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Summary 
 
In a majority of the commercially available processors on the market today there is no hardware 
support for floating-point arithmetic due to the cost the extra silicon imposes on a processor’s 
total cost.  In fact a large portion of processors do not even have hardware support for integer 
multiplication.  This necessitates software emulation for floating-point arithmetic and possibly 
even software emulation for computing integer multiplications.  This software overhead can 
significantly limit the rate at which algorithms can be executed.   
 
By implementing algorithms using fixed-point (integer) mathematics, a significant improvement 
in execution speed can be observed because of inherent integer math hardware support in a large 
number of processors, as well as the reduced software complexity for emulated integer multiply 
and divide.  This speed improvement does come at the cost of reduced range and accuracy of the 
algorithms variables.  The purpose of this paper is to investigate the issues relating to algorithm 
implementation utilizing fixed-point rather than floating-point mathematics. 
 
The Q[QI].[QF] format fixed-point number format analyzed in this paper is broken down in 
subsequent sections into integer and fractional content for the purpose of study and 
understanding.  The separate sections on integer and fractional content are subsequently 
combined to provide an overall understanding of the nature of Q[QI].[QF] format fixed-point 
numbers. 
 
 

1. Fixed-Point Representation 
 
To more accurately construct an algorithm, double or single precision floating-point data and 
coefficient values should be used.  However there is significant processor overhead required to 
perform floating-point calculations resulting from the lack of hardware based floating-point 
support.  In some cases such as with lower powered embedded processors there is not even 
compiler support for double precision floating-point numbers.  Floating-point overhead limits the 
effective iteration rate of an algorithm.   
 
To improve mathematical throughput or increase the execution rate (i.e. increase the rate the 
algorithm could be repetitively run), calculations can be performed using two’s complement 
signed fixed-point representations.   Fixed-point representations require the programmer to create 
a virtual decimal place in between two bit locations for a given length of data (variable type).  
 
For the purposes of this paper the notion of a Q-point for a fixed-point number is introduced.  
This labeling convention is as follows:  
 

Q[QI].[QF] 
Where QI = # of integer bits & QF = # of fractional bits 
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The number of integer bits (QI) plus the number of fractional (QF) bits yields the total number of 
bits used to represent the number.  Sum QI+QF is know as the Word Length (WL) and this sum 
usually corresponds to variable widths supported on a given processor.  Typical word lengths 
would be {8,16,32} bits corresponding to {char, int, long int} C/C++ variable types commonly 
implemented in compilers for microcontrollers or DSPs.   
 
For example: a Q3.5 number would be an 8-bit value with three integer bits and five fractional 
bits. For signed integer variable types we will include the sign bit in QI as it does have integer 
weight albeit negative in sign.  WL varies over processors and integer type names can infer 
different word lengths in various tool chains (i.e some compilers treat int as 16-bit, some as 32-
bit) [ISO/IEC 9899:TC2].  Therefore, for the purpose of this paper the previously referenced 
word lengths / type names are implied and used. 
 
The Q[QI].[QF] format fixed-point number format is broken down in subsequent sections into 
integer and fractional content for the purpose of study and understanding.  The separate sections 
on integer and fractional content are subsequently combined to provide an overall understanding 
of the nature of Q[QI].[QF] format fixed-point numbers. 
 
 

1.1. Fixed-point Range - Integer Portion 
 
To represent a floating-point number in fixed-point a floating-point number needs to be viewed 
as two distinct parts, the integer content, and the fractional content.  The integer range of a 
floating-point variable (i.e. its Min to Max range) in an algorithm sets the number of bits (QI) 
required to represent the integer portion of the number.  Keep in mind that QI itself can only hold 
integer values because of the binary nature of a bit – it exists or doesn’t. 
 
There are two different methods of computing the number of integer bits required (QI) for each 
type of number, unsigned and signed.   
 
 

1.1.1. Fixed-point Range for Unsigned Integers 
 
This relationship for unsigned numbers (positive only) is defined by the minimum and maximum 
of any QI-bit number shown in the following equation: 

 
( )0 2QIα 1≤ ≤ −

 
Equation 1  

olving Equation 1 for the required number of bits QI: 
 

 
Method 1: 
S

( )( )2log 1QI ceiling α≥ +  
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( )( )2log 1QI ceiling α= +  

Equa  2 

ative which implies that QI is always ≥ 1.   
The benefit of QI < 1 is addressed later in this paper. 

or example an unsigned (positive only) variable α = 5.4321:  
 

tion

  
where α is the floating-point variable being ranged & ceiling  rounds towards +∞. 

Note: The log2() value in Equation 2 can never be neg

 
F

( )( ) ( )log 5.4321 1 2.6835 3QI ceiling ceiling= + =2 =  

Exam e 1 

As sanity check, verify -bit unsigned number. 
 35.4321 2 1 7

pl

 
∴ 3 bits are required for the integer portion of α 

α imum 3 less than the max
≤ − =  - Yes! 

ethod 2: 

s that could be much smaller than |1| that must be implemented on standard variable 
pes. 

aking our initial bounding inequality Equation 1: 
 

 
M
 
Although the previous method above (Method 1) is one possible way of computing QI for 
unsigned values, there is another way that is arguably better, especially when dealing with 
number
ty
 
T

( )0 2QIα 1≤ ≤ −

 
The inequality can be rewritten: 
 

0 2QIα≤ <
 

Equation 3 

 
Note: The upper boundary conditions changes from ≤  to < and the boundary value changes to 

I-bit unsigned number. 

Solving Equation 3 for QI for the constra
 

( )2log QIα <
 

one integer count higher that the maximum Q
 

int: 

2QIα <
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( )( )2logQI α>  

Equation 4 

 
Knowing that QI is an integer number of bits we can create an equation to compute a QI that 
satisfies constraint Equation 4 by adding 1 and truncating the result (rounding tward -∞). An 
equation for the required number of integer bits can be generalized for this method: 
 

( )( )2log 1QI floor α= +  

Equation 5 

where α is the floating-point variable being ranged & floor rounds towards -∞. 
Note: The log2() value in Equation 5 can be negative which implies that QI can be negative.  The 
benefit of QI < 1 is addressed later in this paper. 
 
For example if: 

( ) ( )

( )( )

2 2

2

2
log log 2 1
1

log 2 1 1 1 2

2

QI
QI

QI floor

QI

α
α

=

> = =

>

= + = + =

∴ =
 

Example 2 

 check, verify α is bounded by the minimum and maximum values of a 2-bit unsigned 
number. 

α≤ <  

 
As sanity

0 2QI

[ ] 220 0, 2≤ <  

[ ]0 0, 2 4≤ <  - Yes! 
 

previous solution for QI changes because of the 
nge limits of a signed integer number types. 

igned QI-bit integer number type can hold.  This is 
ber shown in the following equation: 

 

1.1.2. Fixed-point Range for Signed Integers 
 
If signed variables must be represented, the 
ra
 
This relationship for the integer content of signed numbers (±α) is defined is defined by the 
minimum and maximum values that a s
num
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( ) ( )1 12 2 1QI QIα− −− ≤ ≤ −

 
Equation 6 

 

 computing 
e number of integer bits: 

 
Method 3: 
 
Solving for QI for the negative constraint of  (i.e. when α is negative

Remember there is an asymmetry about zero for signed integer variable types: (i.e. a signed 8-bit 
value ranges from +127 to -128).  This asymmetry yields two possible methods for
th

Equation 6 ): 
 

( )1

1

2

2

QI

QI

α

α

( )21 logQI α

−

−

− ≤

≥ −

− ≥ −

 

( )2log 1QI α≥ − +  

Equation 7 

 
traint Equation 6 (i.e. whSolving for QI for the Positive cons en α is positive): 

 
( )

( )

2 1

1 2
log 1 1

QI

QI

α

α
α

−≤ −

+ ≤

1

1QI −

≤ −

 
+2

( )( )2log 1 1QI α≥ + +  

Equation 8 

 
For example if: 

( ) ( )
( ) ( )

min

max

2 min 2

2 max 2

log 1 log 2 1 2

log 1 1 log 3 1 2.5850

QI

QI
α

α

min max2,   2α α= − =

α

α

≥ − + = + =

≥ + + = + =

 

Example 3 

 
 the tighter of the two constraints due to this asymm

is not uncommon for users/programmers to define variable 
The positive constraint is etry of signed 
integer types about zero.  It 
magnitude constraints that are symmetric about zero (for example: 3 3− α≤ ≤ ).  The computation 
for the required number of integer bits can be generalized for this method: 
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( [ ])( )( )2 max minlog max , 1 1QI ceiling abs α α= + +

Equation 9 

 
where α is the floating-point variable being ranged & ceiling  rounds towards +∞. 

 
Note: The log2() value in Equation 9 can never be negative which implies that QI is always ≥ 1.  
The benefit of QI < 1 is addressed later in this paper. 
 
For example to compute QI for a signed (±) variable 5.4321 5.4321 α− ≤ ≤ :  
 

[ ]( )( )( ) ( )( )2 21 log max 5.4321,5.4321 1 1 log 6.4321 1QI ceiling abs ceiling− = − + + = +

( )( ) ( )log 6.4321 1 2.6853 1 3 1QI ceiling ceiling= + = + = +  2

4QI  =

Example 4 

 
As sanity check, verify α ues of a 4-bit signed 
number. 
 

 is bounded by the minimum and maximum val

( ) ( )1 12 2 1QI QIα− −− ≤ ≤ −  
 

( ) [ ] ( )4 12 5.4321,5.4321− −− ≤ − ≤  
 

( )

4 12 1−

([ ] )3 32 5.4321,5.4321 2 1− ≤ − ≤ −  
 

[ ]8 5.4321,5.4321 7− ≤ − ≤  - Yes! 
 
Method 4: 
 
Although Method 3 is one possible way of computing QI for signed values, there is another way 
that is arguably better, especially wh bers that could be much smaller than |1| 

at must be implemented on standard variable types. 

Taking our initial bounding inequality 
 

en dealing with num
th
 

Equation 6: 

( ) ( )1 12 2 1QI α− −QI− ≤ ≤ −  
 
The inequality can be rewritten: 
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1 12 2QI QIα− −− ≤ <  

 
Note: The upper boundary conditions changes from  to < and the boundary value changes to 
one integer count higher that the maxim
 
Solving Equation 10 for QI for the negative constraint (i.e. when α is negative

Equation 10 

 ≤ 
um QI-bit signed number. 

): 
 

( )1QI

( )
( )

1

2

2

2

2
1 log

log 1

QI

QI

QI

α

α
α

α

−

− ≤

≥ −

−

− ≥ −

≥ − +

 

 
Solving Equation 10 for QI for the Positive constraint (i.e. when α is positive): 
 

12QIα −<

( )2

2

log 1

log 1

QI

QI

α

α

<

( )( )
−

> +

 

 
he positive constraint is the tighter of the two constraints due to this asymmetry of signed T

integer types about zero.  It is not uncommon for users/programmers to define variable 
magnitude constraints that are almost symmetric about zero (for example: 4 4α− ≤ < ).  The 
constraint for the required number of integer bits can be generalized for this method: 
 

[ ]( )( )2 max minlog max , 1QI abs α α> +  

Equation 11 

 
Knowing that QI is an integer num pute a QI that 
satisfies constraint Equation 4 by adding 1 and truncating the result (rounding tward -∞). An 
quation for the required number of integer bits can be generalized for this method: 

]

ber of bits we can create an equation to com

e
 

[( )( )( )2log maxQI floor abs= max min, 1 1α α + +  

[ ]
 

( ( )( ) )2 max minlog max , 2QI floor abs α α= +

 
Equation 12 
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Note: The log2() value in that QI can be negative.  
The benefit of QI < 1 is addr
 
For example if: 

Equation 12 can be negative which implies 
essed later in this paper. 

( ) ( )
( ) ( )

min

max

min max

2 min 2

2 2

2,   2
log 1 log 2 1 2

log g 2 1 2

2, 2

3

QI

QI

QI QI

α

α

α α
α

= − =

≥ − + = + =

> + + =

≥ >

max 1 loα =

min max

QI
α α

∴ =

 

 
As sanity check, verify α is bounded by the m um values of a 3-bit signed 
number. 

1 12 2QI QI

Example 5 

inimum and maxim

− α −− ≤ <  
[ ]3 1 3 12 2, 2 2− −− ≤ − <  

[ ]4 2, 2 4− ≤ − <  - Yes! 

tent for unsigned and signed number types respectively.  As a result 
e minimum number of integer content bits QI, is 1.  Method 2 and Method 4 constrain QI in 

 
 

For s 2 puted.  Since 
I n on n.  This issue 

1.2. Fixed-point Resolution - Fractional Portion 
 
The resolution for a fixed-point vari ber of fractional bits (QF) used in the 
fixed-point variable.  The resolution ε, ber is governed by the equation: 

 
1.1.3. Fixed-point Range Comments/Conclusions 

 
Method 1 and Method 3 exactly constrain QI based on the exact numerical range of the input 
parameter’s (α‘s) integer con
th
such a way that QI can be negative for unsigned and signed number types respectively.  Negative
values for QI provide benefit by allowing extended resolution (QF) for chosen WL which will be
discussed later in this paper. 
 

 Method  and 4 the QI constraint equation requires QI “>” a value that is com
itself ca ly have integer values, the next largest integer value must be choseQ

is apparent when log2(α) in either Equation 5 or Equation 11 results in exact integer value. 
 

able is set by the num
 of a fixed-point num

 
1

2QFε =  

Equation 13 

 
Therefore the number of fractional bits (QF) required for a particular resolution are defined by 
the equation: 
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2
1logQF
ε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Equation 14 

 
However since QF is integer values only (i.e. we can only use integer numbers of bits), the 
ceiling  of the logarithm is used: 

 

2
1logQF ceiling
ε

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

Equation 15 

 
For example an signed (±) variable α = -5.4321, 0.0001ε ≤  
 

2
1log

0.0001
QF ceiling ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
( )( ) ( )2log 10000 13.288 14QF ceiling ceiling= = =  

Example 6 

 
It is not uncommon for users/programmers to find number of integer bits required (QI) and live 
with the resolution provided by the left over bits for a given word length (WL) used for the 
variable.  For a given word length (WL) and dynamic range (QI) of a variable, the resolution is 
limited.  If a higher resolution is needed for a given range then the WL of the variable must be 
increased to provide this resolution. 
 

1.3. Range & Resolution - Putting Them Together 
 
The full range and resolution for a fixed-point value are set by the integer and fractional parts of 
the number for a fixed WL.  The combined range and resolution for an unsigned fixed-point 
number is defined by:  
 

( )
2

0 2 1
QF

QI

ε
α

−=
≤ ≤ −  

Equation 16 

 
The combined range and resolution for a signed fixed-point number is defined by:  
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( )1 1

2
2 2 2

QF

QI QI QF

ε
α

−

− − −

=
− ≤ ≤ −  

Equation 17 

Where: WLRequired = QI+QF with the sign bit lumped in with QI. 
 
The integer and fractional bits are combined together into and used to determine a standard WL 
that is large enough to hold all the integer and factional bits.  This implies: 
 

RequiredWL QI QF≥ +  

Equation 18 

For example for a Q3.5 number, an 8-bit integer variable type must be used to contain the 
number although larger variable types (i.e. 16-bit, 32-bit, etc…) can also contain it.   
 
As another example for a Q4.14 number 18-bits are required to represent the number.  Since 18-
bits are not a standard word length in most programming languages or processors, the next 
longest word length variable needs to be used to contain the result.  A 32-bit number would be 
the smallest standard WL in C/C++ that could contain a Q4.14 number.  If a 32-bit number is 
used for the Q4.14 number, there are an additional 14-bits that are available to extend the range 
or resolution of the number (i.e. increase QI and/or QF).  This exemplifies that there is a tradeoff 
between range and resolution when implemented with standard WL variables. 
 

1.4. Scaling A Floating-point Number To Fixed-point 
 
Once an appropriate fixed-point format has been calculated based on WL, range, and resolution 
of a floating-point value, the fixed-point approximation for the floating-point number can be 
calculated.  This relationship is governed by the equation: 
 

( )
Rounded twards 0

2QFFxdPt FltPt= ×  

Equation 19 

Since the fixed-point representation of a floating-point number can only have integer values the 
integer portion or truncation of the scaled floating-point number must be used. This means round 
towards zero.  For example -1.4 becomes -1 and 1.4 becomes 1. 
 
From the example above, a signed (±) variable α = -5.4321, 0.0001ε ≤ , QF = 14. 
The integer (Fixed-point) representation for α is: 
 

( ) ( )14

Rounded twards 0Rounded twards 0
2 5.4321 2QF

FxdPt FltPt
αα α= × = − ×

( )

 

( )
Rounded twards 0 Rounded twards 0

5.4321 16384 -88999.5264 88999FxdPtα = − × = = −  

Example 7 
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Note that 16 172 88999 2FxdPtα< = < , this necessitates that 17-bits be used for the magnitude plus 
the sign bit yields the previously calculated WL of 18-bits in a Q4.14 to represent  α = -5.4321, 
with an 0.0001ε ≤ .  Note that the closest larger standard data type that can accommodate this 
value is a 32-bit data type.  Since only four integer bits are required the remaining 28 bits of the 
32-bit data can be used for fractional content (QF) which would yield 

28

1 1 3.725290298461914e-009
2 2QFε = = ≅ . 

 

2. Math With Eight Bit Examples 
 
Consider a simple example with two variables, one variable (α) ranging from ~±1 (–1 to 
0.9921875) and the other variable (β) ranging from ~±2 (–2 to 1.984375) with both as much 
resolution as possible.  For an 8-bit WL, this necessitates Q1.7 and Q2.6 fixed-point 
representations for α and  β respectively.  An 8-bit example was chosen because the most 
common WL in low cost microcontrollers is typically 8-bits.  
 

2.1. Q1.7 Format 
 
Q1.7 numbers can represent fixed-point numbers ranging from –1 to 0.9921875 in increments 
0.0078125 (-1 to 1 - 1/128).  The 8-bit Q1.7 number bit weighting is shown below.  The decimal 
place is between bits 6 and 7.  The variable α is in a Q1.7 format. 
 

1/128|1/64|1/32|1/16|1/8|1/4|1/2|-1|
x        |x      |x        |x      |x    |x      |x     |. s |  

 
2.2. Q2.6 Format 

 
Eight bit Q2.6 numbers can represent fixed-point numbers ranging from –2 to 1.984375 in 
increments 0.015625 (-2 to 2 - 1/64).  The Q2.6 representation bit weighting is shown below.  
The decimal place is between bits 5 and 6.  The variable β is in a Q2.6 format. 
 

1/64|1/32|1/16|   1/8|1/4|  1/2|  1  |-2|   
x    |x      |x        |x    |x    |x      | x.   |   s |  

 
2.3. Addition - Q1.7+Q2.6=Q2.6 Format 

 
Addition is a pure integer type of operation but care must be taken to align the fixed-point 
decimal places and attention must be paid to handling overflow of the addition. 

 

s .

s .

x x x x x x x

x x x x x x x
+  
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Right Shift & sign extend the Q1.7 to align the decimal place. 
 

.

s .
s .

s s x x x x x x

x x x x x x x
c x x x x x x x
+  

 
Perform the signed addition and check the carry bit (c) to see if you overflowed the WL (8-bits in 
this case).  Another option is to accumulate the result of the destination into a 2xWL variable and 
check to see if it exceeds the maximum WL value you expect.  For example with the addition of 
two eight bit values into a sixteen bit result and checking if the sixteen bit result is in the range 

, and if not saturating positive or negative. 72 result− ≤ < −72 1
 

2.4. Multiply - Q1.7xQ2.6=Q3.13 Format 
 
When performing an integer multiplication the product is 2xWL if both the multiplier and 
multiplicand are WL long.  If the integer multiplication is on fixed-point variables, the number of 
integer and fractional bits in the product is the sum of the corresponding multiplier and 
multiplicand Q-points as described by the following equations: 
 

Product Multiplicand MultiplierQI QI QI= +  

Equation 20 

Product Multiplicand MultiplierQF QF QF= +  

Equation 21 

When a Q1.7 and Q2.6 number are multiplied (both are signed 8-bit numbers) the result is a 16-
bit Q3.13 number.  Q3.13 numbers range from –4 to 3.9998779296875 in increments of 
0.0001220703125 (-4 to 4 – 1/8192).  The Q3.13 representation bit weighting is shown below. 
 

|1/8192|x|x|x |x|x|x|x |x|x|x|1/4|1/2|1.|2|-4|
|x|x|x|x |x|x|x|x |x|x|x|x  |x  |x.|x|s|  

 
The 16-bit Q3.13 number can be scaled back to an 8-bit representation for subsequent use in an 
algorithm.  The 8-bit result needs to be a Q3.5 format to maintain the range of the result of the 
multiplication at the price of loosing the precision for the lowest 8 fractional bits.  These Q3.5 
bits are extracted by shifting the 16-bit Q3.13 number right eight bits and selecting only the low 
byte of the 16-bit value.  The resulting 8-bit Q3.5 number inside the 16-bit result is shown below. 
 

|1/8192|x|x|x |x|x|x|x |x|x|x|1/4|1/2|1.|2|-4|
|x|x|x|x |x|x|x|x |x|x|x|x  |x  |x.|x|s|  

      
                   8-bit Q3.5 Number 
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2.5. An Example Using Real Numbers 
 
Using an 8-bit WL with 1.8α ≤ , 1β < , and 2.8χ ≤ as range limits (i.e. , ,α β χ are signed), 
with 1.667α = , 0.75β = − , and 2.6χ = , with maximal resolution on each variable, compute: 
 

( ) ( )1.667 0.75 2.6 1.25025+2.6=1.34975α β χ× + = × − + = −  
  

( )( )( )( )
( )( ) ( )

2 min max

2

log max , 2

log 1.8 2 0.848 2 2

QI floor abs

QI floor floor

α

α

α α= +

= + = + =
 

8 2 6QF WL QIα α= − = − =  

so: 6

1 1 1 0.015625
2 2 64QFααε = = = =  

( ) ( )10 10115 2.6 115 2.6FxdPtQ Qα− ≤ ≤  

( )6
101.667 2 106 2.6FxdPt Qα = × =  

 

( )( )( )( )
( )( )
( )( )

2 min max

2

2

log max , 2

log 1 2

log 0.999999999 2 1

QI floor abs

QI floor

QI floor

β

β

β

β β

ε

= +

= − +

= + =

 

8 1 7QF WL QIβ β= − = − =  

so: 7

1 1 1 0.0078125
2 1282QFββε = = = =  

( ) ( )10 10127 1.7 1127 1.7FxdPtQ Qβ− ≤ ≤  

( )7
100.75 2 96 1.7FxdPt Qβ = − × = −  

 

( )( )( )( )
( )( )

2 min max

2

log max , 2

log 2.8 2 3

QI floor abs

QI floor

χ

χ

χ χ= +

= + =
 

8 3 5QF WL QIχ χ= − = − =  

so: 5

1 1 1 0.03125
2 322QFχχε = = = =  

( ) ( )10 1090 3.5 89 3.5FxdPtQ Qχ− ≤ ≤  

( )5
102.6 2 83 3.5FxdPt Qχ = × =  

 

( ) ( )1.667 0.75 2.6 1.25025+2.6=1.34975α β χ× + = × − + = −  
 

Computing the product term ( )α β× : 

( ) ( ) ( )10 10 10106 2.6 96 1.7 10176 3.13 -1.2421875FxdPt FxdPt Q Q Qα β× = × − = − =  
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Notice that the fixed-point approximation of the product term has an error of : 

( )-1.25025- -1.2421875 =-0.0080625  
Also notice that the range of the product term is essentially the range of α but in a 16-bit format. 
 
Before computing the sum ( )α β× + χ , the 16-bit product term and χ need to have the decimal 
places aligned.  The decimal places can be aligned by right shifting the signed 16-bit product 
term 8-bits or by sign extending χ to 16-bits and left shifting it 8-bits.  It is not uncommon to 
need to scale a 2xWL result back to a WL result for subsequent computations or system outputs 
such as a D/A or PWM. 
 
Scaling the product term to align the decimal places:  

( ) ( )10
10 108

1017610176 3.13 8 39 3.5
2FxdPt FxdPt Q Qα β −

× = − >> = = −  

Adding the scaled product term and χ 
 

( ) ( ) ( ) (10 10 1039 3.5 83 3.5 44 3.5FxdPt FxdPt FxdPt Q Q Qα β χ× + = − + = )  
 
The answer is: 

( ) ( )1044 3.5 1.375FxdPt FxdPt FxdPt Qα β χ× + = =  
 
Notice the error inherent between the floating-point calculation and the fixed-point calculation 
shown below: 
 

( )( ) ( )( ) 1.34975-1.375=-0.02525FxdPt FxdPt FxdPtα β χ α β χ× + − × + =  
 

3. Implementation Caveats 
 
A critical detail when implementing fixed-point algorithms is that the variables must be a signed 
data type.  I.e. use variable types: signed char, signed int, and signed long int, as opposed to 
unsigned char, unsigned int, and unsigned long int. This is important because of the need to 
preserve a variables sign when performing the inherent scaling via left or right shift operations 
for fixed-point addition operations and sign extension for typecasting required for multiplication 
operations. 
 

3.1. Computing QI & QI≤0 
 
The number of integer bits may be computed in several ways.  It is arguably preferable to 
compute QI using Equation 5 and Equation 12 from Method 2 and Method 4 respectively.  
Because of the modified constraints in methods 2 & 4, “<” as opposed to “≤” it is important to 
evaluate if log2(|α|) or  “log2(|α|) + 1” compute to an exact an integer value.  If it does QI must 
be incremented to the next largest integer value of bits.  This is because ceiling  of an integer 
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value is itself.  Incrementing QI by 1 when the log2(|a|) is an integer value is done by adding 1 to 
and taking the floor of the constraint equations (Equation 5 & Equation 12). 
 
Equation 5 and Equation 12 from Method 2 and Method 4 respectively are arguably preferable 
because they can yield negative QI values.  If QI is negative (i.e. the number is fractional only), 
QF can be increased to the standard WL used to increase resolution of the fractional content.  QI 
is the weight of the most significant bit in the fixed-point number.  QI<0 implies fractional 
weight.   
 
For example if: 

0.05 0.05α− ≤ ≤ 0.0001 with ≤  ε

( )( )( )( )
( )( )

( )

2

2

log max 2

log 0.05 2

4.3219 2 2
3

QI floor abs

QI floor

QI floor floor
QI

α

α

α

α

α= +

= +

= − + = ( ).3129−

∴ = −

 

( )( )
( )

2

2

2

1log

1log
0.0001

log 10000

13.288 14

QF ceiling

QF ceiling

QF ceiling

QF ceiling

α
α

α

α

α

ε
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

= =

3 14 11QI QFα α+ = − + =
140.05 2 819.2 0 0333x× = → =

 

 
bits are required to represent α 

0000 0011 0011 0011 
0 0. 0 0 0 0 1 1 0 0 1 1 0 0 1 1 
-2 1. ½ ¼ 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096 1/8192 1/16384
S S. S S S -1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 1/4096 1/8192 1/16384

 
So for a 16-bit WL we can increase QF by 5-bits 

3 19 16QI QFα α+ = − + =

19 -62 1.9073486328125 10ε −= = ×

190.05 2 26214.4 0 6666x× = → =

bits to represent α 
 

This improves resolution to  
 

0110 0110 0110 0110
.x x x 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 
.x x x S F F F F F F F F F F F F F F F 

  

Example 8 

 
3.2. Addition 

 
When an addition operation needs to be performed one of the variables may need to be shifted to 
align the Q-points (decimal place) of the variables before the addition.  The variable with the 
larger number of fractional bits (larger QF) will need to be right shifted  bits to 
effectively move its decimal place left to align the Q-points. 

Larger SmallerQF QF−
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3.3. Multiplication 

 
When a product of fixed-point numbers is calculated at least one of the values must be sign 
extended to 2xWL to do the multiplication correctly.  If this is not done, only the lower half of 
2xWL result will be returned.  This is done by typecasting the multiplicand (or multiplier) to a 
2xWL variable type.  This will sign extend the multiplicand (or multiplier) to 2xWL to properly 
compute the product. 
 

3.4. General Caveats & Example C Code 
 
A point of caution:  some compilers contains switches to make “char” data types unsigned by 
default as well as to allow automatic promotion of “char” types to “int”.   The following C code 
example could be used to implement the example earlier in this document assuming that char and 
int variable types are signed 8-bit and 16-bit respectively.  This code example also assumes 
appropriate variables are loaded with fixed-point values of the listed Q format elsewhere. 
 
/* Variable Declarations */ 
signed char alpha, beta, gamma;  /* Alpha - Q1.7, Beta - Q2.6, Gamma - Q3.5 */ 
signed int prod;    /* 16-bit multiply product accumulator */ 
signed int sum;    /* 16-bit summation accumulator */ 
signed char result;    /* 8-bit result register */ 
 
/* Functional Code Block */ 
prod = (int) alpha*beta;   /* 8x8 to 16 multiply – Note that the type cast to */  

/* integer is required otherwise the accum will */ 
/* only have the low 8-bits of the multiply */ 

sum = ((signed char)(prod >>8))+gamma; /* align the Qpts, cast to WL and add them */ 
if (sum>127)     /* Positive saturation point for signed 8-bit */ 
 result = 127;    /* Saturate positive */ 
else if (sum<-128)    /* Negative saturation point for signed 8-bit */ 
 result = -128;    /* Saturate negative */ 
else 
 result = (signed char)sum;  /* If not saturated just use the low 8-bits */ 
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