

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

viii

This page intentionally left blank

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor N.J. Hitchin, Mathematical Institute,
University of Oxford, 24–29 St Giles, Oxford OX1 3LB, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org

152 Oligomorphic permutation groups, P. CAMERON
153 L-functions and arithmetic, J. COATES & M.J. TAYLOR (eds)
155 Classification theories of polarized varieties, TAKAO FUJITA
158 Geometry of Banach spaces, P.F.X. MÜLLER & W. SCHACHERMAYER (eds)
159 Groups St Andrews 1989 volume 1, C.M. CAMPBELL & E.F. ROBERTSON (eds)
160 Groups St Andrews 1989 volume 2, C.M. CAMPBELL & E.F. ROBERTSON (eds)
161 Lectures on block theory, BURKHARD KÜLSHAMMER
163 Topics in varieties of group representations, S.M. VOVSI
164 Quasi-symmetric designs, M.S. SHRIKANDE & S.S. SANE
166 Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
168 Representations of algebras, H. TACHIKAWA & S. BRENNER (eds)
169 Boolean function complexity, M.S. PATERSON (ed)
170 Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK
171 Squares, A.R. RAJWADE
172 Algebraic varieties, GEORGE R. KEMPF
173 Discrete groups and geometry, W.J. HARVEY & C. MACLACHLAN (eds)
174 Lectures on mechanics, J.E. MARSDEN
175 Adams memorial symposium on algebraic topology 1, N. RAY & G. WALKER (eds)
176 Adams memorial symposium on algebraic topology 2, N. RAY & G. WALKER (eds)
177 Applications of categories in computer science, M. FOURMAN, P. JOHNSTONE & A. PITTS (eds)
178 Lower K- and L-theory, A. RANICKI
179 Complex projective geometry, G. ELLINGSRUD et al
180 Lectures on ergodic theory and Pesin theory on compact manifolds, M. POLLICOTT
181 Geometric group theory I, G.A. NIBLO & M.A. ROLLER (eds)
182 Geometric group theory II, G.A. NIBLO & M.A. ROLLER (eds)
183 Shintani zeta functions, A. YUKIE
184 Arithmetical functions, W. SCHWARZ & J. SPILKER
185 Representations of solvable groups, O. MANZ & T.R. WOLF
186 Complexity: knots, colourings and counting, D.J.A. WELSH
187 Surveys in combinatorics, 1993, K. WALKER (ed)
188 Local analysis for the odd order theorem, H. BENDER & G. GLAUBERMAN
189 Locally presentable and accessible categories, J. ADAMEK & J. ROSICKY
190 Polynomial invariants of finite groups, D.J. BENSON
191 Finite geometry and combinatorics, F. DE CLERCK et al
192 Symplectic geometry, D. SALAMON (ed)
194 Independent random variables and rearrangement invariant spaces, M. BRAVERMAN
195 Arithmetic of blowup algebras, WOLMER VASCONCELOS
196 Microlocal analysis for differential operators, A. GRIGIS & J. SJÖSTRAND
197 Two-dimensional homotopy and combinatorial group theory, C. HOG-ANGELONI et al
198 The algebraic characterization of geometric 4-manifolds, J.A. HILLMAN
199 Invariant potential theory in the unit ball of Cn , MANFRED STOLL
200 The Grothendieck theory of dessins d’enfant, L. SCHNEPS (ed)
201 Singularities, JEAN-PAUL BRASSELET (ed)
202 The technique of pseudodifferential operators, H.O. CORDES
203 Hochschild cohomology of von Neumann algebras, A. SINCLAIR & R. SMITH
204 Combinatorial and geometric group theory, A.J. DUNCAN, N.D. GILBERT & J. HOWIE (eds)
205 Ergodic theory and its connections with harmonic analysis, K. PETERSEN & I. SALAMA (eds)
207 Groups of Lie type and their geometries, W.M. KANTOR & L. DI MARTINO (eds)
208 Vector bundles in algebraic geometry, N.J. HITCHIN, P. NEWSTEAD & W.M. OXBURY (eds)
209 Arithmetic of diagonal hypersurfaces over finite fields, F.Q. GOUVÉA & N. YUI
210 Hilbert C*-modules, E.C. LANCE
211 Groups 93 Galway / St Andrews I, C.M. CAMPBELL et al (eds)
212 Groups 93 Galway / St Andrews II, C.M. CAMPBELL et al (eds)
214 Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders, V. KOWALENKO et al
215 Number theory 1992–93, S. DAVID (ed)
216 Stochastic partial differential equations, A. ETHERIDGE (ed)
217 Quadratic forms with applications to algebraic geometry and topology, A. PFISTER
218 Surveys in combinatorics, 1995, PETER ROWLINSON (ed)
220 Algebraic set theory, A. JOYAL & I. MOERDIJK
221 Harmonic approximation, S.J. GARDINER
222 Advances in linear logic, J.-Y. GIRARD, Y. LAFONT & L. REGNIER (eds)
223 Analytic semigroups and semilinear initial boundary value problems, KAZUAKI TAIRA
224 Computability, enumerability, unsolvability, S.B. COOPER, T.A. SLAMAN & S.S. WAINER (eds)
225 A mathematical introduction to string theory, S. ALBEVERIO et al
226 Novikov conjectures, index theorems and rigidity I, S. FERRY, A. RANICKI & J. ROSENBERG (eds)
227 Novikov conjectures, index theorems and rigidity II, S. FERRY, A. RANICKI & J. ROSENBERG (eds)
228 Ergodic theory of Zd actions, M. POLLICOTT & K. SCHMIDT (eds)
229 Ergodicity for infinite dimensional systems, G. DA PRATO & J. ZABCZYK
230 Prolegomena to a middlebrow arithmetic of curves of genus 2, J.W.S. CASSELS & E.V. FLYNN

i

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

231 Semigroup theory and its applications, K.H. HOFMANN & M.W. MISLOVE (eds)
232 The descriptive set theory of Polish group actions, H. BECKER & A.S. KECHRIS
233 Finite fields and applications, S. COHEN & H. NIEDERREITER (eds)
234 Introduction to subfactors, V. JONES & V.S. SUNDER
235 Number theory 1993–94, S. DAVID (ed)
236 The James forest, H. FETTER & B. GAMBOA DE BUEN
237 Sieve methods, exponential sums, and their applications in number theory, G.R.H. GREAVES et al
238 Representation theory and algebraic geometry, A. MARTSINKOVSKY & G. TODOROV (eds)
240 Stable groups, FRANK O. WAGNER
241 Surveys in combinatorics, 1997, R.A. BAILEY (ed)
242 Geometric Galois actions I, L. SCHNEPS & P. LOCHAK (eds)
243 Geometric Galois actions II, L. SCHNEPS & P. LOCHAK (eds)
244 Model theory of groups and automorphism groups, D. EVANS (ed)
245 Geometry, combinatorial designs and related structures, J.W.P. HIRSCHFELD et al
246 p-Automorphisms of finite p-groups, E.I. KHUKHRO
247 Analytic number theory, Y. MOTOHASHI (ed)
248 Tame topology and o-minimal structures, LOU VAN DEN DRIES
249 The atlas of finite groups: ten years on, ROBERT CURTIS & ROBERT WILSON (eds)
250 Characters and blocks of finite groups, G. NAVARRO
251 Gröbner bases and applications, B. BUCHBERGER & F. WINKLER (eds)
252 Geometry and cohomology in group theory, P. KROPHOLLER, G. NIBLO, R. STÖHR (eds)
253 The q-Schur algebra, S. DONKIN
254 Galois representations in arithmetic algebraic geometry, A.J. SCHOLL & R.L. TAYLOR (eds)
255 Symmetries and integrability of difference equations, P.A. CLARKSON & F.W. NIJHOFF (eds)
256 Aspects of Galois theory, HELMUT VÖLKLEIN et al
257 An introduction to noncommutative differential geometry and its physical applications 2ed, J. MADORE
258 Sets and proofs, S.B. COOPER & J. TRUSS (eds)
259 Models and computability, S.B. COOPER & J. TRUSS (eds)
260 Groups St Andrews 1997 in Bath, I, C.M. CAMPBELL et al
261 Groups St Andrews 1997 in Bath, II, C.M. CAMPBELL et al
262 Analysis and logic, C.W. HENSON, J. IOVINO, A.S. KECHRIS & E. ODELL
263 Singularity theory, BILL BRUCE & DAVID MOND (eds)
264 New trends in algebraic geometry, K. HULEK, F. CATANESE, C. PETERS & M. REID (eds)
265 Elliptic curves in cryptography, I. BLAKE, G. SEROUSSI & N. SMART
267 Surveys in combinatorics, 1999, J.D. LAMB & D.A. PREECE (eds)
268 Spectral asymptotics in the semi-classical limit, M. DIMASSI & J. SJÖSTRAND
269 Ergodic theory and topological dynamics, M.B. BEKKA & M. MAYER
270 Analysis on Lie groups, N.T. VAROPOULOS & S. MUSTAPHA
271 Singular perturbations of differential operators, S. ALBEVERIO & P. KURASOV
272 Character theory for the odd order theorem, T. PETERFALVI
273 Spectral theory and geometry, E.B. DAVIES & Y. SAFAROV (eds)
274 The Mandlebrot set, theme and variations, TAN LEI (ed)
275 Descriptive set theory and dynamical systems, M. FOREMAN et al
276 Singularities of plane curves, E. CASAS-ALVERO
277 Computational and geometric aspects of modern algebra, M.D. ATKINSON et al
278 Global attractors in abstract parabolic problems, J.W. CHOLEWA & T. DLOTKO
279 Topics in symbolic dynamics and applications, F. BLANCHARD, A. MAASS & A. NOGUEIRA (eds)
280 Characters and automorphism groups of compact Riemann surfaces, THOMAS BREUER
281 Explicit birational geometry of 3-folds, ALESSIO CORTI & MILES REID (eds)
282 Auslander-Buchweitz approximations of equivariant modules, M. HASHIMOTO
283 Nonlinear elasticity, Y. FU & R.W. OGDEN (eds)
284 Foundations of computational mathematics, R. DEVORE, A. ISERLES & E. SÜLI (eds)
285 Rational points on curves over finite fields, H. NIEDERREITER & C. XING
286 Clifford algebras and spinors 2ed, P. LOUNESTO
287 Topics on Riemann surfaces and Fuchsian groups, E. BUJALANCE, A.F. COSTA & E. MARTÌNEZ (eds)
288 Surveys in combinatorics, 2001, J. HIRSCHFELD (ed)
289 Aspects of Sobolev-type inequalities, L. SALOFF-COSTE
290 Quantum groups and Lie theory, A. PRESSLEY (ed)
291 Tits buildings and the model theory of groups, K. TENT (ed)
292 A quantum groups primer, S. MAJID
293 Second order partial differential equations in Hilbert spaces, G. DA PRATO & J. ZABCZYK
294 Introduction to the theory of operator spaces, G. PISIER
295 Geometry and integrability, LIONEL MASON & YAVUZ NUTKU (eds)
296 Lectures on invariant theory, IGOR DOLGACHEV
297 The homotopy category of simply connected 4-manifolds, H.-J. BAUES
299 Kleinian groups and hyperbolic 3-manifolds, Y. KOMORI, V. MARKOVIC, & C. SERIES (eds)
300 Introduction to Möbius differential geometry, UDO HERTRICH-JEROMIN
301 Stable modules and the D(2)-problem, F.E.A. JOHNSON
302 Discrete and continuous nonlinear Schrödinger systems, M.J. ABLOWITZ, B. PRINARI, & A.D. TRUBATCH
303 Number theory and algebraic geometry, MILES REID & ALEXEI SKOROBOGATOV (eds)
304 Groups St Andrews 2001 in Oxford Vol. 1, COLIN CAMPBELL, EDMUND ROBERTSON & GEOFF SMITH (eds)
305 Groups St Andrews 2001 in Oxford Vol. 2, C.M. CAMPBELL, E.F. ROBERTSON & G.C. SMITH (eds)
307 Surveys in combinatorics 2003, C.D. WENSLEY (ed)
309 Corings and comodules, TOMASZ BRZEZINSKI & ROBERT WISBAUER
310 Topics in dynamics and ergodic theory, SERGEY BEZUGLYI & SERGIY KOLYADA (eds)
312 Foundations of computational mathematics, Minneapolis 2002, FELIPE CUCKER et al (eds)

ii

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

London Mathematical Society Lecture Note Series. 317

Advances in Elliptic Curve
Cryptography

Edited by

Ian F. Blake
University of Toronto

Gadiel Seroussi
Hewlett-Packard Laboratories

Nigel P. Smart
University of Bristol

iii

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-60415-4

isbn-13 978-0-511-11161-7

© Cambridge University Press 2005

2005

Information on this title: www.cambridge.org/9780521604154

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-11161-4

isbn-10 0-521-60415-x

Cambridge University Press has no responsibility for the persistence or accuracy of
urls for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (MyiLibrary)
eBook (MyiLibrary)

paperback

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

Contents

Preface page ix

Abbreviations and Standard Notation xi

Authors xv

Part 1. Protocols

Chapter I. Elliptic Curve Based Protocols
N.P. Smart 3

I.1. Introduction 3
I.2. ECDSA 4
I.3. ECDH/ECMQV 8
I.4. ECIES 12
I.5. Other Considerations 18

Chapter II. On the Provable Security of ECDSA
D. Brown 21

II.1. Introduction 21
II.2. Definitions and Conditions 23
II.3. Provable Security Results 32
II.4. Proof Sketches 33
II.5. Further Discussion 36

Chapter III. Proofs of Security for ECIES
A.W. Dent 41

III.1. Definitions and Preliminaries 42
III.2. Security Proofs for ECIES 50
III.3. Other Attacks Against ECIES 58
III.4. ECIES-KEM 61

v

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

vi Contents

Part 2. Implementation Techniques

Chapter IV. Side-Channel Analysis
E. Oswald 69

IV.1. Cryptographic Hardware 70
IV.2. Active Attacks 71
IV.3. Passive Attacks 72
IV.4. Simple SCA Attacks on Point Multiplications 77
IV.5. Differential SCA Attacks on Point Multiplications 84

Chapter V. Defences Against Side-Channel Analysis
M. Joye 87

V.1. Introduction 87
V.2. Indistinguishable Point Addition Formulæ 88
V.3. Regular Point Multiplication Algorithms 93
V.4. Base-Point Randomization Techniques 97
V.5. Multiplier Randomization Techniques 98
V.6. Preventing Side-Channel Analysis 100

Part 3. Mathematical Foundations

Chapter VI. Advances in Point Counting
F. Vercauteren 103

VI.1. p-adic Fields and Extensions 104
VI.2. Satoh’s Algorithm 105
VI.3. Arithmetic Geometric Mean 115
VI.4. Generalized Newton Iteration 121
VI.5. Norm Computation 128
VI.6. Concluding Remarks 132

Chapter VII. Hyperelliptic Curves and the HCDLP
P. Gaudry 133

VII.1. Generalities on Hyperelliptic Curves 133
VII.2. Algorithms for Computing the Group Law 136
VII.3. Classical Algorithms for HCDLP 140
VII.4. Smooth Divisors 142
VII.5. Index-Calculus Algorithm for Hyperelliptic Curves 144
VII.6. Complexity Analysis 146
VII.7. Practical Considerations 149

Chapter VIII. Weil Descent Attacks
F. Hess 151

VIII.1. Introduction – the Weil Descent Methodology 151
VIII.2. The GHS Attack 153
VIII.3. Extending the GHS Attack Using Isogenies 166

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

Contents vii

VIII.4. Summary of Practical Implications 173
VIII.5. Further Topics 175

Part 4. Pairing Based Techniques

Chapter IX. Pairings
S. Galbraith 183

IX.1. Bilinear Pairings 183
IX.2. Divisors and Weil Reciprocity 184
IX.3. Definition of the Tate Pairing 185
IX.4. Properties of the Tate Pairing 187
IX.5. The Tate Pairing over Finite Fields 189
IX.6. The Weil Pairing 191
IX.7. Non-degeneracy, Self-pairings and Distortion Maps 192
IX.8. Computing the Tate Pairing Using Miller’s Algorithm 196
IX.9. The MOV/Frey–Rück Attack on the ECDLP 197
IX.10. Supersingular Elliptic Curves 198
IX.11. Applications and Computational Problems from Pairings 201
IX.12. Parameter Sizes and Implementation Considerations 203
IX.13. Suitable Supersingular Elliptic Curves 204
IX.14. Efficient Computation of the Tate Pairing 205
IX.15. Using Ordinary Curves 208
Appendix: Proof of Weil Reciprocity 212

Chapter X. Cryptography from Pairings
K.G. Paterson 215

X.1. Introduction 215
X.2. Key Distribution Schemes 218
X.3. Identity-Based Encryption 221
X.4. Signature Schemes 228
X.5. Hierarchical Identity-Based Cryptography and Related Topics 235
X.6. More Key Agreement Protocols 240
X.7. Applications and Infrastructures 242
X.8. Concluding Remarks 250

Bibliography 253
Summary of Major LNCS Proceedings 271

Author Index 273

Subject Index 277

P1: GCV
CY546/Blake-FM 0 521 60415 X October 19, 2004 14:14

viii

Preface

It is now more than five years since we started working on the book Elliptic
Curves in Cryptography and more than four years since it was published. We
therefore thought it was time to update the book since a lot has happened
in the intervening years. However, it soon became apparent that a simple
update would not be sufficient since so much has been developed in this area.
We therefore decided to develop a second volume by inviting leading experts
to discuss issues which have arisen.

Highlights in the intervening years which we cover in this volume include:

Provable Security. There has been considerable work in the last few years
on proving various practical encryption and signature schemes secure. In this
new volume we will examine the proofs for the ECDSA signature scheme and
the ECIES encryption scheme.

Side-Channel Analysis. The use of power and timing analysis against
cryptographic tokens, such as smart cards, is particularly relevant to elliptic
curves since elliptic curves are meant to be particularly suited to the con-
strained environment of smart cards. We shall describe what side-channel
analysis is and how one can use properties of elliptic curves to defend against
it.

Point Counting. In 1999 the only method for computing the group order of
an elliptic curve was the Schoof-Elkies-Atkin algorithm. However, for curves
over fields of small characteristic we now have the far more efficient Satoh
method, which in characteristic two can be further simplified into the AGM-
based method of Mestre. We shall describe these improvements in this book.

Weil Descent. Following a talk by Frey in 1999, there has been considerable
work on showing how Weil descent can be used to break certain elliptic curve
systems defined over “composite fields” of characteristic two.

Pairing-Based Cryptography. The use of the Weil and Tate pairings was
until recently confined to breaking elliptic curve protocols. But since the
advent of Joux’s tripartite Diffie–Hellman protocol there has been an interest
in using pairings on elliptic curves to construct protocols which cannot be
implemented in another way. The most spectacular example of this is the

ix

x PREFACE

identity-based encryption algorithm of Boneh and Franklin. We describe not
only these protocols but how these pairings can be efficiently implemented.

As one can see once again, the breadth of subjects we cover will be of
interest to a wide audience, including mathematicians, computer scientists
and engineers. Once again we also do not try to make the entire book relevant
to all audiences at once but trust that, whatever your interests, you can find
something of relevance within these pages.

The overall style and notation of the first book is retained, and we have
tried to ensure that our experts have coordinated what they write to ensure
a coherent account across chapters.

Ian Blake
Gadiel Seroussi

Nigel Smart

Abbreviations and Standard Notation

Abbreviations

The following abbreviations of standard phrases are used throughout the
book:

AES Advanced Encryption Standard
AGM Arithmetic Geometric Mean
BDH Bilinear Diffie–Hellman problem
BSGS Baby Step/Giant Step method
CA Certification Authority
CCA Chosen Ciphertext Attack
CDH Computational Diffie–Hellman problem
CM Complex Multiplication
CPA Chosen Plaintext Attack
DBDH Decision Bilinear Diffie–Hellman problem
DDH Decision Diffie–Hellman problem
DEM Data Encapsulation Mechanism
DHAES Diffie–Hellman Augmented Encryption Scheme
DHIES Diffie–Hellman Integrated Encryption Scheme
DHP Diffie–Hellman Problem
DLP Discrete Logarithm Problem
DPA Differential Power Analysis
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECDDH Elliptic Curve Decision Diffie–Hellman problem
ECDH Elliptic Curve Diffie–Hellman protocol
ECDHP Elliptic Curve Diffie–Hellman Problem
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
ECMQV Elliptic Curve Menezes–Qu–Vanstone protocol
GHS Gaudry–Hess–Smart attack
GRH Generalized Riemann Hypothesis
HCDLP Hyperelliptic Curve Discrete Logarithm Problem
HIBE Hierarchical Identity-Based Encryption

xi

xii ABBREVIATIONS AND STANDARD NOTATION

IBE Identity-Based Encryption
IBSE Identity-Based Sign and Encryption
ILA Information Leakage Analysis
KDF Key Derivation Function
KDS Key Distribution System
KEM Key Encapsulation Mechanism
MAC Message Authentication Code
MOV Menezes–Okamoto–Vanstone attack
NIKDS Non-Interactive Key Distribution System
PKI Public Key Infrastructure
RSA Rivest–Shamir–Adleman encryption scheme
SCA Side Channel Analysis
SEA Schoof–Elkies–Atkin algorithm
SHA Secure Hash Algorithm
SPA Simple Power Analysis
SSCA Simple Side-Channel Attack
TA Trusted Authority

ABBREVIATIONS AND STANDARD NOTATION xiii

Standard notation

The following standard notation is used throughout the book, often with-
out further definition. Other notation is defined locally near its first use.

Basic Notation
Z, Q, R, C integers, rationals, reals and complex numbers
Z>k integers greater than k; similarly for ≥, <,≤
Z/nZ integers modulo n
#S cardinality of the set S
gcd(f, g), lcm(f, g) GCD, LCM of f and g
deg(f) degree of a polynomial f
φEul Euler totient function(

·
p

)
Legendre symbol

logb x logarithm to base b of x; natural log if b omitted
O(f(n)) function g(n) such that |g(n)| ≤ c|f(n)| for some

constant c > 0 and all sufficiently large n
o(f(n)) function g(n) such that limn→∞(g(n)/f(n)) = 0
Pn projective space

Group/Field Theoretic Notation
Fq finite field with q elements
K ∗, K+, K for a field K, the multiplicative group, additive group

and algebraic closure, respectively
char(K) characteristic of K
〈g〉 cyclic group generated by g
ord(g) order of an element g in a group
Aut(G) automorphism group of G
Zp, Qp p-adic integers and numbers, respectively
Trq|p(x) trace of x ∈ Fq over Fp, q = pn

µn nth roots of unity
NL/K norm map

Function Field Notation
deg(D) degree of a divisor
(f) divisor of a function
f(D) function evaluated at a divisor
∼ equivalence of divisors
ordP (f) multiplicity of a function at a point

Galois Theory Notation
Gal(K/F) Galois group of K over F
σ(P) Galois conjugation of point P by σ
fσ Galois conjugation of coefficients of function f by σ

xiv ABBREVIATIONS AND STANDARD NOTATION

Curve Theoretic Notation
E elliptic curve (equation)
(xP , yP) coordinates of the point P
x(P) the x-cordinate of the point P
y(P) the y-cordinate of the point P
E(K) group of K-rational points on E
[m]P multiplication-by-m map applied to the point P
E[m] group of m-torsion points on the elliptic curve E
End(E) endormorphism ring of E
O point at infinity (on an elliptic curve)
℘ Weierstraß ‘pay’ function
ϕ Frobenius map
〈P,Q〉n Tate pairing of P and Q
en(P,Q) Weil pairing of P and Q
e(P,Q) pairing of P and Q
ê(P,Q) modified pairing of P and Q
Tr(P) trace map
T trace zero subgroup

Authors

We would like to acknowledge the following people who contributed chap-
ters to this book.

Dan Brown,
Certicom Corp.,
Mississauga,
Canada.

Steven Galbraith,
Mathematics Department,
Royal Holloway,
University of London,
United Kingdom.

Florian Hess,
Institut für Mathematik,
T.U. Berlin,
Germany.

Elisabeth Oswald,
Institute for Applied Information
Processing and Communications,
Graz University of Technology,
Austria.

Nigel Smart,
Deptartment of Computer Sci-
ence,
University of Bristol,
United Kingdom.

Alex Dent,
Mathematics Department,
Royal Holloway,
University of London,
United Kingdom.

Pierrick Gaudry,
Laboratoire d’Informatique (LIX),

École Polytechnique ,
France.

Marc Joye,
Card Security Group,
Gemplus,
France.

Kenneth G. Paterson,
Info. Sec. Group,
Royal Holloway,
University of London,
United Kingdom.

Frederik Vercauteren,
Department of Computer Science,
University of Bristol,
United Kingdom.

The editors would like to thank Marc Joye for various bits of LaTeX help
and Georgina Cranshaw and Ian Holyer for organizing our system for ex-
changing various files and keeping things up to date. As always, Roger Astley

xv

xvi AUTHORS

of Cambridge University Press was very helpful throughout the whole process.

The authors of each chapter would like to thank the following for helping
in checking and in the creation of their respective chapters:

• Nigel Smart: Alex Dent and Dan Brown.
• Dan Brown: Nigel Smart, Alex Dent, Kenneth Patterson and Ian

Blake.
• Alex Dent: Bill and Jean Dent, Steven Galbraith, Becky George,

Louis Granboulan, Victor Shoup, Andrew Spicer and Christine Swart
(twice).

• Steven Galbraith: Paulo Barreto, Dan Boneh, Young-Ju Choie,
Keith Harrison, Florian Hess, Neal Koblitz, Wenbo Mao, Kim Nguyen,
Kenny Paterson, Maura Paterson, Hans-Georg Rück, Adam Saunders,
Alice Silverberg, Lawrence Washington, Annegret Weng, Bill Williams
and The Nuffield Foundation (Grant NUF-NAL 02).

• Elisabeth Oswald: The power traces presented in this chapter were
made with the FPGA measurement-setup which was built by Sıddıka
Berna Örs and has been presented in [268].

• Marc Joye: Benôıt Chevallier-Mames and Tanja Lange.
• Kenneth G. Paterson: Sattam Al-Riyami, Alex Dent, Steven Gal-

braith, Caroline Kudla and The Nuffield Foundation (Grant NUF-NAL
02).

Part 1

Protocols

CHAPTER I

Elliptic Curve Based Protocols

N.P. Smart

I.1. Introduction

In this chapter we consider the various cryptographic protocols in which
elliptic curves are primarily used. We present these in greater detail than in
the book [ECC] and focus on their cryptographic properties. We shall only
focus on three areas: signatures, encryption and key agreement. For each of
these areas we present the most important protocols, as defined by various
standard bodies.

The standardization of cryptographic protocols, and elliptic curve proto-
cols in particular, has come a long way in the last few years. Standardization
is important if one wishes to deploy systems on a large scale, since differ-
ent users may have different hardware/software combinations. Working to a
well-defined standard for any technology aids interoperability and so should
aid the takeup of the technology.

In the context of elliptic curve cryptography, standards are defined so
that one knows not only the precise workings of each algorithm, but also the
the format of the transmitted data. For example, a standard answers such
questions as

• In what format are finite field elements and elliptic curve points to be
transmitted?

• How are public keys to be formatted before being signed in a certificate?
• How are conversions going to be performed between arbitrary bit strings

to elements of finite fields, or from finite field elements to integers, and
vice versa?

• How are options such as the use of point compression, (see [ECC,
Chapter VI]) or the choice of curve to be signalled to the user?

A number of standardization efforts have taken place, and many of these re-
duce the choices available to an implementor by recommending or mandating
certain parameters, such as specific curves and/or specific finite fields. This
not only helps aid interoperability, it also means that there are well-defined
sets of parameter choices that experts agree provide a given security level. In
addition, by recommending curves it means that not every one who wishes
to deploy elliptic curve based solutions needs to implement a point counting
method like those in Chapter VI or [ECC, Chapter VII]. Indeed, since many

3

4 I. ECC PROTOCOLS

curves occur in more than one standard, if one selects a curve from the in-
tersection then, your system will more likely interoperate with people who
follow a different standard from you.

Of particular relevance to elliptic curve cryptography are the following
standards:

• IEEE 1363: This standard contains virtually all public-key algo-
rithms. In particular, it covers ECDH, ECDSA, ECMQV and ECIES,
all of which we discuss in this chapter. In addition, this standard con-
tains a nice appendix covering all the basic number-theoretic algorithms
required for public-key cryptography.

• ANSI X9.62 and X9.63: These two standards focus on elliptic curves
and deal with ECDSA in X9.62 and ECDH, ECMQV and ECIES in
X9.63. They specify both the message formats to be used and give a
list of recommended curves.

• FIPS 186.2: This NIST standard for digital signatures is an update
of the earlier FIPS 186 [FIPS 186], which details the DSA algorithm
only. FIPS 186.2 specifies both DSA and ECDSA and gives a list of
recommended curves, which are mandated for use in U.S. government
installations.

• SECG: The SECG standard was written by an industrial group led
by Certicom. It essentially mirrors the contents of the ANSI standards
but is more readily available on the Web, from the site

http://www.secg.org/

• ISO: There are two relevant ISO standards: ISO 15946-2, which covers
ECDSA and a draft ISO standard covering a variant of ECIES called
ECIES-KEM; see [305].

I.2. ECDSA

ECDSA is the elliptic curve variant of the Digital Signature Algorithm
(DSA) or, as it is sometimes called, the Digital Signature Standard (DSS).
Before presenting ECDSA it may be illustrative to describe the original DSA
so one can see that it is just a simple generalization.

In DSA one first chooses a hash function H that outputs a bit-string of
length m bits. Then one defines a prime q, of over m bits, and a prime p of
n bits such that

• q divides p− 1.
• The discrete logarithm problem in the subgroup of Fp of order q is

infeasible.

With current techniques and computing technology, this second point means
that n should be at least 1024. Whilst to avoid birthday attacks on the hash
function one chooses a value of m greater than 160.

I.2. ECDSA 5

One then needs to find a generator g for the subgroup of order q in F∗
p.

This is done by generating random elements h ∈ F∗
p and computing

g = h(p−1)/q (mod p)

until one obtains a value of g that is not equal to 1. Actually, there is only a
1/q chance of this not working with the first h one chooses; hence finding a
generator g is very simple.

Typically with DSA one uses SHA-1 [FIPS 180.1] as the hash function,
although with the advent of SHA-256, SHA-384 and SHA-512 [FIPS 180.2]
one now has a larger choice for larger values of m.

The quadruple (H, p, q, g) is called a set of domain parameters for the
system, since they are often shared across a large number of users, e.g. a user
domain. Essentially the domain parameters define a hash function, a group
of order q, and a generator of this group.

The DSA makes use of the function

f :

{
F∗

p −→ Fq

x �−→ x (mod q),

where one interprets x ∈ F∗
p as an integer when performing the reduction

modulo q. This function is used to map group elements to integers modulo q
and is often called the conversion function.

As a public/private-key pair in the DSA system one uses (y, x) where

y = gx (mod p).

The DSA signature algorithm then proceeds as follows:

Algorithm I.1: DSA Signing

INPUT: A message m and private key x.
OUTPUT: A signature (r, s) on the message m.

1. Choose k ∈R {1, . . . , q − 1}.
2. t← gk (mod p).
3. r← f(t).
4. If r = 0 then goto Step 1.

5. e←H(m)
6. s← (e+ xr)/k (mod q)
7. If s = 0 then goto Step 1.

8. Return (r, s).

The verification algorithm is then given by

6 I. ECC PROTOCOLS

Algorithm I.2: DSA Verification

INPUT: A message m, a public key y and a signature (r, s).
OUTPUT: Reject or Accept.

1. Reject if r, s
∈ {1, . . . , q − 1}.
2. e←H(m).
3. u1← e/s (mod q), u2← r/s (mod q).
4. t← gu1yu2 (mod p).
5. Accept if and only if r = f(t).

For ECDSA, the domain parameters are given by (H,K,E, q,G), where
H is a hash function, E is an elliptic curve over the finite field K, and G
is a point on the curve of prime order q. Hence, the domain parameters
again define a hash function, a group of order q, and a generator of this
group. We shall always denote elliptic curve points by capital letters to aid
understanding. With the domain parameters one also often stores the integer
h, called the cofactor, such that

#E(K) = h · q.
This is because the value h will be important in other protocols and oper-
ations, which we shall discuss later. Usually one selects a curve such that
h ≤ 4.

The public/private-key pair is given by (Y, x), where

Y = [x]G,

and the role of the function f is taken by

f :

{
E −→ Fq

P �−→ x(P) (mod q),

where x(P) denotes the x-coordinate of the point P and we interpret this as
an integer when performing the reduction modulo q. This interpretation is
made even when the curve is defined over a field of characteristic two. In the
case of even characteristic fields, one needs a convention as to how to convert
an element in such a field, which is usually a binary polynomial g(x), into an
integer. Almost all standards adopt the convention that one simply evaluates
g(2) over the integers. Hence, the polynomial

x5 + x2 + 1

is interpreted as the integer 37, since

37 = 32 + 4 + 1 = 25 + 22 + 1.

The ECDSA algorithm then follows immediately from the DSA algorithm
as:

I.2. ECDSA 7

Algorithm I.3: ECDSA Signing

INPUT: A message m and private key x.
OUTPUT: A signature (r, s) on the message m.

1. Choose k ∈R {1, . . . , q − 1}.
2. T ← [k]G.
3. r← f(T).
4. If r = 0 then goto Step 1.

5. e←H(m)
6. s← (e+ xr)/k (mod q).
7. If s = 0 then goto Step 1.

8. Return (r, s).

The verification algorithm is then given by

Algorithm I.4: ECDSA Verification

INPUT: A message m, a public key Y and a signature (r, s).
OUTPUT: Reject or Accept.

1. Reject if r, s
∈ {1, . . . , q − 1}.
2. e←H(m).
3. u1← e/s (mod q), u2← r/s (mod q).
4. T ← [u1]G+ [u2]Y .
5. Accept if and only if r = f(T).

One can show that ECDSA is provably secure, assuming that the elliptic
curve group is modelled in a generic manner and H is a “good” hash function;
see Chapter II for details.

An important aspect of both DSA and ECDSA is that the ephemeral
secret k needs to be truly random. As a simple example of why this is so,
consider the case where someone signs two different messages, m and m′, with
the same value of k. The signatures are then (r, s) and (r′, s′), where

r = r′ = f([k]G);

s = (e+ xr)/k (mod q), where e = H(m);

s′ = (e′ + xr)/k (mod q), where e′ = H(m′).

We then have that

(e+ xr)/s = k = (e′ + xr)/s′ (mod q).

In which case we can deduce

xr(s′ − s) = se′ − s′e,

8 I. ECC PROTOCOLS

and hence

x =
se′ − s′e
r(s′ − s) (mod q).

So from now on we shall assume that each value of k is chosen at random.
In addition, due to a heuristic lattice attack of Howgrave-Graham and

Smart [174], if a certain subset of the bits in k can be obtained by the
attacker, then, over a number of signed messages, one can recover the long
term secret x. This leakage of bits, often called partial key exposure, could
occur for a number of reasons in practical systems, for example, by using
a poor random number generator or by side-channel analysis (see Chapter
IV for further details on side-channel analysis). The methods of Howgrave-
Graham and Smart have been analysed further and extended by Nguyen and
Shparlinski (see [261] and [262]). Another result along these lines is the
attack of Bleichenbacher [31], who shows how a small bias in the random
number generator, used to produce k, can lead to the recovery of the long-
term secret x.

I.3. ECDH/ECMQV

Perhaps the easiest elliptic curve protocol to understand is the elliptic
curve variant of the Diffie–Hellman protocol, ECDH. In this protocol two
parties, usually called Alice and Bob, wish to agree on a shared secret over
an insecure channel. They first need to agree on a set of domain parame-
ters (K,E, q, h,G) as in our discussion on ECDSA. The protocol proceeds as
follows:

Alice Bob

a
[a]G−→ [a]G

[b]G
[b]G←− b

Alice can now compute

KA = [a]([b]G) = [ab]G

and Bob can now compute

KB = [b]([a]G) = [ab]G.

Hence KA = KB and both parties have agreed on the same secret key. The
messages transferred are often referred to as ephemeral public keys, since they
are of the form of discrete logarithm based public keys, but they exist for only
a short period of time.

Given [a]G and [b]G, the problem of recovering [ab]G is called the Elliptic
Curve Diffie–Hellman Problem, ECDHP. Clearly, if we can solve ECDLP
then we can solve ECDHP; it is unknown if the other implication holds. A
proof of equivalence of the DHP and DLP for many black box groups follows
from the work of Boneh, Maurer and Wolf. This proof uses elliptic curves in
a crucial way; see [ECC, Chapter IX] for more details.

I.3. ECDH/ECMQV 9

The ECDH protocol has particularly small bandwidth if point compression
is used and is very efficient compared to the standard, finite field based, Diffie–
Hellman protocol.

The Diffie–Hellman protocol is a two-pass protocol, since there are two
message flows in the protocol. The fact that both Alice and Bob need to be
“online” to execute the protocol can be a problem in some situations. Hence,
a one-pass variant exists in which only Alice sends a message to Bob. Bob’s
ephemeral public key [b]G now becomes a long-term static public key, and
the protocol is simply a mechanism for Alice to transport a new session key
over to Bob.

Problems can occur when one party does not send an element in the
subgroup of order q. This can either happen by mistake or by design. To
avoid this problem a variant called cofactor Diffie–Hellman is sometimes used.
In cofactor Diffie–Hellman the shared secret is multiplied by the cofactor h
before use, i.e., Alice and Bob compute

KA = [h]([a]([b]G)) and KB = [h]([b]([a]G)).

The simplicity of the Diffie–Hellman protocol can however be a disguise,
since in practice life is not so simple. For example, ECDH suffers from the
man-in-the-middle attack:

Alice Eve Bob

a
[a]G−→ [a]G

[x]G
[x]G←− x

y
[y]G−→ [y]G

[b]G
[b]G←− b

In this attack, Alice agrees a key KA = [a]([x]G) with Eve, thinking it is
agreed with Bob, and Bob agrees a key KB = [b]([y]G) with Eve, thinking
it is agreed with Alice. Eve can now examine communications as they pass
through her by essentially acting as a router.

The problem is that when performing ECDH we obtain no data-origin
authentication. In other words, Alice does not know who the ephemeral public
key she receives is from. One way to obtain data-origin authentication is to
sign the messages in the Diffie–Hellman key exchange. Hence, for example,
Alice must send to Bob the value

([a]G, (r, s)),

where (r, s) is her ECDSA signature on the message [a]G.
One should compare this model of authenticated key exchange with the

traditional form of RSA-based key transport, as used in SSL. In RSA-based
key transport, the RSA public key is used to encrypt a session key from one

10 I. ECC PROTOCOLS

user to the other. The use of a signed Diffie–Hellman key exchange has a
number of advantages over an RSA-based key transport:

• In key transport only one party generates the session key, while in
key agreement both can parties contribute randomness to the resulting
session key.

• Signed ECDH has the property of forward secrecy, whereas an RSA-
based key transport does not. An authenticated key agreement/transport
protocol is called forward secure if the compromise of the long-term
static key does not result in past session keys being compromized. RSA
key transport is not forward secure since once you have the long-term
RSA decryption key of the recipient you can determine the past ses-
sion keys; however, in signed ECDH the long-term private keys are only
used to produce signatures.

However, note that the one-pass variant of ECDH discussed above, being a
key transport mechanism, also suffers from the above two problems of RSA
key transport.

The problem with signed ECDH is that it is wasteful of bandwidth. To
determine the session key we need to append a signature to the message flows.
An alternative system is to return to the message flows in the original ECDH
protocol but change the way that the session key is derived. If the session
key is derived using static public keys, as well as the transmitted ephemeral
keys, we can obtain implicit authentication of the resulting session key. This
is the approach taken in the MQV protocol of Law, Menezes, Qu, Solinas and
Vanstone [216].

In the MQV protocol both parties are assumed to have long-term static
public/private key pairs. For example, we shall assume that Alice has the
static key pair ([a]G, a) and Bob has the static key pair ([c]G, c). To agree
on a shared secret, Alice and Bob generate two ephemeral key pairs; for
example, Alice generates the ephemeral key pair ([b]G, b) and Bob generates
the ephemeral key pair ([d]G, d). They exchange the public parts of these
ephemeral keys as in the standard ECDH protocol:

Alice Bob

b
[b]G−→ [b]G

[d]G
[d]G←− d.

Hence, the message flows are precisely the same as in the ECDH protocol.
After the exchange of messages Alice knows

a, b, [a]G, [b]G, [c]G and [d]G,

and Bob knows
c, d, [c]G, [d]G, [a]G and [b]G.

The shared secret is then determined by Alice via the following algorithm:

I.3. ECDH/ECMQV 11

Algorithm I.5: ECMQV Key Derivation

INPUT: A set of domain parameters (K,E, q, h,G)
and a, b, [a]G, [b]G, [c]G and [d]G.

OUTPUT: A shared secret G,
shared with the entity with public key [c]G.

1. n←�log2(#K)�/2.
2. u← (x([b]G) (mod 2n)) + 2n.

3. s← b+ ua (mod q).
4. v← (x([d]G) (mod 2n)) + 2n.

5. Q← [s]([d]G+ [v]([c]G)).
6. If Q is at infinity goto Step 1.

7. Output Q.

Bob can also compute the same value of Q by swapping the occurance
of (a, b, c, d) in the above algorithm with (c, d, a, b). If we let uA, vA and sA

denote the values of u, v and s computed by Alice and uB, vB and sB denote
the corresponding values computed by Bob, then we see

uA = vB,

vA = uB.

We then see that

Q = [sA] ([d]G+ [vA]([c]G))

= [sA][d+ vAc]G

= [sA][d+ uBc]G

= [sA][sB]G.

In addition, a cofactor variant can be used by setting Q← [h]Q before the
test for whether Q is the point at infinity in Step 6.

In summary, the ECMQV protocol allows authentic key agreement to
occur over an insecure channel, whilst only requiring the same bandwidth as
an unauthenticated Diffie–Hellman.

One can also have a one-pass variant of the ECMQV protocol, which
enables one party to be offline when the key is agreed. Suppose Bob is the
party who is offline; he will still have a long-term static public/private key
pair given by [c]G. Alice then uses this public key both as the long-term key
and the emphemeral key in the above protocol. Hence, Alice determines the
shared secret via

Q = [sA] (([c]G) + [vA]([c]G)) = [sA][vA + 1]([c]G),

12 I. ECC PROTOCOLS

where, as before, sA = b + uAa, with a the long-term private key and b the
ephemeral private key. Bob then determines the shared secret via

Q = [sB] (([b]G) + vB([a]G)) ,

where sB is now fixed and equal to (1 + uB)c.

It is often the case that a key agreement protocol also requires key con-
firmation. This means that both communicating parties know that the other
party has managed to compute the shared secret. For ECMQV this is added
by slightly modifying the protocol. Each party, on computing the shared
secret point Q, then computes

(k, k′)←H(Q),

where H is a hash function (or key derivation function). The key k is used as
the shared session key, whilst k′ is used as a key to a Message Authentication
Code, MAC, to enable key confirmation.

This entire procedure is accomplished in three passes as follows:

Alice Bob

b
[b]G−→ [b]G

[d]G
[d]G,M←− d

M ′
−→

where

M = MACk′(2, Bob, Alice, [d]G, [b]G),

M ′ = MACk′(3, Alice, Bob, [b]G, [d]G).

Of course Alice needs to verify that M is correct upon recieving it, and Bob
needs to do likewise for M ′.

I.4. ECIES

The elliptic curve integrated encryption system (ECIES) is the standard
elliptic curve based encryption algorithm. It is called integrated, since it is
a hybrid scheme that uses a public-key system to transport a session key
for use by a symmetric cipher. It is based on the DHAES/DHIES protocol
of Abdalla, Bellare and Rogaway [1]. Originally called DHAES, for Diffie–
Hellman Augmented Encryption Scheme, the name was changed to DHIES,
for Diffie–Hellman Integrated Encryption Scheme, so as to avoid confusion
with the AES, Advanced Encryption Standard.

ECIES is a public-key encryption algorithm. Like ECDSA, there is as-
sumed to be a set of domain parameters (K,E, q, h,G), but to these we also
add a choice of symmetric encryption/decryption functions, which we shall
denote Ek(m) and Dk(c). The use of a symmetric encryption function makes

I.4. ECIES 13

it easy to encrypt long messages. In addition, instead of a simple hash func-
tion, we require two special types of hash functions:

• A message authentication code MACk(c),

MAC : {0, 1}n × {0, 1}∗ −→ {0, 1}m.

This acts precisely like a standard hash function except that it has a
secret key passed to it as well as a message to be hashed.

• A key derivation function KD(T, l),

KD : E × N −→ {0, 1}∗.
A key derivation function acts precisely like a hash function except
that the output length (the second parameter) could be quite large.
The output is used as a key to encrypt a message; hence, if the key is
to be used in a xor-based encryption algorithm the output needs to be
as long as the message being encrypted.

The ECIES scheme works like a one-pass Diffie–Hellman key transport,
where one of the parties is using a fixed long-term key rather than an ephemeral
one. This is followed by symmetric encryption of the actual message. In the
following we assume that the combined length of the required MAC key and
the required key for the symmetric encryption function is given by l.

The recipient is assumed to have a long-term public/private-key pair
(Y, x), where

Y = [x]G.

The encryption algorithm proceeds as follows:

Algorithm I.6: ECIES Encryption

INPUT: Message m and public key Y .
OUTPUT: The ciphertext (U, c, r).

1. Choose k ∈R {1, . . . , q − 1}.
2. U← [k]G.
3. T ← [k]Y .
4. (k1‖k2)←KD(T, l).
5. Encrypt the message, c←Ek1(m).
6. Compute the MAC on the ciphertext, r←MACk2(c).
7. Output (U, c, r).

Each element of the ciphertext (U, c, r) is important:

• U is needed to agree the ephemeral Diffie–Hellman key T .
• c is the actual encryption of the message.
• r is used to avoid adaptive chosen ciphertext attacks.

14 I. ECC PROTOCOLS

Notice that the data item U can be compressed to reduce bandwidth, since
it is an elliptic curve point.

Decryption proceeds as follows:

Algorithm I.7: ECIES Decryption

INPUT: Ciphertext (U, c, r) and a private key x.
OUTPUT: The message m or an ‘‘Invalid Ciphertext’’ message.

1. T ← [x]U.
2. (k1‖k2)←KD(T, l).
3. Decrypt the message m←Dk1(c).
4. If r
= MACk2(c) then output ‘‘Invalid Ciphertext’’.

5. Output m.

Notice that the T computed in the decryption algorithm is the same as
the T computed in the encryption algorithm since

Tdecryption = [x]U = [x]([k]G) = [k]([x]G) = [k]Y = Tencryption.

One can show that, assuming various properties of the block cipher, key
derivation function and keyed hash function, the ECIES scheme is secure
against adaptive chosen ciphertext attack, assuming a variant of the Diffie–
Hellman problem in the elliptic curve group is hard; see [1] and Chapter
III.

In many standards, the function KD is applied to the x-coordinate of
the point T and not the point T itself. This is more efficient in some cases
but leads to the scheme suffering from a problem called benign malleability.
Benign malleability means that an adversary is able, given a ciphertext C,
to produce a different valid ciphertext C ′ of the same message. For ECIES,
if C = (U, c, r), then C ′ = (−U, c, r) since if KD is only applied to the x-
coordinate of U , so both C and C ′ are different valid ciphertexts corresponding
to the same message.

The problem with benign malleability is that it means the scheme cannot
be made secure under the formal definition of an adaptive chosen ciphertext
attack. However, the issue is not that severe and can be solved, theoretically,
by using a different but equally sensible definition of security. No one knows
how to use the property of benign malleability in a “real-world” attack, and
so whether one chooses a standard where KD is applied to T or just x(T) is
really a matter of choice.

In addition, to avoid problems with small subgroups, just as in the ECDH
and ECMQV protocols, one can select to apply KD to either T or [h]T . The
use of [h]T means that the key derivation function is applied to an element
in the group of order q, and hence if T is a point in the small subgroup one
would obtain [h]T = O.

I.4. ECIES 15

The fact that ECIES suffers from benign malleability, and the fact that
the cofactor variant can lead to interoperability problems, has led to a new
approach being taken to ECIES in the draft ISO standard [305].

The more modern approach is to divide a public-key encryption algorithm
into a key transport mechanism, called a Key Encapsulation Mechanism,
or KEM, and a Data Encapsulation Mechanism, or DEM. This combined
KEM/DEM approach has proved to be very popular in recent work because
it divides the public key algorithm into two well-defined stages, which aids in
the security analysis.

We first examine a generic DEM, which requires a MAC function MACk

of key length n bits and a symmetric cipher Ek of key length m bits. The
Data Encapsulation Mechanism then works as follows:

Algorithm I.8: DEM Encryption

INPUT: A key K of length n+m bits and a message M.

OUTPUT: A ciphertext C

1. Parse K as k1‖k2,

where k1 has m bits and k2 has n bits.

2. c←Ek1(M).
3. r←MACk2(c).
4. C← (c‖r).

Decryption then proceeds as follows:

Algorithm I.9: DEM Decryption

INPUT: A key K of length n+m bits and a ciphertext C.
OUTPUT: A message M or ‘‘Invalid Ciphertext’’.

1. Parse K as k1‖k2,

where k1 has m bits and k2 has n bits.

2. Parse C as c‖r,
this could result in an ‘‘Invalid Ciphertext’’ warning.

3. Decrypt the message M←Dk1(c).
4. If r
= MACk2(c) then output ‘‘Invalid Ciphertext’’.

5. Output M.

To use a DEM we require a KEM, and we shall focus on one based on
ECIES called ECIES-KEM. A KEM encryption function takes as input a pub-
lic key and outputs a session key and the encryption of the session key under
the given public key. The KEM decryption operation takes as input a pri-
vate key and the output from a KEM encryption and produces the associated
session key.

16 I. ECC PROTOCOLS

As mentioned before, the definition of ECIES-KEM in the draft ISO stan-
dard is slightly different from earlier versions of ECIES. In particular, the
way the ephemeral secret is processed to deal with small subgroup attacks
and how chosen ciphertext attacks are avoided is changed in the following
scheme. The processing with the cofactor is now performed solely in the de-
cryption phase, as we shall describe later. First we present the encryption
phase for ECIES-KEM.

Again, the recipient is assumed to have a long-term public/private-key
pair (Y, x), where

Y = [x]G.

The encryption algorithm proceeds as follows:

Algorithm I.10: ECIES-KEM Encryption

INPUT: A public key Y and a length l.
OUTPUT: A session key K of length l and

an encryption E of K under Y .

1. Choose k ∈R {1, . . . , q − 1}.
2. E← [k]G.
3. T ← [k]Y .
4. K←KD(E‖T, l),
5. Output (E,K).

Notice how the key derivation function is applied to both the ephemeral
public key and the point representing the session key. It is this modification
that removes problems associated with benign malleability in chosen cipher-
text attacks and aids in the security proof. In addition, no modification to
the KEM is made when one wishes to deal with cofactors; this modification
is only made at decryption time.

To deal with cofactors, suppose we have a set of domain parameters
(K,E, q, h,G). We set a flag f as follows:

• If h = 1, then f← 0.
• If h
= 1, then select f← 1 or f← 2.

We can now describe the ECIES-KEM decryption operation.

Algorithm I.11: ECIES-KEM Decryption

INPUT: An encryption session key E, a private key x,
a length l and a choice for the flag f as above.

OUTPUT: A session key K of length l

I.4. ECIES 17

1. If f = 2 then check whether E has order q,
if not return ‘‘Invalid Ciphertext’’.

2. x′← x and E ′←E.
3. If f = 1 then

4. x′← x′/h (mod q).
5. E ′← [h]E ′.
6. T ← [x′]E ′.
7. If T = 0 then return ‘‘Invalid Ciphertext’’.

8. K←KD(E‖T, l),
9. Output K.

We now explain how an encryption is performed with a KEM/DEM ap-
proach, where we are really focusing on using ECIES-KEM. We assume a
KEM and DEM that are compatible, i.e., a pair whose KEM outputs an l-bit
key and whose DEM requires an l-bit key as input.

Algorithm I.12: ECIES-KEM-DEM Encryption

INPUT: A public key Y , a message M.

OUTPUT: A ciphertext C.

1. (E,K)←ECIES −KEMEnc(Y, l).
2. (c‖r)←DEMEnc(K,M).
3. Output (E‖c‖r).

Algorithm I.13: ECIES-KEM/DEM Decryption

INPUT: A ciphertext C, a private key x.
OUTPUT: A message m or ‘‘Invalid Ciphertext’’.

1. Parse C as (E‖c‖r).
2. K←ECIES −KEMDec(E, x, l).
3. If K equals ‘‘Invalid Ciphertext’’ then

4. Return ‘‘Invalid Ciphertext’’.

5. M←DEMDec(K, (c‖r)).
6. If M equals ‘‘Invalid Ciphertext’’ then

7. Return ‘‘Invalid Ciphertext’’.

8. Output M.

18 I. ECC PROTOCOLS

I.5. Other Considerations

When receiving a public key, whether in a digital certificate or as an
ephemeral key in ECDH, ECMQV or ECIES, one needs to be certain that
the ephemeral key is a genuine point of the correct order on the given curve.
This is often overlooked in many academic treatments of the subject.

The ANSI and SECG standards specify the following check, which should
be performed for each received public key.

Algorithm I.14: Public-Key Validation

INPUT: A set of domain parameters (K,E, q, h,G)
and a public key Q

OUTPUT: Valid or Invalid

1. If Q
∈ E(K) then output ‘‘Invalid’’.

2. If Q = O then output ‘‘Invalid’’.

3. (Optional) If [q]Q
= O then output ‘‘Invalid’’.

4. Output ‘‘Valid’’.

The last check is optional, because it can be quite expensive, especially if
h
= 1 in the case of large prime characteristic or h
= 2 in the case of even
characteristic. However, the check is needed to avoid problems with small
subgroups. It is because this check can be hard to implement that the option
of using cofactors in the key derivation functions is used in ECDH, ECMQV
and ECIES.

Just as public keys need to be validated, there is also the problem of
checking whether a given curve is suitable for use. The following checks
should be performed before a set of domain parameters is accepted; however,
this is likely to be carried out only once for each organization deploying elliptic
curve based solutions.

Algorithm I.15: Elliptic Curve Validation

INPUT: A set of domain parameters (K,E, q, h,G)
OUTPUT: Valid or Invalid

1. Let l←#K = pn.

2. Check #E(K) = h · q, by generating random points

and verifying that they have order h, , q , or h · q.
3. Check that q is prime.

4. Check that q > 2160 to avoid the BSGS/Rho attacks,

see [ECC, Chapter V] for details.

5. Check that q
= p to avoid the anomalous attack,

again see [ECC, Chapter V] for reasons.

6. Check that lt
= 1 (mod q) for all t ≤ 20 to avoid the

I.5. OTHER CONSIDERATIONS 19

MOV/Frey--Rück attack, see [ECC, Chapter V].

7. Check that n is prime, to avoid attacks based on

Weil descent, see Chapter VIII of this volume.

8. Check that G lies on the curve and has order q.

But how do you know the curve has no special weakness known only to a
small (clever) subset of people? Since we believe that such a weak curve must
come from a very special small subset of all the possible curves, we generate
the curve at random. But even if you generate your curve at random, you
need to convince someone else that this is the case. This is done by generating
the curve in a verifiably random way, which we shall now explain in the case of
characteristic two curves. For other characteristics a similar method applies.

Algorithm I.16: Verifiable Random Generation of Curves

INPUT: A field K = F2n of characteristic two

OUTPUT: A set of domain parameters (K,E, q, h,G) and a seed S

1. Choose a random seed S.
2. Chain SHA-1 with input S to produce a bit string B of

length n.
3. Let b be the element of K with bit representation B.
4. Set E : Y 2 +X · Y = X3 +X2 + b.
5. Apply the methods of Chapter VI of this volume

or [ECC, Chapter VII] to compute the group order

N←#E(K).
6. If N
= 2q with q prime then goto the Step 1.

7. Generate an element G ∈ E(K) of order q.
8. Check that (E,K, q, 2, G) passes Algorithm I.15,

if not then goto Step 1.

9. Output (K,E, q, 2, G) and S.

With the value of S, any other person can verify that the given elliptic
curve is determined by S. Now if the generator knew of a subset of curves
with a given weakness, to generate the appropriate S for a member of such
a subset, they would need to be able to invert SHA-1, which is considered
impossible.

CHAPTER II

On the Provable Security of ECDSA

D. Brown

II.1. Introduction

II.1.1. Background. The Elliptic Curve Digital Signature Algorithm is
now in many standards or recommendations, such as [ANSI X9.62], [SECG],
[FIPS 186.2], [IEEE 1363], [ISO 15946-2], [NESSIE] and [RFC 3278].
Organizations chose ECDSA because they regarded its reputational security
sufficient, on the grounds that (a) it is a very natural elliptic curve analogue of
DSA, and that (b) both elliptic curve cryptography and DSA were deemed to
have sufficiently high reputational security. The standardization of ECDSA
has created more intense public scrutiny. Despite this, no substantial weak-
nesses in ECDSA have been found, and thus its reputational security has
increased.

At one point, proofs of security, under certain assumptions, were found for
digital signature schemes similar to DSA and ECDSA. The proof techniques
in these initial proofs did not, and still do not, appear applicable to DSA and
ECDSA. Thus, for a time, provable security experts suggested a change to the
standardization of reputationally secure schemes, because slight modifications
could improve provable security.

Further investigation, however, led to new provable security results for
ECDSA. New proof techniques and assumptions were found that overcame
or avoided the difficulty in applying the initial techniques to ECDSA. This
chapter describes some of these results, sketches their proofs, and discusses
the impact and interpretation of these results.

Interestingly, in some cases, the new proof techniques did not apply to
DSA, which was the first, though mild, indication that ECDSA may have
better security than DSA. Furthermore, some of the new proof techniques
do not work for the modified versions of ECDSA for which the initial proof
techniques applied. Therefore, it can no longer be argued that the modified
versions have superior provable security; rather, it should be said that they
have provable security incomparable to ECDSA.

Cryptanalysis results are the converse to provable security results and are
just as important. In this chapter, conditional results are included, because
no successful, practical cryptanalysis of ECDSA is known. The hypotheses of

21

22 II. ON THE PROVABLE SECURITY OF ECDSA

a provable security result is a sufficient condition for security, while a crypt-
analysis result establishes a necessary condition for security. For example,
one conditional cryptanalysis result for ECDSA is that if a hash collision can
be found, then a certain type of forgery of ECDSA is possible. Therefore,
collision resistance of the message digest hash function is a necessary condi-
tion for the security of ECDSA. Note however that this is not yet a successful
cryptanalysis of ECDSA, because no collisions have been found in ECDSA’s
hash function.

II.1.2. Examining the ECDSA Construction. The primary purpose of
the provable security results are to examine the security of ECDSA. The
purpose is not to examine the security of the primitives ECDSA uses (elliptic
curve groups and hash functions). Even with the secure primitives, it does
not follow a priori that a digital signature built from these primitives will be
secure. Consider the following four signature scheme designs, characterized
by their verification equations for signatures (r, s). Each is based on ECDSA
but with the value r used in various different ways, and in all cases signatures
can be generated by the signer by computing r = [k]G and applying a signing
equation.

• The first scheme, with verification r = f([s−1r]([H(m)]G + Y)), is
forgeable through (r, s) = (f([t]([H(m)]G + Y)), t−1r), for any t and
message m. Evidently, the verification equation does not securely bind,
informally speaking, the five values r, s,m,G, Y .

• The second scheme, ECDSA, is verified with r = f([s−1]([H(m)]G +
[r]Y)). Moving the position of r on the right-hand side of the verifica-
tion equation seems to turn an insecure scheme into a secure one. Now
all five values have become securely bound.

• The third scheme, verified with r = f([s−1]([H(m, r)]G + Y)), has r
in yet another position. The third scheme seems secure, and the prov-
able security results of Pointcheval and Stern [276] using the Forking
Lemma seem adaptable to this scheme.

• A fourth scheme, verified with r = f([s−1]([H(m, r)]G + [r]Y)), com-
bines the second and third in that r appears twice on the right, once
in each location of the second and third. Although the fourth scheme
could well have better security than both the second and third schemes,
it is argued that the overuse of r in the right-hand side of the third and
fourth schemes is an obstacle to certain security proof techniques. Be-
cause the value r occurs both inside a hash function evaluation and
as a scalar multiple in the elliptic curve group, formulating mild and
independent hypotheses about the two primitives is not obvious and
inhibits the construction of a security proof.

II.2. DEFINITIONS AND CONDITIONS 23

II.2. Definitions and Conditions

II.2.1. Security for Signatures. Goldwasser, Micali and Rivest introduced
in [150] the now widely accepted formal definition for signature schemes and
their security.

Definition II.1 (Signature Scheme). A signature scheme is a triple of prob-
abilistic algorithms Σ = (K,G, V), such that K has no input (except random-
ness) and outputs a public key Y and private key x; G has input of the private
key x and an arbitrary message m and outputs a signature S; and V has input
of the public key Y , message m and signature S and outputs either valid or
invalid.

A signature scheme is correct if the following holds: For any message m
and any randomness, computing K :�→ (x, Y) and then G : (x,m) �→ S will
ensure the result V : (Y,m, S) �→ Valid. If G does not use its randomness
input, then Σ is said to be deterministic. If, for each message m and public
key Y , at most one signature S satisfies V (Y,m, S) = Valid, then Σ is said
to be verifiably deterministic.

Definition II.2. A forger of signature scheme (K,G, V) is a probabilistic
algorithm F , having input of either a public key Y or a signature S and an
internal state X, and having output of a message m, state X, and R, which
is either a signature or a request for a signature of a message mi.

A forger F is measured by its ability to win the following game.

Definition II.3. The forgery game for a forger F of signature scheme Σ =
(K,G, V) has multiple rounds, each consisting of two plays, the first by the
signer and the second by the forger.

• In Round 0, the signer uses K to output public key Y and a private
key x.

• Next, the forger is given input of the public key Y and a fixed initial
state X0, and it outputs a message mi, a state X1 and a request or
signature R1.

• For i ≥ 1, Round i works as follows.
– If Ri is a request for a signature, then the signer uses G with

input of x and the message mi to output a signature Si. Next, the
forger is called again with input of the signature Si and the state
Xi. It will then return a new message mi+1, a new state Xi+1,
and a new request or signature Ri+1.

– If Ri is a signature, not a request, then the game is over.

When the game ends, at Round i, the forger has won if both mi+1
= m1, . . . ,mi

and V (Y,mi+1, Ri+1) = Valid; otherwise, the forger has lost.

We can now define a meaningful forger.

24 II. ON THE PROVABLE SECURITY OF ECDSA

Definition II.4 (Forger). A forger F is a (p,Q, t)-forger of signature scheme
(K,G, V) if its probability of winning the forgery game in at most Q rounds
using computational effort at most t is at least p. A signature Σ is (p,Q, t)-
secure if it does not have a (p,Q, t)-forger.

A (p, 0, t)-forger is called a passive forger, and a forger that is not passive
is called active when needed. It is important to realize that the forgers thus
defined are successful without regard to the quality or meaningfulness of the
forged message. To emphasize this limiting aspect, such forgers are called
existential forgers. A selective forger, by contrast, lacks this limitation and
is formally defined as follows.

Definition II.5 (Selective Forger). Let U be a probabilistic algorithm, with
no input except randomness, and output of a message. A selective forger is a
forger F with the following differences. The input of a public key also includes
a message. The selective forgery game for a selective forger F of signature
scheme (K,G, V), with message selection oracle U , is the forgery game with
the following differences. In Round 0, U is called to generate a message m0,
which is given as input to F . The forger wins the game in Round i, only if
m0 = mi+1 is satisfied. A selective forger F is a (p,Q, t, U)-forger of signature
scheme (K,G, V).

A selective forger can forge any message from a certain class of messages.
A selective forger is generally probably much more harmful than an existential
forger, depending on the distribution of messages given by U . In particular,
if U generates meaningful messages, then the selective forger can forge any
meaningful message it wants.

Generally, with p and t the same, a passive forger is more harmful than
an active one, and a selective forger is more harmful than an existential one.
Generally, passiveness and selectiveness are qualitative attributes of forgers,
and their importance depends on the usage of the signatures.

Definition II.6 (Signature Security). A signature scheme is (p,Q, t)-secure
against existential forgery if there exists no (p,Q, t)-forger.

A signature scheme is (p,Q, t, U)-secure against selective forgery if there
exists no (p,Q, t, U)-selective-forger.

II.2.2. Necessary Conditions. The conditions in Table II.1 on the com-
ponents of ECDSA can be shown to be necessary for the security of ECDSA
because otherwise forgery would be possible. These conditions are defined
below together with some of the reductions to attacks that prove their neces-
sity.

Intractable Semi-Logarithm : For a conversion function f and group
〈G〉, a semi-logarithm of a group element P to the base G is a pair of integers

II.2. DEFINITIONS AND CONDITIONS 25

Table II.1. Necessary Conditions with Associated Forgeries

Component Condition Forgery

Group (and Conver-
sion Function)

Intractable Discrete Loga-
rithm

Passive Selective

Intractable Semi-Logarithm Passive Selective
Conversion Function Almost Bijective Passive Selective
Random Number
Generator

Arithmetically Unbiased Active Selective

Range Checking Check r
= 0 Passive Selective
Hash Function Rarely Zero Passive Selective

Zero Resistant Passive Existential
1st-Preimage Resistant Passive Existential
2nd-Preimage Resistant Active Selective
Collision Resistant Active Existential

(t, u) such that

t = f([u−1](G+ [t]P)).

Finding semi-logarithms needs to be intractable or else forgeries can be found
by setting P = [H(m)−1]Y , where Y is the public key, for then (t,H(m)u) is
a forgery of message m. The resulting forgery is both passive and selective,
which is the most severe type. Therefore, the intractability of the semi-
logarithm problem is a necessary condition for the security of ECDSA.

A semi-logarithm may be regarded as an ECDSA signature of some mes-
sage whose hash is one (without actually supplying the message). Thus, at
first glance, the semi-logarithm might not seem to be significantly different
than the forging of a ECDSA signature. But semi-logarithms do not depend
on a hash function, unlike ECDSA. Therefore, the semi-logarithm problem is
formally different from the problem of forging of a ECDSA signature. One
reason for considering the semi-logarithm problem is to isolate the role of the
hash function and the group in analyzing the security of the ECDSA.

Intractable Discrete Logarithm : For a group 〈G〉, the (discrete) loga-
rithm of a group element P to the base G is the integer x such that P = [x]G.
Finding the discrete logarithm of P allows one to find its semi-logarithm, via

(t, u) =
(
f([k]G), k−1(1 + td)

)
,

therefore allowing the forging of ECDSA signatures. The forger is both pas-
sive and selective. Indeed, this forger recovers the elliptic curve private key,
which might potentially result in yet greater damage than mere forgery, if,
say, the key is used for other purposes.

26 II. ON THE PROVABLE SECURITY OF ECDSA

Almost-Bijective Conversion Function : The conversion function f is
α-clustered if some element t∗ of its range has a large preimage of size at
least α times the domain size. If f is not α-clustered, then it is said to be
almost bijective of strength 1/α. An α-clustered conversion function means
that random (t∗, u) are semi-logarithms with probability at least α. Thus, an
average of about 1/α tries are needed to obtain a semi-logarithm.

Unguessable and Arithmetically Unbiased Private Key Generation :
Clearly, if the generator for the static private key x is guessable, in the sense
that an adversary can guess its values fairly easily, then passive selective
forgery is possible. Guessability, sometimes called min-entropy, is measured
by the maximum probability of any value of x. If the ephemeral private key
k is guessable, then active selective forgery is possible, since the private key
x is determined from k and a signature (r, s) by the formula x = r−1(ks −
H(m)) (mod q).

Furthermore, a series of attacks has been published that show if the ran-
dom number generator used for k exhibits certain types of bias, the private
key x can be obtained. If k ever repeats for different messages m and m′, then
the private key may be solved from the two respective signatures (r, s) and
(r′, s′) by x = (se′−s′e)/(s′r−sr′) (mod q). Bellare, Goldwasser and Miccian-
cio [21] showed that if a linear congruential random number generator were
used for k, then the private key could also be found; Smart and Howgrave-
Graham [174] and Nguyen and Shparlinski [261, 262] both showed that if
bits of k are known, due to partial key exposure, then x can be found using
lattice theory; and Bleichenbacher [31] showed that if k is biased towards a
certain interval, then x can be recovered with a larger but feasible amount of
work. Such biases result in active selective forgery, because the forger uses a
signing oracle to find the private key and can then sign any message it wants.

Properly Implemented Range Checking : If an implementation does
not check that r
= 0, then the following forgery is possible. The forger needs
to select the EC domain parameters in such a way that G = [t]Z, where Z is
a group element satisfying f(Z) = 0 and t ∈ Z. For the ECDSA conversion
function, such points Z, if they exist, can be found as follows. Let x have
the binary representation of qu for some integer u and try to solve for the
appropriate y such that (x, y) lies on the curve (here x is not to be confused
with the private key). Repeat until a point is found or until all legal values
of x are exhausted. Most of the NIST recommended curves have such points
Z. The forged signature is (0, t−1H(m)).

This forgery is the severest kind: passive selective. Two limitations mit-
igate its severity, however. First, an implementation error is needed. Hence,
non-repudiation is not totally defeated because a trusted third party can use
a correct implementation to resolve the signature validity. Accordingly, the

II.2. DEFINITIONS AND CONDITIONS 27

owner of the key Y should never be held liable for such signatures. The sec-
ond limitation is that the forgery is a domain parameter attack. Usually, a
trusted third-party authority generates and distributes domain parameters,
including G. The attack presumes a corrupt authority. Note that a verifi-
ably random generation of G, which the revision of [ANSI X9.62] will allow,
prevents this attack without relying on the implementer to check that r
= 0.

Rarely Zero Hash : If the effective hash function, which is the raw hash
truncated and reduced modulo q, has probability p of equalling 0, then passive
selective forgery is possible, as follows. The forger chooses signature (r, s) =
(f([t]Y), t−1r), for some t ∈ Z. If the selected message is a zero of the hash,
which happens with probability p, then the forged signature is valid because

f([s−1]([H(m)]G+ [r]Y)) = f([tr−1]([0]G+ [r]Y)) = f([t]Y) = r.

This and other conditions on the hash function refer to the effective hash
function. This qualification is important for the security analysis because the
reduction modulo q might cause the condition to fail if q was chosen by an
adversary. If the adversary chose the elliptic curve domain parameters, then
it is possible that q was chosen as the output, or the difference between two
outputs, of the unreduced hash function, which would permit the adversary
to find a zero or a collision in the effective (reduced) hash function.

Notice that clustering at values other than zero does not necessarily lead to
a passive existential forgery. It can lead to other kind of attacks, as outlined
below, because clustering at certain values can lead to weakened second-
preimage resistance of the hash function.

Zero-Resistant Hash : A zero finder of a hash function is a probabilistic
algorithm that finds a message m such that H(m) = 0. A hash function
is zero-resistant if no zero finder exists. A passive existential forger can be
constructed from a zero finder in a similar manner to above. The forger
chooses signature (r, s) = (f([t]Y), t−1r) and, using the zero finder, finds a
message m such that H(m) = 0. Then (r, s) is a valid signature on m. Note
that the forger is only existential because the forger has no control on the m
found by the zero finder.

A zero-resistant hash function is clearly rarely zero. The converse is false:
a rarely zero hash function can fail to be zero-resistant. Note that this strict
separation of the properties is also reflected in the types of forgery they re-
late to, so therefore it is important to consider both properties in a security
analysis.

A special case of this attack was first described by Vaudenay [331] as a
domain parameter attack on DSA, where the zero is found by choosing q for
m such that H(m) ≡ 0 (mod q).

28 II. ON THE PROVABLE SECURITY OF ECDSA

First-Preimage Resistant (One-Way) Hash : An inverter of a hash
function is a probabilistic algorithm that, if given a random hash value e,
finds a message m such that H(m) = e. An inverter can be used to build a
passive existential forger using a technique similar to that for a zero finder.
The forged signature is (r, s) = (f([g]G+[y]Y), ry−1), and the forged message
m is a preimage of e = gs. The forger is existential, not selective, because
the forger has no control on the m found by the inverter.

If the hash function does not have an inverter, it is preimage-resistant .
Such a hash is also known as a one-way hash function. We have just shown
that for the signature scheme to be secure, the effective hash must be one-way.

Preimage and zero-resistance are essentially independent properties of
hashes. In particular, both properties are necessary to resist passive exis-
tential forgery.

Second-Preimage Resistant Hash : A second-preimage finder of a hash
function is a probabilistic algorithm that, if given a random message m from
a distribution U , a second message m′ is found such that H(m′) = H(m). A
second-preimage finder can be used to build an active selective forger. The
forger obtains a signature (r, s) of m′ from the signing oracle and then outputs
(r, s) as a forgery of m. The forger is selective because it can forge a challenge
message m, and it is active because it requires access to a signing oracle.

Note that a second-preimage finder can be constructed from a hash-
inverter provided that the distribution U has an image distribution H(U)
that covers most of the range of H with sufficiently high probability. This is
implied by results noted by Stinson [321]. Therefore, under these conditions,
a second-preimage finder also implies the existence of passive selective forger.

Collision-Resistant (One-Way) Hash : A collision finder of a hash
function is a probabilistic algorithm that finds two messages m and m′ such
that H(m′) = H(m). A collision finder results in an active existential forger
as follows. The forger obtains a signature (r, s) of m′ from the signing oracle
and then outputs (r, s) as a forgery of m, where m and m′ have been obtained
from the collision finder. This forger is existential because it has no control
over the messages m and m′ found by the collision finder, and it is active
because it queries a signing oracle.

Note that a collision finder can be constructed from a second-preimage
finder, provided that the distribution U is easy to sample. Also, generally, a
collision finder can be constructed from a zero finder, unless the zero finder
always outputs one particular zero of the hash function.

II.2.3. Extra Conditions and Models for Sufficiency. The conditions
and models discussed below are used in the hypotheses of various provable
security results for ECDSA. These conditions and models are not known to
be necessary for the security of ECDSA. As such, they represent the other

II.2. DEFINITIONS AND CONDITIONS 29

end of the gap in what is known about the security of ECDSA. Unlike for the
necessary conditions discussed above, it is plausible to argue that these extra
conditions and models are so strong that the security results have little value.
Indeed, the ideal would be to not use any conditions or models other than the
known necessary conditions. For each condition or model below, one could
try to prove the condition necessary, or to find a better proof that relies on
strictly weaker conditions or models.

Almost-Invertible Conversion Function : A conversion function f is
almost-invertible if it has an almost inverse g, which is an efficient prob-
abilistic algorithm that behaves like a inverse function to f in the follow-
ing sense. The algorithm g takes input z ∈R Z/qZ and generates output
P ∈ 〈G〉 ∪ {Invalid} such that:

1. One has P
= Invalid with probability at least 1
10

as assessed over ran-
dom choices made for z and g.

2. If P
= Invalid, then f(P) = z.
3. If independently random inputs z ∈R Z/qZ are repeatedly given to g

until the output P
= Invalid, the resulting probability distribution of
such P is indistinguishable from the distribution of random P ∈R 〈G〉.

In other words, g will successfully find a preimage of its input at least one time
in ten, and, furthermore, the resulting preimage has no (computationally)
detectable bias.

Clearly almost-invertibility implies almost-bijectivity. In particular, it is
a strict strengthening of a necessary condition. When used as part of the
hypothesis of a provable security result, it implies this particular necessary
condition, almost-bijectivity.

Adaptive Semi-Logarithm Resistance : For a conversion function f ,
group 〈G〉, and e ∈ Z/qZ with e
= 1, an e-shifted semi-logarithm of a group
element P to the base G is a pair of integers (t, u) such that t = f([u−1]([e]G+
[t]P)). The adaptive semi-logarithm problem is to find a semi-logarithm of a
point P to the base G given access to an oracle for e-shifted semi-logarithms.
Adaptive semi-logarithm resistance means that the adaptive semi-logarithm
problem is intractable.

The adaptive semi-logarithm resembles an active forgery of ECDSA, ex-
cept that no hash functions are involved. The necessity of adaptive semi-
logarithm resistance has not yet been established. Clearly, adaptive semi-
logarithm resistance is a strengthening of semi-logarithm resistance, a known
necessary condition.

Pseudo-Random Random Number Generator : The security proofs
generally assume that the static key x and the ephemeral private keys k, if

30 II. ON THE PROVABLE SECURITY OF ECDSA

any, are generated uniformly and independently at random from the private
key space Z/qZ∗.

In practice, this means that the private keys can be generated with a
pseudo-random number generator, which is something whose output is indis-
tinguishable from private keys generated truly randomly as above. Indeed,
if the schemes were broken when instantiated with such a pseudo-random
number generator, then the pseudo-random number generator can be distin-
guished from a true random number generator as follows. Run the forgery
attack on ECDSA instantiated by the challenge number generator. If the
forgery attack succeeds, then the challenge is likely to come from a pseudo-
random generator; if the forgery attack fails, then the challenge number gen-
erator is likely to be truly random.

Obviously, when considering passive forgery, the generator for ephemeral
keys is never invoked, so there is no condition on how k is generated. The
generation of x is of course still vital.

If the signatures are generated in a deterministic mode, meaning that k
is a secret deterministic function of the message being signed, then pseudo-
randomness only applies on a per-message basis, not a per-signature basis.
Some of the proofs really only apply in this deterministic mode.

Uniform (Smooth) Hash Function : Let H : {0, 1}∗ → Z/qZ be the
effective hash function. Let U ⊆ {0, 1}∗ be such that

1. For m ∈R U , e = H(m) can be efficiently generated.
2. For each e ∈ Z/qZ, the set Pe = h−1(e)∩U is sufficiently large so that,

even if Pe is known, the probability 1/|Pe| is sufficiently small to make
guessing a randomly selected secret element of Pe infeasible.

Let b ∈R {1, 2}. A probabilistic algorithm Dh is an (εD, τD, U)-distinguisher
for h if Dh accepts as input e ∈R Z/qZ if b = 1 or e = H(m) for m ∈R U
if b = 2, and if Dh outputs, in running-time at most τD a guess d ∈ {1, 2}.
Further, d = b with probability at least 1

2
+ εD assessed over the random

choices of b, e and Dh. If no such Dh exists, then h is uniform or smooth of
strength (εD, τD, U).

Uniformity (or smoothness) can be exhibited by some very simple “hash”
functions that are neither collision resistant nor one-way. For example, the
function

H :

{
{0, 1}∗ → Z/qZ,
x �→ x̄ (mod q),

where x̄ is the integer represented by the bit-string x, is uniform for U = {x :
0 ≤ x < q2}. Thus, it is highly plausible that the effective hash function for
ECDSA is also very uniform for an appropriate choice of U if H is built from
a cryptographic hash function.

A uniform, collision resistant hash is one-way. To see this directly, sup-
pose there was an inverter for a uniform hash function H. Select a random

II.2. DEFINITIONS AND CONDITIONS 31

message m ∈R U and compute e = H(m). Give e to the hash-inverter.
The hash-inverter outputs some message m′, such that H(m′) = e = H(m).
Thus, (m′,m) is a collision, unless m′ = m. But it is information-theoretically
infeasible to find m from e alone, so m′
= m and a collision is found. More-
over, because e is indistinguishable from random elements in Z/qZ, the hash-
inverter’s probability cannot be affected by the choice of e or else it would
be a distinguisher. Thus the collision finder has the same success rate and
efficiency as the hash-inverter. Thus, when our security results use collision
resistance and uniformity as hypotheses, one-wayness is an implicit additional
hypothesis [321].

Ideal Group Model : The ideal group model, or generic (group) model
was introduced into cryptography by Shoup [303]. A version of this model
was applied to ECDSA by Brown [52]. In the ideal group model, the group
operation is accessed only via an oracle, which accepts queries of two elements
that will be subtracted. The representations of group elements are random
elements of a subset. The representations may be thought of as encryptions.
Any practically implementable group is not an ideal group, since a practical
implementation must perform group operations without invoking an oracle.

When the group is modelled as ideal, the adversary’s queries to and re-
sponses from the oracle can be analyzed in the following way. Some queries
will be group elements that have not occurred in earlier queries or responses.
These elements can be regarded as independent. All other elements can be
regarded as integer combinations of the independent elements. So long as
distinct integer combinations represent distinct elements, the oracle has not
revealed any relations between the independent elements; otherwise, a de-
pendency will have been discovered. Since the independent elements are
effectively random elements in the group, it is possible to formulate the prob-
ability of a dependency being discovered, and it is small if the number of
queries is small. By convention, the base point G and public key Y are in-
dependent. If the number of queries is small, then the probability that a
dependency such as Y = [x]G, equivalent to finding the private key, could
be discovered is small. When a group is modelled as ideal, it is possible to
prove, as Shoup did [303], that certain problems related to the group (such
as the discrete logarithm problem) cannot be solved with less than a certain
number of queries.

Algorithms to solve problems in a group that work for any group, in-
cluding an ideal group, are called generic. Conversely, algorithms to solve
problems in a specific group that do not work for other groups, including
an ideal group, are called specific. Generic algorithms for solving the dis-
crete logarithm problem cannot be much faster than the square root of the
largest prime factor in group order [303], whereas specific algorithms might
potentially work faster for particular groups. A provable security result in the

32 II. ON THE PROVABLE SECURITY OF ECDSA

generic group model only protects against adversaries that are generic with
respect to the group. Adversaries to ECDSA specific to elliptic curve groups
are thus not ruled out.

More theoretically, Dent [100] has shown it is also possible that a given
cryptographic scheme with a provable security result in the ideal group model
has the property that there exists a successful adversary against the scheme,
for all efficiently implementable groups. This adversary is not a generic group
adversary because it is limited to efficiently implementable groups. This
limitation, though, involves the creation of contrived schemes designed to
allow such adversaries, and thus it is generally believed to be only a theoretical
limitation.

Ideal Hash Model : Also known as the random oracle model or ideal
hash paradigm, the ideal hash model is analogous to the ideal group model.
More precisely, it models the hash function by a random oracle function. Any
security proof in the ideal hash model should be regarded as only a validation
or argument of security with respect to the design of the scheme, irrespective
of the hash function. Moreover, it suffers from the same severe limitations as
the ideal group model, as shown by Canetti, Goldreich and Halevi [54].

II.3. Provable Security Results

The following provable security results are in the opposite direction of the
results about the necessity of certain conditions on the primitive components
of ECDSA.

Theorem II.7. If the effective hash function is rarely zero and the semi-
logarithm resistance holds for the group and conversion function, then ECDSA
has passive selective unforgeability.

The conditions in the hypothesis of this result are also necessary condi-
tions. The passive selective unforgeability of ECDSA is equivalent to these
conditions. The main way this result could be improved is to determine
whether semi-logarithm resistance is equivalent to or strictly weaker than
discrete logarithm resistance.

Theorem II.8. If the hash function is zero-resistant and weakly collision re-
sistant (second-preimage resistant), the conversion function and group are
together adaptive semi-logarithm resistant, and the random number generator
is pseudo-random (indistinguishable from random), then ECDSA has active
selective unforgeability.

Theorem II.9. If the hash function is zero-resistant and one-way, the con-
version function is almost invertible, and the group is modelled as ideal (i.e.,
as a generic group), then ECDSA has passive existential unforgeability.

II.4. PROOF SKETCHES 33

Another result for passive existential unforgeability is a special case of the
next result below for active existential unforgeability. The conditions of this
special case are no stronger or weaker than the conditions of the result above.

Theorem II.10. If the hash function is idealized as a random oracle, then
semi-logarithm resistance implies that ECDSA has active existential unforge-
ability.

Because semi-logarithm resistance is a necessary condition, the result is
tight — modulo the random oracle model for the hash function. Using a
random oracle allows us to weaken the adaptive semi-logarithm resistance
used in the result for active selective unforgeability.

Theorem II.11. If the elliptic curve group is modelled as a generic group,
then almost invertibility of the conversion function f , and smoothness, colli-
sion resistance and zero resistance of the hash function h together imply that
ECDSA has active existential unforgeability.

Results in both directions are summarized in Table II.2, which should
help illustrate the gap between the various necessary and sufficient conditions.
The first column indicates the type of security in terms of passiveness and
selectiveness. The second column gives the direction of the result; ⇒ to
show that security implies certain conditions and ⇐ to show that security is
implied by certain conditions. The remaining columns are for the underlying
components of ECDSA. Rows with ⇒ list all the conditions necessary, and
rows with ⇐ list all the conditions (or models) that together are sufficient.

Notice that the strongest unforgeability type (corresponding to the least
harmful, i.e., an active existential forger) has two results complementary in
the sense of using different idealized models, one idealizing the hash (ROM)
and the other idealizing the group (GEN). The only other security type that
uses an idealized model (GEN) is the passive existential. The proof of active
existential unforgeability using the idealized hash model specializes to passive
existential unforgeability, so this type of security also has complementary
idealizations in provable security results.

II.4. Proof Sketches

II.4.1. Passive Selective Unforgeability. Suppose F is a passive selec-
tive forger and the hash function H is rarely zero. Then we will find a
semi-logarithm to the base G at a random challenge point P as follows. Run
F on a random selected message m and public key Y = [H(m)]P to get a
forgery (r, s). Then (r,H(m)−1s) is the desired semi-logarithm.

II.4.2. Active Selective Unforgeability. Suppose F is an active selective
forger. Then we will either solve the adaptive semi-logarithm problem to the
base G at a random challenge point P , or find a zero or second preimage
of a random challenge message m for the hash function H, as follows. Run

34 II. ON THE PROVABLE SECURITY OF ECDSA

Table II.2. Summary of All Results

Security h f 〈G〉 k

SEL PAS ⇒ RZ SLR —
⇐ RZ SLR —

SEL ACT ⇒ ZFR+WCR SLR NAB
⇐ ZFR+WCR ASLR PR

EXI PAS ⇒ ZFR+OW SLR —
⇐ ZFR+OW AI GEN —

EXI ACT ⇒ ZFR+CR SLR NAB
⇐ ROM SLR PR
⇐ ZFR+CR+S AI GEN PR

PAS Passive SLR Semi-logarithm resistant
ACT Active ZFR Zero-resistant
SEL Selective CR Collision-resistant
EXI Existential GEN Generic group
OW One-way ASLR Adaptive semi-logarithm resistant
RZ Rarely zero ROM Random oracle hash
PR Pseudo-random AI Almost invertible
S Smooth WCR Weakly collision-resistant

F on a random selected message m and public key Y = [H(m)]P . Answer
signature queries mi
= m by querying the shifted semi-logarithm oracle on
ei = H(m)−1H(mi) if ei
= 1. If some ei = 1, then stop, having found a second
preimage mi of m. Otherwise, F produces a forgery (r, s) on the message m.
Then (r,H(m)−1s) is the desired semi-logarithm.

II.4.3. Passive Existential Unforgeability. Suppose F is a passive exis-
tential forger. Then we will be able to invert the hash function H at a random
challenge e ∈ Z/qZ as follows. Run F against a modified generic group ora-
cle. The generic group oracle is modified in that a random preselected oracle
response is designated to take the value f−1(ey/g), where g and y are the
integers such that the forger can observe that the output of the group query
is [g]G + [y]Y (queries not of this form are not selected for modification).
Because e is random and f is almost-invertible, the modified response will be
effectively random in Z/qZ, and therefore the success rate of F will remain
unaffected. If Q is the number of group queries used by F , then 1/Q is the
chance that message forgery will satisfy s−1H(m) = g and s−1r = y, and in
particular, m is a preimage of e.

II.4.4. Active Existential Unforgeability with Idealized Hash. Sup-
pose F is an active existential forger. Then we will use F to find the semi-
logarithm to the base G of a challenge point P , as follows. Run F against

II.4. PROOF SKETCHES 35

a random oracle hash, modified as follows. A random preselected oracle re-
sponse is designated to take a value e chosen at random from Z/qZ. Because
e is random, the modified response will be effectively random in Z/qZ, and
therefore the success rate of F will remain unaffected. Run the active exis-
tential forger with challenge public key Y = [e]P . If h is the number of hash
queries used by F , then 1/h is the chance that message forgery will satisfy
H(m) = e, in which case we have the semi-logarithm (r, s/e), where (r, s) is
the signature.

In order to handle signature queries, a further modification to the random
oracle hash is used. To answer signature queries for a message mi, just choose
a random pair (xi, yi) ∈ Z2

q and compute ri = f([xi]G + [yi]Y), si = ri/yi

and ei = xiri/yi. If the forger queries mi to the hash oracle later in the
run, the oracle responds with ei. To ensure that signature queries can be
answered after hash queries, answer every hash query mi using the method
above. The hash query responses ei are effectively random and therefore the
random oracle hash is indistinguishable from a true random oracle, from the
forger’s perspective.

Nevertheless, the modified query responses do have a distinguishable im-
pact on the signature query responses because these become deterministic.
This phenomenon also applies to the forking lemma approach. Thus, ar-
guably this security proof only appears to apply to the deterministic mode
of ECDSA. Indeed, intuitive randomized signatures do potentially leak more
information about the private key than deterministic signatures, because an
adversary might somehow be able to exploit multiple different signatures of
a single message to compute information about the private key.

II.4.5. Active Existential Unforgeability with Idealized Group. Sup-
pose that F is an active existential forger, that the hash function H is zero
resistant and smooth, and that the conversion function is almost invertible.
We will use F to find a collision in the hash function H. Run F against a
modified generic group oracle. The generic group oracle is modified in that
each oracle response is designated to take the value f−1(H(m̃iy/g)), where
m̃i is chosen at random from U where g and y are the integers such that the
forger can observe that the output of the group query is [g]G+ [y]Y (queries
not of this form are not selected for modification). Because H(m̃i) is indis-
tinguishable from random and f is almost-invertible, the modified response
will be effectively random in Z/qZ, and therefore the success rate of F will
remain unaffected. Furthermore, because H is smooth, F will not be able to
guess m̃i. Therefore the forger’s signature queries mi and forged message m
are distinct from the messages m̃i. In order for the signature to verify with
chance better than random, it would need to have one of the queries involving
m̃i and therefore H(m) = H(m̃i), which is the collision desired.

36 II. ON THE PROVABLE SECURITY OF ECDSA

II.5. Further Discussion

II.5.1. Semi-Logarithms Versus Discrete Logarithms. The discrete
logarithm problem is traditionally considered the primary basis for the secu-
rity of ECDSA. But the semi-logarithm problem is considered in this chapter
because it is not obvious whether it is equivalent to or weaker than the discrete
logarithm. The security of ECDSA depends on this potentially weaker prob-
lem. The security of ECDSA will be clarified once the relationship between
these two problems is established.

If it is ever proved that ECDSA is secure if the elliptic curve discrete log-
arithm is intractable, then this would establish the equivalence of the elliptic
curve semi-logarithm and discerete logartihm problems. This is true even if
the security proof uses the random oracle model for the hash function. Also,
elliptic curve experts can study the equivalence of these two problems without
looking at ECDSA or hash functions.

II.5.2. Applying the Results to ECDSA Variants. Of course, a number
of variants of ECDSA are possible, and it is worthwhile to consider briefly
whether the results apply to these variants.

Hashing kG : One suggested variant of ECDSA includes the ephemeral
public key [k]G as part of the input to the message digesting hash function.
In the random oracle model idealizing for hash functions, this adds to the
provable security because the active existential unforgeability of ECDSA can
be proved relying on the discrete logarithm problem, not the semi-logarithm.
On the other hand, under different hypotheses this variation diminishes the
provable security, as follows. Some security proofs for ECDSA no longer
apply. The proof of active selective unforgeability that idealizes neither hash
nor group, for example, does not apply. The obstacle to these proof techniques
seems to result from the difficulty of separating the roles of the group and
the hash in the variant. Furthermore, this also exemplifies the principle that
design complexity generally hinders provable security.

DSA and One-Way Conversion Functions : Almost-invertibility does
not hold for the DSA conversion function. Indeed, in DSA, the conversion
function is probably a good one-way function, which is quite the opposite
of almost-invertible. Therefore, the provable security results using almost-
invertibility of the conversion function do not apply well to DSA. Therefore,
DSA and ECDSA have different provable security properties. In particular,
they are not as analogous as at first they seem.

One-wayness, however, would intuitively seem to add security. The situa-
tion seems paradoxical. One explanation is that almost-invertibile means the
function is similar to the trivial identity function, and the identity function

II.5. FURTHER DISCUSSION 37

is very simple to analyze. A more complex design might be more secure, al-
though it could also be more complex to analyze. With added complexity, one
can never discount the possible appearance of an attack. For DSA, it’s possi-
ble that somebody could attack the conversion function. For example, DSA
could be insecure because the conversion function used is not almost-bijective
or for some other reason. One could assume that the DSA conversion function
is almost-bijective and try to find a provable security result, but nobody has
done this yet.

The intuition that a one-way conversion function imparts some kind of se-
curity attribute is not entirely ungrounded. Almost-invertibility means that
the public key can be recovered from the message and signature (with rea-
sonable probability). A one-way conversion function seems to prevent this.
This difference does not have an impact on GMR security. It could have
other impacts such as anonymity (hiding the signer’s identity) or efficiency
(omitting the public key). Hiding the public key is not a stated objective of
ECDSA.

Non-Pseuodrandom k : No result has shown that k needs to be indistin-
guishable from a uniform random integer in [1, q − 1]. Indeed, since ECDSA
is not meant to provide confidentiality, the need for indistinguishability is
not clear. Intuitively, a weaker condition than pseudo-randomness ought to
be sufficient for ECDSA. Certainly, the private keys must be unguessable
and arithmetically unbiased, because of known attacks, but these are weaker
conditions than pseudo-randomness.

To see why pseudo-randomness might not be necessary for k, consider
the following. Choose truly random private keys k subject to the condition
that their hashes display a given pattern. Such k fail to be pseudo-random
because they can be distinguished by applying the hash function, yet they
do not seem to be weak. They are unlikely to have an attackable arithmetic
bias. They may have enough entropy to be unguessable.

Also, some of the results do not involve a signing oracle and therefore do
not require the ephemeral private keys k to be generated pseudo-randomly.

Deterministic k : In some of the proofs, the signing oracle value has
the property that the same message query always gives the same signature
response. Technically, this means the proof is only applicable to the deter-
ministic mode of ECDSA signing, where k is chosen as a secret deterministic
function of the message m being signed. An intuitive explanation that the
deterministic mode is more secure is that it reveals less signatures and theref-
ere less information about the private key. A very cautious implementation
of ECDSA could use the deterministic mode so that these provable security
results apply.

38 II. ON THE PROVABLE SECURITY OF ECDSA

II.5.3. Attack-Like Attributes of ECDSA. Despite the proofs of GMR
security of ECDSA, it might be argued that GMR security itself is not the
“right” definition. Logically speaking, of course, a definition, by definition,
cannot be right or wrong. Nonetheless, cryptology is a practical science, not
a purely mathematical one, and therefore definitions ought to be tailored to
pertinent concerns, not purely arbitrary ones. With this perspective, some al-
ternative definitions of security for signatures in which ECDSA can be deemed
“insecure” are explored and assessed for their pertinence.

Many of the attributes that we explore hinge on the particular conversion
function f used in ECDSA. Altering f to avoid these attributes could po-
tentially do more harm than good, diminishing the reputational security of
ECDSA and the provable security of ECDSA. Accordingly, addressing these
attributes is best handled through other means.

Signature Non-Anomyity : Given a valid ECDSA signature (r, s) on
message m, the associated public key Y can be recovered, as follows. (Note
that this does not violate the GMR definition of signature security.) Solve
for the public key as Y = [r−1]([s]R − [H(m)]G), where R is selected from
f−1(r), the set of points in the preimage of r.

Self-Signed Signatures : A signature of a message is self-signed if the
message contains the signature. A self-signed ECDSA signature can be gen-
erated as follows. Choose random k and s. Compute r = f([k]G). Form the
message m containing the signature (r, s). Compute e = H(m). Now solve
for a private key x that makes this signature valid, which can be found as
x = (±sk − e)/r (mod q).

This attribute does not violate GMR security. Indeed, it may be a useful
attribute in the sense that it can be used to ensure that the private key was
not stolen. It may also be useful for server-assisted key generation, where a
server adds entropy to the message m so the signer’s private key x has enough
entropy. Additional modifications to the self-signed siganture verification are
necessary, however, if the server cannot be trusted and the signer’s entropy
for k is weak.

Unknown Private Key : A valid ECDSA signature can be generated
without knowing the private key and yet not violate the GMR definition
of signature security, as follows. This can be done for any elliptic curve
domain parameters and any message m, by first generating a random value
of the signature (r, s) and then solving for the public key as Y = [r−1]([s]R−
[H(m)]G), where R ∈ f−1(r), the set of points in the preimage of r. If
f−1(r) = {}, then just try another value of r.

II.5. FURTHER DISCUSSION 39

This attribute does not defeat GMR security because it does not attack
a target public key. This “attack” could be thwarted if f were made one-
way, but then the provable security offered by the proofs assuming almost-
invertibility of f would be lost.

Invalid Public Key : An ECDSA signature that can be verified can be
generated for as many messages as desired after committing beforehand to
a public key Y , as follows. Commit to an invalid public key Y of small
order a (for this work, the verifier is to use Y without validating it). Given
message m, generate random s and t. Compute r = f([H(m)]G + [t]Y). If
r = t (mod a), then (r, s) will be valid.

This attribute does not defeat GMR security because it is the adversary
that chooses the public key, as in the previous example, and moreover, the
public key is invalid. Notwithstanding that this attribute is not a real attack
against a signer, the verifier is well advized to validate all public keys, because
it would be rather foolish to rely on invalid public keys.

Duplicate Signatures : An ECDSA signature that is valid for two given
messages m1 and m2 can be generated, as follows. Choose random k, then
compute R = [k]G, r = f(R), x = (2r)−1(H(m1)+H(m2)) (mod q) and Y =
[x]G and s = k−1(H(m1) + xr) (mod q). This works because f(P) = f(−P).

This attribute of ECDSA does not defeat GMR security because it requires
generation of the public key, as in both the previous examples. One can argue
duplicate signatures qualify as an “attack” defeating non-repudiation. Then
one would conclude that GMR security does not lead to non-repudiation.

On the other hand, to repudiate a signature of a message m2, on the
grounds that it is a duplicate, is to argue that signer intended to sign m1 and
that some adversary discovered the duplication withm2. If an adversary could
do this, then GMR security would be defeated, because the signer did not
sign m2. So the adversary’s repudiation argument reduces to claiming that
ECDSA is not GMR-secure. Therefore the break between GMR security and
non-repudiation has not been broken.

This particular duplicate signature attack is of even less of a concern than
a general duplicate signature attack, because it exposes the private key as
x = (2r)−1(H(m1) + H(m2)) (mod q). The hypothetical third-party forger
could therefore compute the private key and discard the duplicate signature
in favour of full-fledged forgeries, drastically weakening the credibility of the
alleged repudiator. Also, exposure of the private key almost certainly shows
that the signer intentionally created the private key solely in order to fraud-
ulently repudiate the signature.

Malleable Signatures : A valid ECDSA signature that was never gener-
ated by the signer with public key Y can be generated given any message m,

40 II. ON THE PROVABLE SECURITY OF ECDSA

as follows. Get the signer to generate a signature (r, s) of the message m, and
then generate (r,−s (mod q)) as the desired signature. This works because
f(P) = f(−P), as in the previous example.

This attribute does not defeat GMR security because the message m has
already been signed by the signer. A forgery, under the GMR definition, must
be of a message that was never signed, which excluces m.

This attribute has been called malleability, but perhaps benign malleabil-
ity is more apt, because both terms have precedents in the context of en-
cryption schemes, and this attribute is much more akin to the benign variety,
where the malleability does not impinge on the message itself but merely to
the cryptographic data. Arguably, benign malleability is always present in
that a given piece of data often has multiple encodings, and any non-malleable
scheme can be transformed into a benignly malleable one by applying such
an encoding.

CHAPTER III

Proofs of Security for ECIES

A.W. Dent

Provable security in an encryption setting is very similar to provable se-
curity in a digital signature setting (see Chapter II). In both cases we aim to
make meaningful, mathematically rigorous statements about the security of
cryptosystems and provide proofs that these statements are correct.

Generally, a security proof attempts to show how difficult “breaking” a
cryptographic scheme is, in terms of how difficult it is to solve some math-
ematical problem. If we can show that the difference between breaking the
cryptographic scheme and solving the underlying mathematical problem is
only small, and we assume that solving the underlying problem is difficult
to do, then we can have some measure of assurance in the security of the
cryptographic scheme. The main difference between proving security in the
signature setting and in the encryption setting is deciding what is meant by
“breaking” the scheme.

Before we launch into the complicated and arcane world of provable se-
curity, it is useful to take a moment to consider its history. The field of
provable security for public-key encryption schemes has a history almost as
long as public-key encryption itself. The most significant early papers on
provable security are by Rabin in 1979 [279] and Goldwasser and Micali in
1984 [149]. These papers proposed schemes with provable security properties
based on the properties of modular arithmetic – obviously this was too early
for elliptic curves! For many years after this, provable security remained the
province of the academic. It seemed that most practical cryptosystems were
too complicated for a formal proof of security to be found. The schemes that
did have proofs of security were often thousands of times slower than the ones
that were used in practice. It took two revolutionary steps to bring provable
security back into the province of the practical cryptographer. The first in-
volved setting out the correct model for an attack. This was essentially done
by Rackoff and Simon in 1991 [280]. The second was the formalization of
the random oracle model by Bellare and Rogaway in 1993 [24]. The random
oracle model involves assuming that any hash functions are ideal, i.e., act as
totally random functions, and it allows for a much easier analysis of a scheme.

Throughout this chapter we will be considering the ECIES encryption
scheme; see Section I.4. ECIES provides a very good example of the advan-
tages and disadvantages of the provable security approach to cryptography.

41

42 III. PROOFS OF SECURITY FOR ECIES

The scheme was one of the first formalized versions of a hybrid encryption
scheme, that is, an asymmetric encryption scheme that uses both asymmetric
and symmetric cryptographic techniques. Essentially, ECIES uses an ellip-
tic curve Diffie–Hellman key transport to generate a random symmetric key,
which is used to encrypt and MAC a message.

The idea of hybrid encryption had been folklore amongst the crypto-
graphic community for years but had never been formalized. This led to some
weak implementations of the ideas (see, for example, the attack of Boneh,
Joux and Nguyen [41]). ECIES was introduced as a concrete example of a
hybrid encryption scheme, and it came with a security proof that guaranteed
that, providing the scheme was used in the right way, the scheme could not
be broken. On top of this, because the idea of hybrid encryption had been
known to the cryptographic community for so long, the scheme also had a
high level of reputational security. It is not surprising then that it quickly
found its way into many mainstream cryptographic products and standards.

III.1. Definitions and Preliminaries

III.1.1. Security for Encryption. To be able to make any meaningful
mathematical statements about the security of an encryption scheme, we
first have to be very clear about what constitutes an encryption scheme.

Definition III.1. A public-key encryption scheme is a triple of algorithms
(G, E ,D) where

• G is a probabilistic algorithm called the key generation algorithm. It
takes no input (except randomness) and outputs a key-pair (pk, sk).
Here pk is the public key and must be distributed to everyone who wishes
to use the encryption algorithm, and sk is the private key and should
only be made available to those parties who have permission to decrypt
messages.

• E is a probabilistic algorithm called the encryption algorithm. It takes
as input the public key pk and a message m drawn from some message
space M defined by the public key. It outputs a ciphertext C in some
ciphertext space C, also defined by the public key.

• D is a deterministic algorithm called the decryption algorithm. It takes
as input the private key sk and a ciphertext C from the ciphertext space
C and it returns either a message m ∈M or an error symbol ⊥.

A public-key encryption scheme is sound if for all valid key-pairs (pk, sk)
we have that D(E(m, pk), sk) = m for every message m ∈ M. If E is a
deterministic algorithm, then (G, E ,D) is said to be a deterministic encryption
scheme (even though G is still a probabilistic algorithm).

An attacker for a public-key encryption scheme is a pair of probabilistic
algorithms A = (A1,A2). The precise nature of the attacker depends upon
two factors: (1) what the attacker is trying to do, and (2) what access the

III.1. DEFINITIONS AND PRELIMINARIES 43

attacker has to the scheme. These days we only really consider attackers who
are trying to do one of two things: either an attacker is trying to invert a
ciphertext to find the message it represents (the one-way game) or they are
trying to tell which of two messages a ciphertext is the encryption of (the
indistinguishability game).

In both cases the attacker plays a game against a challenger. The chal-
lenger isn’t a real person or even a computer program, it is simply a conve-
nient way of describing the way in which the attacker’s inputs are constructed.
Take, for example, the one-way game. Here a challenger picks a message uni-
formly at random from the set M of all possible messages, encrypts it, and
gives the resulting ciphertext to the attacker to attempt to decrypt. In re-
ality the “challenger” does not exist – who would implement a cryptosystem
and include a program that just encrypts random messages for no appar-
ent purpose? – it is simply a convenient way for us to explain the precise
mathematical model that we used to assess the security of the scheme.

Definition III.2. The one-way (OW) game for an attacker A = (A1,A2)
consists of four major steps:

1. A challenger generates a random key-pair (pk, sk) by running the key
generation algorithm G.

2. The attacker runs A1 on the input pk. It returns some state informa-
tion s.

3. The challenger chooses a message m uniformly at random from the
message spaceM. It computes the challenge ciphertext C∗ = E(m, pk).

4. The attacker runs A2 on the input (C∗, pk, s). It returns a guess m′

for m.

The attacker wins the game if m′ = m.

The one-way game is a fairly weak notion of security. There are many
schemes that are secure against attackers playing the one-way game that are
still not secure enough to be used in practice. The indistinguishability game
is a much stronger notion of security.

In the indistinguishability game the attacker is asked to provide two mes-
sages (usually termed m0 and m1). The challenger picks one of these mes-
sages at random and encrypts it, giving the resulting ciphertext C∗ back to
the attacker. The attacker then has to guess which message the challenger
encrypted. This may initially seem to be quite easy for the attacker to do:
surely the attacker can just encrypt both of the messages and compare their
encryptions to C∗? Well, of course the attacker can do this but this may
not help. We must remember here that the encryption algorithm may be
probabilistic, which means that if the same message is encrypted twice we
are unlikely to get the same ciphertext both times, and knowing one encryp-
tion of a message may not help us recognise another encryption of the same
message.

44 III. PROOFS OF SECURITY FOR ECIES

Definition III.3. The indistinguishability (IND) game for an attacker A =
(A1,A2) consists of four major steps:

1. A challenger generates a random key-pair (pk, sk) by running the key
generation algorithm G.

2. The attacker runs A1 on the input pk. It returns two messages m0 and
m1, as well as some state information s.

3. The challenger chooses a bit σ ∈ {0, 1} uniformly at random. It com-
putes the challenge ciphertext C∗ = E(mσ, pk).

4. The attacker runs A2 on the input (C∗, pk, s). It returns a guess σ′ for
σ.

The attacker wins the game if σ′ = σ.
The advantage of the attacker A in playing the IND game is defined to be

AdvA = |Pr[σ′ = σ]− 1/2| .

The advantage of an attacker is a measure of how much better the at-
tacker A is than the attacker who simply guesses σ′ at random. An attacker
who guesses σ′ uniformly at random has a success probability of 1/2 and an
advantage of 0. It should be noted that some authors prefer to define the
advantage of an attacker to be twice this value so that it is nicely scaled as a
value between 0 and 1.

Another aspect that frequently causes some confusion is the state infor-
mation s. The state information s that A1 passes to A2 can contain any
information that may be of help to A2. This could include the messages m0

and m1 or information about the way in which A1 chose them, information
about the decryptions of certain messages or any other information that A1

thinks may be of use to A2 in winning the game. It is nothing mysterious,
it is simply a way of making sure that A2 knows what A1 was doing when it
chose m0 and m1.

The indistinguishability game is a strong notion of security. Suppose there
was some algorithm A that could, given a ciphertext, deduce whether the
decryption of that ciphertext would pass or fail some test T , the test T could
be something like whether the last bit of the message is 0 or 1, or whether
the sum of the bits in the message is even or odd. We could then construct
an attacker that could win the indistinguishability game by choosing the two
messages m0 and m1 such that m0 passes the test T and m1 fails the test T .
The attacker could then tell if the challenge ciphertext is an encryption of m0

or m1 by running the algorithm A to see if the decryption of the challenge
ciphertext would pass or fail the test T .

This means that if a cryptosystem is secure against attackers playing the
indistinguishability game, then an attacker can gain no meaningful results
(i.e., any information about whether it would pass or fail any kind of test)
about a message from its encryption.

III.1. DEFINITIONS AND PRELIMINARIES 45

Next we must consider what access an attacker has to the scheme. Ob-
viously the attacker must have access to a description of the algorithms in
the scheme and the public key pk. This means that an attacker will be able
to encrypt messages for himself. However, just as we allowed an attacker to
request the signatures of certain messages when considering the security of
digital signatures, we may allow an attacker to decrypt certain ciphertexts of
his choice. Obviously care must be taken to make sure that the attacker isn’t
allowed to decrypt the challenge ciphertext!

An attacker requests the decryption of a ciphertext C by outputting C and
then entering a special freeze state. The attacker is then given the response to
his query and re-started. In this way we can think of an attackerA = (A1,A2)
as consisting of two algorithms A1 and A2 that each work in the same way
as the forger for a digital signature (see Definition II.3). The first algorithm
A1 runs in multiple rounds, each consisting of two plays, the first made by
the challenger and the second by the attacker. In Round 0, the challenger
starts by generating a valid key-pair (pk, sk). A1 is then given the public
key pk and some predetermined initial state X0. It then outputs a state X1

and either a request for the decryption of a ciphertext C or, in the case of
the indistinguishability game, two messages (m0,m1). In the case of the one-
way game, A1 halts without any extra output when it terminates. If A1 has
requested the decryption of a ciphertext, then the challenger computes the
decryption m of C using the private key sk and re-starts A1 with state X1

and input m. The second algorithm A2 works similarly but initially takes as
input the challenge ciphertext C∗ and an initial state Xi that was given by
A1 in its final round (this is equivalent to the state information s). When A2

terminates it must output its guess for either σ (in the indistinguishability
game) or m (in the one-way game).

Whilst this is one way of thinking about an attacker’s ability to request
decryptions, it will suit our purposes to be a little more relaxed and merely
to think of an attacker having the ability to ask a god-like oracle for them.
If an attacker is allowed to request decryptions, then it is said to have access
to a decryption oracle, and these requests are assumed to take a single unit
of time to answer (such is the power of the oracle).

There are three models that are used to characterise an attacker’s access
to a decryption oracle.

Definition III.4. Consider an attacker A = (A1,A2).
If the attacker has no access to a decryption oracle, then it is said to

be running a chosen plaintext attack (CPA), because it has the ability to
choose which plaintexts (messages) it wishes to encrypt. Remember, it knows
the public key and can therefore encrypt any message it wants to. Here the
attacker cannot request the decryption of any ciphertext.

If the first algorithm A1 has access to a decryption oracle (i.e., can request
the decryption of ciphertexts) but the second algorithm A2 has no access to a

46 III. PROOFS OF SECURITY FOR ECIES

decryption oracle then the attacker is said to be running a chosen ciphertext
attack (CCA1).1

If both the first algorithm A1 and the second algorithm A2 have access
to a decryption oracle, then the attacker is said to be running an adaptive
chosen ciphertext attack (CCA2). In this case we must assume that the
second algorithm only has access to an imperfect decryption oracle that will
not decrypt the challenge ciphertext C∗. This is the strongest notion of access
that we will consider here.

It is easy to see that if an attacker can break a scheme using a chosen
plaintext (CPA) attack, then there is an attacker who can break that scheme
with a chosen ciphertext (CCA1) attack. Hence, if we can show that a scheme
is secure against attackers running CCA1 attacks, then we can be sure that
that scheme is also secure against attackers running CPA attacks. Similarly,
a scheme that resists attacks made by CCA2 attackers is also resistant to
CCA1 attackers and CPA attackers.

To completely define the level of security that an algorithm has we must
look at the best attackers in a certain model, i.e., we must specify whether
the attacker is playing the indistinguishability game or the one-way game and
what kind of access the attacker has. We often abbreviate these definitions
to their initials. For example, attackers playing the indistinguishability game
using adaptive chosen ciphertext attacks are often referred to as IND-CCA2
attackers and are said to be making an IND-CCA2 attack.

These days, it is generally agreed that a public-key encryption scheme
is only secure if it resists attackers making IND-CCA2 attacks, and it is in
its resistance to this kind of attack that we will be examining ECIES. More
information about attack models can be found in [20].

III.1.2. Underlying Mathematical Problems. Up to now cryptogra-
phers have been unable to find security proofs that prove the security of
an algorithm directly (without the need to rely on any assumptions or sim-
plifications). There are several good reasons for this. The first has to do with
the very nature of public-key cryptography. The way public-key cryptogra-
phy works means that it is impossible to find a proof of security in which the
attacker has access to infinite computational resources – given the public key
of an algorithm, there can only be one corresponding private key, and so an
attacker with unlimited time and computational resources could check each
possible private key in turn until he finds the correct one (thus breaking the

1Attacks that use CCA1 access to a decryption oracle are also sometimes known as
midnight attacks or lunchtime attacks because it is the sort of attack that could be used
by an intruder who breaks into an office either at night or whilst the proper occupant is
at lunch. If the intruder was unable to recover the occupant’s private key directly, then
he might try and run some kind of program that makes use of the proper occupant’s
decryption rights and that would henceforth allow the intruder to decrypt messages meant
for the occupant without having to know his private key.

III.1. DEFINITIONS AND PRELIMINARIES 47

scheme). Therefore, if we wish to make any meaningful statement about the
security of a scheme, we must place some kind of bound on the computational
power of the attacker.

Even with this restriction we still run into problems. Any efficient proof of
security that guaranteed the security of an algorithm in concrete terms would
most likely prove the complexity-theoretic conjecture that P
=NP. Whilst this
is widely believed to be true, and despite many years of study, a proof has
not yet been found. Any such proof would be a major step forward in the
field of complexity theory. Therefore the best that one can reasonably hope
for from a proof of security is that it relates the security of a scheme to the
difficulty of solving some kind of underlying mathematical problem that is
believed to be difficult to solve. In other words, even though we use the term
“security proof”, our actual level of faith in the security of a scheme depends
upon how difficult we believe the underlying problem is.

There are three major underlying problems that have traditionally been
used in proving the security of elliptic curve based cryptosystems. These
are all based on the reputational security of the ECDH protocol (see Section
I.3). The three traditional underlying problems are the computational Diffie–
Hellman problem (CDH), the decisional Diffie–Hellman problem (DDH) and
the gap Diffie–Hellman problem (gap DH).

Definition III.5. Let G be a cyclic group with prime order #G (and with
the group action written additively), and let P be a generator for G.

The computational Diffie–Hellman problem is the problem of finding [ab]P
when given ([a]P, [b]P). We assume that a and b are chosen uniformly at
random from the set {1, . . . ,#G− 1}.

The decisional Diffie–Hellman problem is the problem of deciding whether
[c]P = [ab]P when given ([a]P, [b]P, [c]P). We assume that a and b are
chosen uniformly at random from the set {1, . . . ,#G − 1} and c is either
equal to ab (with probability 1/2) or chosen uniformly at random from the set
{1, . . . ,#G − 1} (with probability 1/2). The advantage that an algorithm A
has in solving the DDH problem is equal to

|Pr[A correctly solves the DDH problem]− 1/2| .
The gap Diffie–Hellman problem is the problem of solving the CDH prob-

lem when there exists an efficient algorithm that solves the decisional Diffie–
Hellman problem on G. In other words, the gap Diffie–Hellman problem is the
problem of finding [ab]P when given ([a]P, [b]P) and access to an oracle that
returns 1 when given a triple ([α]P, [β]P, [αβ]P) and 0 otherwise. We assume
that a and b are chosen uniformly at random from the set {1, . . . ,#G− 1}.

Any algorithm that can solve the CDH problem on a group can also be
used to solve the gap DH problem and the DDH problem. Hence it is better
to try and show that a scheme can only be broken if the CDH problem is easy
to solve, as this automatically tells us that the scheme can only be broken if

48 III. PROOFS OF SECURITY FOR ECIES

both the gap DH and DDH problems are easy to solve too. The assumption
that the CDH problem is hard to solve is called the CDH assumption. The
gap DH assumption and the DDH assumption are defined in the same way.

The difficulty of solving the CDH problem on an elliptic curve group is the
same as the difficulty in breaking the ECDH protocol on that elliptic curve
when the attacker has only seen one execution of that protocol. The ECDH
protocol has been around for so long that it is trusted to be secure even
though there exists no formal proof of security. There have been some results
which suggest that the difficulty of breaking the ECDH protocol is related to
the difficulty of solving the elliptic curve discrete logarithm problem, which
is considered hard to solve in most elliptic curve groups (see [ECC, Chapter
V]).

It is interesting that the security of almost all elliptic curve based cryp-
tosystems has been based on the difficulty of breaking the Diffie–Hellman
protocol because the Diffie–Hellman protocol is not restricted to elliptic curve
groups: it can be applied to any cyclic group (although the resulting protocol
may not be secure). Up until very recently there have been no underlying
mathematical problems that have been used as a basis for a proof of security
and which are specific to elliptic curves alone. Recently, however, cryptosys-
tems have been developed that are based on certain properties of the Weil
and Tate pairings. This will be explained more thoroughly in Chapter IX and
Chapter X.

III.1.3. Security for Symmetric Cryptography. One of the problems
with developing a security proof for ECIES is that it relies on undefined
symmetric encryption and MAC schemes. Obviously, if the symmetric en-
cryption scheme is weak and it is possible to derive information about the
message from its symmetric encryption, then no amount of elliptic curve cryp-
tography is going to make the ECIES encryption of the message secure. That
the MAC algorithm is of equal importance takes a little more thought and is
best illustrated by means of an example.

Suppose that the symmetric encryption scheme used in an instantiation
of ECIES is a Vernam cipher. In a Vernam cipher a fixed-length message is
XORed with a key of equal size in order to create a ciphertext. Decryption of
a ciphertext is given by once again XORing the ciphertext with the key to give
the original message. Suppose further that we remove the MAC algorithm
from the ECIES scheme. This scheme is now definitely insecure against CCA2
attacks. Suppose that the challenge ciphertext C∗ = (U∗, c∗) is the ECIES
encryption of a message m∗. (How this message is chosen and whether the
attacker is playing the IND or OW game is irrelevant here.) This means
that c∗ = m∗ ⊕ k∗, where k∗ is some symmetric key derived from the secret
key x and U∗. An attacker can recover k∗ by asking for the decryption of a
ciphertext C = (U∗, c), where c
= c∗. If the decryption of C is m, then the
attacker knows that k∗ = c⊕m, and he can easily recover m∗ from c∗ and k∗.

III.1. DEFINITIONS AND PRELIMINARIES 49

However, this attack is not possible when we use a good MAC algorithm
within ECIES as this makes it infeasible for an attacker to find the MAC
r of the symmetric ciphertext c without knowing the MAC key. Hence the
attacker cannot find a ciphertext (U∗, c, r) that will be decrypted by the de-
cryption algorithm and therefore cannot recover k∗. The use of a MAC scheme
essentially means that the symmetric encryption algorithm only needs to re-
sist passive attacks, where the attacker does not have the ability to encrypt
and decrypt messages himself. It allows symmetric ciphers that are normally
considered too weak for practical purposes, such as the Vernam cipher, to
be used within ECIES (although readers who are considering implementing
ECIES with a Vernam cipher are referred to Section III.3.3 for a cautionary
tale).

Formally we define a symmetric encryption scheme to be a pair of de-
terministic algorithms (Enc,Dec) with the property that for any message
m ∈M and any bit-string K of a predetermined length we have

Dec(Enc(m,K), K) = m.

In defining the security of a symmetric encryption scheme, we consider
its resistance to attackers A = (A1,A2) that are playing a game which is
very similar to the IND game we defined for attackers against asymmetric
encryption schemes. This game consists of four major steps:

1. A challenger generates a key K totally at random from the set of all
possible keys.

2. The attacker runs A1. It returns two messages m0 and m1 of equal
size, as well as some state information s.

3. The challenger chooses a bit σ ∈ {0, 1} uniformly at random. It com-
putes the challenge ciphertext C∗ = Enc(mσ, K).

4. The attacker runs A2 on the input (C∗, s). It returns a guess σ′ for σ.

The attacker wins the game if σ′ = σ. The advantage of an attacker in playing
this game is defined to be

|Pr[σ′ = σ]− 1/2| .
This definition is taken from [93] and is a weaker form of the “Find-then-
Guess” notion of security contained in [19]. Note that the attacker is not
allowed to request the encryption or decryption of any message – this is
called a passive attack.

It is fairly easy to see that the Vernam cipher satisfies this definition of
security; indeed, in this model the Vernam cipher is perfect.

The formal definition of the security of a MAC scheme is more like the se-
curity definitions associated with a digital signature scheme. A MAC scheme
is a deterministic algorithm MAC that, for any message m and any fixed-
length bit-string K, produces a fixed-length output r = MAC(m,K). For
our purposes an attacker is a probabilistic algorithm A that attempts to find

50 III. PROOFS OF SECURITY FOR ECIES

a new MAC for any message. We test an attacker’s strength by computing
its success probability in playing the following game:

1. A challenger generates a key K uniformly at random from the set of
all possible keys.

2. The attacker runs A. It may, at any time, query an oracle with a
message m. If so, the challenger will compute r = MAC(m,K) and
return r to the attacker.

3. A eventually returns a pair (m′, r′).
The attacker wins the game if A has not queried the oracle to find the MAC of
m′, i.e., A has not submittedm′ to the oracle in step 2, and r′ = MAC(m′, K).

III.2. Security Proofs for ECIES

It has become generally accepted that a general-purpose public-key en-
cryption scheme should be resistant to attacks made by IND-CCA2 attackers,
i.e., attackers that are playing the indistinguishability game using adaptive
chosen ciphertext attacks, so we will only consider the security of ECIES
against this kind of attack.

There has never been a simple proof of the security of ECIES. Given that
it uses undefined symmetric encryption and MAC schemes, not to mention
an undefined key derivation function (the security of which we have not yet
even considered), it is not really surprising that no simple proof has been
found. In this section we will sketch three proofs of security for ECIES; each
one is forced to make some assumption about the way ECIES works in order
to make the security analysis easier.

III.2.1. Using a Non-Standard Assumption. The original proof of se-
curity for ECIES, which was given by Abdalla, Bellare and Rogaway [1], was
based on a non-standard underlying mathematical problem. By this we mean
that it was not based on the difficulty of solving either the CDH problem, the
DDH problem or the gap DH problem. The authors instead chose to make an
assumption based not only on the difficulty of breaking the Diffie–Hellman
protocol but also on the nature of the key derivation function used. They
called this the hash Diffie–Hellman problem.

Definition III.6. Let G be a cyclic group with prime order #G (and with the
group action written additively), and let P be a generator of G. Furthermore,
let KD be a key derivation function and let l be a fixed parameter.

The hash Diffie–Hellman problem is the problem of deciding whether α =
KD([ab]P, l) when given ([a]P, [b]P, α). We assume that a and b are chosen
uniformly at random from the set {1, . . . ,#G− 1} and that α is either equal
to KD([ab]P, l) (with probability 1/2) or chosen uniformly at random from
the set of all l-bit strings (with probability 1/2). To help the attacker, it will
be given access to a hash Diffie–Hellman oracle: an oracle that, when given

III.2. SECURITY PROOFS FOR ECIES 51

a group element U , will return KD([b]U, l). The attacker will not be allowed
to query this oracle with the input [a]P .

The advantage that an algorithm A has in solving the hash Diffie–Hellman
problem is equal to

|Pr[A correctly solves the hash Diffie–Hellman problem]− 1/2| .
This definition is fairly sneaky. It is not actually a single definition but

a family of definitions that depend upon your choice of a key derivation
function. The hash Diffie–Hellman problem may indeed be hard to solve
for many key derivation functions (and choices of l), but it is also possible
that, for a particular choice of key derivation function and l, the hash Diffie–
Hellman problem is easy to solve. In many ways, adopting the hash Diffie–
Hellman problem as the basis for a security proof only changes the problem
from proving the security of the cryptosystem to proving that the hash Diffie–
Hellman problem is hard to solve for your chosen key derivation function.

The security proof for ECIES in this model shows the following:

Result III.7. Suppose A is an IND-CCA2 attacker that breaks ECIES with
a “significant” advantage, runs in a “reasonable” amount of time and only
makes a “reasonable” number of queries to the decryption oracle. Then either

• there exists an algorithm B that solves the hash Diffie–Hellman problem
with a significant advantage, runs in a reasonable amount of time and
only makes a reasonable number of queries to the hash Diffie–Hellman
oracle;

• there exists an attacker C = (C1, C2) that breaks the symmetric cipher
with a significant advantage and runs in a reasonable amount of time;
or

• there exists an attacker F that breaks the MAC scheme with a signifi-
cant probability and runs in a reasonable amount of time.

The terms “significant” and “reasonable” all have precise technical defi-
nitions, but it will be unnecessary to consider these in detail. It will suffice
to think of “significant” as meaning “large enough to be useful” and “reason-
able” as “not too large”.

We will now sketch the proof.
Suppose we have an IND-CCA2 attacker A = (A1,A2) that breaks ECIES

with a significant advantage, runs in a reasonable amount of time and only
makes a reasonable number of queries to the decryption oracle.

We begin by defining an algorithm B that attempts to solve the hash
Diffie–Hellman problem. At the start of its execution, B is presented with a
triple ([a]P, [b]P, α). The algorithm B runs in several stages:

1. B sets the public key Y = [b]P and runs A1 on the input Y until it
outputs two messages, m0 and m1, and some state information s.

2. B picks a bit σ ∈ {0, 1} uniformly at random and sets (k1||k2) =
α. It forms the challenge ciphertext C∗ = ([a]P, c∗, r∗), where c∗ =

52 III. PROOFS OF SECURITY FOR ECIES

Enc(mσ, k1) and r∗ = MAC(c∗, k2). Note that if α = KD([ab]P, l),
then C∗ is a correct encryption of the message mσ.

3. Next, B runs A2 on the input (C∗, Y, s). A2 returns a guess σ′ for σ.
4. If σ′ = σ, then B returns true (i.e., that α = KD([ab]P, l)), otherwise
B returns false.

The idea behind the proof is that if α = KD([ab]P, l), then the attacker
A will be attacking a valid instance of ECIES and so will have a significant
advantage in guessing σ correctly. If α
= KD([ab]P, l), then α is completely
random. This means that the message mσ has been encrypted and the MAC
of the ciphertext computed with random keys. If this is the case, then one of
two things will happen: either (1) the attacker A will still be able to break the
scheme and recover σ with a significant probability, in which case the attacker
doesn’t really care about the keys and must be attacking the symmetric part
of the scheme, or (2) the attacker can no longer break the scheme.

Suppose that an attacker A’s advantage in breaking the scheme is signif-
icantly reduced when α
= KD([ab]P, l). In this case A is less likely to guess
σ correctly if random keys are used to encrypt mσ and to create the MAC of
the ciphertext, which in turn means that B is more likely to output true if
α = KD([ab]P, l) than if it doesn’t. In other words, B has a significant ad-
vantage in breaking the hash Diffie–Hellman problem. So, if we assume that
solving the hash Diffie–Hellman problem is hard to do, then any attacker that
is trying to break the scheme must still be able to do so when performing the
symmetric encryption and MAC using random keys.

The only problem that remains with the algorithm B is that it has to
be able to respond to the decryption queries that A makes. Normally these
would be answered by a decryption oracle, but since B has no access to a
decryption oracle, it must answer these queries itself. Fortunately this is
fairly easy to do. If A asks for the decryption of a ciphertext (U, c, r) where
U
= [a]P , then we may find the relevant symmetric keys k1||k2 by querying
the hash Diffie–Hellman oracle on the input U ; then we may decrypt c and
r as normal. If A asks for the decryption of a ciphertext ([a]P, c, r) with
(c, r)
= (c∗, r∗), then we can use the symmetric keys (k1||k2) = α to decrypt
c and r as normal. Of course there is a possibility that A1 might request the
decryption of the challenge ciphertext C∗ (remember that A2 is not allowed
to request the decryption of C∗), but, in order to do this, A1 would have to
guess that the challenge ciphertext would contain [a]P . Since [a]P is chosen
at random from all the non-identity points of 〈P 〉, and because A is only
allowed to make a reasonable number of decryption queries, this will happen
with such a small probability that we may cheerfully ignore it.

As we mentioned earlier, it is, of course, possible that the attacker A
gained his advantage in breaking ECIES not by determining some informa-
tion about the symmetric keys but by attacking the symmetric part of the
algorithm without knowing those keys. In that case the advantage of the

III.2. SECURITY PROOFS FOR ECIES 53

algorithm B would not be significant. However, then the attacker would still
be able to break the scheme if the keys used by the symmetric encryption
algorithm and the MAC algorithm were completely random.

The idea that we can replace the key used to encrypt the challenge ci-
phertext with a random key means that we can construct an algorithm C
that breaks the symmetric cipher. Remember that here C = (C1, C2) is a
two-stage algorithm that has access to a decryption oracle for the symmetric
cipher with an unknown, randomly selected symmetric key and is trying to
decide which of two messages (m0 and m1) a given symmetric ciphertext is
an encryption of (see Section III.1.3). Algorithm C works by using the sym-
metric cipher as part of ECIES and using A to break it. The first algorithm
C1 works as follows:

1. C1 picks a private key x uniformly at random from the set {1, . . . , q−1}
and sets the public key Y to be [x]P .

2. C1 runs A1 on the input Y . A1 will return two messages m0 and m1,
as well as some state information s.

3. C1 returns the two messages, m0 and m1, and some state information
s′ = (s, x).

The challenger then picks a bit σ ∈ {0, 1} uniformly at random and computes
c∗ = Enc(mσ, k1), where k1 is some random (unknown) secret key that the
challenger chose at the start. The attacker then runs C2 on the input (c∗, s′).
Algorithm C2 runs as follows.

1. C2 takes s′ and recovers the secret key x and A’s state information s.
2. C2 chooses a random point U∗ in 〈P 〉.
3. C2 chooses a random MAC key k2 and computes r∗ = MAC(c∗, k2).
4. The challenge ciphertext for A is set to be C∗ = (U∗, c∗, r∗).
5. C2 runs A2 on the input (C∗, Y, s). A2 outputs a guess σ′ for σ.
6. C2 outputs σ′.

Algorithm C makes the problem of breaking the symmetric cipher look
exactly like the problem of breaking ECIES, except for the fact that the
challenge ciphertext was computed using randomly generated symmetric keys
rather than from the keys given by (k1||k2) = KD([x]U∗, l). We have already
shown that if B’s advantage in solving the hash Diffie–Hellman problem is not
significant, then A should still be able to break ECIES in this case. Hence C
should have a significant advantage in breaking the symmetric cipher.

Again the only problem we haven’t explained is how to respond to the
decryption requests A makes. Once again, this is fairly simple. Since C
knows the private key x, it can easily decrypt any ciphertext (U, c, r) where
U
= U∗ in the normal way. If A requests a decryption of the form (U∗, c, r),
then C simply responds with ‘‘invalid ciphertext’’. It does this because
it does not wish to confuse A. All decryption requests for ciphertexts of the
form (U∗, c, r) should use the same symmetric key to decrypt c as was used
to encrypt the challenge ciphertext c∗ – but it does not know what this is!

54 III. PROOFS OF SECURITY FOR ECIES

Hence it is easier for C to just ignore any requests to decrypt ciphertexts of
the form (U∗, c, r) than to try and guess what the answer should be.

Obviously this means there is a chance that C will respond to a ciphertext
query (U∗, c, r) by saying ‘‘invalid ciphertext’’ when the ciphertext is
valid and should be decrypted. However, then we must have that c
= c∗, as
otherwise r = r∗ and A is querying the decryption oracle on the challenge
ciphertext, which would mean that C has succeeded in forging the MAC pair
(c, r). We can use this to build an attacker F that breaks the MAC scheme.
If F does not have a significant success probability, then we know that all
of the decryption oracle responses that A is given by C are correct and so C
should have a significant advantage in breaking the symmetric scheme.

III.2.2. Using an Idealized Key Derivation Function. If one is uneasy
about the validity of a security proof based on a non-standard and unstudied
problem (like the hash Diffie–Hellman problem), then one can find a proof
of security for ECIES based on the gap Diffie–Hellman problem if one is
prepared to accept the use of the random oracle methodology [24].

The random oracle methodology is a model in which the key derivation
function is modelled as being perfect, i.e., as a completely random function.
The attacker, who needs to be able to compute the value of the key derivation
function, is given access to this random function by means of an oracle that
will evaluate it for him. Unfortunately this model has been shown to have
some theoretical weaknesses [54]. Nevertheless security proofs constructed
using the random oracle methodology (in the “random oracle model”) are
still considered a very good heuristic guide to the security of a cryptosystem.

The security proof for ECIES in the random oracle model shows the fol-
lowing:

Result III.8. Suppose A is an IND-CCA2 attacker that breaks ECIES with
a significant advantage in the random oracle model, and that A runs in a
reasonable amount of time and only makes a reasonable number of queries to
the decryption oracle. Then either

• there exists an algorithm B that solves the gap Diffie–Hellman problem
with a significant probability, runs in a reasonable amount of time and
only makes a reasonable number of queries to the decisional Diffie–
Hellman oracle;

• there exists an attacker C = (C1, C2) that breaks the symmetric cipher
with a significant advantage and runs in a reasonable amount of time;
or

• there exists an attacker F that breaks the MAC scheme with a signifi-
cant probability and runs in a reasonable amount of time.

For the most part the proof is very similar to the proof given in Sec-
tion III.2.1. The only difference is in how one constructs the algorithm B.

We now sketch the proof.

III.2. SECURITY PROOFS FOR ECIES 55

Suppose we have an IND-CCA2 attacker A = (A1,A2) that breaks ECIES
with a significant advantage, runs in a reasonable amount of time and only
makes a reasonable number of decryption queries.

At the start of its execution, the algorithm B, which is attempting to solve
the gap Diffie–Hellman problem, is presented with the pair ([a]P, [b]P). The
algorithm B runs in several stages:

1. B sets the public key Y to be [b]P and runs A1 on the input Y until it
outputs two messages, m0 and m1, plus some state information s.

2. B picks a bit σ uniformly at random from the set {0, 1} and sym-
metric keys k1 and k2 uniformly at random from the appropriate key
spaces. It forms the challenge ciphertext C∗ = ([a]P, c∗, r∗), where
c∗ = MAC(mσ, k1) and r∗ = MAC(c∗, k2).

3. Next, B runs A2 on the input (C∗, Y, s). It returns a guess σ′ for σ.
4. Since we are using the random oracle model, the attacker A cannot

evaluate the key derivation function itself and must instead ask B to
evaluate it. Hence B knows all the elliptic curve points on which A
has queried the key derivation function. B searches through all these
points until it finds one, Q say, such that Q = [ab]P . Note B can use
the DDH oracle to check this as ([a]P, [b]P,Q) will be a correct solution
to the DDH problem.

5. If such a point Q exists, then B returns Q; otherwise, B returns a point
picked at random.

The idea behind the proof is that if A has not queried the key derivation
function on [ab]P , then it has no clue about the symmetric keys used to en-
crypt the challenge ciphertext. Because the key derivation function is totally
random, querying the key derivation function on other points will not help
you gain any information about KD([ab]P, l). Hence if the attacker A has
not queried the key derivation function on [ab]P , then we might as well be
using completely random symmetric keys (which, in fact, B is doing) and the
attack of A will work just as well. On the other hand, if the attacker A does
query the key derivation function on the input [ab]P , then B will have solved
the gap Diffie–Hellman problem.

This essentially puts us in the same situation as last time: either B has a
significant probability of solving the gap Diffie–Hellman problem orA’s attack
will work even if we use random keys. The rest of the proof (constructing C
and F) is exactly as in the previous section.

Unfortunately we are not quite finished. The devil of this proof is in the
details of how B answers A’s oracle queries. Remember that A can now ask
two different types of oracle queries. It can request the decryption of some
ciphertext or it can request that the key derivation function be evaluated on
some input. Furthermore, the two different types of query have to be con-
sistent with each other: if A requests the decryption of a ciphertext (U, c, r),
then we must make sure that the symmetric keys we use to decrypt c and r are

56 III. PROOFS OF SECURITY FOR ECIES

the same symmetric keys that A would get if we queried the key derivation
oracle on [b]U (and don’t forget that B doesn’t know the value of b!).

We get around this by making a long list of the queries that A makes.
Each entry on the list is a triple (U, T,K), where U and T are elliptic curve
points:

• U is the elliptic curve point contained in the ciphertext.
• T is the input to the key derivation function, so T should equal [b]U .
• K is the output of the key derivation function, i.e., the keys to be used

with symmetric encryption and MAC schemes.

If A requests the decryption of a ciphertext (U, c, r), then B responds in
the following way:

1. If there is an entry of the form (U, T,K) or (U,−, K) on the query list,
then we use the symmetric keys K = (k1||k2) to decrypt c and r and
return the correct message.

2. Otherwise we check all the entries of the form (−, T,K) to see if T =
[b]U . We can use the DDH oracle to do this, since if T = [b]U , then
(U, Y, T) is a solution to the DDH problem. If such an entry (−, T,K)
is found, then we replace it with the entry (U, T,K) and decrypt c and
r using the symmetric keys K = (k1||k2).

3. If neither of the above two approaches works, then we have no infor-
mation at all about the symmetric keys that should be used. Therefore
we can randomly generate K = (k1||k2) (as the keys are the output of
a totally random function) and use this to decrypt c and r. We then
add (U,−, K) to the query list.

Similarly, if A requests that the key derivation function be evaluated on the
input T , then B responds in the following way:

1. If there is an entry of the form (U, T,K) or (−, T,K) on the query list,
then we return K.

2. Otherwise we check all entries of the form (U,−, K) to see if T = [b]U ,
as before, we can use the DDH oracle to do this. If such an entry is
found, then we replace it with the entry (U, T,K) and return K.

3. If neither of the above two approaches works, then we can randomly
generate K, add (−, T,K) to the query list and return K.

Essentially what we have done here is shown that if the gap Diffie–Hellman
problem is difficult to solve and the key derivation function can be modelled
as a random oracle, then the hash Diffie–Hellman problem is difficult to solve
too. This is why this proof is so similar to the last one.

III.2.3. Using an Idealized Group. Whilst the previous two proofs made
assumptions about the properties of the key derivation function in order to
simplify the security analysis of ECIES, the proof we will discuss in this sec-
tion makes assumptions about the group over which ECIES is defined. We
will assume that the group is ideal, i.e., that the representations of group

III.2. SECURITY PROOFS FOR ECIES 57

elements as bit-strings has no relation to the structure of the group. This
means that any attacker who wishes to break the scheme cannot take advan-
tage of any special arithmetic properties of the group on which the scheme
is defined. This idea is the same as the one used to prove the security of
ECDSA in Section II.4.4; however, the way in which we use this idea will be
slightly different.

Specifically, we will be using the version of the generic group model pro-
posed by Shoup [303]. Here we assume that the group elements are not
represented as elliptic curve points but as randomly generated bit-strings of
a given length. Since the group elements are now represented by strings of
random bits, an attacker cannot take advantage of any of the usual properties
of elliptic curves when attacking the scheme. Unfortunately the attacker can
not add or subtract group elements either, so we are forced to give him access
to an oracle that will perform these operations for him.

This may all seem a bit contradictory. After all, ECIES is explicitly de-
fined over an elliptic curve group and an attack that takes advantage of the
arithmetic properties of the elliptic curve group to break ECIES is still a
valid attack against the cryptosystem. The aim of a proof of security in
the generic group model is to provide evidence that any attack against the
scheme would have to exploit some special feature of elliptic curve groups.
Since finding such a special feature would be a major step forward in elliptic
curve cryptography, we can have some measure of assurance in the security
of ECIES. Unfortunately it has been shown that, as with the random oracle
model, the generic group model has some theoretical weaknesses [100]. Nev-
ertheless, just as with the random oracle model, security proofs constructed
in this model are still considered a very good heuristic guide to the security
of a cryptosystem.

The proof of security of ECIES in the generic group model was given by
Smart [310] and shows the following:

Result III.9. Suppose A is an IND-CCA2 attacker that breaks ECIES with
a significant advantage in the generic group model, and that A runs in a
reasonable amount of time and only makes a reasonable number of queries to
the decryption oracle. Then either

• there exists an algorithm B that solves the decisional Diffie–Hellman
problem with a significant advantage and runs in a reasonable amount
of time;

• there exists an attacker C = (C1, C2) that breaks the symmetric cipher
with a significant advantage and runs in a reasonable amount of time;
or

• there exists an attacker F that breaks the MAC scheme with a signifi-
cant probability and runs in a reasonable amount of time.

This result is strengthened by the following result of Shoup [303]:

58 III. PROOFS OF SECURITY FOR ECIES

Result III.10. In the generic group model, there exist no algorithms that
solve the decisional Diffie–Hellman problem on a cyclic group of large prime
order that have both a significant advantage and run in a reasonable amount
of time.

The proof of Result III.9 is very similar to the previous proofs and is
therefore omitted.

III.3. Other Attacks Against ECIES

One of the problems with security proofs is that they tend to cause a
certain level of complacency about using a cipher. The truth is that a se-
curity proof is only valid in a very precise set of circumstances. It assumes
that the attacker has access to no other information besides the public key
and (possibly) a decryption oracle, and has a perfect implementation of the
cryptosystem. In the real world an attacker may have access to much more
information than the theoretical attacker did in the security proof. Attacks
that make use of information or abilities that are not available to an attacker
in a security proof are often called side-channel attacks.

Some side-channel attacks are only relevant to one particular cryptosys-
tem, but others can be used to attack whole classes of ciphers. Elliptic curve
cryptosystems are often vulnerable to side-channel attacks, and this will be
discussed more thoroughly in Chapter IV. For the moment we will ignore
these general attacks and focus on those attacks that are specific to ECIES.

III.3.1. Weak Key Generation Algorithm. On one hand it is easy to
see how a flawed key generation algorithm can reduce the security of a cryp-
tosystem. It is not difficult to understand how an attacker might be able
to break a scheme if, for example, the private key x was always a particular
number or had a particular form. However, there is a more subtle reason why
key generation is an important part of a cryptosystem, and this has particular
relevance when talking about security proofs.

It is very important that the key generation algorithm has the ability to
produce lots of different key-pairs and each with equal probability. This may
seem a bit contradictory. After all, an attacker will only get to attack the
scheme after the key-pair has been chosen, so why should it matter whether
the key generation algorithm produces one key or lots and lots?

Well, for a start we have assumed that the attacker knows all the ele-
ments of the cryptosystem including the key generation algorithm. If the key
generation algorithm only ever produces one key, or a very small number of
keys, then it is not hard for the attacker to run the key generation algorithm,
find out the private key and break the scheme. The obvious solution to this
problem is to keep the key generation algorithm hidden from the attacker, as
is often the case with real-life instantiations of cryptosystems.

III.3. OTHER ATTACKS AGAINST ECIES 59

It turns out that this is not a useful thing to do, but for quite a subtle
reason. The reason is that the key generation algorithm is a fixed algorithm
that doesn’t depend on any secret values, so there are always attackers that
assume something about the key generation algorithm, such as that it al-
ways produces one particular key-pair, and attempt attacks based on this
assumption. If the key generation algorithm produces a large enough number
of different key-pairs, then these attackers will not have a significant success
probability as it is very unlikely that a key-pair that is generated by G will
satisfy the assumption that the attacker makes, but this could be a problem
for key generation algorithm with small ranges.

It is possibly best to think about this in terms of a simple example. If sk
is some fixed private key for an asymmetric encryption scheme (G, E ,D), then
there is an attacker A who will try to decrypt a challenge ciphertext using
the function D(·, sk) regardless of what the public key is or whether it knows
any information about the key generation algorithm. This means that, even
if G is unknown, A will still have a high success probability if G outputs the
key-pair (pk, sk) with a significant probability. Since we are forced to consider
all possible attackers for the scheme (G, E ,D), we are forced to conclude that
(G, E ,D) is a weak encryption algorithm because an attacker exists that will
break the scheme with high probability even though we do not know what
that attacker is. On the other hand, if G only ever produces (pk, sk) with an
insignificant probability, i.e., G has the ability to output lots of different keys
each with equal probability, then (G, E ,D) is secure because the attacker A
will not work in all but an insignificant fraction of the possible cases.

This demonstrates another weakness of security proofs. Whilst a security
proof tells us about the security of a scheme in general, it doesn’t tell us about
how the scheme works with one particular key-pair. It is entirely possible for a
scheme to have a good security proof and yet be completely insecure for some
set of keys. The best that a security proof can say is that if one generates a
key-pair using the key generation algorithm, then the probability that that
scheme will be insecure is insignificant; it doesn’t say anything about the
suitability of any one specific key-pair that might actually be in use.

III.3.2. Invalid Elliptic Curve Point Attacks. Another assumption that
has been made throughout this section is that all the data are valid. In real
implementations of elliptic curve cryptosystems, elliptic curve points are usu-
ally represented as elements of Fq × Fq or Fq by using some form of point
compression. Whenever an attacker has requested the decryption of a cipher-
text (U, c, r), we have always implicitly assumed that U is a valid point on
the elliptic curve E and an element of the subgroup generated by P . If this is
not explicitly checked, then an attacker can exploit this to break the scheme.

As an example, consider the following simple attack. The attacker finds
a point U on E with small prime order p1, chooses any message m ∈M and,

60 III. PROOFS OF SECURITY FOR ECIES

for 0 ≤ i < p1, computes

(k
(i)
1 ||k

(i)
2) = KD([i]U, l),

c(i) = Enc(m, k
(i)
1),

r(i) = MAC(c(i), k
(i)
2).

Let C(i) = ([i]U, c(i), r(i)) and 0 ≤ j < p1 be such that j ≡ x (mod p1). Since
[j]U = [x]U , where x is the secret key, C(j) will decrypt to give the message
m. It is very unlikely that any of the other ciphertexts C(i) (with i
= j) will
decrypt to give m. Therefore, with only p1 requests to the decryption oracle,
the attacker can find out the value of the private key x (mod p1).

If an attacker does this for a series of primes p1, p2, . . . , pk such that
p1p2 . . . pk ≥ q, then it can recover the whole private key x using the Chi-
nese Remainder Theorem (and it will only need to make p1 + p2 + . . . + pk

requests to the decryption oracle to do this).
Of course this attack only works if the elliptic curve contains a number of

points with small prime orders. However, other variants of this type of attack
exist which involve the attacker changing parts of the public parameters, such
as the public key Y , the group generator P or even the elliptic curve E itself.
These variants may work even if the original attack does not. Details of
methods that can be used to check the validity of elliptic curve points and
elliptic curves themselves can be found in Section I.5.

III.3.3. Variable Length Symmetric Keys. Another implicit assump-
tion that is made in the security proofs is that the keys produced by the key
derivation function are of a fixed length l. This seems like a trivial point, but
it can actually be very important, especially when one combines this with
some details about the way in which most key derivation functions work.
Most key derivation functions compute KD(U, l) by taking the first l bits of
an infinite pseudo-random sequence produced from the input U . This means
that, for any 0 < l′ < l, KD(U, l′) is the same as the first l′ bits of KD(U, l).
This is not a problem for ECIES providing that we use symmetric keys of a
fixed length l – it becomes a problem, however, if we allow l to vary.

In particular, some early versions of ECIES allowed the symmetric cipher
to be a variable length Vernam cipher (see Section III.1.3). In this case
encryption is given by:

Algorithm III.1: ECIES Encryption (Weak Version)

INPUT: A message m, public key Y and the length of the MAC

key l′.
OUTPUT: A ciphertext (U, c, r).

1. Choose k ∈R {1, . . . , q}.
2. U← [k]G.

III.4. ECIES-KEM 61

3. T ← [k]Y .
4. (k1‖k2)←KD(T, |m|+ l′).
5. Encrypt the message, c = m⊕ k1.

6. Compute the MAC on the ciphertext, r←MAC(c, k2).
7. Output (U, c, r).

Decryption is given in the obvious way.
This variant of ECIES was proven to be insecure by Shoup [305]. Suppose

m = m1||m2 is a message such that |m1| > 0 and |m2| = l′. Suppose further
that the ciphertext C = (U, c, r) is an encryption of m and that c = c1||c2,
where |c2| = l′. It is easy to see that the ciphertext C ′ = (U, c′, r′), where

c′ = c1 ⊕∆ and r′ = MAC(c′, c2 ⊕m2),

is a valid encryption of the message m1 ⊕ ∆ for any bit-string ∆ of length
|m1|. Hence an attacker can check whether a ciphertext C is the encryption
of a message m or not by checking to see if the shortened ciphertext C ′ is
an encryption of the shortened message m1 ⊕∆ or not. This would allow an
IND-CCA2 attacker to break ECIES.

III.3.4. Using the x-Coordinate. As has already been mentioned in Sec-
tion I.4, in some implementations of ECIES the key derivation function KD
is not applied to the elliptic curve point T but to the x-coordinate of T .
Whilst this is not really a problem for the cipher, since it is easy to see that
computing the x-coordinate of T is roughly as hard as computing the whole
of T , it is a problem for the security proof.

The problem occurs because the decryption of a ciphertext (U, c, r) in
this case is always the same as the decryption of the ciphertext (−U, c, r).
Therefore an attacker with CCA2 access to a decryption oracle can always
decrypt the challenge ciphertext C∗ = (U∗, c∗, r∗) by requesting the decryp-
tion of (−U∗, c∗, r∗). Hence the scheme is not secure against CCA2 attackers.
A cryptosystem for which there is some easy way of computing two differ-
ent ciphertexts that decrypt to give the same message is said to be benignly
malleable [305].

We can remove this problem by defining a binary relation � between
ciphertexts, where C � C ′ if (1) D(C, sk) = D(C ′, sk) and (2) it is easy to
find C ′ from C. In this case the decryption oracle must refuse to decrypt not
only the challenge ciphertext C∗ but any ciphertext C ′ such that C∗ � C ′.
These ideas are slowly gaining more acceptance in the academic community
[58].

III.4. ECIES-KEM

One problem with hybrid encryption is that one often ends up proving
the same results again and again. We can use the three security proofs for
ECIES in given Section III.2 as an example: each of these had a different

62 III. PROOFS OF SECURITY FOR ECIES

technique for dealing with the asymmetric (elliptic curve) part of the system,
and yet all three used exactly the same arguments about the symmetric part.

Recently Shoup (see [304] and [93]) introduced the concept of a generic
hybrid construction (sometimes called a KEM/DEM construction). Here the
asymmetric and symmetric parts of a hybrid scheme are separated and each
has its own formal security requirements. This allows us to evaluate their
security individually and to “mix and match” the asymmetric KEMs and the
symmetric DEMs without needing to produce another long, boring security
proof.

III.4.1. KEMs and DEMs. A KEM/DEM construction is made of two
parts: an asymmetric key encapsulation mechanism (or KEM) and a sym-
metric data encapsulation mechanism (or DEM). A KEM takes as input a
public key and produces a random symmetric key of a predetermined length
and an encryption (or encapsulation) of that key. A DEM takes as input a
message and a symmetric key and produces an encryption of that message
under that key. Once again, it is very important to be precise about how we
define a KEM and a DEM.

Definition III.11. A KEM is a triple of algorithms (G,Encap,Decap), where

• G is a probabilistic key generation algorithm. It takes no input, except
randomness, and outputs a key-pair (pk, sk). Again pk is the public key
and must be distributed to everyone that uses the encryption algorithm,
and sk is the private key and should only be made available to those
parties who have permission to decrypt messages.

• Encap is a probabilistic algorithm called the encapsulation algorithm.
It takes only the public key as input, and randomness, and outputs a
symmetric key K of some predetermined length and an encapsulation
C1 of K.

• Decap is a deterministic algorithm called the decapsulation algorithm.
It takes as input the private key sk and an encapsulation C1. It returns
either a symmetric key K or an error symbol ⊥.

A KEM is sound if for all valid key-pairs (pk, sk) and any output (K,C1) =
Encap(pk) we have K = Decap(C1, sk).

It should be fairly easy to see the similarities between KEMs and public
key encryption schemes. The definitions are identical except for the fact that
the encapsulation algorithm does not take a message as input but rather
generates its own (the symmetric key).

Definition III.12. A DEM is a pair of algorithms (Enc,Dec), where

• Enc is a (possibly) probabilistic algorithm called the encryption algo-
rithm. It takes as input a message m and a symmetric key K of some
predetermined length and outputs an encryption C2 of the message m.

III.4. ECIES-KEM 63

• Dec is a deterministic algorithm called the decryption algorithm. It
takes as input an encryption C2 and a symmetric key K and returns
either a message m or an error symbol ⊥.

A DEM is sound if for all keys K of the correct length and messages m
we have Dec(Dec(m,K), K) = m.

In order to form a public-key encryption scheme one combines a KEM
and a DEM, where the symmetric keys that are outputted by the KEM are
the correct size for use by the DEM, in the following manner. Key generation
is given by the key generation algorithm for the KEM, G.

Algorithm III.2: KEM/DEM Encryption

INPUT: A message m and the public key pk.
OUTPUT: A ciphertext C = (C1, C2).

1. (K,C1)←Encap(pk).
2. C2← Enc(m,K).
3. Output C = (C1, C2).

Algorithm III.3: KEM/DEM Decryption

INPUT: A ciphertext C = (C1, C2) and the private key sk.
OUTPUT: A message m or an ‘‘Invalid Ciphertext’’ message.

1. K←Decap(C1, sk).
2. If K =⊥ then output ‘‘Invalid Ciphertext’’.

3. m← Dec(C2, K).
4. If m =⊥ then output ‘‘Invalid Ciphertext’’.

5. Output m.

III.4.2. Security for KEMs and DEMs. The security criteria for KEMs
and DEMs are actually quite similar, and both are closely related to the IND
game that was used to define the security of a public-key encryption scheme.
Both are concerned with the effects of a two-stage attacker A = (A1,A2) who
is playing a game against a challenger. For a KEM the attacker is trying to
tell a real symmetric key from a random symmetric key and for a DEM the
attacker is trying to tell if a particular ciphertext is the encryption of one
message or another.

Definition III.13. For a KEM, the indistinguishability IND game for an
attacker A = (A1,A2) consists of four major steps:

1. A challenger generates a random key-pair (pk, sk) by running the key
generation algorithm G.

64 III. PROOFS OF SECURITY FOR ECIES

2. The attacker runs A1 on the input pk. It returns some state informa-
tion s.

3. The challenger generates a valid symmetric key and its encapsulation
(K0, C

∗) by running the encapsulation algorithm Encap(pk). It also
generates a random symmetric key K1 of the same length and chooses
a bit σ ∈ {0, 1} uniformly at random.

4. The attacker runs A2 on the input (Kσ, C
∗, pk, s). It returns a guess

σ′ for σ.

The attacker wins the game if σ′ = σ. The advantage of an attacker in playing
the IND game is defined to be

|Pr[σ′ = σ]− 1/2| .

Attackers that are playing the IND game for a KEM can have either CPA,
CCA1 or CCA2 access to a decapsulation oracle, i.e., an oracle that runs the
decapsulation algorithm for them. For more details see Definition III.4. In
order to guarantee that the overall hybrid scheme is secure against IND-
CCA2 attackers we will require that the KEM be secure against IND-CCA2
attackers too.

Definition III.14. For a DEM, the indistinguishability IND game for an
attacker A = (A1,A2) consists of four major steps:

1. A challenger generates a random symmetric key K of an appropriate
size.

2. The attacker runs A1. It returns two messages m0 and m1 of equal
size, as well as some state information s.

3. The challenger chooses a bit σ ∈ {0, 1} uniformly at random. It com-
putes the challenge ciphertext C∗ = Enc(mσ, K).

4. The attacker runs A2 on the input (C∗, s). It returns a guess σ′ for σ.

Again, the attacker wins the game if σ′ = σ. The advantage of an attacker in
playing the IND game is defined to be

|Pr[σ′ = σ]− 1/2| .

For our purposes, an attacker that is playing the IND game for a DEM can
either have no access to a decryption oracle, in which case the attacker is said
to be passive (PA), or have complete access to a decryption oracle, in which
case the attacker is said to be active (CCA). Obviously an active attacker is
forbidden from requesting the decryption of the challenge ciphertext from the
decryption oracle. Note that in neither of these two cases can the attacker
encrypt messages under the randomly generated symmetric key K. This is a
major difference between the symmetric and asymmetric cases.

One of the main points of this approach is that the security of the two com-
ponents can be evaluated independently, as the following theorem of Shoup
[304] demonstrates.

III.4. ECIES-KEM 65

Theorem III.15. If (G, E ,D) is an asymmetric encryption scheme composed
of a KEM that is secure against IND-CCA2 attackers and a DEM that is se-
cure against IND-CCA attackers, then (G, E ,D) is secure against IND-CCA2
attackers.

The proof of this theorem is similar to parts of the proofs of security for
ECIES that we have already sketched. Suppose there exists an attacker A
that breaks the hybrid scheme in the IND-CCA2 model with a significant
advantage. We attempt to build an IND-CCA2 attacker B that breaks the
KEM. Either B has a significant advantage or A must be attacking the sym-
metric part of the scheme alone, and in that case A’s advantage would be the
same even if we replaced the symmetric keys used to encrypt the challenge
ciphertext with randomly generated symmetric keys. We can therefore use
A to build an IND-CCA attacker C that attacks the DEM with significant
advantage. On the other hand, if both the KEM and the DEM, are secure
then the overall hybrid encryption scheme must be secure too.

There is one note of caution however. Granboulan [153] has shown that
it is vitally important that the KEM and the DEM are strictly independent
of each other, i.e., no information used by the KEM (including any element
of the public key or the system parameters) should be made available to the
DEM, or Theorem III.15 will not hold.2 In other words, if a secure KEM
and a secure DEM share some information, then it is possible that the hybrid
scheme formed from them might not be secure.

III.4.3. ECIES-KEM and ECIES-DEM. Both ECIES-KEM and ECIES-
DEM (both of which are defined in Section I.4) meet their required security
levels and have proofs of security to attest to this.

The security proof for ECIES-DEM is the same as the argument used
in Section III.2.1 to show that ECIES is secure if the symmetric keys are
randomly generated. Essentially one can prove that ECIES-DEM is secure
provided the underlying symmetric cipher and MAC scheme are secure. See
Section III.1.3 for more details on the security of symmetric primitives.

As one can imagine, the security proof for ECIES-KEM is a little more
complicated, and again we are going to have to make some kind of simplifying
assumption in the security analysis, just as we had to do for ECIES. It should
be easy to see that we can prove the security of ECIES-KEM using either the
random oracle model or the generic group model (see Sections III.2.2 and
III.2.3). In both models the security proof for ECIES involved demonstrating
that either we could break some underlying mathematical problem or the
symmetric keys were indistinguishable from completely random keys. This
is exactly the condition we need to prove in order to prove the security of
ECIES-KEM.

2Similarly, it is important that the DEM is chosen before the asymmetric key pair is
generated or else elements of the key-pair may influence the choice of DEM. This would
also invalidate Theorem III.15.

66 III. PROOFS OF SECURITY FOR ECIES

We also managed to show this based on the assumption that the hash
Diffie–Hellman problem is difficult to solve, but this does not help us prove
the security of ECIES-KEM. This is because the hash Diffie–Hellman problem
is exactly the same as the problem of breaking ECIES-KEM with an IND-
CCA2 attacker. So basing a security proof for ECIES-KEM on the hash
Diffie–Hellman problem would be rather like proving that ECIES-KEM is
difficult to break whenever it is difficult to break ECIES-KEM!

ECIES-KEM also suffers from all of the problems associated with ECIES
discussed in Section III.3, although the use of the cofactor mode (see Sec-
tion I.4) can help stop the invalid elliptic curve point attacks discussed in
Section III.3.2. Nevertheless, ECIES-KEM has already become a popular
algorithm with both academic cryptographers and software developers and
has already been proposed for inclusion in many important cryptographic
standards.

Part 2

Implementation Techniques

CHAPTER IV

Side-Channel Analysis

E. Oswald

Side-channel analysis (SCA) or information leakage analysis (ILA), refers
to a new and emerging type of cryptanalysis that uses leaked side-channel
information from a cryptographic device to determine the secret key. The
traditional cryptographic model consists of two parties, Alice and Bob, who
wish to communicate secretly over an insecure channel. To protect against
a potential eavesdropper, cryptographic algorithms are used to ensure the
secrecy of the communication. In this traditional model, the security of the
system relies solely on the secrecy of the key and the mathematical properties
of the cryptographic algorithm used.

However, in a more practical scenario the communicating parties are
mostly computing devices, such as personal computers, smart cards or mo-
bile phones. On such devices, a cryptographic algorithm is implemented
and executed whenever a cryptographic protocol requires its computation.
Although these devices operate in potentially hostile environments and are
subject to attacks themselves, they are supposed to protect the secret key.
Furthermore, such devices can act as a source of information. Depending on
the data they process, they might consume different amounts of power, emit
different amounts of electromagnetic emanations, produce different types of
noises, need different running times or output different error messages; see
Figure IV.1. If the device is executing a cryptographic algorithm (which uses
a secret key), the leaked information may be directly related to this secret
key. In certain cases, this additional information can be exploited to deduce
information about the secret key. Hence, the security of the whole system
relies on the security of the algorithms and protocols, and on the security of
their implementation.

This chapter is as organized as follows. The introductory part starts with
a brief section on cryptographic hardware in Section IV.1. Active attacks
assume that an attacker can manipulate a device in some way. Such attacks
are briefly sketched in Section IV.2. In passive attacks, which are treated in
Section IV.3, an attacker monitors the side-channels of a device but does not
manipulate the device himself. We introduce the currently used side-channels
in Section IV.3.1 and explain the concepts of simple side-channel analysis and
differential side-channel analysis in Sections IV.3.2 and IV.3.3. We conclude

69

70 IV. SIDE-CHANNEL ANALYSIS

Figure IV.1. A practical scenario where Alice and Bob are
computing devices and Eve can spy on the communication both
directly and via the emanations produced by the devices.

the introductory part of this chapter with a discussion on the attack scenarios
for elliptic curve cryptosystems in Section IV.3.4.

The second part is devoted to side-channel analysis on ECC. In Sec-
tion IV.4 we discuss the application of simple side-channel analysis on imple-
mentations of the elliptic curve scalar point multiplication. In Section IV.5
we apply differential side-channel analysis on implementations of the elliptic
curve scalar point multiplication.

Defences against side-channel analysis are discussed separately, in Chap-
ter V.

IV.1. Cryptographic Hardware

Traditionally, the main task of cryptographic hardware was the acceler-
ation of operations frequently used in cryptosystems or the acceleration of
a complete cryptographic algorithm. Nowadays, hardware devices are also
required to store secret keys securely. Especially in applications involving
digital signatures, the secrecy of the private signing key is vital to the secu-
rity of the whole system. A cryptographic device must make key extraction
impossible. Active attacks that target cryptographic devices are commonly
referred to as tamper attacks.

Tamper resistant devices are supposed to make key extraction impossible,
while tamper evident devices should make the key extraction obvious. An ex-
ample of a highly tamper resistant device is IBM’s 4758 [IBM CoPro]. It is
the only device evaluated against the highest level of tamper resistance (FIPS
140-1[FIPS 140.1], level 4) at the time of writing. Such high-end devices are
costly and therefore usually used in few applications such as ATM machines.

Alice

Execution Time
Eve

Bob

Power Consumption

Electromagnetic Emanation

Electromagnetic Emanation

Exec
utio

n T
im

e

Pow
er C

onsum
ption

Sound

IV.2. ACTIVE ATTACKS 71

Tamper resistant devices that are used for the mass market today are mostly
smart cards. Smart cards have to be cheap and are therefore restricted in
computing power, memory, and of course, mechanisms to counteract tamper
attacks.

IV.1.1. Smart Cards. A smart card usually consists of a microprocessor
(8-bit for low cost cards and up to 32-bit in the newest generation of smart
cards), memory and some interface. Usually, the interface is a serial interface,
for example in the case of banking cards, but also USB–interfaces or RF–
interfaces for contactless smart cards are possible. Smart card commands are
coded in Application Protocol Data Units (APDUs).

For several purposes, authentication commands such as internal authenti-
cate or external authenticate are usually available for smart cards with cryp-
tographic functions. The internal authenticate command usually takes some
input data and computes some sort of signature or decryption using a secret
or private key. The external authenticate command even allows the supply of
the key for the cryptographic operation. These two commands are commonly
used for attacks in practice.

IV.2. Active Attacks

Active attacks or tamper attacks have a long history in the field of cryp-
tography. The term active implies that an attacker actively manipulates the
cryptographic device.

IV.2.1. Simple Attacks on Smart Cards. It is relatively simple to ex-
tract the microprocessor from a given smart card. Then, the microprocessor
can be depackaged and placed into a more suitable medium in order to per-
form some experiments.

Various simple types of tamper attacks have been popular for smart cards.
The very first generations of smart cards used an external programming volt-
age to read and write contents to its memory. By cutting of this external
programming voltage, an attacker could freeze the contents of the memory.
Manufacturers’ test circuits led to other attacks on smart cards. Such test
circuits are used during the testing phase after the fabrication of the smart
card. After the testing phase, the test circuits are disconnected from the
microprocessor. An attacker has to find and repair the disconnected wires to
use the test circuit.

Most of these simpler attacks on smart cards were not only active at-
tacks but were also intrusive. In modern smart cards, the components of
the processor are covered by a protective mesh. This mesh reports when it
is damaged, at which point the smart card destroys its memory contents or
stops functioning.

72 IV. SIDE-CHANNEL ANALYSIS

IV.2.2. Fault Attacks. Here, an attacker tries to induce faulty signals in
the power input (or clock input) of the smart card. Often, this forces a change
in the data in one of the registers. As a consequence, the computation pro-
ceeds with the faulty data. Alternatively, an attacker might try to supply
faulty data directly (see also Section III.3.2). Fault attacks on implementa-
tions of elliptic curve cryptosystems have been introduced in [26] and were
also discussed in [78]. The main idea behind the attacks in this chapter is
the following. By inserting a fault in some register, we force the device to
execute the point multiplication algorithm with values that are not a point on
the given curve but on some other curve instead. This other curve is probably
a cryptographically weaker curve that can be used to calculate the private
key k more easily. As a consequence, a device has to check its input and its
output values for correctness.

IV.3. Passive Attacks

Passive attacks were only recognized in the cryptographic community as
a major threat in 1996, when Paul Kocher published the first article about
timing attacks [205]. In a passive attack, the attacker only uses the standard
functionality of the cryptographic device. In the case of smart cards, these
are the internal and the external authenticate commands. The outputs of
the device are then used for the attack. A device can have different types
of outputs. If such outputs unintentionally deliver information (about the
secret key), then the outputs deliver side-channel information and we call
them side-channel outputs (or side-channels). In the next sections, we present
side-channels that have been exploited in attacks so far.

IV.3.1. Types of Side-Channels. The first official information related to
a side-channel analysis dates back to 1956. Peter Wright reported in [349]
that MI5, the British intelligence agency, was stuck in their efforts to break
an encryption machine in the Egyptian Embassy in London. The encryption
machine was a rotor machine of the Hagelin type. Breaking the machine’s
encryption exceeded their computational capabilities. Wright suggested plac-
ing a microphone near that machine to spy on the click-sound the machine
produced. Wright discovered that the sound of the clicks allows the attacker
to determine the position of some of the rotors. This additional information
reduced the computation effort to break the cipher, and MI5 was able to spy
on the communication for years.

Timing Leakage : Timing information about the execution of a crypto-
graphic algorithm was the first side-channel that was brought to the atten-
tion of the cryptographic community by Kocher. In [205] he introduced a
technique to exploit even very small timing variations in an attack. Timing
variations often occur because of data-dependent instructions. For example,

IV.3. PASSIVE ATTACKS 73

Figure IV.2. This is a typical measurement setup to conduct
power (or EM) measurements. A personal computer is used
to operate the smart card and is connected with the digital
scope. The scope measures the power consumption on the GND
contact with a probe. A second probe, which is connected to
the IO–contact, is used as a trigger. The measurements are
sent from the scope to the personal computer for evaluation.

in the (original) Montgomery multiplication [254], a final subtraction step is
needed only if the result is exceeding the modulus.

In order to exploit timing information, very precise timing measurements
need to be made.

Power Consumption Leakage : Nowadays, almost all smart card proces-
sors are implemented in CMOS (Complementary Metal-Oxide Silicon) tech-
nology. The dominating factor for the power consumption of a CMOS gate
is the dynamic power consumption [348]. Two types of power consumption
leakage can be observed. The transition count leakage is related to the num-
ber of bits that change their state at a time. The Hamming weight leakage is
related to the number of 1-bits, being processed at a time. The internal cur-
rent flow of a smart card can be observed on the outside of the smart card by,
for example, putting a small resistor between the ground (GND) of the smart
card and the true ground. The current flowing through the resistor creates a
voltage that can be measured by a digital oscilloscope (see Figure IV.2).

The first practical realization of an attack that makes use of the power
consumption leakage was reported by Kocher et al. in [206]. Since then,
many companies and universities have developed the skills to conduct these
measurements in practice.

Probe

GND

Scope

Evaluation

Smartcard

GPIB

Data from PC

Name

Cardnumber

Reset

Clock

Vpp

IO

Vcc

74 IV. SIDE-CHANNEL ANALYSIS

Electromagnetic Radiation Leakage : The movement of electrically
charged particles causes electromagnetic leakage. In CMOS technology, cur-
rent flows whenever the circuit is clocked and gates switch. This current flow
is visible in the power consumption, and it is also visible as electromagnetic
emanations. There are two main categories for electromagnetic emanations.
Direct emanations result from intentional current flow. Unintentional ema-
nations are caused by the miniaturization and complexity of modern CMOS
devices.

The first concrete measurements were presented in [139] and [278]. At
the time of writing, it is possible to conduct EM attacks with measurements
taken several meters away from the attacked device [5].

Combining Side-Channels : The combination of several different side-
channels has not been investigated intensively so far. Two sources of side-
channel information that are known to be efficiently combined are the timing
and the power side-channel. For instance, power measurements can be used
to get precise timing measurements for intermediate operations (if these op-
erations are clearly visible in the power trace). These power measurements
can then be used in timing attacks. This observation has been used in [342]
and [289].

Error Messages : Error-message attacks usually target devices implement-
ing a decryption scheme. It is a common assumption that a device gives a
feedback about whether or not a message could be decrypted successfully. If
an attacker knows the reason why a decryption failed, information about the
secret key can be deduced by sending well-chosen ciphertexts to the device.

These kind of attacks were first introduced by Bleichenbacher in [30].
This article describes a chosen ciphertext attack against the RSA encryp-
tion standard PKCS#1. Other error-message attacks are mentioned in [232]
against RSA-OAEP, [99] and [189] against the NESSIE candidate EPOC-2
and [330] against the padding and subsequent encryption in CBC mode as it
is done in various standards.

IV.3.2. Simple Side-Channel Analysis. In simple side-channel analysis,
an attacker uses the side-channel information from one measurement directly
to determine (parts of) the secret key. Therefore, the side-channel informa-
tion related to the attacked instructions (the signal) needs to be larger than
the side-channel information of the unrelated instructions (the noise). In
order to be able to exploit this information, at least some of the executed in-
structions need to be distinguishable by their side-channel trace. In addition,
the attacked instructions need to have a relatively simple relationship with
the secret key.

IV.3. PASSIVE ATTACKS 75

Statistical Analysis

Key
hypothetical

Data
Influences

Unknown/Data
Uncontrolled

Model of the

Physical Side−Channel Output Hypothetical Side−Channel Output

Decision

Physical Device

Physical DeviceKey

Figure IV.3. The idea behind differential side-channel analy-
sis: an attacker compares the predictions from his hypothetical
model with the side-channel outputs of the real, physical device.

The question, of whether the signal is clearly visible in the side-channel
trace, often depends on the underlying hardware, but also sometimes on the
implementation itself; see Chapter V.

IV.3.3. Differential Side-Channel Analysis. When simple side-channel
analysis are not feasible due to too much noise in the measurements, differen-
tial side-channel analysis can be tried. Differential side-channel analysis uses
many measurements to filter out the interfering noise. Simple side-channel
analysis exploits the relationship between the executed instructions and the
side-channel output. Differential side-channel analysis exploits the relation-
ship between the processed data and the side-channel output.

In differential side-channel analysis, an attacker uses a so-called hypothet-
ical model of the attacked device. The quality of this model is dependent on
the capabilities of the attacker:

Clever Outsiders: They do not have insider knowledge of the system.
They are assumed to have moderately sophisticated equipment.

Knowledgeable Insiders: They are educated in the subject and have
a varying degree of understanding of the attacked system. They have
sophisticated tools to conduct the measurements.

Funded Organizations: They have teams of specialists that may have
access to insider knowledge about the attacked system, and they have
the most advanced analysis tools.

The model is used to predict the side-channel output of a device. Used as
such a predictor, it can output several different values. These can be values

76 IV. SIDE-CHANNEL ANALYSIS

predicting the leakage of one side-channel for several moments in time, but
they can also be values predicting the leakage of different side-channels. In
case only one single output value is used for an attack, then the attack is
called a first-order attack . If two or more output values for the same side-
channel are used in an attack, then the attack is called a second-order attack
or higher-order attack, respectively.

These predictions are compared to the real, measured side-channel output
of the device. Comparisons are performed by applying statistical methods on
the data. Among others, the most popular methods are the distance-of-mean
test and correlation analysis .

For the distance-of-mean test, the model only needs to predict two val-
ues, low and high, for a certain moment of time in the execution. These
two predictions are used to classify the measurement data. All measurements
for which the prediction stays high are put into one set, and all other mea-
surements are put in a second set. Then, the difference between the sets is
calculated by computing the difference of their mean values.

For a formal description of this test, we use the following notation. Let ti
denote the ith measurement data (i.e., the ith trace) and let tli and thi denote
a trace for which the model predicted a low and a high side-channel leakage,
respectively. A set of traces tli, t

h
i and ti is then denoted by T l, T h and T and

the average trace of such a set by T̄ l, T̄ h and T̄ . Consequently, the difference
trace for the distance-of-mean method is calculated by

D = T̄ l − T̄ h.

Whenever this difference is sufficiently large, or has some other recognizable
properties, it can be used to verify or reject the key hypothesis.

For correlation analysis, the model predicts the amount of side-channel
leakage for a certain moment of time in the execution. These predictions are
correlated to the real side-channel output. To measure this correlation, the
Pearson correlation coefficient can be used. Let pi denote the prediction of
the model for the ith trace and P set of such predictions. Then the Pearson
correlation coefficient is given as

C(T, P) =
E(T ∗ P)− E(T) ∗ E(P)√

Var(T) ∗ Var(P)
, −1 ≤ C(T, P) ≤ 1.

Here E(T) denotes the expectation (average) trace of the set of traces T and
Var(T) denotes the variance of a set of traces T . If this correlation is high,
i.e., close to +1 or −1, then the key hypothesis is assumed to be correct.

To summarize and conclude this section, differential side-channel analysis
is possible if an attacker can make a hypothesis over a small part of the secret
key to predict the side-channel output with his model.

IV.3.4. Target Operations in Elliptic Curve Cryptosystems. There
are two operations in commonly used elliptic curve cryptosystems that involve

IV.4. SIMPLE SCA ATTACKS ON POINT MULTIPLICATIONS 77

the private key or an ephemeral (secret) key. We briefly discuss the scenarios
under which these operations are attacked.

• The modular multiplication of a known value and the private key needs
to be computed in ECDSA. If the multiplication is implemented in such
a way that the multiplier is the private key and the multiplication is
carried out with a variant of the binary algorithm, then this implemen-
tation is, in principle, vulnerable to side-channel analysis. However,
this operation can be implemented securely by not using the private
key as a multiplier.

• The scalar multiplication of a secret value with a known elliptic curve
point, i.e., the point multiplication [ECC, Section IV.2], needs to be
calculated in all elliptic curve cryptosystems. Also this operation is
usually implemented by some version of the binary algorithm. It has
been shown to be vulnerable to simple and differential side-channel
analysis.

Probably the most important elliptic curve protocol is ECDSA. From the
previous considerations it is clear that the operation that is difficult to secure
is the point multiplication operation. It is also well known [262] that not all
bits of the ephemeral ECDSA key need to be known in order to reconstruct
the private key of the ECDSA. As a result, the point multiplication operation
must be implemented to resist in particular simple side-channel analysis.

IV.4. Simple SCA Attacks on Point Multiplications

In the case of a simple SCA attack on an implementation of a point
multiplication algorithm, the adversary is assumed to be able to monitor the
side-channel leakage of one point multiplication, Q = [k]P , where Q and P
are points on an elliptic curve E and k ∈ Z is a scalar. The attacker’s goal is
to learn the key k using the information obtained from carefully observing the
side-channel leakage (e.g. power trace) of a point multiplication. Such a point
multiplication consists of a sequence of point addition, point subtraction and
point doubling operations. Each elliptic curve operation itself consists of a
sequence of field operations. In most implementations, the standard sequence
of field operations in point addition differs from that in point doubling. Every
field operation has its unique side-channel trace. Hence, the sequence of field
operations of point addition has a different side-channel pattern than that of
point doubling (see Figures IV.4 and IV.5 for an example with power traces).

IV.4.1. Attacking the Basic Double-and-Add Algorithm. It was al-
ready observed in [87] that the implementation of the simplest form of a
double-and-add algorithm, which is the binary algorithm (see Algorithm IV.1),
is an easy target for simple side-channel analysis.

First we note that the conditional branch (i.e., Step 5 in Algorithm IV.1)
only depends on a single bit of k. Hence, an attacker can inspect the power

78 IV. SIDE-CHANNEL ANALYSIS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
−3

−2

−1

0

1

2

3

4

5

6

7

clock cycle

m
A

Figure IV.4. A point addition power trace.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
−3

−2

−1

0

1

2

3

4

5

6

7

clock cycle

m
A

Figure IV.5. A point doubling power trace.

trace of the point multiplication algorithm to determine k. We have assumed
that it is possible to distinguish the point addition operation from the point
doubling operation in the power trace. Since a point addition operation can

IV.4. SIMPLE SCA ATTACKS ON POINT MULTIPLICATIONS 79

0 0.56 1.08 1.63 2.3 2.89 3.56 4.1 4.69

x 10
4

−2

−1

0

1

2

3

4

5

6

7

clock cycle

m
A

0 0 1 1 0 0

Figure IV.6. The power consumption trace of an elliptic
curve scalar point multiplication operation that was performed
with a simple double-and-add algorithm. The used scalar can
be read directly from this power consumption trace.

only be caused by a 1 in the bit representation of k, deducing the key is trivial
(see Figure IV.6 for an example) in this naive implementation.

Algorithm IV.1: Right-to-Left Binary Algorithm

INPUT: Point P and 	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: Q = [k]P.

1. Q←P.
2. If k0 = 1 then R←P else R←O.
3. For i = 1 to l − 1 do:

4. Q← [2]Q.
5. If (ki = 1) then R←R +Q.
6. Return R.

More interesting to attack are algorithms that make use of the rich arith-
metic on elliptic curves. This arithmetic allows the use of other representa-
tions of k, instead of only the binary representation. They offer some inherent
resistance to straightforward simple SCA because they also make use of point
subtraction. Because point addition and point subtraction only differ slightly,
they can be implemented in such a way that their side-channel patterns look

80 IV. SIDE-CHANNEL ANALYSIS

alike. Therefore, an attacker cannot determine the key bits by just inspecting
the side-channel trace.

IV.4.2. Attacking Double-Add-and-Subtract Algorithms. The task
of an attacker is to deduce some information about k by using the informa-
tion of the side-channel trace. In particular, an attacker wants to determine
and exploit the relationship between the occurrence of certain sequences of
bits and certain sequences of side-channel patterns. Let X be a random vari-
able that denotes the sequence of patterns in the side-channel trace, i.e., an
AD-sequence (for example X=“DDD” or X=“DAD”). Let Y be a random
variable that denotes a sequence of patterns in the digit representation of k,
i.e., a 01-sequence (for example Y = 000 or Y = 01). Then an attacker is
interested in exploiting and calculating the conditional probability

Pr(Y = y|X = x) =
Pr(Y = y ∩X = x)

Pr(X = x)
(IV.1)

for many different x and y. Such probabilities can be calculated by using
Markov theory [155].

A Markov process, or in case of a finite state space also called Markov
chain, is a rather simple statistical process. In a Markov process, the next
state is dependent on the present state but independent of the way in which
the present state arose from the states before. The transitions between the
states are determined by random variables that are either known or have to
be estimated.

Definition IV.1. Let T be a (k×k) matrix with elements tij, 1 ≤ i, j ≤ k. A
random process (X0, X1, . . .) with finite state space S = {s1, . . . , sk} is said to
be a Markov chain with transition matrix T if, for all n all i, j ∈ {1, . . . , k},
and all i0, . . . , in−1 ∈ {1, . . . , k} we have

Pr(Xn+1 = sj|X0 = si0 , . . . , Xn = si) =

Pr(Xn+1 = sj|Xn = si) = tij.

A large class of such Markov processes has the two important properties
of being irreducible and aperiodic.

The first property, i.e., that a process is irreducible, means that all states
can be reached from all other states with a finite number of steps. The
second property, i.e., that a process is aperiodic, means that all states are
aperiodic. A state is aperiodic if the period is equal to 1, i.e., the probability
of returning to a state is always positive. These two properties are conditions
for the main theorem of Markov theory. Before we state this theorem we
define the stationary distribution first.

Definition IV.2. Let (X0, X1, . . .) be a Markov chain with state space given
by {s1, . . . , sk} and transition matrix T . A row vector π = (π1, . . . , πk) is said

IV.4. SIMPLE SCA ATTACKS ON POINT MULTIPLICATIONS 81

to be a stationary distribution for the Markov chain if it satisfies

πi ≥ 0∀i, and
n∑

i=1

πi = 1, and (IV.2)

πT = π. (IV.3)

Theorem IV.3. For any irreducible and aperiodic Markov chain, there exists
a unique stationary distribution π, and any distribution µn of the chain at
time n approaches π as n→∞, regardless of the initial distribution µ0.

This theorem states that, for Markov processes having the properties of
being aperiodic and irreducible, a steady state always exists. By using the
transition matrix T and the steady-state vector, we can calculate the condi-
tional probabilities (IV.1).

Example: Consider a simple double-add-and-subtract algorithm as shown
in Algorithm IV.2.

Algorithm IV.2: Double-Add-and-Subtract Algorithm

INPUT: Point P and 	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: Q = [k]P.

1. R0←O, R1←P, s← 0.
2. For i = 0 to l − 1 do:

3. If ki = 0 then

4. If s = 11 then R0←R0 +R1.

5. s← 0, R1← [2]R1.

6. If ki = 1 then

7. If s = 0 then R0←R0 +R1, R1← [2]R1, s← 1.
8. If s = 1 then R0←R0 −R1, R1← [2]R1, s← 11.
9. If s = 11 then R1← [2]R1.

10. If s = 11 then R0←R0 +R1.

11. Return R0

There are three different states s in this algorithm. The initial state is
always 0. Under the assumption that Pr(ki = 0) = Pr(ki = 1) = 1/2, the
transition matrix for this algorithm is

T =

0.5 0.5 0.5
0.5 0 0
0 0.5 0.5

 . (IV.4)

From the transition matrix the steady-state vector, which is (1/2, 1/4, 1/4),
can be calculated. The number of elliptic curve operations that are induced
by an 	-bit number can be calculated as well. In each state, a point doubling
has to be calculated. Hence, there are 	 point doublings. In addition, in half

82 IV. SIDE-CHANNEL ANALYSIS

of the cases in each state, a point addition has to be calculated. Hence, there
are (1/4+1/8+1/8)	 point additions. In total, 3/2	 elliptic curve operations
are calculated.

A hidden Markov process is a Markov process in which we can only observe
a sequence of emissions (the AD-sequence), but we do not know the sequence
of states, which are related to the key bits (the 01-sequence) the process went
through. A hidden Markov model can be characterized by the quintuple
(S,O, T,E, s0). The notation used here is similar to the one used before:
the transition matrix is denoted by T and the finite set of states is called
S. The emissions are denoted by the set O. The emission matrix E is a
|S| × |O| matrix and contains the conditional probability that an emission
symbol of the set E was produced in state S: Eij = Pr(Oj|Si). The initial
state distribution is denoted by s0. Given a (hidden) Markov model, the
task of the attacker is to find for a given AD-sequence, a corresponding state
sequence that explains the given AD-sequence best. One approach to tackle
this problem is to choose sub-sequences that are individually most likely, i.e.,
which have the highest conditional probabilities [269].

Example: Suppose we use Algorithm IV.2 to perform a point multiplication
with the scalar k = 560623. As a first step, we calculate sufficiently many
conditional probabilities (see Table IV.1) by using the Markov model that we
derived in the previous example.

Table IV.1. Non-zero conditional probabilities. In this table
we use an abbreviated notation, i.e., we write p(000|DDD)
instead of p(Y = 000|X = DDD). We use the LSB first repre-
sentation.

Pr(000|DDD) = 1/2 Pr(01|DAD) = 1/2 Pr(11|ADAD) = 1/2
Pr(100|DDD) = 1/4 Pr(10|DAD) = 1/4 Pr(10|ADAD) = 1/4
Pr(111|DDD) = 1/4 Pr(11|DAD) = 1/4 Pr(01|ADAD) = 1/4

Pr(001|DDAD) = 1/2 Pr(000|ADDD) = 1/4 Pr(110|ADADAD) = 1/2
Pr(101|DDAD) = 1/4 Pr(100|ADDD) = 1/2 Pr(101|ADADAD) = 1/4
Pr(110|DDAD) = 1/4 Pr(111|ADDD) = 1/4 Pr(011|ADADAD) = 1/4

Table IV.2 shows how the remainder of the attack works. The first row
contains the AD-sequence that we deduced from the power trace. In the
second row, this sequence is split into sub-sequences. In a practical attack,
the length of the sub-sequences will depend on the computational capabilities
of the attacker. However, it will be much larger than in this toy example. In
the third, fourth and fifth rows, the possible bit-patterns are listed according
to their conditional probabilities.

IV.4. SIMPLE SCA ATTACKS ON POINT MULTIPLICATIONS 83

Table IV.2. k = 11110111101100010001, LSB First Representation

ADADDDADADADDDADADADADDDADDDDAD
ADAD DDAD ADAD DDAD ADAD ADDD ADDD DAD

11 001 11 001 11 100 100 01
10 101 10 101 10 000 000 10
01 110 01 110 01 111 111 11

We are interested in the number of possible scalar values that have to be
tested before the correct k is found. Let 	 denote the number of bits of k and
n the average length of the sub-sequences. In the worst case, if we only take
the non-zero conditional probabilities into account, but not their individual
values, we have to test 0.5 × 33�/2n keys on average. Let m be the number
of sub-sequences, i.e., m = 3	/2n in this example, and g(x, y) =

(
x
y

)
2x−y. If

we take the individual conditional probabilities into account, this reduces to

0.5m + 0.5
∑m−1

i=0 0.5i0.25m−i
(
1 + g(m, i) + 2

∑m
j=i+1 g(m, j)

)
g(m, i) keys on

average [270].

The approach that we used in the previous example was to choose sub-
sequences that are individually most likely. This strategy guarantees us find-
ing the key k; however, it does not take sequences of sub-sequences into
account. Another widely used strategy is to find the single best path. A well
known technique for this approach is the Viterbi algorithm and has been used
successfully to attack double-add-and-subtract algorithms [195]. In case of a
randomized version of the algorithm that was discussed in the previous exam-
ple, the Viterbi algorithm determines approximately 88% of all intermediate
states correctly. The remaining and unknown states can be determined by a
meet-in-the-middle technique that is sketched in the following section.

Improvements : Assume that the point Q is given by Q = [k]P , where
k = xb + y denotes the private key k and P the public base-point. Then we
know that for the correct values of x, b and y the equation Q− [y]P = [xb]P
must hold. By computing and comparing the values of the left- and the
right-hand sides of this equation, we can determine k. Hence, if k is almost
determined, the remaining bits can be guessed and verified by checking the
previous equation. This approximately halves the search space for k.

Other Attack Scenarios : Suppose an attacker has the ability to force
a device to use the same scalar k for several point multiplication operations.
Due to the randomization, the same scalar will produce different power traces
that all give information about the used scalar. Combining the information
gained from several traces, a scalar value can usually be determined with very
few (approximately 10) measurements [265], [340].

84 IV. SIDE-CHANNEL ANALYSIS

IV.4.3. The Doubling Attack. This attack relies on the fact that similar
intermediate values are manipulated when working with a point P and its
double [2]P [122]. We assume that an attacker can identify point doubling
operations with identical data in two power traces.

Algorithm IV.3: Double-and-Add-Always Algorithm

INPUT: Point P and 	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: Q = [k]P.

1. R0←P.
2. For j = 	− 2 to 0 by −1 do:

3. R0← [2]R0.

4. R1−kj
←R1−kj

+ P.
5. Return R0.

Algorithm IV.3 is secure against simple SCA on a first glance as in each
iteration a point doubling and a point addition operation is executed. The
value of the variable R0 after j+1 iterations is Qj(P) = [

∑i=j
i=0 2j−i]P . Rewrit-

ing this expression in terms of [2]P leads to Qj(P) = Qj−1([2]P) + [d�−j]P .
Thus, the intermediate result of the algorithm with input P (which is stored
in R0) at step j is equal to the intermediate result of the algorithm with input
[2]P at step j − 1 if and only if d�−j is zero. Hence, we just need to compare
the doubling operation at step j + 1 for P and at step j for [2]P to recover
the bit d�−j.

IV.5. Differential SCA Attacks on Point Multiplications

The first article related to side-channel analysis on public-key cryptosys-
tems was Messerges et al.[245]. Shortly afterwards, Coron published an ar-
ticle specifically related towards implementations of elliptic curve cryptosys-
tems [87]. Goubin published an article wherein some of Coron’s proposed
countermeasures were counteracted by a refined attack [151], which was anal-
ysed further in [313].

IV.5.1. Differential SCA Without any Knowledge of the Implemen-
tation. Two differential SCA attacks have been published which assume no
knowledge about the attacked device.

The SEMD (Single-Exponent Multiple-Data) attack assumes that an at-
tacker can perform the point multiplication operation with the secret value k
and some public value r with several elliptic curve points. Then, for both the
secret and the public values, the conducted measurements, tki and tri, are
averaged. The two average traces are subtracted from each other to produce a
difference trace. Whenever this difference trace shows a peak, the two values
k and r must have been different as well:

D = T̄ k − T̄ r.

IV.5. DIFFERENTIAL SCA ATTACKS ON POINT MULTIPLICATIONS 85

Thus, by comparing the power traces from a known and an unknown scalar
an attacker can learn the unknown scalar.

The MESD (Multiple-Exponent Single-Data) attack works similarly. In
this scenario it is assumed that the attacker can feed the device with multiple
scalar values and one single elliptic curve point. Another assumption is that
the attacker is allowed to perform the point multiplication with the secret
scalar value and the same elliptic curve point several times. The measure-
ments for the secret scalar, tsi, are averaged to get rid of noise. Then, the
attacker determines the bits of the secret value step by step. For each choice
of a new bit, r0 or r1, the attacker calculates how well the choice fits the
secret exponent:

D1 = T̄ s− tr1
D0 = T̄ s− tr0.

Whichever difference trace is zero for a longer time corresponds to the correct
bit.

IV.5.2. Differential SCA with Knowledge of the Implementation.
The two other published attacks work according to our general introduc-
tion in Section IV.3.3. The ZEMD (Zero-Exponent Multiple-Data) uses as a
statistical method the distance-of-mean test. The outputs of the model are
therefore a simple classification of the measurement data into two sets. For
one set, the model predicts a high side-channel leakage for a certain moment
in time, T h, while for the other set a low side-channel leakage T l is predicted.
Only if the model predicted the side-channel behaviour correctly, is the clas-
sification into the two different sets meaningful and thus a difference between
the sets must be visible:

D = T̄ h − T̄ l.

Coron’s attack is essentially the same as the ZEMD attack, but it uses
the correlation coefficient instead of the distance-of-mean test. Both attacks
assume that an attacker knows the internal representation of the elliptic curve
points and that a prediction of the side-channel output is possible.

IV.5.3. Differential SCA Using Address Information. As explained
in Section IV.3.3, an attacker tries to include as much information as pos-
sible in her hypothetical model. This information is usually related to the
intermediate data, but it can also be related to the intermediate addresses.
In some devices, loading data from a specific address, i.e., performing data =
R[Address], is composed into two stages. First, the physical address is de-
termined given R[Address] and then the data that is stored in this address
are loaded. As addresses also travel over a bus (as data travel over a bus),
different addresses can be expected to leak different information. In [175],
this assumption has been verified for a certain device and an attack based
on it is presented. This attack breaks implementations of EC schemes on

86 IV. SIDE-CHANNEL ANALYSIS

that device, which resist typical differential SCA attacks based on predicting
intermediate data by using a Montgomery point multiplication algorithm (see
Algorithm V.2). In Step 4 of this algorithm, data is fetched from a partic-
ular address that depends on a particular bit of the key. Hence, when for
example performing an SEMD attack, the attacker should see a peak in the
side-channel trace whenever two key bits differ.

IV.5.4. Refined Differential SCA. If projective coordinates are used in
an implementation, they can be used to randomize the intermediate data;
differential SCA as described in the previous sections cannot be used di-
rectly. However, under the assumption that the multiplier is not randomized,
exploiting the properties of so-called special points can lead to an attack;
see [151]. A special point P0
= O is a point having the property that one
of the affine or projective coordinates is 0. Hence, randomization does not
affect this property.

Suppose the attacker already knows the highest bits d�−1, . . . , dj+1 of k. To
attack the next bit dj in Algorithm IV.3, the attacker needs to feed suitable
multiples P1 of P0 into the algorithm. Such a multiple is calculated based on
the (guessed) key bit dj. If this guess is correct, then this multiple is nicely
related to the content of the registers in the (j + 1)th step: If we denote the
value of R1 in the (j + 1)th step by [x]P , then, if dj is correct, the special
point is [x−1]P (we have to assume that x is relatively prime to the order of
P). Hence, in the (j + 1)th step of the algorithm with input P1, the point
[xx−1]P0 = P0 is processed. The special property of this point can then be
picked up from several side-channel traces by averaging over the traces.

In [6], an extension to [151] is described. This extended attack is based on
the observation that, even if a point does not have a zero coordinate, some of
the intermediate values that occur during point addition (or point doubling)
might become zero.

CHAPTER V

Defences Against Side-Channel Analysis

M. Joye

V.1. Introduction

This chapter is aimed at studying the resistance of elliptic curve cryp-
tosystems against side-channel analysis. The main operation for elliptic curve
cryptosystems is the point multiplication: Q = [k]P , where the multiplier k is
generally a secret (or private) parameter. In particular, this chapter surveys
various software strategies to prevent side-channel attacks in the computation
of Q = [k]P .

Given the rich mathematical structure of elliptic curves, an endless num-
ber of new countermeasures can be imagined. More importantly, as we will
see, efficient countermeasures (i.e., with almost no impact on the running time
and/or the memory requirements) are known. The advantage is clearly on
the end-user side (not on the attacker side). We must also keep in mind that
present-day cryptographic devices come equipped with a variety of hardware
countermeasures, already making harder (or impossible) side-channel attacks.

As given in textbooks, the formulæ for doubling a point or for adding
two (distinct) points on a Weierstraß elliptic curve are different. So, for
example, from the distinction between the two operations, a simple power
analysis (i.e., a simple side-channel analysis using power consumption as a
side-channel; cf. Section IV.4) might produce different power traces, revealing
the value of k in the point multiplication algorithm. There are basically three
approaches to circumvent the leakage. This can be achieved by:

1. unifying the addition formulæ [51, 50] or considering alternative pa-
rameterizations [188, 220, 27];

2. inserting dummy instructions or operations [87, 76];
3. using algorithms that already behave “regularly” [225, 264, 253, 51,

178, 120].

Even if a point multiplication algorithm is protected against simple side-
channel analysis, it may succumb to the more sophisticated differential side-
channel analysis [87, 206] (cf. Section IV.5). Practically, we note that, except
ECIES, very few elliptic curve cryptosystems are susceptible to such attacks
as, usually, the input point is imposed by the system and the multiplier is an
ephemeral parameter, varying at each execution.

87

88 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

In order to thwart differential side-channel analysis, the inputs of the
point multiplication algorithm, namely, the base-point P and the multiplier
k, should be randomized [87, 190].

The insertion of random decisions during the execution of the point multi-
plication algorithm also helps in preventing side-channel analysis [271, 156].
Of course, several countermeasures can be combined for providing a higher
security level.

V.2. Indistinguishable Point Addition Formulæ

We start by recalling the explicit group law on elliptic curves (see [ECC,
Section III.2]). Let E denote an elliptic curve given by the Weierstraß form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (V.1)

and let P1 = (x1, y1) and P2 = (x2, y2) denote points on the curve. The
inverse of P1 is −P1 = (x1,−y1 − a1x1 − a3). If P1
= −P2, then the sum
P3 = P1 + P2 = (x3, y3) is defined as

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = λ(x1 − x3)− y1 − a1x3 − a3 (V.2)

with

λ =

y1 − y2

x1 − x2

when x1
= x2 ,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

when x1 = x2 .

(V.3)

From Eq. (V.3), it clearly appears that the formulæ for adding two (dis-
tinct) points and for doubling a point are different.

This section discusses various ways for making indistinguishable the addi-
tion formulæ on elliptic curves so that a side-channel analysis cannot reveal
what kind of addition is being processed.

V.2.1. Unified Addition Formulæ. In [51], Brier and Joye observed that
the expressions of slope λ in Eq. (V.3) can be unified for adding or doubling
points. When P1
= ±P2 and provided that P1 and −P2 do not have the
same y-coordinate (i.e., provided that y1
= −y2 − a1x2 − a3), we can write
λ = y1−y2

x1−x2
= y1−y2

x1−x2
· y1+y2+a1x2+a3

y1+y2+a1x2+a3
and so obtain after a little algebra

λ =
x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y1

y1 + y2 + a1x2 + a3

. (V.4)

Remarkably, this expression for λ remains valid when P1 = P2 and can thus be
used for doubling a point. Indeed, replacing (x2, y2) by (x1, y1) in Eq. (V.4),

we get λ =
3x2

1+2a2x1+a4−a1y1

2y1+a1x1+a3
.

To include the uncovered case y(P1) = y(−P2), we can extend the previous
expression to

λ =
(x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y1) + ε(y1 − y2)

(y1 + y2 + a1x2 + a3) + ε(x1 − x2)

V.2. INDISTINGUISHABLE POINT ADDITION FORMULÆ 89

for any ε ∈ K [50]. For example, when char(K)
= 2, we can set ε = 1 if
y1 +y2 +a1x2 +a3 +x1−x2
= 0 and ε = −1 otherwise; when char(K) = 2, we
can respectively set ε = 1 and ε = 0. Another strategy consists in randomly
choosing ε ∈ K. The extended expressions for λ prevent the exceptional
procedure attacks of [179].

Two main classes of elliptic curves are used in cryptography: elliptic
curves over large prime fields and elliptic curves over binary fields, i.e., fields
of characteristic two. Avoiding supersingular curves, an elliptic curve over
F2n can be expressed by the short Weierstraß form

Ea2,a6 : y2 + xy = x3 + a2x
2 + a6 .

From Eqs. (V.4) and (V.2), we see that the addition of two points requires
one inversion, four multiplies, and one squaring. Note that the multiplication
(x1 + x2)(x1 + x2 + a2) can also be evaluated as (x1 + x2)

2 + a2(x1 + x2).
Over the large prime field Fp (with p > 3), the Weierstraß equation sim-

plifies to

Ea4,a6 : y2 = x3 + a4x+ a6 .

The addition of two points then requires one inversion, three multiplies, and
two squarings. As inversion in a field of large characteristic is a relatively
costly operation, projective representations of points are preferred [102]. A
projective point P = (XP : YP : ZP) on the curve satisfies the (projective)
Weierstraß equation

Ea4,a6 : Y 2Z = X3 + a4XZ
2 + a6Z

3

and, when ZP
= 0, corresponds to the affine point P = (XP/ZP , YP/ZP).
The notation (X : Y : Z) represents equivalent classes: (X : Y : Z) and (X ′ :
Y ′ : Z ′) are equivalent projective representations if and only if there exists a
non-zero field element θ such that X = θX ′, Y = θY ′, and Z = θZ ′. The
only point at infinity (i.e., with Z = 0) is the identity element O = (0 : 1 : 0),
and the inverse of P1 = (X1 : Y1 : Z1) is −P1 = (X1 : −Y1 : Z1). The sum of
two points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) (with P1, P2
= O and
P1
= −P2) is given by P3 = (X3 : Y3 : Z3) with

X3 = 2FW, Y3 = R(G− 2W)− L2, Z3 = 2F 3,

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1+U2,
M = S1 + S2, R = T 2 − U1U2 + a4Z

2, F = ZM , L = MF , G = TL,
and W = R2 − G. Therefore, adding two points with the unified formulæ
(Eq. (V.4)) requires 17 multiplies plus 1 multiplication by constant a4. When
a4 = −1, we may write R = (T − Z)(T + Z) − U1U2 and the number of
multiplies decreases to 16 [51].

90 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

V.2.2. Other Parameterizations. Every elliptic curve is isomorphic to a
Weierstraß form. Parameterizations other than the Weierstraß form may lead
to faster unified point addition formulæ. This was independently suggested
by Joye and Quisquater [188] and by Liardet and Smart [220]. We illustrate
the topic with elliptic curves defined over a large prime field Fp, p > 3.

V.2.2.1. Hessian Form. Most elliptic curves containing a copy of Z/3Z

(and thus with a group order a multiple of 3) can be expressed by the (pro-
jective) Hessian form [309]1

H : X3 + Y 3 + Z3 = 3DXY Z . (V.5)

Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) denote points on the Hessian
curve H. The inverse of P1 is −P1 = (Y1 : X1 : Z1), and the sum P3 = P1 +P2

is defined as (X3 : Y3 : Z3) with

X3 = X2Y
2
1 Z2 −X1Y

2
2 Z1, Y3 = X2

1Y2Z2 −X2
2Y1Z1, Z3 = X2Y2Z

2
1 −X1Y1Z

2
2

when P1
= P2, and

X3 = Y1(X
3
1 − Z3

1), Y3 = X1(Z
3
1 − Y 3

1), Z3 = Z1(Y
3
1 −X3

1)

otherwise. The formulæ for adding two (distinct) points and for doubling a
point appear to be different. However, the doubling operation can be rewrit-
ten in terms of a (general) addition operation. This is stated in the following
lemma.

Lemma V.1 ([188]). If P1 = (X1 : Y1 : Z1) is a point on an Hessian elliptic
curve, then

[2](X1 : Y1 : Z1) = (Z1 : X1 : Y1) + (Y1 : Z1 : X1) .

Furthermore, we have (Z1 : X1 : Y1)
= (Y1 : Z1 : X1).

The correctness of the above lemma is easily verified. Let T1 = (0 : −1 : 1)
and T2 = −T1 = (−1 : 0 : 1) denote the two points of order 3 on H. We
have [2](X1 : Y1 : Z1) = ((X1 : Y1 : Z1) + T1) + ((X1 : Y1 : Z1) + T2) = (Z1 :
X1 : Y1) + (Y1 : Z1 : X1). Moreover, (Z1 : X1 : Y1) = (Y1 : Z1 : X1) implies
T1 = T2, a contradiction.

V.2.2.2. Jacobi Form. When an elliptic curve contains a copy of Z/2Z

(which implies that its group order is a multiple of 2), it can be represented
by the (extended) Jacobi form [27]

J : Y 2 = εX4 − 2δX2Z2 + Z4 . (V.6)

1The construction given in [309] assumes that p ≡ 2 (mod 3).

V.2. INDISTINGUISHABLE POINT ADDITION FORMULÆ 91

Let P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) denote points on the
Jacobi curve J . The inverse of P1 is −P1 = (−X1 : Y1 : Z1), and the sum
P3 = P1 + P2 is defined as (X3 : Y3 : Z3) with

X3 = X1Z1Y2 + Y1X2Z2, Z3 = (Z1Z2)
2 − ε(X1X2)

2 ,
Y3 = (Z3 + 2ε(X1X2)

2)(Y1Y2 − 2δX1X2Z1Z2) +
2εX1X2Z1Z2(X

2
1Z

2
2 + Z2

1X
2
2) .

It is worth noting the same formula applies for adding (distinct) points or for
doubling a point.

Finally, when the curve contains a copy of (Z/2Z) × (Z/2Z), the Jacobi
curve equation (V.6) can be rescaled, in most cases, to the value ε = 1 [27].
This corresponds exactly to the Jacobi curves initially suggested by Liardet
and Smart [220] but represented as the intersection of two quadrics.2

The different costs for point addition formulæ are summarized in Ta-
ble V.1. Symbols M and C, respectively, stand for the cost of field multipli-
cation and multiplication by a constant. The costs given for the Weierstraß
form consider the short curve equation Y 2Z = X3 + a4XZ

2 + a6Z
3.

Table V.1. Point Addition for Elliptic Curves over Fp, p > 3

Parameterization Cost Cofactor
Weierstraß form [51] 17M + 1C (general case) −
(with unified formulæ) 16M + 1C (a4 = −1)
Hessian form [188] 12M h ∝ 3
Extended Jacobi form [27] 13M + 3C (general case) h ∝ 2

13M + 1C (ε = 1) h ∝ 4
∩ of 2 quadrics [220] 16M + 1C h ∝ 4

Elliptic curve standards ([IEEE 1363, FIPS 186.2, SECG]) recom-
mend the use of elliptic curves with group order #E = h · q, where q is
a prime and the cofactor h is ≤ 4.

V.2.3. Dummy Operations. Point addition formulæ need not be strictly
equivalent. It suffices that the different point additions cannot be distin-
guished by side-channel analysis. This can be achieved by inserting dummy
(field) operations. Such a technique is of particular interest when the costs
for adding two (distinct) points and for doubling a point are similar, as is the
case for elliptic curves defined over binary fields [76].

Consider the (non-supersingular) elliptic curve over F2n given by the short
Weiertraß equation

Ea2,a6 : y2 + xy = x3 + a2x
2 + a6 .

2The construction given in [220, 27] works whenever p ≡ 3 (mod 4) and with a 7/8
probability when p ≡ 1 (mod 4).

92 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

The slope λ given in Eq. (V.3) becomes

λ =
y1 + y2

x1 + x2

when x1
= x2 , and λ = x1 +
y1

x1

when x1 = x2 .

In terms of field operations, the expression for λ is almost the same for
adding or doubling points. The next algorithm (Algorithm V.1) details how
inserting two dummy (field) additions allows us to double a point in a way
similar to the addition of two distinct points. We assume that registers con-
tain field elements and that registers T0, T1, T2, T3 are initialized with the
coordinates of points P1 and P2 being added.

Remark. It is implicitly assumed [as well as in all algorithms presented in
this chapter] that the loading/storing of random values from different registers
is indistinguishable. A possible solution is presented in [234] when this latter
assumption is not verified. See also [176] and Section V.4.

Algorithm V.1: Point Addition (with Dummy Operations)

INPUT: Points P1 = (x1, y1) and P2 = (x2, y2) ∈ Ea2,a6(F2n), P1
= −P2;

registers (T0, T1)←P1 and (T2, T3)←P2.

OUTPUT: The sum P1 + P2 or [2]P1.

Addition: P1←P1 + P2 Doubling : P1← [2]P1

1. T0←T0 + T2 (= x1 + x2) T5←T0 + T2 (fake).

2. T1←T1 + T3 (= y1 + y2) T5←T2 + T5 (= x1).

3. T4←T1/T0 (= λ) T4←T1/T0 (= y1/x1).

4. T0←T0 + T4 T4←T0 + T4 (= λ).
5. T5←T4

2 (= λ2) T0←T4
2 (= λ2).

6. T5←T5 + a2 (= λ2 + a2) T0←T0 + a2 (= λ2 + a2).

7. T0←T0 + T5 (= x3) T0←T0 + T4 (= x3).

8. T1←T0 + T3 (= x3 + y2) T1←T0 + T1 (= x3 + y1).

9. T5←T0 + T2 (= x2 + x3) T5←T0 + T5 (= x1 + x3).

10. T4←T4 · T5 T4←T4 · T5 .

11. T1←T1 + T4 (= y3) T1←T1 + T4 (= y3).

12. Return (T0, T1).

Hence, Algorithm V.1 only requires one inversion, two multiplies and one
squaring for adding or doubling points, in an indistinguishable fashion, on a
(non-supersingular) elliptic curve over F2n .

V.3. Regular Point Multiplication Algorithms

Point addition formulæ may have different side-channel traces, provided
that they do not leak information about k in the point multiplication algo-
rithm used for evaluating Q = [k]P . For binary algorithms, this implies that
the processing of bits “0” and bits “1” of multiplier k are indistinguishable.

V.3. REGULAR POINT MULTIPLICATION ALGORITHMS 93

V.3.1. Classical Algorithms. The usual trick for removing the condi-
tional branching in the double-and-add algorithm (i.e., the additively written
square-and-multiply algorithm) consists in performing a dummy point addi-
tion when multiplier bit kj is zero. As a result, each iteration appears as
a point doubling followed by a point addition [87], as illustrated in Algo-
rithm IV.3. Note that a NAF-representation for k in Algorithm IV.3 does
not improve the performances. An algorithm using a NAF-representation is
presented in [171].

Another popular point multiplication algorithm was developed by Mont-
gomery [255] as a means for speeding up the ECM factoring method on a
special form of elliptic curves.

Algorithm V.2: Montgomery Point Multiplication Algorithm

INPUT: Point P and 	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: Q = [k]P.

1. R0←P, R1← [2]P.
2. For j = 	− 2 to 0 by −1 do:

3. R1−kj
←R0 +R1.

4. Rkj
← [2]Rkj

.

5. Return R0.

Algorithm V.2 behaves regularly [225, 264] but seems, at first glance, as
costly as the double-and-add-always algorithm. However, it does not need
to handle the y-coordinates: the sum of two points whose difference is a
known point can be computed without the y-coordinates [255]. Note, that
the difference R1−R0 remains invariant throughout Algorithm V.2 (and hence
is equal to P). Further, the y-coordinate of a point R0 can be recovered
from a point P , the x-coordinate of R0, and the x-coordinate R0 + P . The
y-coordinate of Q = [k]P can thus also be recovered when only x-coordinates
are used in the Montgomery point multiplication algorithm. The formulæ
for (general) elliptic curves over fields of characteristic
= 2, 3 can be found
in [51, 178, 120] and in [225] over binary fields.

Montgomery point multiplication is particularly suited to elliptic curves
over binary fields in a normal basis representation [ECC, Section II.2.2] as
each iteration globally amounts to only six (field) multiplications. The algo-
rithm is due to López and Dahab [225].

94 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

Algorithm V.3: Montgomery Multiplication (for Binary Curves)

INPUT: Point P = (xP , yP) ∈ Ea2,a6(F2n) and

	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: xQ = x([k]P).

1. Z0← 1, X0← xP, Z1← xP
2, X1←Z1

2 + a6.

2. For j = 	− 2 to 0 by −1 do:

3. T0←X0 · Z1, T1←X1 · Z0.

4. Z1−kj
← (T0 + T1)

2, X1−kj
← xP · Z1−kj

+ T0 · T1.

5. T0←Zkj

2, T1←Xkj

2

6. Zkj
←T0 · T1, Xkj

←T1
2 + a6 · T0

2.

7. Return X0/Z0.

Some applications require both the x- and y-coordinates of point Q = [k]P .
At the end of Algorithm V.3, registersX1 and Z1, respectively, contain the val-
ues of the projectiveX- and Z-coordinates of point [k+1]P . The y-coordinate
of Q can then be recovered as

yQ =
(xQ + xP)[(xQ + xP)(X1/Z1 + xP) + x2

P + yP]

xP

+ yP .

V.3.2. Atomic Algorithms. The idea behind the double-and-add-always
algorithm (Algorithm IV.3) is to remove the conditional branching in the basic
double-and-add algorithm so that each iteration appears as a point doubling
followed by a point addition. This idea was later generalized and extended
by Chevallier-Mames, Ciet and Joye, resulting in the concept of side-channel
atomicity [76].

There is a better option than the double-and-add-always algorithm when
point doubling and point addition are indistinguishable by side-channel anal-
ysis (see Section V.2). In this case, the conditional branching can be removed
so that the whole point multiplication algorithm appears as a regular repeti-
tion of point additions. By doing so, we obtain the atomic double-and-add
algorithm [76]. As a side-effect, such an algorithm leaks the Hamming weight
of multiplier k. While this is generally not an issue (see however [61]), the
Hamming weight can be masked using standard multiplier randomization
techniques (see Section V.5).

V.3. REGULAR POINT MULTIPLICATION ALGORITHMS 95

Algorithm V.4: Atomic Double-and-Add Algorithm

INPUT: Point P and 	-bit multiplier k =
∑�−1

j=0 kj2
j, kj ∈ {0, 1}.

OUTPUT: Q = [k]P.

1. R0←P, R1←P, j← 	− 2, b← 0.
2. While (j ≥ 0) do:

3. R0←R0 +Rb.

4. b← b⊕ kj, j← j + kj − 1.
5. Return R0.

The above algorithm assumes that (i) xor-ing kj with bit b, and (ii) adding
kj to j − 1 does not leak information about multiplier bit kj. If so, again
randomization techniques allow us to mask the value of kj. For example,
b⊕ kj can be evaluated as b⊕ (kj ⊕ r)⊕ r for a random bit r, and j + kj − 1
can be evaluated as j + (kj + t)− (t+ 1) for a random integer t.

If needed, point addition and point subtraction formulæ can be adapted
so that they become indistinguishable. It is then advantageous to replace
the double-and-add algorithm with the double-and-add/subtract algorithm.
When the multiplier k is expressed as a NAF, this results in a 11.11% speed-
up factor [256], on average. It is easy to modify Algorithm V.4 to take as
input a signed representation for the multiplier k. For a signed digit kj,
sgn(kj) indicates whether kj is negative (i.e., sgn(kj) = 1 if kj < 0 and 0
otherwise) and |kj| denotes the absolute value of kj. To ease the presentation,
∓1 represents a point subtraction and ∓0 represents a point addition (i.e.,
P1 ∓1 P2 = P1 − P2 and P1 ∓0 P2 = P1 + P2).

Algorithm V.5: Atomic Double-and-Add/Subtract Algorithm

INPUT: Point P and multiplier k = 2� +
∑�−1

j=0 kj2
j, kj ∈ {0,−1, 1}.

OUTPUT: Q = [k]P.

1. R0←P, R1←P, j← 	− 1, b← 0.
2. While (j ≥ 0) do:

3. σ← b ∧ sgn(kj).
4. R0←R0 ∓σ Rb.

5. b← b⊕ |kj|, j← j + b− 1.
6. Return R0.

Using the indistinguishable point addition formulæ of Algorithm V.1, this
yields a very efficient algorithm for (non-supersingular) elliptic curves over
binary fields. For elliptic curves over large prime fields, the indistinguish-
able point addition formulæ are somewhat costly, at least for general elliptic
curves (see Table V.1). Rather than considering point addition as an atomic
operation, we may look at the field level and express point addition and point

96 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

doubling as a regular repetition of field operations. With Jacobian coordi-
nates [ECC, Section IV.1.1], the affine point P = (xP , yP) corresponds to
the projective point (xpθ

2 : ypθ
3 : θ)J , for any non-zero field element θ, on

the projective Weierstraß form

Ea4,a6 : Y 2 = X3 + a4XZ
4 + a6Z

6 .

Let P1 = (X1 : Y1 : Z1)J and P2 = (X2 : Y2 : Z2)J (with P1, P2
= O and
P1
= −P2) denote points on the above curve. The double of P1 is equal to
[2]P1 = (X3 : Y3 : Z3)J with

X3 = M2 − 2S, Y3 = M(S −X3)− T, Z3 = 2Y1Z1,

where M = 3X2
1 + a4Z

4
1 , S = 4X1Y

2
1 , and T = 8Y 4

1 ; and the sum of P1 and
P2 is equal to P3 = (X3 : Y3 : Z3)J with

X3 = W 3 − 2U1W
2 +R2, Y3 = −S1W

3 +R(U1W
2 −X3), Z3 = Z1Z2W,

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , T = U1 + U2,

W = U1 − U2, and R = S1 − S2 [236]. A careful analysis of the point addi-
tion formulæ shows that point doubling and (true) point addition can both
be expressed as a succession of the following atomic block: one field multi-
plication followed by two field additions (along with a negation to possibly
perform a field subtraction) [76]. This allows us to obtain a regular point
multiplication without dummy field multiplication. The algorithm requires
matrices ((u0)r,c)0≤r≤10

0≤c≤9
, ((u1)r,c)0≤r≤10

0≤c≤15
and ((u2)r,c)0≤r≤10

0≤c≤15
given by

(u0) =

4 5 5 5 3 2 5 1 2 4

1 3 5 0 3 2 1 4 2 4
1 3 5 5 5 2 2 4 2 5

5 1 1 4 1 2 1 1 2 2

4 1 1 4 1 2 1 1 2 2

4 1 3 5 3 2 5 5 2 4

3 3 3 3 3 4 5 4 3 2

4 1 1 5 1 1 1 1 5 4

4 1 1 2 1 1 1 1 1 4

5 3 3 2 3 3 5 5 5 5

1 1 1 1 1 1 1 1 1 0

, (u1) =

4 1 4 2 4 5 4 4 3 3 6 1 5 1 2 4

9 1 4 2 3 4 3 4 3 3 5 1 5 4 2 4
9 4 9 4 3 7 4 8 9 5 5 6 6 4 5 6

5 5 5 5 5 2 2 6 6 6 6 1 6 1 1 2

1 1 1 1 1 2 2 5 5 5 3 1 1 1 1 2

5 5 5 5 5 5 5 6 6 6 6 4 2 5 6 4

5 5 5 5 5 5 6 4 6 6 3 4 2 6 3 6

5 5 5 5 5 5 6 4 6 6 6 1 6 1 6 6

1 1 1 1 1 1 5 2 5 5 3 1 2 1 1 1

5 5 5 5 5 5 6 4 6 6 6 4 6 6 6 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

,

(u2) =

4 1 4 2 4 5 4 4 3 3 6 1 5 1 2 4

9 1 4 2 3 4 3 4 3 3 5 1 5 4 2 4

9 4 9 4 3 7 4 8 9 5 5 6 6 4 5 6

5 5 5 5 5 2 2 6 6 6 6 1 6 1 1 2

1 1 1 1 1 2 2 5 5 5 3 1 1 1 1 2

5 5 5 5 5 5 5 6 6 6 6 4 2 5 6 4

5 5 5 5 5 5 8 4 8 6 3 4 2 6 3 6

5 5 5 5 5 5 6 4 6 6 6 1 6 1 6 6
1 1 1 1 1 1 5 2 5 5 3 1 2 1 1 1

5 5 5 5 5 5 6 4 6 6 6 4 6 6 6 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

.

V.4. BASE-POINT RANDOMIZATION TECHNIQUES 97

Algorithm V.6: Atomic Point Multiplication (over Fp)

INPUT: Point P = (XP : YP : ZP)J ∈ Ea4,a6(Fp),

multiplier k = 2� +
∑�−1

j=0 kj2
j, kj ∈ {0,−1, 1}, and

matrices ((u0)r,c)0≤r≤10
0≤c≤9

, ((u1)r,c)0≤r≤10
0≤c≤15

and ((u2)r,c)0≤r≤10
0≤c≤15

.

OUTPUT: Q = [k]P.

1. T0← a4, T1←X1, T2← Y1, T3←Z1, T7←X1, T8← Y1, T9←Z1.

2. j← 	− 1, b← 0, s← 0.
3. While (j ≥ 0) do:

4. σ← b ∧ sgn(kj).
5. c← s · (c+ 1), t← b+ σ.
6. T(ut)0,c ←T(ut)1,c · T(ut)2,c, T(ut)3,c ←T(ut)4,c + T(ut)5,c.

7. T(ut)6,c ← − T(ut)6,c, T(ut)7,c ←T(ut)8,c + T(ut)9,c.

8. s←T(ut)10,c.

9. b← (¬s) ∧ (b⊕ |kj|), j← j + (b ∨ s)− 1.
10. Return (T1 : T2 : T3)J.

There are numerous variants of this algorithm, which may be more or less
appropriate and efficient for a given architecture.

V.4. Base-Point Randomization Techniques

What makes elliptic curves particularly fruitful for designing countermea-
sures is the ability to represent elements of the underlying group in many dif-
ferent, randomized ways while keeping a good computational efficiency. This
section presents a variety of strategies built on the mathematical structure
of the curves, which lead to efficient and simple techniques for randomizing
(the representation of) base-point P in the computation of Q = [k]P .

V.4.1. Point Blinding. The method is analogous to Chaum’s blind signa-
ture scheme for RSA [65]. Point P to be multiplied is “blinded” by adding a
secret random point R for which the value of S = [k]R is known. The point
multiplication, Q = [k]P , is done by computing the point [k](P + R) and
subtracting S to get Q. Points R and S = [k]R can be initially stored in-
side the device and refreshed at each new execution by computing R← [r]R
and S← [r]S, where r is a (small) random generated at each new execu-
tion [87, 205]. As R is secret, the representation of point P ∗ = P + R is
unknown in the computation of Q∗ = [k]P ∗.

V.4.2. Randomized Projective Representations. In projective coordi-
nates, points are not uniquely represented. For example, in homogeneous co-
ordinates, the triplets (θXP : θYP : θZP) with any θ
= 0 represent the same
point; and similarly in Jacobian coordinates, the triplets (θ2XP : θ3YP : θZP)J

98 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

for any θ
= 0 represent the same point. Other projective representations are
described in [77, 85].

Before each new execution of the point multiplication algorithm for com-
puting Q = [k]P , the projective representation of input point P is randomized
with a random non-zero value θ [87]. This makes it no longer possible to pre-
dict any specific bit in the binary representation of P .

The randomization can also occur prior to each point addition or at ran-
dom during the course of the point multiplication algorithm.

V.4.3. Randomized Elliptic Curve Isomorphisms. Point P = (xP , yP)
on elliptic curve E is randomized as P ∗ = φ(P) on E∗ = φ(E), for a random
curve isomorphism φ. Then Q = [k]P is evaluated as Q = φ−1([k]P ∗) [190],
or schematically,

P ∈ E(K)
mult. by k map−−−−−−−−−−−−→ Q = [k]P ∈ E(K)

φ
� �φ−1

P ∗ ∈ E∗(K)
mult. by k map−−−−−−−−−−−−→ Q∗ = [k]P ∗ ∈ E∗(K)

.

More specifically, for a random υ ∈ K \ {0}, point P = (xP , yP) on the
Weiertraß curve E given by Eq. (V.1) is mapped to point P ∗ = (υ2 xP , υ

3 yP)
on the isomorphic curve

E∗ : y2 + (υa1)xy + (υ3a3)y = x3 + (υ2a2)x
2 + (υ4a4)x+ υ6a6 .

The next step consists of computing Q∗ = [k]P ∗ on E∗. If Q∗ = O, then
Q = O; otherwise, if Q∗ = (xQ∗ , yQ∗), then Q = (υ−2 xQ∗ , υ−3 yQ∗).

V.4.4. Randomized Field Isomorphisms. Here, given a point P on an
elliptic curve E defined over a field K, a random field isomorphism κ : K→ K∗

is applied to P and E to get point P ∗ = κ(P) on E∗ = κ(E). Then, point
multiplication Q = [k]P is evaluated as κ−1([k]P ∗) [190].

V.5. Multiplier Randomization Techniques

Analogously to Section V.4, this section reviews several strategies for ran-
domizing the computation of Q = [k]P but with a randomized (representation
of) multiplier k.

V.5.1. Multiplier Blinding. Let ord(P) denote the order of point P ∈
E(K). We obviously have

[k]P = [k + r ord(P)]P

for any r. As a consequence, the multiplier k can be blinded as k∗ = k +
r ord(P) for a random r and Q = [k]P can be computed as Q = [k∗]P .
Alternatively, since by Lagrange’s Theorem the order of an element always
divides the order of its group, we can randomize the multiplier k as k∗ =

V.5. MULTIPLIER RANDOMIZATION TECHNIQUES 99

k + r#E for a random r, where #E denotes the group order of elliptic
curve E [87, 205].

V.5.2. Multiplier Splitting. The multiplier k can also be decomposed into
two (or several) shares. The idea of splitting the data was already abstracted
in [64] as a general countermeasure against side-channel attacks.

Using an additive splitting, k is written as k = k∗1 + k∗2, where k∗1 = r
and k∗2 = k − r for a random r. Then Q = [k]P is evaluated as Q =
[k∗1]P + [k∗2]P [82]. To hide all the bits of multiplier k, the size of r should be
comparable to that of k. A possible direction to shorten the size of r consists
of decomposing k as k = k∗1 r + k∗2 with k∗1 = �k/r� and k∗2 = k mod r, and
evaluating Q as Q = [k∗1]R + [k∗2]P with R = [r]P .

We can also use a multiplicative splitting and evaluate Q = [k]P as Q =
[kr−1]([r]P) for a random r invertible modulo ord(P) [329].

V.5.3. Frobenius Endomorphism. The Koblitz elliptic curves (a.k.a. ano-
malous binary curves or ABC’s) [202] are the curvesK0 andK1 over F2n given
by

Ka2 : y2 + xy = x3 + a2x
2 + 1

with a2 ∈ {0, 1}. On such curves, the Frobenius endomorphism ϕ maps a
point P = (x, y) to ϕ(P) = (x2, y2) ∈ Ka2 . Therefore, in the computation
of Q = [k]P , the scalar k can be written as a Frobenius expansion since
multiplication by k is an endomorphism and Z ⊆ Z[ϕ] ⊆ End(Ka2).

The ring Z[ϕ] is a Euclidean domain with respect to the norm N(r+sϕ) =
r2 + (−1)1−a2 rs + 2s2. Furthermore, as N(ϕ) = 2, every element r + sϕ in
Z[ϕ] can be written as a ϕ-NAF, that is,

r + sϕ =
∑

i

ki ϕ
i with ki ∈ {−1, 0, 1} and ki · ki+1 = 0 .

Unfortunately, the so-obtained Frobenius expansion is roughly twice the
length of the usual balanced binary expansion, and so, even if the evaluation
of ϕ is very fast, it is not clear that the resulting method is faster. This
drawback was loopholed in [237, 316] with the following observation. We
obviously have ϕn = 1 and thus Q = [k′]P with k′ = k mod (ϕn − 1). As
N(ϕn − 1) = #Ka2(F2n) ≈ 2n by Hasse’s Theorem, the ϕ-NAF expression of
k′, k′ =

∑
i k

′
i ϕ

i, would have a length approximatively equal to that of the
(usual) NAF expression of k.

This yields the following method for randomizing the multiplier k on
Koblitz curves [190]. For any nonzero ρ ∈ Z[ϕ], k mod (ρ(ϕn − 1)) acts
identically on a point P ∈ Ka2(F2n) and so Q = [k]P can be evaluated as∑

i

κ∗i ϕ
i(P),

where
∑

i κ
∗
iϕ

i is the ϕ-NAF expression of κ∗ and κ∗ = k mod (ρ(ϕn−1)) for
a (short) non-zero random ρ ∈ Z[ϕ].

100 V. DEFENCES AGAINST SIDE-CHANNEL ANALYSIS

For cryptographic applications, n is chosen prime and so #K0(F2n) = 4q
or #K1(F2n) = 2q for a prime q. In that case, when working in the subgroup
of order q, k can be reduced modulo ρ(ϕn−1)/(ϕ−1) [211]. See also [161] for
further randomization techniques dedicated to Koblitz curve cryptosystems
and [79] for similar randomization techniques on elliptic curves having non-
trivial efficiently computable endomorphisms.

V.6. Preventing Side-Channel Analysis

The general (software) methodology for preventing side-channel leakage
is a two-step process. The first step consists in making SPA-like attacks
impossible and the second step in making DPA-like attacks impossible.

SPA-like attacks are inapplicable when it is not possible to relate secret
data with a single execution of the cryptoalgorithm. For elliptic curve cryp-
tosystems, this implies that the value of k (or a part thereof) cannot be
recovered by monitoring the processing of Q = [k]P . Various techniques
towards this goal were presented in Sections V.2 and V.3.

To successively mount a DPA-like attack, an adversary should be able
to predict any relevant bit. Therefore, a proper randomization of the inputs
to the cryptoalgorithm yields an implementation secure against DPA-like at-
tacks. Several randomization techniques for base-point P and multiplier k in
the point multiplication Q = [k]P were presented in Sections V.4 and V.5,
respectively. The randomization should of course be effective to prevent re-
fined attacks [151, 6] (cf. Section IV.5.4). As a general rule of thumb, both
P and k should be randomized in the computation of Q = [k]P .

Part 3

Mathematical Foundations

CHAPTER VI

Advances in Point Counting

F. Vercauteren

The preferred method for generating elliptic curves suitable for crypto-
graphic applications is to choose a large finite field and to randomly select
curves over that field until one is found with nearly prime group order.

Let E be an elliptic curve over Fq, with q = pn. The number of Fq-rational
points #E(Fq) satisfies the relation #E(Fq) = q+1−t, where t = Tr(F) is the

trace of the Frobenius endomorphism F : E(Fq) → E(Fq) : (x, y) �→ (xq, yq).
By Hasse’s theorem [307, Theorem V.1.1] we have |t| ≤ 2

√
q, so it suffices to

compute t modulo B with B > 4
√
q.

In 1985, Schoof [292] described the first polynomial time algorithm to
compute #E(Fq) using an l-adic approach. The key idea of Schoof’s algo-
rithm is to compute t modulo sufficiently many primes l such that

∏
l ≥ B.

The time complexity of Schoof’s algorithm is O(log3µ+2 q) and the space com-
plexity amounts to O(log3 q), with µ a constant such that multiplication of
two m-bit integers can be computed in O(mµ) time. For example: µ = 2
for classical multiplication, µ = log2 3 for Karatsuba multiplication [194] and
µ = 1 + ε with ε ∈ R>0 for Schönhage–Strassen [291] multiplication.

Several improvements mainly due to Elkies [115] and Atkin [11] resulted
in a heuristically estimated time complexity of O(log2µ+2 q) and space com-
plexity of O(log2 q). Further work by Couveignes [90, 91] and Lercier [217]
extended this so called SEA algorithm to work in small characteristic. A nice
introduction to these l-adic algorithms can be found in Chapter VII of the
first volume [ECC].

At the end of 1999, Satoh [285] proposed a completely different strategy
based on p-adic methods. The main idea is to lift the curve and the Frobenius
endomorphism to a p-adic ring and to recover t modulo pm with pm > 4

√
q

directly from the lifted data. For fixed p, the time complexity of Satoh’s algo-
rithm is O(n2µ+1) and the space complexity is O(n3). Since the O-constant of
the time complexity grows as O(p2 logµ p), Satoh’s algorithm is only practical
for small p.

The purpose of this chapter is to explain the mathematical background of
Satoh’s algorithm and to present an overview of the more recent improvements
culminating in an algorithm by Harley that runs in O(n2µ log n) time using
O(n2) space for fixed p.

103

104 VI. POINT COUNTING

VI.1. p-adic Fields and Extensions

All p-adic point counting algorithms lift the Frobenius endomorphism to
a ring Zq whose reduction modulo p is isomorphic to Fq. In this section we
give a brief overview of the arithmetic in Zq. Further details can be found in
the books by Koblitz [201] and Serre [295].

Recall that the field of p-adic numbers Qp consists of power series

α =
∞∑

i=ν

aip
i ,

with ν ∈ Z, 0 ≤ ai < p and aν
= 0. By definition, the valuation of α is
ordp(α) = ν and the norm is |α|p = p−ν . The ring of p-adic integers or the
valuation ring of Qp is defined as

Zp = {α ∈ Qp | ordp(α) ≥ 0} .
Note that for every m ∈ N we have Zp/(p

mZp) ∼= Z/(pmZ), so Zp modulo p
simply is Fp. Every β ∈ Zp with α ≡ β (mod pm) is called an approximation
of α to precision m.

Let f(t) be a monic polynomial of degree n with coefficients in Zp and

assume that f(t) ≡ f(t) (mod p) is an irreducible polynomial over Fp. Note
that this implies that f(t) itself is irreducible over Qp. The algebraic extension
Qq = Qp(θ) with θ a root of f(t) is called an unramified extension of degree n
of Qp. Arithmetic in Qq thus reduces to polynomial arithmetic in Qp[t]/(f(t)).

Let α =
∑n−1

i=0 αit
i with αi ∈ Qp. Then the valuation of α is defined as

ordp(α) = mini ordp(αi) and the norm is |α|p = p−ordp(α). The valuation
ring Zq is defined as Zp[t]/(f(t)) or equivalently Zq = {α ∈ Qq | ordp(α) ≥ 0}.

The Galois group Gal(Qq/Qp) is isomorphic to Gal(Fq/Fp). Indeed, every
automorphism Λ ∈ Gal(Qq/Qp) induces an automorphism of Fq by reduction

modulo p. Since f(t) is square-free, this mapping is an isomorphism. The
Galois group Gal(Fq/Fp) is cyclic and generated by the pth power Frobenius
automorphism

σ : Fq → Fq : x �→ xp .

The unique automorphism Σ ∈ Gal(Qq/Qp) with Σ ≡ σ (mod p) is called the
Frobenius substitution on Qq. Note that, unlike σ, the Frobenius substitution
is not simply pth powering. Since Σ is an Zp-automorphism, i.e., is the

identity on Zp, we have Σ(α) =
∑n−1

i=0 αiΣ(t)i. The element Σ(t) ∈ Zq can
be computed using the Newton iteration xk+1 ← xk − f(xk)/f

′(xk) starting
with x0 = tp.

Given a representation Fq
∼= Fp[t]/(f(t)), there are infinitely many poly-

nomials f(t) ∈ Zp[t] with f(t) ≡ f(t) (mod p). However, from an algorithmic

point of view, there are two lifts of f(t) that lead to efficient arithmetic. Note
that f(t) is normally chosen to be sparse, e.g. a trinomial or pentanomial in
characteristic 2, such that reduction modulo f(t) is very efficient.

VI.2. SATOH’S ALGORITHM 105

• Let f(t) =
∑n

i=0 f it
i with f i ∈ Fp for 0 ≤ i ≤ n. To preserve the

sparsity of f(t), a first natural choice is to define f(t) =
∑n

i=0 fit
i with

fi the unique integer between 0 and p−1 such that fi ≡ f i (mod p). The
reduction modulo f(t) of a polynomial of degree ≤ 2(n− 1) then only
takes n(w − 1) multiplications of a Zp-element by a small integer and
nw subtractions in Zp where w is the number of non-zero coefficients

of f(t).
• Since Fq is the splitting field of the polynomial tq − t, the polynomial

f(t) divides tq − t. To preserve the simple Galois structure of Fq, a
second natural choice is to define f(t) as the unique polynomial over
Zp with f(t)|tq − t and f(t) ≡ f(t) (mod p). Every root θ ∈ Zq of f(t)
clearly is a (q − 1)-th root of unity, therefore Σ(θ) is also a (q − 1)-th
root of unity. Since Σ(θ) ≡ θp (mod p), we conclude that Σ(θ) = θp or
by abuse of notation Σ(t) = tp.

VI.2. Satoh’s Algorithm

The basic idea of Satoh’s algorithm is to lift the curve E/Fq to a curve
E/Qq such that the Frobenius endomorphism F ∈ End(E) also lifts to an en-
domorphism F ∈ End(E). Since Tr(F) = Tr(F), we can recover the number
of points as #E(Fq) = q+1−Tr(F). Furthermore, E and F are defined over
a field of characteristic zero, which allows us to compute Tr(F) modulo pm for
any precision m by analysing the action of F on an invariant differential of E .

VI.2.1. The Canonical Lift of an Ordinary Elliptic Curve. Among
the many possible lifts of E from Fq to Qq, there is essentially only one that
admits a lift of the Frobenius endomorphism F .

Definition VI.1. The canonical lift E of an ordinary elliptic curve E over
Fq is an elliptic curve over Qq that satisfies:

• the reduction modulo p of E equals E,
• End(E) ∼= End(E) as a ring.

Deuring [101] has shown that the canonical lift E always exists and is
unique up to isomorphism. Furthermore, a theorem by Lubin, Serre and
Tate [227] provides an effective algorithm to compute the j-invariant of E
given the j-invariant of E.

Theorem VI.2 (Lubin-Serre-Tate). Let E be an ordinary elliptic curve over
Fq with j-invariant j(E) ∈ Fq \Fp2. Denote with Σ the Frobenius substitution
on Qq and with Φp(X,Y) the pth modular polynomial [ECC, pp. 50–55].
Then the system of equations

Φp(X,Σ(X)) = 0 and X ≡ j(E) (mod p), (VI.1)

has a unique solution J ∈ Zq, which is the j-invariant of the canonical lift E
of E (defined up to isomorphism).

106 VI. POINT COUNTING

The hypothesis j(E)
∈ Fp2 in Theorem VI.2 is necessary to ensure that
a certain partial derivative of Φp does not vanish modulo p and guarantees
the uniqueness of the solution of equation (VI.1). The case j(E) ∈ Fp2 can

be handled very easily using the Weil conjectures [346]: since j(E) ∈ Fp2

there exists an elliptic curve E
′
defined over Fpe , with e = 1 or e = 2, that

is isomorphic to E over Fq. Let tk = pek + 1 − #E
′
(Fpek). Then tk+1 =

t1tk − petk−1 with t0 = 2 and therefore #E(Fq) = pn + 1 − tn/e. So in the

remainder of this chapter we will assume that j(E)
∈ Fp2 and in particular

that E is ordinary [307, Theorem V.3.1].

VI.2.2. Isogeny Cycles. Lifting the Frobenius endomorphism F directly
is not efficient since the degree of F is q. However, q = pn, so the Frobenius
endomorphism can be written as the composition of n isogenies of degree p.
Let σ : E → E

σ
: (x, y) �→ (xp, yp) be the pth power Frobenius isogeny, where

E
σ

is the curve obtained by raising each coefficient of E to the pth power.
Repeatedly applying σ gives rise to the following cycle:

E0 E1 · · · En−1 E0 ,� � � �σ0 σ1 σn−2 σn−1

with Ei = E
σi

and σi : Ei → Ei+1 : (x, y) �→ (xp, yp). Composing these
isogenies, we can express the Frobenius endomorphism as

F = σn−1 ◦ σn−2 ◦ . . . ◦ σ0 .

Instead of lifting E separately, Satoh lifts the whole cycle (E0, E1, . . . , En−1)
simultaneously leading to the diagram

E0 E1 · · · En−1 E0 ,� � � �
σ0 σ1 σn−2 σn−1

E0 E1 · · · En−1 E0
� � � �

Σ0 Σ1 Σn−2 Σn−1

� � � �

π π π π
(VI.2)

with Ei the canonical lift of Ei and Σi the corresponding lift of σi. The
existence of a lift of σi is not trivial and follows from the following theorem
which can be found in Messing [246, Corollary 3.4].

Theorem VI.3. Let E1, E2 be ordinary elliptic curves over Fq and E1, E2

their respective canonical liftings. Then Hom(E1, E2) ∼= Hom(E1, E2).

VI.2.3. Computing the Canonical Lift. The theorem of Lubin, Serre
and Tate implies that the j-invariants of the Ei satisfy

Φp(j(Ei), j(Ei+1)) = 0 and j(Ei) ≡ j(Ei) (mod p),

for i = 0, . . . , n− 1. Define Θ : Zn
q → Zn

q by

Θ(x0, x1, . . . , xn−1) = (Φp(x0, x1),Φp(x1, x2), . . . ,Φp(xn−1, x0)).

VI.2. SATOH’S ALGORITHM 107

Then clearly we have Θ(j(En−1), j(En−2), . . . , j(E0)) = (0, 0, . . . , 0). Using
a multivariate Newton iteration on Θ, we can lift the cycle of j-invariants
(j(En−1), j(En−2), . . . , j(E0)) to Zn

q with arbitrary precision. The iteration is
given by

(x0, x1, . . . , xn−1)← (x0, x1, . . . , xn−1)− ((DΘ)−1Θ)(x0, x1, . . . , xn−1),

with (DΘ)(x0, . . . , xn−1) the Jacobian matrix
Φ′

p(x0, x1) Φ′
p(x1, x0) 0 · · · 0

0 Φ′
p(x1, x2) Φ′

p(x2, x1) · · · 0
...

...
...

...
...

0 0 0 · · · Φ′
p(xn−1, xn−2)

Φ′
p(x0, xn−1) 0 0 · · · Φ′

p(xn−1, x0)

 ,

where Φ′
p(X,Y) denotes the partial derivative with respect to X. Note

that Φ′
p(Y,X) is the partial derivative of Φp(X,Y) with respect to Y since

Φp(X,Y) is symmetric.
The pth modular polynomial satisfies the Kronecker relation

Φp(X,Y) ≡ (Xp − Y)(X − Y p) (mod p),

and since j(Ei)
∈ Fp2 and j(Ei+1) = j(Ei)
p, we have{

Φ′
p(j(Ei+1), j(Ei)) ≡ j(Ei)

p2 − j(Ei)
≡ 0 (mod p),

Φ′
p(j(Ei), j(Ei+1)) ≡ j(Ei)

p − j(Ei)
p ≡ 0 (mod p).

The above equations imply that (DΘ)(x0, . . . , xn−1) (mod p) is a diagonal
matrix with non-zero diagonal elements. Therefore, the Jacobian matrix is
invertible over Zq and thus δ = ((DΘ)−1Θ)(x0, x1, . . . , xn−1) ∈ Zn

q . Note that
we can simply apply Gauss elimination to solve

(DΘ)(x0, . . . , xn−1)δ = Θ(x0, . . . , xn−1)

since the diagonal elements are all invertible. Using row operations we move
the bottom left element Φ′

p(x0, xn−1) towards the right. After k row operations
this element becomes

(−1)kΦ′
p(x0, xn−1)

k−1∏
i=0

Φ′
p(xi+1, xi)

Φ′
p(xi, xi+1)

,

which clearly is divisible by pk since Φ′
p(xi+1, xi) ≡ 0 (mod p). This procedure

is summarized in Algorithm VI.1.

108 VI. POINT COUNTING

Algorithm VI.1: Lift j Invariants

INPUT: Cycle ji ∈ Fq \ Fp2 with Φp(ji, ji+1) ≡ 0 (mod p) for

0 ≤ i < n and precision m.

OUTPUT: Cycle Ji ∈ Zq with Φp(Ji, Ji+1) ≡ 0 (mod pm) and

Ji ≡ ji (mod p) for all 0 ≤ i < n.

1. If m = 1 then

2. For i = 0 to n− 1 do Ji← ji.
3. Else

4. m′←�m
2
�, M←m−m′.

5. (J0, . . . , Jn−1)← Lift j Invariants((j0, . . . , jn−1),m
′).

6. For i = 0 to n− 2 do:

7. t←Φ′
p(Ji, Ji+1)

−1 (mod pM).
8. Di← tΦ′

p(Ji+1, Ji) (mod pM).

9. Pi← t((Φp(Ji, Ji+1) (mod pm))/pm′
) (mod pM).

10. R←Φ′
p(J0, Jn−1) (mod pM).

11. S← (((Φp(Jn−1, J0) (mod pm)))/pm′
) (mod pM).

12. For i = 0 to min(M,n− 2) do:

13. S←S −RPi (mod pM).
14. R← −RDi (mod pM).
15. R←R + Φ′

p(Jn−1, J0) (mod pM).
16. Pn−1←SR−1 (mod pM).
17. For i = n− 2 to 0 by −1 do Pi←Pi −DiPi+1 (mod pM).
18. For i = 0 to n− 1 do Ji← Ji − pm′

Pi (mod pm).
19. Return (J0, . . . , Jn−1).

As shown in Chapter III of the first volume [ECC], we can assume that
either E or its quadratic twist is given by an equation of the form

p = 2 : y2 + xy = x3 + a, j(E) = 1/a,
p = 3 : y2 = x3 + x2 + a, j(E) = −1/a,
p > 5 : y2 = x3 + 3ax+ 2a, j(E) = 1728a/(1 + a).

Once the j-invariant j(E) of the canonical lift of E is computed, a Weierstraß
model for E is given by

p = 2 : y2 + xy = x3 + 36αx+ α, α = 1/(1728− j(E)),
p = 3 : y2 = x3 + x2/4 + 36αx+ α, α = 1/(1728− j(E)),
p > 5 : y2 = x3 + 3αx+ 2α, α = j(E)/(1728− j(E)).

Note that the above models have the correct j-invariant j(E) and reduce to
E modulo p.

VI.2. SATOH’S ALGORITHM 109

VI.2.4. The Trace of Frobenius. The canonical lift E of an ordinary el-
liptic curve E over Fq has the property that End(E) ∼= End(E). Let F be the
image of the Frobenius endomorphism F under this ring isomorphism; then
clearly Tr(F) = Tr(F). Furthermore, since Qq has characteristic zero, the
exact value of Tr(F) can be computed, and not just modulo p. The follow-
ing proposition gives an easy relation between the trace of an endomorphism
f ∈ End(E) and its action on an invariant differential of E.

Proposition VI.4 (Satoh). Let E be an elliptic curve over Qq having good
reduction modulo p and let f ∈ End(E) of degree d. Let ω be an invariant
differential on E and let f ∗(ω) = cω be the action of f on ω. Then

Tr(f) = c+
d

c
.

Note that if we apply the above proposition to the lifted Frobenius endo-
morphism F , we get Tr(F) = b+ q/b with F∗(ω) = bω. Since E is ordinary
it follows that either b or q/b is a unit in Zq. However, F is inseparable and
thus b ≡ 0 (mod p), which implies that b ≡ 0 (mod q), since q/b has to be
a unit in Zq. So if we want to compute Tr(F) (mod pm), we would need
to determine b (mod pn+m). Furthermore, it turns out to be quite difficult
to compute b directly. As will become clear later, we would need to know
Ker(Σi), which is a subgroup of Ei[p] of order p. However, since Ker(σi) is
trivial we cannot use a simple lift of Ker(σi) to Ker(Σi), but would need to
factor the p-division polynomial of Ei.

To avoid these problems, Satoh works with the Verschiebung V , i.e., the
dual isogeny of F , which is separable since E is ordinary and thus Ker(V) can
be easily lifted to Ker(V), with V the image of V under the ring isomorphism
End(E) ∼= End(E). Furthermore, the trace of an endomorphism equals the
trace of its dual, so we have Tr(F) = Tr(V) = c+ q/c with V∗(ω) = cω and c

a unit in Zq. Diagram (VI.2) shows that V = Σ̂0◦Σ̂1◦· · ·◦Σ̂n−1 and therefore

we can compute c from the action of Σ̂i on an invariant differential ωi of Ei

for i = 0, . . . , n− 1. More precisely, take ωi = Σi(ω) for 0 ≤ i < n and let ci
be defined by

Σ̂∗
i (ωi) = ciωi+1 .

Then c =
∏

0≤i<n ci. Since V is separable, c will be non-zero modulo p and
we conclude

Tr(F) ≡
∏

0≤i<n

ci (mod q) .

Since all commutative squares in diagram (VI.2) are conjugates of each other,
we can also recover the trace of Frobenius as the norm of c0, i.e.,

Tr(F) ≡ NQq/Qp(c0) (mod q) .

110 VI. POINT COUNTING

VI.2.5. Computing the ci. The final step in Satoh’s algorithm is to com-
pute the coefficients ci using Vélu’s formulae [332], which need the equations

for Ei and Ei+1 and the kernel of Σ̂i. Consider the following diagram:

Ei+1 Ei
Σ̂i

Ei+1/Ker(Σ̂i)
�

�
�

���
�

�
��

�

νi λi
(VI.3)

Given Ker(Σ̂i), Satoh uses Vélu’s formulae [332] to compute an equation for

the curve Ei/Ker(Σ̂i) and the isogeny νi. Since νi and Σ̂i are both separa-

ble, Ker(νi) = Ker(Σ̂i) and deg(νi) = deg(Σ̂i), there exists an isomorphism

λi : Ei+1/Ker(Σ̂i)→ Ei that makes the above diagram commutative. Due to
Vélu’s construction, the action of νi on the invariant differential is trivial,

i.e., ν∗i (ωi+1,K) = ωi+1 with ωi+1,K the invariant differential on Ei+1/Ker(Σ̂i).
Therefore it is sufficient to compute the action of λi on ωi.

Note that KerΣ̂i is a subgroup of order p of Ei+1[p]. Let Hi(x) be

Hi(x) =
∏

P∈(KerΣ̂i\{O})/±
(x− x(P)) ;

then Hi(x) divides the p-division polynomial Ψp,i+1(x) of Ei+1. To find the
correct factor of Ψp,i+1(x) Satoh proves the following lemma.

Lemma VI.5 (Satoh). Let p ≥ 3. Then KerΣ̂i = Ei+1[p]∩Ei+1(Z
ur
q), with Zur

q

the valuation ring of the maximal unramified extension Qur
q of Qq.

The above lemma implies that Hi(x) ∈ Zq[x] is the unique monic polyno-
mial of degree (p−1)/2 that divides Ψp,i+1(x) and such that Hi(x) (mod p) is

square-free. Since Ei is ordinary, Ker σ̂i = Ei+1[p] and Ψp,i+1(x) (mod p) has
inseparable degree p. Therefore, δiHi(x)

p ≡ Ψp,i+1(x) (mod p). This implies
that we cannot apply Hensel’s lemma since the polynomials Hi(x) (mod p)
and Ψp,i+1(x)/Hi(x) (mod p) are not coprime. To this end, Satoh devized a
modified Hensel lifting [285, Lemma 2.1], which has quadratic convergence.

Lemma VI.6 (Satoh). Let p ≥ 3 be a prime and Ψ(x) ∈ Zq[x] satisfying
Ψ′(x) ≡ 0 (mod p) and Ψ′(x)
≡ 0 (mod p2). Let h(x) ∈ Zq[x] be a monic
polynomial such that

1. h(x) (mod p) is square-free and coprime to (Ψ′(x)/p) (mod p),
2. Ψ(x) ≡ q(x)h(x) (mod pm+1).

Then the polynomial

H(x) = h(x) +

(
Ψ(x)

Ψ′(x)
h′(x) (mod h(x))

)
satisfies H(x) ≡ h(x) (mod pm) and Ψ(x) ≡ Q(x)H(x) (mod p2m+1).

VI.2. SATOH’S ALGORITHM 111

Algorithm VI.2: Lift Kernel

INPUT: The p-division polynomial Ψp(x) of an elliptic curve E
over Zq/(p

mZq), precision m.

OUTPUT: H(x) =
∏

P∈(KerΣ̂i\{O})/±(x− x(P)) (mod pm−1).

1. If m = 1 then

2. H(x)← h(x) monic with Ψp(x) ≡ δh(x)p (mod p).
3. Else

4. m′←�m−1
2
�.

5. H(x)← Lift Kernel(Ψp(x),m
′).

6. H(x)←H(x) +
(

H′(x)Ψp(x)

Ψ′
p(x)

(mod H(x))
)

(mod pm).

7. Return H(x).

For p > 3, Ei+1 can be defined by the equation y2 = x3 + Ai+1x + Bi+1.

Using Vélu’s formulae, Satoh [285, Proposition 4.3] shows that Ei+1/Ker(Σ̂i)
is given by the equation y2 = x3 + αi+1x+ βi+1 with

αi+1 = (6− 5p)Ai+1 − 30(h2
i,1 − 2hi,2),

βi+1 = (15− 14p)Bi+1 − 70(−h3
i,1 + 3hi,1hi,2 − 3hi,3) + 42Ai+1hi,1,

where hi,k denotes the coefficient of x(p−1)/2−k in Hi(x) and we define hi,k = 0
for (p− 1)/2− k < 0.

Given the above Weierstraß model for Ei+1/Ker(Σ̂i) we can now compute
the isomorphism λi to Ei : y2 = x3 + Aix+ Bi. The only change of variables
preserving the form of these equations is λi : (x, y)→ (u2

ix, u
3
i y) with

u2
i =

αi+1

βi+1

Bi

Ai

.

The action of λi on ωi is given by λ∗i (ωi) = u−1
i ωi+1,K , and therefore

c2i =
βi+1

αi+1

Ai

Bi

. (VI.4)

Computing c2 =
∏n−1

i=0 c
2
i = NQq/Qp(c

2
0) and taking the square root gives the

trace of Frobenius up to the sign. As shown in the proof of [307, Theorem
V.4.1], we have

t ≡ γγσ · · · γσn−1

(mod p),

where γ is the coefficient of xp−1 in the polynomial (x3 + 3ax + 2a)(p−1)/2.
This finally leads to Algorithm VI.3.

112 VI. POINT COUNTING

Algorithm VI.3: Satoh

INPUT: Elliptic curve E : y2 = x3 + ax+ b over Fpn, j(E)
∈ Fp2.

OUTPUT: The number of points on E(Fpn).

1. m←�logp 4 + n/2�.
2. S← 1, T ← 1.
3. j0← jn← j(E).
4. For i = 0 to n− 2 do:

5. ji+1← jp
i .

6. (Jn−1, . . . , J0)← Lift j Invariants((jn−1, . . . , j0),m).

7. For i = 0 to n− 1 do:

8. γ← Ji/(1728− Ji) (mod pm).
9. A← 3γ (mod pm), B← 2γ (mod pm).
10. Ψp(x)← p-division polynomial of y2 = x3 + Ax+B.
11. H(x)← Lift Kernel(Ψp(x),m+ 1).
12. For j = 1 to 3 do:

13. hj← Coeff(H(x), (p− 1)/2− j).
14. α← (6− 5p)A− 30(h2

1 − 2h2).
15. β← (15− 14p)B − 70(−h3

1 + 3h1h2 − 3h3) + 42Ah1.

16. S← βAS, T ←αBT.
17. t← Sqrt(S/T,m).

18. γ← Coeff((x3 + ax+ b)(p−1)/2, p− 1).

19. If t
≡ γγσ · · · γσn−1
(mod p) then t← − t (mod pm).

20. If t2 > 4pn then t← t− pm.

21. Return pn + 1− t.

The case p = 3 is very similar to the case p ≥ 5. There are only two minor

adaptations: firstly, note that KerΣ̂i = {Q,−Q,O} with Q a 3-torsion point
on Ei+1 with integral coordinates, so Algorithm VI.2 reduces to a simple New-
ton iteration on the 3-division polynomial of Ei+1; secondly, the Weierstraß
equation for Ei is different from the one for p ≥ 5, which slightly changes

Vélu’s formulae. Let xQ denote the x-coordinate of Q ∈ KerΣ̂i and let Ei+1

be defined by y2 = x3 + x2/4 +Ai+1x+Bi+1. Then Ei+1/Ker(Σ̂i) is given by
the equation y2 = x3 + x2/4 + αi+1x+ βi+1, with

αi+1 = −15x2
Q − (5/2)xQ − 4Ai+1 ,

βi+1 = −49x3
Q − (27/2)x2

Q − (35Ai+1 + 1/2)xQ − Ai+1 − 27Bi+1 .

Analogous to the case p ≥ 5, we conclude that c2i is given by (VI.4) and
taking the square root of c2 =

∏n−1
i=0 c

2
i determines the trace of Frobenius t up

to the sign. Furthermore, since the curve E is defined by an equation of the
form y2 = x3 + x2 + a, the correct sign follows from t ≡ 1 (mod 3).

VI.2. SATOH’S ALGORITHM 113

For p = 2, Lemma VI.5 no longer holds. Indeed, the Newton polygon
of the 2-division polynomial shows that there are two non-trivial points in

Ei+1[p] ∩ Ei+1(Z
ur
q), whereas KerΣ̂i has only one non-trivial point. The main

problem in extending Satoh’s algorithm to characteristic 2 therefore lies in
choosing the correct 2-torsion point. There are two algorithms which are both

based on diagram (VI.3). Let KerΣ̂ = 〈Q〉; then, since λ is an isomorphism,
we conclude j(Ei+1/〈Q〉) = j(Ei).

The first algorithm to compute Q is due to Skjernaa [308] who gives an
explicit formula for the x-coordinate xQ as a function of j(Ei) and j(Ei+1).
Since Q is a 2-torsion point, it follows that 2yQ + xQ = 0. Substituting yQ in
the equation of the curve and using the equality j(Ei+1/〈Q〉) = j(Ei), Skjernaa
deduces an explicit expression for xQ. A proof of the following proposition
can be found in [308, Lemma 4.1].

Proposition VI.7. Let Q = (xQ, yQ) be the non-trivial point in KerΣ̂i+1

and let zQ = xQ/2. Then

zQ = − j(Ei)
2+195120j(Ei)+4095j(Ei+1)+660960000

8(j(Ei)2+j(Ei)(563760−512j(Ei+1))+372735j(Ei+1)+8981280000)
.

Skjernaa shows that the 2-adic valuation of both the numerator and the
denominator is 12, so we have to compute j(Ei) (mod 2m+12) to recover
zQ (mod 2m).

The second algorithm is due to Fouquet, Gaudry and Harley [123] and

is based on the fact that KerΣ̂i = 〈Q〉 ⊂ Ei+1[2]. Let Ei+1 be given by the
equation y2 +xy = x3 +36Ai+1x+Ai+1 with Ai+1 = 1/(1728−j(Ei+1)). Since
Q is a 2-torsion point, we have 2yQ+xQ = 0 and the x-coordinate xQ is a zero
of the 2-division polynomial 4x3 + x2 + 144Ai+1x + 4Ai+1. Clearly we have
xQ ≡ 0 (mod 2), so Fouquet, Gaudry and Harley compute zQ = xQ/2 as a
zero of the modified 2-division polynomial 8z3+z2+72Ai+1z+Ai+1. The main
problem is choosing the correct starting value when considering this equation
modulo 8. Using j(Ei+1/〈Q〉) = j(Ei) they proved that z ≡ 1/j(Ei) (mod 8)
is the correct starting value giving xQ.

Vélu’s formulae show that Ei+1/KerΣ̂i is given by the Weierstraß equation
y2 + xy = x3 + αi+1x+ βi+1 with

αi+1 = − 36

j(Ei+1)− 1728
− 5γi+1 ,

βi+1 = − 1

j(Ei+1)− 1728
− (1 + 7xQ)γi+1 ,

where γi+1 = 3x2
Q−36/(j(Ei+1)−1728)+xQ/2. The isomorphism λi now has

the general form

(x, y)→ (u2
ix+ ri, u

3
i y + u2

i six+ ti), (ui, ri, si, ti) ∈ Q∗
q ×Q3

q,

114 VI. POINT COUNTING

but an easy calculation shows that c2i = u−2
i . Solving the equations satisfied

by (ui, ri, si, ti) given in [307, Table 1.2] finally leads to

c2i = −864βi − 72αi + 1

48αi − 1
. (VI.5)

The complexity of Algorithm VI.3 directly follows from Hasse’s theorem,
which states that |t| ≤ 2

√
q. Therefore it suffices to lift all data with precision

m # n/2. Since elements of Zq/(p
mZq) are represented as polynomials of

degree less than n with coefficients in Z/(pmZ), every element takes O(n2)
memory for fixed p. Therefore, multiplication and division in Zq/(p

mZq) take
O(n2µ) time.

For each curve Ei with 0 ≤ i < n we need O(1) elements of Zq/(p
mZq),

so the total memory needed is O(n3) bits. Lifting the cycle of j-invariants to
precision m requires O(logm) iterations. In every iteration the precision of
the computations almost doubles, so the complexity is determined by the last
iteration, which takes O(n2µ+1) bit-operations. Computing one coefficient
c2i requires O(1) multiplications, so to compute all ci we also need O(n2µ+1)
bit-operations.

In conclusion, there exists a deterministic algorithm to compute the num-
ber of points on an elliptic curve E over a finite field Fq with q = pn and
j(E)
∈ Fp2 , which requires O(n2µ+1) bit-operations and O(n3) space for
fixed p.

VI.2.6. Vercauteren’s Algorithm. The first improvement of Satoh’s
algorithm and its extensions to characteristics 2 and 3 is an algorithm by
Vercauteren [334] that only requires O(n2) space but still runs in O(n2µ+1)
time. The basic idea is very simple: the trace of Frobenius t can be com-
puted as t ≡

∏
0≤i<n ci (mod q) and the ci only depend on the curves Ei and

Ei+1. So the main problem of Satoh’s algorithm is that it lifts all j-invariants
simultaneously, instead of lifting one j-invariant at a time.

Let Ji ≡ j(Ei) (mod pm). Then Ji+1 ≡ j(Ei+1) (mod pm) can be computed
using a univariate Newton iteration on Φp(X, Ji). This iteration is given by

Z ← Z − Φp(Z, Ji)
∂Φp

∂X
(Z, Ji)

, (VI.6)

starting from j(Ei+1) ≡ j(Ei+1) (mod p) as an initial approximation. Note

that since Φp(X,Y) satisfies the Kronecker relation, ∂Φp

∂X
(Ji+1, Ji) will be a

unit in Zq. The following proposition shows that the iteration (VI.6) has a
quite remarkable property: let Ji+1 be the zero of Φp(X, Ji); then Ji+1 equals
j(Ei+1) up to precision m + 1 and not just up to precision m as one would
expect.

VI.3. ARITHMETIC GEOMETRIC MEAN 115

Proposition VI.8. Let Qq be an unramified extension of Qp and denote with
Zq its valuation ring. Let g ∈ Zq[X,Y] and assume that x0, y0 ∈ Zq satisfy

g(x0, y0) ≡ 0 (mod p),
∂g

∂X
(x0, y0)
≡ 0 (mod p),

∂g

∂Y
(x0, y0) ≡ 0 (mod p).

Then the following properties hold:

1. For every y ∈ Zq with y ≡ y0 (mod p) there exists a unique x ∈ Zq

such that x ≡ x0 (mod p) and g(x, y) = 0.
2. Let y′ ∈ Zq with y ≡ y′ (mod pm), m ≥ 1 and let x′ ∈ Zq be the unique

element with x′ ≡ x0 (mod p) and g(x′, y′) = 0. Then x′ satisfies
x′ ≡ x (mod pm+1).

Repeatedly applying this proposition immediately leads to the following
algorithm:

Algorithm VI.4: Lift First j Invariant

INPUT: A j-invariant j ∈ Fpn \ Fp2 and a precision m.

OUTPUT: J ∈ Zq with J ≡ jpm−1
(mod p) and Φp(J,Σ(J)) ≡ 0 (mod pm).

1. J← j (mod p).
2. For i = 2 to m do:

3. J← Newton Iteration(Φp(X, J), Jp (mod p), i).
4. Return J.

To obtain an O(n2) space algorithm, we simply interleave the lifting of
the j-invariants with the computation of c in Step 5 of Algorithm VI.3.

Note that the convergence of Algorithm VI.4 is only linear, i.e., for every
iteration of the For-loop, the precision increases by one. However, once we
have computed one j-invariant with sufficient precision, we can switch to the
Newton iteration (VI.6), which converges quadratically.

In conclusion, there exists a deterministic algorithm to compute the num-
ber of points on an elliptic curve E over a finite field Fq with q = pn and
j(E)
∈ Fp2 , which requires O(n2µ+1) bit-operations and O(n2) space for
fixed p.

VI.3. Arithmetic Geometric Mean

In a letter to Gaudry and Harley, Mestre [247] described a very elegant
algorithm based on the Arithmetic Geometric Mean (AGM) to count the
number of points on ordinary curves of genus 1 and 2 over F2n . Carls [60] and
Kohel [208] showed how to extend this algorithm to higher characteristics. In
this section we give a detailed description of both the bivariate and univariate
versions of the AGM. Note that the AGM algorithm for elliptic curves is
protected by a U.S. patent [160] filed by Harley and Mestre.

116 VI. POINT COUNTING

For a0, b0 ∈ R with a0 ≥ b0 > 0, define the AGM iteration for k ∈ N as

(ak+1, bk+1) =

(
ak + bk

2
,
√
akbk

)
.

Then bk ≤ bk+1 ≤ ak+1 ≤ ak and 0 ≤ ak+1 − bk+1 ≤ (ak − bk)/2; therefore
limk→∞ ak = limk→∞ bk exists. This common value is called the AGM of a0

and b0 and is denoted by AGM(a0, b0). An easy calculation shows that

ak

bk
− 1 ≤ a0 − b0

2kbk
≤ 1

2k

(
a0

b0
− 1

)
,

so after a logarithmic number of steps we have ak/bk = 1+εk with εk < 1. The
Taylor series expansion of 1/

√
1 + εk shows that convergence even becomes

quadratic:

ak+1

bk+1

=
ak + bk

2
√
akbk

=
2 + εk

2
√

1 + εk

= 1 +
ε2

k

8
− ε3

k

8
+

15ε4
k

128
− 7ε5

k

64
+O(ε6

k) . (VI.7)

VI.3.1. The AGM Isogeny and the Canonical Lift. Let Qq be a de-
gree n unramified extension of Q2 with valuation ring Zq and residue field Fq.
Denote by

√
c for c ∈ 1 + 8Zq the unique element d ∈ 1 + 4Zq with d2 = c.

For elements a, b ∈ Zq with a/b ∈ 1 + 8Zq, a
′ = (a + b)/2 and b′ = b

√
a/b

also belong to Zq and a′/b′ ∈ 1 + 8Zq. Furthermore, if a, b ∈ 1 + 4Zq, then
also a′, b′ ∈ 1+4Zq. However, as can be seen from equation (VI.7), the AGM
sequence will converge if and only if a/b ∈ 1 + 16Zq. For a/b ∈ 1 + 8Zq, the
AGM sequence will not converge at all.

Let a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq and Ea,b the elliptic curve defined
by y2 = x(x− a2)(x− b2). Note that Ea,b is not a minimal Weierstraß model
and that its reduction modulo 2 is singular. The following lemma gives an
isomorphism from Ea,b to a minimal model.

Lemma VI.9. Let a, b ∈ 1+4Zq with a/b ∈ 1+8Zq and Ea,b the elliptic curve
defined by y2 = x(x− a2)(x− b2). Then the isomorphism

(x, y) �→ (
x− ab

4
,
y − x+ ab

8
)

transforms Ea,b in y2 + xy = x3 + rx2 + sx+ t with
r = −a2+3ab−b2−1

4
,

s = −a3b+2a2b2−ab3

8
,

t = −a4b2+2a3b3−a2b4

64
.

(VI.8)

Furthermore, r ∈ 2Zq, s ∈ 8Zq, t ≡ −
(

a−b
8

)2
(mod 16) and the equation

defines a minimal Weierstraß model.

The next proposition shows that the AGM iteration constructs a sequence
of elliptic curves all of which are 2-isogenous. This will provide the missing
link between the AGM iteration and the canonical lift.

VI.3. ARITHMETIC GEOMETRIC MEAN 117

Proposition VI.10. Let a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq and Ea,b the
elliptic curve defined by the equation y2 = x(x−a2)(x−b2). Let a′ = (a+b)/2,

b′ =
√
ab and Ea′,b′ : y2 = x(x − a′2)(x − b′2). Then Ea,b and Ea′,b′ are 2-

isogenous. The isogeny is given by

φ : Ea,b → Ea′,b′ : (x, y) �→
(

(x+ ab)2

4x
, y

(x− ab)(x+ ab)

8x2

)
,

and the kernel of φ is 〈(0, 0)〉. Furthermore, the action of φ on the invariant
differential dx/y is

φ∗
(
dx

y

)
= 2

dx

y
.

Let E be an ordinary elliptic curve defined by y2 +xy = x3 +c with c ∈ F∗
q

and let E be its canonical lift. Take any r ∈ Zq such that r2 ≡ c (mod 2)
and let a0 = 1 + 4r and b0 = 1− 4r. Then Lemma VI.9 shows that Ea0,b0 is
isomorphic to a lift of E to Zq and thus j(Ea0,b0) ≡ j(E) (mod 2).

Let (ak, bk)
∞
k=0 be the AGM sequence and consider the elliptic curves

Eak,bk
. Proposition VI.10 implies that Φ2

(
j(Eak+1,bk+1

), j(Eak,bk
)
)

= 0 and
an easy computation shows that j(Eak+1,bk+1

) ≡ j(Eak,bk
)2 (mod 2). Note

that Φ2(X,Y) and (j(Eak+1,bk+1
), j(Eak,bk

)) satisfy the conditions of Proposi-
tion VI.8, so we conclude

j (Eak,bk
) ≡ Σk (j(E)) (mod 2k+1) .

Although the AGM sequence (ak, bk)
∞
k=0 itself does not converge, the sequence

of elliptic curves (Eank,bnk
)∞k=0 does converge since limk→∞ j(Eank,bnk

) exists
and is equal to the j-invariant of the canonical lift of E.

VI.3.2. Computing the Trace of Frobenius. The AGM not only pro-
vides an efficient algorithm to compute the j-invariant of the canonical lift E ,
but it also leads to an elegant formula for the trace of Frobenius.

Assume we have computed a, b ∈ 1 + 4Zq with a/b ∈ 1 + 8Zq such that

j(Ea,b) = j(E). Let (a′, b′) = ((a + b)/2,
√
ab), φ : Ea,b → Ea′,b′ the AGM

isogeny and Σ : Ea,b → EΣ(a),Σ(b) the lift of the 2nd-power Frobenius. Then
we have the following diagram:

Ea,b Ea′,b′
φ

EΣ(a),Σ(b)

�
�

�
��

�
�

�
��

�

Σ λ (VI.9)

The kernel of the Frobenius isogeny Σ : Ea,b → EΣ(a),Σ(b) is a subgroup of
order 2 of

Ea,b[2] = {O, (0, 0), (a2, 0), (b2, 0)} .

118 VI. POINT COUNTING

The isomorphism given in Lemma VI.9 allows us to analyse the reduction of
the 2-torsion on a minimal model. An easy calculation shows that (0, 0) is
mapped ontoO whereas (a2, 0) and (b2, 0) are mapped to (0, (a−b)/8 (mod 2)).
Therefore we conclude that KerΣ = {O, (0, 0)}. Proposition VI.10 shows that
KerΣ = Kerφ, and, since both isogenies are separable, there exists an isomor-
phism λ : Ea′,b′ → EΣ(a),Σ(b) such that Σ = λ ◦ φ. The following proposition
shows that this isomorphism has a very simple form.

Proposition VI.11. Given two elliptic curves Ea,b : y2 = x(x− a2)(x− b2)
and Ec,d : y′2 = x′(x′ − c2)(x′ − d2) over Qq with a, b, c, d ∈ 1 + 4Zq and
a/b, c/d ∈ 1 + 8Zq, then Ea,b and Ec,d are isomorphic if and only if x′ = u2x

and y′ = u3y with u2 = c2+d2

a2+b2
. Furthermore,

(
a
b

)2
=

(
c
d

)2
or

(
a
b

)2
=

(
d
c

)2
.

Let ω = dx/y and ω′ = dx′/y′ be invariant differentials on Ea,b and
EΣ(a),Σ(b), respectively. Then

Σ∗(ω′) = (λ ◦ φ)∗(ω′) = 2u−1ω ,

with u2 = Σ(a)2+Σ(b)2

a′2+b′2 . Define ζ = a/b = 1 + 8c and ζ ′ = a′/b′ = 1 + 8c′. Then
Proposition VI.11 also implies that

ζ ′2 = Σ(ζ)2 or ζ ′2 =
1

Σ(ζ)2
.

Substituting ζ = 1 + 8c and ζ ′ = 1 + 8c′ in the above equation and dividing
by 16, we conclude that c′ ≡ Σ(c) (mod 4) or c′ ≡ −Σ(c) (mod 4). The Taylor
expansion of 1+8c′ = (1+4c)/

√
1 + 8c modulo 32 shows that c′ ≡ c2 (mod 4).

Since after the first iteration c itself is a square α2 modulo 4, and since
Σ(α2) ≡ α4 (mod 4), we conclude that ζ ′2 = Σ(ζ)2. Note that this implies

ζ ′ =
a′

b′
= Σ(ζ) = Σ(

a

b
) , (VI.10)

since ζ ′ ≡ ζ ≡ 1 (mod 8). Substituting b′2 = a′2Σ(b)/Σ(a)2 in the expression
for u2 and taking square roots leads to

u = ±Σ(a)

a′
.

Let (ak, bk)
∞
k=0 be the AGM sequence with a0 = a and b0 = b and consider

the following diagram where Ek = EΣk(a),Σk(b) and Σk : Ek → Ek+1 the lift of
the 2nd-power Frobenius isogeny.

E0 E1 E2 · · · En = E0
� � � �

Σ0 Σ1 Σ2 Σn−1

Ea,b Ea1,b1 Ea2,b2 · · · Ean,bn

� � � �
φ0 φ1 φ2 φn−1

�
Id

�
λ1

�
λ2

...
�

λn

Since KerΣk ◦ λk = Kerφk for k ∈ N, we can repeat the same argument
as for diagram (VI.9) and find an isomorphism λk+1 such that the square

VI.3. ARITHMETIC GEOMETRIC MEAN 119

commutes, i.e., Σk = λk+1 ◦φk ◦λ−1
k . Since Ea,b is isomorphic to the canonical

lift E of E, we conclude that

Tr(Σn−1 ◦ · · · ◦ Σ0) = TrF = TrF .

The above diagram shows that Σn−1 ◦ · · · ◦ Σ0 = λn ◦ φn−1 ◦ · · · ◦ φ0 and,
since φk acts on the invariant differential ω as multiplication by 2 and λn as
multiplication by ±an/a0, we conclude that

F∗(ω) = ±2nan

a0

(ω) .

The Weil conjectures imply that the product of the roots of the characteristic
polynomial of Frobenius is 2n and thus

TrF = TrF = ±a0

an

± 2nan

a0

. (VI.11)

Equation (VI.10) implies that ak+1/ak+2 = Σ(ak/ak+1), which leads to

a0

an

=
a0

a1

a1

a2

· · · an−1

an

= NQq/Qp(
a0

a1

) .

If the curve E is defined by the equation y2 + xy = x3 + c with c ∈ F∗
q,

then (4
√
c,
√
c) is a point of order 4, which implies that TrF ≡ 1 (mod 4).

Since a0/an ∈ 1+4Zq, we can choose the correct sign in equation (VI.11) and
conclude that TrF ≡ a0/an ≡ NQq/Qp(

a0

a1
) (mod q).

VI.3.3. The AGM Algorithm. The only remaining problem is that we
only have approximations to a and b and not the exact values as assumed in
the previous section.

Let E be an ordinary elliptic curve defined by y2+xy = x3+c with c ∈ F∗
q.

Take any r ∈ Zq such that r2 ≡ c (mod 2) and let a0 = 1+4r and b0 = 1−4r.
In Section VI.3.1 we showed that if (ak, bk)

∞
k=0 is the AGM sequence, then

j (Eak,bk
) ≡ j(Ek) (mod 2k+1) ,

where Ek is the canonical lift of σk(E). Expressing j(Eak,bk
) as a function of

ak and bk shows that ak and bk must be correct modulo 2k+3. Therefore, we
conclude that

TrF ≡ am−3

am−3+n

+ 2nam−3+n

am−3

(mod 2m) .

This procedure is summarized in Algorithm VI.5.

120 VI. POINT COUNTING

Algorithm VI.5: AGM

INPUT: An elliptic curve E : y2 + xy = x3 + c over F2n with

j(E)
∈ F4.

OUTPUT: The number of points on E(F2n).

1. m←�n
2
�+ 2.

2. Take r ∈ Zq with r ≡ √c (mod 2).
3. a← 1 + 4r, b← 1− 4r.
4. For i = 4 to m do:

5. (a, b)←
(
(a+ b)/2,

√
ab
)

(mod 2i).

6. a0← a.
7. For i = 0 to n− 1 do:

8. (a, b)←
(
(a+ b)/2,

√
ab
)

(mod 2m).

9. t← a0/a (mod 2m).
10. If t2 > 2n+2 then t← t− 2m.

11. Return 2n + 1− t.

The complexity of Algorithm VI.5 is determined by Step 7, which requires
O(n) square root computations to precision m # n/2. Since each square root
computation takes O(1) multiplications at full precision, the complexity of
Algorithm VI.5 is O(n2µ+1) bit-operations. The space complexity clearly is
O(n2), since only O(1) elements of Zq/(2

mZq) are required. Note that it is
possible to replace the For-loop in Step 7 of Algorithm VI.5 by one AGM
iteration and a norm computation. Indeed, the trace of Frobenius satisfies
t ≡ NQq/Qp(a0/a1) (mod 2min(n,m)). We refer to Section VI.5 for efficient norm
computation algorithms.

VI.3.4. Univariate AGM. Given the bivariate AGM sequence (ak, bk)
∞
k=0

with ak ≡ bk ≡ 1 (mod 4) and ak ≡ bk (mod 8), we can easily define a
univariate AGM sequence (λk)

∞
k=0 by λk = bk/ak. This sequence corresponds

to the elliptic curves

Eλk
: y2 = x(x− 1)(x− λ2

k) .

Since (ak+1, bk+1) = ((ak + bk)/2,
√
akbk), λk+1 follows from λk by

λk+1 =
2
√
λk

1 + λk

. (VI.12)

In Section VI.3.1 we showed that for an ordinary curve E : y2 + xy = x3 + c
with c ∈ F∗

q, the AGM sequence can be initialized as (a0, b0) = (1+4u, 1−4u)

where u ∈ Zq satisfies u2 ≡ c (mod 2). However, these values cannot be
used to initialize the univariate AGM sequence, since (a0, b0) is only correct
modulo 8, which would lead to λ0 ≡ 1 (mod 8). However, this problem can

VI.4. GENERALIZED NEWTON ITERATION 121

be solved easily by computing (a1, b1) ≡ (1, 1 − 8u2) (mod 16) and starting
from

λ1 ≡ 1 + 8u2 ≡ 1 + 8c (mod 16) ,

with c ∈ Zq and c ≡ c (mod 2). Unlike the bivariate AGM sequence, the uni-
variate AGM sequence does converge, in the sense that λk ≡ λk+n (mod 2k+3).
In Section VI.3.2 we showed that

bk+1

ak+1

≡ Σ(
bk
ak

) (mod 2k+3) ,

and thus λk+1 ≡ Σ(λk) (mod 2k+3). Gaudry [143] suggested substituting this
in equation (VI.12) which shows that λk satisfies

Σ(Z)2(1 + Z)2 − 4Z ≡ 0 (mod 2k+3) and Z ≡ 1 + 8Σk−1(c) (mod 16) .

Define the polynomial Λ2(X,Y) = Y 2(1 + X)2 − 4X; then λk is a solution
of Λ2(X,Σ(X)) ≡ 0 (mod 2k+3). Recall that the j-invariant of the canonical
lift of E satisfies a similar type of equation, i.e., Φp(X,Σ(X)) = 0 with
Φp(X,Y) the pth modular polynomial. The main difference is that both
partial derivatives of Λ2(X,Y) vanish modulo 2. Therefore, we make the
change of variables X → 1 + 8X and Y → 1 + 8Y to obtain the modified
modular polynomial

Υ2(X,Y) = (X + 2Y + 8XY)2 + Y + 4XY .

Let γk be defined by λk = 1+8γk; then γk satisfies Υ2(X,Σ(X)) ≡ 0 (mod 2k)
and γk ≡ σk−1(c) (mod 2). The partial derivatives of Υ2 are

∂Υ2

∂X
(X,Y) = 2(X + 2Y + 8XY)(1 + 8Y) + 4Y ,

∂Υ2

∂Y
(X,Y) = (4(X + 2Y + 8XY) + 1)(1 + 4X) ,

which shows that ∂Υ2

∂X
≡ 0 (mod 2), but ∂Υ2

∂Y
≡ 1 (mod 2).

The trace of Frobenius follows easily from Section VI.3.2 and is given by

TrF ≡ NQq/Qp

(
1

1 + 4γk

)
(mod 2min(n,k)) . (VI.13)

VI.4. Generalized Newton Iteration

In Sections VI.2.3 and VI.3.4 we solved equations of the form

Γ(X,Σ(X)) = 0 for Γ(X,Y) ∈ Zq[X,Y]

without computing the Frobenius substitution Σ. The aim of this section is
to show that in a well-chosen basis of Qq, the Frobenius substitution can be
computed efficiently, which can be used to devise faster algorithms to solve
the above equation Γ(X,Σ(X)) = 0.

122 VI. POINT COUNTING

VI.4.1. Fast Frobenius Substitution. The first construction admitting a
fast Frobenius substitution is due to Satoh, Skjernaa and Taguchi [287] and
works for all finite fields Fq # Fp[t]/(f(t)). Let f(t) ∈ Zp[t] be the unique
polynomial defined by

f(t)|(tq − t) and f(t) ≡ f(t) (mod p).

Then Qq can be represented as Qp[t]/(f(t)). The polynomial f(t) can be com-
puted modulo pm in O((nm)µ logm) time using an algorithm due to Harley;
a detailed description can be found in [333, 3.10.2].

As shown in Section VI.1, this implies that Σ(t) = tp and the Frobenius
substitution of an element α =

∑n−1
i=0 αit

i can be computed efficiently as

Σ(α) = Σ

(
n−1∑
i=0

αit
i

)
=

n−1∑
i=0

αit
ip ,

where the result is reduced modulo f(t). Note that in general the polynomial
f(t) is dense, so a fast reduction algorithm should be used, e.g. the one
described in [141, Chapter 9].

Similarly, the inverse Frobenius substitution Σ−1 can be computed as

Σ−1(α) = Σ−1

(
n−1∑
i=0

αit
i

)
=

p−1∑
j=0

(∑
0≤pk+j<n

αpk+jt
k

)
Cj(t),

where Cj(t) = Σ−1(tj) ≡ tjp
n−1

(mod f(t)). If we precompute Cj(t) for
j = 0, . . . , p−1, computing Σ−1(α) for α ∈ Zq only takes p−1 multiplications
in Zq.

The second construction is due to Kim, Park, Cheon, Park, Kim and
Hahn [199] who proposed the use of finite fields with a Gaussian Normal
Basis (GNB) of small type. Such a basis can be lifted trivially to Zq and
allows efficient computation of arbitrary iterates of Frobenius. Recall that a
basis B of Qq/Qp is called normal if there exists an element β ∈ Qq such that
B = {Λ(β) |Λ ∈ Gal(Qq/Qp)}. A proof of the next proposition can be found
in [199].

Proposition VI.12. Let p be a prime and n, t positive integers such that
nt + 1 is a prime different from p. Let γ be a primitive (nt + 1)-th root of
unity in some extension field of Qp. If gcd(nt/e, n) = 1, with e the order of
p modulo nt+ 1, then for any primitive tth root of unity τ in Z/(nt+ 1)Z

β =
t−1∑
i=0

γτ i

is a normal element and [Qp(β) : Qp] = n. Such a basis is called a Gaussian
Normal Basis of type t.

VI.4. GENERALIZED NEWTON ITERATION 123

Kim et al. represent elements of Zq as elements of the ring

Zp[x]/(x
nt+1 − 1) .

Multiplication of two elements in Zq/(p
mZq) therefore requires O((nmt)µ)

bit-operations, so one normally restricts t ≤ 2.
For t = 1 we have β = γ and the minimal polynomial of β therefore is

f(x) =
xn+1 − 1

x− 1
= xn + xn−1 + · · ·+ x+ 1 .

To speed up the Frobenius substitution, Kim et al. use a redundant represen-
tation, i.e., they embed Zq in Zp[x]/(x

n+1− 1) by mapping α =
∑n−1

i=0 αiβ
i to

α(x) =
∑n−1

i=0 αix
i + 0xn. Since Σk(β) = βpk

, we have

Σk(α(x)) =
n∑

i=0

αix
ipk

= a0 +
n∑

j=1

α
j/pk (mod (n+1))

xj .

Therefore, we can compute Σk(α) by a simple permutation of the coefficients
of α(x), which only requires O(n) bit-operations.

VI.4.2. Satoh–Skjernaa–Taguchi Algorithm. Let x ∈ Zq be a root of
Γ(X,Σ(X)) = 0 for Γ(X,Y) ∈ Zq[X,Y] and assume we have computed the
approximation xm ≡ x (mod pm). Define δm = (x− xm)/pm; then the Taylor
series expansion around xm gives

0 = Γ(x,Σ(x)) = Γ(xm + pmδm,Σ(xm + pmδm))

≡ Γ(xm,Σ(xm)) + pm(δm∆x + Σ(δm)∆y) (mod p2m) ,
(VI.14)

with ∆x ≡ ∂Γ
∂X

(xm,Σ(xm)) (mod pm) and ∆y ≡ ∂Γ
∂Y

(xm,Σ(xm)) (mod pm).
Since Γ(xm,Σ(xm)) ≡ 0 (mod pm), we can divide this equation by pm and
obtain a relation for δm modulo pm:

Γ(xm,Σ(xm))

pm
+ δm∆x + Σ(δm)∆y ≡ 0 (mod pm) .

For simplicity we will assume that ordp(∆y) = 0, i.e., that ∆y is a unit in Zq

and that ordp(∆x) > 0. Reducing the above equation modulo p then gives

δp
m ≡ −

Γ(xm,Σ(xm))

pm∆y

(mod p) .

Taking the unique pth root δm ∈ Fq leads to a better approximation of x given
by xm+pmδm ≡ x (mod pm+1). To avoid computing the pth root in the above
equation, Satoh, Skjernaa and Taguchi replace the equation Γ(X,Σ(X)) = 0
by Γ(Σ−1(X), X) = 0, which clearly is equivalent. The new δm then becomes

δm ≡ −
Γ(Σ−1(xm), xm)

pm ∂Γ
∂Y

(Σ−1(xm), xm)
(mod p) .

124 VI. POINT COUNTING

Note that since Γ(Σ−1(xm), xm) ≡ 0 (mod pm), we only need to compute the
inverse of ∂Γ

∂Y
(Σ−1(xm), xm) modulo p. Implementing these ideas naively leads

to Algorithm VI.6, which can be used instead of Algorithm VI.4.

Algorithm VI.6: Satoh Skjernaa Taguchi Naive

INPUT: Polynomial Γ(X,Y) ∈ Zq, element x0 ∈ Zq satisfying

Γ(Σ−1(x0), x0) ≡ 0 (mod p) and precision m.

OUTPUT: Element xm ∈ Zq, with Γ(Σ−1(xm), xm) ≡ 0 (mod pm) and

xm ≡ x0 (mod p).

1. d←
(

∂Γ
∂Y

(Σ−1(x0), x0)
)−1

(mod p).
2. y← x0 (mod p).
3. For i = 2 to m do:

4. x←Σ−1(y) (mod pi).
5. y← y − dΓ(x, y) (mod pi).
6. Return y.

The main problem of Algorithm VI.6 is that in each iteration it recomputes
Γ(x, y) although the values of x and y in Step i+ 1 are very close to the ones
in Step i. Assume we have computed xW ≡ x (mod pW) for some W . Then,
for all s ∈ N,

Γ
(
Σ−1(xsW+i), xsW+i

)
≡ Γ

(
Σ−1(xsW), xsW

)
+ ∆ (mod p(s+1)W) , (VI.15)

with

∆ = psW

(
∂Γ

∂X
(Σ−1(xsW), xsW)Σ−1(δ) +

∂Γ

∂Y
(Σ−1(xsW), xsW)δ

)
.

Furthermore, note that it is sufficient to know the partial derivatives

∂Γ

∂X
(Σ−1(xsW), xsW) and

∂Γ

∂Y
(Σ−1(xsW), xsW)

modulo pW only. Using (VI.15), we can thus compute Γ(Σ−1(xsW+i), xsW+i)
from Γ(Σ−1(xsW), xsW) as long as i < W .

Algorithm VI.7 consists of two stages: in the first stage we compute
xW ≡ x (mod pW) using Algorithm VI.6 and in the second stage we use
equation (VI.15) to update Γ(x, y).

VI.4. GENERALIZED NEWTON ITERATION 125

Algorithm VI.7: Satoh Skjernaa Taguchi

INPUT: Polynomial Γ(X,Y) ∈ Zq, element x0 ∈ Zq satisfying

Γ(Σ−1(x0), x0) ≡ 0 (mod p) and precision m.

OUTPUT: Element xm ∈ Zq, with Γ(Σ−1(xm), xm) ≡ 0 (mod pm) and

xm ≡ x0 (mod p).

1. y← Satoh Skjernaa Taguchi Naive(x0,W).

2. x←Σ−1(y) (mod pW).
3. ∆x← ∂Γ

∂X
(x, y) (mod pW).

4. ∆y← ∂Γ
∂Y

(x, y) (mod pW).
5. For s = 1 to �(m− 1)/W � do:

6. x←Σ−1(y) (mod p(s+1)W).
7. V ←Γ(x, y) (mod p(s+1)W).
8. For i = 0 to W − 1 do:

9. δy← − dp−(sW+i)V (mod p).
10. δx←Σ−1(δy) (mod pW−i).
11. y← y + psW+iδy (mod p(s+1)W).
12. V ←V + p(sW+i)(∆xδx + ∆yδy) (mod p(s+1)W).
13. Return y.

Satoh, Skjernaa and Taguchi prove that for W # nµ/(1+µ), Algorithm VI.7
runs in time O(nµmµ+1/(1+µ)). Although the value for W minimizes the time
complexity, in practise it is faster to take W a multiple of the CPU word size.

VI.4.3. Solving Artin–Schreier Equations. Recall that if Fq is a field of
characteristic p, an equation of the form xp−x+c = 0 with c ∈ Fq is called an
Artin–Schreier equation. Since Σ(x) ≡ xp (mod p), a natural generalization
to Zq is an equation of the form

aΣ(x) + bx+ c = 0 , (VI.16)

with a, b, c ∈ Zq. Let x ∈ Zq be a solution of Γ(X,Σ(X)) = 0 and let
xm ≡ x (mod pm). Define δm = (x − xm)/pm; then equation (VI.14) shows
that δm satisfies an Artin–Schreier equation modulo pm with

a =
∂Γ

∂Y
(xm,Σ(xm)) , b =

∂Γ

∂X
(xm,Σ(xm)) , c =

Γ(xm,Σ(xm))

pm
.

Since we assumed that a is a unit in Zq, any solution δ to this Artin–Schreier
equation satisfies δ ≡ δm (mod pm), and thus xm + pmδ ≡ x (mod p2m).
Therefore, if we can solve Artin–Schreier equations efficiently, we obtain an
algorithm to find a root of Γ(X,Σ(X)) = 0 that converges quadratically. This
strategy is formalized in Algorithm VI.8. Since the precision we compute with
doubles in every step, the complexity of Algorithm VI.8 is the same as the
complexity of the algorithm to solve an Artin–Schreier equation.

126 VI. POINT COUNTING

Algorithm VI.8: Gen Newton Lift

INPUT: Polynomial Γ(X,Y) ∈ Zq, element x0 ∈ Zq satisfying

Γ(x0,Σ(x0)) ≡ 0 (mod p) and precision m.

OUTPUT: Element xm ∈ Zq, with Γ(xm,Σ(xm)) ≡ 0 (mod pm) and

xm ≡ x0 (mod p).

1. If m = 1 then

2. x← x0.

3. Else

4. m′←�m
2
�.

5. x′← Gen Newton Lift(Γ, x0,m
′);

6. y′←Σ(x′) (mod pm).
7. V ←Γ(x′, y′) (mod pm).
8. ∆x← ∂Γ

∂X
(x′, y′) (mod pm′

).
9. ∆y← ∂Γ

∂Y
(x′, y′) (mod pm′

).
10. δ← Artin Schreier Root (∆y,∆x, V/p

m′
,m−m′).

11. x← x′ + pm′
δ (mod pm).

12. Return x.

Lercier–Lubicz Algorithm: In [218] Lercier and Lubicz described the first
quadratically convergent algorithm to solve Artin–Schreier equations. Since
the algorithm uses iterated Frobenius substitutions, it is only efficient if Qq

admits a Gaussian Normal Basis of small type.
Dividing equation (VI.16) by a, we obtain

Σ(x)− β x− γ = 0 ,

with β = −b/a, γ = −c/a ∈ Zq. Let β1 = β, γ1 = γ; then Σ(x) = β1x + γ1

and define Σk(x) = βkx + γk for k = 2, . . . , n by induction. Since Σn(x) = x
for all x ∈ Qq, we conclude that the unique solution to the above equation is
given by γn/(1− βn). To compute the βk, γk ∈ Zq, Lercier and Lubicz use a
simple square and multiply algorithm based on the formula

Σk+l(x) = Σl(βkx+ γk) = Σl(βk)(βlx+ γl) + Σl(γk) .

The above formula immediately leads to Algorithm VI.9, which returns βk

and γk modulo pm for any k.
The complexity of Algorithm VI.9 is determined by Steps 6 and 7, which

require O(1) multiplications and O(1) iterated Frobenius substitutions in
Zq/(p

mZq). For fields with a Gaussian Normal Basis of small type, such a
substitution takes O(n) bit-operations as shown in Section VI.4.1 and a mul-
tiplication takes O((nm)µ) bit-operations. Since the algorithm needs O(log n)
recursive calls, the time and space complexity for fields with Gaussian Normal
Basis of small type are O((nm)µ log n) and O(nm), respectively.

VI.4. GENERALIZED NEWTON ITERATION 127

Algorithm VI.9: Lercier Lubicz

INPUT: Elements β, γ ∈ Zq, power k, precision m.

OUTPUT: Elements βk, γk ∈ Zq such that Σk(x) ≡ βkx+ γk (mod pm)
and Σ(x) ≡ βx+ γ (mod pm).

1. If k = 1 then

2. βk← β (mod pm), γk← γ (mod pm).
3. Else

4. k′←�k
2
�.

5. (βk′ , γk′)← Lercier Lubicz(β, γ, k′,m).

6. βk← βk′Σk′
(βk′) (mod pm).

7. γk← γk′Σk′
(βk′) + Σk′

(γk′) (mod pm).
8. If k ≡ 1 (mod 2) then

9. βk← βΣ(βk) (mod pm).
10. γk← γΣ(βk) + Σ(γk) (mod pm).
11. Return (βk, γk).

Harley’s Algorithm: In an e-mail to the NMBRTHRY list [158], Harley an-
nounced an algorithm to count the number of points on an elliptic curve over
Fpn which runs in O(n2µ log n) time and uses O(n2) space for fixed p. Note
that this algorithm is protected by a U.S. patent [159] filed by Harley. The
key idea is a doubly recursive algorithm to solve the Artin–Schreier equation

aΣ(x) + bx+ c ≡ 0 (mod pm) , (VI.17)

with a, b, c ∈ Zq, ordp(a) = 0 and ordp(b) > 0. Let m′ = �m/2� and assume
we have an algorithm which returns a zero xm′ of (VI.17) to precision m′.
Then we can use the same algorithm to find a solution xm to precision m.
Indeed, substituting xm = xm′ + pm′

∆m in equation (VI.17) and dividing by
pm′

gives

aΣ(∆m) + b∆m +
aΣ(xm′) + bxm′ + c

pm′ ≡ 0 (mod pm−m′
) .

This shows that ∆m itself also satisfies an Artin–Schreier equation of the
form (VI.17) but to a lower precision. Since m − m′ ≤ m′ we can use the
same algorithm to determine ∆m (mod pm−m′

) and therefore xm.
This immediately leads to a doubly recursive algorithm if we can solve the

base case, i.e., find a solution to (VI.17) modulo p. Since we assumed that
ordp(a) = 0 and ordp(b) > 0, we simply have to solve axp + c ≡ 0 (mod p).

128 VI. POINT COUNTING

Algorithm VI.10: Harley

INPUT: Elements a, b, c ∈ Zq, a ∈ Z×
q , ordp(b) > 0, precision m.

OUTPUT: Element x ∈ Zq such that aΣ(x) + bx+ c ≡ (mod pm).

1. If m = 1 then

2. x← (−c/a)1/p (mod p).
3. Else

4. m′←�m
2
�; M = m−m′.

5. x′← Harley(a, b, c,m′).
6. c′← aΣ(x′)+bx′+c

pm′ (mod pM).

7. ∆′← Harley(a, b, c′,M).

8. x← x′ + pm′
∆′ (mod pm).

9. Return x.

The pth root in Step 2 of Algorithm VI.10 should not be computed by
naively taking the pn−1th power. Instead, let Fq = Fp[θ]; then(

n−1∑
i=0

aiθ
i

)1/p

=

p−1∑
j=0

(∑
0≤pk+j<n

apk+jθ
k

)
Cj(θ),

with Cj(θ) = (θ
j
)1/p = θ

jpn−1

. This shows that for z ∈ Fq, we can compute
z1/p with p− 1 multiplications over Fq.

The complexity of Algorithm VI.10 is determined by the recursive calls in
Steps 5 and 7 and the Frobenius substitution in Step 6.

If we assume that Zq is represented as in Section VI.4.1, the Frobenius
substitution in Zq/(p

mZq) can be computed using O((nm)µ) bit-operations.
If T (m) is the running time of Algorithm VI.10 for precision m, then we have

T (m) ≤ 2T (�m/2�) + c(nm)µ ,

for some constant c. The above relation implies by induction that the time
complexity of Algorithm VI.10 is O((nm)µ logm). The space complexity is
clearly given by O(nm).

VI.5. Norm Computation

The final step in all point counting algorithms is to compute the norm
NQq/Qp(α) =

∏n−1
i=0 Σi(α) of a unit α ∈ Zq. In this section we give an overview

of the existing algorithms to compute NQq/Qp(α).

VI.5. NORM COMPUTATION 129

VI.5.1. Norm Computation I. Kedlaya [196] suggested a basic square
and multiply approach by computing

αi+1 = Σ2i

(αi)αi for i = 0, . . . , �log2 n� ,
with α0 = α, and to combine these to recover NQq/Qp(α) = Σn−1(α) · · ·Σ(α)α.

Let n =
∑l

i=0 ni2
i, with ni ∈ {0, 1}, and nl = 1; then we can write

NQq/Qp(α) =
l∏

i=0

Σ2i+1+2i+2+···+2l

(αni
i) ,

where the sum 2i+1+· · ·+2l is defined zero for i ≥ l. This formula immediately
leads to Algorithm VI.11.

Algorithm VI.11: Norm I

INPUT: An element α ∈ Zq with q = pn and a precision m.

OUTPUT: The norm NQq/Qp(α) (mod pm).

1. i←n, j← 0, r← 1, s←α.
2. While i > 0 do:

3. If i ≡ 1 (mod 2) then r←Σ2j
(r)s (mod pm).

4. If i > 1 then s←Σ2j
(s)s (mod pm).

5. j← j + 1, i←�i/2�.
6. Return r.

This algorithm is particularly attractive for p-adic fields with Gaussian
Normal Basis of small type, due to efficient repeated Frobenius substitutions.
In this case the time complexity is determined by the O(log n) multiplications
in Zq/(p

mZq), which amount to O((nm)µ log n) bit-operations and the space
complexity is O(nm).

VI.5.2. Norm Computation II. Satoh, Skjernaa and Taguchi [287] also
proposed a fast norm computation algorithm based on an analytic method.
Let exp(x) =

∑∞
i=0 x

i/i! and log(x) =
∑∞

i=1(−1)i−1(x − 1)i/i be the p-adic
exponential and logarithmic function. An easy calculation shows that exp(x)
converges for ordp(x) > 1/(p− 1) and log(x) converges for ordp(x− 1) > 0.

Assume first that α is close to unity, i.e., ordp(α− 1) > 1/(p− 1); then

NQq/Qp(α) = exp
(
TrQq/Qp (log(α))

)
,

since Σ is continuous and both series converge. The dominant step in the
above formula is the evaluation of the logarithm. Using a naive algorithm,
this would take O(m) multiplications over Zq/(p

mZq) or O(nµmµ+1) bit-
operations.

Satoh, Skjernaa and Taguchi solve this problem by noting that αpk
for

k ∈ N is very close to unity, i.e., ordp(α
pk − 1) > k + 1

p−1
. If α ∈ Zq/(p

mZq),

130 VI. POINT COUNTING

then αpk
is well defined in Zq/(p

m+kZq) and can be computed with O(k)
multiplications in Zq/(p

m+kZq). Furthermore, note that

log(α) ≡ p−k(log(αpk

) (mod pm+k)) (mod pm)

and that log(apk
) (mod pm+k) can be computed with O(m/k) multiplications

over Zq/(p
m+kZq). So if we take k # √m, then log(α) (mod pm) can be

computed in O(nµmµ+0.5) bit-operations.
In characteristic 2, we can use an extra trick. Since ord2(α − 1) > 1, we

have α ≡ 1 (mod 2ν) for ν ≥ 2. Let z = α − 1 ∈ 2νZq/(2
mZq) and define

γ = z
2+z
∈ 2ν−1Zq/(2

m−1Zq). Then α = 1 + z = 1+γ
1−γ

and thus

log(α) = log(1 + z) = 2
∞∑

j=1

γ2j−1

2j − 1
.

Note that all the denominators in the above formula are odd. Reducing this
equation modulo 2m therefore leads to

log(α) ≡ log(1 + z) ≡ 2
∑

1≤(ν−1)(2j−1)<m−1

γ2j−1

2j − 1
(mod 2m) .

To compute the trace TrQq/Qp , Satoh, Skjernaa and Taguchi proceed as

follows: define αi ∈ Zp by log(α) ≡
∑n−1

i=0 αit
i (mod pm); then

TrQq/Qp(log(α)) ≡
n−1∑
i=0

αiTrQq/Qp(t
i) (mod pm)

and each TrQq/Qp(t
i) for i = 0, . . . , n− 1 can be precomputed using Newton’s

formula:

TrQq/Qp(t
i) +

i−1∑
j=1

TrQq/Qp(t
i−j)fn−j + ifn−i ≡ 0 (mod pm) ,

with f(t) =
∑n

i=0 fit
i the defining polynomial of Qq

∼= Qp[t]/(f(t)).
Let ta = TrQq/Qp (log(a)) ∈ Zp. Then ordp(ta) > 1/(p− 1), so ta ∈ pZp for

p ≥ 3 and ta ∈ 4Z2 for p = 2. If we precompute exp(p) (mod pm) for p ≥ 3
or exp(4) (mod 2m) for p = 2, then

exp(ta) ≡ exp(p)ta/p (mod pm) for p ≥ 3,

exp(ta) ≡ exp(4)ta/4 (mod 2m) for p = 2,

and we can use a simple square and multiply algorithm to compute exp(ta).
Therefore, if α is close to unity, then NQq/Qp(α) (mod pm) can be computed
in O(nµmµ+0.5) bit-operations and O(nm) space. Algorithm VI.12 computes
the norm of an element in 1 + 2νZq, with q = 2n, assuming that exp(4) and
TrQq/Qp(t

i) for i = 0, . . . , n− 1 are precomputed.

VI.5. NORM COMPUTATION 131

Algorithm VI.12: Norm II

INPUT: An element α ∈ 1 + 2νZq with ν ≥ 2 and a precision m.

OUTPUT: The norm NQq/Qp(α) (mod 2m).

1. s←�√m/2�.
2. z←α2s − 1 (mod 2m+s).
3. w← log(1 + z) (mod 2m+s).
4. w← 2−sw (mod 2m).
5. u← 2−νTrQq/Qp(w) (mod 2m−ν).
6. Return exp(4)u (mod 2m).

Equations (VI.5) and (VI.13) show that for p = 2 we can indeed assume
that ordp(α− 1) > 1/(p− 1); however, for p ≥ 3 we also need to consider the
more general situation where α ∈ Zq is not close to unity. Let α ∈ Fq denote
the reduction of α modulo p and αt ∈ Zq the Teichmüller lift of α, i.e., the
unique (q − 1)th root of unity which reduces to α. Consider the equality

NQq/Qp(α) = NQq/Qp(αt)NQq/Qp(α
−1
t α) ;

then ordp(α
−1
t α − 1) ≥ 1 > 1/(p− 1) since p is odd. Furthermore, note that

NQq/Qp(αt) is equal to the Teichmüller lift of NFq/Fp(α). Satoh [286] pointed
out that the Teichmüller lift αt can be computed efficiently as the solution of

Σ(X) = Xp and X ≡ α (mod p) .

Note that we can apply the same algorithms as in Section VI.4.

VI.5.3. Norm Computation III. In an e-mail to the NMBRTHRY list [158],
Harley suggested an asymptotically fast norm computation algorithm based
on a formula from number theory that expresses the norm as a resultant.
The resultant itself can be computed using an adaptation of Moenck’s fast
extended GCD algorithm [252].

Let Zq
∼= Zp[t]/(f(t)) with f(t) ∈ Zp[t] a monic irreducible polynomial of

degree n. Let θ ∈ Zq be a root of f(t); then f(t) splits completely over Zq

as f(t) =
∏n−1

i=0 (x − Σi(θ)). For α =
∑n−1

i=0 αiθ
i ∈ Zq, define the polynomial

A(x) =
∑n−1

i=0 αix
i ∈ Zp[x]. By definition of the norm and the resultant we

have

NQq/Qp(α) =
n−1∏
i=0

Σi(α) =
n−1∏
i=0

A(Σi(θ)) = Res(f(x), A(x)) .

The resultant Res(f(x), A(x)) can be computed in softly linear time using a
variant of Moenck’s fast extended GCD algorithm [252] as described in detail
in Chapter 11 of the book by von zur Gathen and Gerhard [141]. The result
is an algorithm to compute NQq/Qp(α) (mod pm) in time O((nm)µ log n).

132 VI. POINT COUNTING

VI.6. Concluding Remarks

The p-adic approach, introduced by Satoh at the end of 1999, has caused a
fundamental dichotomy in point counting algorithms that essentially depends
on the characteristic of the finite field. For elliptic curves over finite fields Fpn

with p moderately large, the l-adic approach, i.e., the SEA algorithm, remains
the only efficient solution and requires O(n2µ+2 log2µ+2 p) time. This stands in
stark contrast with the p-adic approach which only requires O(n2µ log n) time
for fixed p. The O-constant grows exponentially in p though, which implies
that p-adic algorithms are only efficient for small p. The huge efficiency gap
between the l-adic and p-adic approaches in small characteristic is illustrated
by the following examples: for an elliptic curve over F2163 (resp. F2509) the
SEA algorithm runs about two (resp. three) orders of magnitude slower than
the p-adic algorithms.

In this chapter we have only considered the advances in elliptic curve
point counting algorithms. To provide a starting point, we briefly review the
most important developments for higher genus curves, especially hyperelliptic
curves. The p-adic approach currently comes in two flavours:

Canonical Lift / AGM. This method computes the Serre-Tate canonical
lift of an ordinary abelian variety and recovers the zeta function from the
action of Frobenius on a basis for the holomorphic differentials. The main
references are as follows: Mestre [247, 248] generalized the AGM algorithm
to ordinary hyperelliptic curves over F2n . An optimized version by Lercier
and Lubicz [219] runs in time O(2gn2µ) for an ordinary genus g hyperelliptic
curve over F2n . Ritzenthaler [282] extended Mestre’s algorithm to ordinary
genus 3 non-hyperelliptic curves.

p-adic Cohomology. These methods compute the action of a Frobenius
operator on p-adic cohomology groups. Different cohomology theories give
rise to different algorithms: Lauder and Wan [213] used p-adic analysis à la
Dwork [113] to show that the zeta function of any algebraic variety can be
computed in polynomial time. Lauder and Wan [214, 215] also devized an
algorithm based on Dwork cohomology to compute the zeta function of an
Artin–Schreier curve in time O(g2µ+3n3µ). Kedlaya [196] gave algorithms to
compute with Monsky–Washnitzer cohomology and obtained an O(g2µ+2n3µ)
time algorithm to compute the zeta function of a hyperelliptic curve in odd
characteristic. Kedlaya’s algorithm was subsequently extended as follows: to
characteristic 2 by Denef and Vercauteren [96, 97]; to superelliptic curves
by Gaudry and Gürel [144] and, finally, to Cab curves by Denef and Ver-
cauteren [98]. A nice introduction to these p-adic cohomology theories can
be found in the PhD thesis of Gerkmann [148].

CHAPTER VII

Hyperelliptic Curves and the HCDLP

P. Gaudry

In 1989, hyperelliptic curves were proposed by Koblitz for use in cryptog-
raphy as an alternative to elliptic curves. Recent improvements on the algo-
rithms for computing the group law tend to prove that indeed cryptosystems
based on hyperelliptic curves can be competitive. However, another interest
of the study of hyperelliptic curves – and also of more general curves – is
that the process called the Weil descent relates some instances of the ECDLP
to instances of the hyperelliptic discrete logarithm problem (HCDLP). The
purpose of this chapter is to give efficient algorithms for hyperelliptic curves
that are useful for the next chapter.

VII.1. Generalities on Hyperelliptic Curves

In this section, we recall briefly the basic definitions and properties of
hyperelliptic curves and their Jacobians. A complete elementary introduction
to hyperelliptic curves that includes all the proofs can be found in [243]. For
a more general treatment see [226].

VII.1.1. Equation of a Hyperelliptic Curve. Hyperelliptic curves can
be defined in an abstract manner as follows: a hyperelliptic curve is a curve
which is a covering of degree 2 of the projective line. In a more concrete
setting, a hyperelliptic curve C of genus g is a curve with an equation of the
form

C : Y 2 +H(X)Y = F (X),

where F and H are polynomials with degF = 2g+1 and degH ≤ g. Further-
more we ask the curve to be non-singular as an affine curve, which translates
into the non-simultaneous vanishing of the partial derivatives of the equation.

This choice of equation is not always possible. In general, the polynomial
H(X) has degree at most g + 1 and F (X) has degree at most 2g + 2. The
condition for being able to reduce the degrees to g and 2g+1 is to have a ratio-
nal Weierstraß point, which is equivalent to saying that H(X) has a rational
root if the characteristic is two, or that 4F (X) +H(X)2 has a rational root
if the characteristic is odd. For this, we apply an invertible transformation
X ′ = aX+b

cX+d
which sends this rational root to infinity. If the polynomials F

and H have degrees 2g+1 and at most g, we call the corresponding equation
an imaginary model of the curve. Otherwise, the equation is said to be a real

133

134 VII. HYPERELLIPTIC CURVES

model of the curve. In the following, we always consider an imaginary model.
Using the real model introduces some extra technicalities, since there are now
zero or two points at infinity.

In the case where the characteristic is odd, it is also possible to setH(X) =
0 without lost of generality. Indeed, we can apply the transformation Y ′ =
Y +H(X)/2, which kills the crossed term. The division by two, prevents one
from doing the same in characteristic two.

A hyperelliptic curve comes with a natural involution called the hyperel-
liptic involution, which we denote by ι. If P = (x, y) is a point of C, then ι(P)
is the point (x,−y − h(x)), which is also on C. The points which are fixed
under the action of ι are called the ramification points and they are actually
the Weierstraß points of C.

Just like for elliptic curves, we manipulate the curve via an affine equation,
but we virtually always work with the projective model. For that we denote
by ∞ the point of C at infinity, which is unique in the imaginary model. We
call affine points the points of C that are not ∞.

VII.1.2. The Jacobian of a Hyperelliptic Curve. Let C be a hyperel-
liptic curve. Similarly to elliptic curves, C comes with a group associated to
it. However, the group law is no longer defined over the curve itself but on
another object called the Jacobian of C and denoted by JC. First, we need to
consider the group of divisors on C: these are the finite formal sums of points
of C over Z:

Div(C) =

{
D =

∑
Pi∈C

niPi; ni ∈ Z, ni = 0 for almost all i

}
.

The degree of a divisorD =
∑
niPi is the sum of the coefficients degD =

∑
ni

and the set of points Pi for which ni is different from 0 is called the support
of D. The set of divisors of degree 0 forms a subgroup of Div(C).

The function fieldK(C) of C is the set of rational functions on C. Formally,
K(C) is defined as the following field of fractions:

K(C) = Frac
(
K[X,Y]/(Y 2 +H(X)Y − F (X))

)
.

To each non-zero function ϕ in K(C) we can associate a divisor div(ϕ) =∑
νPi

(ϕ)Pi, where νPi
(ϕ) is an integer defined as follows: if ϕ has a zero at

Pi, then νPi
(ϕ) is the multiplicity of this zero; if ϕ has a pole at Pi, νPi

(ϕ)
is the opposite of the order of this pole. Otherwise, νPi

(ϕ) = 0. A non-
zero function has only finitely many zeroes and poles, therefore almost all
the νPi

(ϕ) are zero and the divisor div(ϕ) is well defined. Such a divisor is
called a principal divisor. Furthermore, it can be shown that the degree of a
principal divisor is always zero and that the set of the principal divisors is a
subgroup of the group of degree 0 divisors. We define the Jacobian JC of C
to be the quotient group of the degree 0 divisors by the principal divisors. A

VII.1. GENERALITIES ON HYPERELLIPTIC CURVES 135

consequence of Riemann–Roch theorem is that every element of the Jacobian
can be represented by a divisor of the form

D = P1 + P2 + · · ·+ Pr − r∞,
where, for all i, the point Pi is an affine point of C and the integer r is less
than or equal to the genus. If furthermore we ask that Pi be different from
ι(Pj) for all pairs i
= j, then this representation is unique. Such a divisor,
with Pi
= ι(Pj) for i
= j, is called reduced.

Until now, we did not pay attention to the field of definition of the objects
we considered. Usually, the good way to say that an object is defined over a
field K is to say that it is invariant under the action of any element of the
Galois group Gal(K/K). In the case of divisors, this definition is indeed the
one we want in the sense that it makes it possible to define the elements of
the Jacobian defined over K as a subgroup of the Jacobian defined over K.
However, this implies in particular that a divisor defined over K can include
some points Pi in its support which are not defined over K. In that case all
the Galois conjugates of Pi appear withinD with the same multiplicities as Pi.
From the practical point of view, it is annoying to have to work in extensions
of the base fields, even when working with elements which are defined over
the base field. The fact that a point always comes with its conjugates leads
to the following representation of reduced divisors.

Proposition VII.1. Let C be a hyperelliptic curve of genus g defined over
a field K with equation Y 2 + H(X)Y = F (X). Then the elements of the
Jacobian of C that are defined over K are in one-to-one correspondance
with the pairs of polynomials (a(X), b(X)) with coefficients in K, such that
deg(b) < deg(a) ≤ g, the polynomial a is monic, and a divides b2 + bH − F .

If a and b are two polynomials that satisfy these conditions, we denote by
div(a, b) the corresponding element of JC.

Let D =
∑

1≤i≤r Pi − r∞ be a reduced divisor and denote by (xi, yi) the
coordinates of Pi. Then the a-polynomial is given by a(X) =

∏
1≤i≤r(X −

xi) and the b-polynomial is the only polynomial of degree less than r such
that b(xi) = yi. In the case where the same point occurs several times, the
multiplicity must be taken into account to properly define b(X). From now
on, when we talk about a reduced divisor, we are actually thinking about this
representation with the two polynomials a and b.

The weight of a reduced divisor D = div(a, b) is the degree of the polyno-
mial a. We denote it by wt(D), and in the representation

D =
∑

1≤i≤r

Pi − r∞

the weight is given by r. By definition, the weight of a reduced divisor is an
integer in [0, g]. The neutral element of JC is the unique weight zero divisor
div(1, 0).

136 VII. HYPERELLIPTIC CURVES

VII.1.3. Hyperelliptic Curves Defined over a Finite Field. When the
base field K = Fq is finite of cardinality q, the set of (a, b) pairs of polynomials
that we can form is finite, and therefore the Jacobian is a finite abelian
group. Similarly to the case of elliptic curves, the Frobenius endomorphism
ϕ obtained by extending the map x �→ xq to the Jacobian plays a central role
in the question of evaluating the cardinalities. Due to the theorem of Weil,
the characteristic polynomial of ϕ is of the form

P (T) = T 2g + a1T
2g−1 + · · ·+ agT

g + qag−1T
g−1 + · · ·+ qg−1a1T + qg,

where ai is an integer for all i. Furthermore, the cardinality of the Jacobian
is given by P (1), and all the roots of P (T) have absolute value

√
q. There

is also a link between the ai and the cardinality of C over the extensions Fqi

for 1 ≤ i ≤ g. We skip the details that can be found for instance in [226] or
[319] and we give the bounds that we obtain:

Theorem VII.2. Let C be a hyperelliptic curve of genus g defined over a
finite field Fq with q elements. Then we have

(
√
q − 1)2g ≤ #JC(Fq) ≤ (

√
q + 1)2g

and
|#C(Fq)− (q + 1)| ≤ 2g

√
q.

This theorem shows that indeed the Jacobians of hyperelliptic curves de-
fined over a finite field are potentially good candidates for cryptosystems
based on the discrete logarithm problem in an abelian group. Indeed, to get
a group of size N , it is necessary to have a curve of genus g defined over a
finite field with about N1/g elements. If the group law is not too complicated
compared to elliptic curves, then the higher number of operations can be
somewhat balanced by the fact that they take place in a field whose bit-size
is g times smaller.

VII.2. Algorithms for Computing the Group Law

In this section we consider the problem of computing effectively the group
law in the Jacobian of a hyperelliptic curve. Having a good algorithm for
the group law is crucial when one wants to design a cryptosystem based on
hyperelliptic curves.

In all this section, we consider a hyperelliptic curve C of genus g defined
over a field K (not necessarily finite) by the equation Y 2 +H(X)Y = F (X).

VII.2.1. Algorithms for Small Genus. The first algorithm to compute
in JC is due to Cantor [59] and is a translation of Gauss’s composition and
reduction algorithms for quadratic forms. Here we give another algorithm
described in [275] and which goes back to Lagrange. In general this variant
saves many operations in the reduction phase. However, for genus 2 this is
exactly Cantor’s algorithm.

VII.2. ALGORITHMS FOR COMPUTING THE GROUP LAW 137

Algorithm VII.1: Lagrange’s Algorithm for Hyperelliptic Group Law

INPUT: Two reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2).
OUTPUT: The reduced divisor D3 = div(a3, b3) = D1 +D2.

Composition.

1. Use two extended GCD computations, to get

d = gcd(a1, a2, b1 + b2 +H) = u1a1 + u2a2 + u3(b1 + b2 +H).
2. a3 ← a1a2/d

2

3. b3 ← b1 + (u1a1(b2 − b1) + u3(F − b21 − b1H))/d (mod a3)
4. If deg(a3) ≤ g then return div(a3, b3).
Reduction.

5. ã3 ← a3, b̃3 ← b3.
6. a3 ← (F − b3H − b23)/a3.

7. q, b3 ← Quotrem(−b3 −H, a3).
8. While deg(a3) > g do

9. t← ã3 + q(b3 − b̃3).
10. b̃3 ← b3, ã3 = a3, a3 ← t.
11. q, b3 ← Quotrem(−b3 −H, a3).
12. Return div(a3, b3).

The important case where D1 = D2 must be treated separately; in-
deed some operations can be saved. For instance, we readily know that
gcd(a1, a2) = a1.

To analyze the run time of this algorithm, we evaluate how the number of
base field operations grows with the genus. The composition steps require one
to perform the Euclidean algorithm on polynomials of degree at most g and a
constant number of basic operations with polynomials of degree at most 2g.
This can be done at a cost of O(g2) operations in the base field. The cost of
the reduction phase is less obvious. If the base field is large enough compared
to the genus, each division is expected to generate a remainder of degree
exactly one less than the modulus. The quotients q involved in the algorithm
are then always of degree one and one quickly see that the cost is again O(g2)
operations in the base field for the whole reduction process. It can be shown
[317] that even if the degrees of the quotients behave in an erratic way, the
heavy cost of a step where the quotient is large is amortized by the fact that
we have less steps to do and finally the overall cost of reduction is always
O(g2) base field operations.

VII.2.2. Asymptotically Fast Algorithms. In the late eighties, Shanks
[298] proposed a variant of Gauss’s algorithm for composing positive definite
quadratic forms. The main feature of this algorithm, called NUCOMP, is that
most of the operations can be done with integers half the size of the integers
that are required in the classical algorithm. This makes a great difference if

138 VII. HYPERELLIPTIC CURVES

we are in the range where applying NUCOMP allows us to use machine word
sized integers instead of multiprecision integers.

In the classical algorithm, just like in Lagrange’s algorithm, the compo-
sition step produces large elements that are subsequently reduced. The idea
of the NUCOMP algorithm is to more or less merge the composition and the
reduction phases, in order to avoid those large elements. A key ingredient is
the partial GCD algorithm (also known as the Half GCD algorithm, which is
related to the continued fractions algorithm). This is essentially a Euclidean
algorithm that we stop in the middle. In NUCOMP we need a partial ex-
tended version of it, where only one of the coefficients of the representation
is computed.

In [182], it is shown that the NUCOMP algorithm can be adapted to
the case of the group law of a hyperelliptic curve. It suffices more or less to
replace integers by polynomials. We recall the Partial Extended Half GCD
algorithm here for completeness:

Algorithm VII.2: Partial Extended Half GCD (PartExtHGCD)

INPUT: Two polynomials A and B of degree ≤ n and a bound

m
OUTPUT: Four polynomials a, b, α, β such that

a ≡ αA (mod B) and b ≡ βA (mod B)
and deg a and deg b are bounded by m.

An integer z recording the number of operations

1. α← 1, β ← 0, z ← 0, a← A mod B, b← B.
2. While deg b > m and a
= 0 do

3. q, t← Quotrem(b, a).
4. b← a, a← t, t← β − qα, β ← α. α← t.
5. z ← z + 1.
6. If a = 0 then

7. Return (A mod B,B, 1, 0, 0).
8. If z is odd then

9. β ← −β, b← −b.
10. Return (a, b, α, β, z).

We are now ready to give the NUCOMP algorithm as described in [182].
We restrict ourselves to the case of odd characteristic where the equation of
the curve can be put in the form Y 2 = F (X). The minor modifications to
handle the characteristic 2 case can be found in [182].

VII.2. ALGORITHMS FOR COMPUTING THE GROUP LAW 139

Algorithm VII.3: NUCOMP Algorithm

INPUT: Two reduced divisors D1 = div(u1, v1) and D2 = div(u2, v2).
OUTPUT: The reduced divisor D3 = D1 +D2.

1. w1 ← (v12− F)/u1, w2 ← (v22− F)/u2.

2. If degw2 < degw1 then exchange D1 and D2.

3. s← v1 + v2, m← v2 − v1.

4. By Extended GCD, compute G0, b, c such that

G0 = gcd(u2, u1) = bu2 + cu1.

5. If G0
 |s then

6. By Extended GCD, compute G, x, y such that

G = gcd(G0, s) = xG0 + ys.
7. H ← G0/G, By ← u1/G, Cy ← u2/G, Dy ← s/G.
8. l← y(bw1 + cw2) mod H, Bx ← b(m/H) + l(By/H).
9. Else

10. G← G0, Ax ← G, Bx ← mb.
11. By ← u1/G, Cy ← u2/G, Dy ← s/G.
12. (bx, by, x, y, z)← PartExtHGCD(Bx mod By, By, (g + 2)/2).
13. ax ← Gx, ay ← Gy.
14. If z = 0 then

15. u3 ← byCy, Q1 ← Cybx, v3 ← v2 −Q1.

16. Else

17. cx ← (Cybx −mx)/By, Q1 ← bycx, Q2 ← Q1 +m.

18. dx ← (Dybx − w2x)/By, Q3 ← ydx, Q4 ← Q3 +Dy.

19. dy ← Q4/x, cy ← Q2/bx.
20. u3 ← bycy − aydy, v3 ← (G(Q3 +Q4)−Q1 −Q2)/2 mod u3.

21. While deg(u3) > g do

22. u3 ← (v32− F)/u3, v3 ← −v3 mod u3.

23. Return div(u3, v3).

In the NUCOMP algorithm, if the input divisors are distinct, then it is
likely that G0 = 1, and then Steps 5–8 are skipped. On the other hand, in the
case of doubling a divisor, these steps are always performed whereas Step 4
is trivial. Hence it is interesting to have another version of NUCOMP that is
specific to doubling. Shanks had such an algorithm which he called NUDPL
and it has been extended to our case in [182].

Steps 21–22 are there to adjust the result in the case where the divisor
div(u3, v3) is not completely reduced at the end of the main part of the al-
gorithm. In general, at most one or two loops are required. Therefore the
NUCOMP algorithm requires a constant number of Euclidean algorithms on
polynomials of degree O(g) and a constant number of basic operations with
polynomials of degree O(g). Thus the complexity is O(g2), again, just as for

140 VII. HYPERELLIPTIC CURVES

Lagrange’s algorithm. However, as we said before, the NUCOMP algorithm
works with polynomials of smaller degree (in practice rarely larger than g).

Up to now we have considered naive algorithms for polynomial multipli-
cations and GCDs. If we used an FFT-based algorithm, two polynomials
of degree O(n) can be multiplied in time O(n log n log log n) operations in
the base field. It is then possible to design a recursive GCD algorithm that
requires O(n log2 n log log n) operations [141]. Furthermore, the same algo-
rithm can also be used to computed the Partial Extended Half GCD in the
same run time (this is actually a building block for the fast recursive GCD
computation). Plugging those algorithms in NUCOMP and NUDUPL yields
an overall complexity of O(g log2 g log log g) which is asymptotically faster
than the O(g2) complexity of Lagrange’s algorithm.

VII.2.3. Which Algorithm in Practice. When the genus is large, the
best algorithm is not the same as when the genus is small. In particular,
for very small genus, it is possible to write down the explicit formulae cor-
responding to the Cantor or Lagrange algorithm. Then some operations can
be saved by computing only the coefficients that are necessary. For instance,
the quotient of two polynomials costs less if it is known in advance that the
division is exact (see [258]). For genus 2 and 3, such optimized formulae have
been worked out by many contributors. We refer to [212] for a survey of the
current situation in genus 2, and to [277] for genus 3. In the case of genus 2,
the best formulae for adding (resp. doubling) have a cost of 25 multiplications
and 1 inversion (resp. 27 multiplications and 1 inversion).

When the genus is larger than 3, explicit formulae are not available and
the best algorithm is then Lagrange’s algorithm.

According to [182], the genus for which the NUCOMP and NUDUPL
algorithms are faster than Lagrange’s algorithm is around 10. This value de-
pends highly on the implementation of those two algorithms, on the particular
type of processor that is used, and on the size of the base field.

It is likely that the asymptotically fast algorithm for computing GCD will
never be useful for practical applications: the point at which it becomes faster
than the classical Euclidean algorithm is around genus 1000.

We finally mention that an analogue of projective coordinates for elliptic
curves has been designed. This allows one to perform the group law without
any inversion, which can be crucial in some constrained environments such as
smart cards. In addition, in the spirit of [85], different types of coordinates
can be mixed to have a faster exponentiation algorithm [212].

VII.3. Classical Algorithms for HCDLP

The hyperelliptic curve discrete logarithm problem (HCDLP) is a gener-
alization of the elliptic curve discrete logarithm problem (ECDLP). As such
it comes as no surprise that every known attack on the ECDLP, for some

VII.3. CLASSICAL ALGORITHMS FOR HCDLP 141

particular instances, can be extended to an attack on the HCDLP, for the cor-
responding weak instances. We review all these attacks that we call classical,
in opposition to the index-calculus attacks which are specific to hyperelliptic
curves. We assume that the reader is familiar with all attacks on ECDLP
that are listed in Chapter V of [ECC].

VII.3.1. The Simplification of Pohlig and Hellman. Let G denote an
abelian group of known order N whose factorization is also known. The algo-
rithm of Pohlig and Hellman reduces the computation of a discrete logarithm
in G to O(logN) computations of discrete logarithms in subgroups of G of
order p where p is a prime factor of N . The method works for a generic group
and in particular can be applied to HCDLP. It means that solving a discrete
logarithm problem in the Jacobian of a hyperelliptic curve is not harder than
the discrete logarithm problem in the largest prime order subgroup of the
Jacobian.

VII.3.2. The MOV and Frey–Rück Attacks. Let C be a hyperelliptic
curve of genus g over the finite field Fq and let us consider a DL problem in a
subgroup of JC of prime order m. Denote by k the smallest integer such that
m divides qk− 1, i.e., k is the order of q modulo m. Then there is an efficient
algorithm that converts the initial discrete logarithm problem into a discrete
logarithm problem in the multiplicative group of the finite field Fqk . If k
is small enough, the existence of a subexponential algorithm for computing
discrete logarithms in finite fields can lead to an efficient way of solving the
initial problem in JC.

For more details on the method to transport the HCDLP to a classical
DLP we refer to Chapter IX. Indeed the key ingredients are the Weil and
Tate pairings which can, as we shall see in Chapter X, also be used in a
constructive way.

VII.3.3. The Rück Attack. The previous attack works only if the order m
of the subgroup is prime to the field characteristic (otherwise the parameter k
is not even defined). In the case where m is precisely the field characteristic,
Rück [283] has extended the so-called anomalous curves attack (see [ECC,
Section V.3]) to hyperelliptic curves. He proved

Theorem VII.3. Let C be a hyperelliptic curve of genus g defined over a
finite field of characteristic p. The discrete logarithm problem in a subgroup
of JC of order p can be solved with at most O(log p) operations in the base
field and in the Jacobian.

In fact Rück proved his result in a more general setting where the curve
does not need to be hyperelliptic.

The principle is the following: let D be a degree 0 divisor whose class
in JC is of order p. Then, by definition, there exists a function ϕ such that
div(ϕ) = p ·D. The holomorphic differential dϕ/ϕ can be expressed using a

142 VII. HYPERELLIPTIC CURVES

local parameter t at the point at infinity ∞: we can write dϕ/ϕ = ∂ϕ/∂t
ϕ

dt.

We can then define the power series

∂ϕ/∂t

ϕ
=

∞∑
i=0

ait
i,

where the ai are scalars. The key point is that the function that maps the
class of D to the 2g − 1 first coefficients (a0, . . . , a2g−2) is an homomorphism
of additive groups. The discrete logarithm problem is then transported into
a group where it is easily solvable.

The explicit computation of this homomorphism can be done efficiently
using a technique similar to the method used for computing the Weil pairing.

VII.3.4. Baby Step/Giant Step and Random Walks. The generic al-
gorithms, such as the Baby Step/Giant Step algorithm, as described in Sec-
tion V.4 of [ECC], can be applied to compute discrete logarithms in any
abelian group. In particular, it is straightforward to obtain an algorithm for
solving the HCDLP in a subgroup of orderN of the Jacobian of a hyperelliptic
curve in at most O(

√
N) group operations.

Also, the parallelized Pollard lambda method of van Oorschot and Wiener
[266] directly applies to HCDLP, providing a O(

√
N) algorithm with a speed-

up by a factor of M if M machines are used and requiring a small amount of
memory.

Furthermore the presence of equivalence classes arising from the hyperel-
liptic involution as well as any other quickly computable automorphism can
be used just like for elliptic curves [111], [138].

VII.4. Smooth Divisors

In 1994, Adleman, DeMarrais and Huang [4] discovered a subexponential
algorithm for computing discrete logarithms in the Jacobian of hyperelliptic
curves of “large genus.” Compared with points of elliptic curves, divisors in
the Jacobian of a hyperelliptic curve carry more structure. Indeed, a reduced
divisor is represented using two polynomials (a, b), and the factorization of
a as a polynomial in K[X] is somewhat compatible with the Jacobian group
law. This fact is the key stone for defining a smoothness notion and then the
Adleman, DeMarrais and Huang index-calculus algorithm.

Lemma VII.4. Let C be a hyperelliptic curve over a finite field Fq. Let D =
div(a, b) be a reduced divisor in JC(Fq). Write a(X) =

∏
ai(X) as the factor-

ization in irreducible factors of a(X) in Fq[X]. Let bi(X) = b(X) (mod ai(X)).
Then Di = div(ai, bi) is a reduced divisor and D =

∑
Di in JC.

With this result, a reduced divisor can be rewritten as the sum of reduced
divisors of smaller size, in the sense that the degree of their a-polynomial is

VII.4. SMOOTH DIVISORS 143

smaller. More precisely, we have wt(D) =
∑

wt(Di). The divisors that can
not be rewritten are those for which the a-polynomial is irreducible.

Definition VII.5. A reduced divisor D = div(a, b) is said to be prime if the
polynomial a is irreducible.

Definition VII.6. Let B be an integer. A reduced divisor D = div(a, b) is
said to be B-smooth if the polynomial a is the product of polynomials of degree
at most B.

This definition is very analogous to the smoothness notion that is used to
design index-calculus algorithms in the multiplicative group of a finite field.
The next step is to study the proportion of smooth divisors.

We start with the easy case where B = 1, which will be of great impor-
tance in applications.

Proposition VII.7. Let C be a hyperelliptic curve of genus g over the finite
field Fq. Then the proportion of 1-smooth reduced divisors in JC(Fq) tends to
1/g! when g is fixed and q tends to infinity.

The proof relies on Theorem VII.2. The 1-smooth reduced divisors are
formed using at most g points of C(Fq), and the order does not matter. There-
fore there are about qg/g! reduced divisors that are 1-smooth. This number
should be compared with #JC(Fq) ≈ qg. The error terms given by the precise
bounds are an order of magnitude smaller, so that we obtain the announced
proportion.

If we do not fix B = 1, intuitively we expect the same kind of behaviour as
for polynomials over finite fields for which taking a subexponential smooth-
ness bound yields a subexponential proportion of smooth elements. This
heuristic has been made precise by Enge and Stein [118]. We recall the def-
inition of the so-called subexponential function parametrized by a real α in
[0, 1] and a constant c:

LN(α, c) = exp
(
c(logN)α(log logN)1−α

)
.

Theorem VII.8 (Enge and Stein). Let C be a hyperelliptic curve of genus
g defined over the finite field Fq. Let ρ be a positive constant and let B =⌈
logq Lqg(1

2
, ρ)

⌉
be a smoothness bound. Then the number of B-smooth reduced

divisors in JC(Fq) is at least

qg · Lqg

(
1

2
,− 1

2ρ
+ o(1)

)
.

It is worth noting that B is defined as the ceiling of the usual expres-
sion. Indeed, as a degree, it has to be an integer. This looks inoffensive
but is actually the heart of the main problem that occurs below, namely the
subexponential behaviour can be observed only if the genus is large enough
compared to the size of the base field. If the genus is too small, the smooth-
ness bound would be smaller than 1, and we are back to the situation of the
previous proposition.

144 VII. HYPERELLIPTIC CURVES

VII.5. Index-Calculus Algorithm for Hyperelliptic Curves

The original algorithm by Adleman, DeMarrais and Huang is highly heuris-
tic and more theoretical than of practical use. Their idea was to work with
functions on the curve. This idea was pushed further by Flassenberg and
Paulus [121] who were able to design a sieving technique, and they did the
first implementation of this kind of algorithm. Later on, Müller, Stein and
Thiel [257] and Enge [116] managed to get rid of the heuristics, by working
with elements of the Jacobian instead of functions, so that Theorem VII.8
could be applied.

The method we shall now describe is the further improvement by Enge
and Gaudry [117]. We give a version which is close to what is really done
when it is implemented; there exists also a more complicated version that has
a heuristic-free complexity.

We first present a sketch of the algorithm, and then details about each
phase are given.

Algorithm VII.4: Hyperelliptic Index-Calculus Algorithm

INPUT: A divisor D1 in JC(Fq) with known order N = ord(D1),
and a divisor D2 ∈ 〈D1〉

OUTPUT: An integer λ such that D2 = λD1

1. Fix a smnoothness bound and construct the factor basis.

2. While not enough relations have been found do:

3. Pick a random element R = αD1 + βD2.

4. If R is smooth, record the corresponding relation.

5. Solve the linear algebra system over Z/NZ.

6. Return λ.

VII.5.1. Construction of the Factor Basis. First a smoothness bound
B is chosen. In the complexity analysis, we shall explain how to get the best
value for B. Then the factor basis F contains all the prime reduced divisors
of weight at most B:

F = {P ∈ JC : P is prime, wt(P) ≤ B}.

This set can be constructed in a naive way: for each monic polynomial of
degree at most B, check if it is irreducible and if it is the a-polynomial of
a reduced divisor. In that case, find all the compatible b-polynomials and
add the corresponding divisors to F . For convenience, we give names to the
elements of F :

F = {gi : i ∈ [1,#F]}.

VII.5. INDEX-CALCULUS ALGORITHM FOR HYPERELLIPTIC CURVES 145

VII.5.2. A Pseudo-Random Walk. Selecting a random element R =
αD1 + βD2 is costly: the values of α and β are randomly chosen in the
interval [1, N] and then two scalar multiplications have to be done. Using
the binary powering method, the cost is O(logN) group operations. We use
a pseudo-random walk instead, so that the construction of each new random
element costs just one group operation.

The pseudo-random walk is exactly the same as the one which is used in
[323] in discrete log algorithms based on the birthday paradox. For j from 1
to 20 we randomly choose aj and bj in [1, N] and compute the “multiplier”
Tj ← ajD1 + bjD2. In our case where the group is traditionally written
additively, “summand” would be a better name but we stick to the classical
name. The pseudo-random walk is then defined as follows:

• R0 is given by α0D1 + β0D2 where α0 and β0 are randomly chosen in
[1, N].

• Ri+1 is defined by adding to Ri one of the multipliers Tj. The index
j is given by the value of a hash function evaluated at Ri. Then the
representation of Ri+1 in terms of D1 and D2 is deduced from the
corresponding represenation of Ri: we set αi+1 = αi + aj and βi+i =
βi + bj for the same j.

Practical experiments [323] suggest that by taking 20 multipliers the
pseudo-random walk behaves almost like a purely random walk. In our case,
it is not really necessary to take j deterministic in terms of Ri: picking a
random multiplier at each step would do the job. The determinism in the
pseudo-random walk was necessary in [323] to use distinguished points, but
it is not used in our algorithm.

VII.5.3. Collection of Relations. Each time we produce a new random
element R = αD1 + βD2, we test it for smoothness. If R is not smooth, then
we continue the pseudo-random walk to get another element. The smoothness
test is done by factoring the a-polynomial of R. If all its irreducible factors
have degree at most B, then Lemma VII.4 allows us to write R as a sum of
elements of F . The kth smooth element Sk = αkD1 + βkD2 that is found is
stored in the kth column of a matrix M = (mik) which has #F rows:

Sk =
∑

1≤i≤#F
mikgi = αkD1 + βkD2.

We also store the values of αk and βk for later use.

VII.5.4. Linear Algebra. After #F + 1 relations have been collected, the
matrix M has more columns than rows. As a consequence, there exists a
non-trivial vector (γk) in its kernel. Then by construction we have∑

γkSk = 0 =
(∑

γkαk

)
D1 +

(∑
γkβk

)
D2.

146 VII. HYPERELLIPTIC CURVES

Now, with high probability,
∑
γkβk is different from 0 modulo N and we can

compute the wanted discrete logarithm

λ = −(
∑

αkγk)/(
∑

βkγk) (mod N).

To compute the vector (γk), we could use Gaussian elimination. However, we
can do better, because the matrix is very sparse. Indeed, in the kth column, a
non-zero entry at index i means that the ith element of F has a a-polynomial
which divides the a-polynomial of the reduced divisor Sk, the degree of which
is bounded by g, the genus of C. Hence there are at most g non-zero entries in
each column. For such sparse matrices, Lanczos’s algorithm or Wiedemann’s
algorithm are much faster than Gaussian elimination, though they are not
deterministic.

VII.6. Complexity Analysis

In our analysis, we denote by cJ the cost of one group operation in JC(Fq),
by cF the cost of testing the B-smoothness of a polynomial of degree g over
Fq and by cN the cost of an operation in Z/NZ. With Lagrange’s algorithm
and naive multiplication algorithms in Fq, we obtain cJ = O(g2 log2 q), and if
we use NUCOMP and asymptotically fast algorithms everywhere, we obtain
cJ = O(g log q ε(g, log q)), where ε(g, log q) is bounded by a polynomial in
log g and log log q. The B-smoothness test is the first phase of the Cantor-
Zassenhaus algorithm called Distinct-Degree-Factorization, and its costs is
cF = O(Bg2 log3 q) if naive multiplication algorithms are used.

VII.6.1. Analysis When g is Large Enough. We write the smoothness
bound B in the form

B =

⌈
logq Lqg(

1

2
, ρ)

⌉
,

where ρ is some positive real number. By Theorem VII.8, the number of
B-smooth reduced divisors in JC(Fq) is at least

qg · Lqg

(
1

2
,− 1

2ρ

)
,

so that the expected number of steps in the pseudo-random walk before find-

ing a B-smooth divisor is about Lqg

(
1
2
, 1

2ρ

)
. We need #F + 1 relations,

therefore the expected number of steps in the pseudo-random walk that are
required to fill in the matrix is about

#F · Lqg

(
1

2
,

1

2ρ

)
.

The cardinality of the factor basis is bounded by a constant times the number
of polynomials of degree at most B. Hence #F is O(qB) = O(Lqg(1

2
, ρ)).

VII.6. COMPLEXITY ANALYSIS 147

Putting all of this together, we see that the algorithm requires

O

(
Lqg

(
1

2
, ρ+

1

2ρ

))
steps in the pseudo-random walk. At each step, we need to perform one group
operation (which costs cJ) and the factorization of the a-polynomial of the
divisor (which costs cF).

Once the matrix M has been computed, we need to find a vector of the
kernel of M . This matrix has size #F and has at most g non-zero entries per
column. The cost of Lanczos’s algorithm is then

O
(
(#F)2g

)
= O

(
g Lqg

(
1

2
, 2ρ

))
operations in Z/NZ.

Thus the total run time of the algorithm is

O

(
(cJ + cF) · Lqg

(
1

2
, ρ+

1

2ρ

)
+ (gcN) · Lqg

(
1

2
, 2ρ

))
.

To analyze this run time and find the optimal value for ρ, we remark that
cJ , cF , cN and g are all polynomials in g and log q, whereas the Lqg(...) parts
are subexponential in those parameters. Therefore it makes sense to neglect
them when trying to balance both phases. We are then left with minimizing
the function

Lqg

(
1

2
, ρ+

1

2ρ

)
+ Lqg

(
1

2
, 2ρ

)
≈ Lqg

(
1

2
,max(ρ+

1

2ρ
, 2ρ)

)
.

An easy calculation shows that the minimum is obtained for ρ = 1√
2
. With

this choice of ρ, we obtain an overall complexity of

O

(
(cJ + cF + gcN) · Lqg

(
1

2
,
√

2

))
.

Before putting this result into a theorem, we need to make clear an abusive
simplification that we did along the way: when evaluating the size of the factor
basis, we “forgot” the ceiling sign for B. However, if logq Lqg(1

2
,
√

2) is close
to 0, the fact that we round it to 1 introduces an exponential factor in the
complexity analysis. Therefore, what we did makes sense only if this value
is large enough so that the rounding has no effect on the complexity. This
requirement is fullfilled if and only if g is large enough compared to log q.

Theorem VII.9 (Enge–Gaudry[117]). There exists an algorithm that can
solve the HCDLP in time O

(
Lqg

(
1
2
,
√

2
))

when q and g grow to infinity with
the condition that g stays “large enough” compared to log q.

The complexity of the algorithm can be made more precise by assuming
that there exists a constant ϑ such that g > ϑ log q. Then the run time is in

148 VII. HYPERELLIPTIC CURVES

O
(
Lqg

(
1
2
, c(ϑ)

))
, where c(ϑ) is an explicit function that tends to

√
2 when ϑ

tends to infinity.

VII.6.2. Complexity When g is Fixed. In this subsection, we analyze
the behaviour of Algorithm VII.4 when g is not large compared to log q, and in
particular when g is fixed and q tends to infinity. In that case, the theoretical
optimal smoothness would be logq Lqg(1

2
,
√

2), which tends to 0. Therefore
we assume from now on that B = 1.

By Proposition VII.7, the probability for a divisor to be 1-smooth is 1
g!

.

Note that in our algorithm, we take random elements not in the whole Ja-
cobian but in the subgroup generated by D1. Heuristically, as long as the
subgroup is large enough compared to g!, the smoothness probability of 1

g!

still holds.
The expected time for finding enough relations to fill in the matrix is then

(cJ + cF)g!q, and the time for the linear algebra is O(cNgq
2). Putting this

together, we obtain

Theorem VII.10 (Gaudry[142]). There exists an algorithm that can solve
the HCDLP in large enough subgroups in time O((g2 log3 q)g!q+(g2 log q)q2),
when q tends to infinity and g is fixed.

VII.6.3. Very Small Genera. In the case where the genus is fixed and very
small, Harley proposed an improvement to the previous technique. Taking
B = 1 is far from the theoretical optimal value for subexponentiality, but as a
degree it cannot be reduced. Still it is possible to keep in the basis only a small
proportion of the weight one reduced divisors. Fix #F = q

α
, where α < q is to

be determined. A 1-smooth element has a probability 1/αg to be represented
over this reduced basis, therefore the expected number of steps before finding
a relation is αgg!. On the other hand, the number of required relations is
also reduced: we need only q/α + 1 columns in the matrix. Therefore the
expected number of steps in order to fill in the matrix is qg!αg−1. Also, the
linear algebra step is made easier by the fact that the factor basis is smaller,
the cost is O(q2/α2). Balancing the two phases leads to an optimal value for
α which is (q/g!)1/(g+1). With this choice, we obtain an overall complexity of
(forgetting the coefficients which are polynomials in g and log q)

O
(
q

2g
g+1 · (g!)

2
g+1

)
.

The term in g! has a negligible contribution, especially because g is supposed

to be small. What remains is then a complexity of O(q
2g

g+1).
This idea of reducing the factor basis has been pushed further by Thériault

[325]: by considering some of the elements as “large primes,” the complexity

can be reduced to O(q2− 4
2g+1). The practical use of this last version is still to

be studied.

VII.7. PRACTICAL CONSIDERATIONS 149

In the following table, we compare the complexities of these two variants
to the complexity of Pollard rho algorithm, which has a complexity in the
square root of the group size, namely O(qg/2).

g 1 2 3 4 5 6 7 8
rho q1/2 q q3/2 q2 q5/2 q3 q7/2 q4

Index q q4/3 q3/2 q8/5 q5/3 q12/7 q7/4 q16/9

Thériault q2/3 q6/5 q10/7 q14/9 q18/11 q22/13 q26/15 q30/17

We conclude that for genus 4 curves, the index-calculus method provides
a faster attack than the generic Pollard rho algorithm, and using Thériault’s
method, even genus 3 curves seem to be subject to the attack.

VII.7. Practical Considerations

We mention a few improvements that do not change the complexity but
that can make big differences in a practical implementation. First of all it is
important that the basic arithmetic be as fast as possible. Once the Jacobian
group law, the polynomial factorization and the arithmetic in Z/NZ have
been optimized, here are some more tricks.

• A hyperelliptic curve always comes with its hyperelliptic involution
which can be computed almost for free. As a consequence, there is no
need to store both a divisor and its opposite in the factor basis: if the
opposite occurs in the smooth divisor, just put a−1 instead of a 1 in the
matrix. More generally, if the curve has other cheap automorphisms
(for instance if this is a Koblitz curve), then only one element in each
orbit needs to be stored in F .

• The search for relations is trivially parallelized by taking a different
random walk on each processor.

• As said above, testing if a divisor is smooth does not require the full
factorization of the a-polynomial. In fact, in principle, a squarefreeness
test has to be run before going to the Distinct-Degree-Factorization
step. But in our case, this additionnal test is not necessary: non-
squarefree polynomials are rare and saving this computation more than
compensates the loss of these potentially smooth divisors.

• In the case of the reduced basis (when the genus is very small), we
can choose to keep in the basis the elements with small abscissa. Then
a reduced divisor of degree g can be written on this basis only if its
degree g − 1 coefficient is small. Indeed, the divisor is smooth if and
only if its a-polynomial splits completely and all its roots are small,
and the degree g − 1 coefficient is the sum of the roots. This criterion
is much faster than the Distinct Degree Factorization algorithm and
enables one to eliminate most of the non-smooth divisors.

• If the group law is more costly than the smoothness test, it can be
sped-up as follows: between each step of the classical random walk, we

150 VII. HYPERELLIPTIC CURVES

introduce small steps where we add an element of the factor basis to
the current element. We continue the small steps until a smooth divisor
is found. Then we can write a relation in the matrix. The drawback is
that there is one more term in the matrix corresponding to the multiple
of the element that we added. On the other hand, most of the time is
spent in small steps in which we add a weight one divisor. Therefore
the group law is much faster.

• The implementation of a fast sparse linear algebra algorithm is not a
simple task. Our case is different from the integer factorization case,
where the matrix is defined over F2. Here, the base ring is not that
small and most of the tricks do not apply. If parallelization is not nec-
essary, then Lanczos’s algorithm is probably the best choice. Otherwise
the Block-Wiedemann algorithm can give better results (see [328] for
recent experiments).

• If the genus is large, so that the optimal B is not one, a precise non-
asymptotical analysis must be done to find the best value for B. This
was done in [181].

CHAPTER VIII

Weil Descent Attacks

F. Hess

Weil descent attacks provide means of attacking the DLP for elliptic
curves, or for more general algebraic curves such as hyperelliptic curves, when
they are used over finite extension fields, i.e., non-prime fields.

The application of the original basic idea, the Weil restriction of scalars for
elliptic curves, to cryptography and the ECDLP was first suggested in [124].
An important step forward was made in [145] using explicit covering tech-
niques, relating the ECDLP to a potentially easier HCDLP. Since then, vari-
ations, generalizations and ramifications of the employed methodology have
been investigated in some detail.

The aim of this chapter is to explain the basic ideas, to summarize the
main results about Weil descent attacks for elliptic curves and to discuss the
relevance to ECC.

VIII.1. Introduction — the Weil Descent Methodology

Throughout this chapter we let K/k denote an extension of finite fields
of degree n. The characteristic and cardinality of k are p and q = pr, respec-
tively.

VIII.1.1. Curves in the Weil Restriction. Let E be an elliptic curve
over K. The initial motivation for the Weil descent attacks came from the
consideration of the Weil restriction ResK/k(E) of E with respect to K/k,
suggested by Frey [124].

The Weil restriction ResK/k(E) is an abelian variety of dimension n defined
over k, as opposed to E , which is an abelian variety of dimension one over
K. The group ResK/k(E)(k) of k-rational points of ResK/k(E) is isomorphic
to the group E(K) of K-rational points of E and thus contains an equivalent
version of any DLP in E(K). Given E and K/k and the defining equations,
the group law of ResK/k(E) and the isomorphism of the point groups can be
computed without much difficulty. We do not need the details here and refer
to [124], [137], [145] instead.

The main idea now is the following. An algebraic curve C0 and a map
C0 → ResK/k(E) defined over k lead to a map φ : Jac(C0) → ResK/k(E), due
to the functorial property of Jac(C0). If we take such a curve C0, we may
be able to lift a given DLP from ResK/k(E)(k) to Jac(C0)(k). The DLP in

151

152 VIII. WEIL DESCENT ATTACKS

Jac(C0)(k) can then be attacked, possibly more efficiently, by index-calculus
methods on C0(k) than by the Pollard methods on E(K), the main point
being that C0 is defined over the small field k.

In order to find C0 one can intersect ResK/k(E) with suitable hyperplanes,
and we remark that there is a fairly natural choice of such a hyperplane.
It is then a priori not clear whether the DLP can be lifted to Jac(C0)(k);
however some evidence is given by the fact that ResK/k(E) is simple in many
interesting cases [105]. Another quite difficult problem is how to actually lift
the DLP to Jac(C0)(k) using explicit equations. We refer to [137] for a more
detailed discussion.

VIII.1.2. Covering Techniques. Covering techniques boil down to a re-
formulation of the method of the previous section at the level of curves,
their function fields and Galois theory. Curves are basically one-dimensional
objects as opposed to the above Weil restriction and Jacobians, and their
function fields can furthermore be viewed as “equationless” substitutes. This
leads to a much easier and algorithmically accessible treatment of the pre-
vious section and was first applied by Gaudry, Hess and Smart in [145], an
approach which is now referred to as the GHS attack.

We consider the following general situation. Let E denote an elliptic
function field over K and C a finite extension field of E such that there is
a field automorphism σ which extends the Frobenius automorphism of K/k
and has order n on C. We say that σ is a Frobenius automorphism of C
with respect to K/k and denote the fixed field of σ by C0. The extension
C/C0 has degree n and the exact constant field of C0 is k. Choosing suitable
defining equations we can regard E, C and C0 as the function fields of curves
E , C and C0, respectively, where E is an elliptic curve, E and C are defined
over K and C0 is defined over k. We denote the divisor class groups of
E, C and C0 by Pic0

K(E), Pic0
K(C) and Pic0

k(C
0) so that E(K) ∼= Pic0

K(E)
and Jac(C0)(k) ∼= Pic0

k(C
0). The conorm and norm maps of function field

extensions yield homomorphisms ConC/E : Pic0
K(E) → Pic0

K(C) and NC/C0 :

Pic0
K(C) → Pic0

k(C
0). Figure VIII.1 contains a graphical presentation of the

situation.

C

Con

Pic0
K(C)

N

E C0 Pic0
K(E) Pic0

k(C
0)

Figure VIII.1. Diagram of function fields and divisor class groups

The composition of NC/C0 , ConC/E and the isomorphism between Pic0
k(E)

and E(K) is a homomorphism from E(K) to Pic0
k(C

0) which we denote by φ.

VIII.2. THE GHS ATTACK 153

Using φ, a discrete logarithm problem Q = λP in E(K) is mapped to the dis-
crete logarithm problem φ(Q) = λφ(P) in Pic0

k(C
0), where it can be attacked

possibly more efficiently than in E(K), since it is defined over the small field
k and index-calculus methods can be applied. Of course, P and Q should
not be in the kernel of φ. The index-calculus methods depend exponentially
or subexponentially on the genus g of C0; see Chapter VII, [92], [117] and
[169]. There are thus three main questions.

1. How can such C and σ be constructed?
2. Does φ preserve the DLP?
3. Is the genus of C0 small enough?

The construction of such a C and σ can be achieved quite generally us-
ing techniques from Galois theory. For example, one determines a suitable
rational subfield K(x) of E and defines C to be the splitting field of E over
k(x). A sufficient condition for the existence of a suitable σ is then that n is
coprime to the index [C : K(x)]. For the sake of efficiency and explicitness,
Artin–Schreier and Kummer extensions are the most prominent constructions
used.

The question of whether φ preserves the DLP can be answered affirma-
tively in most cases of interest [104], [168].

Finally, the genus can be explicitly determined or estimated for the em-
ployed Artin–Schreier and Kummer extensions, given E and n. As it turns
out, the genus is in general exponential in n, and it is smaller only in excep-
tional cases. This is the reason why the Weil descent methodology does not
apply to general or randomly chosen elliptic curves when n is large.

These issues are discussed in detail in the following sections.

VIII.1.3. Remarks. The approaches of Subsections VIII.1.1 and VIII.1.2
are jointly carried out in [145]. For a further discussion of the equivalence of
these two approaches see [103, Chapter 3] and the appendix of [104].

The term “Weil descent” is actually used with a different meaning in
mathematics than we do here and in cryptography. There a “Weil descent
argument” refers to a special proof technique about the field of definition
of a variety, introduced by A. Weil in [347], while here we loosely mean the
transition of an elliptic curve to its Weil restriction and further considerations
by which we hope to solve a DLP more quickly.

VIII.2. The GHS Attack

VIII.2.1. The Reduction. The most important case for practical applica-
tions are elliptic curves in characteristic two. In this section we describe the
reduction of a DLP on such an elliptic curve over K to the divisor class group
of a curve defined over k.

We start with an ordinary elliptic curve

Ea,b : Y 2 +XY = X3 + aX2 + b (VIII.1)

154 VIII. WEIL DESCENT ATTACKS

with a, b ∈ K, b
= 0. Every isomorphism class of ordinary elliptic curves over
K has a unique representative of the form (VIII.1) under the requirement
that a ∈ {0, ω} where ω ∈ F2u with u = 2v2(nr) is a fixed element such
that TrF2u/F2(ω) = 1. In the following we only consider these unique elliptic
curves with a ∈ {0, ω}.

Applying the transformations Y = y/x̃ + b1/2, X = 1/x̃, multiplying by
x̃2, substituting x̃ = x/γ for some γ ∈ K× and writing α = a, β = b1/2/γ we
obtain the Artin–Schreier equation

y2 + y = γ/x+ α+ βx. (VIII.2)

On the other hand, reversing the transformations, we can return to equa-
tion (VIII.1) from equation (VIII.2) for any γ, β ∈ K×. This shows that the
function field E = K(Ea,b) of Ea,b contains and is in fact generated by two
functions x, y satisfying the relation (VIII.2), that is, E = K(x, y). Note that
the transformation backwards is described by the map (γ, β) �→ b = (γβ)2

and a = α.
The function field E = K(x, y) is a Galois extension of the rational func-

tion field K(x) of degree two. Furthermore, K(x) is a Galois extension of
k(x) of degree n and the Galois group is generated by the Frobenius auto-
morphism σ of K(x) with respect to K/k satisfying σ(x) = x. We define the
function field C = Cγ,α,β to be the splitting field of the extension E/k(x).

Before we state the main theorem about Cγ,α,β we need some further
notation. For z ∈ K let mz(t) =

∑m
i=0 λit

i ∈ F2[t] with λm = 1 be the
unique polynomial of minimal degree such that

∑m
i=0 λiσ

i(z) = 0. We define
mγ,β = lcm{mγ,mβ}.

Recall that if we have a Frobenius automorphism on Cγ,α,β with respect
to K/k, we take C0 = C0

γ,α,β to be its fixed field.

Theorem VIII.1. The Frobenius automorphism σ of K(x) with respect to
K/k satisfying σ(x) = x extends to a Frobenius automorphism of C with
respect to K/k if and only if at least one of the conditions

TrK/F2(α) = 0, TrK/k(γ)
= 0 or TrK/k(β)
= 0

holds. In this case, we have:

(i) If k(γ, β) = K, then

ker(φ) ⊆ E(K)[2deg(mγ,β)−1].

(ii) The genus of C0 satisfies

gC0 = 2deg(mγ,β) − 2deg(mγ,β)−deg(mγ) − 2deg(mγ,β)−deg(mβ) + 1.

(iii) There is a rational subfield of C0 of index min{2deg(mγ), 2deg(mβ)}.
(iv) If γ ∈ k or β ∈ k, then C0 is hyperelliptic.

For the proof of Theorem VIII.1 see [145], [168] and Section VIII.2.6.
The following corollary is an immediate consequence of Theorem VIII.1 and

VIII.2. THE GHS ATTACK 155

the fact that mβ is not divisible by t−1 if and only if the given trace condition
holds. A proof is given in [168].

Corollary VIII.2. If γ ∈ k, then

gC0 =

{
2deg(mγ,β)−1 − 1 if TrK/Fqu (β) = 0 where u = 2v2(n),

2deg(mγ,β)−1 otherwise.

Similarly with γ and β exchanged.

The construction of C0 and the computation of images under φ can be
made explicit using Artin–Schreier extensions and the operation of σ on C; see
[145], [168] and [165]. This leads to algorithms which are at most polynomial
in gC0 . Various implementations of this construction are available in the
computer algebra systems Kash and Magma [46], [193], [229].

If the condition of Theorem VIII.1(i) is satisfied, we see that any large
prime factor of E(K) and hence the DLP in E(K) is preserved under φ. Since
there is some freedom in choosing γ and β, this can also be achieved if E
is actually defined over a subfield of K. We also remark that there is an
explicit formula for the L-polynomial (or zeta function) of C0 in terms of the
L-polynomials (or zeta functions) of E and further related elliptic curves; see
[165], [168] and Section VIII.5.3.

The main points of interest are the possible degrees m = deg(mγ,β) and
the relationship to γ and β. The efficiency or feasibility of the attack crucially
depends on this m, and it is therefore sometimes referred to as the “magic”
number m. Its properties are discussed in Section VIII.2.4.

We conclude this section with some examples.

Example 1: Let k = F2 and K = F2127 = k[w] with w127 + w + 1 = 0.
Consider the elliptic curve

E : Y 2 +XY = X3 + w2.

We can choose γ = 1, α = 0 and β = w. Then mγ(t) = t + 1 and mβ(t) =
t7 + t + 1 since β128 + β2 + β = 0. It follows that mγ,β(t) = t8 + t7 + t2 + 1.
All conditions of Theorem VIII.1 are fulfilled. We conclude that C0 is a
hyperelliptic function field over k of genus 127. Using the programs mentioned
above we compute a representing curve

C0 : y2 + (x127 + x64 + 1)y = x255 + x192 + x128.

A different model is given by C0 : y2 + (x128 + x64 + x)y = (x128 + x64 + x).

Example 2: Let k = F25 = F2[u] and K = F2155 = F2[w] with u5 +u2 +1 = 0
and w155 + w62 + 1 = 0. Consider the elliptic curve

E : Y 2 +XY = X3 + δ

156 VIII. WEIL DESCENT ATTACKS

with

δ =

w140 + w134 + w133 + w132 + w130 + w129 + w128 + w127 + w117+
w113 + w111 + w110 + w102 + w97 + w96 + w78 + w74 + w72+
w70 + w63 + w49 + w48 + w47 + w41 + w39 + w36 + w35 + w34+
w32 + w24 + w17 + w10 + w9 + w8 + w5.

Similarly to the previous example we can choose γ = 1, α = 0 and β = δ1/2.
Then mγ(t) = t+1 and mβ(t) = t15 + t11 + t10 + t9 + t8 + t7 + t5 + t3 + t2 + t+1.
It follows that mγ,β(t) = mγ(t)mβ(t). All conditions of Theorem VIII.1 are
fulfilled and we conclude that C0 is a hyperelliptic function field over k of
genus 32767.

Example 3: In Example 2 we can also choose

γ =
w140 + w132 + w128 + w125 + w101 + w94+
w78 + w70 + w64 + w63 + w47 + w39 + w35,

α = 0 and β = δ1/2/γ. Then mγ,β(t) = mγ(t) = mβ(t) = t5 + t2 + 1.
All conditions of Theorem VIII.1 are fulfilled and we conclude that C0 is a
function field over k of genus 31. Using the programs mentioned above we
compute a representing curve

C0 :
y32 + u22y16 + u3y8 + u9y4 + u13y2 + u24y + (u24x24 + u9x16

+u25x12 + u30x10 + u3x9 + u26x7 + u23x6 + u15x4 + u30)/x8 = 0.

The last two examples show that the choice of γ and β can make a very
significant difference for the size of the resulting genus.

VIII.2.2. The Asymptotic Attack. Let us assume that γ ∈ k. According
to Theorem VIII.1(iv) and Corollary VIII.2, the resulting function field C0 is
hyperelliptic and has genus bounded by 2n−1−1 or 2n−1 since mγ,β(t) divides
tn − 1, and this holds independently of q. Combining this with the theorem
of Gaudry, Theorem VII.10, and the improvements of Harley for very small
genera we obtain the following, slightly improved main result of [145].

Theorem VIII.3. Let E : Y 2 +XY = X3 +αX2 +β denote an elliptic curve
over K = Fqn such that

n is odd or TrK/F2(α) = 0 or TrK/k(β)
= 0.

Let #E(K) = 	h, where 	 is a large prime. One can solve the discrete log-
arithm problem in the 	-cyclic subgroup of E(K) in time O(q2) where the
complexity estimate holds for a fixed value of n ≥ 4 as q tends to infinity.

The complexity estimate is in fact always slightly better than O(q2). This
time has to be compared with the running time of the Pollard methods on
E(K), which are O(qn/2). It follows that the DLP can be solved (much) faster
using the GHS attack when n ≥ 4 is fixed and q tends to infinity. By the

VIII.2. THE GHS ATTACK 157

recent results of Thériault [325] improving index-calculus for hyperelliptic
curves further we find that the DLP on C0 can be solved in time O(q10/7) and
O(q14/9) if the genus is 3 or 4, respectively. Since 10/7 < 3/2 < 14/9, this
means that the DLP on E can also be solved asymptotically faster using the
GHS attack when n = 3 and TrK/k(β) = 0, using Corollary VIII.2.

It is now natural to ask, at what sizes of q does the crossover point lie.
A computer experiment comparing the Pollard times against index-calculus
times for n = 4 has been carried out in [145]. The index-calculus method
proves to be faster by a factor of about 0.7 for an 84-bit elliptic curve. Since
the crossover point is already reached for such small field sizes, it can be
concluded that for n = 4 the DLP is solved faster using the GHS attack also
in practical instances and not only asymptotically. The crossover point for
larger values of n however will be much higher (see for example [311]).

VIII.2.3. Special Attacks. The previous section applies uniformly to all
elliptic curves when n is small and q large enough, so that gC0 is relatively
small. But it could also apply for cases where n is large and deg(mγ,β) happens
to be sufficiently small. More generally, we could allow arbitrary γ ∈ K,
resulting in non-hyperelliptic curves C0, and consider only those cases where
gC0 is sufficiently small. Moreover, the running time of the algorithm behind
Theorem VIII.3 depends exponentially on gC0 , since low genus index-calculus
methods are used. But there are also high genus index-calculus methods
available, see [92], [117] and [169], whose asymptotic running time depends

subexponentially on gC0 and is roughly of the form qgC0
1/2+o(1)

. In Example 1
we have gC0 = n, and for such cases with large n the high genus index-calculus
attack would be much more efficient than the Pollard methods on the original
elliptic curve.

In the following sections we investigate for which special values of n
and which special families of elliptic curves an index-calculus attack can be
mounted which is (possibly) faster than the Pollard methods. A summary
of the results of practical interest also using the methods of Section VIII.3 is
given in Section VIII.4.

VIII.2.4. Analysis of Possible Genera and Number of Curves. Pos-
sible genera of C0 and the number of corresponding elliptic curves have been
investigated in detail in [233], [241] for the case γ ∈ k. We give here a more
general and simplified discussion allowing for arbitrary γ ∈ K.

We first analyse the various possibilities for mβ(t) and β in more detail.
It is helpful to introduce the following standard technique from linear algebra
(see also [134] and [241]). We define a multiplication of polynomials h(t) =∑d

i=0 λit
i ∈ k[t] and finite field elements z ∈ K by h(t)z =

∑d
i=0 λiσ

i(z). This
makes the additive group of K into a so-called k[t]-module. The polynomials
mβ(t) are then by definition polynomials in F2[t] of smallest degree such that
mβ(t)β = 0.

158 VIII. WEIL DESCENT ATTACKS

Let w ∈ K be a normal basis element for K/k. The theorem of the
normal basis is equivalent to the statement that K is a cyclic (or “one-
dimensional”) k[t]-module with annihilator tn − 1, that is, K = {h(t)w :
h(t) ∈ k[t] and deg(h(t)) < n} ∼= k[t]/(tn − 1) is generated by one element.
We define Bm(t) = {γ ∈ K : mγ(t) = m(t)} for m(t) ∈ k[t] and let Φ(m(t))
be the number of polynomials of degree less than n in k[t] coprime to m(t).
These observations and definitions give the following theorem.

Theorem VIII.4. For every β ∈ K it holds that mβ(t) is a divisor of tn − 1
in F2[t]. Conversely, let m(t) be a divisor of tn − 1 in F2[t]. Then

Bm(t) = {h(t)γ0 : h ∈ k[t], deg(h) < deg(m) and gcd{h,m} = 1}
with γ0 = ((tn − 1)/m(t))w and

#Bm(t) = Φ(m(t)) =
s∏

i=0

(qjidi − q(ji−1)di),

where m(t) =
∏s

i=0 f
ji

i is the factorization of m(t) into irreducible polynomials
fi ∈ F2[t] with deg(fi) = di.

We remark that the situation is completely analogous to the possibly more
familiar case of finite cyclic groups. Consider an additive cyclic group G with
generator g of order M . Replace K by G, w by g, k[t] by Z, tn− 1 by M and
k[t]/(tn−1) by Z/(M) and let m be a divisor of M . The analogous version of
Theorem VIII.4 then tells us, for example, that the elements γ ∈ G of precise
order mγ = m are given in the form hγ0 with 0 ≤ h < m, gcd{h,m} = 1 and
γ0 = (M/m)g.

Using Theorem VIII.4, all possible mβ(t), the corresponding β and their
cardinalities can be easily computed. Combining the various possibilities for
mγ(t) and mβ(t) yields all possible mγ,β(t) and genera gC0 . But we also
require that k(γ, β) = K, so not all combinations do actually occur. We
can obtain sharp lower bounds for gC0 as follows. Let n1 = [k(γ) : k] and
n2 = [k(β) : k]. Then n = lcm{n1, n2}. Furthermore, mγ(t) divides tn1 − 1
but does not divide ts − 1 for any proper divisor s of n1, and analogously
for mβ(t). Enumerating the smallest possibilities for mγ(t) and mβ(t) for all
n1, n2 then yields sharp lower bounds.

The following theorem contains some statistics about the possible genera.

Theorem VIII.5. Assume that the trace condition of Theorem VIII.1 and
k(γ, β) = K holds. Then n ≤ gC0 ≤ 2n − 1 and gC0 ≥ 65535 for all primes
100 ≤ n ≤ 1000 except gC0 = 127 for n = 127 and gC0 = 32767 for n = 151.
The lower bound is attained if and only if

n ∈ {1, 2, 3, 4, 7, 15, 21, 31, 63, 93, 105, 127, 217, 255, 381, 465, 511, 889}.
Among these, the values n ∈ {1, 2, 3, 4, 7, 15, 31, 63, 127, 255, 511} yield an
(elliptic or) hyperelliptic function field C0.

VIII.2. THE GHS ATTACK 159

The proof of Theorem VIII.5 follows the above observations and requires
explicit calculations using a computer. We remark that n ≤ gC0 ≤ 2n for 43
odd and even values of n ∈ {1, . . . , 1000}.

Theorem VIII.5 basically means that the GHS attack in even characteristic
fails for large prime values of n since it does not appear that the DLP can be
solved more easily in a curve of genus ≥ 65535, albeit defined over k instead
of K. On the other hand, composite values of n and in particular the special
values given in the list appear susceptible. Note that the extension degree 155
of Example 3 is not shown in Theorem VIII.5; however, n = 31 is a factor of
155 which was indeed used to construct a curve of genus 31.

Let us now look at the proportion of elliptic curves which yield a small
gC0 when n is large. In view of the running time for high genus index-calculus
methods, a rough estimation of possibly interesting genera is gC0 ≤ n2. The
following lemma contains a crude upper bound for the proportion of possibly
susceptible elliptic curves.

Lemma VIII.6. Let ρ ≥ 1. The probability that a C0 associated to a ran-
dom elliptic curve Ea,b has a genus at most nρ is bounded by approximately
22ρ log2(n)+2q2ρ log2(n)/qn.

Proof. It is not difficult to see that 2m−d1 + 2m−d2 ≤ 2m−1 + 2 under the
side conditions 1 ≤ d1, d2 ≤ m, d1 + d2 ≥ m. Thus with d1 = deg(mγ),
d2 = deg(mβ) and Theorem VIII.1(ii) it follows that n2 ≥ gC0 ≥ 2m−1 − 1
and m ≤ log2(n

ρ + 1) + 1. Now there are at most 2m+1 polynomials over F2

of degree ≤ m, so there are at most 22m+2 pairs (mγ ,mβ) such that mγ,β =
lcm{mγ,mβ} has degree ≤ m. Consequently there are at most 22m+2q2m pairs
(γ, β) and thus elements b = (γβ)2. The total number of b is qn, so the result
follows with m ≈ ρ log2(n).

As a result we see that the probability of obtaining a relatively small genus
for a random elliptic curve quickly becomes negligible as n increases.

The following results are additions to Theorem VIII.4 and can be found
in [241].

Lemma VIII.7. Let n be an odd prime. The polynomial tn − 1 factors over
F2 as tn − 1 = (t − 1)ψn(t) = (t − 1)h1(t) · · ·hs(t), where ψn(t) denotes the
nth cyclotomic polynomial and the hi(t) are distinct polynomials of a degree
d. Furthermore, d is the order of 2 in (Z/nZ)× and d ≥ log2(n+ 1).

Corollary VIII.8. Let δ ∈ {0, 1}. For any β ∈ K, the degree of mβ(t) is
of the form deg(mβ(t)) = id + δ, and there are

(
s
i

)
(qd − 1)i(q − 1)δ different

β ∈ K such that deg(mβ(t)) = id+ δ.

The corollary follows immediately from Theorem VIII.4 and Lemma VIII.7.

VIII.2.5. Further Analysis and the Decompositions b = γβ. In the
following let m1(t),m2(t) ∈ F2[t] denote divisors of tn − 1 such that if ts − 1

160 VIII. WEIL DESCENT ATTACKS

is divisible by m1(t) and by m2(t), then s is divisible by n. In other words,
we require K = k(γ, β) for every γ ∈ Bm1(t) and β ∈ Bm2(t). We abbreviate
this condition on m1 and m2 by the predicate P (m1,m2) and define

Bm1(t),m2(t) = {γβ : γ ∈ Bm1(t), β ∈ Bm2(t)}.
We remark that Bm1(t),m2(t) is invariant under the 2-power Frobenius auto-
morphism. To distinguish cases we define the predicate

T (m1(t),m2(t)) = (vt−1(m1(t)) = 2v2(n) or vt−1(m2(t)) = 2v2(n)).

Then, let

Sm1(t),m2(t) =

{
{Ea,b : a ∈ {0, ω}, b ∈ Bm1(t),m2(t)} if T (m1(t),m2(t)),

{E0,b : b ∈ Bm1(t),m2(t)} otherwise.

Observe that T (m1(t),m2(t)) holds true precisely when TrK/k(γ)
= 0 or
TrK/k(β)
= 0. Thus by Theorem VIII.1 and since P (m1,m2) is assumed
to hold true, the set Sm1(t),m2(t) contains elliptic curves for which the GHS
reduction applies when using the corresponding γ, α, β. Letting mγ,β(t) =
lcm{m1(t),m2(t)} and m = deg(mγ,β(t)), the resulting genus satisfies gC0 =
2m − 2m−deg(m1(t)) − 2m−deg(m2(t)) + 1.

We say that an elliptic curve Ea,b is susceptible to the GHS attack if
Ea,b ∈ Sm1(t),m2(t) for some “suitable” choices of m1(t),m2(t). Here “suitable”
means that m1(t),m2(t) are such that we expect that the DLP can be solved
more easily in Pick(C

0) than by the Pollard methods in Ea,b(K). With regard
to Section VIII.2.3, the main questions then are how to find such suitable
choices of m1(t),m2(t), how to determine the cardinality of Sm1(t),m2(t) and
how to develop an efficient algorithm which checks whether Ea,b ∈ Sm1(t),m2(t)

and computes the corresponding decomposition b = γβ for γ, β ∈ K with
mγ = m1 and mβ = m2. The following lemma answers these questions in the
case of a composite n.

Lemma VIII.9. Let n = n1n2, K1 = Fqn1 and b ∈ K. Let f1 = tn1 − 1 and
f2 = (t− 1)(tn − 1)/(tn1 − 1).

(i) The following conditions are equivalent.
1. TrK/K1(b)
= 0.
2. There exist γ1, γ2 ∈ K× with

γ1γ2 = b, γ1 ∈ K1 and TrK/K1(γ2) ∈ k×.
3. There exist γ1, γ2 ∈ K× with

γ1γ2 = b, mγ1 dividing f1, mγ2 dividing f2 and vt−1(mγ2) = vt−1(f2).

(ii) If TrK/K1(b)
= 0, then γ1 = TrK/K1(b) and γ2 = b/γ1 satisfy conditions
2 and 3 of (i). For any two decompositions b = γ1γ2 = γ̃1γ̃2 as in (i) it
holds that γ1/γ̃1 ∈ k×.

VIII.2. THE GHS ATTACK 161

(iii) Let m1 divide f1 and m2 divide f2 such that vt−1(m2) = vt−1(f2). Then

#Bm1,m2 = Φ(m1)Φ(m2)/(q − 1).

(iv) (GHS conditions). In the case of (ii):
1. k(b) = k(γ1, γ2),
2. TrK/k(γ2)
= 0 if and only if n1 is odd,

3. TrK/k(γ1)
= 0 if and only if vt−1(mb) = 2v2(n) and n/n1 is odd.
Proof.

(i)
1 ⇒ 2. Define γ1 = TrK/K1(b) and γ2 = b/γ1, observing γ1
= 0 by as-

sumption. Then TrK/K1(γ2) = TrK/K1(b)/γ1 = 1, which proves
the first implication.

2 ⇒ 3. If γ1 ∈ K1, then (tn1 − 1)γ1 = 0 and hence mγ1 divides f1. Also,
TrK/K1(γ2) = ((tn−1)/(tn1−1))γ2
= 0 and (t−1)TrK/K1(γ2) = 0
since TrK/K1(γ2) ∈ k×. This implies vt−1(mγ2) = vt−1(f2) and
mγ2 divides f2, and the second implication follows.

3 ⇒ 1. Sincemγ1 divides f1 we have γ1 ∈ K1. The conditions vt−1(mγ2) =
vt−1(f2) and m2 divides f2 imply that

TrK/K1(γ2) = ((tn − 1)/(tn1 − 1))γ2
= 0.

Also γ1
= 0 by assumption, so that TrK/K1(b) = γ1TrK/K1(γ2)
=
0. This proves the third implication.

(ii) The first part follows from the proof of (i). Let b = γ1β1 = γ2β2 be the
two decompositions where γi ∈ K1 and µi = TrK/K1(βi) ∈ k× by (i).
Then γ1µ1 = TrK/K1(b) = γ2µ2
= 0. Thus γ1/γ2 ∈ k×.

(iii) Using Theorem VIII.4 and observing γ1γ2 = (λγ1)(λ
−1γ2) for λ ∈ k×,

it follows that #Bm1,m2 ≤ Φ(m1)Φ(m2)/(q − 1). Because of (ii) this is
in fact an equality.

(iv)
1. k(b) ⊆ k(γ1, γ2) is clear since b = γ1γ2. On the other hand, γ2 =

TrK/K1(b) ∈ k(b), hence γ1 = b/γ2 ∈ k(b) and k(γ1, γ2) ⊆ k(b)
follows.

2. Writing λ = TrK/K1(γ2) we have TrK/k(γ2) = TrK1/k(λ) = n1λ
since λ ∈ k×.

3. We have that TrK/k(γ1)
= 0 is equivalent to vt−1(mγ1) = 2v2(n).
Also, we have mγ1 divides mb since γ1 = ((tn− 1)/(tn1 − 1))b and
vt−1(mγ1) = vt−1(mb) if and only if n/n1 is odd. This implies the
statement.

162 VIII. WEIL DESCENT ATTACKS

Corollary VIII.10. Assume that n1 is odd. ThenEa,b :
a ∈ {0, ω},
TrK/K1(b)
= 0,
k(b) = K

 =
⋃ Sm1,m2 :

m1 divides f1,
m2 divides f2,
vt−1(m2) = 2v2(n),
P (m1,m2)

 ,

where the union is disjoint.

Example 4: Consider n = 6, n1 = 3 and n2 = 2. Using Corollary VIII.10
we see that every elliptic curve over Fq6 with TrFq6/Fq3 (b)
= 0 leads to a

genus gC0 ∈ {8, 9, 11, 12, 14}.

We now focus on the case where n is an odd prime. We can then use
Lemma VIII.7 and Corollary VIII.8. Over F2 we have the factorization into
irreducible polynomials tn + 1 = (t − 1)h1 · · ·hs and deg(hi) = d such that
n = sd+ 1. In this situation the first non-trivial m = deg(mγ,β) satisfies d ≤
m ≤ d+ 1 corresponding to mγ,β = hi or mγ,β = (t− 1)hi by Theorem VIII.4
and equation (VIII.5), observing that (t− 1)
 |hi. After that we already have
m ≥ 2d which is too big in most instances. The case m = d is (only) obtained
when γ, β ∈ Bhi(t) and TrK/F2(α) = 0. The conditions of Theorem VIII.1 are
fulfilled so the GHS reduction does work and the resulting genus is gC0 =
2d − 1. The case m = d + 1 leads to the smallest genera when γ ∈ Bt−1 and
β ∈ Bhi(t) ∪ B(t−1)hi(t), which is a disjoint union. Since TrK/k(γ) = nγ
= 0
the conditions of Theorem VIII.1 are fulfilled for every α ∈ {0, ω}, and the
genus gC0 is 2d − 1 if β ∈ Bhi(t) and 2d if β ∈ B(t−1)hi(t).

The transformation between (VIII.2) and (VIII.1) is described by b =
(γβ)2 and a = α. The map (γ, β) �→ (γβ)2 is not injective, so several tuples
(γ, β) will lead to the same elliptic curve. It is (q − 1) − 1 when restricted
to Bt−1 ×Bhi

or Bt−1 ×B(t−1)hi
, and at least 2(q − 1)− 1 when restricted to

Bhi
× Bhi

. Namely, the tuples (λγ, λ−1β) for λ ∈ k× and also (β, γ) in the
latter case are mapped to the same b as (γ, β). Heuristically we expect that
the fibres are not much bigger than 2(q−1) in this case if #(Bhi

×Bhi
) is small

in comparison with #K. Now clearly Bt−1,hi
= Bhi

and Bt−1,(t−1)hi
= B(t−1)hi

,
so these sets are disjoint for all i and we obtain # ∪i Bt−1,hi

= s(qd − 1) and
∪i Bt−1,(t−1)hi

= s(q − 1)(qd − 1). Furthermore, we expect that #Bhi,hi
≈

min{qn, (qd−1)2/(2(q−1))} and that #∪iBhi,hi
≈ min{qn, s(qd−1)2/(2(q−

1))}.
A summary is given in Table VIII.1. Note that the elliptic curves from

Smγ ,mβ
of the last two rows lead to hyperelliptic function fields C0 and that the

cardinality † is only heuristically expected (Lemma VIII.11 provides proven
bounds in special cases).

If hi is of a trinomial form, we have the following precise statement.

VIII.2. THE GHS ATTACK 163

Table VIII.1. Cardinalities of Smγ ,mβ
for n Odd Prime

mγ mβ α gC0 ≈ #Smγ ,mβ

hi hi 0 2d − 1 min{qn, sq2d−1/2}†
t− 1 hi 0, ω 2d − 1 2sqd

t− 1 (t− 1)hi 0, ω 2d 2sqd+1

Lemma VIII.11. Assume h = tr1 + tr2 + 1 with r1 > r2 > 0, gcd{r2, n} = 1
and mb
 |h. Then there are no or precisely 2(q − 1) pairs (γ, β) ∈ K2 such
that b = γβ and mγ = mβ = h.

Proof. Assume that b = γβ and mγ = mβ = h. Then γ
= 0 and β
= 0
since b
= 0, and consequently

γqr1−1 + γqr2−1 + 1 = 0,

bq
r1−1 + bq

r2−1γqr1−qr2 + γqr1−1 = 0.

Define ρ = γqr2−1. The first equation implies

γqr1−1 = ρ+ 1, (VIII.3)

γqr1−qr2 = (ρ+ 1)/ρ.

Substituting this into the second equation yields bq
r1−1 + bq

r2−1(ρ + 1)/ρ +
ρ+ 1 = 0, and then

ρ2 + (bq
r1−1 + bq

r2−1 + 1)ρ+ bq
r2−1 = 0. (VIII.4)

On the other hand, any further solution ρ, γ, β to (VIII.4), (VIII.3), γqr2−1 =
ρ and β = b/γ satisfies mγ = mβ = h because b
= 0.

Since mb
 |h we have that γ/β
∈ k. There are thus at least 2(q − 1)
pairwise distinct solutions of the form (λγ, λ−1β) and (λβ, λ−1γ) with λ ∈ k×.
On the other hand, there are at most two possibilities for ρ and at most q−1
possibilities for γ for each ρ, resulting in at most 2(q − 1) solutions. Namely,

for any two solutions γ1, γ2 with γqr2−1
i = ρ we have that (γ1/γ2)

qr2−1 = 1
and hence γ1/γ2 ∈ Fqr2 ∩ F×

qn = F×
q since r2 and n are coprime.

Given b and h as in the lemma, γ and β can be computed efficiently as
follows, using Langrange’s resolvent [210, p. 289]:

1. Solve for ρ such that ρ2 + (bq
r1−1 + bq

r2−1 + 1)ρ+ bq
r2−1 = 0.

2. Compute θ such that

γ = θ + ρ−1θq2 + ρ−1−q2θq2
2 + · · ·+ ρ−1−q2−···−qn−2

2 θqn−1
2
= 0,

where q2 = qr2 . This can be achieved by linear algebra over k.
3. Compute β = b/γ.

164 VIII. WEIL DESCENT ATTACKS

If NK/k(ρ)
= 1 in step 1 or if γ does not satisfy (VIII.3) in step 2, then there
are no solutions γ, β with mγ = mβ = h.

Example 5: Consider n = 7. Then tn − 1 = (t− 1)(t3 + t+ 1)(t3 + t2 + 1),
d = 3 and s = 2. Using the first row of Table VIII.1 we see that a proportion
of about q−2 of all elliptic curves over Fq7 with α = 0 leads to gC0 = 7.

In Lemmas VIII.9 and VIII.11 we have discussed the decomposition b =
γβ and how to check Ea,b ∈ Sm1,m2 in some special cases. A simple and
the currently only known method to do this in full generality is to take all
γ ∈ Bm1 and to test whether mb/γ = m2. Of course, for any γ we do not need
to check λγ with λ ∈ k×.

VIII.2.6. Further Details. In this section we present some details on the
Artin–Schreier construction of Theorem VIII.1 and provide the parts of the
proof of Theorem VIII.1 which have not occurred in the literature.

We let p denote an arbitrary prime for the moment, abbreviate F = K(x)
and let f ∈ F be a rational function. A simple Artin–Schreier extension
denoted by Ef , is given by adjoining to F a root of the polynomial yp−y−f ∈
F [y]. Examples of such extensions are the function fields of elliptic curves in
characteristics two and three.

The Artin–Schreier operator is denoted by ℘(y) = yp − y. We then also
write F (℘−1(f)) for Ef and ℘(F) = { fp − f : f ∈ F }. More generally, The-
orem VIII.1 uses the following construction and theorem, which is a special
version of [260, p. 279, Theorem 3.3]:

Theorem VIII.12. Let F̄ be a fixed separable closure of F . For every additive
subgroup ∆ ≤ F with ℘(F) ⊆ ∆ ⊆ F there is a field C = F

(
℘−1(∆)

)
with

F ⊆ C ⊆ F̄ obtained by adjoining all roots of all polynomials yp − y − d for
d ∈ ∆ in F̄ to F . Given this, the map

∆ �→ C = F
(
℘−1(∆)

)
defines a one-to-one correspondence between such additive subgroups ∆ and
abelian extensions C/F in F̄ of exponent p.

For our purposes this construction is only applied for very special ∆,
which will be introduced in a moment. As in Section VIII.1.2, by a Frobe-
nius automorphism with respect to K/k of a function field over K we mean
an automorphism of order n = [K : k] of that function field which extends
the Frobenius automorphism of K/k. Raising the coefficients of a rational
function in F = K(x) to the qth power yields for example a Frobenius auto-
morphism of F with respect to K/k, which we denote by σ.

For f ∈ F we define ∆f := { dp− d+
∑n−1

i=0 λiσ
i(f) : d ∈ F and λi ∈ Fp }.

This is the subgroup of the additive group of F which is generated by f
and contains ℘(F). Also, let mf =

∑m
i=0 λit

i with λm = 1 be the unique

VIII.2. THE GHS ATTACK 165

polynomial of smallest degree in Fp[t] such that
∑m

i=0 λiσ
i(f) = dp−d for some

d ∈ F . As in Section VIII.2.4, we can define a multiplication of polynomials
h(t) =

∑d
i=0 λit

i ∈ k[t] and rational functions z ∈ F by h(t)z =
∑d

i=0 λiσ
i(z).

This makes the additive group of F into a k[t]-module. The polynomials
mf (t) are then by definition polynomials in Fp[t] of smallest degree such that
mf (t)f ∈ ℘(F). The field F

(
℘−1(∆f)

)
exists by Theorem VIII.12 and has

degree pdeg(mf) over F . Further statements on the existence of a Frobenius
automorphism of this field with respect to K/k and it genus can be found
in [168].

We now let p = 2 and f = γ/x + α + βx. The field F
(
℘−1(∆f)

)
is then

equal to the field C of Theorem VIII.1 defined in Section VIII.2.1. Let us
exhibit an explicit model for C. We have

mf =

{
lcm{mγ,mβ} if TrK/F2(α) = 0,

lcm{mγ,mβ, t+ 1} otherwise.
(VIII.5)

Let m = deg(mf). The classes of σi(f) for 0 ≤ i ≤ m− 1 form an F2-basis of
∆f/℘(F). From Theorem VIII.12 it follows that C is obtained by adjoining
one root of every y2− y−σi(f) to F . In other words, C = F [y0, . . . , ym−1]/I,
where I is the ideal of the polynomial ring F [y0, . . . , ym−1] generated by the
polynomials y2

i − yi − σi(f) for 0 ≤ i ≤ m− 1. We write ȳi for the images of
the yi in C and abbreviate ȳ = ȳ0.

Using this notation we are able to prove Theorem VIII.1(iii) and (iv).
Assume without loss of generality that deg(mγ) ≤ deg(mβ). Let h ∈ F2[t].
The field C then contains the roots of y2−y−h(t)f and is generated by these
roots for all h of degree less than m. Using polynomial division write h =
smγ +r with s, r ∈ F2[t] and deg(r) < deg(mγ). Thus h(t)f = s(t)(mγ(t)f)+
r(t)f . The rational function mγ(t)f is of the form ρ + δx with ρ, δ ∈ K.
As a result, h(t)f is an F2-linear combination of the conjugates σi(f) for
0 ≤ i ≤ deg(mγ) − 1 and σj(mγ(t)f) for 0 ≤ j ≤ m − deg(mγ) − 1. We
write w̄j for a root of the polynomials w2

j −wj − σj(mγ(t)f) in C. Then C =
F [ȳ0, . . . , ȳdeg(mγ)−1, w̄0, . . . , w̄m−deg(mγ)−1]. By [145, Lemma 7] the field L =
F [w̄0, . . . , w̄m−deg(mγ)−1] is a rational function field and the extension L/F has

degree 2m−deg(mγ). Since C/F has degree 2m, we see that L has index 2deg(mγ)

in C. Furthermore, L is equal to F (℘−1(∆mγ(t)f)). Since σ(∆mγ(t)f) = ∆mγ(t)f

we have that the Frobenius automorphism σ on C restricts to a Frobenius
automorphism on L. It thus follows that the fixed field L0 of σ in L is
a rational function field over k and has index 2deg(mγ) in C0. This proves
Theorem VIII.1(iii).

The hyperellipticity in Theorem VIII.1(iv) is proven in [145] and can be
seen as follows. If γ ∈ k, then mγ = t− 1. Consequently, by (iii) we see that
C0 contains a rational subfield of index 2, which yields the statement.

166 VIII. WEIL DESCENT ATTACKS

VIII.3. Extending the GHS Attack Using Isogenies

VIII.3.1. The Basic Idea. The GHS attack can be extended to a much
larger class of curves by using isogenies. Consider two elliptic curves E and E ′
defined over K. An isogeny φ : E → E ′ defined over K homomorphically maps
points in E(K) to points in E ′(K). The coordinates of an image point are
defined by algebraic expressions involving the coordinates of the input point
and elements of K, in a similar way to the addition formulae. In particular,
a discrete logarithm problem P = λQ is mapped to the discrete logarithm
problem φ(P) = λφ(Q). The basic idea is that E ′ might be susceptible to
the GHS attack while E is not. In this case we would transfer the discrete
logarithm problem on E to E ′ using φ and attempt to solve it there.

For every isogeny φ : E → E ′ defined over K there is a dual isogeny
φ̂ : E ′ → E defined over K and E is said to be isogenous to E ′. This yields an
equivalence relation so that elliptic curves defined over K can be partitioned
into isogeny classes. Also, the isogeny class of an elliptic curve defined over K
is uniquely determined by #E(K) = qn + 1− t and its cardinality is roughly,
and on average, of the order (4qn − t2)1/2, where t satisfies |t| ≤ 2qn/2 (more
precisely; the cardinality is equal to the Kronecker–Hurwitz class number
H(t2 − 4qn), see [136], [293]).

If an isogeny class contains an elliptic curve which is susceptible to the
GHS attack, the whole isogeny class can be considered susceptible using the
above idea. Of course this raises the following two questions: Can it be effi-
ciently determined whether an isogeny class contains a susceptible curve and
if so, can the isogeny be efficiently computed? There are two main strategies:

Isogeny Strategy 1. For all E ′ which are susceptible to the GHS at-
tack check whether #E ′(K) = #E(K). If so, compute the isogeny between
E and E ′.

Isogeny Strategy 2. Compute random (all) E ′ in the isogeny class of E
and the corresponding isogenies from E to E ′. Check whether one of the E ′ is
susceptible to the GHS attack.

Again, we only consider elliptic curves in the unique form (VIII.1) so that we
are effectively dealing here and in the following with isomorphism classes of
elliptic curves.

Assuming that the cardinality of the isogeny class of E is roughly qn/2 and
that isogeny class membership and being susceptible to the GHS attack are
basically independent properties, we expect that Strategy 1 is more efficient
in terms of checks than Strategy 2 if the number of the susceptible E ′ is less
than qn/2, and that Strategy 2 is more efficient otherwise.

VIII.3.2. Isogeny Probabilities. Let S ′
m1(t),m2(t) denote a system of con-

jugacy class representatives of the operation of the 2-power Frobenius on

VIII.3. EXTENDING THE GHS ATTACK USING ISOGENIES 167

Sm1(t),m2(t). In order to obtain some quantitative statements about the above
strategies we assume that S ′

m1(t),m2(t) behaves like any randomly and uni-
formly chosen set of ordinary elliptic curves defined over K of the same car-
dinality. We want to estimate the probability that a randomly and uniformly
chosen elliptic curve E is isogenous to a fixed subset of N elliptic curves Ei

from S ′
m1(t),m2(t).

Lemma VIII.13. Let E , E1, . . . , EN be randomly, uniformly and independently
chosen ordinary elliptic curves. Then

Pr(E ∼ E1 or . . . or E ∼ EN) ≥ 1−
(

1− 1

(1− 1/p)4qn/2 + 2

)N

.

Proof. Abbreviate AN = Pr(E ∼ E1 or . . . or E ∼ EN) and let E ′ denote a
further randomly, uniformly and independently chosen ordinary elliptic curve.
Using the complementary event it is straightforward to prove that

AN = 1− (1− Pr(E ∼ E ′))N . (VIII.6)

If ai are M non-negative numbers such that
∑M

i=1 ai = 1, then
∑M

i=1 a
2
i ≥

1/M . This is easily seen by writing ai = 1/M + εi with
∑

i εi = 0 and

expanding this in
∑M

i=1 a
2
i .

The following sums are over all ordinary isogeny classes I and the symbol
#{I} denotes the number of such classes. Using the above observation with
ai = Pr(E ∈ I) and M = #{I} we see

Pr(E ∼ E ′) =
∑

I

Pr(E ∈ I and E ′ ∈ I) =
∑

I

Pr(E ∈ I) Pr(E ′ ∈ I)

=
∑

I

Pr(E ∈ I)2 ≥ 1/#{I}. (VIII.7)

The number of ordinary isogeny classes satisfies

#{I} ≤ (1− 1/p)4qn/2 + 2. (VIII.8)

This is because every integer qn + 1− t with t2 ≤ 4qn and p
 | t occurs as the
number of points of an ordinary elliptic curve over K (see [344]).

Combining (VIII.8), (VIII.7) and (VIII.6) yields the lemma.

According to Lemma VIII.13, it is reasonable to expect that a randomly
and uniformly chosen elliptic curve E will be isogenous to at least one of the
Ei from S ′

m1,m2
with probability approximately at least N/(2qn/2), if N is

much less than qn/2, and with probability approximately one, if N is much
larger than qn/2. The first probability can in fact be improved slightly when
one restricts for example to elliptic curves (VIII.1) with a = 0. Recall that if
TrK/F2(a) = 0, then the group order #E(K) of the elliptic curve is congruent
to 0 modulo 4 and if TrK/F2(a) = 1, then it is congruent to 2 modulo 4
(see [ECC, p. 38]). Thus elliptic curves with a = 0 represent only about
half of all isogeny classes. It follows that the first of the above probabilities

168 VIII. WEIL DESCENT ATTACKS

improves by a factor of two. Another property in this line is #E(K) =
0 mod 8 if and only if TrK/F2(b) = 0 for a = 0 and nr ≥ 3 ([242]).

By our assumption on S ′
m1,m2

and in view of Isogeny Strategy 2 we ex-
pect that membership in S ′

m1,m2
and being isogenous to a randomly and

uniformly chosen elliptic curve E are approximately independent events if
#S ′

m1,m2
is much larger than qn/2. More precisely, we expect #(S ′

m1,m2
∩ I) ≈

#S ′
m1,m2

#I/(2qn) since the curves from S ′
m1,m2

should distribute over the
isogeny classes relative to their sizes.

VIII.3.3. Computing Isogenies. Isogeny Strategies 1 and 2 require the
computation of isogenies. In Isogeny Strategy 1 we have to construct the
isogeny between E and E ′ given only that #E(K) = #E ′(K). In Isogeny
Strategy 2 we start with E and have to construct the isogeny to a randomly
and uniformly chosen E ′ of the unique form (VIII.1) in the isogeny class of E .

We recall some additional basic facts about isogenies and endomorphism
rings for ordinary elliptic curves. Useful references for the required theory
and algorithmic aspects are [238, 307, 293, 129, 134, 207].

Endomorphisms of E are isogenies of E to itself. Addition and composition
of maps make the set of endomorphisms into a ring End(E). For elliptic curves
defined over K all endomorphismus are defined over K as well. The qnth
power Frobenius endomorphism π : (x, y) �→ (xqn

, yqn
) satisfies π2− tπ+qn =

0 with t = qn + 1 − #E(K), t2 ≤ 4qn and t
≡ 0 mod p, so Q(π) is an
imaginary qadratic number field. The ring End(E) is an order in Q(π) with
Z[π] ⊆ End(E) ⊆ Omax, where Omax is the maximal order or ring of algebraic
integers of Q(π). Conversely, if π2 − tπ + qn = 0, t2 ≤ 4qn and t
≡ 0 mod p
for some algebraic integer π, then every order O with Z[π] ⊆ O ⊆ Omax

occurs as the endomorphism ring of an elliptic curve E defined over K with
#E(K) = q + 1 − t, such that π corresponds to the qnth power Frobenius
endomorphism. There is a bijection of positive integers d and suborders Od

of Omax of index d, given by d �→ Od = Z + dOmax. The integer d is called
conductor of Od.

The degree of an isogeny φ : E → E ′ defined over K is equal to the degree
of the function field extension K(E)/K(E ′) defined by φ and coincides roughly
with the degrees of its defining algebraic expressions. The degree of isogenies
is multiplicative with respect to composition. Every isogeny defined over K
can be decomposed into a chain of isogenies of prime degree defined over K.
The cardinality of the kernel of φ as a homomorphism from E(K) to E ′(K)
is bounded by the degree of φ (and equal to the degree if φ is separable).
An isomorphism is an isogeny of degree one. For every E defined over K
there is an E ′ defined over K (a quadratic twist of E) such that for the j-
invariants j(E) = j(E ′), E and E ′ are isomorphic over a quadratic extension
of K, and every E2 defined over K with j(E2) = j(E) is isomorphic over K to
E or E ′. Furthermore, #E(K) + #E ′(K) = 2qn + 2. If φ is of degree r, then
φr(j(E), j(E ′)) = 0 where φr is the rth modular polynomial. Conversely, if

VIII.3. EXTENDING THE GHS ATTACK USING ISOGENIES 169

φr(j(E), x) = 0 for x ∈ K, then there is an E ′ defined over K with j(E ′) = x
and an isogeny φ : E → E ′ defined over K of degree r.

If E and E ′ are isogenous, then End(E) and End(E ′) are (isomorphic to)
orders within the same imaginary quadratic number field. More specificially it
holds that End(E) = End(E ′), End(E) ⊆ End(E ′) with (End(E ′) : End(E)) =
	 or End(E ′) ⊆ End(E) with (End(E) : End(E ′)) = 	, if there is an isogeny
φ : E → E ′ of prime degree 	. The cases where the index changes can be
(partly) read off the number of zeros of φ�(j(E), x). An isogeny φ : E → E ′
of elliptic curves with O = End(E) = End(E ′) defines a uniquely determined
invertible (and integral) ideal I of O with N(I) = deg(φ), and any such I is
obtained this way. Isomorphisms φ correspond to I = O. Composition of
isogenies corresponds to ideal multiplication. If φ1 : E → E1 and φ2 : E → E2

are isogenies with the ideals I1 and I2, then E1 is isomorphic to E2 if and only if
I1/I2 is principal. As a result, the isogeny structure between the isomorphism
classes is equivalent to the group structure of Pic(O), the group of classes of
invertible ideals of O modulo principal ideals.

The basic technique in Isogeny Strategies 1 and 2 is as follows. For O =
End(E) we can use the group structure of Pic(O) for random walks along
chains of isogenies of prime degree starting at E . This way we can generate
random elliptic curves E ′ with End(E ′) = O and known isogenies E → E ′
for Isogeny Strategy 2. For Isogeny Strategy 1 we use a second random
walk starting at the second elliptic curve E ′, assuming End(E ′) = O for
the moment. If these walks meet, we can connect the two parts using dual
isogenies to obtain a chain of isogenies from E to E ′. Since we consider only
elliptic curves of the unique form (VIII.1) we are effectively working with
isomorphism classes.

A single step in the random walk from a curve Ei to a curve Ei+1 to be
determined proceeds as follows. We assume that O = End(E) is known and
End(Ei) = O holds, where O can be computed by the algorithm of Kohel
[207]. A prime number 	 is chosen which does not divide the conductor of
O = End(Ei) and is split or ramified in O. The j-invariants of the curves Ei+1

related to Ei by an isogeny of degree 	 are the roots x of φ�(j(Ei), x) in K. If
(and only if) 	 divides the index of Z[π] in O, then not all of these roots result
in an Ei+1 with End(Ei+1) = End(Ei); the case (End(Ei) : End(Ei+1)) = 	 is
also possible. Using the techniques of [207, p. 46] we determine those x for
which Ei+1 isogenous to Ei has the same endomorphism ring. According to
whether 	 is split or ramified, there are one or two such values. We choose a
value and compute Ei+1 of the unique form (VIII.1) and the isogeny from it.
Checking the action of the Frobenius or another suitable endomorphism on
the kernel of the isogeny allows one to determine the prime ideal of norm 	
above 	 which corresponds to the isogeny [ECC, 294].

170 VIII. WEIL DESCENT ATTACKS

For the whole random walk we note that any class in Pic(O) can be repre-
sented by an ideal of O of (small) norm O(|d(O)|1/2), where d(O) denotes the
discriminant of O and is O(qn). Furthermore, #Pic(O) ≈ O(|d(O)|1/2) and
Pic(O) is generated by split prime ideals of (very small) norm O(log(|d(O)|)2)
under the GRH (generalized Riemann hypothesis). We let B denote a set of
split or ramified prime ideals of very small norm which generate Pic(O), and
let B0 the corresponding prime numbers. The prime numbers 	 in every sin-
gle step are chosen from B0 such that the walk extends over the whole of
Pic(O). Furthermore, the ith step of the random walk starting at E can be
represented by a single ideal Ii of small norm, corresponding to an isogeny
E → Ei. The ideal Ii is defined inductively as follows. First, I0 = O. For the
(i+ 1)-th step the curve Ei+1, an isogeny and a prime ideal P are computed
as above. Then Ii+1 is defined to be a representative of small norm of the
class of IiP and corresponds to an isogeny E → Ei+1.

Assume the random walk stops at Er, and the isogeny E → Er is described
by Ir or a chain of isogenies of prime degree. The factorization of Ir is likely to
contain prime ideals which have too large a norm for our purpose. Also, the
chain may have length exponential in n log(q). We can obtain a much reduced
chain as follows. Using techniques from index-calculus in imaginary quadratic
orders we compute a representation of Ir in Pic(O) in terms of powers of the
elements of B or an enlargement of B in the form Ir = (γ)

∏m
i=1 P

di
i , where

m and the di are (expected to be) polynomial in n log(q) if B is sufficiently
large. Again using techniques from point counting we determine a chain of
explicitly given isogenies from E to Er, such that every step corresponds to
a Pi. This concludes the description of the random walks on (isomorphism
classes of) elliptic curves with endomorphism ring O.

In Isogeny Strategy 2 we do not want to restrict the possible endomor-
phism rings to a given O. In a precomputation we compute all intermediate
orders Oν with Z[π] ⊆ Oν ⊆ Omax and isogenies E → Eν to curves Eν with
Oν = End(Eν), using [207]. We start random walks in every Eν . In every
step we choose ν with probability about

∑
µ �=ν #Pic(Oµ)/

∑
µ #Pic(Oµ) and

extend the walk from say Eν,i to some Eν,i+1. The curve Eν,i+1 is returned.
In Isogeny Strategy 1 the curves E and E ′ may have different endomor-

phism rings. In a precomputation we compute isogenies E → E0 and E ′ → E ′0
such that End(E0) and End(E ′0) are equal to O = Omax. Following the Pol-
lard methods we start a random walk at E0 of length t = O(#Pic(O)1/2) =
O(qn/4). Here 	, x = j(Ei+1) and hence the prime ideal P are chosen in a way
that depends deterministically on j(Ei) and gives a pseudorandom distribu-
tion close to uniform. Then we proceed analogously with a random walk start-
ing at E ′0. After an expected t steps we find s such that j(Et) = j(E ′s). Since
#E(K) = #E ′(K), the curves Et and E ′s must be isomorphic, so I = It/I

′
s

corresponds to an isogeny between E0 and E ′0, where Ii and I ′i are the ideals
describing the random walks as above. Applying the index-calculus trick for

VIII.3. EXTENDING THE GHS ATTACK USING ISOGENIES 171

the reduction of random walks to I and combining this with the isogenies from
the precomputation (and their duals) finally yields a short chain of isogenies
E → E ′.

In many cases Z[π] = Omax, so that the complications with intermediate
orders in Isogeny Strategy 1 and Isogeny Strategy 2 do not occur.

Theorem VIII.14. Let E and E ′ be two ordinary isogenous elliptic curves
such that #E(K) = #E ′(K) = qn +1− t, and let l be the largest prime or one
with l2 dividing (4qn−t2). Under the GRH and further reasonable assumptions
there is a probabilistic algorithm which computes O(n log(q)) isogenies φi :
Ei → Ei+1 of degree O(max{(n log(q))2, l}) such that φ =

∏
i φi is an isogeny

between E and E ′. The expected running time is O(max{qn/4+ε, l3+ε}).
The theorem follows from [129], [134] along the lines explained above.

The algorithm involves some not rigorously proven steps from index-calculus
in imaginary quadratic orders which accounts for the GRH and further “rea-
sonable” assumptions. In most cases l will be fairly small, so that the running
time of the algorithm is essentially O(qn/4+ε). A worse running time can only
occur when l is large since potentially some isogenies φi of degree l could be
required. If End(E) and End(E ′) are equal, then using isogenies of degree l
can be circumvented; but if the mutual index contains a large prime l, isoge-
nies of degree l cannot be avoided. The algorithm is particularly efficient if
4qn− t2 is small or if Omax has a small class number #Pic(Omax) and smooth
index (Omax : Z[π]).

If E is our target curve and E ′ ∈ Sm1(t),m2(t) is isogenous to E we can hence
compute the isogeny φ between E and E ′ in (much) less time than the Pollard
methods require for solving the DLP on E , assuming that 4qn − t2 is only
divisible by squares of primes l = O(qn/6−ε) or that End(E) = End(E ′). Then
φ is given in the product form φ =

∏
i φi and images φ(P) are computed in

time about O(max{(n log(q))7, (n log(q))l3}). Furthermore, also due to the
degree bounds for the φi, the order of the kernel of φ cannot be divisible by
the large prime factor of #E(K) and hence the DLP is preserved under φ.

VIII.3.4. Implications for n Odd Prime. We now combine the previous
observations with the results of Sections VIII.2.3–VIII.2.5 and Table VIII.1
for n an odd prime. Since the 2-power Frobenius has order nr on K, the
cardinalities of the representative sets S ′

hi,hi
, S ′

t−1,hi
and S ′

t−1,(t−1)hi
are at

least 1/(nr) times the cardinalities of the sets Shi,hi
, St−1,hi

and St−1,(t−1)hi
.

If we take N pairwise distinct elliptic curves Ei from these representative sets
with N $% qn/2, we expect by Lemma VIII.13 and the discussion thereafter
that a randomly and uniformly chosen elliptic curve E will be isogenous to
one of the Ei with probability at least min{1, N/(2qn/2)} or min{1, N/qn/2}
if the considered elliptic curves have a = 0.

Following Isogeny Strategy 1, we need to actually compute the Ei. Some
details on how this can be achieved are given in the appendix of [134]. For

172 VIII. WEIL DESCENT ATTACKS

each curve Ei we check #E(K) ·P = O for some random points P ∈ Ei(K). If
the check fails, Ei is not isogenous to E . Otherwise it is quite likely that it is
and we check #Ei(K) = #E(K) using fast point counting techniques. If we
find Ei such that #Ei(K) = #E(K), we are left to apply the algorithm from
Theorem VIII.14. This strategy requires a time linear in N , plus a time of
about O(qn/4) for the isogeny computation.

Following Isogeny Strategy 2, we need to sample random and uniformly
distributed elliptic curves E ′ from the isogeny class of E as described in Sec-
tion VIII.3.3. We expect to compute approximately qn/#Shi,hi

, 2qn/#St−1,hi

and 2qn/#St−1,(t−1)hi
curves E ′ and isogenies E → E ′ until E ′ is isomorphic to

one of the curves in Shi,hi
, St−1,hi

and St−1,(t−1)hi
, respectively. Table VIII.2

contains a summary.

Table VIII.2. Expected Probabilities that a Random E is
Isogenous to a Curve E ′ in Smγ ,mβ

and Runtimes for Isogeny

Strategy 1 (Excluding the O(qn/4) Contribution) and Isogeny
Strategy 2, for n Odd Prime

mγ mβ Pr(E ∼ E ′ ∈ Smγ ,mβ
) Strat 1 Strat 2

hi hi min{1, sq2d−1−n/2/(2nr)} sq2d−1/(2nr) 2qn−2d+1/s

t− 1 hi min{1, sqd−n/2/(nr)} 2sqd/(nr) qn−d/s

t− 1 (t− 1)hi min{1, s(q − 1)qd−n/2/(nr)} 2sqd+1/(nr) qn−d−1/s

Example 6: Consider n = 7. By Example 5, a proportion of about q−2 of
all elliptic curves over Fq7 with α = 0 leads to an efficiently computable, not
necessarily hyperelliptic C0 of genus 7. Using Isogeny Strategy 2 and the first
row of Table VIII.2, we thus expect that sampling of the order of q2 many
random elliptic curves from the isogeny class of the target curve E yields such
a C0.

Example 7: Consider n = 31. The factorization of t31− 1 modulo 2 consists
of t− 1 and s = 6 irreducible polynomials hi(t) of degree d = 5, two of which
are of the trinomial form of Lemma VIII.11. Using Table VIII.1 there are
hence about 3q9, 12q5 and 12q6 elliptic curves which lead to non-hyperelliptic
and hyperelliptic curves C0 of genus 31, 31 and 32, respectively. Using Ta-
ble VIII.2 the probability that a random elliptic curve lies in the isogeny class
of one of these curves is 3q−13/2/(31r), 6q−21/2/(31r) and 6q−19/2/(31r), re-
spectively. Since the above cardinalities are much smaller than q31/2 Isogeny
Strategy 1 is more efficient and requires a run time of 3q9/(31r), 12q5/(31r)

VIII.4. SUMMARY OF PRACTICAL IMPLICATIONS 173

and 12q6/(31r), respectively, plus O(q31/4) for the (possible) isogeny compu-
tation.

VIII.4. Summary of Practical Implications

We now describe practical implications of the techniques of the previous
sections for some values of n and fields of cryptographical sizes. We say that
the GHS attack leads to a security reduction of a special family of elliptic
curves or general elliptic curves if it is more efficient than the appropriate
Pollard methods for these curves. As a rule of the thumb, the effectiveness of
the GHS attack depends chiefly on n, q and the “specialness” of the considered
elliptic curves (namely the genus of the resulting curve). With increasing n
the effectiveness drops, and with increasing q or increasing “specialness” the
effectiveness increases. This means for example that for sufficiently large n
the set of elliptic curves for which the GHS attack is effective is in general
negligibly small. Also by Theorem VIII.3 and the discussion thereafter, there
is always a (significant) security reduction due to the GHS attack for n ≥ 4
and partly for n ≥ 3 if the field size is large enough. The general method of
Theorem VIII.3 may however not readily apply to fields of cryptographical
size.

Practical implications for elliptic curves in characteristic two have been
investigated in [80], [134], [168], [181], [233], [241], [242], [311].

For n = 1 or n = 2 there are no elliptic curves over Fq and Fq2 , respectively
for which the GHS attack would lead to a security reduction. The case n = 1
is clear as E = C0 and there is nothing new to consider. The case n = 2
yields C0 of genus at least two. Since the Pollard methods on E are more
efficient than index calculus on curves of genus at least two there is no security
reduction due to the GHS attack [80].

The case n = 3 has not been discussed in the literature. From the results
for n = 4 it however appears reasonable to expect no or only a minor security
reduction due to the GHS attack for any elliptic curve over Fq3 .

The cases n = 4 and n = 5 are discussed in detail in [311] considering
low genus index-calculus methods and in [233], [242] considering high genus
index-calculus methods. The conclusion for n = 4 is that there is (only) a
minor security reduction due to the GHS attack, applicable to any elliptic
curve over Fq4 , and a slightly more significant security reduction for a pro-
portion of around 1/q of these elliptic curves. The case n = 5 is particularly
interesting since there is an IETF standard [RFC 2412] using the fields F155

and F185. In [311] it is concluded that an arbitrary elliptic curve over F155

is subject to only a minor security reduction. In [233] it is argued that an
arbitrary elliptic curve over F185 is subject to a security reduction by a factor
of 216, resulting in a security of 276 instead of 292. In [242] timing estimates
are given for further fields, the security reduction becomes larger as the field

174 VIII. WEIL DESCENT ATTACKS

size grows. For Fq600 the factor is for example already 269, applicable to every
elliptic curve over that field.

The case n = 6 is partly discussed in [242], focusing on the field F2210 . The
conclusion is that about one quarter of all elliptic curves over F2210 , namely
those with TrF2210

(a) = TrF2210
(b) = 0 or equivalently #E(F2210) ≡ 0 mod 8,

are subject to a security reduction by a factor of 220. The attack uses isogenies
and maps the DLP to hyperelliptic curves of genus 15 or 16. Alternatively, we
can make use of the more general Example 4, which yields smaller genera up
to 14. Note that the resulting function field C0 is in general not hyperelliptic,
so solving the DLP for C0 will be more expensive. Precise experiments have
not been carried out, but we can still expect a significant security reduction
for essentially all elliptic curves over Fq6 .

The case n = 7 has been considered in [134] using the GHS reduction
with γ = 1, and it was concluded that there should be a significant security
reduction for every elliptic curve over Fq7 if only C0 could be found efficiently
enough. In [242] the field F2161 is briefly discussed, for which the GHS attack
would yield a feasible HCDLP for genus 7 or 8 over F223 . By Example 6 we
expect that sampling of the order of q2 many random elliptic curves from the
isogeny class of a target elliptic curve Ea,b over Fq7 with a = 0 yields a not
necessarily hyperelliptic C0 over Fq of genus 7. Comparing against the cost
of q7/2 for the Pollard methods finding C0 thus takes negligible time. We can
hence expect a particularly significant security reduction of up to a factor of
q3/2 for all elliptic curves over Fq7 . A precise analysis and whether the DLP
for elliptic curves over F2161 is feasible using these techniques has not been
carried out yet.

The case n = 8 has been discussed in [233]. There is a class of approxi-
mately q5 elliptic curves Ea,b with TrK/F2(a) = 0 and mb(t) = (t− 1)5 whose
security is significantly reduced by the GHS attack. In [233] it is argued that
using Isogeny Strategy 1 would not present a feasible method of finding such
a susceptible elliptic curve isogenous to a given arbitrary target curve. Apply-
ing Isogeny Strategy 2 however would seem to require sampling approximately
q3 random curves in the isogeny class of the target curve before a susceptible
curve is found. As a result the security of any elliptic curve with TrK/F2(a) = 0
and n = 8 could be reduced by a factor of approximately q. The case n = 8
is of particular interest since the ANSI X.962 standard [ANSI X9.62] lists
in Appendix H.4 specific elliptic curves over fields of characteristic two and
extension degrees 16	, where 	 ∈ {11, 13, 17, 19, 23}. We remark that the
curves are defined over F16.

The case n = 15 is illustrated in [233]. A striking example is F2600 where
the GHS attack applies to 2202 curves and requires about 279 steps, which is
much less than the 2299 steps for the Pollard methods.

The case n = 31 has been discussed in [168],[181],[233]. The existing
methods do not yield a security reduction for random elliptic curves over Fq31 ,

VIII.5. FURTHER TOPICS 175

but do yield a very significant security reduction for special curves. Some of
these special curves are given as challenge curves in [233]. For example, over
F2155 and F2186 the Pollard methods have a run time of about 277 compared
to 237 and 292 compared to 242 for the GHS attack and a hyperelliptic C0,
respectively. Example 7 shows some attack possibilities. For F2155 we expect
to transfer the DLP on an elliptic curve with a = 0 to a non-hyperelliptic
curve of genus 31 with approximate probability 3q−13/2/(31r) ≈ 2−37 and a
run time of about 3q9/(31r) + q31/4 ≈ 240.

Further extension degrees and field sizes are investigated in [233]. The
above discussion shows that elliptic curves over composite extension fields Fqn

with n ∈ {5, 6, 7, 8} (are likely to) offer less security due to the GHS attack
than expected. On the other hand, if n is a prime
= 127 in the interval 100
to 600, then the GHS attack is infeasible and does not lead to a security
reduction for any elliptic curve over Fqn ; see [241] and Theorem VIII.5.

VIII.5. Further Topics

In this section we briefly discuss the Weil descent methodology and gen-
eralizations of the GHS attack in odd characteristic and for more general
curves. We also include some further applications.

The basic ideas of Section VIII.1 and Section VIII.2.1 can be generalized
to odd characteristic and to more general curves quite verbatim and are made
explicit by using Kummer and Artin–Schreier constructions. Some indications
for the Artin–Schreier case can already be found in Section VIII.2.6.

VIII.5.1. Kummer Constructions. The main reference here is [104], which
considers the case of elliptic and hyperelliptic curves in odd characteristic with
a particular emphasis on odd prime degree extension fields. Since the sec-
ond roots of unity 1,−1 are always contained in the base field, an elliptic or
hyperelliptic curve H : Y 2 = f(X) defines a Kummer extension H/K(X) of
degree two where H = K(H) is an elliptic or hyperelliptic function field. The
following statements are given and proved in [104].

Theorem VIII.15. Let K/k be an extension of finite fields of odd character-
istic and odd degree n =

∏
p p

np. Let H be an elliptic or hyperelliptic function
field of genus g and regular over K suitable for cryptographic applications.
Choose some element x ∈ H such that H/K(x) is of degree two, given by an
equation of the form y2 = cf(x), where f is monic and c ∈ K×.

Then, via the GHS attack, one obtains a function field C0 regular over k
or its unique quadratic extension, an extension C/H of degree 2m−1 for some
m ≤ n with C = KC0, and a homomorphism from Pic0

K(H) to Pic0
k(C

0) with
the following properties:

(i) If c = 1, C0/k is regular.
(ii) gC0 ≤ 2n−1((g + 1)n− 2) + 1.

176 VIII. WEIL DESCENT ATTACKS

(iii) If there exists some field L with k ⊆ L ⊆ K such that H/L(x) is
Galois, the large subgroup of prime order is not preserved under the
homomorphism.

(iv) If there does not exist such an L, the kernel of the homomorphism
contains only elements of 2-power order and

gC0 ≥ 2	(
∑

p,np �=0 pnp)/(2g+2)
−2
(∑

p,np �=0

pnp − 4
)

+ 1.

(v) If n is prime, then additionally

gC0 ≥ 2φ2(n)−2(n− 4) + 1,

where φ2(n) denotes the multiplicative order of 2 modulo n.
(vi) If [K̄C : K̄(x)] ≥ 24, then C/K(x) does not contain an intermediate

field which is rational and of index 2 in C.

Let σ be the extension of the Frobenius automorphism of K/k to K(x) via
σ(x) = x. Let U be the (multiplicative) F2-subspace of K(x)×/K(x)×2 gener-
ated by the conjugates σi(f) and let Ū be the F2-subspace of K̄(x)×/K̄(x)×2

generated by U . Then C = KC0 is obtained by adjoining all square roots
of class representatives of U to K(x). Furthermore, [C : K(x)] = 2m and
[K̄C : K̄(x)] = 2m̄, where m = dimU and m̄ = dim Ū . Also, m̄ = m if and
only if C/K is regular, and m̄ = m− 1 otherwise.

For n = 5 and n = 7 there are families of elliptic curves over any extension
field of degree n for which gC0 assumes the lower bounds 5 and 7, respectively,
given by (v). There is for example an elliptic curve over F100000197 whose group
order is four times a prime and which yields gC0 = 7. Moreover, a defining
polynomial for C0 can be given in these cases. For n = 11, 13, 17, 19, 23 and
elliptic curves we have gC0 ≥ 1793, 9217, 833, 983041, 9729. The attack is not
feasible for prime n ≥ 11.

A further study of Kummer techniques is carried out in [326] and leads
to examples of attackable (or reduced security) classes of elliptic and hy-
perelliptic curves for n = 2 and n = 3. We summarise the examples of
[104, 326, 106] in Table VIII.5.1. A nice table of smallest possible genera
depending on small values of n and g = gH is given in [106]. We remark that
[326] also deals with a class of superelliptic curves.

VIII.5.2. Artin–Schreier Constructions. An elliptic or hyperelliptic curve
H : Y 2 + h(X)Y = f(X) in characteristic two defines (after a transforma-
tion similar to the one from (VIII.1) to (VIII.2)) an Artin–Schreier extension
H/K(X) of degree two where H = K(H) is an elliptic or hyperelliptic func-
tion field.

A generalization of the Artin–Schreier construction for elliptic curves as
in [145] to hyperelliptic curves in characteristic two was first considered in
[131]. There conditions for the hyperelliptic curves are derived such that the

VIII.5. FURTHER TOPICS 177

Table VIII.3. Examples of [104, 326, 106] for a, ai ∈ K\k
and h ∈ k[X] (no Multiple Factors Allowed on the Right Hand
Sides of =)

n H g C0 gC0

2 Y 2 = (X − a)h(X) �deg(h)/2� hyperell. 2g
3 Y 2 = (X − a)h(X) �deg(h)/2� hyperell. 4g + 1
3 Y 2 = (X − a)(X − σ(a))h(X) �(deg(h)− 1)/2� hyperell. 4g − 1

3 Y 2 =
∏g+1

i=1 (X − ai)(X − σ(ai)) g – 3g
5 Y 2 =

∏
i∈{0,1,2,3}(X − σi(a)) 1 – 5

7 Y 2 =
∏

i∈{0,1,2,4}(X − σi(a)) 1 – 7

construction of [145] carries through in an analogous way. Some examples of
the resulting curves are

Y 2 +XY = X2g+1 + · · ·+ c3X
3 + c2X

2 + c1X + θ,

Y 2 +XY = X2g+1 + · · ·+ c3X
3 + c2X

2 + θX + c1,

Y 2 +XY = X2g+1 + · · ·+ θX3 + c3X
2 + c2X + c1,

Y 2 +XY = X2g+1 + · · ·+ θ′X3 + c1X
2 + θX + θ2,

where ci ∈ k, θ, θ′ ∈ K and θ, θ′ have n distinct conjugates. A bound
gC0 ≤ g2m−1 for the genus of the corresponding C0 holds, where m is de-
fined similarly as in Section VIII.2.6.

Another family of curves is given in [327], of the form Y 2 + h(X)Y =
f(X)h(X) + (αX + β)h(X)2 with f, h ∈ k[X], α, β ∈ K and some further
conditions. Here the genus gC0 is proven to be equal to g2m−1 − 1 or g2m−1.

A discussion of general Artin–Schreier extensions is carried out in [168].
The main consequences for elliptic curves are presented in Section VIII.1. One
result for general Artin–Schreier extensions is that gC0 grows exponentially
in m whence the attack can only apply to very special families of curves or if
n is small. A similar statement holds true for Kummer extensions.

We remark that [327] and [168] also include Artin–Schreier extensions in
characteristic p > 2.

VIII.5.3. Kernel of Norm-Conorm Maps and Genera. We consider a
generalization of the situation in Section VIII.1.2. Let E be a function field
of transcendence degree one over the finite exact constant field K, C/E a
finite extension and U a finite subgroup of Aut(C). The fixed field of U in C
is denoted by C0. As in Section VIII.1.2, we obtain a homomorphism of the
divisor class groups φ : Pic0

K(E)→ Pic0
k(C

0) by NC/C0 ◦ConC/E, the conorm
from E to C followed by the norm from C to C0. This situation is quite
general; for example, we do not require U to be abelian.

Theorem VIII.16. The kernel of φ satisfies

178 VIII. WEIL DESCENT ATTACKS

(i) ker(NE/EV) ⊆ ker(φ), where V is any subgroup of U with V E ⊆ E, so

V restricts to a subgroup of Aut(E) and EV is the fixed field of V in
E.

(ii) If the intersection E ∩ σE is a function field and E, σE are linearly
disjoint over E ∩ σE for every σ ∈ U , then

[C : E] · kerφ ⊆
∑

σ∈U\{1}
ConE/E∩σE

(
Pic0

K(E ∩ σE)
)
.

For example, E and σE are linear disjoint over E ∩ σE if at least one is
Galois over E ∩ σE.

The theorem applies in particular to the Kummer and Artin–Schreier con-
structions discussed so far. Condition (i) basically means that for subfield
curves, ker(φ) contains the large prime factor subgroup of Pic0

K(E). In con-
dition (ii) we have that the Pic0

K(E ∩ σE) do not contain the large prime
factor subgroup since E ∩ σE = K(x), and [C : E] is also not divisible by
the large prime factor. As a result, ker(φ) does not contain the large prime
factor subgroup either.

A proof of a more general version of Theorem VIII.16 is given in [168].
The case of elliptic and hyperelliptic curves has been independently dealt
with in [104].

The genus of C0 can be computed in a number of ways. A general way,
which also determines the L-polynomial of C0, is as follows. Let G be a
finite subgroup of Aut(C) and let H and U be subgroups of G such that H
is normal in G, H ∩ U = {1} and G = HU . The subgroup U operates on
H by conjugation. Assume further that H is elementary abelian of prime
exponent l and let {Hν | ν ∈ I } be a system of representatives under the
operation of U on the subgroups of H of index l for some index set I. Let Uν

be the largest subgroup of U which leaves Hν invariant. If A is any subgroup
of G, then the fixed field of A in C is denoted by CA and the degree of the
exact constant field of CA over that of CG by dCA .

Theorem VIII.17. Under the above assumptions the L-polynomials satisfy

LCU (tdCU) /LCG(t) =
∏
ν∈I

LCHνUν (tdCHνUν) /LCHUν (tdCHUν).

Corollary VIII.18. The genera satisfy the equation

dCU gCU − gCG =
∑
ν∈I

(
dCHνUν gCHνUν − dCHUν gCHUν

)
.

Theorem VIII.17 and Corollary VIII.18 are proved in [168]. They can
be applied to the Artin–Schreier and prime degree Kummer constructions
quite straightforwardly by analysing the defining groups ∆ (and U as in
Section VIII.5.1).

VIII.5. FURTHER TOPICS 179

VIII.5.4. Construction of Models. The construction of explicit defining
equations for C0 obtained by the Kummer or Artin–Schreier constructions
and the computation of images under φ by means of computer algebra systems
is quite technical but does not pose principal algorithmic problems. We refer
to [145, 168, 131, 104, 326, 327] for details.

VIII.5.5. Trap Door Systems. The GHS attack with isogenies from Sec-
tion VIII.3 can also be used constructively for a trap door system [324]. The
basic idea is as follows. A user creates a secret elliptic curve Es which is sus-
ceptible to the GHS attack. The user then computes a public elliptic curve Ep

by means of a secret, sufficiently long and random isogeny chain starting at
Es. The curve Es and the isogeny chain are submitted to a trusted authority
for key escrow, while Ep is used as usual in elliptic curve cryptosystems. The
parameters are chosen such that the Pollard methods are the most efficient
way to solve the DLP on Ep, while solving the DLP on Es is much easier but
still sufficiently hard. The trusted authority thus has to invest considerable
computing power to decrypt which makes widespread wire tapping infeasible.
For further details and parameter choices see [324].

VIII.5.6. Other Approaches. Covering techniques can also be applied
when the target function field E comes from a true subfield curve. The
methods described so far do not readily apply because σE = E, in view of
Theorem VIII.16. One strategy to overcome this problem is to perform a
suitable change of variable such that there are n different conjugate fields
σi(E), so basically one considers a different σ. Accordingly, another strategy
is to twist σ by an automorphism τ of order n such that there are n different
conjugate fields (στ)i(E). If E0 is the target field defined over k, such that
E = E0K, then this strategy leads to the construction of suitable extensions
C0/E0 and τ0 ∈ Aut(C0) with τ0(E0)
= E0 and departs from the Kummer
and Artin–Schreier paradigms. We refer to [103, 106] for details. As a con-
sequence, with respect to an extension K/k of degree 3 and char(k)
= 2, 3,
the DLP (in the trace zero group) of a genus 2 curve can always be trans-
formed into a DLP of a genus 6 curve defined over k. For a non-negligible
percentage even genus 5 is possible, which leads to a more efficient attack via
index calculus than by the Pollard methods.

A further approach described in [106] uses special classes of hyperelliptic
curves defined over k which admit maps to elliptic curves defined over K. The
genus of these hyperelliptic curves is equal to n = [K : k], so these attacks
would be very efficient. However, the maps between the curves are not (yet)
known explicitly and upper bounds for their degrees are very large.

We close with two more remarks. In [45] the GHS construction is used
to construct elliptic curves over F̄2(x) of high rank with constant j-invariant.
In [290] a covering technique is used to construct genus 2 curves defined
over k with Jacobian isogenous to the Weil restriction of a large class of

180 VIII. WEIL DESCENT ATTACKS

elliptic curves defined over K with respect to a quadratic extension K/k of
finite fields in odd characteristic. This allows for SEA point counting while
avoiding patents in ECC (see also [170, 132]).

Part 4

Pairing Based Techniques

CHAPTER IX

Pairings

S. Galbraith

Pairings in elliptic curve cryptography are functions which map a pair
of elliptic curve points to an element of the multiplicative group of a finite
field. They have been used in several different contexts. The purpose of
this chapter is to explain some of the mathematics behind pairings, to show
how they may be implemented and to give some applications of them. This
builds on material of III.5 and V.2 of [ECC]. Cryptographic schemes based
on pairings will be described in Chapter X.

IX.1. Bilinear Pairings

Let n be a positive integer. Let G1 and G2 be abelian groups written
in additive notation with identity element 0. Suppose that G1 and G2 have
exponent n (i.e., [n]P = 0 for all P ∈ G1, G2). Suppose G3 is a cyclic group of
order n written in multiplicative notation with identity element 1. A pairing
is a function

e : G1 ×G2 −→ G3.

All pairings we consider will satisfy the following additional properties:

Bilinearity: For all P, P ′ ∈ G1 and all Q,Q′ ∈ G2 we have

e(P + P ′, Q) = e(P,Q)e(P ′, Q) and e(P,Q+Q′) = e(P,Q)e(P,Q′).

Non-degeneracy:
• For all P ∈ G1, with P
= 0, there is some Q ∈ G2 such that
e(P,Q)
= 1.

• For all Q ∈ G2, with Q
= 0, there is some P ∈ G1 such that
e(P,Q)
= 1.

The two examples of pairings which we will consider are the Weil and
Tate pairings on elliptic curves over finite fields. First we give some easy
consequences of bilinearity.

Lemma IX.1. Let e be a bilinear pairing as above. Let P ∈ G1 and Q ∈ G2.
Then

1. e(P, 0) = e(0, Q) = 1.
2. e(−P,Q) = e(P,Q)−1 = e(P,−Q).
3. e([j]P,Q) = e(P,Q)j = e(P, [j]Q) for all j ∈ Z.

183

184 IX. PAIRINGS

Proof. Property 1 follows from e(P,Q) = e(P + 0, Q) = e(P,Q)e(0, Q)
and similar formulae for Q. Property 2 follows from 1 = e(0, Q) = e(P +
(−P), Q) = e(P,Q)e(−P,Q). Property 3 is then immediate.

IX.2. Divisors and Weil Reciprocity

We recall the language of divisors from algebraic geometry. General ref-
erences are Silverman [307] and Washington [343]. This section may be
omitted on first reading.

Let C be a curve over a perfect field K (the two important cases for our
purposes are when C is an elliptic curve or is the projective line). We denote
by C(K) the set of all points on the curve defined over the algebraic closure
of the field K. A divisor on C is a formal sum D =

∑
P∈C(K) nP (P), where

nP ∈ Z and all but finitely many nP are zero. The divisor with all nP = 0
is denoted 0. The set of divisors on C is denoted DivK(C) and has a natural
group structure of addition. The support of a divisor D is the set of all points
P such that nP
= 0. The degree of a divisor D is deg(D) =

∑
P nP . For

σ ∈ Gal(K/K) we define Dσ =
∑

P nP (σ(P)). A divisor is defined over K if

D = Dσ for all σ ∈ Gal(K/K).
If f is a non-zero function on C, then ordP (f) counts the multiplicity of f

at P , see [307, Section II.1]. Note that ordP (f) is positive when f(P) = 0 and
is negative if f has a pole at P . The divisor of a non-zero function f , written
(f), is the divisor

∑
P∈C(K) ordP (f)(P). It follows that (fg) = (f) + (g) and

(f/g) = (f)− (g). A principal divisor on C is a divisor which is equal to (f)
for some function f . An important theorem of algebraic geometry states that
deg((f)) = 0 (see Remark II.3.7 of [307] or Theorem VII.7.9 of [226]).

A function f is defined over K if it can be written with all coefficients
lying in the field K. If f is a non-zero function defined over K, then the
divisor (f) is defined over K.

If f ∈ K∗
is a constant, then (f) = 0. Conversely, if (f) = 0, then f must

be a constant. Hence, if (f) = (g), then (g/f) = 0 and so g is a constant
multiple of f . In other words, the divisor (f) determines the function f up
to a non-zero scalar multiple.

Two divisors D and D′ are said to be equivalent (written D′ ∼ D) if
D′ = D+(f) for some function f . If D1 ∼ D′

1 and D2 ∼ D′
2, then (D1+D2) ∼

(D′
1+D′

2). The divisor class group of a curve is the set of all divisors of degree
zero up to equivalence with group structure inherited from DivK(C).

The group law on an elliptic curve can be expressed in terms of divisors.
Let P1 and P2 be two points on E(K). Suppose the line between the two
points P1 and P2 (take the tangent line if P1 = P2) has equation l(x, y) = 0.
This line hits the elliptic curve E at some other point S = (xS, yS). The
linear polynomial l(x, y) may be interpreted as a function mapping elliptic
curve points to K. The function l(x, y) has divisor (l) = (P1) + (P2) +

IX.3. DEFINITION OF THE TATE PAIRING 185

(S) − 3(O). The vertical line v(x) = (x − xS) passes through the points S
and P3 = P1 + P2 by definition. Interpreting v(x) as a function on E gives
(v) = (S) + (P3) − 2(O). Hence the equation P3 = P1 + P2 is the same as
the divisor equality (P3) − (O) = (P1) − (O) + (P2) − (O) − (l/v) and the
mapping of P to the divisor class of (P)− (O) is a group homomorphism.

The above ideas are summarized in the following result, which relates
equivalence of divisors on an elliptic curve E with point addition on E.

Theorem IX.2. Let E be an elliptic curve over a field K. Let

D =
∑

P

nP (P)

be a degree zero divisor on E. Then D ∼ 0 (i.e., there is a function f such
that D = (f)) if and only if

∑
P [nP]P = O on E.

Let f be a function and let D =
∑

P nP (P) be a divisor of degree zero
such that the support of D is disjoint to the support of (f). Define

f(D) =
∏
P

f(P)nP .

Note that if g = cf for some constant c ∈ K
∗
, then g(D) = f(D) when D

has degree zero. Hence, in this case the quantity f(D) depends only on the
divisors (f) and D. If f and D are both defined over K, then f(D) ∈ K.

The following remarkable result is used to prove various properties of the
Weil and Tate pairings. It is proved in the appendix to this chapter.

Theorem IX.3 (Weil reciprocity). Let f and g be non-zero functions on a
curve C over K. Suppose that the support of (f) and the support of (g) are
disjoint. Then f((g)) = g((f)).

IX.3. Definition of the Tate Pairing

We now introduce the most important pairing in elliptic curve cryptogra-
phy. The Tate pairing was introduced by Tate as a rather general pairing on
abelian varieties over local fields. Lichtenbaum [224] gave an interpretation
in the case of Jacobians of curves over local fields which permits explicit com-
putation. Frey and Rück [126, 125] considered the Tate pairing over finite
fields and thus introduced the Tate pairing to the cryptographic community.
For more background details about the Tate pairing see Frey [127].

Let E be an elliptic curve over a field K0. Let n be a positive integer
which is coprime to the characteristic of the field K0. The set of nth roots of
unity is defined to be µn = {u ∈ K0

∗
: un = 1}. Define the field K = K0(µn)

to be the extension of K0 generated by the nth roots of unity. Define

E(K)[n] = {P ∈ E(K) : [n]P = O}

186 IX. PAIRINGS

and

nE(K) = {[n]P : P ∈ E(K)}.
Then E(K)[n] is a group of exponent n. Further, nE(K) is a subgroup of
E(K) and the quotient group E(K)/nE(K) is a group of exponent n. One
may think of E(K)/nE(K) as the set of equivalence classes of points in E(K)
under the equivalence relation P1 ≡ P2 if and only if (P1 − P2) ∈ nE(K).
Define

(K∗)n = {un : u ∈ K∗}.
Then (K∗)n is a subgroup of K∗ and the quotient group K∗/(K∗)n is a group
of exponent n. The groups K∗/(K∗)n and µn are isomorphic.

The groups E(K)[n] and E(K)/nE(K) have the same number of elements,
but it is not necessarily the case that the points of E(K)[n] may be used as
representatives for the classes in E(K)/nE(K). For example, let p and r be
primes such that r4 divides (p− 1). There is an elliptic curve E over Fp with
p − 1 points which has r4 points of order r2 defined over Fp. In this case
E[r] ⊆ rE(Fp). Another example is given below.

Example: The elliptic curve E : y2 = x3 + x − 3 over K0 = F11 has 6
points. Let n = 3 and write ζ3 for a root of t2 + t + 1 over F11. Then K =
K0(µn) = F11(ζ3) = F112 . One can compute that #E(K) = 2233. A basis for
E(K)[3] is {(9, 3), (10, 3 + 6ζ3)}. The point R = (3 + 6ζ3, 1 + 7ζ3) ∈ E(K)
has order 9 and satisfies [3]R = (10, 3 + 6ζ3). Hence (10, 3 + 6ζ3) ∈ 3E(K)
and so E(K)[3] does not represent E(K)/3E(K). A basis for E(K)/3E(K)
is {(9, 3), (3 + 6ζ3, 1 + 7ζ3)}.

However, in many cases of relevance for cryptography one can represent
E(K)/nE(K) using the points of E(K)[n]; see Theorem IX.22.

We are now in a position to define the Tate pairing. Let P ∈ E(K)[n]
and let Q ∈ E(K). We think of Q as representing an equivalence class in
E(K)/nE(K). Since [n]P = O, it follows that there is a function f such that
(f) = n(P)−n(O). Let D be any degree zero divisor equivalent to (Q)− (O)
such that D is defined over K and the support of D is disjoint from the
support of (f). In most cases such a divisor can easily be constructed by
choosing an arbitrary point S ∈ E(K) and defining D = (Q+S)− (S). Since
f and D are defined over K, the value f(D) is an element of K. Since the
supports of (f) and D are disjoint, we have f(D)
= 0, and so f(D) ∈ K∗.

The Tate pairing of P and Q is defined to be

〈P,Q〉n = f(D)

interpreted as an element of K∗/(K∗)n.
We emphasize that values of the Tate pairing are equivalence classes. The

reader is warned that we will use the symbol = to denote equivalence under
this relation.

IX.4. PROPERTIES OF THE TATE PAIRING 187

Example: Consider the elliptic curve

E : y2 = x(x2 + 2x+ 2)

over F3 such that E(F3) = {O, (0, 0)}. Let n = 2, P = (0, 0) and note that
µ2 = {1, 2} ⊆ F3. Now suppose we are to compute 〈P, P 〉2.

The function x has divisor (x) = 2(P) − 2(O). We now must find a
divisor D which is equivalent to (P) − (O) but which has support disjoint
from {O, P}. Since there are only two points in E(F3) we cannot in this case
choose D = (P + S)− (S) for some S ∈ E(F3).

Write F32 = F3(i), where i2 = −1, and consider points on E over F32 .
The divisor D = ((1 + i, 1 + i)) + ((1 − i, 1 − i)) − ((1, i)) − ((1,−i)) is
defined over F3 as a divisor. Note that (1, i)+(1,−i) = O in E(F32) and that
(1 + i, 1 + i) + (1− i, 1− i) is a point in E(F3) which is not O, and so it is P .
Hence, by Theorem IX.2 we have D ∼ (P)− (O).

Finally,

〈P, P 〉2 = x(D) =
(1 + i)(1− i)

(1)(1)
= 2.

IX.4. Properties of the Tate Pairing

The Tate pairing is not a well defined element of K∗ as it depends on
the choice of D and also on the choice of representative Q of the class in
E(K)/nE(K). This is why we must consider values of the Tate pairing to be
equivalence classes in K∗/(K∗)n. The following two lemmas show that the
Tate pairing is well defined as an element of K∗/(K∗)n.

Lemma IX.4. Let f be a function such that (f) = n(P)−n(O) and let D′ ∼
D be degree zero divisors such that the supports of D and D′ are disjoint to
the support of (f). Suppose that f , D and D′ are all defined over K. Then
f(D′)/f(D) ∈ (K∗)n.

Proof. Write D′ = D + (g). Then the support of (g) is disjoint to the
support of (f) and

f(D′) = f(D + (g)) = f(D)f((g)).

Weil reciprocity implies that

f((g)) = g((f)) = g(n(P)− n(O)) = (g(P)/g(O))n ∈ (K∗)n.

Lemma IX.5. Let P ∈ E(K)[n] and Q,R ∈ E(K). Let f be a function
such that (f) = n(P) − n(O). Let D and D′ be divisors defined over K
with support disjoint to the support of (f) such that D ∼ (Q) − (O) and
D′ ∼ (Q+ [n]R)− (O). Then f(D′)/f(D) ∈ (K∗)n.

188 IX. PAIRINGS

Proof. By Theorem IX.2, we have D′ ∼ D+n(R)−n(O). By Lemma IX.4
we have f(D′) = f(D + n(R)− n(O)) up to nth powers. Finally,

f(D + n(R)− n(O)) = f(D)f((R)− (O))n

and the result follows.

Note that the Tate pairing depends closely on the fields under considera-
tion. If L is an extension of K, then an element ζ ∈ K∗ may satisfy ζ
∈ (K∗)n

but ζ ∈ (L∗)n. Similarly, a point Q ∈ E(K) may satisfy Q
∈ nE(K) but
Q ∈ nE(L).

In some situations we consider a different function f to define the pairing.

Lemma IX.6. Up to nth powers the pairing can be defined using a function
g such that (g) = n(P +R)− n(R) for an arbitrary point R ∈ E(K).

Proof. Let f be such that (f) = n(P) − n(O) and suppose R ∈ E(K).
Let h be the function corresponding to the addition of P and R. In other
words, (h) = (P + R) − (R) − (P) + (O). Defining g = fhn gives (g) =
(f) + n(h) = n(P + R) − n(R). Let D be any divisor with support disjoint
from the supports of (f) and (g). Then g(D) = f(D)h(D)n is equal to f(D)
up to nth powers.

We now list the key properties of the Tate pairing (recall that = and
=
often refer to equivalence modulo nth powers).

Theorem IX.7. Let E be an elliptic curve over K0 and let n be coprime to
the characteristic of K0. Let K = K0(µn). The Tate pairing satisfies:

1. (Bilinearity) For all P, P1, P2 ∈ E(K)[n] and Q,Q1, Q2 ∈ E(K)/nE(K),

〈P1 + P2, Q〉n = 〈P1, Q〉n〈P2, Q〉n
and

〈P,Q1 +Q2〉n = 〈P,Q1〉n〈P,Q2〉n.
2. (Non-degeneracy) Suppose K is a finite field.1 For all P ∈ E(K)[n],
P
= O, there is some Q ∈ E(K)/nE(K) such that 〈P,Q〉n
= 1.
Similarly, for all Q ∈ E(K)/nE(K) with Q
∈ nE(K) there is some
P ∈ E(K)[n] such that 〈P,Q〉n
= 1.

3. (Galois invariance) If σ ∈ Gal(K/K0), then 〈σ(P), σ(Q)〉n = σ(〈P,Q〉n).

Proof. We prove bilinearity with two cases:
Case 1: Let P1 +P2 = P3 and let g be the function such that (P3)− (O) =

(P1)−(O)+(P2)−(O)+(g). If (f1) = n(P1)−n(O) and (f2) = n(P2)−n(O),
then (f1f2g

n) = n(P3) − n(O). Let D ∼ (Q) − (O) have support disjoint to
{P1, P2, P3,O} (it can be shown that such a divisor always exists). Then

〈P1 + P2, Q〉n = 〈P3, Q〉n = f1f2g
n(D) = f1(D)f2(D)g(D)n

which is equal to 〈P1, Q〉n〈P2, Q〉n in K∗/(K∗)n.

1Non-degeneracy is also proved in some other cases, for example, p-adic fields.

IX.5. THE TATE PAIRING OVER FINITE FIELDS 189

Case 2: Suppose Q1 +Q2 = Q3. If D1 ∼ (Q1)− (O) and D2 ∼ (Q2)− (O),
then D1 +D2 ∼ (Q3)− (O) and so

〈P,Q1 +Q2〉n = f(D1 +D2) = f(D1)f(D2) = 〈P,Q1〉n〈P,Q2〉n
in K∗/(K∗)n.

Proofs of non-degeneracy can be found in Frey-Rück [126]and Hess [167].

For the Galois-invariance, define fσ to be the function obtained by ap-
plying σ to all the coefficients of f . Then σ(f(P)) = fσ(σ(P)). If (f) =
n(P)− n(O), then (fσ) = n(σ(P))− n(O) and 〈σ(P), σ(Q)〉n = fσ(σ(D)) =
σ(f(D)) = σ(〈P,Q〉n).

IX.5. The Tate Pairing over Finite Fields

Suppose that K0 = Fq is a finite field. Let E be an elliptic curve defined
over K0 and let n be an integer coprime to q which divides #E(K0). The
field K = K0(µn) is some finite extension Fqk . The number k is called the
embedding degree or security multiplier and it is simply the smallest positive
integer such that n divides (qk − 1). We stress that the number k is, strictly
speaking, a function k(q, n) of q and n; however, the context is usually clear
and so we will simply write k. Since k is the order of q modulo n it follows
that k divides φEul(n) (Euler phi-function). Hence, if n is prime, then k
divides (n− 1).

For a random field Fq and a random elliptic curve E, if we let n be a
large divisor of #E(Fq), then the embedding degree k is usually very large
(almost the same number of bits as n) and so computation in the field Fqk

has exponential complexity (in terms of the input size q).
Since E is defined over Fq, if P and Q are defined over a proper subfield

of Fqk , then 〈P,Q〉n is also defined over the same proper subfield of Fqk . Now
suppose that n is a prime, in which case our convention is to call it r. Since
Fqk is the smallest field containing both µr and Fq it follows that, for every
intermediate field Fq ⊆ L ⊂ Fqk with L
= Fqk , we have L ⊆ (F∗

qk)
r. These

observations lead to the following trivial but important result, which tells us
when the value of the Tate pairing can be trivial.

Lemma IX.8. Let E be an elliptic curve over Fq and let r be a prime. Suppose
the embedding degree for E and r is k > 1. Let L be a proper subfield of Fqk

which contains Fq. If P,Q ∈ E(L), then 〈P,Q〉r ∈ (F∗
qk)

r.

When K0 = Fq and K = Fqk , a value of the Tate pairing is an equiva-
lence class in F∗

qk/(F
∗
qk)

n and for practical purposes we would like a unique
representative of this class. The natural way to proceed is to raise this value
to the power (qk − 1)/n. This kills off all nth powers leaving an exact nth
root of unity in Fqk . Hence for the remainder of this chapter we consider the

190 IX. PAIRINGS

bilinear pairing

e(P,Q) = 〈P,Q〉(qk−1)/n
n

which maps into the group µn ⊂ F∗
qk rather than the group F∗

qk/(F
∗
qk)

n.

We now give some compatibility results for the Tate pairing.

Theorem IX.9. Let E be an elliptic curve over Fq. Let n|#E(Fq) and sup-
pose the embedding degree corresponding to q and n is k. Let N = hn be a
multiple of n which divides qk − 1.

1. Let P ∈ E(Fq) have order n and let Q ∈ E(Fqk). Then

〈P,Q〉(q
k−1)/N

N = 〈P,Q〉(qk−1)/n
n .

2. Let P ∈ E(Fqk)[N] and let Q ∈ E(Fqk). Then 〈P,Q〉N = 〈[h]P,Q〉n up
to nth powers.2 Another way to say this is that

〈P,Q〉(q
k−1)/n

N = 〈[h]P,Q〉(qk−1)/n
n .

3. Let φ : E → E ′ be an isogeny and let φ̂ be the dual isogeny. Then, up
to nth powers,

〈φ(P), Q〉n = 〈P, φ̂(Q)〉n.
4. Let φ : E → E ′ be an isogeny. Then, up to nth powers,

〈φ(P), φ(Q)〉n = 〈P,Q〉deg(φ)
n .

Proof.

1. Write N = hn. Let D be a degree zero divisor equivalent to (Q)− (O).
Suppose g is a function over Fq such that (g) = n(P) − n(O). Then
(gh) = N(P)−N(O) and so

〈P,Q〉(q
k−1)/N

N = gh(D)(qk−1)/N = g(D)(qk−1)/n = 〈P,Q〉(qk−1)/n
n .

2. By part 1

〈[h]P,Q〉(qk−1)/n
n = 〈[h]P,Q〉(q

k−1)/N
N = 〈P,Q〉h(qk−1)/N

N .

3. (This proof uses notation defined in the appendix to this chapter).
The point φ(P) has order dividing n. Suppose (f) = n(P)− n(O) and
D ∼ (Q)−(O). Then (φ∗f) = φ∗((f)) = n(φ(P))−n(O). By Theorem

III.6.1(b) of [307], φ∗D ∼ (φ̂(Q))− (O). Hence, by Lemma IX.26,

〈φ(P), Q〉n = (φ∗f)(D)

= f(φ∗D)

= 〈P, φ̂(Q)〉n.
4. By part 3

〈φ(P), φ(Q)〉n = 〈P, φ̂φ(Q)〉n = 〈P, [deg(φ)]Q〉n.
2Since 〈P, Q〉N is defined up to Nth powers and 〈[h]P, Q〉n is defined up to nth powers

we can compare their values only up to nth powers.

IX.6. THE WEIL PAIRING 191

IX.6. The Weil Pairing

Let E be an elliptic curve defined over K0 and let n be an integer coprime
to the characteristic of K0. Define K = K0(E[n]) to be the field extension of
K0 generated by the coordinates of all the points in E(K) of order divisible
by n. The Weil pairing is a map

en : E[n]× E[n]→ µn ⊆ K∗.

For more information about the Weil pairing see Section III.8 of [307] or
Section III.5 of [ECC]. There are two equivalent definitions of the Weil
pairing (for the proof of equivalence see [63] or [173]). The definition we give
is the one which is closer to the definition of the Tate pairing.

Let P,Q ∈ E[n] and letD,D′ be degree zero divisors such that the support
of D and D′ are disjoint and such that D ∼ (P)− (O) and D′ ∼ (Q)− (O).
By Theorem IX.2, there are functions f and g such that (f) = nD and
(g) = nD′. The Weil pairing is defined to be

en(P,Q) = f(D′)/g(D).

The Weil pairing takes values in µn ⊆ K∗. The following result gives
some properties of the Weil pairing.

Theorem IX.10. The Weil pairing satisfies the following properties.

1. (Bilinearity) For all P, P ′, Q,Q′ ∈ E[n],

en(P + P ′, Q) = en(P,Q)en(P ′, Q)

and
en(P,Q+Q′) = en(P,Q)en(P,Q′).

2. (Alternating) en(P, P) = 1 and so en(P,Q) = en(Q,P)−1.
3. (Non-degeneracy) If en(P,Q) = 1 for all Q ∈ E[n], then P = O.
4. (Galois invariance) For all σ ∈ Gal(K/K)

en(σ(P), σ(Q)) = σ(en(P,Q)).

5. (Compatibility) If P ∈ E[nm] and Q ∈ E[n], then

enm(P,Q) = en([m]P,Q).

6. If φ : E → E ′ is an isogeny with dual φ̂, then

en(φ(P), Q) = en(P, φ̂(Q)).

Proof. All properties except non-degeneracy can be proved using Weil reci-
procity and other techniques as used for the Tate pairing. For details see
Propositions 8.1 and 8.2 of Silverman [307] (also see Hess [167]).

The following corollary is easily deduced and is of fundamental impor-
tance.

192 IX. PAIRINGS

Corollary IX.11. Let E be an elliptic curve over a field k and let r be a
prime. Let P,Q ∈ E(k)[r] such that P
= O. Then Q lies in the subgroup
generated by P if and only if er(P,Q) = 1.

Note the similarity between the definition of the Weil pairing and the Tate
pairing. In the Weil pairing, the term f(D′) is equivalent modulo nth powers
to 〈P,Q〉n while the term g(D) is equivalent modulo nth powers to 〈Q,P 〉n.
Hence we can write

en(P,Q) =
〈P,Q〉n
〈Q,P 〉n

up to nth powers. (IX.1)

Note that this equation is only useful in the case where µn
⊆ (K∗)n.
One difference between the Weil pairing and the Tate pairing is that the

Tate pairing requires working over K0(µn) while the Weil pairing requires the
potentially much larger field K0(E[n]). The following theorem of Balasubra-
manian and Koblitz shows that, in the cases most relevant for cryptography,
these two fields are actually the same.

Theorem IX.12. (Balasubramanian and Koblitz [12]) Let E be an elliptic
curve over Fq and let r be a prime dividing #E(Fq). Suppose that r does not
divide (q − 1) and that gcd(r, q) = 1. Then E[r] ⊂ E(Fqk) if and only if r
divides (qk − 1).

The Weil pairing can be generalized from E[n] = ker([n]) to ker(φ) where φ
is any isogeny. In a certain case, Garefalakis [140] shows that the generalized
Weil pairing is essentially equivalent to the Tate pairing.

IX.7. Non-degeneracy, Self-pairings and Distortion Maps

We now restrict to the case where K = Fqk and e(P,Q) = 〈P,Q〉(q
k−1)/n

n .

IX.7.1. Non-Degeneracy. Non-degeneracy means that, for all points P ∈
E(Fqk)[n], except P = O, there is some Q ∈ E(Fqk) such that e(P,Q)
= 1.
The question we consider more closely is, for which points Q do we have
e(P,Q)
= 1?

For the remainder of this subsection we restrict ourselves to the case where
n is a prime, and we call it r. Then E(Fqk)[r], E(Fqk)/rE(Fqk) and µr ⊂ F∗

qk

may all be considered as vector spaces over Fr. Define

d = dimFr(E(Fqk)[r]) = dimFr(E(Fqk)/rE(Fqk)) ∈ {1, 2}.
Choose a basis {Pi} for E(Fqk)[r] over Fr and a basis {Qi} for E/rE. Then
the pairing can be represented as a d × d matrix M over Fr. For any P =∑

i aiPi ∈ E[r] and any Q =
∑

j bjQj ∈ E(Fqk) we have

e(P,Q) = (ai)
tM(bj).

If det(M) = 0, then there is a vector v such that vM = 0 and this contradicts
non-degeneracy. Hence det(M)
= 0.

IX.7. NON-DEGENERACY, SELF-PAIRINGS AND DISTORTION MAPS 193

By fixing P we may consider the pairing as an Fr-linear map from the
quotient group E(Fqk)/rE(Fqk) to µr. The rank-nullity theorem implies that
for every such point there is a (d− 1)-dimensional subspace of points Q such
that e(P,Q) = 1. Similarly, fixing Q gives an Fr-linear map from E(Fqk)[r]
to µr and an analogous result follows.

We consider the two cases in turn. If E(Fqk)[r] has dimension one as an
Fr-vector space, then so does E(Fqk)/rE(Fqk) and so for all P ∈ E(Fqk)[r],
with P
= O, and all Q ∈ E(Fqk), with Q
∈ rE(Fqk) we have e(P,Q)
= 1.
If E(Fqk)[r] has dimension two, then for every point P ∈ E(Fqk)[r], P
= O
there is a basis {Q,R} for E(Fqk)/rE(Fqk) such that e(P,Q) = g
= 1 and
e(P,R) = 1. It follows that e(P, [a]Q+ [b]R) = ga
= 1 for all a coprime to r.

IX.7.2. Self-Pairings. The alternating property of the Weil pairing is that
the pairing of any point P with itself is always 1. We now consider the
possibilities for a “self-pairing” in the case of the Tate pairing.

The first issue is that E(Fqk)[n] and E(Fqk)/nE(Fqk) are different groups.
If P ∈ E(Fqk)[n] ∩ nE(Fqk), then e(P, P) = 1. Theorem IX.22 shows that
many relevant cases for cryptography have E[n]∩nE(Fqk) = {O}. Similarly,
if P ∈ E(Fq) has prime order r and if k > 1, then by Lemma IX.8 e(P, P) = 1
and so the pairing is trivial. We have established the following fact.

Lemma IX.13. Let E be an elliptic curve over Fq, let r be a prime dividing
#E(Fq) and let P ∈ E(Fq) be a point of order r. Let k be the embedding
degree corresponding to q and r. Then e(P, P) = 1 if k > 1 or if P ∈ rE(Fq).

In the case k = 1 there are several possibilities. Suppose E is an elliptic
curve over Fq and r is a prime number such that r|#E(Fq) and r|(q−1) (and
so k = 1). Let P
= O be a point of order r. If r‖#E(Fq) (if p is a prime
and k is an integer, then the symbol pk‖m means that pk divides m and pk+1

does not divide m), then there is a unique subgroup of order r in E(Fq) and
the non-degeneracy of the Tate pairing implies that e(P, P)
= 1.

If there are r2 points of order r in E(Fq), then it is possible that e(P, P)
=
1. For example, the curve y2 = x3 + 11 over F31 has group structure (Z/5Z)2

and the points P = (2, 9) and Q = (3, 10) form a basis for the points of
order 5. One can compute that e(P, P) = 16, e(Q,Q) = 8, e(P,Q) = 2 and
e(Q,P) = 8. It follows that

e([a]P + [b]Q, [a]P + [b]Q) = 24a2+4ab+3b2

and hence e(R,R)
= 1 for all points R ∈ E[5] except R = O.
An example of the opposite situation is given by E : y2 = x3 + 4 over

F997 (this example was provided by Kim Nguyen). The points P = (0, 2) and
Q = (747, 776) generate the 9 points of order 3 in E(F997). One can compute
that e(P, P) = 1, e(Q,Q) = 1 and e(P,Q) = e(Q,P)−1 = 304. Hence we have
e(R,R) = 1 for all R ∈ E[3].

194 IX. PAIRINGS

IX.7.3. Distortion Maps. The typical case in cryptographic applications
is P ∈ E(Fq) and k > 1. It is very useful to be able to consider “self-pairings”
in this case. A valuable technique introduced by Verheul [335], which applies
to both the Tate and Weil pairings, is to use a non-rational endomorphism.

Lemma IX.14. Let P ∈ E(Fq) have prime order r and suppose k > 1. Sup-
pose that E(Fqk) has no points of order r2. Let φ be an endomorphism of E.
If φ(P)
∈ E(Fq), then e(P, φ(P))
= 1.

Proof. Since φ is an endomorphism it follows that the order of φ(P) is r
or 1. The latter case does not occur since φ(P)
∈ E(Fq). Hence {P, φ(P)}
is a basis for the r-torsion on E. Since there is no r2-torsion it follows that
φ(P)
∈ rE(Fqk). Finally, since e(P, P) = 1 it follows that e(P, φ(P))
= 1.

A non-rational endomorphism which maps a point from E(Fq) to E(Fqk)
as in the lemma is called a distortion map. For a given supersingular curve
(see Definition IX.18) there is at least one nice choice (indeed, Theorem 5
of [336] proves that distortion maps always exist). In Section IX.13 we give
examples of convenient distortion maps for supersingular curves. However,
the following result from [335] implies that distortion maps do not exist for
ordinary (i.e., non-supersingular; see Section IX.10) curves.

Theorem IX.15. Let E be an elliptic curve over Fq which has a distortion
map. Then E is supersingular.

Proof. Suppose φ is an endomorphism which maps some point P ∈ E(Fq)
to a point φ(P)
∈ E(Fq). Let ϕ be the q-power Frobenius map, which is an
endomorphism of E. Then ϕ(P) = P and ϕ(φ(P))
= φ(P) and so φ ◦ ϕ
=
ϕ ◦ φ in End(E). Hence, End(E) is non-commutative and E is supersingular
according to Definition IX.18.

IX.7.4. The Trace Map. An alternative to using a non-rational endomor-
phism (which works for all elliptic curves) is the following. Let P = (x, y) ∈
E(Fqk) and define the trace map

Tr(P) =
∑

σ∈Gal(F
qk/Fq)

σ(P) =
k−1∑
i=0

(xqi

, yqi

)

where the sum is elliptic curve point addition. The trace map is a group homo-
morphism and Tr(P) ∈ E(Fq). Under conditions like those of Lemma IX.14
it follows that if P ∈ E(Fqk) has prime order r, P
∈ E(Fq) and Tr(P)
= O,
then e(Tr(P), P)
= 1. We stress that the trace map transforms points which
are defined over a large field into points defined over a small field, whereas
distortion maps go the other way around. For further details see Boneh, Lynn
and Shacham [42].

The trace map enables mapping into a specific cyclic subgroup of E(Fqk)
of order r (called the trace zero subgroup T) as follows. If P is a randomly

IX.7. NON-DEGENERACY, SELF-PAIRINGS AND DISTORTION MAPS 195

chosen element of E(Fqk) of order r, then P ′ = [k]P −Tr(P) is easily seen to
satisfy Tr(P ′) = O. Furthermore, if P
∈ E(Fq) and if r is coprime to k, then
P ′
= O. This idea is used in [42]. A more efficient way to map into the trace
zero subgroup using twists is given in [18]. The following degeneracy result
was shown to me by Dan Boneh.

Lemma IX.16. Let E be an elliptic curve over Fq. Let r be a prime such that
r divides #E(Fq) and such that the subgroup of r elements has embedding
degree k > 1. Assume that r does not divide either k or (q−1). Let Tr be the
trace map with respect to Fqk/Fq as above and ϕ the q-power Frobenius. Let

T = {P ∈ E(Fqk)[r] : Tr(P) = O}.

Then T = {P ∈ E(Fqk)[r] : ϕ(P) = [q]P} and for all P,Q ∈ T we have
e(P,Q) = 1.

Proof. If P ∈ E(Fq)[r], then Tr(P) = [k]P . Hence T ∩ E(Fq)[r] = {O}.
On the other hand, it is easy to see that T is a subgroup of E(Fqk)[r]. Hence
#T = r and T is cyclic.

Let ϕ be the q-power Frobenius map, which acts on both Fqk and on
E(Fqk). It is known that ϕ has eigenvalues 1 and q on E(Fqk). Let {P1, P2}
be a basis for E(Fqk)[r] such that ϕ(P1) = P1 and ϕ(P2) = [q]P2. Then
Tr(P2) = [1 + q+ · · ·+ qk−1]P2 = [(qk − 1)/(q− 1)]P2 = O and it follows that
P2 is the generator of T .

To complete the proof it suffices to prove that e(P2, P2) = 1 and we do
this by showing e(P2, P2) ∈ Fq. Consider

e(P2, P2)
q = ϕ(e(P2, P2)) = e(ϕ(P2), ϕ(P2)) = e([q]P2, [q]P2) = e(P2, P2)

q2

.

Acting by ϕ−1 gives e(P2, P2) = e(P2, P2)
q, which implies e(P2, P2) ∈ Fq.

IX.7.5. Symmetry. Another issue for the Tate pairing is to consider the
relationship between 〈P,Q〉n and 〈Q,P 〉n, for points P,Q ∈ E(K)[n]. Up to
nth powers we have

〈P,Q〉n = 〈Q,P 〉nen(P,Q).

Since the Weil pairing is non-degenerate, we often have 〈P,Q〉n
= 〈Q,P 〉n up
to nth powers.

However, if distortion or trace maps are being used, then the pairing is
usually restricted to a single cyclic subgroup. In this case Q = [m]P for some
m and so

e(Q, φ(P)) = e([m]P, φ(P)) = e(P, [m]φ(P)) = e(P, φ(Q)).

In other words, the pairing is symmetric when restricted to a cyclic subgroup.

196 IX. PAIRINGS

IX.8. Computing the Tate Pairing Using Miller’s Algorithm

Victor Miller [249] gave an algorithm to compute the Weil pairing in
polynomial time and this approach can also be used to compute the Tate
pairing. The main issue is how to construct a function f such that (f) =
n(P)−n(O). Miller’s idea is to use the double-and-add method to construct
such a function in stages.

Write fi for a function such that (fi) = i(P)− ([i]P)− (i− 1)(O). Such a
function is uniquely defined up to a constant multiple. The function we aim
to compute is fn.

Lemma IX.17. The functions fi can be chosen to satisfy the following condi-
tions.

1. f1 = 1.
2. Let l and v be the straight lines used in the computation of [i]P+[j]P =

[i+ j]P . Then

fi+j = fifj
l

v
.

Proof. The fact that we can take f1 = 1 is clear. In the general case we
have

(l/v) = ([i]P) + ([j]P)− ([i+ j]P)− (O)

and so

(fifjl/v) = i(P)− ([i]P)− (i− 1)(O) + j(P)− ([j]P)− (j − 1)(O) + (l/v)

= (i+ j)(P)− ([i+ j]P)− (i+ j − 1)(O).

This proves the result.

These formulae are most simply used in the cases j = 1 (addition) and j =
i (doubling). Miller’s algorithm uses an addition chain for [n]P to compute
fn. Since we are interested in the value fn(D) we evaluate all intermediate
quantities at the divisor D = (Q+ S)− (S).3

Algorithm IX.1: Miller’s Algorithm

INPUT: P,Q ∈ E(K) where P has order n.
OUTPUT: 〈P,Q〉n.
1. Choose a suitable point S ∈ E(K).
2. Q′←Q+ S.
3. T ←P.
4. m←�log2(n)� − 1, f← 1.
5. While m ≥ 0 do:

6. Calculate lines l and v for doubling T.
7. T ← [2]T.

3The generalization of Miller’s algorithm to other divisors D is straightforward.

IX.9. THE MOV/FREY–RÜCK ATTACK ON THE ECDLP 197

8. f← f 2 l(Q′)v(S)
v(Q′)l(S)

.

9. If the mth bit of n is one, then:

10. Calculate lines l and v for addition of T and P.
11. T ←T + P.

12. f← f l(Q′)v(S)
v(Q′)l(S)

.

13. m←m− 1.
14. Return f.

Note that line 12 of the algorithm is simplified to l = (x− xP) and v = 1
in the final iteration since T = −P in that case.

Clearly there are log2(n) iterations of the main loop of Miller’s algorithm
and so the doubling operation is executed log2(n) times. The number of times
the addition operation (lines 10 to 12) is executed is equal to one less than
the Hamming weight of n. Hence Miller’s algorithm runs in polynomial time.

One way to choose a suitable point S is to choose a random point in
E(K). When n is large the algorithm can easily be made deterministic by
taking S = [i]P , where the binary expansion of i is not a segment of the
binary expansion of n (or by taking S = Q if P ∈ E(Fq) and Q
∈ E(Fq)).

A variation of the algorithm outputs an explicit expression for the function
f as a straight-line program (i.e., as a product of powers of small polynomials
which requires polynomial storage space if it is kept in factored form).

Example: Let E : y2 = x3+1 over F101. Then #E(F101) = 101+1 = 2·3·17.
For n = 17 we have k = 2. Write F1012 = F101(θ), where θ2 = −2. Let
P = (87, 61) (which has order 17) and let Q = (48, θ) (which has order 102).
Set D = ([2]Q)− (Q). We compute the following values:

i fi(D) i fi(D)
1 1 8 46 + 18θ
2 52 + 56θ 16 22 + 43θ
4 53 + 3θ 17 74 + 62θ

Hence 〈P,Q〉17 = 74 + 62θ. Raising to the power (1012 − 1)/17 = 600
gives the value 93 + 25θ ∈ µ17.

IX.9. The MOV/Frey–Rück Attack on the ECDLP

An important application of pairings in elliptic curve cryptography is to
transform an instance of the elliptic curve discrete logarithm problem into an
instance of a finite field discrete logarithm problem. The motivation for this
approach is that there are index-calculus algorithms for the discrete logarithm
problem in finite fields which run in subexponential time. An approach using
the Weil pairing was given by Menezes, Okamoto and Vanstone [239] while
an approach using the Tate pairing was given by Frey and Rück [126].

Let P ∈ E(Fq) be of prime order r, coprime to q, and let Q be some
multiple of P . The MOV/Frey–Rück attack is as follows:

198 IX. PAIRINGS

Algorithm IX.2: MOV/Frey–Rück Attack

INPUT: P,Q ∈ E(Fq), of prime order r, such that Q = [λ]P
for some unknown value λ.

OUTPUT: Discrete logarithm λ of Q to the base P.

1. Construct the field Fqk such that r divides (qk − 1).
2. Find4 a point S ∈ E(Fqk) such that e(P, S)
= 1.
3. ζ1← e(P, S).
4. ζ2← e(Q,S).
5. Find λ such that ζλ

1 = ζ2 in F∗
qk using an index-calculus

method (perform linear algebra modulo r).
6. Return λ.

The first steps of this attack require negligible computational resources,
but solving the discrete logarithm problem in the finite field Fqk is non-trivial;
the complexity of solving discrete logarithms in F∗

qk is subexponential in qk.
Hence the attack has exponential complexity in terms of k and this strategy
is only effective when k is “small”.

An important contribution of Menezes, Okamoto and Vanstone was the
observation that supersingular curves always have small values of k; see Corol-
lary IX.21. There are also non-supersingular curves which are vulnerable to
this attack. For example, for every prime power q = pa (p > 2) there are
elliptic curves E over Fq with q − 1 points and the reduction in this case
requires no extension of the ground field.

IX.10. Supersingular Elliptic Curves

We first give the definition of supersingularity (see Silverman [307]).

Definition IX.18. Let E be an elliptic curve over a field Fq, where q is
a power of p. Then E is supersingular if one of the following equivalent
conditions holds:

1. #E(Fq) ≡ 1 (mod p) (equivalently, #E(Fq) = q + 1− t where p|t).
2. E has no points of order p over Fq.

3. The endomorphism ring of E over Fq is non-commutative (more pre-
cisely, is an order in a quaternion algebra).

If E is not supersingular, then it is called ordinary.

Every supersingular elliptic curve in characteristic p has j(E) ∈ Fp2 and

so is isomorphic over Fp to a curve defined over Fp2 . But, in general, there are
twists defined over Fpn which are not isomorphic over Fpn to curves defined
over Fp2 .

4This step is trivial in practice; a random point satisfies the condition with overwhelm-
ing probability.

IX.10. SUPERSINGULAR ELLIPTIC CURVES 199

We will now classify the embedding degrees for supersingular elliptic
curves. First we need a result of Waterhouse.

Theorem IX.19. (Waterhouse [344]) Let p be a prime and let a ∈ N. Define

T = {pa + 1−#E(Fpa) : E an elliptic curve over Fpa}.

Then T equals the set of all t ∈ Z with |t| ≤ 2
√
pa which satisfy one of the

following conditions:

1. gcd(t, p) = 1.
2. If a is even, then t = ±2pa/2.
3. If a is even and p
≡ 1 (mod 3), then t = ±pa/2.
4. If a is odd and p = 2, 3, then t = ±p(a+1)/2.
5. If (a is odd) or (a is even and p
≡ 1 (mod 4)), then t = 0.

The curves corresponding to condition 1 are ordinary while the others are
supersingular.

Theorem IX.20. The following table lists all possibilities for embedding de-
gree and group structure for supersingular elliptic curves over Fq.

k q #E(Fq) Group structure of E(Fqk)
1 p2b q ± 2

√
q + 1 (Z/(

√
q ± 1)Z)2

2 (5) q + 1 (Z/(q + 1)Z)2

3 (3) q +
√
q + 1 (Z/(q3/2 − 1)Z)2

3 (3) q −√q + 1 (Z/(q3/2 + 1)Z)2

4 22b+1 q ±
√

2q + 1 (Z/(q2 + 1)Z)2

6 32b+1 q ±
√

3q + 1 (Z/(q3 + 1)Z)2

In the above table the numbers (3) and (5) in the q column correspond to cases
3 and 5 of Theorem IX.19 (in case 3, q is a square). In the first k = 3 case
the MOV/Frey–Rück attack maps the discrete logarithm into the finite field
Fq3/2 rather than Fq3.

Proof. The proof follows from Theorem IX.19 and [320]. Let q = pa. Since
E is supersingular, the number of points on E over Fq is given by q + 1− t,
where t satisfies one of the conditions 2 to 5.

The characteristic polynomial of the q-power Frobenius map ϕ on E over
Fq is given by P (T) = T 2 − tT + q. If we factor P (T) = (T − α)(T − α) over
C, then the characteristic polynomial of the qk-power Frobenius map on E is
(T − αk)(T − αk) and #E(Fqk) = qk + 1 − αk − αk. Proposition 2 of [320]
shows that if the characteristic polynomial of the qk-power Frobenius map is
(T−αk)2, where αk ∈ Z, then the group structure of E(Fqk) is (Z/|1−αk|Z)2.

• Case t = ±2
√
q:

In this case q is a square and the characteristic polynomial of Frobenius
is P (T) = T 2±2

√
qT+q = (T±√q)2. Since (

√
q+1)(

√
q−1) = (q−1)

the embedding degree is k = 1.

200 IX. PAIRINGS

• Case t = ±√q:
In this case q is a square and #E(Fq) = (q ± √q + 1). We have (q ±√
q + 1)(

√
q ∓ 1) = q3/2 ∓ 1 and (q3/2 − 1)(q3/2 + 1) = (q3 − 1) and so

k = 3. In the case of t = +
√
q we really have #E(Fq) divides (q3/2−1)

and so “k = 3/2”. The characteristic polynomial of the Frobenius map
over Fq3 is P (T) = (T ± q3/2)2.

• Case t = ±p(a+1)/2:
In the case p = 2 we have #E(Fq) = (2a ± 2(a+1)/2 + 1). The char-
acteristic polynomial of Frobenius is T 2 ± 2(a+1)/2T + 2a and its roots
are

α, α = 2a/2

(
∓1± i√

2

)
.

We compute that α4 = α4 = −22a and so the characteristic polynomial
of Frobenius on E over Fq4 is (T + q2)2. Hence [1 + q2]P = O for all
P ∈ E(Fq4) and so E(Fq4) has group structure (Z/(q2 + 1)Z)2. Since
(q +

√
2q + 1)(q −

√
2q + 1) = (q2 + 1) divides (q4 − 1) we deduce that

k = 4.
In the case p = 3 we have #E(Fq) = (q±

√
3q+ 1). The character-

istic polynomial of Frobenius has roots

α, α = 3a/2

(
∓
√

3± i
2

)
.

One sees that α6 = α6 = −33a and so the characteristic polynomial of
Frobenius on E over Fq6 is (T + q3)2. Since (q + 1)(q +

√
3q + 1)(q −√

3q + 1) = (q + 1)(q2 − q + 1) = (q3 + 1) the result follows.
• Case t = 0:

In this case #E(Fq) = (q + 1) and n divides (q − 1)(q + 1) = (q2 − 1)
and so k = 2. The characteristic polynomial of Frobenius over Fp2 is
P (T) = (T + q)2.

Corollary IX.21. (Menezes, Okamoto and Vanstone [239]) Supersingular
elliptic curves have k ≤ 6.

The table in Theorem IX.20 shows us that when E is supersingular and
#E(Fq) has a large prime divisor r then there are no difficulties when com-
paring the groups E(Fqk)[r] and E(Fqk)/rE(Fqk).

Theorem IX.22. Let E be a supersingular elliptic curve over Fq with em-
bedding degree k and let r be a prime dividing #E(Fq) with r > 4

√
q. Then

r2‖#E(Fqk) and E(Fqk)[r] ∩ rE(Fqk) = {O}.

Proof. If r > 4
√
q, then r‖#E(Fq). Furthermore, #E(Fq) is the unique

integer in the Hasse interval which is divisible by r. Since the group orders

IX.11. APPLICATIONS AND COMPUTATIONAL PROBLEMS FROM PAIRINGS 201

specified in Theorem IX.20 are all products of integers in the Hasse interval,
it follows that r2‖#E(Fqk) and that the full r-torsion is defined over Fqk .

In traditional cryptographic applications (i.e., where pairings are not used)
one usually avoids supersingular curves. This is easily achieved. For example,
in characteristic two, none of the elliptic curves y2 + xy = x3 + ax2 + b are
supersingular. Criteria for detecting/avoiding supersingular curves of higher
genus are given in [130].

IX.11. Applications and Computational Problems from Pairings

In this section we consider some computational problems related to pair-
ings. Applications to cryptography will be discussed in Chapter X.

IX.11.1. Deducing Group Structure. The Weil pairing can be used to
determine the group structure of an elliptic curve. The key fact is Corol-
lary IX.11, which gives a test for whether Q ∈ 〈P 〉. Given N = #E(Fq),
if N has no square factors, then the group structure of E(Fq) is isomorphic
to Z/NZ. If r2 divides N , then there could be a point of order r2 or two
independent points of order r. The Weil pairing shows that one can only
have two independent points when r divides (q − 1).

Given the factorization of gcd(q − 1,#E(Fq)) the group structure can be
determined in random polynomial time using the following algorithm due to
Miller [249]. For a rigorous analysis see Kohel and Shparlinski [209].

Algorithm IX.3: Miller’s Algorithm for Group Structure

INPUT: E/Fq with #E(Fq) = N0N1 where gcd(N1, q − 1) = 1 and

all primes dividing N0 divide q − 1.
OUTPUT: Integers r and s such that E(Fq) ∼= (Z/rZ)× (Z/sZ)

as a group.

1. r← 1, s← 1.
2. While (rs
= N0) do:

3. Choose random points P ′, Q′ ∈ E(Fq).
4. P ← [N1]P

′, Q← [N1]Q
′.

5. Find the exact orders m and n of P and Q.
6. r← lcm(m,n).
7. α← er(P,Q).
8. Let s be the exact order of α in µr ⊆ F∗

q.

9. Return s and rN1.

202 IX. PAIRINGS

IX.11.2. Separating DH and DDH. An important computational prob-
lem in cryptography is the elliptic curve decision Diffie–Hellman problem (see
[34]). Let E be an elliptic curve over a field K and let r be a prime.

Decision Diffie–Hellman problem (ECDDH):5 Given points P1, P2, P3

and P4 in E(K)[r] such that P2 = [λ]P1 for some λ, determine whether

P4 = [λ]P3.

In certain cases this problem can be solved using pairings as follows. If
e(P1, P3)
= 1, it is enough to test whether

e(P1, P4) = e(P2, P3).

Joux and Nguyen [186] have constructed elliptic curves (both supersingu-
lar and ordinary) such that the decision Diffie–Hellman probleman be solved
in polynomial time using a pairing, but the (computational) Diffie–Hellman
problem is provably as hard as solving the discrete logarithm problem. This
suggests that ECDDH really is an easier problem than ECCDH.

IX.11.3. Bilinear Diffie–Hellman Problem. Many of the new applica-
tions of pairings in cryptography depend for their security on the difficulty of
the following problem which was first stated by Boneh and Franklin [39].

Bilinear Diffie–Hellman problem (BDH): Given P , Q, P1 = [a]P and
P2 = [b]P such that e(P,Q)
= 1, compute

e([ab]P,Q).

(This is often written in the special case Q = ψ([c]P), where ψ is a distortion
map.)

Lemma IX.23. The BDH problem is no harder than either the elliptic curve
Diffie-Hellman problem (ECDHP) or the finite field Diffie-Hellman problem.

Proof. Given a DH oracle on E we run it on input (P, P1, P2) to obtain
[ab]P and then compute the value e([ab]P,Q).

Given a DH oracle for the finite field we compute h1 = e(P,Q), h2 =
e(P1, Q) = ha

1 and h3 = e(P2, Q) = hb
1 and run the oracle on input (h1, h2, h3).

The result is hab
1 = e([ab]P,Q).

One can also define a decision problem (see Joux [184]).

Decision Bilinear Diffie–Hellman problem (DBDH) : Given P , Q such
that e(P,Q)
= 1, and given P1 = [a]P , P2 = [b]P and g test whether

g
?
= e([ab]P,Q).

The methods of Lemma IX.23 show that the DBDH problem is not harder
than the decision Diffie–Hellman problem in the finite field.

5Our statement of DDH is very general; the authors of [42] call this co-DDH.

IX.12. PARAMETER SIZES AND IMPLEMENTATION CONSIDERATIONS 203

There are many other computational problems relating to pairings (see
Joux [184]). One interesting result is the following.

Theorem IX.24. (Verheul [335]) Let G and H be cyclic groups of prime
order r. Let e : G×G→ H be a non-degenerate pairing where H ⊂ F∗

qk is the
image subgroup. If there is an efficiently computable group homomorphism
from H to G, then the Diffie–Hellman problem in G and H can be efficiently
solved.

Proof. (Sketch) Denote by φ : H → G the homomorphism. Let P, P2 =
[a]P, P3 = [b]P be the input Diffie–Hellman problem and define e(P, P) = h.
If φ(h) = P , then the problem is trivial: [ab]P = φ(e(P2, P3)).

Hence define c to be such that φ(h) = [c]P . Verheul gives a variation on
the double-and-add method which computes Q = [c−2]P as follows. Since
c−2 ≡ cr−3 (mod r), we want to compute [cr−3]P . Given [cn]P one can
compute φ(e(P, [cn]P)) = [cn+1]P and φ(e([cn]P, [cn]P)) = [c2n+1]P .

One then computes [ab]P = φ(e(φ(e([c−2]P, P2)), P3)).

IX.12. Parameter Sizes and Implementation Considerations

The hardness of the BDH depends on the hardness of the DH problems
both on the elliptic curve E(Fq) and in the finite field Fqk . For most cryp-
tographic applications based on pairings we therefore need to be working in
a subgroup of E(Fq) of sufficiently large prime order r and we need to be
working with a sufficiently large finite field. For current minimum levels of
security we require r > 2160 and qk > 21024.

The efficiency depends on the particular scheme, but in general smaller
values for q means that arithmetic on the elliptic curve E(Fq) is faster and
transmission of elliptic curve points in E(Fq) requires less bandwidth. Hence
we tend to want to keep q as small as possible and to gain our security from
larger values for k. A popular choice is to work with points in E(Fq), where
q ≈ 2170, and to have a curve with embedding degree k = 6 so that qk ≈ 21024.

The two main issues for implementing cryptographic applications are

1. How to find suitable elliptic curves.
2. How to compute e(P,Q) quickly.

We deal with these issues in the next two sections.
In the future, key sizes will have to grow to stay ahead of the increased

computational power available to adversaries. There is an asymmetry with
the BDH problem which is worth mentioning. On the elliptic curve side, to
double the time taken to attack the system one adds an extra two bits to the
size of the prime r. On the finite field side, one has to add more than 2 bits
to double the security. For example, if elliptic curve key sizes increased by
50% to 240 bits then the finite field key sizes would at least double to 2048
bits. This issue means that embedding degrees of size larger than 6 may be
useful in the future (see Subsection IX.15.2).

204 IX. PAIRINGS

IX.13. Suitable Supersingular Elliptic Curves

Supersingular curves are suitable for pairing-based cryptosystems since it
is possible to have k = 2, 3, 4 and 6. Table IX.1 contains the most popular
supersingular elliptic curves available for various fields.

Table IX.1. Popular Supersingular Elliptic Curves

k Elliptic curve data
2 E : y2 = x3 + a over Fp, where p ≡ 2 (mod 3)

#E(Fp) = p+ 1
Distortion map (x, y) �→ (ζ3x, y), where ζ3

3 = 1.
2 y2 = x3 + x over Fp, where p ≡ 3 (mod 4)

#E(Fp) = p+ 1.
Distortion map (x, y) �→ (−x, iy), where i2 = −1.

3 E : y2 = x3 + a over Fp2 , where
p ≡ 5 (mod 6) and a ∈ Fp2 , a
∈ Fp is a square which is not a cube.
#E(Fp2) = p2 − p+ 1.
Distortion map (x, y) �→ (xp/(γa(p−2)/3), yp/a(p−1)/2),
where γ ∈ Fp6 satisfies γ3 = a.

4 Ei : y2 + y = x3 + x+ ai over F2, where a1 = 0 and a2 = 1.
#Ei(F2l) = 2l ± 2(l+1)/2 + 1 (l odd)
Distortion map (x, y) �→ (u2x+ s2, y + u2sx+ s), where u ∈ F22

and s ∈ F24 satisfy u2 + u+ 1 = 0 and s2 + (u+ 1)s+ 1 = 0.
6 Ei : y2 = x3 − x+ ai over F3, where a1 = 1 and a2 = −1.

#Ei(F3l) = 3l ± 3(l+1)/2 + 1 (l odd).
Distortion map (x, y) �−→ (α− x, iy), where i ∈ F32 and α ∈ F33

satisfy i2 = −1 and α3 − α− ai = 0.

In the cases k = 2, 3 we have chosen complex multiplication (CM) curves
with discriminant D = −3 and D = −4. One can use other CM discriminants
to get k = 2, 3 (for instance, Examples 5 and 6 of [138] in characteristic p
when (−7

p
) = −1 or (−2

p
) = −1). As we have seen, embedding degree 6 is the

largest which can be achieved using supersingular elliptic curves. We discuss
methods to obtain larger values of k in Section IX.15.

Note that in the characteristic 2 example the distortion map acts as a
cube root of −1 while the characteristic 3 example acts as a square root of
−1. It follows that in both cases the elliptic curve has an endomorphism ring
isomorphic to an order in a quaternion algebra which contains Z[i] or Z[ζ3]
as a subring.

One problem with the examples in characteristics 2 and 3 is that there are
only a small number of curves and fields to choose from. Hence, there is an
element of luck in the search for a suitable large prime factor and our choice
of parameters is not very flexible. No such problems arise when working over
Fp. Two nice examples in characteristic three are over F3163 . We find that

IX.14. EFFICIENT COMPUTATION OF THE TATE PAIRING 205

#E1(F3163) is 7 times a 256-bit prime and that #E2(F3163) is equal to a 259-bit
prime (see [130] for details).

Another consideration for the case of a small characteristic is Copper-
smith’s algorithm [86] for discrete logarithms in finite fields. This algorithm
was originally described in the case of characteristic two but it can be general-
ized to other fields of small characteristic. It is more efficient than the general
methods for taking discrete logarithms in finite fields. So one is obliged to
work with larger fields to get equivalent security to the case of Fp.

IX.14. Efficient Computation of the Tate Pairing

We turn to the issue of efficient computation of the Tate pairing. We
consider the case where E is an elliptic curve over Fq with k > 1 (typically

k = 4 or 6) and we are computing 〈P,Q〉(q
k−1)/n

n with P ∈ E(Fq) and Q ∈
E(Fqk).

The field Fqk is much larger than the field Fq. Hence we perform as many
operations in E(Fq) as possible. The best approach is to represent Fqk as an
extension of Fq with a convenient basis.

The most important implementation techniques are the following. We
refer to Galbraith, Harrison and Soldera [133] and Barreto, Kim, Lynn and
Scott [16, 18] for further details.

1. If possible, work in a small subgroup (n ≈ 2160) of E(Fq) and/or choose
n to have low Hamming weight (in signed binary representation or
signed ternary representation as appropriate).

2. Work over the small field Fq wherever possible. In particular, the func-
tion f with divisor (f) = n(P) − n(O) is defined over Fq and so the
lines l and v in Miller’s algorithm are all defined over Fq. Furthermore,
choose the auxiliary point S in Miller’s algorithm to lie in E(Fq). This
significantly reduces the number of computations (though see point 6
below, where S is omitted entirely when k > 1).

3. Implement arithmetic in Fq and Fqk as efficiently as possible. This is
particularly relevant in characteristic three.

4. Avoid divisions in Fqk . This is done by replacing the variable f in
Miller’s algorithm by f1/f2. Hence, for example, line 8 of Miller’s
algorithm becomes

f1 = f 2
1 l(Q

′)v(S), f2 = f 2
2 v(Q

′)l(S).

A single division is performed at the end of the algorithm.
5. Perform final exponentiation efficiently. In particular, take advantage

of the linearity of the qth power Frobenius map for exponents of special
form. Sometimes several of these exponentiations can be performed in

one. For example, to test whether e(P,Q)
?
= e(R,S), one can test

whether (〈P,Q〉n/〈R,S〉n)(qk−1)/n ?
= 1.

206 IX. PAIRINGS

6. If k > 1 and n is prime, then n does not divide (q−1) and so all elements
of F∗

q map to 1 when raised to the power (qk − 1)/n. Hence we can
ignore all terms in Miller’s algorithm which give rise to an element of
F∗

q. For example, since l, v and S are defined over Fq, we need not
compute l(S) and v(S) at all. Line 8 of Miller’s algorithm becomes

f1 = f 2
1 l(Q

′), f2 = f 2
2 v(Q

′).

Indeed, we may now take Q′ = Q (see Theorem 1 of Barreto et al. [18]).

7. If we are using non-rational endomorphisms of a suitable form, then all
denominators in Miller’s algorithm can be removed (see Barreto et al.
[16, 18]).

Two techniques which are often used to speed-up point exponentiation for
elliptic curves are window methods (see [ECC, Section IV.2.3]) and projective
coordinates ([ECC, Section IV.1]). We now argue that these methods are
not useful in the case of the Tate pairing.

Firstly, when n has low Hamming weight (which is a common case) there
is no advantage from using window methods. Now suppose n is arbitrary and
suppose we use windows of length w. We precompute a table of points [d]P
(where −2w−1 < d ≤ 2w−1) and corresponding function values fd,1/fd,2 which
record the value at the divisor D of the function fd. The key observation is
that, when performing an addition of [d]P rather than P , line 12 of Miller’s
algorithm changes from

f1 = f1l(Q
′), f2 = f2v(Q

′) to f1 = f1fd,1l(Q
′), f2 = f2fd,2v(Q

′).

Hence, as well as the significant initial cost of setting up the table for the
window method, there is an increase from two to four Fqk-multiplications in
each addition stage. If we compute the division during the precomputation
(i.e., fd,2 = 1), then we still require three Fqk-multiplications at the expense of
greater cost during the precomputation. One can therefore show that window
methods do not provide a speedup in this setting.

If group orders without low Hamming weight are used, then the methods
of Eisenträger, Lauter and Montgomery [114] for performing [2]P +Q in one
step give a significant efficiency improvement.

There is no need to use projective coordinates for the points in E(Fqk) as
we have already bundled all the Fqk divisions to a single division at the end.
One can use projective coordinates for the operations in E(Fq). The perfor-
mance analysis depends on the relative costs of inversion and multiplication
in Fq. This idea was examined by Izu and Takagi [180], but their analysis is
misleading. Using projective coordinates does not reduce the number of Fqk

operations and experiments show that affine coordinates are faster.
In equation (IX.1) we saw that the Weil pairing can be computed by

essentially two Tate pairing computations. Hence one might expect that the
Tate pairing is about twice as fast as the Weil pairing (except for the extra

IX.14. EFFICIENT COMPUTATION OF THE TATE PAIRING 207

exponentiation, which is required for the Tate pairing). In fact, since we
usually have P ∈ E(Fq) and Q ∈ E(Fqk), the cost of computing 〈Q,P 〉n
is considerably higher than the cost of computing 〈P,Q〉n. Hence the Tate
pairing is more than twice as fast as the Weil pairing.

IX.14.1. Doubling in Characteristic Two. Let E : y2 + y = x3 + x + a
be a supersingular curve in characteristic 2 with embedding degree k = 4. As
is well known, doubling of points on E can be performed without divisions.

Let P = (x1, y1). Then the tangent line to E at P has slope λ = (x2
1 + 1)

and has equation l : y = λ(x − x1) + y1. The third point of intersection has
x-coordinate x2 = λ2 = x4

1 + 1. The vertical line has equation x − x2 = 0
and [2](x1, y1) = (x2, y2), where y2 = 1 + λ(x2 + x1) + y1. Hence the point
(x2, y2) and the equations of the lines l and v can be computed from (x1, y1)
by two applications of the squaring map (easy in characteristic two), one
multiplication and some additions.

The equation [2](x1, y1) = (x4
1 + 1, y4

1 + x4
1) (if a ∈ F2) shows a connection

between doubling and the action of Frobenius squared. The characteristic
polynomial of Frobenius in this example is T 2 ± 2T + 2. Since

(T 2 + 2T + 2)(T 2 − 2T + 2) = (T 4 + 4)

we have [4] = −ϕ4, where ϕ is the 2-power Frobenius. This gives the formula

[4](x1, y1) = (x16
1 , y

16
1 + 1)

which is clearly a consequence of our doubling formula.

IX.14.2. Tripling in Characteristic Three. Suppose P = (x1, y1) is a
point on

E : y2 = x3 + a4x+ a6

over F3m . The tangent to E at P has slope λ2 = 1/y1 and

[2]P = (x2, y2) = (λ2
2 + x1,−λ3

2 − y1).

The line between (x1, y1) and [2](x1, y1) has slope λ3 = y3
1 − λ2. Putting this

together, if a4, a6 ∈ F3, then

[3](x1, y1) = (x9
1 + a6(1− a4),−y9

1).

So tripling is division-free, although one division is required6 to compute the
equations of the lines l and v. Note that there is a connection between tripling
and Frobenius squared.

Since tripling is so efficient it makes sense to utilize a base three Miller
algorithm in characteristic three. Furthermore, as the next subsection shows,
one can use group orders with low Hamming weight in base three which makes
the base three Miller’s algorithm very efficient.

6This division can usually be avoided by homogenising, since it contributes an element
of Fq which is removed during the final exponentiation.

208 IX. PAIRINGS

The fact that tripling is easy on certain curves in characteristic three was
first noticed by Duursma [110] (Lemma 3.1). Let P = (a, b) be a point on
y2 = x3 − x+ d. Then the function h = b3y − (ap − x+ d)(p+1)/2 satisfies

(h) = 3(x, y)− 3(O) + (−3P)− (O).

This has been used by Duursma and Lee [112] to obtain a faster implemen-
tation of the Tate pairing in characteristic three.

IX.14.3. Low Hamming Weight Example. Often we are not able to
choose the order of P to be a prime of low Hamming weight. For example,

#E1(F3163) = N = 3163 − 382 + 1 = 7r

where r is a prime. The prime r does not have low Hamming weight in base

three. So instead of computing 〈P,Q〉(3
163−1)/r

r we compute 〈P,Q〉(3
163−1)/N

N .
By part 1 of Theorem IX.9 the pairing value is the same in both cases.

Note that the exponentiation is to the power

((3163)6 − 1)/N = (3163·4 + 3163·3 − 3163 − 1)(3163 + 382 + 1)

which also has low Hamming weight. Moreover, this exponentiation can be
computed using repeated applications of the Frobenius map, which is very
efficient.

IX.15. Using Ordinary Curves

As mentioned in Section IX.12, it would be useful to have families of
curves with increasing k.

With supersingular elliptic curves the upper limit is k = 6. Rubin and
Silverberg [306] have shown how to obtain values of k larger than 6 from a
combination of supersingular elliptic curves and Weil descent. Their methods
are quite practical, and they give a significant improvement to the BLS short
signature scheme (see Section 5.1 of [306] for details). However, the possibil-
ities for k are somewhat limited by efficiency considerations. Another avenue
is to use higher genus supersingular curves (see Galbraith [130] and Rubin
and Silverberg [306] for details). However, there are severe limitations in the
higher genus case too.

Instead we turn to ordinary (i.e., non-supersingular) elliptic curves. There
are two problems with ordinary curves in this context.

• As we have seen, there are no distortion maps in this case. Nevertheless,
many of the cryptosystems can be easily modified to handle this issue.

• Results of Balasubramanian and Koblitz [12] show that such curves are
extremely rare. More precisely, if k is fixed, then the expected number
of pairs (q, E), where q is a prime power in the range M/2 ≤ q ≤ M
and E is an Fq-isogeny class of elliptic curves over Fq such that E(Fq)
has a large subgroup with embedding degree k, is O(M1/2+ε). Hence
we cannot expect to find them by choosing curves at random.

IX.15. USING ORDINARY CURVES 209

For the remainder of this section we discuss some special methods for
constructing ordinary elliptic curves with convenient embedding degrees. All
these algorithms are based on the CM method; see [ECC, Chapter VIII]. We
begin by showing that degree 3, 4 and 6 can be recovered in the ordinary case,
and then later show how to find curves with k > 6.

IX.15.1. The MNT Criteria. The first efforts in this direction were ob-
tained by by Miyaji, Nakabayashi and Takano [251] (MNT). They showed
how to obtain the values k = 3, 4, 6 with ordinary elliptic curves.

Theorem IX.25. ([251]) Let E be an ordinary elliptic curve over Fq such
that n = #E(Fq) = q + 1 − t is prime. Then the following table lists all the
possibilities for embedding degree k = 3, 4, 6:

k q t
3 12l2 − 1 −1± 6l
4 l2 + l + 1 −l or l + 1
6 4l2 + 1 1± 2l

It is an easy exercise to check that these group orders have the claimed em-
bedding degrees. The harder part is to show that any such curve with prime
order has these properties. Note that all these examples produce values for q
in quadratic progressions, which agrees with the results of Balasubramanian
and Koblitz.

Miyaji, Nakabayashi and Takano developed a method to construct such
curves using complex multiplication; see [ECC, Chapter VIII]. As is usual for
the CM method, the trick is to choose q and t in such a way that ∆ = t2− 4q
is a large square times a small discriminant.

We give the details of their method in the case k = 6. For q = 4l2 +1 and
t = 1± 2l we find that t2 − 4q = −12l2 ± 4l − 3. Hence we must solve

−12l2 ± 4l − 3 = Dy2

where D is a small CM discriminant. Multiplying by −3 and completing
the square gives −3Dy2 = (6l ∓ 1)2 + 8. Hence, we seek solutions (x, y)
to the Diophantine equation x2 + 3Dy2 = −8. This equation is solved by
finding a single solution and then combining with solutions found using the
continued fraction method to the Pell equation x2 + 3Dy2 = 1. If a solution
has x ≡ ±1 (mod 6), we can compute the corresponding l and test whether
4l2 +1 is prime. Since the Diophantine equation has infinitely many solutions
we have a good chance of success.

Example: Take D = −11. The first step is to find solutions to

x2 − 33y2 = −8

(note that (−8
3

) = (−8
11

) = 1 so we can hope to suceed). We find an initial
solution (x, y) = (5, 1).

210 IX. PAIRINGS

Now, to generate infinitely many solutions we find all the solutions to

x2 − 33y2 = 1

using continued fractions. The first three solutions are (23, 4), (1057, 184) and
(48599, 8460). The first of these solutions combined with the initial solution
(5, 1) gives the solution (x, y) = (17, 3) to the original equation.

Since x is of the form 6l ± 1 we obtain l = 3 and thus q = 4l2 + 1 = 37,
which is prime. The trace is t = 1±2l so t = 7 can be obtained, and this gives
a curve with 31 points and the Frobenius has discriminant t2 − 4q = −3211.

The elliptic curve with complex multiplication byD = −11 has j-invariant
equal to −32768. Hence we find an equation

E : y2 = x3 + 22x+ 27

over F37, which can be checked to have 31 points. One can check that

#E(F376) = 26 · 34 · 5 · 312 · 103.

IX.15.2. Obtaining Larger Values of k. We can now consider how to
generate curves with larger values for k using the CM method. The goal is
to find an elliptic curve E over Fq with complex multiplication by D such
that there is a large prime r dividing #E(Fq) = q + 1 − t and such that r
divides (qk − 1) for a suitable value of k. The condition r divides (qk − 1)
does not preclude r dividing (ql − 1) for some l < k; hence we often use the
condition r divides Φk(q) where Φk(x) denotes the kth cyclotomic polynomial
(see Lang [210] Section VI.3) which is the factor of (xk − 1) which does not
appear as a factor of any polynomial (xl − 1) with l < k.

We can express the requirements by the equations

t2 − 4q = f 2D (IX.2)

q + 1− t ≡ 0 (mod r) (IX.3)

qk − 1 ≡ 0 (mod r). (IX.4)

Equation (IX.3) gives q ≡ t− 1 (mod r) and so equation (IX.4) is equivalent
to (t− 1)k ≡ 1 (mod r). In other words, t− 1 is a kth root of unity modulo
r. Equation (IX.2) gives 4q = t2 − f 2D. If t = 2a is even, then f is even
and we obtain q = a2 − (f/2)2D. If t = 2a + 1 is odd, then we obtain
q = a2 + a+ (1− f 2D)/4.

If values for r and k are fixed, then there are only k−1 possible values for
t modulo r and, for each of these choices, q is determined modulo r. One can
search for prime values of q by searching along a certain arithmetic progression
depending on r. This gives rise to the following algorithm (originally proposed
by Cocks and Pinch [84]) for generating curves using the CM method with
arbitrary embedding degree k and with a large prime factor r of any form.

We give the algorithm in the case D ≡ 0 (mod 4) (the case D ≡ 1 (mod 4)
is similar). Let b = f/2 so that we seek q = a2 − b2D. Substituting this

IX.15. USING ORDINARY CURVES 211

expression and t = 2a into equation (IX.3) gives (a− 1)2− b2D ≡ 0 (mod r).

This implies that b = ±(a − 1)/
√
D (mod r). There are usually several

reasonable choices for g, a and b0, and the algorithm should be run for all
choices to obtain optimal results.

Algorithm IX.4: Curve Construction for Arbitrary k

INPUT: k, r, D ≡ 0 (mod 4) such that r is a prime, D is a

square modulo r and k divides (r − 1).
OUTPUT: p, t such that there is a curve with CM by D over Fp

with p+ 1− t points where r | (p+ 1− t) and r | (pk − 1).

1. Choose a primitive kth root of unity g in Fr.

2. Choose an integer a ≡ 2−1(g + 1) (mod r).
3. If (gcd(a,D)
= 1), then halt (or choose another g).

4. Choose an integer b0 ≡ ±(a− 1)/
√
D (mod r).

5. j← 0.
6. Do

7. p← a2 −D(b0 + jr)2.

8. j← j + 1.
9. Until p is prime.

10. t← 2a.
11. Return p and t.

Example: We illustrate the above algorithm in an example. Let D = −3,
k = 11 and r = 2147483713 = 231 + 26 + 1. Once can check that r is a prime
of low Hamming weight such that k divides (r − 1) and (−3

r
) = 1.

An 11th root of unity modulo r is easily found by taking a random element
modulo r and raising it to the power (r − 1)/11. We take g = 865450015,
which gives a = (g+1)/2 = 432725008. At this stage we know that r divides
((2a− 1)k − 1).

Set b0 = (a − 1)/
√
D ≡ 1946126982 (mod r). Then r divides ((a −

1)2 − Db20) and so, for every number of the form p = a2 − D(b0 + jr)2, we
have r divides (p+ 1− 2a). For the values j = 17, 25, 41, 45, . . . we find that
a2−D(b0+jr)2 is a prime. Taking j = 17 gives p = 4436167653364218931891
which has 72 bits.

The elliptic curve y2 = x3 + 1 modulo p is seen to have p+ 1− 2a points
(which is divisible by r) and the ring generated by the Frobenius endomor-
phism has discriminant 4a2 − 4p = 4(b0 + 17r)2D.

The main drawback of this algorithm is that p > r2 (compared with the
supersingular case, where we had p ≈ r). An algorithm with some features
similar to the above has been given by Dupont, Enge and Morain [109].
More sophisticated methods for generating curves with embedding degree
k > 6 have been given by Barreto, Lynn and Scott [17, 18] and Brezing and

212 IX. PAIRINGS

Weng [49]. In particular, their results have improved relationships between
the sizes of r and p for elliptic curves with embedding degree of special form
such as k = 2i3j (e.g., k = 12). This problem is still an active area of research.

Appendix: Proof of Weil reciprocity

Before we can give the proof of Weil reciprocity we need some further
technical ingredients.

A non-constant rational map φ : C1 → C2 induces a map φ∗ : K(C2) →
K(C1) on the function fields given by φ∗f = f ◦ φ. We can consider K(C1)
as a finite algebraic extension of φ∗K(C2). The degree of φ is deg(φ) =
[K(C1) : φ∗K(C2)]. The map φ∗ : K(C1) → K(C2) is defined by φ∗f =
(φ∗)−1◦NK(C1)/φ∗K(C2)(f), where NK(C1)/φ∗K(C2) is the usual definition of norm
for a finite extension of fields.

Given a non-constant rational map φ : C1 → C2 and a point P on C1

we may define the ramification index eφ(P) in terms of uniformizers (see
Silverman [307] II.2). The ramification index satisfies eφ(P)ordφ(P)(f) =
ordP (φ∗f) for any function f on C2 (see [307] Exercise 2.2). The map φ
induces maps between the divisors on C1 and C2 as follows. We have φ∗ :
Div(C2) → Div(C1) induced by φ∗ : (Q) �→

∑
P∈φ−1(Q) eφ(P)(P). We have

φ∗ : Div(C1)→ Div(C2) induced by φ∗ : (Q) �→ (φ(Q)).
A non-constant function f on C can be thought of as a non-constant

rational map f : C → P1 over K. Given f : C → P1 we have (f) =
f ∗((0)− (∞)).

Lemma IX.26. Let φ : C1 → C2 be a non-constant rational map, let fi : Ci →
P1 for i = 1, 2 be functions and let Di be divisors on Ci for i = 1, 2. We have
the following properties:

1. φ∗((f2)) = (φ∗f2).
2. φ∗((f1)) = (φ∗f1).
3. φ∗ ◦ φ∗ = [deg φ] in Div(C2).
4. f1(φ

∗D2) = (φ∗f1)(D2).
5. f2(φ∗D1) = (φ∗f2)(D1).

Proof. For 1, 2 and 3 see Silverman [307, Proposition II.3.6]. For 4 and 5
see Silverman [307, Exercise 2.10].

Proof. (of Weil reciprocity Theorem IX.3) We first prove the result in the
case C = P1. We identify P1(K) with {a ∈ K} ∪ {∞}. A function f
on C is a ratio u(x, z)/v(x, z) of two homogeneous polynomials over K of
the same degree. In practice, we can consider the restriction of f to an
affine set, and so write f as a ratio u(x)/v(x), where u(x), v(x) ∈ K[x].
If f =

∏m
i=1(x − ai)

nai , then (f) =
∑m

i=1 nai
(ai) − n∞(∞), where n∞ =∑m

i=1 nai
= deg(u(x))− deg(v(x)), and vice versa.

APPENDIX: PROOF OF WEIL RECIPROCITY 213

Let f be as above, let g =
∏m′

j=1(x− bj)
nbj and suppose that both (f) and

(g) have disjoint support with no points at infinity (in other words, ai
= bj
for all i and j and

∑m
i=1 nai

=
∑m′

j=1 nbj
= 0). Then

f((g)) =
m′∏
j=1

m∏
i=1

(bj − ai)
nainbj

= (−1)(
∑m

i=1

∑m′
j=1 nainbj

)
m′∏
j=1

m∏
i=1

(ai − bj)nainbj

= g((f))

where the sign is 1 since

m∑
i=1

m′∑
j=1

nai
nbj

=

(
m∑

i=1

nai

)(
m′∑
j=1

nbj

)
= 0 · 0 = 0.

The case where ∞ appears in the support of either (f) or (g) arises when
the degree of the numerator is not equal to the degree of the denominator.
We define (∞− bi)/(∞− bj) = 1 and the rest of the proof proceeds as before.
This proves the result for P1.

In the general case let i be the identity function on P1. Then (i) =
(0)− (∞) and as noted above (g) = g∗((i)). We therefore have

f((g)) = f(g∗((i))) = (g∗f)((i)).

Now, g∗f is a function on P1 and so, by Weil reciprocity on P1, we have
(g∗f)((i)) = i((g∗f)). To complete the proof we note that

i((g∗f)) = (g∗i)((f)) = i ◦ g((f)) = g((f)).

CHAPTER X

Cryptography from Pairings

K.G. Paterson

X.1. Introduction

This chapter presents a survey of positive applications of pairings in cryp-
tography. We assume the reader has a basic understanding of concepts from
cryptography such as public-key encryption, digital signatures, and key ex-
change protocols. A solid grounding in the general area of cryptography can
be obtained by reading [240].

We will attempt to show how pairings (as described in Chapter IX) have
been used to construct a wide range of cryptographic schemes, protocols and
infrastructures supporting the use of public-key cryptography. Recent years
have seen an explosion of interest in this topic, inspired mostly by three
key contributions: Sakai, Ohgishi and Kasahara’s early and much overlooked
work introducing pairing-based key agreement and signature schemes [284];
Joux’s three-party key agreement protocol as presented in [183]; and Boneh
and Franklin’s identity-based encryption (IBE) scheme built from pairings
[38]. The work of Verheul [335] has also been influential because it eases
the cryptographic application of pairings. We will give detailed descriptions
of these works as the chapter unfolds. To comprehend the rate of increase
of research in this area, note that the bibliography of an earlier survey [273]
written in mid-2002 contains 28 items, while, at the time of writing in early
2004, Barreto’s website [15] lists over 100 research papers.1

Thus a survey such as this cannot hope to comprehensively cover all of
the pairing-based cryptographic research that has been produced. Instead,
we focus on presenting the small number of schemes that we consider to be
the high points in the area and which are likely to have a significant impact
on future research. We provide brief notes on most of the remaining literature
and omit some work entirely. We do not emphasise the technical details of
security proofs, but we do choose to focus on schemes that are supported by
such proofs.

1A second source for papers on cryptography from pairings is the IACR preprint server
at http://eprint.iacr.org. Another survey on pairings and cryptography by Joux [184]
covers roughly the same topics as this and the previous chapter.

215

216 X. CRYPTOGRAPHY FROM PAIRINGS

X.1.1. Chapter Plan. In the next two sections we introduce the work of
Sakai et al. [284], Joux [183] and Boneh and Franklin [38]. Then in Section
X.4, we consider various types of signature schemes derived from pairings.
Section X.5 is concerned with further developments of the IBE scheme of [38]
in the areas of hierarchical identity-based cryptography, intrusion-resilient
cryptography and related topics. Section X.6 considers how the key agree-
ment protocols of [284, 183] have been extended. In the penultimate section,
Section X.7, we look more closely at identity-based cryptography and exam-
ine the impact that pairings have had on infrastructures supporting the use of
public-key cryptography. We also look at a variety of trials and implementa-
tions of pairing-based cryptography. We draw to a close with a look towards
the future in Section X.8.

X.1.2. Pairings as Black Boxes. In this chapter we will largely treat pair-
ings as “black boxes,” by which we mean that we will not be particularly
interested in how the pairings can be selected, computed and so on. Rather
we will treat them as abstract mappings on groups. Naturally, Chapter IX is
the place to look for the details on these issues. The reason to do this is so
that we can concentrate on the general cryptographic principles behind the
schemes and systems we study, without being distracted by the implementa-
tion details. It does occasionally help to look more closely at the pairings,
however. For one thing, the availability of easily computable pairings over
suitably “compact” groups and curves is key to the utility of some of the
pairing-based proposals that we study. And of course the real-world security
of any proposal will depend critically on the actual curves and pairings se-
lected to implement that proposal. It would be inappropriate in a chapter
on applications in cryptography to completely ignore these issues of efficiency
and security. So we will “open the box” whenever necessary.

Let us do so now, in order to re-iterate some notation from the previous
chapter and to establish some of the basics for this chapter. We recall the
basic properties of a pairing e : G1 ×G2 → G3 from Section IX.1. In brief, e
is a bilinear and non-degenerate map and will be derived from a Tate or Weil
pairing on an elliptic curve E(Fq). In cryptographic applications of pairings,
it is usually more convenient to work with a single subgroup G1 of E(Fq)
having prime order r and generator P as input to the pairing, instead of two
groups G1 and G2. For this reason, many of the schemes and systems we
study were originally proposed in the context of a “self-pairing” as described
in Section IX.7. To ensure that the cryptographic schemes are not completely
trivial, it is then important that e(P, P)
= 1. The distortion maps of Verheul
[335] are particularly helpful in ensuring that these conditions can be met
for supersingular curves.

As in Section IX.7.3, we assume that E(Fq) is a supersingular elliptic curve
with r|#E(Fq) for some prime r. We write k > 1 for the embedding degree
for E and r and assume that E(Fqk) has no points of order r2. As usual,

X.1. INTRODUCTION 217

we write e(Q,R) = 〈Q,R〉(q
k−1)/r

r ∈ Fqk for Q ∈ E(Fq)[r] and R ∈ E(Fqk).
We then let ϕ denote a non-rational endomorphism of E (a distortion map).
Suitable maps ϕ are defined in Table IX.1. We put G1 = 〈P 〉, where P is
any non-zero point in E(Fq)[r] and G3 = F∗

qk/(F
∗
qk)

r. We then write ê for the
map from G1 ×G1 to G3 defined by:

ê(Q,R) = e(Q,ϕ(R)).

The function ê is called a modified pairing. As a consequence of its derivation
from the pairing e and distortion map ϕ, it has the following properties:

Bilinearity: For all Q,Q′, R,R′ ∈ G1, we have

ê(Q+Q′, R) = ê(Q,R) · ê(Q′, R)

and
ê(Q,R +R′) = ê(Q,R) · ê(Q,R′).

Symmetry: For all Q,R ∈ G1, we have

ê(Q,R) = ê(R,Q).

Non-degeneracy: We have

ê(P, P)
= 1.

Hence we have: ê(Q,P)
= 1 for all Q ∈ G1, Q
= O and ê(P,R)
= 1
for all R ∈ G1, R
= O.

Although our notation inherited from the previous chapter suggests that
the map ê must be derived from the Tate pairing, this need not be the case.
The Weil pairing can also be used. However, as Chapter IX spells out, the
Tate pairing is usually a better choice from an implementation perspective.

Relying on distortion maps in this way limits us to using supersingular
curves. There may be good implementation or security reasons for working
with curves other than these, again as Chapter IX makes clear. (In partic-
ular, special purpose algorithms [2, 3, 86, 185] can be applied to solve the
discrete logarithm problem in Fqk when E is one of the supersingular curves
over a field of characteristic 2 or 3 in Table IX.1. This may mean that larger
parameters than at first appears must be chosen to obtain the required secu-
rity levels.) Most of the cryptographic schemes that were originally defined
in the self-pairing setting can be adapted to operate with ordinary curves and
unmodified pairings, at the cost of some minor inconvenience (and sometimes
a loss of bandwidth efficiency). We will encounter situations where ordinary
curves are in fact to be preferred. Moreover, we will present some schemes us-
ing the language of self-pairings that were originally defined using unmodified
pairings. We will note in the text where this is the case.

We can summarize the above digression into some of the technicalities
of pairings as follows. By carefully selecting an elliptic curve E(Fq), we can
obtain a symmetric, bilinear map ê : G1 × G1 → G3 with the property
that ê(P, P)
= 1. Here, P of prime order r on E(Fq) generates G1 and

218 X. CRYPTOGRAPHY FROM PAIRINGS

G3 is a subgroup of Fqk for some small k. When parameters 〈G1, G3, ê〉 are
appropriately selected, we also have the following properties:

Efficiency: The computation of ê can be made relatively efficient (equiv-
alent perhaps to a few point multiplications on E(Fq)). Elements of G1

and G3 have relatively compact descriptions as bit-strings, and arith-
metic in these groups can be efficiently implemented.

Security: The bilinear Diffie–Hellman problem and the decision bilinear
Diffie–Hellman problem are both computationally hard.2

X.2. Key Distribution Schemes

In this section we review the work of Sakai et al. [284] and Joux [183]
on key distribution schemes built from pairings. These papers paved the way
for Boneh and Franklin’s identity-based encryption scheme, the subject of
Section X.3. Note that both papers considered only unmodified pairings. We
have translated their schemes into the self-pairing setting in our presentation.

X.2.1. Identity-Based Non-Interactive Key Distribution. Key distri-
bution is one of the most basic problems in cryptography. For example,
frequently refreshed, random keys are needed for symmetric encryption al-
gorithms and MACs to create confidential and integrity-protected channels.
Consider the situation of two parties A and B who want to compute a shared
key KAB but cannot afford to engage in a Diffie–Hellman protocol (perhaps
one of them is initially offline or they cannot afford the communications over-
head of an interactive protocol).

Sakai et al. [284] proposed a pairing-based solution to this problem of
constructing a non-interactive key distribution scheme (NIKDS). An impor-
tant and interesting feature of their solution is its identity-based nature. The
notion of identity-based cryptography dates back to work of Shamir [296].
Shamir’s vision was to do away with public keys and the clumsy certificates
for those public keys, and instead build cryptographic schemes and proto-
cols in which entities’ public keys could be derived from their identities (or
other identifying information) alone. In place of a Certification Authority
(CA), Shamir envisaged a Trusted Authority (TA) who would be responsible
for the issuance of private keys and the maintenance of system parameters.
Whilst Shamir was able to construct an identity-based signature scheme in
[296], and identity-based NIKDS followed from a variety of authors (see [240,
p. 587]), the problem of constructing a truly practical and provably secure
identity-based encryption scheme remained an open problem until the advent
of pairing-based cryptography. As we shall see in Section X.3, the work of

2Note that these problems are defined in Section IX.11.3 for unmodified pairings. We
will define the BDH problem for modified pairings below, after which the definition of the
DBDH problem should be obvious.

X.2. KEY DISTRIBUTION SCHEMES 219

Sakai et al. [284] can be regarded as being pivotal in Boneh and Franklin’s
solution of this problem.

Sakai et al. make use of a TA who chooses and makes public the system
parameters of the form 〈G1, G3, ê〉 (with properties as in Section X.1.2) along
with a cryptographic hash function

H1 : {0, 1}∗ → G1

mapping binary strings of arbitrary length onto elements of G1. We briefly
indicate in Section X.3.1 below how such a hash function can be constructed.
The TA also selects but keeps secret a master secret s ∈ Z∗

r. The TA interacts
with A and B, providing each of them with a private key over a confidential
and authenticated channel. These private keys depend on s and the individ-
uals’ identities: the TA computes as A’s secret the value SA = [s]QA, where
QA = H1(IDA) ∈ G1 is a publicly computable function of A’s identity. Like-
wise, the TA gives B the value SB = [s]QB, where QB = H1(IDB). Because
of its role in distributing private keys, the TA is also known as a Private Key
Generator (PKG) in these kinds of applications.

Now, with this keying infrastructure in place, consider the equalities:

ê(SA, QB) = ê([s]QA, QB) = ê(QA, QB)s = ê(QA, [s]QB) = ê(QA, SB),

where we have made use of the bilinearity of ê. On the one hand, A has the
secret SA and can compute QB = H1(IDB) using the public hash function H1.
On the other hand, B can compute QA and has the secret SB. Thus both
parties can compute the value KAB = ê(QA, QB)s and, provided they know
each others’ identifying information, can do so without any interaction at all.
A key suitable for use in cryptographic applications can be derived from KAB

by the appropriate use of a key derivation function.
A closely related version of this procedure was rediscovered somewhat

later by Dupont and Enge [108]. Their scheme works in the unmodified
setting and requires that each entity receive two private key components (one
in each group G1 and G2). The security proof in [108] is easily adapted to
the self-pairing setting. The adapted proof models the hash function H1 as a
random oracle and allows the adversary the power to obtain the private keys
of arbitrary entities (except, of course, the keys of entities A and B).

The proof shows that the above procedure generates a key ê(QA, QB)
which cannot be computed by an adversary, provided that the (modified)
bilinear Diffie–Hellman problem (BDH problem) is hard. This problem can
be stated informally as follows (c.f. the definition in Section IX.11.3):

Bilinear Diffie–Hellman Problem (BDH Problem): given P , P1 =
[a]P , P2 = [b]P and P3 = [c]P in G1 with a, b and c selected uniformly at
random from Z∗

r, compute

ê(P, P)abc.

220 X. CRYPTOGRAPHY FROM PAIRINGS

One implication of the security proof is that the scheme is collusion re-
sistant: no coalition of entities excluding A and B can join together and
compromise the key KAB. Notice, however, that the TA can generate A and
B’s common key for itself – the scheme enjoys (or suffers from, depending on
one’s point of view and the application in mind) key escrow. For this reason,
A and B must trust the TA not to eavesdrop on communications encrypted
by this key and not to disclose the key to other parties. In particular, they
must trust the TA to adequately check claimants’ identities before issuing
them with private keys.

For the purpose of comparison, consider the following alternative tradi-
tional (i.e., certificate-based) means of realizing a NIKDS. A CA publishes
system parameters 〈E(Fq), P 〉, where P on E is of prime order r. A chooses a
private value a, calculates the public value qA = [a]P and obtains a certificate
on IDA and qA from a Certification Authority (CA). Entity B does the same
with his value b. Now A can compute a common key as follows: A fetches B’s
certificate and verifies that it is valid by checking the CA’s signature. Now
A can combine his secret a with B’s value [b]P to obtain [ab]P . This value
constitutes the common key. Here, A and B have simply engaged in a non-
interactive version of the ECDH protocol. The complexity with this approach
comes from the need for A to obtain B’s certificate, verify its correctness and
check its revocation status, and vice versa. These checks require the use of a
public-key infrastructure (PKI). In contrast, with the identity-based scheme
of [284], all A needs is B’s identity string IDB and the public parameters of
the TA.3 This could be B’s e-mail or IP address, or any other string which
identifies B uniquely within the context of the system. The trust in pub-
lic values does not come from certificates but is rather produced implicitly
through A’s trust in the TA’s private key issuance procedures.

At this point, the reader would be justified in asking: why do A and
B simply not use the key KAB as the basis for deriving an encryption key?
Moreover, if they do, why does the combination of Sakai et al.’s identity-
based NIKDS with this encryption not constitute an identity-based encryp-
tion scheme? There are two parts to the answer to this latter question. First
of all, the key they agree on is static, whereas a dynamic message key would
be preferable. Secondly, and more importantly, both A and B must have
registered ahead of time and have received their private keys before they can
communicate in this way. A true public-key encryption scheme would not
require the encrypting party to register and obtain such a key.

X.2.2. Three-Party Key Distribution. Around the same time that Sakai
et al. proposed their two-party NIKDS, Joux [183] put forward a three-party

3The revocation issue for the identity-based approach also requires careful consid-
eration. We shall return to this topic in Section X.7, where we take a closer look at
identity-based systems.

X.3. IDENTITY-BASED ENCRYPTION 221

key agreement protocol with the novel feature that only one (broadcast) mes-
sage per participant is required to achieve key agreement. Thus only one
round of communication is needed to establish a shared key. This contrasts
sharply with the two rounds that are needed if a naive extension of the (Ellip-
tic Curve) Diffie–Hellman protocol is used. We sketch Joux’s protocol. First
of all, it is assumed that the three parties have agreed in advance on system
parameters 〈G1, G3, ê, P 〉. Then entity A selects a ∈ Z∗

r uniformly at random
and broadcasts an ephemeral value [a]P to entities B and C. Entity B (re-
spectively C) selects b (resp. c) in the same way and broadcasts [b]P (resp.
[c]P) to the other entities. Now by bilinearity we have:

ê([b]P, [c]P)a = ê([a]P, [c]P)b = ê([a]P, [b]P)c

so that each party, using its private value and the two public values, can
calculate the common value

KABC = ê(P, P)abc ∈ G3.

This value can be used as keying material to derive session keys. On the other
hand, an adversary who only sees the broadcast messages [a]P , [b]P , [c]P is
left with an instance of the BDH problem to solve in order to calculate KABC .
This last statement can be formalized to construct a security proof relating
the security of this protocol against passive adversaries to the hardness of the
(modified) BDH problem. The protocol is vulnerable to an extension of the
classic man-in-the-middle attack conducted by an active adversary. We will
return to this issue in Section X.6 below.

Note the importance of the fact that ê(P, P)
= 1 here. Without this
condition, KABC could trivially equal 1 ∈ G3. Joux’s protocol was originally
stated in the context of an unmodified pairing and required each participant
to broadcast a pair of independent points of the form [a]P, [a]Q in order to
avoid degeneracy in the pairing computation. Using modified pairings limits
the range of curves for which the protocol can be realized but decreases its
bandwidth requirements. This point was first observed by Verheul [335].

X.3. Identity-Based Encryption

As we have discussed above, the construction of a workable and provably
secure identity-based encryption (IBE) scheme was, until recently, an open
problem dating back to Shamir’s 1984 paper [296]. Two solutions appeared
in rapid succession in early 2001 – the pairing-based approach of Boneh and
Franklin [38] (appearing in an extended version as [39]) and Cocks’ scheme
based on the Quadratic Residuosity problem [83]. It has since become ap-
parent that Cocks’ scheme was discovered some years earlier but remained
unpublished until 2001, when the circulation of Boneh and Franklin’s scheme

222 X. CRYPTOGRAPHY FROM PAIRINGS

prompted its disclosure.4 We do not discuss Cocks’ scheme any further here
but recommend that the interested reader consult [83] for the details.

X.3.1. The Basic Scheme of Boneh and Franklin. We first discuss the
scheme BasicIdent of [39]. This basic IBE scheme is useful as a teaching
tool, but is not suited for practical use (because its security guarantees are too
weak for most applications). We will study the full scheme FullIdent of [39]
in Section X.3.3. The IBE scheme BasicIdent makes use of essentially the
same keying infrastructure as was introduced above in describing the NIKDS
of Sakai et al. The TA (or PKG) publishes system parameters 〈G1, G3, ê〉. In
addition, the PKG publishes a generator P for G1, together with the point
Q0 = [s]P , where, as before, s ∈ Z∗

r is a master secret. Note that Q0 is
denoted by Ppub in [39]. Descriptions of cryptographic hash functions

H1 : {0, 1}∗ → G1, H2 : G3 → {0, 1}n

are also made public. Here, n will be the bit-length of plaintext messages. So
the complete set of system parameters is

〈G1, G3, ê, P,Q0, n,H1, H2〉.
As in the scheme of [284], each entity A must be given a copy of its private
key SA = [s]QA = [s]H1(IDA) over a secure channel.

With this set of parameters and keys in place, BasicIdent encryption
proceeds as follows. To encrypt an n-bit plaintextM for entity A with identity
IDA, entity B computes QA = H1(IDA), selects t ∈ Z∗

r uniformly at random
and computes the ciphertext as:

C = 〈[t]P,M ⊕H2(ê(QA, Q0)
t)〉 ∈ G1 × {0, 1}n.

To decrypt a received ciphertext C = 〈U, V 〉 in the scheme BasicIdent,
entity A computes

M ′ = V ⊕H2(ê(SA, U))

using its private key SA = [s]QA.
To see that encryption and decryption are inverse operations, note that

(by bilinearity)

ê(QA, Q0)
t = ê(QA, P)st = ê([s]QA, [t]P) = ê(SA, U).

On the one hand, the encryption mask H2(ê(QA, Q0)
t) that is computed by

entity B is the same as that computed by A, namely, H2(ê([s]QA, U)). On
the other hand, the computation of the encryption mask by an eavesdropper
(informally) requires the computation of ê(QA, Q0)

t from the values P , QA,
Q0 and U = [t]P . This task is clearly related to solving the (modified) BDH
problem.

4Very recently, it has come to our attention that Sakai, Ohgishi and Kasahara proposed
an IBE scheme using pairings in May 2000. Their paper was published in Japanese in the
proceedings of the 2001 Symposium on Cryptography and Information Security, January
2001; an English version is available from the authors.

X.3. IDENTITY-BASED ENCRYPTION 223

Notice that encryption and decryption each require one pairing compu-
tation, but that the cost of this can be spread over many encryptions if the
encrypting party repeatedly sends messages to the same entity. A small num-
ber of other operations is also needed by each entity (dominated by hashing
and exponentiation in G1 and G3). Ciphertexts are relatively compact: they
are equal in size to the plaintext plus the number of bits needed to represent
an element of G1.

The definition of the hash function H1 mapping arbitrary strings onto
elements of G1 requires care; a detailed exposition is beyond the scope of this
survey. The reader is referred to [39, Sections 4.3 and 5.2] for the details of
one approach that works for a particular class of curves and to [42, Section
3.3] for a less elegant method which works for general curves.

X.3.2. Relationship to Earlier Work. It is instructive to examine how
this basic identity-based encryption scheme relates to earlier work. There are
(at least) two different ways to do so.

Writing QA = [a]P for some a ∈ Z∗
r, we see that the value ê(QA, Q0)

t

appearing in BasicIdent is equal to ê(P, P)ast. Thus it is formally equal
to the shared value that would be agreed in an instance of Joux’s protocol
in which the ephemeral values “broadcast” by the entities were QA = [a]P ,
Q0 = [s]P and U = [t]P . In the encryption scheme, only U is actually
transmitted; the other values are static in the scheme and made available
to B through the system parameters and hashing of A’s identity. One can
think of Q0 = [s]P as being the ephemeral value from a “dummy” entity
here. Entity A gets the value U from B and is given the ability to compute
ê(P, P)ast when the PKG gives it the value [s]QA = [sa]P . Thus Boneh and
Franklin’s IBE scheme can be regarded as a rather strange instance of Joux’s
protocol.

Perhaps a more profitable way to understand the scheme is to compare it
to ElGamal encryption. In a variant of textbook ElGamal, an entity A has a
private key xA ∈ Z∗

r and a public key yA = gxA . To encrypt a message for A,
entity B selects t ∈ Z∗

r uniformly at random and computes the ciphertext as:

C = 〈gt,M ⊕H2(yA
t)〉

while to decrypt C = 〈U, V 〉, entity A computes

M ′ = V ⊕H2(U
xA).

Thus one can regard the basic IBE scheme of Boneh and Franklin as being
an adaptation of ElGamal encryption in which ê(QA, Q0), computed from
system parameters and A’s identity, replaces the public key yA.

We have already noted the similarities in keying infrastructures used by
Boneh and Franklin’s IBE scheme and in the NIKDS of Sakai et al. [284].
The above discussion shows a relationship between Boneh and Franklin’s IBE
scheme and Joux’s protocol [183]. However, it would be wrong to leave the
impression that Boneh and Franklin’s scheme is just a simple development

224 X. CRYPTOGRAPHY FROM PAIRINGS

of ideas in these earlier papers. Prior to Boneh and Franklin’s work, Joux’s
protocol was merely an interesting curiosity and the work of [284] almost
unknown to the wider community. It was Boneh and Franklin’s work that
quickly led to a wider realization that pairings could be a very useful con-
structive cryptographic tool and the spate of research that followed.

X.3.3. Security of Identity-Based Encryption. Boneh and Franklin pro-
vide in [39] a variant of BasicIdent named FullIdent which offers stronger
security guarantees. In particular, the security of FullIdent can be related
to the hardness of the BDH problem in a model that naturally extends the
widely-accepted IND-CCA2 model for public-key encryption (see Definition
III.4) to the identity-based setting. We present the scheme FullIdent below,
outline the security model introduced in [39] and then discuss the security of
FullIdent in this model.

In general, an IBE scheme can be defined by four algorithms, with func-
tions as suggested by their names: Setup, (Private Key) Extract, Encrypt
and Decrypt. For the scheme FullIdent, these operate as follows:

Setup: This algorithm takes as input a security parameter 	 and outputs the
system parameters:

params = 〈G1, G3, ê, n, P,Q0, H1, H2, H3, H4〉.
Here G1, G3 and ê are the usual objects5, n is the bit-length of plaintexts,
P generates G1 and Q0 = [s]P , where s is the scheme’s master secret.
Hash functions H1 and H2 are as above, while H3 : {0, 1}2n → Z∗

r and
H4 : {0, 1}n → {0, 1}n are additional hash functions. In principle, all of
these parameters may depend on 	.

Extract: This algorithm takes as input an identity string ID and returns the
corresponding private key [s]H1(ID).

Encrypt: To encrypt the plaintext M ∈ {0, 1}n for entity A with identity
IDA, perform the following steps:

1. Compute QA = H1(IDA) ∈ G1.
2. Choose a random σ ∈ {0, 1}n.
3. Set t = H3(σ,M).
4. Compute and output the ciphertext:

C = 〈[t]P, σ ⊕H2(ê(QA, Q0)
t),M ⊕H4(σ)〉 ∈ G1 × {0, 1}2n.

Decrypt: Suppose C = 〈U, V,W 〉 ∈ G1 × {0, 1}2n is a ciphertext encrypted
for A. To decrypt C using the private key [s]QA:

1. Compute σ′ := V ⊕H2(ê([s]QA, U)).
2. Compute M ′ := W ⊕H4(σ

′).

5Boneh and Franklin make use of a subsidiary instance generating algorithm IG to
produce the parameters 〈G1, G3, ê〉 (possibly probabilistically) from input �, the security
parameter.

X.3. IDENTITY-BASED ENCRYPTION 225

3. Set t′ = H3(σ
′,M ′) and test if U = [t′]P . If not, reject the ciphertext.

4. Otherwise, output M ′ as the decryption of C.

The reader should compare FullIdent with the basic scheme above.
When C is a valid encryption of M , it is quite easy to see that decrypt-
ing C will result in an output M ′ = M . The value H2(e(QA, Q0)

t) is still
used as an encryption mask, but now it encrypts a string σ rather than the
plaintext itself. The string σ is subsequently used to form an encryption key
H4(σ) to mask the plaintext. The encryption process also now derives t by
hashing rather than by random choice; this provides the decryption algorithm
with a checking facility to reject ciphertexts that are not of the correct form.

In fact, the scheme FullIdent is obtained from the basic scheme of the
previous section by applying the Fujisaki–Okamoto hybridization technique
[128]. It is this technique that ensures FullIdent meets the strong security
definition in the model developed by Boneh and Franklin in [39]. In that
model, an adversary A plays against a challenger C in the following game:

IND-ID-CCA Security Game: The game runs in five steps:
Setup: C runs algorithm Setup on input some value 	, gives A the system
parameters params and keeps the master secret s to itself.

Phase 1: A issues a series of queries, each of which is either an Extract

query on an identity, in which case C responds with the appropriate private
key, or a Decrypt query on an identity/ciphertext combination, in which case
C responds with an appropriate plaintext (or possibly a fail message).

Challenge: Once A decides to end Phase 1, it selects two plaintexts M0, M1

and an identity IDch on which it wishes to be challenged. We insist that IDch

not be the subject of an earlier Extract query. Challenger C then chooses b
at random from {0, 1} and runs algorithm Encrypt on Mb and IDch to obtain
the challenge ciphertext C∗; C then gives C∗ to A.

Phase 2: A issues another series of queries as in Phase 1, with the restriction
that no Extract query be on IDch and that no Decrypt query be on the
combination 〈IDch, C

∗〉. C responds to these as before.

Guess: Finally, A outputs a guess b′ and wins the game if b′ = b.

Adversary A’s advantage is defined to be Adv(A) := 2|Pr [b′ = b] − 1
2
|,

where the probability is measured over any random bits used by C (for exam-
ple, in the Setup algorithm) and A (for example, in choosing ciphertexts and
identities to attack). An IBE scheme is said to be semantically secure against
an adaptive chosen ciphertext attack (IND-ID-CCA secure) if no polynomi-
ally bounded adversary A has a non-negligible advantage in the above game.
Here, non-negligiblity is defined in terms of the security parameter 	 used

226 X. CRYPTOGRAPHY FROM PAIRINGS

in the Setup algorithm.6 This model and definition of security extends the
by-now-standard IND-CCA2 notion of security for public-key encryption: it
allows the adversary to access private keys of arbitrary entities (except the
challenge identity, of course) as well as giving the adversary access to a de-
cryption oracle. It also allows the adversary to choose the public key on which
it is to be challenged and automatically captures attacks involving colluding
entities.

It is proved in [39] that the scheme FullIdent is IND-ID-CCA secure in
the Random Oracle model, provided that there is no polynomially bounded
algorithm having a non-negligible advantage in solving the BDH problem.
Here, parameters 〈G1, G2, ê〉 for the BDH problem are assumed to be gener-
ated with the same distribution as by the Setup algorithm of FullIdent.

The proof of security for FullIdent proceeds in several stages. First it is
shown, via a fairly standard simulation argument, that an adversary who can
break FullIdent (in the sense of winning the IND-ID-CCA security game)
can be used to produce an adversary that breaks a related standard public-key
encryption scheme in an IND-CCA2 game. Then results of [128] are invoked
to relate the IND-CCA2 security of the public-key scheme to the security
of a simpler public-key encryption scheme BasicPub, but in a much weaker
attack model (one without decryption queries). Finally, it can be shown
directly that an adversary breaking BasicPub can be used to construct an
algorithm to solve instances of the BDH problem. For details of these steps,
see [39, Lemma 4.3, Lemma 4.6 and Theorem 4.5].7 The security analysis in
[39] depends in a crucial way on the replacement of hash functions H1, H2, H3

and H4 by random oracles. At the time of writing, it is still an open problem
to produce an IBE scheme that is provably secure in Boneh and Franklin’s
security model, but without modelling any hash functions as random oracles.
The composition of a sequence of security reductions also yields a fairly loose
relationship between the security of FullIdent and the hardness of the BDH
problem. Tightening this relationship seems to be a difficult challenge.

This concludes our description of the identity-based encryption scheme
of Boneh and Franklin [39]. The paper [39] contains much else of interest
besides, and we recommend it be read in detail by every reader who has more
than a passing interest in the subject.

X.3.4. Further Encryption Schemes. In [335], Verheul showed how pair-
ings can be used to build a scheme supporting both non-repudiable signatures
and escrowable public-key encryption using only a single public key.

6A function f of � is said to be negligible if, for any polynomial p(�), there exists �0
such that, for all � > �0, f(�) < 1/p(�). Naturally, a function is said to be non-negligible if
it is not negligible.

7But note that the proof of Lemma 4.6 in [39] requires a small repair: when coini = 1,
the values bi should be set to equal 1, so that the ciphertexts C ′

i do not always fail the
consistency check in the decryption algorithm of BasicPubhy.

X.3. IDENTITY-BASED ENCRYPTION 227

The main idea of Verheul’s scheme is as follows. As usual, we have system
parameters 〈G1, G3, ê〉 with G1 of prime order r generated by point P . An
entity A chooses as its private signing key xA ∈ Z∗

r; the corresponding public
key used for both encryption and signatures is yA = ê(P, P)xA ∈ G3. A CA
then issues A with a certificate on the value yA (the scheme is not identity-
based). Any discrete logarithm based digital signature algorithm employing
the values g = ê(P, P), xA and yA = gxA can be used. To encrypt a message
M ∈ {0, 1}n for A, the sender generates a random t ∈ Z∗

r and computes the
ciphertext:

C = 〈[t]P,M ⊕H2((yA)t)〉.
Here, as before, H2 : G3 → {0, 1}n is a cryptographic hash function. To
decrypt C = 〈U, V 〉, entity A computes

M ′ = V ⊕H2(ê(P,U)xA).

Notice the similarity of this encryption scheme to that in Section X.3.2. The
escrow service is supported as follows. Ahead of time, A sends to the escrow
agent the value YA = [xA]P . The escrow agent can then calculate the value
ê(P,U)xA for itself using its knowledge of YA and bilinearity:

ê(YA, U) = ê([xA]P,U) = ê(P,U)xA .

Note that A does not give up its private signing key xA to the escrow agent.
Thus A’s signatures remain non-repudiable. Verheul’s scheme currently lacks
a formal security proof. Such a proof would show that the same public key
can safely be used for both signature and encryption.

Verheul’s scheme may be described as providing a non-global escrow: en-
tity A must choose to send the value YA to the escrow agent in order that the
agent may recover plaintexts. Boneh and Franklin in [39, Section 7] gave yet
another variant of pairing-based ElGamal encryption that provides escrow
yet does not require interaction between escrow agent and users. For this
reason, they described their scheme as providing global escrow. Their scheme
works as follows. The system parameters, chosen by the escrow agent, are
〈G1, G3, ê, P,Q0, n,H2〉. These are all defined as for the basic IBE scheme in
Section X.3.1. In particular, Q0 = [s]P , where s is a master secret. An entity
A’s key-pair is of the form 〈xA, YA = [xA]P 〉. Thus A’s public key is identical
to the escrowed key in Verheul’s scheme, and A’s private key is the same in
the two schemes. Now to encrypt M ∈ {0, 1}n for A, the sender generates a
random t ∈ Z∗

r and computes the ciphertext:

C = 〈[t]P,M ⊕H2(ê(YA, Q0)
t)〉.

To decrypt C = 〈U, V 〉, entity A computes

M ′ = V ⊕H2(ê([xA]Q0, U))

while the escrow agent computes

M ′ = V ⊕H2(ê([s]YA, U)).

228 X. CRYPTOGRAPHY FROM PAIRINGS

It is straightforward to see that (by bilinearity) both decryption algorithms
produce the plaintext M . It is claimed in [39] that the security of this scheme
rests on the hardness of the BDH problem. To see informally why this is so,
note that to decrypt an adversary must compute the value ê(P, P)stxA given
the values Q0 = [s]P , U = [t]P and YA = [xA]P .

Lynn [228] has shown how to combine ideas from the IBE scheme of [39]
and the NIKDS of [284] to produce an authenticated identity-based encryp-
tion scheme. In this scheme, a recipient A can check which entity sent any
particular ciphertext. Simplifying slightly, this ability is provided by using
the NIKDS key ê(QA, QB)s in place of the value ê(QA, Q0)

r in the Boneh–
Franklin IBE scheme. This approach cannot yield a non-repudiation service,
since A itself could have prepared any authenticated ciphertext purported to
be from B.

We will report on the hierarchical identity-based encryption scheme of
Gentry and Silverberg [147] and related work in Section X.5.

X.4. Signature Schemes

In this section we outline how pairings have been used to build signature
schemes of various kinds. Our coverage includes identity-based signature and
signcryption schemes, standard (i.e., not identity-based) signature schemes
and a variety of special-purpose signature schemes.

X.4.1. Identity-Based Signature Schemes. Not long after the appear-
ance of Boneh and Franklin’s IBE scheme, a rash of identity-based signature
(IBS) schemes appeared [62, 163, 164, 272]. Sakai et al.’s paper [284] also
contains an IBS; another IBS scheme appears in [350]. Since IBS schemes
have been known since Shamir’s original work on identity-based cryptography
in [296], the main reason to be interested in these new schemes is that they
can make use of the same keying infrastructure as the IBE scheme of [39].
Being identity-based, and hence having built in escrow of private keys, none
of the schemes can offer a true non-repudiation service. The schemes offer a
variety of trade-offs in terms of their computational requirements on signer
and verifier, and signature sizes. The scheme of [62] enjoys a security proof
in a model that extends the standard adaptive chosen message attack model
for (normal) signature schemes of [150] to the identity-based setting. The
proof is in the random oracle model and relates the scheme’s security to the
hardness of the computational Diffie–Hellman problem (CDH problem) in G1

using the Forking Lemma methodology [276]. The first IBS scheme of [163]
also has a security proof; the second scheme in [163] was broken in [75].

To give a flavour of how these various IBS schemes operate, we present a
version of the scheme of Cha and Cheon [62] here. An IBS scheme is defined
by four algorithms: Setup, Extract, Sign and Verify. For the scheme of
[62], these operate as follows:

X.4. SIGNATURE SCHEMES 229

Setup: This algorithm takes as input a security parameter 	 and outputs the
system parameters:

params = 〈G1, G3, ê, P,Q0, H1, H2〉.
Here G1, G3, ê, P and Q0 = [s]P are as usual; s is the scheme’s master
secret. The hash function H1 : {0, 1}∗ → G1 is as in Boneh and Franklin’s
IBE scheme, while H2 : {0, 1}∗ ×G1 → Zr is a second hash function.

Extract: This algorithm takes as input an identity ID and returns the cor-
responding private key SID = [s]H1(ID). Notice that this key is identical to
the private key in the IBE scheme of Boneh and Franklin [39].8

Sign: To sign a message M ∈ {0, 1}∗, entity A with identity IDA and private
key SA = [s]H1(IDA) chooses a random t ∈ Zr and outputs a signature
σ = 〈U, V 〉 where U = [t]H1(IDA), h = H2(M,U) and V = [t+ h]SA.

Verify: To verify a signature σ = 〈U, V 〉 on a message M for identity IDA,
an entity simply checks whether the equation

ê(Q0, U + hQA) = ê(P, V)

holds.

It is a simple exercise to show that the above IBS scheme is sound (sig-
natures created using Sign will verify correctly using Verify).

The IBS scheme of [62] was originally presented in the context of any gap
Diffie–Hellman group. Informally speaking, these are groups in which the
CDH problem is hard but the DDH problem is easy, a notion first formalized
in [263] and further explored in [186]. The signature generation algorithm
uses the private key DA to create Diffie–Hellman tuples while the signature
verification algorithm amounts to deciding whether 〈P,Q0, U + hQA, V 〉 is a
valid Diffie–Hellman tuple. Since all the realizations of such gap groups cur-
rently known use pairings on elliptic curves, we have preferred a presentation
using pairings.

X.4.2. Short Signatures. In [42, 43], Boneh, Lynn and Shacham used
pairings to construct a (normal) signature scheme in which the signatures are
rather short: for example, one version of their scheme has signatures that are
approximately 170 bits in length whilst offering security comparable to that
of 320-bit DSA signatures.

A simplified version of this BLS scheme can be described using modified
pairings though (for reasons which will be discussed below) this does not lead
to the preferred instantiation. This is essentially the approach taken in [42].
We will begin with this approach for ease of presentation.

8It is generally good cryptographic practice to use different keys for different functions.
If this is required here, then a separate master secret could be used for the IBS scheme,
or the identity string ID could be replaced by the string ID||“Sig”, where “||” denotes a
concatenation of strings.

230 X. CRYPTOGRAPHY FROM PAIRINGS

As usual, we work with system parameters 〈G1, G3, ê〉 and assume P of
prime order r generates G1. We also need a hash function H : {0, 1}∗ → G1.
A user’s private key is a value x selected at random from Zr, and the matching
public key is [x]P ∈ G1. The signature on a message M ∈ {0, 1}∗ is simply
σ = [x]H(M) ∈ G1. To verify a purported signature σ on message M , the
verifier checks that the 4-tuple:

〈P, [x]P,H(M), σ〉
is a Diffie–Hellman tuple. This can be done by checking that the equation:

ê(σ, P) = ê(H(M), [x]P)

holds.
As with the IBS scheme of [62], this signature scheme exploits the fact

that the signer can create Diffie–Hellman tuples in G1 using knowledge of
the private key x while the verifier can check signatures using the fact that
the DDH problem is easy in G1, thanks to the presence of the pairing ê.
The scheme is very closely related to the undeniable signature scheme of
Chaum and van Antwerpen [66, 67]. That scheme has an identical signing
procedure (except for a change of notation), but the confirmation (or denial
of a signature) is via a zero-knowledge protocol in which the signer proves (or
disproves) that the tuple is a Diffie–Hellman tuple. One can view the scheme
of [42] as being the result of replacing the confirmation and denial protocols
by a pairing computation. This makes the signatures verifiable without the
aid of the signer, thus converting the undeniable signature scheme into a
standard one. Of course, the BLS construction works more generally in the
setting of gap Diffie–Hellman groups; the observation that signature schemes
could be constructed from gap problems was made in [263, Section 4.1],
though without a specific (standard) scheme being presented. The scheme of
[42] can also be viewed in another way. As is noted in [39], Naor has pointed
out that any IBE scheme can be used to construct a signature scheme as
follows: the private signing key is the master key for the IBE scheme, the
public verification key is the set of public parameters of the IBE scheme,
and the signature on a message M is simply the private key for “identity”
M in the IBE scheme. To verify a signature, the verifier can encrypt a
random string and check that the signature (viewed as a decryption key)
properly decrypts the result. In the special case of the IBE scheme of Boneh
and Franklin, the signature for message M would be the IBE private key
[s]H1(M). This is simply a BLS signature on M . The BLS scheme replaces
the trial encryption/decryption with a more efficient procedure, but it is
otherwise the signature scheme that can be derived from the Boneh–Franklin
IBE scheme using Naor’s construction.

It is not difficult to show that the BLS signature scheme is secure (in the
usual chosen message attack model of [150] and regarding H as a random
oracle) provided the CDH problem is hard in G1.

X.4. SIGNATURE SCHEMES 231

A signature in this scheme consists of a single element of G1 (as does the
public key). Thus short signatures will result whenever G1 can be arranged
to have a compact representation. Using point compression, elements of G1

can be represented using roughly �log2 q� bits if G1 is a subgroup of E(Fq).
9

So in order to obtain signatures that are as short as possible, it is desirable
to make q as small as possible whilst keeping the ECDHP in G1 (a subgroup
of E(Fq)) hard enough to make the scheme secure. However, one must bear
in mind that, because of the presence of the pairing ê, the ECDLP in E(Fq)
can be translated via the MOV reduction into the DLP in Fqk , where k is the
embedding degree of E(Fq). Thus the security of the scheme not only rests
on the difficulty of solving the ECDHP in E(Fq), but also on the hardness of
the DLP in Fqk .

At first sight, it seems that Table IX.1 gives a pair of characteristic 3
supersingular curves E1, E2 which are fit for purpose.10 When 	 is odd,
the curves have embedding degree 6, so the MOV reduction translates the
ECDLP on Ei(F3�) into the DLP in F36� , a relatively large finite field. Thus
it should be possible to select a moderate sized 	 and obtain short, secure
signatures. For example, according to [43, Table 2], taking 	 = 121, one can
obtain a signature size of 192 bits for a group G1 of size about 2155 while the
MOV reduction yields a DLP in F3726 , a field of size roughly 21151. This set
of parameters would therefore appear to offer about 80 bits of security.11

However, as is pointed out in [43], Coppersmith’s discrete logarithm al-
gorithm [86], although specifically designed for fields of characteristic 2, also
applies to fields of small characteristic and is more efficient than general pur-
pose discrete logarithm algorithms. The function field sieve as developed in
[2, 3, 185] is also applicable and has better asymptotic performance than
Coppersmith’s algorithm for fields of characteristic 3. But it is currently
unclear by how much these algorithms reduce the security offered by BLS
signatures for particular curves defined over fields of characteristic 3. For
example, it may well be that the algorithm reduces the security level below
the supposed 80 bits for the parameters in the paragraph above. The con-
clusion of [43] is that in order to obtain security similar to that offered by
DSA, curves Ei(F3�), where 36� is much greater than 1024 bits in size, are
needed. Similar security considerations apply when using the same curves in
other cryptographic applications. In the current context, this results in much
longer signatures, running counter to the whole rationale for the BLS scheme.
The problem of constructing signatures that are simultaneously short and se-
cure should provide motivation for a detailed study of the performance of the

9A modified verification equation is then needed to handle the fact that two elements
of G1 are represented by each x ∈ Fq.

10These curves are named E+, E− in [42].
11This choice of parameters was not present in the original version [42] because of the

threat of Weil descent attacks; according to [43], the work of Diem in [104] shows Weil
descent to be ineffective for � = 121.

232 X. CRYPTOGRAPHY FROM PAIRINGS

function field sieve in characteristic 3. Some estimates for the size of factor
bases arising in the function field sieve for fields of small characteristic can
be found in [154].

In [43], Boneh, Lynn and Shacham explain how ordinary (i.e., non-supersingular)
curves and unmodified pairings can be used to remedy the situation. Assume
now we have a triple of groups G1, G2, G3 and a pairing e : G1 × G2 → G3.
For i = 1, 2, let Pi of prime order r generate Gi. A user’s private key is still a
value x ∈ Zr, but now the matching public key is [x]P2 ∈ G2. The signature
on a message M ∈ {0, 1}∗ is still σ = [x]H(M) ∈ G1. To verify a purported
signature σ on message M , the verifier now checks that

〈P2, [x]P2, H(M), σ〉
is a valid co-Diffie–Hellman tuple, that is, a tuple in which the second pair
of elements (in G1) are related by the same multiple as the first pair (in G2).
This can be done using the pairing e by checking that the equation:

e(σ, P2) = e(H(M), [x]P2)

holds. The security of this scheme rests on the hardness of the co-CDH
problem, a variant of the CDH problem appropriate to the situation where
two groups G1 and G2 are in play. The security proof has an interesting twist,
in that the existence of an efficiently computable isomorphism ψ : G2 → G1

is required to make the proof work.
Boneh, Lynn and Shacham [42] show how groups and pairings suitable for

use with this scheme can be obtained from MNT curves (see Section IX.15.1)
and how ψ can be constructed using the trace map. They report an example
curve E(Fq) where q is a 168-bit prime and where the embedding degree is 6.
The curve has an order that is divisible by a 166-bit prime r; using appropriate
subgroups of E(Fq) and E(Fq6) for G1 and G2, one can obtain a scheme with
168-bit signatures where the best currently known algorithm for the co-CDH
problem requires either a generic discrete logarithm algorithm using around
283 computational steps or taking a discrete logarithm in a 1008-bit field of
large characteristic (where Coppersmith’s algorithm and the function field
sieve are ineffective). Unfortunately, the public key, being a point on E(Fq6),
is no longer short, an issue that may limit the wider applicability of this
scheme.

The above discussion gives a clear example where unmodified pairings
should be used in preference to modified pairings for reasons of efficiency and
security.

X.4.3. Further Signature Schemes. We provide brief references to a se-
lection of the other relevant literature.

Libert and Quisquater developed an identity-based undeniable signature
scheme in [222]. Pairings were used to construct a variety of proxy signa-
turechemes by Zhang et al. in [359]. Identity-based blind signatures and
ring signatures were considered by Zhang and Kim in [354, 355], but the

X.4. SIGNATURE SCHEMES 233

schemes presented lack a full security analysis. Herranz and Sáez [162] used
the Forking Lemma methodology to build provably secure identity-based ring
signatures from pairings.

Thanks mainly to their simple algebraic structure, BLS signatures have
been productively exploited by a number of authors. Boldyreva [32] showed
how to adapt the scheme of [42] to produce provably secure threshold signa-
tures, multisignatures and blind signatures. The blinding capability of BLS
signatures was also noted by Verheul in [337]. In the same paper, Verheul
also considered the use of pairings to construct self-blindable credential cer-
tificates. Steinfeld et al. [318] extended the BLS signature scheme to obtain
a new primitive, universal designated-verifier signatures. Boneh et al. [40]
also used BLS signatures as a basis to produce an aggregate signature scheme
(in which multiple signatures can be combined to form a single, short, verifi-
able signature), a verifiably encrypted signature scheme (with applications to
fair exchange and optimistic contract signing), and a ring signature scheme.
In turn, Boldyreva et al. [33] used the aggregate signature scheme of [40] to
construct efficient proxy signature schemes. See also [166] for an attack on
and repair of the verifiably encrypted signature scheme of [40] and [89] for a
result relating the complexity assumption that was used to establish security
for the aggregate signature scheme in [40] to the CDH problem.

Recently, Libert and Quisquater [223] modified the BLS signature scheme
to produce a particularly efficient signcryption scheme, that is, a scheme in
which the signature and encryption are combined into a single “monolithic”
operation. An alternative scheme of Malone-Lee [231] has a security proof
in a multi-user model and offers ciphertexts that are even shorter than in the
scheme of [223]. Malone-Lee’s scheme is not based on BLS signatures but
does use pairings as a tool in the security proofs.

Zhang et al. [358] modified the BLS signature scheme to obtain a more
efficient signature scheme that does not require the use of a special hash
function (i.e., one that outputs elements of G1). The scheme is provably
secure in the random oracle model, but its security is based on the hardness of
the non-standard k-weak CDH problem that was introduced in [250]. Zhang
et al. [357] adapted the scheme of [358] to obtain a verifiably encrypted
signature scheme, also based on pairings, but more efficient than the scheme
of [40].

Boneh, Mironov and Shoup [44] used pairings to construct a tree-based
signature scheme whose security can be proved in the standard model (i.e.,
without the use of random oracles), based on the hardness of the CDH prob-
lem. A much more efficient scheme, also secure in the standard model, was
presented in [35]. Here, the security relies on the hardness of another non-
standard problem, the Strong Diffie–Hellman problem. This problem is re-
lated to the k-weak CDH problem of [250].

234 X. CRYPTOGRAPHY FROM PAIRINGS

X.4.4. Identity-Based Signcryption. A number of authors have consid-
ered combining signature and encryption functions in a single identity-based
scheme. The first attempt appears to be that of Malone-Lee [230], who
provided an identity-based signcryption scheme. Unfortunately, the compu-
tational costs of the signcryption and matching un-signcryption operations in
[230] are not much less than the sum of the costs of the encryption/decryption
and signature/verification algorithms of [39] and [62] (say). On the other
hand, the scheme’s ciphertexts are a little shorter than they would be in the
case of a simple “sign then encrypt” scheme. In contrast to the scheme of
Lynn [228], Malone-Lee’s scheme offers non-repudiation: an entity A can
present a message and ciphertext to a judge who can then verify that they
originated from another entity B. However, as is pointed out in [221], this
property means that Malone-Lee’s scheme cannot be semantically secure.12

An identity-based signcryption scheme which does not suffer from this weak-
ness was presented by Libert and Quisquater in [221]. The scheme uses
pairings, is roughly as efficient as the scheme of [230] and has security that
depends on the hardness of the decision bilinear Diffie–Hellman problem (de-
fined in Section IX.11.3 for unmodified pairings). This scheme also allows
non-repudiation, but the origin of ciphertexts can be verified by third parties
without knowledge of the underlying plaintext. This last feature may be a
positive or negative one depending on the intended application.

A two-layer approach to combining identity-based signature and encryp-
tion was taken by Boyen in [48]. The resulting mechanism, called an IBSE
scheme, has comparable efficiency but stronger security guarantees than the
earlier work of [221, 230]. As well as providing the usual properties of con-
fidentiality and non-repudiation, the pairing-based scheme of Boyen in [48]
offers ciphertext unlinkability (allowing the sender to disavow creating a ci-
phertext), ciphertext authentication (allowing the recipient to be convinced
that the ciphertext and signed message it contains were prepared by the
same entity) and ciphertext anonymity (making the identification of legiti-
mate sender and recipient impossible for any entity not in possession of the
recipient’s decryption key, in contrast to the scheme of [221]). These prop-
erties are not available from single-layer signcryption schemes and a major
contribution of [48] is to identify and formalize these properties. The secu-
rity of Boyen’s IBSE scheme depends on the hardness of the BDH problem.
An examination of the scheme shows that it builds on the NIKDS of Sakai
et al. [284], with the key ê(QA, QB)s once again being at the heart of the
matter. Chen and Malone-Lee [72] have recently proposed an identity-based
signcryption scheme that is secure in the model of [48] but more efficient than
Boyen’s IBSE scheme.

12The adversary, when presented with a challenge ciphertext C∗ which encrypts one of
M0, M1, can simply attempt to verify both pairs M0, C

∗ and M1, C
∗; a correct verification

reveals which plaintext Mb was encrypted.

X.5. HIERARCHICAL IDENTITY-BASED CRYPTOGRAPHY AND RELATED TOPICS 235

X.5. Hierarchical Identity-Based Cryptography and Related
Topics

Identity-based cryptography as we have described it so far in this chapter
involves a single trusted authority, the PKG, who carries out all the work
of registering users and distributing private keys. Public-key infrastructures
(PKIs) supporting “classical” public-key cryptography allow many levels of
trusted authority through the use of certificates and certificate chains. A
hierarchy of CAs topped by a root CA can spread the workload and simplify
the deployment of systems relying on public-key cryptography. The first
attempt to mimic the traditional PKI hierarchy in the identity-based setting
was due to Horowitz and Lynn [172]. Their scheme is restricted to two levels
of hierarchy and has limited collusion resistance. A more successful attempt
was made soon after by Gentry and Silverberg [147]. Their solution, which
extends the IBE scheme of Boneh and Franklin in a very natural way, has
led other researchers to develop further interesting cryptographic schemes. In
this section we outline the contribution of Gentry and Silverberg in [147] and
then give a brief overview of the subsequent research.

X.5.1. The Basic Scheme of Gentry and Silverberg. The basic hier-
archical identity-based encryption (HIBE13) scheme of [147] associates each
entity with a level in the hierarchy, with the root authority being at level 0.
An entity at level t is defined by its tuple of identities 〈ID1, ID2, . . . , IDt〉. This
entity has as superior entities the root authority (or root PKG) together with
the t− 1 entities whose identities are 〈ID1, ID2, . . . , IDi〉, 1 ≤ i < t. An entity
at level t will have a secret st ∈ Z∗

r, just like the PKG in the Boneh–Franklin
IBE scheme. As we describe below, this secret will be used by an entity at
level t to produce private keys for its children at level t+ 1.

The scheme BasicHIBE14 is defined by five algorithms:

Root Setup, Lower-Level Setup,
(Private Key) Extract, Encrypt and Decrypt.

These operate as follows:

Root Setup: To set up the root authority at level 0, this algorithm takes as
input a security parameter 	 and outputs the system parameters:

params = 〈G1, G3, ê, n, P0, Q0, H1, H2〉.
Here G1, G3, ê, n (the bit-length of plaintexts) and hash functions H1 and
H2 are just as in the Boneh–Franklin scheme. We write P0 for an arbitrary

13This is a perhaps more natural acronym than HIDE as used by Gentry and Silverberg,
albeit one that does not have the same neat connotation of secrecy. It also enables us to
use the acronym HIBS for the matching concept of a hierarchical identity-based signature
scheme. It can be no bad thing to mention at least one Scottish football team in this
chapter.

14BasicHIDE in [147].

236 X. CRYPTOGRAPHY FROM PAIRINGS

generator of G1 and Q0 = [s0]P0, where s0 ∈ Z∗
r is the root authority’s secret

value. Apart from these minor changes of notation, this procedure is identical
to the Setup procedure of the scheme BasicIdent in [39].

Lower-Level Setup: An entity at level t in the hierarchy is initialized simply
by selecting for itself a secret value st ∈ Z∗

r.

Extract: Consider a level t entity Et with identity tuple 〈ID1, ID2, . . . , IDt〉.
This entity’s parent (having identity 〈ID1, ID2, . . . , IDt−1〉) performs the fol-
lowing steps:

1. Compute Pt = H1(ID1, ID2, . . . , IDt) ∈ G1.
2. Set St = St−1 + stPt ∈ G1 and give the private key St to entity Et over

a secure channel. (When t = 1, we set S0 = 1G1 .)
3. Give Et the values Qi = siP0, 1 ≤ i < t.

Notice that, by induction, we have St =
∑t

i=1 si−1Pi.

Encrypt: To encrypt plaintext M ∈ {0, 1}n for an entity with identity tuple
〈ID1, ID2, . . . , IDt〉, perform the following steps:

1. Compute Pi = H1(ID1, ID2, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t.
2. Choose a random t ∈ Z∗

r.
3. Compute and output the ciphertext:

C = 〈[t]P0, [t]P2, . . . [t]Pt,M ⊕H2(ê(P1, Q0)
t)〉 ∈ Gt

1 × {0, 1}n.

Notice that, in order to encrypt a message for an entity, the sender needs
only know the parameters of the root PKG along with the identity tuple of
the intended recipient, and not any parameters associated with intermediate
entities. Note too that the omission of the value [t]P1 from the ciphertext
is deliberate (if it were included, then an eavesdropper could decrypt C by
calculating the mask H2(ê([t]P1, Q0))).

Decrypt: Suppose C = 〈U0, U2, . . . , Ut, V 〉 ∈ Gt
1 × {0, 1}n is a ciphertext

encrypted for an entity 〈ID1, ID2, . . . , IDt〉. To decrypt C using the private
key St, the recipient computes

M ′ = V ⊕H2

(
ê(St, U0) ·

t∏
i=2

ê(Qi−1, Ui)
−1

)
.

X.5. HIERARCHICAL IDENTITY-BASED CRYPTOGRAPHY AND RELATED TOPICS 237

To see that decryption works properly, consider the following chain of
equalities, established using the bilinearity of ê:

ê(St, U0) ·
t∏

i=2

ê(Qi−1, Ui)
−1 = ê(

t∑
i=1

[si−1]Pi, [t]P0) ·
t∏

i=2

ê([si−1]P0, [t]Pi)
−1

= ê(
t∑

i=1

[si−1]Pi, [t]P0) ·
t∏

i=2

ê(−[si−1]Pi, [t]P0)

= ê(
t∑

i=1

[si−1]Pi, [t]P0) · ê(−
t∑

i=2

[si−1]Pi, [t]P0)

= ê([s0]P1, [t]P0)

= ê(P1, [s0]P0)
t

= ê(P1, Q0)
t.

A few comments on this scheme are in order. Firstly, note that encryption
only requires one pairing computation, and this needs only to be computed
once to enable communication with any entity registered in the hierarchy. On
the other hand, t pairing computations are required for every decryption. It
would be interesting to find hierarchical schemes with an alternative balance
between the costs of encryption and decryption. Secondly, notice how the
length of ciphertexts grows with t – this seems inescapable in a hierarchical
system. Thirdly, note that the scheme has a strong in-built escrow, in that
any ancestor of an entity can decrypt ciphertexts intended for that entity: an
ancestor at level j can use the equation

M ′ = V ⊕H2

(
ê(Sj, U0) ·

j∏
i=2

ê(Qi−1, Ui)
−1

)
to decrypt a message encrypted for a child at level t.

X.5.2. Extensions of the Basic Scheme. In [147], Gentry and Silverberg
also showed how to use the techniques of Fujisaki–Okamoto [128] to produce
a strengthened encryption scheme which is secure against chosen-ciphertext
attackers in the random oracle model, provided that the BDH problem is hard.
The security model adopted in [147] is sufficiently strong to capture collusions
of entities attempting to compromise the private keys of their ancestors. This
is because it allows the adversary to extract the private keys of entities at
any level in the hierarchy and to adaptively select the identity on which it
wishes to be challenged.

Naor’s idea for turning an IBE scheme into a signature scheme was ex-
ploited in [147] to produce a hierarchical identity-based signature (HIBS)
scheme. The security of this scheme depends on the hardness of the CDH
problem in G1. Gentry and Silverberg also considered how the NIKDS of
Sakai et al. can be used to reduce the amount of computation needed for

238 X. CRYPTOGRAPHY FROM PAIRINGS

encryption between two parties who are “near” to one another in the hierar-
chy. The resulting scheme also enjoys shorter ciphertexts. A number of other
variants on this theme are also explored in [147].

X.5.3. Related Topics. Canetti, Halevi and Katz [55] built upon the work
of [147] to produce the first non-trivial forward-secure public-key encryption
(FS-PKE) scheme. In an FS-PKE scheme, a user has a fixed public key but
a private key which evolves over time; such a scheme should then have the
property that a compromise of the user’s private key at time t does not affect
the security of messages encrypted during earlier time periods (though clearly
no security can be guaranteed after time t).

The scheme in [55] makes use of a basic primitive called a binary tree
encryption (BTE) scheme. A BTE scheme consists of a single “master” public
key, a binary tree of private keys together with encryption and decryption
algorithms and a routine which computes the private keys of the children
of a node from the private key at that node. The encryption algorithm
takes as input the public key and the label of a node. A selective-node
chosen-ciphertext attack (SN-CCA) against a BTE scheme goes roughly as
follows. The adversary selects a target node to attack in the challenge phase
in advance. The adversary is then given the private keys for a certain set
of nodes. This set consists of all the children of the target together with all
the siblings of the target’s ancestors. This is the maximal set of private keys
which the adversary can be given without enabling the trivial computation of
the private key of the target node. The adversary’s job is then to distinguish
ciphertexts encrypted under the public key and target node, given access to
a decryption oracle.

Canetti, Halevi and Katz show how a BTE scheme secure against SN-
CCA attacks can be constructed from a simplification of the HIBE scheme of
[147]. They then show how any SN-CCA secure BTE scheme can be used in
a simple construction to obtain an encryption scheme that is forward-secure
in a natural adaptation of the standard IND-CCA2 model for public-key en-
cryption. The trick is to traverse the tree of the BTE in a pre-order traversal,
with the key at the tth node in the traversal determining how the private key
in the forward-secure scheme is updated at time t. The security definition for
a BTE scheme quickly converts into the desired forward security. Combining
their constructions, the authors of [55] obtain an efficient, forward-secure en-
cryption scheme whose security rests of the hardness of the BDH problem in
the random oracle model.

A BTE scheme secure in the SN-CCA sense, but without requiring random
oracles, is also constructed in [55]. The construction uses O()-wise indepen-
dent hash functions, and the security of the resulting BTE scheme depends on
the hardness of the DBDH problem rather than the BDH problem. However
the construction gives a completely impractical scheme because of its reliance
on non-interactive zero-knowledge proofs. As an interesting aside, Canetti,

X.5. HIERARCHICAL IDENTITY-BASED CRYPTOGRAPHY AND RELATED TOPICS 239

Halevi and Katz go on to show how an HIBE scheme can be constructed from
a BTE scheme, though with a weaker security model than is considered in
[147]. A corollary of this result is the construction of an IBE scheme (and an
HIBE scheme) that is secure in the standard model (i.e., without the use of
random oracles) assuming the hardness of the DBDH problem, though only
for an adversary who specifies in advance which identity he will attack. Again
the scheme will be impractical if it is to be secure against chosen-ciphertext
attacks.

One issue that the proofs of security in [55] have in common with those of
[39, 147] (and indeed many papers in the area) is that the security reductions
are not particularly tight. For example, a factor of 1/N is introduced in [55,
Proof of Theorem 4], where N is the number of time periods supported by
the FS-PKE scheme. It seems to be a challenging problem to produce results
tightly relating the security of the schemes to the hardness of some underlying
computational problems.

Canetti, Halevi and Katz [56] have shown a surprising connection between
IBE and chosen-ciphertext security for (normal) public-key encryption. They
give a construction for an IND-CCA2 secure scheme of the latter type from
a weakly-secure IBE scheme and a strongly unforgeable one-time signature
scheme. Here, the IBE scheme need only be secure against chosen-plaintext
attacks by selective-ID adversaries, that is, adversaries who specify in advance
which identity they will attack in the challenge phase. The twist needed to
make the construction work is to interpret the public key of the signature
scheme as an identity in the IBE scheme, for which the decrypting party holds
the master secret. Since a weakly-secure IBE scheme can be constructed in
the standard model, the results of [56] yield a new IND-CCA2 secure public-
key encryption scheme whose security does not rely on the random oracle
assumption.

Boneh and Boyen [36] provided new and efficient constructions for an
HIBE scheme and an IBE scheme using pairings. Both schemes are secure
in the standard model, against selective-ID, chosen plaintext attackers. The
HIBE scheme is secure given that the DBDH problem is hard. It can be
converted into a selective-ID, chosen-ciphertext secure HIBE scheme using
the method of [56]; the resulting scheme is efficient. The security of the new
IBE scheme in [36] depends on the hardness of a new problem, the decision
bilinear Diffie–Hellman Inversion problem (DBDHI problem), which is related
to a decisional version of the k-weak CDH problem of [250]. This scheme is
also closely related to the signature scheme of [35]. Unfortunately, no efficient
conversion to a chosen-ciphertext secure scheme is currently known. However,
by combining this scheme with ideas in [56] and the signature scheme of [35],
one obtains a reasonably efficient public-key encryption scheme that is IND-
CCA2 secure in the standard model.

240 X. CRYPTOGRAPHY FROM PAIRINGS

Forward secure encryption is perhaps the most basic form of what might
be called “key updating cryptography.” Here the general approach is to have
an evolving private key which may or may not be updated with the help of
a second entity called a base or helper. Several other papers use pairings to
address problems in this area. Of particular note is the work of Bellare and
Palacio in [23] and of Dodis et al. in [107]. In the former paper, the authors
construct a strongly key-insulated encryption scheme from the IBE scheme of
Boneh and Franklin. Such a scheme allows a user to cooperate with a helper
to refresh his private key; the scheme remains secure even if the user’s private
key is corrupted in up to some threshold number of time periods, and even if
the helper is compromized (so long as the user’s key then is not). Bellare and
Palacio also provide an equivalence result in [23, Theorem 4.1], relating the
existence of a secure IBE scheme to that of a secure strongly key-insulated
encryption scheme. Dodis et al. [107] work with an even stronger security
model, in which the base can also be frequently corrupted, and construct
an intrusion-resilient public-key encryption scheme from the forward-secure
scheme of [55].

Yum and Lee [352] have explored similar concepts in the context of signa-
tures, using the IBS scheme of [62] to obtain efficient key updating signature
schemes.

X.6. More Key Agreement Protocols

Alongside encryption and signatures, key agreement is one of the fun-
damental cryptographic primitives. As we have already seen in Section X.2,
pairings were used early on to construct key agreement schemes and protocols.
In this section we examine how this area has developed since the foundational
work of [284, 183].

X.6.1. Two-Party Key Agreement Protocols. The NIKDS of Sakai et
al. [284] allows two parties to non-interactively agree the identity-based
key KAB = ê(QA, QB)s after they have registered with the same TA and
obtained their respective private keys SA = [s]QA, SB = [s]QB. However, the
key KAB is a static one, while many applications require a fresh key for each
communications session.

Smart [312] was the first author to consider how pairings could be used
to develop identity-based, authenticated key agreement protocols. His pro-
tocol uses the same keying infrastructure as the IBE scheme of Boneh and
Franklin. In particular, system parameters 〈G1, G3, ê, P,Q0 = [s]P,H1〉 are
pre-established and entities A, B possess private keys SA = [s]QA, SB =
[s]QB. Here, QA = H1(IDA), where IDA is the identity string of A. QB is
defined similarly. In Smart’s protocol, A and B exchange ephemeral values
TA = [a]P and TB = [b]P , where a, b are selected at random from Z∗

r. No-
tice that these are identical to the messages exchanged in a straightforward

X.6. MORE KEY AGREEMENT PROTOCOLS 241

Diffie–Hellman protocol for the group G1. Entity A then computes:

KA = ê([a]QB, Q0) · ê(SA, TB)

while entity B computes:

KB = ê([b]QA, Q0) · ê(SB, TA).

It is an easy exercise to show that

KA = KB = ê([a]QB + [b]QA, [s]P)

so that this common value can be used as the basis of a shared session key. The
bandwidth requirements of the protocol are moderate, being one element of
G1 per participant. A version of the basic protocol offering key confirmation is
also considered in [312]: this service ensures that each entity gets a guarantee
that the other entity actually has calculated the shared key. While no attacks
have been found on this protocol to date, no formal security analysis has been
given either.

Smart’s protocol requires two pairing computations per participant. An
alternative protocol was given by Chen and Kudla in [71]. In their protocol, A
and B exchange ephemeral values WA = [a]QA and WB = [b]QB and compute
the keys

KA = ê(SA,WB + [a]QB), KB = ê(WA + [b]QA, SB).

Now KA = KB = ê(QA, QB)s(a+b) can be computed using just one pairing
operation. A useful security model that is applicable for this type of pro-
tocol is the extension of the Bellare-Rogaway model [25] to the public key
setting that was developed by Blake-Wilson et al. in [28, 29]. It is proved
in [70] that the above protocol is a secure authenticated key agreement in
this model, provided the BDH problem is hard. The original proof of this
result published in [71] is flawed, and a strong restriction on adversarial be-
haviour is needed to provide the corrected version in [70]. Chen and Kudla
also consider modifications of their protocol which provide forward secrecy,
anti-escrow features and support for multiple TAs.

Other authors have also tried to adapt Smart’s protocol. Shim’s attempt
[302] was shown to be vulnerable to a man-in-the-middle attack in [322].
Yi’s protocol [351] halves the bandwidth required by Smart’s protocol using
a form of point compression.

An alternative approach to identity-based key agreement was taken by
Boyd et al. in [47]. In this work the non-interactively agreed key KAB =
ê(QA, QB)s of Sakai et al. is used as the key to a MAC algorithm to pro-
vide authentication of the messages in a Diffie–Hellman key exchange. The
resulting protocol is provably secure in the model developed in [22, 57] and
has the interesting privacy feature of providing deniable authentication: since
either party could have computed all the messages in a protocol run, both
parties can also deny having taken part in the protocol. The authors of [47]
also considered the use of identity-based encryption as a session key transport

242 X. CRYPTOGRAPHY FROM PAIRINGS

mechanism. Related uses of the key ê(QA, QB)s in “secret handshake” key
agreement protocols were also explored in [13], where the integration of these
protocols into the SSL/TLS protocol suite was also studied.

X.6.2. Multi-Party Key Agreement Protocols. In this section we dis-
cuss how Joux’s protocol [183] has inspired new protocols for multi-party key
agreement.

Recall that in Joux’s protocol, the key agreed between three parties is
equal to ê(P, P)abc when the ephemeral broadcast values are [a]P , [b]P and
[c]P . We have noted in Section X.2.2 that this protocol is vulnerable to man-
in-the middle attacks because it is not authenticated. An obvious way to
enhance the security of the protocol is to add signatures to the ephemeral
values. A number of efficient, signature-free approaches to securing Joux’s
protocol were described in [8]. It was also shown in [8], perhaps surprisingly,
that an authenticated version of Joux’s protocol has no benefit over a sim-
ple extension of the Diffie–Hellman protocol when three-party, authenticated
protocols with confirmation are considered in a non-broadcast environment:
any secure protocol will require at least six messages in this context. Gal-
braith et al. [135] have studied the bit security of the BDH problem; their
results can be applied to Protocols of [8] and [312] to show that it is secure
to use a finite-field trace operation to derive a session key from the raw key
material exchanged in these protocols.

Shim’s attacks [300] on the protocols of [8] show that adding authenti-
cation to three-party protocols is a delicate business. Zhang and Liu [356]
developed identity-based, authenticated versions of Joux’s protocol.15 Nalla
and Reddy [259] also put forward identity-based, three-party key agreement
protocol, but these were all broken in [74, 299]. Meanwhile, Shim’s proposal
for a three-party protocol [301] was broken in [322].16

Protocols for more than three parties, using Joux’s protocol and its deriva-
tives as a building block, have been considered by several authors [281, 14].
Lack of space prevents their detailed consideration here. For attacks on some
other schemes which attempted to mimic the Burmester-Desmedt protocol of
[53], see [353].

X.7. Applications and Infrastructures

It should be apparent that one of the major uses of pairings has been
in developing identity-based cryptographic primitives. So far, we have said
little about what identity-based public-key cryptography (ID-PKC) has to

15Note that there is no real benefit in deriving eight different keys from a single key
exchange by algebraic manipulations as in [356]: a simple key derivation function based
on hashing suffices.

16Even though the protocol defined in [301] does not actually make mathematical
sense! For it involves an exponentiation of an element ê(P, P) in G3 to a power that is a
product of an element in Z∗

r and an element in G3.

X.7. APPLICATIONS AND INFRASTRUCTURES 243

offer in comparison to more traditional forms of public-key cryptography. We
rectify this in the first part of this section. We go on to study how pairings
have been used to develop new architectures supporting the deployment of
public-key cryptography. Then in the third part we outline a variety of recent
work in which pairings have been put into practice, either in trials of identity-
based technology or in on-paper proposals outside the immediate confines of
cryptography.

X.7.1. Further Development of Identity-based Systems. We intro-
duced the concepts of identity-based encryption (IBE) and, more generally,
ID-PKC in Sections X.2.1 and X.3, portraying them as being useful alterna-
tives to traditional PKIs. Here we explore in a little more detail why this is the
case and critically examine some of the problems inherent in identity-based
approaches.

X.7.1.1. Identity-Based Systems Versus Traditional PKIs. Recall that
in an identity-based system, a TA is responsible for issuing private keys to
the correct users. This TA in effect replaces the CA in a traditional PKI, but
the roles of TA and CA are somewhat different. The CA in a traditional PKI
does not usually know users’ private keys, but rather issues certificates which
assert a binding between identities and public keys. The TA in an identity-
based system is responsible for checking that applicants do have the claimed
identity and then issuing the corresponding private key. Thus identity-based
systems automatically have a key escrow facility. Whether this is a good
thing or not will depend on the particular application at hand. It will cer-
tainly be a useful feature in many “corporate” deployment scenarios, where
the recovery of encrypted files and e-mail may well be important should an
employee leave the organization, say. However, escrow can complicate the is-
sue of non-repudiation of signatures. For example, an important piece of EU
legislation [EU 1999] requires that the signing key be under the sole control
of the signing party in order that a signature be recognized as an “advanced
electronic signature.” Thus traditional signatures supported by a PKI are
likely to be more useful than identity-based signatures in practice.

Note that, in both ID-PKC and traditional PKI, it is important to au-
thenticate applicants before issuing valuable data (private keys in the former,
certificates in the latter). So some additional authentication mechanism is
needed at the time of registration/key issuance. Both systems also require
that any system parameters (e.g., a root certificate or a TA’s public param-
eters) are authentically available to users. However, with ID-PKC, there is
an additional requirement: the private keys must be delivered over confiden-
tial and authentic channels to the intended recipients. Again this seems to
point towards the enterprise as being a fruitful deployment area for ID-PKC

244 X. CRYPTOGRAPHY FROM PAIRINGS

– for example, one could use a company’s internal mail system and person-
nel database to distribute keys and control registration for low-to-medium
security applications.

The particular IBE scheme of Boneh and Franklin [39] supports multiple
TAs and split private keys in a very natural way. This goes some way to
addressing escrow concerns. For example, suppose two TAs share parameters
〈G1, G3, ê, P 〉 but have master secrets s1, s2 ∈ Z∗

r and public values Q1 =
[s1]P , Q2 = [s2]P . Then a user A with identity string IDA can form his
private key as the sum [s1]QA + [s2]QA = [s1 + s2]QA of the private keys
obtained from each TA. To encrypt to A, ciphertexts of the form

〈[t]P,M ⊕H2(ê(QA, Q1 +Q2)
t)

can be used. More generally, a k-out-of-n escrow capability can be established
– see [39] for details. Such a facility is also supported by many other ID-based
schemes developed post-Boneh–Franklin.

The ability to make use of multiple TAs was exploited in [69] to create
cryptographic communities of interest. Here, each TA represents a particular
group (e.g., the group of all people having the same citizenship, profession or
name); a sum of keys from different groups creates intersections of groups all
of whose members can calculate the same private key.

Another point of comparison for traditional public key and ID-PKC sys-
tems is the issue of revocation. Whenever a certificate in a traditional system
expires (perhaps because the end of its validity period is reached or because
of a private key compromise), this fact must be communicated to the parties
relying on the certificates. There is the same requirement for timely trans-
mission of revocation information in an ID-PKC system too. It has been
suggested by many authors that in ID-PKC, one can simply attach a validity
period to identities, for example “john.smith ‖ 2004”, so that public keys au-
tomatically expire. However, such a system is no longer purely identity-based,
and one must still find a way to deal with keys that become compromized
before the end of their expiry period.

A deeper comparison of revocation and many other issues for ID-PKC and
traditional PKIs is made in [274]. Whether ID-PKC really has something to
offer over traditional PKIs and even symmetric systems very much depends
on the application context, on what is to be secured and on what constraints
there are on the solutions that can be adopted. It is certainly not the case
that an identity-based approach will be the correct one in every circumstance.

X.7.1.2. Cryptographic Workflows. An apparently innocuous feature of
IBE is that when encrypting a message for entity A, the sender can choose
the identity string IDA used in the encryption process. Only if A has the
matching private key [s]QA = [s]H1(IDA) will he be able to decrypt the
message. Naturally, in many situations, it is most convenient if the sender
chooses a string IDA for which this is the case. However, it is possible that

X.7. APPLICATIONS AND INFRASTRUCTURES 245

A’s identity IDA and public key QA are actually determined before the private
key [s]QA. This can have interesting consequences. For example, the sender
can encode in A’s identity string a set of conditions (or a policy) that should
be met before the TA, acting as a policy monitor, should issue the private
key.

The idea of encoding conditions in identity strings can be combined with
the use of multiple TAs to create a cryptographic workflow, that is, a sequence
of private key issuances that must be successfully carried out before an en-
tity can decrypt a ciphertext. In this context, the “I” in ID-PKC is better
interpreted as “identifier”, since rarely will identities be used alone.

As an example of this concept in action, consider the scenario where a
customer wants his bank manager to have access to a particular instruction,
but only after a certain time. Suppose the bank acts as a TA for its employees
in a Boneh–Franklin IBE scheme with the usual parameters 〈G1, G3, ê, P 〉,
master secret sbank and public parameter Qbank = [sbank]P . Suppose that
the bank manager has received his private key [sbank]H1(IDbm). Suppose also
that a third party operates an encrypted time service as follows. The third
party, using the same basic public parameters as the bank, acts as a TA with
master secret stime and public parameter Qtime = [stime]P . At time T , the
third party broadcasts to all subscribers the private key [stime]H1(T). Now,
to encrypt an instruction M for the bank manager to be read only after time
T0, the customer creates the ciphertext:

C = 〈[t]P,M ⊕H2(ê(Qbank, H1(IDbm))t · ê(Qtime, H1(T0))
t)〉.

Here, the customer has encrypted M using both the identity of the bank
manager and the time T0 after which the message is to become decryptable.
Only after time T0 can the bank manager access the value [stime]H1(T0) and
combine this with his private key [sbank]H1(IDbm) in the bank’s scheme to
compute the value:

H2(ê([t]P, [sbank]H1(IDbm)) · ê([t]P, [stime]H1(T0))),

allowing the decryption of the ciphertext C.
In this example, the customer created a special public key for encryption

out of two identifiers, the bank manager’s identity and the time identifier.
These identifiers come from two different schemes with two different TAs, but
ones who share some parameters – perhaps they are using standardized groups
and pairings.17 The customer has used multiple TAs to create a workflow that
the bank manager must follow in order to access the desired information: first
the bank manager must obtain his private key in the bank’s scheme; then he
must wait for the time service to reveal the private key at time T0.

It is easy to imagine other scenarios where the dynamic creation of work-
flows in this way could be very useful. There is no theoretical limit on the

17In fact, the reliance on shared parameters can be almost completely eliminated by
slightly modifying the encryption algorithm.

246 X. CRYPTOGRAPHY FROM PAIRINGS

number of private keys that the recipient must fetch or the types of roles or
identifiers that can be used. The recipient may be required to perform some
kind of authentication (based on identity, address, role in an organization,
etc.) at each stage. Further research along these lines, allowing the expres-
sion of more complex conditions in identifiers, can be found in [69, 314].

X.7.2. New Infrastructures. Some form of hierarchy seems necessary in
order to address the scalability and availability issues inherent in any system
with a single point of distribution for keying material. We have seen how the
work of Gentry and Silverberg [147] allows a hierarchy of TAs in ID-based
systems. Chen et al. [68] have studied the benefits of developing a mixed
architecture, with identity-based TAs administering users at the lowest levels
of the hierarchy being supported by a traditional PKI hierarchy above.

In [146], Gentry introduced the concept of Certificate-Based Encryption
(CBE), with a view to simplifying revocation in traditional PKIs, and used
pairings to construct a concrete CBE scheme. We give a brief review of
Gentry’s scheme using notation as previously established: P generates G1 of
prime order r, ê : G1 × G1 → G3 is a bilinear map and H2 : G3 → {0, 1}n is
a hash function.

In Gentry’s CBE scheme, an entity A’s private key consists of two com-
ponents. The first component [sC]PA(i) is time-dependent and is issued as
a certificate to A on a regular basis by a CA. Here sC is the CA’s private
key and PA(i) ∈ G1 is derived from hashing certain parameters, including
A’s public key [sA]P and the current time interval i. The second component
[sA]P ′

A is chosen by A and kept private. Here, P ′
A ∈ G1 is derived from A’s

identifying data. So A’s private key is the sum [sC]PA(i) + [sA]P ′
A, a time-

dependent value that is only available to A if A is certified in the current time
interval. Now, to encrypt a message M for A, an entity selects t at random
from Z∗

r and sets:

C = 〈[t]P,M ⊕H2(ê([sC]P, PA(i))t · ê([sA]P, P ′
A)t)〉.

Notice that [sC]P is available to encrypting parties as a public parameter of
the CA, while PA(i), P ′

A can be computed from A’s public information and
[sA]P is A’s public key. Decryption by A is straightforward if A has [sC]PA(i).
For if C = 〈U, V 〉, then A can compute:

ê(U, [sC]PA(i) + [sA]P ′
A) = ê([t]P, [sC]PA(i)) · ê([t]P, [sA]P ′

A)
= ê([sC]P, PA(i))t · ê([sA]P, P ′

A)t.

Notice that the private key [sC]PA(i) + [sA]P ′
A used here can be regarded

as a two-party aggregate signature in the scheme of [40]. The second private
component [sC]PA(i) acts as an implicit certificate for relying parties, one
that a relying party can be assured is only available to A provided that A’s
certificate has been issued for the current time period by the CA. The security
of CBE depends critically on the CA binding the correct public key into A’s

X.7. APPLICATIONS AND INFRASTRUCTURES 247

implicit certificate in each time period. Thus (quite naturally), the initial
registration of users and their public keys must take place over an authentic
channel and be bootstrapped from some other basis for trust between A and
the CA.

This approach can significantly simplify revocation in PKIs. For notice
that there is no need to make any status checks on A’s public key before
encrypting a message for A. So there is no requirement for either Certificate
Revocation Lists or an on-line certificate status checking protocol. However,
the basic CBE approach of [146] does have a major drawback: the CA needs
to issue new values [sC]PA(i) to every user in the scheme in every time pe-
riod. A granularity of one hour per time period is suggested in [146]; this
substantially adds to the computation and communication that take place
at the CA for a PKI with even a small user base. The basic CBE approach
can be regarded as effectively trading simplified revocation for an increased
workload at the CA. A number of enhancements to the basic CBE approach
are also presented in [146]. These reduce the work that must be carried out
by the CA.

A security model for CBE is also developed in [146], and Gentry goes
on to show that the CBE scheme described above, but modified using the
Fujisaki–Okamoto technique [128], meets the definition of security for the
scheme, provided that the BDH problem is hard. It is clear that similar ideas
to Gentry’s can be applied to produce certificate-based signature schemes. A
scheme of this type was developed in [192].

Al-Riyami and Paterson [9] proposed another new model for supporting
the use of public-key cryptography which they named certificateless public-
key cryptography (CL-PKC). Independently, Chen et al. [73] proposed sim-
ilar ideas in the context of signatures and group signatures. The key feature
of the model of [9] is that it eliminates the need for certificates, hence the
(somewhat clumsy) adjective “certificateless.”

Pairings are used to construct concrete CL-PKC schemes in [9]. As in
[146], an entity A’s private key is composed in two stages. Firstly, an identity-
dependent partial private key [s]QA = [s]H1(IDA) is received over a confiden-
tial and authentic channel from a trusted authority (called a key generation
centre, KGC).18 Secondly, A combines the partial private key [s]QA with a
secret xA to produce his private key SA = [xAs]QA. The corresponding pub-
lic key is the pair 〈XA, YA〉 = 〈[xA]P, [xA]Q0〉, where Q0 = [s]P is a public
parameter of the system. The certificateless encryption (CL-PKE) scheme of
[9] is obtained by adapting the IBE scheme of Boneh and Franklin [39] and
operates as follows in its basic form. To encrypt a message for A, an entity

18This partial private key [s]H1(IDA) is identical to the private key in the IBE scheme
of Boneh and Franklin. It can also be regarded as a BLS signature by the TA on A’s
identity, and hence as a form of certification, though one that does not involve A’s public
key.

248 X. CRYPTOGRAPHY FROM PAIRINGS

first checks that the equality

ê(XA, Q0) = ê(YA, P)

holds, then selects t at random from Z∗
r and sets:

C = 〈[t]P,M ⊕H2(ê(QA, YA)t)〉.
It is easy to see that, to decrypt C = 〈U, V 〉, A can use his private key
SA = [xAs]QA and compute M = V ⊕H2(ê(SA, U)).

Notice that, in this encryption scheme, A’s public key need not be sup-
ported by a certificate. Instead, an entity A who wishes to rely on A’s public
key is assured that, if the KGC has done its job properly, only A who is in
possession of the correct partial private key and user-generated secret could
perform the decryption. Because there are no certificates, Al-Riymai and
Paterson [9] were forced to consider a security model in which the adversary
is allowed to replace the public keys of entities at will. The security of the
scheme then rests on the attacker not knowing the partial private keys. Secu-
rity against the KGC is also modelled in [9], by considering an adversary who
knows the master secret s for the scheme, but who is trusted not to replace
the public keys of entities. The security of the encryption scheme in [9] rests
on the hardness of a new problem generalising the BDH problem:

Generalized Bilinear Diffie–Hellman Problem (GBDH Problem):
Given P , P1 = [a]P , P2 = [b]P and P3 = [c]P in G1 with a, b and c selected
uniformly at random from Z∗

r, output a pair

Q, ê(P,Q)abc

where Q ∈ G1.

Al-Riyami and Paterson [9] also present certificateless signature, key ex-
change and hierarchical schemes. These are obtained by adapting schemes of
[164, 312, 147]. CL-PKC supports the temporal re-ordering of public and
private key generation in the same way that ID-PKC does, thus it can be
used to support workflows of the type discussed in Section X.7.1.2.

CL-PKC combines elements from ID-PKC and traditional PKI. On the
one hand, the schemes are no longer identity-based: they involve the use of
A’s public key, which is no longer simply derived from A’s identity. On the
other hand, CL-PKC avoids the key escrow inherent in ID-PKC by having
user-specific private information involved in the key generation process. CL-
PKC does not need certificates to generate trust in public keys; instead, this
trust is produced in an implicit way. This would appear to make CL-PKC
ideal for systems where escrow is unacceptable but where the full weight of
PKI is untenable.

There is a close relationship between the ideas in [146] and [9]. It is
possible to convert CL-PKE scheme into a CBE scheme: if A’s identity in
the CL-PKE scheme is extended to include a time period along with the
public key, then the CL-PKE scheme effectively becomes a CBE scheme. On

X.7. APPLICATIONS AND INFRASTRUCTURES 249

the other hand, if one omits certain fields from the certificates in a CBE
scheme, one obtains an encryption scheme that is functionally similar to a
CL-PKE scheme. Differences do remain: in the strength and scope of the two
security models developed in [146] and [9], as well as in the technical details
of the schemes’ realizations.

X.7.3. Applications and Implementations. In this section we provide
brief notes on recent work putting pairings into practice or using pairings in
the broader context of information security.

A number of authors have examined how pairings can be put to use to en-
hance network security. Kempf et al. [197] described a lightweight protocol
for securing certain aspects of IPv6. The protocol adds identity-based signa-
tures to router and neighbour advertisements, with identities being based on
IP addresses. Khalili et al. [198] combined identity-based techniques with
threshold cryptography to build a key distribution mechanism suitable for
use in ad hoc networks.

Appenzeller and Lynn [10] proposed using the NIKDS of Sakai et al. [284]
to produce identity-based keys for securing IP packets between hosts. Their
approach adds security while avoiding the introduction of state at the network
layer, and so provides an attractive alternative to IPSec. However, it can
only be used by pairs of entities who share a common TA. On the other hand,
Smetters and Durfee [315] proposed a system in which each DNS domain runs
its own IBE scheme and is responsible for distributing private keys to each
of its hosts (or e-mail users). Inter-domain IPSec key exchanges and e-mail
security are enabled by extending DNS to give a mechanism for distributing
IBE scheme parameters. In [315], a protocol of [70] is used to provide an
alternative to IKE (IPSec Key Exchange) for inter-domain exchanges while
the NIKDS of Sakai et al. [284] can be used to set up IKE in pre-shared key
mode for intra-domain communications. The protocol resulting in the latter
case in [315] is similar to a protocol proven secure in [47].

Dalton [94] described the particular computing and trust challenges faced
in the UK’s National Health Service and studied the applicability of identity-
based techniques in that environment.

Waters et al. [345] modified the IBE scheme of Boneh and Franklin
[39] to provide a solution to the problem of searching through an encrypted,
sensitive audit log. In the scheme of [345], a machine attaches a set of
IBE-encrypted tags to each entry in its log, each tag corresponding to a
single keyword W . The “identity” used in the encryption to produce a tag
is the string W , while the plaintext encrypted is the symmetric key that
was used to encrypt the entry in the log (plus some redundancy allowing
the plaintext to be recognized). The TA for the IBE system acts as an
audit escrow agent: when an entity requests the capability to obtain log
entries containing a particular keyword, the TA may provide the private key
[s]H1(W) matching that keyword. Now the testing entity can simply try to

250 X. CRYPTOGRAPHY FROM PAIRINGS

decrypt each tag for the log entry. When the correct tag is decrypted, a key
allowing the entry to be decrypted results. A more theoretical and formal
approach to the related problem of searchable public-key encryption (SPKE)
can be found in [37]. One of the three constructions for an SPKE scheme
in [37] is based on pairings, specifically, it is again an adaptation of the IBE
scheme of Boneh and Franklin.

Currently, we know of at least one company, Voltage Security, that is ac-
tively developing and marketing identity-based security systems. Their prod-
ucts include secure e-mail and file encryption applications. An early identity-
based secure e-mail demonstrator, implementing Boneh and Franklin’s IBE
scheme, is still available from

http://crypto.stanford.edu/ibe/download.html

at the time of writing. Routines for Weil and Tate pairing computations are
built into a number of software libraries, including Magma.

X.8. Concluding Remarks

We have seen in this chapter how pairings have been used to build some
entirely new cryptographic schemes and to find more efficient instantiations
of existing primitives. Although we have not been exhaustive in our coverage,
we trust that the breathless pace of research in the area is apparent. What
might the future hold for this subject, and what are the most important
questions yet to be tackled?

The techniques and ideas used in pairing-based cryptography are very
new, so it is hard to envisage where they will be taken next. The applications
in topics like intrusion-resilient encryption and cryptographic workflows are
so surprising (at least to the author) that accurately predicting an answer to
the first question seems fraught. One might expect the rate of publication of
new pairing-based schemes to slow a little and a period of consolidation to
occur. On a more theoretical note, the subject is rife with random oracles and
inefficient reductions. Removing these whilst keeping the full strength of the
security models and obtaining practical schemes should keep cryptographers
busy.

We suggest that much more work above and below the purely crypto-
graphic level is needed.

As Section X.7.3 illustrates, techniques from pairing-based cryptography
are beginning to have an effect on other domains of information security.
Attempts at commercialization will provide a true test of the applicability
of what on paper seem like very neat ideas. Identity-based cryptography is
certainly interesting, but it still has much to prove when measured against
traditional PKIs. One topic we have not addressed here is that of intellectual
property and patents. This may become a major factor in the take-up of the
technology, in the same way that it was for elliptic curve cryptography in the
last decade and public-key cryptography before that.

X.8. CONCLUDING REMARKS 251

Below the cryptographic level, more work on the fundamental question of
understanding the hardness of the BDH problem (and the associated deci-
sional problem) seems essential. While the relationships to the CDH problem
and other problems in related groups are well understood, this is of course
not the whole story. Pairings also give new relevance to “old” problems,
for example, evaluating the performance of discrete logarithm algorithms in
fields of small characteristic for concrete parameters. One might also worry
about relying too much on the extremely narrow class of supersingular curves
for constructing pairings. This is akin to the days before point counting for
curves of cryptographic sizes became routine, when CM curves were suggested
as a way of proceeding. It is interesting to note that recent constructions for
curves with prescribed embedding degrees (as described in Chapter IX) also
rely on CM methods, while it is known that the embedding degree of a random
curve of a particular size will be very high. The challenge to computational
number theorists is evident.

Bibliography

[ECC] I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1999.

[EP] IACR e-print archive. Available from http://eprint.iacr.org/.
[A-1] L. Adleman and M.-D. Huang, editors. ANTS-1: Algorithmic Number Theory.

Springer-Verlag, LNCS 877, 1994.
[A-2] H. Cohen, editor. ANTS-2: Algorithmic Number Theory. Springer-Verlag, LNCS

1122, 1996.
[A-3] J.P. Buhler, editor. ANTS-3: Algorithmic Number Theory. Springer-Verlag, LNCS

1423, 1998.
[A-4] W. Bosma, editor. ANTS-4: Algorithmic Number Theory. Springer-Verlag, LNCS

1838, 2000.
[A-5] C. Fieker and D.R. Kohel, editors. ANTS-5: Algorithmic Number Theory. Springer-

Verlag, LNCS 2369, 2002.
[A-6] D. Buell, editor. ANTS-6: Algorithmic Number Theory. Springer-Verlag, LNCS

3076, 2004.
[A98] K. Ohta and D. Pei, editors. Advances in Cryptology – ASIACRYPT ’98. Springer-

Verlag, LNCS 1514, 1998.
[A99] K.Y. Lam, E. Okamoto and C. Xing, editors. Advances in Cryptology – ASI-

ACRYPT ’99. Springer-Verlag, LNCS 1716, 1999.
[A00] T. Okamoto, editor. Advances in Cryptology – ASIACRYPT 2000. Springer-Verlag,

LNCS 1976, 2000.
[A01] C. Boyd, editor. Advances in Cryptology – ASIACRYPT 2001. Springer-Verlag,

LNCS 2248, 2001.
[A02] Y. Zheng, editor. Advances in Cryptology – ASIACRYPT 2002. Springer-Verlag,

LNCS 2501, 2002.
[A03] C.S. Laih, editor. Advances in Cryptology – ASIACRYPT 2003. Springer-Verlag,

LNCS 2894, 2003.
[C84] G.R. Blakley and D. Chaum, editors. Advances in Cryptology – CRYPTO ’84.

Springer-Verlag, LNCS 196, 1985.
[C89] G. Brassard, editor. Advances in Cryptology – CRYPTO ’89. Springer-Verlag,

LNCS 435, 1990.
[C91] J. Feigenbaum, editor. Advances in Cryptology – CRYPTO ’91. Springer-Verlag,

LNCS 576, 1992.
[C92] E.F. Brickell, editor. Advances in Cryptology – CRYPTO ’92. Springer-Verlag,

LNCS 740, 1993.
[C93] D. Stinson, editor. Advances in Cryptology – CRYPTO ’93. Springer-Verlag, LNCS

773, 1993.
[C96] N. Koblitz, editor. Advances in Cryptology – CRYPTO ’96. Springer-Verlag, LNCS

1109, 1996.
[C97] B.S. Kaliski Jr., editor. Advances in Cryptology – CRYPTO ’97. Springer-Verlag,

LNCS 1294, 1997.

253

254 BIBLIOGRAPHY

[C98] H. Krawczyk, editor. Advances in Cryptology – CRYPTO ’98. Springer-Verlag,
LNCS 1462, 1998.

[C99] M. Wiener, editor. Advances in Cryptology – CRYPTO ’99. Springer-Verlag, LNCS
1666, 1999.

[C00] M. Bellare, editor. Advances in Cryptology – CRYPTO 2000. Springer-Verlag,
LNCS 1880, 2000.

[C01] J. Kilian, editor. Advances in Cryptology – CRYPTO 2001. Springer-Verlag, LNCS
2139, 2001.

[C02] M. Yung, editor. Advances in Cryptology – CRYPTO 2002. Springer-Verlag, LNCS
2442, 2002.

[C03] D. Boneh, editor. Advances in Cryptology – CRYPTO 2003. Springer-Verlag, LNCS
2729, 2003.

[CH99] Ç.K. Koç and C. Paar, editors. Cryptographic Hardware and Embedded Systems –
CHES ’99. Springer-Verlag, LNCS 1717, 1999.

[CH00] Ç.K. Koç and C. Paar, editors. Cryptographic Hardware and Embedded Systems –
CHES 2000. Springer-Verlag, LNCS 1965, 2000.

[CH01] Ç.K. Koç, D. Naccache and C. Paar, editors. Cryptographic Hardware and Embed-
ded Systems – CHES 2001. Springer-Verlag, LNCS 2162, 2001.

[CH02] B.S. Kaliski Jr., Ç.K. Koç and C. Paar, editors. Cryptographic Hardware and Em-
bedded Systems – CHES 2002. Springer-Verlag, LNCS 2523, 2003.

[CH03] C.D. Walter, Ç.K. Koç and C. Paar, editors. Cryptographic Hardware and Embed-
ded Systems – CHES 2003. Springer-Verlag, LNCS 2779, 2003.

[E90] I.B. Damg̊ard, editor. Advances in Cryptology – EUROCRYPT ’90. Springer-
Verlag, LNCS 473, 1990.

[E94] A. De Santis, editor. Advances in Cryptology – EUROCRYPT ’94. Springer-Verlag,
LNCS 950, 1994.

[E97] W. Fumy, editor. Advances in Cryptology – EUROCRYPT ’97. Springer-Verlag,
LNCS 1233, 1997.

[E00] B. Preneel, editor. Advances in Cryptology – EUROCRYPT 2000. Springer-Verlag,
LNCS 1807, 2000.

[E01] B. Pfitzmann, editor. Advances in Cryptology – EUROCRYPT 2001. Springer-
Verlag, LNCS 2045, 2001.

[E02] L. Knudsen, editor. Advances in Cryptology – EUROCRYPT 2002. Springer-Verlag,
LNCS 2332, 2002.

[E03] E. Biham, editor. Advances in Cryptology – EUROCRYPT 2003. Springer-Verlag,
LNCS 2656, 2003.

[E04] C. Cachin and J. Camenisch, editors. Advances in Cryptology – EURO-
CRYPT 2004. Springer-Verlag, LNCS 3027, 2003.

[P01] K. Kim, editor. Public Key Cryptography – PKC 2001. Springer-Verlag, LNCS 1992,
2001.

[P02] D. Naccache and P. Paillier, editors. Public Key Cryptography – PKC 2002.
Springer-Verlag, LNCS 2274, 2002.

[P03] Y.G. Desmedt, editor. Public Key Cryptography – PKC 2003. Springer-Verlag,
LNCS 2567, 2003.

[P04] F. Bao, editor. Public Key Cryptography – PKC 2004. Springer-Verlag, LNCS 2947,
2004.

[ANSI X9.62] ANSI X9.62. Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA). American National Stan-
dards Institute, 1999.

BIBLIOGRAPHY 255

[ANSI X9.63] ANSI X9.63. Public Key Cryptography for the Financial Services Industry:
Elliptic Curve Key Agreement and Transport Protocols. American National Stan-
dards Institute, 2001. Draft.

[EU 1999] EU Directive 1999/93/EC of the European Parliament and of the Council. On
a Community Framework for Electronic Signatures, December 1999.

[FIPS 140.1] FIPS PUB 140-1. Security requirements for cryptographic modules. National
Institute for Standards and Technology, 1994.

[FIPS 180.1] FIPS PUB 180-1. Secure Hash Standard. National Institute for Standards
and Technology, 1995.

[FIPS 180.2] FIPS PUB 180-2. Secure Hash Standard. National Institute for Standards
and Technology, 2001.

[FIPS 186] FIPS PUB 186. Digital Signature Standard (DSS). National Institute for Stan-
dards and Technology, 1994.

[FIPS 186.2] FIPS PUB 186-2. Digital Signature Standard (DSS). National Institute for
Standards and Technology, 2000.

[IBM CoPro] IBM Corporation. IBM PCI Cryptographic Coprocessor–General Informa-
tion Manual, 6th ed., 2002.

[IEEE 1363] IEEE 1363. Standard Specifications for Public Key Cryptography. IEEE, 2000.
[ISO 15946-2] ISO X9.62. International Standard 15946-2: Information Technology — Se-

curity Techniques — Cryptographic techniques based on elliptic curves — Part 2:
Digital Signatures. International Standards Organization, 2000.

[NESSIE] NESSIE. Security Evaluation Report. NESSIE, 2002.
[RFC 2412] IETF. The Oakley Key Determination Protocol, 1998.
[RFC 3278] IETF. The Use of Elliptic Curve Cryptography in the Cryptographic Message

Syntax, 2001.
[SECG] SEC 1. Elliptic Curve Cryptography. Standards for Efficient Cryptography Group,

1999.
[1] M. Abdalla, M. Bellare and P. Rogaway. DHAES: An encryption scheme based

on the Diffie-Hellman problem. Submission to P1363a: Standard Specifications for
Public-Key Cryptography, Additional Techniques, 2000.

[2] L.M. Adleman. The function field sieve. In [A-1], 108–121.
[3] L.M. Adleman and M.-D. Huang. Function field sieve method for discrete loga-

rithms over finite fields. Information and Computation, 151, 5–16, 1999.
[4] L.M. Adleman, J. DeMarrais and M.-D. Huang. A subexponential algorithm for

discrete logarithms over the rational subgroup of the jacobians of large genus hy-
perelliptic curves over finite fields. In [A-1], 28–40.

[5] D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM side-channel(s).
In [CH02], 29–45.

[6] T. Akishita and T. Takagi. Zero-value point attacks on elliptic curve cryptosys-
tem. In C. Boyd and W. Mao, editors, Information Security, LNCS 2851, 218–233.
Springer-Verlag, 2003.

[7] M.-L. Akkar and C. Giraud. An implementation of DES and AES secure against
some attacks. In [CH01], 309–318.

[8] S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement pro-
tocols from pairings. In K.G. Paterson, editor, Cryptography and Coding, LNCS
2898, 332–359. Springer-Verlag, 2003.

[9] S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography. In
[A03], 452–473.

[10] G. Appenzeller and B. Lynn. Minimal-overhead IP security using identity-based
encryption. Preprint, 2003.

256 BIBLIOGRAPHY

[11] A.O.L. Atkin. The number of points on an elliptic curve modulo a prime. Series of
emails to the NMBRTHRY mailing list, 1992.

[12] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has
sub-exponential discrete log problem under the Menezes–Okamoto–Vanstone algo-
rithm. J. Cryptology, 11, 141–145, 1998.

[13] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon and H.-C. Wong.
Secret handshakes from pairing-based key agreements. In Proc. IEEE Symposium
on Security and Privacy, 180–196. IEEE, 2003.

[14] R. Barua, R. Dutta and P. Sarkar. Extending Joux’s protocol to multi party key
agreement. In T. Johansson and S. Maitra, editors, Progress in Cryptology – IN-
DOCRYPT 2003, LNCS 2551, 205–217. Springer-Verlag, 2003.

[15] P. Barreto. The pairing-based crypto lounge. http://planeta.terra.com.
br/informatica/paulobarreto/pblounge.html.

[16] P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In [C02], 354–368.

[17] P.S.L.M. Barreto, B. Lynn and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In S. Cimato, C. Galdi and G. Persiano, editors, Se-
curity in Communication Networks (SCN 2002), LNCS 2576, 257–267. Springer-
Verlag, 2002.

[18] P.S.L.M. Barreto, B. Lynn and M. Scott. On the selection of pairing-friendly groups.
In M. Matsui and R. Zuccherato, editors, Selected Areas in Cryptography – SAC
2003, LNCS 3006, 17–25. Springer-Verlag, 2004.

[19] M. Bellare, A. Desai, E. Jokipii and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proc. of the 38th Symposium on Foundations of Computer
Science, IEEE, 1997.

[20] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In [C98], 26–45.

[21] M. Bellare, S. Goldwasser and D. Micciancio. “Pseudo-random” number generation
within cryptographic algorithms: The DSS case. In [E97], 277–291.

[22] M. Bellare, R. Canetti and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In Proc. of the 30th Annual
Symposium on the Theory of Computing, 419–428. ACM, 1998.

[23] M. Bellare and A. Palacio. Protecting against key exposure: strongly key-insulated
encryption with optimal threshold. See [EP], # 2002/064, 2002.

[24] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proc. of the First ACM Conference on Computer and
Communications Security, 62–73. ACM, 1993.

[25] M. Bellare and P. Rogaway. Entity authentication and key distribution. In [C93],
232–249.

[26] I. Biehl, B. Meyer and V. Müller. Differential fault attacks on elliptic curve cryp-
tosystems. In [C00], 131–146.

[27] O. Billet and M. Joye. The Jacobi model of an elliptic curve and side-channel
analysis. In M. Fossorier, T. Høholdt and A. Poli, editors, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, LNCS 2643, 34–42. Springer-Verlag, 2003.

[28] S. Blake-Wilson, D. Johnson and A.J. Menezes. Key agreement protocols and their
security analysis. In Cryptography and Coding, LNCS 1355, 30–45. Springer-Verlag,
1997.

[29] S. Blake-Wilson and A.J. Menezes. Security proofs for entity authentication and au-
thenticated key transport protocols employing asymmetric techniques. In B. Chris-
tianson, B. Crispo, T. Lomas and M. Roe, editors, Security Protocols, LNCS 1361,
137–158. Springer-Verlag, 1997.

BIBLIOGRAPHY 257

[30] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS#1. In [C98], 1–12.

[31] D. Bleichenbacher. On the generation of DSS one-time keys. Preprint, 2001.
[32] A. Boldyreva. Efficient threshold signature, multisignature and blind signature

schemes based on the gap-Diffie-Hellman-group signature scheme. In [P03], 31–
46.

[33] A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signature schemes for
delegation of signing rights. See [EP], # 2003/096, 2003.

[34] D. Boneh. The decision Diffie-Hellman problem. In [A-3], 48–63.
[35] D. Boneh and X. Boyen. Short signatures without random oracles. In [E04], 56–73.
[36] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption

without random oracles. In [E04], 223–238.
[37] D. Boneh, G. Di Crescenzo, R. Ostrovsky and G. Persiano. Public key encryption

with keyword search. In [E04], 506–522.
[38] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In

[C01], 213–229.
[39] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM

J. Comp., 32, 586–615, 2003.
[40] D. Boneh, C. Gentry, B. Lynn and H. Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In [E03], 416–432.
[41] D. Boneh, A. Joux and P. Nguyen. Why textbook ElGamal and RSA encryption

are insecure. In [A00], 30–43.
[42] D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In

[A01], 514–532.
[43] D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil

pairing. Technical report, 2003. Revised version of [42], available from
http://crypto.stanford.edu/~dabo/abstracts/weilsigs.html.

[44] D. Boneh, I. Mironov and V. Shoup. Provably secure signature scheme from bilinear
mapping. In M. Joye, editor, Topics in Cryptology – CT-RSA 2003, LNCS 2612,
98–110. Springer-Verlag, 2003.

[45] I. Bouw, C. Diem and J. Scholten. Ordinary elliptic curves of high rank over F̄p(x)
with constant j-invariant. Manuscripta Mathematica, To appear.

[46] W. Bosma, J. Cannon and C. Playoust. The Magma algebra system I: The user
language. J. Symbolic Comp., 24, 3/4, 235–265, 1997.

[47] C. Boyd, W. Mao and K.G. Paterson. Deniable authenticated key establishment
for Internet protocols. In Security Protocols, LNCS. Springer-Verlag, To appear.

[48] X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In [C03], 382–398.

[49] F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography.
See [EP], # 2003/143, 2003.

[50] É. Brier, I. Déchène and M. Joye. Unified addition formulæ for elliptic curve cryp-
tosystems. In N. Nedjah and L. de Macedo Mourelle, editors, Embedded Crypto-
graphic Hardware: Methodologies and Architectures. Nova Science Publishers, 2004.

[51] É. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In [P02],
335–345.

[52] D.R.L. Brown. Generic groups, collision resistance and ECDSA. See [EP], #
2002/026, 2002.

[53] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In [E94], 267–275.

258 BIBLIOGRAPHY

[54] R. Canetti, O. Goldreich and S. Halevi. The random oracle model, revisited. In
Proc. of the 30th Annual ACM Symposium on the Theory of Computing, 209–218.
ACM, 1998.

[55] R. Canetti, S. Halevi and J. Katz. A forward-secure public-key encryption scheme.
In [E03], 255–271.

[56] R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext security from identity-based
encryption. See [E04], #, 2003.

[57] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In [E01], 453–474.

[58] R. Canetti, H. Krawczyk and J.B. Nielsen. Relaxing chosen-ciphertext security. In
[C03], 565–582.

[59] D.G. Cantor. Computing in the Jacobian of an hyperelliptic curve. Math. Comp.,
48, 95–101, 1987.

[60] R. Carls. A generalized arithmetic geometric mean (GAGM) sequence. Preprint,
2004.

[61] J. Cathalo, F. Koeune and J.-J. Quisquater. A new type of timing attack: Appli-
cation to GPS. In [CH03], 291–303.

[62] J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie–Hellman
groups. In [P03], 18–30.

[63] L.S. Charlap and R. Coley. An elementary introduction to elliptic curves ii. Institute
for Defense Analysis, CCR Expository Report 34, 1990.

[64] S. Chari, C.S. Jutla, J.R. Rao and P. Rohatgi. Towards sound approaches to coun-
teract power-analysis attacks. In [C99], 398–412.

[65] D. Chaum. Security without identification: Transaction systems to make Big
Brother obsolete. Comm. ACM, 28, 1030–1044, 1985.

[66] D. Chaum. Zero-knowledge undeniable signatures. In [E90], 458–464.
[67] D. Chaum and H. van Antwerpen. Undeniable signatures. In [C89], 212–216.
[68] L. Chen, K. Harrison, A. Moss, D. Soldera and N.P. Smart. Certification of public

keys within an identity based system. In A.H. Chan and V.D. Gligor, editors,
Information Security, LNCS 2433, 322–333. Springer-Verlag, 2002.

[69] L. Chen, K. Harrison, D. Soldera and N.P. Smart. Applications of multiple trust
authorities in pairing based cryptosystems. In G.I. Davida, Y. Frankel and O. Rees,
editors, Infrastructure Security, International Conference, InfraSec, LNCS 2437,
260–275. Springer-Verlag, 2002.

[70] L. Chen and C. Kudla. Identity based authenticated key agreement protocols from
pairings. See [EP], # 2002/184, 2002.

[71] L. Chen and C. Kudla. Identity based authenticated key agreement protocols from
pairings. In IEEE Computer Security Foundations Workshop, 219–233. IEEE Com-
puter Society Press, 2003.

[72] L. Chen and J. Malone-Lee. Improved identity-based signcryption. Preprint, 2004.
[73] X. Chen, F. Zhang and K. Kim. A new ID-based group signature scheme from

bilinear pairings. See [EP], # 2003/116, 2003.
[74] Z. Chen. Security analysis of Nalla-Reddy’s ID-based tripartite authenticated key

agreement protocols. See [EP], # 2003/103, 2003.
[75] J.H. Cheon. A universal forgery of Hess’s second ID-based signature against the

known-message attack. See [EP], # 2002/028, 2002.
[76] B. Chevallier-Mames, M. Ciet and M. Joye. Low-cost solutions for preventing simple

side-channel analysis: Side-channel atomicity. IEEE Trans. Computers, 53, 760–
768, 2004.

BIBLIOGRAPHY 259

[77] D.V. Chudnovsky and G.V. Chudnovsky. Sequences of numbers generated by ad-
dition in formal groups and new primality and factorization tests. Adv. Applied
Math., 7, 385–434, 1987.

[78] M. Ciet and M. Joye. Elliptic curve cryptosystems in the presence of permanent
and transient faults. Designs, Codes and Cryptography, To appear.

[79] M. Ciet, J.-J. Quisquater and F. Sica. Preventing differential analysis in GLV elliptic
curve scalar multiplication. In [CH02], 540–550.

[80] M. Ciet, J.-J. Quisquater and F. Sica. A secure family of composite finite fields
suitable for fast implementation of elliptic curve cryptography. In C. Pandu Rangan
and C. Ding, editors, Progress in Cryptology – INDOCRYPT 2001, LNCS 2247,
108–116. Springer-Verlag, 2001.

[81] C. Clavier, J.-S. Coron and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In [CH00], 252–263.

[82] C. Clavier and M. Joye. Universal exponentiation algorithm: A first step towards
provable SPA-resistance. In [CH01], 300–308.

[83] C. Cocks. An identity based encryption scheme based on quadratic residues. In
B. Honary, editor, Cryptography and Coding, LNCS 2260, 360–363. Springer-Verlag,
2001.

[84] C. Cocks and R.G.E. Pinch. ID-based cryptosystems based on the Weil pairing.
Unpublished manuscript, 2001.

[85] H. Cohen, A. Miyaji and T. Ono. Efficient elliptic curve exponentiation using mixed
coordinates. In [A98], 51–65.

[86] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic 2. IEEE
Trans. Inf. Theory, 30, 587–594, 1984.

[87] J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In [CH99], 292–302.

[88] J.-S. Coron and L. Goubin. On Boolean and arithmetic masking against differential
power analysis. In [CH00], 231–237.

[89] J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction as-
sumption is equivalent to the Diffie-Hellman assumption. In [A03], 392–397.

[90] J.-M. Couveignes. Quelques calculs en théorie des nombres. PhD thesis, Université
de Bordeaux, 1994.

[91] J.-M. Couveignes. Computing l-isogenies with the p-torsion. In [A-2], 59–65.
[92] J.-M. Couveignes. Algebraic groups and discrete logarithms. In Public Key Cryp-

tography and Computational Number Theory, 17–27. Walter de Gruyter, 2001.
[93] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting, 33(1), 167–226, 2004.

[94] C.R. Dalton. The NHS as a proving ground for cryptosystems. Information Security
Technical Report, 8(3), 73–88, 2003.

[95] B. den Boer, K. Lemke and G. Wicke. A DPA attack against the modular reduction
within a CRT implementation of RSA. In [CH02], 228–234.

[96] J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to Artin-Schreier
curves in characteristic 2. In [A-5], 308–323.

[97] J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to hyperelliptic
curves in characteristic 2. J. Cryptology, To appear.

[98] J. Denef and F. Vercauteren. Computing zeta functions of Cab curves using Monsky-
Washnitzer cohomology. Preprint, 2003.

[99] A.W. Dent. An evaluation of EPOC-2. NESSIE, Public report, 2001.
[100] A.W. Dent. Adapting the weaknesses of the random oracle model to the generic

group model. In [A02], 100–109.

260 BIBLIOGRAPHY

[101] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
Abh. Math. Sem. Univ. Hamburg, 14, 197–272, 1941.

[102] E. De Win, S. Mister, B. Preneel and M. Wiener. On the performance of signature
schemes based on elliptic curves. In [A-3], 252–266.

[103] C. Diem. A study on theoretical and practical aspects of Weil-restrictions of vari-
eties. PhD thesis, Universtität-Gesamthochschule Essen, 2001.

[104] C. Diem. The GHS-attack in odd characteristic. J. Ramanujan Math. Soc., 18,
2002.

[105] C. Diem and N. Naumann. On the structure of Weil restrictions of abelian varieties.
J. Ramanujan Math. Soc., 18, 2003.

[106] C. Diem and J. Scholten. Cover attacks – a report for the AREHCC project.
Preprint, 2003.

[107] Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. Intrusion-resilient public-
key encryption. In M. Joye, editor, Topics in Cryptology – CT-RSA 2003, LNCS
2612, 19–32. Springer-Verlag, 2003.

[108] R. Dupont and A. Enge. Practical non-interactive key distribution based on pair-
ings. Discrete Applied Mathematics, To appear.

[109] R. Dupont, A. Enge and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. See [EP], # 2002/094, 2002.

[110] I.M. Duursma. Class numbers for some hyperelliptic curves. In R. Pellikaan, M. Per-
ret and S.G. Vladut, editors, Arithmetic, Geometry and Coding Theory, 45–52.
Walter de Gruyter, 1996.

[111] I.M. Duursma, P. Gaudry and F. Morain. Speeding up the discrete log computation
on curves with automorphisms. In [A99], 103–121.

[112] I.M. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves.
In [A03], 111–222.

[113] B. Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J.
Math., 82, 631–648, 1960.

[114] K. Eisenträger, K. Lauter and P.L. Montgomery. Fast elliptic curve arithmetic and
improved Weil pairing evaluation. In M. Joye, editor, Topics in Cryptology – CT-
RSA 2003, LNCS 2612, 343–354. Springer-Verlag, 2003.

[115] N. Elkies. Elliptic and modular curves over finite fields and related computational
issues. In Computational Perspectives on Number Theory, 21–76, 1998.

[116] A. Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in
provably subexponential time. Math. Comp., 71, 729–742, 2002.

[117] A. Enge and P. Gaudry. A general framework for subexponential discrete logarithm
algorithms. Acta Arith., 102, 83–103, 2002.

[118] A. Enge and A. Stein. Smooth ideals in hyperelliptic function fields. Math. Comp.,
71, 1219–1230, 2002.

[119] P. Fahn and P. Pearson. IPA: A new class of power attacks. In [CH99], 173–186.
[120] W. Fischer, C. Giraud, E.W. Knudsen and J.-P. Seifert. Parallel scalar multiplica-

tion on general elliptic curves over Fp hedged against non-differential side-channel
attacks. See [EP], # 2002/007, 2002.

[121] R. Flassenberg and S. Paulus. Sieving in function fields. Experiment. Math., 8,
339–349, 1999.

[122] P.-A. Fouque and F. Valette. The doubling attack – Why upwards is better than
downwards. In [CH03], 269–280.

[123] M. Fouquet, P. Gaudry and R. Harley. On Satoh’s algorithm and its implementa-
tion. J. Ramanujan Math. Soc., 15, 281–318, 2000.

[124] G. Frey. How to disguise an elliptic curve. Talk at ECC’ 98, Waterloo, 1998.

BIBLIOGRAPHY 261

[125] G. Frey, M. Müller and H.-G. Rück. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Trans. Inf. Theory, 45, 1717–1719,
1999.

[126] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves. Math. Comp., 62, 865–874,
1994.

[127] G. Frey. Applications of arithmetical geometry to cryptographic constructions. In
D. Jungnickel and H. Niederreiter, editors, Finite Fields and Applications – 5,
128–161. Springer, 2001.

[128] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. In [C99], 537–554.

[129] S.D. Galbraith. Constructing isogenies between elliptic curves over finite fields.
LMS J. Comput. and Math., 2, 118–138, 1999.

[130] S.D. Galbraith. Supersingular curves in cryptography. In [A01], 495–513.
[131] S.D. Galbraith. Weil descent of Jacobians. In D. Augot and C. Carlet, editors,

WCC2001 International workshop on coding and cryptography, Electron. Notes Dis-
crete Math. 6. Elsevier, 2001.

[132] S.D. Galbraith. Limitations of constructive Weil descent. In Public Key Cryptog-
raphy and Computational Number Theory, 59–70. Walter de Gruyter, 2001.

[133] S.D. Galbraith, K. Harrison and D. Soldera. Implementing the Tate pairing. In
[A-5], 324–337.

[134] S.D. Galbraith, F. Hess and N.P. Smart. Extending the GHS Weil descent attack.
In [E02], 29–44.

[135] S.D. Galbraith, H.J. Hopkins and I.E. Shparlinski. Secure Bilinear Diffie-Hellman
bits. In J. Pieprzyk H. Wang and V. Varadharajan, editors, Information Security
and Privacy – ACISP 2004, LNCS 3108, 370–378. Springer-Verlag, 2004.

[136] S.D. Galbraith and J. McKee. The probability that the number of points on an
elliptic curve over a finite field is prime. J. London Math. Soc., 62, 671–684, 2000.

[137] S.D. Galbraith and N.P. Smart. A cryptographic application of Weil descent. In
M. Walker, editor, Cryptography and Coding, LNCS 1746, 191–200. Springer-Verlag,
1999.

[138] R. Gallant, R. Lambert and S. Vanstone. Improving the parallelized Pollard lambda
search on binary anomalous curves. Math. Comp., 69, 1699–1705, 2000.

[139] K. Gandolfi, C. Mourtel and F. Olivier. Electromagnetic analysis: Concrete results.
In [CH01], 251–261.

[140] T. Garefalakis. The generalised Weil pairing and the discrete logarithm problem
on elliptic curves. In S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics,
LNCS 2286, 118–130. Springer-Verlag, 2002.

[141] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 1999.

[142] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves.
In [E00], 19–34.

[143] P. Gaudry. A comparison and a combination of SST and AGM algorithms for
counting points of elliptic curves in characteristic 2. In [A02], 311–327.

[144] P. Gaudry and N. Gürel. An extension of Kedlaya’s point-counting algorithm to
superelliptic curves. In [A01], 480–494.

[145] P. Gaudry, F. Hess and N.P. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology, 15, 19–46, 2002.

[146] C. Gentry. Certificate-based encryption and the certificate revocation problem. In
[E03], 272–293.

262 BIBLIOGRAPHY

[147] C. Gentry and A. Silverberg. Heirarchical ID-based cryptography. In [A02], 548–
566.

[148] R. Gerkmann. The p-adic cohomology of varieties over finite fields and applications
to the computation of zeta functions. PhD thesis, Universität Duisberg-Essen, 2003.

[149] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comp. Syst. Sci., 28,
270–299, 1984.

[150] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comp., 17, 281–308, 1988.

[151] L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
[P03], 199–210.

[152] L. Goubin and J. Patarin. DES and differential power analysis – The duplication
method. In [CH99], 158–172.

[153] L. Granboulan. RSA hybrid encryption schemes. Available from http://www.di.
ens.fr/~granboul/recherche/publications/abs-2001-RSAenc.html, 2001.

[154] R. Granger. Estimates for discrete logarithm computations in finite fields. In K.G.
Paterson, editor, Cryptography and Coding, LNCS 2898, 190–206. Springer-Verlag,
2003.

[155] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford Univer-
sity Press, 2nd ed., 1992.

[156] J. Ha and S. Moon. Randomized signed-scalar multiplication of ECC to resist power
attacks. In [CH02], 551–563.

[157] H. Handschuh, P. Paillier and J. Stern. Probing attacks on tamper-resistant devices.
In [CH99], 303–315.

[158] R. Harley. Asymptotically optimal p-adic point-counting. Email to normal-
fontNMBRTHRY mailing list, December 2002.

[159] R. Harley. Method for solving Frobenius equations for elliptic-curve cryptography.
United States Patent Application, December 2003.

[160] R. Harley and J.-F. Mestre. Method for generating secure elliptic curves using an
arithmetic-geometric mean iteration. United States Patent Application, June 2002.

[161] M.A. Hasan. Power analysis attacks and algorithmic approaches to their counter-
measures for Koblitz cryptosystems. In [CH00], 93–108.

[162] J. Herranz and G. Sáez. A provably secure ID-based ring signature scheme. See
[EP], # 2003/261, 2003.

[163] F. Hess. Exponent group signature schemes and efficient identity based signature
schemes based on pairings. See [EP], # 2002/012, 2002.

[164] F. Hess. Efficient identity based signature schemes based on pairings. In K. Nyberg
and H. Heys, editors, Selected Areas in Cryptography – SAC 2002, LNCS 2595,
310–324. Springer-Verlag, 2003.

[165] F. Hess. The GHS attack revisited. In [E03], 374–387.
[166] F. Hess. On the security of the verifiably-encrypted signature scheme of Boneh,

Gentry, Lynn and Shacham. Info. Proc. Lett., 89, 111–114, 2004.
[167] F. Hess. A note on the Tate pairing of curves over finite fields. Arch. Math., 82,

28–32, 2004.
[168] F. Hess. Generalising the GHS attack on the elliptic curve discrete logarithm prob-

lem. LMS J. Comput. and Math., 7, 167–192, 2004.
[169] F. Hess. Computing relations in divisor class groups of algebraic curves over finite

fields. Preprint, 2003.
[170] F. Hess, N. P. Smart and G. Seroussi. Two topics in hyperelliptic cryptography.

In S. Vaudenay and A.M. Youssef, editors, Selected Areas in Cryptography – SAC
2001, LNCS 2259, 181–189. Springer-Verlag, 2001.

BIBLIOGRAPHY 263

[171] Y. Hitchcock and P. Montague. A new elliptic curve scalar multiplication algorithm
to resist simple power analysis. In L.M. Batten and J. Seberry, editors, Information
Security and Privacy – ACISP 2002, LNCS 2384, 214–225. Springer-Verlag, 2002.

[172] J. Horowitz and B. Lynn. Toward hierarchical identity-based encryption. In [E02],
466–481.

[173] E. W. Howe. The Weil pairing and the Hilbert symbol. Math. Ann., 305, 387–392,
1996.

[174] N. Howgrave-Graham and N.P. Smart. Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography, 23, 283–290, 2001.

[175] K. Itoh, T. Izu and M. Takaneka. Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA. In [CH02], 129–143.

[176] K. Itoh, T. Izu and M. Takaneka. A practical countermeasure against address-bit
differential power analysis. In [CH03], 382–396.

[177] K. Itoh, J. Yajima, M. Takaneka and N. Torii. DPA countermeasures by improving
the window method. In [CH02], 303–317.

[178] T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against
side channel attacks. In [P02], 280–296.

[179] T. Izu and T. Takagi. Exceptional procedure attack on elliptic curve cryptosystems.
In [P03], 224–239.

[180] T. Izu and T. Takagi. Efficient computations of the Tate pairing for the large MOV
degrees. In P.J. Lee and C.H. Lim, editors, Information Security and Cryptology –
ICISC 2002, LNCS 2587, 283–297. Springer-Verlag, 2003.

[181] M. Jacobson, A.J. Menezes and A. Stein. Solving elliptic curve discrete logarithm
problems using Weil descent. J. Ramanujan Math. Soc., 16, 231–260, 2001.

[182] M. Jacobson and A. van der Poorten. Computational aspects of NUCOMP. In
[A-5], 120–133.

[183] A. Joux. A one round protocol for tripartite Diffie–Hellman. In [A-4], 385–394.
[184] A. Joux. The Weil and Tate pairings as building blocks for public key cryptosystems.

In [A-5], 20–32.
[185] A. Joux and R. Lercier. The function field sieve is quite special. In [A-5], 431–445.
[186] A. Joux and K. Nguyen. Separating Decision Diffie–Hellman from Diffie–Hellman

in cryptographic groups. J. Cryptology, 16, 239–248, 2003.
[187] M. Joye. Recovering lost efficiency of exponentiation algorithms on smart cards.

Elect. Lett., 38, 1095–1097, 2002.
[188] M. Joye and J.-J. Quisquater. Hessian elliptic curves and side-channel attacks. In

[CH01], 402–410.
[189] M. Joye, J.-J. Quisquater and M. Yung. On the power of misbehaving adversaries

and security analysis of the original EPOC. In D. Naccache, editor, Topics in
Cryptology – CT-RSA 2001, LNCS 2020, 208–222. Springer-Verlag, 2001.

[190] M. Joye and C. Tymen. Protections against differential analysis for elliptic curve
cryptography: An algebraic approach. In [CH01], 377–390.

[191] M. Joye and S.-M. Yen. The Montgomery powering ladder. In [CH02], 291–302.
[192] B.G. Kang, J.H. Park and S.G. Hahn. A certificate-based signature scheme. In

T. Okamoto, editor, Topics in Cryptology – CT-RSA 2004, LNCS 2964, 99–111.
Springer-Verlag, 2004.

[193] Kant group. Kash. http://www.math.tu-berlin.de/~kant, 2003.
[194] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.

Soviet Physics Doklady, 7, 595–596, 1963.
[195] C. Karlof and D. Wagner. Hidden Markov model cryptanalysis. In [CH03], 17–34.
[196] K.S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer

cohomology. J. Ramanujan Math. Soc., 16, 323–338, 2001.

264 BIBLIOGRAPHY

[197] J. Kempf, C. Gentry and A. Silverberg. Securing IPv6 neighbor discovery using
address based keys (ABKs). Internet Draft Document, expired December 2002,
2002. Available from http://www.docomolabs-usa.com/pdf/PS2003-080.pdf.

[198] A. Khalili, J. Katz and W.A. Arbaugh. Toward secure key distribution in truly
ad-hoc networks. In Proc. 2003 Symposium on Applications and the Internet Work-
shops (SAINT 2003). IEEE Computer Society, 2003.

[199] H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim. and S.G. Hahn. Fast elliptic
curve point counting using Gaussian Normal Basis. In [A-5], 292–307.

[200] V. Klima and T. Rosa. Further results and considerations on side channel attacks
on RSA. In [CH02], 244–259.

[201] N. Koblitz. p-Adic Numbers, p-Adic Analysis, and Zeta-Functions. Springer-Verlag,
GTM 58, 1984.

[202] N. Koblitz. CM curves with good cryptographic properties. In [C91], 279–287.
[203] N. Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, 1997.
[204] H. Koch. Algebraic Number Theory. Springer-Verlag, 2nd ed., 1997.
[205] P.C. Kocher. Timing attacks on implementations of Diffie–Hellman, RSA, DSS, and

other systems. In [C96], 104–113.
[206] P.C. Kocher, J. Jaffe and B. Jun. Differential power analysis. In [C99], 388–397.
[207] D.R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,

University of California, Berkeley, 1996.
[208] D.R. Kohel. The AGM-X0(N) Heegner point lifting algorithm and elliptic curve

point counting. In [A03], 124–136.
[209] D.R. Kohel and I.E. Shparlinski. On exponential sums and group generators for

elliptic curves over finite fields. In [A-4], 395–404.
[210] S. Lang. Algebra. Addison-Wesley, 3rd ed., 1993.
[211] T. Lange. Efficient arithmetic on hyperelliptic curves. PhD thesis, Universität-

Gesamthochschule Essen, 2001.
[212] T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra

Engrg. Comm. Comput., To appear.
[213] A.G.B. Lauder and D. Wan. Counting points on varieties over finite fields of small

characteristic. In J.P. Buhler and P. Stevenhagen, editors, Algorithmic Number
Theory: Lattices, Number Fields, Curves and Cryptography. Mathematical Sciences
Research Institute Publications, 2002. To appear.

[214] A.G.B. Lauder and D. Wan. Computing zeta functions of Artin-Schreier curves
over finite fields. LMS J. Comput. and Math., 5, 34–55, 2002.

[215] A.G.B. Lauder and D. Wan. Computing zeta functions of Artin-Schreier curves
over finite fields II. J. Complexity, 20, 331–349, 2004.

[216] L. Law, A.J. Menezes, M. Qu, J. Solinas and S. Vanstone. An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography, 28, 119–134,
2003.

[217] R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. PhD thesis,
École Polytechnique, 1997.

[218] R. Lercier and D. Lubicz. Counting points on elliptic curves over finite fields of
small characteristic in quasi quadratic time. In [E03], 360–373.

[219] R. Lercier and D. Lubicz. A quasi quadratic time algorithm for hyperelliptic curve
point counting. Preprint, 2003.

[220] P.-Y. Liardet and N.P. Smart. Preventing SPA/DPA in ECC systems using the
Jacobi form. In [CH01], 391–401.

[221] B. Libert and J.-J. Quisquater. New identity based signcryption schemes from pair-
ings. See [EP], # 2003/023, 2003.

BIBLIOGRAPHY 265

[222] B. Libert and J.-J. Quisquater. Identity based undeniable signatures. In
T. Okamoto, editor, Topics in Cryptology – CT-RSA 2004, LNCS 2964, 112–125.
Springer-Verlag, 2004.

[223] B. Libert and J.-J. Quisquater. Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In [P04], 187–200.

[224] S. Lichtenbaum. Duality theorems for curves over p-adic fields. Inventiones Math.,
7, 120–136, 1969.

[225] J. López and R. Dahab. Fast multiplication on elliptic curves over GF (2m) without
precomputation. In [CH99], 316–327.

[226] D. Lorenzini. An Invitation to Arithmetic Geometry. AMS, Graduate Studies in
Mathematics 106, 1993.

[227] J. Lubin, J.-P. Serre and J. Tate. Elliptic curves and formal groups. Lecture notes
prepared in connection with the seminars held at the Summer Institute on Algebraic
Geometry, Whitney Estate, Woods Hole, Massachusetts, 1964.

[228] B. Lynn. Authenticated identity-based encryption. See [EP], # 2002/072, 2002.
[229] Magma Comp. algebra group. Magma. Available from http://www.maths.usyd.

edu.au:8000/u/magma/, 2003.
[230] J. Malone-Lee. Identity-based signcryption. See [EP], # 2002/098, 2002.
[231] J. Malone-Lee. Signcryption with non-interactive non-repudiation, To appear.
[232] J. Manger. A chosen ciphertext attack on RSA optimal asymmetric encryption

padding (OAEP) as standardized in PKCS # 1 v2.0. In [C01], 230–238.
[233] M. Maurer, A.J. Menezes and E. Teske. Analysis of the GHS Weil descent attack

on the ECDLP over characteristic two finite fields of composite degree. LMS J.
Comput. and Math., 5, 127–174, 2002.

[234] D. May, H.L. Muller and N.P. Smart. Random register renaming to foil DPA. In
[CH01], 28–38.

[235] R. Mayer-Sommer. Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In [CH00], 78–92.

[236] A. Miyaji, T. Ono and H. Cohen. Efficient elliptic curve exponentiation. In Y. Han,
T. Okamoto and S. Qing, editors, Information and Communications Security
(ICICS ’97), LNCS 1334, 282–290. Springer-Verlag, 1997.

[237] W. Meier and O. Staffelbach. Efficient multiplication on certain non-supersingular
elliptic curves. In [C92], 333–344.

[238] A.J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer, 1993.
[239] A.J. Menezes, T. Okamoto and S.A. Vanstone. Reducing elliptic curve logarithms

to a finite field. IEEE Trans. Inf. Theory, 39, 1639–1646, 1993.
[240] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1996.
[241] A.J. Menezes and M. Qu. Analysis of the Weil descent attack of Gaudry, Hess and

Smart. In D. Naccache, editor, Topics in Cryptology – CT-RSA 2001, LNCS 2020,
308–318. Springer-Verlag, 2001.

[242] A.J. Menezes, E. Teske and A. Weng. Weak fields for ECC. In T. Okamoto, editor,
Topics in Cryptology – CT-RSA 2004, LNCS 2964, 366–386. Springer-Verlag, 2004.

[243] A.J. Menezes, Y.-H. Wu and R. Zuccherato. An elementary introduction to hyper-
elliptic curves. In [203], 155-178.

[244] T.S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In [CH00], 238–251.

[245] T.S. Messerges, E.A. Dabbish and R.H. Sloan. Power analysis attacks of modular
exponentiation in smartcards. In [CH99], 144–157.

[246] W. Messing. The crystals associated to Barsotti-Tate groups: with applications to
abelian schemes. Springer-Verlag, GTM 264, 1972.

266 BIBLIOGRAPHY

[247] J.-F. Mestre. Lettre adressée à Gaudry et Harley, December 2000. Available at
http://www.math.jussieu.fr/~mestre/.

[248] J.-F. Mestre. Algorithmes pour compter des points de courbes en
petite caractéristique et en petit genre, March 2002. Available at
http://www.math.jussieu.fr/~mestre/.

[249] V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.
[250] S. Mitsunari, R. Sakai and M. Kasahara. A new traitor tracing schemes using

bilinear map. IEICE Trans. Fundamentals, E84, 481–484, 2002.
[251] A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve

traces for FR-reduction. IEICE Trans. Fundamentals, E84, 1234–1243, 2001.
[252] R.T. Moenck. Fast computation of GCDs. In Proc. 5th Annual ACM Symposium

on the Theory of Computing, 142–151. ACM, 1973.
[253] B. Möller. Securing elliptic curve point multiplication against side-channel attacks.

In G.I. Davida and Y. Frankel, editors, Information Security, LNCS 2200, 324–334.
Springer-Verlag, 2001.

[254] P.L. Montgomery. Modular multiplication without trial division. Math. Comp., 44,
519–521, 1985.

[255] P.L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp., 48, 243–264, 1987.

[256] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theoretical Informatics and Applications, 24, 531–543,
1990.

[257] V. Müller, A. Stein and C. Thiel. Computing discrete logarithms in real quadratic
congruence function fields of large genus. Math. Comp., 68, 807–822, 1999.

[258] K. Nagao. Improving group law algorithms for Jacobians of hyperelliptic curves. In
[A-4], 439–447.

[259] D. Nalla and K.C. Reddy. ID-based tripartite authenticated key agreement proto-
cols from pairings. See [EP], # 2003/04, 2003.

[260] J. Neukirch. Algebraic Number Theory. Springer-Verlag, 1999.
[261] P.Q. Nguyen and I.E. Shparlinski. The insecurity of the Digital Signature Algorithm

with partially known nonces. J. Cryptology, 15, 151–176, 2002.
[262] P.Q. Nguyen and I.E. Shparlinski. The insecurity of the Elliptic Curve Digital Sig-

nature Algorithm with partially known nonces. Designs, Codes and Cryptography,
30, 201–217, 2003.

[263] T. Okamoto and D. Pointcheval. The gap problems: A new class of problems for
the security of cryptographic schemes. In [P01], 104–118.

[264] K. Okeya and K. Sakurai. Power analysis breaks elliptic curve cryptosystems even
secure against the timing attack. In B. Roy and E. Okamoto, editors, Progress in
Cryptology – INDOCRYPT 2000, LNCS 1977, 178–190. Springer-Verlag, 2000.

[265] K. Okeya and K. Sakurai. On insecurity of the side channel attack countermeasure
using addition-subtraction chains under distinguishability between addition and
doubling. In L. Batten and J. Seberry, editors, Information Security and Privacy –
ACISP 2002, LNCS 2384, 420–435. Springer-Verlag, 2002.

[266] P.C. van Oorschot and M.J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptology, 12, 1–28, 1999.

[267] G. Orlando and C. Paar. A high performance reconfigurable elliptic curve processor
for GF (2m). In [CH00], 41–56.

[268] S.B. Örs, E. Oswald and B. Preneel. Power-analysis attacks on FPGAs – First
experimental results. In [CH03], 35–50.

[269] E. Oswald. Enhancing simple power-analysis attacks on elliptic curve cryptosys-
tems. In [CH02], 82–97.

BIBLIOGRAPHY 267

[270] E. Oswald. Markov model side-channel analysis. Unpublished manuscript, 2003.
[271] E. Oswald and M. Aigner. Randomized addition-subtraction chains as a counter-

measure against power attacks. In [CH01], 39–50.
[272] K.G. Paterson. ID-based signatures from pairings on elliptic curves. Elect. Lett.,

38, 1025–1026, 2002.
[273] K.G. Paterson. Cryptography from pairings: a snapshot of current research. Infor-

mation Security Technical Report, 7, 41–54, 2002.
[274] K.G. Paterson and G. Price. A comparion between traditional PKIs and identity-

based cryptography. Information Security Technical Report, 8, 57–72, 2003.
[275] S. Paulus and A. Stein. Comparing real and imaginary arithmetics for divisor class

groups of hyperelliptic curves. In [A-3], 576–591.
[276] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind

signatures. J. Cryptology, 13, 361–396, 2000.
[277] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar. Hyperelliptic curve cryptosystems:

Closing the performance gap to elliptic curves. In [CH03], 351–365.
[278] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and

counter-measures for smart cards. In S. Attali and T. Jensen, editors, Smart Card
Programming and Security (E-smart 2001), LNCS 2140, 200–210. Springer-Verlag,
2001.

[279] M.O. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. MIT Laboratory for Computer Science, Technical Report MIT/LCS/TR-
212, 1979.

[280] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In [C91], 434–444.

[281] K.C. Reddy and D. Nalla. Identity based authenticated group key agreement proto-
col. In A.J. Menezes and P. Sarkar, editors, Progress in Cryptology – INDOCRYPT
2002, LNCS 2551, 215–233. Springer-Verlag, 2002.

[282] C. Ritzenthaler. Point counting on genus 3 non hyperelliptic curves. In [A-6], 379–
394.

[283] H.G. Rück. On the discrete logarithm in the divisor class group of curves. Math.
Comp., 68, 805–806, 1999.

[284] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In 2000
Symposium on Cryptography and Information Security – SCIS 2000, 2000.

[285] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its
point counting. J. Ramanujan Math. Soc., 15, 247–270, 2000.

[286] T. Satoh. On p-adic point counting algorithms for elliptic curves over finite fields.
In [A-5], 43–66.

[287] T. Satoh, B. Skjernaa and Y. Taguchi. Fast computation of canonical lifts of elliptic
curves and its application to point counting. Finite Fields Appl., 9, 89–101, 2003.

[288] W. Schindler. A timing attack against RSA with the Chinese remainder theorem.
In [CH00], 109–124.

[289] W. Schindler. A combined timing and power attack. In [P02], 263–279.
[290] J. Scholten. Weil restriction of an elliptic curve over a quadratic extension. Preprint,

2004.
[291] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing

(Arch. Elektron. Rechnen), 7, 281–292, 1971.
[292] R. Schoof. Elliptic curves over finite fields and the computation of square roots

modp. Math. Comp., 44, 483–494, 1985.
[293] R. Schoof. Nonsingular plane cubic curves over finite fields. J. Combin. Theory Ser.

A, 46, 183–211, 1987.

268 BIBLIOGRAPHY

[294] R. Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux, 7, 219–254, 1995.

[295] J.-P. Serre. Local Fields. Springer-Verlag, GTM 67, 1979.
[296] A. Shamir. Identity based cryptosystems and signature schemes. In [C84], 47–53.
[297] A. Shamir. Protecting smart cards from passive power analysis with detached power

supplies. In [CH00], 71–77.
[298] D. Shanks. On Gauss and composition I and II. In R. Mollin, editor, Number Theory

and its Applications, 163–204. Kluwer Academic Publishers, 1989.
[299] K. Shim. A man-in-the-middle attack on Nalla-Reddy’s ID-based tripartite authen-

ticated key agreement protocol. See [EP], # 2003/115, 2003.
[300] K. Shim. Cryptanalysis of Al-Riyami-Paterson’s authenticated three party key

agreement protocols. See [EP], # 2003/122, 2003.
[301] K. Shim. Efficient one round tripartite authenticated key agreement protocol from

Weil pairing. Elect. Lett., 39, 208–209, 2003.
[302] K. Shim. Efficient ID-based authenticated key agreement protocol based on Weil

pairing. Elect. Lett., 39, 653–654, 2003.
[303] V. Shoup. Lower bounds for discrete logarithms and related problems. In [C97],

256–266.
[304] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In

[E00], 275–288.
[305] V. Shoup. A proposal for an ISO standard for public key encryption, v2.1. Preprint,

2001.
[306] A. Silverberg and K. Rubin. Supersingular abelian varieties in cryptology. In [C02],

336–353.
[307] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, GTM 106,

1986.
[308] B. Skjernaa. Satoh’s algorithm in characteristic 2. Math. Comp., 72, 477–487, 2003.
[309] N.P. Smart. The Hessian form of an elliptic curve. In [CH01], 118–125.
[310] N.P. Smart. The exact security of ECIES in the generic group model. In B. Honary,

editor, Coding and Cryptography, LNCS 2260, 73–84. Springer-Verlag, 2001.
[311] N.P. Smart. How secure are elliptic curves over composite extension fields? In

[E01], 30–39.
[312] N.P. Smart. An identity based authenticated key agreement protocol based on the

Weil pairing. Elect. Lett., 38, 630–632, 2002.
[313] N.P. Smart. An analysis of Goubin’s refined power analysis attack. In [CH03],

281–290.
[314] N.P. Smart. Access control using pairing based cryptography. In M. Joye, editor,

Topics in Cryptology – CT-RSA 2003, LNCS 2612, 111–121. Springer-Verlag, 2003.
[315] D.K. Smetters and G. Durfee. Domain-based administration of identity-based cryp-

tosystems for secure email and IPSEC. In Proc. 12th USENIX Security Symposium,
215–229, 2003.

[316] J. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography,
19, 195–249, 2000.

[317] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function fields. J.
Ramanujan Math. Soc., 16, 1–86, 2001.

[318] E. Steinfeld, L. Bull, H. Wang and J. Pieprzyk. Universal designated-verifier signa-
tures. In [A03], 523–542.

[319] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, 1993.
[320] H. Stichtenoth and C. Xing. On the structure of the divisor class group of a class

of curves over finite fields. Arch. Math,, 65, 141–150, 1995.

BIBLIOGRAPHY 269

[321] D.R. Stinson. Some observations on the theory of cryptographic hash functions.
See [EP], # 2001/020, 2002.

[322] H.-M. Sun and B.-T. Hsieh. Security analysis of Shim’s authenticated key agreement
protocols from pairings. See [EP], # 2003/113, 2003.

[323] E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In
[A-3], 541–554.

[324] E. Teske. An elliptic curve trapdoor system. J. Cryptology, To appear.
[325] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In [A03],

75–92.
[326] N. Thériault. Weil descent attack for Kummer extensions. J. Ramanujan Math.

Soc., 18, 281–312, 2003.
[327] N. Thériault. Weil descent attack for Artin-Schreier curves. Preprint, 2004.
[328] É. Thomé. Subquadratic computation of vector generating polynomials and im-

provement of the block Wiedemann algorithm. J. Symbolic Comput., 33, 757–775,
2002.

[329] E. Trichina and A. Bellezza. Implementation of elliptic curve cryptography with
built-in countermeasures against side channel attacks. In [CH02], 98–113.

[330] S. Vaudenay. Security flaws induced by CBC padding – Applications to SSL, IPSEC,
WTLS... In [E02], 534–546.

[331] S. Vaudenay. Hidden collisions on DSS. In [C96], 83–87.
[332] J. Vélu. Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A, 273,

238–241, 1971.
[333] F. Vercauteren. Computing Zeta Functions of Curves over Finite Fields. PhD thesis,

Katholieke Universiteit Leuven, 2003.
[334] F. Vercauteren, B. Preneel and J. Vandewalle. A memory efficient version of Satoh’s

algorithm. In [E01], 1–13.
[335] E.R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems. In [E01], 195–210.
[336] E.R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems. J. Cryptology, To appear.
[337] E.R. Verheul. Self-blindable credential certificates from the Weil pairing. In [A01],

533–551.
[338] C.D. Walter. Montgomery’s multiplication technique: How to make it smaller and

faster. In [CH99], 80–93.
[339] C.D. Walter. Sliding windows succumbs to Big Mac attack. In [CH01], 286–299.
[340] C.D. Walter. Breaking the Liardet-Smart randomized exponentiation algorithm.

In P. Honeyman, editor, Smart Card Research and Advanced Applications, 59–68.
Usenix Association, 2002.

[341] C.D. Walter. Some security aspects of the MIST randomized exponentiation algo-
rithm. In [CH02], 276–290.

[342] C.D. Walter and S. Thompson. Distinguishing exponent digits by observing mod-
ular subtractions. In D. Naccache, editor, Topics in Cryptology – CT-RSA 2001,
LNCS 2020, 192–207. Springer-Verlag, 2001.

[343] L.C. Washington. Elliptic Curves: Number Theory and Cryptography. CRC Press,
2003.

[344] E. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup., 4th
series, 2, 521–560, 1969.

[345] B.R. Waters, D. Balfanz, G. Durfee and D.K. Smetters. Building an encrypted
and searchable audit log. In Proc. of Network and Distributed System Security
Symposium 2004 – NDSS ’04, 2004.

270 BIBLIOGRAPHY

[346] A. Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc.,
55, 497–508, 1949.

[347] A. Weil. The field of definition of a variety. Am. J. Math., 78, 509–524, 1956.
[348] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley,

2nd ed., 1993.
[349] P. Wright. Spy Catcher: The Candid Autobiography of a Senior Intelligence Officer.

Viking Press, 1987.
[350] X. Yi. An identity-based signature scheme from the Weil pairing. IEEE Comm.

Lett., 7, 76–78, 2003.
[351] X. Yi. Efficient ID-based key agreement from Weil pairing. Elect. Lett., 39, 206–

208, 2003.
[352] D.H. Yum and P.J. Lee. Efficient key updating signature schemes based on IBS. In

K.G. Paterson, editor, Cryptography and Coding, LNCS 2898, 167–182. Springer-
Verlag, 2003.

[353] F. Zhang and X. Chen. Attack on two ID-based group key agreement schemes. See
[EP], # 2003/259, 2003.

[354] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings.
In [A02], 533–547.

[355] F. Zhang and K. Kim. Efficient ID-based blind signature and proxy signature from
bilinear pairings. In R. Safavi-Naini, editor, Information Security and Privacy –
ACISP 2003, LNCS 2727, 312–323. Springer-Verlag, 2003.

[356] F. Zhang and S. Liu. ID-based one round authenticated tripartite key agreement
protocol with pairings. See [EP], # 2002/122, 2002.

[357] F. Zhang, R. Safavi-Naini and W. Susilo. Efficient verifiably encrypted signa-
tures and partially blind signatures from bilinear pairings. In T. Johansson and
S. Maitra, editors, Progress in Cryptology – INDOCRYPT 2003, LNCS 2904, 191–
204. Springer-Verlag, 2003.

[358] F. Zhang, R. Safavi-Naini and W. Susilo. An efficient signature scheme from bilinear
pairings and its applications. In [P04], 277–290.

[359] F. Zhang, R. Safavi-Naini and C.-Y. Lin. New proxy signature, proxy blind signa-
ture and proxy ring signature schemes from bilinear pairing. See [EP], # 2003/104,
2003.

SUMMARY OF MAJOR LNCS PROCEEDINGS 271

Summary of Major LNCS Proceedings

For ease of reference we include here a table listing the main conference
proceedings and the associated LNCS volume numbers. This includes all
conferences in the relevant series which were published by Springer-Verlag
and not necessarily those just referenced in this book.

Year Crypto Eurocrypt Asiacrypt CHES PKC ANTS

2004 3027 2947 3076
2003 2729 2656 2894 2779 2567
2002 2442 2332 2501 2523 2274 2369
2001 2139 2045 2248 2162 1992
2000 1880 1807 1976 1965 1838
1999 1666 1592 1716 1717 1560
1998 1462 1403 1514 1431 1423
1997 1294 1233
1996 1109 1070 1163 1122
1995 963 921
1994 839 950 917 877
1993 773 765
1992 740 658
1991 576 547 739
1990 537 473
1989 435 434
1988 403 330
1987 293 304
1986 263
1985 218 219
1984 196 209
1982 149

Author Index

Abdalla, M., 12, 50
Adleman, L., 142, 144
Al-Riyami, S.S., 247, 248
van Antwerpen, H., 230
Appenzeller, G., 249
Arbaugh, W.A., 249
Atkin, A.O.L., 103

Balasubramanian, R., 192, 208, 209
Balfanz, D., 249
Barreto, P.S.L.M., 205, 206, 211, 215
Bellare, M., 12, 26, 41, 50, 240, 241
Blake-Wilson, S., 241
Bleichenbacher, D., 8, 26, 74
Boldyreva, A., 233
Boneh, D., 8, 42, 194, 195, 202, 215, 218,

219, 221–233, 235, 239, 240, 244, 247,
249, 250

Boyd, C., 241
Boyen, X., 234, 239
Brezing, F., 211
Brier, E., 88
Brown, D., 31
Bull, L., 233
Burmester, M., 242

Canetti, R., 32, 238, 239
Cantor, D.G., 136
Carls, R., 115
Cha, J., 228
Chaum, D., 97, 230
Chen, A.H., 246
Chen, L., 234, 241
Chen, X., 247
Cheon, J.H., 122, 123, 228
Chevallier-Mames, B., 94
Ciet, M., 94
Cocks, C., 210, 221
Coppersmith, D., 205, 231
Coron, J.-S., 84, 85
Couveignes, J.-M., 103

Dahab, R., 93
Dalton, C.R., 249
DeMarrais, J., 142, 144
Denef, J., 132
Dent, A., 32
Desmedt, Y.G., 242
Deuring, M., 105
Diem, C., 231
Dodis, Y., 240
Dupont, R., 211, 219
Durfee, G., 249
Duursma, I., 208
Dwork, B., 132

Eisenträger, K., 206
Elkies, N., 103
Enge, A., 143, 144, 147, 211, 219

Flassenberg, R., 144
Fouquet, M., 113
Franklin, M., 202, 215, 218, 219, 221–229,

235, 240, 244, 247, 249, 250
Frey, G., 151, 185, 189, 197
Fujisaki, E., 225, 237, 247

Galbraith, S.D., 205, 208, 242
Garefalakis, T., 192
von zur Gathen, J., 131
Gaudry, P., 113, 115, 121, 132, 144, 147,

148, 152, 156
Gauss, F., 136
Gentry, C., 233, 235, 237, 246, 247, 249
Gerhard, J., 131
Gerkmann, R., 132
Gligor, V.D., 246
Goldreich, O., 32
Goldwasser, S., 23, 26, 41
Goubin, L., 84
Gürel, N., 132

Hahn, S.G., 122, 123
Halevi, S., 32, 238, 239

273

274 AUTHOR INDEX

Harley, R., 103, 113, 115, 127, 128, 131,
148, 156

Harrison, K., 205
Herranz, J., 232
Hess, F., 152, 189, 191
Hopkins, H.J., 242
Horowitz, J., 235
Howgrave-Graham, N, 8, 26
Huang, M.-D., 142, 144

Izu, T., 206

Johnson, D., 241
Joux, A., 42, 202, 203, 215, 218, 220, 221,

223, 242
Joye, M., 88, 90, 94

Karatsuba, A., 103
Kasahara, M., 215, 218, 220, 222, 228,

234, 237, 240, 241, 249
Katz, J., 238–240, 249
Kedlaya, K.S., 129, 132
Kempf, J., 249
Khalili, A., 249
Kim, H.Y., 122, 123, 205
Kim, J.H., 122, 123
Kim, K., 232, 247
Koblitz, N., 99, 104, 133, 192, 208, 209
Kocher, P., 72, 73
Kohel, D., 115, 201
Kudla, C., 241

Lagrange, J.-L., 136
Lang, S., 210
Lauder, A., 132
Lauter, K., 206
Law, L., 10
Lee, H.-S., 208
Lee, P.J., 240
Lercier, R., 103, 126, 132
Liardet, P.-Y., 90, 91
Libert, B., 232–234
Lichtenbaum, S., 185
Lin, C.-Y., 232
Liu, S., 242
López, J., 93
Lubicz, D., 126, 132
Lubin, J., 105, 106
Lynn, B., 194, 205, 206, 211, 228–235,

249

Malone-Lee, J., 233, 234

Mao, W., 241
Maurer, U,, 8
Menezes, A., 10, 197, 198, 200, 241
Messerges, T.S., 84
Messing, W., 106
Mestre, J.-F., 115, 132
Micali, S., 23, 41
Micciancio, D., 26
Miller, V., 196, 201
Mironov, I., 233
Miyaji, A., 209, 240
Moenck, R.T., 131
Montgomery, P., 93, 206
Morain, F., 211
Müller, V., 144

Nakabayashi, M., 209
Nalla, D., 242
Naor, M., 230, 237
Nguyen, K., 193, 202
Nguyen, P., 8, 26, 42

Ofman, Y., 103
Ohgishi, K., 215, 218, 220, 222, 228, 234,

237, 240, 241, 249
Okamoto, T., 197, 198, 200, 225, 237, 247
van Oorschot, P., 142

Palacio, A., 233, 240
Park, J.H., 122, 123
Park, J.Y., 122, 123
Paterson, K.G., 241, 247, 248
Paulus, S., 144
Pieprzyk, J., 233
Pinch, R., 210
Pointcheval, D., 22
Pollard, J., 142, 148

Qu, M., 10
Quisquater, J.-J., 90, 232–234

Rück, H.-G., 141, 185, 189, 197
Rabin, M.O., 41
Rackoff, C., 41
Reddy, K.C., 242
Rivest, R., 23
Rogaway, P., 12, 41, 50, 241
Rubin, K., 208

Sáez. G., 232
Safavi-Naini, R., 232, 233

AUTHOR INDEX 275

Sakai, R., 215, 218–220, 222, 228, 234,
237, 240, 241, 249

Satoh, T., 103–132
Schönhage, A., 103
Schoof, R., 103
Scott, M., 205, 206, 211
Serre, J.-P., 104–106, 132
Shacham, H., 194, 229–233
Shamir, A., 218, 221, 228
Shanks, D., 137
Shim, K., 241
Shoup, V., 31, 57, 61, 62, 64, 233
Shparlinski, I., 8, 26, 201, 242
Silverberg, A., 208, 235, 237, 249
Silverman, J.H., 184, 191, 198, 212
Simon, D., 41
Skjernaa, B., 113, 122–125, 129, 130
Smart, N.P., 8, 26, 57, 90, 91, 152, 240,

241
Smetters, D.K., 249
Soldera, D., 205
Solinas, J., 10
Stein, A., 143, 144
Steinfeld, E., 233
Stern, J., 22
Stinson, D., 28
Strassen, V., 103
Susilo, W., 233

Taguchi, Y., 122–125, 129, 130
Takagi, T., 206
Takano, S., 209
Tate, J., 105, 106, 132, 185
Thériault, N., 148, 149, 156
Thiel, C., 144

Vanstone, S., 10, 197, 198, 200
Vaudenay, S., 27
Vélu, J., 110
Vercauteren, F., 114, 122, 132
Verheul, E., 194, 203, 215, 216, 221, 226,

227, 233

Wan, D., 132
Wang, H., 233
Warinschi, B., 233
Washington, L.C., 184
Waterhouse, W.C., 199
Waters, B.R., 249
Weil, A., 136, 153, 185
Weng, A., 211
Wiener, M., 142

Wolf, S., 8
Wright, P., 72

Yi, X., 241
Yum, D.H., 240
Yung, M., 240

Zhang, F., 232, 233, 242, 247

Subject Index

abelian variety, 151
active attack, 64

on a device, 69, 71–72
adaptive chosen ciphertext attack, see CCA2
addition formulae

dummy operations, 91–92
indistinguishable, 88–92
unified, 88–89

Advanced Encryption Standard, see AES
advantage, 44
AES, 12
aggregate signature, 233
AGM, 115–121

algorithm, 119–120
univariate, 120–121

anomalous attack, 141
ANSI, 18

ANSI X9.62, 4, 174
ANSI X9.63, 4

Application protocol data units, 71
Artin–Schreier

construction, 164
equation, 125–128, 154
extension, 153, 155, 176
operator, 164

Baby Step/Giant Step, see BSGS
BDH problem, 202, 203, 218, 219, 221,

222, 224, 226, 228, 234, 237, 238,
241, 242, 247, 250

generalized, 248
benign malleability, 14, 15, 61
bilinear Diffie–Hellman problem, see BDH

problem
bilinearity (of modified pairing), 217
binary tree encryption, 238
black box groups, 8
blind signature, 97
BLS short signature, 229–232
Boneh–Franklin encryption scheme, 222–

226

BSGS, 18, 142

canonical lift, 105–108, 116–117
Cantor’s algorithm, 136, 140
CBE, 246–248
CCA, 16, 46, 48, 50, 51, 64–66, 74, 224,

225, see also CCA1 and CCA2
CCA1, 46, 64
CCA2, 13, 14, 46, 48, 61, 64
CDH problem, 47, 48, 50, 202, 228–230,

232, 233, 237, 250
Certicom, 4
Certificate-Based Encryption, see CBE
Certificateless Public Key Cryptography,

see CL-PKC
Certification Authority, 218
chosen ciphertext attack, see CCA
chosen plaintext attack, see CPA
CL-PKC, 247–249
CM method, 209, 210
cofactor Diffie–Hellman, 9
collusion resistent, 220
complexity-theoretic, 47
computational Diffie–Hellman problem, see

CDH problem
conorm, 152
conversion function, 5, 24, 26, 29, 32, 33
correlation analysis, 76
CPA, 45, 46, 64
cryptographic hardware, 69–71
cryptographic workflow, 244–246, 248
curve validation, 18
cyclotomic polynomial, 210

Data Encapsulation Mechanism, see DEM
data origin authentication, 9
DBDH problem, 202, 218, 234, 238, 239
DDH problem, 47, 50, 55–58, 202, 229,

230
decision bilinear Diffie–Hellman problem,

see DBDH problem

277

278 SUBJECT INDEX

decision Diffie–Hellman problem, see DDH
problem

degree of a function, 212
DEM, 15, 17, 62–66
DHAES, 12
DHIES, 12
differential side-channel analysis

point multiplication, 84
Diffie–Hellman problem, 14
Diffie–Hellman protocol, 8–10, 221, 241,

242
Digital Signature Algorithm, see DSA
Digital Signature Scheme, see DSA
distance-of-mean test, 76, 85
distortion map, 194
divisor, 184

class group, 152, 153, 184
defined over K, 184
degree, 134, 184
equivalent, 184
evaluation of function at, 185
group, 134
of a function, 184
of function, 134
principal, 134, 184
reduced, 135, 137, 139, 142–144, 146,

148, 149
weight, 135

smooth, 142–143, 149
support, 184

domain parameters, 5, 6, 8, 12, 16
attack, 26, 27

DSA, 4–7, 21, 229, 231
dual isogeny, 166

ECDDH problem, 202, see also DDH prob-
lem

ECDH protocol, 4, 8–10, 18, 47, 48, 220,
see also DH protocol

ECDHP, 8, 202, 231, see also CDH prob-
lem

ECDLP, 8, 151–179
ECDSA, 4–9, 12, 21–40, 57, 77, see also

DSA
ECIES, 4, 12–18, 41–66
ECIES-KEM, 4, 15–17, 61–66
ECMQV, 4, 10–12, 18
electromagnetic radiation leakage, 69, 74
ElGamal encryption, 223
elliptic curve cryptosystems

attacks on, 70

fault attacks, 72
side-channel analysis on, 70

elliptic curves
constructing with given embedding de-

grees, 208–212
division polynomial, 109, 110, 112, 113
generating with CM method, 210

embedding degree, 189
endomorphism ring, 168
ephemeral public keys, 8
ephemeral secret, 7
error-message attacks, 74
exponent, 183
external authenticate, 71

fault attacks, 71–72
FIPS

FIPS-140-1, 70
FIPS-186, 4
FIPS-186.2, 4

forger, 23
active, 24
existential, 24
passive, 24
selective, 24

forgery, 23
Forking Lemma, 22
forward secrecy, 10
forward secure encryption, 238
Frey–Rück attack, 19, 141, 197–199
Frobenius

automorphism, 152, 154, 160, 164, 165
endomorphism, 99–100, 136
map, 199

FS-PKE, 238–240
Fujisaki–Okamoto hybridization, 225, 237,

247
FullIdent, 224
function, 184

defined over K, 184
on a curve, 212

function field, 134, 152

Galois theory, 152
gap Diffie–Hellman

group, 229, 230
problem, 47, 50, 54–56

Gauss’s algorithm, 136, 137
Gauss’s composition, 136
Gaussian Normal Basis, 122, 126, 129

SUBJECT INDEX 279

generic group model, 7, 31–35, 56–58, 65,
141

genus, 133, 135–137, 140–143, 146, 148–
150, 153–157, 159, 160, 162, 165, 172–
174

GHS attack, 152–175
isogenies, 165–172

GMR Security, 23–24
GNB, 122
GRH, 171

Hagelin machine, 72
Hamming weight, 205
Harley’s algorithm, 127–128
hash Diffie–Hellman problem, 50–54
hash function

collision resistant, 28, 30
effective, 27, 32
one-way, 28, 30, 32
preimage-resistant, 28
second-preimage resistant, 28, 32
smooth, 30–31
uniform, 30–31
zero-resistant, 27, 32

Hasse interval, 200
Hasse’s Theorem, 103, 114
HCDLP, 140–142, 151–179

index-calculus algorithm, 142, 144–150
Hensel

lemma, 110
lifting, 110

Hessian form, 90
HIBE, 235–240

Gentry and Silverberg Scheme, 235–237
hybrid encryption, 42, 61
hyperelliptic curve, 133–150

group law, 136–140
Cantor’s algorithm, 136
Lagrange’s algorithm, 136

Jacobian, 134–135
hyperelliptic involution, 134

IBE, 215, 216, 221–230, 235, 237, 239,
240, 243–245, 247, 249, 250

IBS, 228–230, 240
ID based

blind signature, 232
encryption, 215, 218, 221–228, see also

IBE
security of, 224–226

hierarchical cryptography, 235–240

key agreement, 240–242
non-interactive key distribution, 218–

220
ring signature, 232
signatures, 218, 228–229, see also IBS
signcryption, 233–234
undeniable signature, 232

ideal group model, see generic group model
ideal hash model, see random oracle model
IEEE 1363, 4
IETF, 173
IKE, 249
ILA, 69
IND-CCA2, 46, 50, 51, 54, 55, 57, 61, 64–

66, 224, 226, 238, 239
IND-ID-CCA, 225, 226
index-calculus, 153, 156, 157, 159, 171,

173
indistinguishability game, 43–46, 49, 50,

63, 64, see also IND-CCA2 and IND-
ID-CCA

information leakage analysis, 69
internal authenticate, 71
IPSec, 249
ISO, 4
isogeny, 165

class, 166–167
computing, 168
cycles, 106
dual, 166

Jacobi form, 90–91
Jacobian, 134–136, 142, 144, 148, 152

Karatsuba multiplication, 103
KEM, 15–17, 61–66
KEM-DEM cipher, 17, 62–66
key agreement

tripartite, 215
key confirmation, 12
key derivation function, 50, 51, 56

idealized, 54–56
key distribution

Diffie–Hellman, 8–10
ECMQV, 10
EQMQV, 12
from pairings, 218–221, 240–242
multi-party, 242
non-interactive ID based, 218–220
tripartite, 220–221, 242

Key Encapsulation Mechanism, see KEM

280 SUBJECT INDEX

key transport, 10
Koblitz curve, 99, 149
Kronecker relation, 107, 114
Kronecker–Hurwitz class number, 166
Kummer extension, 153, 175

L-polynomial, 155
Lagrange’s algorithm, 136, 138, 140, 146
Lagrange’s Theorem, 98
Lanczos’s algorithm, 146, 147, 150
Lercier–Lubicz algorithm, 126–127
lunchtime attacks, 46

MAC, 12, 13, 15, 42, 48–54, 56, 57, 65,
218

magic number, 155
Markov chain, 80

aperiodic, 80
irreducible, 80
stationary distribution, 80

Markov process, 80
hidden, 82

meet-in-the-middle attack, 83
MESD, 85
Message Authentication Code, see MAC
midnight attacks, 46
Miller’s algorithm, 196–197, 205–207
MNT criteria, 209–210
Monsky–Washnitzer cohomology, 132
MOV attack, 19, 141, 197–199, 231
multiplicity, 184
multiplier

blinding, 98–99
splitting, 99

NIKDS, 218, 220, 222, 223, 228, 234
NIST, 26
non-degeneracy (of modified pairing), 217
non-rational endomorphism, 194
non-repudiation, 26, 39
norm, 152
normal basis, 158
NUCOMP, 137–140, 146
NUDPL, 139
NUDUPL, 140

one-way game, see OW game
ordinary, 194, 198
OW game, 43, 45, 46, 48

pairing, see also Tate pairing and Weil
pairing

bilinear, 183–184
bilinearity, 183
deducing group structure, 201
non-degeneracy, 183
properties of, 183, 216–218
protocols based on, 215–251
symmetry of, 195

partial key exposure, 8, 26
passive attack, 49, 64

on a device, 69, 72–77
Pearson correlation coefficient, 76
Pell equation, 209
PKCS#1, 74
Pohlig–Hellman simplification, 141
point blinding, 97
point counting, 103–132
point multiplication

atomic, 94–97
binary, 79
double-and-add-always, 93
low Hamming weight, 206
Montgomery, 93–94
randomization techniques

base point, 97–98
multiplier, 98–100

window methods, 206
Pollard methods, 152, 156, 157, 160, 170,

171, 173, 174
lambda method, 142
rho algorithm, 18, 148, 149

power consumption leakage, 73
Hamming weight leakage, 73
transition count, 73

private key generator, 219
projective representation

randomized, 97–98
provable security

signatures, 21–40
public key validation, 18
public-key encryption scheme

deterministic, 42
probabilistic, 42, 43
sound, 42

Quadratic Residuosity problem, 221
quaternion algebra, 198

Rück attack, 141–142
ramification index, 212
ramification points, 134

SUBJECT INDEX 281

random oracle model, 32–36, 41, 54–57,
65, 219, 226, 228, 230

random walks, 142
randomized isomorphism

curve, 98
field, 98

rarely zero hash, 27
Riemann–Roch theorem, 135
RSA, 9, 74, 97
RSA-OAEP, 74

Satoh’s algorithm, 103–132
Satoh–Skjernaa–Taguchi algorithm, 123–

125
SCA, 69–100
Schönhage–Strassen multiplication, 103
Schoof’s algorithm, 103
SEA algorithm, 103
SECG, 4, 18
security multiplier, 189
self-pairings, 193
SEMD, 84
semi-logarithm, 24–26, 29, 35
SHA-1, 5, 19
SHA-256, 5
SHA-384, 5
side-channel analysis

simple, 87
side-channel analysis, 8, 69–100

combining, 74
differential, 69, 75–76, 84
first-order, 76
multiple-exponent single-data, 85
point arithmetic, 80–83
point multiple, 77
second-order, 76
simple, 69, 74–75

point multiplication, 77–83
single-exponent multiple-data, 84
zero-exponent multiple-data, 85

side-channels, 72–74
smart cards, 71

simple attacks on, 71
SSL/TLS protocol, 242
straight line program, 197
supersingular curve, 194, 198–201

embedding degrees, 199
symmetric cipher, 48–218
symmetric encryption, 50
symmetry (of modified pairing), 217

tamper attacks, 70, 71
tamper resistant device, 70
Tate pairing, 48, 141, 183, 185–197, 206–

208, 216, 217, 250
efficient computation, 205–208
Miller’s algorithm, 196–197
over finite fields, 189–191
properties, 187–189

timing attack, 72–73
timing variation attacks, 72
trace map, 194–195
tripartite key agreement, 220–221, 223
Trusted Authority, 218

Vélu’s formulae, 110, 111, 113
Vercauteren’s algorithm, 114–115
Vernam cipher, 48, 49, 60
Verschiebung, 109
Viterbi algorithm, 83

Weidemann’s algorithm, 150
Weierstraß point, 133, 134
Weil conjectures, 106, 119
Weil descent, 151–179, 208, 231

Artin–Schreier constructions, 176–177
Kummer constructions, 175–176

Weil pairing, 48, 141, 183, 185, 191–197,
201, 206, 207, 216, 217, 250

generalized, 192
properties, 191

Weil reciprocity, 184–185, 212–213
Weil restriction, 151
Wiedemann’s algorithm, 146

ZEMD, 85
zeta function, 155

