 71 67 79 80 83
72 77 78 69 75 75 78 78

After level shifting, this block transformed by the forward 2-D 8 × 8 DCT is given
by

-404.375 -29.971 8.623 1.909 1.625 -3.936 0.893 1.516
23.226 -7.184 -4.327 -0.438 7.346 0.010 -2.266 -3.186
11.798 -0.278 5.197 -4.772 -3.572 4.160 -0.261 -3.507
2.299 -10.742 5.495 0.791 -1.029 7.603 3.791 2.820
6.375 2.511 -1.549 -1.074 -3.625 -0.797 0.506 8.723
0.739 2.612 0.717 2.530 -0.926 3.206 -2.945 -2.792

-9.081 -1.660 -4.511 1.743 2.156 1.549 -1.697 2.055
-3.626 2.241 5.355 -1.960 0.899 -1.370 1.828 -3.314

By applying the basic luminance quantization table (quality factor is equal to 50),
the 2-D array of quantized coefficients is

-25 -3 1 0 0 0 0 0
2 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Assuming that the quantized DC coefficient of the previous block is 34, the DC
differencing and the reordering 2-D array of quantized coefficients into a 1-D sequence
based on zigzag scan result in

-59 -3 2 1 -1 1 0 0 0 0 0 -1 EOB

The 1-D sequence of quantized DCT coefficients is prepared for Huffman encoding.
The encoder employs one DC and one AC Huffman table lookups for luminance DCT
coefficients. All codes consist of a set of Huffman codes with a maximum length of
16 bits followed by appended additional bits for representing the exact value of the
coefficient.

Coding the DC and AC Coefficients

The DIFF values as defined by Eq. (4.56) are classified into 12 categories, each
category written by two’s complement expression. A Huffman DC coding/decoding
table is generated for each category. The difference values in category k are in the
range < −2k + 1, 2k − 1 >, where 0 ≤ k ≤ 11. Thus, k denotes the number of
bits needed for the magnitude of the coefficient. In the case of k = 0 (DIFF = 0),
the current DC coefficient is the same as the previous DC coefficient, and additional
bits are not required. For the other categories, extra bits are needed to express the
exact value in the category, consisting of the sign and magnitude of the DIFF value.
When DIFF is positive, the sign bit is 1 and k low-order bits of DIFF are appended
to the Huffman code. When DIFF is negative, the sign bit is 0 and k low-order
bits of (DIFF-1) are appended to the Huffman code. A (DIFF-1) operation implies
one’s complement representation to avoid all 1 bits of two’s complement operation.
This procedure for appending the additional bits is also applied to encoding the AC
coefficients.

To encode the AC coefficients, each nonzero coefficient is first described by a
composite 8-bit value of the form “RRRRSSSS” in binary notation. The Huffman
AC coding/decoding table is generated for each composite value. The four least
significant bits, “SSSS,” define a category for the coefficient magnitude. The values

in category k are in the range < −2k + 1, 2k − 1 >, where 1 ≤ k ≤ 10 resulting
in 10 categories. The four most significant bits in the composite value, “RRRR,”
give the position of the current coefficient relative to the previous nonzero coefficient,
i.e., the runlength of zero coefficients between successive nonzero coefficients. The
runlenghts specified by “RRRR” can range from 0 to 15, and a separate symbol
“11110000” (11-bits ZRL code = 11111111001) is defined to represent a runlength
of 16 zero coefficients. If the runlength is greater than 16, it is coded by using
multiple symbols. In addition, if all remaining coefficients in the block are zero,
a special symbol “00000000” is used to code the end of block (4-bits EOB code =
1010).

By the following program, the 1-D sequence of quantized coefficients is Huffman
encoded. The result is stored in the output bit stream buffer.

/*---
HUFFMAN ENTROPY ENCODING ROUTINES---

*/
#include "jpegdef.h"
extern unsigned char out_buffer [];

/* bit stream buffer */
extern int bytes_in_buf;

/* # of bytes in it */
static long int hufput_buf = 0L;

/* bit accumulator buffer */
static int hufput_bits = 0;

/* # of bits in buffer */
static void emit_bits (unsigned int, int);
/*---

ENCODE A SINGLE BLOCK OF COEFFICIENTS
It is assumed that DC coefficient in a block was
converted to a difference value. Function returns the
total number of bits for encoded block of
coefficients.---

*/
int encode_blk (
int *block, /* quantized data block */
int blksize, /* block size */
struct huff_table *dctbl, /* DC Huffman code table */
struct huff_table *actbl) /* AC Huffman code table */
{

int i,k,nbits,run,temp,temp2,num_bits = 0;
/*
===

ENCODE THE DC COEFFICIENT===
*/

if ((temp = temp2 = block [0]) < 0)
{

temp = -temp; /* abs value of input */
temp2--;

/* negative value is bitwise complement */
}

/* Find the number of bits for magnitude of the
coefficient */
nbits = 0;
while (temp)

{
nbits++;
temp >>= 1;

}
/* Emit the Huffman coded symbol for the number

of bits */
emit_bits (dctbl->hufcode [nbits],

dctbl->hufsize [nbits]);
num_bits += dctbl->hufsize [nbits];

/* Emit the number of bits of the coefficient value
(positive value) or complement of its magnitude
(negative value). Reject if nbits = 0 */
if (nbits)
{

emit_bits ((unsigned int) temp2,nbits);
num_bits += nbits;

}
/*

===
ENCODE THE AC COEFFICIENTS===

*/
for (k = 1, run = 0; k < blksize * blksize; k++)
{

if ((temp = block [k]) == 0)
run++;

else
{

/* If run length > 15 then emit special run-length
codes (0xF0) */
while (run > 15)

{
emit_bits (actbl->hufcode [0xF0],

actbl->hufsize [0xF0]);
num_bits += actbl->hufsize [0xF0];

run -= 16;
}
if ((temp2 = temp) < 0)

{
temp = -temp;
temp2--;

}
/* Find the number of bits needed for the magnitude of

the coefficient. The number of bits must be at least
1 bit */

nbits = 1;
while (temp >>= 1)

nbits++;
/* Emit the Huffman symbol for

(run length / number of bits) */
i = (run << 4) + nbits;
emit_bits (actbl->hufcode [i],

actbl->hufsize [i]);
num_bits += actbl->hufsize [i];

/* Emit the number of bits of the coefficient value
(positive value) or complement of its magnitude
(negative value) */

emit_bits ((unsigned int) temp2,nbits);
num_bits += nbits;
run = 0;

}

}
/* If the last coefficients were zero, emit EOB code */

if (run > 0)
{

emit_bits (actbl->hufcode [0],
actbl->hufsize [0]);

num_bits += actbl->hufsize [0];
}

/* Fill any partial byte with ones and reset
bit-buffer */
emit_bits (0x7F,7);
hufput_buf = 0L;
hufput_bits = 0;
return (num_bits);

}
/*--

OUTPUT HUFFMAN COMPRESSED COEFFICIENTS
Only the right 24 bits of hufput_buf are used.
The valid bits are left justified. At most 16 bits
can be passed to emit_bits () in one call and is
never retained more than 7 bits in accumulator buffer
between calls.--

*/
static void emit_bits (

unsigned int code,
int size)

{
long int put_buffer = code;
int put_bits = hufput_bits,byte;

/* Mask off excess bits in put_buffer */
put_buffer &= (((long int) 1) << size) - 1;
put_bits += size; /* new # of bits in buffer */
put_buffer <<= 24 - put_bits;/* align incoming bits */
put_buffer |= hufput_buf; /* merge with old buffer */

/* Load byte into output bit stream buffer and count
the number of bytes. Update bit accumulator buffer */
while (put_bits >= 8)
{
byte = (unsigned int) ((put_buffer >> 16) & 0xFF);
out_buffer [bytes_in_buf++] = (unsigned char) byte;

put_buffer <<= 8;
put_bits -= 8;

}
hufput_buf = put_buffer;
hufput_bits = put_bits;

}

For our example of 1-D sequence of the quantized DCT coefficients, the program
generates the following output-encoded bit stream (last unused bits are set to 1):

The number of bits 39 (5 bytes)
Bit stream buffer (hex) E1 11 88 3E 95
11100001 00010001 10001000 00111110 1001010/1

4.5.6 Decompression of One Sub-Image Block

At the decoder (see Fig. 4.8) for each sub-image block, the inverse operations of
the encoder are followed but in reverse order. The quantization table and Huffman
coding/decoding tables are the same at both the encoder and decoder.

Each of the Huffman codes is uniquely defined and the quantized DCT coefficients
are decoded by the Huffman decoding procedure. The DC coefficient is reconstructed
from the differential value. The initial starting DC value at the beginning is set to
zero. The reconstructed 1-D sequence of quantized coefficients is dezigzag reordered
to form a 2-D array. Each DCT coefficient, C̄uv , in the 2-D array is inverse quantized
by multiplying it by the corresponding element of the quantization table as follows:

Ĉuv = C̄uv . Quv . (4.57)

The resulting array is transformed by the inverse 2-D DCT. Inverse level shift restores
the samples in the original block to the unsigned 8-bit representation.

With the following program, the sub-image block is reconstructed from the encoded
bit stream.

/*--
DECOMPRESSION OF ONE SUB-IMAGE BLOCK

Huffman decoding, inverse quantization, inverse 2-D DCT,
and reconstruction of the original sub-image block.
--
*/
#include "jpegdef.h"
extern int exp_val; /* log2 value of block size */
extern int center_samp; /* center sample value */
extern double scaling;/* scaling for DCT normalization*/
extern int rdc_last;/* last DC value for decoder */
void decmprs_blk (

int *qnt_blk,
/* quantized/output data block */

int blksize, /* block size */
int *qnt_tbl,

/* user quantization table */
int *dezigzag, /* dezigzag pattern */
double **dctb, /* 2-D IDCT block */
struct huff_table *dctbl,/* DC Huffman code table */
struct huff_table *actbl)/* AC Huffman code table*/

{
int i,j,k,*q_ptr;
double pixel,*dctptr;

/* Huffman decoding the quantized coefficients and
dezigzag ordering. Convert DC difference to actual
value and update the last DC value */
decode_blk (qnt_blk,blksize,dezigzag,dctbl,actbl);
qnt_blk [0] += rdc_last;
rdc_last = qnt_blk [0];

/* Inverse quantization of the coefficients */
for (i = k = 0; i < blksize; i++)

for (j = 0, dctptr = dctb [i]; j < blksize; j++)
*dctptr++ = (double) (qnt_blk [k++] * *qnt_tbl++);

/* Perform denormalization and inverse 2-D DCT

computation */
for (i = 0, dctb [0] [0] *= SQRT2; i < blksize; i++)

for (j = 0; j < blksize; j++)
{

dctb [i] [j] *= scaling;
if ((i == 0) || (j == 0))

dctb [i] [j] *= SQRT2;
}

fdcst2d (dctb,exp_val,DISABLE_NORM,-DCT);
/* Reconstruction of the original sub-image block */

for (i = 0, q_ptr = qnt_blk; i < blksize; i++)
{

dctptr = dctb [i];
for (j = 0; j < blksize; j++, q_ptr++)

if ((pixel = *dctptr++ + center_samp) > 0.0)
{

if ((*q_ptr = (int) (pixel + 0.5))
> I_LEVEL - 1)

*q_ptr = I_LEVEL - 1;
}
else

*q_ptr = 0;
}

}

For our example the inverse quantized block is

400 -33 10 0 0 0 0 0
24 -12 0 0 0 0 0 0
14 0 0 0 0 0 0 0
0 -17 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

This 2-D array transformed by the inverse 2-D 8 × 8 DCT is given by

-53.992 -53.111 -51.068 -47.587 -42.784 -37.390 -32.641 -29.846
-51.247 -51.084 -50.368 -48.621 -45.696 -42.036 -38.614 -36.537
-50.225 -50.684 -51.118 -50.873 -49.573 -47.415 -45.143 -43.689
-53.805 -54.156 -54.390 -53.884 -52.300 -49.881 -47.408 -45.846
-58.944 -58.765 -58.018 -56.232 -53.263 -49.563 -46.111 -44.018
-59.846 -59.558 -58.611 -56.564 -53.311 -49.350 -45.697 -43.496
-55.036 -55.370 -55.573 -55.027 -53.401 -50.941 -48.438 -46.859
-49.611 -50.664 -52.194 -53.382 -53.633 -52.908 -51.732 -50.872

and after inverse level shift the reconstructed sub-image block is (for easy comparison
the original sub-image block is also given)

74 75 77 80 85 91 95 98 79 75 79 82 82 86 94 94
77 77 78 79 82 86 89 91 76 78 76 82 83 86 85 94
78 77 77 77 78 81 83 84 72 75 67 78 80 78 74 82

74 74 74 74 76 78 81 82 74 76 75 75 86 80 81 79
69 69 70 72 75 78 82 84 73 70 75 67 78 78 79 85
68 68 69 71 75 79 82 85 69 63 68 69 75 78 82 80
73 73 72 73 75 77 80 81 76 76 71 71 67 79 80 83
78 77 76 75 74 75 76 77 72 77 78 69 75 75 78 78

The following program module contains routines for Huffman decoding the quantized
DCT coefficients from the encoded bit stream.

/*---
HUFFMAN ENTROPY DECODING ROUTINES---

*/
#include "jpegdef.h"
extern unsigned char out_buffer [];

/* bit stream buffer */
static unsigned char *out_buf; /* and pointer to it */
static long int get_buffer = 0L;

/* bit-extraction buffer */
static int bits_left = 0; /* # of unused bits */
static void fill_buf (int);
static int huff_decode (struct huff_table *);
static int slow_decode (struct huff_table *, int);
/*

+++
DECODE A SINGLE BLOCK OF COEFFICIENTS
Data block for the coefficients should be zeroed
before. Output coefficients are in dezigzagged
(natural) order.
+++

*/
void decode_blk (

int *block, /* decoded block */
int blksize, /* block size */
int *dezigzag, /* dezigzag pattern */
struct huff_table *dctbl, /* DC Huffman code table */
struct huff_table *actbl) /* AC Huffman code table */

{
int k,s,r;
out_buf = out_buffer;

/*
==

DECODE THE DC COEFFICIENT
Extract Huffman symbol from input bit stream and
get the number of bits of DC coefficient difference.
Extract bits of the DC coefficient difference and
extend sign.
===

*/
if (s = huff_decode (dctbl))
{

if (bits_left < s)
fill_buf (s);

bits_left -= s;
r = (int) ((get_buffer >> bits_left))

& ((1 << s) - 1);
s = (r < (1 << (s - 1))) ? r

+ ((-1 << s) + 1) : r;
}
block [0] = s;

/*
==

DECODE THE AC COEFFICIENTS
Extract Huffman symbol from input bit stream and
get value of (run length / number of bits).
==

*/
for (k = 1; k < blksize * blksize; k++)
{

s = huff_decode (actbl);
r = s >> 4;
if (s &= 15)
{

k += r;
/* Extract bits of AC coefficient magnitude and

extend sign */
if (bits_left < s)

fill_buf (s);
bits_left -= s;
r = (int) ((get_buffer >> bits_left))

& ((1 << s) - 1);
s = (r < (1 << (s - 1))) ? r

+ ((-1 << s) + 1) : r;
block [dezigzag [k]] = s;

}
/* The code EOB was detected - the last coefficients

are zeros */
else
{

if (r != 15)
break;

k += 15;
}

}
/* Reset bit-extraction buffer to empty */

get_buffer = 0L;
bits_left = 0;

}
/* ---

LOAD UP THE BIT BUFFER TO A DEPTH OF AT LEAST nbits
Source bytes are read into get_buffer and bits are
doled out as needed. If get_buffer already contains
enough bits, they are fetched in-line. When there
are not enough bits, fill_buf () is called.

*/
static void fill_buf (

int nbits)
{

int c;
/* Attempt to load at least MIN_GET_BITS into

get_buffer */
while (bits_left < MIN_GET_BITS)
{

/* There are enough bits still left in get_buffer */
if (nbits > 0 && bits_left >= nbits)

break;
/* Load byte from input bit stream buffer into

get_buffer */
c = *out_buf++;

get_buffer = (get_buffer << 8) | c;
bits_left += 8;

}
}
/*---
EXTRACT NEXT HUFFMAN-CODED SYMBOL FROM INPUT BIT STREAM
Lookahead table is used to process codes of up to
LOOKAHEAD bits without looping. Usually, more than 95%
of the Huffman codes will be 8 or fewer bits long. The
few overlength codes are handled with a loop.

*/
static int huff_decode (

struct huff_table *htbl)
{

int nb,look,result,b = LOOKAHEAD;
/* 1.The first if-test is coded to call fill_buf ()

only when necessary.
2.If the lookahead succeeds, is needed only

decrement bits_left to remove the proper number
of bits from get_buffer.

3.If the lookahead table contains no entry, the
next code must be more than LOOKAHEAD bits long */

if (bits_left >= LOOKAHEAD ||
(fill_buf (0),bits_left >= LOOKAHEAD))

{
nb = bits_left - b;
look = (int) ((get_buffer >> nb)) & ((1 << b) - 1);

if ((nb = htbl->look_nbits [look]) != 0)
{

bits_left -= nb;
result = htbl->look_sym [look];

}
else

result = slow_decode (htbl,LOOKAHEAD+1);
}
else

result = slow_decode (htbl,1);
return (result);

}
static int slow_decode (

struct huff_table *htbl,
int min_bits)

{
int k = min_bits,rs;
long int code;

/* huff_decode () has determined that the code is at
least min_bits long, so fetch that many bits in one
swoop */
if (bits_left < k)

fill_buf (k);
bits_left -= k;
code = (int) ((get_buffer >> bits_left))

& ((1 << k) - 1);
/* Collect the rest of the Huffman code one bit at

a time */
while (code > htbl->maxcode [k])
{

code <<= 1;

if (bits_left < 1)
fill_buf (1);

code |= (int) ((get_buffer >> (--bits_left))) & 1;
k++;

}
rs = htbl->valptr [k] + (int)

(code - htbl->mincode [k]);
return (htbl->hufval [rs]);

}

4.5.7 Image Compression/Decompression

This section shows a sample program for compression and decompression of an
image. It performs all described steps of the JPEG DCT-based coding technique
for image compression and decompression. One extracted sub-image block is first
compressed, immediately decompressed, and displayed on the screen. The displaying
routine is not shown. If any dimension of the processed image is not a multiple of
the block size, the remaining elements in the block are set to zeros. These additional
elements are removed during decompression. No file for the compressed image is
created.

/*---
IMAGE COMPRESSION AND DECOMPRESSION---

*/
#include <string.h>
#include "jpegdef.h"
extern unsigned char _huge *img_ptr [];

/* ptrs to image rows */
extern unsigned char dc_lumbits [17];
extern unsigned int dc_lumval [12];
extern unsigned char ac_lumbits [17];
extern unsigned int ac_lumval [162];
extern double dct_block [SIZE*SIZE];
extern double *dctptr [SIZE];
extern unsigned char out_buffer [];
extern int bytes_in_buf;
extern int encode_bits;
extern long int cmprs_bits;
extern int tdc_last;
extern int rdc_last;
extern struct huff_table dc_table;
extern struct huff_table ac_table;
static int q_blk [SIZE*SIZE];

/* input/quantized/output block */
static int q_tbl [SIZE*SIZE];

/* user quantization table */
void process_img (

int xsize, /* image xsize */
int ysize, /* image ysize */
int *qbase_tbl, /* basic quantization table */
int *zag, /* zigzag pattern */
int *dezag, /* dezigzag pattern */
int blksize, /* block size */

int quality) /* quality factor */
{

int i,j,k,l,m,n,*q_ptr;
int xp,yp,xpos,ypos,hblk,hrest,vblk;
struct huff_table *dctbl = &dc_table;
struct huff_table *actbl = &ac_table;

/* Set up quantization table according to user
specified ’quality’ factor */
set_qtable (q_tbl,blksize,qbase_tbl,quality);

/* Compute standard Huffman DC and AC code tables */
memcpy (&dctbl->bits ,dc_lumbits,sizeof (dc_lumbits));
memcpy (&dctbl->hufval,dc_lumval ,sizeof (dc_lumval));
memcpy (&actbl->bits ,ac_lumbits,sizeof (ac_lumbits));
memcpy (&actbl->hufval,ac_lumval ,sizeof (ac_lumval));
fix_huftbl (dctbl);
fix_huftbl (actbl);

/* Initialize variables for compression/decompression */
tdc_last = 0; /* the last DC value for encoder */
rdc_last = 0; /* the last DC value for decoder */
cmprs_bits = 0L;/* # of bits for compressed data */
bytes_in_buf = 0; /* # of bytes in output buffer */

/* Set the number of subblocks horizontally
and vertically */
hblk = xsize / blksize;
if ((hrest = xsize % blksize))

hblk++;
vblk = ysize / blksize;
if (ysize % blksize)

vblk++;
for (i = 0; i < blksize; i++)

dctptr [i] = dct_block + i * blksize;
/* Extract the 2-D blocks from source image, one block

at the time and do compression/decompression */
for (i = 0; i < vblk; i++)
{

ypos = i * blksize;
for (j = 0; j < hblk; j++)
{

xpos = j * blksize;
memset (q_blk,0,blksize * blksize

* sizeof (int));
q_ptr = &q_blk [0];
for (m = 0, yp = ypos; m < blksize;

m++, yp++)
if (yp < ysize)

for (n = 0, xp = xpos; n
< blksize; n++, xp++)

if (xp < xsize)
*q_ptr++ = (int)

*(img_ptr [yp] + xp);
else
{

q_ptr += (blksize - hrest);
break;

}
/* Compression of a single sub-image block */

cmprs_blk (q_blk,blksize,q_tbl,zag,
&dctptr [0],dctbl,actbl);

cmprs_bits += encode_bits;
/* Decompression of the single sub-image block */

memset (q_blk,0,blksize * blksize
* sizeof (int));

decmprs_blk (q_blk,blksize,q_tbl,dezag,
&dctptr

[0],dctbl,actbl);
/* Display reconstructed sub-image block */

display_block (xsize,ysize,xpos,ypos,hrest,q_blk);
/* Clear output bit stream buffer and byte counter */

while (bytes_in_buf > 0)
out_buffer [bytes_in_buf--] = 0;

}
}

}

4.5.8 Compression of Color Images

In many imaging applications, it is necessary to deal with color images. Although
the RGB representation of images is typical of color displays, it is not the best repre-
sentation from the viewpoint of compression. RGB images are converted into more
suitable YCBCR color format using the following equations [31]:

Y = 0.299 R + 0.587 G + 0.114 B

CB = −0.169 R − 0.331 G + 0.500 B = 0.564 (B − Y) (4.58)

CR = 0.500 R − 0.419 G − 0.081 B = 0.713 (R − Y) ,

where Y represents a monochrome compatible luminance component, and CB , CR

represent chrominance components containing color information. Most of
image/video coding standards adopt YCBCR color format as an input image sig-
nal [31]. This color conversion has the desirable property of packing most of the
signal energy into Y and significantly less energy into the chrominance components.
Furthermore, the HVS is much more sensitive to variations in the luminance com-
ponent. These properties suggest a compression scheme for color images. The
luminance component is encoded with high fidelity while larger errors are allowed in
the chrominance components.

We have described the JPEG DCT-based coding technique for the luminance com-
ponent. The chrominance components are similarly processed except for some minor
modifications. Each chrominance component is subsampled by a factor of 2 or 4 in
both the horizontal and vertical directions prior to compression. At the decoder, the
reconstructed chrominance components are bilinearly interpolated back to their orig-
inal size. Then, the image in YCBCR color format is transformed into RGB format
using the following equations:

R = Y + 1.402 CR

G = Y − 0.344 CB − 0.714 CR

B = Y + 1.772 CB

(4.59)

For compression and decompression of color images, the user needs the header file
JPEGCOLOR.H containing the definitions of data structures for computation of stan-

dard Huffman chrominance DC and AC coding and decoding tables and the definition
of the chrominance sample quantization table.

/*
JPEGCOLOR.H

*/
/* # of symbols with codes of length k bits (lumbits

[k]) and symbols in order of incremental code length
(lumval [k]) for DC chrominance values - valid
for 8-bit data precision */

unsigned char dc_chrombits [17] =
{0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};

unsigned char dc_chromval [12]
= {0,1,2,3,4,5,6,7,8,9,10,11};

/* # of symbols with codes of length k bits (lumbits
[k]) and symbols in order of incremental code length
(lumval [k]) for AC chrominance values - valid for
8-bit data precision */

unsigned char ac_chrombits [17] =
{0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77};

unsigned char ac_chromval [162] =
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,

0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };

struct huff_table dc_ctable; /* Huffman DC code table */
struct huff_table ac_ctable; /* Huffman AC code table */
/* chrominance sample quantization table for

an 8 x 8 DCT */
int qcbase8_tbl [8*8] =

{ 17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99 };

Assuming that each chrominance component was subsampled, the program from
Section 4.5.7 can be used for compression and decompression. It is necessary only to
substitute proper identifiers for the quantization table and Huffman coding/decoding
tables.

4.5.9 Results of Image Compression

The performance of a compression algorithm can be evaluated in a number of
different ways:

• Implementation complexity (algorithm complexity, computational speed, and
memory requirements).

• The amount of compression expressed by the compression ratio.

• The average number of bits required to represent a single sample; this is gen-
erally referred to as bit rate.

• How closely the reconstruction resembles the original; this is related to the
reconstructed image quality.

In evaluating the reconstructed image quality, a frequently used measure is the root-
mean-square-error (RMSE) as an error metric [36]. Denoting the original N × N

image by fij and the compressed/decompressed image by f̂ij , RMSE is given by

RMSE =

√√√√√ 1

N2

N−1∑
i=0

N−1∑
j=0

(
fij − f̂ij

)2
,

and represents the standard deviation of the error image. Error images represent the
difference between the original and reconstructed images. The error image, gij , can
be generated using

gij = k

∣∣∣fij − f̂ij

∣∣∣ ,

where the scaling factor k is included to make any error more visible.
The results of applying the JPEG DCT-based coding technique are summarized

in Tables 4.1 and 4.2 for the monochrome “Lena” image. Recall that the original
512 × 512 monochrome “Lena” image requires a total of 2,097,152 bits, or 262,144
bytes. In the JPEG DCT-based image compression and decompression system, two
block sizes have been used — 8 × 8 and 16 × 16. Table 4.1 summarizes results
of compression using the 8 × 8 block size, and Table 4.2 summarizes results of
compression using the 16 × 16 block size for several values of the quality factor.
From the tables it is evident that for 16 × 16 block size the compression ratios are
about two-fold better than for 8×8 block size. On the other hand, at very low bit rates
the blocking artifact is more visible for the larger block size. Actual reconstructed
and corresponding error images using 8 × 8 and 16 × 16 blocks for some values of
the quality factor (its definition is given in Section 4.5.3) are shown in Figs. 4.10
and 4.11, respectively.

FIGURE 4.10
Reconstructed and corresponding error images using 8 × 8 DCT block size for
the quality factor: (a) 25%, (b) 50%, (c) 75%. Error images are magnified by a
factor of 8. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

FIGURE 4.11
Reconstructed and corresponding error images using 16×16 DCT block size for
the quality factor: (a) 25%, (b) 50%, (c) 75%. Error images are magnified by a
factor of 8. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

Table 4.1 Results of the “Lena” Image Compression for 8 × 8
Block Size

Quality The number of compressed Bit Compression RMSE
factor bits (bytes) rate ratio error

25% 96 351 (12 044) 0.368 21.766 4.774
50% 148 132 (18 517) 0.565 14.157 3.734
60% 170 878 (21 360) 0.652 12.273 3.470
75% 230 924 (28 866) 0.881 9.082 2.965
90% 422 392 (52 799) 1.611 4.965 2.124

100% 1 212 625 (151 579) 4.626 1.729 0.289

Table 4.2 Results of “Lena” Image Compression for 16 × 16
Block Size

Quality The number of compressed Bit Compression RMSE
factor bits (bytes) rate ratio error

25% 47 101 (5 888) 0.180 44.525 6.234
50% 77 868 (9 734) 0.297 26.932 4.778
60% 91 272 (11 409) 0.348 22.977 4.428
75% 126 850 (15 857) 0.484 16.533 3.817
90% 244 865 (30 609) 0.934 8.565 2.808

100% 926 585 (115 824) 3.535 2.263 0.644

4.6 Summary

The definitions and properties of four types of the even DCT and corresponding
even DST have been discussed and the unified fast computation of DCTs and DSTs
has been presented. For each type of DCT and DST, the fast computational algo-
rithm was described and the corresponding regular generalized signal flow graph was
shown followed by its implementation in C. Among the DCTs, DCT of types II and
III have been employed as the main compression tool in the international image/video
coding standards. To illustrate the compression capability of DCT, a real data com-
pression application is considered. The JPEG DCT-based image compression and
decompression system with its implementation is described in detail. This simple,
efficient, and low-cost image compression and decompression system can be used in
real data compression applications. Finally, the results of image compression were
presented. We believe that all implemented algorithms will be useful in any other
DCT- and DST-related applications.

References

[1] Jain, A.K., A sinusoidal family of unitary transforms, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 1, 356, 1979.

[2] Bongiovanni, G., Corsini, P. and Frosini, G., One-dimensional and two-
dimensional generalized discrete Fourier transform, IEEE Trans. on Acoustics,
Speech and Signal Processing, 24, 97, 1976.

[3] Wang, Z., Comments on generalized discrete Hartley transforms, IEEE Trans.
on Signal Processing, 43, 1711, 1995.

[4] Wang, Z. and Hunt, B.R., The discrete W transform, Applied Mathematics and
Computation, 16, 19, 1985.

[5] Wang, Z. and Hunt, B.R., The discrete cosine transform — a new version, Proc.
IEEE ICASSP, Boston, MA, 1256, 1983.

[6] Kitajima, H., A symmetric cosine transform, IEEE Trans. on Computers, 29,
317, 1980.

[7] Jain, A.K., A fast Karhunen–Loève transform for a class of random processes,
IEEE Trans. on Communications, 24, 1023, 1976.

[8] Ahmed, N., Natarajan, T., and Rao, K.R., Discrete cosine transform, IEEE
Trans. on Computers, 23, 90, 1974.

[9] Kekre, H.B. and Solanki, J.K., Comparative performance of various trigono-
metric unitary transforms for transform image coding, Int. J. Electronics, 44,
305, 1978.

[10] Yip, P. and Rao, K.R., On shift property of DCTs and DSTs, IEEE Trans. on
Acoustics, Speech, and Signal Processing, 35, 404, 1987.

[11] Wu, L.N., Comments on shift property of DCTs and DSTs, IEEE Trans. on
Acoustics, Speech, and Signal Processing, 38, 186, 1990.

[12] Malvar, H.S., Lapped transforms for efficient transform/subband coding, IEEE
Trans. on Acoustics, Speech, and Signal Processing, 38, 969, 1990.

[13] Martucci, S.A., Convolution-multiplication properties for the entire family of
discrete sine and cosine transforms, Proc. Twenty-Sixth Annual Conf. on Infor-
mation Sciences and Systems, Princeton, NJ, 399, 1992.

[14] Martucci, S.A., Symmetric convolution and the discrete sine and cosine trans-
forms, IEEE Trans. on Signal Processing, 42, 1038, 1994.

[15] Martucci, S.A., Digital filtering of images using the discrete sine or cosine
transform, Optical Engineering, 35, 119, 1996.

[16] Clarke, R.J., Relation between the Karhunen–Loève and cosine transforms,
IEEE Proc. Part F: Communications, Radar and Signal Processing, 128, 359,
1981.

[17] Ahmed, N. and Flickner, M., Some considerations of the discrete cosine trans-
form, 16th Asilomar Conf. on Circuits, Systems and Computers, Pacific Grove,
CA, 295, 1982.

[18] Clarke, R.J., Relation between the Karhunen–Loève and sine transforms, Elec-
tronics Letters, 20, 12, 1984.

[19] Zou, F. and Gallagher, R.R., A new transform with symmetrical coding per-
formance for Markov(1) signals, IEEE Trans. on Signal Processing, 43, 2195,
1995.

[20] Wang, Z., A fast algorithm for the discrete sine transform implemented by the
fast cosine transform, IEEE Trans. on Acoustics, Speech, and Signal Processing,
30, 814, 1982.

[21] Wang, Z., Fast algorithms for the discrete W transform and discrete Fourier
transform, IEEE Trans. on Acoustics, Speech, and Signal Processing, 32, 803,
1984.

[22] Wang, Z., On computing the discrete Fourier and cosine transform, IEEE Trans.
on Acoustics, Speech, and Signal Processing, 33, 1341, 1985.

[23] Hou, H.S., A fast recursive algorithm for computing the discrete cosine trans-
form, IEEE Trans. on Acoustics, Speech, and Signal Processing, 35, 1455,
1987.

[24] Britanak, V., On the discrete cosine transform computation, Signal Processing,
40, 183, 1994.

[25] Britanak, V., A unified discrete cosine and discrete sine transform computation,
Signal Processing, 43, 333, 1995.

[26] Britanak, V., A unified approach to fast computation of discrete sinusoidal
transforms I: DCT and DST transforms, Computers and Artificial Intelligence,
17, 583, 1998.

[27] Britanak, V., A unified approach to fast computation of discrete sinusoidal
transforms II: DFT and DWT transforms, Computers and Artificial Intelligence,
18, 19, 1999.

[28] Wu, H.R. and Paoloni, F.J., A two-dimensional fast cosine transform algorithm
based on Hou’s approach, IEEE Trans. on Signal Processing, 39, 544, 1991.

[29] Britanak, V., A generalized signal flow graph for the 2-D DCT computation,
Applied Signal Processing, 1, 76, 1994.

[30] Rao, K.R. and Yip, P., Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, Boston, 1990.

[31] Rao, K.R. and Hwang, J.J., Techniques and Standards for Image, Video and
Audio Coding, Prentice-Hall, Upper Saddle River, NJ, 1996.

[32] Clarke, R.J., Transform Coding of Images, Academic Press, London, 1990.

[33] Poularikas, A.D., The Transforms and Application Handbook, CRC Press and
IEEE Press, Boca Raton, FL, 1996.

[34] Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Addison–Wesley,
Reading, MA, chap. 6, 1992.

[35] Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, chap. 5 and 11, 1989.

[36] Rabbani, M. and Jones, P.W., Digital Image Compression Techniques, Volume
TT7 of Tutorial Texts Series, SPIE Optical Engineering Press, Bellingham,
WA, 1991.

[37] Sayood, K., Introduction to Data Compression, Morgan Kaufmann, San Fran-
cisco, CA, 1996.

[38] Madisetty, V.K. and Williams, D.B., The Digital Signal Processing Handbook,
CRC Press and IEEE Press, Boca Raton, FL, 1998.

[39] Bhaskaran, V. and Konstantinides, K., Image and Video Compression Stan-
dards: Algorithms and Architecture, Kluwer Academic, Norwell, MA, 1995.

[40] Kou, W., Digital Image Compression — Algorithms and Standards, Kluwer
Academic, Hingham, MA, 1995.

[41] Gibson, J.D., Berger, T., Lookabaugh, T., Lindbergh, D., and Baker, R.L., Dig-
ital Compression for Multimedia: Principles and Standards, Morgan Kauf-
mann, San Francisco, CA, 1998.

[42] Symes, P.D., Video Compression: Fundamental Compression Techniques and
Overview of the JPEG and MPEG Compression Systems, McGraw-Hill, New
York, 1998.

[43] Wallace, G.K., JPEG Technical Specification, Revision 5, JPEG Joint Photo-
graphic Experts Group ISO/IEC JTC1/SC2/WG8 CCITT SGVIII, JPEG-8-R5,
January 2, 1990.

[44] Wallace, G.K., The JPEG still picture compression standard, Communications
of the ACM, 34, 31, 1991.

[45] Le Gall, D., MPEG: A video compression standard for multimedia applications,
Communications of the ACM, 34, 47, 1991.

[46] Liou, M., Overview of the p × 64kbit/s video coding standard, Communica-
tions of the ACM, 34, 60, 1991.

[47] Rabbani, M. and Dally, S., An optimized image data compression technique
utilized in the Kodak SV9600 still video transceiver, SPIE Proc. Vol. 1071
Optical Sensors and Electronic Photography, Bellingham, WA, 246, 1989.

[48] Chitprasert, B. and Rao, K.R., Human visual weighted progressive image trans-
mission, IEEE Trans. on Communications, 38, 1040, 1990.

[49] Murray, J.D. and VanRyper, W., Encyclopedia of Graphics File Formats,
O’Reilly and Associates, Sebastopol, CA, 1994.

Ricardo L. de Queiroz "Lapped Transforms for Image Compression"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 5

Lapped Transforms for Image Compression

Ricardo L. de Queiroz
Xerox Corporation

Trac D. Tran
The Johns Hopkins University

5.1 Introduction

This chapter covers the basic aspects of lapped transforms and their applications to
image compression. It is a subject that has been extensively studied mainly because
lapped transforms are closely related to filter banks, wavelets, and time-frequency
transformations. Some of these topics are also covered in other chapters in this
handbook. In any case it is certainly impractical to reference all the contributions
in the field. Therefore, the presentation will be more focused rather than general.
We refer the reader to excellent texts such as Malvar [26], Strang and Nguyen [55],
Vaidyanathan [63], and Vetterli and Kovacevic [66] for a more detailed treatment of
filter banks.

For the rest of this introductory section we will cover the basic notation, give a brief
history of lapped transforms, and introduce block-based transforms. We will describe
the principles of a block transform and its corresponding transform matrix along with
its factorization. We will also introduce multi-input multi-output systems and relate
them to block transforms. In Section 5.2, lapped transforms are introduced. Basic
theory and concepts are presented for both orthogonal and nonorthogonal cases. In
Section 5.3 lapped transforms are related to multi-input multi-output discrete systems
with memory laying the theoretical basis for the understanding of the factorization of
a lapped transform. Such a factorization is then presented in Section 5.4. Section 5.5
introduces hierarchical lapped transforms (which are constructed by connecting trans-
forms hierarchically in a tree path), briefly introducing time-frequency diagrams and
concepts such as the exchange of resolution between time and frequency. Another
concept is also introduced in Section 5.5: variable length lapped transforms, which are

also found through hierarchical connection of systems. Practical transforms are then
presented. Transforms with symmetric bases including the popular lapped orthogonal
transform, its bi-orthogonal, and generalized versions are described in Section 5.6,
while fast transforms with variable-length are presented in Section 5.7. The trans-
forms based on cosine modulation are presented in Section 5.8. In order to apply
lapped transforms to images, one has to be able to transform signal segments of
finite-length. Several methods for doing so are discussed in Section 5.9. Design
issues for lapped transforms are discussed in Section 5.10, wherein the emphasis is
given to compression applications. In Section 5.11, image compression systems are
briefly introduced, including JPEG and other methods based on wavelet transforms.
The performance analysis of lapped transforms in image compression is carried in
Section 5.12 for different compression systems and several transforms. Finally, the
conclusions are presented in Section 5.13.

5.1.1 Notation

Notation conventions used here: In is the n×n identity matrix; 0n is the n×n null
matrix, while 0n×m stands for the n×m null matrix. Jn is the n× n counter-identity,
or exchange, or reversing matrix, illustrated by the following example:

J3 =

 0 0 1

0 1 0
1 0 0

 .

J reverses the ordering of elements of a vector. []T means transposition. []H
means transposition combined with complex conjugation, where this combination is
usually called the Hermitian conjugation of the vector or matrix. Unidimensional
concatenation of matrices and vectors is indicated by a comma. In general, capital
bold face letters are reserved for matrices, so that a represents a (column) vector while
A represents a matrix.

5.1.2 Brief History

In the early 1980s, transform coding was maturing, and the discrete cosine trans-
form (DCT) [45] was the preferred transformation method. At that time, DCT-based
image compression was state-of-the-art, but researchers were uncomfortable with the
blocking artifacts which are common (and annoying) artifacts found in images com-
pressed at low bit rates using block transforms. To resolve the problem, the idea of a
lapped transform (LT, for short) was developed in the early 1980s at M.I.T. The idea
was to extend the basis function beyond the block boundaries, creating an overlap,
in order to eliminate the blocking effect. This idea was not new at that time. How-
ever, the new ingredient was to preserve the number of transform coefficients and
orthogonality, just as in the nonoverlapped case. Cassereau [5] introduced the lapped
orthogonal transform (LOT). It was Malvar [18, 19, 20] who gave the LOT an elegant
design strategy and a fast algorithm, thus making the LOT practical and a serious
contender to replace the DCT for image compression.

It was also Malvar [22] who pointed out the equivalence between an LT and
a multirate filter bank, which is now a very popular signal processing tool [63].
Based on cosine-modulated filter banks [33], modulated lapped transforms were de-
signed [21, 48]. Modulated transforms were later generalized for an arbitrary overlap,
creating the class of extended lapped transforms (ELT) [24]–[27]. Recently a new
class of LTs with symmetric bases were developed yielding the class of generalized
LOTs (GenLOT) [35, 37, 40]. The GenLOTs were made to have basis functions of
arbitrary length (not a multiple of the block size) [57], extended to the nonorthogo-
nal case [61], and even made to have filters of different lengths [60]. As mentioned
before, filter banks and LTs are the same, although studied independently in the past.
Because of this duality, it would be impractical to mention all related work in the
field. Nevertheless, Vaidyanathan’s book [63] is considered an excellent text on filter
banks, while Malvar [26] is a good reference to bridge the gap between lapped trans-
forms and filter banks. We usually refer to LTs as uniform critically sampled FIR
filter banks with fast implementation algorithms based on special factorizations of
the basis functions, with particular design attention for signal (mainly image) coding.

5.1.3 Block Transforms

We assume a one-dimensional input sequence {x(n)} which is transformed into
several coefficients sequences {yi(n)}, where yi(n)would belong to the i-th subband.
In traditional block-transform processing, the signal is divided into blocks of M
samples, and each block is processed independently [6, 12, 26, 32, 43, 45, 46]. Let
the samples in the m-th block be denoted as

xTm = [
x0(m), x1(m), . . . , xM−1(m)

]
, (5.1)

with xk(m) = x(mM + k), and let the corresponding transform vector be

yTm = [
y0(m), y1(m), . . . , yM−1(m)

]
. (5.2)

For a real unitary transform A, AT = A−1. The forward and inverse transforms for
the m-th block are, respectively,

ym = Axm , (5.3)

and

xm = AT ym . (5.4)

The rows of A, denoted aTn (0 ≤ n ≤ M − 1), are called the basis vectors because
they form an orthogonal basis for theM-tuples over the real field [46]. The transform
coefficients [y0(m), y1(m), . . . , yM−1(m)] represent the corresponding weights of
vector xm with respect to the above basis.

If the input signal is represented by vector x while the subbands are grouped into
blocks in vector y, we can represent the transform H which operates over the entire

signal as a block diagonal matrix:

H = diag{. . . ,A,A,A, . . . } , (5.5)

where, of course, H is an orthogonal matrix if A is also. In summary, a signal is
transformed by block segmentation followed by block transformation, which amounts
to transforming the signal with a sparse matrix. Also, it is well known that the signal
energy is preserved under a unitary transformation [12, 45], assuming stationary
signals, i.e.,

Mσ 2
x =

M−1∑
i=0

σ 2
i , (5.6)

where σ 2
i is the variance of yi(m) and σ 2

x is the variance of the input samples.

5.1.4 Factorization of Discrete Transforms

For our purposes, discrete transforms of interest are linear and governed by a square
matrix with real entries. Square matrices can be factorized into a product of sparse
matrices of the same size. Notably, orthogonal matrices can be factorized into a
product of plane (Givens) rotations [10]. Let A be anM×M real orthogonal matrix,
and let �(i, j, θn) be a matrix with entries �kl , which is like the identity matrix IM
except for four entries:

�ii = cos (θn) �jj = cos (θn) �ij = sin (θn) �ji = − sin (θn) . (5.7)

�(i, j, θn) corresponds to a rotation by the angle θn about an axis normal to the i-th
and the j -th axes. Then, A can be factorized as

A = S
M−2∏
i=0

M−1∏
j=i+1

� (i, j, θn) (5.8)

where n is increased by one for every matrix, and S is a diagonal matrix with entries
±1 to correct for any sign error [10]. This correction is not necessary in most cases
and is not required if we can apply variations of the rotation matrix defined in Eq. (5.7)
as

�ii = cos (θn) �jj = − cos (θn) �ij = sin (θn) �ji = sin (θn) . (5.9)

All combinations of pairs of axes shall be used for a complete factorization.
Fig. 5.1(a) shows an example of the factorization of a 4×4 orthogonal matrix into
plane rotations [the sequence of rotations is slightly different than the one in Eq. (5.8)
but it is equally complete]. If the matrix is not orthogonal, we can always decompose
the matrix using singular value decomposition (SVD) [10]. A is decomposed through
SVD as

A = U�V (5.10)

where U and V are orthogonal matrices and � is a diagonal matrix containing the
singular values of A. While � is already a sparse matrix, we can further decompose
the orthogonal matrices using Eq. (5.8):

A = S

M−2∏
i=0

M−1∏
j=i+1

�
(
i, j, θUn

)�

M−2∏
i=0

M−1∏
j=i+1

�
(
i, j, θVn

) (5.11)

where {θUn and θVn } compose the set of angles for U and V, respectively. Fig. 5.1(c)
illustrates the factorization for a 4×4 nonorthogonal matrix, where αi are the singular
values.

The reader will later see that the factorization above is an invaluable tool for the
design of block and lapped transforms. In the orthogonal case, all of the degrees
of freedom are contained in the rotation angles. In an M × M orthogonal matrix,
there are M(M − 1)/2 angles, and by spanning all the angles’ space (0 to 2π for
each one) one spans the space of all M × M orthogonal matrices. The idea is to
span the space of all possible orthogonal matrices through varying arbitrarily and
freely the rotation angles in an unconstrained optimization. In the general case, there
are M2 degrees of freedom, and we can either utilize the matrix entries directly or
employ the SVD decomposition. However, we are mainly concerned with invertible
matrices. Hence, using the SVD-based method, one can stay in the invertible matrix
space by freely spanning the angles. The only mild constraint here is to assure that
all singular values in the diagonal matrix are nonzero. The authors commonly use
the unconstrained nonlinear optimization based on the simplex search provided by
MATLABTM to search for the optimal rotation angles and singular values.

5.1.5 Discrete MIMO Linear Systems

Let a multi-input multi-output (MIMO) [63] discrete linear FIR system have M
input and M output sequences with respective Z-transforms Xi(z) and Yi(z), for
0 ≤ i ≤ M − 1. Then, Xi(z) and Yi(z) are related by

Y0(z)

Y1(z)
...

YM−1(z)

 =

E0,0(z) E0,1(z) · · · E0,M−1(z)

E1,0(z) E1,1(z) · · · E1,M−1(z)
...

...
. . .

...

EM−1,0(z) EM−1,1(z) · · · EM−1,M−1(z)

X0(z)

X1(z)
...

XM−1(z)

 (5.12)

where Eij (z) are entries of the given MIMO system E(z). E(z) is called the transfer
matrix of the system, and we have chosen it to be square for simplicity. It is a regular
matrix whose entries are polynomials. Of relevance to us is the case wherein the

FIGURE 5.1
Factorization of a 4x4 matrix. (a) Orthogonal factorization into Givens rotations.
(b) Details of the rotation element. (c) Factorization of a nonorthogonal matrix
through SVD with the respective factorization of SVD’s orthogonal factors into
rotations.

entries belong to the field of real-coefficient polynomials of z−1; i.e., the entries
represent real-coefficient FIR filters. The degree of E(z) (or the McMillan degree,
Nz) is the minimum number of delays necessary to implement the system. The order
of E(z) is the maximum degree among all Eij (z). In both cases we assume that the
filters are causal and FIR.

A special subset of great interest is comprised of the transfer matrices that are
normalized paraunitary. In the paraunitary case, E(z) becomes a unitary matrix when
evaluated on the unit circle:

EH
(
ejω

)
E
(
ejω

)
= E

(
ejω

)
EH

(
ejω

)
= IM . (5.13)

Furthermore:

E−1(z) = ET
(
z−1

)
. (5.14)

For causal inverses of paraunitary systems,

E′(z) = z−nET
(
z−1

)
(5.15)

is often used, where n is the order of E(z), since E′(z)E(z) = z−nIM .
For paraunitary systems, the determinant of E(z) is of the form az−Nz for a real

constant a [63], where we recall that Nz is the McMillan degree of the system. For
FIR causal entries, they are also said to be lossless systems [63]. In fact, a familiar
orthogonal matrix is one where all Eij (z) are constant for all z.

We also have interest in invertible, although nonparaunitary, transfer matrices. In
this case, it is required that the matrix be invertible on the unit circle, i.e., for all
z = ejω and real ω. Nonparaunitary systems are also called bi-orthogonal or perfect
reconstruction (PR) [63].

5.1.6 Block Transform as a MIMO System

The sequences {xi(m)} in Eq. (5.1) are called the polyphase components of the
input signal {x(n)}. On the other hand, the sequences {yi(m)} in Eq. (5.2) are the
subbands resulting from the transform process. In an alternative view of the trans-
formation process, the signal samples are “blocked” or parallelized into polyphase
components through a sequence of delays and decimators as shown in Fig. 5.2. Each
block is transformed by system A into M subband samples (transformed samples).
Inverse transform (for orthogonal transforms) is accomplished by system AT whose
outputs are polyphase components of the reconstructed signal, which are then serial-
ized by a sequence of upsamplers and delays. In this system, blocks are processed
independently. Therefore, the transform can be viewed as a MIMO system of order 0,
i.e., E(z) = A, and if A is unitary, so is E(z) which is obviously also paraunitary.
The system matrix relating the polyphase components to the subbands is referred to
as the polyphase transfer matrix (PTM).

M M

M

M

M

M

M

M

M

M

M

M

A AT

z
_1

z
_1

z
_1

z
_1 z

_1

z
_1

z
_1

z
_1

x(n)

y0(m) y0(m) x(n)

y1(m) y1(m)

...
...

^^

yM
_

1 (m)yM _1(m)^

^

FIGURE 5.2
The signal samples are parallelized into polyphase components through a se-
quence of delays and decimators (↓ M means subsampling by a factor of M).
The signal is “blocked,” and each block is transformed by system A intoM sub-
band samples (transformed samples). Inverse transform (for orthogonal trans-
forms) is accomplished by system AT whose outputs are polyphase components
of the reconstructed signal, which are then serialized by a sequence of upsam-
plers (↑ M means upsampling by a factor of M , padding the signal with M − 1
zeros) and delays.

5.2 Lapped Transforms

The motivation for a transform with overlap, as mentioned in the introduction,
is to try to improve the performance of block (nonoverlapped) transforms for im-
age and signal compression. Compression commonly implies signal losses due to
quantization [12]. As the bases of block transforms do not overlap, there may be
discontinuities along the boundary regions of the blocks. Different approximations
of those boundary regions on each side of the border may cause an artificial “edge”
between blocks, the so-called blocking effect. Fig. 5.3 shows an example signal that
is to be projected into bases, by segmenting the signal into blocks and projecting each
segment into the desired bases. Alternatively, one can view the process as projecting
the whole signal into several translated bases (one translation per block). Fig. 5.3
shows, on the left, translated versions of the first basis of the DCT in order to account
for all the different blocks. The same figure, on the right, shows the same diagram
for the first basis of a typical short LT. Note that the bases overlap spatially. The idea
is that overlap would help decrease, if not eliminate, the blocking effect.

There areM basis functions for either the DCT or the LT, although Fig. 5.3 shows
only one of them. An example of the bases for M = 8 is shown in Fig. 5.4 which
plots the bases for the DCT and for the LOT, a particular LT discussed later. The
reader may note that not only are the LOT bases longer but they are also smoother
than the DCT counterpart. Fig. 5.5(a) is an example of an image compressed using
the standard JPEG baseline coder [32], and the blocking artifacts at the boundaries of
8×8 pixels blocks are readily seen. By replacing the DCT with the LOT and keeping
the same compression ratio, we obtain the image shown in Fig. 5.5(b), where blocking
is largely reduced. This brief introduction to the motivation behind the development
of LTs illustrates only the overall problem. We have not described the details on how
to apply LTs. The following section develops the LT framework.

5.2.1 Orthogonal Lapped Transforms

A lapped transform [26] can be generally defined as any transform whose basis vec-
tors have length L, such that L > M , extending across traditional block boundaries.
Thus, the transform matrix is no longer square, and most of the equations valid for
block transforms do not apply to an LT. We will concentrate our efforts on orthogonal
LTs [26] and consider L = NM , where N is the overlap factor. Note that N ,M , and
hence L are all integers. As in the case of block transforms, we define the transform
matrix as containing the orthonormal basis vectors as its rows. A lapped transform
matrix P of dimensions M × L can be divided into square M ×M submatrices Pi
(i = 0, 1, . . . , N − 1) as follows:

P = [
P0 P1 · · · PN−1

]
. (5.16)

FIGURE 5.3
The example discrete signal x(n) is to be projected onto a number of bases. Left:
spatially displaced versions of the first DCT basis. Right: spatially displaced
versions of the first basis of a typical short LT.

The orthogonality property does not hold because P is no longer a square matrix, and
it is replaced by the perfect reconstruction (PR) property [26], defined by

N−1−l∑
i=0

PiPTi+l =
N−1−l∑
i=0

PTi+lPi = δ(l)IM , (5.17)

for l = 0, 1, . . . , N−1, where δ(l) is the Kronecker delta; i.e., δ(0) = 1 and δ(l) = 0
for l �= 0. As will be seen later, Eq. (5.17) states the PR conditions and orthogonality
of the transform operating over the entire signal.

If we divide the signal into blocks, each of size M , we would have vectors xm and
ym as in Eqs. (5.1) and (5.2). These blocks are not used by LTs in a straightforward
manner. The actual vector that is transformed by the matrix P has to have L samples,
and, at block numberm, it is composed of the samples of xm plusL−M samples from
the neighboring blocks. These samples are chosen by picking (L −M)/2 samples
on each side of the block xm, as shown in Fig. 5.6, for N = 2. However, the number

FIGURE 5.4
Bases for the 8-point DCT (M = 8) (left) and for the LOT (right) with M = 8.
The LOT is a particular LT which will be explained later.

of transform coefficients at each step is M , and, in this respect, there is no change in
the way we represent the transform-domain blocks ym.

The input vector of length L is denoted as vm, which is centered around the block
xm, and is defined as

vTm =
[
x

(
mM − (N − 1)

M

2

)
· · · x

(
mM + (N + 1)

M

2
− 1

)]
. (5.18)

Then, we have

ym = Pvm . (5.19)

The inverse transform is not direct as in the case of block transforms; with the
knowledge of ym we know neither the samples in the support region of vm, nor those
in the support region of xm. We can reconstruct a vector v̂m from ym, as

v̂m = PT ym , (5.20)

where v̂m �= vm. To reconstruct the original sequence, it is necessary to accumulate
the results of the vectors v̂m, in a sense that a particular sample x(n) will be recon-
structed from the sum of the contributions it receives from all v̂m. This additional

FIGURE 5.5
Zoom of image compressed using JPEG at 0.5 bits/per pixel. (a) DCT, (b) LOT.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

M M M M M M M M

2M

2M

2M

2M

FIGURE 5.6
The signal samples are divided into blocks ofM samples. The lapped transform
uses neighboring blocks samples, as in this example for N = 2; i.e., L = 2M ,
yielding an overlap of (L−M)/2 = M/2 samples on either side of a block.

complication comes from the fact that P is not a square matrix [26]. However, the
entire analysis-synthesis system (applied to the entire input vector) is still orthogonal,
assuring the PR property using Eq. (5.20).

We can also describe the above process using a sliding rectangular window applied
over the samples of {x(n)}. As an M-sample block, ym is computed using vm, and
ym+1 is computed from vm+1 which is obtained by shifting the window to the right
by M samples, as shown in Fig. 5.7.

As the reader may have noticed, the region of support of all vectors vm is greater
than the region of support of the input vector. Hence, a special treatment has to be
given to the transform at the borders. We will discuss this operation later and assume
infinite-length signals until then. We can also assume that the signal length is very
large and the borders of the signal are far enough from the region on which we are
focusing our attention.

M samples

vm

vm vm+1

vm+1

ym+1ym

^
^ ^x(n)

x(n)

y(n)

FIGURE 5.7
Illustration of a lapped transform with N = 2 applied to signal x(n), yielding
transform domain signal y(n). The input L-tuple as vector vm is obtained by a
sliding window advancing M samples, generating ym. This sliding is also valid
for the synthesis side.

If we denote by x the input vector and by y the transform-domain vector, we can
be consistent with our notation of transform matrices by defining a matrix H such
that y = Hx and x̂ = HT y. In this case, we have

H =

. . . 0
P

P
P

0
. . .

 , (5.21)

where the displacement of the matrices P obeys the following:

H =

. . .

. . .
. . . 0

P0 P1 · · · PN−1
P0 P1 · · · PN−1

0
. . .

. . .
. . .

 . (5.22)

H has as many block-rows as transform operations over each vector vm.
Let the rows of P be denoted by 1 × L vectors pTi (0 ≤ i ≤ M − 1), so that

PT = [p0, . . . ,pM−1]. In an analogy to the block transform case, we have

yi(m) = pTi vm . (5.23)

The vectors pi are the basis vectors of the lapped transform. They form an orthogonal
basis for anM-dimensional subspace (there are onlyM vectors) of the L-tuples over
the real field. As a remark, assuming infinite length signals, from the orthogonality

of the basis vectors and from the PR property in Eq. (5.17), the energy is preserved,
such that Eq. (5.6) is valid.

In order to compute the variance of the subband signals of a block or lapped
transform, assume that {x(n)} is a zero-mean stationary process with a given au-
tocorrelation function. Let its L × L autocorrelation matrix be Rxx . Then, from
Eq. (5.23)

E [yi(m)] = pTi E [vm] = pTi 0L×1 = 0 , (5.24)

so that

σ 2
i = E

[
y2
i (m)

]
= pTi E

[
vmvTm

]
pi = pTi Rxxpi ; (5.25)

i.e., the output variance is easily computed from the input autocorrelation matrix for
a given set of bases P.

Assuming that the entire input and output signals are represented by the vectors x
and y, respectively, and that the signals have infinite length, we have, from Eq. (5.21),

y = Hx (5.26)

and, if H is orthogonal,

x = HT y . (5.27)

Note that H is orthogonal if and only if Eq. (5.17) is satisfied. Thus, the meaning
for Eq. (5.17) becomes clear, as it forces the transform operating over the entire input-
output signals to be orthogonal. Hence, the resulting LT is called orthogonal. For
block transforms, as there is no overlap, it is sufficient to state the orthogonality of A
because H will be a block-diagonal matrix.

These formulations for LTs are general, and if the transform satisfies the PR prop-
erty described in Eq. (5.17), then the LTs are independent of the contents of the matrix
P. The definition of P with a givenN can accommodate any lapped transform whose
length of the basis vectors lies betweenM andNM . For the case of block transforms,
N = 1; i.e., there is no overlap.
Causal notation — If one is not concerned with particular localization of the trans-
form with respect to the origin x(0) of the signal {x(n)}, it is possible to change the
notation to apply a causal representation. In this case, we can represent vm as

vTm =
[
xTm−N+1, . . . , xTm−1, xTm

]
, (5.28)

which is identical to the previous representation, except for a shift in the origin to
maintain causality. The block ym is found in a similar fashion as

ym = Pvm =
N−1∑
i=0

PN−1−ixm−i . (5.29)

Similarly, v̂m can be reconstructed as in Eq. (5.20) where the support region for the
vector is the same, except that the relation between it and the blocks x̂m will be
changed accordingly.

5.2.2 Nonorthogonal Lapped Transforms

So far, we have discussed orthogonal LTs where a segment of the input signal is
projected onto the basis functions of P, yielding the coefficients (subband samples).
The signal is reconstructed by the overlapped projection of the same bases weighted
by the subband samples. In the nonorthogonal case, we define another LT matrix Q
as

Q = [
Q0 Q1 · · · QN−1

]
, (5.30)

in the same way as we did for P with the same size. The difference is that Q instead
of P is used in the reconstruction process so that Eq. (5.20) is replaced by

v̂m = QT ym . (5.31)

We also define another transform matrix as

H′ =

. . .

. . .
. . . 0

Q0 Q1 · · · QN−1
Q0 Q1 · · · QN−1

0
. . .

. . .
. . .

 . (5.32)

The forward and inverse transformations are now

y = HF x , x = HIy . (5.33)

In the orthonormal case, HF = H and HI = HT . In the general case, it is required
that HI = H−1

F . With the choice of Q as the inverse LT, then HI = H′T , while
HF = H. Therefore the perfect reconstruction condition is

H′T H = I∞ . (5.34)

The reader can check that the above equation can also be expressed in terms of the
LTs P and Q as

N−1−m∑
k=0

QT
k Pk+m =

N−1−m∑
k=0

QT
k+mPk = δ(m)IM , (5.35)

which establish the general necessary and sufficient conditions for the perfect recon-
struction of the signal by using P as the forward LT and Q as the inverse LT. Unlike
the orthogonal case in Eq. (5.17), here both sets are necessary conditions; there is a
total of 2N − 1 matrix equations.

5.3 LTs as MIMO Systems

As previously discussed in Sections 5.1.3 and 5.1.6, the input signal can be de-
composed into M polyphase signals {xi(m)}, each sequence having one M-th of the

original rate. As there are M subbands {yi(m)} under the same circumstances, and
only linear operations are used to transform the signal, there is a MIMO system F(z)
that converts the M polyphase signals to the M subband signals. Those transfer ma-
trices are also called PTM (Section 5.1.6). The same is true for the inverse transform
(from subbands {ŷi (m)} to polyphase {x̂i (m)}). Therefore, we can use the diagram
shown in Fig. 5.8 to represent the forward and inverse transforms. Note that Fig. 5.8

M M

M

M

M

M

M

M

M

M

M

M

F(z) G(z)

z
_1 z

_1

z
_1

z
_1

z
_1

z
_1

z
_1

z
_1

x(n)

y0(m) y0(m) x(n)

y1(m) y1(m)

...
...

^^

^

yM
_

1 (m)yM _1(m)^

FIGURE 5.8
The filter bank represented as a MIMO system is applied to the polyphase com-
ponents of the signal. The matrices F(z) and G(z) are called polyphase transfer
matrices. For a PR system, both must be inverses of each other and for parau-
nitary filter banks they must be paraunitary matrices; i.e., G(z) = F−1(z) =
FT (z−1). For a PR paraunitary causal system of order N , we must choose
G(z) = z−(N−1)FT (z−1).

is identical to Fig. 5.2 except that the transforms have memory; they depend not only
on the present input vector, but on past input vectors also. One can view the system
as a clocked one, in which at every clock a block is input, transformed, and output.
The parallelization and serialization of blocks are performed by the chain of delays,
upsamplers, and downsamplers shown in Fig. 5.8. If we express the forward and
inverse PTM as matrix polynomials

F(z) =
N−1∑
i=0

Fiz−1 , (5.36)

G(z) =
N−1∑
i=0

Giz
−1 , (5.37)

then the forward and inverse transforms are given by

ym =
N−1∑
i=0

Fixm−i , (5.38)

x̂m =
N−1∑
i=0

Gi ŷm−i . (5.39)

In the absence of any processing, ŷm = ym and F(z) and G(z) are connected
together back-to-back, so PR is possible if they are inverses of each other. Since the
inverse of a causal FIR MIMO system may be noncausal, we can delay the entries of
the inverse matrix to make it causal. Since the MIMO system’s PTM is assumed to
have order N (N is the overlap factor of the equivalent LT), PR requires that

G(z)F(z) = z−N+1IM → G(z) = z−N+1F−1(z) . (5.40)

In this case, x̂m = xm−N+1; the signal is perfectly reconstructed after a system’s
delay. Because of the delay chains combined with the block delay (system’s order),
the reconstructed signal delay is x̂(n) = x(n−NM + 1) = x(n− L− 1).

By combining Eqs. (5.38), (5.39), and (5.40), we can restate the PR conditions as

N−1∑
i=0

N−1∑
j=0

GiFiz−i−j = z−N+1IM , (5.41)

which, by equating the powers of z, can be rewritten as

N−1−m∑
k=0

GkFk+m =
N−1−m∑
k=0

Gk+mFk = δ(m)IM . (5.42)

The reader should note the striking similarity of the above equation with Eq. (5.35).
In fact, the simple comparison of the transformation process in the space domain
notation Eq. (5.33) against the MIMO system notation in Eqs. (5.38) and (5.39)
would reveal the following relations

Fk = PN−1−k, Gk = QT
k (5.43)

for 0 ≤ k < N . In fact, the conditions imposed in Eqs. (5.34), (5.35), (5.40),
and (5.42) are equivalent and each one implies the others. This is a powerful tool in
the design of lapped transforms. As an LT, the matrix is nonsquare, but the entries
are real. As a MIMO system, the matrix is square, but the entries are polynomials.
One form may complement the other, facilitating tasks such as factorization, design,
and implementation.

As mentioned earlier, paraunitary (lossless) systems belong to a class of MIMO
systems of high interest. Let E(z) be a paraunitary PTM so that E−1(z) = ET (z−1),
and let

F(z) = E(z), G(z) = z−(N−1)ET
(
z−1

)
. (5.44)

As a result, the reader can verify that the equations above imply that Pi = Qi , and
that

N−1−l∑
i=0

PiPTi+l =
N−1−l∑
i=0

PTi Pi+l = δ(l)IM , (5.45)

HHT = HT H = I∞ . (5.46)

In other words, if the system’s PTM is paraunitary, then the corresponding LT (H) is
orthogonal and vice-versa.

5.4 Factorization of Lapped Transforms

There is an important result for paraunitary PTM which states that any paraunitary
E(z) can be decomposed into a series of orthogonal matrices and delay stages [8, 64].
In this decomposition, there are Nz delay stages and Nz + 1 orthogonal matrices,
where Nz is the McMillan degree of E(z) (the degree of the determinant of E(z)).
Then,

E(z) = B0

Nz∏
i=1

(ϒ(z)Bi) (5.47)

where ϒ(z) = diag{z−1, 1, 1, . . . , 1}, and Bi are orthogonal matrices. It is well
known that anM×M orthogonal matrix can be expressed as a product ofM(M−1)/2
plane rotations. However, in this case, only B0 is a general orthogonal matrix, while
the matrices B1 through BNz have only M − 1 degrees of freedom [64].

This result states that it is possible to implement an orthogonal lapped transform
using a sequence of delays and orthogonal matrices. It also defines the total number of
degrees of freedom in a lapped transform; if one changes arbitrarily any of the plane
rotations composing the orthogonal transforms, one will span all possible orthogonal
lapped transforms, for given values of M and L. It is also possible to prove [35] that
the (McMillan) degree of E(z) is bounded by Nz ≤ (L − M)/2 with equality for
a general structure to implement all orthogonal LTs whose bases have length up to
L = NM , i.e., E(z) of order N − 1.

In fact Eq. (5.47) may be used to implement all lapped transforms (orthogonal or
not) whose degree is Nz. To accomplish that, all of the multiplicative factors that
compose the PTM must be invertible. Let us consider a more particular factorization:

F(z) =
(N−1)/(K−1)∏

i=0

Bi (z) (5.48)

where Bi (z) = ∑K−1
k=0 Bikz−k is a stage of order K − 1. If F(z) is paraunitary, then

all Bi (z) must be paraunitary, so that perfect reconstruction is guaranteed if

G(z) = z−N+1FT
(
z−1

)
=

0∏
i=(N−1)/(K−1)

(
K−1∑
k=0

BTikz
−(K−1−k)

)
. (5.49)

If PTM is not paraunitary, all factors have to be invertible in the unit circle for PR.
More strongly put, there must be factors Ci (z) of order K − 1 such that

Ci (z)Bi (z) = z−K+1IM . (5.50)

Then the inverse PTM is simply given by

G(z) =
0∏

i=(N−1)/(K−1)

Ci (z) . (5.51)

With this factorization, the design of F(z) is broken down to the design of Bi (z).
Lower-order factors simplify the constraint analysis and facilitate the design of a
useful transform, either paraunitary or invertible. It is even more desirable to factor
the PTM as

F(z) = B0

N−1∏
i=0

�(z)Bi (5.52)

where Bi are square matrices and �(z) is a paraunitary matrix containing only entries 1
and z−1. In this case, if the PTM is paraunitary

G(z) =

 0∏
i=N−1

BTi �̃(z)

BT0 (5.53)

where �̃(z) = z−1�(1/z). If the PTM is not paraunitary, then

G(z) =

 0∏
i=N−1

B−1
i �̃(z)

B−1

0 ; (5.54)

in other words, the design can be simplified by applying only invertible real matrices
Bi . This factorization approach is the basis for most useful LTs. It allows efficient
implementation and design. We will discuss some useful LTs later on. For example,
for M even, the symmetric delay factorization (SDF) is quite useful. In that,

�(z) =
[
z−1IM/2 0

0 IM/2

]
, �̃(z) =

[
IM/2 0

0 z−1IM/2

]
. (5.55)

The flow graph for implementing an LT which can be parameterized using SDF is
shown in Fig. 5.9.

If we are given the SDF matrices instead of the basis coefficients, one can easily
construct the LT matrix. For this, start with the last stage and recur the structure in
Eq. (5.52) using Eq. (5.55). Let P(i) be the partial reconstruction of P after including
up to the i-th stage. Then,

P(0) = BN−1 (5.56)

P(i) = BN−1−i
[

IM/2 0M/2 0M/2 0M/2
0M/2 0M/2 0M/2 IM/2

] [
P(i−1) 0M
0M P(i−1)

]
(5.57)

P = P(N−1) . (5.58)

Similarly, one can find Q from the factors B−1
i .

B0B1BN _2BN _1

BT
1

BT
0

BTBT

1

11

1

N 2N 1

z
_1

z
_1

z
_1

z
_1

(b)

(a)

É

É

É

É_ _

FIGURE 5.9
Flow graph for implementing an LT where F(z) can be factorized using symmet-
ric delays and N stages. Signals {x(n)} and {y(n)} are segmented and processed
using blocks of M samples, all branches carry M/2 samples, and blocks Bi are
M×M orthogonal or invertible matrices. (a) Forward transform section, (b) in-
verse transform section.

5.5 Hierarchical Connection of LTs: An Introduction

So far we have focused on the construction of a single LT resulting in M subband
signals. What happens if we cascade LTs by connecting them hierarchically in such
a way that a subband signal is the actual input for another LT? Also, what are the
consequences of submitting only part of the subband signals to further stages of LTs?
We will try to introduce the answers to these questions.

This subject has been intensively studied and many publications are available. Our
intent, however, is to provide only a basic introduction, while leaving more detailed
analysis to the references. Again, the relation between filter banks and discrete
wavelets [53, 63, 65] is well known. Under conditions that are easily satisfied [63],
an infinite cascade of filter banks will generate a set of continuous orthogonal wavelet
bases. In general, if only the lowpass subband is connected to another filter bank,
for a finite number of stages, we call the resulting filter bank a discrete wavelet
transform (DWT) [63, 65]. A free cascading of filter banks, however, is better known
as discrete wavelet packet (DWP) [7, 68, 34, 53]. As LTs and filter banks are generally
equivalent, the same relations apply to LTs and wavelets. The system resulting from
the hierarchical association of several LTs is called a hierarchical lapped transform
(HLT) [23].

5.5.1 Time-Frequency Diagram

The cascaded connection of LTs is better described with the aid of simplifying
diagrams. The first is the time-frequency (TF) diagram. It is based on the TF plane,

which is well known from the fields of spectral and time-frequency analysis [31, 3, 4].
The time-frequency representation of signals is a well-known method (for example
the time-dependent discrete Fourier transform — DFT — and the construction of
spectrograms; see for example [31, 3, 4] for details on TF signal representation). The
TF representation is obtained by expressing the signal {x(n)} with respect to bases
which are functions of both frequency and time. For example, the size-r DFT of a
sequence extracted from {x(n)} (from x(n) to x(n+ r − 1)) [31] can be

α(k, n) =
r−1∑
i=0

x(i + n) exp

(
−j2πki

r

)
. (5.59)

Using a sliding window w(m) of length r which is nonzero only in the interval
n ≤ m ≤ n + r − 1 (which in this case is rectangular), we can rewrite the last
equation as

α(k, n) =
∞∑

i=−∞
x(i)w(i) exp

(
−jk(i − n)2π

r

)
. (5.60)

For more general bases we may write

α(k, n) =
∞∑

i=−∞
x(i)φ(n− i, k) (5.61)

where φ(n, k) represents the bases for the space of the signal, n represents the index
where the base is located in time, and k is the frequency index.

ω
π

t
0 Nx Nx

(a)

ω
π

t
0 Nx

(c)

ω
π

t
0

(b)

FIGURE 5.10
Examples of rectangular partitions of the time-frequency plane for a signal which
has Nx samples. (a) Spectrogram with a Nx-length window, resulting in N2

x TF
samples, (b) input signal, no processing, (c) a transform such as the DCT or DFT
is applied to all Nx samples.

As the signal is assumed to have an infinite number of samples, consider a segment
of Nx samples extracted from signal {x(n)}, which can be extended in any fashion in
order to account for the overlap of the window of r samples outside the signal domain.

In such a segment we can construct a spectrogram with a resolution of r samples in
the frequency axis andNx samples in the time axis. Assuming a maximum frequency
resolution, we can have a window with length up to r = Nx . The diagram for the
spectrogram in this case is given in Fig. 5.10(a). We call such diagrams TF diagrams
because they indicate only the number of samples used in the TF representation of the
signal. Assuming an ideal partition of the TF plane (using filters with ideal frequency
response and null transition regions), each TF coefficient represents a distinct region
in a TF diagram. Note that in such representations, the signal is represented by N2

x

TF coefficients. We are looking for a maximally decimated TF representation which
is defined as a representation of the signal where the TF plane diagram would be
partitioned into Nx regions; Nx TF coefficients will be generated. Also, we require
that allNx samples of {x(n)} be able to be reconstructed from theNx TF coefficients.
If we use fewer than Nx samples in the TF plane, we clearly cannot reconstruct all
possible combinations of samples in {x(n)}, from the TF coefficients, using solely
linear relations.

Under these assumptions, Fig. 5.10(b) shows the TF diagram for the original signal
(only resolution in the time axis) for Nx = 16. Also, for Nx = 16, Fig. 5.10(c)
shows a TF diagram with maximum frequency resolution, which could be achieved
by transforming the original Nx-sample sequence with an Nx-sample DCT or DFT.

5.5.2 Tree-Structured Hierarchical Lapped Transforms

The tree diagram is helpful in describing the hierarchical connection of filter banks.
In this diagram we represent anM-band LT by nodes and branches of anM-ary tree.
Fig. 5.11(a) shows an M-band LT, where all the M subband signals have sampling
ratesM times smaller than that of {x(n)}. Fig. 5.11(b) shows the equivalent notation
for the LT in a tree diagram, i.e., a single-stage M-branch tree, which is called here
a tree cell. Recalling Fig. 5.10, the equivalent TF diagram for an M-band LT is
shown in Fig. 5.11(c), for a 16-sample signal and for M = 4. Note that the TF
diagram of Fig. 5.11(c) resembles that of Fig. 5.10(a). This is because for each
4 samples in {x(n)}, there is a corresponding set of 4 transformed coefficients. So,
the TF representation is maximally decimated. Compared to Fig. 5.10(b), Fig. 5.11(c)
implies an exchange of resolution from time to frequency domain achieved by the LT.

The exchange of resolution in the TF diagram can be obtained from the LT. As
we connect several LTs following the paths of a tree, each new set of branches (each
new tree cell) connected to the tree will force the TF diagram to exchange from time
to frequency resolution. We can achieve a more versatile TF representation by con-
necting cells in unbalanced ways. For example, Fig. 5.12 shows some examples of
HLTs given by their tree diagrams and respective TF diagrams. Fig. 5.12(a) depicts
the tree diagram for the 3-stages DWT. Note that only the lowpass subband is further
processed. Also, as all stages are chosen to be 2-channel LTs, this HLT can be rep-
resented by a binary tree. Fig. 5.12(b) shows a more generic hierarchical connection
of 2-channel LTs. First the signal is split into lowpass and highpass. Each output
branch is further connected to another 2-channel LT. In the third stage, only the most

x(n) x(n)
Blocking

and
PTM

y0(n)
y1(n)

y0(n)
y1(n)

yM _ 1(n) yM _ 1(n)

... ...

(a) (b) (c)

ω
π

t
0 Nx

FIGURE 5.11
Representation of an M-channel LT as tree nodes and branches. (a) Forward
section of an LT, including the blocking device. (b) Equivalent notation for (a)
using an M-branch single-stage tree. (c) Equivalent TF diagram for (a) or (b)
assuming M = 4 and Nx = 16.

lowpass subband signal is connected to another 2-channel LT. Fig. 5.12(c) shows a
2-stage HLT obtaining the same TF diagram as Fig. 5.12(b). Note that the succession
of 2-channel LTs was substituted by a single stage 4-channel LT, i.e., the signal is
split into four subbands and then one subband is connected to another LT. Fig. 5.12(d)
shows the TF diagram corresponding to Fig. 5.12(a), while Fig. 5.12(e) shows the TF
diagram corresponding to Figs. 5.12(b) and (c). The reader should note that, as the
tree paths are unbalanced, we have irregular partitions of the TF plane. For example,
in the DWT, low-frequency TF coefficients have poor time localization and good
frequency resolution, while high-frequency ones have poor frequency resolution and
better time localization.

ω
π

t
Nx

(a) (b) (c) (d) (e)

0

ω
π

t
Nx

0

FIGURE 5.12
Tree and TF diagrams. (a) The 3-stage DWT binary-tree diagram, where only
the lowpass subband is submitted to further LT stages. (b) A more generic 3-
stage tree diagram. (c) A 2-stage tree-diagram resulting in the same TF diagram
as (b). (d) TF diagram for (a). (e) TF diagram for (b) or (c).

To better understand how connecting an LT to the tree can achieve the exchange
between time and frequency resolutions, see Fig. 5.13 which plots the basis functions
resulting from two similar tree-structured HLTs.

FIGURE 5.13
Two HLTs and resulting bases. (a) The 2-channel 16-tap-bases LT, showing
low- and high-frequency bases, f0(n) and f1(n), respectively. (b) Resulting basis
functions of a 2-stage HLT based on (a), given by f0(n) through f3(n). Its
respective tree diagram is also shown. (c) Resulting HLT, by pruning one high-
frequency branch in (b). Note that the two high-frequency basis functions are
identical to the high-frequency basis function of (a), and, instead of having two
distinct bases for high frequencies, occupying distinct spectral slots, the two
bases are, now shifted in time. Thus, better time localization is attainable, at the
expense of frequency resolution.

5.5.3 Variable-Length LTs

In the tree-structured method to cascade LTs, every time an LT is added to the
structure, more subbands are created by further subdividing previous subbands, so
the overall TF diagram of the decomposition is altered. There is a useful alternative
to the tree structure in which the number of subbands does not change. See Fig. 5.14,
where the “blocking” part of the diagram corresponds to the chain of delays and

decimators (as in Fig. 5.8) that parallelizes the signal into polyphase components.
System A(z) ofM bases of lengthNAM is postprocessed by system B(z) ofK bases

•
•
•

•••

FIGURE 5.14
Cascadeof PTMsA (z) ofM channelsandB (z) ofK channels.Thetotalnumber
of subbandsdoesnotchange;however, someof A (z) basesare increasedin length
andorder.

of length NBK . Clearly, entries in A(z) have order NA − 1, and entries in B(z) have
order NB − 1. Without loss of generality we associate system B(z) to the first K
output subbands of A(z). The overall PTM is given by

F(z) =
[

B(z) 0
0 IM−K

]
A(z) , (5.62)

where F(z) hasK bases of orderNA+NB −2 andM−K bases of orderNA−1. As
the resulting LT has M channels, the final orders dictate that the first K bases have
length (NA + NB − 1)M while the others still have length NAM . In other words,
the effect of cascading A(z) and B(z) was only to modify K bases, so the length
of the modified bases is equal to or larger than the length of the initial bases. An
example is shown in Fig. 5.15. We start with the bases corresponding to A(z), shown
in Fig. 5.15(a). There are 8 bases of length 16 so that A(z) has order 1. A(z) is
postprocessed by B(z) which is a 4×4 PTM of order 3, whose corresponding bases
are shown in Fig. 5.15(b). The resulting LT is shown in Fig. 5.15(c). There are
4 bases of length 16, and 4 of length 40. The shorter ones are identical to those in
Fig. 5.15(a), while the longer ones have order which is the sum of the orders of A(z)
and B(z), i.e., order 4, and the shape of the longer bases in F(z) is very different than
the corresponding ones in A(z).

The effect of postprocessing some bases is a means to construct a new LT with
larger bases from an initial one. In fact it can be shown that variable length LTs can
be factorized using postprocessing stages [60, 59]. A general factorization of LTs is
depicted in Fig. 5.16. Assume a variable-length F(z) whose bases are arranged in

FIGURE 5.15
Example of constructing variable-length bases through cascading LTs. (a) The
basis corresponding to A(z): an LT with 8 bases of length 16 (order 1). (b) The
basis corresponding to B(z): an LT with 4 bases of length 16 (order 3). (c) The
basis corresponding to F(z): 4 of the 8 bases have order 1, i.e., length 16, while
the remaining 4 have order 4, i.e., length 40.

decreasing length order. Such a PTM can be factorized as

F(z) =
M−2∏
i=0

[
Bi (z) 0

0 Ii

]
(5.63)

where I0 is understood to be nonexisting and Bi (z) has size (M − i)× (M − i). The
factors Bi can have individual ordersKi and can be factorized differently into factors
Bik(z) for 0 ≤ k < Ki . Hence,

F(z) =
M−2∏
i=0

Ki−1∏
k=0

[
Bik(z) 0

0 Ii

]
. (5.64)

A later section presents a very useful LT based on the factorization principles of
Eq. (5.64).

FIGURE 5.16
General factorization of a variable-length LT.

5.6 Practical Symmetric LTs

We have discussed LTs in a general sense as a function of several parameters, such
as matrix entries, orthogonal, or invertible factors. The design of an LT suitable for
a given application is the single most important step in the study of LTs. In order to
do that, one may factorize the LT to facilitate optimization techniques.

An LT with symmetric bases is commonly used in image/video processing and
compression applications. By symmetric bases we mean that the entries pij of P
obey

pi,j = (±1) pi,L−1−j . (5.65)

The bases can be either symmetric or antisymmetric. In terms of the PTM, this
constraint is given by

F(z) = z−(N−1)SF
(
z−1

)
JM , (5.66)

where S is a diagonal matrix whose diagonal entries sii are ±1, depending on whether
the i-th basis is symmetric (+1) or anti-symmetric (-1). Note that we require that all
bases share the same center of symmetry.

5.6.1 The Lapped Orthogonal Transform: LOT

The lapped orthogonal transform (LOT) [18, 19, 20] was the first useful LT with
a well-defined factorization. Malvar developed the fast LOT based on the work by
Cassereau [5] to provide not only a factorization, but a factorization based on the
DCT. The DCT is attractive for many reasons, among them, fast implementation and
near-optimal performance for block transform coding [45]. Also, since it is a popular
transform, it has a reduced cost and is easily available in either software or hardware.
The DCT matrix D is defined as having entries

dij =
√

2

M
ki cos

(
(2j + 1)iπ

2M

)
(5.67)

where k0 = 1 and ki = 1/
√

2, for 1 ≤ i ≤ M − 1.
The LOT as defined by Malvar [20] is orthogonal. Then, according to our notation,

P = Q and H−1 = HT . It is also a symmetric LT with M even. The LT matrix is
given by

PLOT =
[

IM 0
0 VR

] [
De − Do JM/2 (De − Do)

De − Do −JM/2 (De − Do)

]
(5.68)

where De is theM/2×M matrix with the even-symmetric basis functions of the DCT,
and Do is the matrix of the same size with the odd-symmetric ones. In our notation,
De also corresponds to the even numbered rows of D, and Do corresponds to the odd
numbered rows of D. VR is an M/2 ×M/2 orthogonal matrix, which according to
Malvar and Staelin [20] and Malvar [26] should be approximated by M/2 − 1 plane
rotations as

VR =
0∏

i=M
2 −2

� (i, i + 1, θi) (5.69)

where � is defined in Section 5.1.4. Suggestions of rotation angles that were designed
to yield a good transform for image compression are [26]

M = 4 → θ0 = 0.1π (5.70)

M = 8 → {θ0, θ1, θ2} = {0.13, 0.16, 0.13} × π (5.71)

M = 16 → {θ0, . . . , θ7}
= {0.62, 0.53, 0.53, 0.50, 0.44, 0.35, 0.23, 0.11} × π . (5.72)

For M ≥ 16 it is suggested to use

VR = DT
IVDT (5.73)

where DIV is the DCT type IV matrix [45] whose entries are

dIVij =
√

2

M
cos

(
(2j + 1)(2i + 1)π

4M

)
. (5.74)

A block diagram for the implementation of the LOT is shown in Fig. 5.17 for
M = 8.

5.6.2 The Lapped Bi-Orthogonal Transform: LBT

The LOT is a great improvement over the DCT for image compression mainly
because it reduces the so-called blocking effects. Although largely reduced, blocking
is not eliminated because the format of the low frequency bases of LOT. In image
compression, only a few bases are used to reconstruct the signal. From Fig. 5.4, one
can see that the “tails” of the lower frequency bases of the LOT do not decay exactly

FIGURE 5.17
Implementation of the LOT for M = 8. Top: forward transform; bottom:
inverse transform.

to zero. For this reason, there is some blocking effect left in images compressed using
the LOT at lower bit rates.

To help resolve this problem, Malvar recently proposed to modify LOT, creating
the lapped bi-orthogonal transform (LBT) [28]. (Bi-orthogonal is a common term in
the filter banks community to designate PR transforms and filter banks that are not
orthogonal.) In any case, the factorization of the LBT is almost identical to that of
the LOT. However,

PLBT =
[

IM 0
0 VR

] [
De − ϒDo JM/2 (De − ϒDo)

De − ϒDo −JM/2 (De − ϒDo)

]
(5.75)

where ϒ is the M/2 × M/2 diagonal matrix given by ϒ = diag{√2, 1, . . . , 1}.
Note that it implies only that one of the DCT’s output is multiplied by a constant.
The inverse is given by the LT QLBT which is found in an identical manner as in
Eq. (5.75) except that the multiplier is inverted; ϒ = diag{1/√2, 1, . . . , 1}. The
diagram for implementing an LBT for M = 8 is shown in Fig. 5.18.

Because of the multiplicative factor, the LT is no longer orthogonal. However, the
factor is very easily inverted. The result is a reduction of amplitude of lateral samples
of the first bases of LOT into the new bases of the forward LBT, as seen in Fig. 5.19. In
Fig. 5.19 the reader can note the reduction in the amplitude of the boundary samples

FIGURE 5.18
Implementation of the LBT for M = 8. Top: forward transform; bottom:
inverse transform. Note that there is only one extra multiplication as compared
to LOT.

of the inverse LBT and an enlargement of the same samples in the forward LBT.
This simple “trick” noticeably improves the performance of the LOT/LBT for image
compression at negligible overhead. Design of the other parameters of the LOT are
not changed. It is recommended to use LBT instead of LOT whenever orthogonality
is not a crucial constraint.

Another LBT with high practical value is LiftLT [62]. Instead of parameterizing
the orthogonal matrix VR in Eq. (5.69) by rotation angles, a series of dyadic lifting
steps are used to construct VR , as shown in Fig. 5.20. The VR matrix is still invertible,
but no longer orthogonal. Hence, the LiftLT is a bi-orthogonal LT. The

√
2 factor in

the Malvar’s LBT can be replaced by a rational number to facilitate finite-precision
implementations. A good rational scaling factor is 25

16 for the forward transform, and
16
25 for the inverse transform. The LiftLT offers a VLSI-friendly implementation using
integer (even binary) arithmetic. Yet, it does not sacrifice anything in coding perfor-
mance. It achieves 9.54 dB coding gain (a popular objective measure of transform
performance to be described later), compared to LOT’s 9.20 dB and LBT’s 9.52 dB.
It is the first step towards LTs that can map integers to integers and multiplierless LTs
that can be implemented using only shift-and-add operations.

FIGURE 5.19
Comparison of bases for the LOT (PLOT), inverse LBT (QLBT), and forward
LBT (PLBT). The extreme samples of the lower frequency bases of the LOT are
larger than those of the inverse LBT. This is an advantage for image compression.

FIGURE 5.20
Parameterization of the VR matrix using dyadic lifting steps in the LiftLT.

5.6.3 The Generalized LOT: GenLOT

The formulation for LOT [20] that is shown in Eq. (5.68) is not the most general
there is for this kind of LT. In fact, it can be generalized to become

P =
[

U 0
0 V

] [
De − Do JM/2 (De − Do)

De − Do −JM/2 (De − Do)

]
. (5.76)

As long as U and V remain orthogonal matrices, LT is orthogonal. In terms of the
PTM, F(z) can be similarly expressed. Let

W = 1√
2

[
IM/2 IM/2
IM/2 −IM/2

]
, (5.77)

�i =
[

Ui 0M/2
0M/2 Vi

]
, (5.78)

�(z) =
[

IM/2 0M/2
0M/2 z−1IM/2

]
, (5.79)

and let D be the M ×M DCT matrix. Then, for the general LOT,

F(z) = �1W�(z)WD . (5.80)

Where U1 = U and V1 = −V. Note that the regular LOT is the case where U1 = IM/2
and V1 = −VR . The implementation diagram for M = 8 is shown in Fig. 5.21.

FIGURE 5.21
Implementation of a more general version of the LOT forM = 8. Top: forward
transform; bottom: inverse transform.

From this formulation, along with other results, it was realized [40] that all orthog-
onal symmetric LTs can be expressed as

F(z) = KN−1(z)KN−2(z) · · · K1(z)K0 (5.81)

where

Ki (z) = �iW�(z)W , (5.82)

and where K0 is any orthogonal symmetric matrix. The inverse is given by

G(z) = KT
0 K′

1(z)K
′
2(z) · · · K′

N−1(z) (5.83)

where

K′
i (z) = z−1W�

(
z−1

)
W�T

i . (5.84)

From this perspective, the generalized LOT (GenLOT) is defined as the orthogonal
LT, as in Eq. (5.81) in which K0 = D; i.e.,

F(z) = KN−1(z) · · · K1(z)D . (5.85)

A diagram for implementing a GenLOT for even M is shown in Fig. 5.22. In this
diagram, the scaling parameters are β = 2−(N−1) and account for the terms 1/

√
2 in

the definition of W.
The degrees of freedom of a GenLOT are the orthogonal matrices Ui and Vi . There

are 2(N − 1) matrices to optimize, each of size M/2 × M/2. From Section 5.1.4
we know that each one can be factorized into M(M − 2)/8 rotations. Thus, the total
number of rotations is (L − M)(M − 2)/4, which is less than the initial number
of degrees of freedom in a symmetric M × L matrix, LM/2. However, it is still a
large number of parameters to design. In general, GenLOTs are designed through
nonlinear unconstrained optimization. Rotation angles are searched to minimize
some cost function. GenLOT examples are given elsewhere [40], and we present two
examples, for M = 8, in Tables 5.1 and 5.2, which are also plotted in Fig. 5.23.

In the case when M is odd, the GenLOT is defined as

F(z) = K(N−1)/2(z) · · · K1(z)D (5.86)

where the stages Ki have necessarily order 2 as:

Ki (z) = �o
2iW

o�o1(z)Wo�o
2i−1Wo�o2(z)Wo (5.87)

and where

�o
2i =

[
U2i 0
0 V2i

]
, (5.88)

�o
2i−1 =

 U2i−1 0

1
0 V2i−1

 , (5.89)

Wo =

 I(M−1)/2 0(M−1)/2×1 I(M−1)/2

01×(M−1)/2 1 01×(M−1)/2
I(M−1)/2 0(M−1)/2×1 −I(M−1)/2

 , (5.90)

�o1(z) = diag

1, 1, . . . , 1︸ ︷︷ ︸
(M+1)/2×1′s

, z−1, . . . , z−1︸ ︷︷ ︸
(M−1)/2×z−1

 , (5.91)

FIGURE 5.22
Implementation of a GenLOT for even M , (M = 8). Forward and inverse
transforms are shown along with details of each stage. β = 2−(N−1) accounts
for all terms of the form 1/

√
2 which make the butterflies (W) orthogonal.

�o2(z) = diag

1, 1, . . . , 1︸ ︷︷ ︸
(M−1)/2×1′s

, z−1, . . . , z−1︸ ︷︷ ︸
(M+1)/2×z−1

 . (5.92)

Although it may seem that the formulation of the odd-channel case is more complex
than the one for the even-M case, the implementation is very similar in complexity
as shown in Fig. 5.24. The main difference is that two stages have to be connected.
The inverse transform is accomplished in the same way as for the even channel case:

G(z) = DT K′
1(z)K

′
2(z) · · · K′

N−1(z) (5.93)

Table 5.1 GenLOT Example for N = 4. The Even Bases are Symmetric while the
Odd Ones are Anti-Symmetric, so Only their First Half is Shown

p0n p1n p2n p3n p4n p5n p6n p7n

0.004799 0.004829 0.002915 −0.002945 0.000813 −0.000109 0.000211 0.000483

0.009320 −0.000069 −0.005744 −0.010439 0.001454 0.003206 0.000390 −0.001691

0.006394 −0.005997 −0.011121 −0.010146 0.000951 0.004317 0.000232 −0.002826

−0.011794 −0.007422 −0.001800 0.009462 −0.001945 −0.001342 −0.000531 0.000028

−0.032408 −0.009604 0.008083 0.031409 −0.005262 −0.007504 −0.001326 0.003163

−0.035122 −0.016486 0.001423 0.030980 −0.005715 −0.006029 −0.001554 0.001661

−0.017066 −0.031155 −0.027246 0.003473 −0.003043 0.005418 −0.000789 −0.005605

0.000288 −0.035674 −0.043266 −0.018132 −0.000459 0.013004 −0.000165 −0.010084

−0.012735 −0.053050 0.007163 −0.083325 0.047646 0.011562 0.048534 0.043066

−0.018272 −0.090207 0.131531 0.046926 0.072761 −0.130875 −0.089467 −0.028641

0.021269 −0.054379 0.109817 0.224818 −0.224522 0.136666 0.022488 −0.025219

0.126784 0.112040 −0.123484 −0.032818 −0.035078 0.107446 0.147727 0.109817

0.261703 0.333730 −0.358887 −0.379088 0.384874 −0.378415 −0.339368 −0.216652

0.357269 0.450401 −0.292453 −0.126901 −0.129558 0.344379 0.439129 0.317070

0.383512 0.369819 0.097014 0.418643 −0.419231 0.045807 −0.371449 −0.392556

0.370002 0.140761 0.478277 0.318691 0.316307 −0.433937 0.146036 0.427668

where the inverse factors are

K′
i (z) = z−2KT

i

(
z−1

)
, (5.94)

whose structure is evident from Fig. 5.24.

5.6.4 The General Factorization: GLBT

The general factorization for all symmetric LTs [61] can be viewed either as an
extension of GenLOTs or as a generalization of the LBT. ForM even, all LTs obeying
Eq. (5.65) or Eq. (5.66) can be factorized as in Eq. (5.81), where the Ki (z) factors
are given in Eq. (5.82) with the matrices Ui and Vi (which compose �i) being
required only to be general invertible matrices. From Section 5.1.4, each factor can
be decomposed as

Ui = UiBUidUiA , Vi = ViBVidViA , (5.95)

where UiA, UiB , ViA, and ViB are general M/2 ×M/2 orthogonal matrices, while
Uid and Vid are diagonal matrices with nonzero diagonal entries.

The first factor K0 is given by

K0 = �0W , (5.96)

where �i is given as in Eq. (5.78), and factors U0 and V0 are required only to be
invertible. The general factorization can be viewed as a generalized LBT (GLBT)
and its implementation flow graph for M is even shown in Fig. 5.25.

Table 5.2 GenLOT Example for N = 6. The Even Bases are Symmetric while the
Odd Ones are Anti-Symmetric, so Only their First Half is Shown

p0n p1n p2n p3n p4n p5n p6n p7n

−0.000137 −0.000225 0.000234 0.000058 −0.000196 −0.000253 0.000078 0.000017

−0.000222 −0.000228 0.000388 0.000471 0.000364 0.000163 −0.000220 −0.000283

0.001021 0.000187 0.002439 0.001211 −0.000853 −0.002360 0.000157 −0.000823

0.000536 0.000689 0.000029 0.000535 0.000572 0.000056 0.000633 0.000502

−0.001855 0.000515 −0.006584 −0.002809 0.003177 0.006838 −0.000886 0.001658

0.001429 0.001778 −0.000243 0.000834 0.000977 −0.000056 0.001687 0.001429

0.001440 0.001148 0.000698 0.000383 0.000109 −0.000561 −0.000751 −0.001165

0.001056 0.001893 0.002206 0.005386 0.005220 0.001676 0.001673 0.000792

0.009734 0.002899 0.018592 0.004888 −0.006600 −0.018889 −0.000261 −0.006713

−0.005196 −0.013699 −0.008359 −0.021094 −0.020406 −0.009059 −0.012368 −0.005263

−0.000137 −0.001344 −0.027993 −0.028046 0.026048 0.024169 −0.001643 −0.000402

−0.007109 −0.002130 0.002484 0.013289 0.013063 0.002655 −0.002180 −0.006836

−0.011238 −0.002219 0.033554 0.062616 −0.058899 −0.031538 −0.001404 0.004060

−0.020287 −0.006775 0.003214 0.019082 0.018132 0.004219 −0.006828 −0.019040

−0.028214 −0.018286 −0.059401 −0.023539 0.024407 0.056646 0.009849 0.021475

−0.034379 −0.055004 −0.048827 −0.052703 −0.051123 −0.048429 −0.049853 −0.031732

−0.029911 −0.106776 0.070612 −0.088796 0.086462 −0.066383 0.097006 0.031014

−0.004282 −0.107167 0.197524 0.049701 0.051188 0.193302 −0.104953 −0.006324

0.058553 −0.026759 0.144748 0.241758 −0.239193 −0.143627 0.020370 −0.048085

0.133701 0.147804 −0.123524 0.026563 0.025910 −0.125263 0.147501 0.130959

0.231898 0.330343 −0.376982 −0.365965 0.366426 0.377886 −0.332858 −0.228016

0.318102 0.430439 −0.312564 −0.174852 −0.174803 −0.314092 0.431705 0.317994

0.381693 0.368335 0.061832 0.393949 −0.395534 −0.060887 −0.369244 −0.384842

0.417648 0.144412 0.409688 0.318912 0.319987 0.411214 0.145256 0.419936

The inverse GLBT is similar to the GenLOT case, where

K′
i (z) = z−1W�(z)W�−1

i (5.97)

and

�−1
i =

[
U−1
i 0M/2

0M/2 V−1
i

]
=

[
UT
iAU−1

id UT
iB 0M/2

0M/2 VT
iAV−1

id VT
iB

]
(5.98)

while

K−1
0 = W�−1

0 . (5.99)

The diagram for the implementation of the inverse stages of the GLBT is shown in
Fig. 5.25. Examples of bases for the GLBT of particular interest to image compression
are given in Tables 5.3 and 5.4.

For the odd case, the GLBT can be similarly defined. It follows the GenLOT
factorization:

F(z) = K(N−1)/2(z) · · · K1(z)K0 (5.100)

FIGURE 5.23
Example of optimized GenLOT bases forM = 8 and forN = 4 (left) andN = 6
(right).

Table 5.3 Forward GLBT Bases Example for M = 8 and N = 2. The Even
Bases are Symmetric while the Odd Ones are Anti-Symmetric, so Only their First
Half is Shown
p0n p1n p2n p3n p4n p5n p6n p7n

−0.21192 −0.18197 0.00011 −0.09426 0.03860 −0.03493 0.04997 0.01956

−0.13962 −0.19662 0.16037 0.05334 0.09233 0.12468 −0.09240 −0.03134

−0.03387 −0.09540 0.17973 0.25598 −0.24358 −0.12311 0.01067 −0.01991

0.09360 0.10868 −0.06347 −0.01332 −0.05613 −0.10218 0.16423 0.11627

0.23114 0.34101 −0.36293 −0.39498 0.42912 0.36084 −0.35631 −0.22434

0.35832 0.46362 −0.35056 −0.16415 −0.13163 −0.31280 0.47723 0.31907

0.46619 0.42906 0.00731 0.42662 −0.45465 −0.07434 −0.40585 −0.38322

0.53813 0.22604 0.42944 0.36070 0.32595 0.43222 0.15246 0.39834

where the stages Ki are as in Eq. (5.87) with the following differences: (i) all factors
Ui and Vi are only required to be invertible; (ii) the center element of �2i−1 is a
nonzero constant u0 and not 1. Again K0 is a symmetric invertible matrix. Forward
and inverse stages for the odd-channel case are illustrated in Fig. 5.26.

FIGURE 5.24
Implementation of a GenLOT for M odd. Forward and inverse transforms are
shown along with details of each stage and β = 2−(N−1).

5.7 The Fast Lapped Transform: FLT

The motivation behind the fast lapped transform (FLT) is to design an LT with
minimum possible complexity compared to a block transform, yet to provide some
advantages over a block transform. For that we use the principles of Section 5.5.3
and define the FLT as the LT whose PTM is given by

F(z) =
[

E(z) 0
0 IM−K

]
DM (5.101)

FIGURE 5.25
Implementation of the factors of the general factorization (GLBT) for M even.
Top: factor of the forward transform, Ki (z). Bottom: factor of the inverse
transform, K′

i (z).

where E(z) is a K × K PTM and DM is the M × M DCT matrix. The PTM for the
inverse LT is given by

G(z) = DT
M

[
E′(z) 0

0 IM−K

]
, (5.102)

where E′(z) is the inverse of E(z).
The design of E(z) can be done in two basic ways. Firstly, one can use direct

optimization. Secondly, one can design E(z) as

E(z) = �(z)DT
K (5.103)

where �(z) is a known LT and DK is the K × K DCT matrix; in other words, we
perform an inverse DCT followed by a known LT. For example, if �(z) is the LOT,
GenLOT, or LBT of K channels, the first stage (DK) cancels the inverse DCT. Exam-
ples of FLT are given in Fig. 5.27. In that example, the first case where K = 2, direct
optimization is recommended, for which the values {α00, α01, α10, α11, α20, α21} =
{1.9965, 1.3193, 0.4388, 0.7136, 0.9385, 1.2878} yield an excellent FLT for image
compression. In the middle of Fig. 5.27 the case K = 4 can be optimized by opti-
mizing two invertible matrices. In the case where we use the method in Eq. (5.103)

Table 5.4 Inverse GLBT Bases Example for M = 8 and N = 2. The Even
Bases are Symmetric while the Odd Ones are Anti-Symmetric, so Only their
First Half is Shown
p0n p1n p2n p3n p4n p5n p6n p7n

0.01786 −0.01441 0.06132 0.01952 0.05243 0.05341 0.04608 0.08332

0.05692 −0.01681 0.16037 0.12407 0.04888 0.16065 −0.09042 −0.02194

0.10665 0.06575 0.12462 0.24092 −0.21793 −0.13556 0.02108 −0.00021

0.16256 0.20555 −0.12304 −0.03560 −0.02181 −0.08432 0.13397 0.12747

0.22148 0.34661 −0.38107 −0.35547 0.36530 0.39610 −0.30170 −0.23278

0.27739 0.40526 −0.32843 −0.12298 −0.12623 −0.35462 0.41231 0.34133

0.32711 0.33120 0.03939 0.38507 −0.38248 −0.08361 −0.35155 −0.40906

0.36617 0.13190 0.44324 0.30000 0.28191 0.45455 0.13232 0.41414

FIGURE 5.26
Implementation of the factors of the general factorization (GLBT) for M odd.
Top: factor of the forward transform, Ki (z). Bottom: factor of the inverse
transform, K′

i (z).

and the LBT as the K channel postprocessing stage, we can see that the LBT’s DCT
stage is canceled, yielding a very simple flow graph. The respective bases for for-
ward and inverse transforms for the two FLTs (K = 2 with the given parameters, and
K = 4 using the LBT) are shown in Fig. 5.28. Both bases are excellent for image
coding, virtually eliminating ringing, despite the minimal complexity added to the
DCT (which by itself can be implemented in a very fast manner [45]).

FIGURE 5.27
Implementation of examples of the FLT. On top, K = 2; middle, case K = 4;
bottom, case K = 4 where �(z) is the LBT, thus having its DCT stage canceled.

5.8 Modulated LTs

Cosine modulated LTs or filter banks [63] use a lowpass prototype to modulate a
cosine sequence. By a proper choice of the phase of the cosine sequence, Malvar
developed the modulated lapped transform (MLT) [21], which led to the so-called
extended lapped transforms (ELT) [24]–[27]. ELT allows several overlapping factors,
generating a family of orthogonal cosine modulated LTs. Both designations (MLT
and ELT) are frequently applied to this class of filter banks. Other cosine-modulation
approaches have also been developed and the most significant difference among them
is the lowpass prototype choice and the phase of the cosine sequence [17, 21, 25, 26,
30, 33, 48, 49, 55, 56, 63].

FIGURE 5.28
Bases of the FLT in the case M = 8 for forward and inverse LTs. From left to
right: forward transform bases for the case K = 2; inverse transform bases for
the case K = 2; forward transform bases for the case K = 4; inverse transform
bases for the case K = 4. The remaining bases, not shown, are the regular bases
of the DCT and have length 8.

In the ELTs, the filters’ length L is basically an even multiple of the block size M ,
as L = NM = 2KM . Thus, K is referred to as the overlap factor of the ELT. The
MLT-ELT class is defined by

pk,n = h(n) cos

[(
k + 1

2

)((
n − L − 1

2

)
π

M
+ (N + 1)

π

2

)]
(5.104)

for k = 0, 1 . . . ,M − 1 and n = 0, 1, . . . , L − 1. h(n) is a symmetric window
modulating the cosine sequence and the impulse response of a lowpass prototype
(with cutoff frequency at π/2M), which is translated in frequency to M different
frequency slots in order to construct the LT. A very useful ELT is the one with K = 2,
which will be designated as ELT-2, while ELT with K = 1 will be referred to as the
MLT.

A major plus of the ELTs is its fast implementation algorithm. The algorithm is
based on a factorization of the PTM into a series of plane rotation stages and delays
and a DCT type IV [45] orthogonal transform in the last stage, which also has fast
implementation algorithms. The lattice-style algorithm is shown in Fig. 5.29 for an
ELT with generic overlap factorK . In Fig. 5.29, each branch carriesM/2 samples, and
both analysis (forward transform) and synthesis (inverse transform) flow graphs are
shown. The plane rotation stages are of the form indicated in Fig. 5.30 and contain
M/2 orthogonal butterflies to implement the M/2 plane rotations. The stages �i

contain the plane rotations and are defined by

�i =
[−Ci SiJM/2

JM/2Si JM/2CiJM/2

]
, (5.105)

Ci = diag
{

cos
(
θ0,i

)
, cos

(
θ1,i

)
, . . . , cos

(
θM

2 −1,i

)}
,

Si = diag
{

sin
(
θ0,i

)
, sin

(
θ1,i

)
, . . . , sin

(
θM

2 −1,i

)}
,

where θi,j are rotation angles. These angles are the free parameters in the design of
an ELT because they define the modulating window h(n). Note that there are KM

angles, while h(n) has 2KM samples; however, h(n) is symmetric which brings the
total number of degrees of freedom to KM .

Θ K _ 1 Θ K _ 2 Θ 1

z _2 z _2

Θ 0

z _1

1 1 1

DCT IV

Θ K _ 1 Θ K _ 2 Θ 1

1 1 1

z _2 z _1z _2

Θ 0 DCT IV

…
…

…
…

FIGURE 5.29
Flow graph for the direct (top) and inverse (bottom) ELT. Each branch carries
M/2 samples.

In general, there is no simple relationship among the rotation angles and the window.
Optimized angles for several values of M and K are presented in the extensive tables
in [26]. In the ELT-2 case, however, one can use a parameterized design [25]–[27].
In this design, we have

θk,0 = −π

2
+ µM/2+k (5.106)

θk,1 = −π

2
+ µM/2−1−k (5.107)

where

µi =
[(

1 − γ

2M

)
(2k + 1) + γ

]
(5.108)

input output

0 0

M / 2 _ 1 M / 2 _ 1

M / 2M / 2

M _ 1M _ 1

θο

sin θ

sin θ

cos θ

_ cos θ

θ M _
1

2

⇔

θ

FIGURE 5.30
Implementation of the plane rotations stage showing the displacement of the
M/2 butterflies.

and γ is a control parameter, for 0 ≤ k ≤ (M/2) − 1. In general, although subop-
timal for individual applications, γ = 0.5 provides a balanced trade-off of stopband
attenuation and transition range for the equivalent filters (which are the bases of the
LT viewed as a filter bank). The equivalent modulating window h(n) is related to the
angles as

h(n) = cos (θn0) cos (θn1)

h(M − 1 − n) = cos (θn0) sin (θn1)

h(M + n) = sin (θn0) cos (θn1)

h(2M − 1 − n) = − sin (θn0) sin (θn1) (5.109)

for 0 ≤ n ≤ (M/2) − 1. In the K = 1 case, some example angles are

θk0 = π

2
− π

2M

(
k + 1

2

)
(5.110)

for 0 ≤ k ≤ (M/2) − 1. The corresponding modulating window h(n) is

h(n) = h(2M − 1 − n) = − cos (θn0)

h(M + n) = h(M − 1 − n) = − sin (θn0) (5.111)

for 0 ≤ n ≤ (M/2)− 1. The bases for the ELT using the suggested angles are shown
in Fig. 5.31. In this figure, the 8-channel examples are for N = 2 (K = 1) and for
N = 4 (K = 2).

FIGURE 5.31
Example of ELT bases for the given angles design method for M = 8. Left:
K = 1, N = 2, right: K = 2, N = 4.

5.9 Finite-Length Signals

Since the LT matrices are not square, in order to obtain n transformed subband sam-
ples one has to process more than n samples of the input signal. For the same reason,
n subband samples generate more than n signal samples after inverse transformation.
Our analysis so far has assumed infinite-length signals. Processing finite-length sig-
nals, however, is not trivial. Without proper consideration, there will be a distortion
in the reconstruction of the boundary samples of the signal. There are basically three
methods to process finite-length signals with LTs:

• signal extension and windowing of subband coefficients;

• same as above but using different extensions for different bases;

• time-varying bases for the boundary regions.

We discuss only the first method. The second is applicable only to a few transforms
and filter banks. The subject of time-varying LTs is very rich and provides solutions
to several problems, including the processing of boundary samples; we do not cover
it in this chapter, but the reader is referred to [34, 9, 38, 52, 35] and their references
for further information on time-varying LTs.

5.9.1 Overall Transform

Here we assume the model of extension and windowing described in Fig. 5.32 [39].
The input vector x is assumed to have Nx = NBM samples and is divided into
3 sections: xT = [xTl , xTc , xTr], where xl and xr contain the first and last λ samples
of x, respectively. Following the signal extension model, x is extended into x̃ as

x̃T =
[
xTe,l, xT , xTe,r

]
=

[
(Rlxl)

T , xTl , xTc , xTr , (Rrxr)T
]
. (5.112)

In other words, the extended sections are found by a linear transform of the boundary
samples of x, as shown in Fig. 5.33; i.e.,

xe,l = Rlxl , xe,r = Rrxr (5.113)

and Rl and Rr are arbitrary λ×λ “extension” matrices. For example, Rl = Rr = Jλ
yields a symmetric extension.

 linear
extension

 linear
extension

windowing

windowing

For. LT

Inv. LT

(a)

(b)

x

y

y

x--

FIGURE 5.32
Extension and windowing in transformation of a finite-length signal using LTs.
(a) Overall forward transform section. (b) Overall inverse transform section.

The transformation from the Nx + 2λ samples in x̃ to vector y with NBM = Nx

subband samples is achieved through the block-banded matrix P̃:

P̃ =

. . .
. . . 0

P0 P1 · · · PN−1
P0 P1 · · · PN−1

P0 P1 · · · PN−1

0 . . .
. . .

. (5.114)

Note that there are NB block rows and that λ = (N−1)M/2. The difference between
P̃ and H, defined in Eq. (5.21), is that H is assumed to be infinite and P̃ is assumed
to have only NB block rows. We can use the same notation for Q̃ with respect to
Qi , so that, again, the difference between Q̃ and H′ defined in Eq. (5.32) is that H′ is
assumed to be infinite and Q̃ is assumed to have only NB block rows. The forward
and inverse transform systems are given by

ỹ = P̃x̃ , ¯̃x = Q̃
T

ỹ . (5.115)

x

xcxlxe,l xr xe,r

λ λ λNs _ 2λλ

~x

FIGURE 5.33
Illustration of signal extension of vector x into vector x̃. At each border, λ =
(L − M)/2 samples outside the initial signal boundaries are found by linear
relations applied to the λboundary samples of x, i.e., xe,l = Rlxl and xe,r = Rrxr .
As only λ samples are affected across the signal boundaries, it is not necessary
to use an infinite-length extension. Also, xl and xr contain the samples possibly
affected by the border distortions after the inverse transformation.

In the absence of quantization or processing of the subband signals, ỹ = y and

¯̃x = Q̃
T

ỹ = Q̃
T

P̃x̃ = T̃x̃ (5.116)

where ¯̃x is the reconstructed vector in the absence of quantization, and T̃ = Q̃
T

P̃ is
the transform matrix between ¯̃x and x̃. Note that T̃ has size (Nx + λ) × (Nx + λ)

because it maps two extended signals. From Eq. (5.35) we can easily show that the
transform matrix is

T̃ = Q̃
T

P̃ =

 Tl 0

INx−2λ

0 Tr

 (5.117)

where Tl and Tr are some 2λ × 2λ matrices. Thus, distortion is incurred only to the
λ boundary samples in each side of x (2λ samples in each side of x̃).

In another view of the process, regardless of the extension method, there is a
transform T such that

y = Tx , x̄ = T−1ȳ (5.118)

without resorting to signal extension. The key is to find T and to invert it. If T
is made orthogonal, one can easily invert it by applying transposition. This is the

concept behind the use of time-varying LTs for correcting boundary distortions. For
example, the LT can be changed near the borders to ensure the orthogonality of T [38].
We will not use time-varying LTs here but rather use extended signals and transform
matrices.

5.9.2 Recovering Distorted Samples

Let

[
�l

∣∣�r

] =

P0 P1 · · · PN−2 PN−1 0
P0 P1 · · · PN−2 PN−1

. . .
. . .

. . .
. . .

0 P0 P1 · · · PN−2 PN−1

 ,

(5.119)

[
� l

∣∣�r

] =

Q0 Q1 · · · QN−2 QN−1 0
Q0 Q1 · · · QN−2 QN−1

. . .
. . .

. . .
. . .

0 Q0 Q1 · · · QN−2 QN−1

 .

(5.120)

Hence,

Tl = �T
l �l , Tr = �T

r �r . (5.121)

If ¯̃x is divided in the same manner as x̃, i.e.,

¯̃x =
[
x̄Te,l, x̄Tl , x̄Tc , x̄Tr , x̄Te,r

]
, (5.122)

then,[
x̄e,l
x̄l

]
= Tl

[
xe,l
xl

]
= Tl

[
Rlxl

xl

]
= Tl

[
Rl

Iλ

]
xl = �l xl (5.123)

where

�l = Tl

[
Rl

Iλ

]
(5.124)

is a 2λ× λ matrix. If and only if �l has rank λ, then xl can be recovered through the
pseudo-inverse of �l as

xl = �+
l

[
x̄e,l
x̄l

]
=

(
�T
l �l

)−1
�T
l

[
x̄e,l
x̄l

]
. (5.125)

For the other (“right”) border, the identical result is trivially found to be

xr = �+
r

[
x̄r

x̄e,r

]
=

(
�T
r �r

)−1
�T
r

[
x̄r

x̄e,r

]
, (5.126)

where

�r = Tr

[
Iλ
Rr

]
(5.127)

is also assumed to have rank λ. It is necessary, but not sufficient that �l ,�r ,� l , and
�r have rank λ since rank can be reduced by the matrix products. It is also possible
to express the conditions in more detail. However, without any useful analytical
solution, numerical rank checking is the best approach.

To summarize, the steps to achieve PR for given Rl and Rr are

1. Select P and Q and identify their submatrices Pi and Qi .

2. Find �l ,�r ,� l ,�r , from Eqs. (5.119) and (5.120).

3. Find Tl and Tr from Eq. (5.121).

4. Find �l and �r from Eqs. (5.124) and (5.127).

5. Test ranks of �l and �r .

6. If ranks are λ, obtain �+
l , �+

r and reconstruct xl and xr .

This is an extension of de Queiroz and Rao [39] to nonorthogonal LTs, with par-
ticular concern to test whether the pseudo-inverses exist.

The model in Fig. 5.32 and the proposed method are not applicable for some LTs.
The notable classes of LTs include those whose bases have different lengths and
different symmetries. Examples are (i) two-channel nonorthogonal LTs with odd-
length (2-channel biorthogonal filter banks [55]); (ii) FLT; and (iii) other composite
systems, i.e., cascaded systems such as those used in de Queiroz [41]. For the first
example, it is trivial to use symmetric extensions but different symmetries for different
bases [55]. The second example has the same reasoning. However, an FLT can be
efficiently implemented by applying the method just described to each of the stages
of the transformation (i.e., first apply the DCT and then use the method above for
the second part). The reason for rank deficiency is that different filters would require
different extensions during the forward transformation process; therefore, the model
in Fig. 5.32 is not applicable.

The above method works very well for M-channel filter banks whose filters have
the same length. The phase of the filters and the extensions can be arbitrary, and the
method has been shown to be consistent for all uniform-length filter banks of interest
tested.

5.9.3 Symmetric Extensions

In case the LT is symmetric and obeys Eqs. (5.65) and (5.66), there is a much
simpler method to implement the LT over a finite-length signal of NB blocks of M
samples.

In the forward transform section, we perform symmetric extensions as described,
applied to the last λ = (L−M)/2 samples on each border, resulting in a signal {x̃(n)}
with Nx + 2λ = Nx + L − M samples,

x(λ − 1), . . . , x(0), x(0), . . . , x (Nx − 1) , x (Nx − 1) , . . . , x (Nx − λ) . (5.128)

The signal is processed by the PTM F(z) as a clocked system, without concern for
border locations. The internal states of the system F(z) can be initialized in any way.
So, the NB + N − 1 blocks of the extended signal are processed yielding an equal
number of blocks of subband samples. Discarding the first N − 1 output blocks,
obtain NB transform-domain blocks corresponding to NB samples of each subband.

The general strategy to achieve perfect reconstruction, without great increase in
complexity or change in the implementation algorithm, is to extend the samples in
the subbands, generating more blocks to be inverse transformed, in such a way that
after inverse transformation (assuming no processing of the subband signals) the
signal recovered is identical to the original at the borders. The extension of the k-th
subband signal depends on the symmetry of the k-th basis. Let pkn = vkpk,L−1−n

for 0 ≤ k ≤ M − 1 and 0 ≤ n ≤ L − 1, i.e., vk = 1 if pkn is symmetric and
vk = −1 if pkn is anti-symmetric. Before inverse transformation, for each subband
signal {ȳk(m)} of NB samples, fold the borders of {ȳk(m)} (as in the analysis section)
in order to find a signal { ¯̃yk(m)}, and invert the sign of the extended samples if pkn

is anti-symmetric. For s samples reflected about the borders, the k-th subband signal
will have samples

vkŷk(s − 1), . . . , vkŷk(0), ŷk(0), · · · ŷk(NB − 1),

vkŷk (NB − 1) , . . . , vkŷk (NB − s) .

The inverse transformation can be performed as

• N odd — Reflect s = (N − 1)/2 samples about each border, thus getting
NB +N − 1 blocks of subband samples to be processed. To obtain the inverse
transformed samples {x̂(n)}, initialize the internal states in any way, run the
system G(z)over theNB+N−1 blocks, and discard the firstN−1 reconstructed
blocks, retaining the Nx = NBM remaining samples.

• N even — Reflect s = N/2 samples about each border, thus getting NB + N

blocks to be processed. To obtain the inverse transformed samples {x̂(n)},
initialize the internal states in any way and run the system G(z) over theNB+N

blocks. Discard the first N − 1 reconstructed blocks and the first M/2 samples
of the N -th block. Include in the reconstructed signal the last M/2 samples
of the N -th block and the subsequent (NB − 1)M samples. In the last block,
include the first M/2 samples in the reconstructed signal and discard the rest.

This approach will assure the perfect reconstruction property and orthogonality of
the overall transformation if the LT is orthogonal [38]. The price paid is running the
algorithm over extra N or N − 1 blocks. As it is common to have NB � N , the
computational increase is only marginal.

5.10 Design Issues for Compression

Block transform coding and subband coding have been two dominant techniques in
existing image compression standards and implementations. Both methods actually
exhibit many similarities: relying on a certain transform to convert the input image
to a more decorrelated representation, then utilizing the same basic building blocks
such as bit allocator, quantizer, and entropy coder to achieve compression.

Block transform coders enjoyed success due to their low complexity in implemen-
tation and their reasonable performance. The most popular block transform coder led
to the current image compression standard JPEG [32] which utilizes the 8 × 8 DCT
at its transformation stage. At high bit rates, JPEG offers almost visually lossless
reconstruction image quality. However, when more compression is needed (i.e., at
lower bit rates), annoying blocking artifacts show up for two reasons: (i) the DCT
bases are short, nonoverlapped, and have discontinuities at the ends; and (ii) JPEG
processes each image block independently. So, interblock correlation is not taken
into account.

The development of lapped transforms helps solve the blocking problem by bor-
rowing pixels from the adjacent blocks to produce the transform coefficients of the
current block. In other words, lapped transforms are block transforms with over-
lapping basis functions. Compared to the traditional block transforms such as DCT,
DST, and the Walsh-Hadamard transform [46], lapped transforms offer two main
advantages: (i) from the analysis viewpoint, they take into account interblock cor-
relation and, hence, provide better energy compaction that leads to more efficient
entropy coding of the coefficients; and (ii) from the synthesis viewpoint, their basis
functions decay asymptotically to zero at the ends, reducing blocking discontinuities
drastically.

All of the lapped transforms presented in the previous sections are designed to
have high practical value. They all have perfect reconstruction. Some of them even
have real and symmetric basis functions. However, for the transforms to achieve
high coding performance, several other properties are also needed. Transforms can
be obtained using unconstrained nonlinear optimization where some of the popular
cost criteria are coding gain, DC leakage, attenuation around mirror frequencies,
and stopband attenuation. In the particular field of image compression, all of these
criteria are well-known desired properties in yielding the best reconstructed image
quality [44, 55]. The cost function in the optimization process can be a weighted
linear combination of these measures as follows

Coverall = α1 Ccoding gain + α2 CDC + α3 Cmirror

+ α4 Canalysis stopband + α5 Csynthesis stopband . (5.129)

Coding Gain

The coding gain of a transform is defined as the reduction in transform coding
mean-square error over pulse-code modulation (PCM) which simply quantizes the

samples of the signal with the desired number of bits per sample. Define σ 2
x as the

variance of the input signal, σ 2
xi

as the variance of the i-th subband, and ||qi ||2 as the
L2 norm of the i-th bases of the inverse LT Q. With several assumptions including
scalar quantization and a sufficiently large bit rate, the generalized coding gain can
be formulated [12, 15, 28] as

Ccoding gain = 10 log10
σ 2
x(

M−1∏
i=0

σ 2
xi

‖qi‖2

) 1
M

. (5.130)

The coding gain can be thought of as an approximate measure of the transform’s
energy compaction capability. Among the listed criteria, higher coding gain correlates
most consistently with higher objective performance (measured in MSE or PSNR).
Transforms with higher coding gain compact more signal energy into a fewer number
of coefficients, leading to more efficient entropy coding.

Low DC Leakage

The DC leakage cost function measures the amount of DC energy that leaks out
to the bandpass and highpass subbands. The main idea is to concentrate all signal
energy at DC into the DC coefficients, which proves to be advantageous in both signal
decorrelation and in the prevention of discontinuities in the reconstructed signals.
Low DC leakage can prevent the annoying checkerboard artifact that usually occurs
when high frequency bands are severely quantized [55]. The DC cost function can
be defined as

CDC =
M−1∑
i=1

L−1∑
n=0

pin , (5.131)

where {pin} are entries of the LT matrix P. The reader should note that all antisymmet-
ric filters have a zero at DC (zero frequency). Therefore, the above formula needs to
apply only to symmetric bases to reduce the complexity of the optimization process.
It is interesting to note that the zero leakage condition is equivalent to having one
vanishing moment — a necessary condition in the construction of wavelets.

Attenuation at Mirror Frequencies

Viewing the transform bases as filters, we can generalize CDC to also encom-
pass mirror frequency points. The concern is now at all aliasing frequencies ωm =
2πm
M

, m ∈ Z, 1 ≤ m ≤ M
2 . Ramstad, Aase, and Husoy [44] have shown that fre-

quency attenuation at mirror frequencies is very important in the further reduction of
blocking artifacts; the filter (basis function) response should be small at these mirror
frequencies as well. The corresponding cost function is

Cmirror =
M−2∑
i=0

∣∣∣Pi

(
ejωm

)∣∣∣2 , ωm = 2πm

M
, 1 ≤ m ≤ M

2
, (5.132)

wherePi(e
jω) is the Fourier transform of {pin}. Low DC leakage and high attenuation

near the mirror frequencies are not as essential to the coder’s objective performance
as coding gain. However, they do improve the visual quality of the reconstructed
image significantly.

Stopband Attenuation

Stopband attenuation is a classical performance criterion in filter design. In the
forward transform, the stopband attenuation cost helps in improving the signal decor-
relation and decreasing the amount of aliasing. In meaningful images, we know a
priori that most of the energy is concentrated in a low frequency region. Hence,
high stopband attenuation in this part of the frequency spectrum becomes extremely
desirable. In the inverse transform, the synthesis filters (basis functions) covering
low-frequency bands need to have high stopband attenuation near and/or at ω = π to
enhance their smoothness. The biased weighting can be enforced using two simple
functionsWa

i (e
jω) andWs

i (e
jω). For our purposes, the stopband attenuation criterion

measures the sum of all of the filters’ energy outside the designated passbands:

Canalysis stopband =
M−1∑
i=0

∫
ω∈+stopband

Wa
i

(
ejω

) ∣∣∣Pi

(
ejω

)∣∣∣2 dω
Csynthesis stopband =

M−1∑
i=0

∫
ω∈+stopband

Ws
i

(
ejω

) ∣∣∣Qi

(
ejω

)∣∣∣2 dω , (5.133)

where Qi(e
jω) is the Fourier transform of {qin}, which are the entries of Q.

5.11 Transform-Based Image Compression Systems

Transform coding is the single-most popular approach for image compression.
The basic building blocks of a transform coder are illustrated in Fig. 5.34. The
entropy coder is the step that actually performs any compression. The entropy of
the symbols to be compressed is reduced by the quantizer which is the only building
block which is not reversible; it is a lossy operator. The transform step neither causes
losses nor performs compression, but it is the core of the compression system. It
enables compression by compacting the energy into few coefficients, thus reducing
the distortion caused by the quantization step.

A separable transformation is one where all rows are transformed, and then all
columns are transformed. Let X be the matrix containing the image pixels and let Y
be the transformed image; then from Eq. (5.33) we have

Y = HF XHT
F X = HT

I YHI . (5.134)

FIGURE 5.34
Basic building blocks of a transform coder. The image is transformed and quan-
tized in order to submit the data to a lossless (entropy) coder.

Y is composed by M × M blocks Yij , each block having a full set of transform
coefficients (subband samples). Each of the blocks Yij is then quantized and encoded.
In the case of a block transform, each transformed block Yij is related to only one
image block of M ×M pixels. For LTs, of course, each block Yij is related to several
pixel blocks. We will discuss only the performance of LTs in the context of two
popular image coders.

FIGURE 5.35
JPEG building blocks. The image is broken into blocks and each block is trans-
formed using the DCT, quantized, and encoded. The decoder performs the
inverse operations.

5.11.1 JPEG

Transform coding is the framework employed by the Joint Photographic Experts
Group (JPEG) still image compression standard. The reader is referred to Pen-
nebacker and Mitchell [32] for a detailed description of the JPEG image compression
system; the publication not only covers JPEG well but it also includes a copy of the
standard draft! The steps for JPEG compression are shown in Fig. 5.35. The image is
broken into blocks of 8×8 pixels, which are transformed using a separable 8-channel
DCT. The transformed block is quantized (effectively divided by an integer number
and rounded) and then encoded. The quantized transformed samples in a block are
scanned into a vector following a zigzag pattern starting from the lowest frequency
band to the highest. The lowest frequency sample of a block is known as the DC coef-
ficient (DCC). Before encoding, the quantized DCC of a block is actually replaced by
the difference of itself and the DCC of a previous block (this is referred to as DPCM).
Finally the scanned vector is fed into an entropy coder which uses a combination
of run-length coding (RLC) and variable-length coding (VLC) to compress the data.
The decoder runs the inverse of all the encoding steps in reverse order to reconstruct
the image block from the compressed data.

For our purposes, we compare the performance of LTs against the DCT. LTs can
be very easily incorporated into JPEG by simply replacing the DCT. Even though the
bases overlap, the subband samples are arranged in a block just like the DCT. The
transformed block is fed to the rest of the JPEG coder (which does not care if the
samples were found through the DCT) to be quantized and encoded. All results here
for JPEG are found by merely replacing the DCT by an 8-channel (M = 8) LT while
maintaining all the other parameters and settings unchanged.

5.11.2 Embedded Zerotree Coding

Embedded Zerotree Coding (EZC) is often associated with the dyadic wavelet
transform. The multiresolution characteristics of the wavelet transform have created
an intuitive foundation on which simple, yet sophisticated, methods of encoding the
transform coefficients are developed. Exploiting the relationship between the par-
ent and the offspring coefficients in a wavelet tree, the original Embedded Zerotree
Wavelet (EZW) coder [50] and its variations [47, 71] can effectively order the coef-
ficients by bit planes and transmit the more significant bits first. This coding scheme
results in an embedded bit stream along with many other advantages, such as exact bit
rate control and near-idempotency (perfect idempotency is obtained when the trans-
form maps integers to integers). In these subband coders, global information is taken
into account fully. In this section, we confirm that the embedded zerotree framework
is not limited only to the wavelet transform but it can be utilized with various LTs as
well. In fact, the combination of a LT and several levels of wavelet decomposition
of the DC band can provide much finer frequency spectrum partitioning, leading to
significant improvement over current embedded wavelet coders [58, 61].

The EZC approach relies on the fundamental idea that the most important infor-
mation (defined here as what decreases a certain distortion measure the most) should
be transmitted first. Assuming that the distortion measure is the mean-squared error
(MSE), the transform is orthogonal, and transform coefficients Cij are transmitted
one by one, it is well known that the MSE decreases by 1

N
|Cij |2, where N is the

total number of pixels. Therefore, large magnitude coefficients should always be
transmitted first. If one bit is transmitted at a time, this approach can be generalized
to ranking the coefficients by bit planes, and the most significant bits are transmitted
first [43] as demonstrated in Fig. 5.36. The progressive transmission scheme results
in an embedded bit stream (i.e., it can be truncated at any point by the decoder to
yield the best corresponding reconstructed image). The algorithm can be thought of
as an elegant combination of a scalar quantizer with power-of-two stepsizes and an
entropy coder to encode wavelet coefficients.

Embedded algorithm relies on the hierarchical coefficients’ tree structure called
a wavelet tree — a set of wavelet coefficients from different scales that belong in
the same spatial locality. This is demonstrated in Fig. 5.37, where the tree in the
vertical direction is circled. All of the coefficients in the lowest frequency band make
up the DC band or the reference signal (located at the upper left corner). Besides
these DC coefficients, in a wavelet tree of a particular direction, each lower frequency

lsb

msb

sign

5

4

3

2

1

0

s s s s s s s s s s s s s

1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 1 1

1 1 1 1 1

0 0 0 0 0

FIGURE 5.36
Embedded zerotree coding as a bit-plane refinement scheme.

parent node has four corresponding higher frequency offspring nodes. All coefficients
below a parent node in the same spatial locality is defined as its descendants. Define
a coefficient Cij to be significant with respect to a given threshold T if |Cij | ≥ T , and
insignificant otherwise. Meaningful image statistics have shown that if a coefficient
is insignificant, it is very likely that its offspring and descendants are insignificant as
well. Exploiting this fact, sophisticated embedded wavelet coders can output a single
marker to represent very efficiently a large, smooth image area (an insignificant tree).
For more details on the algorithm, the reader is referred to references [47, 50], and [71].

LTs obtain a uniform spectrum partitioning whereas the wavelet transform has an
octave-band signal decomposition. All LT subbands have the same size. A parent
node would not have four offspring nodes as in the case of the wavelet representation.
In order to use embedded zerotree algorithms to encode the LT coefficients, we have
to modify the data structure. Investigating the analogy between the wavelet and the
LT, as in Fig. 5.37, reveals that the parent, offspring, and descendants in a wavelet tree
cover the same spatial locality, and so do the coefficients of a block of LT coefficients.
In fact, a wavelet tree in an L-level decomposition is analogous to a 2L-band LT’s
coefficient block. The difference lies at the bases that generate these coefficients.

Let O(i, j) be the set of coordinates of all offsprings of the node (i, j) in anM-band
LT (0 ≤ i, j ≤ M − 1); then O(i, j) can be represented as follows:

O(i, j) = {(2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1)} . (5.135)

All (0, 0) coefficients from all transform blocks form the DC band, which is similar
to the wavelet transform’s reference signal, and each of these nodes has only three
offspring: (0, 1), (1, 0), and (1, 1). The complete tree is now available locally; we
do not have to search for the offspring across the subbands anymore. The only
requirement here is that the number of bands that M has be a power of two. Fig. 5.38
demonstrates, through a simple rearrangement of the LT coefficients, that the redefined
tree structure in Eq. (5.135) does possess a wavelet-like multiscale representation. To
decorrelate the DC band even more, several levels of wavelet decomposition can
be used depending on the input image size. Besides the obvious increase in the
coding efficiency of DC coefficients, thanks to deeper coefficient trees, wavelets
provide variably longer bases for the signal’s DC component, leading to smoother
reconstructed images; in other words, blocking artifacts are further reduced. LT

FIGURE 5.37
Wavelet and block transform analogy.

iteration (resulting in the HLTs or M-band wavelets) can be applied to the DC band
as well.

FIGURE 5.38
A demonstration of the analogy between block transform and wavelet repre-
sentation. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

5.11.3 Other Coders

Although we use JPEG and EZC only as examples, LTs can be used to replace
other transforms in a variety of coders. If the coder treats the subbands independently,
encoding of the LT’s output is not different from encoding the output of any other
transform. If the subbands are not encoded independently, but the coder was designed
for a nonhierarchical M-channel transform (e.g., DCT), then the LT can be used to
immediately replace the transform, just like we do for JPEG. If the subbands are not
encoded independently, and the coder was designed for a hierarchical transform (like

wavelets), then one can use the same approach as in the previous section to incorporate
the LTs. It is straightforward to utilize LTs in coders such as the new standard (JPEG
2000) [11] or other efficient coders based on optimized classification of subband
samples [13]. Furthermore, LTs can be used to replace the wavelet transform in
several efficient coders [1, 51, 67, 69]. Adaptive LTs have also been applied to image
compression [16].

5.12 Performance Analysis

The performance of any compression system is measured by computing the distor-
tion achieved by compressing a particular image at a certain compression ratio. For
every compression attempt for a particular image and coding settings, one can com-
pute the rate achieved R, often expressed in bits per pixel (or bpp), and the distortion
is some measure of the difference between the original image and its reconstructed
approximation after decompression. We use the peak signal-to-noise ratio measure
which is given in decibels (dB) and is defined as

PSNR = 10 log10

(255)2

1

Npixels

∑
ij

[xo(i, j) − xr(i, j)]
2

 , (5.136)

where xo(i, j) and xr(i, j) are the original and reconstructed pixels, respectively.
We used four 512×512-pixel test images shown in Fig. 5.39 for benchmarking the

LTs in image compression. The image, “Barbara” has large detailed areas with high-
frequency patterns, while “Lena” has mainly smooth areas with occasional edges and
textures. “Goldhill” is a typical landscape image with many details, and the “text”
image is basically composed of high contrast edges.

5.12.1 JPEG

For JPEG, we compared the following transforms for M = 8: ELT-2, MLT, DCT,
LOT, GenLOT (L = 48), GLBT (L = 16), and FLT (two 24-tap bases along with
six 8-tap DCT bases). For each image and transform, several rate-distortion points
are obtained by compressing the image using JPEG’s default (example) quantizer
table [32] scaled by a multiplicative factor. Instead of providing the actual PSNR
obtained with every experiment we compared every result to the PSNR obtained by
compressing the same image at the same bit rate using the DCT. Objective results are
shown in Fig. 5.40. The curves can be viewed as incremental PSNR plots, in which
for each transform, image, and bit rate, it indicates the gain in PSNR (dB) obtained
by replacing the DCT by a given LT. Note that the performance of the LTs is far
superior to that of the DCT except for the “text” image. This image is not suitable

FIGURE 5.39
Test images of 512×512 pixels. From left to right and top to bottom: “Barbara,”
“Lena,” “Goldhill,” and “text.” Reproduced by Special Permission of Playboy
magazine. Copyright ©1972, 2000 by Playboy.

for transform compression because it is mainly composed of sharp edges. Hence, the
short bases of the DCT concentrate the artifacts (caused by compressing the sharp
edges) into small areas. In any case, the GLBT and the GenLOT are always good
performers.

Objective comparisons are not always the best. The FLT, for example, seems to
have similar performance to DCT in terms of PSNR. However, it produces noticeably
better images. It is virtually free of the ringing and blocking artifacts which are the
main drawbacks of using block transforms like DCT. Reconstructed images are shown
in Fig. 5.41.

FIGURE 5.40
Comparison among transforms in JPEG for several images and bit rates. In-
cremental PSNR plots are shown, indicating the gain in PSNR (dB) obtained
by replacing the DCT by the given transform. Curve line styles: black solid —
LOT; black dashed — GenLOT (L = 48); black dash-dot — GLBT (L = 16);
gray solid — FLT (2 ×L = 24 and 6 ×L = 8); gray dashed — ELT-2 (L = 32);
gray dash-dot — MLT (L = 16).

5.12.2 Embedded Zerotree Coding

The objective coding results (PSNR in dB) for the four test images (“Barbara,”
“Lena,” “Goldhill,” and “text”) are tabulated in Table 5.5. The transforms in com-
parison are the ELT-2, MLT, DCT, LOT, GenLOT (L = 40), GLBT (L = 16), FLT
(all with M = 8), and the 9/7-tap bi-orthogonal wavelet [2]. In the LT cases, we
use three additional levels of 9/7 wavelet decomposition on the DC bands. All com-
puted PSNR quotes in dB are obtained from a real compressed bit stream with all
overheads included. Incremental rate-distortion plots are shown in Fig. 5.42 where
the 9/7 wavelet serves as the performing benchmark.

The coding results clearly confirm the potential of LTs. For a smooth image such
as “Lena,” which the wavelet transform can sufficiently decorrelate, the 9/7 wavelet
offers a comparable performance. However, for a highly-textured image such as

FIGURE 5.41
Enlarged portion of reconstructed images using JPEG at 0.3 bpp. Top left:
DCT (25.67); top right: LOT (26.94); middle left: GenLOT, L = 48, (27.19);
middle right: GLBT, L = 16, (26.88); bottom left: ELT-2 (27.24); bottom right:
FLT, 2 × 24 and 6 × 8, (25.63). Number in parentheses indicates PSNR in dB.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

Table 5.5 Objective Coding Results (PSNR in dB). (a) Lena. (b) Goldhill. (c)
Barbara. (d) Text

Transform

Transform

Transform

Transform

Lena

Comp.
Ratio

 9 / 7
wavelet

 8 x 8
 DCT

 8 x 16
 LOT

 8 x 40
GenLOT

2x24 6x8
 FLT

8 x 16
GLBT

8 x 32
 ELT

8 x 16
 MLT

Comp.
Ratio

 9 / 7
wavelet

 8 x 8
 DCT

 8 x 16
 LOT

 8 x 40
GenLOT

2x24 6x8
 FLT

8 x 16
GLBT

8 x 32
 ELT

8 x 16
 MLT

Comp.
Ratio

 9 / 7
wavelet

 8 x 8
 DCT

 8 x 16
 LOT

 8 x 40
GenLOT

2x24 6x8
 FLT

8 x 16
GLBT

8 x 32
 ELT

8 x 16
 MLT

Comp.
Ratio

 9 / 7
wavelet

 8 x 8
 DCT

 8 x 16
 LOT

 8 x 40
GenLOT

2x24 6x8
 FLT

8 x 16
GLBT

8 x 32
 ELT

8 x 16
 MLT

(a)

(b)

(c)

(d)

Goldhill

Barbara

Text

8:1

16:1

32:1

64:1

100:1

8:1

16:1

32:1

64:1

100:1

8:1

16:1

32:1

64:1

100:1

8:1

16:1

32:1

64:1

100:1

29.35 27.80 28.62 29.31 28.31 29.14 29.14 28.61

31.10 29.67 30.48 31.16 30.15 31.04 30.93 30.44

34.11 32.90 33.56 34.23 33.25 34.14 33.94 33.42

37.21 36.38 36.72 37.32 36.51 37.28 36.93 36.27

40.41

27.38 26.65 27.09 27.40 27.06 27.33 27.33 27.10

28.48 27.93 28.36 28.60 28.17 28.58 28.52 28.33

30.56 30.07 30.56 30.79 30.25 30.70 30.65 30.48

33.13 32.76 33.18 33.36 32.76 33.31 33.14 32.93

36.55

23.76 23.42 24.34 24.95 23.74 24.55 24.90 24.28

24.86 24.58 25.70 26.37 24.86 26.00 26.30 25.65

27.58 27.28 28.80 29.53 27.42 29.04 29.33 28.74

31.40 31.11 32.70 33.47 31.12 33.02 33.12 32.59

36.41

25.89 25.08 26.50 26.47 25.36 26.73 26.15 26.00

29.14 28.01 29.10 29.09 28.01 29.51 28.77 28.61

33.11 32.93 33.36 33.41 32.75 33.84 32.89 32.60

37.14 36.81 36.85 36.89 36.60 37.24 36.38 35.34

40.49 40.24 40.36 40.41 40.05 40.57 39.89 38.80

36.31 37.43 38.08 36.22 37.84 37.53 37.07

36.25 36.63 36.80 36.22 36.69 36.46 36.19

39.91 40.05 40.43 39.89 40.35 40.01 39.20

“Barbara,” the 8 × 40 GenLOT and the 8 × 16 GLBT can provide a PSNR gain of
more than 1.5 dB over a wide range of bit rates. Fig. 5.43 demonstrates the high level
of reconstructed image quality as well. The ELT, GLBT, and GenLOT can completely
eliminate blocking artifacts.

FIGURE 5.42
Comparison among transforms in EZC for several images and bit rates. Incre-
mental PSNR plots are shown, indicating the gain (or loss) in PSNR (dB) obtained
by replacing the 9/7 bi-orthogonal wavelet by the given transform. Curve lines:
black solid — LOT; black dashed — GenLOT (L = 40); black dash-dot —
GLBT (L = 16); gray solid — FLT (2 ×L = 24 and 6 ×L = 8); gray dashed —
ELT-2 (L = 32); gray dash-dot — MLT (L = 16).

5.13 Conclusions

We hope that this chapter serves as an eye-catching introduction to lapped trans-
forms and their potentials in image/video compression. As for the theory of LTs, this

FIGURE 5.43
Perceptual coding comparison using EZC at a bit-rate of 0.25 bpp. The 9/7
wavelet transform is compared to various LTs and enlarged portions of the re-
constructed “Barbara” image are shown. Top left: 9/7 bi-orthogonal wavelet
(27.58); top right: DCT (27.28); middle left: LOT (28.80); middle right: GLBT,
L = 16, (29.04); bottom left: GenLOT, L = 40, (29.53); bottom right: 2 × 24
and 6 × 8 FLT (27.42). Number in parentheses indicates PSNR in dB. Repro-
duced by Special Permission of Playboy magazine. Copyright ©1972, 2000 by
Playboy.

chapter should be viewed as a first step, whereas the references and the references
therein should give a more detailed treatment of the subject.

It was shown how lapped transforms can replace block transforms allowing an
overlap of the basis functions. It was also shown that the analysis of MIMO systems,
mainly their factorization, are invaluable tools for the design of useful lapped trans-
forms. That was the case of transforms such as LOT, LBT, GenLOT, GLBT, FLT,
MLT, and ELT. We presented these practical LTs by not only describing the general
factorization, but also by plotting bases and discussing in detail how to construct at
least a good design example. We made an effort in tabulating the bases entries or
providing all parameters necessary to construct the bases. Even if the examples are
not ideal for a particular application that the reader might have in mind, they may
provide the basics upon which the reader can build by exploring the references and
performing customized optimization. Invariably, the design examples presented here
were tuned for image compression applications.

Some image compression methods were briefly described to serve as a compar-
ison framework in which the LTs are applied for compression of typical images.
Several LTs were compared to transforms such as DCT and wavelets, showing how
truly promising LTs are for image compression. FLT and LBT with lifting steps
require minimal computation apart from the DCT computation and are very attrac-
tive replacements for DCT, rivalling wavelet transforms at a lower implementation
complexity. Buffering is also reduced since the transforms are not implemented hi-
erarchically. Parallel computation and region-of-interest coding/decoding are also
greatly facilitated.

It is worth noting that we intentionally avoided viewing the transforms as filter
banks, so the bases were not discussed as impulse responses of filters, and their
frequency response was not analyzed. Nevertheless, the framework is the same as is
the analysis of MIMO systems. We trust that this chapter will give some insight into
this vast field which is based on the study of multirate systems.

References

[1] Andrew, J., Simple and efficient hierarchical image coder, Proc. of IEEE
International Conference on Image Processing, 3, 658–661, Santa Barbara,
CA, Oct. 1997.

[2] Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I., Image coding
using the wavelet transform, IEEE Trans. on Image Processing, 1, 205–220,
1992.

[3] Boashash, B., Ed., Time-Frequency Signal Analysis, John Wiley & Sons, New
York, 1992.

[4] Bordreaux-Bartels, G.F., Mixed time-frequency signal transformations, The
Transforms and Applications Handbook, Poularikas, A., Ed., CRC Press, Boca
Raton, FL, 1996.

[5] Cassereau, P., A New Class of Optimal Unitary Transforms for Image Process-
ing, Master’s thesis, M.I.T., Cambridge, MA, May 1985.

[6] Clarke, R.J., Transform Coding of Images, Academic Press, Orlando, FL,
1985.

[7] Coifman, R., Meier, Y., Quaker, D., and Wickerhauser, V., Signal processing
and compression using wavelet packets, Technical Report, Dept. of Mathe-
matics, Yale Univ., New Haven, CT, 1991.

[8] Doǧanata, Z., Vaidyanathan, P.P., and Nguyen, T.Q., General synthesis pro-
cedures for FIR lossless transfer matrices, for perfect reconstruction multirate
filter banks applications, IEEE Trans. Acoust., Speech, Signal Processing,
36(10), 1561–1574, 1988.

[9] Herley, C., Kovacevic, J., Ramchandran, K., and Vetterli, M., Tilings of the
time-frequency plane: construction of arbitrary orthogonal bases and fast tiling
algorithms, IEEE Trans. on Signal Processing, 41, 3341–3359, 1993.

[10] Hohn, F.E., Elementary Matrix Algebra, 2nd ed., MacMillan, New York,1964.

[11] ISO/IEC JTC1/SC29/WG1, JPEG 2000 Committee, Working Draft 2.0,
June 25, 1999.

[12] Jayant, N.S. and Noll, P., Digital Coding of Waveforms, Prentice-Hall, Engle-
wood Cliffs, NJ, 1984.

[13] Joshi, R.L., Crump, V.J., and Fisher, T.R., Image subband coding using arith-
metic coded trellis coded quantization, IEEE Trans. Circuits and Systems for
Video Technology, 5, 515–523, 1995.

[14] Jozawa, H. and Watanabe, H., Intrafield/Interfield adaptive lapped transform
for compatible HDTV coding, 4th International Workshop on HDTV and Be-
yond, Torino, Italy, Sept. 4–6, 1991.

[15] Katto, J. and Yasuda, Y., Performance evaluation of subband coding and opti-
mization of its filter coefficients, SPIE Proc. Visual Comm. and Image Proc.,
1991.

[16] Klausutis, T.J. and Madisetti, V.K., Variable block size adaptive lapped
transform-based image coding, Proc. of IEEE International Conference on
Image Processing, 3, 686–689, Santa Barbara, CA, Oct. 1997.

[17] Koilpillai, R.D. and Vaidyanathan, P.P., Cosine modulated FIR filter banks
satisfying perfect reconstruction, IEEE Trans. Signal Processing, 40, 770–
783, 1992.

[18] Malvar, H.S., Optimal pre- and post-filtering in noisy sampled-data systems,
Ph.D. dissertation, M.I.T., Cambridge, MA, Aug. 1986.

[19] Malvar, H.S., Reduction of blocking effects in image coding with a lapped or-
thogonal transform, Proc. of Intl. Conf. on Acoust., Speech, Signal Processing,
Glasgow, Scotland, 781–784, Apr. 1988.

[20] Malvar, H.S. and Staelin, D.H., The LOT: transform coding without blocking
effects, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-37, 553–559,
1989.

[21] Malvar, H.S., Lapped transforms for efficient transform/subband coding, IEEE
Trans. Acoust., Speech, Signal Processing, ASSP-38, 969–978, 1990.

[22] Malvar, H.S., The LOT: a link between block transform coding and multirate
filter banks, Proc. Intl. Symp. Circuits and Systems, Espoo, Finland, 835–838,
June 1988.

[23] Malvar, H.S., Efficient signal coding with hierarchical lapped transforms, Proc.
of Intl. Conf. on Acoust., Speech, Signal Processing, Albuquerque, NM, 761–
764, 1990.

[24] Malvar, H.S., Modulated QMF filter banks with perfect reconstruction, Elect.
Letters, 26, 906–907, 1990.

[25] Malvar, H.S., Extended lapped transform: fast algorithms and applications,
Proc. of Intl. Conf. on Acoust., Speech, Signal Processing, Toronto, Canada,
1797–1800, 1991.

[26] Malvar, H.S., Signal Processing with Lapped Transforms, Artech House, Nor-
wood, MA, 1992.

[27] Malvar, H.S., Extended lapped transforms: properties, applications and fast
algorithms, IEEE Trans. Signal Processing, 40, 2703–2714, 1992.

[28] Malvar, H.S., Biorthogonal and nonuniform lapped transforms for transform
coding with reduced blocking and ringing artifacts, IEEE Trans. on Signal
Processing, 46, 1043–1053, 1998.

[29] Nayebi, K., Barnwell, T.P., and Smith, M.J., The time domain filter bank
analysis: a new design theory, IEEE Trans. on Signal Processing, 40, 1412–
1429, 1992.

[30] Nguyen, T.Q. and Koilpillai, R.D., Theory and design of arbitrary-length
cosine-modulated filter banks and wavelets satisfying perfect reconstruction,
IEEE Trans. on Signal Processing, 44, 473–483, 1996.

[31] Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[32] Pennebaker, W.B. and Mitchell, J.L., JPEG: Still Image Compression Stan-
dard, Van Nostrand Reinhold, New York, 1993.

[33] Princen, J.P. and Bradley, A.B., Analysis/synthesis filter bank design based
on time domain aliasing cancellation, IEEE Trans. Acoust., Speech, Signal
Processing, ASSP-34, 1153–1161, 1986.

[34] de Queiroz, R.L. and Rao, K.R., Time-varying lapped transforms and wavelet
packets, IEEE Trans. on Signal Processing, 41, 3293–3305, 1993.

[35] de Queiroz, R.L., On Lapped Transforms, Ph.D. dissertation, The University
of Texas at Arlington, August 1996.

[36] de Queiroz, R.L. and Rao, K.R., The extended lapped transform for image
coding, IEEE Trans. on Image Processing, 4, 828–832, 1995.

[37] de Queiroz, R.L., Nguyen, T.Q., and Rao, K.R., The generalized lapped or-
thogonal transforms, Electronics Letters, 30, 107–107, 1994.

[38] de Queiroz, R.L. and Rao, K.R., On orthogonal transforms of images using
paraunitary filter banks, J. Visual Communications and Image Representation,
6(2), 142–153, 1995.

[39] de Queiroz, R.L. and Rao, K.R., On reconstruction methods for processing
finite-length signals with paraunitary filter banks, IEEE Trans. on Signal Pro-
cessing, 43, 2407–2410, 1995.

[40] de Queiroz, R.L., Nguyen, T.Q., and Rao, K.R., The GenLOT: generalized
linear-phase lapped orthogonal transform, IEEE Trans. on Signal Processing,
44, 497–507, 1996.

[41] de Queiroz, R.L., Uniform filter banks with non-uniform bands: post-
processing design, Proc. of Intl. Conf. Acoust. Speech. Signal Proc., Seattle,
WA, III, 1341–1344, May 1997.

[42] de Queiroz, R.L. and Eschbach, R., Fast downscaled inverses for images com-
pressed withM-channel lapped transforms, IEEE Trans. on Image Processing,
6, 794–807, 1997.

[43] Rabbani, M. and Jones, P.W., Digital Image Compression Techniques, SPIE
Optical Engineering Press, Bellingham, WA, 1991.

[44] Ramstad, T.A., Aase, S.O., and Husoy, J.H., Subband Compression of Images:
Principles and Examples, Elsevier, New York, 1995.

[45] Rao, K.R. and Yip, P., Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, San Diego, CA, 1990.

[46] Rao, K.R., Ed., Discrete Transforms and Their Applications, Van Nostrand
Reinhold, New York,1985.

[47] Said, A. and Pearlman, W.A., A new fast and efficient image codec based on
set partitioning in hierarchical trees, IEEE Trans. on Circuits Syst. Video Tech.,
6, 243–250, 1996.

[48] Schiller, H., Overlapping block transform for image coding preserving equal
number of samples and coefficients, Proc. SPIE, Visual Communications and
Image Processing, 1001, 834–839, 1988.

[49] Schuller, G.D.T. and Smith, M.J.T., New framework for modulated perfect
reconstruction filter banks, IEEE Trans. on Signal Processing, 44, 1941–1954,
1996.

[50] Shapiro, J.M., Embedded image coding using zerotrees of wavelet coefficients,
IEEE Trans. on Signal Processing, 41, 3445–3462, 1993.

[51] Silva, E.A.B., Sampson, D.G., and Ghanbari, M., A successive approxima-
tion vector quantizer for wavelet transform image coding, IEEE Trans. Image
Processing, 5, 299–310, 1996.

[52] Sodagar, I., Nayebi, K., and Barnwell, T.P., A class of time-varying wavelet
transforms, Proc. of Intl. Conf. on Acoust., Speech, Signal Processing, Min-
neapolis, MN, III, 201–204, Apr. 1993.

[53] Soman, A.K. and Vaidyanathan, P.P., Paraunitary filter banks and wavelet
packets, Proc. of Intl. Conf. on Acoust., Speech, Signal Processing, IV, 397–
400, 1992.

[54] Soman, A.K., Vaidyanathan, P.P., and Nguyen, T.Q., Linear-phase paraunitary
filter banks: theory, factorizations and applications, IEEE Trans. on Signal
Processing, 41, 3480–3496, 1993.

[55] Strang, G. and Nguyen, T., Wavelets and Filter Banks, Wellesley-Cambridge,
Wellesley, MA, 1996.

[56] Temerinac, M. and Edler, B., A unified approach to lapped orthogonal trans-
forms, IEEE Trans. Image Processing, 1, 111–116, 1992.

[57] Tran, T.D. and Nguyen, T.Q., On M-channel linear-phase FIR filter banks
and application in image compression, IEEE Trans. on Signal Processing, 45,
2175–2187, 1997.

[58] Tran, T.D. and Nguyen, T.Q., A progressive transmission image coder using
linear phase uniform filter banks as block transforms, IEEE Trans. on Image
Processing, in press.

[59] Tran, T.D., Linear Phase Perfect Reconstruction Filter Banks: Theory, Struc-
ture, Design, and Application in Image Compression, Ph.D. thesis, University
of Wisconsin, Madison, WI, May 1998.

[60] Tran, T.D., de Queiroz, R.L., and Nguyen, T.Q., The variable-length gen-
eralized lapped biorthogonal transform, Proc. Intl. Conf. Image Processing,
Chicago, IL, III, 697–701, 1998.

[61] Tran, T.D., de Queiroz, R.L., and Nguyen, T.Q., The generalized lapped
biorthogonal transform, Proc. Intl. Conf. Acoust., Speech Signal Proc., Seattle,
III, 1441–1444, May 1998.

[62] Tran, T.D., The LiftLT: fast lapped transforms via lifting steps, Proc. IEEE
Int. Conf. on Image Processing, Kobe, Japan, Oct. 1999.

[63] Vaidyanathan, P.P., Multirate Systems and Filter Banks. Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

[64] Vaidyanathan, P.P. and Hoang, P., Lattice structures for optimal design and
robust implementation of 2-channel PR-QMF banks, IEEE Trans. Acoust.,
Speech, Signal Processing, ASSP-36, 81–94, 1988.

[65] Vetterli, M. and Herley, C., Wavelets and filter banks: theory and design, IEEE
Trans. Signal Processing, 40, 2207–2232, 1992.

[66] Vetterli, M. and Kovacevic, J., Wavelets and Subband Coding, Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[67] Wang, H. and Kuo, C.-C.J., A multi-threshold wavelet coder (MTWC) for high
fidelity image compression, Proc. of IEEE Int. Conf. on Image Processing, 1,
652–655, Santa Barbara, CA, Oct. 1997.

[68] Wickerhauser, M.V., Acoustical signal compression using wavelet packets, in
Wavelets: A Tutorial in Theory and Applications, Chui, C.K., Ed., Academic
Press, San Diego, CA, 1992.

[69] Xiong, Z., Ramchandran, K., and Orchard, M.T., Space frequency quantization
for wavelet image coding, IEEE Trans. Image Processing, 6, 677–693, 1997.

[70] Young, R.W. and Kingsbury, N.G., Frequency domain estimation using a com-
plex lapped transform, IEEE Trans. Image Processing, 2, 2–17, 1993.

[71] Zandi, A., Allen, J., Schwartz, E., and Boliek, M., CREW: compression with
reversible embedded wavelets, Proc. IEEE Data Compression Conf., Snow-
bird, UT, 212–221, 1995.

James S. Walker "Wavelet-Based Image Compression"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 6

Wavelet-Based Image Compression

James S. Walker
University of Wisconsin-Eau Claire

Truong Q. Nguyen
Boston University

6.1 Introduction

One of the most successful applications of wavelet methods is transform-based
image compression (also called coding). Such a coder [depicted in Fig. 6.1(a)] op-
erates by transforming the data to remove redundancy, then quantizing the transform
coefficients (a lossy step), and finally entropy coding the quantizer output. Because
of their superior energy compaction properties and correspondence with the human
visual system, wavelet compression methods have produced superior objective and
subjective results [5]. Since a wavelet basis consists of functions with both short
support (for high frequencies) and long support (for low frequencies), large smooth
areas of an image may be represented with very few bits, and detail added where it is
needed.

FIGURE 6.1
(a) Transform-based coder. (b) Subband decomposition used in the FBI finger-
print compression standard.

Both orthogonal [73] and bi-orthogonal [1, 70] wavelets have been used for image
compression. The recent FBI fingerprint compression standard [70] uses symmetric
dyadic wavelets and significantly outperforms the JPEG (Joint Picture Expert Group)
standard [38] at compression ratios above 10:1. Fig. 6.1(b) shows the subband de-
composition used in the FBI fingerprint compression standard. Interestingly, the
wavelet tree used in the FBI specification is a predominantly 4-channel decomposi-
tion achieved by cascading 2-channel filter banks.

Most high-quality algorithms today use some form of transform coder. One widely
used standard is the JPEG compression algorithm, based on the discrete cosine trans-
form (DCT) [38]. The image is partitioned into 8 × 8 blocks, each of which is then
transformed via a tensor product of two 8-point DCTs. The transform coefficients
are then arranged into 64 subbands, scalar-quantized, and adaptively Huffman coded.
The JPEG algorithm yields good results for compression ratios of 10:1 and below
(on 8-bit gray-scale images), but at higher compression ratios the underlying block
nature of the transform begins to show through the compressed image. By the time
compression ratios have reached 24:1, only the DC (lowest frequency) coefficient is
getting any bits allocated to it, and the input image has been approximated by a set
of 8 × 8 blocks. Consequently, the decompressed image has substantial blocking
artifacts for medium and high compression ratios.

Researchers have applied subband coding to images for over a decade [69, 60];
their results reached a new level with the advent of the wavelet transform. Wavelet
methods involve overlapping transforms with varying-length basis functions. The
overlapping nature of the transform (each pixel contributes to several output points)
alleviates blocking artifacts, while the multiresolution character of the wavelet de-
composition leads to superior energy compaction and perceptual quality of the de-
compressed image. Furthermore, the multiresolution transform domain means that
wavelet compression methods degrade much more gracefully than block-DCT meth-
ods as the compression ratio increases. One wavelet algorithm, the embedded zerotree
wavelet (EZW) coder, yields acceptable compression at a ratio of 100:1 [48]. The
EZW coder is described in detail in Section 6.3.2.

Section 6.2 briefly reviews the concepts of dyadic wavelet transform and multires-
olution representation and their design and implementation using two-channel filter
banks. Further details can be found in Mallat [26] and Strang and Nguyen [53]. Read-
ers familiar with wavelet theory could skip this section and proceed to Section 6.3
where several coding schemes based on zerotree wavelet coding are described and
compared to JPEG.

6.2 Dyadic Wavelet Transform

The dyadic wavelet transform is an octave-band representation for signals; the dis-
crete wavelet transform may be obtained by iterating a two-channel filter bank on its
lowpass output. This multiresolution decomposition of a signal into its coarse and

detail components is useful for data compression, feature extraction, and denoising.
In the case of images, the wavelet representation is well-matched to psychovisual
models, and compression systems based on the wavelet transform yield perceptual
quality superior to other methods at medium and high compression ratios. Further-
more, the multiresolution nature of the wavelet transform enables fast browsing of
image databases (the user may decompress only the coarsest scale representation of
an image to decide whether he or she wants to examine it at a finer resolution).

FIGURE 6.2
Dyadic wavelet transform, multiresolution representation, implementation us-
ing two-channel filter bank and filter characteristics. Reproduced by Special
Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

Fig. 6.2 shows an original image, its wavelet representation, and the reconstructed
image without coefficient quantization. Since the wavelet transform is invertible,
the reconstructed image is exactly the same as the original image. The decomposed
image (wavelet representation) shows a coarse approximation image in the upper left
corner and several detail images at various scales. As the scale changes, the sub-
image size changes. This is multiresolution and is enabled by the downsampling
operation in the structure shown in the bottom left portion of Fig. 6.2. The coarse
approximation and detail images are computed by first filtering the original image by
lowpass and highpass filters H0(z) and H1(z), respectively. The filtered images are
then downsampled by a factor of 2 to preserve the total image size. This is reflected
in the structure as a two-channel filter bank.

This filter bank is repeated on the coarse approximation image since it still has large
energy content (coarse approximation image is also referred to as the all-lowpass
subband in Section 6.3). The structure shows a three-level filter bank and the corre-
sponding decomposed image shows a three-level wavelet decomposition. The above
process is repeated column-wise and row-wise. Throughout this chapter, we use the
following terminology: horizontal subband to denote lowpass filtering on rows and
highpass filtering on columns, vertical subband to denote highpass filtering on rows
and lowpass filtering on columns, and diagonal subband to denote highpass filter-
ing on both rows and columns. As shown, most of the energy is concentrated in
the coarse approximation image, which is 1

64 the original image size. The detailed
images have small coefficients, as observed from the dark regions in the detailed
images. The resulting multiresolution representation enables the user to treat each
subband independently; for example, he or she may selectively allocate bits depend-
ing on the energy content (variance) of each subband, and the subsequent perceptual
or algorithmic processing. Using the above multiresolution representation for image
compression, one needs to develop an efficient coding algorithm for the locations of
these small coefficients in the detailed images. This topic is discussed in detail in
Section 6.3.

The bottom right portion of Fig. 6.2 shows the magnitude frequency responses
of the lowpass filters H0(z) and F0(z) and their corresponding scaling functions.
These are the Daub 9/7 filters used in the FBI fingerprint standard [70] as well as
in the JPEG2000 standard. These filters are designed appropriately such that the
whole filter bank is invertible and the corresponding basis functions are smooth. The
perceptual quality of the reconstructed image depends on both the basis functions
and the coding algorithm. Note that both lowpass filters have zeros at frequency π
(in fact, they both have four zeros at π in this example). In general, filters with more
zeros at π yields smoother basis functions [53].

6.2.1 Two-Channel Perfect-Reconstruction Filter Bank

x(n)

y(n)

H0 2

H1

F0

F12

2

2

input analysis decimators expanders synthesis output

The figure above shows a two-channel filter bank where H0 and H1 are analysis
filters used in the decomposition process, and F0 and F1 are synthesis filters, used in
the reconstruction process. The boxes with down and up arrows denote downsampling
and upsampling operations, respectively [54]. The objective is to design these filters
such that the overall filter bank has perfect reconstruction; the output is a delayed
version of the input. It is clear that a two-channel perfect-reconstruction filter bank
yields an invertible discrete dyadic wavelet transform.

Since these filters are used in image compression, only filters with symmetric
and finite impulse responses (FIR) are considered. When applying wavelet and filter
bank transforms to finite-length signals, symmetry of the filters becomes an important
consideration. This is because one must provide special treatment at signal boundaries
(e.g., edges of an image). A simple periodic wrap of the signal (circular convolution)
will work but can lead to unpleasant artifacts if the signal intensities at opposite
boundaries differ significantly. When the filters of the filter bank/wavelet transform
are linear-phase (symmetric or antisymmetric), it has been shown [51, 2, 21, 3] that
one may symmetrically extend the input signal (by reflecting it), and that the subband
outputs will also be symmetric, leading to a critically sampled, perfectly invertible
representation that behaves smoothly at signal boundaries.

Another advantage of symmetric filters is that they maintain the correct spatial
and time positioning of events. In a wavelet representation, if the filters are linear-
phase and odd-length (whole-sample-symmetric), then signal details remain centered
on signal samples under iteration of the filtering and decimation operation. This is
important both for frame-to-frame correlation schemes used in video processing, and
for event localization in geophysical signal processing.

There are several design methods for two-channel filter banks and dyadic wavelets.
They are based on spectral factorization [32, 50], lattice structure [55, 34], time-
domain optimization [33], and quadratic-constrained least-squares (QCLS) [35]. The
design method based on spectral factorization is outlined below.

Using z-transform analysis, one obtains the following conditions on the filters such
that the overall two-channel filter bank is perfectly reconstructed [54, 53]:{

H0(z)F0(z)−H0(−z)F0(−z) = 2z−(2L+1)

H1(z) = F0(−z), F1(z) = −H0(−z) . (6.1)

Defining P0(z) = H0(z)F0(z), the first condition above is equivalent to finding a
polynomial P0(z) such that

P0(z)− P0(−z) = 2z−(2L+1) . (6.2)

A P0(z) that satisfies the above condition is a halfband filter with length (4L +
3) [54, 53]. The design procedure is as follows:

1. Design a symmetric halfband filter P0(z) with length (4L+ 3).

2. Factorize P0(z) into H0(z) and F0(z) such that they are symmetric filters.

3. The highpass filters can be obtained from H1(z) = F0(−z),
F1(z) = −H0(−z).

This design procedure yields a two-channel perfect reconstruction filter bank. Re-
call that one also needs the lowpass filters to have zeros at frequency π so that the
resulting basis functions are smooth. This condition implies that the halfband filter
P0(z) also has zeros at frequency π . Daubechies [12] discusses a design method to
obtain a halfband filter P0(z) with the maximum number of zeros at π . For P0(z)

with length (4L + 3), the maximum number of zeros at π is (2L + 2). The Daub
9/7 filter comes from a halfband filter with length 15 and with 8 zeros at π . Each
lowpass filter in this case has 4 zeros at π .

6.2.2 Dyadic Wavelet Transform, Multiresolution Representation

A wavelet decomposition arises from iteration of the lowpass filtering and decima-
tion steps of a multirate filter bank. For a dyadic wavelet decomposition, one iterates
on the lowpass output only, whereas for a wavelet-packet decomposition one may it-
erate on any output [26, 53]. A finite number of iterations will lead to a discrete-time

multiresolution analysis with lowpass frequency response
∏n
k=1H0

(
ω
2k

)
. If the low-

pass filterh0 satisfies the orthonormality constraint,
∑
k h0[k] = 1√

2
, and has one van-

ishing moment (
∑
k kh0[k] = 0), then the infinite product limn→∞

∏n
k=1H0

(
ω
2k

)
converges to a function φ(ω), whose inverse Fourier transform is the continuous time
function φ(t) called the scaling function [12, 26, 53]. The scaling function φ(t) is
the solution to the dilation equation

φ(t) = 2
∑
k

h0[k]φ(2t − k) , (6.3)

and it is orthogonal to its integer translates. If the filter h0[n] is FIR, then φ(t) has
compact support. The scaling function determines the wavelet w(t) by means of the
highpass filter h1:

w(t) = 2
∑
k

h1[k]φ(2t − k) . (6.4)

The set of dilates and translates
{
w(2kt − l)}

k,l∈Z forms a tight frame (and in most

cases an orthonormal basis) for L2(R) [8, 23]. The functional relations Eqs. (6.3)
and (6.4) introduce an entirely new set of relationships between discrete and conti-
nuous-time signal processing, unique to wavelet representations.

The span of integer translates of the scaling function φ(t) is the “lowpass” space
V0, the set of scale-limited signals [17]. Any continuous-time function f (t) in V0
can be expanded as a linear combination f (t) = ∑

n v
0
nφ(t − n) . The superscript 0

denotes an expansion “at scale level 0.” f (t) is completely described by the sequence{
v0
n

}
. Given such a sequence, its coarse approximation [component in V1, where V1

is the signal space with basis function φ(2t − n)] is computed with the lowpass filter
of the wavelet filter bank:

v1
n =

((
v0 ∗ h0

)
↓ 2

)
[n] .

This is essentially implemented as lowpass filtering followed by downsampling in the
two-channel filter bank structure. Analogously, the details [component inW1, where
W1 is the signal space with basis functionw(2t−n)] are computed with the highpass

filter h1[n]. Hence, if we take a discrete sequence vn to be the coefficients of a signal
f (t) at some fixed scale, the discrete wavelet transform of vn will decompose the
underlying signal f into a coarse-scale component and detail at several intermediate
scales, as follows:

V0 = V1⊕W1 = [V2 ⊕W2]⊕W1 = [[V3 ⊕W3] ⊕W2]⊕W1 = . . . = VJ⊕
J∑
j=1

Wj .

In summary, the signal is represented in terms of its coarse approximation at scale
J [with basis function φ(2J t − n)], and the J details [with basis functions w(2j t −
n), 1 ≤ j ≤ J]. This transform matches multiresolution models of human and com-
puter vision [27] and has proven very effective for high-quality image compression. It
also allows multiscale access to information, for applications such as image browsing
and selective decoding of individual channels in a multicarrier system.

6.2.3 Wavelet Smoothness

As with any signal processing structure, one must consider the performance of
the filters involved. In the case of the wavelet transform, one is concerned with the
smoothness of the iterated lowpass filter. When using wavelets for lossy transform-
based image coding, any quantization noise will appear in the decompressed image as
linear combinations of the wavelet transform basis functions φ(t) and w(t). If these
basis functions (which are derived from the iterated discrete filter) are not smooth,
then perceptually unacceptable artifacts will result. In fact, for all commonly used
wavelets, the cascade converges fast enough so that the smoothness of the infinite
limit is visually comparable to that of a six-level iterate [41]. Five- and six-level iter-
ates are common in commercial implementations of wavelet-transform-based image
compression [73, 10].

The smoothness of continuous-time wavelet systems has been the object of inten-
sive study [12, 13, 15, 18, 64, 65]. Because the wavelet w(t) is determined from
the scaling function by means of the highpass filter taps Eq. (6.4), the smoothness
of the scaling function (infinitely iterated lowpass filter) determines the smoothness
of the overall wavelet system. In the two-band case, Daubechies’ construction [12]
imposed N vanishing wavelet moments

∫
tkw(t)dt = 0, 0 ≤ k ≤ N − 1 as a means

of ensuring smoothness; this condition is equivalent to an N -th order zero at π for
the lowpass filter:

∑
n(−1)nnkh0[n] = 0, 0 ≤ k ≤ N − 1. This condition was moti-

vated by a theorem [11] stating that if an orthonormal system of dilates and translates{
2j/2w(2j t − k)} is made up of N times continuously differentiable functions, then

the generating wavelet w(t) must have N vanishing moments.
Vanishing moments are also associated with polynomial interpolation properties of

the lowpass filter [52]. If a wavelet system hasN vanishing moments, then polynomi-
als of degree less than N may be represented as a linear combination of translates of
the scaling function. In the setting of digital filter banks, this means that any locally
polynomial component of a signal (of degree less thanN) is preserved by the lowpass
filter and zeroed out by the highpass filter — so long as the wavelet system has N

vanishing moments. These smoothness-under-iteration and polynomial approxima-
tion properties help explain why wavelet filters with vanishing moments perform so
well in image compression.

6.3 Wavelet-Based Image Compression

There are two types of image compression: lossless and lossy. With lossless com-
pression, the original image is recovered exactly after decompression. Unfortunately,
with images of natural scenes it is rarely possible to obtain error-free compression
at a rate beyond 2:1. Much higher compression ratios can be obtained if some error,
which is usually difficult to perceive, is allowed between the decompressed image
and the original image. This is lossy compression. In many cases, it is not necessary
or even desirable that there be error-free reproduction of the original image. For
example, if some noise is present, then the error due to that noise will usually be
significantly reduced via some denoising method. In such a case, the small amount
of error introduced by lossy compression may be acceptable. Lossy compression is
also acceptable in fast transmission of still images over the Internet.

We concentrate on wavelet-based lossy compression of gray-level still images.
When there are 256 levels of possible intensity for each pixel, then we shall call these
images 8 bpp (bits per pixel) images. Images with 4096 gray-levels are referred to
as 12 bpp. Some brief comments on color images are also given, and we also briefly
describe some wavelet-based lossless compression methods.

6.3.1 Lossy Compression

We concentrate on the following methods of lossy compression: EZW (embedded
zerotree wavelet) algorithm, SPIHT (set partitioning in hierarchical trees) algorithm,
WDR (wavelet difference reduction) algorithm, and ASWDR (adaptively scanned
wavelet difference reduction) algorithm. These are relatively recent algorithms which
achieve some of the lowest errors per compression rate and highest perceptual quality
yet reported. After describing these algorithms in detail, we shall list some of the
other algorithms that are available.

Before we examine the algorithms listed above, we shall outline the basic steps that
are common to all wavelet-based image compression algorithms. The five stages of
compression and decompression are shown in Figs. 6.3 and 6.4. All of the steps shown
in the compression diagram are invertible, hence lossless, except for the quantize step.
Quantizing refers to a reduction of the precision of the floating point values of the
wavelet transform, which are typically either 32- or 64-bit floating point numbers.
To use less bits in the compressed transform — which is necessary if compression of
8 bpp or 12 bpp images is to be achieved — these transform values must be expressed
with less bits for each value. This leads to rounding error. These approximate,

quantized, wavelet transforms will produce approximations to the images when an
inverse transform is performed. Thus creating the error inherent in lossy compression.

Image Wavelet
Transform

Quantize Encode
Compressed
Image

FIGURE6.3
Compression of an image.

Compressed
Image

Decode
Approximate
Wavelet
Transform

Inverse
Wavelet
Transform

Round off to
integer values,
create Image

FIGURE 6.4
Decompression of an image.

The relationship between the quantize and encode steps, shown in Fig. 6.3, is the
crucial aspect of wavelet transform compression. Each of the algorithms described
below takes a different approach to this relationship.

The purpose served by the wavelet transform is that it produces a large number
of values having zero, or near zero, magnitudes. For example, consider the image
shown in Fig. 6.5(a), which is called “Lena.” Fig. 6.5(b), shows a 7-level Daub 9/7
wavelet transform of the “Lena” image. This transform has been thresholded, using
a threshold of 8. That is, all values with magnitudes less than 8 have been set equal
to 0; they appear as a uniformly gray background in the image in Fig. 6.5(b). These
large areas of gray background indicate that there is a large number of zero values
in the thresholded transform. If an inverse wavelet transform is performed on this
thresholded transform, then the image in Fig. 6.5(c) results (after rounding to integer
values between 0 and 255). It is difficult to detect any difference between the images
in Figs. 6.5(a) and (c).

The image in Fig. 6.5(c) was produced using only the 32,498 nonzero values of the
thresholded transform, instead of all 262,144 values of the original transform. This
represents an 8:1 compression ratio. We are, of course, ignoring difficult problems
such as how to transmit concisely the positions of the nonzero values in the thresh-
olded transform, and how to encode these nonzero values with as few bits as possible.
Solutions to these problems are described below, when the various compression al-
gorithms are discussed.

Two commonly used measures for quantifying the error between images are mean
square error (MSE) and peak signal to noise ratio (PSNR). The MSE between two
images f and g is defined by

MSE = 1

N

∑
j,k

(f [j, k] − g[j, k])2 (6.5)

FIGURE 6.5
(a) “Lena” image, 8 bpp. (b) Wavelet transform of image, threshold = 8. (c) In-
verse of thresholded wavelet transform, PSNR = 39.14 dB. Reproduced by Spe-
cial Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

where the sum over j, k denotes the sum over all pixels in the images, and N is the
number of pixels in each image. For the images in Figs. 6.5(a) and (c), the MSE
is 7.921. The PSNR between two (8 bpp) images is, in decibels,

PSNR = 10 log10

(
2552

MSE

)
. (6.6)

PSNR tends to be cited more often since it is a logarithmic measure, and our brains
seem to respond logarithmically to intensity. Increasing PSNR represents increasing
fidelity of compression. For the images in Figs. 6.5(a) and (c), the PSNR is 39.14 dB.
Generally, when the PSNR is 40 dB or larger, then the two images are virtually
indistinguishable by human observers. In this case, we can see that 8:1 compression
should yield an image almost identical to the original. The methods described below
do in fact produce such results with even greater PSNR than we have just achieved
with our crude approach.

Before we begin our treatment of various “state of the art” algorithms, it may be
helpful to briefly outline a baseline compression algorithm of the kind described in
Davis and Nosratinia [14] and Mallat [26]. This algorithm has two main parts.

First, the positions of the significant transform values — the ones having larger
magnitudes than the threshold T — are determined by scanning through the transform
as shown in Fig. 6.6. The positions of the significant values are then encoded using a
runlength method. To be precise, it is necessary to store the values of the significance
map:

s(m) =
{

0 if |w(m)| < T
1 if |w(m)| ≥ T ,

(6.7)

where m is the scanning index, and w(m) is the wavelet transform value at index m.
From Fig. 6.5(b) we can see that there will be long runs of s(m) = 0. If the scan

1 2

3 4

9 10

5 8

6 7

12 11 15 16

13 14

17 24 25 32

18 23 26 31

19 22 27 30

20 21 28 29

40 39

33 34

48 47

41 42

46 45

43 44

38 37

35 36 49 50 54 55

51 53 56 61

52 57 60 62

58 59 63 64

(a) 2-level

1 2

3 4

9 10

5 8

6 7

12 11 15 16

13 14

17 24 25 32

18 23 26 31

19 22 27 30

20 21 28 29

40 39

33 34

48 47

41 42

46 45

43 44

38 37

35 36 49 50 54 55

51 53 56 61

52 57 60 62

58 59 63 64

(b) 3-level

FIGURE 6.6
Scanning for wavelet transforms: zigzag through all-lowpass subband, column
scan through vertical subbands, row scan through horizontal subbands, zigzag
through diagonal subbands. (a) and (b): Order of scanned elements for 2-level
and 3-level transforms of 8 by 8 image.

order illustrated in Fig. 6.6 is used, then there will also be long runs of s(m) = 1. The
positions of significant values can then be concisely encoded by recording sequences
of 6 bits according to the following pattern:

0 abcde : run of 0 of length (abcde)2
1 abcde : run of 1 of length (abcde)2 .

A lossless compression, such as Huffman or arithmetic compression, of these data is
also performed for a further reduction in bits.

Second, the significant values of the transform are encoded. This can be done
by dividing the range of transform values into subintervals (bins) and rounding each
transform value into the midpoint of the bin in which it lies. Fig. 6.7 shows the
histogram of the frequencies of significant transform values lying in 512 bins for the
7-level Daub 9/7 transform of “Lena” shown in Fig. 6.5(b). The extremely rapid drop
in the frequencies of occurrence of higher transform magnitudes implies that the very
low magnitude values, which occur much more frequently, should be encoded using
shorter length bit sequences. This is typically done with either Huffman encoding
or arithmetic coding. If arithmetic coding is used, then the average number of bits
needed to encode each significant value in this case is about 1 bit.

We have only briefly sketched the steps in this baseline compression algorithm.
More details can be found in Davis and Nosratinia [14] and Mallat [26].

Our purpose in discussing the baseline compression algorithm is to introduce some
basic concepts, such as scan order and thresholding, which are needed for our exam-
ination of the algorithms to follow. The baseline algorithm was one of the first to be

FIGURE 6.7
Histogram for 512 bins for thresholded transform of “Lena.”

proposed using wavelet methods [1]. It suffers from some defects which later algo-
rithms have remedied. For instance, with the baseline algorithm it is very difficult,
if not impossible, to specify in advance the exact compression rate or the exact error
to be achieved. This is a serious defect. Another problem with the baseline method
is that it does not allow for progressive transmission. In other words, it is not pos-
sible to send successive data packets (over the Internet, for instance) which produce
successively increasing resolution for the received image. Progressive transmission
is vital for applications that include some level of interaction with the receiver.

Let us now turn to these improved wavelet image compression algorithms. The
algorithms to be discussed are the EZW, SPIHT, WDR, and ASWDR algorithms.

6.3.2 EZW Algorithm

The EZW algorithm was one of the first algorithms to show the full power of
wavelet-based image compression. It was introduced in the groundbreaking paper of
Shapiro [48]. We shall describe EZW in some detail because a solid understanding of
it will make it much easier to comprehend the other algorithms we shall be discussing.
These other algorithms build upon the fundamental concepts that were first introduced
with EZW.

Our discussion of EZW will be focused on the fundamental ideas underlying it.
We will not use it to compress any images because it has been superceded by a far
superior algorithm, SPIHT. Since SPIHT is only a highly refined version of EZW, it
makes sense to first describe EZW.

EZW stands for embedded zerotree wavelet. An embedded coding is a process
of encoding the transform magnitudes that allows for progressive transmission of

the compressed image. Zerotrees allow for a concise encoding of the positions of
significant values that result during the embedded coding process. We shall first
discuss embedded coding, and then examine the notion of zerotrees.

The embedding process used by EZW is called bit-plane encoding. It consists of
the following five-step process:

Bit-plane encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Significance pass. Scan through insignificant values using baseline algorithm
scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output sign of w(m)

Set wQ(m) = Tk
Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0 .

Step 4: Refinement pass. Scan through significant values found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each significant value w(m), do the
following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

This bit-plane encoding procedure can be continued for as long as necessary to obtain
quantized transform magnitudeswQ(m)which are as close as desired to the transform
magnitudes |w(m)|. During decoding, the signs and the bits output by this method
can be used to construct an approximate wavelet transform to any desired degree of
accuracy. If instead, a given compression ratio is desired, then it can be achieved
by stopping the bit-plane encoding as soon as a given number of bits (a bit budget)
is exhausted. In either case, the execution of the bit-plane encoding procedure can
terminate at any point (not just at the end of one of the loops).

As a simple example of bit-plane encoding, suppose that we just have two transform
valuesw(1) = −9.5 andw(2) = 42. For an initial threshold, we set T0 = 64. During
the first loop, whenT1 = 32, the output is the sign ofw(2), and the quantized transform
magnitudes arewQ(1) = 0 andwQ(2) = 32. For the second loop, T2 = 16, and there
is no output from the significance pass. The refinement pass produces the bit 0 because
w(2) ∈ [32, 32 + 16). The quantized transform magnitudes are wQ(1) = 0 and
wQ(2) = 32. During the third loop, when T3 = 8, the significance pass outputs the

sign ofw(1). The refinement pass outputs the bit 1 becausew(2) ∈ [32+8, 32+16).
The quantized transform magnitudes are wQ(1) = 8 and wQ(2) = 40.

It is not hard to see that after n loops, the maximum error between the transform
values and their quantized counterparts is less than T0/2n. It follows that we can
reduce the error to as small a value as we wish by performing a large enough number
of loops. For instance, in the simple example just described, with seven loops the
error is reduced to zero. The output from these seven loops, arranged to correspond
to w(1) and w(2), is

w(1) : − 0 0 1 1
w(2) : + 0 1 0 1 0 0 .

Notice that w(2) requires seven symbols, but w(1) requires only five.
Bit-plane encoding consists simply of computing binary expansions — using T0 as

unit — for the transform values and recording in magnitude order only the significant
bits in these expansions. Because the first significant bit is always 1, it is not encoded.
Instead, the sign of the transform value is encoded first. This coherent ordering of
encoding, with highest magnitude bits encoded first, is what allows for progressive
transmission.

Wavelet transforms are particularly well-adapted for bit-plane encoding1 because
wavelet transforms of images of natural scenes often have relatively few high-mag-
nitude values, which are mostly found in the highest level subbands. These high-
magnitude values are first coarsely approximated during the initial loops of the bit-
plane encoding, thereby producing a low-resolution, but often recognizable, version
of the image. Subsequent loops encode lower magnitude values and refine the high
magnitude values, adding further details to the image and refining existing details.
Thus, progressive transmission is possible, and encoding/decoding can cease once a
given bit budget is exhausted or a given error target is achieved.

Now that we have described the embedded coding of wavelet transform values, we
will describe the zerotree method by which EZW transmits the positions of significant
transform values. The zerotree method gives an implicit, very compact, description
of the location of significant values by creating a highly compressed description of
the location of insignificant values. For many images of natural scenes, such as the
“Lena” image for example, insignificant values at a given threshold T are organized
in zerotrees.

To define a zerotree we first define a quadtree — a tree of locations in the wavelet
transform with a root [i, j] and its children located at [2i, 2j], [2i+1, 2j], [2i, 2j+1],
and [2i + 1, 2j + 1], and each of their children, and so on. These descendants of the
root reach all the way back to the 1st level of the wavelet transform. For example,
Fig. 6.8(a) shows two quadtrees (enclosed in dashed boxes). One quadtree has root
at index 12 and children at indices {41, 42, 47, 48}. This quadtree has two levels. We
denote it by {12 | 41, 42, 47, 48}. The other quadtree, which has three levels, has its

1Although other transforms, such as the block discrete cosine transform, can also be bit-plane encoded.

root at index 4, the children of this root at indices {13, 14, 15, 16}, and their children
at indices {49, 50, . . . , 64}. It is denoted by {4 | 13, . . . , 16 | 49, . . . , 64}.

(c) Threshold = 32 (d) Threshold = 16

5 18 -12 7

3 4 6 -1

5 -7 3 9

4 -2 3 2

33 34 35 36

40 39 38 37

41 42 43 44

48 47 46 45

49 50 54 55

51 53 56 61

52 57 60 62

58 59 63 64

-5 9 -1 47

3 0 -3 2

2 -3 6 -4

5 11 5 6

4 6 -2 2

3 -2 0 4

3 6 3 6

0 3 -4 4

17 24 25 32

18 23 26 31

 5 8

 6 7

1 2

3 4

 9 10

12 11

13 14

15 16

 49 10

14 -13

63 -34

-31 23

-25 -7

-9 14

-14 8

3 -12

19 22 27 30

20 21 28 29

I +

I I

I +

I I

I I +

I I

I I

I I

+ R

R R

+ -

I R

 R I

R R

 + R

R R

+ -

- +

- R

R R

R R

R R

(a) Scan order, with two quadtrees (b) Wavelet transform

•

•

•

• • •

•

•

•

•

•

•

•

•

•

••••

• • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•••

•

• • • •

••••

• • • •

••••

•

••

•••

•

• •

•

••

• • •

•

•

FIGURE 6.8
First two stages of EZW. (a) 3-level scan order. (b) 3-level wavelet transform.
(c) Stage 1, threshold = 32. (d) Stage 2, threshold = 16.

Now that we have defined a quadtree, we can give a simple definition of a zerotree.
A zerotree is a quadtree which, for a given threshold T , has insignificant wavelet
transform values at each of its locations. For example, if the threshold is T = 32,

then each of the quadtrees shown in Fig. 6.8(a) is a zerotree for the wavelet transform
in Fig. 6.8(b). But if the threshold is T = 16, then {12 | 41, 42, 47, 48} remains a
zerotree, but {4 | 13, . . . , 16 | 49, . . . , 64} is no longer a zerotree because its root value
is no longer insignificant.

Zerotrees can provide very compact descriptions of the locations of insignificant
values because it is only necessary to encode one symbol, such as R, to mark the
root location. The decoder can infer that all other locations in the zerotree have
insignificant values, so their locations are not encoded. For the threshold T = 32, in
the example just discussed, two R symbols are enough to specify all 26 locations in
the two zerotrees.

Zerotrees can be useful only if they occur frequently. Fortunately, with wavelet
transforms of natural scenes, the multiresolution structure of the wavelet transform
does produce many zerotrees (especially at higher thresholds). For example, consider
the images shown in Fig. 6.9. Fig. 6.9(a) shows the second all-lowpass subband of a
Daub 9/7 transform of the “Lena” image. Image 6.9(b), on its right, is the third verti-
cal subband produced from this all-lowpass subband, with a threshold of 16. Notice
that there are large patches of gray pixels in this image. These represent insignifi-
cant transform values for the threshold of 16 which correspond to regions of nearly
constant, or nearly linearly graded, intensities in the image in 6.9(a). Such intensities
are nearly orthogonal to the analyzing Daub 9/7 wavelets. Zerotrees arise for the
threshold of 16 because in image 6.9(c) — the second all-lowpass subband — there
are similar regions of constant or linearly graded intensities. In fact, it was precisely
these regions that were smoothed and downsampled to create the corresponding re-
gions in image 6.9(a). These regions in image 6.9(c) produce insignificant values in
the same relative locations (the child locations) in the second vertical subband shown
in image 6.9(d).

Likewise, there are uniformly gray regions in the same relative locations in the first
vertical subband [see Fig. 6.9(f)]. Because the second vertical subband in Fig. 6.9(d)
is magnified by a factor of two in each dimension, and the third vertical subband
in Fig. 6.9(b) is magnified by a factor of four in each dimension, it follows that the
common regions of gray background shown in these three vertical subbands are all
zerotrees. Similar images could be shown for horizontal and diagonal subbands, and
they would also indicate a large number of zerotrees.

The “Lena” image is typical of many images of natural scenes, and the above
discussion gives some background for understanding how zerotrees arise in wavelet
transforms. A more rigorous, statistical discussion can be found in Shapiro [48].

Now that we have laid the foundations of zerotree encoding, we can complete our
discussion of the EZW algorithm. The EZW algorithm consists simply of replacing
the significance pass in the Bit-plane encoding procedure with the following step:

EZW Step 3: Significance pass. Scan through insignificant values using baseline

FIGURE 6.9
(a) Second all-lowpass subband. (b) Third vertical subband. (c) First all-lowpass
subband. (d) Second vertical subband. (e) Original “Lena.” (f) First vertical
subband. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

algorithm scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output the sign of w(m)

Set wQ(m) = Tk
Else if |w(m)| < Tk then

Let wQ(m) remain equal to 0

If m is at 1st level, then

Output I

Else

Search through quadtree having root m

If this quadtree is a zerotree, then

Output R

Else

Output I .

During a search through a quadtree, values that were found to be significant at higher
thresholds are treated as zeros. All descendants of a root of a zerotree are skipped in
the rest of the scanning at this threshold.

As an example of the EZW method, consider the wavelet transform shown in
Fig. 6.8(b), which will be scanned through using the scan order shown in Fig. 6.8(a).
Suppose that the initial threshold isT0 = 64. In the first loop, the threshold isT1 = 32.
The results of the first significance pass are shown in Fig. 6.8(c). The coder output
after this first loop would be

+ − I R + RRRR I R R I I I I I + I I (6.8)

corresponding to a quantized transform having only two values: ±32 — +32 at each
location marked by a plus sign in Fig. 6.8(c), −32 at each location marked by a minus
sign, and 0 at all other locations. In the second loop, with threshold T2 = 16, the
results of the significance pass are indicated in Fig. 6.8(d). Notice, in particular, that
the symbolR is at the position 10 in the scan order because the plus sign which lies at
a child location is from the previous loop, so it is treated as zero. Hence, position 10
is at the root of a zerotree. There is also a refinement pass done in this second loop.
The output from this second loop is then

− + RRR − RRRRRRR I I I + I I I I 1 0 1 0 (6.9)

with corresponding quantized wavelet transform shown in Fig. 6.10(a). The MSE
between this quantized transform and the original transform is 48.6875. This is
a 78% reduction in error from the start of the method (when the quantized transform
has all zero values).

A couple of final remarks are in order concerning the EZW method. First, it should
be clear from the discussion above that the decoder, whose structure is outlined in

Fig. 6.4 above, can reverse each of the steps of the coder and produce the quantized
wavelet transform. It is standard practice for the decoder to then round the quantized
values to the midpoints of the intervals that they were last found to belong to during
the encoding process (i.e., add half of the last threshold used to their magnitudes).
This generally reduces MSE. For instance, in the example just considered, if this
rounding is done to the quantized transform in Fig. 6.10(a), then the result is shown
in Fig. 6.10(b). The MSE is then 39.6875, a reduction of more than 18%. A good
discussion of the theoretical justification for this rounding technique can be found in
Mallat [26]. This rounding method will be employed by all of the other algorithms
that we shall discuss.

0 0 0 32

000

0 0 0 0

0

0000

0 0 0 0

000

0 0 0 0

0

0000

0 16 0 0

000

0 0 0 0

0

0000

-32 48 0

016

-16

-16

 48

0 0 0

0

0000

0 0 0 40

000

0 0 0 0

0

0000

0 0 0 0

000

0 0 0 0

0

0000

0 24 0 0

000

0 0 0 0

0

0000

-40 56 0

024

-24

-24

 56

0 0 0

0

0000

(a) (b)

FIGURE 6.10
(a) Quantization at end of second stage, MSE = 48.6875. (b) After rounding to
midpoints, MSE = 39.6875, reduction by more than 18%.

Second, since we live in a digital world, it is usually necessary to transmit just
bits. A simple encoding of the symbols of the EZW algorithm into bits would be to
use a code such as + = 0 1, − = 0 0, R = 1 0, and I = 1 1. Since the decoder
can always infer precisely when the encoding of these symbols ends (the significance
pass is complete), the encoding of refinement bits can simply be as single bits 0 and
1. This form of encoding is the fastest to perform, but it does not achieve the greatest
compression. In Shapiro [48], a lossless form of arithmetic coding was recommended
in order to further compress the bit stream from the encoder.

6.3.3 SPIHT Algorithm

The SPIHT algorithm is a highly refined version of the EZW algorithm. It was
introduced in Said and Pearlman [44, 45]. Some of the best results — highest PSNR
values for given compression ratios — for a wide variety of images have been ob-

tained with SPIHT. Consequently, it is probably the most widely used wavelet-based
algorithm for image compression, providing a basic standard of comparison for all
subsequent algorithms.

SPIHT stands for set partitioning in hierarchical trees. The term hierarchical trees
refers to the quadtrees that we defined in our discussion of EZW. Set partitioning
refers to the way these quadtrees partition the wavelet transform values at a given
threshold. By a careful analysis of this partitioning of transform values, Said and
Pearlman were able to greatly improve the EZW algorithm, significantly increasing
its compressive power.

Our discussion of SPIHT will consist of three parts. First, we describe a modified
version of the algorithm introduced in Said and Pearlman [44]. We refer to it as the
spatial-orientation tree wavelet (STW) algorithm. STW is essentially the SPIHT
algorithm; the only difference is that SPIHT is slightly more careful in its organi-
zation of coding output. Second, we describe the SPIHT algorithm. It is easier to
explain SPIHT using the concepts underlying STW. Third, we see how well SPIHT
compresses images.

The only difference between STW and EZW is that STW uses a different approach
to encoding the zerotree information. STW uses a state transition model. From one
threshold to the next, the locations of transform values undergo state transitions. This
model allows STW to reduce the number of bits needed for encoding. Instead of code
for the symbols R and I output by EZW to mark locations, the STW algorithm uses
states IR , IV , SR , and SV and outputs code for state-transitions such as IR → IV ,
SR → SV , etc. To define the states involved, some preliminary definitions are needed.

For a given index m in the baseline scan order, define the set D(m) as follows. If
m is either at the first level or at the all-lowpass level, then D(m) is the empty set ∅.
Otherwise, if m is at the j th level for j > 1, then

D(m) = {Descendents of index m in quadtree with root m} .
The significance function S is defined by

S(m) =
{

max
n∈D(m)

|w(n)|, if D(m) �= ∅
∞, if D(m) = ∅ .

With these preliminary definitions in hand, we can now define the states. For a
given threshold T , the states IR , IV , SR , and SV are defined by

m ∈ IR if and only if |w(m)| < T, S(m) < T (6.10)

m ∈ IV if and only if |w(m)| < T, S(m) ≥ T (6.11)

m ∈ SR if and only if |w(m)| ≥ T , S(m) < T (6.12)

m ∈ SV if and only if |w(m)| ≥ T , S(m) ≥ T . (6.13)

Fig. 6.11 shows the state transition diagram for these states when a threshold is
decreased from T to T ′ < T . Note that once a location m arrives in state SV , it will
remain in that state. Furthermore, there are only two transitions from each of the

IR SR

IV SV

FIGURE 6.11
State transition diagram for STW.

Table 6.1 Code for State
Transitions, • Indicates that
SV → SV Transition is Certain
(Hence no Encoding Needed)

Old\New IR IV SR SV

IR 00 01 10 11
IV 0 1
SR 0 1
SV •

states IV and SR , so those transitions can be coded with one bit each. A simple binary
coding for these state transitions is shown in Table 6.1.

Now that we have laid the groundwork for the STW algorithm, we can give its full
description.

STW encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2. Assign
all indices for the Lth level, where L is the number of levels in the wavelet transform,
to the dominant list (this includes all locations in the all-lowpass subband as well as the
horizontal, vertical, and diagonal subbands at the Lth level). Set the refinement list of
indices equal to the empty set.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Dominant pass. Use the following procedure to scan through indices in the

dominant list (which can change as the procedure is executed).

Do

Get next index m in dominant list

Save old state Sold = S(m, Tk−1)

Find new state Snew = S(m, Tk) using Eqs. (6.10)--(6.13)

Output code for state transition Sold → Snew

If Snew �= Sold then do the following

If Sold �= SR and Snew �= IV then

Append index m to refinement list

Output sign of w(m) and set wQ(m) = Tk
If Sold �= IV and Snew �= SR then

Append child indices of m to dominant list

If Snew = SV then

Remove index m from dominant list

Loop until end of dominant list

Step 4: Refinement pass. Scan through indices m in the refinement list found with
higher threshold values Tj , for j < k (if k = 1 skip this step). For each value w(m),
do the following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

To see how STW works — and how it improves the EZW method — it helps to
reconsider the example shown in Fig. 6.8. In Fig. 6.12, we show STW states for the
wavelet transform in Fig. 6.8(b) using the same two thresholds we used previously
with EZW. It is important to compare the three quadtrees enclosed in the dashed
boxes in Fig. 6.12 with the corresponding quadtrees in Figs. 6.8(c) and (d). There
is a large savings in coding output for STW represented by these quadtrees. The
EZW symbols for these three quadtrees are + I I I I , − I I I I , and +RRRR. For
STW, however, they are described by the symbols + SR , − SR , and + SR , which is a
substantial reduction in the information that STW needs to encode.

There is not much difference between STW and SPIHT. The one thing that SPIHT
does differently is to carefully organize the output of bits in the encoding of state
transitions in Table 6.1, so that only one bit is output at a time. For instance, for the
transition IR → SR , which is coded as 1 0 in Table 6.1, SPIHT outputs a 1 first and
then (after further processing) outputs a 0. Even if the bit budget is exhausted before
the second bit can be output, the first bit of 1 indicates that there is a new significant
value.

. .

. .
SR

IRIR

IR

IR IR

IV

IV SV

IVIV

IV

SV SV

IR

IR

. .
. . .

..
.
.
. . . .

. . .
. .

..
.
. . . .

. . .

. .
. . .

..
.
.
. . . .

. . .
. .
. .
SV

IRSR

SR

IR IR

IV

IV SV

IV

IVIV

SV

IVIV

SV

SV SV

IR

IR

. .
. . .

..
.
.
. . . .

. . .
. .

..
.
. . . .

. . .

. .
..

.

. . . .
. . .

(a) Threshold = 32 (b) Threshold = 16

FIGURE 6.12
First two stages of STW for wavelet transform in Fig. 6.8.

The SPIHT encoding process, as described in Said and Pearlman [45], is phrased
in terms of pixel locations [i, j] rather than indices m in a scan order. To avoid
introducing new notation, and to highlight the connections between SPIHT and the
other algorithms, EZW and STW, we rephrase the description of SPIHT from Said
and Pearlman [45] in terms of scanning indices. We also slightly modify their notation
in the interests of clarity.

First, we need some preliminary definitions. For a given set I of indices in the
baseline scan order, the significance ST [I] of I relative to a threshold T is defined
by

ST [I] =
{

1, if max
n∈I |w(n)| ≥ T

0, if max
n∈I |w(n)| < T .

(6.14)

It is important to note that, for the initial threshold T0, we have ST0 [I] = 0 for all
sets of indices. If I is a set containing just a single indexm, then for convenience we
write ST [m] instead of ST [{m}].

For a succinct presentation of the method, we need the following definitions of sets
of indices:

D(m) = {Descendent indices of the index m}
C(m) = {Child indices of the index m}
G(m) = D(m)− C(m)

= {Grandchildren of m, i.e., descendants which are not children} .

In addition, the set H consists of indices for the Lth level, where L is the number of
levels in the wavelet transform (this includes all locations in the all-lowpass subband as
well as the horizontal, vertical, and diagonal subbands at theLth level). It is important
to remember that the indices in the all-lowpass subband have no descendants. If m
marks a location in the all-lowpass subband, then D(m) = ∅.

SPIHT keeps track of the states of sets of indices by means of three lists. They
are the list of insignificant sets (LIS), the list of insignificant pixels (LIP), and the
list of significant pixels (LSP). For each list a set is identified by a single index,
in the LIP and LSP these indices represent the singleton sets {m} where m is the
identifying index. An index m is called either significant or insignificant, depending
on whether the transform value w(m) is significant or insignificant with respect to
a given threshold. For the LIS, the index m denotes either D(m) or G(m). In the
former case, the index m is said to be of type D and, in the latter case, of type G.

The following is the pseudocode for the SPIHT algorithm. For simplicity, we write
the significance function STk as Sk .

SPIHT encoding —

Step 1: Initialize. Choose initial threshold T0 such that all transform values satisfy
|w(m)| < T0 and at least one value satisfies |w(m)| ≥ T0/2. Set LIP equal to H, set
LSP equal to ∅, and setLIS equal to all the indices inH that have descendants (assigning
them all type D).

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Sorting pass. Proceed as follows:

For each m in LIP do:

Output Sk[m]
If Sk[m] = 1 then

Move m to end of LSP

Output sign of w(m); set wQ(m) = Tk
Continue until end of LIP

For each m in LIS do:

If m is of type D then

Output Sk[D(m)]
If Sk[D(m)] = 1 then

For each n ∈ C(m) do:

Output Sk[n]
If Sk[n] = 1 then

Append n to LSP

Output sign of w(n); set wQ(n) = Tk
Else If Sk[n] = 0 then

Append n to LIP

If G(m) �= ∅ then

Move m to end of LIS as type G

Else

Remove m from LIS

Else If m is of type G then

Output Sk[G(m)]
If Sk[G(m)] = 1 then

Append C(m) to LIS, all type D indices

Remove m from LIS

Continue until end of LIS

Notice that the set LIS can undergo many changes during this procedure, it typically
does not remain fixed throughout.

Step 4: Refinement pass. Scan through indices m in LSP found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each valuew(m), do the following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

It helps to carry out this procedure on the wavelet transform shown in Fig. 6.8. Then
one can see that SPIHT simply performs STW with the binary code for the states in
Table 6.1 being output one bit at a time.

Now comes the payoff. We shall see how well SPIHT performs in compressing
images. To do these compressions we used the public domain SPIHT programs that
can be downloaded from the Internet [46]. In Fig. 6.13 we show several SPIHT com-
pressions of the “Lena” image. The original “Lena” image is shown in Fig. 6.13(f).
Five SPIHT compressions are shown with compression ratios of 128:1, 64:1, 32:1,
16:1, and 8:1.

Several things are worth noting about these compressed images. First, they were
all produced from one file containing the 1 bpp compression of the “Lena image.”

FIGURE 6.13
SPIHT compressions of “Lena” image. PSNR values: (a) 27.96 dB. (b) 30.85
dB. (c) 33.93 dB. (d) 37.09 dB. (e) 40.32 dB. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.

By specifying a bit budget, a certain bpp value up to 1, the SPIHT decompression
program will stop decoding the 1 bpp compressed file once the bit budget is exhausted.
This illustrates the embedded nature of SPIHT.

Second, the rapid convergence of the compressed images to the original is nothing
short of astonishing. Even the 64 : 1 compression in Fig. 6.13(b) is almost indis-
tinguishable from the original. A close examination of the two images is needed in
order to see some differences, e.g., the blurring of details in the top of Lena’s hat.
The image in (b) would be quite acceptable for some applications, such as the first
image in a sequence of video telephone images or as a thumbnail display within a
large archive.

Third, notice that the 1 bpp image has a 40.32 dB PSNR value and is virtually indis-
tinguishable — even under very close examination — from the original. Here we find
that SPIHT is able to exceed the simple thresholding compression we first discussed
(see Fig. 6.5). For reasons of space, we cannot show SPIHT compressions of many
test images, so in Table 6.2 we give PSNR values for several test images [19]. These
data show that SPIHT produces higher PSNR values than the two other algorithms
that we shall describe below. SPIHT is well-known for its superior performance

when PSNR is used as the error measure. High PSNR values, however, are not the
sole criterion for the performance of lossy compression algorithms. We discuss other
criteria below.

Table 6.2 PSNR Values, With Arithmetic
Compression

Image/Method SPIHT WDR ASWDR

Lena, 0.5 bpp 37.09 36.45 36.67
Lena, 0.25 bpp 33.85 33.39 33.64
Lena, 0.125 bpp 30.85 30.42 30.61
Goldhill, 0.5 bpp 33.10 32.70 32.85
Goldhill, 0.25 bpp 30.49 30.33 30.34
Goldhill, 0.125 bpp 28.39 28.25 28.23
Barbara, 0.5 bpp 31.29 30.68 30.87
Barbara, 0.25 bpp 27.47 26.87 27.03
Barbara, 0.125 bpp 24.77 24.30 24.52
Airfield, 0.5 bpp 28.57 28.12 28.36
Airfield, 0.25 bpp 25.90 25.49 25.64
Airfield, 0.125 bpp 23.68 23.32 23.50

Fourth, these SPIHT compressed images were obtained using SPIHT’s arithmetic
compression option. The method that SPIHT uses for arithmetic compression is quite
involved and space does not permit a discussion of the details here. Some details are
provided in Said and Pearlman [47].

Finally, it is interesting to compare SPIHT compressions with compressions ob-
tained with the JPEG method2. The JPEG method is a sophisticated implementation
of block discrete cosine transform encoding [67, 38]. It is used extensively for com-
pression of images, especially for transmission over the Internet. In Fig. 6.14, we
compare compressions of the “Lena” image obtained with JPEG and with SPIHT at
three different compression ratios. (JPEG does not allow for specifying the bpp value
in advance; the 59:1 compression was the closest we could get to 64:1.) It is clear from
these images that SPIHT is far superior to JPEG. It is better both in perceptual quality
and in terms of PSNR. Notice, in particular, that the 59:1 JPEG compression is very
distorted (exhibiting blocking artifacts stemming from coarse quantization within the
blocks making up the block DCT used by JPEG). The SPIHT compression, even at
the slightly higher ratio of 64:1, exhibits none of these objectionable features. In fact,
for quick transmission of a thumbnail image (say, as part of a much larger webpage),
this SPIHT compression would be quite acceptable. The 32:1 JPEG image might be

2JPEG stands for Joint Photographic Experts Group, a group of engineers who developed this compression
method.

acceptable for some applications, but it also contains some blocking artifacts. The
32:1 SPIHT compression is almost indistinguishable (at these image sizes) from the
original “Lena” image. The 16:1 compressions for both methods are nearly indistin-
guishable. In fact, they are both nearly indistinguishable from the original “Lena”
image.

Although we have compared JPEG with SPIHT using only one image, the results we
have found are generally valid. SPIHT compressions are superior to JPEG compres-
sions both in perceptual quality and in PSNR values. In fact, all of the wavelet-based
image compression techniques that we discuss here are superior to JPEG. Hence, we
will not make any further comparisons with the JPEG method.

FIGURE 6.14
Comparison of JPEG and SPIHT compressions of “Lena” image. PSNR values:
(a) 24.16 dB. (b) 30.11 dB. (c) 34.12 dB. (d) 30.85 dB. (e) 33.93 dB. (f) 37.09 dB.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

6.3.4 WDR Algorithm

One of the defects of SPIHT is that it only implicitly locates the position of signif-
icant coefficients. This makes it difficult to perform operations which depend on the
exact position of significant transform values, such as region selection on compressed
data. By region selection, also known as region of interest (ROI), we mean selecting

a portion of a compressed image that requires increased resolution. This can occur,
for example, with a portion of a low resolution medical image that has been sent at a
low bpp rate in order to arrive quickly.

Such compressed data operations are possible with the wavelet difference reduction
(WDR) algorithm of Tian and Wells [56]–[58]. The term difference reduction refers to
the way in which WDR encodes the locations of significant wavelet transform values,
which we describe below. Although WDR will not typically produce higher PSNR
values than SPIHT (see Table 6.2), we will see that WDR can produce perceptually
superior images, especially at high compression ratios.

The only difference between WDR and the bit-plane encoding described above is
in the significance pass. In WDR, the output from the significance pass consists of
the signs of significant values along with sequences of bits which concisely describe
the precise locations of significant values. The best way to see how this is done is to
consider a simple example.

Suppose that the significant values are w(2) = +34.2, w(3) = −33.5, w(7) =
+48.2, w(12) = +40.34, and w(34) = −54.36. The indices for these significant
values are 2, 3, 7, 12, and 34. Rather than working with these values, WDR works
with their successive differences: 2, 1, 4, 5, 22. In this latter list, the first number
is the starting index, and each successive number is the number of steps needed
to reach the next index. The binary expansions of these successive differences are
(10)2, (1)2, (100)2, (101)2, and (10110)2. Since the most significant bit for each of
these expansions is always 1, this bit can be dropped and the signs of the significant
transform values can be used instead as separators in the symbol stream. The resulting
symbol stream for this example is then +0 − +00 + 01 − 0110.

When this most significant bit is dropped, we will refer to the binary expansion
that remains as the reduced binary expansion. Notice, in particular, that the reduced
binary expansion of 1 is empty. The reduced binary expansion of 2 is just the 0 bit,
the reduced binary expansion of 3 is just the 1 bit, and so on.

The WDR algorithm simply consists of replacing the significance pass in the bit-
plane encoding procedure with the following step:

WDR Step 3: Significance pass. Perform the following procedure on the insignificant
indices in the baseline scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1

If |w(m)| ≥ Tk then

Output sign w(m) and set wQ(m) = Tk
Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C
If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker

The output for the end-marker is a plus sign, followed by the reduced binary expansion
of n = C + 1 − Cold, and a final plus sign.

It is not hard to see that WDR is of no greater computational complexity than SPIHT.
For one thing, WDR does not need to search through quadtrees as SPIHT does. The
calculations of the reduced binary expansions adds some complexity to WDR, but they
can be done rapidly with bit-shift operations. As explained in Tian and Wells [56]–
[58], the output of the WDR encoding can be arithmetically compressed. The method
that they describe is based on the elementary arithmetic coding algorithm described
in Witten, Neal, and Cleary [68]. This form of arithmetic coding is substantially less
complex (at the price of poorer performance) than the arithmetic coding employed
by SPIHT.

As an example of the WDR algorithm, consider the scan order and wavelet trans-
form shown in Fig. 6.8. For the threshold T1 = 32, the significant values are w(1) =
63, w(2) = −34, w(5) = 49, and w(36) = 47. The output of the WDR significance
pass will then be the following string of symbols:

+ − + 1 + 1 1 1 1 + 1 1 0 1 +
which compares favorably with the EZW output in Eq. (6.8). The last six symbols are
the code for the end-marker. For the threshold T2 = 16, the new significant values
are w(3) = −31, w(4) = 23, w(9) = −25, and w(24) = 18. Since the previous
indices 1, 2, 5, and 36, are removed from the sequence of insignificant indices, the
values of n in the WDR significance pass will be 1, 1, 4, and 15. In this case, the
value of n for the end-marker is 40. Adding on the four refinement bits, which are
the same as in Eq. (6.9), the WDR output for this second threshold is

− + − 0 0 + 1 1 1 + 0 1 0 0 0 + 1 0 1 0

which is also a smaller output than the corresponding EZW output. It is also clear
that, for this simple case, WDR does not produce as compact an output as STW does.

As an example of WDR performance for a natural image, Fig. 6.15 shows several
compressions of the “Lena” image. These compressions were produced with free
software [16].

FIGURE 6.15
WDR compressions of “Lena” image. PSNR values: (a) 27.63 dB. (b) 30.42 dB.
(c) 33.39 dB. (d) 36.45 dB. (e) 39.62 dB. Reproduced by Special Permission of
Playboy magazine. Copyright ©1972, 2000 by Playboy.

There are a couple things to observe about these compressions. First, the PSNR
values are lower than for SPIHT. This is typically the case. In Table 6.2 we compare
PSNR values for WDR and SPIHT on several images at various compression ratios.
In every case, SPIHT has higher PSNR values.

Second, at high compression ratios, the visual quality of WDR compressions of
“Lena” are superior to those of SPIHT. For example, the 0.0625 bpp and 0.125 bpp
compressions have higher resolution with WDR. This is easier to see if the images
are magnified as in Fig. 6.16. At 0.0625 bpp, the WDR compression does a better
job in preserving the shape of Lena’s nose and in retaining some of the striping in the
band around her hat. Similar remarks apply to the 0.125 bpp compressions. SPIHT,
however, does a better job in preserving parts of Lena’s eyes. These observations
point to the need for an objective, quantitative measure of image quality.

There is no universally accepted objective measure for image quality. We shall
now describe a simple measure that we have found useful. There is some evidence
that the visual system of humans concentrates on analyzing edges in images [30, 40].

FIGURE 6.16
SPIHT and WDR compressions of “Lena” at low bpp. Reproduced by Special
Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

To produce an image that retains only edges, we proceed as follows. First, a 3-level
Daub 9/7 transform of an image f is created. Second, the all-lowpass subband is
subtracted away from this transform. Third, an inverse transform is performed on
the remaining part of the transform. This produces a highpass filtered image, which
exhibits edges from the image f . A similar highpass filtered image is created from
the compressed image. Both of these highpass filtered images have mean values that
are approximately zero. We define the edge correlation γ3 by

γ3 = σc

σo

where σc denotes the standard deviation of the values of the highpass filtered version
of the compressed image, and σo denotes the standard deviation of the values of
the highpass filtered version of the original image. Thus γ3 measures how well the
compressed image captures the variation of edge details in the original image.

Using this edge correlation measure, we obtained the results shown in Table 6.3. In
every case, the WDR compressions exhibit higher edge correlations than the SPIHT
compressions. These numerical results are also consistent with the increased preserva-
tion of details within WDR images, and with the informal reports of human observers.

Table 6.3 Edge Correlations, With Arithmetic
Compression

Image/Method SPIHT WDR ASWDR
Lena, 0.5 bpp .966 .976 .978
Lena, 0.25 bpp .931 .946 .951
Lena, 0.125 bpp .863 .885 .894
Goldhill, 0.5 bpp .920 .958 .963
Goldhill, 0.25 bpp .842 .870 .871
Goldhill, 0.125 bpp .747 .783 .781
Barbara, 0.5 bpp .932 .955 .959
Barbara, 0.25 bpp .861 .894 .902
Barbara, 0.125 bpp .739 .767 .785
Airfield, 0.5 bpp .922 .939 .937
Airfield, 0.25 bpp .857 .871 .878
Airfield, 0.125 bpp .766 .790 .803

Although WDR is simple, competitive with SPIHT in PSNR values, and often
provides better perceptual results, there is still room for improvement. We now turn
to a recent enhancement of the WDR algorithm.

6.3.5 ASWDR Algorithm

One of the most recent image compression algorithms is the adaptively scanned
wavelet difference reduction (ASWDR) algorithm of Walker [66]. The adjective
adaptively scanned refers to the fact that this algorithm modifies the scanning order
used by WDR in order to achieve better performance.

ASWDR adapts the scanning order so as to predict locations of new significant
values. If a prediction is correct, then the output specifying that location will just be
the sign of the new significant value — the reduced binary expansion of the number
of steps will be empty. Therefore a good prediction scheme will significantly reduce
the coding output of WDR.

The prediction method used by ASWDR is the following: ifw(m) is significant for
thresholdT , then the values of the children ofm are predicted to be significant for half-
threshold T/2. For many natural images, this prediction method is a reasonably good
one. As an example, Fig. 6.17 shows two vertical subbands for a Daub 9/7 wavelet
transform of the “Lena” image. The image in Fig. 6.17(a) is of those significant values
in the second level vertical subband for a threshold of 16 (significant values shown
in white). In Fig. 6.17(b), we show the new significant values in the first vertical
subband for the half-threshold of 8. Notice that there is a great deal of similarity
in the two images. Since the image in Fig. 6.17(a) is magnified by two in each
dimension, its white pixels actually represent the predictions for the locations of new
significant values in the first vertical subband. Although these predictions are not

FIGURE 6.17
(a) Significant values, second vertical subband, threshold 16. (b) New significant
values, first vertical subband, threshold 8. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.

perfectly accurate, there is a great deal of overlap between the two images. Notice
also how the locations of significant values are highly correlated with the location of
edges in the “Lena” image. The scanning order of ASWDR dynamically adapts to
the locations of edge details in an image, and this enhances the resolution of these
edges in ASWDR compressed images.

Table 6.4 Number of Significant Values Encoded, No
Arithmetic Coding

Image\Method WDR ASWDR % increase
Lena, 0.125 bpp 5,241 5,458 4.1%
Lena, 0.25 bpp 10,450 11,105 6.3%
Lena, 0.5 bpp 20,809 22,370 7.5%
Goldhill, 0.125 bpp 5,744 5,634 −1.9%
Goldhill, 0.25 bpp 10,410 10,210 −1.9%
Goldhill, 0.5 bpp 22,905 23,394 2.1%
Barbara, 0.125 bpp 5,348 5,571 4.2%
Barbara, 0.25 bpp 11,681 12,174 4.2%
Barbara, 0.5 bpp 23,697 24,915 5.1%
Airfield, 0.125 bpp 5,388 5,736 6.5%
Airfield, 0.25 bpp 10,519 11,228 6.7%
Airfield, 0.5 bpp 19,950 21,814 9.3%

A complete validation of the prediction method just described would require as-
sembling statistics for a large number of different subbands, thresholds, and images.

Rather than attempting such an a priori argument (see [6, 66]), we instead argue from
an a posteriori standpoint. We present statistics that show that the prediction scheme
employed by ASWDR does, in fact, encode more significant values than are encoded
by WDR for a number of different images. As the pseudocode presented below
shows, the only difference between ASWDR and WDR is in the predictive scheme
employed by ASWDR to create new scanning orders. Consequently, if ASWDR
typically encodes more values than WDR does, this must be due to the success of the
predictive scheme.

Table 6.4 shows the numbers of significant values encoded by WDR and ASWDR
for four different images. In almost every case, ASWDR was able to encode more
values than WDR. This gives an a posteriori validation of the predictive scheme
employed by ASWDR.

We now present the pseudocode description of ASWDR encoding. Notice that the
significance pass portion of this procedure is the same as the WDR significance pass
described above, and that the refinement pass is the same as for bit-plane encoding
(hence the same as for WDR). The one new feature is the insertion of a step for
creating a new scanning order.

FIGURE 6.18
ASWDR compressions of “Lena image.” PSNR values: (a) 27.73 dB. (b) 30.61
dB. (c) 33.64 dB. (d) 36.67 dB. (e) 39.90 dB. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.

ASWDR encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2. Set the
initial scan order to be the baseline scan order.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Significance pass. Perform the following procedure on the insignificant indices
in the scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1

If |w(m)| ≥ Tk then

Output sign w(m) and set wQ(m) = Tk
Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C
If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker as per WDR Step 3

Step 4: Refinement pass. Scan through significant values found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each significant value w(m), do the
following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Create new scan order. For the highest-scale level (the one containing the
all-lowpass subband), use the indices of the remaining insignificant values as the scan
order at that level. Use the scan order at level j to create the new scan order at level j−1
as follows. The first part of the new scan order at level j −1 consists of the insignificant
children of the significant values at level j . The second part of the new scan order at
level j − 1 consists of the insignificant children of the insignificant values at level j .
Use this new scan order for level j − 1 to create the new scan order at level j − 2, until
all levels are exhausted.

Step 6: Loop. Repeat steps 2 through 5.

The creation of the new scanning order only adds a small degree of complexity to
the original WDR algorithm. Moreover, ASWDR retains all of the attractive features
of WDR: simplicity, progressive transmission capability, and ROI capability.

FIGURE 6.19
SPIHT, WDR, and ASWDR compressions of “Lena” at low bpp. (a)–(c) 0.0625
bpp, 128:1. (d)–(f) 0.125 bpp, 64:1. Reproduced by Special Permission of Playboy
magazine. Copyright ©1972, 2000 by Playboy.

Fig. 6.18 shows how ASWDR performs on the Lena image. The PSNR values
for these images are slightly better than those for WDR, and almost as good as those
for SPIHT. More importantly, the perceptual quality of ASWDR compressions are
better than SPIHT compressions and slightly better than WDR compressions. This is
especially true at high compression ratios. Fig. 6.19 shows magnifications of 128:1
and 64:1 compressions of the “Lena” image. The ASWDR compressions better
preserve the shape of Lena’s nose and details of her hat, and show less distortion
along the side of her left cheek (especially for the 0.125 bpp case). These subjective
observations are borne out by the edge correlations in Table 6.3. In almost every case,
the ASWDR compressions produce slightly higher edge correlation values.

As a further example of the superior performance of ASWDR at high compression
ratios, in Fig. 6.20 we show compressions of the “airfield” image at 128:1. The
WDR and ASWDR algorithms preserve more of the fine details in the image. Look
especially along the top of the images: SPIHT erases many fine details such as

FIGURE 6.20
Comparisons of 128:1 compressions of “airfield” image. (From Walker, James
S., A lossy image codec based on adaptively scanned wavelet difference reduction,
in Optical Engineering, July 2000. With permission.)

the telephone pole and two small square structures to the right of the thin black
rectangle. These details are preserved, at least partially, by both WDR and ASWDR.
The ASWDR image does the best job in retaining some structure in the telephone
pole. ASWDR is also superior in preserving the structure of the swept-back winged
aircraft, especially its thin nose, located to the lower left of center. These are only a
few of the many details in the airplane image which are better preserved by ASWDR.

As quantitative support for the superiority of ASWDR in preserving edge details,
we show in Table 6.5 the values for three different edge correlations γk , k = 3, 4,
and 5. Here k denotes how many levels in the Daub 9/7 wavelet transform were
used. A higher value of k means that edge detail at lower resolutions was considered
in computing the edge correlation. These edge correlations show that ASWDR is
superior over several resolution levels in preserving edges in the “airfield” image at
the low bit rate of 0.0625 bpp.

Table 6.5 Edge Correlations for 128:1
Compressions of “Airfield” Image

Corr./Method SPIHT WDR ASWDR
γ3 .665 .692 .711
γ4 .780 .817 .827
γ5 .845 .879 .885

High compression ratio images like these are used in reconnaissance and in medical
applications, where fast transmission and ROI (region selection) are employed, as well
as multiresolution detection. The WDR and ASWDR algorithms do allow for ROI
while SPIHT does not. Furthermore, their superior performance in displaying edge
details at low bit rates facilitates multiresolution detection.

Further research is being done on improving the ASWDR algorithm. One important
enhancement will be the incorporation of an improved predictive scheme, based on
weighted values of neighboring transform magnitudes as described in Buccigrossi
and Simoncelli [6].

6.3.6 Lossless Compression

A novel aspect of the compression/decompression methods diagrammed in Figs. 6.3
and 6.4 is that integer-to-integer wavelet transforms can be used in place of the
ordinary wavelet transforms (such as Daub 9/7) described so far. An integer-to-
integer wavelet transform produces an integer-valued transform from the gray-scale,
integer-valued image [7]. Sincen loops in bit-plane encoding reduces the quantization
error to less than T0/2n, it follows that once 2n is greater than T0, there will be zero
error. In other words, the bit-plane encoded transform will be exactly the same as
the original wavelet transform; hence lossless encoding is achieved (with progressive
transmission as well). Of course, for many indices, the zero error will occur sooner
than with the maximum number of loops n. Consequently, some care is needed in
order to efficiently encode the minimum number of bits in each binary expansion. A
discussion of how SPIHT is adapted to achieve lossless encoding can be found in Said
and Pearlman [47]. The algorithms WDR and ASWDR can also be adapted in order
to achieve lossless encoding (public versions of these adaptations are available [16].)

6.3.7 Color Images

Following the standard practice in image compression research, we have concen-
trated here on methods of compressing gray-scale images. For color images, this
corresponds to compressing the intensity portion of the image. That is, if the color
image is a typical RGB image, with 8 bits for red, 8 bits for green, and 8 bits for blue,
then the intensity I is defined by I = (R+B+G)/3, which rounds to an 8-bit gray-
scale image. The human eye is most sensitive to variations in intensity, so the most

difficult part of compressing a color image lies in the compressing of the intensity.
Usually, the two color channels are denoted Y and C and are derived from the R, G,
and B values [43]. Much greater compression can be done on the Y and C versions
of the image since the human visual system is much less sensitive to variations in
these two variables. Each of the algorithms described above can be modified so as
to compress color images. For example, the public domain SPIHT coder [46] does
provide programs for compressing color images. For reasons of space, we cannot
describe compression of color images in any more detail.

6.3.8 Other Compression Algorithms

There is a wide variety of wavelet-based image compression algorithms besides
the ones that we focused on here. Some of the most promising are algorithms that
minimize the amount of memory which the encoder and/or decoder must use [20, 29].
A new algorithm which is embedded and which minimizes PSNR is described by Li
and Lei [24]. Many other algorithms are cited in the review article by Davis and
Nosratinia [14]. In evaluating the performance of any new image compression al-
gorithm, one must take into account not only PSNR values but also the following
factors: (1) perceptual quality of the images (edge correlation values can be helpful
here); (2) whether the algorithm allows for progressive transmission; (3) the com-
plexity of the algorithm (including memory usage); and (4) whether the algorithm
has ROI capability.

6.3.9 Ringing Artifacts and Postprocessing Algorithms

As observed from the simulation for low bit rate (high compression ratio) com-
pression, the decompressed image has ringing artifacts at the strong edges in the
image. This is caused by the quantization process and by the overlapping nature of
the wavelet transform. Edges have significant coefficients in all detailed subbands
(horizontal, vertical, and diagonal subbands) and at low bit rate compression, these
subband coefficients are quantized heavily. The ringing artifact at an edge is the linear
combination of the (overlapping) wavelets and the quantization errors. Several post-
processing algorithms are proposed to reduce the ringing artifacts [22, 36, 72] and im-
prove the perceptual quality of the decompressed image. Simulation results, software,
and further details can be found at http://mmsplab.ece.wisc.edu/post/
index.html.

References

[1] Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I., Image coding
using the wavelet transform, IEEETrans. on Image Processing, 1, 205–220,
1992.

[2] Bamberger, R.H., Eddins, S.L., and Nuri, V., Generalized symmetric extension
for size-limited multirate filter banks, IEEETrans. on Image Processing, 3, 82–
86, 1994.

[3] Brislawn, C., Classification of symmetric wavelet transforms, LosAlamos Tech.
Report, 1993.

[4] Brislawn, C., A simple lattice architecture for even-order linear-phase perfect
reconstruction filter banks, Proc. IEEE-SP Intl. Symp. Time-Frequency and
Time-Scale Analysis, Philadelphia, PA, 124–127, 1994.

[5] Brower, B.V., Low-bit-rate image compression evaluations, Proc. SPIE, Or-
lando, FL, April 4–9, 1994.

[6] Buccigrossi, R.W. and Simoncelli, E.P., Image compression via joint statistical
characterization in the wavelet domain, IEEE Trans. on Image Processing,
8(12), 1999.

[7] Calderbank, A.R., Daubechies, I., Sweldens, W., and Yeo, B.-L., Wavelet
transforms that map integers to integers, Applied and Computational Harmonic
Analysis, 5(3), 332–369, 1998.

[8] Cohen,A., Ondelettes, analyses multirésolutions et traitement numérique du
signal, Ph.D. thesis, Universite Paris IX, Dauphine, 1990.

[9] Cohen, A., Daubechies, I., and Feauveau, J.-C., Biorthogonal bases of com-
pactly supported wavelets, Comm. Pure Appl. Math., 45, 1992.

[10] Compression with Reversible Embedded Wavelets, RICOH Company Ltd.
submission to ISO/IEC JTC1/SC29/WG1 for the JTC1.29.12 work item, 1995.
Can be obtained on the World Wide Web, address: http://www.crc.
ricoh.com/CREW.

[11] Daubechies,I., Ten Lectures on Wavelets, CBMS Conference Series, SIAM,
Philadelphia, 1992.

[12] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math., 41, 909–996, 1988.

[13] Daubechies, I. and Lagarias, J., Two-scale difference equations I. Existence
and global regularity of solutions, SIAMJ. Math. Anal., 22, 1388–1410, 1991.

[14] Davis, G.M. and Nosratinia, A., Wavelet-based image coding: an overview,
Applied and Computational Control, Signals and Circuits, 1(1), 1998.

[15] Eirola,T., Sobolev characterization of solutions of dilation equations, SIAM J.
Math. Anal., 23, 1015–1030, 1992.

[16] WDR and ASWDR compressors are part of the FAWAV software package
at http://www.crcpress.com/edp/download/fawav/fawav.
htm/.

[17] Gopinath, R.A., Odegard, J.E., and Burrus, C.S., Optimal wavelet representa-
tion of signals and the wavelet sampling theorem, IEEE Transaction on Circuits
& Systems II, 41, 262–277, 1994.

[18] Heller, P.N. and Wells, Jr., R.O., Spectral theory of multiresolution operators
and applications, in Wavelets: Theory, Algorithms, and Applications, Chui,
C.K., Ed., AcademicPress, San Diego, CA, 13–31, 1994.

[19] Go to ftp://ipl.rpi.edu/pub/image/still/usc/gray/ for
“Lena,” “Goldhill,” and “Barbara.” Go to http://www.image.
cityu.edu.hk/imagedb/ for “airfield.”

[20] Islam, A. and Pearlman, W.A., An embedded and efficient low-complexity
hierarchical image coder, Proc. SPIE 3653, Visual Communications and Image
Processing ’99, San Jose, CA, Jan. 1999.

[21] Kiya, H., Nishikawa, K., and Iwahashi, M., A development of symmetric ex-
tension method for subband image coding, IEEE Trans. on Image Processing,
3, 78–81, 1994.

[22] Shen, M. and Jay Kuo, C.C., Artifact removal in low bit rate wavelet coding
with robust nonlinear filtering, MMSP98, 480–485, 1998.

[23] Lawton,W., Necessary and sufficient conditions for construction orthonormal
wavelet bases, J. Math. Phys., 32, 57–61, 1991.

[24] Li, J. and Lei, S., An embedded still image coder with rate-distortion opti-
mization, IEEE Trans. on Image Processing, 8(7), 913–924, 1999.

[25] Majani, E. and Lightstone, M., Biorthogonal wavelets for image compression,
Proc. 1994 Data Compression Conference, Snowbird, Utah, 462, 1994.

[26] Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, New York,
1998.

[27] Mallat, S., A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. PAMI, 11, 674–693, 1989.

[28] Mallat, S., Multifrequency channel decomposition of images and wavelet mod-
els, IEEE Trans. on Acoust. Speech and Signal Processing, 37(12), 2091–2110,
1989.

[29] Malvar, H., Progressive wavelet coding of images, Proc. of IEEE Data Com-
pression Conference, Salt Lake City, UT, 336–343, March 1999.

[30] Marr, D., Vision, W.H. Freeman, San Francisco, CA, 1982.

[31] Recommendation H.262, ISO/IEC 13818. Generic coding of moving picture
and associates audio, Draft International Standard of MPEG-2.

[32] Mintzer, F., Filters for distortion-free two-band multirate filter banks, IEEE
Trans. on ASSP, 626–630, 1985.

[33] Nayebi, K., Barnwell, III, T.P., and Smith, M.J.T., Time-domain filter bank
analysis: a new design theory, IEEE Trans. on Signal Processing, 40, 1992.

[34] Nguyen, T.Q. and Vaidyanathan, P.P., Two-channel perfect-reconstruction FIR
QMF structures which yield linear-phase analysis and synthesis filters, IEEE
Trans. on ASSP, 37, 676–690, 1989.

[35] Nguyen,T.Q., A quadratic constrained least-squares approach to the design of
digital filter banks, Proc. IEEE ISCAS, San Diego, 1344–1347, May 1992.

[36] Oguz, S.H., Hu, Y.H., and Nguyen, T.Q., Morphological post-filtering
of ringing and lost data concealment in generalized lapped ortho-
gonal transform based image and video coding, Ph.D. thesis, Uni-
versity of Wisconsin, 1999. Additional informations can be found at
http://mmsplab.ece.wisc.edu/post/index.html.

[37] Orchard, M. and Ramchandran, K., An investigation of wavelet-based im-
age coding using an entropy-constrained quantization framework, Proc. Data
Compression Conf., Snowbird, Utah, 341–350, 1994.

[38] Pennebaker, W.B. and Mitchell, J.L., JPEG: Still Image Compression Stan-
dard, Van Nostrand Reinhold, NewYork, 1993.

[39] Ramchandran, K. and Vetterli, M., Best wavelet packet bases in a rate-
distortion sense, IEEE Trans. on Image Processing, 2, 160–175, 1993.

[40] Ramos, M.G. and Hemami, S.S., Activity selective SPIHT coding, Proc.
SPIE 3653, Visual Communications and Image Processing ’99, San Jose, CA,
Jan. 1999. See also errata for this paper at
http://foulard.ee.cornell.edu/marcia/asspiht2.html.

[41] Rioul, O., A discrete-time multiresolution theory, IEEE Trans. on Signal Pro-
cessing, 41, 2591–2606, 1993.

[42] Rioul, O. and Vetterli, M., Wavelets and signal processing, IEEE Signal Pro-
cessing Magazine, 8(3), 14–38, 1991.

[43] Russ,J.C., The Image Processing Handbook, CRC Press, Boca Raton, FL,
1995.

[44] Said, A. and Pearlman, W.A., Image compression using the spatial-orientation
tree, IEEE Int. Symp. on Circuits and Systems, Chicago, IL, 279–282, 1993.

[45] Said, A. and Pearlman, W.A., A new, fast, and efficient image codec based on
set partitioning in hierarchical trees, IEEE Trans. on Circuits and Systems for
Video Technology, 6(3), 243–250, 1996.

[46] SPIHT programs can be downloaded from ftp://ipl.rpi.edu/pub/.

[47] Said, A. and Pearlman, W.A., An image multi-resolution representation for
lossless and lossy image compression, IEEE Trans. Image Processing, 5(9),
1303–1310, 1996.

[48] Shapiro, J.M., Embedded image coding using zerotrees of wavelet coefficients,
IEEE Trans. on Signal Processing, 41, 3445–3462, 1993.

[49] Shoham, Y. and Gersho, A., Efficient bit allocation for an arbitrary set of
quantizers, IEEE Trans. on ASSP, 36, 1445–1453, 1988.

[50] Smith, M.J.T. and Barnwell, III, T.P., Exact reconstruction techniques for tree-
structured suband coders, IEEE Trans. ASSP, 434–441, 1986.

[51] Smith, M.J.T. and Eddins, S., Analysis-synthesis techniques for subband image
coding, IEEE Trans. ASSP, 38, 1446–1456, 1990.

[52] Strang, G., Wavelets and dilation equations, SIAM Review, 31, 614–627, 1989.

[53] Strang, G. and Nguyen, T., Wavelets and Filter Banks, Wellesley-Cambridge
Press, Wellesley, MA, 1997.

[54] Vaidyanathan, P.P., Multirate Systems and Filter Banks, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

[55] Vaidyanathan, P.P. and Hoang, P.Q., Lattice structures for optimal design
and robust implementation of two-channel perfect-reconstruction QMF banks,
IEEE Trans. on ASSP, 36, 81–94, 1988.

[56] Tian, J. and Wells, Jr., R.O., A lossy image codec based on index coding, IEEE
Data Compression Conference, DCC ’96, 456, 1996.

[57] Tian, J. and Wells, Jr., R.O., Embedded image coding using wavelet-difference-
reduction, in Wavelet Image and Video Compression, Topiwala, P., Ed., 289–
301, Kluwer Academic, Norwell, MA, 1998.

[58] Tian, J. and Wells, Jr., R.O., Image data processing in the compressed wavelet
domain, 3rd International Conference on Signal Processing Proc., Yuan, B.
and Tang, X., Eds., 978–981, Beijing, China, 1996.

[59] Vetterli, M., A theory of multirate filter banks, IEEE Trans. on ASSP, 35,
356-372, 1987.

[60] Vetterli, M., Multidimensional subband coding: some theory and algorithms,
Signal Processing, 6, 97–112, 1984.

[61] Vetterli, M. and Herley, C., Wavelets and filter banks, IEEE Trans. on Signal
Processing, 40, 2207-2233, 1992.

[62] Vetterli, M. and LeGall, D., Perfect reconstruction FIR filter banks: some
properties and factorization, IEEE Trans. on ASSP, 37, 1057–1071, 1989.

[63] Villasenor, J.D., Belzer, B., and Liao, J., Wavelet filter evaluation for image
compression, IEEE Trans. on Image Processing, 4, 1053–1060, 1995.

[64] Villemoes,L., Energy moments in time and frequency for two-scale difference
equation solutions and wavelets, SIAM J. Math. Anal., 23, 1519–1543, 1992.

[65] Volkmer, H., On the regularity of wavelets, IEEE Trans. on Information Theory,
38, 872–876, 1992.

[66] Walker, J.S., A lossy image codec based on adaptively scanned wavelet dif-
ference reduction, Optical Engineering, in press.

[67] Wallace, G.K., The JPEG still picture compression standard, Comm. of the
ACM, 34(4), 30–44, 1991.

[68] Witten, I., Neal, R., and Cleary, J., Arithmetic coding for compression, Comm.
of the ACM, 30(6), 1278–1288, 1986.

[69] Woods, J. and O’Neil, S.D., Subband coding of images, IEEE Trans. on ASSP,
34, 1278–1288, 1986.

[70] Wavelet scalar quantization gray scale fingerprint image compression specifi-
cation, Criminal Justice Information Services, FBI, Washington, DC, 1993.

[71] Xiong, Z., Ramchandran, K., and Orchard, M., Joint optimization of scalar and
tree-structured quantization of wavelet image decomposition, 27th Asilomar
Conf., Pacific Grove, CA, November 1993.

[72] Yang, S., Tull, D., Hu, Y.H., and Nguyen, T., Maximum a posteriori parameter
estimation for image ringing artifact removal, submitted to the IEEE Trans-
action on Image Processing, 1999. Additional information can be found at
http://mmsplab.ece.wisc.edu/post/index.html.

[73] Zettler, W.R., Huffman, J., and Linden, D., The application of compactly
supported wavelets to image compression, Proc. SPIE, 1244, 150–160, 1990.

[74] Zhu, B., Tewfik, A.H., Colestock, M.A., Gerek, O.N., and Cetin, A.E., Image
coding with wavelet representations, edge information and visual masking,
Proc. IEEE ICIP, Washington, DC, 1995.

Guojun Lu "Fractal-Based Image and Video Compression"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 7

Fractal-Based Image and Video Compression

Guojun Lu
Monash University

7.1 Introduction

This chapter describes image and video compression techniques based on affine
transforms or iterated function systems (IFS) [2, 4]. These techniques are funda-
mentally different from techniques based on other transforms, such as discrete cosine
transform (DCT). In DCT-based techniques, image data are transformed from the
spatial domain to the frequency domain where quantization and entropy coding are
carried out to achieve data compression. In IFS-based techniques, we exploit the
fact that part of an image is similar to another part of the image after certain affine
transforms called IFS. Data compression is achieved by determining these transforms
and storing parameters representing them.

The chapter is organized as follows. Section 7.2, describes the basic properties
of fractals and the basic principle of fractal-based image compression. Section 7.3
describes concepts of contractive affine transforms, iterated function systems, and the
fractal image generation process. Section 7.4 discusses how to find IFS directly from
images. Section 7.5 describes how to compress images based on a library of known
IFS.

Techniques introduced in Sections 7.4 and 7.5 can achieve very high compression
ratios. However, it is difficult to find IFS in a natural image. To solve this problem,
image coding methods using partitioned IFS (PIFS) have been developed. The dif-
ference between IFS and PIFS is that IFS consists of affine transforms that map an
entire image to parts of the image while PIFS consists of transforms that map parts
of an image to other parts of the image. In these methods, an image to be coded
is divided into nonoverlapping blocks. For each block, a transformation is found
that converts part of the image into a block similar to this block. The combination
of all transforms found for each block is called PIFS. PIFS corresponds to a unique
image. The compression performance depends on the contents of the image and how

the image is partitioned. There are many types of partitions: fixed size partitioning,
quadtree partitioning, horizontal-vertical (HV) partitioning, and triangular partition-
ing. We discuss PIFS-based coding using fixed size partition and quadtree partition
in Sections 7.6 and 7.7, respectively.

One property of fractals is scalability: fractals have fine detail in any scale. Sec-
tion 7.8 explores how we can use this property to reduce the required compression
time and improve performance.

It is well known that there is much redundancy among neighboring frames of a
video sequence. It is very likely that part of a current frame is the transformation of a
part in the previous frame. Based on this observation, we can apply quadtree partition
techniques to video sequence coding, which is discussed in Section 7.9.

There are other image compression techniques based on various properties of frac-
tals. Section 7.10 briefly describes two techniques based on fractal dimension and
fractal approximation, respectively. Section 7.11 concludes the chapter.

7.2 Basic Properties of Fractals and Image Compression

The word fractal was coined by Mandelbrot from the Latin word fractus, meaning
broken, to describe objects that were too irregular to fit into traditional geometrical
settings [1]. Several definitions have been proposed. Mandelbrot defined a fractal to
be a set with Hausdorff dimension strictly greater than its Euclidean dimension, i.e.,
a set for which the only consistent description of its metric properties requires a “di-
mension” value larger than our standard, intuitive definition of the set’s “dimension.”
A fractal has a fractional dimension; thus some people say we get the word fractal
from fractional dimension. According to Barnsley [2], a fractal is a geometric form
whose irregular details recur at different scales and angles which can be described
by affine or fractal transforms. Various other definitions have been proposed, but
they are not complete in that they exclude a number of sets that clearly ought to be
regarded as fractals.

Falconer [3] proposed that it is best to regard a fractal as a set that has properties
such as those listed below, rather than to look for a precise definition which will
almost certainly exclude some interesting cases. Typical properties of a fractal are

• It has a fine structure, i.e., details on arbitrarily small scales.

• It is too irregular to be described in traditional geometrical language, both
locally and globally.

• It usually has some form of self-similarity, perhaps approximate or statistical.

• Its fractal dimension (Hausdorff dimension) is usually higher than its Euclidean
dimension.

• In most cases of interest, a fractal is defined in a very simple way, perhaps
recursively.

Fig. 7.1 shows the construction of one of the common fractals called the Sierpinski
gasket or triangle [3]. It is constructed by repeatedly replacing an equilateral triangle
with three equilateral triangles of half the height. This construction process can be
represented by a set of fractal transforms (see Section 7.4). Fractal transforms have
been used to generate complicated fractal images. Fractal image compression is the
inverse of fractal image generation; instead of generating an image from a given
formula, fractal image compression searches for sets of fractals in a digitized image
which describe and represent the entire image. Once the appropriate sets of fractals
are determined, they are represented by very compact fractal transform formulae.
These formulae are the rules for reproducing the various sets of fractals which, in
turn, regenerate the entire image. Because fractal transform formulae require a very
small amount of data to be represented and stored, fractal compression can result in
very high compression ratios.

FIGURE 7.1
Construction of the Sierpinski triangle or gasket.

7.3 Contractive Affine Transforms, Iterated Function Systems,
and Image Generation

Since fractal image compression based on iterated function systems is the inverse of
image generation, in this section, we see how fractals are generated from an iterated
function system. We introduce contractive affine transforms and iterated function
systems.

Contractive Affine Transforms

A two-dimensional affine transform W maps points in the Euclidean plane into
new points in the Euclidean plane, according to the formula

W

[
x

y

]
=

[
a b

c d

] [
x

y

]
+

[
e

f

]
. (7.1)

It consists of a linear transform, represented by the 2 × 2 matrix with entries a, b, c,
and d , followed by a shift or translation, represented by the vector with entries e and
f . An example for an affine transform is

W

[
x

y

]
=

[
0.5 0
0 0.5

] [
x

y

]
+

[
0
0

]
.

Applying the above transform to all points in the triangle F of Fig. 7.2(a) results in
a smaller triangle in Fig. 7.2(b). Notice that the cross and the star in the transformed
triangle W(F) are closer than in F . We say that the transform is contractive if it
always moves pairs of points closer together. Formally, a transform W is said to be
contractive if for any two points P1 and P2, the distance

d (W (P1) ,W (P2)) < sd (P1, P2) (7.2)

where s ∈ (0, 1), and is called the contractive factor.

Contractive affine transforms have the property that when they are repeatedly ap-
plied, they converge to a point which remains fixed upon further iterations. For
example, applying the transform

W

[
x

y

]
=

[
0.5 0
0 0.5

] [
x

y

]

repetitively to any initial point (x0, y0) will yield the sequence of points (x0/2, y0/2),
(x0/4 · y0/4), . . . , which can be seen to converge to the point (0, 0), in the limit.

FIGURE 7.2
Effect of applying a contractive affine transform to a shape.

Iterated Function Systems

An iterated function system (IFS) is a collection of contractive affine transforms.
The following is an IFS consisting of four transforms.

W1

[
x

y

]
=

[
0.5 0
0 0.16

] [
x

y

]
+

[
0
0

]
; (7.3)

W2

[
x

y

]
=

[
0.2 0.26
0.23 0.22

] [
x

y

]
+

[
0

0.2

]
; (7.4)

W3

[
x

y

]
=

[−0.15 0.28
0.26 0.24

] [
x

y

]
+

[
0

0.2

]
; (7.5)

W4

[
x

y

]
=

[
0.85 0.04
0.04 0.85

] [
x

y

]
+

[
0

0.2

]
. (7.6)

Actually, this is the IFS of a fern leaf. Later we see how this IFS generates a fern
image.

A fundamental theorem of fractal geometry is that each IFS, that is, each set of
contractive transforms, defines a unique fractal image. It is called the attractor of
the IFS. The attractor of an IFS is unique; for each IFS there is only one attractor.
This is the contractive mapping fixed-point theorem. The attractor of an IFS has the
following property: if the IFS is made up of N affine transforms which are denoted
by W1,W2, . . . ,WN , then the corresponding attractor A obeys

A = W1(A) ∪ W2(A) ∪ · · · ∪ WN(A) .

This says that the attractor of the IFS is the same as the union of the transforms of
the attractor. Now let us see how to generate the attractor of an IFS using the chaos
game algorithm [2].

The Chaos Game Algorithm

Suppose an IFS contains N affine transforms W1,W2, . . . ,WN . Let these trans-
forms have associated probabilities p1, p2, . . . , pN , respectively. They obey

p1 + p2 + · · · + pN = 1 and pi > 0 for i = 1, 2, . . . , N .

They are the probabilities with which each transform is to be selected and applied in
the chaos game algorithm.

Here is how the chaos game is played: choose any point (x0, y0) in a Euclidean
plane. Select one transform in the IFS according to its probability and apply it to
point (x0, y0) to get a new point (x1, y1). Select another transform according to its
probability and apply it to point (x1, y1) to get a new point (x2, y2). Repeat this
process to obtain a long sequence of points:

(x0, y0) , (x1, y1) , (x2, y2) , (x3, y3) , . . .

A basic result of the IFS theory is that this sequence of points will converge, with
100% probability, to the attractor of the IFS.

The following is pseudocode showing how the chaos game algorithm is applied in
general:

(i) Let x = 0; y = 0.

(ii) Choose k to be one of the numbers 1, 2, . . . , N , with probability pk .

(iii) Apply transform Wk to point (x, y) to obtain a new point (xnew, ynew).

(iv) Let x = xnew; y = ynew.

(v) Plot (x, y).

(vi) Return to step (ii) and repeat until a preset number of iterations is reached.

Using the above algorithm and the four transforms in Eqs. (7.3)–(7.6), we can
generate a fern leaf as shown in Fig. 7.3.

Transforms (7.3)–(7.6) can be represented compactly by just 24 parameters, al-
though the fern generated from them is quite complicated and requires large amounts
of data if stored in a bit-mapped format. So, if we can do the reverse of image gen-
eration and find the IFS of a given image, we can achieve a very high compression
ratio. The next section describes how to find the IFS for a given image.

7.4 Image Compression Directly Based on the IFS Theory

The direct method of image compression using IFS is based on the collage theo-
rem [2, 6]. Loosely speaking, it states that if we can find IFS W for an image B so that

FIGURE 7.3
The fern image generated from the transforms (7.3)–(7.6).

B and W(B) are very similar, then the attractor of W will also be very similar to image
B. Thus, we can store W instead of image B to achieve a very high compression
ratio. Hence, to compress an image is to find the IFS of that image.

To find an IFS for an image, based on the collage theorem and the property of
IFS attractors, we split the whole image into nonoverlapping segments whose union
covers the entire image. If each segment is a transformed copy of the entire image
or is very close to it, the combination of these transforms is the IFS of the original
image. In other words, to encode an image into IFS is to find a set of contractive
affine transforms, W1,W2, . . . ,WN , so that the original image B is the union of the
N subimages:

B = W1(B) ∪ W2(B) ∪ · · · ∪ WN(B) .

We use an example to show how to find an IFS for an image. As shown in Fig. 7.4,
the Sierpinski triangle is the union of three small triangles: the top, bottom left, and
bottom right triangles. Each small triangle is a copy of the transformed original
Sierpinski triangle. If we can find these transforms, the IFS of the Sierpinski triangle
is their combination.

Let us find the transform for the top triangle first. We know that the general format
of the affine transform is Eq. (7.1). To determine the transform, we have to find
six variables: a, b, c, d, e, and f . The first thing to do is to find corresponding
points in the original Sierpinski triangle and the top triangle. Since it is clear, from
Fig. 7.4(a), that point (x1, y1) is transformed to (x′

1, y
′
1), (x2, y2) to (x′

2, y
′
2) and

0

FIGURE 7.4
An example to find IFS for a given image.

(x3, y3) to (x′
3, y

′
3), we have the following six equations:

ax1 + by1 + e = x′
1

ax2 + by2 + e = x′
2

ax3 + by3 + e = x′
3

cx1 + dy1 + f = y′
1

cx2 + dy2 + f = y′
2

cx3 + dy3 + f = y′
3

Using the coordinates in Fig. 7.4(b), we can solve the above equations to get a =
0.5, b = 0, c = 0, d = 0.5, e = 0.5, and f = 0.5.

In a similar way, we can find six variables for each of the transforms for the bottom
left and bottom right triangles, respectively. Combining these transforms we have the
IFS of the Sierpinski triangle as follows:

W1

[
x

y

]
=

[
0.5 0
0 0.5

] [
x

y

]
+

[
0.5
0.5

]

W2

[
x

y

]
=

[
0.5 0
0 0.5

] [
x

y

]
+

[
0
0

]

W3

[
x

y

]
=

[
0.5 0
0 0.5

] [
x

y

]
+

[
1.0
0

]
.

Readers can verify the obtained IFS by applying the chaos game algorithm (with
pi = 1/3) using this IFS to see whether the Sierpinski triangle is obtained. After
obtaining the IFS of the Sierpinski triangle, we can store the 18 parameters of three
transforms instead of the bit-mapped data to achieve significant compression.

It should be noted that although an IFS has a unique attractor, many IFS can be
found for a given image. For example, the Sierpinski triangle can be thought of as
the union of nine small triangles, and then the determined IFS will consist of nine
transforms.

In the above example, the attractor of the IFS perfectly covers the original image,
which can be reconstructed from the IFS exactly. For an arbitrary image, it may be
impossible or difficult to find an IFS whose attractor perfectly covers the original
image. We should then find the “collage” as close to the original image as possible.
According to the collage theorem [2, 6], the attractor of the IFS determined by the
collage will be close to the original image.

For images with gray-scale or color, the same principle can be used to find the IFS,
but obviously it would be much more difficult and time consuming.

7.5 Image Compression Based on IFS Library

For natural images, it is difficult to find the IFS directly as discussed in the previous
section. But it is possible that images consist of a number of small objects whose
IFS are known. For this kind of image we can proceed as follows. Using an image
segmentation technique, we segment the image into small objects. An object can be
a fern, leaf, cloud, fence post, or more complex collection of pixels.

We then look up these objects in a library of fractals. The library does not contain
literal fractals; that would require large amounts of storage. Instead, the library
contains compact sets of IFS codes that will reproduce the corresponding fractals.
The library is searched to find fractals that approximate each segmented object. The
corresponding IFS codes of these fractals are stored instead of the original image to

achieve high compression. This image compression approach using the IFS library
is very similar to vector quantization in which each image block is represented with
the index of the codeword that is most similar to a particular image block [15].

IFS codes in the library are obtained using the direct approach as discussed in the
previous section. Since the same object can be contracted, rotated, and translated, it
is not practical for the library to contain the same object in many different scales and
different angles. Instead, fractals in the library are transformed to match the objects
in the image. This matching process is similar to the matching process used in PIFS
coding described in the next section.

The main problem with the library searching method is how to automatically and
accurately segment an image into meaningful objects. There is no single effective
method to do this.

7.6 Image Compression Based on Partitioned IFS

The direct and library-based approaches can compress images with a very high
compression ratio. However, it is very difficult to find IFS automatically in natural
images. To solve this problem, an alternative method has been developed [5, 6]. A
natural image, such as a face, does not contain the type of self-similarity that can be
found in the fractals. The image does not appear to contain affine transformations
themselves. However images do, in fact, contain a different sort of similarity. Part
of the image is similar to another part of the image. The distinction from fractal
self-similarity is that rather than forming the image from copies of its whole self
(under appropriate affine transformation), here the image is formed from copies of
properly transformed parts of itself. Experimental results suggest that most images
that one would expect to see can be compressed by taking advantage of this type of
self-similarity [6].

Based on the above observation, fractal-based block coding, or PIFS-based coding,
was developed [5]–[8]. The PIFS-based approach is as follows. To encode an image
f , we divide it into range blocks R1, R2, . . . , Ri . . . RN , such that

f = R1 ∪ R2 ∪ · · · ∪ RN

and
Ri ∩ Rj = 0 when i �= j .

That is, the range blocks cover the whole image and do not overlap.
The image is also divided into overlapping domain blocks D1,D2, . . . , Dj , . . . ,

DM . For each range block Ri , we find a contractive transform Wi and a domain block
Dj in the image, so that

Ri ≈ Wi

(
Dj

)
.

The combination of W1,W2, . . . ,Wi, . . . ,WN is called PIFS W . If W is simpler than
the original image, we can encode f into W and achieve certain compression. When

decoding, according to the contractive mapping fixed point theorem, so long as W is
contractive, application of W to an arbitrary image repeatedly will result in a fixed
image. When W(f) is close to f , the fixed image will be close to the original image
f .

The three main issues involved in the design and implementation of a fractal block-
coding system based on the above idea are (i) how the image is partitioned, (ii) the
choice of a distortion measure between two images, and (iii) types of contractive
affine transformations to be used. We now discuss these issues.

7.6.1 Image Partitions

The simplest partition of an image is fixed size partitioning; an image is divided
into nonoverlapping square range blocks of fixed size (B ×B pixels). For each range
block, the entire image is searched for a square domain block which when suitably
transformed is similar to the range block. The domain block is larger than the range
block. Typical size is 2B × 2B pixels, and they overlap every B pixels in both
x-direction and y-direction.

The selection of sizes for range blocks is a compromise between compression ratio
and reconstructed image quality. It is easy to find good matching domain blocks for
small range blocks (4×4 and below), leading to high decoded image quality. But the
achievable compression ratios will not be very high. On the other hand, it is generally
harder to find good matching domain blocks for large range blocks (8×8 and above).
But they allow a good exploitation of the redundancy in smooth image areas, leading
to high compression ratios.

Fixed-size partitioning is the simplest. It ignores the contents of the image. To
take advantage of image contents, other partitioning techniques, such as quadtree
partitioning, horizontal-vertical (H-V) partitioning, have been proposed [6, 9]. In
Section 7.7, we discuss the quadtree partitioning technique.

7.6.2 Distortion Measure

We use a distortion measure to determine the closeness of two image blocks: the
smaller the distortion measure the more alike the two image blocks. There are many
kinds of distortion measures. The common one used is the root-mean-square (RMS)
distortion. For two square image blocks u and v of size B ×B pixels, it is defined as

d(u, v) =
√∑

i,j

(u(i, j) − v(i, j))2

where summation is for i = 0 to B − 1 and j = 0 to B − 1.
In the search and mapping process, the RMS distortion is used to determine the

closeness between a range block and a transformed domain block. The domain block
causing the least distortion after certain transformation is deemed as a matching
domain block to the range block.

We use the peak signal-to-noise ratio (PSNR) to measure the decoded image quality
relative to the original image. Note that PSNR is not an exact measure of picture
quality. It is used here for comparison purposes only.

7.6.3 A Class of Discrete Image Transformations

For each Ri , we must find Dj and Wi . Since we want to compress images with gray
levels or color, we have to extend the basic form of affine transform to include pixel
depth. We define the pixel depth at position (x, y) as z = f (x, y). The extended
affine transform becomes

Wi

 x

y

z

 =

 ai bi 0

ci di 0
0 0 si

 x

y

z

 +

 ei

fi
oi

 .

For ease of reference, we simplify this as

Vi

[
x

y

]
=

[
ai bi
ci di

] [
x

y

]
+

[
ei
fi

]
.

Vi determines how the partitioned domain blocks of an original image are mapped
to range blocks, while si and oi determine the contrast scaling and brightness shift
of the transform, respectively. The operation of Wi to transform Dj to Ri can be
decomposed into the following stages: geometric contraction of Dj , contrast scaling,
brightness shift, and rotation and flip operations [5, 7]. If all pixels in Ri have the
same (or similar) pixel values, these operations are not required. We just need to store
a single pixel value for this range block. This operation is called absorption.

Geometric Contraction

The domain blocks must be spatially contracted to the size of the range block. In
the simple case where the domain block is twice the size of the range block, the pixel
values of the contracted domain block are the average values of four neighbouring
pixels in the domain block.

Contrast Scaling

A contrast scaling factor si must be found to make the contrast among pixels in
the domain block match the contrast among pixels in the range block. si is defined
as the greatest brightness difference among pixels in the range block divided by the
greatest brightness difference among pixels in the domain block.

Brightness Shift

The brightness shift oi must be found to make the brightness of the domain block
and the range block the same. oi is defined as the difference between average pixel
value in the range block and average pixel value in the domain block.

Rotation and Flip Operations

The rotation and flip operations do not modify pixel values; they simply shuffle
pixels within a block, in a deterministic way — we call them isometries. There are
many isometries. The following eight are commonly used [5, 7]:

• identity (no rotation or flip operation),

• orthogonal reflection about mid-vertical axis of block,

• orthogonal reflection about mid-horizontal axis of block,

• orthogonal reflection about first diagonal of block,

• orthogonal reflection about second diagonal of block,

• rotation around center of block, through +90◦,

• rotation around center of block, through +180◦,

• rotation around center of block, through −90◦.

In effect, these operations are able to generate, from a single block, a whole family
of geometrically related transformed blocks, which provides a pool in which matching
blocks will be sought during the encoding. More complex transformations can be
used. But more bits will be required to identify each transformation.

7.6.4 Encoding and Decoding Procedures

An image is divided into nonoverlapping range blocks. For each range block Ri ,
we first determine whether it is an absorption block. If it is not, a domain block Dj is
sought which matches the range block best after certain transformation. The search
starts at the domain block closest to the range block and extends in a spiral fashion
until a satisfactory match is found.

For each nonabsorption range block, we must store information on the position
of the corresponding domain block, the contrast scaling factor, the brightness shift,
and the rotation and flip operations. Table 7.1 shows the number of bits required to
encode a range block, assuming that the image size is I ×I pixels and the range block
size is R × R pixels.

During decoding, starting from an arbitrary image of the same size as the original
image, each range block is computed from the corresponding domain block using the
encoding information. Computing all the range blocks once is one iteration. After
several iterations, the reconstructed image will be very close to the original image.
The PSNR is used to determine whether further iterations can improve the quality of
the reconstructed image. If there is no improvement in PSNR, the iterative process
ends. According to the collage theorem, how close the reconstructed image can be to
the original image is determined by the accuracy of the mapping from domain blocks
to range blocks at the encoding stage.

Table 7.1 Number of Bits Required for Coding a Fixed-Size
Range Block

Type of Coding Parameters Number of bits
Absorption Identifier 4

Absorption factor 8
Isometric Identifier 4

Scaling factor 3
Shifting factor 8
Domain block coordinates 2 log2(I/R)

7.6.5 Experimental Results

Table 7.2 shows experimental results obtained on the image “Lena” (512 ×512 pix-
els) and image “Lena” (256 × 256 pixels) with 8 bits per pixel (bpp), using different
range block sizes [9]. It can be seen that decoded image quality is determined by the
range block size used. The smaller the range block size, the easier it is to find a closer
matching domain block, thus the higher the decoded image quality. Fig. 7.5 shows
the original and compressed images “Lena” of 512 × 512 pixels with a compression
ratio of 19 to 1.

Table 7.2 Experimental Results on Image “Lena” Using Fixed Size
Range Blocks

Image size Range block size Compression ratio PSNR (dB)
512 × 512 32 × 32 361.4 22.41
512 × 512 16 × 16 84.3 25.73
512 × 512 8 × 8 19.0 29.65
512 × 512 4 × 4 4.4 34.98
256 × 256 16 × 16 88.6 23.08
256 × 256 8 × 8 20.5 27.24
256 × 256 4 × 4 4.8 32.99

7.7 Image Coding Using Quadtree Partitioned IFS (QPIFS)

The weakness of the fixed-size partition is that the image is partitioned without
considering the image contents. There are regions of the image that are difficult to
cover well using fixed size range blocks. Similarly, there are regions that could be
covered well with larger size range blocks, thus reducing the total number of maps
needed (and increasing the compression ratio). This observation leads to the use
of the quadtree partitioning technique [6, 9]. In a quadtree partition, range blocks
as large as possible are used to code the image. When no good matching domain

FIGURE 7.5
(a) The original image “Lena” of 512×512 pixels, 8 bpp. (b) Compressed image
using fixed size range block of 8 × 8 pixels, at 0.42 bpp with PSNR of 29.65 dB.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

block (of one size bigger than the range block) can be found for a range block in the
image, it is divided into four equally sized child range blocks as shown in Fig. 7.6.
These four children are named according to their direction in the parent range block –
Northwest (NW), Northeast (NE), Southwest (SW), and Southeast (SE). This process
repeats, starting from the whole image and continuing until the range blocks are small
enough to be matched within some specified RMS tolerance. Small range blocks can
be matched better than large ones because contiguous pixels in an image tend to be
highly correlated. Therefore, one important issue in quadtree partitioning is to select
a suitable RMS tolerance used in the matching process for range blocks of different
sizes.

In fixed-size partitioning, the range block size is stored only once for the entire
image, and the range block positions are implied if coded information of each range

FIGURE 7.6
Partitioning of a parent range block.

block is stored sequentially. In quadtree partitioning, range block size varies. In-
formation regarding range block size and position must be stored somehow. If this
information is stored straightforwardly, we need 3 bits to store range block size and
18 bits for position for each block, assuming image size is 512×512 pixels. This total
21-bit overhead would likely offset the possible compression improvement gained by
taking advantage of the image contents. So it is important to design a scheme to store
this information compactly. In the next two subsections, we discuss RMS tolerance
threshold selection and a compact storage scheme.

7.7.1 RMS Tolerance Selection

One of the main criteria for partitioning a parent range block into four equally
sized child range blocks lies in the RMS tolerance value. Although a large tolerance
value will lead to a high compression ratio, the quality of the decoded image will
be low. Conversely, a small tolerance value will ensure that the decoded image is of
high quality but the compression ratio will be compromised. Thus the selection of
a suitable tolerance threshold plays a major role in the achievable compression ratio
and decoded image quality.

PSNR is used to determine the decoded image quality. Consider a range block of
size R × R pixels and pixel values range form 0 to 255,

PSNR = 10 log10[(255 × 255 × R × R)/(d(f, g) × d(f, g))]

where d(f, g) is the RMS of the pixel difference between the range block and the
transformation of the corresponding matching domain block.

Reorganizing the above equation, we have

d(f, g) = 255R

10PSNR/20
.

This function determines the maximum allowable RMS difference used in the
matching process given the size of the range block and required PSNR. This method
has the advantage that the user can control the quality of the decoded image by choos-
ing the required PSNR. The encoder, in turn, will calculate the maximum allowable
distortion for the range blocks of different sizes.

7.7.2 A Compact Storage Scheme

Our aim is to use as few bits as possible to store the information about the range
block sizes and positions, so that high compression ratios can be achieved.

Fig. 7.7 shows a simplified quadtree. The root node corresponds to the entire image
of size 2n × 2n pixels. We call this layer level n. The root has four children, which
are on level n − 1. The next level is called level n − 2, and so on.

FIGURE 7.7
A simple quadtree.

The quadtree shows that the size and coordinates of four children can be calculated
given the size and coordinates of the parent range block and the direction of children
in the parent block. In other words, the range block size and coordinates are stored
implicitly in the quadtree. The following recursive functions can be used for the
decoder to calculate the sizes and coordinates of range blocks in a 2n × 2n image
given the level number and direction in the partition.

R(L) = 2n if L = n

R(L) = R(L + 1)/2 otherwise

where R(L) is the size of a range block at level L of the quadtree,

x(L,D) = 0, y(L,D) = 0

if L = n

x(L,D) = x(L + 1, PD), y(L,D) = y(L + 1, PD) + R(L)

if L �= n and D = NW

x(L,D) = x(L + 1, PD) + R(L), y(L,D) = y(L + 1, PD) + R(L)

if L �= n and D = NE

x(L,D) = x(L + 1, PD), y(L,D) = y(L + 1, PD)

if L �= n and D = SW

x(L,D) = x(L + 1, PD) + R(L), y(L,D) = y(L + 1, PD)

if L �= n and D = SE

where x(L,D) and y(L,D) are the x and y coordinates of a range block at level
L,D is the direction of the range block with respect to its parent range block, and
PD is the direction of the parent block with respect to the grandparent range block.

From the above discussion, it is clear that if we know the quadtree level number
of each block and store the compressed information of blocks in a certain order, the
decoder will be able to work out the block sizes and positions. Block information is
stored in depth-first order. Take quadtree in Fig. 7.7 as an example; we store range
block (node) information in the order as indicated by the number under each node. For
each range block, we can simply store the level number followed by the information
presented in Table 7.1.

A close look reveals that it may be redundant to store the level number for each
block because there is a good chance that several consecutive blocks share the same
level number. To eliminate this redundancy, we reserve a bit (called a run bit) for each
block to indicate whether this block is at the same level as the previous block. If the
block is at the same level as the previous block, this bit is set to 1 and no level number
is stored. Otherwise, this bit is set to 0 and the level number is stored following it.

Experimental results show that for an image of 2n×2n pixels, the useful maximum
range block size is 2n−2 × 2n−2 pixels; the useful maximum range block size is one
sixteenth of the original image size [9]. The minimum block size is 4 × 4 pixels. So
the total number of quadtree levels is n− 3. The number of bits required to store this
level information is log2(n − 3) rounded to the next integer.

To summarize, the compressed file contains a list of compressed block information
stored in depth-first order. For each block, we store a run bit, followed by trans-
formation information (if run bit is set) or by level information and transformation
information (if the run bit is off). The format of transformation information is the
same as that used for the fixed-size partitioning method discussed in the previous
section (Table 7.1).

7.7.3 Experimental Results

Tables 7.3 and 7.4 show the results of experiments carried out on the image “Lena”
of 512 × 512 and image “Lena” of 256 × 256 pixels, respectively [9]. The maximum
range block size is set to 128 × 128 pixels while the minimum is set to 4 × 4 pixels.
It can be seen that more large range blocks are used when the required decoded
image quality is low, and few large blocks are used when the required decoded image
quality is high. This is because when the required decoded image quality increases,
the distortion thresholds used for various range blocks decrease. As a result, large
range blocks are not able to encode the region to within the acceptable threshold, and
they are broken down further by quadtree partition. Fig. 7.8 shows the compressed
image of 0.44 bpp using the quadtree partitioning method with PSNR of 30.30 dB.

FIGURE 7.8
Compressed image of 512 × 512 pixels using QPIFS at 0.44 bpp with PSNR of
30.3 dB. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

Table 7.3 Test Results on “Lena” 512 × 512 Using QPIFS
. Decoded
. image

Number of range Blocks Compression quality
128 × 128 64 × 64 32 × 32 16 × 16 8 × 8 4 × 4 Ratio (PSNR in dB)

0 23 90 196 345 220 84.8 23.56
0 11 107 223 558 920 39.5 25.90
0 6 89 295 676 1728 25.4 28.27
0 4 63 325 866 2664 18.0 30.30
0 2 49 287 1025 4044 13.0 32.17
0 0 42 215 1113 5804 9.8 33.37
0 0 13 188 1111 8100 7.4 34.27

Table 7.4 Test Results on “Lena” 256 × 256 Using QPIFS
Decoded

Number of range Blocks Compression image quality
64 × 64 32 × 32 16 × 16 8 × 8 4 × 4 Ratio (PSNR in dB)

0 25 90 196 272 33.0 23.82
0 11 109 255 628 18.9 26.50
0 7 88 320 960 13.7 28.76
0 4 72 353 1276 11.0 30.39
0 3 52 349 1676 9.0 31.81
0 1 48 283 2132 7.6 32.42
0 0 37 237 2556 6.6 32.73

By comparing the results obtained using fixed-size partitioning (Table 7.2) and
those of quadtree partitioning (Tables 7.3 and 7.4), we can make the following obser-
vations:

1. When the required decoded image quality is low (below 25 dB), the fixed size
partitioning provides a better compression ratio. For example, compressing
image “Lena” of 256 × 256 pixels using range block size 16 × 16 pixels,
a compression ratio of 88.6 is achieved, with a corresponding decoded image
quality of 23.08 dB. In comparison, the same image compressed using quadtree
partitioning gives a compression ratio of 33.0, although the quality is slightly
higher at 23.82 dB. This is because the overhead information of range block size
and position (on average about 2 bits for each block) is required for quadtree
partitioning. Also, at low required decoded image quality, the image can be
encoded using larger range blocks. In other words, the use of range blocks
of 16 × 16 pixels in fixed-size partitioning is sufficient to generate a decoded
image quality of 23 dB. This fact is evidenced in the quadtree partitioning
method, in which approximately 75% of the image is encoded by range blocks
of size 16×16 pixels or larger. Although only 25% of the image is encoded by
smaller range blocks, the number of smaller ranger blocks used (total of 468,
the sum of range blocks of 8 × 8 and 4 × 4) is much higher than the number of
blocks of 16 × 16 or larger (total of 115, the sum of range blocks of 32 × 32
and 16 × 16). This is why the compression ratio decreases so much, although
the decoded quality is increased by 0.8 dB due to usage of these smaller range
blocks.

2. When the required decoded image quality is high, 30 dB and above, the quadtree
partitioning method gives a better compression ratio and quality compared to
the fixed-size partitioning. For example, we achieve a compression ratio of 4.8
with decoded image quality of 32.99 dB when image “Lena” of 256×256 pixels
is compressed with fixed-size range blocks of 4 × 4 pixels. In comparison, the
quadtree method is able to achieve a compression ratio of 6.6 with similar
decoded image quality of 32.73 dB. This demonstrates the strength of the

quadtree partitioning method as it is able to encode certain regions with large
range blocks, thus reducing the total number of range blocks to 2830. In fixed
size partitioning, a total of 4096 range blocks of 4 × 4 pixels are used.

3. The results also show the flexibility of the quadtree partitioning method. The
user is able to select the required decoded image quality. The encoder is then
able to calculate the respective distortion tolerances for range blocks of different
sizes. As a result, the method is able to use a combination of range blocks of
different sizes to reproduce the decoded image with required quality. Fixed
size partitioning does not have this flexibility. The achievable decoded image
quality is determined by the range block size used in the encoding process. For
example, in Table 7.2, when 4 ×4 range blocks are used, the resulting decoded
image quality is 34.98 dB. When 8 × 8 range blocks are used, the resulting
decoded image quality is 29.65 dB. As it is difficult to use range block sizes
between 4 × 4 and 8 × 8, the fixed-size partitioning will not be able to produce
a decoded image quality between 34.98 dB and 29.65 dB with the highest
possible compression ratio.

4. The larger the image size, the higher the achievable compression ratio because
larger images normally contain more spatial redundancy.

7.8 Image Coding by Exploiting Scalability of Fractals

Fractals are scalable in the sense that they have fine details at any scale. Based on
this property, many researchers [4, 6, 7] have indicated that a fractal-encoded image
can be decoded to any size. But this is true only to a certain extent with natural image
compression. The original image is not a fractal, but the reconstructed image from
PIFS is a fractal. Although we can display fractals at any size without losing fine
details, it will not be very close to the original image if we enlarge it too many times.

Image coding using PIFS is time consuming. The complexity of computation is
O(n4), assuming the image size is n×n and fixed-size partition is used. Thus it takes
much longer to compress a larger image. This problem leads to the development of a
scheme to reduce required compression time by using the scalability of fractals [9].

The basic idea is as follows. Given an image to compress, we reduce the original
image size. Then we find the PIFS for this reduced image. During decoding, we
use the scalability property to display the decoded image in its original size. As
long as the decoded image has acceptable quality compared to the original one, we
have achieved image compression using much less time and possibly with a higher
compression ratio because a smaller image is coded. The important issues are how
to reduce the original image size and how to decode the PIFS found on the reduced
image to the original size.

7.8.1 Image Spatial Sub-Sampling

To reduce the original image, we use basic spatial subsampling techniques. Given
an original image of 2n × 2n. If we want to reduce it to 2n−m × 2n−m, we represent
each 2m × 2m square block using one pixel. The value of the pixel is the average of
these 2m × 2m pixel values. For example, if we want to reduce the image size to one
quarter of the original, we use one pixel to represent each square block of four pixels.

7.8.2 Decoding to a Larger Image

Decoding a compressed image of size I × I pixels represented by PIFS to 2mI ×
2mI pixels, where m is a nonnegative integer, involves decoding all the range blocks
to size 2mR × 2mR pixels instead of R ×R. The same decoding algorithm described
in Section 7.6 is used, but special consideration must be taken to change block sizes
and coordinates as shown below.

For a range block of size R × R with lower left corner at (x, y) that is encoded
using absorption, to decode it to size 2mR × 2mR, the decoder will simply replace
the block of 2mR × 2mR pixels defined by lower left corner at (2mx, 2my) with the
absorption factor.

To decode a range block with lower left corner at (x, y) that has been encoded
by a contractive transformation, the decoder must be able to extract the matching
domain block from the enlarged image. Thus the coordinates of the domain block
(xd, yd) indicated in the compressed file must be changed to (2mxd, 2myd). A block
of 2m2R × 2m2R pixels with lower left corner at (2mxd, 2myd) is obtained from
enlarged image. The appropriate contractive affine transformation is then applied to
the block, to obtain the 2mR × 2mR range block.

7.8.3 Experimental Results

Given the image “Lena” of 512×512 pixels, we first reduce it to 256×256 pixels.
We find QPIFS for the reduced images. During decoding, we decode the QPIFS to
image size of 512 × 512 pixels using the scalability property. Table 7.5 shows the
experimental results obtained when images are compressed at 256 × 256 and then
decoded to 512×512 using fractal scalability. Note that, in the table, both compression
ratio and decoded image quality are calculated relative to the original image of 512 ×
512 pixels. Table 7.6 shows results obtained when images are compressed at 512 ×
512 pixels and decoded at the same size. Note that the results shown were obtained on
a slow processor (SGI Indigo with a 50 MHz IP20 processor). With a faster processor,
the time shown should be much shorter. Fig. 7.9 shows a reconstructed image using
fractal scalability.

From the table we can make the following observations:

1. At similar decoded image qualities, coding time required to compress images of
256×256 is much less compared with compressing 512×512 directly without
reducing its size first. Although not shown in the table, the decompression
times required for decoding are similar for all cases.

FIGURE 7.9
Image “Lena” of 512 × 512 pixels reconstructed from QPIFS found in images
of 256 × 256 pixels using fractal scaling, at 0.22 bpp with PSNR of 28.77 dB.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

Table 7.5 Test Results Using Combination of Subsampling and Scaling
Technique

Decoded
QPIFS Compressing Decoded to Compression image quality

coded at time (s) ratio (PSNR in dB)

256 × 256 777 512 × 512 131.5 23.10
256 × 256 1392 512 × 512 75.4 25.26
256 × 256 1957 512 × 512 54.7 26.91
256 × 256 2444 512 × 512 44.0 27.96
256 × 256 3006 512 × 512 35.9 28.77
256 × 256 9538 512 × 512 30.0 29.08
256 × 256 11008 512 × 512 26.4 29.24

2. At similar decoded image qualities, the compression ratio achieved using scal-
ing is much higher than that using direct encoding and decoding at the same
size. For example, we achieved a compression ratio of 35.9 with decoded image
quality of 28.77 dB using the scaling property, compared with a compression
ratio of 25.4 with image quality of 28.27 dB achieved with direct encoding and
decoding.

3. Since our purpose is to obtain a decoded image at the original image size, in
the case of 512 × 512 pixels, the decoded image quality is calculated relative
to the original image of 512 × 512 pixels. There is a quality degradation
when decoding QPIFS found in the image 256 × 256 pixels to an image of
512 × 512 pixels. For example, in the last row of Table 7.5, the QPIFS found

Table 7.6 Test Results Using QPIFS Directly on a 512 × 512 “Lena” Image
Compressing Compression Decoded image quality

Compressed at time (s) ratio (PSNR in dB)

512 × 512 4645 84.8 23.56
512 × 512 10235 39.5 25.90
512 × 512 16075 25.4 28.27
512 × 512 22789 18.0 30.30
512 × 512 31797 13.0 32.17
512 × 512 42639 9.8 33.37
512 × 512 56415 7.4 234.27

for the image of 256×256 pixels should be able to generate an image of 256×
256 pixels at 32.73 dB (relative to the uncompressed image of 256×256 pixels).
However, when it is decoded to 512 × 512 pixels, the PSNR drops to 29.24
(relative to the original image of 512×512 pixels). This proves that scalability
of fractals can be used only to a certain extent in natural image compression.
Enlarging too often will result in unacceptable decoded image quality.

7.9 Video Sequence Compression using Quadtree PIFS

There are high temporal correlations among images in a video sequence. To achieve
high video compression performance, these temporal redundancies must be removed
or reduced. In this section, we describe a technique to remove temporal redundancy
using quadtree partitioning [9].

The basic idea of still image compression using PIFS is to find similarities among
parts of an image. We can borrow this idea to compress video sequences. However,
instead of finding similarities among parts of an image, we find similarities among
neighboring images in a video sequence. In this case, quadtree partitioning will be
very efficient because there are large areas that are unchanged between consecutive
frames; thus many large range blocks can be used. Based on whether or not there
is a change in a block of pixels relative to the corresponding block in the previous
image and the type of changes (translation or rotation, etc.), we identify different
types of blocks in the image and code them differently to achieve better compression
performance.

7.9.1 Definitions of Types of Range Blocks

If a block in the current frame is identical or very similar to the corresponding block
in the previous frame, we call this block a type one block. If a block in the current
frame is a translation of a block in the previous frame, we call it a type two block.

If a block in the current frame is an affine transformation of a block in the previous
frame, we call it a type three block.

Type One Range Blocks

In a typical video sequence, a large portion of the current frame is similar to the
previous frame except for areas where moving objects are located. We can use type
one blocks to code this unchanged portion. Since the only information to be stored
is the position of this block, a high compression ratio can be achieved. To identify a
type one range block, a block in the current frame is compared with the corresponding
range block in the previous frame. If the error between the two range blocks is below
a preset threshold value, the block is deemed as a type one range block.

Type Two Range Blocks

For the area containing moving objects, if the movement of objects can be traced
from one frame to the next, a high compression ratio can be achieved. This observation
leads to the implementation of type two range blocks. Each type two range block in
the current frame is produced by a translation of a same size block in the previous
frame. A range block is identified as a type two block if the distortion between itself
and a block obtained from the search region defined in the previous frame is smaller
than a preset threshold.

The search region is defined based on the observation that objects generally do not
move too far from one frame to the next. Thus the search region is a small area in
the previous frame instead of the whole image, saving bits required to represent the x

and y offsets between the range block and the matching block in the previous frame.
A search range of M is used. The search region is defined as in Fig. 7.10. The size
of the search region is (2M + R) × (2M + R), assuming the range block size is
R × R. When the range block is near the boundaries of the image, the search region
is constrained by the boundaries. During the search process, the matching block will
be searched exhaustively in the previous frame by changing the block position one
pixel at a time within the search region. After the exhaustive search process, the block
giving the minimum error between itself and the range block to be coded is deemed
as a type two matching block if the distortion is below the preset distortion threshold.

Type Three Range Blocks

For the area that cannot be encoded using type one or type two blocks, type three
blocks are used. Type three range blocks are encoded in a similar way as the range
block in the still image as discussed in Sections 7.6 and 7.7. The only difference is
that the matching domain blocks are searched in the previous frame. This is based on
the observation that parts of the current frame may possibly be parts in the previous
frame after rotation, intensity change, etc. Thus, it would be easier to find matching
blocks in the previous frame than in the current frame.

FIGURE 7.10
Definition of the search region.

Distortion Tolerance

The distortion tolerance for all three types of blocks is determined by the same
function as described in Section 7.7.

7.9.2 Encoding and Decoding Processes

We treat the first image in a video sequence as a still image (intraframe) and code
it using quadtree PIFS as described in Section 7.7. There are two ways to code the
subsequent frames. One way is to code them relative to the previous original images.
The advantage of this method is that the similarity between the current frame and
the previous original image will be high, resulting in the use of more type one and
type two blocks, thus achieving higher compression ratios. The disadvantage is that
the decoder does not have the original images. It has to decode images based on the
previous decoded image. Since we are using a lossy coding method, the decoded
image is different from the original image. If we decode images based on previous
decoded image, the differences will accumulate and eventually the decoded image
quality will no longer be acceptable unless we take remedial measures. The other
way to code the images is to code them relative to the previous decoded image. The
advantage and disadvantage are the opposite of the first method. In the following, we
describe the implementation of the first method. Measures are taken to prevent error
accumulation to an unacceptable level.

To solve the error accumulation problem, we divide a video sequence into layers
(Fig. 7.11). The highest layer is the video sequence itself. It is divided into a number
of fixed length subsequences. The first image in each subsequence is intraframe

coded. That is, it is treated as a still image and coded using quadtree PIFS. Each
subsequence is further divided into a number of fixed-length groups of images or
frames. The first image in each group of images is coded relative to the first image in
the previous group of images. By doing so, the rate of quality degradation is reduced.
The encoding process for all images in a group of images except the first is the same;
they are coded relative to the immediately previous images. Therefore, except for the
first image in a subsequence, all images are interframe coded.

In the following discussion, we use the general term reference image to describe
the image based on which the current image is encoded. The reference image is the
previous image if the current image is not the first in a group of images. Otherwise,
the reference is the first image in the previous group of images.

FIGURE 7.11
The hierarchy of a video sequence.

The reference image is used to search for type one and type two range blocks,
and for matching domain blocks to encode type three range blocks. The quadtree
partitioning method with extension to take care of the use of type one and type two
range blocks is utilized to encode each image except the first image in a subsequence.

An image to be interframe coded is divided into 16 equal square range blocks.
Each range block to be encoded is first tested to determine whether or not it can be
coded using type one block relative to the reference image. It is encoded using type
one block if the distortion is below the preset threshold. Otherwise, it is tested to
determine if it can be encoded using type two block. If the current range block cannot

be encoded using type one or type two blocks, a matching domain block is searched
from the reference image. If the difference between the range block and a domain
block, after it has undergone an appropriate transformation, is smaller than a preset
threshold, the range block is encoded using type three block. Otherwise, the range
block must be partitioned into four smaller range blocks using quadtree partitioning.
For each smaller range block, the above encoding process is repeated until all range
blocks are encoded.

During decoding, the quadtree used in the encoding process is rebuilt as described
in Section 7.7. The range blocks encoded using type one or type two blocks are
reconstructed from the reference image. The areas encoded using type three blocks are
initialized with the contents at the corresponding location in the reference image and
are reconstructed by applying stored PIFS. By initializing these areas with the contents
of the reference image, very few iterations are required to obtain the converging
image. Experiments show that in most cases only one iteration of applying the PIFS
is required to achieve convergence to the final image.

7.9.3 Storage Requirements

Table 7.7 shows the storage requirements for different types of blocks. In an actual
implementation, additional bits are required to store range block sizes and coordinates
as described in Section 7.7. By using quadtree partitioning, we expect that unchanged
areas will be coded using larger range blocks, leading to higher compression ratios.

Table 7.7 Storage Requirements for Different Types of Range
Blocks

Type of encoding Parameters Number of bits
Type one Identifier 4
Type two Identifier 4

Coordinates 2 log2(2M)

Type three with absorption Identifier 4
Absorption 8

Type three with isometric Identifier 4
Scaling factor 3
Shifting factor 8
Domain coordinates 2 log2(I/R)

7.9.4 Experimental Results

In the reported experiments, the size of a subsequence used is 100 images and
the size of a group of images is 10. These numbers are chosen to achieve optimal
compromise between compression ratios and effects of accumulated error.

The “salesman” video sequence of 90 frames is compressed using the algorithm
described above. The compression ratio achieved is 57.9 with an average decoded

image quality of 29.17 dB. Using software-only decoding, a decoding rate of 3 frames
per second with image size of 256 × 256 pixels was achieved on an SGI Indigo
workstation with 50 MHz IP20 processor. With optimization of the code and faster
processors, real-time video decoding is possible.

7.9.5 Discussion

The interframe coding method discussed in this section is similar, to a certain
extent, to the motion estimation and compensation techniques used in the MPEG
standard [14]. The QPIFS-based method has two advantages. First, it uses quadtree
partitioning instead of fixed-block size used in MPEG. This leads to better compres-
sion performance because nonmoving areas can be coded using larger blocks. Second,
the QPIFS-based method not only estimates and compensates for translation but also
considers object rotation, brightness changes, etc. by using affine transformations.

7.10 Other Fractal-Based Image Compression Techniques

The techniques discussed so far are all based on iterated function systems. In this
section, we briefly describe two techniques that are not based on IFS but make use of
other properties of fractals.

7.10.1 Segmentation-Based Coding Using Fractal Dimension

In most cases, images are meant to be viewed by the human eye. The human visual
system (HVS) is not perfect, and it is less sensitive to certain frequencies than to
others. The less sensitive components can be coded coarsely without much perceived
quality loss. Therefore, if a coding system can take advantage of the properties of
HVS, a high compression ratio can be achieved.

One such technique is segmentation-based image coding [10]. Images are seg-
mented into homogeneous regions with similar features, and each region is coded
using different techniques based on their visual importance. However, there are lim-
itations in the traditional segmentation-based coding. The main limitation is due to
the fact that the image is normally segmented into regions of constant intensity. In
complicated texture areas, a trade-off must be made. Good representation of texture
requires many small segments. In order to get low bit rates or high compression ratios,
however, the number of segments should be small. This problem can be solved by
segmenting images into texturally homogeneous regions with respect to the degree
of roughness perceived by HVS.

A characteristic of a fractal is the fractal dimension that provides a good measure
of perceptual roughness of texture, with increasing values in fractal dimension repre-
senting perceptually rougher texture. Techniques to calculate the fractal dimension

can be found in Falconer [3] and Peleg, Naor, Hartley, and Avnir [11]. After the fractal
dimension is calculated, an image is segmented into several texture classes according
to the fractal dimension. After image segmentation, an efficient image coding tech-
nique is chosen to encode each texture class according to visual importance. It was
reported that a compression ratio of 40 was achieved for gray scale images with good
quality reconstructed images [10].

7.10.2 Yardstick Coding

This method is based on fractal geometry to measure the length of a curve using
a yardstick of fixed-length (see Fig. 7.12). We want to measure the curve drawn
in thin dotted lines using a yardstick. The thick lines are covered by the yardstick
travelling along the curve. It is obvious that the shorter the yardstick, the closer the
measurement result will be to the true length of the curve, and the better the curve
will be covered by the yardstick travelling along the curve.

X

Y

Scanline

Yardstick
approximation

FIGURE 7.12
Coding (approximation) of a scan line.

Walach and Karnin [12] proposed the so called “yardstick travelling” mechanism
for coding each line of pixels in an image. A scan line of pixels can be thought of
as a curve: the x-coordinate is the pixel number along the line, and the y-coordinate
is the intensity of pixels. The curve can be approximated with a set of straight lines
covered by the running yardstick. These straight lines can be represented by points
coinciding with the ends of the yardstick when it is running along the curve. Since the
number of end points will be smaller than the pixel numbers when the length of the
yardstick is appropriately chosen (normally between 8 and 24 pixels), compression
can be achieved by storing these points instead of pixels [12, 13].

The yardstick method is similar to the traditional subsampling and interpolation
method, both exploiting the correlation among neighbouring pixels.

7.11 Conclusions

This chapter has described a number of image and video compression techniques
based on fractal properties. Techniques based on IFS and PIFS are most promising.
The compression performance of PIFS-based techniques is similar to that of DCT-
based techniques.

The PIFS-based compression technique has an advantage in that the compression
achievable at a given signal to noise ratio scales with image size: higher compression
ratios can be achieved with larger images. This shows the potential of this technique
in applications involving large images. IFS-based fractal image coding is highly
asymmetric in that significantly more processing is required for encoding than for de-
coding. It is highly suitable for information dissemination applications where images
are encoded once and decoded many times. At the decoding site, no sophisticated
hardware is needed to achieve high decoding speed.

IFS-based image/video compression techniques are potentially suitable for inter-
active multimedia applications where indexing, retrieving, and browsing of images
are required. When an image is encoded into an IFS, one image or object is just one
IFS. It is easy to index and search based on IFS.

Pointers to Further Reading and Available Software

This chapter has introduced basic concepts and techniques of fractal-based im-
age and video compression. Many papers and much software are available on-
line. Fisher maintains a Web site (http://inls.ucsd.edu/y/Fractals/)
where one can find papers, books, software, and other resources. The University of
Waterloo has an active research group working on fractal compression. Its home
page (http://links.uwaterloo.ca/) has links to many papers and soft-
ware. Institut fuer Informatik of Universitaet Freiburg, Germany, has an FTP site
(ftp://ftp.informatik.uni-freiburg.de/documents/papers/
fractal/) that contains many papers. One can find the latest products and de-
velopments in fractal compression and applications from the home page of Iterated
Incorporated (http://www.iterated.com/).

References

[1] Mandelbrot, B.B., The Fractal Geometry of Nature, Freeman, San Francisco,
1982.

[2] Barnsley, M.F., Fractals Everywhere, Academic Press, Boston, 1988.

[3] Falconer, K., Fractal Geometry — Mathematical Foundations and Applications,
John Wiley & Sons, New York, 1990.

[4] Barnsley, M.F. and Sloan, A.D., A better way to compress images, Byte, 215–
223, 1988.

[5] Jacquin, A.E., A Fractal Theory of Iterated Markov Operators with Applications
to Digital Image Coding, Ph.D. thesis, Georgia Institute of Technology, August
1989.

[6] Fisher, Y., Fractal image compression, SIGGRAPH’92, course notes.

[7] Jacquin, A.E., A novel fractal block-coding technique for digital images,
ICASSP’90, 2225–2228, Albuquerque, NM, 1990.

[8] Jacquin, A.E., Fractal image coding based on a theory of iterated contractive
image transformations, SPIE, vol. 1360, Visual Communications and Image
Processing, 227–239, 1990.

[9] Lu, G. and Yew, T.L., Applications of partitioned iterated function systems in
image and video compression, J. Visual Communication and Image Represen-
tation, 7(2), 144–154, 1996.

[10] Jang, J. and Rajala, S.A., Segmentation-based image coding using fractals and
the human visual system, ICASSP’90, 1957–1960, Albuquerque, NM, 1990.

[11] Peleg, S., Naor, J., Hartley, R., and Avnir, D., Multiple resolution texture anal-
ysis and classification, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(4), 518–523, 1984.

[12] Walach, E. and Karnin, E., A fractal based approach to image compression,
ICASSP’86, 529–532.

[13] Zhang, N. and Yan, H., Hybrid image compression method based on fractal
geometry, Electronics Letters, 27(5), 406–408, 1991.

[14] MPEG home page, http://drogo.cselt.stet.it/mpeg/.

[15] Gersho, A. and Gray, R.M., Vector Quantization and Signal Compression,
Kluwer Academic Publishers, Boston, 1992.

[16] Forte, B. and Vrscay, E.R., Theory of generalized fractal transforms, in Fractal
Image Encoding and Analysis, Fisher, Y., Ed., Springer Verlag, Heidelberg,
1998.

[17] Mendivil, F. and Vrscay, E.R., Correspondence between fractal-wavelet trans-
forms and iterated function systems with gray-level maps, in Fractals in Engi-
neering: From Theory to Industrial Applications, Levy Vehel, J., Lutton, E.,
and Tricot, C., Eds., Springer Verlag, London, 1997.

[18] Vrscay, E.R., A generalized class of fractal-wavelet transforms for image rep-
resentation and compression, Canadian J. of Electrical and Computer Engi-
neering, 23(1–2), 69–83, 1998. (Special issue on Visual Computing and Com-
munications.)

[19] Saupe, D. and Vrscay, E.R., Can one break the “collage barrier” in fractal
image coding?, Fractals in Engineering Conference, June 14–15, 1999, Delft
University, The Netherlands.

[20] Zhao, Y. and Yuan, B., A new affine transformation: its theory and application to
image coding, IEEE Transactions on Circuits and Systems for Video Technology,
8(3), 1998.

Xiaolin Wu "Compression of Wavelet Transform Coefficients"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 8

Compression of Wavelet Transform
Coefficients

Xiaolin Wu
University of Western Ontario

8.1 Introduction

Mathematical transforms are widely used in signal compression, particularly in
compression of sensory data such as audio, image, and video. Although sensory
signals are typically sampled and presented to users in the spatial/time domain, a
direct signal representation in the spatial/time domain creates a huge volume of data
with excessive redundancy. Clearly, signals in original sample form are unsuitable
for transmission or storage. Transform coding is a proven paradigm for signal com-
pression. In transform coding, signal samples are mapped from spatial/time domain
into another space, typically a frequency or joint time-frequency domain in which
statistical and subjective redundancies in the samples can be better understood, ex-
ploited, and removed. Transformed samples are thus more amenable to compression.
This paradigm of transform-based signal compression is exemplified by the current
and commercially successful industrial standards for image compression (JPEG stan-
dard [19]) and video compression (MPEG standards [4, 5]) [21]. A schematic de-
scription of a typical transform coding system is given in Fig. 8.1. The compression
(encoding) process is completed in three major steps: transform of signal samples,
quantization of transform coefficients, and entropy coding of quantized coefficients.
The decompression (decoding) process is a reverse of the compression process.

The JPEG and MPEG standards use discrete cosine transform (DCT) in the trans-
form step of the compression system. The acronyms JPEG and MPEG stand for the
Joint Photographic Experts Group and the Moving Picture Experts Group. The two
groups consist of members from both the International Standards Organization (ISO)
and the International Telecommunications Union (ITU). They are charged respec-
tively with the missions of developing international standards for the coded represen-
tation of compressed still images, and of compressed moving pictures and associated

FIGURE 8.1
Schematic description of a typical transform coding system.

audio. Their efforts are instrumental for the prevalence of digital visual communi-
cations in multimedia and Internet applications. Due to the popularity of JPEG and
MPEG compression standards and products, the DCT-based coding system is now
considered a matured and effective technology for image and video compression.
In 1988 when the JPEG members evaluated various image compression schemes
and decided on the JPEG standard, the DCT-based image codecs offered the best
compromise between compression performance, computational complexity (hard-
ware complexity in particular), and coder flexibility, among other competing image
compression technologies at that time, specifically vector quantization (VQ) [14] and
DPCM (differential pulse coding modulation) coding.

Since the standardization of DCT-based compression technology, the past few
years have seen rapidly increasing sophistication and maturity of wavelet-based im-
age compression methods. Wavelet-based image codecs have so far delivered the
best lossy compression performance in both peak signal to noise ratio (PSNR) and
visual quality, over bit rates from 0.05 bits/pixel (summary quality for browsing) to
2.00 bits/pixel (visually indistinguishable from the original). During the same period,
research on VQ compression and fractal compression has also advanced. But in im-
age compression, neither VQ nor fractal compression methodology has matched the
rate-distortion performance of wavelet-based image codecs at the time of this writing.
Indeed, the recent success of wavelet transform in image compression has reinforced
the dominance of widely practiced transform coding paradigm for signal compres-
sion. Only in the realm of lossless image compression, adaptive predictive coding
has slightly (about 3%) higher compression ratio than lossless transform coding such
as reversible integer wavelet codecs [34]. But this small advantage of predictive loss-
less coding becomes even more marginal in the presence of other unique features of
wavelet lossless codecs, on which we elaborate later.

Within the transform coding family, discrete wavelet transform is threatening to
unseat DCT as the transform of choice, at least for image compression applica-

tions. The current state-of-the-art wavelet image codecs significantly outperform the
existing DCT-based JPEG standard in PSNR measure and subjective image qual-
ity, particularly for low bit rates at which the block effects of DCT are notice-
able [25, 28, 30, 29, 36, 37]. Being encouraged by the improvements brought on
by wavelet-based image compression techniques over DCT, and prompted by in-
creasing acceptance of wavelet compression technology by industry, the JPEG com-
mittee has developed a new wavelet-based still image compression standard called
JPEG 2000 [2]. Also, in 1993 the FBI chose a wavelet-based image codec to be the
standard for fingerprint image compression [1].

The superior compression performance of wavelet-based image coding systems
over their DCT-based counterpart might suggest that the improved performance was
primarily made by replacing DCT with wavelet transform, and hence the choice of
transform would matter the most to coding efficiency. However, in strict technical
terms, all existing transforms used in signal compression by themselves do not lead
to any data reduction. Both DCT and dyadic wavelet transforms, the two most widely
used types of transforms in image and video compression, generate as many coef-
ficients as the number of samples. Furthermore, while the original sample values
of digital signals are integers, the transform coefficients are nonintegers. Therefore,
without efficient coding of transform coefficients, a transform not only cannot com-
press but can even expand the data. The main benefit of transform to data compression
is from its property of energy packing. A suitable transform can transfer the majority
of signal energy into a few transform coefficients, resulting in a large number of zero
and near-zero coefficients. In other words, the probability distribution of transform
coefficients is much more biased than that of original samples. The more biased the
distribution, the easier it is to compress signals by entropy coding. Despite the well-
accepted folklore that lossy signal compression is better done via transform coding,
it is the process of entropy coding that actually achieves data reduction. Informally,
entropy coding refers to a family of coding techniques that uses shorter codewords
for more probable symbols (smaller transform coefficients), and longer codewords
for less probable symbols (larger transform coefficients). An optimal variable length
code can achieve an average code length that approaches the information theoretic
lower bound called entropy, hence the term entropy coding. Entropy coding is also
referred to as noiseless or lossless coding since the coding process is perfectly re-
versible. It is a key machinery of information theory, a field fathered by Shannon [27]
half a century ago and that has guided data compression engineering ever since. For
background and rigorous treatment of entropy coding, we refer readers to textbooks
such as Cover and Thomas [10].

In terms of energy packing capability, the principal component transform (also
known as Karhunen-Loève transform [15]) is optimal in the sense that it distributes
the largest amount of signal energy into the direction of the eigenvector of the largest
eigenvalue (the direction of largest sample variance), and the second largest amount
of signal energy into the second largest eigenvector direction, and so on. Therefore, if
one is to choose only k coefficients to best approximate the original signal inL2 metric,
then the optimal choice will be the k coefficients corresponding to the eigenvectors

of the k largest eigenvalues. DCT has been shown to be very close to the principal
component transform when applied to the first order stationary Markov process [22].
This justifies the wide use of DCT in data compression. The energy packing capability
of wavelet transform was studied by DeVore, Jawerth, and Lucier [11] who showed
that wavelet bases are optimal among all possible basis functions in minmax nonlinear
approximation obtained by retaining the k largest coefficients and discarding the
remaining. Both DCT and wavelet transforms possess some good properties in terms
of energy packing.

Wavelet transforms have two additional advantages over DCT that are important
for coefficient compression. The first is the multiresolution representation of the
signal by wavelet decomposition that greatly facilitates subband coding, a notion
that existed long before the popularity of wavelets [32]. Fig. 8.2 shows an image
pyramid associated with wavelet decomposition. It can be seen from the figure that
wavelet transform preserves to some extent spatial signal features in subbands of
different scales and creates self-similarities between the subbands of the same spatial
orientation. This fractal-like structure reveals sample dependencies across scales to
the benefit of statistical context modeling and coding of wavelet coefficients. In fact,
the well-known zerotree techniques precisely exploit the self-similarity of regions of
zero and near-zero coefficients. The second advantage of wavelet transform is that
it reaches a good compromise between frequency and time resolutions of the signal.
From the perspective of energy packing, statistically short-term signal constructs such
as image edges, or transients in signal processing terminology, have much higher
energy concentration in time domain; hence they can be modeled and coded far
more efficiently in the time domain than in the frequency domain. However, the
exact opposite is true for long-term signal constructs such as smooth shades and
regular textures in images. Wavelet transforms are superior to DCT in that their
basis functions offer good frequency resolution in the lower frequency range, and at
the same time they yield good time resolution at a higher frequency range (see the
well-preserved edge information in the three highest subbands in Fig. 8.2).

However, neither the multiresolution property nor the frequency-time character-
istics of wavelets suffices for signal compression. Whether and how much signal
compression can benefit from the good properties of wavelets largely depends on
statistical context modeling (implicit or explicit) and entropy coding of wavelet co-
efficients. The difference in rate-distortion performance between the DCT-based
JPEG codec and wavelet-based image codecs is mostly caused by the differences
in entropy coding of transform coefficients between the two methods. Indeed, be-
fore Shapiro’s zerotree technique (EZW) in 1993 [28], a landmark work on wavelet
coefficient coding, wavelet transforms had not won over DCT in rate-distortion per-
formance. More recently, particularly during the ongoing JPEG 2000 standardization
process, further advances have been made in statistical context modeling and adaptive
entropy coding of wavelet coefficients. The modern wavelet coefficient coding tech-
niques [25, 36, 29, 41, 37] significantly outperform the pioneer EZW coder for any
given wavelet transform. The new techniques have better rate-distortion performance
over EZW because they overcome a weakness of zerotree. That is, while being an

FIGURE 8.2
Dyadic wavelet decomposition of a test image.

effective technique to remove data redundancy in the form of a long-term trend, ze-
rotree is less efficient to describe short-term signal constructs than the more advanced
statistical modeling techniques discussed later in this chapter.

In summary, it is the increasing sophistication of coefficient coding, not the trans-
forms alone, that contributes the most to the success enjoyed by wavelet image com-
pression technology. Compression of coefficients is perhaps the most critical issue
for any transform-based signal compression system. This chapter is dedicated to the
problem of compression of transform coefficients. In order to make our discussions
concrete and lucid, we focus on compression of wavelet coefficients in the setting
of image coding. The general principles and techniques of this chapter, however,
are applicable to compression of other transform coefficients and also effective with
other types of signals, such as video and audio.

The structure of this chapter is as follows. Section 8.2 discusses the problem of
compressing transform coefficients in wavelet-based image compression systems.
Specifically, we introduce the popular approach of embedded bit-plane coding of
quantized wavelet coefficients. Section 8.3 formulates the problem of statistical con-
text modeling of wavelet coefficient and explains why this is the single most important
issue that determines the compression performance. Since wavelet transforms can-
not achieve total decorrelation between the signal samples, particularly when sample
correlation is nonlinear, high-order statistical dependencies exist between wavelet
coefficients. Therefore, optimum compression performance can be made possible
only by high-order statistical context modeling of wavelet coefficients. However, if
not treated with care, the number of Markov conditioning states can grow exponen-
tially in the order of the model. This leads to a so-called problem of context dilution,
addressed in Section 8.4. The challenge is how to maintain a modest number of
conditioning states while still making high-order statistics available to aid entropy
coding. Section 8.5 discusses how to discriminatingly choose modeling contexts in
wavelet subbands as a means to control model cost. Section 8.6 introduces the pro-
cess of context quantization to reduce drastically the number of conditioning states.
The essence of context quantization is to merge different conditioning states that have
similar symbol probability distributions. The subject is further pursued in Section 8.7,
which investigates how to optimize context quantization for minimum code length.
We borrow a common strategy of nonparametric multivariate statistical analysis to
overcome high model cost: data projection in the direction of statistical dominance.
Specifically, Fisher’s linear discriminant [12] is used to guide context quantization.
Section 8.8 presents a context quantizer design algorithm via dynamic programming
that can minimize conditional entropy for a given number of conditioning states. Sec-
tion 8.9 turns to the computational aspect of context modeling. Efficient algorithm
techniques are developed to compute modeling contexts. We demonstrate that the
time complexity of forming a modeling context is O(1), independent of the order of
the model, and thus high-order statistical context modeling is made computationally
feasible. The chapter concludes with experimental results that provide convincing
empirical evidence for the importance and effectiveness of context modeling and
conditional entropy coding of wavelet coefficients in practical compression systems.

FIGURE 8.3
Embedded bit stream of coefficients.

8.2 Embedded Coefficient Coding

Like most transform coding systems a typical wavelet-based signal compression
system consists of three cascaded modules, as depicted by Fig. 8.1, first wavelet
transform, followed by quantization of wavelet coefficients, and finally entropy cod-
ing of quantized coefficients. To improve coding efficiency, one can perform adap-
tive wavelet transforms for better energy packing or optimal quantization for rate-
distortion considerations. But most of the coding gains are usually made by condi-
tional entropy coding of wavelet coefficients coupled with universal statistical context
modeling. This is because transforms can remove only linear correlations between
samples, whereas universal statistical context modeling can discover and remove more
complex types of sample dependencies. In the ongoing JPEG 2000 standardization
process, entropy coding of wavelet coefficients is by far the hottest subject being stud-
ied and debated by participating parties. It has been established empirically that the
best rate-distortion results can be obtained by adaptive entropy coding of coefficients
even with a fixed wavelet transform and uniform scalar coefficient quantization.

In order to focus this chapter on the last system component of coefficient entropy
coding, in the following discussions we assume that the standard dyadic wavelet
transform due to Mallat [17] is used in the transform module, and that simple uniform
scalar quantization of wavelet coefficients is used in the quantization module. The
input of entropy coder is the quantization indices of the coefficient magnitudes plus
the signs of the coefficients. The quantized coefficients of dyadic transform are thus
signed integers arranged in a two-dimensional layout of subbands as in Fig. 8.2. Image
compression is finally achieved by lossless entropy coding of quantized coefficients.

A breakthrough of wavelet-based image compression technology is a coding
scheme called embedded bit plane coding that was pioneered by Shapiro [28] in
1993 and then improved very rapidly by many other authors [25, 30, 43, 36, 37].
The idea is simple. Instead of coding all coefficients in one pass, and coding each
coefficient once, we scan the coefficients in multiple passes, one bit plane per pass,
from the most to the least significant bit, as illustrated in Fig. 8.3. Within a bit plane,
the order of traversing wavelet coefficients in a two-dimensional subband layout can
be arbitrary. A common traversal order is from the lowest frequency or the most
coarse subband to the highest frequency or the most detailed subband, as depicted by
Fig. 8.4. The binary sequence generated by such a traversal is called the embedded
bit stream. An important property of the embedded bit stream is its scalability in

FIGURE 8.4
A traversal of subbands within a bit plane.

both spatial resolution and sample fidelity. Truncating an embedded bit stream at
any point means approximating all wavelet coefficients at a certain precision; hence,
the truncated bit stream can reconstruct the image at a corresponding fidelity — the
longer the bit stream being used in the reconstruction, the higher the fidelity. The
effect of successive refinement of a coded image via progressive transmission of an
embedded bit stream is illustrated in Fig. 8.5. Scalable image and video compression
allows transmission and distribution of the same source material at different quality
levels to meet different bandwidth and storage capacity requirements, and the ability
to do so with a single unified code stream. This feature is highly desirable in many
applications, such as Internet, multimedia, medical imaging, prepress imaging, and
image databases. With scalable coding one needs only to archive one master copy
of the material in the database to support applications at different quality levels and
under different constraints — from fast browsing to professional high quality repro-
duction — instead of maintaining multiple copies of the same materials at different
bit rates for different bandwidths and quality trade-offs.

Scalable wavelet coding can also unify lossy and lossless compressions. If re-
versible integer wavelet transforms [8] are used, all coefficients are integers in the
first place. No coefficient quantization is necessary; hence, there will be no quan-
tization errors. In this case an embedded bit stream can eventually achieve perfect
lossless decompression if every bit is received, while any truncation of the bit stream
corresponds to a lossy decompression. The use of reversible integer wavelets for
lossy to lossless scalable image compression was proposed by Zandi et al. [43] and
Said and Pearlman [26]. This approach has very recently been extended to lossy and
lossless compression of image sequences such as three-dimensional medical data,
multi/hyperspectral remote sensing data, and video [18, 42].

FIGURE 8.5
Progressive image reconstruction via scalable embedded code stream. Repro-
duced by Special Permission of Playboy magazine. Copyright ©1972, 2000 by
Playboy.

The first published work on embedded bit plane coding of wavelet coefficients
was Shapiro’s zerotree algorithm [28]. Shapiro developed his embedded zerotree
of wavelets (EZW) by observing that large blocks of zero coefficients exist in high
frequency subbands and at bit planes of high significance. Furthermore, a block
of zero coefficients statistically tends to reside in the same spatial location across
different scales. If we consider a coefficient at a coarser subband as parent, and the
four coefficients corresponding to the spatial location of the parent coefficient at the
next finer subband as children, then coefficients of a dyadic wavelet transform can be
naturally organized into quadtree data structures, as shown in Fig. 8.6. The conditional
probability for all four children to be 0 given that the parent is 0 is much higher than
given that the parent is 1. This statistical inheritance of 0 across different scales tends
to form quadtrees of all 0 nodes, with their roots at upper levels of the multiresolution
hierarchy and their leaves at the bottom level. Therefore, one can code a large number
of 0 coefficients very compactly with a special code symbol for such zerotrees. This
technique is very much like the zigzag technique of the existing DCT-based JPEG
standard for coding long runs of 0 coefficients. In essence, the EZW technique
compresses wavelet coefficients using a prior statistical model, i.e., assuming that

FIGURE 8.6
Coefficient quadtrees across different scales. Zerotrees are those quadtrees
whose nodes are all 0.

zero and near-zero coefficients are clustered in both spatial and frequency domains,
and that the regions of low sample energy are self-similar across different scales. The
rate-distortion performance of the EZW technique was improved by a variant of the
zerotree coder called SPIHT, proposed by Said and Pearlman [25]. Unlike the EZW
algorithm that forms and codes zerotrees in a fixed spatial scanning order, SPIHT
codes the zerotrees in an order that is beneficial to rate-distortion performance; those
trees that are likely to generate higher reduction in distortion are coded first. The
better performance of SPIHT over EZW is also due to the use of a finer tree-based
classification of source symbols and the use of joint entropy (specifically, coding four
binary symbols in a block).

But the best image compression results reported so far in the literature were not
generated by zerotree-based methods, but rather by a sample-by-sample bit plane
coding technique called ECECOW (embedded conditional entropy coding of wavelet)
coefficients [36, 41]. A drawback of the zerotree, or similar quadtree type of data
structures used by EZW [28] and SPIHT [25] algorithms, is that the tree imposes
an artificial structure on the wavelet coefficients. Only contexts of square shape in
the spatial domain can be used, whereas statistically related wavelet coefficients may
form regions of arbitrary shapes. Moreover, like any run-length type codes, quadtree
code cannot efficiently describe statistically short-term signal constructs, such as
edges, because the implicit statistical model used by zerotree breaks down on transient
sample behavior. Relative to sample-by-sample coding, zerotree can be considered

as a block-based entropy code. It largely ignores the sample dependency between
neighboring quadtree nodes. This limitation is particularly regrettable considering
that wavelet transform represents a fundamental departure from block-based DCT.
The first technique of embedded bit plane coding of wavelet coefficients without
any tree constraints seems to be Taubman and Zakhor’s layered zero coding (LZC)
algorithm [30]. Another early wavelet image coder, called CREW (Compression via
Reversible Embedded Wavelets) [43], also did not confine the formation of modeling
contexts to quadtree nodes. Compared with its predecessors, the main strength of the
ECECOW algorithm is its using higher-order context modeling of embedded wavelet
coefficient symbol streams.

8.3 Statistical Context Modeling of Embedded Bit Stream

This section formulates the problem of entropy coding of embedded wavelet bit
streams, namely, coding uniformly quantized wavelet coefficients bit plane by bit
plane, scanning from the most to the least significant bits. Within each bit plane
there are many possibilities of traversing different subbands, and different ways of
traversing a subband other than raster scan. Flexible bit traversal can support many
desirable functionalities such as region of interests, error resilience, and rate-distortion
optimization [29]. The context modeling and entropy coding techniques developed
in this chapter all support any traversals within a bit plane. For simplicity, we assume
a raster scan in the following descriptions.

The bit plane coding deals with only two source symbols: 0 or 1. However,
accompanying the most significant bit of a coefficient, its sign should also be coded.
Since the sign is a binary event, we again have only two possible source symbols
in this situation. Therefore, in bit plane coding, all wavelet coefficients of an image
can be conveniently converted into a sequence of binary symbols: x1, x2, . . . , xn,
xi ∈ {0, 1}. The minimum code length of the binary sequence in bits is given by

− log2

n∏
i=1

P
(
xi |xi−1

)
, (8.1)

where xi−1 denotes the sequence xi−1, xi−2, . . . , x1. If the conditional probability
P(xi |xi−1) is known, then arithmetic coding can approach this minimum rate. Arith-
metic coding is a powerful entropy coding technique with an arbitrarily high coding
efficiency (limited only by the precision of arithmetic operations). It was pioneered by
Rissanen and Langdon [23] and popularized by Witten, Neal, and Cleary [31]. Since
embedded wavelet symbol sequence is binary, it can be compressed by adaptive bi-
nary arithmetic coding, the simplest and fastest version of adaptive arithmetic coding.
Efficient, good approximation algorithms, such as QM coder [20], for adaptive bi-
nary arithmetic coding have been well studied and can be easily implemented by both
software and hardware. Indeed, QM coder and other variants of binary arithmetic

coding are used in many image compression standards, such as the new lossless JPEG
standard JPEG-LS (JPEG-LS high-performance extension, LS mean lossless) [3], the
JBIG (Joint Binary Image Group) lossless binary image compression standard [7],
the JPEG 2000 standard [2], and others [21]. In addition to facilitating binary arith-
metic coding, the binarization of the wavelet coefficients also offers great operational
advantages for high-order context modeling, as appreciated in subsequent sections.

With arithmetic coding, we can separate the entropy coding completely from statis-
tical context modeling, i.e., the problem of estimating P(xi |xi−1). Given a probabil-
ity estimate P̂ (xi |xi−1), arithmetic coding can achieve the code length − log2

∏n
i=1

P̂ (xi |xi−1). The remaining problem, also a far more difficult one, is how to reach a
good estimate P̂ (xi |xi−1) of P(xi |xi−1), where xi−1 denotes a subsequence of xi−1

that consists of past samples of statistical significance to xi . Note that the most rele-
vant past subsequence xi−1 is not necessarily a prefix of xi−1. In image coding, xi−1

or a causal template for xi consists of adjacent symbols in both time and frequency.
The estimated conditional probability mass function P̂ (xi |xi−1) serves as a statistical
model of the source. The modeling context is the set of past observations xi−1 on
which the probability of the current symbol is conditioned.

In fact, statistical context modeling in the form of probability estimation lies at the
heart of any compression system. Ultimately it is the model quality, or the precision
of probability estimate, that determines the rate-distortion performance. The true
magic of wavelet transforms to compression is in their support of context modeling
of sample dependencies via the localization of signal energy in both frequency and
time/spatial domains. Specifically, wavelet coefficients of similar magnitudes sta-
tistically cluster in frequency subbands and in time/spatial locations. Large wavelet
coefficients in different frequency subbands tend to register at the same spatial lo-
cations. This localization property makes statistical context modeling of the image
signals much easier in wavelet domain than in time/spatial domain or other transform
spaces. Specifically, the choice of relevant modeling context xi−1 becomes easier in
the wavelet domain, as explained below.

We take a universal source coding approach to compression of the binary sequence
xn, assuming no prior knowledge about P(xi |xi−1). The central task is to estimate
the conditional probability P(xi |xi−1) “on the fly” based on the past coded bits and
to use the estimate P̂ (xi |xi−1) to drive an adaptive binary arithmetic coder. For easy
reference to individual samples xi in the binary sequence xn, we denote the b-th bit
of a coefficient c by cb, the i-th through j -th bits of c, j > i, by cj..i , and all the
bits of c that are above the b-th bit by c..b+1. In the sequel, the notation cj..i always
refers to the bits in the binary encoding of coefficient magnitude |c|. The sign of c is
denoted by c̃. Note that the bits of cj..i are not consecutive in an embedded wavelet
bit stream but are scattered around. If the most significant bit of c is lower than b,
then c..b is considered to be 0. We use directional notations n, w, s, e, nw, ne, nn,
ww, and so on, to denote the coefficients to the north, west, south, east, northwest,
northeast, northnorth, and westwest of the current coefficient c. Similarly, we denote
the parent coefficient by p, and those coefficients in the parent subband to the north,
west, south, and east of p by pn, pw, ps, and pe.

In coding of the b-th bit plane, we may condition cb on

c..b+1,n..b,w..b, s..b+1, e..b+1,nw..b,ne..b,

nn..b,ww..b, p..b, pn..b, ps..b, pw..b, pe..b, . . . (8.2)

We treat all the known bits, up to the moment of coding cb, of the neighboring
coefficients in current and parent subbands as potential feature events in modeling
context xi−1 of xi = cb. Unlike in the EZW and SPIHT algorithms, our modeling
context of cb contains some future information if one considers that the octave-raster
scanning of coefficients produces a time series. Specifically, this refers to the use
of s..b+1, e..b+1, ps..b, pe..b, and the like in context modeling of cb. The ability of
looking into the future in a time series significantly reduces the uncertainty of cb.

8.4 Context Dilution Problem

The modeling context of Eq. (8.2) leads to a statistical model

P (cb|n..b,w..b, s..b+1, e..b+1,nw..b,ne..b, p..b · · ·) (8.3)

of very high order or long memory. High-order context modeling is necessary for opti-
mal compression performance because image features such as edges can involve pixels
that are spatially far apart. Given a modeling context (n..b,w..b, s..b+1, e..b+1,nw..b,
ne..b, p..b · · ·), the average code length of cb is bounded from below by the conditional
entropy

H (cb|n..b,w..b, s..b+1, e..b+1, . . .)

= −E {logP (cb|n..b,w..b, s..b+1, e..b+1, . . .)} . (8.4)

The fact that conditional entropy is monotonically nonincreasing [10] seems to suggest
that the higher the order of the context model, the shorter the code length. But this is
not necessarily true.

In universal source coding we do not have prior knowledge of the source. The
model itself must be either explicitly sent to the decoder or learned on the fly from the
samples. In the former case, we need to add side information to the total description
length of the source. In the latter case, the learning requires a large number of samples
to fit a statistical model to the source. The number of possible conditioning states
grows exponentially with the order of the context, an image of finite resolution may
not provide sufficient samples to reach a robust estimate of the underlying conditional
probability

P̂ (cb|n..b,w..b, s..b+1, e..b+1,nw..b,ne..b, p..b · · ·) . (8.5)

In order words, too high an order of modeling context spreads sample statistics too
thin among all possible modeling states to yield statistical significance. The code

length will actually increase when the order of modeling context gets too high. Thus,
from an implementation point of view, high order of context modeling is more than a
problem of high time and space complexity. It can reduce coding efficiency as well.
This problem is commonly known as context dilution and formulated by Rissanen
analytically as model cost [24]. Intuitively, the higher the model complexity (i.e.,
the more model parameters), the longer the time the model takes to learn from the
samples to set the parameters right. Before the model converges to the underlying
statistics via online learning, entropy coding cannot achieve the minimum code length
of Eq. (8.1). Therefore, the context model has an inherent cost to the total description
length, either in the form of side information to describe the model, as in two-pass
coding, or in the form of extra code length due to model mismatch in the beginning
of the learning process, as in one-pass coding.

By now, one may appreciate an advantage of turning the wavelet coefficients into a
binary sequence. Since a conditional binary probability has only two parameters, we
do not need nearly as many samples to obtain a good probability estimate as for a large
symbol alphabet. But even with cb being binary, we still have to reduce Eq. (8.2) to
a modest number of conditioning states; otherwise the benefits of context modeling
will be negated by high model cost. Indeed, in his original EZW paper [28], Shapiro
remarked that Markov conditioning did not offer significant coding gains over “single
histogram strategy” (entropy coding based on symbol probability without context
modeling). In their original SPIHT paper [25], Said and Pearlman also implied that in
their experiments high-order context modeling made only marginal coding gains over
the simple Huffman coding. But their observations did not mean the lack of high-order
statistical dependencies between samples in the wavelet domain. Their experimental
results with context modeling were somewhat disappointing only because the problem
of context dilution was not considered. The challenge is to reduce the model cost and
still capture statistically significant structures of high orders between the samples.

8.5 Context Formation

One way to reduce the number of model parameters, and thus to reduce the model
cost, is to include into the modeling context only those past samples that are statisti-
cally related to the current sample being coded. For one-dimensional sources, such as
text, speech, and audio, the modeling context selection criterion can be some prefix
of the current sample because the amount of sample dependency is proportional to
the distance between the samples. Similarly, for image and video sources the general
practice is to choose a spatial and temporal neighborhood to form the modeling con-
text. However, as we pointed out in the previous section, the resulting context can
be of a very high order. A more selective rule than k nearest neighbors, where k is
the size of context template, should be used if we have any prior knowledge about
sample structures.

FIGURE 8.7
Modeling contexts in different subbands.

The feature orientations of different wavelet subbands are the kind of prior knowl-
edge that is useful for reducing the model cost. For instance, the LH subband exhibits
predominantly vertical sample structures, while the HL subband exhibits predomi-
nantly horizontal sample structures. Therefore, we choose a subset of Eq. (8.2):

SLH = {n..b,w..b,nw..b,ne..b,nn..b, s..b+1, p..b, pn..b, ps..b} (8.6)

to be the modeling context of cb in LH subbands. This choice of conditioning events
forms a vertically prolonged modeling context. Similarly, we use a horizontally
prolonged modeling context

SHL = {n..b,w..b,nw..b,ne..b,ww..b, e..b+1, p..b, pw..b, pe..b} (8.7)

in modeling of cb in HL subbands.
Note that we include corner samples nw..b and ne..b in the northwest and northeast

directions, but not sw..b+1 and se..b+1 in the southwest and southeast directions. The
reason is that the former two samples have one bit more precision and are therefore
statistically more significant than the latter two samples in the raster scan of bit planes.
In our experiments, including two more samples at the southwest and southeast corner
did not bring any compression gains, and in some cases it could even increase the code
length due to the effect of context dilution. In practice, when choosing a modeling
context one can monitor the resulting code length as the order of modeling context
increases. This will empirically detect the point where the increased model cost just

starts to have negative impact on compression. Thus one can choose an appropriate
order of the model by not adding to the modeling context samples of less statistical
significance to c.

In HH subbands, sample structures tend to be much weaker than in LH and HL
subbands. A smaller modeling context can be used without reducing compression
performance. In our experiments, we found that maximum coding gains can be made
by conditioning a cb in an HH subband on the following set of samples:

SHH = {n..b,w..b,nw..b,ne..b, s..b+1, e..b+1, p..b, cHL, cLH } (8.8)

where cHL and cLH are two sister coefficients of c that are at the same spatial location
in the HL and LH subbands of the same scale. The different shapes and orientations
of modeling contexts used in different subbands are illustrated in Fig. 8.7.

Due to the use of ubiquitous L2 metric in wavelet approximation, samples in all
subbands except the one in the lowest frequency are drawn from zero mean processes.
The coefficient sign c̃ has equal probability to be positive and negative. Consequently,
we haveH(c̃) = 1; i.e., the self entropy of coefficient sign is at the maximum. But this
does not necessarily mean that the signs are uncompressible. In fact, the conditional
entropy of the signs can be significantly lower than 1. The waveform structures of the
input image are often exhibited by sign patterns of wavelet coefficients. In Fig. 8.8
we plot the spatial distributions of signs for parts of two popular test images, “Barb”
and “Lena” that have high textures. The clearly visible structures of signs suggest
that the sign bits of wavelet coefficients can be modeled as a Markov process and
compressed by conditional entropy coding.

During embedded bit plane coding, the sign ˜c..b of a wavelet coefficient c has three
states: +, −, and 0. At the b-th bit plane, ˜c..b is still unknown to the decoder if
c..b = 0; i.e., the most significant bit of c is below b. In this case the coder assigns
state 0 to ˜c..b; otherwise it assigns + or − to ˜c..b by the conventional meanings of
sign. Here the state 0 is a dynamic concept; it may change to + or − as the coding
process advances to deeper bit planes. We distinguish 0 from + and − because such
a distinction yields a more revealing modeling context for the signs. The use of three
states of signs in context modeling exploits the correlation between the signs and the
magnitudes of neighboring wavelet coefficients because ˜c..b = 0 indicates a relatively
small |c|. The modeling context for c̃ commonly consists of sign status of c’s four
immediate neighboring samples, namely it is the set

S̃ = { ˜n..b, w̃..b, ˜s..b, ˜e..b
}
. (8.9)

8.6 Context Quantization

Careful selection of past samples to be used in modeling context based on subband
orientations is only a screening process. The number of possible conditioning states of

FIGURE 8.8
Sign patterns in parts of “Barb” (top) and “Lena” (bottom). The triangles are
for negative signs, + for positive signs, and spaces for insignificant coefficients
up to the current bit plane.

the chosen context is still far too large. Context dilution remains a serious problem. A
rule of thumb for the right number of conditioning states in embedded wavelet image
coding is about 64. The use of more than 100 conditioning states hardly makes any
compression gain, and in many cases it can even increase the bit rate. A common
technique of reducing the number of conditioning states for entropy coding is context
quantization. The idea is to merge conditioning states in which the sample probability
distributions are close in terms of Kullback-Leibler distance or relative entropy [10].

A simple scheme is scalar quantization of samples in the modeling context. In
a modeling context that consists of eight or so samples, such as those in Eqs. (8.6)
and (8.7), scalar quantization has to be very coarse in order to bring the number of
conditioning states under 100. Indeed, many of the wavelet image coders reported
in the literature use binary quantization of feature samples [43, 29]. In other words,
feature samples n..b, w..b, s..b, e..b, etc. are entered into the context as either 1 (already
significant at the current bit plane) or 0 (not yet significant at the current bit plane).
Such a coarse quantization can obscure some subtleties in correlations between c and
the energy level of the neighboring coefficients.

In order to capture the correlation between c and its neighbors in the wavelet
domain, we use a linear estimator � of the magnitude of c, one for each of three
orientations (LH, HL, and HH) of subbands:

�θ =
∑
zi∈Sθ

αθ,izi , θ ∈ {LH,HL,HH } , (8.10)

where the terms zi are conditioning events in the context chosen for the given subband
of c as described above. The parameters αθ,i are determined by linear regression so
that�θ is the least-squares estimate of c in the given subband orientation. The linear
regression can be done offline for a general set of training images, a given class
of images, and even for a given image. Of course in the last case, the optimized
parameters have to be sent as side information.

For each of�θ we can design an optimal quantizerQθ to minimize the conditional
entropy

H (c|Qθ (�θ)) = E {logP (c|Qθ (�θ))} . (8.11)

Since �θ is a scalar random variable, the optimal quantizer Qθ to achieve mini-
mum conditional entropy can be computed via a standard dynamic programming
process [33]. The optimization is carried out offline using a training set, and the
quantizer parameters are stored and available at both the encoder and decoder. (In
order not to interrupt the flow of our presentation we defer the details of dynamic
programming process for designing minimum conditional entropy quantizers to Sec-
tion 8.8.)

Besides the correlation between c and the local energy level �, the wavelet co-
efficient c also has dependence on spatial patterns of its neighboring coefficients,
particularly at locations of strong edges or high textures. This dependence is due
to the fact that a wavelet transform offers certain time resolution of the signal at the
expense of frequency resolution. Therefore it is necessary to model the spatial sample

patterns in the wavelet domain to maximize coding gains. Again the required statisti-
cal modeling has to be done without drastically increasing the number of conditioning
states. To achieve this, we quantize the sample spatial pattern around c into a binary
vector (bit pattern) Tb = t4t3t2t1t0 by

t0 = n..b > c..b+1?0 : 1 ;
t1 = w..b > c..b+1?0 : 1 ;
t2 = s..b+1 > c..b+1?0 : 1 ; (8.12)

t3 = e..b+1 > c..b+1?0 : 1 ;
t4 =

{
p..b + pn..b + ps..b > 6c..b+1?0 : 1 in LH subbands ;
p..b + pw..b + pe..b > 6c..b+1?0 : 1 in HL subbands .

The type of binary context quantization as in Eq. (8.12), as we mentioned earlier,
is directly used to form conditioning states in many embedded wavelet image/video
coders [29, 30, 43]. But significantly higher compression gains can be made by com-
bining quantized energy level Qθ(�θ) and the spatial pattern Tb of c’s neighboring
coefficients to form conditioning states in entropy coding of c. Specifically, c is
coded by an adaptive binary arithmetic coder driven by probability estimate

P̂ (cb|Qθ (�θ) , Tb) . (8.13)

8.7 Optimization of Context Quantization

The previous section introduced context quantization as a necessary component for
statistical modeling and entropy coding of wavelet coefficients and presented some
context quantization techniques. However, these techniques are largely based on
heuristics, albeit being proven to be useful in practice. This section investigates the
problem of context quantization in a multivariate analysis approach of statistics and
develops algorithms for designing optimum context quantizer for minimum condi-
tional entropy.

Context quantization is a special form of vector quantization whose criterion should
ideally be minimum conditional entropy. It is well-known that optimal vector quan-
tization is NP-complete — a problem is said to be NP-complete if its exact solution
requires an amount of computations that increases exponentially in the input size [13].
In other words, for a large training set which is required if the derived VQ solution is
to have any statistical significance, designing the globally optimal vector is compu-
tationally intractable. Thus, we necessarily resort to alternative techniques that are
computationally feasible. Since high dimensionality is the main cause for the com-
plexity of the problem, we would naturally like to reduce the dimensionality of the
problem. A classical approach in multivariate analysis is to project sample vectors of
high dimensions onto a lower dimensional space that contains most of the statistical
variations.

A high-order modeling context such as the one in Eq. (8.2) can be viewed as a
modeling event vector v = (v1, v2, . . . , vd), where vi is a modeling event. Let
V = {v1, v2, . . . , vk} be a training set of event vectors. V can be the set of all
event vectors observed so far in an online learning process, or an offline training set.
The former is necessary if the context quantizer is designed on the fly in one-pass
coding, whereas the latter is for offline context quantizer design. We partition V into
V0 and V1, where subset V0 (V1) contains all the modeling event vectors associated
with cb = 0 (cb = 1). If there exists a hyperplane or some other surface in the
d-dimensional event space that can completely separate V0 and V1, then the binary
symbol cb to be coded is uniquely determined by its modeling context. In this ideal
case the conditional entropy of cb is 0. In reality, however, the two point subsets V0
and V1 are mingled in the event space in a complicated way. To simplify the problem,
we can project all training event vectors onto a line and hope that V0 and V1 form
distinct clusters along the line. This approach is due to Fisher [12]. Let the projection
be

ui = aT vi , i = 1, 2, . . . , |V | . (8.14)

Given a training set V , we want to determine the projection direction a such that

G(a) = (µ0 − µ1)
2

σ 2
0 + σ 2

1

(8.15)

is maximized, where

µj = E {
ui |vi ∈ Vj

} = E
{

aT vi |vi ∈ Vj
}
, j = 0, 1 (8.16)

and

σ 2
j = E

{(
aT vi − µj

)2 |vi ∈ Vj
}
, j = 0, 1 . (8.17)

The criterion of maximumG(a) can be intuitively understood as maximum separation
of V0 and V1. The numerator demands maximum distance between the projected
means of V0 and V1 in direction a, whereas the denominator requires minimum
overlap of V0 and V1 along the projection line.

We use a well-known procedure in multivariate analysis literature for maximizing
G(a) based on sample event vectors. We rewrite Eq. (8.15), by scaling, in terms of
sample scatter matrices S0 and S1 for V0 and V1, respectively,

G(a) = (µ0 − µ1)
2

aT (S0 + S1) a
. (8.18)

The scatter matrix is defined by

Si =
∑
v∈Vi
(v − mi)(v − mi)T , i = 0, 1 (8.19)

where

mi = 1

|Vi |
∑
v∈Vi

v, i = 0, 1 . (8.20)

We also express the numerator of Eq. (8.15) in terms of sample means:

(µ0 − µ1)
2 = aT (m0 − m1) (m0 − m1)

T a . (8.21)

LettingM = (m0 − m1)(m0 − m1)
T and S = S0 + S1, we have

G(a) = aTMa
aT Sa

. (8.22)

Differentiating G(a) and setting ∂G/∂a = 0 to determine the direction â that maxi-
mizes G(a), we arrive at

âTM â

âT Sâ
Sâ = M â . (8.23)

Now the underlying optimization problem reduces to one of an eigenvalue with the
scalar term λ = (âTM â)/(âT Sâ). If S−1 exists, the direction of â is given by

â = S−1M â . (8.24)

SinceM â has the direction of m0 − m1, it follows that

â = S−1 (m0 − m1) . (8.25)

The simple solution above is made possible by the binarization of source symbols
via embedded bit plane coding. The binarization conveniently lends Fisher’s linear
classifier with two classes to our context quantization problem. In Fisher’s original
work, the objective is to find a linear discriminant to classify between V0 and V1 for
minimum classification error. But in reality, the projected samples of V0 and V1 in the
direction of â can be intermingled in such complicated ways that Fisher’s discriminant
leaves a significant degree of uncertainty. Much finer context quantization is required
to further resolve the uncertainty and to approach rate-distortion optimality.

8.8 Dynamic Programming for Minimum Conditional Entropy

Once the direction of maximum separation â is determined, we project all training
event vectors onto a line in this direction. On this line the projection establishes an or-
der of training event vectors by their projection values ui = âT vi , i = 1, 2, . . . , |V |,
namely vi ≤ vj if ui ≤ uj . This linear ordering enables a constrained optimization

approach of dynamic programming to design a K-level context quantizer. The con-
straint is that all quantizer cells are perpendicular to direction â. Under the constraint,
the K-level context quantizer can be globally optimized for minimum conditional
entropy, which is better than a gradient descent method that may be trapped in a
local minimum. It is easy to see that in Section 8.6, the least-square estimator �
of Eq. (8.10) also corresponds to a projection in high-dimensional feature space and
establishes an order of training event vectors via the projection. Therefore, the same
dynamic programming process to be developed in this section can be used to solve
the optimization problem posted around Eq. (8.11) as well.

Let u = mini ui , ū = maxi ui , and denote by Q(τ, k) the set of all possible
k-dimensional vectors q = (q1, q2, . . . , qk) such that

u ≡ q0 < q1 < q2 < · · · < qk−1 < qk = τ < ū . (8.26)

In designing the context quantizer, we associate each modeling event vector v ∈ V
with the random variable cb ∈ {0, 1} being modeled. Then the optimal context
quantizer that minimizes conditional entropy is given by

q̂ = arg min
q∈Q(ū,K)

K∑
k=1

P (ui ∈ (qk−1, qk])H (cb|ui ∈ (qk−1, qk]) (8.27)

where

H (cb|ui ∈ (qk−1, qk]) = −E {logP (cb|ui ∈ (qk−1, qk])} . (8.28)

In the formulation, the k-th quantizer cell corresponds to a subset (k = {vi |qk−1 <

ui ≤ qk} of training event vectors. Denote by n0(qk−1, qk] the number of modeling
event vectors in (k that are associated with cb = 0, and by n1(qk−1, qk] = |(k| −
n0(qk−1, qk] the number associated with cb = 1. Also let

L0
(
qk−1, qk

] = n0
(
qk−1, qk

]
log n0

(
qk−1, qk

]
L1

(
qk−1, qk

] = n1
(
qk−1, qk

]
log n1

(
qk−1, qk

]
L

(
qk−1, qk

] = ∣∣(k∣∣ log
∣∣(k∣∣ . (8.29)

When working with the training setV and using the notations above, the minimization
problem of Eq. (8.27) becomes

q̂ = arg min
q∈Q(ū,K)

K∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])
. (8.30)

The optimal K-level context quantizer q̂ as given by Eq. (8.30) can be efficiently

computed by observing the following recursion:

min
q∈Q(r,j)

j∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])

= min
τ<r

{
min

q∈Q(τ,j−1)

j−1∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])

+L(τ, r] − L0(τ, r] − L1(τ, r]
}
. (8.31)

The recursion means that the solution for the problem of size j can be constructed
on the solutions of subproblems of size j − 1. Because of this property (called
the principle of optimality, in optimization literature), we can use a straightforward
dynamic programming algorithm to solve Eq. (8.30). The primitive operations in the
dynamic programming process are those in Eq. (8.29). We can precompute and store
L0, L1, and L for all possible subsets in O(|V |2) time. The expensive logarithmic
computations can be done via table lookup. After the preprocessing, the dynamic
programming algorithm takes O(K|V |2) time.

8.9 Fast Algorithms for High-Order Context Modeling

High-order context modeling is indispensable for good rate-distortion performance
of wavelet image coders. But if care is not taken in algorithm design and implemen-
tation, the formation of high-order modeling contexts can be both CPU and memory
intensive, creating a computation bottleneck for wavelet coding systems. Indeed, our
earlier research prototype of ECECOW, a high-order embedded conditional entropy
coder of wavelet coefficients, spent 70% of its execution time on context modeling.
It is unacceptable for most applications that a module of a wavelet image codec is
six times more expensive than the wavelet transform itself. In this section, we focus
on the operational aspects of high-order statistical context modeling and introduce
some fast algorithmic techniques that can drastically reduce both time and space
complexities of high-order context modeling in the wavelet domain.

Two computationally intensive parts in context formation are the linear combina-
tion Eq. (8.10) of neighboring samples and the texture pattern extraction Eq. (8.12)
from neighboring samples. Once� is computed, its quantization is very fast via table
lookup. Although Eq. (8.10) and Eq. (8.12) involve only basic arithmetic and logic
operations — namely additions, comparisons, and bit manipulations — straightfor-
ward computations of Eq. (8.10) and Eq. (8.12) require a large number of operations
per binary symbol. Furthermore, forming a high-order context that spans over several

scan lines needs to access data (modeling events) stored in distant memory locations.
This activity can cause excessive cache misses on modern hardware architecture,
slowing down the computation. The high computational complexity is seemingly
inherent in high-order context modeling. In order to speed up context formation
we have to question if the computational complexity of statistical context modeling
is necessarily proportional to the order of the model. The answer is pleasantly, if
somewhat surprisingly “no,” as we will see shortly.

8.9.1 Context Formation via Convolution

By tracing the major causes of high computational complexity, we come to the
following key observation. High-order modeling contexts for neighboring samples
have large overlaps in the wavelet domain. This means that samples are accessed and
operated on repetitively. We can improve computational efficiency by eliminating
repetitive arithmetic, logic, and memory operations in spatially overlapped modeling
contexts. This idea leads to an incremental algorithm to compute � in O(1) time
independent of the order of modeling context. Given that the wavelet coefficients are
coded in raster scan order at a given bit plane and in a given subband, we denote the
coefficient vector in the current row by x0[t], where t = 0, 1, . . . represents spatial
locations. The coefficient vector in the next row is denoted by x1[t], and likewise
in the previous two rows by x−1[t] and x−2[t], respectively. The x values are up to
the current decoded precision in bit plane coding, i.e., in the notations of previous
sections, x−2[·], x−1[·], and x0[τ], τ < t , are c..b, while x0[τ], τ ≥ t , and x1[·] are
c..b+1. We drop the subscripts for bit ranges ..b, ..b + 1 because they are clearly
implied in spatial locations of the wavelet coefficients x.

FIGURE 8.9
Convolution kernel effected by the incremental � computation of Eq. (8.32).

In sequential coding of x0[t] for increasing t , we compute incrementally

αt = x−1[t + 1] + x1[t + 1]
βt = βt−1

2
+ αt−1 + x0[t − 1] + x0[t + 1] + x−2[t]

2

�t = αt

2
+ βt . (8.32)

Expanding the recursion above reveals

�t = x−1[t] + x1[t] + x0[t − 1] + x0[t + 1]
+x0[t]

2

x−2[t] + x−1[t − 1] + x−1[t + 1] + x1[t − 1] + x1[t + 1] + x0[t − 2]
2

+βt−2 + x−2[t − 1]
4

. (8.33)

This corresponds to a high-order linear filter whose kernel is graphically depicted in
Fig. 8.9. Note that Fig. 8.9 illustrates only the part of the filter kernel with coefficients
larger than 1/4 — the 14 most important modeling events with respect to x0[t]. We
can see that �t is a weighted sum of n, w, s, e, nw, ne, sw, se, nn, ww, and
many other past observations with the weights proportional to their distances to x0[t].
Therefore,�t offers a modeling context of x0[t] of order higher than 14. But�t can
be computed by the incremental algorithm of Eq. (8.32) in only six additions, five
memory accesses, and two bit shifts — less than half the number of operations required
by a direct implementation of Eq. (8.10). In fact, the computational complexity of
the proposed incremental algorithm is independent of the order of modeling contexts.
Indeed, we can rewrite the second line of Eq. (8.32) as

βt = λβt−1 + · · · (8.34)

where λ is a forgetting factor. Increasing λ gives higher weights to the past observa-
tions and hence increases the order of modeling context. Therefore, we derived an
O(1) time algorithm for computing �t that can increase the order of context mod-
eling for a fixed number of operations. The optimal value of λ is determined by the
length of memory in the source. In practice, we empirically found that λ = 1/2 gave
very close to optimal compression results on natural images while avoiding divisions.
The incremental computations of Eq. (8.32) have a simple convolution structure, and
hence particularly suitable for hardware implementation.

8.9.2 Shared Modeling Context for Signs and Textures

Next we consider efficient computations of Eq. (8.12) and Eq. (8.9) and introduce
algorithmic techniques to greatly reduce the amount of computation and memory
accesses to set up spatial texture patterns Tb and sign contexts. As we did for �,
we dropped the references to parent subband in Tb, i.e., not using t4 in Eq. (8.12).
Then there are four status bits t3t2t1t0 to be set depending on the outcomes of four

comparisons between c..b+1 and n..b, w..b, s..b+1, and e..b+1. By a careful organization
of computations in Eq. (8.12) and Eq. (8.9), we can save the comparison and bit setting
operations. The basic idea is to let sign modeling and texture modeling share as much
context information as possible.

For each coefficient c, we introduce a syndrome byteSb = s7s6 · · · s1s0:

s0 = n..b > 0?1 : 0 , s4 = ñ ;
s1 = w..b > 0?1 : 0, s5 = w̃ ;
s2 = s..b+1 > 0?1 : 0, s6 = s̃ ;
s3 = e..b+1 > 0?1 : 0; s7 = ẽ . (8.35)

where n, w, s, e are the four neighbors of c. Syndrome bytes for all coefficients are
initialized to 0 and updated if necessary for decreasing bit planes. Syndrome bytes
Sb support context modeling of signs by allowing three dynamic states of signs in
embedded bit plane coding. Specifically, in Sb if bit si = 0, i = 0, 1, 2, 3, then the
status bit si+4 is not used or is only a “don’t care” bit (although the bit is physically
set to 0 at initialization). In sign modeling for x0[t], the coder needs to fetch only the
syndrome byte Sb of x0[t] and then uses it as the modeling context for signs.

Note that in the embedded bit plane coding, the most significant bit and the sign
of a wavelet coefficient are set at the same time. It is then immediate from Eq. (8.12)
and Eq. (8.35) that

Tb = t3t2t1t0 = s3s2s1s0 = Sb, if c..b+1 = 0. (8.36)

Therefore, syndrome byte Sb can be used not only directly for modeling signs, but
also for modeling textures. The entropy coder simply extracts the last four bits of
Sb and sets texture pattern Tb = s3s2s1s0, if c..b+1 = 0. All the computations of
Eq. (8.12) become unnecessary and can be saved.

Each bit in syndrome byte Sb for x0[t] is set at most once. Two bits, si and si+4,
are set when the most significant bit and the sign of one of the four neighbors n, w, s,
e of x0[t] are scanned and coded. This means that the sign of a coefficient will never
be accessed and examined more than once in embedded bit plane coding. Likewise,
no coefficients will be accessed and tested more than once for their significance in
setting Tb for decreasing b. The proposed algorithm has therefore minimized the
number of arithmetic operations and memory accesses in context formation. This
optimality in time complexity is achieved by eliminating repetitive computations in
spatially overlapped contexts, and it is operationally realized by the use of syndrome
bytes Sb. Clearly, the number of syndrome bytes is the same as the number of wavelet
coefficients in the buffer to be coded. This working memory is very modest in size
and well justified by the great savings in computation.

Before leaving the subject discussed above, we would like to point out that the
JPEG 2000 verification model also uses a collection of status bits for each wavelet
coefficient which have similar roles as the syndrome bytes [29].

The algorithmic techniques for fast context formation presented above have led to
an efficient wavelet-based image coder [38] that is 20% faster than the popular SPIHT

image coder (its arithmetic coded version), and at the same time it outperforms SPIHT
in rate-distortion performance, as we see in the following section.

8.10 Experimental Results

In order to demonstrate the effects of different techniques for context modeling and
conditional entropy coding of wavelet coefficients on coding efficiency, we present
compression results of some well-known and recently published wavelet image com-
pression algorithms and compare them with the algorithms that are described in
this chapter. We evaluate both lossy and lossless compression performance of these
wavelet image coders.

8.10.1 Lossy Case

For the sake of common references, we use in our evaluation two JPEG test images,
“Lena” and “Barbara,” that are widely used for rate-distortion comparisons in the im-
age compression literature. Image qualities, measured by PSNR, of various wavelet
image coding algorithms at different bit rates are tabulated in Tables 8.1 and 8.2. In
the tables, EZW and SPIHT algorithms are well-known and were introduced earlier
in this chapter. SFQ is the space-frequency quantization method by Xiong, Ram-
chandran, and Orchard [40], EQ is an estimation-quantization method by LoPresto,
Ramchandran, and Orchard [16], and C/B is a context-based entropy coding method
by Chrysafis and Ortega [9]. ECECOW is a coder based on techniques presented in
Sections 8.5 and 8.6, and also in Wu [36]. The best results were obtained by replac-
ing the context quantizer of ECECOW with the context quantization scheme guided
by Fisher’s linear discriminant and via dynamic programming [37], as described in
Sections 8.7 and 8.8. This algorithm is identified as “NEW” in the tables.

Table 8.1 Rate(bpp)/PSNR(dB) Results for “Lena”
rate EZW SPIHT SFQ EQ C/B ECECOW NEW

0.25 33.17 34.13 34.33 34.57 34.31 34.81 34.89
0.50 36.28 37.24 37.36 37.68 37.52 37.92 38.02
1.00 39.55 40.45 40.52 40.88 40.80 40.85 41.01

The NEW method outperforms all others in terms of rate-distortion performance,
although by smaller margins against ECECOW. We need to stress that the good per-
formances of the NEW and ECECOW methods are solely due to high-order adaptive
context modeling. In our experiments, both coders used dyadic wavelet transform of
the popular bi-orthogonal 9/7 filter [17]. Neither filter kernel nor coefficient quantizer
was optimized for specific images. On the other hand, some of the other methods in

Table 8.2 Rate(bpp)/PSNR(dB) Results for “Barbara”
rate EZW SPIHT SFQ C/B ECECOW NEW

0.25 26.77 27.57 27.20 28.48 28.85 29.21
0.50 30.53 31.39 31.33 32.63 32.69 33.06
1.00 35.14 36.41 36.96 37.61 37.65 38.05

our comparison group used much longer filter kernels. Furthermore, ECECOW is an
embedded coding scheme, like EZW and SPIHT, while SFQ, EQ, and C/B are not.
Our experimental results clearly demonstrate the importance of high-order context
modeling in compressing wavelet coefficients.

8.10.2 Lossless Case

Since entropy coding of coefficients is independent of wavelet transforms and co-
efficient quantization, the NEW method can be readily applied to invertible wavelet
transforms [8] for lossless image compression. Invertible wavelet transforms map
integer pixel values to integer wavelet coefficients. Thus no coefficient quantization
is required prior to coefficient coding. Because of the absence of quantization distor-
tion, entropy decoding of wavelet coefficients followed by inverse transform leads to
lossless reconstruction. Table 8.3 compares the lossless compression performance of
the NEW method with other state-of-art lossless image coders on an ISO set of test
images. In the comparison group JPEG-LS is the new lossless JPEG standard [6].
CALIC is a well-known lossless image coder that seems to have the best compression
performance among practical lossless image coders [34, 35]. But one needs to keep
in mind that both JPEG-LS and CALIC are predictive coding schemes without pro-
gressive transmission capability. The S+P algorithm, by Said and Pearlman [26], is a
pioneer work in wavelet-based, embedded lossless image compression. On average,
the NEW method obtains only about 2% less lossless compression than CALIC, but
it outperforms all others.

8.11 Summary

For typical transform-based signal compression systems, data reduction is mostly
achieved by entropy coding of transform coefficients. If context-based adaptive arith-
metic coding is used to compress the transform coefficients, then the pivotal issue that
determines the compression performance is statistical context (Markov) modeling of
the coefficients, or, more specifically, how to estimate the underlying conditional
probability of the coefficients. In this chapter, we introduced a number of modern
techniques for context modeling and adaptive entropy coding of wavelet coefficients.

Table 8.3 Lossless Rates (bits/pixel) of ECECOW
Compared with Other Lossless Image Coders on an ISO
Set of Test Images

Image NEW ECECOW S+P CALIC JPEG-LS

Balloon 2.85 2.86 2.97 2.78 2.90
Barb 1 4.30 4.34 4.53 4.33 4.69
Zelda 3.69 3.71 3.84 3.72 3.89
Hotel 4.36 4.38 4.53 4.22 4.38
Barb 2 4.53 4.57 4.71 4.49 4.69
Board 3.61 3.62 3.82 3.50 3.68
Girl 3.79 3.81 3.96 3.71 3.93
Gold 4.41 4.42 4.56 4.38 4.48
Boats 3.85 3.86 4.03 3.77 3.93
Lena 4.07 4.09 4.16 4.04 4.24

Average 3.96 3.98 4.12 3.89 4.08

These techniques are used in some state-of-the-art wavelet image codecs. Although
the chapter mostly relates to wavelet-based image compression for the concrete-
ness of the discussions, the principles and techniques described here can be used in
conjunction with other transforms, such as DCT, and are also readily applicable to
compression of other types of signals, such as audio and video.

References

[1] Criminal Justice Information Services, WSQ Gray-Scale Fingerprint Image
Compression Specification (ver. 2.0), Federal Bureau of Investigation, Feb.
1993.

[2] ISO/IEC WD15444-1, JPEG 2000 — Lossless and lossy compression of
continuous-tone and bi-level still images, ISO, Dec. 1999.

[3] ISO/IEC JTC 1/SC 29/WG 1 WD14495, JPEG LS image coding system, July,
1996.

[4] ISO/IEC JTC1 CD 11172, Coding of moving pictures and associated audio for
digital storage media up to 1.5 Mbits/s, ISO, 1992.

[5] ISO/IEC JTC1 CD 13818, Generic coding of moving pictures and associated
audio, ISO, 1994.

[6] ISO/IEC JTC 1/SC 29/WG 1, JPEG LS image coding system, ISO Working
Document ISO/IEC JTC1/SC29/WG1 N399 - WD14495,July 1996.

[7] Arps, R.B. and Truong, T., Comparison of international standards for lossless
still image compression, Proc. of the IEEE, 82(6), 889–899, 1994.

[8] Calderbank, A.R., Daubechies, I., Sweldens, W., and Yeo, B.L., Wavelet trans-
forms that map integers to integers, J. Applied and Computational Harmonic
Analysis, 5(3), 332–369, 1998.

[9] Chrysafis, C. and Ortega, A., Efficient context-based entropy coding for lossy
wavelet image compression, Proc. 1997 Data Compression Conference,241–
250, Mar. 1997.

[10] Cover, T.M. and Thomas, J.A., Elements of Information Theory,John Wiley &
Sons, New York, 1991.

[11] DeVore, R.A., Jawerth, B.J., and Lucier, B.J., Image compression through
wavelet transform coding, IEEE Trans. Info. Theory,38(2), 719–746, 1992.

[12] Fisher, R.A., The use of multiple measurements in taxonomic problems, in
Contributions to Mathematical Statistics,John Wiley & Sons, New York, 1950.

[13] Garey, M.R. and Johnson, D.S., Computers and Intractability, A Guide to the
Theory of NP-Completeness,Freeman, New York, 1979.

[14] Gersho, A. and Gray, R.M., Vector Quantization and Signal Compression,
Kluwer Academic Publishers, Boston, 1992.

[15] Loeve, M., Probability Theory,2nd ed., Van Nostrand Reinhold, Princeton, NJ,
478, 1960.

[16] LoPresto, S.M., Ramchandran, K., and Orchard, M.T., Image coding based
on mixture modeling of wavelet coefficients and a fast estimation-quantization
framework, Proc. 1997 Data Compression Conf.,241–250, Mar. 1997.

[17] Mallat, S., A theory for multiresolution signal decomposition: a wavelet repre-
sentation, IEEE Trans. Patt. Anal. Machine Intelligence,11(7), 674–693, 1989.

[18] Pearlman, W.A., Kim, B.-J., and Xiong, Z., Embedded video subband coding
with 3D SPIHT, Wavelet Image and Video Compression,Topiwala, P., Ed.,
Kluwer Academic Publishers, Boston, 1998.

[19] Pennebaker, W.B. and Mitchell, J.L., JPEG Still Image Data Compression
Standard, Van Nostrand Reinhold, New York, 1993.

[20] Pennebaker, W.B., Mitchell, J.L., Langdon, G.G., and Arps, R.B., An overview
of the basic principles of the Q-coder adaptive binary arithmetic coder, IBM J.
Res. & Devel., 32(6), 717–726, 1988.

[21] Rao, K.R. and Hwang, J.J., Techniques and Standards for Image, Video and
Audio Coding,Prentice Hall, Englewood Cliffs, NJ, 1996.

[22] Rao, K.R. and Yip, P., Discrete Cosine Transform,Academic Press, New York,
1990.

[23] Rissanen, J. and Langdon, G.G., Universal modeling and coding, IEEE Trans.
Info. Theory,27, 12–23, 1981.

[24] Rissanen, J., Universal coding, information, prediction, and estimation, IEEE
Trans. Info. Theory,30, 629–636, 1984.

[25] Said, A. and Pearlman, W.A., New, fast, and efficient image codec based on set
partitioning in hierarchical trees, IEEE Trans. Circ. & Sys. Video Tech.,6(3),
243–249, June 1996.

[26] Said, A. and Pearlman, W.A., An image multiresolution representation for
lossless and lossy compression, IEEE Trans. on Image Proc.,5(9), 1303–1310,
1996.

[27] Shannon, C.E., A mathematical theory of communication, Bell Syst. Tech. J.,
27, 379–423, 623–656, 1948.

[28] Shapiro, J.M., Embedded image coding using zerotrees of wavelet coefficients,
IEEE Trans. Signal Processing,41(12), 3445–3462, 1993.

[29] Taubman, D., EBCOT: Embedded block coding with optimized truncation,
ISO/IEC JTC 1/SC 29/WG 1, No. 1020, Oct. 1998.

[30] Taubman, D. and Zakhor, A., Multirate 3-D subband coding of video, IEEE
Trans. Image Processing,3(5), 572–588, 1994.

[31] Witten, I.H., Neal, R.M., and Cleary, J.G., Arithmetic coding for data compres-
sion, Communications of the ACM,30, 520–540, 1987.

[32] Wood, J.W. and O’Neil, S.D., Subband coding of images, IEEE Trans. Acous-
tics, Speech, and Signal Processing,34(5), 1278–1288, 1986.

[33] Wu, X., Optimal quantization by matrix-searching, J. Algorithms, 12(4), 663–
673, 1991.

[34] Wu, X., Lossless compression of continuous-tone images via context selection
and quantization, IEEE Trans. on Image Proc.,6(5), 656–664, 1996.

[35] Wu, X. and Memon, N.D., Context-based adaptive lossless image coding, IEEE
Trans. Comm., 45(4), 437–444, 1997.

[36] Wu, X., High-order context modeling and embedded conditional entropy coding
of wavelet coefficients for image compression, Proc. of 31st Asilomar Conf. on
Signals, Systems, and Computers,1378–1382, 1997.

[37] Wu, X., Context quantization with fisher discriminant for adaptive embedded
wavelet image coding, Proc. of 1999 Data Compression Conference,102–111,
Mar. 1999.

[38] Wu, X., Low complexity high-order context modeling of embedded wavelet bit
streams, Proc. of 1999 Data Compression Conference,112–120, Mar. 1999.

[39] Wu, X. and Xiong, Z., An empirical study of high-order context modeling and
entropy coding of wavelet coefficients, ISO/IEC JTC 1/SC 29/WG 1, No. 771,
Feb. 1998.

[40] Xiong, Z., Ramchandran, K., and Orchard, M.T., Space frequency quantization
for wavelet image coding, IEEE Trans. Image Processing,6, 677–693, 1997.

[41] Xiong, Z. and Wu, X., Wavelet image coding using trellis coded space-
frequency quantization, IEEE Signal Processing Letters,6(7), 158–161, 1999.

[42] Xiong, Z., Wu, X., Yun, D.Y., and Pearlman, W.A., Progressive coding of med-
ical volumetric data using three-dimensional integer wavelet packet transform,
Proc. of 1998 IEEE Workshop on Multimedia Signal Processing,553–558,
Dec. 1998.

[43] Zandi, A., Allen, J.D., Schwartz, E.L., and Boliek, M., CREW: compression
by reversible embedded wavelets, Proc. of Data Compression Conf.,212–221,
IEEE Press, Piscataway, NJ, 1995.

	THE TRANSFORM AND DATA COMPRESSION HANDBOOK
	Preface
	Outline of Chapters
	Acknowledgements

	List of Acronyms
	Contributors
	Contents

	Karhunen-Loève Transform
	1.1 Introduction
	1.2 Data Decorrelation
	1.2.1 Calculation of the KLT
	Estimation of Covariance
	Calculation of Eigenvectors
	Markov-1 Solution

	1.3 Performance of Transforms
	1.3.1 Information Theory
	1.3.2 Quantization
	1.3.3 Truncation Error
	1.3.4 Block Size
	Interblock Correlation

	1.4 Examples
	1.4.1 Calculation of KLT
	1.4.2 Quantization and Encoding
	1.4.3 Generalization
	1.4.4 Markov-1 Solution
	1.4.5 Medical Imaging
	1.4.6 Color Images

	1.5 Summary
	References

	The Discrete Fourier Transform
	2.1 Introduction
	2.2 The DFT Matrix
	2.3 An Example
	2.4 DFT Frequency Analysis
	2.5 Selected Properties of the DFT
	2.5.1 Symmetry Properties

	2.6 Real-Valued DFT-Based Transforms
	2.7 The Fast Fourier Transform
	2.8 The DFT in Coding Applications
	2.9 The DFT and Filter Banks
	2.9.1 Cosine-Modulated Filter Banks
	2.9.2 Complex DFT-Based Filter Banks

	2.10 Conclusion
	2.11 FFT Web sites
	References

	Comparametric Transforms for Transmitting Eye Tap Video with Picture Transfer Protocol (PTP)
	3.1 Introduction: Wearable Cybernetics
	3.1.1 Historical Overview of WearComp
	Early embodiments of the author’s
	WearComp invention that functioned as a “photographer’s assistant” for use in
	the field of personal imaging. (a) Author’s early headgear. (b) Author’s early
	“smart clothing” including cybernetic jacket and cybernetic pants

	3.1.2 Eye Tap Video
	(c) Author’s 1970s chording keyboard comprising switches mounted to
	a light source, similar to the mid 1980s version depicted in author’s right hand
	in (b).

	3.2 The Edgertonian Image Sequence
	3.2.1 Edgertonian versus Nyquist Thinking
	3.2.2 Frames versus Rows, Columns, and Pixels

	3.3 Picture Transfer Protocol (PTP)
	3.4 Best Case Imaging and Fear of Functionality
	3.5 Comparametric Image Sequence Analysis
	3.5.1 Camera, Eye, or Head Motion: Common Assumptions and Terminology
	3.5.2 VideoOrbits
	Projective Group in 1-D
	Projective Group in 2-D

	3.6 Framework: Comparameter Estimation and Optical Flow
	3.6.1 Feature-Based Methods
	3.6.2 Featureless Methods Based on Generalized Cross-Correlation
	3.6.3 Featureless Methods Based on Spatio-Temporal Derivatives
	Optical Flow — Translation Flow
	Affine Fit and Affine Flow: a New Relationship
	Projective Fit and Projective Flow: New Techniques

	3.7 Multiscale Projective Flow Comparameter Estimation
	3.7.1 Four Point Method for Relating Approximate Model to Exact Model
	3.7.2 Overview of the New Projective Flow Algorithm
	3.7.3 Multiscale Repetitive Implementation
	3.7.4 Exploiting Commutativity for Parameter Estimation

	3.8 Performance/Applications
	3.8.1 A Paradigm Reversal in Resolution Enhancement
	3.8.2 Increasing Resolution in the “Pixel Sense”

	3.9 Summary
	3.10 Acknowledgements
	References

	Discrete Cosine and Sine Transforms
	4.1 Introduction
	4.2 The Family of DCTs and DSTs
	4.2.1 Definitions of DCTs and DSTs
	4.2.2 Mathematical Properties
	The Unitarity Property
	The Linearity Property
	The Convolution-Multiplication Property
	The Shift Property, Scaling, and Difference Property

	4.2.3 Relations to the KLT

	4.3 A Unified Fast Computation of DCTs and DSTs
	4.3.1 Definitions of Even-Odd Matrices
	Even-Odd Transform Matrix
	Even-Odd Permutation Matrices

	4.3.2 DCT-II/DST-II and DCT-III/DST-III Computation
	4.3.3 DCT-I and DST-I Computation
	4.3.4 DCT-IV/DST-IV Computation
	4.3.5 Implementation of the Unified Fast Computation of DCTs and DSTs
	Computer Program for the Fast DCT-II/DST-II and DCT-III/DST-III Compu-tation
	Computer Program for the Fast DCT-I Computation
	Computer Program for the Fast DST-I Computation
	Computer Program for the Fast DCT-IV/DST-IV Computation

	4.4 The 2-D DCT/DST Universal Computational Structure
	4.4.1 The Fast Direct 2-D DCT/DST Computation
	4.4.2 Implementation of the Direct 2-D DCT/DST Computation

	4.5 DCT and Data Compression
	4.5.1 DCT-Based Image Compression/Decompression
	4.5.2 Data Structures for Compression/Decompression
	4.5.3 Setting the Quantization Table
	4.5.4 Standard Huffman Coding/Decoding Tables
	4.5.5 Compression of One Sub-Image Block
	Coding the DC and AC Coefficients

	4.5.6 Decompression of One Sub-Image Block
	4.5.7 Image Compression/Decompression
	4.5.8 Compression of Color Images
	4.5.9 Results of Image Compression

	4.6 Summary
	References

	Lapped Transforms for Image Compression
	5.1 Introduction
	5.1.1 Notation
	5.1.2 Brief History
	5.1.3 Block Transforms
	5.1.4 Factorization of Discrete Transforms
	5.1.5 Discrete MIMO Linear Systems
	5.1.6 Block Transform as a MIMO System

	5.2 Lapped Transforms
	5.2.1 Orthogonal Lapped Transforms
	5.2.2 Nonorthogonal Lapped Transforms

	5.3 LTs as MIMO Systems
	5.4 Factorization of Lapped Transforms
	5.5 Hierarchical Connection of LTs: An Introduction
	5.5.1 Time-Frequency Diagram
	5.5.2 Tree-Structured Hierarchical Lapped Transforms
	5.5.3 Variable-Length LTs

	5.6 Practical Symmetric LTs
	5.6.1 The Lapped Orthogonal Transform: LOT
	5.6.2 The Lapped Bi-Orthogonal Transform: LBT
	5.6.3 The Generalized LOT: GenLOT
	5.6.4 The General Factorization: GLBT

	5.7 The Fast Lapped Transform: FLT
	5.8 Modulated LTs
	5.9 Finite-Length Signals
	5.9.1 Overall Transform
	5.9.2 Recovering Distorted Samples
	5.9.3 Symmetric Extensions

	5.10 Design Issues for Compression
	Coding Gain
	Low DC Leakage
	Attenuation at Mirror Frequencies
	Stopband Attenuation

	5.11 Transform-Based Image Compression Systems
	5.11.1 JPEG
	5.11.2 Embedded Zerotree Coding
	Embedded zerotree coding as a bit-plane refinement scheme.

	5.11.3 Other Coders

	5.12 Performance Analysis
	5.12.1 JPEG
	5.12.2 Embedded Zerotree Coding

	5.13 Conclusions
	References

	Wavelet-Based Image Compression
	6.1 Introduction
	6.2 Dyadic Wavelet Transform
	6.2.1 Two-Channel Perfect-Reconstruction Filter Bank
	6.2.2 Dyadic Wavelet Transform, Multiresolution Representation
	6.2.3 Wavelet Smoothness

	6.3 Wavelet-Based Image Compression
	6.3.1 Lossy Compression
	6.3.2 EZW Algorithm
	6.3.3 SPIHT Algorithm
	6.3.4 WDR Algorithm
	6.3.5 ASWDR Algorithm
	6.3.6 Lossless Compression
	6.3.7 Color Images
	6.3.8 Other Compression Algorithms
	6.3.9 Ringing Artifacts and Postprocessing Algorithms

	References

	Fractal-Based Image and Video Compression
	7.1 Introduction
	7.2 Basic Properties of Fractals and Image Compression
	7.3 Contractive Affine Transforms, Iterated Function Systems, and Image Generation
	Contractive Affine Transforms
	Iterated Function Systems
	The Chaos Game Algorithm

	7.4 Image Compression Directly Based on the IFS Theory
	7.5 Image Compression Based on IFS Library
	7.6 Image Compression Based on Partitioned IFS
	7.6.1 Image Partitions
	7.6.2 Distortion Measure
	7.6.3 A Class of Discrete Image Transformations
	Geometric Contraction
	Contrast Scaling
	Brightness Shift
	Rotation and Flip Operations

	7.6.4 Encoding and Decoding Procedures
	7.6.5 Experimental Results

	7.7 Image Coding Using Quadtree Partitioned IFS (QPIFS)
	7.7.1 RMS Tolerance Selection
	7.7.2 A Compact Storage Scheme
	7.7.3 Experimental Results

	7.8 Image Coding by Exploiting Scalability of Fractals
	7.8.1 Image Spatial Sub-Sampling
	7.8.2 Decoding to a Larger Image
	7.8.3 Experimental Results

	7.9 Video Sequence Compression using Quadtree PIFS
	7.9.1 Definitions of Types of Range Blocks
	Type One Range Blocks
	Type Two Range Blocks
	Type Three Range Blocks
	Distortion Tolerance

	7.9.2 Encoding and Decoding Processes
	7.9.3 Storage Requirements
	7.9.4 Experimental Results
	7.9.5 Discussion

	7.10 Other Fractal-Based Image Compression Techniques
	7.10.1 Segmentation-Based Coding Using Fractal Dimension
	7.10.2 Yardstick Coding

	7.11 Conclusions
	Pointers to Further Reading and Available Software

	References

	Compression of Wavelet Transform Coefficients
	8.1 Introduction
	8.2 Embedded Coefficient Coding
	8.3 Statistical Context Modeling of Embedded Bit Stream
	8.4 Context Dilution Problem
	8.5 Context Formation
	8.6 Context Quantization
	8.7 Optimization of Context Quantization
	8.8 Dynamic Programming for Minimum Conditional Entropy
	8.9 Fast Algorithms for High-Order Context Modeling
	8.9.1 Context Formation via Convolution
	8.9.2 Shared Modeling Context for Signs and Textures

	8.10 Experimental Results
	8.10.1 Lossy Case
	8.10.2 Lossless Case

	8.11 Summary
	References

	© 2001 CRC Press LLC:
	R:
	 D:
	 Dony "Karhunen-Loève Transform": R. D. Dony "Karhunen-Loève Transform"

