

Regular Expressions

Regular expressions are the most obvious very high-level feature of Perl. A
single pattern match in Perl—even a simple one—can perform the work of
many lines in a different language. Pattern matches, especially when com-
bined with Perl’s handling of strings and lists, provide capabilities that are
very difficult to mimic in other programming languages.

The power of regular expressions is one thing. Making use of it is another.
Getting the full benefit from regular expressions in Perl requires both
experience and understanding. Becoming fluent in regular expressions
may seem to be a difficult task, but I commend it to you. Once you have
mastered regular expressions in Perl, your programs will be faster,
shorter, and easier to write. In other words, more effective—which is why
you are reading this book, right?

This section discusses many commonly-encountered issues relating to
regular expressions. It is not a reference, however. For a complete descrip-
tion of regular expressions and Perl, see the Perl man pages and/or the
Camel book. For an illuminating and extremely thorough discussion of
regular expressions that reaches far beyond Perl, see Jeffrey Friedl’s excel-
lent Mastering Regular Expressions, the so-called “Hip Owls book.”

Item 15: Know the precedence of regular expression
operators.

The “expression” in “regular expression” is there because regular expres-
sions are constructed and parsed using grammatical rules that are similar
to those used for arithmetic expressions. Although regular expressions
serve a greatly different purpose, understanding the similarities between
them will help you write better regular expressions, and hence better Perl.

Regular expressions in Perl are made up of atoms. Atoms are connected
by operators like repetition, sequence, and alternation. Most regular
expression atoms are single-character matches. For example:
http://www.effectiveperl.com

52 Item 15 Regular Expressions

There are also special “zero-width” atoms. For example:

Atoms are modified and/or joined together by regular expression opera-
tors. As in arithmetic expressions, there is an order of precedence among
these operators:

Fortunately, there are only four precedence levels—imagine if there were
as many as there are for arithmetic expressions! Parentheses and the
other grouping operators1 have the highest precedence.

A repetition operator binds tightly to its argument, which is either a single
atom or a grouping operator:

a Matches the letter a.

\$ Matches the character $—backslash escapes metacharacters.

\n Matches newline.

[a-z] Matches a lowercase letter.

. Matches any character except \n.

\1 Matches contents of first memory—arbitrary length.

\b Word boundary—transition from \w to \W.

^ Matches start of a string.

\Z Matches end of a string or before newline at end.

Regular expression operator precedence

Precedence Operator Description

Highest (), (?:), etc. Parentheses and other grouping
operators

?, +, *, {m,n}, +?,
etc.

Repetition

^abc Sequence (see below)

Lowest | Alternation

1. A multitude of new grouping operators were introduced in Perl 5.

ab*c Matches ac, abc, abbc, abbbc, etc.

abc* Matches ab, abc, abcc, abccc, etc.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Know the precedence of regular expression operators. 53

Placing two atoms side by side is called sequence. Sequence is a kind of
operator, even though it is written without punctuation. This is similar to
the invisible multiplication operator in a mathematical expression like
x = ay + b. To illustrate this, let’s suppose that sequence were actually
represented with the character “•”. Then the above examples would look
like:

The last entry in the precedence chart is alternation. Let’s continue to use
the “•” notation for a moment:

The zero-width atoms, for example, ^ and \b, group in the same way as
other atoms:

It’s easy to forget about precedence. Removing excess parentheses is a
noble pursuit, especially within regular expressions, but be careful not to
remove too many:

ab(c)* Same thing, and memorizes the c actually matched.

ab(?:c)* Same thing, but doesn’t memorize the c.

abc{2,4} Matches abcc, abccc, abcccc.

(abc)* Matches empty string, abc, abcabc, etc.; memorizes abc.

a•b*•c Matches ac, abc, abbc, abbbc, etc.

a•b•c* Matches ab, abc, abcc, abccc, etc.

a•b•(c)* Same thing, and memorizes the c actually matched.

a•b•(?:c)* Same thing, but doesn’t memorize the c.

a•b•c{2,4} Matches abcc, abccc, abcccc.

(a•b•c)* Matches empty string, abc, abcabc, etc.; memorizes abc.

e•d|j•o Matches ed or jo.

(e•d)|(j•o) Same thing.

e•(d|j)•o Matches edo or ejo.

e•d|j•o{1,3} Matches ed, jo, joo, jooo.

^e•d|j•o$ Matches ed at beginning, jo at end.

^(e•d|j•o)$ Matches exactly ed or jo.
http://www.effectiveperl.com

54 Item 15 Regular Expressions
The pattern was meant to match Sender: and From: lines in a mail header,
but it actually matches something somewhat different. Here it is with
some parentheses added to clarify the precedence:

/(^Sender)|(From:\s+(.*))/;

Adding a pair of parentheses, or perhaps memory-free parentheses (?:…),
fixes the problem:

Double-quote interpolation

Perl regular expressions are subject to the same kind of interpolation that
double-quoted strings are.2 Interpolated variables and string escapes like
\U and \Q are not regular expression atoms and are never seen by the reg-
ular expression parser. Interpolation takes place in a single pass that
occurs before a regular expression is parsed:

Double-quote interpolation and the separate regular expression parsing
phase combine to produce a number of common “gotchas.” For example,
here’s what can happen if you forget that an interpolated variable is not an
atom:

/^Sender|From:\s+(.*)/; WRONG—would match:
 X-Not-Really-From: faker
 Senderella is misspelled

/^(Sender|From):\s+(.*)/; $1 contains Sender or From.
$2 has the data.

/^(?:Sender|From):\s+(.*)/; $1 contains the data.

2. Well, more or less. The $ anchor receives special treatment so that it is not
always interpreted as a scalar variable prefix.

/te(st)/;
/\Ute(st)/;
/\Qte(st)/;

Matches test in $_.
Matches TEST.
Matches te(st).

$x = 'test';
/$x*/;
/test*/;

Matches tes, test, testt, etc.
Same thing as /$x*/.

Read a pattern into $pat and match two consecutive occurrences of it.

chomp($pat = <STDIN>); For example, bob.

print "matched\n" if /$pat{2}/; WRONG—/bob{2}/.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use regular expression memory. 55
In this example, if the user types in bob, the first regular expression will
match bobb, because the contents of $pat are expanded before the regular
expression is interpreted.

All three regular expressions in this example have another potential pit-
fall. Suppose the user types in the string “hello :-)”. This will generate a
fatal run-time error. The result of interpolating this string into
/($pat){2}/ is /(hello :-)){2}/, which, aside from being nonsense, has
unbalanced parentheses.

If you don’t want special characters like parentheses, asterisks, periods,
and so forth interpreted as regular expression metacharacters, use the
quotemeta operator or the quotemeta escape, \Q. Both quotemeta and \Q
put a backslash in front of any character that isn’t a letter, digit, or under-
score:

As with seemingly everything else pertaining to regular expressions, tiny
errors in quoting metacharacters can result in strange bugs:

Item 16: Use regular expression memory.
Although regular expressions are handy for determining whether a string
looks like one thing or another, their greatest utility is in helping parse the
contents of strings once a match has been found. To break apart strings
with regular expressions, you must use regular expression memory.

The memory variables: $1, $2, $3, and so on

Most often, parsing with regular expressions involves the use of the regu-
lar expression memory variables $1, $2, $3, and so on. Memory variables
are associated with parentheses inside regular expressions. Each pair of
parentheses in a regular expression “memorizes” what its contents
matched. For example:

print "matched\n" if /($pat){2}/;
print "matched\n" if /patpat/;

RIGHT—/(bob){2}/.
Brute force way.

chomp($pat = <STDIN>);
$quoted = quotemeta $pat;

For example, hello :-).
Now hello\ \:\-\).

print "matched\n" if /($quoted){2}/;
print "matched\n" if /(\Q$pat\E){2}/;

“Safe” to match now.
Another approach.

print "matched\n" if /(\Q$pat){2}/; WRONG—no \E ... means
/hello \ \:\-\)\{2\}/.
http://www.effectiveperl.com

56 Item 16 Regular Expressions
Only successful matches affect the memory variables. An unsuccessful
match leaves the memory variables alone, even if it appears that part of a
match might be succeeding:

When a pair of parentheses matches several different places in a string,
the corresponding memory variable contains the last match:

In cases involving nested parentheses, count left parentheses to deter-
mine which memory variable a particular set of parentheses refers to:

The “count left parentheses” rule applies to all regular expressions, even
ones involving alternation:

$_ = 'http://www.perl.org/index.html';
m#^http://([^/]+)(.*)#;

Memorize hostname and
path following http://.

print "host = $1\n";
print "path = $2\n";

host = www.perl.org
path = /index.html

Continued from above:

$_ = 'ftp://ftp.uu.net/pub/';
m#^http://([^/]+)(.*)#;

ftp doesn’t match http.
Same pattern as above.

print "host = $1\n";
print "path = $2\n";

Still www.perl.org.
Still /index.html.

$_ = 'ftp://ftp.uu.net/pub/systems';
m#^ftp://([^/]+)(/[^/]*)+#;

Last fragment of the path
goes into $2.

print "host = $1\n";
print "fragment = $2\n";

host = ftp.uu.net
fragment = /systems
but matched /pub first.

$_ = 'ftp://ftp.uu.net/pub/systems';
m#^ftp://([^/]+)((/[^/]*)+)#;

This pattern is similar to
the last one, but also
collects the whole path.

print "host = $1\n";
print "path = $2\n";
print "fragment = $3\n";

host = ftp.uu.net
path = /pub/systems
fragment = /systems

$_ = 'ftp://ftp.uu.net/pub';
m#^((http)|(ftp)|(file)):#;

Just grab the first
(protocol) portion of a
URL.

print "protocol = $1\n";
print "http = $2\n";
print "ftp = $3\n";
print "file = $4\n";

protocol = ftp
http =
ftp = ftp
file =
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use regular expression memory. 57
The $+ special variable contains the value of the last non-empty memory:

The parade of frills continues! Memory variables are automatically local-
ized by each new scope. In a unique twist, the localized variables receive
copies of the values from the outer scope—this is in contrast to the usual
reinitializing of a localized variable:

The localizing mechanism used is local, not my (see Item 23).

Backreferences

Regular expressions can make use of the contents of memories via back-
references. The atoms \1, \2, \3, and so on match the contents of the cor-
responding memories. An obvious (but not necessarily useful) application
of backreferences is solving simple word puzzles:

Continued from above:

print "\$+ = $+\n"; $+ = ftp

$_ = 'ftp://ftp.uu.net/pub';
m#^([^:]+)://(.*)#;

Take a URL apart in two steps—
first, split off the protocol.

print "\$1, \$2 = $1, $2\n"; $1, $2 = ftp, ftp.uu.net/pub

{
 print "\$1, \$2 = $1, $2\n";
 $2 =~ m#([^/]+)(.*)#;
 print "\$1, \$2 = $1, $2\n";
}

Now, split into host and path.
$1, $2 = ftp, ftp.uu.net/pub

$1, $2 = ftp.uu.net, /pub

print "\$1, \$2 = $1, $2\n"; $1, $2 = ftp, ftp.uu.net/pub
The old $1 and $2 are back.

/(\w)\1/; Matches doubled word
char—aa, 11, __.

/(\w)\1+/; 2 or more—aaa, bb,
222222.

/((\w)\2){2,}/; Consecutive pairs—aabb,
22__66 ... remember
“count left parentheses”
rule.

/([aeiou]).*\1.*\1.*\1/;
/([aeiou])(.*\1){3}/;
/([aeiou]).*?\1.*?\1.*?\1/;

Same vowel 4 times.
Another way.
More efficient (see Item
17).
http://www.effectiveperl.com

58 Item 16 Regular Expressions
This kind of thing is always good for 10 minutes of fun on a really slow
day. Just sit at your Unix box and type things like:

% perl -ne 'print if /([aeiou])(.*\1){3}/' /usr/dict/words

I get 106 words from this one, including “tarantara.” Hmm.

Backreferences are a powerful feature, but you may not find yourself using
them all that often. Sometimes they are handy for dealing with delimiters
in a simplistic way:

Unfortunately, this approach breaks down quickly—you can’t use it to
match parentheses (even without worrying about nesting), and there are
faster ways to deal with embedded escapes.

The match variables: $`, $&, $'

In addition to memory variables like $1, $2, and $3, there are three special
match variables that refer to the match and the string from which it
came. $& refers to the portion of the string that the entire pattern matched,
$` refers to the portion of the string preceding the match, and $' refers to
the portion of the string following the match. As with memory variables,
they are set after each successful pattern match.

Match variables can help with certain types of substitutions in which a
replacement string has to be computed:

Some people complain that using match variables makes Perl programs
run slower. This is true. There is some extra work involved in maintaining
the values of the match variables, and once any of the match variables
appears in a program, Perl maintains them for every regular expression

/(['"]).*\1/; 'stuff' or "stuff",
greedy.

/(['"]).*?\1/; Non-greedy version (see
Item 17).

/(['"])(\\\1|.)*?\1/; Handles escapes: \', \".

Go through the contents of OLD a line at a time, replacing some one-line HTML
comments.

while (<OLD>) {
 while (/<!--\s*(.*?)\s*-->/g) {
 $_ = $` . new_html($1) . $'
 if ok_to_replace($1);
 }
 print NEW $_;
}

Extract info from
comment and check it out.
Replace comment.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use regular expression memory. 59
match in the program. If you are concerned about speed, you may want to
rewrite code that uses match variables. You can generally rephrase such
code as substitutions that use memory variables. In the case above, you
could do the obvious (but incorrect):

Or, a correct but slightly more involved alternative:

In most cases, though, I would recommend that you write whatever makes
your code clearer, including using match variables when appropriate.
Worry about speed after everything works and you’ve made your deadline
(see Item 22).

The localizing behavior of match variables is the same as that of memory
variables.

Memory in substitutions

Memory and match variables are often used in substitutions. Uses of $1,
$2, $&, and so on within the replacement string of a substitution refer to
the memories from the match part, not an earlier statement (hopefully,
this is obvious):

while (<OLD>) {
 while (/<!--\s*(.*?)\s*-->/) {
 s/<!--\s*(.*)\s*-->/new_html($1)/e
 if ok_to_replace($1);
 }
 print NEW $_;
}

Use substitution rather
than match variables for
replacement. However,
/g won’t work; thus this
is broken for lines that
contain more than one
comment.

while (<OLD>) {
 s{(<!--\s*(.*?)\s*-->)}{
 ok_to_replace($2) ?
 new_html($2) : $1;
 }eg;
 print NEW $_;
}

Use s///eg for
replacement (looks
better using braces as
delimiters).

s/(\S+)\s+(\S+)/$2 $1/; Swap two words.

%ent = (
 '&' => 'amp', '<' => 'lt',
 '>' => 'gt'
);
$html =~ s/([&<>])/&$ent{$1};/g;

Here is an approach to
HTML entity escaping.

a&b becomes a&b

$newsgroup =~ s/(\w)\w*/$1/g; comp.sys.unix becomes
c.s.u.
http://www.effectiveperl.com

60 Item 16 Regular Expressions
Some substitutions using memory variables can be accomplished without
them if you look at what to throw away, rather than what to keep.

You can use the /e (eval) option to help solve some tricky problems:

Substitutions using /e can sometimes be more legibly written using
matching delimiters and possibly the /x option (see Item 21):

Matching in a list context

In a list context, the match operator m// returns a list of values corre-
sponding to the contents of the memory variables. If the match is unsuc-
cessful, the match operator returns an empty list. This doesn’t change the
behavior of the match variables: $1, $2, $3, and so on are still set as usual.

Matching in a list context is one of the most useful features of the match
operator. It allows you to scan and split apart a string in a single step:

s/^\s*(.*)/$1/; Eliminate leading
whitespace, hard way.

s/^\s+//; Much better!

$_ = "FOO=bar BLETCH=baz";
s/(FOO=\S+)|\w+=\S+/$1/g;

Throw away assignments
except FOO=.

s/(this|that)|(\w)/$1\U$2/g; Uppercase all words
except this and that.

s/(\S+\.txt)\b/-e $1 ? $1 :
 "<$1 not found>"/ge;

Replace all the
nonexistent foo.txt.

s{
 (\S+\.txt)\b # ending in .txt?
}{
 -e $1 ? $1 : "<$1 not found>"
}gex;

Same as above, written
with /x option to ignore
whitespace (including
comments) in pattern.

($name, $value) = /^([^:\s]*):\s+(.*)/; Parse an RFC822-like
header line.

($bs, $subject) =
 /^subject:\s+(re:\s*)?(.*)/i;

Get the subject, minus
leading re:.

$subject =
 (/^subject:\s+(re:\s*)?(.*)/i)[1];

Or, instead of a list
assignment, a literal slice.

($mode, $fn) = /begin\s+(\d+)\s+(\S+)/i Parse a uuencoded file’s
begin line.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use regular expression memory. 61
Using a match inside a map is even more succinct. This is one of my favor-
ite ultra-high-level constructs:

Note that it turns out to be extremely handy that a failed match returns an
empty list.

A match with the /g option in a list context returns all the memories for
each successful match:

Memory-free parentheses

Parentheses in Perl regular expressions serve two different purposes:
grouping and memory. Although this is usually convenient, or at least
irrelevant, it can get in the way at times. Here’s an example we just saw:

We need the first set of parentheses for grouping (so the ? will work right),
but they get in the way memory-wise. What we would like to have is the
ability to group without memory. Perl 5 introduced a feature for this spe-
cific purpose. Memory-free parentheses (?:…) group like parentheses,
but they don’t create backreferences or memory variables:

Memory-free parentheses are also handy in the match-inside-map con-
struct (see above), and for avoiding delimiter retention mode in split (see
Item 19). In some cases they also may be noticeably faster than ordinary
parentheses (see Item 22). On the other hand, memory-free parentheses
are a pretty severe impediment to readability and probably are best
avoided unless needed.

($date) =
 map { /^Date:\s+(.*)/ } @msg_hdr;

Find the date of a
message in not very much
Perl.

@protos =
 map { /^(\w+)\s+stream\s+tcp/ } <>;
print "protocols: @protos\n";

Produce a list of the
named tcp stream
protocols by parsing
inetd.conf or something
similar.

print "fred quit door" =~ m/(..)\b/g; Prints editor — last two
characters of each word.

($bs, $subject) =
 /^subject:\s+(re:\s*)?(.*)/i;

Get the subject, minus
leading re:.

($subject) =
 /^subject:\s+(?:re:\s*)?(.*)/i;

Get the subject, no bs.
http://www.effectiveperl.com

62 Item 16 Regular Expressions
Tokenizing with regular expressions

Tokenizing or “lexing” a string—dividing it up into lexical elements like
whitespace, numbers, identifiers, operators, and so on—offers an interest-
ing application for regular expression memory.

If you have written or tried to write computer language parsers in Perl, you
may have discovered that the task can seem downright hard at times. Perl
seems to be missing some features that would make things easier. The
problem is that when you are tokenizing a string, what you want is to find
out which of several possible patterns matches the beginning of a string
(or at a particular point in its middle). On the other hand, what Perl is
good at is finding out where in a string a single pattern matches. The two
don’t map onto one another very well.

Let’s take the example of parsing simple arithmetic expressions containing
numbers, parentheses, and the operators +, -, *, and /. (Let’s ignore
whitespace, which we could have substituted or tr-ed out beforehand.)
One way to do this might be:

This turns out to be moderately efficient, even if it looks ugly. However, a
tokenizer like this one will slow down considerably when fed long strings
because of the substr operation at the end. You might think of keeping
track of the current starting position in a variable named $pos and then
doing something like:

if (substr($_, $pos) =~ /^(\d+)/) {

However, this do-it-yourself technique probably won’t be much faster and
may be slower on short strings.

One approach that works reasonably well, and that is not affected unduly
by the length of the text to be lexed, relies on the behavior of the match
operator’s /g option in a scalar context—we’ll call this a “scalar m//g
match.” Each time a scalar m//g match is executed, the regular expression
engine starts looking for a match at the current “match position,” gener-
ally after the end of the preceding match—analogous to the $pos variable
mentioned above. In fact, the current match position can be accessed (and

while ($_) {
 if (/^(\d+)/) {
 push @tok, 'num', $1;
 } elsif (/^([+\-\/*()])/) {
 push @tok, 'punct', $1;
 } elsif (/^([\d\D])/) {
 die "invalid char $1 in input";
 }
 $_ = substr($_, length $1);
}

Tokenize contents of $_
into array @tok.

Chop off what we
recognized and go back
for more.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use regular expression memory. 63
changed) through Perl’s pos operator. Applying a scalar m//g match allows
you to use a single regular expression, and it frees you from having to
keep track of the current position explicitly:

The most recent versions of Perl support a /c option for matches, which
modifies the way scalar m//g operates. Normally, when a scalar m//g
match fails, the match position is reset, and the next scalar m//g will start
matching at the beginning of the target string. The /c option causes the
match position to be retained following an unsuccessful match. This,
combined with the \G anchor, which forces a match beginning at the last
match position, allows you to write more straightforward tokenizers:

Although it isn’t possible to write a single regular expression that matches
nested delimiters, with scalar m//gc you can come fairly close:.

while (/
 (\d+) | # number
 ([+\-\/*()]) | # punctuation
 ([\d\D]) # something else
/xg) {
 if ($1 ne "") {
 push @tok, 'num', $1;
 } elsif ($2 ne "") {
 push @tok, 'punct', $2;
 } else {
 die "invalid char $3 in input";
 }
}

Use a match with the /g
option. The /x option is
also used to improve
readability (see Item 21).

Examine $1, $2, $3 to see
what was matched.

{
 if (/\G(\d+)/gc) {
 push @tok, 'num', $1;
 } elsif (/\G([+\-\/*()])/gc) {
 push @tok, 'punct', $1;
 } elsif (/\G([\d\D])/gc) {
 die "invalid char $1 in input";
 } else {
 last;
 }
 redo;
}

A naked block for looping.
Is it a number?

Is it punctuation?

It’s something else.

Out of string?
We’re done.

Otherwise, loop.

■ Find nested delimiters using scalar m//gc.

Here is an approach to matching nested braces. {qw({ 1 } -1)} is an anonymous hash
ref—it could have been written less succinctly as {('{' => 1, '}' => -1)}.

$_ = " Here are { nested {} { braces } }!"; Input goes into $_.
http://www.effectiveperl.com

64 Item 17 Regular Expressions
Item 17: Avoid greed when parsimony is best.
One of the stickier problems you may encounter in dealing with regular
expressions is greed.

Greed isn’t about money, at least where regular expressions are con-
cerned. It’s the term used to describe the matching behavior of most regu-
lar expression engines, Perl’s included. A general rule3 is that a Perl
regular expression will return the longest match it can find, at the first
position in a string at which it can find a match of any length. Repetition
operators like * and + “gobble up” characters in the string until matching
more characters causes the match to fail:

This is normally a desirable behavior. But not always. Be especially careful
when using greedy regular expressions to match delimited patterns like
quoted strings and C comments:

{
 my $c;
 while (/([{}])/gc) {
 last unless ($c += {qw({ 1 } -1)}->{$1}) > 0
 };
}
print substr substr($_, 0, pos()), index($_, "{");

$c counts braces.

Find braces
and count them
until count is 0.

Print found string.

3. But not strictly accurate, as you will see.

$_ = "Greetings, planet Earth!\n"; Some data to match.

/\w+/;
/\w*/;

Matches Greetings.
Matches Greetings.

/n[et]*/;
/n[et]+/;

Matches n in Greetings.
Matches net in planet.

/G.*t/; Matches Greetings,
planet Eart.

▼ Don’t use greedy regular expressions with delimiters.

These examples illustrate incorrect patterns for matching text enclosed by delimiters—
in this case single-quoted strings and C comments.

$_ = "This 'test' isn't successful?"; Hoping to match 'test'.

($str) = /('.*')/; Matches 'test' isn'.

■ Find nested delimiters using scalar m//gc. (cont’d)
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Avoid greed when parsimony is best. 65
In these examples, Perl keeps matching beyond what appears to be the
end of the pattern. But the match operator hasn’t run amok: ', /, and *
are all matched by ., and the match ends at the last occurrence of ', or */.
We can fix the single-quoted string example by excluding single quotes
from the characters allowed inside the string:

Straightening out the regular expression for C comments is more trouble-
some. I will bet confidently that when you write your first regular expres-
sion that you believe matches C comments, it will not work. Here is one of
many possibilities—it seems reasonable at first:

Do you see the problem with it? It fails on the following input:

/***/

The reason is that there is no way for it to match an asterisk inside the
comment that isn’t followed by exactly one other character, thus an odd
number of asterisks fails to match. It has other problems, too, but this
one is enough. The real answer looks like this:4

You are not likely to understand the how and why of this without recourse
to a diagram of the underlying state machine:

$_ = "/* temp */ x = 10; /* too much? */"; Hoping to match /* temp */.

s#(/*.**/)##; OOPS—erases the whole string!

$_ = "This 'test' isn't successful?";
($str) = /('[^']*')/; Matches 'test' now.

s#/*([^*]|*[^/])**/##g; ALMOST works.

s#/*[^*]**+([^/*][^*]**+)*/##g; CORRECT

4. As long as it isn’t necessary to deal with things like comments embedded in
strings, anyway.

▼ Don’t use greedy regular expressions with delimiters. (cont’d)

/ *

[^*] *

*

[^/*]

/

http://www.effectiveperl.com

66 Item 17 Regular Expressions
And if you haven’t suffered through a class in discrete math or compiler
construction, this may not help you either. In fact, a good many people will
go through their lives using regular expressions like the above without
knowing why they work. This isn’t necessarily bad; it’s just not ideal.

Now, if it’s this hard to construct a regular expression for something as
simple as C comments, imagine what it could be like to try to write one for
something more complex, like HTML comments, or strings with character
escapes. Pretty scary.

Fortunately, Perl 5 has non-greedy repetition operators. This is a powerful
and enormously helpful new feature that allows you to write simple regu-
lar expressions for cases that previously required complex or even impos-
sibly difficult regular expressions.

You can make any repetition operator (*, +, {m,n}) non-greedy by follow-
ing it with a question mark. The operator will now match the shortest
string that results in a pattern match, rather than the longest. This makes
the examples above trivially simple:

You can now attempt more ambitious things, like a double-quoted string
with character escapes (let’s support \", \\, and \123):

The only problem with non-greedy matching is that it can be slower than
greedy matching. Don’t use non-greedy operators unnecessarily. But do
use non-greedy operators to avoid having to write complex regular expres-
sions that might or might not be correct.

Procedural regular expressions versus deterministic
finite automatons (DFAs)

Perl and most other tools with robust pattern-matching capabilities that
include features like backreferences use what I call a procedural approach
to regular expression pattern matching. When Perl encounters a regular

■ Do use non-greedy regular expressions with delimiters.

These examples illustrate patterns that correctly match text enclosed by delimiters.

$_ = "This 'test' isn't successful?";
($str) = /('.*?')/; Matches 'test'.

$_ = "/* temp */ x = 10; /* too much? */";
s#(/*.*?*/)##; Deletes /* temp */.

$_ = 'a "double-q \"string\042"';
($str) = /("(\\["\\]|\\\d{1,3}|.)*?")/;
print $str; "double-q \"string\042"
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Avoid greed when parsimony is best. 67
expression in a program, it compiles it into a treelike structure and saves
it away. When that regular expression is used to match a string, Perl looks
for the match by “executing” the compiled regular expression. Consider a
simple regular expression and target string:

If Perl could talk, it might describe the matching process something like
this:

“OK, start at first character position. Looking for a t. Got one.

“Now, an alternation, first one is e. Looking for e. Got one.

“OK, the alternation matched. Next thing is a dot. Need one char to
match the dot. Got an s.

“Anything else? Nope. Guess we’re done.”

If you have no background experience with tools like lex or flex, or if this
is the only kind of regular expression you have ever known, you probably
don’t see anything unusual with this interpretation of this regular expres-
sion. On the other hand, if you are familiar with flex, you might be think-
ing, “Hmm, why didn’t that match test instead?”

Well, you could get it to match test by rewriting it:

This illustrates the difference—outwardly, at least—between procedural
regular expressions and state machine or DFA regular expressions.5 Tools
like flex go far beyond parsing regular expressions. They go through an
involved process that generates a deterministic state machine from the
regular expression, rendering it into what is basically a table of numbers.
If you use flex on the regular expression above, it will generate an internal
state machine that looks something like this:

$_ = 'testing';
/t(e|es)./;
print "matched: $&\n"; matched: tes

$_ = 'testing';
/t(es|e)./;
print "matched: $&\n"; matched: test

5. The Hip Owls book uses the term “NFA regular expressions” to refer to what I
call “procedural” matching.

t e

s

[^s\n]

.

http://www.effectiveperl.com

68 Item 18 Regular Expressions
The bold circles represent “accepting states” in which a complete match
has been found. This view of the regular expression is somewhat different
from the one that Perl has. For one thing, this DFA would have matched
test, not tes, from the string testing. For another, the process of creating
a DFA from a regular expression discards the syntactic structure of the
original regular expression. In general, DFA-based tools always find the
longest match for a regular expression, regardless of the order of alterna-
tions or grouping of repetition operators. On the other hand, as you can
see, the arrangement of the parts of a Perl regular expression is signifi-
cant. The flexibility to change what a pattern matches by rearranging its
parts helps make Perl regular expressions particularly powerful and
expressive.

If you are more familiar with the DFA view of regular expressions than the
procedural view, you should take some time to think about procedural
regular expressions. Experiment with them. You can do things with proce-
dural regular expressions that are very difficult or impossible to do with
DFA regular expressions, especially if you make use of Perl’s non-greedy
repetition operators.

The down side to procedural regular expressions is that they generally run
slower than DFA regular expressions. But they are not that much slower,
and they do compile into an internal represention significantly faster.

Item 18: Remember that whitespace is not a word
boundary.

You will frequently use the set of whitespace characters, \s, the set of word
characters, \w, and the word boundary anchor, \b, in your Perl regular
expressions. Yet you should be careful when you use them together. Con-
sider the following pattern match:

This works fine on input like “joebloe ttyp0…”. However, it will not match
at all on strings like “webmaster-1 ttyp1…” and will return a strange result
on “joebloe pts/10…”. This match probably should have been written:

There is probably something wrong in your regular expression if you have
\w adjacent to \s, or \W adjacent to \S. At the least, you should examine
such regular expressions very carefully.

@who = `who`;
$_ = pop @who;
($user, $tty) = /(\w+)\s+(\w+)/;

donna pts/3 Oct 1 18:33

It looks innocuous at first.

($user, $tty) = /(\S+)\s+(\S+)/; BETTER—\S next to \s.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Remember that whitespace is not a word boundary. 69
Another thing to watch out for is a “word” that contains punctuation char-
acters. Suppose you want to search for a whole word in a text string:

This works fine for input like hacker and even Perl5-Porter, but fails for
words like goin', or any word that does not begin and end with a \w char-
acter. It also will consider isn a matchable word if $text contains isn't.
The reason is that \b matches transitions between \w and \W characters—
not transitions between \s and \S characters. If you want to support
searching for words delimited by whitespace, you will have to write some-
thing like this instead:

The word boundary anchor, \b, and its inverse, \B, are zero-width pat-
terns. Even though they are not the only zero-width patterns (^, \A, etc.
are others), they are the hardest to understand. If you are not sure what \b
and \B will match in your string, try substituting for them:

The results at the ends of the string should be especially interesting to
you. Note that if the last (or first) character in a string is not a \w charac-
ter, there is no word boundary at the end of the string. Note also that there
are not-word boundaries between consecutive \W characters (like space
and double quote) as well as consecutive \w characters.

Matching at the end of line: $, \Z, /s, /m

Of course, $ matches at the end of a line—or does it? Officially, it matches
at the end of the string being matched, or just before a final newline occur-
ring at the end of the string. This feature makes it easy to match new-
line-terminated data:

print "word to search for: ";
$word = <STDIN>;
print "found\n" if
 $text =~ /\b\Q$word\E\b/;

Hmm—are word
boundaries what you
want?

print "word to search for: ";
$word = <STDIN>;
print "found\n" if
 $text =~ /(^|\s)\Q$word\E($|\s)/;

BETTER—use whitespace
as a delimiter.

$text = "What's a \"word\" boundary?";
($btext = $text) =~ s/\b/:/g;
($Btext = $text) =~ s/\B/:/g;
print "$btext\n$Btext\n";

Insert colon at word
boundaries and not-word
boundaries.

% tryme
:What:':s: :a: ":word:" :boundary:?
W:h:a:t's a :"w:o:r:d": b:o:u:n:d:a:r:y?:
http://www.effectiveperl.com

70 Item 18 Regular Expressions
The /s (single-line—sort of) option changes the meaning of . (period) so
that it matches any character instead of any character but newline. This is
useful if you want to capture newlines inside a string:

However, /s does not change the meaning of $:

To force $ to really match the end of the string, you need to be more insis-
tent. One way to do this is to use the (?!…) regular expression operator:

Here, (?!\n) ensures that there are no newlines after the $.6

Ordinarily, $ only matches before the end of the string or a trailing new-
line. However, the /m (multi-line) option modifies the operation of $ so that
it can also match before intermediate newlines. The /m option also modi-
fies ^ so that it will match a position immediately following a newline in
the middle of the string:

print "some text\n" =~ /(.*)$/; Prints "some text", as if
newline wasn’t there.

print "some text" =~ /(.*)$/; Same thing.

print "2\nlines\n" =~ /(.*)/; 2 (Period won’t match
newline.)

print "2\nlines\n" =~ /(.*)/s; 2\nlines\n

$_ = "some text\n";
s/.$/<end>/s;

Yields some tex<end>\n.
(Replaces the character
before \n.)

$_ = "some text\n";
s/.$(?!\n)/<end>/s;

Now yields
some text<end>.

6. In earlier versions of Perl you may have to surround the $ with memory-free
parentheses—(?:$) instead of $—since the regular expression parser recognizes
$(as a special variable. This behavior was recently changed so that $ preceding (
is now recognized as an anchor, not part of a variable—as has long been the case
with $ preceding).

$_ = "2\nlines";
s/^/<start>/mg; <start>2\n<start>lines

$_ = "2\nlines";
s/$/<end>/mg; 2<end>\nlines<end>
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use split for clarity, unpack for efficiency. 71
The \A and \Z anchors retain the original meanings of ^ and $, respec-
tively, whether or not the /m option is used:

Item 19: Use split for clarity, unpack for efficiency.
The elegance of list assignments in Perl is infectious, especially when com-
bined with pattern matches. As you start using both features, you may
find yourself writing code like:

Of course, this is a natural application for split:

The two approaches take about the same amount of time to run, but the
code using split is simpler.

You can use pattern matches for more complex chores:

Using split, we have the alternative:

If you go to the trouble to benchmark these examples, you may find that
the version using a pattern match runs significantly faster than the version

%scores =
 <<'EOF' =~ /^(.*?):\s*(.*)/mg;
fred: 205
barney: 195
dino: 30
EOF

%scores = (
 'fred' => 205,
 'barney' => 195,
 'dino' => 30
); (See Item 13 for more
about here-doc strings.)

$_ = "2\nlines";
s/\A/<start>/mg; <start>2\nlines

$_ = "2\nlines";
s/\Z/<end>/mg; 2\nlines<end>

($a, $b, $c) =
 /^(\S+)\s+(\S+)\s+(\S+)/;

Get first 3 fields of $_.

($a, $b, $c) = split /\s+/, $_; Get first 3 fields of $_.

($a, $b, $c) = split; Splits $_ on whitespace by
default.

($a) =
 /[^:]*:[^:]*:[^:]*:[^:]*:([^:])/;

Get 5th field of $_
(delimited by colons).

($a) = /(?:[^:]*:){4}([^:])/; Another way to do it.

($a) = (split /:/)[4]; Get 5th field of $_
(delimited by colons).
http://www.effectiveperl.com

72 Item 19 Regular Expressions
using split. This wouldn’t be a problem, except that the pattern match is
significantly harder to read and understand. This is a general rule—pat-
tern matches tend to be faster, and split tends to be simpler and easier to
read. In cases like this, you have a decision to make. Do you use the faster
code, or do you use the code that is easier to understand? I think the
choice is obvious. If you must have speed, use a pattern match. But in gen-
eral, readability comes first. If speed is not the most important issue, use
split whenever the problem fits it.

List slices work effectively in combination with split:

You can use split several times to divide a string into successively smaller
pieces. For example, suppose that you have a line from a Unix passwd file
whose fifth field (the “GCOS” field) contains something like "Joseph N.
Hall, 555-2345, Room 888", and you would like to pick out just the last
name:

There are some situations where split can yield elegant solutions. Con-
sider one of our favorite problems, matching and removing C comments
from a string. You could use split to chop such a string up into a list of
comment delimiters and whatever appears between them, then process
the result to toss out the comments:

$_ = "/my/file/path";
$basename = (split /\//, $_)[-1];

Get whatever follows the
last /, or the whole thing.

($gcos) = (split /:/)[4];
($name) = (split /,/, $gcos);
($last) = (split / /, $name)[-1];

Fifth field in $gcos.
Stuff before , in $name.
Last name in $last.

■ Use split to process strings containing multi-character delimiters.

The following code will print $_ with C comments removed. It deals with double-quoted
strings that possibly contain comment delimiters. The memory parentheses in the
split pattern cause the delimiters, as well as the parts between them, to be returned.

for (split m!("(:?\\\W|.)*?"|/*|*/)!) {
 if ($in_comment) {
 $in_comment = 0 if $_ eq "*/"
 } else {
 if ($_ eq "/*") {
 $in_comment = 1;
 print " ";
 } else {
 print;
 }
 }
}

Split on strings and delimiters.

Look for */ if in a comment.

Look for /* if not in a comment.

Comments become a space.

If not in a comment, print.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Use split for clarity, unpack for efficiency. 73
Handling columns with unpack

From time to time, you may encounter input that is organized in columns.
Although you can use pattern matches to divide data up by columns, the
unpack operator (see Item 53) provides a much more natural and efficient
mechanism.

Let’s take some output from a typical ps command line (a few columns
have been lopped off the right so the output will fit here):

Here, a split on whitespace would be ineffective, because the fields are
determined on a column basis, not on a whitespace basis. Note that the
WCHAN field doesn’t even exist for the last line. This is a good time to trun-
dle out the unpack operator.

Note that the @ specifier does not return a value. It moves to an absolute
position in the string being unpacked. In the example above, “@8 A6”
means six characters starting at position 8.

You may find it aggravating to have to manually count out columns for the
unpack format. The following program may help you get the right numbers
with less effort:

% ps l
 F UID PID PPID CP PRI NI SZ RSS WCHAN S TT
 8 100 7363 7352 0 48 20 1916 1492 write3ve S pts/3
 8 100 14227 7363 0 58 20 868 704 write3ve S pts/3
 8 998 28693 3327 0 58 20 3068 1724 T pts/2

■ Use unpack to process column-delimited data.

The following example extracts a few fields from the output of the ps command and
prints them.

chomp (@ps = `ps l`); Collect some output.

shift @ps;
for (@ps) {
 ($uid, $pid, $sz, $tt) =
 unpack '@3 A5 @8 A6 @30 A5 @52 A5', $_;
 print "$uid $pid $sz $tt\n";
}

Toss first line.

Unpack data and print it.

Put a “picture” of the input in $_, and this program will generate a format.

$_ =
 ' aaaaabbbbbb ccccc ddddd';
http://www.effectiveperl.com

74 Item 20 Regular Expressions
You could also experiment interactively with the debugger (see Item 39) to
find the correct column numbers.

Item 20: Avoid using regular expressions for simple
string operations.

Regular expressions are wonderful, but they are not the most efficient way
to perform all string operations. Although regular expressions can be used
to perform string operations like extracting substrings and translating
characters, they are better suited for more complex operations. Simple
string operations in Perl should be handled by special-purpose operators
like index, rindex, substr, and tr///.

Bear in mind that all regular expression matches, even simple ones, have
to manipulate memory variables. If all you need is a comparison or a sub-
string, manipulating memory variables is a waste of time. For this reason,
if no other, you should prefer special-purpose string operators to regular
expression matches whenever possible.

Compare strings with string comparison operators

If you have two strings to compare for equality, use string comparison
operators, not regular expressions:

The string comparison operators are at least twice as fast as regular
expression matches:

A few more complex comparisons are also faster if you avoid regular
expressions:

while (/(\w)\1+/g) {
 print '@' . length($`) . ' A' . length($&) . ' ';
}
print "\n";

do_it() if $answer eq 'yes'; Fastest way to compare
strings for equality.

do_it() if $answer =~ /^yes$/; Slower.

do_it() if $answer =~ /yes/; Even slower, and probably
wrong, without anchors;
e.g. on "my eyes hurt".

do_it() if lc($answer) eq 'yes'; Faster.

do_it() if $answer =~ /^yes$/i; Slower.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Avoid using regular expressions for simple string operations. 75
Find substrings with index and rindex

The index operator locates an occurrence of a shorter string in a longer
string. The rindex operator locates the rightmost occurrence, still count-
ing character positions from the left:

The index operator is very fast—it uses a Boyer-Moore algorithm for its
searches. Perl will also compile index-like regular expressions into
Boyer-Moore searches. You could write:

or, avoiding the use of $' (see Item 16 and Item 21):

However, the overhead associated with using a regular expression match
makes index several times faster than m// for short strings.

Extract and modify substrings with substr

The substr operator extracts a portion of a string, given a starting position
and (optional) length:

The substr operator is much faster than a regular expression written to
do the same thing (also see Item 19):

The nifty thing about substr is that you can make replacements with it by
using it on the left side of an expression. The text referred to by substr is
replaced by the string value of the right-hand side:

$_ = "It's a Perl Perl Perl Perl World.";

$left = index $_, 'Perl';
$right = rindex $_, 'Perl';

7
22

Continued from above:

/Perl/;
$left = length $';

Slow, with a gratuitous
use of $'.

$perl = 'Perl';
/$perl/og;
$left = pos($_) - length($perl);

Yes, the pos operator does
have uses. This is still
slow, though.

$str = "It's a Perl World.";

print substr($str, 7, 4), "\n";
print substr($str, 7), "\n";

Perl
Perl World

Continued from above:

print ($str =~ /^.{7}(.{4})/), "\n"; Perl — but yuck!
http://www.effectiveperl.com

76 Item 20 Regular Expressions
You can combine index and substr to perform s///-like substitutions, but
in this case s/// is usually faster:

You can also do other lvalue-ish things with a substr, such as binding it to
substitutions or tr///:

Transliterate characters with tr///

Although it is possible to perform character-level substitutions with regu-
lar expressions, the tr/// operator provides a much more efficient mech-
anism:

The tr/// operator has other uses as well. It is the fastest way to count
characters in a string, and it can be used to remove duplicated characters:

Continued from above:

substr($str, 7, 4) = "Small"; It’s a Small World.

$str = "It's a Perl World.";

substr($str, index($str, 'Perl'), 4) =
 "Mad Mad Mad Mad";

It’s a Mad Mad Mad Mad
World.

$str =~ s/Perl/Mad Mad Mad Mad/; Less noisy, and probably
faster.

$str = "It's a Perl World.";

substr($str, index($str, 'Perl'), 4)
 =~ tr/a-z/A-Z/;

It’s a PERL World.

■ Use tr///, not regular expressions, to transliterate characters.

$_ = "secret message";

tr/n-za-m/a-z/; frperg zrffntr—string “rot13”
encoded.

@h{'N'..'Z','A'..'M'} = ('a'..'z');
s/([a-z])/$h{$1}/g;

Over 20 times slower, not
counting initializing the hash!

$digits = tr/0-9//; Count digits in $_, fast.

tr/ \n\r\t\f/ /s; Repeated whitespace
becomes single space.

$_ = "Totally\r\nDOS\r\n";
tr/\r//d;

Convert DOS text file to
Unix.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Make regular expressions readable. 77
Item 21: Make regular expressions readable.
Regular expressions are often messy and confusing. There’s no denying
it—it’s true.

One reason that regular expressions are confusing is that they have a very
compact and visually distracting appearance. They are a “little language”
unto themselves. However, this little language isn’t made up of words like
foreach and while. Instead, it uses atoms and operators like \w, [a-z]
and +.

Another reason is that what regular expressions do can be confusing in
and of itself. Ordinary programming chores generally translate more or
less directly into code. You might think “count from 1 to 10” and write for
$i (1..10) { print "$i\n" }. But a regular expression that accom-
plishes a particular task may not look a whole lot like a series of straight-
forward instructions. You might think “find me a single-quoted string” and
wind up with something like /'(?:\\'|.)*?'/.

It’s a good idea to try to make regular expressions more readable, espe-
cially if you intend to share your programs with others, or if you plan to
work on them some more yourself at a later date. Of course, trying to keep
regular expressions simple is a start, but there are a couple of Perl fea-
tures you can use that will help you make even complex regular expres-
sions more understandable.

Use /x to add whitespace to regular expressions

Normally, whitespace encountered in a regular expression is significant:

The /x flag, which can be applied to both pattern matches and substitu-
tions, causes the regular expression parser to ignore whitespace (so long
as it isn’t preceded by a backslash, or isn’t inside a character class),
including comments:

($a, $b, $c) = /^(\w+) (\w+) (\w+)/; Find three words
separated by one space, at
start of $_.

$_ = "Testing
one
two";

s/
/<lf>/g;

print "$_\n";

$_ contains embedded
newlines (same as if we
had used \n).

Replace newlines with
<lf>

Testing<lf>one<lf>two
http://www.effectiveperl.com

78 Item 21 Regular Expressions
This can be especially helpful when a regular expression includes a com-
plex alternation:

Break complex regular expressions into pieces

As you saw in Item 15, regular expressions are subject to double-quote
interpolation. You can use this feature to write regular expressions that
are built up with variables. In some cases, this may make them easier to
read:

The pattern this example creates is /([0-9]+ | [a-zA-Z_]+ | [])/gxo.
We used the /o (“compile once”) flag, because there is no need for Perl to
compile this regular expression more than once.

Notice that there weren’t any backslashes in the example. It’s hard to avoid
using backslashes in more complex patterns. However, because of the way
Perl handles backslashes and character escapes in strings (and regular
expressions), backslashes must be doubled to work properly:

($str) = /(' (?: \\' | .)*? ')/x; Find a single-quoted
string, including escaped
quotes.

($str) = / (
 " (?:
 \\\W | # special char
 \\x[0-9a-fA-F][0-9a-fA-F] | # hex
 \\[0-3]?[0-7]?[0-7] | # octal
 [^"\\] # ordinary char
)* "
) /x;

Find a double-quoted
string, including hex and
octal escapes.

$num = '[0-9]+';
$word = '[a-zA-Z_]+';
$space = '[]+';

Create some
“subpatterns.”

$_ = "Testing 1 2 3";
@split = /($num | $word | $space)/gxo;
print join(":", @split), "\n";

Some sample data.
Match into an array.
Testing: :1: :2: :3

$num = '\\d+';
$word = '\\w+';
$space = '\\ +';

$_ = "Testing 1 2 3";
@split = /($num | $word | $space)/gxo;
print join(":", @split), "\n";

'\\d+' becomes the string
'\d+', etc.

Some sample data.
Match into an array.
Testing: :1: :2: :3
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Make regular expressions readable. 79
The pattern this example creates is /(\d+ | \w+ | \ +)/gxo.

If we want a literal backslash in a regular expression, it has to be back-
slashed (e.g., /\\/ matches a single backslash). Because backslashes in
variables have to be doubled, this can result in some ugly looking
strings—'\\\\' to match a backslash and '\\\\\\w' to match a back-
slash followed by a \w character. This is not going to make our regular
expressions more readable in any obvious way, so when dealing with sub-
patterns containing backslashes, it’s wise to make up some strings in vari-
ables to hide this ugliness. Let’s rewrite the double-quoted string example
from above, this time using some variables:7

If you are curious as to exactly what a regular expression built up in this
manner looks like, print it out. Here’s one way:

$back = '\\\\';

$spec_ch = "$back\\W";
$hex_ch = "${back}x[0-9a-fA-F]{2}";
$oct_ch = "${back}[0-3]?[0-7]?[0-7]";
$char = "[^\"$back]";

($str) = /(
 " (
 $spec_ch | $hex_ch | $oct_ch | $char
)* "
)/xo;

Pattern for backslash.

Escaped char like \", \$.
Hex escape: \xab.
Oct escape: \123.
Ordinary char.

Here’s the actual pattern
match.

7. If something like "${back}[0-3][0-7]{2}" worries you, feel free to write it as
$back . "[0-3][0-7]{2}".

Continued from above:

print <<EOT;
/(
 " (
 $spec_ch | $hex_ch | $oct_ch | $char
)* "
)/xo;
EOT

Just wrap everything in a
double-quoted here-doc
string.

This will print:

/(
 " (
 \\\W | \\x[0-9a-fA-F]{2} | \\[0-3]?[0-7]?[0-7] | [^"\\]
)* "
)/xo;
http://www.effectiveperl.com

80 Item 22 Regular Expressions
This is a fairly straightforward example of using variables to construct
regular expressions. See the Hip Owls book for a much more complex
example—a regular expression that can parse an RFC822 address.

Item 22: Make regular expressions efficient.
Although Perl’s regular expression engine contains many optimizations for
efficiency, it’s possible—and easy at times—to write matches and substitu-
tions that run much slower than they should.

Efficiency may not always be your primary objective. In fact, efficiency
should rarely be a primary objective in software development. Generally, a
programmer’s first priority should be to develop adequate, robust solu-
tions to problems. It doesn’t hurt, though, to keep efficiency in mind.

Let’s look at a few common issues for regular expressions in Perl. The list
below is by no means exhaustive, but it’s a start, and it should get you
headed in the right direction.

Compile once with /o

The regular expressions for most pattern matches and substitutions are
compiled into Perl’s internal form only once—at compile time, along with
the rest of the surrounding statements:

When a pattern contains interpolated variables, however, Perl recompiles
it every time it is used:

The reason for this behavior is that the variables making up the pattern
might have changed since the last time the pattern was compiled, and thus
the pattern itself might be different. Perl makes this assumption to be
safe, but such recompilation is often unnecessary. In many cases, like the

The pattern /\bmagic_word\b/ is compiled only once, since it remains
constant. The compiled form is then used over and over again at run time.

foreach (@big_long_list) {
 $count += /\bmagic_word\b/;
}

Count occurrences of
magic_word in
@big_long_list.

The pattern /\b$magic\b/ is recompiled every time it is used in a match,
since it contains an interpolated variable.

print "give me the magic word: ";
chomp($magic = <STDIN>);
foreach (@big_long_list) {
 $count += /\b$magic\b/;
}

Count occurrences of the
magic word in
@big_long_list.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Make regular expressions efficient. 81
/\b$magic\b/ example above, variables are used to construct a pattern
that will remain the same throughout the execution of the program con-
taining it. To recompile such a pattern each time it is used in a match is
grossly wasteful. This problem arises often, and naturally there is a fea-
ture in Perl to help you solve it. Perl’s /o (“compile once”) flag causes a reg-
ular expression containing variables to be compiled only once—the first
time it is encountered at run time:

The /o flag also works for substitutions. Note that the replacement string
in the substitution continues to work as it normally does—it can vary from
match to match:

Don’t use match variables

I mentioned in Item 16 that the match variables ($`, $&, and $') impose a
speed penalty on your Perl programs. Whenever a Perl program uses one
of the match variables, Perl has to keep track of the values of the match
variables for every single pattern match in the program.

■ Use /o to compile patterns only once.

The pattern /\b$magic\b/o is compiled on the first iteration of the foreach loop, using
whatever the value of $magic is at that time. The pattern is never compiled again,
even if the value of $magic changes.

print "give me the magic word: ";
chomp($magic = <STDIN>);
foreach (@big_long_list) {
 $count += /\b$magic\b/o;
}

Count occurrences of the magic
word in @big_long_list—note
added /o.

print "give me the magic word: ";
chomp($magic = <STDIN>);
foreach (@big_long_list) {
 s/\b$magic\b/rand_word()/eo;
}

Replace occurrences of
$magic with something
returned by rand_word().
See also examples at
end of Item 29.

▼ Don’t use match variables ($`, $&, $') if speed is important.

Using a match variable anywhere in your program activates a feature that makes
copies of the match ($&), before-match ($`) and after-match ($') strings for every
single match in the program.

$_ = "match variable";
/.*/;
print "Gratuitious use of a $&\n";

Uh-oh: We activated the match
variable feature.
http://www.effectiveperl.com

82 Item 22 Regular Expressions
Perl isn’t smart enough to know which pattern(s) the match variables
might be referring to, so Perl sets up the values of the match variables
every time it does a pattern match. This results in a lot of extra copying
and unnecessary shuffling around of bytes.

Fortunately, the penalty isn’t that severe. In most cases (particularly if
some I/O is involved, as above), your program will run only slightly slower,
if at all. In test cases designed to spot the penalty, the extra time consumed
can range from a few percent to 30 to 40 percent. Jeffrey Friedl reports a
contrived test case in which the run time with a match variable present
was 700 times longer, but it is unlikely you will face a situation like this.

Avoid unnecessary alternation

Alternation in regular expressions is generally slow. Because of the way
the regular expression engine in Perl works, each time an alternative in a
regular expression fails to match, the engine has to “backtrack” (see the
next subheading) in the string and try the next alternative:

There are some instances in which alternation is completely unnecessary.
In these cases, it is usually vastly slower than the correct alternative. The
classic mistake is using alternation instead of a character class:

while (<>) {
 push @merlyn, $_ if /\bmerlyn\b/;
}

This now runs slower because
of the use of $& above!

The pattern match below finds a word boundary, then tries to match george.
If that fails, it backs up to the boundary and tries to match jane. If that fails,
it tries judy, then elroy. If a match is found, it looks for another word
boundary.

while (<>) {
 print if
 /\b(george|jane|judy|elroy)\b/;
}

▼ Don’t use alternation (a|b|c) instead of a character class ([abc]).

Using an alternation instead of a character class can impose a tremendous speed
penalty on a pattern match.

while (<>) {
 push @var, m'((?:\$|@|%|&)\w+)'g;
}

Look for Perl variable-name-
like things. Single quote
delimiters turn off variable
interpolation inside pattern.

▼ Don’t use match variables ($`, $&, $') if speed is important. (cont’d)
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Make regular expressions efficient. 83
Avoid unnecessary backtracking

Perl’s procedural regular expression engine (see Item 17) works by step-
ping through a compiled version of a pattern, in effect using it as if it were
a little program trying to match pieces of text:

■ When you write a sequence, you are creating instructions that mean
“try to match this, followed by that, followed by . . .”

■ When you write an alternation, you are creating instructions that mean
“try to match this first; if that doesn’t work, back up and try to match
that; if that doesn’t work . . .” and so on.

■ When you use a repetition operator like + or *, you are instructing the
engine to “try to find as many of these in a row as you can.”

Consider the pattern /\b(\w*t|\w*d)\b/, which looks for words ending in
either t or d. Each time you use this pattern, the engine will look for a
word boundary. It will then do the first alternation, looking for as many
word characters in a row as possible. Then it looks for a t. Hmm—it won’t
find one, because it already read all the word characters. So it will have to
back up a character. If that character is a t, that’s great—now it can look
for a word boundary, and then it’s all done. Otherwise, if there was no
match, the engine keeps backing up and trying to find a t. If it runs all the
way back to the initial word boundary, then the engine tries the second
half of the alternation, looking for a d at the end.

You can see that this is a very complicated process. Well, the regular
expression engine is meant to do complicated work, but this particular
pattern makes that work much more complicated than it has to be.

An obvious shortcoming is that if the engine starts out at the beginning of
a word that ends in d, it has to go all the way to the end and back search-
ing fruitlessly for a t before it even starts looking for a d. We can definitely
fix this. Let’s get rid of the alternation:

/\b\w*[td]\b/

This is an improvement. Now, the engine will scan the length of the word
only once, regardless of whether it ends in t, d, or something else.

We still haven’t addressed the general backtracking issue. Notice that
there is no need for the regular expression engine to continue backtrack-

while (<>) {
 push @var, m'([$@%&]\w+)'g;
}

Look for Perl variable-name-
like things. This is about four
times faster than the version
using alternation.

▼ Don’t use alternation (a|b|c) instead of a character class ([abc]). (cont’d)
http://www.effectiveperl.com

84 Item 22 Regular Expressions
ing more than a single character back from the end of a word. If that char-
acter isn’t a t or d, there’s no point in continuing, because even if we did
find one earlier in the string it wouldn’t be at the end of the word.

There’s no way to force Perl to change this backtracking behavior (at least
not so far as I know), but you can approach the problem in a slightly dif-
ferent manner. Ask yourself: “If I were looking for words ending in t or d,
what would I be looking for?” More than likely, you’d be looking at the
ends of words. You’d be looking for something like:

/[td]\b/

Now, this is interesting. This little regular expression does everything that
the other two do, even though it may not be obvious at first. But think
about it. To the left of the t or d there will be zero or more \w characters.
We don’t care what sort of \w characters they are; so, tautologically if you
will, once we have a t or d to the left of a word boundary, we have a word
ending in t or d.

Naturally, this little regular expression runs much faster than either of the
two above—about twice as fast, more or less. Obviously there’s not much
backtracking, because the expression matches only a single character!

Use memory-free parentheses

If you are using parentheses for grouping alone, you won’t need a copy of
what the parentheses matched. You can save the time required to make
the copy by using Perl’s memory-free parentheses:

The time saved isn’t generally all that great, and memory-free parentheses
don’t exactly improve readability. But sometimes, every little bit of speed
helps!

See Item 16 for more about memory-free parentheses.

■ Use memory-free parentheses (?:…) to speed up pattern matches.

There’s no point in memorizing the contents of the inner parentheses in this pattern,
so if you want to save a little time, use memory-free parentheses.

($host) = m/(\w+(\.\w+)*)/; Find hostname-like thing
(foo.bar.com) and put it into
$host.

($host) = m/(\w+(?:\.\w+)*)/; Same thing, but no memory
for the inner parens.
from Effective Perl Programming, by Joseph N. Hall with Randal L. Schwartz

Make regular expressions efficient. 85
Benchmark your regular expressions

As with many other things in Perl, one of the best ways to determine how
to make a pattern match run quickly is to write several alternative imple-
mentations and benchmark them.

Let’s use the Benchmark module (see Item 37) to see how much of a differ-
ence those memory-free parentheses above really make:

The results:

Benchmark: timing 100 iterations of mem, memfree...
 mem: 12 secs (12.23 usr 0.00 sys = 12.23 cpu)
 memfree: 11 secs (10.64 usr 0.00 sys = 10.64 cpu)

Not bad: it takes about 15 percent longer to run the version without the
memory-free parentheses.

■ Time your regular expressions with Benchmark.

use Benchmark;
@data = <>;

Read some data. (I used 1,000
lines of an HTTP access log.)

my $host;
timethese (100,
 { mem => q{
 for (@data) {
 ($host) = m/(\w+(\.\w+)+)/; }
 },

The test code goes in an eval
string (see Item 54).

 memfree => q{
 for (@data) {
 ($host) = m/(\w+(?:\.\w+)+)/; }
 }
 }
);

Some more test code.
http://www.effectiveperl.com

http://www.effectiveperl.com

	Regular Expressions
	Item 15: Know the precedence of regular expression operators.
	Double-quote interpolation

	Item 16: Use regular expression memory.
	The memory variables: $1, $2, $3, and so on
	Backreferences
	The match variables: $`, $&, $'
	Memory in substitutions
	Matching in a list context
	Memory-free parentheses
	Tokenizing with regular expressions

	Item 17: Avoid greed when parsimony is best.
	Procedural regular expressions versus deterministic finite automatons (DFAs)

	Item 18: Remember that whitespace is not a word boundary.
	Matching at the end of line: $, \Z, /s, /m

	Item 19: Use split for clarity, unpack for efficiency.
	Handling columns with unpack

	Item 20: Avoid using regular expressions for simple string operations.
	Compare strings with string comparison operators
	Find substrings with index and rindex
	Extract and modify substrings with substr
	Transliterate characters with tr///

	Item 21: Make regular expressions readable.
	Use /x to add whitespace to regular expressions
	Break complex regular expressions into pieces

	Item 22: Make regular expressions efficient.
	Compile once with /o
	Don’t use match variables
	Avoid unnecessary alternation
	Avoid unnecessary backtracking
	Use memory-free parentheses
	Benchmark your regular expressions

