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PREFACE

This book is for people who want to get a head start and learn the basic concepts
of linear algebra. Suitable for self-study or as a reference that puts solving
problems within easy reach, this book can be used by students or professionals
looking for a quick refresher. If you’re looking for a simplified presentation
with explicitly solved problems for self-study, this book will help you. If you’re
a student taking linear algebra and need an informative aid to keep you ahead
of the game, this book is the perfect supplement to the classroom.

The topics covered fit those usually taught in a one-semester undergraduate
course, but the book is also useful to graduate students as a quick refresher. The
book can serve as a good jumping off point for students to read before taking a
course. The presentation is informal and the emphasis is on showing students
how to solve problems that are similar to those they are likely to encounter in
homework and examinations. Enhanced detail is used to uncover techniques
used to solve problems rather than leaving the how and why of homework
solutions a secret.

While linear algebra begins with the solution of systems of linear equations, it
quickly jumps off into abstract topics like vector spaces, linear transformations,
determinants, and solving eigenvector problems. Many students have a hard time
struggling through these topics. If you are having a hard time getting through
your courses because you don’t know how to solve problems, this book should
help you make progress.

As part of a self-study course, this book is a good place to get a first exposure
to the subject or it is a good refresher if you’ve been out of school for a long
time. After reading and doing the exercises in this book it will be much easier
for you to tackle standard linear algebra textbooks or to move on to a more
advanced treatment.

The organization of the book is as follows. We begin with a discussion of
solution techniques for solving linear systems of equations. After introducing the

ix
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x PREFACE

notion of matrices, we illustrate basic matrix algebra operations and techniques
such as finding the transpose of a matrix or computing the trace. Next we study
determinants, vectors, and vector spaces. This is followed by the study of linear
transformations. We then devote some time showing how to find the eigenvalues
and eigenvectors of a matrix. This is followed by a chapter that discusses several
special types of matrices that are important. This includes symmetric, Hermitian,
orthogonal, and unitary matrices. We finish the book with a review of matrix
decompositions, specifically LU, SVD, and QR decompositions.

Each chapter has several examples that are solved in detail. The idea is to
remove the mystery and show the student how to solve problems. Exercises at the
end of each chapter have been designed to correspond to the solved problems in
the text so that the student can reinforce ideas learned while reading the chapter.
A final exam, with similar questions, at the end of the book gives the student a
chance to reinforce these notions after completing the text.

David McMahon



1
CHAPTER

Systems of Linear
Equations

A linear equation with n unknowns is an equation of the type

a1x1 + a2x2 + · · · + anxn = b

In many situations, we are presented with m linear equations in n unknowns.
Such a set is known as a system of linear equations and takes the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

1
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2 CHAPTER 1 Systems of Linear Equations

The terms x1, x2, . . . , xn are the unknowns or variables of the system, while
the aij are called coefficients. The bi on the right-hand side are fixed numbers
or scalars. The goal is to find the values of the x1, x2, . . . , xn such that the
equations are satisfied.

EXAMPLE 1-1
Consider the system

3x + 2y − z = 7

4x + 9y = 2

x + 5y − 3z = 0

Does (x, y, z) = (2, 1, 1) solve the system? What about
(

11
4 , −1, −3

4

)
?

SOLUTION 1-1
We substitute the values of (x, y, z) into each equation. Trying (x, y, z) =
(2, 1, 1) in the first equation, we obtain

3 (2) + 2 (1) − 1 = 6 + 2 − 1 = 7

and so the first equation is satisfied. Using the substitution in the second equa-
tion, we find

4 (2) + 9 (1) = 8 + 9 = 17 �= 2

The second equation is not satisfied; therefore, (x, y, z) = (2, 1, 1) cannot be a
solution to this system of equations.

Now we try the second set of numbers
(

11
4 , −1, −3

4

)
. Substitution in the first

equation gives

3

(
11

4

)
+ 2 (−1) + 3

4
= 33

4
− 2 + 3

4
= 33

4
− 8

4
+ 3

4
= 28

4
= 7

Again, the first equation is satisfied. Trying the second equation gives

4

(
11

4

)
+ 9 (−1) = 11 − 9 = 2
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Consistent System A unique solution or an infinite
number of solutions

Inconsistent System System has no solution

Fig. 1-1. Description of solution possibilities.

This time the second equation is also satisfied. Finally, the third equation works
out to be

11

4
+ 5 (−1) −3

(
−3

4

)
= 11

4
− 5 + 9

4
=
(

11

4
+ 9

4

)
− 5 = 20

4
− 5 = 5 − 5 = 0

This shows that the third equation is satisfied as well. Therefore we conclude
that

(x, y, z) =
(

11

4
, −1, −3

4

)

is a solution to the system.

Consistent and Inconsistent Systems
When at least one solution exists for a given system of linear equations, we call
that system consistent. If no solution exists, the system is called inconsistent.
The solution to a system is not necessarily unique. A consistent system either has
a unique solution or it can have an infinite number of solutions. We summarize
these ideas in Fig. 1-1.

If a consistent system has an infinite number of solutions, if we can define a
solution in terms of some extra parameter t , we call this a parametric solution.

Matrix Representation of a System
of Equations

It is convenient to write down the coefficients and scalars in a linear system
of equations as a rectangular array of numbers called a matrix. Each row in



4 CHAPTER 1 Systems of Linear Equations

the array corresponds to one equation. For a system with m equations in n
unknowns, there will be m rows in the matrix.

The array will have n + 1 columns. Each of the first n columns is used to write
the coefficients that multiply each of the unknown variables. The last column
is used to write the numbers found on the right-hand side of the equations.
Consider the set of equations used in the last example:

3x + 2y − z = 7

4x + 9y = 2

x + 5y − 3z = 0

The matrix used to represent this system is


3 2 −1 7

4 9 0 2
1 5 −3 0




We represent this set of equations

2x + y = −7

x − 5y = 12

by the matrix

[
2 1 −7
1 −5 12

]

One way we can characterize a matrix is by the number of rows and columns
it has. A matrix with m rows and n columns is referred to as an m × n matrix.
Sometimes matrices are square, meaning that the number of rows equals the
number of columns.

We refer to a given element found in a matrix by identifying its row and
column position. This can be done using the notation (i, j) to refer to the element
located at row i and column j . Rows are numbered starting with 1 at the top
of the matrix, increasing as we move down the matrix. Columns are numbered
starting with 1 on the left-hand side.

An alternative method of identifying elements in a matrix is to use a subscript
notation. Matrices are often identified with italicized or bold capital letters. So A,
B, C or A, B, C can be used as labels to identify matrices. The corresponding
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small letter is then used to identify individual elements of the matrix, with
subscripts indicating the row and column where the term is located. For a matrix
A, we can use aij to identify the element located at the row and column position
(i, j).

As an example, consider the 3 × 4 matrix

B =

−1 2 7 5

0 2 −1 0
8 17 21 −6




The element located at row 2 and column 3 of this matrix can be indicated by
writing (2, 3) or b23. This number is

b23 = −1

The element located at row 3 and column 2 is

b32 = 17

The subscript notation is shown in Fig. 1-2.
A matrix that includes the entire linear system is called an augmented matrix.

We can also make a matrix that is made up only of the coefficients that multiply
the unknown variables. This is known as the coefficient matrix. For the system

5x − y + 9z = 2

4x + 2y − z = 18

x + y + 3z = 6

the coefficient matrix is

aij

Element at row i

Column j

Fig. 1-2. The indexing of an element found at row i and column j of a matrix.
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A =

5 −1 9

4 2 −1
1 1 3




We can find a solution to a linear system of equations by applying a set of
elementary operations to the augmented matrix.

Solving a System Using Elementary Operations
There exist three elementary operations that can be applied to a system of linear
equations without fundamentally changing that system. These are

• Exchange two rows of the matrix.
• Replace a row by a scalar multiple of itself, as long as the scalar is nonzero.
• Replace one row by adding the scalar multiple of another row.

Let’s introduce some shorthand notation to describe these operations and
demonstrate using the matrix

M =

 2 −1 5

1 33 6
17 4 8




To indicate the exchange of rows 2 and 3, we write

R2 ↔ R3

This transforms the matrix as follows:


 2 −1 5

1 33 6
17 4 8


→


 2 −1 5

17 4 8
1 33 6




Now let’s consider the operation where we replace a row by a scalar multiple of
itself. Let’s say we wanted to replace the first row in the following way:

2R1 → R1
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The matrix would be transformed as
 2 −1 5

1 33 6
17 4 8


→


 4 −2 10

1 33 6
17 4 8




In the third type of operation, we replace a selected row by adding a scalar
multiple of a different row. Consider

−2R2 + R1 → R1

The matrix becomes
 2 −1 5

1 33 6
17 4 8


→


 0 −67 −7

1 33 6
17 4 8




The solution to the system is obtained when this set of operations brings the
matrix into triangular form. This type of elimination is sometimes known as
Gaussian elimination.

Triangular Matrices
Generally, the goal of performing the elementary operations on a system is to
get it in a triangular form. A system that is in an upper triangular form is

B =

5 −1 1

0 2 −1
0 0 3

∣∣∣∣∣∣
11
2

12




This augmented matrix represents the equations

5x − y + z = 11

2y − z = 2

3z = 12

A solution for the last variable can be found by inspection. In this example, we
see that z = 4.

To find the values of the other variables, we use back substitution. We sub-
stitute the value we have found into the equation immediately above it. In this



8 CHAPTER 1 Systems of Linear Equations

case, insert the value found for z into the second equation. This allows us to
solve for y:

2y − z = 2, z = 4

⇒ 2y − 4 = 2

∴ y = 3

(Note that the symbol ∴ is shorthand for therefore.) Each time you apply back
substitution, you obtain an equation that has only one unknown variable. Now
we can substitute the values y = 3 and z = 4 into the first equation to solve for
the final unknown, which is x :

5x − 3 + 4 = 11

⇒ 5x = 10

∴ x = 2

A system that is triangular is said to be in echelon form. Let’s illustrate the
complete solution of a system of linear equations using the elementary row
operations (see Fig. 1-3).

PIVOTS
Once a system has been reduced, we call the coefficient of the first unknown in
each row a pivot. For example, in the reduced system

3x − 5y + z = 7

8y − z = 12

−18z = 11

0s below
diagonal

Nonzero items
can be here

Upper triangular matrix

0s above
diagonal

Nonzero entries can
be here

Lower triangular matrix

Fig. 1-3. An illustration of an upper triangular matrix, which has 0s below the diagonal,
and a lower triangular matrix, which has 0s above the diagonal.



CHAPTER 1 Systems of Linear Equations 9

the pivots are 3 for the first row, 8 for the second row, and −18 for the last row.
This is also true when representing the system with a matrix. For instance, if
the matrix

A =




−2 11 0 19
0 16 −1 7
0 0 11 21
0 0 0 14




is a coefficient matrix for some system of linear equations, then the pivots are
−2, 16, 11, and 14.

MORE ON ROW ECHELON FORM
An echelon system has two characteristics:

• Any rows that contain all zeros are found at the bottom of the matrix.
• The first nonzero entry on each row is found to the right of the first nonzero

entry in the preceding row.

An echelon system generally has the form

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a2 j2 x j2 + a2 j2+1x j2+1 + · · · + a2nxn = b2

...

a2 jr x jr + · · · + arnxn = br

The pivot variables are x1, x j2, . . . , x jr and the coefficients multiplying each
pivot variable are not zero. We also have r ≤ n.

EXAMPLE 1-2
The following matrices are in echelon form:

A =

−2 1 5

0 1 9
0 0 8


, B =


2 0 1

0 0 1
0 0 0


, C =


0 6 0 1

0 0 −2 1
0 0 0 5




The pivots in matrix A are −2, 1, and 8. In matrix B, the pivots are 2 and 1,
while in matrix C the pivots are 6, −2, and 5.
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If a system is brought into row echelon form and it has n equations with
n unknowns (so it will be written in a triangular form), then it has a unique
solution. If there are m unknowns and n equations with m > n then the values
of m – n of the variables are arbitrary. This means that there are an infinite
number of solutions.

CANONICAL FORM
If the pivot in each row is a 1 and the pivot is the only nonzero entry in its
column, we say that the matrix or system is in a row canonical form.
The matrix

A =




1 0 0 0
0 1 0 −6
0 0 1 2
0 0 0 0




is in a row canonical form because all of the pivots are equal to 1 and they are
the only nonzero elements in their respective columns. The matrix

B =

1 0 8

0 0 −2
0 0 0




is not in a row canonical form because there is a nonzero entry above the pivot
in the second row.

ROW EQUIVALENCE
If a matrix B can be obtained from a matrix A by using a series of elementary
row operations, then we say the matrices are row equivalent. This is indicated
using the notation

A ∼ B

RANK OF A MATRIX
The rank of a matrix is the number of pivots in the echelon form of the matrix.
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EXAMPLE 1-3
The rank of

A =




1 0 0 0
0 1 0 −6
0 0 1 2
0 0 0 0




is 3, because the matrix is in echelon form and has three pivots. The rank of

B =

−2 0 7

0 4 5
0 0 1




is 3. The matrix is in echelon form, and it has three pivots, −2, 4, 1.

EXAMPLE 1-4
Find a solution to the system

5x1 + 2x2 − 3x3 = 4

x1 − x2 + 2x3 = −1

SOLUTION 1-4
There are two equations in three unknowns. This means that we can find a
solution in terms of a single parametric variable we call t . There are an infinite
number of solutions because unless more constraints have been stated for the
problem, we can choose any value for t .

We can eliminate x1 from the second row by using R1 − 5R2 → R2, which
gives

5x1 + 2x2 − 3x3 = 4

7x2 − 13x3 = 9

From the second equation, we obtain

x2 = 1

7
(9 + 13x3)
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We substitute this expression into the first equation and solve for x1 in terms of
x3. We find that

x1 = 2

7
+ 8

35
x3

Now we set

x3 = t

where t is a parameter. With no further information, there are an infinite number
of solutions because t can be anything. For example, if t = 5 then the solution
is

x1 = 10

7
, x2 = 74

7
, x3 = 5

But t = 0 is also a valid solution, giving

x1 = 2

7
, x2 = 9

7
, x3 = 0

We could continue choosing various values of t . Instead we write

x1 = 2

7
+ 8

35
t, x2 = 9

7
+ 13

7
t, x3 = t

EXAMPLE 1-5
Find a solution to the system

3x − 7y + 2z = 1

x + y − 5z = 15

−x + 2y − 3z = 4

SOLUTION 1-5
First we write down the augmented matrix. Arranging the coefficients on the
left side and the constants on the right, we have

A =

 3 −7 2

1 1 −5
−1 2 −3

∣∣∣∣∣∣
1

15
4



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The first step in solving a linear system is to identify a pivot. The idea is to
eliminate all terms in the matrix below the pivot so that we can write the matrix
in an upper triangular form.

In this case, we take a11 = 3 as the first pivot and eliminate all coefficients
below this value. Notice that we can eliminate the first coefficient in the third
row by using the elementary row operation

R1 + 3R3 → R3

This will transform the matrix in the following way:


 3 −7 2

1 1 −5
−1 2 −3

∣∣∣∣∣∣
1

15
4


 R1+3R3→R3→


3 −7 2

1 1 −5
0 −1 −7

∣∣∣∣∣∣
1

15
13




Next, we eliminate the remaining value below the first pivot, which is the first
element in the second row. We can do this with

R1 − 3R2 → R2

This gives


3 −7 2

1 1 −5
0 −1 −7

∣∣∣∣∣∣
1

15
13


 R1−3R2→R2→


3 −7 2

0 −10 17
0 −1 −7

∣∣∣∣∣∣
1

−44
19




At this point we have done all we can with the first pivot. To identify the next
pivot, we move down one row and then move right one column. In this case, the
next pivot in the matrix


3 −7 2

0 −10 17
0 −1 −7

∣∣∣∣∣∣
1

−44
19




is

a22 = −10
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We use the second pivot to eliminate the coefficient found immediately below
it with the elementary row operation

R2 − 10R3 → R3

This allows us to rewrite the matrix in the following way:


3 −7 2

0 −10 17
0 −1 −7

∣∣∣∣∣∣
1

−44
19


 R2−10R3→R3→


3 −7 2

0 −10 17
0 0 87

∣∣∣∣∣∣
1

−44
−174




Now the matrix is triangular. Or we can say it is in echelon form. This means
that

• Row 1 has three nonzero coefficients.
• Row 2 has two nonzero coefficients: the first nonzero coefficient is to

the right of the column where the first nonzero coefficient is located in
row 1.

• Row 3 has one nonzero coefficient: it is also to the right of the first nonzero
coefficient in row 2.

The pivots are 3, −10, and 87. This allows us to solve for the last variable
immediately. The equation is

87z = −174

⇒ z = −174

87
= −2

With z = −2, we can use back substitution to solve for the other variables. We
move up one row, and the equation is

−10y + 17z = −44

Making the substitution z = −2 allows us to write this as

−10y + 17 (−2) = −10y − 34 = −44

Now add 34 to both sides, which gives

−10y = −10
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Dividing both sides by −10, we get

y = 1

The final equation in this system is

3x − 7y + 2z = 1

Substitution of y = 1, z = −2 allows us to write the left-hand side as

3x − 7 (1) + 2 (−2) = 3x − 7 − 4 = 3x − 11

Setting this equal to the right-hand side gives

3x − 11 = 1

⇒ 3x = 12

Now dividing both sides by 3, we find that

x = 4

The complete solution is given by

(x, y, z) = (4, 1, −2)

EXAMPLE 1-6
Find a solution to the system

x − 3y + z = 2

5x + 2y − 4z = 8

−x + 3y + z = −1

SOLUTION 1-6
The augmented matrix for this system is


 1 −3 1

5 2 −4
−1 3 1

∣∣∣∣∣∣
2
8

−1



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We select the term located at (1, 1) as the first pivot. We proceed to eliminate
all terms below the pivot, using elementary row operations. To begin, add the
first row to the third.

R1 + R3 → R3

This gives


1 −3 1

5 2 −4
0 0 2

∣∣∣∣∣∣
2
8
1




Next we wish to eliminate the term located at position (2, 1). We can do this
with the operation

−5R1 + R2 → R2

The augmented matrix becomes


1 −3 1

0 17 −9
0 0 2

∣∣∣∣∣∣
2

−2
1




The matrix is now in an upper triangular form. For the last variable the equation
that described the bottom row is

2z = 1

and so we have

z = 1

2

Back substitution into the next row gives

17y = 9z − 2

⇒ y = 5

34
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Now we use back substitution of the values found for y and z into the equation
described by the top row to solve for x . The equation is

x = 3y − z + 2 = 3

(
5

34

)
− 1

2
+ 2 = 15

34
− 17

34
+ 68

34
= 66

34
= 33

17

While ideally we want to get the matrix in triangular form, this is not always
necessary. We show this in the next example.

EXAMPLE 1-7
Use Gaussian elimination to find a solution to the following system:

2y − z = 1

−x + 2y − z = 0

x − 4y + z = 2

SOLUTION 1-7
The augmented matrix is


 0 2 −1

−1 2 −1
1 −4 1

∣∣∣∣∣∣
1
0
2




The first pivot position contains a zero. We exchange rows 1 and 3 to move a
nonzero value into the first pivot.

R1 ↔ R3

This gives


 1 −4 1

−1 2 −1
0 2 −1

∣∣∣∣∣∣
2
0
1




There is only one term to eliminate below the first pivot. We add the first row
to the second row:

R1 + R2 → R2
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and the result is 
1 −4 1

0 −2 0
0 2 −1

∣∣∣∣∣∣
2
2
1




The second row tells us that

−2y = 2

Therefore, y = −1. We substitute this value into the third equation:

z = 2y − 1 = −2 − 1 = −3

We can then find x , using the equation in the top row:

x = 4y − z + 2 = −4 + 3 + 2 = 1

Elementary Matrices
When dealing with a square n × n system, elementary row operations can be
represented by a set of matrices called elementary matrices. In this example we
focus on the 3 × 3 case. To create an elementary matrix, write down a 3 × 3
matrix that has 1s on the diagonal and 0s everywhere else:

I3 =

1 0 0

0 1 0
0 0 1




We’ll see in a minute how to use these matrices to implement row operations
for a given matrix. Right now let’s concentrate on representing each type of
operation.

REPRESENTATION OF A ROW EXCHANGE
USING ELEMENTARY MATRICES
To represent the operation Rm ↔ Rn, we simply exchange the corresponding
rows in the matrix In. For example, in the 3 × 3 case, to exchange rows 1 and
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2, we write


0 1 0

1 0 0
0 0 1




To exchange rows 1 and 3, we write


0 0 1

0 1 0
1 0 0




and to exchange rows 2 and 3, we have


1 0 0

0 0 1
0 1 0




REPLACING A ROW BY A MULTIPLE OF ITSELF
To implement the operation αRm → Rm , where Rm is row m and α is a scalar
in the 3 × 3 case, we use the following elementary matrices.

We represent the multiplication of the first row of a matrix by α with


α 0 0

0 1 0
0 0 1




For the second row we use 
1 0 0

0 α 0
0 0 1




and for the third row we have 
1 0 0

0 1 0
0 0 α



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REPLACE ONE ROW BY ADDING THE SCALAR
MULTIPLE OF ANOTHER ROW
The last type of operation is slightly more complicated. Suppose that we want
to write down the elementary matrix that corresponds to the operation

αRi + β Rj → R j

where Ri is row i and R j is row j . To do this, we start with In and modify row
j in the following way:

• Replace the element in column i by α.
• Replace the element in column j by β.

EXAMPLE 1-8
For a 3 × 3 matrix A, write down the three elementary matrices that correspond
to the row operations

• R2 ↔ R3

• 4R2 → R2

• 3R1 + R3 → R3

SOLUTION 1-8
We start with I3

I3 =

1 0 0

0 1 0
0 0 1




The row operation R2 ↔ R3 is represented by swapping rows 2 and 3 in the I3

matrix 
1 0 0

0 0 1
0 1 0




To represent 4R2 → R2, we replace the second row of I3 with


1 0 0

0 4 0
0 0 1



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Now we consider 3R1 + R3 → R3. We will modify row 3, which is the des-
tination row, in the I3 matrix. We will need to replace the element in the first
column, which is a 0, with a 3. The element in the third column is unchanged
because the scalar multiple is 1, and so we use


1 0 0

0 1 0
3 0 1




EXAMPLE 1-9
Represent the operations

2R1 − R2 → R2 and 4R2 + 6R3 → R3

with elementary matrices in a 3 × 3 system.

SOLUTION 1-9
To represent 2R1 − R2 → R2, we will modify row 2 of I3. We replace the
element in the first column with a 2, and change the element in the second
column with a −1. This gives


1 0 0

2 −1 0
0 0 1




To represent the second operation, we replace the third row of I3. The operation
is 4R2 + 6R3 → R3, and so we replace the element at the second column with
a 4, and the element in the third column with a 6, which results in the matrix


1 0 0

0 1 0
0 4 6




EXAMPLE 1-10
For a 4 × 4 matrix, find the elementary matrix that represents

−2R2 + 5R4 → R4
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SOLUTION 1-10
To construct an elementary matrix, we begin with a matrix with 1s along the
diagonal and 0s everywhere else. For a 4 × 4 matrix, we use

I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The destination row is the fourth row, and so we will modify the fourth row of
I4. The operation involves adding −2 times the second row to 5 times the fourth
row. And so we will replace the element located in the second column by −2
and the element in the fourth column by 5, which gives




1 0 0 0
0 1 0 0
0 0 1 0
0 −2 0 5




Implementing Row Operations with
Elementary Matrices

Row operations are implemented with elementary matrices using matrix multi-
plication. We will explore matrix multiplication in detail in the next chapter, but
it turns out that matrix multiplication using an elementary matrix is particularly
simple. For now, we will show how to do this for 2 × 2 and 3 × 3 matrices.

MATRIX MULTIPLICATION BY A 2 × 2
ELEMENTARY MATRIX
Let E be an elementary matrix and A be an arbitrary 2 × 2 matrix given by

A =
[

a b
c d

]
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We have two cases to consider, operations on the first and second rows. An
arbitrary operation on the first row is represented by

E1 =
[
α β

0 1

]

The product E1 A is given by

E1 A =
[
α β

0 1

] [
a b
c d

]
=
[
αa + βc αb + βd

c d

]

An operation on row 2 is given by

E2 =
[

1 0
α β

]

and the product E2 A is

E2 A =
[

1 0
α β

] [
a b
c d

]
=
[

a b
αa + βc αb + βd

]

EXAMPLE 1-11
Consider the matrix

A =
[−2 5

4 11

]

Implement the row operations 2R1 → R1 and −3R1 + R2 → R2 using elemen-
tary matrices.

SOLUTION 1-11
The operation 2R1 → R1 is represented by the elementary matrix

E =
[

2 0
0 1

]
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Using the formulas developed above, we have

EA =
[

2 0
0 1

] [−2 5
4 11

]
=
[

(2) (−2) + (0) (4) (2) (5) + (0) (11)
4 11

]

=
[−4 + 0 10 + 0

4 11

]
=
[−4 10

4 11

]

The elementary matrix that represents −3R1 + R2 → R2 is found to be

E =
[

1 0
−3 1

]

The product is

EA =
[

1 0
−3 1

] [−2 5
4 11

]
=
[ −2 5

(−3) (−2) + (1) (4) (−3) (5) + (1) (11)

]

=
[ −2 5

6 + 4 −15 + 11

]
=
[−2 5

10 −4

]

ROW OPERATIONS ON A 3 × 3 MATRIX
Row operations on 3 × 3 matrix A are best shown with example. The multipli-
cation techniques are similar to those used above.

EXAMPLE 1-12
Consider the matrix

A =

 7 −2 3

0 1 4
−2 3 5




Implement the row operations 2R2 → R2, R1 ↔ R3, −4R1 + R2 → R2 using
elementary matrices.

SOLUTION 1-12
The elementary matrix that corresponds to 2R2 → R2 is given by

E1 =

1 0 0

0 2 0
0 0 1



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The operation is implemented by computing the product of this matrix with A:

E1 A =

1 0 0

0 2 0
0 0 1




 7 −2 3

0 1 4
−2 3 5




=
[

7 −2 3
(0) (7) + (2) (0) + (0) (−2) (0) (7) + (2) (1) + (0) (−2) (0) (7) + (2) (4) + (0) (−2)

−2 3 5

]

=

 7 −2 3

0 2 8
−2 3 5




The swap operation R1 ↔ R3 can be implemented with the matrix

E2 =

0 0 1

0 1 0
1 0 0




In this case rows 1 and 3 have been changed. So we will multiply both rows in
this case. The result is

E2 A =

0 0 1

0 1 0
1 0 0




 7 −2 3

0 1 4
−2 3 5




=
[

(0) (7) + (0) (0) + (1) (−2) (0) (−2) + (0) (1) + (1) (3) (0) (3) + (0) (4) + (1) (5)
0 1 4

(1) (7) + (0) (0) + (0) (−2) (1) (−2) + (0) (1) + (0) (3) (1) (3) + (0) (4) + (0) (5)

]

=

0 + 0 − 2 0 + 0 + 3 0 + 0 + 5

0 1 4
7 + 0 + 0 −2 + 0 + 0 3 + 0 + 0




=

−2 3 5

0 1 4
7 −2 3



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Finally, we can implement the operation −4R1 + R2 → R2, using the elemen-
tary matrix

E3 =

 1 0 0

−4 1 0
0 0 1




We find

E3 A =

 1 0 0

−4 1 0
0 0 1




 7 −2 3

0 1 4
−2 3 5




=

 7 −2 3

(−4) (7) + (1) (0) (−4) (−2) + (1) (1) (−4) (3) + (1) (4)
−2 3 5




=

 7 −2 3

−28 + 0 8 + 1 −12 + 4
−2 3 5


 =


 7 −2 3

−28 9 −8
−2 3 5




Homogeneous Systems
A homogeneous system is a linear system with all zeros on the right-hand side.
In general, it is a system of the form

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

...

am1x1 + am2x2 + · · · + amnxn = 0

When a system is put in echelon form, if the system has more unknowns
than equations, then it has a nonzero solution. A system in echelon form with
n equations and n unknowns has only the zero solution, meaning that only
(x, y, z) = (0, 0, 0) solves the system.
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EXAMPLE 1-13
Determine if the system

2x − 8y + z = 0

x + y − z = 0

3x + 3y + 2z = 0

has a nonzero solution.

SOLUTION 1-13
We bring the system of equations into echelon form. First we perform the row
operation −3R1 + 2R3 → R3, which results in

2x − 8y + z = 0

x + y − z = 0

27y − z = 0

Next we apply R1 − 2R2 → R2, which gives

2x − 8y + z = 0

−10y + 3z = 0

27y − z = 0

The system is now in row echelon form. There are three equations and three
unknowns, and therefore the system has only the zero solution.

Gauss-Jordan Elimination
In Gauss-Jordan elimination, there are 0s both above and below each pivot. This
way of reducing a matrix is less efficient (see Fig. 1-4).

0s

0s

Fig. 1-4. In Gauss-Jordan elimination, we put 0s above and below the pivots.
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EXAMPLE 1-14
Reduce the matrix

A =

1 3 0 −1

2 5 3 −2
3 7 5 −4




to row canonical form using Gauss-Jordan elimination.

SOLUTION 1-14
We choose the entry in row 1 and column 1 as the first pivot. First we eliminate
all entries below this number. To eliminate the entry in the second row, we use
−2R1 + R2 → R2

This gives


1 3 0 −1

0 −1 3 0
3 7 5 −4




Next we use −3R1 + R3 → R3 to eliminate the next entry below the first pivot,
and we obtain


1 3 0 −1

0 −1 3 0
0 −2 5 −1




Now we select the second entry in row 2 as the next pivot. We eliminate the
entry directly below this value using −2R2 + R3 → R3 and we have


1 3 0 −1

0 −1 3 0
0 0 −1 −1




In Gauss-Jordan elimination, we want to eliminate all entries above the pivot as
well. So we use 3R2 + R1 → R1, which gives


1 0 9 −1

0 −1 3 0
0 0 −1 −1



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Next we eliminate terms above the a33 entry. First we eliminate the term imme-
diately above by carrying out 3R3 + R2 → R2, which gives


1 0 9 −1

0 −1 0 −3
0 0 −1 −1




Now we eliminate the term in the first row above the a33 entry using 9R3 + R1 →
R1 and we obtain


1 0 0 −10

0 −1 0 −3
0 0 −1 −1




To put the matrix in row canonical form, the leftmost entries in each row must
be equal to 1. We divide rows 2 and 3 by −1 to obtain the row canonical form


1 0 0 −10

0 1 0 3
0 0 1 1




EXAMPLE 1-15
Solve the system

x − 2y + 3z = 1

x + y + 4z = −1

2x + 5y + 4z = −3

using Gauss-Jordan elimination.

SOLUTION 1-15
The augmented matrix is

A =

1 −2 3 1

1 1 4 −1
2 5 4 −3



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First we eliminate all terms below the first entry in the first column. −R1 +
R2 → R2 gives 

1 −2 3 1
0 3 1 −2
2 5 4 −3




−2R1 + R3 → R3 changes this to
1 −2 3 1

0 3 1 −2
0 9 −2 −5




Now we eliminate terms above and below the second entry in the second column.
First we use −3R2 + R3 → R3 and find

1 −2 3 1
0 3 1 −2
0 0 −5 1




It will be easier to proceed by altering the matrix so that 1s appear in positions
a22 and a33. We divide row 2 by 3 to obtain




1 −2 3 1

0 1 1
3 −2

3

0 0 −5 1




Now divide row 3 by −5 to obtain




1 −2 3 1

0 1 1
3 −2

3

0 0 1 −1
5




Now use 2R2 + R1 → R1 to eliminate the term above a22:


1 0 8
3 −1

3

0 1 1
3 −2

3

0 0 1 −1
5



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Now we eliminate all terms above a33. We use −1
3 R3 + R2 → R2 to obtain


1 0 8

3 −1
3

0 1 0 −3
5

0 0 1 −1
5




Now use −8
3 R3 + R1 → R1 and we get the row canonical form we seek


1 0 0 3

15

0 1 0 −3
5

0 0 1 −1
5




From this matrix we immediately read off the solution

x = 3

15
, y = −3

5
, z = −1

5

Quiz
1. Is (x, y, z) = (8, −13, −6) a solution of the system

4x + 2y + z = 0

x + y − z = 1

x + z = 2

2. Find a solution to the system

−x + y + z = −1

x + y + z = 1

x + 2y + z = 2

3. Determine whether or not the following system has a solution:

x + 2y + z = −1

3x + 6y − z = 2

x + z = −2
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4. Determine whether or not the following system has a solution:

−2x + 5y + z = −1

3x + 6y − z = 2

y + 8z = −6

5. Represent the system

5x + 4y + z = −19

3x + 6y − 2z = 8

x + 3z = 11

with an augmented matrix.

6. For the system

3x − 9y + 5z = −11

3x + 5y − 6z = 18

5x + z = −2

write down the coefficient matrix A.

7. What is the elementary matrix that represents 2R2 + 7R3 → R3 for the
matrix

A =

−1 0 4

5 2 0
8 −7 1




8. Find the elementary matrix E that represents 5R1 + 3R2 → R2 for the
2 × 2 matrix

A =
[−1 3

4 6

]

and then calculate the product EA.
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9. Using elementary matrix multiplication, implement 5R2 → R2 for

A =

2 1 1

5 6 −3
4 −1 1




10. Using elementary matrix multiplication, implement −2R2 + R3 → R3

for

A =

2 1 1

5 6 −3
4 −1 1




11. Use row operations to put the matrix

B =

3 2 −1 7

4 0 1 2
8 7 −2 1




into echelon form and find the rank.

12. Find a parametric solution for the system

5w − 2x + y − z = 0

2w + x + y + z = −1

−w + 3x − y + 2z = 3

13. Use Gauss-Jordan elimination to find the row canonical form of

A =

2 2 −1 6 4

4 4 1 10 13
8 8 −1 26 23



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CHAPTER

Matrix Algebra

Basic operations such as addition and multiplication carry over to matrices.
However, the operations do not always carry over in a straightforward manner
because matrices are more complicated than numbers.

Matrix Addition
If two matrices have the same number of rows and columns then we can add
them together to produce a new, third matrix. Suppose that the matrices A and B
are m × n matrices with components aij and bij, respectively. We let the matrix C
have components cij. Then we form the sum C = A + B by letting cij = aij + bij.

EXAMPLE 2-1
Let

A =
[

2 0
−1 4

]
, B =

[
7 −1
2 3

]

Find the matrix C = A + B.

34

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.



CHAPTER 2 Matrix Algebra 35

SOLUTION 2-1
We find the matrix C by adding the components of the matrices together. We
have

C = A + B =
[

2 0
−1 4

]
+
[

7 −1
2 3

]
=
[

2 + 7 0 + (−1)
−1 + 2 4 + 3

]
=
[

9 −1
1 7

]

Matrix subtraction is done similarly. For example, we could compute

C = A − B =
[

2 0
−1 4

]
−
[

7 −1
2 3

]
=
[

2 − 7 0 − (−1)
−1 − 2 4 − 3

]
=
[−5 1

−3 1

]

As we shall see in the world of linear algebra, there are two ways to do multi-
plication. We can multiply a matrix by a number or scalar or we can multiply
two matrices together.

Scalar Multiplication
Let A be an m × n matrix with components aij and let α be a scalar. The scalar
multiple of A is formed by multiplying each component aij by α. Note that α

can be real or complex.

EXAMPLE 2-2
Let

A =

4 −2 0

0 1 2
7 5 9




and suppose that α = 3 and β = 2 + 4i . Find αA and β A.

SOLUTION 2-2
We compute the scalar multiple of A by multiplying each component by the
given scalar. For αA we find

αA = (3)


4 −2 0

0 1 2
7 5 9


 =


3(4) 3(−2) 3(0)

3(0) 3(1) 3(2)
3(7) 3(5) 3(9)


 =


12 −6 0

0 3 6
21 15 27



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The calculation of β A proceeds in a similar manner

β A = (2 + 4i)


4 −2 0

0 1 2
7 5 9


 =


(2 + 4i) (4) (2 + 4i) (−2) (2 + 4i) (0)

(2 + 4i) (0) (2 + 4i) (1) (2 + 4i) (2)
(2 + 4i) (7) (2 + 4i) (5) (2 + 4i) (9)




=

 8 + 16i − 4 + 8i 0

0 2 + 4i 4 + 8i
14 + 28i 10 + 20i 18 + 36i




Matrix Multiplication
Matrix multiplication, where we multiply two matrices together, is a bit more
complicated. Since it is so complicated, we begin by considering a special kind
of multiplication, multiplying a column vector by a row vector.

COLUMN VECTOR
A column vector is an n × 1 matrix, that is a single column with n entries.
For example, let A, B, C be column vectors with two, three, and four elements,
respectively.

A =
[−2

3

]
, B =


 9

−7
11


 , C =




0
2

−3
1




ROW VECTOR
A row vector is a 1 × n matrix, or a matrix with a single row containing n
elements. As an example we let D, E, F be three row vectors with two, three,
and four elements, respectively.

A = [4 −1
]
, B = [0 7 1

]
, C = [3 −1 2 4

]
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MULTIPLICATION OF A COLUMN VECTOR
AND ROW VECTOR
Let A = [ai ] and B = [bi ] represent row and column vectors, respectively, each
containing n elements. Then their product is given by

AB = [a1 a2 · · · an
]



b1

b2
...

bn


 = a1b1 + a2b2 + · · · + anbn

Notice that the matrix product of a row vector and a column vector is a number.
The matrix product between a row vector and a column vector is valid only if
both have the same number of elements.

EXAMPLE 2-3
Suppose that

A = [2 4 −7
]
, B =


−1

2
1




Compute the product, AB.

SOLUTION 2-3
Using the formula above, we find

AB = [2 4 −7
]−1

2
1


 = (2) (−1) + (4) (2) + (−7) (1) = −2 + 8 − 7

= −1

MULTIPLICATION OF MATRICES IN GENERAL
Now that we have seen how to handle the special case of matrix multiplication
of a row vector and a column vector, we can tackle matrix multiplication for
matrices of arbitrary dimension. First we define A = [aij

]
as an m × p matrix

and B = [bij

]
as a p × n matrix. If we define a third matrix C such that C=AB,

then the components of C are calculated from

cij = ai1b1 j + ai2b2 j + · · · + aipbpj =
p∑

k=1

aikbk j
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ai1ai2
 .... ain

b1j
b2j

bp j

.

.

.

Fig. 2-1. Matrix multiplication is the product of the i th row of A and the j th column of B.

In fact the component cij is formed by multiplying the i th row of A by the j th
column of B. Matrix multiplication is valid only if the number of columns of A
is the same as the number of rows of B. The matrix C will have m rows and n
columns (see Fig. 2-1).

EXAMPLE 2-4
Compute AB for the matrices

A =
[

4 0 −1
1 2 3

]
, B =


 3 2 −1

−1 −1 −2
4 1 0




SOLUTION 2-4
First we check to see if the number of columns of A is the same as the number
of rows of B. The matrix A has three columns and the matrix B has three rows,
and so it is possible to calculate AB. Notice that the number of columns of B is
3 and the number of rows of A is 2, and so we could not calculate the product
BA.

So, proceeding, the matrix C = AB will have two rows and three columns,
because A has two rows and B has three columns. The first component of the
matrix is found by multiplying the first row of A by the first column of B. To
illustrate the process, we show only the row and column of matrix A and B that
are involved in each calculation. We have

AB = [4 0 −1
] 3

−1
4


 = [(4)(3) + (0)(−1) + (−1)(4)

]

= [8]
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Next, to find the element at row 1, column 2, we multiply the first row of A by
the second column of B:

AB = [4 0 −1
] 2

1
−1


 = [8 (4) (2) + (0) (1) + (−1) (−1)

]

= [8 9
]

To find the element that belongs in the first row and third column of C , we
multiply the first row of A by the third column of B:

AB = [4 0 −1
]−1

−2
0


 = [8 9 (4) (−1) + (0) (−2) + (−1) (0)

]

= [8 9 −4
]

To fill in the second row of matrix C , we proceed as we did above but this time
we use the second row of A to perform each multiplication. The first element
of the second row of C is found by multiplying the second row of A by the first
column of B:

AB = [1 2 3
] 3

−1
4


 =

[
8 9 −4

(1) (3) + (2) (−1) + (3) (4)

]

=
[

8 9 −4
13

]

The element positioned at the second row and second column of C is found by
multiplying the second row of A by the second column of B:

AB = [1 2 3
] 2

1
−1


 =

[
8 9 −4

13 (1) (2) + (2) (1) + (3) (−1)

]

=
[

8 9 −4
13 1

]
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Finally, to compute the element at the second row and third column of C , we
multiply the second row of A by the third column of B:

AB = [1 2 3
]−1

−2
0


 =

[
8 9 −4

13 1 (1) (−1) + (2) (−2) + (3) (0)

]

=
[

8 9 −4
13 1 −5

]

In summary, we have found

C = AB =
[

4 0 −1
1 2 3

] 3 2 −1
−1 −1 −2
4 1 0


 =

[
8 9 −4
13 1 −5

]

Square Matrices
A square matrix is a matrix that has the same number of rows and columns. We
denote an n × n square matrix as a matrix of order n. While in the previous exam-
ple we found that we could compute AB but it was not possible to compute BA, in
many cases we work with square matrices where it is always possible to compute
both multiplications. However, note that these products may not be equal.

COMMUTING MATRICES
Let A = [aij

]
and B = [bij

]
be two square n × n matrices. We say that the

matrices commute if

AB = BA

If AB �= BA, we say that the matrices do not commute.

THE COMMUTATOR
The commutator of two matrices A and B is denoted by [A, B] and is computed
using

[A, B] = AB − BA

The commutator of two matrices is a matrix.
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EXAMPLE 2-5
Consider the following matrices:

A =
[

2 −1
4 3

]
, B =

[
1 −4
4 −1

]

Do these matrices commute?

SOLUTION 2-5
First we compute the matrix product AB:

AB =
[

2 −1

4 3

] [
1 −4

4 −1

]
=
[

(2) (1) + (−1) (4) (2) (−4) + (−1) (−1)

(4) (1) + (3) (4) (4) (−4) + (3) (−1)

]

=
[−2 −7

16 −19

]

Remember, the element at the i th row and j th column of the matrix formed by
the product is calculated by multiplying the i th row of A by the j th column of
B. Now we compute the matrix product BA:

BA =
[

1 −4

4 −1

] [
2 −1

4 3

]
=
[

(1) (2) + (−4) (4) (1) (−1) + (−4) (3)

(4) (2) + (−1) (4) (4) (−1) + (−1) (3)

]

=
[−14 −13

4 −7

]

We notice immediately that AB �= BA and so the matrices do not commute. The
commutator is found to be

[A, B] = AB − BA =
[−2 −7

16 −19

]
−
[−14 −13

4 −7

]

=
[−2 − (−14) −7 − (−13)

16 − 4 −19 − (−7)

]
=
[

12 6

12 −12

]

The commutator is another matrix with the same number of rows and columns
as A and B.
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EXAMPLE 2-6
Let

A =
[

1 −x
x 1

]
, B =

[
2 y
1 −y

]

Find x and y such that the commutator of these two matrices is zero, i.e., AB =
BA.

SOLUTION 2-6
We compute AB:

AB =
[

1 −x
x 1

] [
2 y
1 −y

]
=
[

(1) (2) + (−x) (1) (1) (y) + (−x) (−y)

(x) (2) + (1) (1) (x) (y) + (1) (−y)

]

=
[

2 − x y + xy

2x + 1 xy − y

]

For BA we find

BA =
[

2 y
1 −y

] [
1 −x
x 1

]
=
[

(2) (1) + (y) (x) (2) (−x) + (y) (1)

(1) (1) + (−y) (x) (1) (−x) + (−y) (1)

]

=
[

2 + xy −2x + y
1 − xy −x − y

]

For these to be equal we must have

[
2 − x y + xy

2x + 1 xy − y

]
=
[

2 + xy −2x + y

1 − xy −x − y

]

Each term that belongs to the matrix on the left-hand side must be equal to the
corresponding term in the matrix on the right side. This means that

2 − x = 2 + xy

y + xy = −2x + y

2x + 1 = 1 − xy

xy − y = −x − y
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We examine the first equation 2 − x = 2 + xy. Subtracting 2 from both sides
we have

−x = xy

Now divide both sides by x . This gives

y = −1

Inserting this value into the second equation

y + xy = −2x + y

we find

−1 − x = −2x − 1

Now add 1 to both sides and divide by −1, which gives

x = 2x

This equation implies that x = 0. You can check that these values satisfy the
other two equations. Therefore, if we take x = 0 and y = −1, then the matrices
are

A =
[

1 0
0 1

]
, B =

[
2 −1
1 1

]

The matrix A is a special matrix called the identity matrix.

The Identity Matrix
There exists a special matrix that plays a role analogous to the number 1 in the
matrix world. This is the identity matrix. For any matrix A we have

AI = IA = A

where I is the identity matrix. The identity matrix is a square matrix with 1s
along the diagonal and 0s everywhere else (see Fig. 2-2).
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In = .. .

1

0

0

1

Fig. 2-2. A general representation of the identity matrix.

The 2 × 2 identity matrix is given by

I2 =
[

1 0

0 1

]

and the 3 × 3 identity matrix is given by


1 0 0

0 1 0

0 0 1




Higher order identity matrices are defined similarly.

EXAMPLE 2-7
Verify that the 2 × 2 identity matrix satisfies AI = IA = A for the matrix A
defined by

A =
[

2 8

−7 4

]

SOLUTION 2-7
We have

I2 =
[

1 0

0 1

]

And so

AI =
[

2 8

−7 4

][
1 0

0 1

]
=
[

(2)(1) + (8)(0) (2)(0) + (8)(1)

(−7)(1) + (4)(0) (−7)(0) + (4)(1)

]

=
[

2 8
−7 4

]
= A
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Performing the multiplication in the opposite order, we obtain

IA =
[

1 0
0 1

] [
2 8

−7 4

]
=
[

(1) (2) + (0) (−7) (1) (8) + (0) (4)

(0) (2) + (1) (−7) (0) (8) + (1) (4)

]

=
[

2 8
−7 4

]
= A

The Transpose Operation
The transpose of a matrix is found by exchanging the rows and columns of the
matrix (see Fig. 2-3) and denoted by

transpose (A) = AT

This is best demonstrated by an example. Let

A =
[

1 2 3
4 5 6

]

Then we have

AT =

1 4

2 5
3 6




Notice that if A is an m × n matrix, then the transpose AT is an n × m matrix.
We often compute the transpose of a square matrix. If

A =
[

0 1
2 3

]

Matrix A Transpose of A

Fig. 2-3. A schematic representation of the transpose operation. The rows of a matrix
become the columns of the transpose matrix.
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Then the transpose is

AT =
[

0 2
1 3

]

We can take the transpose of any sized matrix. For example,

B =

−1 2 0

0 1 4
5 5 6


, BT =


−1 0 5

2 1 5
0 4 6




The transpose operation satisfies several properties:

• (A + B)T = AT + BT

• (αA)T = αAT , where α is a scalar

•
(

AT
)T = A

• (AB)T = BT AT

EXAMPLE 2-8
Let

A =

 1 0 1

−2 1 3
4 1 0


, B =


2 2 1

1 3 1
4 1 1




Show that these matrices satisfy (A + B)T = AT + BT and (AB)T = BT AT .

SOLUTION 2-8
We begin by adding the matrices

A + B =

 1 0 1

−2 1 3
4 1 0


+


2 2 1

1 3 1
4 1 1


 =


 1 + 2 0 + 2 1 + 1

−2 + 1 1 + 3 3 + 1
4 + 4 1 + 1 0 + 1




=

 3 2 2

−1 4 4
8 2 1



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To compute the transpose, we exchange rows and columns. The transpose of
the sum is found to be

(A + B)T =

 3 2 2

−1 4 4
8 2 1




T

=

3 −1 8

2 4 2
2 4 1




Now we compute the transpose of each individual matrix:

AT =

 1 0 1

−2 1 3
4 1 0




T

=

1 −2 4

0 1 1
1 3 0


 ,

BT =

2 2 1

1 3 1
4 1 1




T

=

2 1 4

2 3 1
1 1 1




We add the transpose of each matrix together and we obtain

AT + BT =

1 −2 4

0 1 1
1 3 0


+


2 1 4

2 3 1
1 1 1


 =


1 + 2 −2 + 1 4 + 4

0 + 2 1 + 3 1 + 1
1 + 1 3 + 1 0 + 1




=

3 −1 8

2 4 2
2 4 1


 = (A + B)T

Now we show that (AB)T = BT AT . First we compute the product of the two
matrices. Remember, the element at cij is found by multiplying the i th row of A
by the j th column of B. We find

AB =

 1 0 1

−2 1 3
4 1 0




2 2 1

1 3 1
4 1 1




=

 (1) (2) + (0) (1) + (1) (4) (1) (2) + (0) (3) + (1) (1) (1) (1) + (0) (1) + (1) (1)

(−2) (2) + (1) (1) + (3) (4) (−2) (2) + (1) (3) + (3) (1) (−2) (1) + (1) (1) + (3) (1)

(4) (2) + (1) (1) + (0) (4) (4) (2) + (1) (3) + (0) (1) (4) (1) + (1) (1) + (0) (1)




=

6 3 2

9 2 2
9 11 5



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The transpose is found by exchanging the rows and columns

(AB)T =

6 3 2

9 2 2
9 11 5




T

=

6 9 9

3 2 11
2 2 5




Using the AT and BT matrices that we calculated above

BT AT =

2 1 4

2 3 1
1 1 1




1 −2 4

0 1 1
1 3 0




=

(2)(1) + (1)(0) + (4)(1) (2)(−2) + (1)(1) + (4)(3) (2)(4) + (1)(1) + (4)(0)

(2)(1) + (3)(0) + (1)(1) (2)(−2) + (3)(1) + (1)(3) (2)(4) + (3)(1) + (1)(0)

(1)(1) + (1)(0) + (1)(1) (1)(−2) + (1)(1) + (1)(3) (1)(4) + (1)(1) + (1)(0)




=

6 9 9

3 2 11
2 2 5


 = (AB)T

EXAMPLE 2-9
Prove that

(A + B)T = AT + BT

SOLUTION 2-9
The first thing we note is that in order to add the matrices A and B together,
they must both have the same number of rows and columns. In other words, if
A is an m × n matrix, then so is B, and A + B is an m × n matrix as well. This
means that (A + B)T is an n × m matrix.

On the right-hand side, if A and B are m × n matrices, then clearly AT and
BT are n × m matrices.

To verify the property, it is sufficient to show that the (i, j) entry on both sides
of the equation are the same. First we examine the right-hand side. If the (i, j)
entry of A is denoted by aij, then the (i, j) entry of the transpose is given by
changing the row and column, i.e., the (i, j) entry of AT is given by aji. Similarly
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the (i, j) of BT is bji. We summarize this by writing

(
AT + BT

)
ij
= aji + bji

On the left-hand side, the (i, j) entry of C = A + B is

cij = aij + bij

The (i, j) element of CT is also found by swapping row and column indices,
and so the (i, j) entry of (A + B)T is

(A + B)T
ij = aji + bji

The (i, j) element of both sides are equal; therefore, the matrices are the same.

The Hermitian Conjugate
We now extend the transpose operation to the Hermitian conjugate, which is
written as

A†

(read “A dagger”). The Hermitian conjugate applies to matrices with complex
elements and is a two-step operation (see Fig. 2-4):

• Take the transpose of the matrix.
• Take the complex conjugate of the elements.

Matrix A Step 1
Transpose

Step 2
Conjugate

∗ 

Fig. 2-4. A schematic representation of finding the Hermitian conjugate of a matrix.
Take the transpose, turning rows into columns, and then compute the complex conjugate

of each element.
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EXAMPLE 2-10
Find A† for

A =

 −9 2i 0

0 4i 7
1 + 2i 3 0




SOLUTION 2-10
Step 1, we take the transpose of the matrix:

AT =

 −9 2i 0

0 4i 7
1 + 2i 3 0




T

=

−9 0 1 + 2i

2i 4i 3
0 7 0




Now we apply step 2 by taking the complex conjugate of each element. This
means that we let i → −i . We find

A† = (AT
)∗ =


−9 0 1 + 2i

2i 4i 3
0 7 0




∗

=

−9 0 1 − 2i

−2i −4i 3
0 7 0




Trace
The trace of a square n × n matrix is found by summing the diagonal elements.
We denote the trace of a matrix A by writing tr (A). If the matrix elements of A
are given by aij then

tr (A) = a11 + a22 + · · · + ann =
n∑

i=1

aii

The trace operation has the following properties:

• tr (αA) = α tr (A)
• tr (A + B) = tr (A) + tr (B)
• tr (AB) = tr (BA)

EXAMPLE 2-11
Find the trace of the matrix

B =




−1 7 0 1
0 5 2 1
1 0 1 2
0 4 4 8



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SOLUTION 2-11
The trace of a matrix is the sum of the diagonal elements, and so

tr (B) = −1 + 5 + 1 + 8 = 13

EXAMPLE 2-12
Verify that tr (αA) = α tr (A) for α = 3 and

A =
[

2 −1
−1 7

]

SOLUTION 2-12
The scalar multiplication of A is given by

αA = (3)

[
2 −1

−1 7

]
=
[

(3) (2) (3) (−1)

(3) (−1) (3) (7)

]
=
[

6 −3
−3 21

]

The trace is the sum of the diagonal elements

tr (αA) = 6 + 21 = 27

Now the trace of A is

tr (A) = tr

[
2 −1

−1 7

]
= 2 + 7 = 9

Therefore we find that

α tr (A) = 3 (9) = 27 = tr (αA)

EXAMPLE 2-13
Prove that tr (A + B) = tr (A) + tr (B).
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SOLUTION 2-13
On the left side we have

tr (A + B) =
n∑

i=1

aii + bii

On the right we have

tr (A) + tr (B) =
n∑

i=1

aii +
n∑

i=1

bii

We can combine these sums into a single sum, proving the result

n∑
i=1

aii +
n∑

i=1

bii =
n∑

i=1

aii + bii = tr (A + B)

The Inverse Matrix
The inverse of an n × n square matrix A is denoted by A−1 and has the property
that

A A−1 = A−1 A = I

The components of the inverse of a matrix can be found by brute force multi-
plication. Later we will explore a more sophisticated way to obtain the inverse
using determinants. A matrix with an inverse is called nonsingular.

EXAMPLE 2-14
Let

A =
[

2 3
−1 4

]

and find its inverse.

SOLUTION 2-14
We denote the inverse matrix by

A−1 =
[

a b
c d

]
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We compute AA−1:

AA−1 =
[

2 3
−1 4

] [
a b
c d

]
=
[

2a + 3c 2b + 3d

−a + 4c −b + 4d

]

The equation AA−1 = I means that

[
2a + 3c 2b + 3d

−a + 4c −b + 4d

]
=
[

1 0
0 1

]

Equating element by element gives four equations for four unknowns:

2a + 3c = 1

2b + 3d = 0 ⇒ d = −2

3
b

−a + 4c = 0 ⇒ a = 4c

−b + 4d = 1

Substitution of a = 4c into the first equation gives

2a + 3c = 2 (4c) + 3c = 8c + 3c = 11c = 1

⇒ c = 1

11
, a = 4

11

Now we substitute d = −2
3b into the last equation, which gives

−b + 4d = −b − 8

3
b = −11

3
b = 1

⇒ b = − 3

11
, d = −2

3
b = 2

11

And so the inverse is

A−1 =




4

11
− 3

11
1

11

2

11



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We double-check the result:

AA−1 =
[

2 3
−1 4

]
4

11
− 3

11
1

11

2

11


 =




8

11
+ 3

11
− 6

11
+ 6

11

− 4

11
+ 4

11

3

11
+ 8

11




=




11

11
0

0
11

11


 =

[
1 0
0 1

]

PROPERTIES OF THE INVERSE
The inverse operation satisfies

•
(

A−1
)−1 = A

• (αA)−1 = 1

α
A−1

•
(

A−1
)T = (AT

)−1

• (AB)−1 = B−1 A−1

EXAMPLE 2-15
Prove that if A and B are invertible, then (AB)−1 = B−1 A−1.

SOLUTION 2-15
If A and B are invertible, we know that

AA−1 = A−1 A = I

BB−1 = B−1 B = I

Now we have

(AB) B−1 A−1 = A
(
BB−1

)
A−1 = A (I ) A−1 = AA−1 = I

Multiplying these terms in the opposite order, we have

B−1 A−1 (AB) = B−1
(

A−1 A
)

B = B−1 (I ) B = BB−1 = I
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Since both of these relations are true, then

(AB)−1 = B−1 A−1

Note that an n × n linear system Ax = b has solution x = A−1b if the matrix
A is nonsingular.

EXAMPLE 2-16
Solve the linear system

2x + 3y = 4

2x + y = −1

by finding a solution to Ax = b.

SOLUTION 2-16
We write the system as

[
2 3
2 1

] [
x
y

]
=
[

4
−1

]

The inverse of the matrix

A =
[

2 3
2 1

]

is

A−1 =




−1

4

3

4
1

2
−1

2




(verify this). The solution is

[
x
y

]
=




−1

4

3

4
1

2
−1

2



[

4
−1

]
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Carrying out the matrix multiplication on the right side, we find




−1

4

3

4
1

2
−1

2



[

4
−1

]
=




−7

4
5

2


 =

[
x
y

]

⇒ x = −7

4
, y = 5

2

We verify that these values satisfy the equations. The first equation is

2x + 3y = 4

⇒ 2

(
−7

4

)
+ 3

(
5

2

)
= −14

4
+ 15

2
= −14

4
+ 30

4
= 16

4
= 4

For the second equation we have

2x + y = −1

⇒ 2

(
−7

4

)
+
(

5

2

)
= −14

4
+ 5

2
= −14

4
+ 10

4
= −4

4
= −1

While this small system is extremely simple and could be solved by hand, the
technique illustrated is very valuable for solving large systems of equations.

Quiz
1. For the matrices given by

A =

−2 1 0

9 4 −3
2 1 0


, B =


1 −1 0

2 4 5
9 8 1




calculate
(a) A + B
(b) αA for α = 2
(c) AB
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2. Find the matrix product for

A = [2 −1 4
]
, B =


1

7
1




3. Find the commutator of the matrices

A =

2 2 −1

4 0 −1
3 1 5


 , B =


1 3 1

5 1 0
3 0 0




4. Can you find the value of x such that AB = BA for

A =
[

x 1
2 x

]
, B =

[−1 0
1 4

]

5. Find the trace of the matrix

A =




8 0 0 −1
7 9 1 0
2 0 0 1
9 −8 17 −1




6. Prove that tr (αA) = α tr (A).
7. For the matrices

A =
[

i 7
3 + i 2 − i

]
, B =

[
9 6 + 3i

1 + i 4

]

(a) calculate the commutator [A, B] = AB − BA
(b) find tr (A) , tr (B)

8. For the matrices

A =

1 −1 5

0 4 0
1 1 −2


 , B =


 9 −1 0

8 8 4
16 0 1




(a) find AT and BT

(b) show that (A + B)T = AT + BT



58 CHAPTER 2 Matrix Algebra

9. Does the matrix

A =

7 −1 0

0 0 4
1 2 −1




have an inverse? If so, find it.
10. Is there a solution to the system

3x − 2y + z = 9

4x + y + 3z = −1

−x + 5y + 2z = 7

Begin by finding the inverse of

A =

 3 −2 1

4 1 3
−1 5 2






3
CHAPTER

Determinants

The determinant of a matrix is a number that is associated with the matrix. For
a matrix A denote this number by

|A|
or by writing

det |A|

THE DETERMINANT OF A SECOND-ORDER MATRIX
The determinant of second-order square matrix

A =
[

a b
c d

]

is given by the number

ad − bc

59
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EXAMPLE 3-1
Find the determinant of

A =
[

2 8
1 4

]

SOLUTION 3-1

det |A| = det

∣∣∣∣
[

2 8
1 4

]∣∣∣∣ = (2) (4) − (1) (8) = 8 − 8 = 0

EXAMPLE 3-2
Find the determinant of

A =
[

7 3
1 4

]

SOLUTION 3-2

det |A| = det

∣∣∣∣
[

7 3
1 4

]∣∣∣∣ = (7) (4) − (1) (3) = 28 − 3 = 25

The determinant can be calculated for matrices of complex numbers as well.

EXAMPLE 3-3
Find the determinant of

B =
[−2i 1

4 6 + 2i

]

SOLUTION 3-3
Recalling that i2 = −1, we obtain

det |B| = det

∣∣∣∣
[−2i 1

4 6 + 2i

]∣∣∣∣ = (−2i) (6 + 2i) − (1) (4)

= −12i + 4 − 4

= −12i
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The Determinant of a Third-Order Matrix
Let a 3 × 3 matrix A be given by

A =

a1 a2 a3

b1 b2 b3

c1 c2 c3




The determinant of A is given by (see Fig. 3-1)

det |A| = a1 det

∣∣∣∣b2 b3

c2 c3

∣∣∣∣− a2 det

∣∣∣∣b1 b3

c1 c3

∣∣∣∣+ a3 det

∣∣∣∣b1 b2

c1 c2

∣∣∣∣
= a1 (b2c3 − c2b3) − a2 (b1c3 − c1b3) + a3 (b1c2 − c1b2)

EXAMPLE 3-4
Find the determinant of

C =

4 0 2

1 −2 5
1 0 1




SOLUTION 3-4

det |C | = det

∣∣∣∣∣∣

4 0 2

1 −2 5
1 0 1



∣∣∣∣∣∣ = (4) det

∣∣∣∣−2 5
0 1

∣∣∣∣+ (2) det

∣∣∣∣1 −2
1 0

∣∣∣∣

a b c

d e f

g h i

Fig. 3-1. When taking the determinant of a third-order matrix, the elements of the top
row are coefficients of determinants formed from elements from rows 2 and 3. To find
the elements used in the determinant associated with each coefficient, cross out the top

row. Then cross out the column under the given coefficient. In this example the
coefficient is element c, and so we cross out the third column. The leftover elements, d,

e, g, h are used to construct a second-order matrix. We then take its determinant.
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Now we have

det

∣∣∣∣−2 5
0 1

∣∣∣∣ = (−2) (1) − (0) (5) = −2

and

det

∣∣∣∣1 −2
1 0

∣∣∣∣ = (1) (0) − (−2) (1) = 2

Therefore we obtain

det |C | = (4) (−2) + (2) (2) = −8 + 4 = −4

Theorems about Determinants
We now cover some important theorems involving determinants.

DETERMINANT OF A MATRIX WITH TWO IDENTICAL ROWS
OR IDENTICAL COLUMNS
The determinant of a matrix with two rows or two columns that are identical is
zero.

EXAMPLE 3-5
Show that the determinant of a second-order matrix with identical rows is zero.

SOLUTION 3-5
We write the matrix as

A =
[

a b
a b

]

The determinant is

det |A| = det

[
a b
a b

]
= ab − ab = 0

SWAPPING ROWS OR COLUMNS IN A MATRIX
If we swap two rows or two columns of a matrix, the determinant changes sign.
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EXAMPLE 3-6
Show that for

A =
[−1 2

4 8

]
, B =

[
4 8

−1 2

]
det |B| = − det |A|

SOLUTION 3-6
We have

det |A| = det

∣∣∣∣−1 2
4 8

∣∣∣∣ = (−1) (8) − (2) (4) = −8 − 8 = −16

For the other matrix we obtain

det |B| = det

∣∣∣∣ 4 8
−1 2

∣∣∣∣ = (4) (2) − (−1) (8) = 8 + 8 = 16

and we see that det |B| = − det |A| is satisfied.

Cramer’s Rule
Cramer’s rule is a simple algorithm that allows determinants to be used to solve
systems of linear equations. We examine the case of two equations with two
unknowns first. Consider the system

ax + by = m

cx + dy = n

This system can be written in matrix form as

Ax = b

where we have [
a b
c d

] [
x
y

]
=
[

m
n

]
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If the determinant

det |A| = det

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc �= 0

then Cramer’s rule allows us to find a solution given by

x =
det

∣∣∣∣m c
n d

∣∣∣∣
det

∣∣∣∣a b
c d

∣∣∣∣
, y =

det

∣∣∣∣a m
b n

∣∣∣∣
det

∣∣∣∣a b
c d

∣∣∣∣
EXAMPLE 3-7
Find a solution to the system

3x − y = 4

2x + y = −2

SOLUTION 3-7
We write the matrix A of coefficients as

A =
[

3 −1
2 1

]

The determinant is

det |A| = det

∣∣∣∣3 −1
2 1

∣∣∣∣ = (3) (1) − (2) (−1) = 3 + 2 = 5

Since the determinant is nonzero, we can use Cramer’s rule to find a solution.
We find x by substitution of the first column of A by the elements of the vector b:

x =
det

∣∣∣∣ 4 −1
−2 1

∣∣∣∣
det |A| = (4) (1) − (−2) (−1)

5
= 4 − 2

5
= 2

5

To find y, we substitute for the other column:

y =
det

∣∣∣∣3 4
2 −2

∣∣∣∣
det |A| = (3) (−2) − (2) (4)

5
= −6 − 8

5
= −14

5
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Cramer’s rule can be extended to a system of three equations with three
unknowns. The procedure is the same. If we have the system

ax + by + cz = r

dx + ey + fz = s

kx + ly + mz = t

(note that in this instance we are considering i as a constant), then we can write
this in the form Ax = b with

A =

a b c

d e f
k l m


 , X =


x

y
z


 , b =


r

s
t




Cramer’s rule tells us that the solution is

x =

∣∣∣∣∣∣
r b c
s e f
t l m

∣∣∣∣∣∣∣∣∣∣∣∣
a b c
d e f
k l m

∣∣∣∣∣∣
, y =

∣∣∣∣∣∣
a r c
d s f
k t m

∣∣∣∣∣∣∣∣∣∣∣∣
a b c
d e f
k l m

∣∣∣∣∣∣
, z =

∣∣∣∣∣∣
a b r
d e s
k l t

∣∣∣∣∣∣∣∣∣∣∣∣
a b c
d e f
k l m

∣∣∣∣∣∣
provided that the determinant

∣∣∣∣∣∣
a b c
d e f
k l m

∣∣∣∣∣∣
is nonzero. Notice that this solution gives the point of intersection of three planes
(see Fig. 3-2).

EXAMPLE 3-8
Find the point of intersection of the three planes defined by

x + 2y − z = 4

2x − y + 3z = 3

4x + 3y − 2z = 5
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x

y

P

Fig. 3-2. Cramer’s rule allows us to find the point P where two lines intersect.

SOLUTION 3-8
The matrix of coefficients is given by

A =

1 2 −1

2 −1 3
4 3 −2




The determinant is

det |A| = det

∣∣∣∣∣∣
1 2 −1
2 −1 3
4 3 −2

∣∣∣∣∣∣
= det

∣∣∣∣−1 3
3 −2

∣∣∣∣− (2) det

∣∣∣∣2 3
4 −2

∣∣∣∣− det

∣∣∣∣2 −1
4 3

∣∣∣∣
Now we have

det

∣∣∣∣−1 3
3 −2

∣∣∣∣ = (−1) (−2) − (3) (3) = 2 − 9 = −7

det

∣∣∣∣2 3
4 −2

∣∣∣∣ = (2) (−2) − (3) (4) = −4 − 12 = −16

det

∣∣∣∣2 −1
4 3

∣∣∣∣ = (2) (3) − (4) (−1) = 6 + 4 = 10

and so

det |A| = −7 + 32 − 10 = 15
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Since this is nonzero we can apply Cramer’s rule. We find

x =
det

∣∣∣∣∣∣
4 2 −1
3 −1 3
5 3 −2

∣∣∣∣∣∣
det |A| , y =

det

∣∣∣∣∣∣
1 4 −1
2 3 3
4 5 −2

∣∣∣∣∣∣
det |A| , z =

det

∣∣∣∣∣∣
1 2 4
2 −1 3
4 3 5

∣∣∣∣∣∣
det |A|

Working out the first case explicitly, we find

det

∣∣∣∣∣∣
4 2 −1
3 −1 3
5 3 −2

∣∣∣∣∣∣ = 4

∣∣∣∣−1 3
3 −2

∣∣∣∣− 2

∣∣∣∣3 3
5 −2

∣∣∣∣−
∣∣∣∣3 −1
5 3

∣∣∣∣
= 4 (2 − 9) − 2 (−6 − 15) − (9 + 5)

= −28 + 42 − 14 = 0

For the other variables, using det |A| = 15, we obtain (exercise)

y = 45

15
= 3

z = 30

15
= 2

Properties of Determinants
We now list some important properties of determinants:

• The determinant of a product of matrices is the product of their determi-
nants, i.e., det |AB| = det |A| det |B|.

• If the determinant of a matrix is nonzero, then that matrix has an inverse.
• If a matrix has a row or column of zeros, then det |A| = 0.
• The determinant of a triangular matrix is the product of the diagonal

elements.
• If the row or a column of a matrix B is multiplied by a scalar α to give a

new matrix A, then detdet |A| = α det |B|.
EXAMPLE 3-9
Show that det det |AB| = det |A| det |B| for

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
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SOLUTION 3-9
We have

det |A| = det

∣∣∣∣
(

a11 a12

a21 a22

)∣∣∣∣ = a11a22 − a21a12

det |B| = det

∣∣∣∣
(

b11 b12

b21 b22

)∣∣∣∣ = b11b22 − b21b12

The product of these determinants is

det |A| det |B| = (a11a22 − a21a12) (b11b22 − b21b12)

= a11a22b11b22 − a11a22b21b12 − a21a12b11b22 + a21a12b21b12

Now we compute the product of these matrices, and then the determinant. We
have

AB =
(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=
(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)

Therefore the determinant of the product is

det |AB| = det

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
= (a11b11 + a12b21) (a21b12 + a22b22)

− (a21b11 + a22b21) (a11b12 + a12b22)

Some simple algebra shows that this is

det |AB| = a11a22b11b22 − a11a22b21b12 − a21a12b11b22 + a21a12b21b12

= det |A| det |B|

EXAMPLE 3-10
Find the determinant of

B =

1 −2 4

0 6 −2
0 0 1




in two ways.
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SOLUTION 3-10
First we compute the determinant using the brute force method:

det |B| = det


1 −2 4

0 6 −2
0 0 1


 =

∣∣∣∣6 −2
0 1

∣∣∣∣+ 2

∣∣∣∣0 −2
0 1

∣∣∣∣+ 4

∣∣∣∣0 6
0 0

∣∣∣∣
The properties of determinants tell us that if a row or column of a matrix is zero,
then the determinant is zero. Therefore the second and third determinants are
zero, leaving

det |B| =
∣∣∣∣6 −2
0 1

∣∣∣∣ = (6) (1) − (0) (−2) = 6

To compute the determinant a second way, we note that the matrix is triangular
and compute the determinant by multiplying the diagonal elements together:

det |B| = (1) (6) (1) = 6

EXAMPLE 3-11
Prove that if the first row of a third-order square matrix is all zeros, the deter-
minant is zero.

SOLUTION 3-11
The proof is straightforward. We write the matrix as

A =

0 0 0

a b c
d e f




and we see immediately that

det |A| =
∣∣∣∣∣∣
0 0 0
a b c
d e f

∣∣∣∣∣∣ = (0)

∣∣∣∣b c
e f

∣∣∣∣− (0)

∣∣∣∣a c
d f

∣∣∣∣+ (0)

∣∣∣∣a b
d e

∣∣∣∣ = 0

By showing this for the other two rows, we can demonstrate that this result is
true in general for third-order matrices.

EXAMPLE 3-12
Prove that if the first column of a matrix B is multiplied by a scalar α to give a
new matrix A, then det |A| = α det |B| for a third-order matrix.
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SOLUTION 3-12
We take

B =

a1 a2 a3

b1 b2 b3

c1 c2 c3




Using the formula for the determinant of a third-order matrix, we have

det |B| = a1 det

∣∣∣∣b2 b3

c2 c3

∣∣∣∣− a2 det

∣∣∣∣b1 b3

c1 c3

∣∣∣∣+ a3 det

∣∣∣∣b1 b2

c1 c2

∣∣∣∣
= a1 (b2c3 − c2b3) − a2 (b1c3 − c1b3) + a3 (b1c2 − c1b2)

Now

A =

αa1 a2 a3

αb1 b2 b3

αc1 c2 c3




and so

det |A| = αa1 det

∣∣∣∣b2 b3

c2 c3

∣∣∣∣− a2 det

∣∣∣∣αb1 b3

αc1 c3

∣∣∣∣+ a3 det

∣∣∣∣αb1 b2

αc1 c2

∣∣∣∣
= αa1 (b2c3 − c2b3) − a2 (αb1c3 − αc1b3) + a3 (αb1c2 − αc1b2)

= α [a1 (b2c3 − c2b3) − a2 (b1c3 − c1b3) + a3 (b1c2 − c1b2)]

= α det |B|

Finding the Inverse of a Matrix
If the determinant of a matrix is nonzero, the inverse exists. We calculate the
inverse of A by using the determinant and the adjugate, a matrix whose (i , j)
entry is found by calculating the cofactor of the entry (i , j) of A.

THE MINOR
Let Amn be the submatrix formed from A by eliminating the mth row and nth
column of A. The minor associated with entry (m, n) of A is the determinant
of Amn.
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EXAMPLE 3-13
Let

A =

−2 3 1

0 4 5
2 1 4




Find the minors for (1, 1) and (2, 3).

SOLUTION 3-13
To find the minor for (1, 1), we eliminate the first row and the first column of
the matrix to give the submatrix

A11 =
[

4 5
1 4

]

The minor associated with (1, 1) is the determinant of this matrix:

det |A11| = det

∣∣∣∣4 5
1 4

∣∣∣∣ = (4) (4) − (1) (5) = 16 − 5 = 11

Now to find the minor for (2, 3), we cross out row 2 and column 3 of the matrix
A to create the submatrix

A23 =
[−2 3

2 1

]

The minor is the determinant of this matrix:

det

∣∣∣∣−2 3
2 1

∣∣∣∣ = −2 − 6 = −8

THE COFACTOR
To find the cofactor for entry (m, n) of a matrix A, we calculate the signed minor
for entry (m, n), which is given by

(−1)m+n det |Amn|

We denote the cofactor by amn.

EXAMPLE 3-14
Find the cofactors corresponding to the minors in the previous example.
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SOLUTION 3-14
We have

a11 = (−1)1+1 det |A11| = (−1)2 (11) = 11

and

a23 = (−1)2+3 det |A23| = (−1)5 (−8) = (−1) (−8) = 8

THE ADJUGATE OF A MATRIX
The adjugate of a matrix A is the matrix of the cofactors. For a 3 × 3 matrix

adj (A) =

a11 a21 a31

a12 a22 a32

a13 a23 a33




Notice that the row and column indices are reversed. So we calculate the cofactor
for the (i , j) entry of matrix A and then we use this for the ( j , i) entry of the
adjugate.

THE INVERSE
If the determinant of A is nonzero, then

A−1 = 1

det |A|adj (A)

EXAMPLE 3-15
Find the inverse of the matrix

A =
[

2 4
6 8

]

SOLUTION 3-15
First we calculate the determinant

det |A| = det

∣∣∣∣2 4
6 8

∣∣∣∣ = (2) (8) − (6) (4) = 16 − 24 = −8

The determinant is nonzero; therefore, the inverse exists.
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For a 2 × 2 matrix, submatrices used to calculate the minors are just numbers.
To calculate A11, we eliminate the first row and first column of the matrix:

A11 =
(

a11 a12

a21 a22

)
= 8

To calculate A12, we eliminate the first row and second column:

A12 =
(

a11 a12

a21 a22

)
= 6

To calculate A21, we eliminate the second row and first column:

A21 =
(

a11 a12

a21 a22

)
= 4

Finally, to find A22, we eliminate the second row and second column:

A22 =
(

a11 a12

a21 a22

)
= 2

We calculate each of the cofactors, noting that the determinant of a number is
just that number. In other words, det (α) = α. And so we have

a11 = (−1)1+1 det |A11| = 8

a12 = (−1)1+2 det |A12| = −6

a21 = (−1)2+1 det |A21| = −4

a22 = (−1)2+2 det |A22| = 2

⇒ adj (A) =
[

a11 a21

a12 a22

]
=
[

8 −4
−6 2

]

Dividing through by the determinant, we obtain

A−1 = 1

det |A|adj (A) = −1

8

[
8 −4

−6 2

]
=




−1
1

2
3

4
−1

4



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We verify that this is in fact the inverse:

A =
[

2 4
6 8

][−1 1
2

3

4
−1

4

]
=
[

(2) (−1) + (4)
(

3
4

)
(2)
(

1
2

)+ (4)
(−1

4

)
(6) (−1) + (8)

(
3
4

)
(6)
(

1
2

)+ (8)
(−1

4

)
]

=
[−2 + 3 1 − 1

−6 + 6 3 − 2

]
=
[

1 0
0 1

]
= I

Quiz
1. Find the determinant of the matrix

A =
[

1 9
2 5

]

2. Find the determinant of the matrix

B =

−7 0 4

2 1 9
6 5 1




3. Show that det (AB) = det (A) det (B) for

A =
[

8 −1
3 −6

]
, B =

[−4 1
2 6

]

4. If possible, solve the linear system

x + 2y = 7

3x − 4y = 9

using Cramer’s rule.
5. If possible, find the point of intersection for the planes

7x − 2y + z = 15

x + y − 3z = 4

2x − y + 5z = 2
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6. Let

A =

−2 1 0

2 6 2
1 8 4




Find the cofactors for this matrix.
7. Find the adjugate of the matrix A in the previous problem.
8. For the matrix of the problem 6, calculate the determinant and find out

if the inverse exists. If so, find the inverse.
9. Consider an arbitrary 2 × 2 matrix(

a11 a12

a21 a22

)

Write down the transpose of this matrix and see if you can determine
a relationship between the determinant of the original matrix and the
determinant of its transpose.

10. Find the determinants of

A =

 2 1 −1

−1 4 4
5 1 −1


 , B =


 2 −1 1

−1 4 4
5 −1 1




Is det |A| = − det |B|?



4
CHAPTER

Vectors

The reader is probably familiar with vectors from their use in physics and en-
gineering. A vector is a quantity that has both magnitude and direction. Math-
ematically, we can represent a vector graphically in the plane by a directed line
segment or arrow that has its tail at one point and the head of the arrow at a
second point, as illustrated in Fig. 4-1.

Two vectors can be added together using geometric means by using the par-
allelogram law. To add two vectors u and v, we place the tail of v at the head
of u and then draw a line from the tail of u to the tip of v. This new vector is u
+ v (see Fig. 4-2).

While we can work with vectors geometrically, we aren’t going to spend
anymore time thinking about such notions because in linear algebra we work
with abstract vectors that encapsulate the fundamental properties of the geo-
metric vectors we are familiar with from physics. Let’s think about what those
properties are. We can

• Add or subtract two vectors, giving us another vector.

76
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Fig. 4-1. An example of a vector.

• Multiply a vector by a scalar, giving another vector that has been stretched
or shrunk.

• Form a scalar product or number from two vectors by computing their dot
or inner product.

• Find the angle between two vectors by computing their dot product.
• Describe a zero vector, which, when added to another vector, leaves that

vector alone.
• Find an inverse of any vector, which, when added to that vector, gives the

zero vector.
• Represent a vector with respect to a set of basis vectors, which means we

can represent the vector by a set of numbers.

This last property is going to be of fundamental importance in linear algebra,
where we will work with abstract vectors by manipulating their components.
Let’s refresh our memory a bit by considering two basis vectors in the plane,
one points in the x direction and the other points in the y direction (see Fig.
4-3). Remember the basis vectors have unit length.

A given vector in the x–y plane can be decomposed into components along
the x and y axes (see Fig. 4-4).

The way we write this mathematically is that we expand the vector u with
respect to the basis {x̂, ŷ, ẑ}. The values ux , uy are the components of the vector.
The expansion of this vector is

	u = ux x̂ + uy ŷ

u

v
u + v

Fig. 4-2. Addition of two vectors.



78 CHAPTER 4 Vectors

x

y

Fig. 4-3. Basis vectors in the x−y plane.

Vectors are added together by adding components

	u = ux x̂ + uy ŷ + uz ẑ

	v = vx x̂ + vy ŷ + vz ẑ

⇒ 	u + 	v = (ux + vx ) x̂ + (uy + vy

)
ŷ + (uz + vz) ẑ

The dot product between two vectors is found to be

	u · 	v = uxvx + uyvy + uzvz

and the length of a vector is found by taking the dot product of a vector with
itself, i.e.,

‖	u‖ =
√

u2
x + u2

y + u2
z

Now let’s see how we can abstract notions like these to work with vectors in
complex vector space or n-dimensional spaces.

x

y

u

ux

uy

Fig. 4-4. Decomposing some vector u into x and y components.
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Vectors in R
n

Consider the set of n-tuples of real numbers, which are nothing more than lists
of n numbers. For example

u = (u1, u2, . . . , un)

is a valid n-tuple. The numbers ui are called the components of u. A specific
example is

u = (3, −2, 4)

where µ is a vector in R
3. We now consider some basic operations on vectors

in R
n .

Vector Addition
We can also represent vectors by a list of numbers arranged in a column. This
is called a column vector. For example, we write a vector u in R

n as

u =




u1

u2
...

un




Vector addition is carried out componentwise. Specifically, given two vectors
that belong to the vector space R

n

u =




u1

u2
...

un


 , v =




v1

v2
...

vn



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We form the sum u + v by adding component by component in the following
way:

u + v =




u1

u2
...

un


+




v1

v2
...

vn


 =




u1 + v1

u2 + v2
...

un + vn




Notice that if u and v are valid lists of real numbers, then so is their sum.
Therefore the sum u + v is also a vector in R

n. We say that R
n is closed under

vector addition.

EXAMPLE 4-1
Consider two vectors that belong to R

3

u =

−1

2
5


 , v =


 7

8
−1




Compute the vector formed by the sum u + v .

SOLUTION 4-1
We form the sum by adding components:

u + v =

−1

2
5


+


 7

8
−1


 =


 −1 + 7

2 + 8
5 + (−1)


 =


 6

10
4




We can also consider complex vector spaces. A vector in C
n is also an n-tuple,

but this time we allow the elements or components of the vector to be complex
numbers. Therefore two vectors in C

3 are

v =

2 + i

3
4i


 , w =


 0

1
−i




Most operations on vectors that belong to a complex vector space are carried
out in essentially the same way. For example, we can add together these vectors
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component by component:

v + w =

2 + i

3
4i


+


 0

1
−i


 =


2 + i

4
3i




Scalar Multiplication
Let u be a vector in some vector space

u =




u1

u2
...

un




and α be a scalar. The scalar product of α and u is given by

αu = α




u1

u2
...

un


 =




αu1

αu2
...

αun




If we are dealing with a real vector space, then the scalar α must be a real
number. For a complex vector space, α can be real or complex.

EXAMPLE 4-2
Let α = 3 and suppose that

u =

−1

4
5


 , v =


0

2
5




Find αu − v .

SOLUTION 4-2
The scalar product is

αu = (3)


−1

4
5


 =


 (3) (−1)

(3) (4)
(3) (5)


 =


−3

12
15



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Therefore

αu − v =

−3

12
15


−


0

2
5


 =


−3 − 0

12 − 2
15 − 5


 =


−3

10
10




EXAMPLE 4-3
Let

u =
[

2i
6

]

and α = 3 + 2i . Find αu.

SOLUTION 4-3
Scalar multiplication in a complex vector space also proceeds component by
component. Therefore we have

αu = (3 + 2i)

[
2i
6

]
=
[

(3) (2i) + (2i) (2i)
(3 + 2i) (6)

]
=
[ −4 + 6i

18 + 12i

]

If you’re rusty with complex numbers recall that i2 = −1, (i) (−i) = +1.
Subtraction of two vectors proceeds in an analogous way, as the next example

shows.

EXAMPLE 4-4
In the vector space R

4 find u − v for

u =




2
−1
3
4


 , v =




1
2

−5
6




SOLUTION 4-4
Working component by component, we obtain

u − v =




2
−1
3
4


−




1
2

−5
6


 =




2 − 1
−1 − 2
3 + 5
4 − 6


 =




1
−3
8

−2



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The Zero Vector
To represent the zero vector in an abstract vector space, we basically have just
a list of zeros. The property that a zero vector must satisfy is

u + 0 = 0 + u = u

for any vector that belongs to a given vector space. So, we have

u + 0 =




u1

u2
...

un


+




0
0
...
0


 =




u1 + 0
u2 + 0

...
un + 0


 =




u1

u2
...

un


 = u

The inverse of a vector is found by negating all the components. If

u =




u1

u2
...

un




then

−u =




−u1

−u2
...

−un




We see immediately that

u + (−u) =




u1

u2
...

un


+




−u1

−u2
...

−un


 =




u1 − u1

u2 − u2
...

un − un


 =




0
0
...
0


 = 0
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The Transpose of a Vector
We now consider the transpose of a vector in R

n, which is a row vector. For a
vector

u =




u1

u2
...

un




the transpose is denoted by

uT = [u1 u2 · · · un
]

EXAMPLE 4-5
Find the transpose of the vector

v =

 1

−2
5




SOLUTION 4-5
The transpose is found by writing the components of the vector in a row. There-
fore we have

vT = [1 −2 5
]

EXAMPLE 4-6
Find the transpose of

u =




1
0

−2
1




SOLUTION 4-6
We write the components of u as a row vector

uT = [1 0 −2 1
]
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For vectors in a complex vector space, the situation is slightly more com-
plicated. We call the equivalent vector the conjugate and we need to apply two
steps to calculate it:

• Take the transpose of the vector.
• Compute the complex conjugate of each component.

The conjugate of a vector in a complex vector space is written as u†. If
you don’t recall complex numbers, the complex conjugate is found by letting
i → −i . In this book we denote the complex conjugate operation by *. There-
fore the complex conjugate of α is written as α∗. The best way to learn what to
do is to look at a couple of examples.

EXAMPLE 4-7
Let

u =
[

2i
5

]

Calculate u†.

SOLUTION 4-7
First we take the transpose of the vector

uT = [2i 5
]

Now we take the complex conjugate, letting i → −i :

u† = [2i 5
]∗ = [−2i 5

]
EXAMPLE 4-8
Find the conjugate of

v =

 2 + i

3i
4 − 5i




SOLUTION 4-8
We take the transpose to write v as a row vector

vT = [2 + i 3i 4 − 5i
]
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Now take the complex conjugate of each component to obtain

v† = [2 + i 3i 4 − 5i
]∗ = [2 − i −3i 4 + 5i

]

The Dot or Inner Product
We needed to learn how to write column vectors as row vectors for real and
complex vector spaces because this makes computing inner products much
easier. The inner product is a number and so it is also known as the scalar
product. In a real vector space, the scalar product between two vectors

u =




u1

u2
...

un


 , v =




v1

v2
...

vn




is computed in the following way:

(u, v) = [u1 u2 · · · un
]



v1

v2
...
vn


 = u1v1 + u2v2 + · · · + unvn =

n∑
i=1

ui vi

EXAMPLE 4-9
Let

u =

 2

−1
3


 , v =


 4

5
−6




and compute their dot product.

SOLUTION 4-9
We have

(u, v) = [2 −1 3
] 4

5
−6


 = (2) (4) + (−1) (5) + (3) (−6)

= 8 − 5 − 18 = −15
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If the inner product of two vectors is zero, we say that the vectors are
orthogonal.

EXAMPLE 4-10
Show that

u =

 1

−2
2


 , v =


2

5
4




are orthogonal.

SOLUTION 4-10
The inner product is

(u, v) = [1 −2 2
]2

5
4


 = (1) (2) + (−2) (5) + (2) (4) = 2 − 10 + 8 = 0

To compute the inner product in a complex vector space, we compute the con-
jugate of the first vector. We use the notation

(u, v) = [u∗
1 u∗

2 · · · u∗
n

]



v1

v2
...

vn


 = u∗

1v1 + u∗
2v2 + · · · + u∗

nvn =
n∑

i=1

u∗
i vi

EXAMPLE 4-11
Find the inner product of

u =
[

2i
6

]
, v =

[
3
5i

]

SOLUTION 4-11
Taking the conjugate of u, we obtain

u† = [−2i 6
]
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Therefore we have

(u, v) = [−2i 6
] [ 3

5i

]
= (−2i) (3) + (6) (5i) = −6i + 30i = 24i

Note that the inner product is a linear operation, and so

(u + v, w) = (u, w) + (v, w)

(u, v + w) = (u, v) + (u, w)

(αu, v) = α (u, v)

(u, v) = (v, u)

In a complex vector space, we have

(αu, v) = α∗ (u, v)

(u, βv) = β (u, v)

(u, v) = (v, u)∗

The Norm of a Vector
We carry over the notion of length to abstract vector spaces through the norm.
The norm is written as ‖u‖ and is defined as the nonnegative square root of the
dot product (u, u). More specifically, we have

‖u‖ =
√

(u, u) =
√

u2
1 + u2

2 + · · · + u2
n

The norm must be a real number to have any meaning as a length. This is
why we compute the conjugate of the vector in the first slot of the inner product
for a complex vector space. We illustrate this more clearly with an example.

EXAMPLE 4-12
Find the norm of

v =

 2i

4
1 + i



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SOLUTION 4-12
We first compute the conjugate

v† =

 2i

4
1 + i




†

= [−2i 4 1 − i
]

The inner product is

(v, v) = [−2i 4 1 − i
] 2i

4
1 + i


 = (−2i) (2i) + (4) (4) + (1 − i) (1 + i)

= 4 + 16 + 2 = 22

The norm of the vector is the positive square root of this quantity:

‖v‖ =
√

(v, v) =
√

22

Note that

(u, u) ≥ 0

For any vector u, with equality only for the zero vector.

Unit Vectors
A unit vector is a vector that has a norm that is equal to 1. We can construct a
unit vector from any vector v by writing

ṽ = v

‖v‖
EXAMPLE 4-13
A vector in a real vector space is

w =
[

2
−1

]

Use this vector to construct a unit vector.
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SOLUTION 4-13
The inner product is

(w, w) = (2) (2) + (−1) (−1) = 4 + 1 = 5

The norm of this vector is the positive square root:

‖w‖ =
√

(w, w) =
√

5

We can construct a unit vector by dividing w by its norm:

u = w

‖w‖ = 1√
5

w = 1√
5

[
2

−1

]
=
[ 2√

5

− 1√
5

]

We call this procedure normalization or say we are normalizing the vector.

The Angle between Two Vectors
The angle between two vectors u and v is

cos θ = (u, v)

‖u‖ ‖v‖

Two Theorems Involving Vectors
The Cauchy–Schwartz inequality states that

|(u, v)| ≤ ‖u‖ ‖v‖

and the triangle inequality says

‖u + v‖ ≤ ‖u‖ + ‖v‖
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Distance between Two Vectors
We can carry over a notion of “distance” between two vectors. This is given by

d (u, v) = ‖u − v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2

EXAMPLE 4-14
Find the distance between

u =

 2

−1
2


 , v =


1

3
4




SOLUTION 4-14
The difference between the vectors is

u − v =

 2

−1
2


−


1

3
4


 =


 2 − 1

−1 − 3
2 − 4


 =


 1

−4
−2




The inner product is

(u − v, u − v) = (1)2 + (−4)2 + (−2)2 = 1 + 16 + 4 = 21

and so the distance function gives

d (u, v) = ‖u − v‖ =
√

(u − v, u − v) =
√

21

Quiz
1. Construct the sum and difference of the vectors

v =
[−2

4

]
, w =

[
1
8

]
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2. Find the scalar multiplication of the vector

u =

 2

−1
4




by k = 3.
3. Using the rules for vector addition and scalar multiplication, write the

vector

a =

 2

−3
4




in terms of the vectors

e1 =

1

0
0


 , e2 =


0

1
0


 , e3 =


0

0
1




The vectors ei are called the standard basis of R
3.

4. Find the inner product of

u =
[

2
4i

]
, v =

[−1
3

]

5. Find the norm of the vectors

a =
[

2
−2

]
, b =


 1

−i
2


 , c =


8i

2
i




6. Normalize the vectors

a =

 2

3
−1


 , u =

[
1 + i
4 − i

]
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7. Let

u =
[

2
−1

]
, v =

[
4
5

]
, w =

[−1
1

]

Find
(a) u + 2v − w
(b) 3w
(c) −2u + 5v + 7w
(d) The norm of each vector
(e) Normalize each vector



5
CHAPTER

Vector Spaces

A vector space V is a set of elements u, v, w , . . . called vectors that satisfy the
following axioms:

• A vector space is closed under addition. This means there exists an opera-
tion called addition such that the sum of two vectors, given by w = u + v
is another vector that belongs to V .

• A vector space is closed under scalar multiplication. If u ∈ V then so is
αu, where α is a number.

• Vector addition is associative, meaning that
u + (v + w) = (u + v) + w .

• Vector addition is commutative, i.e., u + v = v + u.
• There exists a unique zero vector that satisfies 0 + u = u + 0 = u.
• There exists an additive inverse such that u + (−u) = (−u) + u = 0.
• Scalar multiplication is distributive, i.e., α (u + v) = αu + αv .
• Scalar multiplication is associative, meaning α (βu) = (αβ) u.
• There exists an identity element I such that I u = uI = u for each

u ∈ V .

94
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These are general mathematical properties that apply to a wide range of objects,
not just geometric vectors. Certain types of functions can form a vector space,
for example. Often one is asked to determine whether a given collection of
elements is a vector space.

EXAMPLE 5-1
Does the function

4x − y = 7

constitute a vector space?

SOLUTION 5-1
This function is the line shown in Fig. 5-1.

We can show that this line is not a vector space by showing that it does not
satisfy closure under addition. Let x1, x2 be two points on the x axis and y1, y2

be two points on the y axis such that

4x1 − y1 = 7

4x2 − y2 = 7

Adding the two elements, we obtain

4 (x1 + x2) − (y1 + y2) = 14 �= 7

−4 −2 2 4

−20

−15

−10

−5

5

Fig. 5-1. Is the line 4x − y = 7 a vector space?



96 CHAPTER 5 Vector Spaces

For closure to be satisfied, 4 (x1 + x2) − (y1 + y2) must also sum to 7, which it
does not. Therefore the line 4x − y = 7 is not a vector space. We can also see
this by noting it is not closed under scalar multiplication. Again suppose we had
a point (x1, y1) such that

4x1 − y1 = 7

This means that

3 (4x1 − y1) = 12x1 − 3y1

But on the right-hand side, we have 3 × 7 = 21 and so the result is not 7.

EXAMPLE 5-2
Show that the line

x − 2y = 0

is closed under addition and scalar multiplication.

SOLUTION 5-2
This is the line through the origin shown in Fig. 5-2.

We suppose that (x1, y1) and (x2, y2) are two points such that

x1 − 2y1 = 0

x2 − 2y2 = 0

−4 −2 2 4

−2

−1

1

2

Fig. 5-2. The line x − 2y = 0 does constitute a vector space.
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Adding we find

(x1 + x2) − 2 (y1 + y2) = 0

Therefore the line x – 2y = 0 is closed under addition. The line is also closed
under scalar multiplication since

α (x − 2y) = 0

for any α.

EXAMPLE 5-3
Show that the set of second-order polynomials

a x2 + b x + c

is a vector space.

SOLUTION 5-3
We denote two vectors in the space by u = a2x2 + a1x + a0 and v = b2x2 +
b1x + b0. The vectors add as follows:

u + v = (a2x2 + a1x + a0
)+ (b2x2 + b1x + b0

)
= a2x2 + b2x2 + a1x + b1x + a0 + b0

= (a2 + b2) x2 + (a1 + b1) x + (a0 + b0)

The result is another second-order polynomial; therefore, the space is closed
under addition. We see immediately that closure under scalar multiplication is
also satisfied, since given any scalar α we have

αu = α
(
a2x2 + a1x + a0

) = (αa2) x2 + (αa1) x + αa0

The result is another second-order polynomial; therefore, the space is closed
under scalar multiplication (see Fig. 5-3). There exists a zero vector for this
space, which is found by setting a2 = a1 = a0 = 0 and so clearly

0 + v = (0) x2 + (0) x + 0 + b2x2 + b1x + b0 = b2x2 + b1x + b0

= v = v + 0
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−2 −1 1 2

2

4

6

8

10

Fig. 5-3. Polynomials can be thought of as a vector space.

There exists an additive inverse of ufound by setting

a2 → −a2

a1 → −a1

a0 → −a0

So we have

u + (−u) = a2x2 + a1x + a0 + (−a2x2 − a1x − a0
)

= (a2 − a2) x2 + (a1 − a1) x + a0 − a0 = 0

EXAMPLE 5-4
Describe the vector space C

3, a three-dimensional complex vector space.

SOLUTION 5-4
C

3 is a vector space over the complex numbers consisting of three-dimensional
n-tuples. A vector in this space is a list of three complex numbers of the form

a = (a1, a2, a3)

Vector addition is carried out componentwise, giving a new list of three complex
numbers:

a + b = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
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Hence this space is closed under addition. Scalar multiplication proceeds in the
following way:

αa = α (a1, a2, a3) = (αa1, αa2, αa3)

Since the result is a new listing of three complex numbers, the space is
closed under scalar multiplication. The zero vector in C

3 is a list of three
zeros:

0 = (0, 0, 0)

and the inverse of a vector a is given by

−a = (−a1, −a2, −a3)

EXAMPLE 5-5
The set of functions f (x) into the real numbers is a vector space. Vector addition
in this space is defined by the addition of two functions:

( f + g) (x) = f (x) + g (x)

Scalar multiplication of a function f (x) is given by the product of a scalar
α ∈ R defined as

(α f ) (x) = α f (x)

The zero vector maps every x into 0, i.e.,

0 (x) = 0 ∀x

and the inverse of a vector in this space is the negative of the function:

(− f ) (x) = − f (x)
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Basis Vectors
Given a vector u that belongs to a vector space V , we can write u as a linear
combination of vectors v1, v2, . . . , vn if there exist scalars α1, α2, . . . , αn such
that

u = α1 v1 + α2 v2 + · · · + αn vn

EXAMPLE 5-6
Consider the three-dimensional vector space C

3. Show that we can write the
vector

u = (2i, 1 + i, 3)

as a linear combination of the set e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1).

SOLUTION 5-6
Considering the set ei first, we use the rules of vector addition and scalar mul-
tiplication to change the way the vector is written. First, since

u + v = (u1 + v1, u2 + v2, u3 + v3)

we can rewrite the vector as

u = (2i, 1 + i, 3) = (2i, 0, 0) + (0, 1 + i, 3)

= (2i, 0, 0) + (0, 1 + i, 0) + (0, 0, 3)

Now, the rule for scalar multiplication is

αu = α (u1, u2, u3) = (αu1, αu2, αu3)

This allows us to pull out the factors in each term, i.e.,

(2i, 0, 0) = 2i (1, 0, 0) = 2ie1

(0, 1 + i, 0) = (1 + i) (0, 1, 0) = (1 + i) e2

(0, 0, 3) = 3 (0, 0, 1) = 3e3
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and so we have found that

u = 2i e1 + (1 + i) e2 + 3 e3

EXAMPLE 5-7
Write the polynomial

u = 4x2 − 2x + 5

as a linear combination of the polynomials

p1 = 2x2 + x + 1, p2 = x2 − 2x + 2, p3 = x2 + 3x + 6

SOLUTION 5-7
If u can be written as a linear combination of these polynomials, then there exist
scalars a, b, c such that

u = ap1 + bp2 + cp3

Using the rules of vector addition and scalar multiplication, we have

u = ap1 + bp2 + cp3

= a
(
2x2 + x + 1

)+ b
(
x2 − 2x + 2

)+ c
(
x2 + 3x + 6

)
= (2a + b + c) x2 + (a − 2b + 3c) x + (a + 2b + 6c)

Comparison with u = 4x2 − 2x + 5 yields three equations

2a + b + c = 4

a − 2b + 3c = −2

a + 2b + 6c = 5

This is a linear system in (a, b, c) that can be represented with the augmented
matrix 

2 1 1 4
1 −2 3 −2
1 2 6 5



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The operations R1 − 2R2 → R2 and R1 − 2R3 → R3 yield
2 1 1 4

0 5 −5 8
0 −3 −11 −6




3R2 + 5R3 → R3 gives 
2 1 1 4

0 5 −5 8
0 0 −70 −6




The last row yields

c = 3

35

Back substitution into the second row gives

b = c + 8

5
= 3

35
+ 8

5
= 56

35

The first row then allows us to solve for a

a = 2 − 1

2
b − 1

2
c = 2 − 56

70
− 3

70
= 81

70

Therefore, we can write u = 4x2 − 2x + 5 in terms of the polynomials
p1, p2, p3 as

u = 81

70
p1 + 56

35
p2 + 3

35
p3

A SPANNING SET
A set of vectors {u1, u2, . . . , un} is said to span a vector space V if every vector
v ∈ V can be written as a linear combination of {u1, u2, . . . , un}; in other words,
we can write any vector v in the space as a linear combination

v = α1 u1 + α2 u2 + · · · + αn un

for scalars αi .
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EXAMPLE 5-8
We have already seen the set e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1). Any
vector in C

3 can be written in terms of this set, since

(α, β, γ ) = α (1, 0, 0) + β (0, 1, 0) + γ (0, 0, 1)

for any complex numbers α, β, γ . Therefore e1 = (1, 0, 0) , e2 = (0, 1, 0) ,

e3 = (0, 0, 1) span C
3.

Linear Independence
A collection of vectors {u1, u2, . . . , un} is linearly independent if the equation

α1 u1 + α2 u2 + · · · + αn un = 0

implies that α1 = α2 = · · · = αn = 0. If this condition is not met then we say
that the set of vectors {u1, u2, . . . , un} is linearly dependent. Said another way,
if a set of vectors is linearly independent, then no vector from the set can be
written as a linear combination of the other vectors.

EXAMPLE 5-9
Show that the set

a = (1, 2, 1) , b = (0, 1, 0) , c = (−2, 0, −2)

is linearly dependent.

SOLUTION 5-9
We can write

2b − 1

2
c = 2 (0, 1, 0) − 1

2
(−2, 0, −2) = (0, 2, 0) + (1, 0, 1)

= (1, 2, 1) = a

Since a can be written as a linear combination of b, c, the set is linearly
dependent.

EXAMPLE 5-10
Show that the set

(1, 0, 1) , (1, 1, −1) , (0, 1, 0)

is linearly independent.
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SOLUTION 5-10
Given scalars a, b, c we have

a (1, 0, 1) + b (1, 1, −1) + c (0, 1, 0) = (a + b, b + c, a − b)

The zero vector is

(0, 0, 0)

Therefore to have

a (1, 0, 1) + b (1, 1, −1) + c (0, 1, 0) = 0

It must be the case that

a + b = 0

b + c = 0

a − b = 0

From the third equation we see that a = b. Substitution into the first equation
yields

a + b = a + a = 2a = 0

⇒ a = 0

From this we conclude that b = c = 0 as well. Since all of the constants are
zero, the set is linearly independent.

We can show that a set of vectors is linearly independent by arranging them
in a matrix form. Then row reduce the matrix; if each row has a nonzero pivot,
then the vectors are linearly independent.

EXAMPLE 5-11
Determine if the set {(1, 3, 5) , (4, −1, 2) , (0, −1, 2)} is linearly independent.
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SOLUTION 5-11
We arrange each set as a matrix, using each vector as a column. For the first set
{(1, 3, 5) , (4, −1, 2) , (0, −1, 2)} the matrix is

A =

1 4 0

3 −1 −1
5 2 2




Now we row reduce the matrix


1 4 0

3 −1 −1
5 2 2


∼

1 4 0

0 −13 −1
5 2 2


∼

1 4 0

0 −13 −1
0 −18 2


∼

1 4 0

0 −13 −1
0 0 44




The operations used were −3R1 + R2 → R2, −5R1 + R3 → R3, and
− 18R2 + 13R3 → R3. Since all the columns in the reduced matrix contain
a pivot entry, no vector can be written as a linear combination of the other
vectors; therefore, the set is linearly independent.

EXAMPLE 5-12
Does the set (1, 1, 1, 1) , (1, 3, 2, 1) , (2, 3, 6, 4) , (2, 2, 2, 2) span R

4?

SOLUTION 5-12
We arrange the set in matrix form:

A =




1 1 1 1
1 3 2 1
2 3 6 4
2 2 2 2




Next we row reduce the matrix:




1 1 1 1
1 3 2 1
2 3 6 4
2 2 2 2


 ∼




1 1 1 1
0 2 1 0
2 3 6 4
2 2 2 2


 ∼




1 1 1 1
0 2 1 0
0 1 4 2
2 2 2 2


 ∼




1 1 1 1
0 2 1 0
0 1 4 2
0 0 0 0




Since the last row is all zeros, this set of vectors is linearly dependent. Therefore
they cannot form a basis of R

4. The echelon matrix has three nonzero rows.
Therefore the set spans a subspace of dimension 3.
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x

y

x̂

ŷ

Fig. 5-4. The basis set {x̂, ŷ} spans the x–y plane. But we could equally well use the basis
vectors

{
r̂, φ̂
}

to write any vector in plane polar coordinates.

Basis Vectors
If a set of vectors {u1, u2, . . . , un} spans a vector space V and is linearly inde-
pendent, we say that this set is a basis of V. Any vector that belongs to V can
be written as a unique linear combination of the basis {u1, u2, . . . , un}. There
exist multiple bases for a given vector space V ; in fact there can be infinitely
many (see Fig. 5-4).

x̂ ŷ

EXAMPLE 5-13
The set

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)

is a basis for the vector space R3.

Completeness
Completeness or the closure relation means that we can write the identity in
terms of outer products of a set of basis vectors. An outer product is a matrix
multiplication operation between a column vector and a row vector.
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The result of an outer product is a matrix, calculated by




a1

a2
...

an


 (b1 b2 · · · bn) =




a1b1 a1b2 . . . a1bn

a2b1 a2b2 . . . a2bn
...

...
. . .

...
anb1 anb2 . . . anbn




EXAMPLE 5-14
Find the outer product of

(1 2 3), (4 5 6)

SOLUTION 5-14
The outer product is


1

2
3


 (4 5 6) =


 (1)(4) (1)(5) (1)(6)

(2)(4) (2)(5) (2)(6)
(3)(4) (3)(5) (3)(6)


 =


 4 5 6

8 10 12
12 15 18




EXAMPLE 5-15
Show that the set e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) is complete.

SOLUTION 5-15
The identity matrix in 3 dimensions is

I3 =

1 0 0

0 1 0
0 0 1




The first outer product is


1

0
0


 (1 0 0) =


1 0 0

0 0 0
0 0 0




The second is 
0

1
0


 (0 1 0) =


0 0 0

0 1 0
0 0 0



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and the third is


0

0
1


 (0 0 1) =


0 0 0

0 0 0
0 0 1




Summing we obtain the identity matrix, showing the set is complete:


1 0 0

0 0 0
0 0 0


+


0 0 0

0 1 0
0 0 0


+


0 0 0

0 0 0
0 0 1


 =


1 0 0

0 1 0
0 0 1




DIMENSION OF A VECTOR SPACE
The dimension of a vector space n is the minimum number of basis vec-
tors {u1, u2, . . . , un} required to span the space. If V is a vector space and
{u1, u2, . . . , un} is a basis with n elements and {v1, v2, . . . , vm} is another basis
with m elements, then m = n. This means that all basis sets of a vector space
contain the same number of elements. A vector space that does not have a finite
basis is called infinite dimensional.

Subspaces
Suppose that V is a vector space. A subset W of V is a subspace if W is
also a vector space. In other words, closure under vector addition and scalar
multiplication must be satisfied for W in order for it to be a subspace.

It is easy to determine if W is a subspace because most of the vector axioms
carry over to W automatically. We can verify that W is a subspace by

• Confirming that W has a zero vector.
• Verifying that if u, v ∈ W , then αu + βv ∈ W .

EXAMPLE 5-16
Let V be the complex vector space C

3 and let W be the set of vectors for which
the third component is zero:

u = (α, β, 0) ∈ W

Is W a subspace of V ?
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SOLUTION 5-16
For the zero vector, we set α = β = 0 and obtain

0 = (0, 0, 0)

Clearly

0 + u = (0, 0, 0) + (α, β, 0) = (α, β, 0) = u

for any u ∈ W . Now consider a second element that belongs to W :

v = (γ, δ, 0)

Let a and b be two scalars, then the linear combination

au + bv = a (α, β, 0) + b (γ, δ, 0) = (aα, aβ, 0) + (bγ, bδ, 0)

= (aα + bγ, aβ + bδ, 0)

We have found that a u + b v is a complex 3-tuple with the third element equal to
zero, and therefore a u + b v ∈ W . Both criteria are satisfied and so we conclude
that W is a subspace of V .

Row Space of a Matrix
The rows of a matrix A can be viewed as vectors that span a subspace. If the
matrix A is a matrix of real numbers then the rows of A span a subspace of R

n,
while if A is a matrix of complex numbers the rows of A span a subspace of C

n.
The columns of A can also be viewed as vectors and they form a subspace of

R
n or C

n in an analogous manner. The following relationship holds:

colsp(A) = rowsp
(

AT
)

Matrices that are row equivalent, that is, matrices that can be obtained from
one another by applying a sequence of elementary row operations, have the same
row space. The nonzero rows of an echelon matrix are linearly independent.

To find the row and column spaces of a matrix A

• Reduce the matrix to row echelon form.
• The columns of the row echelon form of the matrix with nonzero pivots

identify the basic columns of the matrix A.
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• The basic columns of A span the column space of A.

• The nonzero rows of the row echelon form of A span the row space of A.

Notice that we must use the basic columns of the original matrix as the basis of
the column space of A. Do not use the columns of the echelon matrix.

The row rank of a matrix A is the number of vectors needed to span the row
space. The column rank is the number of vectors needed to span the column
space. These values are equal to each other. We can also find the rank of A by
adding up the number of leading 1s in the reduced row echelon form of A.

EXAMPLE 5-17
Determine the spanning sets for the row and column spaces of the matrix

A =

 1 2 1 3

−2 −1 3 5
3 4 3 −1




SOLUTION 5-17
We begin by applying 2R1 + R2 → R2 and obtain

A =

 1 2 1 3

−2 −1 3 5
3 4 3 −1


 ∼


1 2 1 3

0 3 5 11
3 4 3 −1




Next we use −3R1 + R3 → R3:
1 2 1 3

0 3 5 11
3 4 3 −1


 ∼


1 2 1 3

0 3 5 11
0 −2 0 −10




Now take 2R2 + 3R3 → R3, which gives


1 2 1 3

0 3 5 11
0 0 10 −8




We divide the last row by 2:


1 2 1 3

0 3 5 11
0 0 5 −4



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Then we take −R3 + R2 → R2 and then divide the second row by 3 and find


1 2 1 3

0 3 0 15
0 0 5 −4


 ∼


1 2 1 3

0 1 0 5
0 0 5 −4




Next we take R3 − 5R1 → R1 and then divide the third row by 5:


1 2 1 3

0 1 0 5
0 0 5 −4


 ∼


1 2 0 −19

0 1 0 5
0 0 5 −4


 ∼


1 2 0 −19

0 1 0 5
0 0 1 −4/5




Finally, we use −2R2 + R1 → R1:


1 2 0 −19

0 1 0 5
0 0 1 −4/5


 ∼


1 0 0 −29

0 1 0 5
0 0 1 −4/5




There are three nonzero rows; therefore, the row space is spanned by

rowsp(A) =






1
0
0

−29


 ,




0
1
0
5


 ,




0
0
1

−4
5






To find the column space of A, first we identify the columns that contain pivots
in the row echelon form of A. These are the first and second columns. We
underline the pivots


1 0 0 −29

0 1 0 5
0 0 1 −4/5




There are three leading 1s in the reduced form and so the rank of the matrix is
3. The vectors that span the column space are from the corresponding columns
of A:

A =

 1 2 1 3

−2 −1 3 5
3 4 3 −1



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and so

colsp(A) =



 1

−2
3


 ,


 2

−1
4


 ,


1

3
3






Notice that the row rank = 3 = column rank of A, since three vectors are needed
to span the row and column spaces of the matrix.

EXAMPLE 5-18
Find the row and column spaces of

A =

1 2 3

4 5 6
7 8 9




SOLUTION 5-18
We row reduce the matrix. First take −4R1 + R2 → R2:

A =

1 2 3

4 5 6
7 8 9


 ∼


1 2 3

0 −3 −6
7 8 9




We eliminate the first term in the third row with −7R1 + R3 → R3:


1 2 3

0 −3 −6
7 8 9


 ∼


1 2 3

0 −3 −6
0 −6 −12




Now divide row 2 by −3, and row 3 by −6:


1 2 3

0 −3 −6
0 −6 −12


 ∼


1 2 3

0 1 2
0 1 2




We can eliminate the third row with −R2 + R3 → R3:


1 2 3

0 1 2
0 1 2


 ∼


1 2 3

0 1 2
0 0 0



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We finish with −2R2 + R1 → R1:


1 2 3

0 1 2
0 0 0


 ∼


1 0 −1

0 1 2
0 0 0




The row space is given by the nonzero rows of the reduced matrix. Therefore,

rowsp(A) =



 1

0
−1


 ,


0

1
2






The nonzero pivots are underlined here:


1 0 −1

0 1 2
0 0 0




So the first two columns of A span the column space. These are

colsp(A) =



1

4
7


 ,


2

5
8






We have

rowrank (A) = 2 = colrank (A)

Also notice that in the reduced echelon form of the matrix, there are two leading
1s and so the rank of the matrix is 2.

EXAMPLE 5-19
Find the row and column spaces of

A =

1 2 −4 3 −1

1 2 −2 2 1
2 4 −2 3 4



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SOLUTION 5-19
We row reduce the matrix with the following steps:

−R1 + R2 → R2, −2R1 + R3 → R3, −3R2 + R3 → R3

This results in

A =

1 2 −4 3 −1

1 2 −2 2 1
2 4 −2 3 4


 ∼


1 2 −4 3 −1

0 0 2 −1 2
2 4 −2 3 4




∼

1 2 −4 3 −1

0 0 2 −1 2
0 0 6 −3 6


 ∼


1 2 −4 3 −1

0 0 2 −1 2
0 0 0 0 0




There are two nonzero rows in the echelon matrix. So the row space is

rowsp(A) =







1
2

−4
3

−1


 ,




0
0
2

−1
2






The pivots in the echelon matrix are underlined:


1 2 −4 3 −1

0 0 2 −1 2
0 0 0 0 0




So the first and third columns of A span the column space:

colsp(A) =



1

1
2


 ,


−4

−2
−2






Notice that two vectors are required to span the row and column spaces of the
matrix. Therefore, the rank of A is 2.
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Null Space of a Matrix
The null space of a matrix is found from

Ax = 0

where the set of vectors x is the basis of the null space of A. Nullity is the
number of parameters needed in the solution to this equation. When the matrix
A is m × n then

rank(A) + nullity(A) = n

From this relation we see that the null space of a matrix is 0 if the rank = n. The
best way to explain how to find the null space of a matrix is with examples.

EXAMPLE 5-20
Find the null space for

A =
[

1 −1 2
−1 1 −2

]

SOLUTION 5-20
We immediately reduce the matrix to

A =
[

1 −1 2
−1 1 −2

]
∼
[

1 −1 2
0 0 0

]

We find the null space of the matrix from the solution of Ax = 0 for a vector x :

x =

 x1

x2

x3




The reduced form of the matrix gives the equation

x1 − x2 + 2x3 = 0

Solving this equation, we get

x1 = x2 − 2x3
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So the solution is a vector of the form
 x1

x2

x3


 =


 x2 − 2x3

x2

x3




To find the null space, we rewrite this vector so that x2 and x3 are coefficients
multiplying two vectors:


 x2 − 2x3

x2

x3


 = x2


1

1
0


+ x3


−2

0
1




The null space of A is the set of all linear combinations of the vectors

h1 =

1

1
0


 , h2 =


−2

0
1




EXAMPLE 5-21
Find a basis for the null space of the matrix

A =

1 2 −4 3 −1

1 2 −2 2 1
2 4 −2 3 4




SOLUTION 5-21
The solution to Ax = 0 is a vector (x1, x2, x3, x4, x5). As usual, the first step is
to reduce the matrix. In the example above we found that the reduced form of
this matrix is 

1 2 −4 3 −1
0 0 2 −1 2
0 0 0 0 0




The pivots are located in column 1 and column 3. Columns that do not have
pivots tell us free variables or parameters for the matrix. In this case the free
columns are 2, 4, and 5. Therefore the free variables are

(x2, x4, x5)
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We write the variables (x1, x3) in terms of the free variables using the equations
represented by the reduced form of the matrix. From the first row, we have

x1 + 2x2 − 4x3 + 3x4 − x5 = 0

The second row tells us

2x3 − x4 + 2x5 = 0

First we rearrange the second equation to obtain

x3 = 1

2
x4 − x5

This allows us to simplify the first equation

x1 = −2x2 + 4x3 − 3x4 + x5 = −2x2 − x4 − 3x5

Therefore we have


x1

x2

x3

x4

x5


 =




−2x2 − x4 − 3x5

x2
1
2 x4 − x5

x4

x5


 = x2




−2
1
0
0
0


+ x4




−1
0
1
2
1
0


+ x5




−3
0

−1
0
1




The null space of A is given by the set of all linear combinations of the vectors

h1 =




−2
1
0
0
0


 , h2 =




−1
0
1
2

1
0


 , h3 =




−3
0

−1
0
1




Quiz
1. Is the line 3x + 5y = 2 a vector space? If not, why not?
2. Is the set of vectors Ax x̂ + Ay ŷ + 2ẑ a vector space? If not, why not?
3. Show that the set of second-order polynomials is commutative and asso-

ciative under addition, is associative and distributive under scalar multi-
plication, and that there exists an identity.
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4. Show that the set of 2-tuples of real numbers[
α

β

]

is a vector space.
5. Write the vector

u = (2i, 1 + i, 3)

as a linear combination of the set v1 = (1, 1, 1) , v2 = (1, 0, −1) , v3 =
(1, −1, 1).

6. Write the polynomial

v = 5t2 − 4t + 1

as a linear combination of the polynomials

p1 = 2t2 + 9t − 1, p2 = 4t + 2, p3 = t2 + 3t + 6

7. Consider the set of 2 × 2 matrix of complex numbers[
α β

γ δ

]

Show that this matrix is a vector space. Find a set of matrix that spans
the space.

8. Is the set (−2, 1, 1) , (4, 0, 0) , (0, 2, 0) linearly independent?
9. Is the set

v1 = 1√
2

(
1
1

)
, v2 = 1√

2

(
1

−1

)

complete?
10. Is the set W of vectors of the form (a, b, c), where a = b = c, a subspace

of R
3?

11. Find the row space and column space of

A =

 1 −1 2 5

2 4 1 0
−1 3 0 1



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12. Find the null space of

A =

1 2 3

4 5 6
7 8 9




13. Find the row space, column space, and null space of

B =

1 −2 1 0

3 1 4 5
2 3 5 −1






6
CHAPTER

Inner Product Spaces

When we introduced vectors in chapter 4, we briefly discussed the notion of an
inner product. In this chapter we will investigate this notion in more detail. We
begin with a formal definition.

Let V be a vector space. To each pair of vectors u, v ∈ V there is a number
that we denote (u, v) that is called the inner product, if it satisfies the following:

1. Linearity. For a real vector space, the inner product is a real number and
the inner product satisfies

(au + bv, w) = a (u, w) + b (v, w)

If the vector space is complex, the inner product is a complex num-
ber. We will define it in the following way. It is antilinear in the first
argument

(au + bv, w) = a∗ (u, w) + b∗ (v, w)

120

Copyright © 2006 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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but is linear in the second argument

(u, av + bw) = a (u, v) + b (u, w)

2. Symmetry. For a real vector space, the inner product is symmetric

(u, v) = (v, u)

If the vector space is complex, then the inner product is conjugate
symmetric

(u, v) = (v, u)∗

3. Positive Definiteness. This means that the inner product satisfies

(u, u) ≥ 0

with equality if and only if u = 0.

EXAMPLE 6-1
Suppose that V is a real vector space and that

(u, v) = −2

(u, w) = 5

Calculate (3v − 6w, u).

SOLUTION 6-1
First we use the linearity property. The vector space is real, and so we have

(3v − 6w, u) = 3 (v, u) − 6 (w, u)

We also know that a real vector space obeys the symmetry property. Therefore
we can rewrite this as

3 (v, u) − 6 (w, u) = 3 (u, v) − 6 (u, w)

Now, using the given information, we find

(3v − 6w, u) = 3 (u, v) − 6 (u, w) = (3) (−2) − (6) (5) = −6 − 30 = −36
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The Vector Space R
n

We define a vector u in R
nas the n-tuple (u1, u2, . . . , un). The inner product

for the Euclidean space R
nis given by

(u, v) = u1v1 + u2v2 + · · · + unvn

The norm of a vector is denoted by ‖u‖ and is calculated using

‖u‖ =
√

(u, u) =
√

u2
1 + u2

2 + · · · + u2
n

EXAMPLE 6-2
Let u = (−3, 4, 1) , and v = (2, 1, 1) be vectors in R

3. Find the norm of each
vector.

SOLUTION 6-2
Using the formula with n = 3, we have

‖u‖ =
√

(u, u) =
√

u2
1 + u2

2 + u2
3 =

√
(−3)2 + (4)2 + (1)2

= √
9 + 16 + 1 =

√
27

and

‖v‖ =
√

(v,v) =
√

v2
1 + v2

2 + v2
3 =

√
(2)2 + (1)2 + (1)2 = √

4 + 1 + 1 =
√

6

EXAMPLE 6-3
Suppose that u = (−1, 3, 2) , and v = (2, 0, 1) are vectors in R

3. Find the angle
between these two vectors.

SOLUTION 6-3
In Chapter 4 we learned that the angle between two vectors can be found from
the inner product using

cos θ = (u, v)

‖u‖ ‖v‖
The inner product is

(u, v) = (−1) (2) + (3) (0) + (2) (1) = −2 + 0 + 2 = 0
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Therefore we have

cos θ = 0

Which leads to

θ = π

2

We have found that this pair of vectors is orthogonal. For ordinary vectors
in Euclidean space, the vectors are perpendicular, as the calculation of angle
shows.

Inner Products on Function Spaces
Looking at the formula for the inner product, one can see that we can generalize
this notion to a function by letting summations go to integrals. The vector space
C [a, b] is the space of all continuous functions on the closed interval a ≤ x ≤ b.
Supposing that f (x) and g(x) are two functions that belong to C [a, b], the inner
product is given by

( f, g) =
∫ b

a
f (x) g(x) dx

EXAMPLE 6-4
Let C [0, 1] be the function space of polynomials defined on the closed interval
0 ≤ x ≤ 1 and let

f (x) = −2x + 1, g (x) = 5x2 − 2x

Find the norm of each function and then compute their inner product.

SOLUTION 6-4
First we compute the norm of f (x) = −2x + 1, which is shown in Fig. 6-1.

The norm is given by

( f, f ) =
∫ 1

0
f 2 (x) dx =

∫ 1

0
(−2x + 1)2dx =

∫ 1

0
(4x2 − 4x + 1) dx
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0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

1

Fig. 6-1. The function −2x + 1 which belongs to the vector space C [0, 1].

Integrating term by term, we find

( f, f ) = 4

3
x3 − 2x2 + x

∣∣1
0 = 4

3
− 2 + 1 = 1

3

Now we consider g (x) = 5x2 − 2x . The function is shown in Fig. 6-2.
The norm is given by

(g, g) =
∫ 1

0
g2 (x) dx =

∫ 1

0

(
5x2 − 2x

)2
dx =

∫ 1

0
(25x4 − 20x3 + 4x2) dx

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Fig. 6-2. g(x) = 5x2 − 2x is also continuous over the interval and so belongs to C [0, 1].
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Integrating term by term, we obtain

(g, g) = 5x5 − 5x4 + 4

3
x3
∣∣1
0 = 4

3

Finally, for the inner product we obtain

( f, g) =
∫ 1

0
f (x) g (x) dx =

∫ 1

0
(−2x + 1)

(
2x2 − x

)
dx

=
∫ 1

0
(−4x3 + 4x2 − x) dx

Integrating term by term, we obtain

( f, g) = −x4 + 4

3
x3 − 1

2
x2
∣∣1
0 = −1 + 4

3
− 1

2
= −1

6

EXAMPLE 6-4
Are the functions used in the previous example orthogonal?

SOLUTION 6-4
The functions are not orthogonal because ( f, g) �= 0.

EXAMPLE 6-5
The functions cos θ and sin θ belong to C [0, 2π ]. What are their norms? Are
they orthonormal?

SOLUTION 6-5
A plot of cos θ over the given range is shown in Fig. 6-3.

The norm is found by calculating∫ 2π

0
cos2θ dθ =

∫ 2π

0

1 + cos 2θ

2
dθ = θ

2
+ 1

4
sin 2θ

∣∣2π
0 = π

and so the norm is
√

π . The sin function is shown in Fig. 6-4.
We have∫ 2π

0
sin2θ dθ =

∫ 2π

0

1 − cos 2θ

2
dθ = θ

2
− 1

4
sin 2θ

∣∣2π
0 = π

and so again, the norm is
√

π .
Recall that we can normalize a vector (in this case a function) by dividing by

the norm. Therefore we see that the normalized functions for the vector space
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1 2 3 4 5 6

−1

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

Fig. 6-3. The cos function in the interval defined for C [0, 2π ].

C [0, 2π ], found by dividing each function by the norm would be

f = cos θ√
π

, g = sin θ√
π

If these functions are orthonormal, then

∫ 2π

0
fg dθ = 0

1 2 3 4 5 6

−1

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

Fig. 6-4. The sin function over the interval defined by the vector space C [0, 2π ].
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In this case we have

1

π

∫ 2π

0
cos θ sin θ dθ

Choosing u = sin θ , we have du = cos θ dθ and

1

π

∫ 2π

0
cos θ sin θ dθ = 1

π

sin2 θ

2

∣∣2π
0 = 0

Therefore, the functions f = cos θ√
π

, g = sin θ√
π

are orthonormal on C [0, 2π ].

Properties of the Norm
In Chapter 4 we stated the Cauchy–Schwarz and triangle inequalities. These
relations can be used to derive properties of the norm. If a vector space V is an
inner product space, then the norm satisfies

• ‖ u‖ ≥ 0 with ‖ u‖ = 0 if and only if u = 0
• ‖ α u ‖ = | α | ‖ u ‖
• ‖ u + v ‖ ≤ ‖ u ‖ + ‖ v ‖

You may recall that the last property is the triangle inequality. This is an abstrac-
tion of the notion from ordinary geometry that the length of one side of a triangle
cannot be longer than the lengths of the other two sides summed together. Using
ordinary vectors, we can visualize this by using vector addition (see Fig. 6-5).

u
v

u + v 

Fig. 6-5. An illustration of the triangle inequality using ordinary vectors.



128 CHAPTER 6 Inner Product Spaces

An Inner Product for Matrix Spaces
The set of m × n matrices form a vector space which we denote Mm,n. Suppose
that A, B ∈ Mm,n are two m × n matrices. An inner product exists for this space
and is calculated in the following way:

(A, B) = tr
(
BT A

)
EXAMPLE 6-5
Find the angle between two matrices, cos θ , where

A =
[−2 1

4 1

]
, B =

[
5 0
1 2

]

SOLUTION 6-5
The inner product is given by

(A, B) = tr
(
BT A

)
First we compute the transpose of B

BT =
[

5 1
0 2

]

And so we have

BT A =
[

5 1
0 2

] [−2 1
4 1

]
=
[−6 6

8 2

]

We calculate the trace by summing the diagonal elements

(A, B) = tr
(
BT A

) = −6 + 2 = −4

The transpose of A is

AT =
[−2 4

1 1

]
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And so we have

AT A =
[−2 4

1 1

] [−2 1
4 1

]
B =

[
20 2
2 2

]

Therefore we find that

(A, A) = tr
(

AT A
) = 20 + 2 = 22

The norm of A is found by taking the square root of the inner product:

‖A‖ =
√

(A, A) =
√

22

For B we have

BT B =
[

5 1
0 2

] [
5 0
1 2

]
=
[

26 2
2 4

]

and so

(B, B) = tr
(
BT B

) = 26 + 4 = 30

The norm of B is

‖B‖ =
√

(B, B) =
√

30

Putting these results together, we find

cos θ = (A, B)

‖A‖ ‖B‖ = −4√
22

√
30

The Gram-Schmidt Procedure
An orthonormal basis can be produced from an arbitrary basis by application
of the Gram-Schmidt orthogonalization process. Let {v1, v2, . . . , vn} be a basis
for some inner product space V . The Gram-Schmidt process constructs an
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orthogonal basis wi as follows:

w1 = v1

w2 = v2 − (w1, v2)

(w1, w1)
w1

...

wn = vn − (w1, vn)

(w1, w1)
w1 − (w2, vn)

(w2, w2)
wn − · · · − (wn−1, vn)

(wn−1, wn−1)
wn−1

To form an orthonormal set using this procedure, divide each vector by its norm.

EXAMPLE 6-6
Use the Gram-Schmidt process to construct an orthonormal basis set from

v1 =

 1

2
−1


 , v2 =


 0

1
−1


 , v3 =


 3

−7
1




SOLUTION 6-6
We use a tilde character to denote the unnormalized vectors. The first basis
vector is

w̃1 = v1

Now let’s normalize this vector

(v1, v1) = (1 2 − 1)


 1

2
−1


 = 1 × 1 + 2 × 2 + (−1) × (−1)

= 1 + 4 + 1 = 6

⇒ w1 = w̃1√
(v1, v1)

= 1√
6


 1

2
−1




To find the second vector, first we compute

(w̃1, v2) = (1 2 − 1)


 0

1
−1


 = [1∗0 + 2∗1 + (−1)∗(−1)] = 3
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The first vector is already normalized, so

w̃2 = v2 − (w̃1, v2)

(w̃1, w̃1)
w̃1 =


 0

1
−1


− 3

6


 1

2
−1


 =


−1

2
0

−1
2




Now we normalize

w̃2, w̃2 =
(

−1

2
0 − 1

2

)−1
2

0
−1

2


 = 1

4
+ 0 + 1

4
= 1

2

and so a second normalized vector is

w2 = 1√
(w̃2,w̃2)

w̃2 =
√

2


−1

2
0

−1
2


 =




− 1√
2

0
− 1√

2




Finally, the third vector is found from

w̃3 = v3 − (w̃1, v3)

(w̃1, w̃1)
w̃1 − (w̃2, v3)

(w̃2, w̃2)
w̃2

Now

(w̃2, v3) =
(

−1

2
0 − 1

2

) 3
−7
1


 = −3

2
− 1

2
= −4

2
= −2

and so

w̃3 =

 3

−7
1


+ 12

6


 1

2
−1


+ 2(

1
2

)

−1

2
0

−1
2




=

 3

−7
1


+


 2

4
−2


+


−2

0
−2


 =


 3

−3
−3



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Normalizing we find

(w̃3, w̃3) = (3 −3 −3
) 3

−3
−3


 = 9 + 9 + 9 = 27

and so the last normalized basis vector is

w3 = 1√
(w̃3, w̃3)

w̃3 = 1√
27


 3

−3
−3


 = 1

3
√

3


 3

−3
−3


 = 1√

3


 1

−1
−1




Quiz
1. For the vector space C

2, the inner product is defined by

(u, v) = u∗
1v1 + u∗

2v2

Show that (u, v) = (v, u)∗ and that the inner product is antilinear in the
first argument, but linear in the second argument.

2. Consider the vector space C
2. Let u, v, w ∈ C

2 and suppose that

(u, v) = 2i

(u, w) = 1 + 9i

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

Fig. 6-6. cos−1(x).
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−1 −0.5 0.5 1

−6

−4

−2

Fig. 6-7. f (x) = 3x3−2x2+ x − 1 shown on C [ −1, 1].

Find (v − 2w, u) and 2 (3iu, v) − (u, iw).
3. Find the inner product of the matrices

A =
[−1 1

1 1

]
, and B =

[
2 3
4 5

]

4. Consider the vector space of continuous functions C [0, 1]. The function
is cos−1 (x), which is shown in Fig. 6-6.

Is it possible to find the norm of cos−1 (x).
5. Find the norm of f (x) = 3x3 − 2x2 + x − 1 on C [−1, 1] (see Fig. 6-7).

−1 −0.5 0.5 1

2

4

6

8

Fig. 6-8. −x3 + 6x2 − x shown over the interval defined by C [−1, 1].
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0.5 1 1.5 2

−1

−0.5

0.5

1

Fig. 6-9. The functions f (x) = x2 − 2x and g(x) = −x + 1 are orthogonal on C [0, 2].

6. Is f (x) = 3x3 − 2x2 + x − 1 orthogonal to −x3 + 6x2 − x on
C [−1, 1] (see Fig. 6-8)?

7. Are the columns of

A =

1 0 4

2 2 −5
3 5 2




orthogonal?
8. Show that the functions f (x) = x2 − 2x and g(x) = −x + 1 are orthog-

onal on C [0, 2] (see Fig. 6-9). Normalize these functions.
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CHAPTER

Linear
Transformations

Suppose that V and W are two vector spaces. A linear transformation T is a
function from V to W that has the following properties (see Fig. 7-1):

• T (v + w) = T (v) + T (w)
• T (αv) = α T (v)

EXAMPLE 7-1
Is the function T : R

2 → R
2 that swaps vector components

T

[
a
b

]
=
[

b
a

]

a linear transformation?

135
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V W

T

Fig. 7-1. A schematic representation of a linear transformation. T maps vectors from the
vector space V to the vector space W in a linear way.

SOLUTION 7-1
Suppose that

v =
[

a
b

]
and w =

[
c
d

]

are two vectors in R
2.

We check the first property by applying the transformation to the sum of the
two vectors:

T (v + w) = T

([
a
b

]
+
[

c
d

])
= T

([
a + c
b + d

])
=
[

b + d
a + c

]

Now we first apply the transformation to each of the vectors alone, and then add
the results:

T (v) + T (w) = T

([
a
b

])
+ T

([
c
d

])
=
[

b
a

]
+
[

d
c

]
=
[

b + d
a + c

]

The application of the transformation both ways produces the same vector,
indicating that the transformation is linear. We also need to check how the
transformation acts on a vector multiplied by a scalar. Let z be some scalar.
Then

T (zv) = T

(
z

[
a
b

])
= T

([
za
zb

])
=
[

zb
za

]

We also have

zT (v) = zT

([
a
b

])
= z

[
b
a

]
=
[

zb
za

]
= T (zv)

We conclude that the transformation is linear.
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−1 −0.5 0.5 1

−0.02

−0.01

0.01

0.02

Fig. 7-2. The transformation that takes x to x 3 is not linear.

EXAMPLE 7-2
Is the transformation

T (x) = x3

linear?

SOLUTION 7-2
We have

T (x) + T (y) = x3 + y3

but

T (x + y) = (x + y)3 = x3 + 3x2 y + 3xy2 + y3 �= x3 + y3

Therefore, the transformation is not linear (see Fig. 7-2).

Matrix Representations
We can represent a linear transformation T : V → W by a matrix. This is done
by finding the matrix representation with respect to a given basis. The matrix is
found by applying the transformation to each vector in the basis set. To find the
matrix representation, we let {v1, v2, . . . , vn} represent a basis for vector space
V and {w1, w2, . . . , wm} represent a basis for vector space W . We then consider
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the action of the transformation T on each of the basis vectors of V . This will
give some linear combination of the w basis vectors:

T (v1) = a11w1 + a21w2 + · · · + am1wm

T (v2) = a12w1 + a22w2 + · · · + am2wm

...

T (vn) = a1nw1 + a2nw2 + · · · + amnwm

We can arrange the coefficients in these expansions in an n × m matrix:

T =

a11 . . . a1n

...
. . .

...
am1 · · · amn




This is the matrix representation of the transformation T with respect to the
bases from V and W.

To find the matrix representation of a transformation between two vector
spaces of dimension n and m over the real field, we apply the following algorithm:

• Apply the transformation to each of the basis vectors of V .
• Construct an augmented matrix of the form

[
A | B

]
The columns of A are the basis vectors of W and the columns of B are the
vectors found from the action of T on the basis vectors of V .

Now apply row reduction techniques to transform this matrix into

[
A | B

]→ [
I | T

]
where I is the m × m identity matrix and T is the matrix representation of the
linear transformation. The number of columns in the matrix representation of
T is equal to the dimension of vector space V and the number of rows in this
matrix is equal to the dimension of the vector space W .

EXAMPLE 7-3
Suppose that we have the linear transformation

T (a, b, c) = (a + b, 6a − b + 2c)
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Find the matrix which represents this transformation with respect to the standard
basis of R

3and the basis

w1 =
[

1
1

]
, w2 =

[
1

−1

]

of W = R
2.

SOLUTION 7-3
We call R

3 the vector space V . The standard basis of R
3 is given by

e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

We act T on each of these vectors, obtaining

T (1, 0, 0) = (1, 6)

T (0, 1, 0) = (1, −1)

T (0, 0, 1) = (0, 2)

Now we construct our matrix for reduction. On the left each column is one of
the basis vectors of W . On the right, we list the vectors created by action of T
on the basis vectors of V (in this case, the standard basis of R

3):

[
1 1
1 −1 | 1 1 0

6 −1 2

]

Now we perform a reduction on the matrix, with the goal of turning the goal of
turning the left-hand side into the identity. Step one is to add the second row to
the first and place the result into the first row:

R2 + R1 → R1

which gives

[
2 0
1 −1 | 7 0 2

6 −1 2

]
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Now we multiply the first row by 1/2:

[
1 0
1 −1 | 7/2 0 1

6 −1 2

]

Now multiply the second row by −1:

[
1 0

−1 1 | 7/2 0 1
−6 1 −2

]

Now we add the first row to the second, and replace the second row with the
result:

−R1 + R2 → R2[
1 0
0 1 | 7/2 0 1

−5/2 1 −1

]

So we have the identity matrix on the left side, indicating we are done. The
matrix representing the transformation T with respect to the bases V and W is

T =
[

7/2 0 1
−5/2 1 −1

]

EXAMPLE 7-4
Let T : R

3 → R
2. Find the matrix representation of

T (a, b, c) = (−a + b, 2b + 4c)

where V is the standard basis of R
3and W is [(9, 2) , (2, 1)]

SOLUTION 7-4
We find the action of T on each of the basis vectors of R

3:

T (a, b, c) = (−a + b, 2b + 4c)

⇒ T (1, 0, 0) = (−1, 0)

T (0, 1, 0) = (1, 2)

T (0, 0, 1) = (0, 4)
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Using the basis [(9, 2) , (2, 1)], the augmented matrix is

[
9 2
2 1 | −1 1 0

0 2 4

]

Now take −2R2 + R1 → R1. This gives

[
5 0
2 1 | −1 −3 −8

0 2 4

]

Now we divide R1 by 5:

[
1 0
2 1 | −1/5 −3/5 −8/5

0 2 4

]

We make the substitution −2R1 + R2 → R2, which gives the identity on the
left side:

[
1 0
0 1 | −1/5 −3/5 −8/5

2/5 16/5 36/5

]

and so, the matrix representation with respect to the two bases given is

T =
[−1/5 −3/5 −8/5

2/5 16/5 36/5

]
= 1

5

[−1 −3 −8
2 16 36

]

EXAMPLE 7-5
Now consider a transformation from V = R

2 to W = R
3 given by

T (a, b) = (−a, a + b, a − b)

Find the matrix representation of this transformation where the basis of V is
given by

[(2, 1) , (1, 7)]

and the basis of W is the standard basis of R
3.
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SOLUTION 7-5
The action on the basis of V is

T (a, b) = (−a, a + b, a − b)

⇒ T (2, 1) = (−2, 3, 1)

T (1, 7) = (−1, 8, −6)

This time we seek the 3 × 3 identity matrix. The form that the augmented matrix
takes in this case tells us we already have it:

1 0 0
0 1 0
0 0 1

|
−2 −1
3 8
1 −6




This is easy to see by writing out the action of T as a linear combination

T (2, 1) = (−2, 3, 1) = −2 (1, 0, 0) + 3 (0, 1, 0) + (0, 0, 1)

T (1, 7) = (−1, 8, −6) = − (1, 0, 0) + 8 (0, 1, 0) − 6 (0, 0, 1)

The matrix representation is

T =

−2 −1

3 8
1 −6




EXAMPLE 7-6
A linear transformation T : R

3 → R
2 has the matrix representation

T =
[

2 −1 2
4 1 5

]

with respect to the standard basis of R
3and the basis [(4, 3) , (3, 2)]. Describe

the action of this linear transformation.

SOLUTION 7-6
The first column of the matrix gives us the action of the transformation on
(1, 0, 0) and so on, in the form

T (v1) = a11w1 + a21w2 + · · · + am1wm
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Therefore we have

T (1, 0, 0) = 2 (4, 3) + 4 (3, 2) = (8, 6) + (12, 8) = (20, 14)

T (0, 1, 0) = −1 (4, 3) + 1 (3, 2) = (−4, −3) + (3, 2) = (−1, −1)

T (0, 0, 1) = 2 (4, 3) + 5 (3, 2) = (8, 6) + (15, 10) = (23, 16)

We can use this information to find the action on an arbitrary vector. Since we
can write

(a, b, c) = a (1, 0, 0) + b (0, 1, 0) + c (0, 0, 1)

and for a linear transformation L we have

L (αv) = αL (v)

where α is a scalar and v is a vector. Therefore the action of the transformation
in this problem on an arbitrary vector is

T (a, b, c) = aT (1, 0, 0) + bT (0, 1, 0) + cT (0, 0, 1)

= a (20, 14) + b (−1, −1) + c (23, 16)

= (20a − b + 23c, 14a − b + 16c)

Linear Transformations in the
Same Vector Space

In many physical applications we are concerned with linear transformations or
operators that act as

T : V → V

Suppose that V is an n-dimensional vector space and a suitable basis for V is
{v1, v2, . . . , vn}. The matrix representation of the operator with respect to the
basis V can be found from taking inner products. The representation of the
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element at (i, j) is

Tij = (vi , T v j

)

T =




(v1, T v1) (v1, T v2) · · · (v1, T vn)

(v2, T v1) (v2, T v2) · · · ...
...

...
. . .

...
(vn, T v1) (vn, T v2) · · · (vn, T vn)




EXAMPLE 7-7
Consider a three-dimensional vector space with an orthonormal basis {u1,

u2, u3}. An operator A acts on this basis in the following way:

Au1 = u2 + 4u3

Au2 = 2u1

Au3 = u1 − u3

Find the matrix representation of this operator with respect to this basis.

SOLUTION 7-7
The basis is orthonormal, and so we have

(
ui , uj

) = δij

The matrix representation is

A =

(u1, Au1) (u1, Au2) (u1, Au3)

(u2, Au1) (u2, Au2) (u2, Au3)
(u3, Au1) (u3, Au2) (u3, Au3)




Using the action of the operator on the states, we have

A =

(u1, u2) + 4 (u1, u3) 2 (u1, u1) (u1, u1) − (u1, u3)

(u2, u2) + 4 (u2, u3) 2 (u2, u1) (u2, u1) − (u2, u3)
(u3, u2) + 4 (u3, u3) 2 (u3, u1) (u3, u1) − (u3, u3)




=

0 2 1

1 0 0
4 0 −1



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EXAMPLE 7-8
Now we consider a two-dimensional complex vector space. A basis for the space
is

v1 =
[

1
0

]
, v2 =

[
0
1

]

Hadamard operator H acts on the basis vectors in the following way:

Hv1 = v1 + v2√
2

, Hv2 = v1 − v2√
2

Find the matrix representation of H in this basis, which is orthornormal.

SOLUTION 7-8
The matrix representation is

H
.=
[

(v1, Hv1) (v1, Hv2)
(v2, Hv1) (v2, Hv2)

]

Using the action of H on the basis states, we obtain

H
.=


(

v1,
v1+v2√

2

) (
v1,

v1−v2√
2

)
(

v2,
v1+v2√

2

) (
v2,

v1−v2√
2

)



= 1√
2

[
(v1, v1) + (v1, v2) (v1, v1) − (v1, v2)
(v2, v1) + (v2, v2) (v2, v1) − (v2, v2)

]

= 1√
2

[
1 1
1 −1

]

EXAMPLE 7-9
A linear transformation L : R

3 → R
3 acts as

L (a, b, c) = (a + b, 3a − 2c, 2a + 4c)

Find the matrix representation with respect to the standard basis.
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SOLUTION 7-9
Using

L (a, b, c) = (a + b, 3a − 2c, 2a + 4c)

We find the action of this transformation on the basis vectors to be

L (1, 0, 0) = (1, 3, 2)

L (0, 1, 0) = (1, 0, 0)

L (0, 0, 1) = (0, −2, 4)

The matrix representation is

L
.=

(e1, Le1) (e1, Le2) (e1, Le3)

(e2, Le1) (e2, Le2) (e2, Le3)
(e3, Le1) (e3, Le2) (e3, Le3)




We find the matrix elements by taking the inner products with the vectors that
result from the action of L on the standard basis we found above. The first
element is

(e1, Le1) = [1 0 0
]1

3
2


 = (1) (1) + (0) (3) + (0) (2) = 1

Moving down the first column, the next element is

(e2, Le1) = [0 1 0
]1

3
2


 = (0) (1) + (1) (3) + (0) (2) = 3

The last element in the column is

(e3, Le1) = [0 0 1
]1

3
2


 = (0) (1) + (0) (3) + (1) (2) = 2
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Now we compute the elements in the second column. The top element is

(e1, Le2) = [1 0 0
]1

0
0


 = (1) (1) + (0) (0) + (0) (0) = 1

The next element is

(e2, Le2) = [0 1 0
]1

0
0


 = (0) (1) + (1) (0) + (0) (0) = 0

and the last element in the second column is

(e3, Le2) = [0 0 1
]1

0
0


 = (0) (1) + (0) (0) + (1) (0) = 0

The first element of the third column is

(e1, Le3) = [1 0 0
] 0

−2
4


 = (1) (0) + (0) (−2) + (0) (4) = 0

The middle element of the third column is

(e2, Le3) = [0 1 0
] 0

−2
4


 = (0) (0) + (1) (−2) + (0) (4) = −2

and the last element in the matrix is

(e3, Le3) = [0 0 1
] 0

−2
4


 = (0) (0) + (0) (−2) + (1) (4) = 4
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Putting all of these results together, we obtain the matrix representation with
respect to the standard basis:

L
.=

(e1, Le1) (e1, Le2) (e1, Le3)

(e2, Le1) (e2, Le2) (e2, Le3)
(e3, Le1) (e3, Le2) (e3, Le3)


 =


1 1 0

3 0 −2
2 0 4




EXAMPLE 7-10
Is the transformation

T (a, b, c) = (a + 2, b − c, 5c)

linear?

SOLUTION 7-10
We have

T (0, 0, 0) = (2, 0, 0) �= (0, 0, 0)

Therefore the transformation is not linear.

EXAMPLE 7-11
Is the transformation

T (a, b, c) = (4a − 2b, bc, c)

linear?

SOLUTION 7-11
Consider two vectors u = (a, b, c) and v = (x, y, z).

The sum of the transformations of these vectors is

T (u) + T (v) = (4a − 2b, bc, c) + (4x − 2y, yz, z)

= [4 (a + x) − 2 (b + y) , bc + yz, c + z]

But we have

T (u + v) = T (a + x, b + y, c + z)

= [4 (a + x) − 2 (b + y) , (b + y) (c + z) , c + z]

= [4 (a + x) − 2 (b + y) , bc + bz + cy + yz, c + z]

�= T (u) + T (v)

Therefore this transformation cannot be linear.
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More Properties of Linear Transformations
If T and S are two linear transformations and v is some vector, then

(T + S) (v) = T (v) + S (v)

The product of two linear operators is defined by

(TS) (v) = T [S (v)]

EXAMPLE 7-12
Let

T (x, y, z) = (3x, 2y − z)

S (x, y, z) = (x, −z)

be two linear transformations from R
3 → R

2. Find T + S, 2T , and T −4S.

SOLUTION 7-12
Using linearity, we have

(T + S) (x, y, z) = T (x, y, z) + S (x, y, z) = (3x, 2y − z) + (x, −z)

= (4x, 2y − 2z)

We also use linearity to find the second transformation

2T (x, y, z) = 2 (3x, 2y − z) = (6x, 4y − 2z)

For the last transformation, we have

(T − 4S) (x, y, z) = T (x, y, z) − 4S (x, y, z) = (3x, 2y − z) − 4 (x, −z)

= (−x, 2y + 3z)

EXAMPLE 7-13
Consider a linear transformation on polynomials that acts from P2 → P1 (i.e.,
from second-order to first-order polynomials) in the following way:

L
(
a x2 + b x + c

) = (2a − c) t + (a + b + c)
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Find the matrix that represents this transformation with respect to the bases

{
2x2 + x, 3x, x + 1

}
and {2x + 1, x}

for P2 and P1, respectively.

SOLUTION 7-13
We make the identification of the polynomial

ax2 + bx + c

with the vector (a, b, c). This will allows us to map the problem into a transfor-
mation R

3 → R
2. Therefore the basis can be identified as

{
2x2 + x, 3x, x + 1

}
2x2 + x → (2, 1, 0)

3x → (0, 3, 0)

x + 1 → (0, 1, 1)

and we identify {2x + 1, x} with

2x + 1 → (2, 1)

x → (1, 0)

The transformation can be restated as

L
(
ax2 + bx + c

) = (2a − c) t + (a + b + c)

→ L (a, b, c) = (2a − c, a + b + c)

Now we solve the problem in the same way we solved the others. We first
consider the action of the transformation on each of the vectors of R

3:

L (2, 1, 0) = (4, 3)

L(0, 3, 0) = (0, 3)

L (0, 1, 1) = (−1, 2)
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Our mapping to a basis for R
2 gave us

2x + 1 → (2, 1)

x → (1, 0)

So the augmented matrix is[
2 1
1 0 | 4 0 −1

3 3 2

]

First we swap rows 1 and 2:[
1 0
2 1 | 3 3 2

4 0 −1

]

Now we make the substitution −2R1 + R2 → R2, which gives[
1 0
0 1 | 3 3 2

−2 −6 −5

]

We have the identity matrix in the left block. Therefore we are done and the
matrix representation of the transformation with respect to these two bases is[

3 3 2
−2 −6 −5

]

Quiz
1. Are the following transformations linear?

(a) F (x, y, z) = (2x + z, 4y, 8y − 4z)
(b) G (x, y, z) = (2x + 2y, z)
(c) H (x, y, z) = (xy, z)
(d) T (x, y, z) = (2 + x, y − z + xy)

2. Find the matrix that represents the transformation

T (x, y, z) = (−3x + z, 2y)

from R
3 → R

2 with respect to the bases {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}
and {(1, 1) , (1, −1)}.
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3. Find the matrix that represents the transformation

T (x, y, z) = (4x + y + z, y − z)

from R
3 → R

2 with respect to the bases {(1, 1, 0), (−1, 3, 5),
(2, −5, 1)} and {(1, 1), (1, −1)}.

4. Suppose an operator acts

Zv1 = v1

Zv2 = −v2

where

v1 =
[

1
0

]
, v2 =

[
0
1

]

Find the matrix representation of Z with respect to this basis.
5. Describe the transformation from R

3 → R
2 that has the matrix repre-

sentation

T =
[

1 2 5
4 −1 2

]

with respect to the standard basis of R
3 and with respect to {(1, 1),

(1, −1)} for R
2.

6. A linear transformation that acts R
3 → R

3 is

T (x, y, z) = (2x + y + z, y − z, 4x − 2y + 8z)

Find the matrix representation of this transformation with respect to the
standard basis.

7. A transformation from P2 → P1 acts as

T
(
ax2 + bx + c

) = (2a + b) x + (b − c)

Find the matrix representation of T with respect to the basis

{−x2 + 3x + 5, x2 − 7x + 1, x2 + x
}

for P2 and with respect to {2x + 1, x − 1} for P1.
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8. Let F (x, y, z) = (2x + y, z) and G (x, y, z) = (4x + z, y − 4z).
Describe
(a) F + G
(b) 3F
(c) 2G
(d) 2F − G

9. An operator acts on a two-dimensional orthonormal basis of C
2 in the

following way:

Av1 = 2v1 − iv2

Av2 = 4v2

Find the matrix representation of A with respect to this basis.
10. Suppose a transformation from R

2 → R
3 is represented by

T =

1 0

2 4
7 3




with respect to the basis {(2, 1) , (1, 5)} and the standard basis of R
3.

What are T (1, 4) and T (3, 5)?
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CHAPTER

The Eigenvalue
Problem

Let A be an n × n matrix, v an n × 1 column vector, and λ a scalar. If

Av = λv

we say that v is an eigenvector of A and that λ is an eigenvalue of A. We now
investigate the procedure used to find the eigenvalues of a given matrix.

The Characteristic Polynomial
The characteristic polynomial of a square n × n matrix A is

	 (λ) = λn − S1λ
n−1 + S2λ

n−2 + · · · + (−1)n Sn
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where Si are the sum of the principle minors of order i. Less formally, the
characteristic polynomial of A is given by

det |A − λI |
where λ is an unknown variable and I is the n × n identity matrix.

The Cayley-Hamilton Theorem
A linear operator A is a zero of its characteristic polynomial.

In practical calculations, we set the characteristic polynomial equal to zero,
giving the characteristic equation

det |A − λI | = 0

The zeros of the characteristic polynomial, which are the solutions to this equa-
tion, are the eigenvalues of the matrix A.

EXAMPLE 8-1
Find the eigenvalues of the matrix

A =
[

5 2
9 2

]

SOLUTION 8-1
To find the eigenvalues, we solve

det |A − λI | = 0

where I is the 2 × 2 identity matrix

I =
[

1 0
0 1

]

⇒ λI =
[

λ 0
0 λ

]

The characteristic polynomial in this case is

det |A − λI | = det

∣∣∣∣
[

5 2
9 2

]
−
[

λ 0
0 λ

]∣∣∣∣ = det

∣∣∣∣5 − λ 2
9 2 − λ

∣∣∣∣
= (5 − λ) (2 − λ) − 18

= 10 − 7λ + λ2 − 18 = λ2 − 7λ − 8
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Setting this equal to zero gives the characteristic equation

λ2 − 7λ − 8 = 0

This equation factors easily to (check)

(λ − 8) (λ + 1) = 0

The solutions of this equation are the two eigenvalues of the matrix:

λ1 = 8

λ2 = −1

Notice that for a 2 × 2 matrix, we found two eigenvalues. This is because a
2 × 2 matrix leads to a second-order characteristic polynomial. This is true in
general; an n × n matrix will lead to an nth-order characteristic polynomial
with n (not necessarily distinct) solutions.

EXAMPLE 8-2
Show that

A =
[

5 2
9 2

]

satisfies the Cayley-Hamilton Theorem.

SOLUTION 8-2
The characteristic equation for this matrix is

λ2 − 7λ − 8 = 0

The Cayley-Hamilton theorem tells us that

A2 − 7A − 8I = 0
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Notice that when a constant appears alone in the equation, we insert the identity
matrix. First we calculate the square of the matrix A

A2 =
[

5 2
9 2

] [
5 2
9 2

]
=
[

(5) (5) + (2) (9) (5) (2) + (2) (2)
(9) (5) + (2) (9) (9) (2) + (2) (2)

]

=
[

25 + 18 10 + 4
45 + 18 18 + 4

]
=
[

43 14
63 22

]

The second term is

7A = (7)

[
5 2
9 2

]
=
[

(7) 5 (7) 2
(7) 9 (7) 2

]
=
[

35 14
63 14

]

and lastly we have

8I = 8

[
1 0
0 1

]
=
[

8 0
0 8

]

Putting these together, we obtain

A2 − 7A − 8I =
[

43 14
63 22

]
−
[

35 14
63 14

]
−
[

8 0
0 8

]

=
[

43 − 35 − 8 14 − 14
63 − 63 22 − 14 − 8

]
= 0

This verifies the Cayley-Hamilton theorem for this matrix.

EXAMPLE 8-3
Find the eigenvalues of

B =

2 1 0

1 4 0
2 5 2




SOLUTION 8-3
The characteristic polynomial is given by

det |B − λI |
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where I is the 3 × 3 identity matrix and

I =

1 0 0

0 1 0
0 0 1




⇒ λI =

λ 0 0

0 λ 0
0 0 λ




Therefore the characteristic polynomial is

det |B − λI | = det

∣∣∣∣∣∣

2 1 0

1 4 0
2 5 2


−


λ 0 0

0 λ 0
0 0 λ



∣∣∣∣∣∣

= det

∣∣∣∣∣∣

2 − λ 1 0

1 4 − λ 0
2 5 2 − λ



∣∣∣∣∣∣

= (2 − λ) det

∣∣∣∣4 − λ 1
5 2 − λ

∣∣∣∣− det

∣∣∣∣1 0
2 2 − λ

∣∣∣∣
= (2 − λ) [(4 − λ) (2 − λ) − 5] − (2 − λ)

= (2 − λ) [(4 − λ) (2 − λ) − 5 − 1]

= (2 − λ)
[
8 − 6λ + λ2 − 6

]
= (2 − λ)

[
λ2 − 6λ + 2

]
The characteristic equation is obtained by setting this equal to zero

(2 − λ)
[
λ2 − 6λ + 2

] = 0

Each term in the product must be zero. We immediately obtain the first eigen-
value by setting the term on the left equal to zero

2 − λ = 0

⇒ λ1 = 2

To find the other eigenvalues, we solve

λ2 − 6λ + 2 = 0
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We find the solutions by recalling the quadratic formula. If the equation is

aλ2 + bλ + c = 0

then

λ2,3 = −b ± √
b2 − 4ac

2a

In this case, the quadratic formula gives the solutions

λ2 = 6 +√36 − 4 (2)

2
= 6 + √

28

2
= 6 +√(4) (7)

2
= 6 + 2

√
7

2
= 3 +

√
7

λ3 = 6 −√36 − 4 (2)

2
= 6 − √

28

2
= 3 −

√
7

Notice that since B is a 3 × 3 matrix, it has three eigenvalues.

Finding Eigenvectors
The second step in solving the eigenvalue problem is to find the eigenvectors
that correspond to each eigenvalue found in the solution of the characteristic
equation. It is best to illustrate the procedure with an example.

EXAMPLE 8-4
Find the eigenvectors of

A =
[

5 2
9 2

]

SOLUTION 8-4
We have already determined that the eigenvalues of this matrix are

λ1 = 8
λ2 = −1

We consider each eigenvalue in turn. An eigenvector of a 2 × 2 matrix is going
to be a column vector with 2 components. If we call these two unknowns x and
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y, then we can write the vector as

v =
[

x
y

]

For the first eigenvalue, the eigenvector equation is

Av = λ1v

Specifically, we have the matrix equation

Av =
[

5 2
9 2

] [
x
y

]
= 8

[
x
y

]

We perform the matrix multiplication on the left side first. Remember, the
multiplication AB where A is an m × n matrix and B is an n × p matrix results
in an m × p matrix. Therefore if we multiply the 2 × 2 matrix A with the 2 × 1
column vector v , we obtain another 2 × 1 column vector. The components are

[
5 2
9 2

] [
x
y

]
=
[

5x + 2y
9x + 2y

]

Setting this equal to the right side of the eigenvector equation, we have

[
5x + 2y
9x + 2y

]
= 8

[
x
y

]
=
[

8x
8y

]

This means we have two equations:

5x + 2y = 8x

9x + 2y = 8y

We use the first equation to write y in terms of x

5x + 2y = 8x

⇒ y = 3

2
x
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The system has only one free variable. So we can choose x = 2, then y = 3. Then
the eigenvector corresponding to λ1 = 8 is

v1 =
[

2
3

]

We check this result

Av1 =
[

5 2
9 2

] [
2
3

]
=
[

(5) (2) + (2) (3)
(9) (2) + (2) (3)

]
=
[

16
24

]
= 8

[
2
3

]
= λ1v1

Now we consider the second eigenvalue, λ2 = −1. The eigenvector equation is

Av2 = λ2v2

⇒
[

5 2
9 2

] [
x
y

]
=
[

5x + 2y
9x + 2y

]
= −

[
x
y

]

This gives the two equations

5x + 2y = −x

9x + 2y = −y

We add these equations together to find

14x + 4y = −x − y

⇒ y = −3x

Choosing x = 1 gives y = −3 and we find an eigenvector

v2 =
[

1
−3

]

Summarizing, we have found the eigenvectors of the matrix A to be

v1 =
[

2
3

]
with eigenvalue λ1 = 8

v2 =
[

1
−3

]
with eigenvalue λ2 = −1
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Normalization
In many applications, such as quantum theory, it is necessary to normalize the
eigenvectors. This means that the norm of the eigenvector is 1:

1 = v†v

The process of finding a solution to this equation is called normalization. When
an application forces us to apply normalization, this puts an additional constraint
on the components of the vectors. In the previous example we were free to choose
the value of x . However, if we required that the eigenvectors were normalized,
then the equation 1 = v†v would dictate the value of x .

EXAMPLE 8-5
Find the normalized eigenvectors of the matrix

A =

2 0 1

1 −1 0
3 0 4




SOLUTION 8-5
The first step is to find the eigenvalues of the matrix. We begin by deriving the
characteristic polynomial. We have

det |A − λI | = det

∣∣∣∣∣∣

2 0 1

1 −1 0
3 0 4


− λ


1 0 0

0 1 0
0 0 1



∣∣∣∣∣∣

= det

∣∣∣∣∣∣

2 0 1

1 −1 0
3 0 4


−


λ 0 0

0 λ 0
0 0 λ



∣∣∣∣∣∣

This gives

det

∣∣∣∣∣∣
2 − λ 0 1

1 −1 − λ 0
3 0 4 − λ

∣∣∣∣∣∣ = (2 − λ) det

∣∣∣∣−1 − λ 0
0 4 − λ

∣∣∣∣+ det

∣∣∣∣1 −1 − λ

3 0

∣∣∣∣
= (2 − λ) [(−1 − λ) (4 − λ)] − (3) (−1 − λ)

= (−1 − λ) [(2 − λ) (4 − λ) − 3]

= (−1 − λ) [λ2 − 6λ + 5]
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We set this equal to zero to obtain the characteristic equation

(−1 − λ)
[
λ2 − 6λ + 5

] = 0

⇒ 1 + λ = 0 or λ = −1

λ2 − 6λ + 5 = (λ − 5) (λ − 1) = 0 or λ = 5, λ = 1

So we have three distinct eigenvalues { − 1, 5, 1}. We compute each eigenvector
in turn. Starting with λ1 = −1 the eigenvector equation is

Av1 = −v1

We set the eigenvector equal to

v1 =

 x

y
z




where x, y, z are three unknowns. Applying the matrix A gives us

Av1 =

2 0 1

1 −1 0
3 0 4




 x

y
z


 =


 2x + z

x − y
3x + 4z




Setting this equal to −v1 gives three equations

2x + z = −x

x − y = −y

3x + 4z = −z

The second equation immediately tells us that x = 0. (We add y to both
sides):

x − y = −y, ⇒ x = 0
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Using x = 0 in the third equation, we have

3x + 4z = −z, x = 0

⇒ 4z = −z

Which can be true only if z= 0 as well. This leaves us with

v1 =

 0

y
0




Under general conditions, y can be any value we choose. However, in this case
we require that the eigenvectors be normalized. Therefore we must have

v†
1v1 = 1

We compute this product. We consider the most general case; therefore, we
allow y to be a complex number. The Hermitian conjugate of the eigenvector is

v†
1 = [0 y∗ 0

]
Therefore the product is

v†
1v1 = [0 y∗ 0

] 0
y
0


 = 0 + y∗y + 0 = |y|2

Setting this equal to unity, we find that

|y|2 = 1

⇒ y = 1

up to an undetermined phase, which we are free to discard. Therefore the first
eigenvector is

v1 =

0

1
0



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Now we consider the second eigenvalue, λ2 = 5. This gives

Av2 =

2 0 1

1 −1 0
3 0 4




 x

y
z


 =


 2x + z

x − y
3x + 4z


 = 5v2 =


5x

5y
5z




⇒ 2x + z = 5x

x − y = 5y

3x + 4z = 5z

From these equations we obtain

z = 3x

x = 6y

and so we can write the eigenvector as

v2 =

 x

y
z


 =


6y

y
5x


 =


 6y

y
30y




The Hermitian conjugate of the vector is

v†
2 = [6y∗ y∗ 30y∗ ]

Normalizing we find

v†
2v2 = [6y∗ y∗ 30y∗]


 6y

y
30y


 = 36 |y|2 + |y|2 + 900 |y|2 = 937 |y|2

v†
2v2 = 1

⇒ |y|2 = 1

937
or y = 1√

937

This gives

v2 =

 6y

y
30y


 = 1√

937


 6

1
30



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For the third eigenvalue, we have

Av3 = v3

Which gives three equations

2x + z = x

x − y = y

3x + 4z = z

Therefore we obtain from the first equation

z = −x

and from the second equation

x = 2y

So we can write the eigenvector as

v3 =

 2y

y
−2y




Normalizing, we get

1 = v†
3v3 = [2y∗ y∗ −2y∗ ]


 2y

y
−2y


 = 4 |y|2 + |y|2 + 4 |y|2 = 9 |y|2

⇒ |y|2 = 1
9 or y = 1

3

This allows us to write the third eigenvector as

v3 =




2y

y

−2y


 =




2
3

1
3

−2
3


 = 1

3




2

1

−2



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The Eigenspace of an Operator A
The normalized eigenvectors of an operator A that belongs to a vector space
V constitute a basis of V . If we are considering n-dimensional vectors in R

n,
then the normalized eigenvectors of A form a basis of Rn. Likewise, if we
are working in C

n, the normalized eigenvectors of an operator A form a basis
of C

n.

EXAMPLE 8-6
Consider the two-dimensional vector space C

2. Find the normalized eigenvec-
tors of

X =
[

0 1
1 0

]

and show that they constitute a basis.

SOLUTION 8-6
The characteristic equation is

0 = det |X − λI | = det

∣∣∣∣
[

0 1
1 0

]
−
[

λ 0
0 λ

]∣∣∣∣ = det

∣∣∣∣λ 1
1 λ

∣∣∣∣
⇒ λ2 − 1 = 0

This leads immediately to the eigenvalues

λ1 = 1, λ2 = −1

For the first eigenvalue we have

Xv1 = v1

Now

Xv1 =
[

0 1
1 0

] [
x
y

]
=
[

y
x

]

Setting this equal to the eigenvector leads to x = y. So the eigenvector is

v1 =
[

x
x

]
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Normalizing we find

1 = v†
1v1 = [ x∗ x∗ ] [ x

x

]
= x∗x + x∗x = |x |2 + |x |2 = 2 |x |2

⇒ |x |2 = 1

2
or x = 1√

2

and so the first eigenvector is

v1 = 1√
2

[
1
1

]

The second eigenvalue is λ2 = −1. Setting Xv2 = −v2 gives

[
y
x

]
=
[−x

−y

]

and so y = −x . Normalizing we find

1 = v†
2v2 = [ x∗ −x∗ ] [ x

−x

]
= x∗x + (−x∗) (−x) = |x |2 + |x |2 = 2 |x |2

⇒ |x |2 = 1

2
or x = 1√

2

and so we have

v2 =
[

x
−x

]
= 1√

2

[
1

−1

]

We check to see if these eigenvectors satisfy the completeness relation:

v1v†
1 + v2v†

2

=
[ 1√

2
1√
2

] [
1√
2

1√
2

]
+
[ 1√

2

− 1√
2

] [
1√
2

− 1√
2

]
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=


(

1√
2

)(
1√
2

) (
1√
2

)(
1√
2

)
(

1√
2

) (
1√
2

) (
1√
2

) (
1√
2

)

+



(

1√
2

) (
1√
2

) (
1√
2

) (
− 1√

2

)
(
− 1√

2

) (
1√
2

) (
− 1√

2

) (
− 1√

2

)



=
[

1
2

1
2

1
2

1
2

]
+
[

1
2 −1

2

−1
2

1
2

]
=
[

1 0
0 1

]
= I

Therefore the completeness relation is satisfied. Do the vectors span the space?
We denote an arbitrary vector by

u =
[

α

β

]

where α, β are complex numbers. To show that we can write this vector as a
linear combination of the basis vectors of X, we expand it in terms of the basis
vectors with complex numbers µ, ν:

u =
[

α

β

]
= µ

1√
2

[
1
1

]
+ ν

1√
2

[
1

−1

]

This leads to the equations

α = 1√
2

(µ + ν)

β = 1√
2

(µ − ν)

Adding these equations, we find that

µ = (α + β)√
2

Subtracting the second equation from the first gives

ν = (α − β)√
2
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and so we can write any vector in C
2in terms of these basis vectors by writing

u =
[

α

β

]
= (α + β)√

2

(
1√
2

[
1
1

])
+ (α − β)√

2

(
1√
2

[
1

−1

])

= (α + β)√
2

v1 + (α − β)√
2

v2

Therefore we conclude that the eigenvectors of X are complete and they span
C

2, therefore they constitute a basis of C
2.

Similar Matrices
Two matrices A and B are similar if we can find a matrix S such that

B = S−1 AS

There is a theorem that states that if two matrices are similar, they have the
same eigenvalues. This is helpful because we will see that if we can represent a
matrix or operator in its own basis of eigenvectors, then that matrix will have a
simple diagonal form with its eigenvalues along the diagonal.

EXAMPLE 8-7
Prove that similar matrices have the same eigenvalues.

SOLUTION 8-7
First recall that the determinant is just a number. So we can move determinants
around in an expression at will. In addition, note that

det
∣∣A−1

∣∣ = 1

det |A|

Now we form the characteristic equation

0 = det |B − λI | = det
∣∣S−1 AS − λI

∣∣
Now since S−1S = I and any matrix commutes with the identity matrix (SI =
IS ), we can write

λI = λ
(
S−1S

)
I = λS−1IS
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Therefore we can rewrite the expression inside the determinant in the following
way:

S−1 AS − λI = S−1 AS − λS−1IS = (S−1 A − λS−1 I
)

S = S−1 (A − λI ) S

and so the characteristic equation becomes

0 = det
∣∣S−1 (A − λI ) S

∣∣
Now we invoke the product rule for determinants. This tells us that

det |AB| = det |A| det |B|

This gives

0 = det
∣∣S−1 (A − λI ) S

∣∣ = det
∣∣S−1

∣∣ det |A − λI | det |S|

Remember, the determinant is just a number. So we can move these terms around
and eliminate terms involving the similarity matrix S

0 = det
∣∣S−1

∣∣ det |A − λI | det |S| = det
∣∣S−1

∣∣ det |S| det |A − λI |
= det |A − λI |
⇒ det |B − λI | = det |A − λI |

In other words, the similar matrices A and B have the same characteristic
equation and therefore the same eigenvalues.

Diagonal Representations of an Operator
If a matrix is similar to a diagonal matrix, then we can write it in diagonal form.
An important theorem tells us that a matrix that is a linear transformation T on
a vector space V can be diagonalized if and only if the eigenvectors of T form
a basis for V. Fortunately this is true for a large class of matrices, and it is true
for Hermitian matrices that are important in physical applications.

You can check to see if the eigenvectors of a matrix form a basis by checking
the following:

• Do the eigenvectors span the space; in other words, can you write any
vector from the space in terms of the eigenvectors of the matrix?
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• Are the eigenvectors linearly independent?
• Are they complete?

In the next chapter we will examine several special types of matrices. Note
that

• The eigenvectors of a symmetric matrix form an orthonormal basis.
• The eigenvectors of a Hermitian matrix form an orthonormal basis.

Therefore symmetric and Hermitian matrices are diagonable.
If the matrix is diagonable, the eigenvectors of an operator or linear transfor-

mation allow us to write the matrix representation of that operator in a diagonal
form. The diagonal representation of a matrix A is given by

A =




λ1 0 · · · 0

0 λ2 · · · ...
...

...
. . . 0

0 0 · · · λn




where λi are the eigenvalues of the matrix A. In this section we consider a
special class of similar matrices that are related by unitary transformations. As
we will see in the next chapter, a unitary matrix has the special property that

U † = U−1

This makes it very easy to obtain the inverse of the matrix and to find the
similarity relationship.

We obtain the diagonal form of a matrix by applying a unitary transformation.
The unitary matrix U used in the transformation is constructed in the following
way. The eigenvectors of the matrix A form the columns of the matrix U , i.e.,

U = [ v1| |· · ·| vn|
]

The diagonal form of a matrix A, which we denote Ã, is found from

Ã = U †AU

This can be most easily seen with an example.
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EXAMPLE 8-8
For the matrix X used in the previous example, use the eigenvectors to write
down a unitary matrix U and show that it diagonalizes X , and that the diagonal
entries are the eigenvalues of X .

SOLUTION 8-8
In the previous example we found that the eigenvectors of X were

v1 = 1√
2

[
1
1

]
and v2 = 1√

2

[
1

−1

]

The transformation matrix is constructed by setting the columns of the matrix
equal to the eigenvectors:

U = [v1 v2
] =


 1√

2
1√
2

1√
2

− 1√
2




The Hermitian conjugate of this matrix is easy to compute; in fact we have

U † =

 1√

2
1√
2

1√
2

− 1√
2




†

=

 1√

2
1√
2

1√
2

− 1√
2


 = U

Now we apply this transformation to X :

U †XU =
[ 1√

2
1√
2

1√
2

− 1√
2

][
0 1
1 0

][ 1√
2

1√
2

1√
2

− 1√
2

]

=
[ 1√

2
1√
2

1√
2

− 1√
2

] 1√
2

− 1√
2

1√
2

1√
2




=
[

1
2 + 1

2 −1
2 + 1

2

1
2 − 1

2 −1
2 − 1

2

]

=
[

1 0
0 −1

]
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In the previous example, we had found that the eigenvalues of X were ±1.
Therefore the diagonal matrix we found from this unitary transformation does
have the eigenvalues of X along the diagonal.

The diagonal form of a matrix is a representation of that matrix with respect
to its eigenbasis.

When two or more eignvectors share the same eigenvalue, we say that the
eigenvalue is degenerate. The number of eigenvectors that have the same eigen-
value is the degree of degeneracy.

EXAMPLE 8-9
Diagonalize the matrix

A =

0 2 0

2 0 2
0 2 0




SOLUTION 8-9
Notice that this matrix is symmetric (we will see later it is also Hermitian) and
so we know ahead of time that the eigenvectors constitute a basis. Solving the
characteristic equation, we find

0 = det

∣∣∣∣∣∣

0 2 0

2 0 2
0 2 0


−


λ 0 0

0 λ 0
0 0 λ



∣∣∣∣∣∣ = det

∣∣∣∣∣∣
−λ 2 0
2 −λ 2
0 2 −λ

∣∣∣∣∣∣
This leads to the eigenvalues {0, −2

√
2, 2

√
2} (exercise). For the first eigenvalue

we have

Av1 = 0

This leads to the equations

2y = 0, ⇒ y = 0

2x + 2z = 0, ⇒ z = −x

Therefore the eigenvector can be written as

v1 =

 x

0
−x



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Normalization gives

1 = [ x∗ 0 −x∗ ]

 x

0
−x


 = 2 |x |2

Therefore we can take x = 1√
2
, and the first eigenvector is

v1 = 1√
2


 1

0
−1




For the second eigenvalue we have

Av2 = −2
√

2v2

This leads to the equations

2y = −2
√

2x

2x + 2z = −2
√

2y

2y = −2
√

2z

A little manipulation shows that

y = −
√

2x, z = − 1√
2

y = x

and so we have

v2 =

 x

−√
2x

x




Normalization gives

1 = v†
2v2 = [ x∗ −√

2x∗ x∗ ]

 x

−√
2x

x


 = |x |2 + 2 |x |2 + |x |2 = 4 |x |2

⇒ |x |2 = 1

4
or x = 1

2
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and so the normalized eigenvector is

v2 =

 x

−√
2x

x


 = 1

2


 1

−√
2

1




The third eigenvalue equation is

Av3 = 2
√

2v3

A similar procedure shows that the third eigenvector is

v3 = 1

2


 1√

2
1




The unitary matrix that diagonalizes A is found by setting its columns equal to
the normalized eigenvectors of A

U = [v1 v2 v3
] =




1√
2

1
2

1
2

0 −
√

2
2

√
2

2

− 1√
2

1
2

1
2




The inverse of this matrix is found from U †, which is

U † =




1√
2

0 − 1√
2

1
2 −

√
2

2
1
2

1
2

√
2

2
1
2




Now we apply the transformation to the matrix A:

U †AU =




1√
2

0 − 1√
2

1
2 −

√
2

2
1
2

1
2

√
2

2
1
2




0 2 0

2 0 2
0 2 0






1√
2

1
2

1
2

0 −
√

2
2

√
2

2

− 1√
2

1
2

1
2



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=




1√
2

0 − 1√
2

1
2 −

√
2

2
1
2

1
2

√
2

2
1
2




0 −√

2
√

2
0 2 2
0 −√

2
√

2




=

0 0 0

0 −2
√

2 0
0 0 2

√
2




The Trace and Determinant and Eigenvalues
The trace of a matrix is equal to the sum of its eigenvalues:

tr (A) =
∑

λi

whereas the determinant of a matrix is equal to the product of its eigenvalues:

det |A| =
∏

λi

EXAMPLE 8-10
Find the trace and determinant of

A =
[

5 2
9 2

]

Using its eigenvalues.

SOLUTION 8-10
Earlier we found that the eigenvalues of the matrix are

λ1 = 8, λ2 = −1

The trace of the matrix can be found from the sum of the diagonal elements:

tr (A) = tr

([
5 2
9 2

])
= 5 + 2 = 7

or, from the sum of the eigenvalues:

tr (A) = λ1 + λ2 = 8 − 1 = 7
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The determinant is

det |A| = det

∣∣∣∣
[

5 2
9 2

]∣∣∣∣ = 10 − 18 = −8

or, from the product of the eigenvalues,

det |A| = (λ1) (λ2) = (8) (−1) = −8

Quiz
1. Find the characteristic polynomial and show that the eigenvalues for the

matrix

A =
[−1 4

1 2

]

are {−2, 3}.
2. Find the eigenvalues of the matrix

B =

 4 0 −1

0 2 8
−1 0 1




3. Show that the eigenvalues of the matrix

Z =
[

1 0
0 −1

]

are ±1.
4. Find the eigenvectors of

Z =
[

1 0
0 −1

]

5. Are the eigenvectors of Z found in the previous problem a basis for C
2?
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6. Show that the matrix

A =

3 1 0

0 3 1
3 −7 8




has degenerate eigenvalues {4, 4, 6}. What is the degree of degeneracy?
Find the eigenvectors of the matrix.

7. Show that the eigenvalues of

A =

0 2 0

2 0 2
0 2 0




are
{

0, −2
√

2, 2
√

2
}

.

8. Verify that the matrix

U =




1√
2

1
2

1
2

0 −
√

2
2

√
2

2

− 1√
2

1
2

1
2




is unitary.
9. Are the eigenvectors of

A =

0 2 0

2 0 2
0 2 0




a basis of R
3?

10. Verify the Cayley-Hamilton theorem for the matrix

X =
[

0 1
1 0

]



9
CHAPTER

Special Matrices

In this chapter we give an overview of matrices that have special properties. We
begin by considering symmetric matrices.

Symmetric and Skew-Symmetric Matrices
An n × n matrix is symmetric if it is equal to its transpose, i.e.,

AT = A

The sum of two symmetric matrices is also symmetric. Let A and B be symmetric
matrices so that

AT = A, BT = B

Then we have

(A + B)T = AT + BT = A + B

180
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The product of two symmetric matrices may or may not be symmetric. Again
letting A and B be symmetric matrices, the transpose of the product is

(AB)T = BT AT = BA

For the product of two symmetric matrices to be symmetric, we must have

(AB)T = AB

Therefore we see that the product of two symmetric matrices is symmetric only
if the matrices A and B commute, meaning that

AB = BA

We can write any symmetric matrix S as the sum of some other matrix A and
its transpose. That is

S = 1

2

(
A + AT

)
Then

ST = 1

2

(
A + AT

)T = 1

2

[
AT + (AT

)T
]

= 1

2

(
AT + A

) = 1

2

(
A + AT

) = S

Another way of looking at this is that we can write any matrix A as a symmetric
matrix by forming this sum.

EXAMPLE 9-1
Let

A =
[

2 −4
3 −1

]

Use it to construct a symmetric matrix.

SOLUTION 9-1
We compute the transpose

AT =
[

2 −4
3 −1

]T

=
[

2 3
−4 −1

]
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Clearly A �= AT and so this particular matrix is not symmetric. Now we use it
to construct a symmetric matrix

A + AT =
[

2 −4
3 −1

]
+
[

2 3
−4 −1

]
=
[

4 −1
−1 −2

]

S = 1

2

(
A + AT

) = 1

2

[
4 −1

−1 −2

]
=
[

2 −1
2−1

2 −1

]

ST =
[

2 −1
2−1

2 −1

]T

=
[

2 −1
2−1

2 −1

]
= S

Therefore we have constructed a symmetric matrix.

EXAMPLE 9-2
Suppose that

A =
[

2 1
1 4

]
and B =

[−8 3
3 1

]

Are these matrices symmetric? Is their product symmetric?

SOLUTION 9-2
We immediately see the matrices are symmetric

A =
[

2 1
1 4

]
⇒ AT =

[
2 1
1 4

]
= A

B =
[−8 3

3 1

]
⇒ BT =

[−8 3
3 1

]
= B

We calculate the product

AB =
[

2 1
1 4

] [−8 3
3 1

]
=
[

(2) (−8) + (1) (3) (2) (3) + (1) (1)
(1) (−8) + (4) (3) (1) (3) + (4) (1)

]

=
[−13 7

4 7

]
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Since the off-diagonal entries are not equal, we see this matrix is not symmetric.
We calculate the transpose to verify this explicitly:

(AB)T =
[−13 7

4 7

]T

=
[−13 4

7 7

]
�= AB

Another way to see this is to calculate

BA =
[−8 3

3 1

] [
2 1
1 4

]
=
[

(−8) (2) + (3) (1) (−8) (1) + (3) (4)
(3) (2) + (1) (1) (3) (1) + (1) (4)

]

=
[−13 4

7 7

]

We see that the matrices do not commute, thus the product cannot be symmetric.

SKEW SYMMETRY
A skew-symmetric matrix K has the property that

K = −K T

It is possible to use any matrix A to create a skew-symmetric matrix by writing

K = 1

2

(
A − AT

)
⇒ K T = 1

2

(
A − AT

)T = 1

2

(
AT − A

) = −1

2

(
A − AT

) = −K

EXAMPLE 9-3
What can you say, if anything, about the diagonal elements of a skew-symmetric
matrix? To do the proof, consider the 3 × 3 case.

SOLUTION 9-3
We write an arbitrary matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33



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The transpose is

AT =

a11 a21 a31

a12 a22 a32

a13 a23 a33




To be skew-symmetric, we must have A = −AT . This leads to the following
relationships:

a12 = −a21, a13 = −a31, a23 = −a32

It must also be true that

a11 = −a11, a22 = −a22, a33 = −a33

This condition can be met only if

a11 = a22 = a33 = 0

Therefore we conclude that the diagonal elements of a skew-symmetric matrix
must be zero.

EXAMPLE 9-4
Let A and B be skew-symmetric matrices. Are the sum and product of these
matrices skew-symmetric?

SOLUTION 9-4
We have

AT = −A
BT = −B

Therefore

(A + B)T = AT + BT = −A − B = − (A + B)

So we conclude that the sum of two skew-symmetric matrices is skew-
symmetric. For the product we have

(AB)T = BT AT = (−B) (−A) = BA
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The product would be skew symmetric if

(AB)T = −AB

Therefore we must have

AB = − BA

or

AB + BA = 0

That is, the matrices must anticommute. The sum AB + BA is called the anti-
commutator and is written as

{A, B} = AB + BA

Hermitian Matrices
We now consider a special type of matrix with complex elements called a
Hermitian matrix. A Hermitian matrix has the property that

A = A†

Some properties of the Hermitian conjugate operation to note are that

(
A†)† = A

and

(A + B)† = A† + B†

(AB)† = B†A†

EXAMPLE 9-5
Are the matrices

Y =
[

0 −i
i 0

]
and C =


 3i 0 2i

0 4 6
−2i 1 0




Hermitian?
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SOLUTION 9-5
We compute the Hermitian conjugate of each matrix, beginning by calculating
the transpose of Y :

Y T =
[

0 −i
i 0

]T

=
[

0 i
−i 0

]

Now we take the complex conjugate of each component, by letting i → −i :

Y † =
[

0 i
−i 0

]∗
=
[

0 −i
i 0

]
= Y

Therefore Y is a Hermitian matrix. The transpose of C is

CT =

 3i 0 2i

0 4 6
−2i 1 0




T

=

3i 0 −2i

0 4 1
2i 6 0




Taking the complex conjugate, we find the Hermitian conjugate to be

C† =

3i 0 −2i

0 4 1
2i 6 0




∗

=

−3i 0 2i

0 4 1
−2i 6 0


 �= C

and so the matrix C is not Hermitian.
Some important facts about Hermitian matrices are:

• The diagonal elements of a Hermitian matrix are real numbers
• Hermitian matrices have real eigenvalues
• The eigenvectors of a Hermitian matrix are orthogonal. In fact they

constitute a basis.

EXAMPLE 9-6
Prove that a 3 × 3 Hermitian matrix must have real elements along the diagonal.
What can be said about the off-diagonal elements?
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SOLUTION 9-6
We set

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33




Therefore we have

A† =




a∗
11 a∗

21 a∗
31

a∗
12 a∗

22 a∗
32

a∗
13 a∗

23 a∗
33




We consider the off-diagonal elements first. For this matrix to be Hermitian, it
must be the case that

a∗
21 = a12, a∗

31 = a13, a∗
32 = a23

This is also true for the complex conjugates of these relations. In addition, we
need to have

a∗
11 = a11, a∗

22 = a22, a∗
33 = a33

This can be true only if

a11, a22, a33

are real numbers.

EXAMPLE 9-7
Is the matrix

B =

4 0 0

0 2 i
0 −i 1




Hermitian? Does it have real eigenvalues?

SOLUTION 9-7
The transpose is

BT =

4 0 0

0 2 i
0 −i 1




T

=

4 0 0

0 2 −i
0 i 1



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Taking the complex conjugate

B† =

4 0 0

0 2 −i
0 i 1




∗

=

4 0 0

0 2 i
0 −i 1


 = B

Therefore the matrix is Hermitian. The characteristic equation is

det |B − λI | = det

∣∣∣∣∣∣

4 0 0

0 2 −i
0 i 1


−


λ 0 0

0 λ 0
0 0 λ



∣∣∣∣∣∣ = det

∣∣∣∣∣∣
4 − λ 0 0

0 2 − λ −i
0 i 1 − λ

∣∣∣∣∣∣
= (4 − λ) det

∣∣∣∣2 − λ −i
i 1 − λ

∣∣∣∣
= (4 − λ) [(2 − λ) (1 − λ) − 1]

= (4 − λ)
[
λ2 − 3λ + 1

] = 0

We see from the first term in the product that the first eigenvalue is

(4 − λ) = 0, λ1 = 4

Which is a real number. The other term gives

λ2 − 3λ + 1 = 0

⇒ λ2,3 = 3 ± √
9 − 4

2
= 3 ± √

5

2

These are both real numbers. Therefore B, which is a Hermitian matrix, has
real eigenvalues as expected.

ANTI-HERMITIAN MATRICES
An anti-Hermitian matrix A is one that satisfies

A† = −A

Anti-Hermitian matrices have purely imaginary elements along the diagonal
and have imaginary eigenvalues.

EXAMPLE 9-8
Construct Hermitian and anti-Hermitian matrices out of an arbitrary matrix A.
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SOLUTION 9-8
To construct a Hermitian matrix, we consider the sum

B = A + A†

Since
(

A†)† = A, we find that

B† = (A + A†)† = A† + (A†)† = A† + A = A + A† = B

Therefore B is a Hermitian matrix. Now consider the sum

C = i
(

A + A†)
The Hermitian conjugate of this matrix is

C† = [i (A + A†)]† = −i
(

A† + A
) = −C

This is true because the Hermitian conjugate of a number is given by the complex
conjugate; therefore, i → −i .

Orthogonal Matrices
An orthogonal matrix is an n × n matrix whose columns or rows form an
orthonormal basis for R

n . We have already seen the simplest orthogonal matrix,
the identity matrix. Consider the identity matrix in 3 dimensions:

I =

1 0 0

0 1 0
0 0 1




The columns are

v1 =

1

0
0


 , v2 =


0

1
0


 , v3 =


0

0
1




It is immediately obvious that these columns are orthonormal. Consider the first
column

(v1, v1) = [1 0 0
]1

0
0


 = (1)(1) + (0)(0) + (0)(0) = 1
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and we have

(v1, v2) = [1 0 0
]0

1
0


 = (1)(0) + (0)(1) + (0)(0) = 0

and so on. An important property of an orthogonal matrix P is that

PT = P−1

EXAMPLE 9-9
Is the matrix

B =
[

1 −1
1 1

]

orthogonal?

SOLUTION 9-9
We have

BT =
[

1 −1
1 1

]T

=
[

1 1
−1 1

]

Therefore

BBT =
[

1 −1
1 1

] [
1 1

−1 1

]
=
[

(1) (1) + (−1) (−1) (1) (1) + (−1) (1)
(1) (1) + (1) (−1) (1) (1) + (1) (1)

]

=
[

1 + 1 1 − 1
1 − 1 1 + 1

]

=
[

2 0
0 2

]
= 2

[
1 0
0 1

]
= 2I

The answer is that this matrix is not quite orthogonal. Looking at the inner
product of the columns, we have

(v1, v2) = [1 1
] [ 1

−1

]
= (1) (1) + (1) (−1) = 1 − 1 = 0
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So the columns are orthogonal (you can verify the rows are as well). However

(v1, v1) = [1 1
] [1

1

]
= (1) (1) + (1) (1) = 1 + 1 = 2

So we see that the columns are not normalized. It is a simple matter to see that
the matrix

B̃ = 1√
2

B =

 1√

2
− 1√

2

1√
2

1√
2




is orthogonal. The product of this matrix with the transpose does give the
identity and the columns (rows) are normalized.

EXAMPLE 9-10
Are the following transformations orthogonal?

T (x, y, z) = (x − z, x + y, z)

L (x, y, z) = (z, x, y)

SOLUTION 9-10
We represent the first transformation as the matrix

T =

1 0 −1

1 1 0
0 0 1




We check by acting this operator on a column vector

Tv =

1 0 −1

1 1 0
0 0 1




 x

y
z


 =


 (1)(x) + (0)(y) − (1)(z)

(1)(x) + (1)(y) + (0)(z)
(0)(x) + (0)(y) + (1)(z)


 =


 x − z

x + y
z




The transpose of this matrix is

T T =

1 0 −1

1 1 0
0 0 1




T

=

 1 1 0

0 1 0
−1 0 1



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We find that

TTT =

1 0 −1

1 1 0
0 0 1




 1 1 0

0 1 0
−1 0 1


 =


 2 1 −1

1 2 0
−1 0 1


 �= I

Therefore the first transformation is not orthogonal. For the second transforma-
tion, we can write this as the matrix

L =

0 0 1

1 0 0
0 1 0




(check). This matrix can be obtained from the identity matrix by a series of
elementary row operations. It is a fact that such a matrix is orthogonal. We
check it explicitly. The transpose is

LT =

0 0 1

1 0 0
0 1 0




T

=

0 1 0

0 0 1
1 0 0




and we have

LLT =

0 0 1

1 0 0
0 1 0




0 1 0

0 0 1
1 0 0


 =


1 0 0

0 1 0
0 0 1


 = I

Therefore the transformation L is orthogonal. You can check that the rows and
columns of the matrix are orthonormal.

ORTHOGONAL MATRICES AND ROTATIONS
A 2 × 2 orthogonal matrix can be written in the form

A =
[

cos φ sin φ

sin φ − cos φ

]

for some angle φ. Now the transpose of this matrix is

AT =
[

cos φ sin φ

sin φ − cos φ

]T

=
[

cos φ sin φ

sin φ − cos φ

]
= A
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But notice that

AAT =
[

cos φ sin φ

sin φ − cos φ

] [
cos φ sin φ

sin φ − cos φ

]

=
[

cos2 φ + sin2 φ cos φ sin φ − sin φ cos φ

sin φ cos φ − cos φ sin ι sin2 φ + cos2 φ

]

=
[

1 0
0 1

]

Consider the inner product between the columns

(v1, v2) = [cos φ sin φ
] [ sin φ

− cos φ

]
= cos φ sin φ − sin φ cos φ = 0

(v1, v1) = [cos φ sin φ
] [cos φ

sin φ

]
= cos2 φ + sin2 φ = 1

(v2, v2) = [ sin φ − cos φ
] [ sin φ

− cos φ

]
= sin2 φ + cos2 φ = 1

It is easy to verify that the inner products among the rows works out the same
way. We have a matrix that when multiplied by the transpose gives the identity,
and which has orthonormal rows and columns. Therefore the rotation matrix is
orthogonal.

This matrix is called the rotation matrix because of its action on a vector in
the plane. We have

AX =
[

cos φ sin φ

sin φ − cos φ

] [
x
y

]
=
[

x cos φ + y sin φ

x sin φ − y cos φ

]

A rotation in the plane can be visualized as shown in Fig. 9-1.
An examination of the figure shows that the rotation transforms the coordi-

nates in the same way as the matrix A does.
Rotations in 3 dimensions can be taken about the x, y, and z axes, respectively.

These rotations are represented by the matrices

Rx =

1 0 0

0 cos φ − sin φ

0 sin φ cos φ



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x

y

x ′

y′

ϕ

ϕ

Fig. 9-1. A rotation in the plane.

Ry =

 cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ




Rz =

cos φ − sin φ 0

sin φ cos φ 0
0 0 1




Unitary Matrices
We have already come across unitary matrices in our studies. A unitary ma-
trix is a complex generalization of an orthogonal matrix. Unitary matrices are
characterized by the following property:

UU† = U †U = I

In other words, the Hermitian conjugate of a unitary matrix is its inverse:

U † = U−1

Unitary matrices play a central role in the study of quantum theory. The “Pauli
Matrices”

X =
[

0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]

are all both Hermitian and unitary.
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EXAMPLE 9-11
Verify that

Y =
[

0 −i
i 0

]

is unitary.

SOLUTION 9-11
The transpose is

Y T =
[

0 i
−i 0

]

Therefore the Hermitian conjugate is

Y † =
[

0 −i
i 0

]
= Y

We have found that Y is Hermitian. Now we check to see if it is unitary

YY† =
[

0 −i
i 0

] [
0 −i
i 0

]
=
[

(−i) (i) 0
0 (i) (−i)

]
=
[

1 0
0 1

]

and in fact the matrix is unitary.
Unitary matrices have eigenvalues that are complex numbers with modulus 1.

We have already seen that the eigenvectors of a Hermitian matrix can be used to
construct a unitary matrix that transforms the Hermitian matrix into a diagonal
one. It is also true that a unitary matrix can also be constructed to perform a
change of basis. For simplicity we consider a three-dimensional space. If we
represent one basis by ui and a second basis by vi then the change of basis
matrix is 

(v1, u1) (v1, u2) (v1, u3)
(v2, u1) (v2, u2) (v2, u3)
(v3, u1) (v3, u2) (v3, u3)




where
(
vi , u j

)
is the inner product between the basis vectors from the different

bases.
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EXAMPLE 9-12
Consider two different bases for the complex vector space C

2. The first basis is
given by the column vectors

v1 =
[

1
0

]
, v2 =

[
0
1

]

A second basis is

u1 = 1√
2

[
1
1

]
, u2 = 1√

2

[
1

−1

]

An arbitrary vector written in the first basis vi is given by

ψ =
[

α

β

]

where α, β are arbitrary complex numbers. How is this vector written in the
second basis?

SOLUTION 9-12
We construct a change of basis matrix and then apply that to the arbitrary vector
ψ . The inner products are

(u1, v1) = 1√
2

[
1 1

] [1
0

]
= 1√

2

(u1, v2) = 1√
2

[
1 1

] [0
1

]
= 1√

2

(u2, v1) = 1√
2

[
1 −1

] [1
0

]
= 1√

2

(u2, v2) = 1√
2

[
1 −1

] [0
1

]
= − 1√

2

The change of basis matrix from basis vi to basis ui is given by

U =
[

(u1, v1) (u1, v2)
(u2, v1) (u2, v2)

]
= 1√

2

[
1 1
1 −1

]
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Applying this matrix to the arbitrary vector, we obtain

Uψ = 1√
2

[
1 1
1 −1

] [
α

β

]
= 1√

2

[
α + β

α − β

]

Quiz
1. Construct symmetric and antisymmetric matrices from

A =

−1 0 2

4 6 0
0 0 1




2. Is the following matrix antisymmetric?

B =

 0 −1 2

−1 0 6
2 6 0




Find its eigenvalues.
3. Is the following matrix Hermitian?

A =

8i 9 −i

9 4 0
i 0 2




4. Show that the following matrix is Hermitian:

A =

 2 4i 0

−4i 6 1
0 1 −2




5. For the matrix in the previous problem, show that its eigenvalues are real.
6. Find the eigenvectors of A in problem 4 and show that they constitute an

orthonormal basis.
7. Verify that the rotation matrices Rx , Ry, Rz in three dimensions are

orthogonal.
8. Find the eigenvalues and eigenvectors of the rotation matrix Rz .
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9. Is the following matrix unitary?

V =
[

2i 7
1 0

]

10. Is this matrix unitary? Find its eigenvalues. Are they complex numbers
of modulus 1?

U =
[

exp (−iπ/8) 0
0 exp (iπ/8)

]



10
CHAPTER

Matrix
Decomposition

In this chapter we discuss commonly used matrix decomposition schemes. A
decomposition is a representation of a given matrix A in terms of a set of other
matrices.

LU Decomposition
LU decomposition is a factorization of a matrix A as

A = LU

where L is a lower triangular matrix and U is an upper triangular matrix. For
example, suppose

A =

 1 2 −3

−3 −4 13
2 1 −5




199
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It can be verified that A = LU, where

L =

 1 0 0

−3 1 0
2 −3

2 1


 and U =


1 2 −3

0 2 4
0 0 7




This decomposition of the matrix A is an illustration of an important theorem.
If A is a nonsingular matrix that can be transformed into an upper diagonal
form U by the application of row addition operations, then there exists a lower
triangular matrix L such that A = LU.

We recall that row addition operations can be represented by a product of
elementary matrices. If n such operations are required, the matrix U is related
to the matrix A in the following way:

En En−1 · · · E2 E1 A = U

THE LOWER TRIANGULAR MATRIX L
The lower triangular matrix L is found from

L = E−1
1 E−1

2 · · · E−1
n

L will have 1s on the diagonal. The off-diagonal elements are 0s above the
diagonal, while the elements below the diagonal are the multipliers required to
perform Gaussian elimination on the matrix A. The element li j is equal to the
multiplier used to eliminate the (i, j) position.

EXAMPLE 10-1
Find the LU decomposition of the matrix

A =

−2 1 −3

6 −1 8
8 3 −7




SOLUTION 10-1
Starting in the upper left corner of the matrix, we select a11 = −2 as the first
pivot and seek to eliminate all terms in the column below it. Looking at the
matrix, notice that if we take

3R1 + R2 → R2
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we can eliminate a21 = 6


−2 1 −3

6 −1 8
8 3 −7


 3R1+R2→R2→


−2 1 −3

0 2 −1
8 3 −7




There is one more term to eliminate below this pivot. The term a31 = 8 can be
eliminated by

4R1 + R3 → R3

This transforms the matrix as
−2 1 −3

0 2 −1
8 3 −7


 4R1+R3→R3→


−2 1 −3

0 2 −1
0 7 −19




Having eliminated all terms below the first pivot, we move down one row and
one column to the right and choose a22 = 2 as the next pivot. There is a single
term below this pivot, a32 = 7. We can eliminate this term with the operation

−7R2 + 2R3 → R3

and we obtain
−2 1 −3

0 2 −1
0 7 −19


 −7R2+2R3→R3→


−2 1 −3

0 2 −1
0 0 −31




And so we have

U =

−2 1 −3

0 2 −1
0 0 −31




To find the lower triangular matrix L , we represent each row addition oper-
ation that was performed using an elementary matrix. The first operation we
performed was

3R1 + R2 → R2
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This can be represented by

E1 =

1 0 0

3 1 0
0 0 1




The second operation was 4R1 + R3 → R3. We can represent this with the
elementary matrix

E2 =

1 0 0

0 1 0
4 0 1




Finally, we took −7R2 + 2R3 → R3 as the last row addition operation. The
elementary matrix that corresponds to this operation is

E3 =

1 0 0

0 1 0
0 −7 2




It must be the case that

E3 E2 E1 A = U

Let’s verify this. First we take

E1 A =

1 0 0

3 1 0
0 0 1




−2 1 −3

6 −1 8
8 3 −7


 =


−2 1 −3

0 2 −1
8 3 −7




Next we have

E2 E1 A =

1 0 0

0 1 0
4 0 1




−2 1 −3

0 2 −1
8 3 −7


 =


−2 1 −3

0 2 −1
0 7 −19




and finally

E3 E2 E1 A =

1 0 0

0 1 0
0 −7 2




−2 1 −3

0 2 −1
0 7 −19


 =


−2 1 −3

0 2 −1
0 0 −31



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To find L , we compute L = E−1
1 E−1

2 E−1
3 . The inverses of each of the elementary

matrices are easily calculated. These are

E−1
1 =


 1 0 0

−3 1 0
0 0 1


 , E−1

2 =

 1 0 0

0 1 0
−4 0 1


 , E−1

3 =

1 0 0

0 1 0
0 7

2 −1
2




and so we obtain

E−1
2 E−1

3 =

 1 0 0

0 1 0
−4 0 1




1 0 0

0 1 0
0 7

2 −1
2


 =


 1 0 0

0 1 0
−4 7

2 −1
2




Multiplication by the last matrix gives us the lower triangular matrix

E−1
1 E−1

2 E−1
3 =


 1 0 0

−3 1 0
0 0 1




 1 0 0

0 1 0
−4 7

2 −1
2


 =


 1 0 0

−3 1 0
−4 7

2 −1
2




Therefore we conclude that

L =

 1 0 0

−3 1 0
−4 7

2 −1
2




Notice that L has 1s along the diagonal. We check that A = LU :

LU =

 1 0 0

−3 1 0
−4 7

2 −1
2




−2 1 −3

0 2 −1
0 0 −31




=

 (1)(−2) (1)(1) (1)(−3)

(−3)(−2) + (1)(0) (−3)(1) + (1)(2) (−3)(−3) + (1)(−1)
(−4)(−2) (−4)(1) + (7

2

)
(2) (−4)(−3) + (7

2

)
(−1) + (1

2

)
(−31)




=

−2 1 −3

6 −1 8
8 3 −7


 = A
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Solving a Linear System with
an LU Factorization

An LU factorization allows us to solve a linear system in the following way.
Consider the linear system

Ax = b

Suppose that A is nonsingular. Therefore we can write A = LU and so the
linear system takes the form

LUx = b

Now notice that we can form a second vector using the relationship

Ux = y

This gives

Ly = b

Since the matrices U and L are in upper and lower triangular form, respectively,
finding a solution is simple because we can use back substitution to solve Ux = y
and forward substitution to find a solution of Ly = b. This is simply carrying
out the substitution procedure from top to bottom along the matrix.

FORWARD SUBSTITUTION
Forward substitution works in the following way. Suppose that we had

Ly = b

⇒

 1 0 0

−3 1 0
−4 7

2 −1
2




 y1

y2

y3


 =


 2

12
−2




The first row tells us that

y1 = 2
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Moving to the next row, substitution of this value gives

y2 = 12 + 3 (2) = 12 + 6 = 18

Finally, from the last row we obtain

y3 = −2

[
−2 + 4 (2) − 7

2
(18)

]
= −2 [−2 + 8 − 63] = 114

In short, the solution of Ax = b can be completed using the following steps:

• If A is nonsingular, find the decomposition A = LU
• Using forward substitution, solve Ly = b
• Using back substitution, solve Ux = y to obtain the solution to the original

system x .

EXAMPLE 10-2
Using LU factorization, solve the linear system Ax = b, where

A =

 3 −1 2

−6 3 1
9 −1 1


 , b =


1

3
6




SOLUTION 10-2
We use row addition operations to find U. Selecting a11 = 3 as the first pivot,
we eliminate a21 = −6 with 2R1 + R2 → R2 giving


3 −1 2

0 1 5
9 −1 1




Next we eliminate a31 = 9 with −3R1 + R3 → R3 to obtain


3 −1 2

0 1 5
0 2 −5




Moving down one row and over to the right one column, we select a22 = 1 as
the next pivot. To eliminate the single term below this pivot, we use the row
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addition operation −2R2 + R3 → R3, resulting in the upper triangular matrix

U =

3 −1 2

0 1 5
0 0 −15




The elementary matrices that correspond to each of these row operations are

2R1 + R2 → R2 ⇒ E1 =

1 0 0

2 1 0
0 0 1




−3R1 + R3 → R3 ⇒ E2 =

 1 0 0

0 1 0
−3 0 1




and

−2R2 + R3 → R3 ⇒ E3 =

1 0 0

0 1 0
0 −2 1




The inverses of these matrices are

E−1
1 =


 1 0 0

−2 1 0
0 0 1


 , E−1

2 =

1 0 0

0 1 0
3 0 1


 , E−1

3 =

1 0 0

0 1 0
0 2 1




We have

E−1
2 E−1

3 =

1 0 0

0 1 0
3 0 1




1 0 0

0 1 0
0 2 1


 =


1 0 0

0 1 0
3 2 1




and so

L = E−1
1 E−1

2 E−1
3 =


 1 0 0

−2 1 0
0 0 1




1 0 0

0 1 0
3 2 1


 =


 1 0 0

−2 1 0
3 2 1



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Now we solve the system Ly = b. We have


 1 0 0

−2 1 0
3 2 1




 y1

y2

y3


 =


1

3
6




The first row leads to

y1 = 1

From the second row, we find

y2 = 3 + 2y1 = 3 + 2 = 5

and from the third row we obtain

y3 = 6 − 3y1 − 2y2 = 6 − 3 − 10 = −7

Therefore we have

y =

 1

5
−7




To obtain a solution to the original system, we solve U x = y. Earlier we found

U =

3 −1 2

0 1 5
0 0 −15




Therefore the system to be solved is


3 −1 2

0 1 5
0 0 −15




 x1

x2

x3


 =


 1

5
−7




Using back substitution, from the last line we find

x3 = 7

15



208 CHAPTER 10 Matrix Decomposition

Inserting this value into the equation represented by the second row, we obtain

x2 = −5x3 + 5 = 5

(
7

15

)
+ 5 = −7

3
+ 15

3
= 8

3

From the first row, we find x1 to be

x1 = 1

3
(x2 − 2x3 + 1) = 1

3

(
8

3
− 14

15
+ 1

)
= 1

3

(
41

15

)
= 41

45

SVD Decomposition
Suppose that a matrix A is singular or nearly so. Let A be a real m × n matrix
of rank r , with m ≥ n. The singular value decomposition of A is

A = UDVT

where U is an orthogonal m × n matrix, D is an r × r diagonal matrix, and V
is an n × n square orthogonal matrix. From the last chapter we recall that since
U and V are orthogonal, then

UUT = VVT = I

That is, the transpose of each matrix is equal to the inverse. The elements along
the diagonal of D , which we label σi , are called the singular values of A. There
are r such singular values and they satisfy

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

If the matrix A is square, then we can use the singular value decomposition to
find the inverse. The inverse is

A−1 = (UDVT
)−1 = (V T

)−1
D−1U−1 = V D−1 U T

since (AB)−1 = B−1 A−1 and UUT = VVT = I . In the case where A is a square
matrix then

D =




σ1 0 . . . 0

0 σ2 . . .
...

... . . .
. . .

...
0 0 . . . σn



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Then

D−1 =




1
σ1

0 . . . 0

0 1
σ2

. . .
...

... . . .
. . .

...
0 0 . . . 1

σn




If an SVD of a matrix A can be calculated, so can be its inverse. Therefore we
can find a solution to a system

Ax = b ⇒ x = A−1b = V D−1 U T b

that would otherwise be unsolvable.
In most cases, you will come across SVD in a numerical application. However,

here is a recipe that can be used to calculate the singular value decomposition
of a matrix A that can be applied in simple cases:

• Compute a new matrix W = AAT .
• Find the eigenvalues and eigenvectors of W .
• The square roots of each of the eigenvalues of W that are greater than

zero are the singular values. These are the diagonal elements of D.
• Normalize the eigenvectors of W that correspond to nonzero eigenvalues

of W that are greater than zero. The columns of U are the normalized
eigenvectors.

• Now repeat this process by letting W ′ = AT A. The normalized eigenvec-
tors of this matrix are the columns of V .

EXAMPLE 10-3
Find the singular value decomposition of

A =

 0 −1

−2 1
1 0




SOLUTION 10-3
The first step is to write down the transpose of this matrix, which is

AT =
[

0 −2 1
−1 1 0

]
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Now we compute

W = AAT =

 0 −1

−2 1
1 0


[ 0 −2 1

−1 1 0

]
=

 1 −1 0

−1 5 −2
0 −2 1




The next step is to find the eigenvalues of W . These are (exercise) {0, 1, 6}. Only
positive eigenvalues are important. The singular values are the square roots, and
so

σ1 = 1, σ2 =
√

6

D is constructed by placing these elements on the diagonal. They are arranged
from greatest to lowest in value. There are two singular values, and so D is a
2 × 2 matrix

D =
[√

6 0
0 1

]

Next we find the eigenvectors of W that correspond to the eignvalues {1, 6}.
These must be normalized. We demonstrate with the second eigenvalue. The
equation is 

 1 −1 0
−1 5 −2
0 −2 1




a

b
c


 = 6


a

b
c




This eigenvector equation leads to the relationships (check)

b = −5a

c = 2a

Therefore we can write the eigenvector as

v =

 −a

5a
−2a




Now we normalize the eigenvector

1 = vT v = [a −5a 2a
] a

−5a
2a


 = a2 + 25a2 + 4a2 = 30a2
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and so we have

1 = 30a2 ⇒ a = 1√
30

And the normalized eigenvector is

v =




− 1√
30

5√
30

− 2√
30




The other normalized eigenvector, corresponding to the eigenvalue {1}, is (ex-
ercise)

w =




− 2√
5

0
1√
5




Now we construct U . The columns of U are the eigenvectors

U =




− 1√
30

− 2√
5

5√
30

0

− 2√
30

1√
5




Now we compute

W ′ = AT A =
[

0 −2 1
−1 1 0

] 0 −1
−2 1
1 0


 =

[
5 −2

−2 2

]

The eigenvalues of this matrix are {1, 6} (why?). The normalized eigvectors
are

v1 =
[− 2√

5
1√
5

]
, v2 =

[ 1√
5

2√
5

]
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respectively. We construct V by mapping these eigenvectors to the columns of
the matrix

V =
[− 2√

5
1√
5

1√
5

2√
5

]

(Are these columns orthogonal?). In this case the transpose is equal to V .
We have found the singular value decomposition of the matrix A. Recalling

that A = UDVT , we verify the result. First we have

DVT =
[√

6 0
0 1

][− 2√
5

1√
5

1√
5

2√
5

]
=
[

−2
√

6√
5

√
6√
5

1√
5

2√
5

]

and so we obtain

UDVT =




− 1√
30

− 2√
5

5√
30

0

− 2√
30

1√
5



[

−2
√

6√
5

√
6√
5

1√
5

2√
5

]
=

 0 −1

−2 1
1 0


 = A

QR Decomposition
Let A be a nonsingular m × n matrix with linearly independent columns. Such
a matrix can be written as

A = QR

The m × n matrix Q is constructed by setting the columns equal to the orthonor-
mal basis for R (A). R is an n × n upper triangular matrix that has positive
elements along the diagonal. We demonstrate with an example.

EXAMPLE 10-4
Find the QR factorization of

A =

2 2 0

0 0 2
2 1 0



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SOLUTION 10-4
The column vectors of A are

a1 =

2

0
2


 , a2 =


2

0
1


 , a3 =


0

2
0




To obtain the diagonal elements of R, we compute the magnitude of each vector,
using the standard inner product. We find

‖a1‖ = √
4 + 4 = √

8 = r11

‖a2‖ = √
4 + 1 = √

5 = r22

‖a3‖ = √
4 = 2 = r33

The first column of Q is given by

q1 = a1

‖a1‖ = 1√
8


2

0
2


 = 1√

2


1

0
1




Next we calculate

r12 = qT
1 a2 = 1√

2

[
1 0 1

]2
0
1


 = 3√

2

and

r13 = qT
1 a3 = 1√

2

[
1 0 1

]0
2
0


 = 0

Using the Gram-Schmidt process, we find

v = a2 − r12q1 =

2

0
1


− 3√

2


 1√

2


1

0
1




 =


2

0
1


− 3

2


1

0
1


 = 1

2


 1

0
−1



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Normalizing gives the next column of Q:

q2 = 1√
2


 1

0
−1




r23 = qT
2 a3 = 1√

2

[
1 0 −1

]0
2
0


 = 0

The last vector is

v = a3 − r13q1 − r23q2 = a3

q3 = v

‖v‖
This gives

q3 =

0

1
0




and so we find

Q =




1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0


 , R =




√
8 3√

2
0

0
√

5 0

0 0 2




Quiz
1. Find the LU decomposition of

A =

−1 2 4

3 −1 1
2 5 −2




2. Find the LU decomposition of

B =

1 2 8

2 5 1
3 7 1



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3. Using LU factorization of A, solve the linear system Ax = b, where

A =

4 −1 1

2 7 0
1 3 −1


 , b =


1

1
1




4. An LDU factorization uses a lower triangular matrix L , a diagonal matrix
D, and an upper triangular matrix U to write

A = LDU

The lower triangular matrix is the same as that used in LU factorization.
However, in this case the diagonal matrix D contains the diagonal entries
found in the matrix U used in LU factorization. The diagonal elements
of U in this case are set to 1. For example, for the matrix

A =

 1 2 −3

−3 −4 13
2 1 −5




we have the LU factorization

L =

 1 0 0

−3 1 0
2 −3

2 1


 , U =


1 2 −3

0 2 4
0 0 7




The LDU factorization is

L =

 1 0 0

−3 1 0
2 −3

2 1


 , D =


1 0 0

0 2 0
0 0 7


 , U =


1 2 −3

0 1 4
0 0 1




Find the LDU factorization of

A =

 1 11 −3

2 5 4
−3 6 1




5. Following the SVD example worked out in the text, find the inverse of
A by calculating VD−1 U T .
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6. Find the normalized eigenvectors of[
5 −2

−2 2

]

7. Find the singular value decomposition of

A =

2 −1

0 3
3 1




8. Find the QR factorization of

A =

3 2 0

8 −1 3
0 4 0



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1. For the matrix

A =

−1 0 1

2 4 3
0 1 0




(a) Calculate 3A.
(b) Find AT .
(c) Does A have an inverse? If so, find it.

2. For the matrices

A =
[

2 1
0 −1

]
and B =

[
3 −3
2 1

]

(a) Find A + B.
(b) Find A − B.
(c) Calculate the commutator of A and B.
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3. Determine if the system

x + 3y − 7z = 2
2x + y − 4z = −1
4x + 8y + z = 5

has a solution.
4. Find the trace of the matrix

C =




−1 4 0 0 2
−5 2 −9 0 0
16 i 4 + 2i 0 −3
1 −5 2i 1 0
0 −1 2 −1 5i




5. Find the product of

A = [2i −7
]
, B =

[
4
6i

]

6. Prove that if A and B are invertible matrices, then so is their sum, A + B.
7. If

A =

 1 −2 1

1 1 −2
−1 1 2


 , A−1 =


 2

3 x 1
2

w y z
1
3

1
6

1
2




what are w, x, y, z?
8. For the matrix A, find x such that A is nonsingular

A =

−1 x 2

0 1 0
3 −1 x




9. Solve the system

[−2 4
5 1

] [
x
y

]
=
[−1

1

]

by inverting the matrix of coefficients.
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10. Find the trace of the commutator of

A =
[

5 −1
−6 3

]
and B =

[
4 0
7 1

]

11. Prove that the trace is cyclic, i.e., tr(AB) = tr(BA). What does this say
about noncommuting matrices, if anything?

12. Find the eigenvectors of

Y =
[

0 −i
i 0

]

13. Find a unitary transformation that diagonalizes Y from the previous
exercise.

14. Find a unitary transformation that diagonalizes the matrix

A =
[−1 2

2 1

]

15. Find the eigenvalues of the Hadamard matrix

H = 1√
2

[
1 1
1 −1

]

16. Find the action of the Hadamard matrix on the vectors

v0 =
[

1
0

]
and v1 =

[
0
1

]

17. Find the eigenvectors of the Hadamard matrix of problem 15.
18. Find the determinant of

A =
[−6 7

1 5

]

19. Find the determinant of

A =

−1 0 2

1 4 8
11 −7 6






220 Final Exam

20. Find the minors of

A =
[

19 5
2 −1

]

21. Calculate the adjugate of

A =

 3 −4 1

0 2 −1
−1 6 8




22. If possible, find the inverse of

A =
[−13 9

4 11

]

23. If possible, find the inverse of

B =

6 2 −1

0 1 0
2 0 2




24. Solve the system

2x − 7y = 3

4x + y = 8

using Cramer’s rule.
25. Solve the system

x + y − z = 2

2x − y + 3z = 5

−x + 3y − 2z = −2

using Cramer’s rule.
26. Find the determinants of

1 − t2, A =
[

0 1
1 0

]
, B =

[
1 0
0 −1

]

where t is a variable (scalar).
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27. Find the determinant of the matrix in two ways:

B =

 2 0 0

−3 5 0
−1 2 7




28. Is the determinant of this matrix found by the product of the elements
on the diagonal the same as the product of its eigenvalues?

A =

8 −2 1

0 4 −3
0 0 1




29. Compute the determinant and trace of the matrix

B =




7 −9 0 2
0 1 3 −6
0 0 4 −1
0 0 0 5




30. Solve the system

4x − 3y + 9z = 8

2x − y = −3

x + z = −1

31. Find the Hermitian conjugate of

A =
[ −i 4

3 + 2i 8

]

32. Verify the Cayley-Hamilton theorem for

B =

 3 0 1

−2 0 1
1 4 2




33. Construct symmetric and antisymmetric matrices out of

A =

0 3 −2

1 8 5
1 4 −2



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34. Find the eigenvalues and eigenvectors for the symmetric and anti-
symmetric matrices constructed in the previous problem.

35. Determine if the following matrix is Hermitian or anti-Hermitian:

B =




4 2i 0 1
−2i 3 5 8

0 5 6 3 − i
1 8 3 + i −2




36. Find the eigenvalues and eigenvectors of the matrix

A =
[

4 1 + i
1 − i −3

]

37. Is the matrix in the previous problem Hermitian?
38. Prove that the eigenvectors of the matrix in problem 36 constitute an

orthonormal basis.
39. Construct a unitary matrix from the eigenvectors of A in problem 36.

Use them to transform an arbitrary vector

ψ =
[

α

β

]

written in the basis

v1 =
[

1
0

]
, v2 =

[
0
1

]

into a vector written in the A basis.
40. Is the following matrix orthogonal?

P = 1√
3


 1 −1 1

−1 1 1
1 1 −1




41. Find the matrix that represents the transformation

T (x, y, z) = (2x + y, y + z)

from R
3 → R

2 with respect to the bases {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}
and {(1, 1) , (1, −1)}.
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42. Find the matrix that represents the transformation

T (x, y, z) = (4x + y + z, y − z)

from R
3 → R

2 with respect to the bases {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}
and {(1, 1) , (5, 3)}.

43. An operator acts on the elements of an orthonormal basis in two dimen-
sions as

σv1 = v2

σv2 = v1

Find the matrix representation of this operator.
44. Describe the transformation from R

3 → R
2 that has the matrix repre-

sentation

T =
[

2 3 7
1 −1 2

]

with respect to the standard basis of R
3 and with respect to

{(1, 1) , (1, −1)} for R
2.

45. A transformation from P2 → P1 acts as

T
(
a x2 + b x + c

) = (a − 3b + c) x + (a + b − c)

Find the matrix representation of T with respect to the basis{
2x2 + x + 1, x2 + 4x + 2, −x2 + x

}
for P2 and {x + 1, x − 1} for P1.

46. Let F (x, y, z) = (x + 2z, y − z) and G (x, y, z) = (x + z, y + z).
Find
(a) F + G
(b) 4F
(c) −6G
(d) F − 3G

47. Are the following transformations linear?
(a) F (x, y, z) = (x + y, y, x + y − 4z)
(b) G (x, y, z) = (2x, z)
(c) H (x, y, z) = (xy, yz)
(d) T (x, y, z) = (2 + x, y − z)
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48. An operator acts on a two-dimensional orthonormal basis of C
2 in the

following way:

Av1 = 2v1 + v2

Av2 = 3v1 − 4v2

Find the matrix representation of A with respect to this basis.
49. Find the norm of the vector

u =




−2
5 + i

4i
1




50. Compute the “distance” between the vectors

u =
[

2
4

]
and v =

[−1
7

]

51. Find the inner product of the real vectors

a =

 2

−3
1


 and b =


1

5
1




52. Are the following vectors orthogonal?

u =

1

0
1


 , v =


−1

1
0




53. Are the following vectors orthogonal?

u =

 3

−1
2


 , v =


 3

17
4




54. Normalize

v =




9
4

−7
2



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55. What is the distance between

a =
[

2i
6

]
and b =

[
6

2 − 3i

]

56. Construct the conjugate of

u =

 2

3i
5i




57. Do the following vectors obey the Cauchy-Schwarz inequality?

u =

1

i
2


 , v =


 2

0
4i




58. Do these vectors satisfy the triangle inequality?

u =
[

5
3

]
, v =

[−1
7

]

59. Find x so that the following vector is normalized:

u =

 3x

8
2x − 1




60. Find x so that the following vectors are orthonormal:

u =

 x

7
−1


 , v = 1√

2


−1

0
1




61. If possible, find a parametric solution to the system

2x1 − x2 + 4x3 = 8
x1 + 3x2 − x3 = 2

62. Find the row rank of the matrix

A =

−2 4 1

5 0 1
9 −2 11



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63. Put the following matrix in echelon form and find the pivots:

B =

−6 1 0 1

1 2 2 −3
3 0 0 2




What is the rank of this matrix?
64. Write down the coefficient and augmented matrices for the system

9w + x − 5y + z = 0

3w − x + 2y − 8z = −2

4x + z = 12

65. What is the elementary matrix that corresponds to the row operation
2R1 + R3 → R3 for a 3 × 3 matrix?

66. What is the elementary matrix that corresponds to the row operation
R2 ↔ R4 for a 5 × 5 matrix?

67. For a 3 × 3 matrix, write down the elementary matrix that corresponds
to 6R1 − 3R3 → R3.

68. Using elementary row operations, bring the matrix

A =

−1 2 4

5 1 −1
3 2 −2




into triangular form.
69. For the matrix in problem 68, find the equivalent elementary matrices

that correspond to the row operations used.
70. What is the rank of the matrix A in problem 68?
71. Show that the eigenvalues of the matrix A in problem 68 are

(−2,
√

21, −√
21).

72. Find normalized eigenvectors of the matrix A in problem 68.
73. Are the matrices

A =
[

6 −2 1
4 0 2

]
and B =

[
1 −1 2
0 0 1

]

row equivalent?
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74. If possible, put the following matrix in canonical form using elementary
row operations:

A =




1 4 0 2
−2 0 3 8
−5 2 1 −2
6 0 3 1




Identify the pivots.
75. What is the rank of

B =

1 2 6

0 4 1
0 0 1




76. Using matrix multiplication, replace row 3 of the following matrix by
twice its value:

C =




−1 0 7 6 1
0 9 2 3 1
1 −1 5 0 2
0 0 1 4 8
5 0 1 0 0




77. Determine whether or not the following system has a nonzero solution:

4x + 2y − z = 0

3x − y + 8z = 0

x + y − 2z = 0

78. Use elimination techniques to put the matrix

A =

1 −2 8 1 4

2 −3 2 2 5
3 −1 1 4 6




in echelon form.
79. Put the matrix A in problem 78 into row canonical form.
80. Use Gauss-Jordan elimination to put the matrix B in row canonical form

where

B =

−2 1 5

2 4 1
3 1 −2



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81. Determine if the line x + 9y = 0 is a vector space.
82. Show that the set of third-order polynomials a3x3 + a2x2 + a1x + ao

constitute a vector space.
83. Explain how to find the row space, column space, and null space of a

matrix.
84. By arranging the following set in a matrix and using row reduction

techniques, determine if (2, 2, 3) , (−1, 0, 1) , (4, −2, 0) is linearly in-
dependent.

85. Row reduce the matrix

A =

 2 0 1 0

−1 2 0 1
3 0 1 4




86. Find the null space of the matrix A in problem 85.
87. Define a matrix

B =

−1 2 8

2 1 1
3 4 −1




Determine the rank of this matrix and find its eigenvalues.
88. Let

B =

−1 2 5

−2 1 1
3 4 −1




Find the row space and column space of this matrix.
89. Write the polynomial

v = t2 + 2t + 3

as a linear combination of p1 = 2 t2 + 4t − 1, p2 = t2 − 4t + 2, p3 =
t2 + 3t + 6.

90. Find the null space of

A =

3 2 1

4 5 6
6 5 4



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91. Find the row space, column space, and null space of

B =

1 3 1 0

2 1 4 5
2 7 5 1




92. Using the inner product (A, B) = tr
(
BT A

)
for the space of m × n

matrices and using B = A show that it satisfies the properties of a norm.
93. Use the Gram-Schmidt process to find an orthonormal basis for a sub-

space of the four-dimensional space R
4 spanned by

u1 =




1
1
1
1


 , u2 =




1
2
4
5


 , u3 =




1
−3
−4
−2




94. Calculate the inner product between

A =

−1 2 −2

0 1 0
2 9 1


 and B =


4 1 0

1 2 3
4 5 6




95. Define the difference between orthogonal and orthonormal.
96. Find the eigenvalues and eigenvectors of

B =




−1 2 0 1
1 2 3 4
0 3 0 1
2 0 0 2




97. Normalize the eigenvectors of the matrix B in the previous problem.
98. Find the norms of the functions f = 3x − 4 and g = 3x2 + 2 on

C[−1, 1].
99. Are the functions f and g in the previous problem orthogonal on

C[−1, 1]?
100. Consider the vector space R

3. Do vectors that have the first component
set to zero, i.e., u = (0, a, b) form a subspace of R

3? Do vectors that
have the first component set to −1, i.e., v = (−1, a, b) form a subspace
of R

3? If not, why not? Here a and b are real numbers.



Hints and Solutions
to Quiz and Exam
Questions

CHAPTER 1

1. Yes that is a solution.
2. x = 1, y = 1, z = −1
3. x = 13/4, y = −3/2, z = −5/4
4. x = 61/215, y = 14/215, z = −163/215

5.


5 4 1 −19

3 6 −2 8
1 0 3 11



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6.


3 −9 5

3 5 −6
5 0 1




7.


1 0 0

0 1 0
0 2 7




8.

(
1 0
5 3

)

9. Use 
1 0 0

0 5 0
0 0 1




10. Use 
1 0 0

0 1 0
0 −2 1




CHAPTER 2

1. A + B =

 −1 0 0

11 8 2
11 9 1


 , αA =


 −4 2 0

18 8 −6
4 2 0




AB =

 0 6 5

−10 −17 17
4 2 5




2. AB = −1, BA =

 2 −1 4

14 −7 28
2 −1 4



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3. AB − BA =

 −8 5 1

−13 2 10
17 4 6




No, because we have

AB =
(

1 − x 4
x − 2 4x

)
, BA =

(−x −1
x + 8 1 + 4x

)

No matter what value of x we choose, (AB)12 �= (BA)12

5. Tr (A) = 16
7. Tr (A) = 2, Tr (B) = 13

8. AT =

 1 0 1

−1 4 1
5 0 −2


 , BT =


 9 8 16

−1 8 0
0 4 1




9. A−1 =

 2/15 1/60 1/15

−1/15 7/60 7/15
0 1/4 0




10. A−1 = 1
4


−13 9 −7

−11 7 −5
21 −13 11




CHAPTER 3

1. det |A| = −13
2. det |B| = 324
3. det |A| = −45, det |B| = −26

AB =
(−34 2

−24 −33

)

det |AB| = 1170
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4. x = 23/5, y = 6/5
5. x = 76/33, y = 1/3, z = −5/11
6. Follow the procedure used in Example 3-14.
7. Follow Example 3-15:

8. det |A| = −22, A−1 = 1
11


−4 2 −1

3 4 −2
−5 −17 7




9. The transpose is (
a11 a21

a12 a22

)

10. det |A| = 24

CHAPTER 4

1. The sum and difference are

v + w =
[ −1

12

]
, v − w =

[−3
−4

]

2. The scalar multiplication of u gives

3u =

 6

−3
12




3. a = 2e1 − 3e2 + 4e3

4. (u, v) = −2 − 12i
5. ‖a‖ = √

8, ‖b‖ = √
6, ‖c‖ = √

69
6. Denoting the normalized vectors with a tilde:

a = 1√
14


 2

3
−1


 , u = 1√

19

[
1 + i
4 − i

]
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7. (a) u + 2v − w =
(

11
8

)

(b) 3w =
(−3

3

)

(c) −2u + 5v + 7w =
(

9
34

)

(d) ‖u‖ = √
5, ‖v‖ = √

41, ‖w‖ = √
2

(e) To normalize each vector, divide by the norm given in Part (d).

CHAPTER 5

1. No, does not satisfy closure under addition.
2. Consider the addition of two vectors from this “space,”

A = Ax x̂ + Ay ŷ + 2ẑ, B = Bx x̂ + By ŷ + 2ẑ

A + B = (Ax + Bx ) x̂ + (Ay + By

)
ŷ + (2 + 2)ẑ

= (Ax + Bx ) x̂ + (Ay + By

)
ŷ + 4ẑ

Since addition produces a vector with z-component �= 2, there is no
closure under addition. Therefore this cannot be a vector space.

4. Hint: Show that addition and scalar multiplication result in another
2-tuple. Then define the inverse and zero vectors.

5. u = (5/4 + i) v1 + (−3/2 + i) v2 + (1/4)v3

6. v = (39/9)p1 − 8p2 − (33/9)p3

7. Hint: Show that when you add two such matrices, you get another
2 × 2 matrix of complex numbers. Also check scalar multiplication
and see if you can define a zero vector and additive inverse.

8. Yes (Follow the steps used in Examples 5-11 and 5-12.)
9. Yes (Follow Example 5-16.

10. No
11. Hint: Follow the procedure used in Examples 5-18, 5-19, and 5-20.
12. Hint: Follow the procedure used in Example 5-21.
13. Hint: Follow Examples 5-18, 5-19, 5-20, and 5-21.
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CHAPTER 6

1. (v, u) = v∗
1u1 + v∗

2u2 ⇒ (v, u)∗ = (u, v) = u∗
1v1 + u∗

2v2

2. (v − 2w, u) = −2 + 16i

2 (3iu, v) − (u, iw) = 6i (u, v) − i (u, w) = −3 − i

3. (A, B) = 10
4. Hint: Consider the integral of f 2 (x) over the interval of interest.
5. The norm is 250/221.
6. No. If g(x) = −x3 + 6x2 − x , then for the given f we have

∫ 1

−1
f (x) g (x) dx = 848/105 �= 0.

7. No, since
(

1 2 3
)0

2
5


 = (1)(0) + (2)(2) + (3)(5) = 19

8. Yes. Integrate the product of the functions to show that

∫ 2

0
f (x) g (x) dx = 0

CHAPTER 7

1. Hint: Check to see if F (x1, y1, z1) + F (x2, y2, z2) = F (x1 + x2,

y1 + y2, z1 + z2) and if αF(x, y, z) = F (αx, αy, αz) for some
scalar α and repeat for the other transformations.

2. Try T =
(−3 0 1

0 2 0

)

3. Try T =
(

4 1 1
0 1 −1

)

4. Z =
(

1 0
0 −1

)
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5. If we let e1 =

1

0
0


 , e2 =


0

1
0


 , e3 =


0

0
1




then we find that

T e1 =
(

1
4

)
, T e2 =

(
2

−1

)
, T e3 =

(
5
2

)

6. The transformation acts on the standard basis as

T (1, 0, 0) = (2, 0, 4)

T (0, 1, 0) = (1, 1, −2)

T (0, 0, 1) = (1, 1, −8)

7. You should find that

T
(−x2 + 3x + 5

) = x − 2,

T
(
x2 − 7x + 1

) = −5x − 8,

T
(
x2 + x

) = 3x + 1

8.

F + G = (6x + y + z, y − 3z)

3F = (6x + 3y, 3z)

2G = (8x + 2z, 2y − 8z)

2F − G = (2y − z, − y − 2z)

9. A =
(

2 0
−i 4

)

10. T (1, 4) = T (2, 1) + 4T (1, 5) = (1, 18, 19),

T (3, 5) = 3T (2, 1) + 5T (1, 5) = (3, 26, 36)
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CHAPTER 8

1. The characteristic polynomial is λ2 − λ − 6.

2. The eigenvalues are
(

2, 5+√
13

2 , 5−√
13

2

)
4. z1 =

(
1
0

)
, z2 =

(
0
1

)
5. Yes
6. The degree of degeneracy is 2 for λ = 4.
8. To verify that the matrix is unitary, compute the transpose by interchang-

ing rows and columns. Then set i → −i to construct U †. Finally, show
that UU † = I , where I is the identity matrix.

9. Yes
10. The characteristic equation for the matrix is λ2 − 1 = 0. Since X2 = I ,

the matrix satisfies the Cayley-Hamilton theorem.

CHAPTER 9

1. Symmetric and anti-symmetric matrices that can be constructed from A
are

AS =

−1 2 1

2 6 0
1 0 1


 , AA =


 0 −2 1

2 0 0
−1 0 0




2. The matrix is symmetric.
3. The matrix is not Hermitian since the conjugate is not equal to A. We

have

A† =

−8i 9 −i

9 4 0
i 0 2




4. Take the transpose of the matrix by interchanging rows and columns, and
then complex conjugate each element (let i → −i). If you get the same
matrix back, it is Hermitian.

5. Use a program like Matlab or Mathematica to find the eigenvalues nu-
merically. They are (8.54, −2.23, −0.32).

6. Hint: Normalize each eigenvector. To show they are orthogonal, show
that the inner products of the eigenvectors with each other vanish.

7. Hint: Show that the inner products among the columns of each matrix
vanish.
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8. The eigenvalues are
(
1, e−iφ, eiφ

)
9. If the matrix were unitary, then VV .† = I , where I is the 2 × 2 identity

matrix. This is not true for the given matrix.
10. You should find that UU † = I ; therefore the matrix is unitary.

CHAPTER 10

1. The LU decomposition is

L =

 1 0 0

−2 1 0
−4 13/5 1


 , U =


−1 3 2

0 5 9
0 0 −87/5




2. The LU decomposition of B is

L =

1 0 0

2 1 0
8 −15 1


 , U =


1 2 3

0 1 1
0 0 −8




3. The LU factorization of A is

L =

 1 0 0

−1/4 1 0
1/4 −1/15 1


 , U =


4 2 1

0 15/2 13/4
0 0 −31/30




4. L =

 1 0 0

11 1 0
−3 −10/17 1




5. The inverse is

A−1 = 1

254


 19 29 −59

7 4 5
−27 39 17




6. The normalized eigenvectors are

a1 = 1√
5

(−2
1

)
, a2 = 1√

5

(
1
2

)
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7. The singular value decomposition is found numerically to be

u =

−0.4 −0.5 −0.8

−0.3 0.9 −0.4
−0.9 −0.1 0.5


 , v =

(−0.9 −0.4
−0.4 0.9

)
,

w =

3.7 0

0 3.3
0 0




8. The QR factorization is

Q =

 3/

√
73 8/

√
73 0

152/
√

111, 617 −57/
√

111, 617 4
√

73/1529
−32/

√
1529 12/

√
1529 19/

√
1529




R =



√
73 −2/

√
73 24/

√
73

0
√

1529/73 −171/
√

111, 617
0 0 36/

√
1529




FINAL EXAM

1. 3A =

−3 0 3

6 12 9
0 3 0


, AT =


−1 2 0

0 4 1
1 3 0


,

A−1 =

−2/5 1/5 −4/5

0 0 1
2/5 1/5 −4/5




2. A + B =
(

5 −2
2 0

)
, A − B =

(−1 4
−2 −2

)
, [A, B] =

(
2 −11
6 −2

)

3. x = −20/21, y = 23/21, z = 1/21

4. Tr (C) = 6 + 7i

5. AB = −34i, B A =
(

8i −28
−12 −42i

)

6. (A + B)−1 = A−1 + B−1
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7. A−1 =

2/3 5/6 1/2

0 1/2 1/2
1/3 1/6 1/2




8. Looking at the inverse

A−1 =




x
−6−x

−2−x2

−6−x − 2
−6−x

0 1 0

− 3
−6−x

−1+3x
−6−x − 1

−6−x




So we take x �= −6
9. x = 5/22, y = −3/22

10. Tr (A) = 8, Tr (B) = 5, [A, B] =
( −7 3

−32 7

)

11. Hint: Write out the summation formula for matrix multiplication.

12. y1 =
(

i
1

)
, y2 =

(−i
1

)
13. We normalize the eigenvectors of Y and then use them to construct the

unitary matrix. It is

U = 1√
2

(
i −i
1 1

)
⇒ U † = 1√

2

(−i 1
i 1

)

You can verify that UU † = I. To diagonalize Y, calculate U †YU .

14. Hint: The eigenvectors of the matrix are


 − 1 −√

5
2

1


 ,


 1 + √

5
2

1






15. The eigenvalues are {−1, 1}.

16. Hv0 = 1√
2

(
1
1

)
, Hv1 = 1√

2

(
1

−1

)

17. H1 =

 −2 +√

2√
2

1


, H2 =


 2 + √

2√
2

1



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18. det |A| = −37
19. det |A| = −182
20. The minors are

(1, 1) → 1
(1, 2) → 2
(2, 1) → 5
(2, 2) → 19

21. Follow Examples 3-13 and 3-14 to find the cofactors of the matrix. Then
the adjugate is the matrix of the cofactors.

22. A−1 =
(−11/179 9/179

4/179 13/179

)

23. B−1 =

 1/7 −2/7 1/14

0 1 0
−1/7 2/7 3/7




24. x = 59/30, y = 2/15
25. x = 23/11, y = 3/11, z = 4/11
26. det |A| = det |B| = −1
27. det |B| = 70
28. Yes, det |A| = 32, and the eigenvalues are (1, 4, 8).
29. det(B) = 140, Tr (B) = 17
30. x = −26/11, y = −19/11, z = 15/11.

31. A† =
(

i 3 − 2i
4 8

)

32. Hint: Find the characteristic equation and insert

B2 =

 10 4 5

−5 4 0
−3 8 9




33. Compute the transpose and then

A(S) = 1

2

(
A + AT

) = 1

2


 0 4 −1

4 16 9
−1 9 −4




A(A) = 1

2

(
A − AT

) = 1

2


 0 2 −3

−2 0 1
3 −1 0






242 Hints and Solutions

34. The eigenvalues of A(A) are
(
0, −i

√
7/2, i

√
7/2
)

and the eigenvectors

are a1 = (1/2, 3/2, 1) , a2 = 1
10

(
−2 − 3i

√
14, −6 + i

√
14, 10

)
, a3 =

1
10

(
−2 + 3i

√
14,−6 − i

√
14, 10

)
.

35. The matrix is Hermitian.
36. The eigenvalues are λ1 = 1−√

57
2 , λ2 = 1+√

57
2 , and the eigenvectors are

a1=
(

1
(

7−√
57

4

)
(1 + i)

)
, a2 =

(
1
(

7+√
57

4

)
(1 + i)

)
.

37. Yes the matrix is Hermitian.
38. Show that (a1, a2) = 0.
39. We can write the matrix as

α = 7 − √
57

4
, β = 7 +

√
57

4

U =
(

1 1
α (1 + i) β (1 + i)

)

40. No, check the inner products of the vectors making up the columns.

41. T =
(

1 1 1/2
1 0 −1/2

)
42. The action of the transformation on the standard basis is

T (1, 0, 0) = (4, 0), T (0, 1, 0) = (1, 1), T (0, 0, 1) = (1, − 1)

and the matrix representation is found to be

T =
(−6 1 −4

2 0 1

)

43. σ =
(

0 1
1 0

)

44. T =
(

3/2 1 9/2
1/2 2 5/2

)

45. Map the transformation onto R
3 → R

2 and you should find

T
(
2x2 + x + 1

) = (0, 2), T
(
x2 + 4x + 2

) = (−9, 3),

T
(−x2 + x

) = (−4, 0)
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Then the matrix representation is

T =
(

1 −3 −2
−1 −6 −2

)

46. Using linearity

F + G = (2x + 3z), 4F = (4x + 8z, 4y − 4z)

−6G = (−6x − 6z, 6y + 6z), F − 3G = (2x − z, −2y − 4z)

47. H is not linear, but the other transformations are.

48. A=
(

2 3
1 −4

)
49. ‖u‖ = √

47
50. ‖u − v‖ = √

18
51. (a, b) = −12
52. Yes, (u, v) = 0.
53. Yes, (u, v) = 0.
54. The normalized vector is ṽ = 1√

150
v .

55. ‖a − b‖ = √
65

56. u† = (2 −3i −5i
)

57. Yes
58. Yes
59. x = 2±6i

√
23

13
60. Notice that v is normalized. In order for the two vectors to be orthogonal,

we must have (u, v) = 0. This leads to the equation x + 1 = 0. Setting
x = −1, we normalize u, giving

ũ = 1√
51

u

Then the set (ũ, v) is orthonormal.
61. First set x3 = t and then the parametric solution is

x1 = 26/7 − 11/7t

x2 = −4/7 + 6/7t

62. The rank is 3
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63. The rank is 3 and the reduced echelon form is
1 0 0 2/3

0 1 0 5
0 0 1 −41/6




64. The augmented matrix is
 9 1 −5 1

3 −1 2 −8
0 4 0 1

∣∣∣∣∣∣
0

−2
12




65. The elementary matrix is 
1 0 0

0 1 0
2 0 1




66. The elementary matrix is


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1




67. The elementary matrix is 
1 0 0

0 1 0
6 0 −3




68. In triangular form

A →

−1 2 4

0 11 19
0 0 −42




69. The elementary matrices are

E1 =

1 0 0

0 1 0
3 0 1


 , E2 =


1 0 0

5 1 0
0 0 1


 , E3 =


1 0 0

0 1 0
0 −8 11



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70. Rank (A) = 3
71. Find the characteristic equation using the determinant to show that the

eigenvalues are
(
−2,

√
21, −√

21
)

.

72. The eigenvectors are {(2, −3,1) , (−2.43, 2.36,1) , (1.23, 1.44,1)} .

73. Two matrices are row equivalent if a series of elementary row operations
on one can transform it into the other matrix. Gaussian elimination on
A gives

Ã =
(

6 −2 1
0 0 1

)

So the matrices are not row equivalent
74. Gaussian elimination on A can bring it into the form

A →




1 4 0 2
0 8 3 12
0 0 −29/4 −25
0 0 0 −475/29




75. Rank(B) = 3
76. Try multiplication by the matrix

E =




1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1




77. Try a parametric solution, set z = t, and then the solution is

x = −3t/2, y = 7t/2
78. Gaussian elimination gives

Ã =

1 −2 8 1 4

0 1 −14 0 −3
0 0 47 1 9




79. Reduced row echelon form is
1 0 0 67/47 86/47

0 1 0 14/47 −15/47
0 0 1 1/47 9/47






246 Hints and Solutions

80. The reduced row echelon form is the identity matrix.
81. Yes, check scalar multiplication and vector addition.
82. Hint: Check linearity.
83. To find the row space, row reduce the matrix A. The row space

is made up of the vectors that can be formed from the nonzero
rows of the reduced form of the matrix. To find the column space,
select the columns in the reduced matrix that have a pivot. These
columns are used to form the vectors of the column space. To find
the null space, row reduce the matrix; then vectors x that solve
Ax = 0 and find linear combinations that make up the null space (see
Chapter 5).

84. The set is linearly independent.
85. Gaussian elimination can bring the matrix into the form


2 0 1 0

0 2 1/2 1
0 0 −1/2 4




86. The null space of the matrix used in Problem 85 is






−4
−5/2

8
1






87. Rank(B) = 3, numerical evaluation gives the eigenvalues as (6.01, −
5.28, −1.73).

88. The row space of B is {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)}. Take the transpose
of each vector to obtain the column space.

89. v = (1/83) (72p1 − 7p2 + 33p3)
90. The null space is




 1

−2
1






91. The row space is

{(1, 0, 0, 29/17) , (0, 1, 0, − 13/17), (0, 0, 1, 10/17}
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The column space is 


1

0
0


 ,


0

1
0


 ,


0

0
1






The null space is 




−29/17
13/17

−10/17
1






92. Hint: Show that for matrices of real numbers, (A, B) = (B, A) , (A, A)
≥ 0.

93. Hint: Follow the procedure used in Example 6-8.
94. The inner product is (A, B) = Tr(BT A) = 59.
95. Two vectors u,v are orthogonal if the inner product (u,v) = 0. If the

vectors are also normalized, i.e. (u, u ) = (v , v ) = 1, then the vectors
are orthonormal.

96. This problem should be done numerically with Matlab or Mathematica.
The eigenvalues are (−1.79 − 0.20i, − 1.79 + 0.20i, 1.43, 5.16).

97. Compute the eigenvectors numerically. You should find one of them
to be 


1.58
4.36
2.73
1.00




98. To find the norms, square each function and integrate over the interval.
The norm of f is 38, while the norm of g is 98/5.

99. No they are not because

∫ 1

−1
(3x − 4)

(
3x2 + 2

)
dx = −24 �= 0

100. Vectors with the first component set to zero do form a vector space. To
check this, consider vector addition. Vectors with the first component
set to −1 do not form a subspace of R

3 because if you add two vectors
together, the result no longer belongs to the space of vectors with first
component set to −1.
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addition. See also multiplication;
subtraction

matrix, 34
vector, 79, 100, 101, 108, 127

additive inverse, 98
adjugate, 70, 72

cofactors, 72
algebra, matrix, 34–56

addition, 34, 46
Hermitian conjugate, 49, 173, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
normalization, 165
transpose operation, 49

identity matrix, 43
inverse matrix, 52
multiplication, 19, 22–24, 36, 38,

56, 160
column vector, 36
column vector by row vector,

37
row vector, 36
scalar, 35
of two matrices, 36

square matrices, 40
subtraction, 35
trace, 50
transpose operation, 45

anticommutator, 185
anticommute, 185
anti-Hermitian matrices, 188

imaginary eigenvalues, 188

augmented matrix, 5–7, 12, 15–17, 29, 138,
141, 142, 151. See also elementary
operations

basis, 141
back substitution, 7, 16, 17, 205, 207. See also

substitution; triangular matrix
basis, 106, 141

matrix, 196
orthonormal, 144, 145
vectors, 100, 106

inner product, 195
spanning set, 102
unit length, 77

brute force method, 69
canonical form, 10, 28, 29, 31

pivot, 10
Cauchy-Schwartz inequality, 90, 127. See also

vectors
Cayley-Hamilton theorem, 155, 156, 157
characteristic. See also eigenvalues

equation, 155
polynomial, 154, 157

closure relation. See completeness relation
coefficients, 2, 5, 8
coefficient matrix, 5, 9
cofactor, 70, 71, 73
column vector, 36, 79
commutator, 40–43. See also square

matrices
commuting matrices, 40. See also square

matrices
completeness relation, 106, 168, 169. See also

vectors
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complex conjugate, 49, 50, 85, 86, 186, 188
complex vector space, 80, 85, 88, 108
conjugate, Hermitian, 49, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
normalization, 90, 165

basis vector, 132
eigenvector, 167, 176, 211, 216

transpose operation, 49
consistent system, 3. See also systems of linear

equations
definition of, 3
parametric solution, 3
unique solution, 3

Cramer’s rule, 63. See also linear equations
decomposition, 199–214

LU factorization, 204
QR decomposition, 212
SVD decomposition, 208

degeneracy, 174
degree of, 174

determinant, 59–74, 177
brute force method, 69
Cramer’s rule, 63
inverse matrix, 70
of second-order matrix, 59–60
of third-order matrix, 61–62, 70
of triangular matrix, 67
properties of, 67
theorems, 62

swapping rows or columns, 62
two identical rows or identical columns,

62
diagonal matrix, 171, 215

unitary transformation, 174
diagonal representations

of an operator, 171
dot product, 78, 86. See also vectors
echelon, 8–11, 14, 26, 27, 105, 109–111, 114,

226, 227. See also triangular matrices
pivots, 114

eigenspace, 167
eigenvalue, 154–178, 210. See also

eigenspace; matrix
eigenvectors, 154, 159

orthonormal basis, 172
Cayley-Hamilton theorem, 155

characteristic polynomial, 154
degenerate, 174
determinant, 177
diagonal representations of an operator,

171
eigenspace, 167
eigenvectors, 159
normalization, 162
similar matrices, 170
trace, 177
for unitary matrices, 195

elementary matrix, 18–24, 26, 200–202, 206.
See also triangular matrix

inverse of, 203
matrix multiplication, 22–24
row exchange, 18
row operations on 3 × 3 matrix, 24

elementary operations, 6. See also linear
equation

augmented matrix, 6
row operation, 14
triangular form, 7

lower triangular matrix, 8
upper triangular form, 7

triangular matrices, 7
elimination

Gaussian, 17, 200
Gauss-Jordan, 27

Euclidean space, 122, 123
factorization, LU, 204
forward substitution, 204
free variables, 116, 117
Gaussian elimination, 17, 200

triangular form, 7
Gauss-Jordan elimination, 27. See also

systems of linear equations
row canonical form, 28

Gram-Schmidt procedure, 129, 130, 213
Hadamard operator, 145

basis vectors, 145
Hermitian, 185. See also matrix algebra;

special matrices, 185
conjugate, 49, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
normalization, 165
transpose operation, 49
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matrices, 171, 185
diagonal elements, 186
eigenvalues, 186
eigenvectors, 172, 186, 195

homogeneous systems, 26
echelon form, 26

identity matrix, 43, 107, 108, 138, 140, 155,
189

2 × 2 matrix, 44
3 × 3 matrix, 44

inconsistent system, 3. See also systems of
linear equations

definition of, 3
inequality

Cauchy-Schwartz, 90, 127
triangle, 90, 127

infinite dimensional, 108. See also vectors
inner product space, 77, 86–91, 120–132, 193,

195, 196, 213. See also outer product;
vectors

on function spaces, 123
Gram-Schmidt procedure, 129
linearity, 120
for matrix spaces, 128
orthogonal, 87
positive definiteness, 121
properties of the norm, 127
symmetry, 121
vector space R

n , 122
inverse

additive, 98
of matrix, 52, 70

adjugate, 72
cofactor, 71
minor, 70

nonsingular, 52
operations, 54

LDU factorization, 215
diagonal matrix, 215
lower triangular matrix, 215

linear equation system
coefficients, 2
Gauss-Jordan elimination, 27
homogeneous systems, 26
scalars, 2
solution of, 2–3

consistent systems, 3
inconsistent systems, 3

matrices
elementary, 18
representation, 3
triangular, 7

elementary matrices, 22
elementary operations, 6
types

consistent, 3
inconsistent, 3

linear independence, 103. See also vectors
linear system

LU factorization, 204–208
solutions of

elementary operations, 6
linear transformations, 135–151

matrix representations, 137
properties of, 149
in vector space, 136, 143

lower triangular matrix, 8, 199, 200–203, 201,
203, 215

LU decomposition, 199, 204–208, 215.
See also decomposition; linear system

forward substitution, 204
lower triangular matrix, 199, 200–203
upper triangular matrix, 199

Matricesanti-Hermitian matrices, 188
matrix

addition, 34, 46
augmented matrix, 5–7, 12, 15–17, 29, 138,

141, 142, 151
basis, 196
coefficient matrix, 5
column rank, 110
commutator, 41
commute, 40
decomposition, 199–214

LU factorization, 204
QR decomposition, 212
SVD decomposition, 208

determinant, 59
eigenvalues, 177

diagonal matrix, 171
eigenvalues, 162
elements of, 4
Hermitian conjugate, 49, 173, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
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matrix, normalization (cont.)
normalization, 165
transpose operation, 49

in echelon form, 9
identity matrix, 43
inverse matrix, 52, 70
multiplication, 19, 22–24, 36, 38, 56, 160

column vector, 36
column vector by row vector, 37
row vector, 36
two matrices, 36

pivots, 9
representation, 142, 144

basis, 137
Hadamard operator, 145
of system of equations, 3

row canonical form, 29
row rank, 110
scalar multiplication, 35
square matrices, 40
subtraction, 35
symmetric, 174
third-order matrix, 61
trace, 50, 177
transformation matrix, 173
transpose, 45, 47, 191
triangular form, 7, 17
types of

elementary, 18
identity, 43
similar, 170
special, 180–197
square, 40
triangular, 7

matrix, Hermitian, 171
diagonal elements, 186
eigenvalues, 186
eigenvectors, 172, 186, 195

minor, 70, 71. See also determinants
multiplication. See also addition

matrix, 19, 22–24, 36, 38, 56, 160
column vector, 36
column vector by row vector, 37
row vector, 36
two matrices, 36

scalar, 35, 81
nonsingular matrix, 52, 200
norm

properties of, 127
unit vector, 89
vector, 88, 122

normalization, 90, 162. See also unit vector
basis vector, 132
eigenvector, 167, 176, 211, 216

null space. See also vectors
matrix, 115
nullity, 115

nullity, 115
operator, Hadamard, 145
orthogonal, 87, 123, 130, 134, 186, 189,

190–194, 197, 208, 212, 222, 229.
See also inner product

basis, 130
matrices, 189, 192–194, 208

orthonormal basis, 189
unitary matrix, 194

rotations, 192–194
orthonormal basis, 126, 127, 129, 172, 189,

212, 130, 144, 153, 172, 189, 192, 193,
197, 212, 222, 223. See also
eigenvectors

Cayley-Hamilton theorem, 155
characteristic polynomial, 154
degenerate, 174
determinant, 177
diagonal representations of an operator, 171
eigenspace, 167
normalization, 90, 162

basis vector, 132
eigenvector, 167, 176, 211, 216

similar matrices, 170
eigenvalues, 170
unitary transformations, 172

trace, 177
for unitary matrices, 195

outer product, 107. See also inner product
parallelogram law, 76
parametric solution, 3
pivot, 8–11, 13, 14, 16, 17, 111, 201

elementary row operations, 16
nonzero, 113

positive definiteness, 121
product spaces, inner, 120–132

on function spaces, 123
Gram-Schmidt procedure, 129
for matrix spaces, 128
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properties of the norm, 127
vector space R

n , 122
QR decomposition, 212. See also

decomposition
rank, matrix, 10. See also triangular matrices
real vector space, 89
reduced matrix, 105, 113
reduced system, 8
rotation matrix, 193

orthogonal, 193
row addition operation, 201, 205
row canonical form, 10, 28
row echelon form. See echelon
row equivalent, 10, 109
row exchange, 18
row operations, 22. See also elementary

matrices
matrix multiplication, 19, 22–24, 36, 38, 56,

160
column vector, 36
column vector by row vector, 37
row vector, 36
scalar, 35
two matrices, 36

on 3 × 3 matrix, 24
row space, 109. See also vectors

reduced matrix, 113
row vector, 36
scalar, 2
scalar multiplication, 35, 81, 82, 96, 97, 99,

100, 101, 108. See also matrix
scalar product. See inner product
second-order matrix

determinant, 59–60
similar matrices

eigenvalues, 170
unitary transformations, 172

singular value, decomposition, 208, 210,
216

skew symmetric matrix, 180
anticommute, 185
diagonal elements, 184

solution possibilities, 3
consistent system

infinite solution, 3
unique solution, 3, 10

inconsistent system
no solution, 3

spaces
function, 123
inner product, 77, 86–91, 120–132, 193,

195, 196, 213
on function spaces, 123
Gram-Schmidt procedure, 129
linearity, 120
for matrix spaces, 128
orthogonal, 87
positive definiteness, 121
properties of the norm, 127
symmetry, 121
vector space R

n , 122
vector, 94–117, 143

basis vectors, 100, 106
completeness, 106
linear independence, 103
null space of a matrix, 115
row space of a matrix, 109
subspaces, 108

spanning set, 102
special matrices, 180–197

Hermitian matrices, 185
diagonal elements, 186
eigenvalues, 186
eigenvectors, 172, 186, 195

orthogonal matrices, 189
skew-symmetric matrices, 180
symmetric, 180
unitary matrices, 194

special Matricesanti-Hermitian matrices, 188
square matrices, 4, 40, 208

characteristic polynomial, 154
commutator, 40
commuting matrices, 40
identity matrix, 43

subspaces, 108. See also vectors
substitution. See also triangular matrix

back substitution, 7, 16, 17, 205, 207
forward substitution, 204, 205

subtraction, matrix, 35
SVD decomposition, 208–212
swap operation, 25
symmetric matrix, 180–182

product, 181
skew, 180

anticommute, 185
diagonal elements, 184
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systems of linear equations, 1–31
coefficients, 2
Gauss-Jordan elimination, 27
homogeneous systems, 26
scalars, 2
solution of, 2–3

consistent systems, 3
inconsistent systems, 3

matrices
elementary, 18
triangular, 7

matrix representation, 3
row operations implementation with

elementary matrices, 22
solving a system using elementary

operations, 6
types

consistent, 3
inconsistent, 3

theorems
Cauchy-Schwartz inequality, 90
triangle inequality, 90

third-order matrix
determinant, 61–62, 70

trace, 50, 177
diagonal elements, 50
eigenvalues, 177

transformation, 138. See also vectors
linear, 135–151
nonlinear, 148
orthogonal, 191, 192
unitary transformation, 174

transpose operation, 45
matrix, 45
properties, 46
vector, 84

triangle inequality, 90, 127. See also vectors
triangular matrices, 7. See also elementary

matrix
back substitution, 7
canonical form, 10
determinant, 67
echelon, 8
pivots, 8–9
rank of matrix, 10
row echelon form, 9–10
row equivalence, 10

tuples, 79

unique solution, 3, 10
unit length, 77
unit vector. See also vectors

norm
properties of, 127

normalization, 90
basis vector, 132
eigenvector, 167, 176, 211, 216

unitary matrices, 172, 176, 194. See also
orthogonal matrix

eigenvalues, 195
Hermitian conjugate, 49, 173, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
normalization, 165
transpose operation, 49

Hermitian matrix, 171, 185, 195
diagonal elements, 186
eigenvalues, 186
eigenvectors, 172, 186, 195

unitary transformation, 172
diagonal matrix, 174

upper triangular form, 7, 13, 16
upper triangular matrix, 8, 199, 206, 212,

215
vectors, 76–91, 94–117

addition, 76–79, 99–101, 108, 127
associative, 94
commutative, 94

angle between two vectors, 90
distance between two vectors, 91
dot product, 78, 86
Hermitian conjugate, 49, 173, 195

complex elements, 49
of eigenvectors, 164
matrix transpose, 49
normalization, 165
transpose operation, 49

inner product, 77, 86–91, 120–132, 193,
195, 196, 213

on function spaces, 123
Gram-Schmidt procedure, 129
linearity, 120
for matrix spaces, 128
orthogonal, 87
positive definiteness, 121
properties of the norm, 127
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symmetry, 121
vector space R

n , 122
inverse of, 83
norm, 88, 122

properties of, 127
unit vector, 89
vector, 88, 122

parallelogram law, 76
scalar multiplication, 81
spaces, 94–117

basis vectors, 100, 106
completeness, 106
linear independence, 103
null space of a matrix, 115
row space of a matrix, 109
subspaces, 108

theorems
Cauchy-Schwartz inequality, 90
triangle inequality, 90

theorems involving vectors, 90
unit vectors, 89
vector space R

n , 79, 122
vector transpose, 84
zero vector, 83

vectors, basis, 100, 106. See also vectors

inner product, 77, 86–91, 120–132, 193,
195, 196, 213

on function spaces, 123
Gram-Schmidt procedure, 129
linearity, 120
for matrix spaces, 128
orthogonal, 87
positive definiteness, 121
properties of the norm, 127
symmetry, 121
vector space R

n , 122
spanning set, 102
unit length, 77

vector space, 94
addition, 94
basis, 106
dimension of, 108
infinite dimensional, 108
orthonormal basis, 144
polynomials, 98
scalar multiplication, 94
second-order polynomials, 97
subspace, 108
zero vector, 83

zero vector, 83, 94, 97, 99. See also vectors
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