
TE
AM
FL
Y

Team-Fly®

Multicast and Group Security

For quite a long time, computer security was a rather narrow field of study that was

populated mainly by theoretical computer scientists, electrical engineers, and applied

mathematicians. With the proliferation of open systems in general, and of the Internet

and the World Wide Web (WWW) in particular, this situation has changed funda-

mentally. Today, computer and network practitioners are equally interested in computer

security, since they require technologies and solutions that can be used to secure

applications related to electronic commerce. Against this background, the field of com-

puter security has become very broad and includes many topics of interest. The aim of

this series is to publish state-of-the-art, high standard technical books on topics related

to computer security. Further information about the series can be found on the WWW

at the following URL:

http://www.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic related

to computer security, feel free to contact either the Commissioning Editor or the Series

Editor at Artech House.

For a listing of recent titles in the Artech House

Computer Security Series, turn to the back of this book.

Multicast and Group Security

Thomas Hardjono
Lakshminath R. Dondeti

Artech House

Boston * London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data

Hardjono, Thomas.

Multicast and group security / Thomas Hardjono, Lakshminath R. Dondeti.

p. cm.—(Artech House computer security series)

Includes bibliographical references and index.

ISBN 1-58053-342-6 (alk. paper)

1. Multicasting (Computer networks)—Security measures. 2. Computer

networks—Security measures.

I. Dondeti, Lakshminath R. II. Title.

TK5105.887.H37 2003

005.8—dc21 2003048097

British Library Cataloguing in Publication Data

Hardjono, Thomas

Multicast and group security—(Artech House computer security series)

1. Multicasting (Computer networks)—Security measures

I. Title II. Dondeti, Lakshminath R.

005.8

ISBN 1-58053-342-6

Cover design by Christina Stone

q 2003 ARTECH HOUSE, INC.

685 Canton Street

Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced

or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any

information storage and retrieval system without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately

capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not

be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-342-6

Library of Congress Catalog Card Number: 2003048097

10 9 8 7 6 5 4 3 2 1

To Joan and Elizabeth

— Thomas

To Sridevi

— Lakshminath

Contents

Foreword . xv

Preface . xvii

Acknowledgments . xxi

1 Introduction . 1

1.1 Motivation for multicast security . 2

1.2 Multicast content protection . 5

1.2.1 Problem area 1: Secure multicast data handling 5

1.2.2 Problem area 2: Management of keying material 7

1.2.3 Problem area 3: Multicast security policies 11

1.3 Infrastructure protection. 12

1.4 Applications of secure multicasting . 13

1.5 Road map . 13

References. 14

2 Framework for multicast and group security 17

2.1 The problem scope of multicast security 17

2.2 Fundamental issues . 19

2.2.1 Routing infrastructure protection 20

vii

2.2.2 Controlled access to the multicast distribution tree 20

2.2.3 Management of keying material 21

2.3 Transport and applications issues . 23

2.3.1 Security of Reliable Multicast protocols 23

2.3.2 Applications requirements and other issues 24

2.4 The IETF problem scope for multicast

and group security . 25

2.4.1 A brief history of multicast security efforts

in the IETF . 25

2.4.2 The IETF multicast security Reference Framework. 27

2.4.3 Elements of the Reference Framework. 28

2.5 Three problem areas in the management of

keying material . 30

2.5.1 Problem area 1: Multicast data handling 31

2.5.2 Problem area 2: Management of keying material 32

2.5.3 Problem area 3: Multicast security policies 33

2.6 The building blocks approach . 34

2.6.1 Motivation for building blocks. 34

2.6.2 Functional building blocks . 38

2.7 Summary . 42

References. 43

3 Multicast data authentication . 45

3.1 Issues in multicast data authentication 46

3.1.1 Providing group authentication . 48

3.1.2 Providing source authentication . 49

3.2 Digital signatures for source authentication 50

3.2.1 Block signatures and individual packet

authentication . 51

3.3 Hash chaining to authenticate streaming data 55

3.3.1 Graph representation of hash chaining 56

3.3.2 Efficient multichained stream signature. 58

3.3.3 Augmented chaining . 59

3.3.4 Piggybacking . 59

3.3.5 Discussion on hash chaining for authentication 60

viii Contents

3.4 MAC-based source authentication of unreliable streams. 61

3.4.1 TESLA initialization . 63

3.4.2 MAC-based authentication of packets by the sender 64

3.4.3 Packet processing at the receivers in TESLA 65

3.4.4 Enhancements to TESLA . 66

3.4.5 Applicability analysis of TESLA 67

3.5 IPsec ESP and MESP . 68

3.6 Summary . 69

References. 70

4 Introduction to group key management 73

4.1 A model for group key management 74

4.2 Requirements in group key management 76

4.2.1 Security requirements of unicast key

management . 76

4.3 Security requirements of group key management 79

4.4 GSA management . 82

4.4.1 The GSA model . 83

4.4.2 Definition of GSA . 85

4.5 Classification of the group key management

problem. 86

4.6 Summary . 88

References. 88

5 Architectures and protocols for group
key management . 91

5.1 Architectural issues and motivations 93

5.2 IKAM . 94

5.2.1 Domains, areas, and key distributors 95

5.2.2 Multicast groups for data and control 96

5.2.3 Keys: Multicast groups and control

multicast groups . 98

5.2.4 Control multicast groups: Address allocation 99

5.2.5 Arrangement of keys in the domain 100

Contents ix

5.3 Iolus . 103

5.3.1 Hierarchical subgrouping . 104

5.3.2 Subgroup key management . 105

5.3.3 Secure group communication in Iolus 106

5.3.4 Limitations of Iolus architecture 108

5.4 Key distribution protocols. 108

5.4.1 GKMP . 108

5.4.2 GSAKMP . 112

5.4.3 GDOI . 117

5.5 Summary . 126

References. 126

6 Group key management algorithms 129

6.1 Batch and periodic rekeying . 131

6.1.1 Trade-offs in batch rekeying . 132

6.2 MARKS. 134

6.3 LKH . 136

6.3.1 Initializing an LKH . 137

6.3.2 Adding a member to a key tree . 137

6.3.3 Join rekeying in LKH . 138

6.3.4 Efficient join rekeying using LKH+ 140

6.3.5 Leave rekeying in LKH . 140

6.3.6 Efficient leave rekeying using OFCs 141

6.4 OFT. 142

6.4.1 Initializing an OFT. 144

6.4.2 Join rekeying in OFT . 145

6.4.3 Leave rekeying in OFT . 146

6.5 Batch processing of membership changes in key trees 148

6.6 Reliable transport of rekey messages 148

6.6.1 Repeated retransmission of rekey message 148

6.6.2 FEC for reliability . 149

6.6.3 Weighted key assignment for reliable transport. 149

6.7 Stateless key revocation algorithms . 150

6.7.1 STR for membership revocation 151

6.7.2 SDR for membership revocation 152

x Contents

TE
AM
FL
Y

Team-Fly®

6.8 Summary . 154

References. 156

7 Group security policy . 159

7.1 Group security policy framework . 161

7.2 Classification of group security policy 164

7.2.1 Announcement policy . 165

7.2.2 Membership policy . 166

7.2.3 Access control or authorization policy 166

7.2.4 Data protection policy . 166

7.2.5 Group management delegation policy 167

7.2.6 Key distribution policy . 168

7.2.7 Compromise recovery policy . 168

7.3 Group security policy specification . 169

7.3.1 Ismene policy specification . 169

7.3.2 CCNT . 170

7.3.3 GSPT . 171

7.3.4 Discussion on policy specification languages 173

7.4 Policy negotiation and reconciliation. 174

7.4.1 Ismene policy reconciliation . 174

7.4.2 Policy negotiation in DCCM . 175

7.5 Group security policy enforcement . 176

7.5.1 Policy distribution and enforcement in GDOI 176

7.5.2 Antigone policy framework . 177

7.5.3 GSAKMP policy distribution and enforcement 178

7.6 Summary . 178

References. 179

8 Securing multicast routing protocols 181

8.1 The three components of multicast security. 182

8.1.1 General types of attacks in multicast routing 184

8.1.2 Multicast routing and security . 185

Contents xi

8.2 Overview of multicast routing . 186

8.2.1 Classification of multicast routing protocols 188

8.2.2 DVMRP . 188

8.2.3 PIM-SM . 189

8.2.4 IGMP . 191

8.2.5 SSM. 193

8.3 Security requirements in unicast and

multicast routing . 194

8.4 PIM-SM security . 197

8.4.1 Background . 197

8.4.2 PIM authentication . 198

8.4.3 SKMP for PIMv2 . 199

8.4.4 Revised PIM-SM: Security issues 202

8.4.5 Revised PIM-SM: Possible solutions 204

8.5 MSDP security . 205

8.6 IGMP security . 207

8.6.1 Membership authorization and authentication

issues . 209

8.6.2 Membership authorization approaches 210

8.6.3 Message authentication approaches. 212

8.6.4 Open issues . 213

8.7 Security in other routing protocols . 214

8.7.1 Secure CBT multicasting: SMKD 214

8.7.2 KHIP . 215

8.8 Summary . 216

References. 218

9 Security in Reliable Multicast protocols 223

9.1 Classification of RM protocols . 225

9.1.1 Good throughput strategies . 226

9.1.2 Network entity participation and support 228

9.2 Generic security requirements for RM protocols. 229

9.3 Security of TRACK protocols. 231

9.3.1 Model of TRACK . 232

xii Contents

9.3.2 RMTP-II . 232

9.3.3 TRAM . 237

9.4 Security of NORM protocols . 238

9.4.1 Model of NORM . 239

9.4.2 PGM . 244

9.5 Security of FEC-based protocols . 247

9.6 Summary . 248

References. 249

10 Applications of multicast and their security 253

10.1 Stock market data distribution . 254

10.1.1 Background . 254

10.1.2 Network topology . 254

10.1.3 Security requirements and possible approaches 255

10.2 Local area IP Television . 257

10.2.1 Background . 258

10.2.2 Network topology . 259

10.2.3 Security requirements and possible approaches 260

10.3 Nonreal-time multicast distribution 261

10.3.1 MFTP . 262

10.3.2 Security requirements of MFTP applications 264

10.3.3 Security solutions for MFTP . 264

10.4 SecureGroups project . 266

10.4.1 Impact of mobility on group key management 267

10.5 Summary. 268

References. 268

11 Conclusion and future work . 271

11.1 IETF multicast security framework 272

11.2 Secure multicast data transmission 272

11.2.1 Group authentication. 273

11.2.2 Source authentication . 274

11.3 Group key distribution . 274

11.3.1 Reliable transport of rekey messages 275

11.3.2 Secure multicast group management 276

Contents xiii

11.3.3 Distributed group key management 277

11.3.4 Secure group communication between mobile

members in wireless environments 277

11.4 Policy . 278

11.5 Infrastructure protection. 278

11.6 Future direction and final words . 280

Glossary . 283

About the Authors . 295

Index . 297

xiv Contents

Foreword

Both multicast and security present interesting technological challenges.

Put them together into multicast security, and you have a lot of daunting

but interesting problems.

What are some of the challenges of multicast security? The designers of

multicast envision its use to distribute content simultaneously to huge

numbers of receivers. If only those receivers are allowed to see the content, it

must be encrypted. But how can an encryption key be efficiently distributed

to so many receivers? Furthermore, a key for encrypting data should be

changed periodically, since cryptographers frown on encrypting a lot of data

with the same key. And it should perhaps be changed when the membership

of the group changes. Suppose group members pay to receive the content

(such as premium TV channels). When a member leaves the group, one

cannot force the member to forget the key. More subtly, it might be desirable

to change the key when a new member joins the group (so they cannot

record encrypted content they were not entitled to, and then join for a short

time in order to discover the key, enabling them to decrypt content they had

not paid for).

Another issue in secure communication is integrity protection and

authentication of the data. With a secret key scheme, someone who is

verifying the data must know the same secret that was used to create the

integrity check. With two-party communication this is not a problem. If

Alice is sending something to Bob, with an integrity check created out of a

key that only the two of them share, if the integrity check is valid, Bob knows

that only Alice or Bob could have created the message. If Bob knows it wasn’t

him, then it has to be Alice.

However, if the same scheme is used in group communication, where

Alice is sending the content to thousands of receivers, then each of those

xv

thousands of receivers would have to know the same secret Alice used in

order to generate the integrity check. Which means the content could have

originated with any member of the group. One might trust all the group

members to ‘‘read’’ the data, but you want to cryptographically protect

against them being able to generate data and claim it came from Alice.

An alternative is to use public key cryptography, but it would be slow to

generate and verify digital signatures on every packet. So the multicast

security designers have devised schemes with the per-source authenticity

allowed by public key cryptography without the performance penalty.

The authors have spent a significant chunk of their lives nurturing this

new field. Thomas Hardjono has been working in the field since 1988—way

before the world was ready for it, but a good time for forward thinking. Since

then he has been trying to make it a reality. He was cochair of the multicast

security group in IETF since it was born in the IRTF and graduated into a

working group in IETF. Lakshminath Dondeti chose it, out of all possible

topics in computer science, for his Ph.D. dissertation, and has also been

active in standardizing it, first in the IRTF group, and now in the IETF

multicast security group.

Dr. Radia Perlman

Distinguished Engineer

Sun Microsystems Laboratories

May 2003

xvi Foreword

Preface

The area of networked group communications is by no means a new field

of study. For several years now, researchers and engineers have been

studying more efficient ways to harness the potential of Internet protocol

(IP)-based networks as the basis for communications in multiparty scenarios.

There are many possible approaches to multiparty or group communica-

tions, and there are different communications methods and protocols that

can be deployed to establish communications within a group. One such

method is IP multicast—which takes place at the IP network layer within the

transmission control protocol/Internet protocol (TCP/IP) model.

Although there have been several books dedicated to IP multicast and

other forms of group communications, none has been dedicated to the topic

of security in IP multicast networks and the applications that use them. This

book attempts to fill that gap, and provide a snapshot of the current state of

the art in the network industry.

In many ways, the area of multicast security is still in its infancy.

Although the concept of IP multicast can be traced back to the earlier

works of Deering in the late 1980s, serious attention was given to IP

multicast—and thus to its security issues—only in the late 1990s. At this

time, various players in the industry, notably the content industry, saw the

potential of IP multicast as a vehicle for delivering data to vast numbers of

users.

The industry’s interest in IP multicast is reflected in (or resulted in) the

establishment of the various multicast-related working groups in the Internet

Engineering Task Force (IETF). They were seen as a means to speed up the

standardization of multicast-related protocols, and therefore the imple-

mentation and deployment of IP multicast in the wider community. The

promise of broadband access to millions of homes across North America

xvii

provided the underlying impetus for maturing these multicast-related

protocols, and for getting products out the door.

Much of the material in this book is gathered from efforts being

conducted within the IETF—which is the primary standards-setting body for

IP-related protocols—and its sister organization, the Internet Research Task

Force (IRTF). The first community in the IETF that began addressing

multicast security was the Secure Multicast Group (fondly nicknamed

SMuG), established within the IRTF in early 1998. Since SMuG was

established under the IRTF, it functioned as a research group and therefore

did not in itself produce standards. However, what SMuG chose to do as a

research group was to survey the broader area of group communications

security, develop a reference framework, and produce a number of ‘‘near-

standards’’ documents that could be carried over into a formal working

group in the IETF. Indeed, such a working group was established under the

IETF in early 2000 in the form of the Multicast Security (MSEC) working

group, which was heir to much of the the SMuG research group work.

How to read this book

The contents of this book are grouped according to areas related to

multicast and group security. Chapter 1 provides an introduction and

outlines three problem areas that will be the focus for the ensuing chapters.

These problems areas are defined in the Reference Framework which

underlies the work of the SMuG research group in the IRTF and the MSEC

working group in the IETF. Chapter 2 delves deeper into this Reference

Framework.

Readers interested in the problem of data authentication in multicast

will find that Chapter 3 provides introductory material on this topic, as well

as discussion on more advanced techniques and algorithms to address the

problem.

The problem of key management for groups (group key management) is

addressed in Chapters 4, 5, and 6:

w Chapter 4 explains the differences between pair-wise key management

and group key management, and explains the security requirements in

both cases. It then provides the definition of the Group Security

Association (GSA), which extends the Security Association (SA)

definition currently understood and deployed in the well-known

industry protocols such as Internet key exchange (IKE) and IP security

(IPsec).

xviii Preface

w Chapter 5 focuses on group key management architectures and protocols,

and explains what the terms ‘‘architecture’’ and ‘‘protocol’’ mean in the

context of key management. It goes over two basic group key manage-

ment architectures; namely, the hierarchic and flat architectures. The

chapter then provides an overview of some group key management

protocols that have been proposed.

w Chapter 6 focuses on the third aspect of group key management; namely,

the algorithms used to manage the cryptographic keys that are used to

protect the data (the traffic encryption keys or TEKs), and the keys used to

protect the TEK (the key encryption keys or KEKs). The chapter discusses a

number of these algorithms, as well as aspects of each.

Security-related policy has always been an interesting as well as

contentious topic for many security practitioners. This topic is covered in

Chapter 7 with specific reference to multicast and group security. The

discussion includes a classification of the various group-oriented policies,

and examples of how they are used with specific group key management

protocols.

Routing protocol protection is the topic of Chapter 8. In particular, this

chapter looks into the issues and requirements for multicast routing, above

and beyond the requirements of unicast routing. An overview of a number

of popular multicast routing protocols is provided, followed by a discussion

on the security issues and possible solutions of two of the most common

protocols, namely Protocol Independent Multicast-Sparse Mode (PIM-SM)

and IGMP.

Chapter 9 focuses on the issue of security in Reliable Multicast (RM)

protocols, which typically execute at the transport layer. A classification of

RM protocols is provided to illustrate the differences in approach adopted by

the various RM protocols. The chapter then focuses on the tree-based

positive acknowledgment (TRACK) and negative acknowledgment–oriented

Reliable Multicast (NORM) families of RM protocols, providing a possible

security model for each, and some suggested approaches to minimize threats

to the protocols.

For readers interested in real-life examples of the use of IP multicast

security, Chapter 10 provides a number of applications of multicast, and

discusses the security issues relating to each environment.

Finally, Chapter 11 summarizes our discussion on multicast and group

security and provides directions for future research.

Preface xix

TE
AM
FL
Y

Team-Fly®

Acknowledgments

The technologies, ideas, and implementations presented in this book

could not have been possible without the hard work and support of the

various people active in the area of multicast security, and in the broader

IETF community.

We especially thank those whose participation over the years in the

multicast security community in the IETF has shaped much of the work

presented in this book (in alphabetical order): David Balenson, Mark

Baugher, Bob Briscoe, Brad Cain, Ran Canetti, Elisabetta Carrara, Pau-Chen

Cheng, Dah Ming Chiu, Andrea Colgrove, Peter Dinsmore, Naganand

Doraswamy, Martin Euchner, Eric Harder, Dan Harkins, Hugh Harney,

Haixiang He, Paul Judge, Miriam Kadansky, Steve Kent, Amit Kleinmann,

Fredrik Lindholm, Doug Maughan, Pat McDaniel, David McGrew, Catherine

Meadows, Uri Meth, Inder Monga, Carl Muckenhirn, Mats Näslund, Hilarie

Orman, Adrian Perrig, Radha Poovendran, Atul Prakash, Bob Quinn, Pankaj

Rohatgi, Debanjan Saha, Gene Tsudik, Brian Weis, and Joe Wesley.

We also thank those in the RMT and routing communities in the IETF

who have made significant contributions to the multicast security effort (in

alphabetical order): Carsten Borman, Ken Calvert, Steve Deering, Bill

Fenner, Brian Haberman, Mark Handley, Roger Kermode, Isidor Kouvelas,

Mike Luby, Alison Mankin, Colin Perkins, Radia Perlman, Tom Pusateri, Hal

Sandick, Tony Speakman, Lorenzo Vicisano, Liming Wei, Brian Whetten,

and Aidan Williams. We apologize to those whose names were inadvertently

omitted from these lists. We would like to express our appreciation to Donald

Knuth, Leslie Lamport, and countless others who developed the wonderful

typesetting system, LATEX, without which we could not have produced the

manuscript in time.

xxi

We thank Warwick Ford and Judy Lin (Verisign), and Don Fedyk and

Bilel Jamoussi (Nortel Networks) for their support, especially during the

latter stages of the manuscript preparation. Special thanks to Rolf Oppliger

and Tim Pitts from Artech House for not giving up, and Tiina Ruonamaa,

Ruth Harris, Judi Stone, Jessica Nelinder, and Jill Stoodley for their

assistance in various stages of the publishing process. We are grateful to

the anonymous reviewer(s) for their constructive criticism and suggestions,

which helped improve the quality of this book.

Finally, we thank our wives Elizabeth and Sridevi for their love, support,

and encouragement during the countless hours spent writing, editing, and

reviewing this book, time that otherwise would have been spent with them.

xxii Acknowledgments

Introduction

Satellite TV distribution, software distribution, stock quote

streaming, Web caching, and multimedia conferencing are

examples of applications that require one-to-many or many-to-

many group communication. Multicast enables efficient group

communication by allowing the sender to transmit a single

copy of data, with network elements such as routers and

switches making copies as necessary for the receivers. Thus

multicast reduces the computational load at the sender, as well

as the number of copies of data on the network.

Unfortunately, despite the vast amount of research and

development of multicast protocols in the past decade, deploy-

ment of multicast applications has been slow. While some attri-

bute this to no ‘‘killer applications,’’ the major factor is, in fact,

that multicast services lack support for traffic management,

accounting and billing, reliability, and security.

We identify multicast security as one of the important prob-

lems to solve for the successful deployment of group communica-

tion applications. For example, investors would like a guarantee

that the stock quotes being delivered via multicast are indeed

authentic. Similarly, providers would like to limit content dis-

tribution to subscribers who paid for the service. Finally, another

aspect of security, confidentiality, is a requirement of applications

such as conferencing, as well as corporate and military com-

munications via the Internet. In summary, popular applications of

multicast require data integrity, access control, and privacy.

IP multicast scales well due its open model. Receivers can

join and senders can transmit data to a multicast group, without

1

C H A P T E R

1
Contents

1.1 Motivation for multicast
security

1.2 Multicast content protection

1.3 Infrastructure protection

1.4 Applications of secure
multicasting

1.5 Road map

any interaction with a centralized entity. However, the same open model

makes it difficult to support multicast access control. For privacy, the group

members need to have a common key, which may require interaction with a

centralized entity. Thus the challenge in front of us is to secure multicast

communications without sacrificing scalability.

There are three distinct problem areas to consider in providing multicast

security services. First, senders need to encrypt and authenticate multicast

data. For encryption, the group members require a common key among

themselves. Furthermore, access control can be enforced by distributing a

common key to the group membership, without having to change the IP

multicast model. When group membership changes, the common key may

need to be rekeyed and distributed to the new set of authorized members.

Thus scalable group key distribution and rekeying schemes are an important

part of a secure multicast solution. Next, members must be able to verify

that the data received is indeed sent by an authorized sender. Therefore data

origin authentication and data encryption constitute one of the problem areas.

In addition, the different multicast applications—ranging from many-to-

many interactive communications to one-to-many off-line distribution of

data—have varying requirements for end systems, communications, and

security. Group policy allows the group owner or content provider to specify

these requirements as well as expected group behavior due to changes in

operational environment.

In addition to content protection, we identify multicast infrastructure

protection as another important requirement, considering the impact of a

denial of service (DoS) attack on the mass distribution service model of

multicast. Specifically, multicast routing protocols, Reliable Multicast

protocols, and the Internet group management protocol (IGMP) need

integrity protection of the control messages for correct operation. Without

integrity protection, unauthorized members might flood a multicast tree or

illegally pull unnecessary traffic, resulting in denial of service to authorized

members. Therefore we need to address control message authentication as

well as host or router authorization.

The remainder of this chapter discusses multicast content and

infrastructure protection further, and refers to chapters in the book that

cover the subtopics therein.

1.1 Motivation for multicast security

Multicasting is an efficient solution for group communication on the

Internet. Instead of sending a separate copy of data per receiver, a sender can

2 Introduction

send just a single copy, and the multicast routers in the network make copies

and forward packets appropriately to all the receivers. Thus multicasting

utilizes network resources such as bandwidth and buffer space efficiently,

and reduces load at the sender(s) as well as the transit routers.

IP multicast is designed to be massively scalable. Receivers do not

directly contact the sender(s) to express their interest in receiving data.

Instead, a receiver sends a message to the first hop multicast router that it is

interested in receiving data sent to a particular multicast group. Specifically,

receivers use the Internet Group Management Protocol [1] to express their

interest in receiving data sent to a given group. The multicast forwarding tree

itself is established using a routing protocol such as protocol independent

multicast (PIM) [2, 3].

While the advantages of multicasting are clear, there are several

obstacles for widespread deployment [4]. The popular applications of the

Internet are based on unicast, and are dependent on the reliability and

sometimes security of the transmission. Most applications use hypertext

transfer protocol (HTTP), file transfer protocol (FTP) or telnet, which run

over TCP for reliability, and most e-commerce applications run over the

secure socket layer (SSL). Reliable unicast transmission has long been taken

for granted, and most of us look for the gold lock icon on our Web browsers

before entering a password, credit card number, or other sensitive

information. End-users and application service providers (ASPs) expect

reliability and security for multicast communication as well. Of course not all

unicast and multicast applications need reliability or security.

IP multicast communications may need to be encrypted even if data

confidentiality is not a requirement. Content providers can charge for

unicast data transfers rather easily on the Internet. Charging for software

downloads, and monthly subscription to digital libraries and on-line

magazines, is commonplace on the Internet. The same cannot be said for

multicast applications. This is mainly due to the anonymous receiver model

of IP multicast. Any receiver can request to receive data, and the sender has

no control over group membership. Similarly, anybody can send data to a

multicast group.

One expects access control to be enforced at a higher layer, typically by the

applications. Consider the alternative of enforcing access control using IGMP.

An edge router could check whether a host is a member, before forwarding a

(join) request for multicast data. But once the data flows into a shared

medium-based local area network (LAN), all hosts on the LAN get access to

the data—whether they are members or not, or whether all members paid for

the service or just one. Thus encrypting multicast data and distributing the

encryption key to the members is the only way to ensure controlled access to

1.1 Motivation for multicast security 3

data. In other words, secure multicast enables content providers to enforce

access control, and thus be able to charge for multicast data services.

Access control is only one of the motivating factors for securing multicast

communications. Applications in general may need privacy, authentication,

integrity, and non-repudiation of multicast data. Moreover, these require-

ments may have different levels of importance for different applications. For

example, some applications may need message source authentication only

(e.g., stock quote distribution), whereas others may need privacy as well as

authentication. In other words, we must be able to provide a selectable level

of security in protecting multicast communications.

Mass distribution of data via multicast is of concern to Internet service

providers (ISPs). Any sender can start sending data to a multicast group and,

similarly, any host can ‘‘pull’’ unnecessary multicast traffic, thus wasting

network resources such as buffer space on routers and bandwidth on the

links. These concerns need to be addressed as well. Multicast routing

protocols and Reliable Multicast protocols may need integrity protection for

their control messages, to fend off adversaries that may modify, delete, or

inject control messages, thus causing denial of service. We discuss these

threats to multicast infrastructure in more detail later in this chapter.

Thus, it can be seen that multicast security is motivated by enforcement

of group access control, confidentiality and authentication of data transmis-

sion, and protection of the network infrastructure. Except for group access

control, these requirements have been addressed for unicast communica-

tions. Unfortunately, solutions designed for one-to-one communications

cannot be used directly for group communications. Specifically, multiparty

security policy negotiation may not converge, and distributed group key

agreement protocols do not scale to large groups. Note that neither security

nor any other service should come at the expense of scalability. In addition to

scalability, different applications have different security requirements, and

one-size-fits-all solutions will not work for many multicast applications.

The number of senders in a group is an important factor in designing a

secure group communication protocol. In many applications there is only

one sender. Source-specific multicast (SSM) is a routing paradigm1 specifically

designed to support one-sender multicast. Examples of single sender

applications include pay-per-view broadcasts, stock quote distribution via

multicast on the Internet, and Web cache synchronization.

Traditional multicasting, sometimes referred to as the Internet standard

multicast (ISM) or any sender multicast (ASM), supports multisender

1. Multicast routing protocols need to be made to be SSM-compliant, (e.g., PIM-SSM).

4 Introduction

communication. The presence of multiple senders introduces several new

problems in providing secure multicast services. First, different senders may

have different policy requirements, which may be conflicting and thus hard

to enforce. Second, mechanisms for replay protection are harder to design for

the multisender case. Therefore, we limit our discussion to single sender

multicast. However, popular applications such as multimedia conferencing

involving multiple senders may also need privacy or message integrity for

some sessions. Since these applications typically have only a few senders,

one possibility is to use few instances of a secured one-to-many multicast.

1.2 Multicast content protection

The IRTF SMuG Research Group and IETF MSEC Working Group identified

three problem areas in providing secure group communications: secure

multicast data handling, management of keying material, and multicast

security policies. Chapter 2 contains a detailed description of the problem

areas and building blocks. In the rest of this section, we define the problem

areas, briefly explore the solution space, and discuss application-specific

requirements.

1.2.1 Problem area 1: Secure multicast data handling

In this section, we address the problem of secure multicast data transmission.

More precisely, we discuss data transforms for multicast data secrecy and

integrity protection. For data secrecy, the sender needs to encrypt data with a

secret key which is known to the group members: that is, hosts that are

authorized to receive multicast data. Scalable distribution and rekeying of a

group key is a complex problem and is designated as a problem area in itself.

IPsec encapsulating security payload (ESP)[5] transforms for secrecy are

applicable to private multicast communication as well. The only caveat is

that the replay protection mechanism of ESP works only for single sender

multicast communication. ESP also supports message authentication code

(MAC)-based integrity protection for unicast communication. In two party

communication, MAC-based authentication is sufficient for a receiver to

determine whether a packet originated at the sender. Unfortunately, that is

not the case in multiparty communication.

Consider two communicating peers, Alice and Bob, who each hold a

secret key for message authentication. Alice uses the key to compute a

message authentication code (MAC, e.g., cipher block chaining (CBC) MAC,

or hash-based MAC (HMAC) [6]) of the message, and sends the message

1.2 Multicast content protection 5

along with the MAC to the receiver. Bob repeats the procedure to compute

the MAC, and compares it with the received MAC. If the MACs are identical,

Bob knows that the message has not been modified en route. He also knows

that since he has not sent the message, Alice must have sent it, assuming the

authentication key has not been compromised.

We can use MACs for authenticating group communications following a

similar procedure as above, but with a reduced level of integrity protection.

Consider a group, consisting of Alice, Bob, and Cindy, holding an

authentication key. Alice might use a MAC to authenticate a message sent

to Bob and Cindy. Bob (or Cindy), however, does not know whether the

message has been sent or last modified by Alice or Cindy (or Bob). In

general, members of a group can verify only that nonmembers, that is,

people who do not hold the group authentication key, have not changed the

data in transit.

Group authentication [7] is the property that guarantees only that a

message was sent (last modified) by a member of the group. Since a MAC

can be used for group authentication, it is rather inexpensive to

authenticate even streaming data in real time. For group authentication,

the sender needs to establish a common key with the group members. The

problem of key distribution is addressed in the next section, and IPsec ESP

can be used to carry group authenticated multicast data.

In most applications, receivers must be able to establish the source

of the data, at least for themselves. In other words, we need data source

authentication. A stronger version of the above property, referred to as non-

repudiation, enables a receiver to prove the origin of data to any impartial

third party.

However, source authentication of multicast data is a difficult problem.

The simplest solution is to digitally sign each packet. But signing each packet

is computationally expensive, and introduces excessive per packet commu-

nication overhead. Several solutions have been documented that amortize

the cost of digital signatures over multiple packets. Chapter 3 provides a

detailed description of the state-of-the-art in stream source authentication

techniques.

Unfortunately, ESP cannot be used to carry source authenticated

multicast data. A couple of variants of ESP called multicast ESP (MESP) [8]

and application layer MESP (AMESP) have been proposed at the IETF to

accommodate source authentication schemes for multicasting. MESP, similar

to IPsec ESP, operates in the network layer, whereas AMESP is the applica-

tion layer counterpart. Implementing IPsec ESP or MESP requires kernel-

level modifications—which are not possible in some cases, and may result in

delayed deployment. AMESP is the transform to use in such cases.

6 Introduction

Application requirements

Application requirements greatly influence the solution space for data origin

authentication. First, an application may require non-repudiation or source

authentication or just group authentication. Next, data transmission may be

reliable or lossy. Furthermore, the sender or the receivers may have limited

buffer space or computational power (e.g., on mobile devices), or have

heterogeneous capacities. Receivers may also be at vastly different distances

from the sender. Finally, the application may involve bulk data transfer(s) or

streaming. Clearly, a one-size-fits-all solution is not applicable for source

authentication of multicast data.

1.2.2 Problem area 2: Management of keying material

Group access control, privacy, and group authentication of multicast data

require that a common key be distributed to the current members of the

secure group. We use a logical entity called group controller and key server

(GCKS) to provide access control and key distribution services. A GCKS

represents both the entity and functions relating to the issuance and

management of cryptographic keys used by a multicast group, and conducts

user authentication and authorization checks on each candidate member of

the multicast group.

Unicast security negotiation protocols such as IKE [9] result in a separate

key per instance, and cannot directly be used for group communications.

Instead, a centralized entity such as the GCKS needs to download group

key(s) separately to each member via a secure channel.2

Member registration

Each member contacts the GCKS to register [10] and join the group.

After mutual authentication, the GCKS verifies the host’s membership,

establishes a secure channel, and downloads group keys and policy to

the member. Registration is a one-to-one exchange between the GCKS (or

one of its authorized representatives) and each member. This one-to-one

secure exchange requires similar protections as in IKE or SSL, such as

protection from man-in-the-middle, replay and denial of service attacks,

connection hijacking, and so forth.

2. Distributed group key agreement schemes have been documented, but they are inefficient for groups of

hundreds of members or more.

1.2 Multicast content protection 7

Scalable registration/initialization of large groups. Since registration is a one-

to-one exchange, employing a single point of contact for all members is not

efficient. Fortunately, there are several ways to expedite the process. First,

the functionality of GCKS registration could be distributed over several

entities. Second, members may register at their convenience, thereby

avoiding large number of registration requests at the same time. This process

is similar to purchasing tickets for sporting events and theater performances

at Ticket Master outlets and authorized travel agents.

Group rekeying

Since encryption keys have lifetimes, the GCKS must rekey the group key

before it expires. Otherwise, most if not all members may send a request to

the GCKS for the new key simultaneously, resulting in rekey request

implosion in large groups. Furthermore, consider the problem of enforcing

access control in a dynamic group, that is, a group where membership

changes frequently. The GCKS may need to rekey the group and distribute

the new group key to the current members each time membership changes.

Forward and backward access control. Consider group key distribution to a

large and dynamic group. In most applications, while some members join at

the beginning of the session and leave at the end, others may join and leave

any time during the session. In other words, some members may be allowed to

participate in a secure group for only a limited duration. Consider also that a

host might be recording multicast data sent before it is authorized to join a

group. Therefore, the GCKS needs to change the group key and distribute the

new key to all members. Otherwise, the joining host can decrypt data sent

before it became a member of the group. We refer to this property as backward

access control. Similarly, the GCKS needs to change the group key when a

member leaves, so as not to allow the departing member to decrypt future

group communications. This property is known as forward access control. In

summary, to ensure that only current authorized members can decrypt group

data, backward and forward access control must be enforced.

Rekey messages can be sent via unicast or by multicast for efficient

distribution. Similar to registration messages, rekey messages must also be

protected from replay attacks, and must be signed by the GCKS for

authenticity.

Impact of group membership dynamics. The size and dynamics of the group

have a significant impact on the enforcement of forward and backward

8 Introduction

TE
AM
FL
Y

Team-Fly®

access control. Consider a naı̈ve approach to group key management. The

sender or the GCKS shares a separate secret key with each member. When a

member leaves, the manager must send the new group key encrypted

separately with each of the remaining members’ secret keys. Since the

computational overhead at the sender and the communication overhead of

this scheme grow with group size, it is inefficient for large and highly

dynamic groups.

Group security association

For secure unicast, two communicating peers negotiate security parameters

to establish an Internet security association and key management protocol

(ISAKMP) SA, which protects the negotiation of an IPsec SA for secure data

transmission [11]. Following a similar model, the group security association

(GSA) [12] is being standardized at the IETF, and has three parts. The first is

the registration SA which protects the key download during the registration

protocol. The key download consists of a rekey SA and a data security SA.

The rekey SA protects updates to the current rekey SA or a data security SA.

The data security SA itself protects multicast data transmission. Examples of

a data security SA include IPsec ESP, MESP, and AMESP.

Group key distribution architectures, protocols, and algorithms

We classify the group key distribution literature into architectures, protocols,

and algorithms for group key management. Group key distribution

architectures such as Iolus [13] and Internet keying architecture for multicast

(IKAM) [14] use hierarchical subgrouping for efficient group management.

They divide members into subgroups, designate members or third-party

agents as subgroup managers (SGMs), and delegate group key management

tasks to the SGMs. This topic is covered further in Chapter 5.

The term protocols is used to describe the set of procedures, message

exchanges, and message payloads that govern the behavior of the entities

involved in supporting a secure group (e.g., servers), and those participating

in a group (e.g., hosts). Group domain of interpretation (GDOI) [15] and

group security association key management protocol (GSAKMP) [16] are

solutions that fall into this category. This topic is addressed in Chapter 5.

Architectures and protocols benefit from each other. For example, Iolus

or IKAM can use GDOI for registration and rekeying within a subgroup.

Similarly GSAKMP allows some members to be designated as subgroup

managers for scalability. Both architectures and protocols can benefit from

the group key management algorithms, described below, for efficient group

rekeying.

1.2 Multicast content protection 9

Group key management algorithms typically use logical subgrouping for

efficient key distribution and rekeying. (Contrast this with subgrouping by

group key management architectures described earlier.) Each logical

subgroup has an associated key encryption key (KEK) used to encrypt

other KEKs or the group key. We identify two classes of group key

management algorithms based on the interdependency of rekey messages.

In the first, based on logical key hierarchies (LKH) or key trees [17], each

member holds a subset of the KEKs, and the GCKS changes those KEKs and

the group key when the member joins or leaves. At most, each KEK must be

encrypted with as many keys as the degree of the key tree. Thus rekeying

using logical key hierarchies requires fewer (logarithmic in number of

members) messages, and fewer key computations at the GCKS. In the

second class of algorithms, the GCKS divides the authorized members into

predefined logical subsets, and sends the group key encrypted with the

subset keys. This interesting subject is central to efficient group key

management, and is discussed in depth in Chapter 6.

Reliable transport of rekey messages. Rekey messages are typically sent via

multicast for efficiency. It is the responsibility of the GCKS to ensure that all

members have the current data security and rekey SAs. Otherwise,

authorized members may be inadvertently excluded from being able to

decrypt group communications. Therefore, the GCKS must use a reliable

transport mechanism to send rekey messages. Reliable multicasting is a hard

problem, but there are several documented solutions. We discuss reliable

transport of rekey messages in this section.

Rekey messages are typically short (for a single membership change in

large groups and for small groups in general), which makes it easy to design a

reliable delivery protocol. On the other hand, the security requirements add

an additional dimension to the problem. There are also some special cases

where membership changes are processed in a batch, increasing their size.

Finally, among all the KEKs sent in a rekey message, as many as half

the members need only a single KEK. We need to take advantage of these

properties in designing a rekey message(s) and a protocol for their reliable

delivery. Three categories of solutions have been proposed:

1. Because in many cases rekey messages are small (fitting in one or

two IP packets), the GCKS may repeatedly retransmit rekey

messages.

2. The GCKS may use an existing Reliable Multicast protocol or

infrastructure.

10 Introduction

3. We may use forward error correction to encode rekey packets, using

feedback negative acknowledgements or (NACKs) from members to

build the next round of rekey message [18]. Note however that

feedback-based reliable delivery may result in implosion of feedback

messages at the GCKS.

Application requirements

Application requirements greatly influence the design choices of a solution

for group key distribution. In some cases, such as in a pure pay-per-view

(PPV) application, all of the SA information needed for the session may be

distributed at the time of registration or initialization of a session. Thus

there is no rekeying due to membership changes, which obviates the need

for an efficient group key management algorithm. Rekey SA may not be

necessary for group key management schemes that rely solely on point-to-

point communications (e.g., for small groups). Strict enforcement of forward

and backward access control may not be necessary in some applications.

More precisely, membership changes may be processed periodically or in a

batch [19], even if the membership changes happen at different times.

Therefore a group key management solution must offer selectable/

configurable levels of security.

1.2.3 Problem area 3: Multicast security policies

Multicast security policies provide the rules of operation for the other two

problem areas: management of keying material and multicast data handling.

We consider two different types of groups, namely, small interactive groups

and large groups with one or a few senders. In single-sender groups, the

sender is either the content owner or its representative. The content owner

typically specifies who can receive the data and what amount of protection is

needed, and designates a GCKS and a sender. The GCKS is responsible for

both distribution and enforcement of policy. The sender is also partially

responsible for enforcing policy. Interactive groups sometimes have a

moderator that can be considered as the group owner. Policy in small groups

may be negotiated [20], but negotiation does not converge in large groups.

Alternatively, the group owner may distribute and enforce policy.

Content owners specify only a high-level policy which must then be

translated into more precise rules so that the policy can be enforced with

available security mechanisms. Policy languages such as Ismene [21],

cyptographic context negotiation template (CCNT) [20], and group security

policy token (GSPT) [16] have been proposed for unambiguous specification

of group policies.

1.2 Multicast content protection 11

Secure group policy components

Groups bring up several new policy issues compared to peer-to-peer

communications. In groups, different entities have different capabilities

and roles, and authorization policy defines members, sender(s), and GCKS

and its authorized representatives (e.g., subordinate GCKS and rekey

server). Access control lists (ACL) and capability certificates are examples

of mechanisms for access control enforcement. Policy also dictates which

encryption or authentication algorithm to use for rekeying as well as secure

data communications. Furthermore, the content owner specifies whether

the GCKS should rekey after each membership change, or process such

changes periodically. Group policy should also include expected member

behavior when a member does not have the latest GSA. Application

requirements, the value of content, and sometimes the mechanisms

supported by the sender and GCKS all affect the group policy.

We end this section with a note on policy distribution in groups. Recall

that policy negotiation does not converge in large groups. However, policy

distribution brings up an interesting problem. Since there is no negotia-

tion, members might want to know if they can participate before signing

up (i.e., paying money to get access) to receive data. In other words,

some of the policy needs to be predistributed. However, it is not a sound

practice to advertise the policy of a secure group for all the world to see.

Therefore, depending on application requirements, some of the policy is

predistributed, while the rest is distributed by the GCKS to authorized

members only. Chapter 7 provides a detailed discussion of group policy

requirements and solutions.

1.3 Infrastructure protection

Aside from content protection, we need to consider threats to multicast

infrastructure. There are three components to this problem, corresponding

to sender access control, multicast routing infrastructure protection, and

receiver access control.

Recall that in the traditional multicast model, a sender can transmit data

to any multicast group; it does not even need to be a member of the group.

Therefore, an adversary could inject data onto a multicast tree and waste

network resources, such as buffer space on the routers and bandwidth on the

links. This problem has begun to be addressed in the recent development of

the SSM model, and some traditional protocols have been modified to

conform to the SSM model (e.g., PIM-SSM [22]).

12 Introduction

Next, in order for a unicast or a multicast routing protocol to behave

correctly, all the control packets exchanged among the routers implement-

ing the protocol must be protected against malicious modifications and

deletions, and insertions of bogus control packets. Multicast routing protocol

security is the topic of Chapter 8.

Similar to multicast routing protocols, Reliable Multicast protocols

operate by exchanging control messages among the entities involved in the

protocol. For a Reliable Multicast protocol to function properly, its control

messages must be (at least) protected from modifications in transit. Reliable

Multicast protocol security is addressed in Chapter 9.

Finally, recall that any host can join a multicast group and pull the

distribution tree toward itself. An adversary could exploit this feature and

pull unnecessary multicast traffic, causing denial of service. Therefore, for

infrastructure protection, edge routers must allow only authorized members

to pull multicast data.

1.4 Applications of secure multicasting

Data encryption and key distribution to authorized members supports

group access control without modifying the IP multicast model. Access

control enables content providers to control data distribution, and charge for

content. Satellite TV distribution is an application that needs support for

group access control.

Several multicast applications require data confidentiality or message

integrity. Investors receiving stock quotes need a guarantee that the data is

being sent by an authorized sender, and has not been modified en route.

Several corporations transmit sensitive information such as software,

database, and inventory updates using multicast ftp (MFTP) [23]. We

discuss solutions to protect confidentiality and data integrity of MFTP

communications in Section 10. Multimedia conferencing over the Internet

needs protocols and mechanisms for privacy and data integrity. Finally,

multicast virtual private network (VPN) is an application that enables forming

a private network, say, between all branches of a bank, over the Internet.

1.5 Road map

We expect that the readers understand encryption, data integrity, host

authentication, and other basic cryptographic properties. The readers should

also be familiar with network security protocol requirements such as

protection against man-in-the-middle, replay, connection hijacking, and

1.5 Road map 13

denial of service attacks. We also expect the readers to have some knowledge

of the IPsec terminology.

The next chapter describes the framework for multicast security de-

veloped at the IRTF SMuG Research Group and IETF MSEC Working Group.

Problem area 1, that is, secure multicast data handling, is the topic of

Chapter 3. Management of keying material, otherwise known as problem

area 2, is introduced in Chapter 4, with further coverage in the following two

chapters. Chapter 5 describes group key management architectures and

protocols, and Chapter 6 discusses group key management algorithms.

Secure group policy, labeled as problem area 3, is the subject of Chapter 7.

Infrastructure protection is the topic of the next two chapters. Routing

protocol security is covered in Chapter 8, and Reliable Multicast protocol

security is the subject of Chapter 9. Applications of secure multicasting is the

topic of the following chapter. Chapter 11 concludes the book with a

discussion on future topics.

There are a number of ways to read the material presented here. The

chapters on each problem area are more or less independent. The current

chapter and Chapter 2 provide an insight into the problem space of multicast

security. Chapters 8 and 9 provide a summary of the multicast infrastructure

security requirements and solutions. They are independent of the other

chapters and could be read separately.

References

[1] Cain, B., et al., ‘‘Internet Group Management Protocol, Version 3,’’ draft-ietf-

idmr-igmp-v3-09.txt, IETF, January 2002, work in progress.

[2] Deering, S., et al., ‘‘The PIM Architecture for Wide-Area Multicast Routing,’’

IEEE/ACM Trans. on Networking, Vol. 4, No. 2, 1996, pp. 153–162.

[3] Estrin, D., et al., ‘‘Protocol Independent Multicast-Sparse Mode (PIM-SM):

Protocol Specification,’’ RFC 2362 (experimental), IETF, June 1998.

[4] Diot, C., et al., ‘‘Deployment Issues for the IP Multicast Service and

Architecture,’’ IEEE Network, Special Issue on Multicasting, January/February

2000.

[5] Kent, S., and R. Atkinson, ‘‘IP Encapsulating Security Payload (ESP),’’ RFC

2406 (proposed standard), IETF, November 1998.

[6] Krawczyk, H., M. Bellare, and R. Canetti, ‘‘HMAC: Keyed-Hashing for

Message Authentication,’’ RFC 2104 (informational), IETF, February 1997.

[7] Canetti, R., et al., ‘‘Multicast Security: A Taxonomy and Efficient Construc-

tions,’’ in Proc. of IEEE INFOCOM, New York, March 1999.

14 Introduction

[8] Canetti, R., P. Rohatgi, and P. Cheng, ‘‘Multicast Data Security Transforma-

tions: Requirements, Considerations, and Proposed Design,’’ draft-irtf-smug-

data-transforms-00.txt, IRTF, June 2000, work in progress.

[9] Harkins, D., and D. Carrel, ‘‘The Internet Key Exchange (IKE),’’ RFC 2409

(proposed standard), IETF, November 1998.

[10] Baugher, M., et al., ‘‘Group Key Management Architecture,’’ draft-ietf-msec-

gkmarch-02.txt, IETF, March 2002, work in progress.

[11] Kent, S., and R. Atkinson, ‘‘Security Architecture for the Internet Protocol,’’

RFC 2401 (proposed standard), IETF, November 1998.

[12] Hardjono, T., M. Baugher, and H. Harney, ‘‘Group Security Association (GSA)

Management in IP Multicast,’’ in Proc. of the 16th International Conference on

Information Security (IFIP/SEC), Paris, France, June 2001.

[13] Mittra, S., ‘‘Iolus: A Framework for Scalable Secure Multicasting,’’ in Proc. of

ACM SIGCOMM, Cannes, France, September 1997, pp. 277–288.

[14] Hardjono, T., B. Cain, and I. Monga, ‘‘Intra-Domain Group Key Management

Protocol,’’ draft-ietf-ipsec-intragkm-02.txt, IETF, February 2000, work in

progress.

[15] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[16] Harney, H., et al., ‘‘Group Secure Association Key Management Protocol,’’

draft-ietf-msec-gsakmp-sec-00.txt, IETF, March 2001, work in progress.

[17] Wallner, D., E. Harder, and R. Agee, ‘‘Key Management for Multicast: Issues

and Architectures,’’ RFC 2627 (informational), IETF, June 1999.

[18] Yang, Y. R., et al., ‘‘Reliable Group Rekeying: Design and Performance

Analysis,’’ in Proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[19] Setia, S., et al., ‘‘Kronos: A Scalable Rekeying Approach for Secure Multicast,’’

in Proc. of IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

[20] Dinsmore, P. T., et al., ‘‘Policy-Based Security Management for Large Dynamic

Groups: An Overview of the DCCM Project,’’ in Proc. of the DARPA Information

Survivability Conference & Exposition, Vol. I of II (DISCEX), Hilton Head, SC,

January 2000, pp. 64–73.

[21] McDaniel, P., and A. Prakash, Ismene: Provisioning and Policy Reconciliation in

Secure Group Communication, Technical Report CSE-TR-438-00, Electrical

Engineering and Computer Science, University of Michigan, December 2000.

[22] Holbrook, H., and B. Cain, ‘‘Source Specific Multicast for IP,’’ draft-ietf-ssm-

arch-00.txt, IETF, November 2001, work in progress.

[23] Miller, K., et al., ‘‘Starburst Multicast File Transfer Protocol (MFTP)

Specification,’’ draft-miller-mftp-spec-03.txt, IRTF, April 1998, work in

progress.

1.5 Road map 15

Framework for multicast
and group security

The problem of security for multicast and group security

concerns not only content protection of the data or

traffic being delivered to a group through IP multicast, but

also concerns the protection of the network infrastructure

that implements the multicast-related protocols. Therefore, one

of the first tasks in looking at multicast security is to understand

the landscape and define a reasonable scope or definition of the

problems at hand.

Consequently, the aim of this chapter is to subdivide the

complex problem of multicast and group security into manage-

able pieces. This chapter also reports on the IETF’s approach in

addressing these pieces. The subdivision also provides a road-

map for subsequent chapters dealing with specific issues.

2.1 The problem scope of multicast security

The problem of multicast and group security is complex because

it involves several aspects of the Internet architecture, and

covers all layers in the communications stack, above (and

including) the network layer.

In order to reduce the complexity of the problems at hand,

we have identified two broad categories of problems, denoting

them as multicast fundamental issues and multicast transport

and applications issues (see Figure 2.1). The first category of

17

C H A P T E R

2
Contents

2.1 The problem scope of multicast
security

2.2 Fundamental issues

2.3 Transport and applications
issues

2.4 The IETF problem scope for
multicast and group security

2.5 Three problem areas in the
management of keying
material

2.6 The building blocks approach

2.7 Summary

issues covers the basic security problems in multicast and group security,

whose solutions represent building blocks for solving other problems,

including those of the second category:

w Fundamental issues:

w Routing infrastructure protection;

w Controlled access to the multicast distribution tree (or group

membership management);

w Management of keying material;

w Transport and applications issues:

w Security of Reliable Multicast (RM) protocols;

w Applications requirements and other issues.

The thinking is that the fundamental issues need to be solved in order

to provide a minimal level of security for IP multicast at the network

layer. Without these fundamental issues being addressed, the transport

and applications issues would be very difficult—if not impossible—to solve

from a practical perspective. Thus, for example, without routing

infrastructure protection (as a fundamental issue to be solved), data

protection at the application layer would be less effective, as there would

no be guarantee that the multicast routing protocol at the network layer

would function correctly in the face of attacks (e.g., bogus control IP

packets).

Figure 2.1 Problem scope of multicast security.

18 Framework for multicast and group security

TE
AM
FL
Y

Team-Fly®

2.2 Fundamental issues

The fundamental issues can also be viewed from a topological perspective

(see Figure 2.2), where topological boundaries add to the complexity of the

issues at hand.

In Figure 2.2, the entities shown include the sender. This sends multicast

packets through the multicast distribution tree, represented by the curved

tree that spans across several autonomous systems (ASs) or domains, including

stub ASs, access domains (e.g., access ISP), and transit ISPs. The multicast

here is assumed to be a one-to-many multicast with a single sender. The

figure does not show multicast tunnels between domains, or tunnels that

carry multicast packets. A border router is shown within each domain’s

ingress and egress points for the distribution tree. Each branch point

(fanout) in the distribution tree is shown to occur at either a multicast

router (which is assumed to be also a unicast router), or a border router. The

hosts are shown to be the receiver members of the multicast group, attached

to a multicast router in their respective domains.

Using Figure 2.2 as a guide, we briefly describe the fundamental issues as

follows.

Figure 2.2 Fundamental problems in multicast and group security.

2.2 Fundamental issues 19

2.2.1 Routing infrastructure protection

A multicast routing protocol (such as PIM [1, 2], distance vector multicast

routing protocol (DVMRP) [3] or multicast extensions to open shortest path

first (MOSPF) [4]) creates a multicast distribution tree that effectively routes

packets from the sender(s) to the receivers who are connected to the tree at

its ‘‘edges.’’ Here multicast routers in several domains must maintain state

information that allows a router to route multicast packets pertaining to a

group to the correct outgoing interfaces, to downstream multicast routers,

and finally to the receivers. In order for the content to be delivered in a

timely fashion to its correct recipients, the multicast distribution tree must

behave according to the precise specification as intended by its protocol

designers (assuming no errors in the design itself).

In order for a unicast or a multicast routing protocol to behave correctly,

all the control packets exchanged among the routers implementing the

protocol must be protected against malicious modifications and deletions,

and insertions of bogus control packets. This is true for both unicast and

multicast routers, since routing tables in routers are often shared between

the unicast protocols and the multicast protocols, and the actual shape of the

multicast distribution tree is determined to a large extent by the unicast

routing table.

Thus routing protection, both unicast and multicast, is a key

requirement for the end goal of multicast security. This implies that at

the network layer cryptographic protection of control packets is needed

(which usually means authentication and integrity protection of control

packets), which in turn implies that cryptographic key management and

policy management is required for routing entities. This topic will be

discussed further in Chapter 8.

2.2.2 Controlled access to the multicast distribution tree

The basic IP multicast model as defined by [5] allows for any host to become

a member of the group simply by requesting to join the group. Unless they

happen to be on the same subnet, group members in [5] are typically

unaware of the existence of other members in the group. Although this IP

multicast model may be attractive in its native form from the perspective of

scalability, from the perspective of security such uncontrolled behavior may

be undesirable. Thus, once a multicast distribution tree has been protected

and is correctly functioning according to its specification, a related problem is

that of controlled access to the distribution tree by potential hosts/members

of a group.

20 Framework for multicast and group security

Members (or their host computers) typically connect to a multicast

distribution tree at the ‘‘leaves’’ (edges) of the tree through a group

membership management protocol, such as the IGMP protocol [6, 7]. The

IGMP protocol typically runs both at the host and at the closest multicast

router upstream to that host. This router is typically referred to as the next

hop router from the host.1

The use of additional membership management protocols at the network

layer, such as IGMP, introduces further security threats to the picture. One

potential security threat is resource exhaustion by a malicious nonmember

host that pulls (attracts) the multicast distribution tree to its subnet (even

when the content is encrypted), effectively wasting state storage on the

affected routers in both the host’s own domain and other domains upstream.

This type of attack can be classified as a DoS or, more appropriately (in

multicast) as the denial of quality of service (DQoS) attack. DQoS to

multicast applications, such as video streaming in PPV, may render the

service unbearable (i.e., slow) to most of the receivers of the service

employing multicast.

We refer to this problem of illegal pulling of the multicast distribution

tree as the receiver access control problem, where the word ‘‘access’’ is

intended to mean connections to the distribution tree. A related security

threat is that of sender access control, where nonmember hosts send useless

content to the multicast distribution tree, effectively jamming the tree with

data that members do not wish to receive. This again can lead to a DoS attack

and a DQoS attack. Note that the basic model of [5] even allows anyone

knowing the multicast group address (i.e., a Class D address in IPv4) to send

IP packets to that address, thereby delivering unwanted packets to the rest of

the group members (be they legitimate or not). This topic will be discussed

further in Chapter 8.

2.2.3 Management of keying material

In the context of security, the underlying assumption is that the content or

data being delivered through the multicast distribution tree carries some

value, commercial or otherwise, and is thus worthy of being assigned

1. There are differing views as to whether a host is part of the multicast distribution tree. In discussing security

issues, we have adopted the view that the host is not part of the multicast distribution tree since the host does

not execute the multicast routing protocol, but instead runs a separate membership management protocol such

as IGMP. This view does not preclude possible future protocols whose instance must be executed by all the

routers and the hosts.

2.2 Fundamental issues 21

additional resources to protect it, with a cost that is proportional to the value

of the content itself. Hence, in the context of multicast security, the

assumption is that the content must be protected by way of encryption and

authentication. Some applications (e.g., stock market data) may be public,

but the integrity and timeliness of delivery is paramount. Hence, such data

may not need to be encrypted, but must be at the very least authenti-

cated through either source authentication methods (through asym-

metric cryptography) or group authenticated methods (through symmetric

cryptography).

Since valuable content must be protected (encrypted and/or authenti-

cated) via cryptographic means, this in turn introduces cryptographic keys

into picture, which must themselves be protected and managed. Hence the

management of keying material is a fundamental issue in multicast security,

and is, in fact, a superset of unicast key management. This includes the

policies relating to the keying material, policies regarding a member’s rights

to obtain keying material, and the cryptographic methods and algorithms to

apply the keys to the units of data being multicasted.

The work of [8] introduced the principle of the independence of group

key management from the underlying multicast routing protocol. That is,

regardless of the scope of a group key management protocol, such a

protocol must be independent of (or decoupled from) the underlying

multicast routing protocol, thereby allowing it to be used in conjunction

with various multicast routing protocols. For a group key management

protocol to be independent from multicast routing protocols, the group key

management protocol must not rely on the structures (e.g., the multicast

distribution tree) and mechanisms inherent to any particular routing

protocol. A group key management protocol must also be separate from

the session advertisement protocol [for example, session description

protocol/session announcement protocol (SDP/SAP)]. However, sufficient

information about a group and its related security parameters must be

advertised in order for a host wishing to become a member to engage in

the group key management protocol (assuming that the host implements

the protocol).

One of the primary issues in group key management is that of the

scalability of the protocols it employs. Often these protocols rely on one (or

few) security managing entity (e.g., the key server) that is assumed to be

trusted by all other entities in the system. Furthermore, the protocols often

require host members to communicate securely with the trusted entity

(unicast). Not only does the trusted entity (or entities) become a bottleneck

in the scheme, it also becomes the best point of attack by intruders, since it

necessarily holds security parameters pertaining to the host members.

22 Framework for multicast and group security

Also impacting scalability of group key management protocols is the

method used to perform a rekeying of the group key due a host member

leaving the group or a new one joining. Rekeying of the group key

involves a new group key being delivered to the (affected) members of the

group. Ideally, a protocol should strive to minimize the number of affected

host members in the case of rekeying, and to minimize the number of

messages exchanged during the rekey process, particularly if secure

(authentic and confidential) unicast messages must be exchanged. This

topic will be discussed further in Chapter 4.

2.3 Transport and applications issues

The second category of problems in multicast and group security concerns

security at the transport and applications layers. Since IP multicast is a

network layer functionality, for IP multicast to be deployable, some level of

reliability must be added atop multicast at the network layer. This is the

function of RM protocols, which for simplicity have been placed at the

transport layer. This, of course, does not preclude reliability protocols that

are implemented across both the network layer and the transport layer.

At the application layer, specific applications often introduce additional

security issues. Thus, for example, a conferencing application will have a

different set of security needs compared to PPV applications. Similarly, the

basic security requirements for these two examples would also be different.

Source authentication for conferencing may be more important than in PPV

(assuming both use content encryption), since a conference-based meeting

might result in binding agreements among its participants. In PPV, as long as

the user pays, the service provider may not care about the authentic identity

of the user.

2.3.1 Security of Reliable Multicast protocols

A number of RM protocols have been proposed over the years to effect a

reliable delivery of IP multicast packets at the network layer. The basic

multicast routing protocol typically delivers an IP packet from one router to

another, without any feedback as to whether the packet sent by the sender

actually arrived at the receivers. Since the main task of a router is to push as

many packets through its interfaces in a given time, multicast routing

protocols typically rely on an upper layer mechanism to provide some level

of guaranteed delivery. The analogy is between unicast delivery of packets at

the network layer and TCP at the transport layer.

2.3 Transport and applications issues 23

An RM protocol in itself operates by exchanging control messages

among the entities involved in the protocol. For an RM protocol to function

properly, its control messages must be (at least) protected from modifications

in transit. Thus, in so far as integrity of control messages is concerned, RM

protocols share the same need as multicast routing protocols.

However, different RM protocols behave differently, and thus each has

its specific needs. For example, in NACK protocols that are based on a

Reliable Multicast tree construction, when a host fails to receive a packet,

that host issues a NACK message upstream. A branch point in the tree acts as

an aggregator for these NACK messages. However, if each NACK message is

digitally signed (as it ought to be), then the branch router must be able to

verify the signatures (and hence its need to have the public key certificates of

these hosts). The next question is whether the router should simply choose

one (signed) NACK message and propagate it upstream, or whether it should

create a new NACK and sign the NACK message itself. These and similar

questions will be addressed in Chapter 9.

2.3.2 Applications requirements and other issues

Security issues in multicast and group security truly come to light only when

the specific application that deploys multicast is understood. Some of the

issues that typically occur at the application layer and drive the resulting

solution include:

w Many-to-many multicast applications. Some applications are inher-

ently multisender and multireceiver. Conferencing, chat groups, and

video gaming are the most common examples. It is possible to

distinguish further between open and closed many-to-many multicast

groups. In the former, the group is open to any person, provided that

some authentication is provided before the person is actually allowed

to receive and/or send. In the closed case, a predetermined list of

members is known in advance, and eligible members must

authenticate themselves before being admitted. Typically, some

conference or group ‘‘owner’’ determines the list. Whether a

many-to-many multicast group is open or closed influences the

underlying mechanisms and protocols used to implement the group.

w Trust relationships. The issue of trust relationships cuts vertically

across the communications stack and horizontally across the

topological entities involved in the group. Thus, for example, there

24 Framework for multicast and group security

is the issue of trust for the certificate authority (CA) that issued a

certificate for a given member. Then there is the issue of domain-

level trust, where perhaps certain members will only trust entities

located in a given set of domains. For example, if a key distributor

(KD) is located in a member’s domain, then that member would

perhaps trust it more compared to one that is located in an ISP. The

problem of trust relationship is a difficult one, influenced by several

factors; research on this issue and others has been ongoing for a

number of years. However, a practical approach embodying trust

relationships specifically for multicast security on the Internet has yet

to be proposed.

w Identities and anonymity. Some applications of multicast may require

that a member’s participation and the member’s location (i.e., IP

address) be maintained as private information. This, however, may

be contradictory to routing’s basic requirements at the network layer.

In general, anonymity should be established at the application layer

using pseudonyms [9, 10] and other cryptographic methods. Routers

or network devices (e.g., mail servers) that provide an anonymizer

service may also be deployed, where the anonymizer may be the

member-by-proxy to the group at the network layer. The problem of

anonymity in group communications has been addressed in the

context of group-oriented cryptography and financial cryptography,

and thus will not be addressed here.

The above problems are by no means the only issues related to transport

and applications in multicast. Readers are invited to analyze the security

requirements of their own applications.

2.4 The IETF problem scope for multicast and group security

The work on multicast and group security in the IETF originated in the IRTF,

which is a sister organization to the IETF, tasked at addressing technologies

on the horizon that would soon be developed in the industry, and whose

aspects would require standardization. The emphasis in the IRTF is for

practical research, conducted in research groups.

2.4.1 A brief history of multicast security efforts in the IETF

An IRTF research group does not produce standards. At the very best, it

produces proposals to go into an IETF working group, possibly in the form of

2.4 The IETF problem scope for multicast and group security 25

documents that are near standard. Since research groups are looser in their

manner of day-to-day operation, over the years each research group has

conducted itself differently from others. This is in contrast to working

groups, where a specific charter must underlie the working group’s

existence, and an approximate closure date must be established at the

onset, by which all of the working group work items should be completed

(although extensions of time are possible, and a recharter is another

possible response to an ever-changing Internet technological landscape and

industry).

IP multicast, despite its existence for the last decade, came to the

forefront of the Internet revolution in the late 1990s as a promising way to

deliver content to the growing numbers of users on the Internet. Events

such as the IP Multicast Summit2 attracted not only equipment vendors,

but also content providers, content distributors, and content distribution

network (CDN) providers seeking to deploy IP multicast for content

delivery.

In the IETF, security was one area that was considered lacking, but

essential to the deployment of IP multicast. However, since technologies for

multicast security were not ready for standardization, an IRTF research

group called SMuG was created in early 1998 to begin to address security

issues relating to IP multicast and group security. One of SMuG’s tasks was to

help other research and working groups (related to multicast) in solving

their security needs. Thus, SMuG collaborated with (or monitored closely)

other groups in the IETF/IRTF such as the Reliable Multicast Research Group

(RMRG), the Reliable Multicast Transport (RMT) working group, the PIM

working group, and other security-related groups whose developments

might impact multicast security (e.g., the IPsec working group). As far as

possible, SMuG was to use technologies developed in other IETF and IRTF

groups, rather than reinventing them.

SMuG did eventually develop a set of near-standard documents and

proposals which were transferred into a new working group created in

March 2000 called the MSEC working group. In the meantime, once the

work items of SMuG had been carried over into the MSEC working

group, SMuG was renamed and rechartered in July 2000 into the

Group Security (GSEC) research group which broadened its scope of

work.3

2. See http://www.ipmulticast.com.

3. Information on SMuG, MSEC, and GSEC can be found at the http://www.securemulticast.org.

26 Framework for multicast and group security

2.4.2 The IETF multicast security Reference Framework

As mentioned earlier, one of the fundamental problems in multicast security

is the management of keying material, which covers not only cryptographic

keys but also the supporting parameters, such as SAs and policies. Key

management was the first to be addressed by the SMuG research group and

later the MSEC working group in the IETF. This topic was selected since it

was independent of other efforts in other multicast-related working groups.

The problem of routing infrastructure protection had been addressed briefly

in the PIM working group in [11, 12], while the other fundamental problem

of controlling access to the distribution tree had also been looked at by the

SMuG community, albeit at a lower priority.

One immediate resolution of the SMuG research group was that the

‘‘management of keying material’’ needed to be better understood. To that

extent, significant progress in SMuG toward a common understanding of the

problem scope was the establishment of a Reference Framework for

multicast security, which was presented at the 44th IETF in March 1999;

also the third meeting of SMuG. This Reference Framework, shown

in Figure 2.3, aims broadly at addressing the fundamental problem of the

Figure 2.3 The IETF multicast security Reference Framework.

2.4 The IETF problem scope for multicast and group security 27

management of keying material. The aim of the Reference Framework is to

classify problem areas, functional elements, and interfaces. The Reference

Framework defines the building blocks and suggested a program of work for

research and standardization in the SMuG research group and later in the

MSEC working group.

The Reference Framework attempts to incorporate the main entities and

functions relating to multicast security, and to depict the interrelations among

them. At the same time it tries to express the complex multicast security

question from the perspective of problem classification (i.e., the three

problem areas), architectures (centralized and distributed), multicast types

(one-to-many or many-to-many), and protocols (the exchanged messages).

The aim of the Reference Framework is to provide some general context

within which problems can be identified and classified (as being within a

given problem area), and the relationships among the problems can be

recognized. Note that some issues span more than one so-called problem

area. In fact, the framework encourages the precise identification and

formulation of issues that involve more than one problem area, or those

which are difficult to express in terms of a single problem area. An example is

the expression of policies concerning group keys, which involves the

problem areas of both group key management and multicast policies.

When considering the Reference Framework in Figure 2.3, it is

important to realize that the singular boxes in the framework do not

necessarily imply a corresponding single entity implementing a given

function. Rather, a box in the framework should be interpreted loosely as

pertaining to a given function related to a problem area. Whether that

function is in reality implemented as one or more physical entities is

dependent on the particular solution. As an example, the box labeled ‘‘key

server’’ must be interpreted in broad terms as referring to the functions of

key management. Similarly, the Reference Framework acknowledges that

some implementations may, in fact, merge a number of the boxes into a

single physical entity.

The Reference Framework can be viewed horizontally and vertically.

Horizontally, it displays both the entities and functions as singular boxes,

expressing each of the three broad problem areas. Vertically, it expresses the

basic architecture designs for solutions; namely, a centralized architecture

and a distributed architecture.

2.4.3 Elements of the Reference Framework

The Reference Framework diagram of Figure 2.3 contains boxes and

arrows. The boxes are the functional entities and the arrows are the

28 Framework for multicast and group security

TE
AM
FL
Y

Team-Fly®

interfaces between them. Standard protocols are needed for the interfaces,

which support the multicast services between the functional entities. There

are three sets of functional entities in both centralized and distributed

designs as discussed below.

w GCKS. The GCKS represents both the entity and functions relating

to the issuance and management of cryptographic keys used by a

multicast group. They are subject to the user authentication and

authorization checks conducted on the candidate member of

the multicast group. The GCKS is also taken to mean the

functions pertaining to group membership management. The key

server is also referred to as key distributor (KD). In a distributed

architecture, the GCKS entity also interacts with other GCKS

entities to achieve scalability in the key-management-related

services. In such a case, each member of a multicast group may

interact with one or more GCKS entities (say, the nearest GCKS

entity, measured in terms of a well-defined and consistent metric).

Similarly, in a distributed architecture, a GCKS entity may interact

with one or more policy servers; also arranged in a distributed

architecture.

w Sender and receiver. The sender is an entity that sends data to the

multicast group. In a 1-to-n multicast group only a single sender is

allowed to transmit data to the group. In an m-to-n multicast

group many (or even all) group members can transmit data to the

group. Both sender and receiver must interact with the GCKS

entity for the purpose of key management. This includes user

authentication, the obtaining of keying material in accordance with

key management policies for the group, obtaining new keys

during key updates, and obtaining other messages relating to the

management of keying material and security parameters. The

influence of policies on both senders and receivers is seen as coming

indirectly through the GCKS entities, since the event of joining

a multicast group is typically coupled with the sender/receiver

obtaining keying material from a GCKS entity. This does not preclude

direct interaction between the sender/receiver and the policy server.

The Reference Framework displays two receiver boxes, correspond-

ing to the situation where both the sender and receiver employ the

same GCKS entity (in a centralized architecture), and where the

sender and receiver employ different GCKS entities (in a distributed

architecture).

2.4 The IETF problem scope for multicast and group security 29

w Policy server. The policy server represents both the entity and func-

tions used to create and manage security policies specific to a multi-

cast group. The policy server interacts with the GCKS entity in order

to install and manage the security policies related to the membership

of a given multicast group, and those related to keying material for a

multicast group. The interactions between the policy server and other

entities in the Reference Framework are dependent to a large extent

on the security circumstances being addressed by a given policy.

w Centralized and distributed designs. The need for solutions to be

scalable to large groups across wide geographic regions of the Internet

requires the elements of the framework to also function as a distri-

buted system. This implies that a GCKS entity must be able to interact

securely with other GCKS entities in a different location. Similarly,

policy servers must interact with each other securely to allow the

communication and enforcement of policies across the Internet.

2.5 Three problem areas in the management of keying material

As mentioned previously, Figure 2.3 shows three horizontal labels denoting

the classification of the problems into three problem areas, which can be seen

as three subproblems of the broader fundamental problem management of

keyingmaterial (see Figure2.4).Additionally, theaimof this classification is to

allow three subgroups of people to work in parallel to find solutions corres-

ponding to the three areas. A close collaboration is needed, since to a large

extent there are dependencies among the three problem areas. For example,

group policy might determine key management rules, while rekeying of a

group key might be a function of the way the key is used at the end hosts.

The three problem areas are briefly summarized here, and will be

expanded further below:

w Problem area 1: Multicast data handling. This area covers problems

concerning the security-related treatments of multicast data by the

sender and the receiver. In particular, algorithms for efficient

application of the cryptographic keys in the multicast context

need to be studied. This problem area is further discussed in

Section 2.5.1.

w Problem area 2: Management of keying material. This area is concerned

with the secure distribution and refreshment of keying material. This

problem area is further discussed in Section 2.5.2.

30 Framework for multicast and group security

w Problem area 3: Multicast security policies. This area covers aspects of

policy in the context of multicast security, taking into consideration

the fact that policies may be expressed in different ways, that they

may exist at different levels in a given multicast security architecture,

and that they may be interpreted differently according to the context

in which they are specified and implemented. This problem area is

further discussed in Section 2.5.3.

2.5.1 Problem area 1: Multicast data handling

In a secure multicast group the data typically needs to be:

w Encrypted using the group key, mainly for access control and possibly

also for confidentiality.

w Authenticated, for verifying the source and integrity of the data.

Authentication can take two forms:

Figure 2.4 Multicast security problem areas, building blocks, and protocol instantiations.

2.5 Three problem areas in the management of keying material 31

1. Source authentication and data integrity. This functionality guar-

antees that the data originated from the claimed source and was

not modified in transit (either by a group member or an external

attacker).

2. Group authentication. This type of authentication only guaran-

tees that the data was generated (or last modified) by some group

member that possesses the group key. It does not guarantee data

integrity unless all group members are trusted.

While multicast encryption and group authentication are fairly stan-

dard, and similar to encrypting and authenticating point-to-point commu-

nication, source authentication for multicast is considerably more involved.

This topic will be discussed at length in Chapter 3.

2.5.2 Problem area 2: Management of keying material

The term ‘‘keying material’’ refers to the cryptographic key belonging to a

group, the state associated with the keys, and the other security parameters

related to the keys. Hence, the management of the cryptographic keys

belonging to a group necessarily requires the management of their associated

state and parameters. A number of solutions for specific problems must be

addressed. These may include the following:

w Methods for member identification and authentication;

w Methods to verify the membership to groups;

w Methods to establish a secure channel between a GCKS entity and

the member, for the purpose of delivering shorter term keying

material pertaining to a group;

w Methods to establish a long-term secure channel between one GCKS

entity and another, for the purpose of distributing shorter term

keying material pertaining to a group;

w Methods to effect the changing of keys and keying material;

w Methods to detect and signal failures and perceived compromises to

keys and keying material.

The needs related to the management of keying material must be

seen in the context of the policies that prevail within the given

circumstance.

32 Framework for multicast and group security

2.5.3 Problem area 3: Multicast security policies

Multicast security policies must provide the rules for operation of the other

elements of the Reference Framework. While much of the work for the

multicast security policy area is focused in the policy controller, there are

potential areas for work in the application of policy at the group controller

element and the member (sender and receiver) elements. While there is

already a basis for security policy management in the IETF between the

Policy Working Group and the IP Security Policy working group, multicast

security policy management should extend the concepts developed for

unicast communication in the areas of:

w Policy creation;

w High-level policy translation;

w Policy representation.

Examples of work in multicast security policies include the Dynamic

Cryptographic Context Management project [13] the group key manage-

ment protocol (GKMP) [14], and Antigone [15].

Policy creation for secure multicast has several more dimensions than

the single administrator–specified policy assumed in the existing unicast

policy frameworks. Secure multicast groups are usually large and by their

very nature extend over several administrative domains, if not spanning a

different domain for each user. There are several methods that need to be

explored for the creation of a single, coherent group security policy. They

include a top-down specification of the group policy from the group initiator,

and negotiation of the policy between the group members (or prospective

members). Negotiation can be as simple as a strict intersection of the policies

of the members, or extremely complicated using weighted voting systems.

High-level policy translation is much more difficult in a multicast

group environment, especially when group membership spans multiple

administrative domains. When policies are specified at a high level with a

policy management tool, they must then be translated into more precise

rules that the available security mechanisms can both understand and

implement. When dealing with multicast communication and its multiple

participants, it is essential that the individual translation performed for each

participant result in the use of a mechanism that is interoperable with the

results of all of the other translations. Typically, the translation from high-

level policy to implementation mechanisms must result in the same

mechanism, in order to achieve communication between all of the group

2.5 Three problem areas in the management of keying material 33

members. The requirement that policy translation result in the same

mechanism places constraints on the use and representations in the high-

level policies. It is also important that policy negotiation and translation be

performed as an integral part of joining a group. Adding a member to a group

is meaningless if such new members will not be able to participate in the

group communications.

Multicast security policies must represent or contain more infor-

mation than a traditional peer-to-peer policy. In addition to representing

the security mechanisms for the group communication, the policy must also

represent the rules for the governance of the secure group. Policy must be

established for the basic group operations of add and remove, as well as more

advanced operations such as leave, rejoin, or resync.

2.6 The building blocks approach

One of the challenges of standardizing any set of technologies is bringing

together aspects of different existing protocols and implementations, and

deriving common functions that already exist in them.

This challenge was encountered within the Reliable Multicast

Transport (RMT) Working Group, where several mature (and already

productized) Reliable Multicast protocols were being brought together for

standardization. The approach adopted in the RMT working group was to

derive building blocks that were common to these existing protocols. Thus,

for example, congestion control may be a common feature of many

Reliable Multicast protocols, and each existing protocol instantiations (PI)

in the RMT working group had some method of performing congestion

control. Hence, the thinking was that a common congestion control

method could be derived into a common building block that could be

standardized, independent of any specific protocol instantiations. Having a

congestion control building block allowed for later improvements to

scheme, and even possible replacement of the block with a better scheme

in the future.

The same building blocks approach, each with one or more PIs, was also

adopted in addressing multicast security in both the SMuG research group

and MSEC working group, as explained further in Figure 2.4.

2.6.1 Motivation for building blocks

A common approach to solving a complex problem is to subdivide the

problem into manageable blocks. Here, each block must serve a well-defined

34 Framework for multicast and group security

function, and its relationship with other blocks must be clearly defined.

Besides being more manageable, the approach inherently has a number of

advantages, including use and reuse of the functional block independently of

the whole, and the ability to combine different blocks to satisfy multiple

functions.

Although the building blocks approach has advantages, there are a

number of risks associated with the approach, particularly in the context of

bringing together existing protocols into a standardization body. Some of the

risks are [16]:

w Delayed development, which results from the need for additional

work to develop ways to combine independent building blocks;

w Increased complexity, which is caused by too many building blocks

having too many interfaces;

w Reduced performance, which may be caused by too much

modularization;

w Abandonment of prior work, which results from attempts to develop

robust, general solutions.

Despite the above-mentioned risks, there are at least four important

benefits to multicast security in applying the building blocks approach.

1. Reuse of publicly reviewed cryptographic protocols. The reuse of proven

technologies is attractive in general, and is more particularly bene-

ficial in cryptographic mechanisms. Thus, existing units or blocks

that have been publicly reviewed offer a great advantage in solving

complex issues such as multicast security.

2. Timely delivery of needed technology. Building blocks allow fast

delivery of specific technologies, independent of others. In the

context of multicast security, for example, multicast data con-

fidentiality could be standardized independently of other security

services that may take longer to specify for a great variety of uses,

such as multicast source authentication.

3. Robust support for a variety of application environments. Good building

block definitions will permit the combination of individual building

blocks to flexibly add security services to IP multicast or application-

layer multicast traffic.

2.6 The building blocks approach 35

4. Simplicity in the proof of correctness. Verifying the correctness of each

building block as a separate block is simpler than verifying an entire

homogeneous system. This is inherent in the building blocks

approach.

To make the notion of building blocks more concrete, consider the

example of the independence of protocols in the IPsec suite. Certain IPsec

protocols such as (authentication header) AH [17] and ESP [18] perform

their security functions independently of other protocols in the IPsec suite,

such as IKE, which provides security association [19] and key manage-

ment services to AH and ESP. As a result of this independence, a

compliant ESP implementation can be used today to provide IP multicast

confidentiality, despite the fact that an IKE security association is unique

to a pair of communicating endpoints, and is unsuitable for managing

multicast group keys. If ESP uses an IPsec SA having a multicast address,

however, it effectively supports IP multicast confidentiality, since there is

no requirement that an SA used by ESP be established by IKE (although

this might be a reasonable policy for some environments). Thus,

other applications may be used to establish the keying material needed

for an IP multicast ESP service. For this to work, however, an application

programming interface (API) might be needed for updates to the host

security association database (SAD). Taken together, these can provide a useful

multicast security service, namely, IP multicast confidentiality. The capacity

to provide a useful security service is one important criterion for a multicast

security building block, which is realized in an algorithm, protocol, API, or

by other means.

A multicast security building block should be able to be combined with

other building blocks to provide additional security services. Without this

property, the building block is little more than an incomplete solution to

the general problem. Thus a second criterion for a good multicast security

building block is that it can be combined with other building blocks to

provide additional security services. A good building block for IP

multicast confidentiality can be combined with other building blocks for

IP multicast source authentication, data authentication (integrity), and

additional security services.

A good example of the building blocks approach is the work that was

done on multicast packet-level source and data authentication within the

SMuG community. One output of this effort is a draft specification on

multicast packet-level authentication for real-time transport protocol (RTP)

applications [20], which is a proposed RTP profile [21]. This work proposes to

efficiently authenticate the sender and verify the integrity of multicast

36 Framework for multicast and group security

packets, by applying a digital signature over the hash of a sequence of

packets [20, 22]. Although practical experience is needed to evaluate this

protocol, it illustrates the use of a multicast security building block.

A successful multicast source or data packet authentication building

block should be applicable to other applications such as SDP/SAP [23, 24].

Indeed, technology that solves source and data packet authentication for

real-time multicast application traffic should be considered for IP multicast

traffic as well—at least the algorithm, if not the protocol. Thus, a third

criterion for a multicast security building block is its applicability to IP

multicast and application-layer multicast security.

The preceding discussion has established a set of three criteria for good

multicast security building blocks:

1. A building block provides a flexible security service. A protocol that

realizes a building block should be standardizable, independently of

other building blocks.

2. Building blocks can be combined in a framework to provide a set of

multicast security services that amount to a whole protocol for

multicast security.

3. Building blocks can be applied to both IP multicast and application-

layer multicast security; good multicast security building blocks can

be adapted for both protocol and data security.

As discussed above, useful solutions may not satisfy all three criteria, but

the most promising proposals for standardization would probably satisfy

more than a single criterion. Thus, the criteria are suggested as good

measures for a functional or protocol building block.

In addition to the demands of productive use and standardization, the

building blocks approach allows the identification of certain problems that

are still poorly understood and thus poorly defined. In the context of the

SMuG research group and MSEC working group, the building blocks

approach helped focus the research mission and facilitate the standards

objectives. By adopting this approach early, SMuG avoided the near-

impossible task of extracting building blocks from mature protocols, and the

experience can positively influence multicast standards work that may occur

in IETF working groups.

The building blocks approach also allows the sharing of standardized

technologies with working groups within the IRTF and the IETF. For

example, certain blocks developed with the SMuG research group may be

useful and deployable by the RMT working group in its efforts to secure the

2.6 The building blocks approach 37

RMT protocols. The same blocks may also be used to secure other application

protocols (e.g., RTP) and multicast routing protocols, and be applied to other

areas where both multicast and security services are needed.

2.6.2 Functional building blocks

Having explained the motivations of using the building blocks approach, we

discuss the functional building blocks identified by SMuG and MSEC in

this section. For example, multicast source authentication, data authentica-

tion, and confidentiality occur on the multicast data interface between

senders and receivers in Figure 2.3. Authentication and confidentiality

services may also be needed between the key server and key clients (i.e., the

senders and receivers), but the services that are needed for multicast key

management may be unicast as well as multicast. Multicast key management

is a separate function and has a separate building block. A functional

building block for multicast security therefore identifies a specific function

along one or more interfaces of Figure 2.3.

The functional building blocks identified in SMuG and MSEC are:

1. Multicast data confidentiality. This functional building block handles

the encryption of multicast data at the sender’s end, and the

decryption at the receiver’s end. This building block presumably

may apply the keying material that is provided by multicast key

management in accordance with multicast policy management, but

it is independent of both.

An important part of the work on the multicast data

confidentiality building block is in the identification of and

motivation for specific ciphers that should be used for multicast

data. Obviously, not all ciphers will be suitable for IP multicast and

application-layer multicast traffic. Since this traffic will usually be

connectionless user datagram protocol (UDP) flows, stream ciphers

may be unsuitable although hybrid stream/block ciphers may have

advantages over some block ciphers. In addition, the real-time and

other requirements of multicast senders and receivers must be

evaluated, and selections must be made for a suitable set of

promising ciphers and data protocols for IP multicast and applica-

tion-layer multicast data confidentiality.

Regarding application-layer multicast, some consideration is

needed for sending encrypted data in a multicast environment

lacking admission control, where practically any application pro-

gram can join a multicast event, independently of its participation

38 Framework for multicast and group security

TE
AM
FL
Y

Team-Fly®

in a multicast security protocol. Thus, this building block is also

concerned with the effects of multicast confidentiality services,

intended and otherwise, on application programs in all senders and

receivers.

With respect to the problem areas (in Figure 2.3), the multicast

data confidentiality building block is placed in problem area 1 along

the interface between senders and receivers. The algorithms and

protocols that are realized from work on this building block may be

applied to other interfaces and other problem areas, when multicast

data confidentiality is needed.

2. Multicast source authentication and data integrity. This building block

handles source authentication and integrity verification of multicast

data. It includes the transforms to be made both at the sender’s end

and at the receiver’s end. It assumes that the appropriate signature

and verification keys are provided via multicast key management in

accordance with multicast policy management.

Work done by members of the SMuG research group suggests

that this is one of the harder areas of multicast security, based on

the connectionless and real-time requirements of many IP multicast

applications. There are classes of application-layer multicast security,

however, where off-line source and data authentication will suffice.

Not all multicast applications require real-time authentication and

data packet integrity. A robust solution to multicast source and data

authentication, however, is necessary for a whole protocol solution to

multicast security.

In Figure 2.3, the multicast source and data authentication

building block is placed in problem area 1 along the interface

between senders and receivers. The algorithms and protocols that

are produced for this functional building block may have applic-

ability to building blocks in other problem areas that use multicast

services such as multicast key management.

3. Multicast group authentication. This building block provides a limited

amount of authenticity of the transmitted data. It only guarantees

that the data originated from (or was last modified by) an entity that

possesses the group key (symmetric key): namely, a group member.

It does not guarantee authenticity of the data, in case other group

members are not trusted.

The advantage of group authentication is that it is guaran-

teed via relatively simple and efficient cryptographic transforms.

Therefore, when source authentication is not paramount, group

2.6 The building blocks approach 39

authentication becomes useful. In addition, performing group au-

thentication is useful even when source authentication is later

performed, in that it provides a simple-to-verify weak integrity

check that is useful as a measure against DoS attacks.

The multicast group authentication building block is placed in

problem area 1 along the interface between senders and receivers.

4. Multicast group membership management. This building block

describes the functionality of registration and deregistration of

members. Registration includes member authentication, notifica-

tion and negotiation of security parameters, and logging of

information according to the policies of the group controller and

the would-be member. (Typically, some method for the advertise-

ment of group information would occur before the registration

takes place. The registration process will typically be invoked by the

would-be member.)

Deregistration may occur either at the initiative of the member

or at the initiative of the group controller. It would result in logging

of the deregistration event by the group controller, and an

invocation of the appropriate mechanism for terminating the

membership of the deregistering member.

This building block also describes the functionality of the

communication related to group membership among different

GCKS servers in a distributed group design.

In Figure 2.3, the multicast group membership building block

is placed in problem area 2, and has interfaces to senders and

receivers.

5. Multicast key management. This building block describes the

functionality of distributing and updating the cryptographic keying

material throughout the life of the group. Components of this

building may include:

w GCKS to client (sender or receiver) notification regarding current

keying material (e.g., group encryption and authentication keys,

auxiliary keys used for group management, keys for source

authentication, etc.).

w Updating of current keying material, depending on circum-

stances and policies.

w Termination of groups in a secure manner, including the

multicast group itself and the associated keying material.

40 Framework for multicast and group security

Among the problems to be solved by this building block is the

secure management of keys between key servers (GCKS) and

clients, the addressing of issues for the multicast distribution of

keying material, and the scalability or other performance require-

ments for multicast key management.

To allow for an interoperable and secure IP multicast security

protocol, this building block may need to specify host abstractions

such as a group security association database (GSAD) and a group

security policy database (GSPD) for IP multicast security. The degree of

overlap between IP multicast and application-layer multicast key

management is a consideration. Thus, work on this functional

building block must take into account the key management

requirements for IP multicast, the key management requirements

for application-layer multicast, and to what degree specific

realizations of a multicast key management building block can

satisfy both.

This building block also describes the functionality of the

communication related to key management among different GCKS

servers in a distributed group design.

Multicast key management appears in both the centralized and

distributed designs as shown in Figure 2.3 and is placed in problem

area 2.

6. Multicast policy management. This functional building block handles

all matters related to multicast group policy including membership

policy and multicast key management policy. Indeed, one of the first

tasks is to identify the different areas of multicast policy. Multicast

policy management includes the design of the policy server for

multicast security, the particular policy definitions that will be used

for IP multicast and application-layer multicast security, and the

communication protocols between the policy server and the key

server. This functional building block may be realized using a

standard policy infrastructure such as a policy decision point (PDP)

and policy enforcement point (PEP) architecture [25]. Thus, it may

not be necessary to reinvent a separate architecture for multicast

security policy. Rather, products of IETF efforts in the areas of

network and security policy could be deployed.

The multicast policy management building block describes the

functionality of the communication between an instance of a GCKS

and an instance of the policy server. The information transmitted

may include policies concerning groups, memberships, keying

2.6 The building blocks approach 41

material definition and their permissible uses, and other information.

This building block also describes communication between and

among policy servers. Thus, the multicast policy management

building block is placed in problem area 3, along the interface

between key servers and policy servers.

2.7 Summary

The primary aim of this chapter has been to subdivide the complex problem

of multicast and group security into manageable pieces; each of which will be

addressed or discussed in subsequent chapters.

The broadest division was the categorization into fundamental issues

as the first subgroup of problems, and transport and application issues as

the second. The first covered problems pertain to routing infrastructure

protection, controlled access to the multicast distribution tree, and the

management of keying material. The latter include (but are not limited to)

the security of RM protocols and other applications requirements.

Alhough these are not the only issues at hand, the first set of problems

are referred to as fundamental, since they are a necessary first step toward

securing IP multicast, and they lead to building blocks that may be used to

solve other needs, such as security in RM protocols.

Efforts in the IETF focused initially on the management of keying

material. Within this space, one significant development was the develop-

ment of a Reference Framework as shown in Figure 2.3. The Reference

Framework attempts to incorporate the main entities and functions relating

to multicast security, and to depict the interrelations among them. At the

same time it also tries to express the complex multicast security question

from the perspectives of problem classification (i.e., the three problem areas)

architectures (centralized and distributed), multicast types (one-to-many or

many-to-many), and protocols (the exchanged messages).

The Reference Framework paved the way for the definition of three

problem areas that would be immediately addressed by the SMuG research

group (see Section 2.5). The three are multicast data handling (problem

area 1), the management of keying material (problem area 2), and multicast

security policies (problem area 3).

Using the Reference Framework as the basis, an approach was adopted

based on the notion of building blocks, as a way for SMuG to work forward

(see Section 2.6). This approach presents several advantages as well as risks.

The resulting functional building blocks are: multicast data confidentiality,

source authentication and data integrity, group authentication, group

42 Framework for multicast and group security

membership management, key management, and multicast policy manage-

ment. These building blocks have recently been the focus of the MSEC

working group in the IETF.

References

[1] Deering, S., et al., ‘‘The PIM Architecture for Wide-Area Multicast Routing,’’

IEEE/ACM Trans. on Networking, Vol. 4, No. 2, 1996, pp. 153–162.

[2] Estrin, D., et. al., ‘‘Protocol Independent Multicast-Sparse Mode (PIM-SM),’’

protocol specification, RFC 2362 (experimental), IETF, June 1998.

[3] Waitzman, D., C. Partridge, and S. E. Deering, ‘‘Distance Vector Multicast

Routing Protocol,’’ RFC 1075 (experimental), IETF, Nov. 1988.

[4] Moy, J., ‘‘Multicast Extensions to OSPF,’’ RFC 1584 (proposed standard), IETF,

March 1994.

[5] Deering, S. E., ‘‘Host Extensions for IP Multicasting,’’ RFC 1112 (standard),

IETF, August 1989.

[6] Cain, B., et al., ‘‘Internet Group Management Protocol, Version 3,’’ draft-ietf-

idmr-igmp-v3-09.txt, IETF, January 2002, work in progress.

[7] Fenner, W., ‘‘Internet Group Management Protocol,’’ RFC 2236 (proposed

standard), IETF, November 1997.

[8] Hardjono, T., B. Cain, and N. Doraswamy, ‘‘A Framework for Group Key

Management for Multicast Security,’’ draft-ietf-ipsec-gkmframework-03.txt,

IETF, August 2000, work in progress.

[9] Chaum, D., ‘‘Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms,’’ Communications of the ACM, Vol. 24, No. 2, Feb. 1981.

[10] Chaum, D., ‘‘Showing Credentials Without Identification: Transferring

Signatures Between Unconditionally Unlinkable Pseudonyms,’’ In Advances

in Cryptology—AUSCRYPT, Sydney, Australia: Springer-Verlag Inc., LNCS 453,

January 1990.

[11] Hardjono, T., and B. Cain, ‘‘Simple Key Management Protocol for PIM,’’ draft-

ietf-pim-simplekmp-01.txt, IETF, February 2000, work in progress.

[12] Wei, L., ‘‘Authenticating PIM Version 2 Messages,’’ draft-ietf-pim-v2-auth-

01.txt, IETF, May 1999, work in progress.

[13] Dinsmore, P. T., et al., ‘‘Policy-Based Security Management for Large Dynamic

Groups: An Overview of the DCCM Project,’’ in Proc. of the DARPA Information

Survivability Conference & Exposition Volume I of II (DISCEX), Hilton Head, SC,

January 2000, pp. 64–73.

[14] Harney, H., and C. Muckenhirn, ‘‘Group Key Management Protocol (GKMP)

Architecture,’’ RFC 2094 (experimental), July 1997.

2.7 Summary 43

[15] McDaniel, P., A. Prakash, and P. Honeyman, ‘‘Antigone: A Flexible Frame-

work for Secure Group Communication,’’ in Proc. of the 8th USENIX Security

Symposium, Washington, D.C., August 1999, pp. 99–114.

[16] Whetten, B., et al., ‘‘Reliable Multicast Transport Building Blocks for One-to-

Many Bulk-Data Transfer,’’ RFC 3048 (informational), IETF, January 2001.

[17] Kent, S., and R. Atkinson, ‘‘IP Authentication Header (AH),’’ RFC 2402

(proposed standard), IETF, November 1998.

[18] Kent, S., and R. Atkinson, ‘‘IP Encapsulating Security Payload (ESP),’’ RFC

2406 (proposed standard), IETF, November 1998.

[19] Kent, S., and R. Atkinson, ‘‘Security Architecture for the Internet Protocol,’’

RFC 2401 (proposed standard), IETF, November 1998.

[20] McCarthy, L., ‘‘RTP Profile for Source Authentication and Non-Repudiation of

Audio and Video Conferences,’’ draft-mccarthy-smug-rtp-profile-src-auth-

00.txt, IETF, May 1999, work in progress.

[21] Schulzrinne, H., et al., ‘‘RTP: A Transport Protocol for Real-Time Applica-

tions,’’ RFC 1889 (proposed standard), IETF, January 1996.

[22] Wong, C. K., and S. S. Lam, ‘‘Digital Signatures for Flows and Multicasts,’’

IEEE/ACM Trans. on Networking, Vol. 7, No. 4, August 1999, pp. 502–513.

[23] Handley, M., and V. Jacobson, ‘‘SDP: Session Description Protocol,’’ RFC 2327

(proposed standard), IETF, April 1998.

[24] Handley, M., C. Perkins, and E. Whelan, ‘‘Session Announcement Protocol,’’

RFC 2974 (experimental), IETF, October 2000.

[25] Yavatkar, R., D. Pendarakis, and R. Guerin, ‘‘A Framework for Policy-Based

Admission Control,’’ RFC 2753 (informational), IETF, January 2000.

44 Framework for multicast and group security

Multicast data authentication

Secure multicast data handling is one of the three problem

areas (problem area 1; see Section 2.5) identified by the

SMuG Research group and adopted by the IETF MSEC working

group. Different applications have different requirements for

secure data transmission. For example, in some cases, data

source authentication and integrity protection may be suffi-

cient (e.g., in news distribution), whereas other applications

might need confidentiality (e.g., news distribution with access

control) as well. Confidentiality of group communications is

discussed in detail in Chapters 4, 5, and 6. Data source

authentication of group communications is a challenging

problem, and is the focus of this chapter.

Different applications may need different levels of authen-

tication for secure group communication. For example, in some

applications it may be sufficient to know that a data packet

originated within the secure group and has not been modified

in transit by nonmembers. This property is known as group

authentication. In other applications, members (or receivers)

might need to verify to themselves that a data packet was sent

by the claimed (or the authorized) source. This property is

known as source authentication. Finally, in some cases a

neutral third party should also be able to independently

determine the data source. In other words, a sender should

not be able to repudiate having ever sent the data.

There is another dimension to the challenges in source

authentication of multicast data, presented by the nature of the

applications. While there are some applications that involve

45

C H A P T E R

3
Contents

3.1 Issues in multicast data
authentication2

3.2 Digital signatures for source
authentication6

3.3 Hash chaining to authenticate
streaming data9

3.4 MAC-based source
authentication of unreliable
streams15

3.5 IPsec ESP and MESP20

3.6 Summary21

bulk transfer of data to a group of receivers, most send streaming data.

Furthermore, data may need to be transmitted in real time, with implications

on buffer space requirements at both the sender and the receivers.

Finally, packets may be lost in transit or arrive out of order. Thus, source

authentication and non-repudiation of group communications are difficult

problems.

There are several documented solutions that provide various levels of

authentication with trade-offs in computation and communication over-

head, buffer space requirements, authentication delay, and verification

probability. Some of these schemes are loss tolerant, while others require

reliable delivery. Among the loss tolerant schemes, some can tolerate any

kind of losses, whereas others are optimized to tolerate bursty or random

losses, with limitations such as verification probability.

Digitally signing each packet addresses the security needs of most, if not

all, applications. But it is computationally expensive to sign or verify digital

signatures. The per-packet communication overhead is also excessive. Thus,

most schemes use amortization techniques to reduce both these costs. Block

hashing, described in Section 3.2.1, amortizes the computational cost of a

digital signature over a block of packets. In hash chaining–based schemes,

each packet’s hash is sent as part of one or more packets. Signature packets

hold the hashes of end points (packets) of the hash chains. Section 3.3

describes a variety of schemes based on hash chaining. Another class of

protocols uses MAC-(symmetric key–based) based authentication, with keys

derived from one-way function chains. These protocols get around the

limitation of MAC keys for source authentication using delayed key

disclosures.

Note that irrespective of the authentication scheme, IPsec ESP [1],

MESP [2] or AMESP protocols may be used to send authentication

information or keys.

3.1 Issues in multicast data authentication

The problem of secure group communication can be divided into several

building blocks for better understanding of the requirements, and simpler

analysis of solutions. In that spirit, Section 2.6 lists several building blocks,

two of which, multicast source authentication and data integrity, and group

authentication, are addressed here. Recall that these two building blocks

belong to problem area 1 of the Reference Framework described in Chapter 2.

The problem of multicast data authentication has three components:

data integrity, authentication, and non-repudiation.

46 Multicast data authentication

w Receivers must be able to determine that data has not been modified

either by other members of the multicast group or by external

adversaries. This property is referred to as data integrity protection.

w Receivers need to be able to establish the source of the data, at least

for themselves. In other words, we need data origin authentication.

w A stronger version of the above property, referred to as non-

repudiation, allows impartial third-party verification of the data

source.

Data integrity and authentication go hand in hand. Notice that if data

has been modified in transit, the source is no longer the legitimate origin

of data. Similarly, if a receiver can establish the source of data (at least to

itself), data has not been modified en route. Therefore data integrity and

authentication are dependent on each other. Non-repudiation is essen-

tially a stronger version of data authentication. In other words, a protocol

or mechanism that ensures nonrepudiation also guarantees authentica-

tion. Additional security services such as confidentiality and access control

are addressed in Chapters 4, 5, and 6.

There are two distinct types of applications, with varying requirements,

to consider in authenticating multicast data. In the first, a sender transmits a

bulk of data to receivers. In other words, receivers can wait until they receive

all the data sent, before verifying the authenticity and integrity of that data.

Examples of such applications include multicast ftp [3] and Web cache

synchronization. The second category of applications streams multicast data.

Receivers might want to verify the integrity and authenticity of each data

packet as it arrives, and use it immediately. We also need to handle lossy

communication channels, as well as out-of-order packet delivery. In other

words, authentication information must be associated with each packet.

Video-on-demand and multimedia conferencing are examples of applica-

tions that need multicast streaming.

Two different mechanisms are generally used for source authentication.

The first is to use digital signatures for non-repudiation, and the second is to

use MACs for authentication only. Recall that non-repudiation is a stronger

form of authentication. However, while MACs cannot provide non-

repudiation, they are more efficient compared to digital signatures. Digitally

signing each packet of streaming data is prohibitively expensive (both

computationally and with respect to communication overhead per packet).

In unicast communication, MACs support data authentication as

follows. Consider two communicating peers, Alice and Bob, holding a secret

key for authentication. Alice uses the key and a one-way function to

3.1 Issues in multicast data authentication 47

compute the keyed hash (e.g., HMAC [4]) of the message, and sends the

message along with the MAC to the receiver. Bob repeats the procedure to

compute the MAC, and compares it with the received MAC. If the MACs are

identical, Bob knows that the message has not been modified en route. He

also knows that he has not sent the message and therefore Alice must have

sent it, assuming the authentication key has not been compromised.

However, a third party cannot verify whether the message has been sent by

Alice or Bob. Therefore, MACs cannot provide non-repudiation.

We can use MACs for authenticating group communications following a

similar procedure as above, but with a reduced level of security. Consider a

group, consisting of Alice, Bob and Cindy, holding an authentication key.

Alice might use a MAC to authenticate a message sent to Bob and Cindy. Bob

(or Cindy), however, does not know whether the message has been sent or

last modified by Alice or Cindy (or Bob). In general, members of a group can

verify only that nonmembers, that is, people who do not hold the group

authentication key, have not changed the data in transit. This property that

guarantees only that a message was sent (last modified) by a member of the

group is referred to as group authentication [5].

In contrast, if a member can establish whether the data sender is

legitimate or not, we refer to that property as source authentication. With

source authentication, a member can verify the data source and know that

data has not been modified en route. Solutions for source authentication in

general are either expensive or complex, and often application dependent.

3.1.1 Providing group authentication

Group authentication of a message implies that the message originated

within the group, and has not been modified by entities outside the group. A

MAC is used for group authentication, and thus it is rather inexpensive to

authenticate even streaming data in real-time. Group authentication has

some important applications. Consider, for example, secure communication

between entities (e.g., gateways) that trust each other, over the public

Internet. Group authentication is sufficient in this case, since members

holding the group keys are assumed to be not interested in modifying data

sent by other members. Group authentication only serves a limited purpose

however, and may not be sufficient for most applications.

Members of the group need a common a key for group authentication

(for MAC computation). Thus, we need to be able to establish and update the

authentication keys among the members securely. Group key distribution

protocols and algorithms described in Chapters 4, 5, and 6, provide ways

to establish a common key among members of a group. Along with the

48 Multicast data authentication

TE
AM
FL
Y

Team-Fly®

encryption keys, a group manager may also distribute authentication keys

[6, 7]. The registration protocol is used to send the keys initially, and the

rekey protocol is used to send key updates [6]. A sender can use those keys

in a data security protocol (e.g., IPsec ESP, MESP [2], or AMESP) for

authenticated group communication.

3.1.2 Providing source authentication

It is often not sufficient to be able to verify that a message originated within

the group. Members would like to establish, at least to themselves, the

sender of multicast data. Recall that a stronger property is for any third party

to be able to independently verify the sender of the data. This, as introduced

earlier, is known as non-repudiation.

Application requirements greatly influence the solution space for source

authentication. First, an application may require non-repudiation or only

source authentication. Next, data transmission may be reliable or lossy.

Furthermore, the sender or the receivers may have limited buffer space.

Moreover, receivers could have limited computational power (e.g., mobile

devices), and, in some cases, receivers’ computational capacity may be

heterogeneous. Receivers may be at different distances from the sender.

Finally, the application may involve bulk data transfer(s) or streaming. In

the following, we discuss the source authentication requirements of several

different types of applications.

Reliable bulk data transmission. We assume that the data transmission is

reliable and the sender has the data available in advance. The receivers can

use the data only after all of it has been received. Buffer space is not of

concern either at the sender or at the receivers. These flows are referred to as

all or nothing flows [8]. Multicast ftp and Web cache synchronization are

examples of all or nothing flows.

A simple solution may be for the sender to compute the hash of the data

and sign it. Notice, however, that an adversary can disrupt this authentica-

tion process by changing just a single bit in the flow. Receivers cannot detect

this attack until all the data has been received. Furthermore, they cannot

identify the portion of the data that has been changed. Thus, they have to

request retransmission of the entire flow.

Reliable streaming of stored data. Consider the reliable transmission of data

that the sender knows in advance. The sender needs a large buffer to store

the data. Since the sender knows the data in advance, it can perform

authentication transforms off-line. Receivers are expected to authenticate

3.1 Issues in multicast data authentication 49

and use the data packets as they arrive. Thus, receiver-side buffering

requirements are relatively modest.

Lossy streaming of (partially) stored data. This is similar to the above

category, except that packets may be lost in transmission. Considering packet

losses, receivers should be able to verify the authenticity of portions of data

that are received. Video-on-demand is an application that falls into this

category. These applications may be able to tolerate delayed (with fixed

delay) verification.

Real-time streaming with packet loss. Real-time applications require the

sender to transmit as soon as the data becomes available. Thus the sender

needs to apply the authentication transforms in real-time. Considering lossy

transmission, each packet’s authenticity must be independently verifiable.

Multimedia conferencing is an application that requires real-time streaming

in the presence of packet losses.

3.2 Digital signatures for source authentication

Source authentication can be achieved using digital signatures. The sender

divides the data into blocks. For each block, it computes a hash, signs the

hash, and sends the signature along with the data block. There are several

issues to address. As the block size increases, the sender needs to perform

fewer digital signatures and members need to perform fewer signature

verifications. However, a member needs to receive an entire block before

verifying its authenticity. For smaller block sizes, the number of signatures

and verifications increases. The advantage is that members need not wait

long before verifying and using a block.

Note that this procedure has several useful properties. Each block is

individually authenticated and thus independently verifiable. Furthermore,

this technique provides block-level non-repudiation. But all this comes at a

cost. Signing and verifying each block is computationally expensive.

Moreover, each block needs to carry its own signature, which results in

excessive communication overhead. Independent packet authentication

makes signing each packet look attractive. However, in practice, signing

each packet in a high data rate real-time stream may not be feasible. Using

1-time signatures [9] is a slightly efficient alternative to signing each packet.

But, 1-time signatures require a large number (60–80 [9]) of hash com-

putations, and cannot handle packet losses.

50 Multicast data authentication

Given that digital signatures can provide individual packet authentica-

tion, several solutions have been proposed that amortize their cost over a

stream or a block. Some of the solutions are applicable to specific application

scenarios, while others make assumptions about the relationship between

the sender(s) and receivers (e.g., that they are synchronized). A few solu-

tions simply trade the excessive computational cost of digital signatures with

communication cost.

In the next section, we describe schemes that amortize a digital signature

over a block of data. These mechanisms reduce the number of digital

signatures at the expense of increased communication overhead per packet.

3.2.1 Block signatures and individual packet authentication

For delay-sensitive flows, signing each packet is too expensive. However, we

still need authentication mechanisms so receivers can verify packets as they

are received. In other words, each packet must be independently verifiable.

In the rest of this section, we describe a couple of techniques called star

hashing and the more efficient tree hashing [8]. These schemes amortize the

cost of a signature over a block of packets, and they require a sender-side

buffer that can hold the block of packets. Thus, star and tree hashing are

sometimes referred to as block hashing.

Star hashing

The sender divides a block of data into m packets. It signs a hash of the

block (block hash), and thus amortizes the cost of the signature operation

over m packets. For individual packet authentication, it computes the

hashes h1, h2, . . ., hm, of the m packets. The block hash, h, is a hash of

the concatenation of all the individual packet hashes. Thus, h ¼ hashðh1,

h2, . . ., hmÞ, where hi ¼ hash(Pi). Note that Pi represents packet i. With

each packet, the sender includes the block hash and the hashes of all the

packets in the block. It also sends the relative position of the packet in the

block.

Figure 3.1 illustrates star hashing. The edges (or leaves) represent packet

hashes, and the root represents the block hash. The hash dependency graph

is a star and hence the name star hashing. The figure also illustrates the

relationship between the packet hashes and the block hash; that is, a block

hash is dependent on all of the packet hashes.

Upon reception of Pi, the receiver computes its hash, h0
i (the prime

indicates receiver-side computation). It repeats the block hash computation

procedure as described earlier, but using h0
i instead of hi. If the signed block

3.2 Digital signatures for source authentication 51

hash is identical to the computed block hash, the receiver knows that Pi is

authentic. Furthermore, it also knows that the rest of the hashes are also

authentic. Otherwise, the block hash comparison would have failed. For

other packets in the same block, the receiver needs only to compute and

verify whether the computed packet hash is equal to the received hash. In

other words, there is only a single signature verification operation per block,

at the receivers.

Receivers perform one signature verification operation and two hash

computations to verify the authenticity of the first received packet of a block.

For the other packets of that block, a single hash computation and

comparison suffices. While the computational overhead in star hashing is

minimal, the same cannot be said about the communication overhead.

Recall that each packet needs to carry the hashes of all the packets (m) in a

block, as well as a digital signature. A hash is typically 20 bytes (secure hash

algorithm, SHA-1) [10] in length, whereas a digital signature is about 128

bytes in size (e.g., 1,024-bit RSA [11]).

Tree hashing

Tree hashing [12] employs a different block hash computation mechanism

than in star hashing. While the hash computation mechanism is itself

slightly complicated and inefficient, this scheme reduces the communication

overhead associated with hashing.

Figure 3.1 Star hashing.

52 Multicast data authentication

The sender divides a block of data into m packets and computes the

individual packet hashes. For block hash computation, it associates each

individual packet hash with a leaf node of the hash tree (see Figure 3.2). Each

internal node’s hash is the hash of the concatenation of the children’s

hashes. Thus h12 ¼ hashðh1; h2Þ. Using this function, the sender recursively

computes the root node’s hash. With each packet, the sender includes the

signed block hash, the packet ID, and the hashes of siblings of all the nodes

in the current packet’s path to the root.

Receivers follow a similar procedure to that in star hashing to verify the

authenticity of each packet. A receiver first computes the hash of the

received packet. It uses the computed hash and the received hashes to

compute the root hash. If the computed root hash is identical to the signed

block hash, the received packet is authentic.

We use Figure 3.3 to illustrate the computation process at a receiver. Let

us say P2 is received first. The receiver computes the hash h 0
2 of the received

packet. With P2, the sender includes the hashes of the siblings of all nodes

in P2’s path to the root. In our example, that implies hashes h1, h34, and

h5:8. The receiver computes h0
12 ¼ hashðh1, h0

2Þ, h0
1:4 ¼ hashðh0

12, h34Þ, and

h0
1:8 ¼ hashðh0

1:4, h5:8Þ. If h0
1:8 and the signed block hash, h1:8 are identical,

P2 is authentic. Furthermore, the received and the computed hashes, that is,

h1, h34, and h5:8, and h2, h12, and h1:4, are authentic as well. The receiver

caches the verified nodes of the hash tree for efficient verification of the

other packets in the same block.

Figure 3.4 illustrates the advantage of caching verified hash nodes. For

example, if P4 is received next, the receiver needs only to compute h0
4

followed by h0
34. Notice that h34 is among the verified nodes; therefore it is

sufficient to compare h0
34 to h34. If they are identical, P4 is authentic.

Figure 3.2 Tree hashing.

3.2 Digital signatures for source authentication 53

Authenticity verification of the first received packet of a block consists of

a digital signature verification operation, and computation of all hashes in

the path from the packet’s position in the tree to the root. In all, the receiver

needs to compute Oðlog mÞ hashes. Future packet verifications require fewer

hash computations and no digital signature verification operations.

Tree hashing trades additional computational overhead (of multiple

hash computations) with the linear (in block size) communication overhead

in star hashing. Each packet carries only Oðlog mÞ hashes along with the

signed block hash. Authenticity verification may require as many as Oðlog mÞ

hash computations. Caching verified nodes decreases the number of hash

computations for subsequent packet verifications of the same block.

Figure 3.4 Efficient hash verification in tree hashing.

Figure 3.3 Block hash computation in tree hashing.

54 Multicast data authentication

Block signatures used by both star and tree hashing have some

additional disadvantages as well. The sender needs to have a block of data

available in advance to compute the hashes and the signature. Thus, these

schemes delay the flow transmission. Furthermore, the sender needs a buffer

to hold a block of data. Thus, if m is large, we need a larger buffer at the

sender, and incur increased communication overhead. Finally, the sender

may transmit the block of packets at once after authentication, which may

result in bursts that are prone to losses [13].

However, the number of signatures per flow decreases with increasing

m. Also, no receiver-side buffering is required, which is a plus. Receivers can

verify each packet as it is received, and supply it to the application. Block

hashing also supports non-repudiation (since the hash is signed by the

sender).

3.3 Hash chaining to authenticate streaming data

Chaining is a common solution for amortizing the cost of digital signatures

for authenticating streaming data. Consider the reliable transmission of

streaming data (e.g., a PPV movie). We assume that the sender has the whole

data stream available in advance.

Hash chaining works as follows [9]. First, the sender divides the data into

n blocks. Next, it computes the hash, [using for example, message digest 5

(MD5) [14] or SHA-1] of the first block, signs the hash payload, and sends

the signature to the receivers. It then sends each block except the last

block, appended with the hash of the next block. Figure 3.5 illustrates hash

chaining. Data is divided into n blocks named B1, B2, . . ., Bn. In the figure,

the first block’s hash B1, is signed. The first block consists of B2’s hash along

with the data. This continues until the block Bn � 1, which contains the

hash of Bn. The final block does not contain a hash.

Each member verifies the sender’s signature, extracts the hash of the

first block, and stores the hash. When the first block arrives, the receiver

computes the hash and compares it to the stored hash. If the hashes are

Figure 3.5 Hash chaining.

3.3 Hash chaining to authenticate streaming data 55

identical, the first block’s integrity and authenticity is established. The

member then extracts the second block’s hash and stores it. It repeats this

verification procedure until the last block. If the packets are received in

sequence, the receivers only need a buffer to hold a block and a hash.

Note that due to the authentication chain that ends up in a signature

packet, hash chaining provides non-repudiation. Any third party can repeat

the verification procedure independently, and determine the data source.

Hash chaining is very efficient. There is only one public key operation at

the sender (a signature) and each member (a verification). In addition, all

parties compute n hashes. However, hash computation is typically 1,000

times faster than public key computations. The communication overhead is

also minimal. Overall, this scheme adds a signature (e.g., 128 bytes) and

n hashes (n * 20 bytes, with SHA-1 for hashing) worth of overhead, in

authenticating the entire stream.

Unfortunately, hash chaining has some severe limitations for practical

use. First, this scheme works only when the sender has the entire data stream

available in advance. More importantly, authentication can be done only in

the strict sending sequence of the blocks. This scheme cannot tolerate packet

loss. Receivers cannot authenticate any future blocks, once any portion of a

block is lost in transit. Out-of-order block reception is also troublesome. An

out-of-order block must be buffered until all the blocks leading up to it are

received and verified.

3.3.1 Graph representation of hash chaining

Hash chaining is better understood with a graph representation [13, 15–17]

of authentication. Each packet containing authentication information

represents a node in the graph. Thus a packet containing a hash or a digital

signature is a node in the graph. A directed edge represents an authentica-

tion relationship (dependency) between two packets. If a packet Pi contains a

hash of another packet Pj, then there is directed edge from Pj to Pi. Similarly,

there is a directed edge from a data packet Pi to a signature packet that

directly authenticates Pi. Finally, for source authentication of a packet Pj,

there must be a path between Pj and a signature packet.

Figure 3.6 illustrates a hash chain represented as a directed graph. The

graph illustrates several points noted earlier in the description of the hash

chaining algorithm. Most importantly, there is only a single path from any

node to the origin. Note also that from a receiver’s perspective, if a packet is

lost in transit, the corresponding node from the graph is deleted.

Consequently, there cannot be a path from any future packets to the

56 Multicast data authentication

signature packet. Thus the graph representation captures hash chaining’s

inability to handle packet losses.

Simple hash chaining has a couple of shortcomings that need to be

addressed. First, the sender needs to know the entire stream in advance.

Second, this authentication scheme cannot tolerate packet loss. Recall

that we would like to support a wider suite of applications that need

authentication of real-time streaming in the presence of packet losses.

Several variations [13, 15, 16] of the simple hash chaining presented in

Section 3.3 have been proposed to address these shortcomings. The basic

ideas are to use: (a) forward authentication (or a combination of forward and

backward authentication) to support real-time streaming, and (b) multiple

hash chains for loss tolerance.

Notice that hash chaining as explained earlier uses backward chaining,

that is, Pi contains authentication information of Pj, where i < j. In the

simplest form of chaining, j ¼ i þ 1. Backward chaining requires the whole

stream to be available before transmission, but has the advantage of

immediate authentication at the receivers (assuming in-order delivery of

packets). Forward chaining is the opposite of backward chaining in that the

signature packet follows the data packets. Thus the sender can start sending

real-time data as it is available, whereas the receivers cannot authenticate

data until the signature packet arrives. Thus forward chaining results in

delayed authentication.

The key to loss tolerance is to send the hash of a packet in multiple

packets, and include multiple hashes (of different packets) in the signature

packets. Reliable transmission of signature packets is crucial in these

schemes. Notice that in supporting loss tolerance, the per-packet commu-

nication overhead increases. Moreover, as the number of signature packets

increases, the signing and verification costs at the sender and the receivers,

respectively, also increase. In the rest of this section, we discuss a few

different approaches that address authentication of flows with varying loss

tolerance.

Figure 3.6 A hash chain represented as a graph.

3.3 Hash chaining to authenticate streaming data 57

3.3.2 Efficient multichained stream signature

Efficient multichained stream signature (EMSS [13]) is an authentication

scheme for providing non-repudiation service for lossy transmission of a

real-time flow. EMSS uses forward chaining and thus there is no data

packet buffering required at the sender. EMSS designers experimented with

several hash sequences to understand the effectiveness of multiple hash

chains.

The basic scheme defines a chaining sequence a � b � c, with static (i.e.,

the values of a, b, and c do not change) edges, as follows: each packet Pi

contains the hashes of Pi�a, Pi�b, and Pi�c, and Pi’s hash is sent with packets

Piþa, Piþb, and Piþc. In the graph terminology introduced earlier, the node Pi

has incoming edges from packets Pi�a, Pi�b, and Pi�c, and outgoing edges to

Piþa, Piþb, and Piþc [13].

The chaining sequence a � b � c has a (maximum) degree of three. Thus

each packet holds (at most) three hashes, and three packets carry its hash.

The hash chains eventually end up in a signature packet. If there is a path

from a packet Pi to a signature packet, it is non-repudiable. However, in the

absence of such a path, the packet cannot be authenticated. Packets whose

authentication cannot be verified are dropped. Thus, EMSS only supports

probabilistic authentication verification. Even authentic packets may be

dropped by a receiver simply because it cannot verify them. Finally, note

that the distance to a signature packet, (the number of edges in the path from

a packet to a signature packet) may have an impact on verification

probability.

Simulations with various combinations of schemes determined that

most of the combinations of degree six have a verification probability over

90% [13]. Thus EMSS designers suggest the use of random chaining

sequences. Further simulations showed that random chaining sequences

had a higher verification probability compared to static sequences, as the

distance to a signature packet increases.

Recall that in a degree k hash chain, each packet’s hash is sent in k

different packets. In other words, each hash is repeated k times in a stream.

Alternatively, the sender could encode [using forward error correction (FEC),

for example] a packet’s hash, and split it into m chunks such that any

m0 < m chunks are sufficient to rebuild the hash upon reception. If the size

of the encoded hash is limited to the number of bits in k hashes, such

encoding does not increase the communication overhead. Simulations show

that this technique further improves the verification probability without

having to increase the communication overhead [13].

58 Multicast data authentication

TE
AM
FL
Y

Team-Fly®

3.3.3 Augmented chaining

Augmented chaining is an authentication scheme for transmission of

(partially) stored data in the presence of bursty losses. First, we describe a

base chain to which additional nodes are added to form an augmented

authentication chain [15]. Each node in the chain represents a data packet,

and the chain terminates with a signature packet.

In the base scheme, each packet Pi’s hash is included in packets Piþ1 and

Piþa, where a is an arbitrary constant. Thus this scheme tolerates loss of a � 1

successive packets. Each packet carries two hash packets, and the last packet

in the chain, Pn, is signed. The base scheme does not require any sender-side

packet buffering, but requires a buffer to hold a hashes. Receivers cannot

verify the authenticity of any packet until the corresponding signature

packet arrives. Thus this scheme requires the receiver to be able to buffer at

least n packets.

Augmented chaining improves upon the base scheme by adding p � 1

additional nodes between each pair of nodes in the base chain, with each

node representing a data packet. This scheme can tolerate loss of pða � 1Þ

successive packets. Figure 3.7 illustrates base chaining and the construction

of an augmented chain for p ¼ 2. Augmented chains of arbitrary size (any

value p) are also defined in the literature [15]. Augmented chaining uses a

combination of backward and forward chaining (with no loops in the

resulting directed graph [15]). Thus, unlike in base chaining, the sender

cannot transmit data in real time. Furthermore, we need a finite buffer to

hold packets at the sender. Specifically, the sender needs a buffer to hold p

packets and a þ p � 1 hashes. Augmented chaining also results in delayed

authentication at the receivers. The receivers also need a buffer to hold n

packets.

3.3.4 Piggybacking

Piggybacking [16] is applicable to streams that have groups of packets of

varying importance. Moving picture experts group, MPEG-2, streams, for

example, can benefit from this scheme. The sender needs to have the entire

stream available before transmission. It divides the packets in the stream into

several priority classes. Higher priority packets are evenly spaced in the data

stream for loss tolerance.

Edges in the authentication graph always start from a packet of lower

priority and point to a packet of a higher priority. Thus, lower priority

packets ‘‘piggyback’’ on higher priority packets. These general principles can

3.3 Hash chaining to authenticate streaming data 59

be applied to construct hash chain–based authentication schemes that

tolerate single and multiple bursts of packet losses [16].

3.3.5 Discussion on hash chaining for authentication

Hash chaining schemes for unreliable stream authentication typically

include more than one hash per data packet. Similarly, a signature packet

contains multiple hashes for higher verification probability. In most

schemes, the sender transmits more than one signature packet. Whether

there is one signature packet or more, all the schemes in the literature pay

special attention to the transmission of signature packets.

Both EMSS and augmented chaining send signature packets at the end.

This introduces delayed authentication at the receivers, and the receivers

also need to buffer packets waiting to authenticate them. Thus, these

schemes are prone to DoS attacks. In general, hash chaining schemes can be

reversed in direction to include signature packets at either end of a stream

Figure 3.7 Illustration of augmented chaining.

60 Multicast data authentication

(or a portion thereof) [16]. Schemes with signature packets at the beginning

of a stream support immediate authentication at the receivers. Protocols that

include signature packets at the end support real-time streaming and require

no (or a small amount of) buffering at the sender.

The interdependency between packets for authentication results in

packets being dropped due to the inadequacy of the authentication

protocols. More precisely, packet losses during transmission may result in

several other packets being dropped, since they cannot be authenticated. The

advantage of chaining, however, is that when we do authenticate a packet,

we have support for non-repudiation as well.

The design of a signature packet, as noted earlier in this discussion, is

crucial to the verification probability of schemes that use multiple hash

chains. Some of the factors that influence the verification probability are

number of hashes per signature packet, and frequency and reliable

transmission of signature packets. Simple solutions such as multiple

transmissions of a single signature packet or techniques such as FEC

encoding [13, 17] might be beneficial to reliable transmission of signature

packets. Some designers [16] suggest feedback-based reliable transmission

of signature packets, but that might result in feedback implosion in large

groups.

3.4 MAC-based source authentication of unreliable streams

One-way key chains for MAC-based authentication have been used for

sending authenticated link state routing updates [18]. The sender generates

a hash chain [19] of length l, using a random secret r and a one-way function

h. The elements of the hash chain hðrÞ, h2ðrÞ, . . . , hlðrÞ, where h2ðrÞ ¼ hðhðrÞÞ

are used in the reverse order as MAC keys to authenticate link state updates,

as time progresses. The routers are assumed to be loosely synchronized, and

the MAC keys are revealed by the sender after a known delay. In this section,

we describe a protocol that uses these techniques and others for efficient

authentication of lossy real-time streams.

The timed efficient stream loss-tolerant authentication (TESLA) [20]

protocol provides comprehensive support for source authentication of a

multicast stream using MACs. Recall that a MAC is based on a symmetric

key, and all members of the group must know the key for authentication.

However, as we discussed in Section 3.1, symmetric keys only support group

authentication. TESLA gets around this limitation by committing to a MAC

key first, and revealing it after a preadvertised delay. Next, we introduce

some terminology and concepts to help describe TESLA.

3.4 MAC-based source authentication of unreliable streams 61

Time intervals. Each packet Pi is authenticated separately, with a MAC.

Time is divided into t intervals of duration Tint each. The sender may transmit

zero or more packets within each interval Ij, 1 # j # t. This flexibility of being

able to send any number of packets within an interval allows the sender to

adapt to dynamic transmission rates of applications. Corresponding to each

interval Ij, there is an authentication key k 0
j. In other words, all packets sent

within the interval Ij are authenticated with the MAC key k 0
j.

MAC keys. The sender generates a key chain [19], k1, k2, . . . , kt, using a

one-way function f . To do so, it first randomly generates the last key kt of

the chain, and uses the equation kj�1 ¼ f ðkjÞ, to generate the rest of the

keys. Note that by the definition of a one-way function, given kj�1, it is

computationally infeasible to compute kj. The sender generates the MAC

keys1 k 0
j ¼ gðkjÞ, 1 # j # t, where g is another one-way function, from the

key chain. Figure 3.8 illustrates the key chain and MAC key derivation in

TESLA.

One of the properties of the key chains serves an important purpose in

TESLA. Given a key, ka in the chain, a receiver can compute all the keys

ki; i < a, by repeatedly applying the one-way function f . Thus, even if some

keys are lost in transmission, a receiver can compute them as long as it

receives a future key in the chain. In other words, the protocol is loss

tolerant.

1. This is to avoid using the same keys for different purposes, that is, key generation as well as authentication [21].

Figure 3.8 Illustration of MAC key chaining for TESLA.

62 Multicast data authentication

Commitment to a key chain. A sender can commit to a key chain by either

signing a packet containing a key from the chain, or including the key in an

authenticated packet. The commitment is to the key chain terminating with

the included key. For example, to commit to the key chain, k1, k2, . . . , kt, the

sender would transmit an authenticated packet containing k0 ¼ f ðk1Þ.

Loose time synchronization between sender and receivers. Receivers need to be

in loose synchronization with the sender, that is, they need to know an

upper bound on the sender’s time. Thus, if the time difference between the

sender and a receiver is dt, we assume that the receiver knows a Dt such that

Dt $ dt [20].

Disclosure delay. The disclosure delay indicates the time (in number of

intervals) that a receiver needs to wait before being able to authenticate a

packet in the interval Ij. Disclosure delay has implications on buffer space

requirements at the receivers, as well as on authentication delay. A short

disclosure delay may result in a receiver not being able to successfully

authenticate many packets. TESLA designers suggest a disclosure delay of

dRTT=Tint e þ 1, where RTT is an upper bound on the round trip time between

the sender and the receivers.

3.4.1 TESLA initialization

To initialize a receiver, the sender transmits a digitally signed packet that

contains: information about time intervals, time synchronization informa-

tion, a commitment to the key chain starting at the current interval, and the

disclosure delay, d. A receiver’s subscription to the secure group may start at

the beginning of the transmission or midstream. For receivers joining

midstream, the sender may have to send the bootstrapping information via

unicast.

The group manager may initialize TESLA during the registration

protocol defined by the group key management architecture [6]. Recall

that one of the purposes of registration is to initialize the data security SA

(see Section 4.4), of which source authentication is a component. Hosts that

are members of the group at the beginning may also be initialized via unicast.

The sender may also choose to initialize them en masse. Group initialization

is more efficient, since the sender needs to sign only one packet and can send

it via multicast. The problem here, however, is Reliable Multicast delivery.

3.4 MAC-based source authentication of unreliable streams 63

In general, the signed initialization packet from the sender contains:

w The current interval index j;

w The beginning time Tj of interval Ij;

w The interval duration Tint;

w A commitment to the key chain starting at ki, i < j � d (if j < d, then

i ¼ 0);

w Key disclosure delay d (in number of intervals).

Receivers use the above information in determining the authenticity of

packets received. Recall that TESLA gets around the limitations of MAC-

based authentication for groups by using loose time synchronization

between the sender and the receivers. More specifically, the sender delays

revealing a MAC key used in authenticating a packet until all (in practice,

most of) the receivers have received the packet. Thus, upon reception of a

packet, receivers in TESLA need to be able to determine whether the sender

has already revealed the MAC key used in authenticating that packet. If,

according to a receiver’s calculations, the sender has revealed the MAC key

already, the receiver discards the data packet. Otherwise, it caches the

packet, pending authenticity verification using a MAC key to be received.

3.4.2 MAC-based authentication of packets by the sender

In TESLA, a sender can start sending packets as soon as they are available. In

other words there is no necessity for sender side buffering.2 Senders do need

to follow the time intervals, use the corresponding MAC keys to authenticate

packets, and, finally, wait before revealing the MAC key.

Thus a sender authenticates each data packet with the current interval’s

key, and includes the authentication information with the data. It also

includes the MAC key (more precisely the key from the key chain that is

used to compute the MAC key) used to authenticate packets sent d intervals

ago. In other words, the sender authenticates the packet Pi sent in interval Ij

with k0
j, and includes the MAC with the packet. In addition, it sends the key

kj�d, which the receivers use to verify the authenticity of packets sent in the

2. TESLA does require receiver-side buffering. Later in this section, we describe an alternative scheme that uses

sender-side buffering to avoid DoS attacks on receivers’ buffers.

64 Multicast data authentication

interval Ij�d; j > d. Figure 3.9 illustrates the authentication information sent

along with a data packet in TESLA.3

3.4.3 Packet processing at the receivers in TESLA

Receivers verify authenticity of a packet in two phases. First, for each packet

received, they need to verify TESLA’s security condition. This is to verify that

at the time of reception, the sender has not yet revealed the corresponding

authentication key to other members. For this verification, upon reception

of packets in the interval Ij, receivers check to ensure if the sender could be in

interval Ijþd. Recall that due to the loose time synchronization established

during initialization, a receiver knows within Dt the time at the sender. Using

this information, along with the interval duration, the sender’s time during

initialization, and the current packet’s interval index, the receiver computes

the time at the sender, at the time of reception of the packet.

For example, consider the reception of Pi sent in interval Ij. If the current

time at a receiver is tr
c , it knows that the time at the sender was tr

c 6 Dt and

the current interval at the sender, jsc ¼ ðtr
c 6 Dt � T0Þ=Tint. The receiver then

needs to verify that js
c < j þ d.

If a packet fails the security condition, the receiver discards it. Otherwise,

the receiver caches the packet for authenticity verification in the future.

Whether the security condition fails or not, a receiver can use the key

revealed (from the key chain) in the current packet to authenticate already

cached packets. Note that a receiver can independently verify the

authenticity of keys from the key chain. For example, if ki�d is the revealed

key, the sender computes ki�d�1 ¼ f ðki�dÞ and compares it with its own copy

of that key. Note that even if a receiver does not have an authenticated copy

Figure 3.9 Contents of a TESLA packet.

3. For a complete specification of a TESLA packet, see the corresponding Internet draft [21].

3.4 MAC-based source authentication of unreliable streams 65

of ki�d�1, it will have at least one authenticated key from the chain, received

during the initialization phase. Figure 3.10 illustrates intervals, authenti-

cated packets, and key disclosures in TESLA.

We close this section by reiterating that TESLA authentication is loss

tolerant. For example, even if all the packets sent in an interval are lost (and

therefore the key revealed during that interval), a receiver can still

authenticate packets from future intervals. This property is due to the

definition of the key chain. For example, packets sent in interval Ij can be

authenticated even if all the packets sent in interval Ijþd, where kj is revealed,

are lost. A receiver can still compute kj from any kjþm;m $ d.

3.4.4 Enhancements to TESLA

The disclosure delay is very crucial to the effectiveness of TESLA. If d is too

low, receivers might end up not being able to authenticate many packets. In

particular, receivers too far from the sender may not be able to successfully

verify the security condition in most cases. Alternatively, if the disclose delay

is very high, receivers may have to cache several packets. Thus, the receiver

side buffer needs to be very large. Furthermore, there is a long delay before

a receiver can provide the received (and authenticated) data to the

application.

Immediate authentication. TESLA designers propose a mechanism that

allows immediate authentication of packets by the receivers at the expense

of sender-side buffering. Thus an application might make the choice of either

sender or receiver-side buffering.

Figure 3.10 Illustration of TESLA intervals.

66 Multicast data authentication

We provide a sketch of the scheme in the following. With each packet,

the sender includes a hash of a future packet. When the receiver

authenticates a current packet, it also would have authenticated the packet

whose hash is included with the current packet. Unfortunately, this scheme

is not efficient. First, it increases per-packet overhead. More importantly, it is

not robust to packet loss. For example, if the packet containing the hash of

the current packet were lost, the sender could not immediately verify the

authenticity of the current packet.

Handling heterogeneous receivers. It is possible that a single disclosure delay

is not suitable for all receivers. In other words, the sender may need to define

different key chains for different sets of receivers. For example, receivers

near the sender might need a smaller disclosure delay (due to smaller round

trip time) whereas receivers farther away might need a larger delay. Note

that the stream rate does not change. In other words, the sender transmits

only one stream, but it does need to compute and include multiple MACs

with each packet. Without getting into the details [20], it can be seen that the

security condition will not be violated. Although, some receivers might

be able to authenticate packets earlier than others, they cannot change

the contents of the stream. This is because keys on which the ‘‘distant’’

receivers base their trust, are not revealed any earlier. Thus receivers that

verify authenticity early cannot illegally inject authenticated packets into

the stream.

3.4.5 Applicability analysis of TESLA

TESLA amortizes the cost of a single digital signature operation over several

packets (perhaps the entire stream). As long as the sender knows the time

that a stream is going to last, it can use a single key chain. Alternatively, the

sender can efficiently start a new key chain, without any need for digital

signature operations [13]. The sender performs a single MAC computation

per packet. With each data packet, it only needs to send a key from the

key chain and a MAC. It may optionally send the current interval index

as well.

Each receiver needs only to perform a MAC computation to verify a

packet. The security condition verification is not computationally significant,

but it may result in packets being dropped. Thus packets may be dropped

even if they are authentic and have not been compromised. This drop

probability is dependent on the timing constraints (d and Dt) of the protocol.

3.4 MAC-based source authentication of unreliable streams 67

Moreover, time synchronization may be difficult to implement in several

application scenarios.

The large receiver-side buffering requirement is also of concern. Since

there is no limit on the packet sending rate, the number of packets received

in d intervals may be very large. This may result in buffer overflows. While

there is a way to trade receiver-side buffering with sender-side buffering, the

latter scheme is relatively less robust.

3.5 IPsec ESP and MESP

For group authentication, the sender only needs to include the crypto-

graphic checksum computed using the group authentication key, with each

packet. Thus IPsec ESP as defined in RFC 2406 can be used for this purpose.

ESP also supports transport of per-packet digital signatures for source

authentication [22].

Source authentication techniques that amortize the cost of digital

signatures for efficiency (described earlier in this chapter), require additional

protocol support for interoperable implementation and successful deploy-

ment. More specifically, notice that hash chaining schemes send a variable

number of hashes with each packet, and signatures in some packets.

Similarly, block hashing schemes send multiple hashes as well as a digital

signature with each data packet. Finally, MAC-based schemes include a

MAC and an authentication key with each packet. All these schemes

may also send additional information to identify the hashes or MACs.

Thus, we need a secure multicast data transport protocol that supports

inclusion of a variable amount of source authentication information with

each packet.

Efforts are under way at the IETF MSEC working group to standardize a

new protocol known as multicast ESP (MESP) [23]. This protocol has several

goals, including:

w Providing a combination of data encryption, source authentication,

and group authentication of multicast data;

w Support for identifying multicast groups with < source address;

destination address > pair in the security parameter index (SPI) of

an SA;

w Protection against replay and DoS attacks.

The order of the three transforms, that is, group secrecy (GS), group

authentication (GA), and source authentication, is a point of contention.

68 Multicast data authentication

TE
AM
FL
Y

Team-Fly®

It is a cryptographically sound practice to authenticate encrypted data [24].4

Furthermore, GS followed by GA allows us to verify the authenticity of the

message (albeit using a weaker form of authentication) before performing

the expensive decryption operation on data. On the other hand, source

authentication of unencrypted data is required for non-repudiation.

Thus, MESP may use the order: source authentication, GS, and GA on

the sender side and GA, GS, followed by source authentication on the

receiver side.

3.6 Summary

Source authentication is a challenging problem in group communications. In

the context of groups, applications may seek three levels of protection: group

authentication, source authentication, or non-repudiation.

Group authentication is relatively straight forward to provide. A group

manager can distribute the authentication key to be used in a MAC

computation, following a procedure similar to that of key distribution for

confidentiality. However, a majority of applications may need source

authentication, while some may need non-repudiation guarantees. Unfor-

tunately, source authentication of real-time streams in the presence of

packet losses is a challenging problem.

Digitally signing each packet is the simplest solution for providing source

authentication and non-repudiation. However the computational and

communication overhead involved in doing so makes this solution im-

practical. The alternative is to amortize the cost of digital signatures over

multiple packets.

An ideal solution would support immediate authentication of real-time

streams with a reasonable overhead. Unfortunately, there are no ideal

solutions for source authentication of group communications. For example,

hash chaining works only for reliable transmission of stored data. Schemes

based on multiple hash chains require either sender-side or receiver-side

packet buffering. They have further limitations such as delayed or

probabilistic packet authenticity verification. Block hashing supports

immediate authentication of partially stored streams, but has more per-

packet communication overhead than digitally signing each packet. While

MAC-based chaining has the least computational and communication

4. Note that encrypting after authentication is also safe if the encryption mode is cipher block chaining (CBC) or if

a stream cipher is used [24].

3.6 Summary 69

overhead, it requires time synchronization between the sender and the

receivers. Furthermore, it only supports delayed verification, and may result

in dropping perfectly legitimate packets.

Thus, selecting a source authentication mechanism for group commu-

nication is not easy. A thorough understanding of the nature of the

application, buffer space availability at the sender and receivers, the level of

authentication required, and the application’s tolerance to losses and delays

would be very useful in the selection process.

References

[1] Kent, S., and R. Atkinson, ‘‘IP Encapsulating Security Payload (ESP),’’ RFC

2406 (proposed standard), IETF, November 1998.

[2] Canetti, R., P. Rohatgi, and P. Cheng, ‘‘Multicast Data Security Transforma-

tions: Requirements, Considerations, and Proposed Design,’’ draft-irtf-smug-

data-transforms-00.txt, IRTF, June 2000, work in progress.

[3] Miller, K., et al., Starburst Multicast File Transfer Protocol (MFTP) specifica-

tion, draft-miller-mftp-spec-03.txt, IRTF, April 1998, work in progress.

[4] Krawczyk, H., M. Bellare, and R. Canetti, ‘‘HMAC: Keyed-Hashing for

Message Authentication,’’ RFC 2104 (informational), IETF, February 1997.

[5] Canetti, R., et al., ‘‘Multicast Security: A Taxonomy and Efficient Construc-

tions,’’ in Proc. of IEEE INFOCOM, New York, March 1999.

[6] Baugher, M., et al., ‘‘Group Key Management Architecture,’’ draft-ietf-msec-

gkmarch-02.txt, IETF, March 2002, work in progress.

[7] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[8] Wong, C.K., and S. S. Lam, ‘‘Digital Signatures for Flows and Multicasts,’’

IEEE/ACM Trans. on Networking, Vol. 7, No. 4, August 1999, pp. 502–513.

[9] Gennaro, R., and P. Rohatgi, ‘‘How to Sign Digital Streams,’’ in Advances in

Cryptology—CRYPTO, Santa Barbara, CA, Springer-Verlag, LNCS 1294, August

1997, pp. 180–197.

[10] Secure Hash Algorithm SHA-1, NIST FIPS PUB 180-1, April 1995.

[11] Rivest, R. L., A. Shamir, and L. M. Adleman, ‘‘A Method for Obtaining

Digital Signatures and Public-Key Crypto Systems,’’ Communications of the ACM,

Vol. 21, 1978, pp. 120–126.

[12] Merkle, R. C., ‘‘A Certified Digital Signature,’’ Advances in Cryptology—Crypto,

Berlin, Springer-Verlag, LNCS 435, August 1989, pp. 218–238.

70 Multicast data authentication

[13] Perrig, A., et al., ‘‘Efficient Authentication and Signing of Multicast Streams

over Lossy Channels,’’ in Proc. of IEEE Symposium on Security and Privacy,

Oakland, CA, May 2000, pp. 56–73.

[14] Rivest, R., ‘‘The MD5 Message-Digest Algorithm,’’ RFC 1321 (informational),

IETF, April 1992.

[15] Golle, P., and N. Modadugu, ‘‘Authenticating Streamed Data in the Presence of

Random Packet Loss,’’ in Proc. of Network and Distributed System Security

Symposium (NDSS), San Diego, CA, February 2001, pp. 13–22.

[16] Miner, S., and J. Staddon, ‘‘Graph-Based Authentication of Digital Streams,’’

in Proc. of IEEE Symposium on Security and Privacy, Oakland, CA, May 2001,

pp. 232–246.

[17] Park, J., E. Chong, and H. Siegel, ‘‘Efficient Multicast Packet Authentication

Using Signature Amortization,’’ in Proc. of IEEE Symposium on Security and

Privacy, Oakland, CA, May 2002.

[18] Cheung, S., ‘‘An Efficient Message Authentication Scheme for Link State

Routing,’’ in Proc. of 13th Annual Computer Security Applications Conference,

San Diego, CA, December 1997.

[19] Lamport, L., ‘‘Password Authentication with Insecure Communication,’’

Communications of the ACM, Vol. 24, No. 11, November 1981.

[20] Perrig, A., et al., ‘‘Efficient and Secure Source Authentication for Multicast,’’

in Proc. of Network and Distributed System Security Symposium (NDSS), San Diego,

CA, Feb. 2001, pp. 35–46.

[21] Perrig, A., et al., ‘‘TESLA: Multicast Source Authentication Transform, draft-

irtf-smug-tesla-00.txt, IRTF, November 2000, work in progress.

[22] Weis, B., ‘‘The Use of RSA Signatures Within ESP and AH,’’ draft-bew-ipsec-

signatures-00.txt, IETF, October 2002, work in progress.

[23] Baugher, M., et al., ‘‘MESP: Multicast Encapsulating Security Payload,’’ draft-

ietf-msec-mesp-00.txt, IETF, October 2002, work in progress.

[24] Krawczyk, H., ‘‘The Order of Encryption and Authentication for Protecting

Communications (or: How Secure Is SSL?),’’ in Advances in Cryptology—Crypto,

Santa Barbara, CA, Springer-Verlag, LNCS 2139, August 2001, pp. 310–381.

3.6 Summary 71

Introduction to group key
management

Group key management is the field of study of the

management of cryptographic keying material for groups.

The aim of group key management is generally to provide a

common symmetric key or group key to all members of a group.

The group key is often called the TEK, to signify the fact that

the given key is to be used to encrypt the data traffic being

transmitted to the group from one or more senders.

In delivering the group key or TEK to all members of a

group, a trusted KD is typically assumed to exist. This model,

centered around the notion of a trusted entity that distributes

keys to participants, is a natural one, which has evolved since

the early 1980s in the form of the conference key distributor [1].

The same notion of a trusted key distribution center (KDC) is

also found in kerberos [2, 3], although kerberos itself was not

designed to perform group key management.

The efforts focusing on conference key distribution

schemes are usually related to group-oriented cryptography,

and have mainly focused on ways to distribute a common key

in such a way that it satisfies a number of cryptographic

conditions or requirements. In that view of the world, the ideal

conference key distribution scheme should not, in fact, require

a single trusted entity, but should function in a ‘‘democratic’’

fashion. Members are mutually distrustful of each other. In the

computation of the common conference key through the

accumulation of pieces of the key contributed from each

member, each member should verify for itself the correctness of

73

C H A P T E R

4
Contents

4.1 A model for group key
management

4.2 Requirements in group key
management

4.3 Security requirements of group
key management

4.4 GSA management

4.5 Classification of the group key
management problem

4.6 Summary

the process (or key computation) by verifying the accumulated result so

far [1]. Some examples of the requirements include proof of participation

within a conference, equal and provable contribution of member private

keys toward the establishment of the conference key, non-repudiation of

departure from a conference, cheater detection and identification, and other

more stringent requirements. Examples of group-oriented cryptographic

schemes include [1, 4–8].

As a result of the complex requirements, conference key distribution

schemes have typically been computationally intensive and impractical to

implement. In addition, these schemes have not taken into consideration

other parameters that are needed to support the ongoing management of the

conference key, particularly in the face of possible changes in the member-

ship of the conference.

What distinguishes the area of group key management from that of

conference key distribution or computation is precisely the management of

the common key in a dynamic environment in a practical manner. To

achieve this practical goal requires the introduction of additional support

keys or KEKs to protect the delivery of the group key or TEK. The KEK itself

will change over time due to membership changes or expiration in the

lifetime of the KEK. Furthermore, the area of group key management makes

use of the fact that multicast communication itself is available to be used for

key management, either to the entire group or to a targeted subset of the

group.

This chapter provides an introduction and context setting for group key

management for the following chapters. In particular, this chapter lays out

the security requirements for group key management as a superset of the

requirements for unicast key management. Central to this chapter is

the notion and precise definition of GSA as the multicast counterpart of the

unicast SA now commonly used in IKE and IPsec.

4.1 A model for group key management

As discussed in Chapter 2, a Reference Framework was developed in the

IETF as a method to subdivide the problem of multicast and group security

into manageable portions. In the following discussions, the model used for

group key management will be based on the IETF framework.

Figure 4.1 shows the entities involved in group key management, both

in a centralized fashion and in a distributed environment. The model

assumes that a one-to-many multicast is deployed. Hence, it assumes that

there is only one source (sender) for the multicast data. The entities involved

74 Introduction to group key management

in the model are the KDs, the member sender, and the member receivers.

Figure 4.1 distinguishes the notion of a central KD from a remote KD; each

with its respective members that interact with it. The motivation behind this

distinction is to introduce the notion of key management scalability, where

multiple KDs are deployed, and where each member is associated with one

‘‘local’’ or preferred KD.

In Figure 4.1, key management and SA management functions are

denoted by the double-arrow lines. As shown, each member performs key

management and SA management with one KD. The member sender is

shown to be transmitting (encrypted) data packets on the multicast group

(denoted by thick full lines), which is received by both the local receivers and

the remote receivers through the multicast distribution tree. The figure does

not make a distinction about the method of routing the data packets to the

receivers.

From the perspective of data protection, the data packets are assumed to

be encrypted under the group key, which is delivered and managed through

the key management and SA management functions (double-arrow lines).

Figure 4.1 also shows the KDs sending control packets (dotted lines) to

their respective member sets. A control channel is required for the KD to

Figure 4.1 Model for group key management.

4.1 A model for group key management 75

issue messages (e.g., commands, reminders, and emergency notifications) to

the members. In addition, the control channel is used for the management

of both keys (TEKs and KEKs), keying material, and SAs.

The control channel is assumed to be reliable. Thus, although not shown

in Figure 4.1, an RM protocol could be used to deliver control packets to

members, although this may imply the existence of a back-channel from the

members (both sender and receivers) to the KDs. Since reliability of

transport is not an inherent core function of key management, the RM

transport is not depicted in Figure 4.1, although the understanding is clear.1

4.2 Requirements in group key management

A crucial component of group key management is that of the management of

SAs. In the unicast world, SA management for pair-wise communications

has been addressed by the ISAKMP framework [9], and has been embodied

in the IKE protocol [10]. As understood by IKE, ISAKMP, and, more broadly

by the IETF, the term ‘‘key management’’ incorporates the broader aspects of

keying material, including cryptographic keys, key identities, and other

parameters that support the establishment of common (symmetric) keys at

both ends of a unicast connection.

In the context of IP multicast, and the wider field of group communica-

tions, the two-party SA management model underlying ISAKMP/IKE is

insufficient, due to the fact that a multiparty group has many members

(senders and receivers). In ISAKMP/IKE the responding party (responder)

in the unicast exchange chooses some parameters that it returns to the

initiating party (initiator). In multicast, where there are multiple responding

parties, the unicast SA negotiation model is simply not mappable to

groups. Furthermore, a group negotiation procedure for SA parameters

would simply be impractical and resource consuming for many multicast

applications.

4.2.1 Security requirements of unicast key management

Since we assume that group key management must operate across diverse

internetworks, particularly IP multicast networks, at least some of the

1. The need for the control channel (namely, a security protocol) to be reliable, and the need for RM protocols to

be secure may be perceived as a chicken-and-egg problem. However, this circular reasoning may be broken by

assuming that the control channel deploys some primitive method to achieve reliability, such as multiple

transmission of important packets containing keying material.

76 Introduction to group key management

properties of Internet key management are required for group key manage-

ment. These properties, broadly stated, are summarized as follows [11, 12]:

1. Protection against attacks, such as man-in-the-middle, connection

hijacking, replay/reflection, and DoS attacks. The authenticated key

exchange (AKE) notion is basic to Internet key management and

key determination protocols, which seek to thwart attacks that may

occur on an unsecured network. The types of attacks include man-

in-the-middle, connection hijacking, and reflection/replay attacks,

many of which can be combated by mechanisms such as direct

authentication, which integrate authentication into the key

exchange, as described in the station-to-station (STS) protocol [13].

Messages that are exchanged as part of a ‘‘run’’ should be

chained with authenticable information, including random data

that is contributed by each party in a two-party key exchange. This

technique helps ensure that messages received by a peer match what

the other peer sent. Work has been done, moreover, to formally

prove AKE properties, based upon the matching of messages sent

and received by peers in the exchange [14]. When session keys are

used to protect exchanges that determine other session keys, perfect

forward secrecy (PFS) can ensure that ‘‘...disclosure of long-term

secret keying material does not compromise the secrecy of the

exchanged keys from earlier runs,’’ [13] as long as authentication is

linked to the key exchange. The PFS requirement, however, entails

the performance penalty of a Diffie-Hellman exchange, which may

not be appropriate for all applications.

2. Selectable level of security protection in key establishment, such as

alternative transforms, optional PFS, and identity protection to

support heterogeneous Internet applications and computers.

The notion of a ‘‘selectable level of security’’ is basic to key

management on internetworks, which are composed of diverse

communications networks and host computers. In this environ-

ment, some applications may trade-off better security for reduced

communications and computing costs. The security choices depend

upon application needs, as well as the capabilities of the hosts and

network devices. In order to support heterogeneous network and

host devices, Internet key management supports multiple types of

exchanges that can be composed in various ways. Some exchanges

may support identity protection and provide PFS, for example, while

others may not [15]. To accommodate diversity, a versatile

4.2 Requirements in group key management 77

approach supports a variety of transforms and Diffie-Hellman

groups, all of which can be negotiated among communicating

entities [10, 16].

3. Alternative authentication mechanisms, such as shared key, public key

infrastructure (PKI), and public key to support diverse trust models.

Over time, a key establishment procedure may need to be replaced.

The Internet Security Architecture [17] has a key management

framework, the ISAKMP, which defines an abstract set of ex-

changes, organized by modes and phases, to provide a selectable

level of protection [9, 15]. To provide a versatile solution for Inter-

net key management, ISAKMP permits alternative authentication

mechanisms in its exchanges, and is parameterized by a domain of

interpretation (DOI), in which specific key determination mechan-

isms are defined through the specification of the name space, policy,

specific payloads, and, optionally, new exchanges. In this way,

ISAKMP is designed to be extended for alternative uses, and to

allow a forward migration of key exchange protocols and crypto-

graphic transforms. Although the flexibility of their approach may

arguably result in more complexity, which may in turn lead

to weaker security, the ISAKMP authors recommend the use of

ISAKMP as a single key management framework for new uses such

as group key management, as well as transport and application key

management [9]. New uses can be realized through the specifica-

tion of a DOI.

4. Forward migration path for new security mechanisms, such as new

cryptographic transforms and even new exchanges.

Internet key management, as formulated by ISAKMP, supports

a forward migration path, so that new algorithms can be introduced

as older methods need to be replaced [9, 10, 15, 16].

5. A single key management framework to support the establishment of

SAs according to the local policies of Internet host and intermediate

systems.

ISAKMP achieves its versatility by being more abstract than a

key determination protocol, since it manages SAs and not just keys.

The SA abstraction [9, 17–19] encapsulates keys and information

about keys, such as key lifetimes and cryptographic policies, so as to

allow all significant aspects of the security to be modified to the

needs of the application and environment. In the current Internet

Security Architecture, however, SA management is peer to peer as

depicted in Figure 4.2.

78 Introduction to group key management

TE
AM
FL
Y

Team-Fly®

The SA is defined to be simplex in the Internet Security

Architecture [17], and is identified by a security parameter index

(SPI) [17, 18]. SAs are established according to local policy [17, 19],

using exchanges that are designed to protect against basic key

establishment attacks, such as man-in-the-middle, connection

hijacking, replay/reflection, and DoS [9]. Although the first three

types of attack are the subject of authenticated key exchange

mechanisms, protection against the DoS attack uses a pair-wise

cookie mechanism [18] between peer entities, which appears in the

ISAKMP header for all exchanges [9, 10].

We assume that these properties should be properties of group key

management as well. As discussed next, group key management has

additional needs beyond the five points summarized here.

4.3 Security requirements of group key management

From the previous section, it is clear that many of the requirements and

design features of Internet key management are needed by group key

management. In fact, many of the payloads, exchanges, and transforms

found in ISAKMP and IKE may be suitable for group key management.

Many group key management protocols and algorithms, moreover, such as

GKMP [20, 21], LKH [22], one-way function tree (OFT) [23], GSAKMP [24],

NARK [25], and multicast key management with arbitrarily revealed key

sequences (MARKS) [26] assume a unique key for a member, which is

established using point-to-point procedures with a key server. For the

purposes of authenticating a potential group member and initializing it

with keys, group keying material must be ‘‘pulled’’ by an individual

client from the server. Group members whose computers are off-line

Figure 4.2 Unicast SA as defined in ISAKMP.

4.3 Security requirements of group key management 79

during key updates must also pull keying material to be reinitialized (or

to request reinitialization by the KD) in a secure, probably point-to-point

protocol.

The use of IKE unchanged (with the IPsec DOI), however, is out of

the question owing to the need to support group key distribution (i.e.,

where an external key is given to the member by the KD), in addition

to the need for policy distribution rather than policy negotiation, and

the use of multicast communications to push key updates to promulgate

key changes. These are needed to refresh keys that reach the end of

their cryptographic lifetime, and to replace keys resulting from changes in

group membership. Several algorithms have been proposed to effici-

ently accomplish group rekey and maintenance [22–24, 26]. A versatile

group key management functional building block should support a

variety of alternative algorithms, to offer a forward migration path

when new algorithms are developed, or flaws in existing algorithms are

uncovered.

The use of a multicast service to ‘‘push’’ key updates and other control

messages from the KD to members relieves the KD of the burden of

contacting each member individually to change the key or the configuration

of the group. In this way, group key management can scale to very large

numbers of members. This ability to deploy multicast itself for group key

management is attractive for a variety of applications. This property may be

superfluous for pure PPV sessions, where the member is keyed once and

never again for the duration of the session. Except for subscription sessions

or sessions where keys must be changed, good multicast application design

principles will protect the KD from being the target of periodic, and possibly

synchronized, requests from large numbers of members attempting to pull

keys.

Unlike large-scale subscription groups, short-lived, dynamic groups,

which are characterized by relatively small numbers of members, may

need group key management to minimize the time it takes to create and add

members to a group. Thus, group key management must be able to efficiently

maintain very large, secure groups, to support large numbers of members,

while not precluding fast initialization, maintenance, and destruction for

smaller groups that engage in impromptu group communications. The need

to support a range of performance and scalability needs for diverse

applications is very much a goal of Internet key management that is shared

by group key management.

Group key management, therefore, uses a different set of abstractions

than ISAKMP and IKE. The abstractions used, however, may be built from

the ISAKMP abstractions, where the GSA includes the attributes of the

80 Introduction to group key management

Internet Security Architecture SA, which is succinctly defined as the

encapsulation of keys and policies [17] as follows:

w A unicast SA has selectors, such as source and destination transport

addresses.

w A unicast SA has properties, such as an SPI or cookie pair, and

identities.

w A unicast SA has cryptographic policy, such as the algorithms,

modes, key lifetimes, and key lengths used for authentication or

confidentiality.

w A unicast SA has keys, such as authentication, encryption, and

signing keys.

As discussed in the next section, a GSA contains the SA attributes plus

some additional ones:

w A GSA has group policy attributes. Examples would be policy on the

kind of signed credential needed for group membership, and on

whether the group will be given new keys when a member is added

(called ‘‘backward rekey’’ below) or whether group members will be

given new keys when a member is removed from the group (called

‘‘forward rekey’’ below).

w A GSA has SAs as attributes.

The final point, that a GSA includes multiple SAs, is discussed more fully

in the next section.

The following list summarizes the desired properties of Internet group

key management:

1. The five properties of Internet key management as described

previously.

2. Support for the IETF Secure Multicast Reference Framework [27],

having a KD that controls access to the group of sending and

receiving members, according to the group policy it distributes. This

is the Reference Framework that has been adopted by the MSEC

working group2 in the IETF.

2. See http://www.securemulticast.org.

4.3 Security requirements of group key management 81

3. Support for IP multicast applications where there may be one or

more senders to the group, who may each have a unique SA to the

group, or who may each share a common SA with the group.

4. Support for both receiver-initiated pull of policy and keying

material, and KD-initiated push, using a variety of rekey algorithms.

5. Selectable level of performance for group key management, which

permits trade-offs in startup latency, reinitialization complexity,

message overhead, join latency, leave latency, and other security-

related performance such as transforms.

A further general requirement is backward rekey and forward rekey.

The rekey operation is needed to ensure that messages sent to the group

cannot be accessed by a former member whose membership has been

revoked by the KD. Some applications may also require that a member who

joins a group be denied access to messages that were sent to the group prior

to its membership. We call the first case forward rekey, when a key change is

prompted by a member leaving the group. The latter is called backward

rekey, when a rekey is caused by a new member joining the group. The

rekeying is to maintain ‘‘perfect forward confidentiality’’ and ‘‘perfect

backward confidentiality,’’ respectively. These properties are also referred

to as ‘‘forward/backward secrecy,’’ ‘‘forward/backward security’’ and

‘‘forward/backward access control’’ in the literature [23, 24, 28].

4.4 GSA management

It is clear that the security associations for group key management are more

complex, or at least more numerous, than for unicast key management.

Whereas the latter establishes a key management SA to protect application

SAs (which in the case of IKE is most commonly the IPsec protocol), where a

minimum of two SAs are needed to key an Internet application process,

group key management requires at least three. There is a pull SA between

the group member and the KD, a push SA between the KD and all the group

members, and an SA to protect application data from sender-members to

receiver-members. In fact, each sender to the group may use a unique key

for its data and use a separate SA. Thus, there may be more SAs than there

are group senders.3

3. Some authors also refer to the pull SA as the ‘‘registration’’ SA, and the push SA as the ‘‘rekey’’ SA.

82 Introduction to group key management

In the following sections we discuss the GSA model and describe each of

its components SAs that make up a GSA. One of the primary realizations of

the GSA model is the necessity of a ‘‘bootstrap’’ stage between a member and

the KD. That is, in order for a member to begin to join a multicast group, that

member must obtain some private parameters from a trusted entity, either

out-of-band or inband. The point, therefore, is that a unicast SA is

unavoidably part and parcel of the definition of a GSA.

4.4.1 The GSA model

The work of [11] defines the GSA to be an aggregate of three cate-

gories or types of SAs. This structure was chosen by its authors to better

realize a GSA in a multicast environment defined by the IETF Reference

Framework [27]. There is a need to maintain SAs between a KD and a group

member (either a sender, a receiver or both), and among members. In the

Reference Framework, the KD is charged with access control to the group

keys, with policy distribution to client members or prospective members,

and with group key dissemination to sender and receiver members. This

structure is common in many group key management environments

(e.g., [22–24, 26, 29]).

There are two SAs established between the KD and the members. The

first is referred to as the Category 1 SA (or SA1), while the second as

Category 2 SA (or SA2). In addition, there is a third SA which is esta-

blished among the sending and receiving members. This is referred to as the

Category 3 SA (or SA3). These three SAs are shown in Figure 4.3. The terms

SA1, SA2, and SA3 are used to simplify the following discussion. (The terms

pull/registration SA, push/rekey SA, and data security SA may also be used.)

The first category of SAs (namely, SA1 in Figure 4.3) is initiated by a

member to pull GSA information from the KD. This is how the member

requests to join the secure group, or has its GSA keys reinitialized after being

disconnected from the group (e.g., when its host computer has been turned

off during rekey operations, as described below). The GSA information that

is pulled down from the KD includes the SA, keys, and policy used to secure

the data transmission between sending and receiving members (this is the

Category 3 SA or SA3 in Figure 4.3).

Note that SA3 is a category of SA, which implies that there may be

multiple SAs established between member senders and member receivers—

at least as an option. There may exist, for example, a single SA of Category 3

in which all senders share common keys and associated information.

Alternatively, there may be one or more SAs of Category 3 that are unique to

the particular sender. An SA3 may be reestablished or have its keys modified

4.4 GSA management 83

through rekey operations, which occur over an SA of Category 2. Keys may

be pushed to members from the KD through an SA of Category 2 (e.g., to

support subscription groups).

Thus, the aim is to initially use SA1 to securely download SA2 and SA3

from the KD to the members. The SA2 is then used for control messages sent

by the KD, while SA3 is used for data messages (i.e., traffic or content) from

the sender to the receivers. Included in the set of control messages is the

update or replacement of SA3. Thus we say that SA2 is used to update SA3,

since it is anticipated that there will be far fewer uses of SA2 compared to

SA3 (e.g., SA3 is used for voluminous streaming media data). Naturally, the

cryptographic policy for SA2 must specify strengths equal to or stronger than

SA3. Two options (at least) are available for updating the SA2 in turn. The

SA2 can be updated through SA1 again (unicast), or the ‘‘old’’ SA2 can be

used to update to a ‘‘new’’ SA2. This has been left as an implementation

option by [11], since the definition of a GSA must cater to a wide variety of

applications.

Note that for applications where key updates occur within the data

stream (protected using SA3), the GSA definition requires that SA2 be

declared as null (which is different from saying it is nonexistent). In some

cases, such as in a pure PPV application, all of the SA information needed for

the session may be distributed at the time of registration or selection of a

Figure 4.3 GSA definition.

84 Introduction to group key management

session (i.e., over an SA1). The rekey and reinitialization may not be

necessary, so SA2 is null. Most applications combine unicast exchanges for

initialization with multicast distribution for rekey. For subscription groups

where keying material is changed as membership changes, an SA2 is needed

to reinitialize an SA3. Hence, in summary, the GSA concept sees the three

categories of SAs as being inseparable.

4.4.2 Definition of GSA

A GSA is defined to include an aggregate of three categories of SAs. The three

categories of SAs correspond to the three kinds of communications, best seen

from the point of view of the receiver (member). Figure 4.3 depicts this

concept:

w Category 1 SA: SA1. An SA is required for (bidirectional) unicast

communications between the KD and a group member (be it a sender

or receiver). This SA is established only between the KD and a

member. In the IETF Reference Framework, the KD entity is charged

with access control to the group keys, with policy distribution to

members (or prospective members), and with group key dissemina-

tion to sender and receiver members. This use of a unicast SA as a

starting point for key management is common in a number of group

key management environments.

Note that this unicast SA is used to protect the other elements of

the GSA (such as the other two categories of SAs), either in a push or

pull model. As such, this SA is crucial and is inseparable from the

other two SAs as the definition of a GSA.

From the perspective of a given KD, there are as many unique

Category 1 SAs as there are members (senders and/or receivers) in the

group. Thus there may be a scalability concern for some applications,

and so a Category 1 SA may be used on demand, whereas Category 2

and Category 3 SAs are established at least for the life of the sessions

that they support. Note also that in a distributed architecture several

KDs may be deployed for scalability; thus spreading the number of

SAs across these KDs.

w Category 2 SA: SA2. An SA is required for the multicast transmission of

key management/control messages (unidirectional) from the KD to

all group members. As such, this SA is known by the KD and by all

members of the group.

4.4 GSA management 85

This SA is not negotiated, since all the group members must share

it. Thus, the KD must be the authentic source, and act as the sole

point of contact for the group members to obtain this SA.

From the perspective of each participant in a group (consisting of

the KD and all members), there is at least one Category 2 SA for the

group. Note that this allows for the possibility of the KD deploying

multiple Category 2 SAs for other security management purposes.

(For example, there might be one for critical/urgent control mes-

sages, and another for regular/periodic control messages.)

w Category 3 SA: SA3. One or more SAs are required for the multicast

transmission of unidirectional data messages from the sender to other

group members. This SA is known by the KD and by all members of

the group.

Similar to a Category 2 SA, regardless of the number of instances

of this third category of SA, this SA is not negotiated. Rather, all

group members obtain it from the KD. The KD itself does not use this

category of SA since it is assumed that the KD does not transmit data

(content) messages.

From the perspective of the receivers, there is at least one

Category 3 SA for the member sender (one or more) in the group.

This allows for the possibility of including group IDs (GID) in

transmission of data packets from the senders in the group.

There are a number of possibilities with respect to the number of

Category 3 SAs and the use of GIDs:

1. Each sender in the group could be assigned a unique Category 3

SA, thereby resulting in each receiver having to maintain as

many Category 3 SAs as there are senders in the group.

2. The entire group deploys a single Category 3 SA for all senders,

together with the use of GIDs. Receivers would then be able to

filter based on the GIDs, while maintaining only one Category 3

SA.

3. There could be a combination of the two choices above.

4.5 Classification of the group key management problem

Prior to concluding this chapter, we present a classification of group

key management problem areas. As mentioned previously, group key

86 Introduction to group key management

management pertains to the management of the group key or TEK in a

dynamic environment in a practical manner, possibly employing multicast

itself to aid in the management of the group key. Several interrelated

components present themselves when one looks at the problem more

closely:

w Architecture. The term architecture refers to the relationship and

placement of group keys (or TEKs) and the other keys (or KEKs)

supporting the safe delivery of the group keys. This arrangement is in

turn influenced by other aspects such as the spread and density of

membership, dynamicity of memberships, topology of data flows,

and others. This topic is covered further in Chapter 5.

w Protocols. The term protocols is used to describe the set of procedures,

message exchanges, and message payloads that govern the behavior

of the entities involved in supporting a group (e.g., servers) and those

participating in a group (e.g., hosts). This topic is also addressed in

Chapter 5.

w Algorithm. The term algorithm is used to describe the method to

arrange and update the supporting keys used to manage the group

key. A more precise term would be a group key determination or

management algorithm. The supporting keys are typically arranged

into an LKH (or key tree), where each member holds certain keys

from the logical key tree. Changes in the membership of the group

usually requires that a new group key be delivered to the remaining

members of the group. This is accomplished by encrypting copies of

the group key under different sets of keys obtained from the key tree.

Since a member has only a subset of the keys within a key tree, that

member will only be able to decrypt those messages sent by the KD

intended for that member (namely, those encrypted by the KD using

the appropriate keys within the key tree). When the membership

changes, the key tree itself must be reconfigured, following the

specific algorithm to rearrange the tree. This interesting subject is

central to group key management and is discussed in depth in

Chapter 6.

w Policies. Rules are needed to govern the behavior of entities during the

group initialization, the group key distribution, membership changes,

emergency situations, and others. The topic of group security policies

is the subject of Chapter 7.

4.5 Classification of the group key management problem 87

4.6 Summary

This chapter has served as an introduction to the next two chapters which

deal specifically with group key management. Deriving from the IETF

Reference Framework, the chapter described a model specifically for group

key management where the interaction among differing entities was

discussed. The group key management model matches the definition of

GSA, which was discussed later in the chapter.

As the basis for describing the requirements for group key management,

a review of the requirements for unicast key management was given. Five

requirements of unicast key management were discussed, as the basis for

further requirements in group key management. These are: protection

against various possible attacks in key exchange, a selectable level of security

protection, alternative authentication mechanisms, a forward migration

path, and a unifying key management framework.

The core of this chapter has been the definition of GSA for multicast,

which consists of an aggregate of three categories of SAs. The definition of

the GSA in [11] allows for a flexible use of the component SAs that make up

a GSA.

This chapter also introduced the distinctions within the problem area of

group key management, namely, of architectures, protocols, algorithms and

policies. In the following chapters, we discuss these components of group

key management in detail.

References

[1] Ohta, K., and K. Koyama, ‘‘Identity-Based Conference Key Distribution

Systems,’’ in Pomerance C., G. Goos and J. Hartmanis (eds.), Advances in

Cryptology—CRYPTO, Springer-Verlag, LNCS 293, Santa Barbara, CA, August

1987, pp. 175–184.

[2] Kohl, J., and C. Neuman, ‘‘The Kerberos Network Authentication Service

(V5),’’ RFC 1510 (proposed standard), IETF, September 1993.

[3] Steiner, J. G., C. Neuman, and J. I. Schiller, ‘‘Kerberos: An Authentication

Service for Open Network Systems,’’ in Proc. of USENIX, March 1988.

[4] Burmester, M., and Y. Desmedt, ‘‘A Secure and Efficient Conference Key

Distribution System,’’ in Proc. of EUROCRYPT, Springer-Verlag, LNCS 950,

Perugia, Italy, May 1994, pp. 275–286.

[5] Ingemarsson, I., D. T. Tang, and C. K. Wong, ‘‘A Conference Key

Distribution System,’’ IEEE Trans. on Information Theory, Vol. 28, No. 5,

1982, pp. 714–720.

88 Introduction to group key management

TE
AM
FL
Y

Team-Fly®

[6] Koyama, K., and K. Ohta, ‘‘Security of Improved Identity-Based Conference

Key Distribution Systems,’’ in Gunther C. G., (ed.), Proc. of EUROCRYPT,

Springer-Verlag, LNCS 330, Davos, Switzerland, May 1988, pp. 11–19.

[7] Simmons, G. J., ‘‘An Introduction to Shared Secret and/or Shared

Control Schemes and Their Application,’’ in Simmons, Gustavus J. (ed.),

Contemporary Cryptology: The Science of Information Integrity, IEEE Press, 1992,

pp. 441–497.

[8] Steiner, M., G. Tsudik, and M. Waidner, ‘‘Diffie-Hellman Key Distribution

Extended to Group Communications,’’ in Proc. of the Third ACM Conference on

Computer and Communications Security, New Delhi, India, March 1996.

[9] Maughan, D., et al., ‘‘Internet Security Association and Key Management

Protocol (ISAKMP),’’ RFC 2408 (proposed standard), IETF, November 1998.

[10] Harkins, D., and D. Carrel, ‘‘The Internet Key Exchange (IKE),’’ RFC 2409

(proposed standard), IETF, November 1998.

[11] Hardjono, T., M. Baugher, and H. Harney, ‘‘Group Security Association (GSA)

Management in IP Multicast,’’ in Proc. of the 16th International Conference on

Information Security (IFIP/SEC), Paris, France, June 2001.

[12] Harney, H., M. Baugher, and T. Hardjono, ‘‘GKM Building Block: Group

Security Association (GSA) Definition,’’ draft-irtf-smug-gkmbb-gsadef-01.txt,

IRTF, September 2000, work in progress.

[13] Diffie, W., P. van Oorschot, and M. Wiener, ‘‘Authentication and Authenti-

cated Key Exchanges,’’ Designs, Codes and Cryptography, Vol. 2, No. 2, June

1992, pp. 107–125.

[14] Bellare, M., and P. Rogaway, ‘‘Entity Authentication and Key Distribution,’’ in

Advances in Cryptology: Proc. of Crypto, Springer-Verlag, LNCS 773, Santa

Barbara, CA, August 1993, pp. 232–249.

[15] Krawczyk, H., ‘‘SKEME: A Versatile Secure Key Exchange Mechanism for the

Internet,’’ in Proc. of Network and Distributed System Security Symposium (NDSS),

San Diego, CA, 1996.

[16] Orman, H., ‘‘The OAKLEY Key Determination Protocol,’’ RFC 2412

(informational), IETF, November 1998.

[17] Kent, S., and R. Atkinson, ‘‘Security Architecture for the Internet Protocol,’’

RFC 2401 (proposed standard), IETF, November 1998.

[18] Karn, P., and W. Simpson, ‘‘Photuris: Session-Key Management Protocol,’’

RFC 2522 (experimental), IETF, March 1999.

[19] Rogers, H. L., ‘‘An Overview of the CANEWARE Program,’’ in Tenth National

Security Conference, National Security Agency, 1988.

[20] Harney, H., and C. Muckenhirn, ‘‘Group Key Management Protocol (GKMP)

Architecture,’’ RFC 2094 (experimental), July 1997.

4.6 Summary 89

[21] Harney, H., and C. Muckenhirn, Group Key Management Protocol (GKMP)

Specification, RFC 2093 (experimental), July 1997.

[22] Wallner, D., E. Harder, and R. Agee, ‘‘Key Management for Multicast: Issues

and Architectures,’’ RFC 2627(informational), IETF, June 1999.

[23] Balenson, D., D. McGrew, and A. Sherman, ‘‘Key Management for Large

Dynamic Groups: One-Way Function Trees and Amortized Initialization,’’ draft-

irtf-smug-groupkeymgmt-oft-00.txt, IRTF, August 2000, work in progress.

[24] Harney, H., et al., ‘‘Group Secure Association Key Management Protocol,’’

draft-ietf-msec-gsakmp-sec-00.txt, IETF, March 2001, work in progress.

[25] Briscoe, B., and I. Fairman, ‘‘NARK: Receiver-Based Multicast Non-Repudia-

tion and Key Management,’’ in Proc. of the First ACM Conference on E-commerce

(EC), Denver, CO, November 1999.

[26] Briscoe, B., ‘‘MARKS: Zero Side Effect Multicast Key Management Using

Arbitrarily Revealed Key Sequences,’’ in Proc. of First International Workshop on

Networked Group Communication (NGC), Pisa, Italy, November 1999.

[27] Hardjono, T., et al., Secure IP Multicast: Problem Areas, Framework and

Building Blocks, draft-irtf-smug-framework-01.txt,, IRTF, Sept. 2000, work in

progress.

[28] Harkins, D., and N. Doraswamy, ‘‘A Secure Scalable Multicast Key Manage-

ment Protocol (MKMP),’’ draft-ieft-ipsec-mkmp-00.txt, IETF, November 1997,

work in progress.

[29] Harney, H., and E. Harder, ‘‘Multicast Security Management Protocol (MSMP)

Requirements and Policy,’’ draft-harney-msmp-sec-00.txt, IETF, March 1999,

work in progress.

90 Introduction to group key management

Architectures and protocols
for group key management

The area of group key management architectures holds an

important role in multicast and group security, since it

impacts the network entities involved in the group, the group-

specific entities, and their roles and behaviors. The term

architecture in this context is used to express the concept or

notion that entities that are involved in group key manage-

ment are purposely arranged or configured in relation to one

another to achieve an intended effect. This intended effect,

such as optimal rekeying when a member leaves, is in turn

dependent on the specifics of the group key management

protocol and the algorithm used to maintain the logical

arrangement of keys held by the members and other entities.

From a key management perspective, the term addresses the

relationship and placement of group keys (or traffic keys) and

the other keys (or KEKs) supporting the safe delivery of the

group keys.

The term protocol is used here to refer to the procedures,

message exchanges, and message payloads that govern the

behavior of the entities involved in supporting a group (e.g.,

servers) and those participating in a group (e.g., hosts). Thus,

there is a close relationship between a group key management

architecture and the protocol(s) used to implement that archi-

tecture. For example, if an architecture specifies that a key

management entity shares one key with a subset of members,

and a different key with a different subset of members, the

protocol, when implemented, must address how those keys are

91

C H A P T E R

5
Contents

5.1 Architectural issues and
motivations3

5.2 IKAM4

5.3 Iolus12

5.4 Key distribution protocols16

5.5 Summary32

distributed to the respective subset of recipients, and how those keys are

subsequently managed throughout the lifetime of the group. Many

proposals for group key management protocols have in fact an underlying

architecture in mind, although it is usually less than explicit in their

presentation.

It is worth noting up front that no single group key management

architecture will satisfy all requirements within all areas of application of

multicast or group communications, precisely because each area of appli-

cation has its unique needs. Thus, in devising architectures for group key

management, implementers must understand that key management is not

an end in itself, but rather an enabler or support for data distribution among

group members. To that extent, the implementers must first understand the

application that is employing multicast and group communications.

This chapter is roughly divided into two parts, dealing with group key

management architectures and protocols, respectively. In the first half of this

chapter two basic architectures are discussed, where one is essentially two-

layered (or hierarchic) and the other multilayered. The first, called IKAM [1],

is a two-tier key management architecture that reflects the two-layered

approach found in many aspects of the Internet’s design (e.g., intradomain

and interdomain routing). The second, called Iolus [2] is a multilayered

arrangement of domains.

The second half of this chapter looks at specific group key management

protocols that have been proposed. In particular, attention is given to the

GKMP protocol [3] since it was one of the earliest group key management

protocols to be proposed. GKMP was also the first to propose the use of

LKHs1 for the group key determination algorithm. The other group key

management protocols discussed are GSAKMP [5] as a counterpart of the

unicast ISAKMP, and the GDOI protocol [6] which is based on the SA

management framework developed in the IETF, and which takes the IKE

protocol as the starting point for group key management.

These protocols represent a sample of the handful of group key manage-

ment protocols that have been proposed over the years. These are selected

for discussion primarily because they have been proposed in the context of

the IETF, and have purposely focused on security, key management, and SA

management to secure multicast communications. The reader is directed to

other efforts, such as [7–9] for related proposals in this area.

1. A more popular name for LKHs (or key trees) is Wallner trees, named after the author of the IETF Internet draft

describing it [4].

92 Architectures and protocols for group key management

5.1 Architectural issues and motivations

There are a number of motivating reasons why designers of group

key management architectures arrange entities and keying material in a

given manner. Often, the aim is simply to make key servers or key distri-

butors accessible to as many members as possible. In some designs, limiting

the effects of rekeying (e.g., due to membership changes) may be the priority.

In others, the prior existence of a semifixed data distribution tree through

high-speed pipes or VPNs may be dictating the placement of key servers. In

practice, group key management is more likely to be influenced by other

elements within the broader IP multicast application that it serves.

Some of the motivations driving certain architectures are as follows:

w Resilience and reliability of groups. Often, the continual running of a

group is of overriding importance compared to other factors, such as

the rate of joins or leaves by individual members. Thus, in such an

environment, redundant key servers may be used together with

multiple traffic keys.

w Geographic spread and density of membership. The location and density

(or level of clustering) of members (fixed or mobile) may be the

overwhelming design criterion. Here, key servers may be strategically

placed at or near the core of a cluster, in order to cater to as many

members as possible.

w Dynamicity of membership. The rate of joins and leaves, and the

average size of membership changes over a given time, may

determine the best arrangement of traffic keys, the depth/breadth

of the key tree, and the number of such key trees. In general, unless

sufficient statistical information has been gathered over a period of

time for a given group, the problem of dynamicity is a difficult one to

solve.

w Topology of data flow. Key servers are often placed in locations that

mirror the location of data distribution points (e.g., video streaming

servers), in order to make best use of the existing facilities. In

addition, the multicast routing topology may indicate that certain

points on the routing topology are the most advantageous at which to

stand up key servers. This consideration may be the overriding one

for content distributors and ISPs that deploy multicast.

w RM entities. RM protocols are typically used to provide reliable

transport of data delivered through a multicast distribution tree.

5.1 Architectural issues and motivations 93

A variety of RM protocols have been designed, often with very

distinct requirements to satisfy. An RM protocol such as TRACK [10]

would deploy key servers and key trees in a different manner to

pragmatic general multicast (PGM) [11].

w The existence/nonexistence of trusted entities. Trust is an important factor

in securing multicast, and the trust relationship among entities in the

network, and the trust relationship among content providers,

distributors, and (access) ISPs may govern the location of group

key management entities in the network.

w Economic and political reasons. Economic reasons (e.g., cheaper cost)

and political reasons (e.g., crypto export) may decide where in the

network key distributors are located, and through which parts of the

network keying material may be transported.

5.2 IKAM

IKAM [1] proposed an architecture, noting that many aspects of Internet

engineering are founded on a two-level hierarchy, which is in turn based on

the concept of network domains. Thus, for example, in the area of routing,

the notion of intradomain and interdomain is used to subdivide the complex

problem of IP routing into manageable units or domains. Each domain

thereby has its own protocol(s) to realize efficient and stable routing of IP

packets, while a different set of protocols is used across domains to provide

connectivity of domains.

The stated objective of IKAM is to foster the development of an Internet-

wide solution, while encouraging innovations in solving the many problems

that are related to multicast security. Since multicast security has many

complex facets related to multicast technologies and security technologies,

respectively, the following two-pronged approach was proposed correspond-

ing to a two-level hierarchy:

1. Encourage the growth and evolution of novel, secure solutions for

group key management within predefined key management

regions (domains) whose scope is determined on a per-case basis.

Regions can be defined to be the size of subnets, ASs, or larger. This

will allow for the development of independent and innovative

solutions that are addressed specifically for such regions, taking into

consideration the multicast application being employed.

94 Architectures and protocols for group key management

2. Encourage secure, simple, consistent, and stable interactions among

the key management regions that implement the various group key

management solutions. This will allow for the development of

innovative interregion (interdomain) solutions that can consistently

and securely tie together the various regions deploying intraregion

(intradomain) group key management protocols.

By defining regions of group key management, various schemes can be

used for each region, independent of one another, with the only

requirement being that they can interact with a common, simple, inter-

region group key management protocol.

5.2.1 Domains, areas, and key distributors

The IKAM architecture divides group members into subgroups based on the

usage of keys. The basic division is along a domain and one or more areas

(see Figure 5.1). This division can be aligned with the network topology,

such that members are in fact also grouped according to their location in the

network.

In the following discussion, we assume that the latter is the case. This

allows physically separated areas to reuse multicast addresses and employ

special multicast addresses through administratively scoped multicast. Thus,

in order to support multicast groups, the domain is divided into a number of

Figure 5.1 The IKAM architecture: Basic model.

5.2 IKAM 95

administratively scoped areas [12]. A host member of a multicast group is

defined to reside within one (and only one) of these areas. The purpose of

placing host members in areas is to achieve flexible and efficient key

management; particularly in the face of the problem of changes (joins and

leaves) in the membership of a multicast group. Two general types of KDs are

deployed:

1. At the domain level, a domain key distributor (DKD) entity is

defined for the domain, for the purpose of key management.

2. At the area level, an area key distributor (AKD) entity is defined for

each area, for the purpose of key management.

Depending on the address allocation approach, each area may be

associated with an area multicast address allocation entity (AMAAE), such as

the multicast address allocation server (MAAS) of [13], from which the AKD

of that area obtains areawide multicast addresses. In addition, at the domain

level, a domain multicast address allocation entity (DMAAE) must exist to

cater for the domain.

Within the domain, all KDs (both the DKD and AKDs) are members of

the domainwide administratively scoped multicast group, called the All-KD-

group, which does not extend beyond the domain, and whose membership

consists only of KDs. The DKD communicates to the AKDs either through

secure one-to-one (unicast) communications, or through the All-KD-group.

The All-KD-group is independent of other multicast groups, and exists even

when there are no host members of any multicast group in the domain. The

AKD communicates to host members residing in its area either through

secure one-to-one (unicast) communications, or through a special (i.e.,

control) multicast group whose scope is limited to that area.

Figure 5.2 shows the IKAM architecture where each of the KDs is located

at different domains in the network, and under different network and

security administrations.

5.2.2 Multicast groups for data and control

A useful distinction adopted by IKAM is that between IP multicast groups for

data transmission, and those for control (keying) messages.

To distinguish these administratively scoped multicast groups for control

(i.e., key management) from multicast groups for data, the latter are referred

to as data multicast groups, data groups, or simply multicast groups. A

control-related group is referred to as control multicast group or simply a

control group.

96 Architectures and protocols for group key management

A control group in IKAM is an administratively scoped multicast group

that is areawide. It is initiated/owned by the AKD of an area. The purpose of

an area control group is for key management relating to an associated data

multicast group.

An area control group associated with a data multicast group exists so

long as there are members of the corresponding data multicast group in the

area. Once a data multicast group ceases to have any members in an area, the

AKD of that area may terminate that corresponding area control group.

A special control group in IKAM is the All-KD-group. This is an

administratively scoped multicast group that is domainwide, and consists

only of the DKD and AKDs. It has a fixed address and is initiated/owned

by the DKD. There is only one All-KD-group in a domain, and it is a per-

manent group, independent of whether any data multicast group members

exist in the domain. This is shown in Figure 5.3. Unless specifically

mentioned, this section will consider all control groups to be area control

groups.

Note that once a host (in an area within the domain) becomes a member

of a multicast group, it also must become a member of one of the area control

groups of the area within which that host resides. This allows the AKD to

communicate with the host member through the area control group.

Figure 5.2 The IKAM architecture: Example.

5.2 IKAM 97

From the perspective of an AKD, for a multicast group having a host

member in its area, the AKD must assign that host member to one of the area

control groups.

5.2.3 Keys: Multicast groups and control multicast groups

Similar to other architectures, the domainwide cryptographic key used in

IKAM to encipher data traffic is denoted as the TEK. Thus, a multicast group

is associated with a domainwide TEK. For each multicast group having a

member in the domain, a unique TEK is assigned by the DKD for that

multicast group.

A multicast group having a member in an area in the domain is

associated with one control group in the area by the AKD of that area. All

traffic within an area control group is enciphered in such a way that only the

AKD of that area and the intended receivers of the traffic will be able to

decipher the traffic. The cryptographic key associated with an area control

group is referred to generally as the Area-Group-Key. An Area-Group-Key is

selected by the AKD. The Area-Group-Key is unique for each <multicast

group, control group> pair.

Figure 5.3 The IKAM arrangement of keys for data and control groups.

98 Architectures and protocols for group key management

TE
AM
FL
Y

Team-Fly®

For the special All-KD-group, an All-KD-Key is assigned by the

DKD. The All-KD-Key can in fact be accompanied by an LKH or key

array that is shared among the KDs. Since KDs are fixed and do not join/

leave groups, such an LKH may be used to provide recovery against the

compromise of one or more AKDs. Figure 5.3 illustrates the data group,

control groups (i.e., All-KD-group and area control group), and their

respective keys.

The ‘‘bootstrapping’’ process of each multicast group and control group

relies on the establishment of an SA, and a shared private key between a

(candidate) member of the group with the KD (DKD or AKDs) that controls

the group. It is through this one-to-one secure channel that the parameters

for the groups are then given to host members by the AKD, in the case of the

multicast group and area control groups, or to the AKDs by the DKD in the

case of the All-KD-group.

5.2.4 Control multicast groups: Address allocation

Three possible approaches are identified in IKAM [1] with regard to the use

of area control groups (corresponding to a given multicast group) for key

management by the AKD:

1. One control group per area per multicast group. For each multicast

group having members in an area, a separate control group is

created within the area. Each separate area control group is

associated with a different Area-Group-Key.

One disadvantage of this approach is the potential lack of

multicast addresses within the area. Another disadvantage is the

waste of resource related to areawide multicasting, if the area only

has very few members of the corresponding multicast group. This

approach requires the presence of an AMAAE in each area.

2. One control group per area for all multicast groups. In this approach,

for each multicast group having members in an area, only one

control group is created within the area. Hence, the area control

group is shared among members of different multicast groups.

Although there is only one (shared) area control group, a

separate Area-Group-Key is used for each data multicast group.

When the AKD wishes to communicate with members of a

particular multicast group residing in its area, the AKD will encipher

the communications using the appropriate Area-Group-Key. Other

unintended recipients will also receive the enciphered packets, but

will drop them since they will not be able to decipher them.

5.2 IKAM 99

The advantage of this approach is that there is only one

control group that can be long lived and have a fixed address.

Having the fixed address obviates the AMAAE, thereby simplifying

the entire design. The main disadvantage of this approach is that

bandwidth within the area is wasted when the AKD is performing

key management communications with only a small subset of group

members residing in the area, since all other unconcerned members

are receiving the (enciphered) packets and dropping them. Another

related disadvantage is an increased opportunity for cryptanalysis of

enciphered packets of control groups, since unconcerned members

are receiving these packets and may cryptanalyze them.

3. One control group per area for several multicast groups. This approach

attempts to bring together the advantages of the previous two. For a

fixed number of multicast groups having members in an area, a

single control group is created within the area. Thus, within a given

area a set of n multicast addresses for n control groups can be

selected and fixed. Each multicast group having one or more

members in an area is then mapped to one of the n control groups in

that area (e.g., by hashing the multicast group address).

In terms of key management, each <multicast group, control

group> pair will be associated with a unique Area-Group-Key.

Thus, for example, a host who is a member of two multicast groups,

MG1 and MG2, may find that in its area both MG1 and MG2 are

mapped into one control group, CG1, with two Area-Group-Keys,

AGK1 and AGK2, corresponding to the two multicast groups.

Hence, for the control group CG1 the host must maintain the

unique triplets <MG1, CG1, AGK1> and <MG2, CG1, AGK2>. The

host must be able to distinguish control group packets in CG1

corresponding to the two multicast groups, in order for it to apply

the matching key pairs. Tagging methods (e.g., in packet headers)

within control packets may be employed to achieve this effect,

saving the host the effort of trying the keys.

In this manner, the design is simplified by obviating the AMAAE

for each area, and the problem of unintended members receiving and

dropping (enciphered) messages is also somewhat reduced.

5.2.5 Arrangement of keys in the domain

The IKAM architecture aims at aiding the delivery of a TEK to members of

a multicast group or a control group. The fact that a host holds a copy of

100 Architectures and protocols for group key management

the TEK is taken to mean that the host has previously been correctly

identified by its AKD, and that it has established an SA with its AKD. The

private key used in a multicast group or a control group affords

confidentiality and group authentication, in the sense that the source of

any information enciphered under the key is a valid member of the group.

Note that this level of authentication (group authentication) is implicit,

and does not provide irrefutable proof of the singular identity of the

sender.

IKAM recognizes the benefits of a public key certification infrastructure

and is open to such an infrastructure being deployed, with each entity being

assigned a public key. IKAM assumes that public key pairs are assigned only

to the KDs (DKD and AKDs) and the DMAAE, to allow them to digitally sign

information that is to be sent through the multicast group or the control

groups. All entities within IKAM must have the certificates corresponding to

these public keys.

w Public keys. IKAM assumes that all KDs (DKD and AKDs) are

assigned public and private keys (asymmetric cryptography) in order

for these KDs to digitally sign certain information in such a way that

it is verifiable by all hosts in the domain.

A host member residing in an area is assumed to have a copy of

the public key certificates of its AKD and the DKD.

An AKD is assumed to have a copy of the public key certificates

of the DKD. An AKD may obtain the public key certificates of other

AKDs from the DKD, with the DKD acting as a domainwide

certification authority.

At the very least, the public key of the DKD must be advertised in

a tamper-proof manner (e.g., printed or manually configured), to

allow it to be used to vouch for the public keys of the AKDs.

w Shared private keys (symmetric keys). Three types of group-oriented

(i.e., shared by a group) private keys (symmetric keys) are used in

IKAM:

1. TEK. This is the private key associated with a multicast group

that is used by all the group members in the domain to encrypt/

decrypt the multicast traffic in the multicast group. This key is

assumed to be in possession of the DKD, although it could be

generated by the DKD. This key is delivered securely to each

AKD, which will in turn deliver the key securely to each group

member in its area.

5.2 IKAM 101

2. Area-Group-Key. This is the private key associated with the

<multicast group, control group> pair, and is used to encipher

the communications in the control group. An Area-Group-Key is

generated by the AKD and delivered to each member through a

secure channel. An Area-Group-Key is known only to the AKD

of an area and the members (of the corresponding multicast

group) residing in that area.

3. All-KD-Key. This is the private key associated with the special

All-KD-group. All the AKDs and the DKD hold a copy of the All-

KD-Key. This key is generated by the DKD and delivered to each

AKD through a secure channel. This key is used to encipher the

communications within the All-KD-group.

Two types of pair-oriented private keys are used in IKAM:

1. Member-Private-Key. Each host member in an area pair-wise

shares an SA and a Member-Private-Key with the AKD of that

area. The SA and the Member-Private-Key are long term, and

must be established before the host member joins (or initiates)

any multicast groups, and is given a copy of that group’s TEK.

There is only one SA and one Member-Private-Key shared

between the host member and the AKD, independent of the

number of multicast groups to which that host member belongs.

2. AKD-Private-Key. Each AKD shares a pair-wise SA and an AKD-

Private-Key with the DKD. The SA and the AKD-Private-Key are

long term, and must be established before any multicast group

exists in the domain.

In summary, the private key arrangement from the point of view of

IKAM entities is as follows:

w Hosts:

w TEK, per data multicast group;

w Area-Group-Key corresponding to the <multicast group, control

group> pair to which the host belongs;

w Member-Private-Key shared with its AKD;

w AKDs:

w TEK, per data multicast group (in an area);

w Area-Group-Key of its area;

102 Architectures and protocols for group key management

w All-KD-Key shared by AKDs and the DKD within the special All-

KG-group;

w AKD-Private-Key shared with the DKD;

w Member Private Key of each member residing in its area;

w DKD:

w TEK, per data multicast group (optional);

w All-KD-Key shared by AKDs and the DKD within the special All-

KG-group;

w AKD-Private-Key of each AKD in the domain.

Note that the DKD does not hold copies of the Member Private Keys. This

is in contrast to the approach in [14], in which a central server holds the

private keys of all members in the multicast group. If a host is in need of

communicating directly through a secure channel to the DKD or any other

entity, then the host must establish an SA and a shared private key with the

DKD or entity.

Although currently not prescribed, depending on the reliability

mechanism to be employed, the DKD may hold copies of the Area-Group-

Key within each area in the domain. However, the intent is clear that the

DKD is not to replace any AKD.

Each key is assumed to be associated with a key identifier, which

uniquely identifies the cryptographic key is question.

5.3 Iolus

Similar to the two-tier IKAM architecture described earlier in this chapter,

Iolus [2] uses subgrouping for scalable management of large, secure groups.

However, Iolus does not impose a limit on the number of levels in the

hierarchy of subgroups. Further, Iolus proposes a decentralized architecture

in that the group manager is not aware of any membership changes external

to its own immediate subgroup.

Each secure group is managed by a group security controller (GSC). The

GSC is ultimately responsible for the security of a group. The group is divided

into several subgroups. The GSC manages the top-level subgroup and

designates trusted third-party proxies, called group security intermediaries

(GSIs), to manage the other subgroups. Each subgroup contains members or

5.3 Iolus 103

GSIs or both. Group security agents is a generic term that refers to both the

GSC and the GSIs.

The GSC distributes the group’s ACL to the GSIs. With the group’s ACL

at hand, each GSI independently manages its own subgroup. In particular, a

GSI does not need to contact the GSC when a member leaves or joins its

subgroup. By keeping subgroups small and their management local, Iolus

achieves scalable operation of a secure group.

Independent subgroup management by group security agents results in

two types of scalability. First, when membership changes, new key(s) need

to be sent to fewer members. Therefore, computation and communication

overhead is much less than that in the process of rekeying the whole group.

Iolus architecture also provides 1 affects n scalability. According to this

notion, one member should not be able to affect all the members in the

group.

Recall that to maintain backward and forward access control, we need to

ensure that joining members do not get access to past data, and departing

members do not get access to future data. Typically, we achieve this by

changing the group key and sending it to the whole group. From their

definitions, forward and backward access control and 1 affects n scalability

seem to be at odds with each other. In the rest of this section, we describe

how Iolus architecture facilitates these conflicting requirements.

5.3.1 Hierarchical subgrouping

Iolus uses a centralized GSC to manage each secure group. The GSC divides

the group into several subgroups and designates trusted third-party entities,

called GSIs, to manage them. The subgroups are arranged in a hierarchy,

with each GSI being a member of a parent subgroup, apart from being

manager of its own subgroup. The GSC itself manages the top-level

subgroup. Figure 5.4 illustrates GSIA being a member of its parent’s

subgroup, managed by GSIP.

The GSC can be perceived as the root of the group management

tree. The GSIs are essentially the internal nodes, and the members are

leaf nodes of such a tree. Note that a subgroup may contain GSIs or

members or both. Notice that the root subgroup, that is, the subgroup

managed by the GSC, has no parent subgroup. Further, we have

subgroups without any GSIs as members. We refer to such subgroups as

leaf subgroups. Figure 5.5 illustrates hierarchical subgrouping in Iolus

architecture.

Each GSI is responsible for access control and key management within

the subgroup. Group security agents use an ACL-supplied by the GSC to

104 Architectures and protocols for group key management

determine whether to allow prospective hosts to join the (sub)group. GSIs

are responsible for maintaining forward and backward access control in the

subgroups. In the Iolus architecture, this means that a group security agent is

responsible for join or leave rekeying, as well as data or key forwarding. Note

that subgrouping confines join or leave rekeying to a subset of the members.

In other words, membership changes do not affect all the members in the

group.

Group security agents have an interesting relationship with the

subgroups in Iolus. Each subgroup is managed by a single group security

agent, but may contain several GSIs as members. Each GSI is thus associated

with exactly two subgroups, the subgroup it owns and a parent subgroup. We

also refer to the parent subgroup as the upstream (toward the GSC) subgroup.

5.3.2 Subgroup key management

Each group security agent shares a unique key with each of its subgroup

members separately. The group security agent establishes these keys when a

member joins the subgroup, using a one-to-one secure channel. The group

security agent also maintains and distributes a subgroup key (SGK). An SGK is

Figure 5.4 Subgroups in Iolus architecture.

5.3 Iolus 105

known only to current membership of that subgroup. To maintain forward

and backward access control, a group security agent changes its SGK

whenever the subgroup membership changes. The group security agent

may use any of the schemes described in Chapter 6 to efficiently rekey the

SGK. Note that a GSI, as a member of its parent’s subgroup, shares a unique

secret key with its parent group security agent. Further, it receives its parent

SGK as well. Thus, a GSI knows two subgroup keys.

5.3.3 Secure group communication in Iolus

Data forwarding in Iolus is the key process that contributes to 1 affects n

scalability. Iolus introduces the concepts of data and key translation for

secure data forwarding. Translation refers to the process of a group security

agent decrypting data or keys using one of the SGKs it knows, and

encrypting the data with the other SGK it knows. In other words, when a

group security agent receives data encrypted with its upstream SGK, it

translates the data for its downstream subgroup, and vice versa. Secret data

permeates the group supported by this data or key translation by the group

security agents.

Data translation is expensive, but it supports forward access control as

well as 1 affects n scalability. Key translation is relatively cheaper, but only

supports limited forward access control. Translation in general introduces

latency. We discuss these issues in more detail in the following.

Data translation

When a sender has data to send, it encrypts the data with the subgroup key,

and sends the encrypted data to the subgroup. Recall that each subgroup

may contain several GSIs, and each GSI knows two SGKs. Each GSI decrypts

the data, and encrypts and transmits the data for the parent or child

subgroups of the sender’s subgroup. This process of data translation

continues until the data reaches the leaf subgroups, that is, the subgroups

without any GSIs as members.

Figure 5.5 illustrates data forwarding in Iolus. Notice the labels

corresponding to subgroup data transmissions in the figure. They indicate

how secret data propagates through the Iolus framework in steps. Each

translation introduces latency, and thus members in the sender’s subgroup

receive the data first, whereas the members in the furthest subgroup from

the sender’s subgroup receive the data last. Note that the translation latency

is in addition to the network latency.

106 Architectures and protocols for group key management

Notice that in several subgroups, GSIs that are only members (not

managers) translate and forward secret data. In the sender’s subgroup, it is

the sender, not the local GSI, that transmits data. In all these cases, data may

be encrypted using an outdated SGK. Thus hosts that are no longer members

in the group may receive data. This can be avoided by having the subgroup

managers forward data, instead of the sender or member GSIs.

Key translation

As we discussed, data translation is very expensive. Iolus proposes key

translation for efficient data transmission. In this scheme, the sender

encrypts the data with a new random key, and multicasts it to the whole

group. We refer to the random key as the TEK. The sender forwards the TEK,

following the translation process described earlier. Key packets are much

smaller than data packets and thus this approach is more efficient.

Key translation, however, introduces some new issues. Since group

management is decentralized in Iolus, the sender has no way of knowing

Figure 5.5 Data/key forwarding in Iolus.

5.3 Iolus 107

when to change the TEK. Therefore, it changes the TEK periodically. If the

period is large, the sender could be using a TEK that departed members may

know. However, when the sender rekeys the TEK, departed members will

cease to be able to decrypt any further data or key transmissions. In other

words, we cannot support strict forward access control. The only way to

maintain forward access control and 1 affects n scalability is to have the

sender use a fresh TEK for every data packet it sends. This, while being

cheaper than data translation, is expensive.

5.3.4 Limitations of Iolus architecture

We end the discussion on Iolus with a note about the GSIs. Several

researchers have pointed out that the use of third-party entities for secure

group communication may not be acceptable in many real-world scenarios.

Consider a content provider as the sender and its customers as the receivers

or members. It may not be acceptable to content providers, that GSIs are able

to get access to the secret content.

The dual encryption protocol [15] proposes a scheme to avoid having

third-party entities getting access to secret data. The basic idea is to establish

a new set of keys, called key group keys, that only members know, and

have the sender encrypt TEKs twice, first with the key group keys and next

with the SGKs. Since group security agents do not get access to key group

keys, they cannot decipher secret data. Another approach, based on

reversible parametric sequences [16], provides an alternative solution to

this problem.

5.4 Key distribution protocols

In the previous section of this chapter, the issue of architectures supporting

scalable group key management was discussed. In the following sections,

we describe a number of protocols that actually implement group key

management to various degrees. Some of the work is of a research

nature, or represents an outcome from research projects, while other work

results from industry vendors implementing a protocol dictated by specific

needs.

5.4.1 GKMP

GKMP was one of the earliest works addressing key management in the

context of a group [3]. GKMP recognizes the creation of groups through

108 Architectures and protocols for group key management

TE
AM
FL
Y

Team-Fly®

sender-initiated and receiver-initiated operations, and describes key

management from the point of view of a group key management application.

As part of the group key distribution process, protocol entities pass

permission certificates, which contain access control information about a

particular site. The access control information is given by a trusted higher

authority, who signs the permission certificate. A protocol entity must verify

the permissions in the permission certificate and verify the level of service

requested, to ensure that it is within the allowable range.

GKMP employs a cooperative key generation process, which initially

starts between two protocol entities. The Group Key Controller then

distributes the group keys to qualified GKMP entities. This distribution

process is a mutually suspicious process, where all actions and identities

must be verified.

Compromise recovery is supported in GKMP by way of a signed

compromise recovery list (CRL) of compromised entities being distributed at

the same time as key distribution. Furthermore, GKMP delegates control of

groups to specific group controllers to support the efficient dissemination of

CRLs. Each CRL is given a version number, which is delivered during key

management. The version number triggers the downloading of the most

recent version of the CRL.

GKMP entities

GKMP employs a number of entities and constructs that are innovative and

that have been carried over into more recent protocols (such as GSAKMP

and GDOI). These entities are as follows:

w Group controller (GC). The group controller (GC) is the a group

member with authority to perform critical protocol actions. These

include creating keys, distributing keys, creating group rekey

messages, and reporting on the progress of these actions.

An important requirement in GKMP is that all group members

must have the capability to be a GC, and must assume this duty upon

assignment.

w Group member (GM). A group member is any group host that is not

acting as the GC. A group member is assumed to have the task of

assisting the GC in the key creation process, validating the

GC’s authorization for carry out actions, accepting/requesting keys

from/to the GC, maintaining local CRLs, managing local keys, and

other tasks.

5.4 Key distribution protocols 109

GKMP introduces a number of important concepts in the engineering of

secure groups in the Internet. One of these is the group token (GT) which

contains information the members need to ensure that a controller is

authorized to create a group and that the group has information pertaining

to constraints. These include:

w Group identification;

w GC identification;

w The group action (create, rekey, or delete);

w Group permissions (rules to guide access control);

w The rekey interval (the lifespan of the group key);

w The token version (an identifier to identify the current token);

w The token signature (an asymmetric signature using the GC private

key);

w The GC’s public key.

GKMP uses various identifiers to address the number of keys used within

a GKMP group. These include the Group ID to identify groups, the group

TEK (GTEK) ID to identify the group TEK, and the group KEK (GKEK) ID to

identify the group KEK. The key identifiers are needed when a key tree or

LKH is implemented for the group.

Sender-initiated multicast

The basic operational concept for multicast key management for sender-

initiated multicast consists of a number of operations:

w Identification of group key controller. The originator of the multicast

group creates or obtains a group management certificate from its certi-

fication hierarchy. The certificate identifies the holder as responsible

for generation and distribution of the group key. The originator

relays the membership list to the group key management application.

w Group key creation. When the application receives the list of members,

it selects a member and initiates the creation of a group key packet

(GKP). The packet contains the current group traffic encryption key

(GTEK), and a key used to deliver the future GTEK. This key is called

the group key encrypting key (GKEK). The packet also contains

110 Architectures and protocols for group key management

additional parameters, selected by the originator’s group key

management application, defining the actual usage of the keys.

w Group key distribution. When the GKP has been created, the GC goes

through the list of all members and verifies their respective

permissions level, using each member’s certificate. The GC then

creates a session key package (SKP), which contains a session TEK

(STEK) and session KEK (SKEK). To handle future rekeys, the GC

then creates a digitally signed group rekey package (GRP), which

consists of the earlier created GKP encrypted under the GKEK.

w Group rekey. For group rekeying, the originator group key manage-

ment application selects a member and proceeds to create a new GKP

containing a new GTEK. In addition, it creates a new GRP, which is

encrypted under the earlier next GKEK.

Receiver-initiated multicast

The receiver-initiated model presents some interesting problems from a

security viewpoint, since the end participants are not known a priori.

Transferring the notion of GC from above into the receiver-initiated

multicast, the following steps describe the process using the controller.

w Identification of group key controller. Since there is no a priori list of

known members, this approach assumes that one member (e.g., the

member that initiated the group) is responsible for initial group

establishment, and periodic generation and dissemination of new

GRPs. In effect, this member may become the controller, whose

identity can be made known to the existing members and new-

comers, through various means (e.g., broadcast).

w Group key creation. In the receiver-initiated operations, the GKP

creation is similar to the sender-initiated case. As before, the

controller creates a GKP with the first group member to initiate

contact. The group key management application then makes itself

know as the GC, which the member validates under the protection of

the GTEK.

w Group key distribution. After creation of the GKP, as other members

contact the controller, an SKP is created, member permissions are

validated using their certificates, and a Session Rekey Package is

loaded to the member.

5.4 Key distribution protocols 111

w Group rekey. The rekeying procedure here is identical to that for the

sender-initiated case. The controlling group key management

application selects a member, creates a new GKP, creates a new

GRP (which is encrypted in the previously distributed next GKEK),

and broadcasts it to the group.

5.4.2 GSAKMP

GSAKMP [5] was developed as a framework for creating groups that share

cryptographic keys. The framework provides mechanisms to disseminate

group security policy, perform access control based upon PKI certificates,

generate group keys, and recover from compromise of keys within a group.

GSAKMP introduced the notion of a policy token, which is a signed

collection of policy information related to a given group.

GSAKMP defines its own header and message format, which is similar to

the ISAKMP framework for pair-wise key management. The authors

perceived ISAKMP as being insufficient for the needs of dynamic secure

group creation and maintenance; hence the definition of GSAKMP. The

dynamic aspect of GSAKMP is the notion that group members, when

provided with enough authority, should be able to take on the function of

the GC. This provides scalability and resilience against the GC crashing, or

network partitions occurring.

Entities in GSAKMP

GSAKMP defines a number of entities, starting with the GC as the most

prominent entity. One important underlying concept within GSAKMP is the

notion that the GC can be any member of the group that has (been given) the

authority to perform some critical tasks. Among others, the GC is

distinguished from ordinary members by its ability to:

w Create and disseminate keys;

w Maintain the rekeying infrastructure;

w Create and maintain a logical key hierarchy or a key array for the

purpose of rekeying members.

GSAKMP looks ahead by allowing the group key management

infrastructure to evolve into a multiGC arrangement where several members

can be a GC within a group, each even with a more specific task of being a

112 Architectures and protocols for group key management

rekey-GC. These are referred to as subordinate controllers (SCs) by

GSAKMP. The distinction between a GC and SC reflects GSAKMP’s

understanding of the need for managing large groups by dividing them

into subgroups; each managed by one or more SCs. The policy token, which

is known by all members, mentions the members that are delegated to

become a SC, and therefore allows new or prospective members to contact

their local (or closest) SC to initiate a group join.

Furthermore, GSAKMP reflects an N-tier thinking by introducing the

notion of ‘‘subordinate logical key hierarchy’’ (or subordinate LKH arrays),

which essentially points to each subgroup having its own logical key

hierarchy with the aim of protecting and managing the group key.

Group establishment and protocol flows in GSAKMP

GSAKMP recognizes a group life cycle consisting of group definition, group

establishment, group maintenance, and group removal. The activities

involved in creating a group include:

w Determining access policies for the host/users to join the group;

w Determining authorization policies for entities involved in key

dissemination and other actions requiring higher trust levels;

w Determining security mechanisms and algorithms used by members

in the group;

w Determining the topology of membership according to the LKHs and

compromise recovery algorithms;

w Creation of the policy token containing some or all of the information

previously determined.

There are several phases involving differing protocol flows in the

creation of a GSAKMP-based group (Figure 5.6).

1. Group establishment.

In GSAKMP the establishment of a group begins when a (potential)

member issues a request to join (RTJ) message to GC.

The scheme assumes that at the very least the GC is already in

operation, and that group establishment in actuality begins when

the first member issues the RTJ. In terms of the group establishment

protocol, the GC could in fact issue an invitation (i.e., the push

model) and the member could issue a request (i.e., the pull model).

5.4 Key distribution protocols 113

The RTJ must indicate the GID that the member is referring to, and

the message must be digitally signed by the member.

The GC then responds to the member with an invitation

message, which contains among others, the policy token pertaining

to the GID that the member requested to join. The message also

contains other elements for protection against replay attacks (e.g.,

nonces), and the identity of the member who requested to join. The

GC digitally signs the message and optionally attaches its own

certificate.

After the member verifies the signature of the GC on the

invitation message (and verifies the GC’s certificate), the member

verifies the authorization of the GC.2 Assuming the member has

2. The published GSAKMP documents assume that some authorization mechanism exists for the members to

allow them to verify the authority of the GC or subordinate GCs.

Figure 5.6 GSAKMP flow.

114 Architectures and protocols for group key management

verified the authorization of the GC to act on behalf of the group,

the member sends back an invitation response (IR) message to the GC.

This IR message must return the nonces that were contained in the

previous invitation message, and the member must sign the IR

message.

In return, the GC will create and send a signed key download

message containing the data key (or GTEK), together with the LKH

or key tree/array for rekeying purposes later. Note that encryption

is performed on all of the necessary fields of the message to

protect the keying information from being read in transit. The LKH

or key array is often described as ‘‘self protecting,’’ because in its

delivery the nodes within the hierarchy will be encrypted using

keys which are derived from the location of the node within the

hierarchy. Furthermore, the key download itself is conducted

through a pair-wise secure channel between the GC and the

member.

Once the member verifies the authenticity of the key download

message from the GC and obtains the keying information for the

group, it responds to the GC by sending it an acknowledgment

message. The GC will verify the signature and freshness of the

message.

The reader is directed to [5] for detailed information on the

payloads of the messages discussed above.

2. Group maintenance.

GSAKMP uses the term maintenance to refer to the events and

responses related to membership changes, rekeying events, and

other emergency situations (such as key compromises).

The first ordinary event that is expected to occur is membership

changes, whereby members leave and new members join. When a

member joins, the procedure observed is that described above.

When a member leaves, then rekeying must occur, based on the

position of the member within the LKH. The member-leave event

triggers the GC to send out a rekey message containing a (possibly

revised) policy token and key array.3

Note that all group maintenance messages must be signed

by the GC, since it affects all members of the group tied within

the LKH.

3. A description of a rearrangement of an LKH can be found in Section 6.3.

5.4 Key distribution protocols 115

Extraordinary events foreseen by GSAKMP includes the

compromise of a current data key (or GTEK) and/or the

compromise of part or all of the entries within the LKH being

used within a group.

3. Group termination.

The termination of a group in GSAKMP is effected by the GC

sending out a group removal/destruction message which is digitally

signed. The understanding is that communications within the group

will cease to exist, and that resources used to run the group may

also cease to be available.

Group establishment without an underlying SA

GSAKMP allows for the creation of groups through the member-to-GC

communication, without reliance on the existence of an underlying

security association (Category 1 SA). This approach assumes that the

data portion of the key download payload is encrypted, and that the details

of the encryption of this data are provided in the key download payload

itself.

The key determination for this encryption may be done through a two-

party contributory system (à la Diffie-Hellman) using the key creation

payloads to carry the contributions of the participants to this key, or may be

transferred with the encrypted contents using public key encryption and an

enveloping scheme.

GSAKMP policy token

GSAKMP employs a data structure called the policy token to represent

security mechanisms (and their parameters) that are used within a group.

The elements of a policy token specify the policies that are to be followed by

members of a group, and consist of the following:

w Policy identification. A group must have some means by which it can

identify an instance of group security policy in an unambiguous

manner. Failure to correctly identify the group policies, messages,

and participants can lead to incorrect and insecure operation. In the

simplest form, an instance of a policy token must be associated with a

unique GID expressly found inside the policy token.

116 Architectures and protocols for group key management

w Authorization for group actions. A group security policy must identify

the entities allowed to perform actions that affect group members.

Group authorization partially determines the trust embodied by the

group as a whole, by defining the parties or entities that are allowed

to participate in group activities. Because of the wide range of

expected environments, flexible identification of entity authoriza-

tions is highly desirable. Authorization given to an entity must be

shown as being true and authentic, and coming from another entity

that bequeathed that authority.

w Access control to group information. Access control policy defines the

entities that will have authorization to hold the key protecting the

group data.

w Mechanisms for group security services. Identification of the security

services used to support group communication is required. For

example, policy must state the algorithms used to derive session keys

and the types of data transforms to be applied to the group content.

Each security service can have parameters and policies specific to its

implementation.

In order to establish that the entire GSA is adequate to protect

the data, it is necessary to have the full specification of:

w The group establishment mechanism;

w The data protection mechanism;

w The group management mechanism.

w Verification of group security policy. Each policy must present evidence

of its validity. The means by which the origin, integrity, and freshness

of the policy is asserted (for example, via digital signatures) must be

known by each group member prior to its acquisition. In the simplest

form, this consists of the policy token being digitally signed by the

entity authorized to issue the group security policy (e.g., the group

owner).

5.4.3 GDOI

The GDOI [6] of ISAKMP represents an effort to specify a ‘‘domain of

interpretation’’ over the more general ISAKMP key management

framework [17]. In essence, the GDOI protocol is a GSA management

protocol. The notion of domains of interpretation was introduced in ISAKMP

5.4 Key distribution protocols 117

as a way to allow a more specific usage of ISAKMP for certain areas of

application, which may require the addition of extensions to the plain

ISAKMP to fulfill those specific needs. More specifically, the GDOI protocol

borrows definitions from GSAKMP [5], incorporates the Phase 1 SA of the

Internet DOI [18, 19], and proposes new payloads and exchanges according

to the ISAKMP and IKE standards.

Although ISAKMP [17] allows for such interpretations, in reality the

process is not so straightforward. This fact, together with the reality that the

IKE [19] protocol is the de facto Internet key exchange protocol used by over

70 vendors, led the authors of the GDOI protocol to build the protocol using

IKE, rather than ISAKMP. The GDOI protocol has its origins in SMuG, which

is a research group that was established under the auspices of the IRTF, a

sister organization of the IETF. After going through a number of revisions,

the GDOI protocol was submitted to the MSEC Working Group in the IETF

for formal standardization. At the time of this writing, two major vendors are

in the final stages of completing their respective implementations, which

have been tested against each other for interoperability.

Mapping GDOI to the GSA Model

Recall that in Section 4.4 the notion of a GSA was described and then

defined. A GSA is defined to consist of three categories or types of SAs. The

three categories of SAs are called Category 1 SA (or SA1), Category 2 SA (or

SA2) and Category 3 SA (or SA3), and they are shown in Figure 4.3. The

entities involved are the Group Controller Key Server (GCKS) and the

members. Note that in Figure 4.3 the GCKS is also referred to as the KD.

Looking at Figure 4.3, the following provides a mapping between the

conceptual SAs in Section 4.4 and how they are implemented in GDOI:

w Category 1 SA: This SA is also referred to as SA1 or pull SA (since the

member pulls it down from the GCKS). In some literature, this SA is

also called registration, since it mimics the registration process that

the member has to conduct with the GCKS for the particular

multicast group.

In GDOI, this is implemented as the GDOI Phase 1 and Phase 2 ex-

changes. As will be explained later, the GDOI Phase 1 is similar to IKE

Phase 1, while the GDOI Phase 2 is newly defined to cater for the GSA.

GDOI refers to this new Phase 2 as the GROUPKEY-PULL exchange.

w Category 2 SA: In Section 4.4 this SA is defined to be used for control

messages sent or pushed by the GCKS to the members. Such control

118 Architectures and protocols for group key management

TE
AM
FL
Y

Team-Fly®

messages may in fact include rekeying messages and SA updates.

GDOI refers to this SA as the push SA or rekey SA.

In GDOI, this is implemented as the GROUPKEY-PUSH data-

gram, where the message is pushed from the GCKS to the members.

w Category 3 SA: GDOI refers to this SA as the data security SA since it is

used by the application to secure the data traffic (e.g., IPsec).

GDOI and IKE

The ISAKMP protocol [17] is a key management framework for transferring

key and authentication data, independent of the key generation process.

ISAKMP defines a set of protocol exchanges that set up a secure channel for

key management, as well as the exchange of key and authentication data.

Generalized payloads for exchanging key generation and authentication

data are defined by ISAKMP. These payloads are combined with a DOI,

which defines the specifics of key exchange protocol. ISAKMP is intended to

support the negotiation of SAs for security protocols at all layers of the

network stack, although in practice it is commonly used at the network

layer.

The IKE protocol [19] is a widely deployed key exchange protocol. It is

primarily used as a key exchange protocol for IPsec, but can be used for other

security protocols as well. Hence, the authors of the GDOI protocol saw a

number of advantages to making use of existing support for ISAKMP as a key

management framework and IKE for the secure channel (namely, the

Category 1 SA):

w Reusing much of the existing key management protocol promotes a

single key management framework.

w Systems that provide network-layer protection of unicast data will

have the same market needs to provide network-layer protection for

multicast data.

w Using the same underlying protocol will reduce both the complexity

and size of the key management code.

w Implementation can be achieved more expediently.

In attempting to understand GDOI, it is worth reviewing the two phases

of IKE, since GDOI uses much of IKE Phase 1. Recall that IKE is logically

divided into two exchanges, referred to as Phase 1 and Phase 2. A Phase 1

exchange must be completed before any Phase 2 exchanges are attempted.

5.4 Key distribution protocols 119

Once the Phase 1 exchange has completed, there is no limit to the number of

Phase 2 exchanges that can take place, and there may be simultaneous

Phase 2 exchanges occurring between IKE peers.

w Phase 1: In Phase 1, two peers establish a bidirectional, secure,

authenticated channel using payloads and semantics defined in

ISAKMP. Several different authentication methods are defined for

use in IKE (i.e., manually shared keys, digital signatures, or public

key encryption). The two peers negotiate a mutually acceptable set of

cryptographic policies, and derive keying material using the Diffie-

Hellman or public key encryption algorithms. At the end of Phase 1,

the two peers have fully authenticated each other, and have

exchanged adequate keying material used to create a secure

authenticated channel for Phase 2.

w Phase 2: In Phase 2, the two peers negotiate SAs on behalf of IPsec (or

other security protocols if another DOI has been defined). IKE Phase 1

provides confidentiality, integrity, replay protection, and the gen-

eration of key exchange protocol keying material (i.e., using keying

material exchanged during Phase 1).

The secure channel defined by an IKE Phase 1 is used by GDOI to protect

GDOI keying material. This is because it can directly provide confidentiality

and integrity. Furthermore, the IKE exchanges protect against man-in-the

middle, connection hijacking, reflection, and replay attacks. IKE offers some

protection against DoS attacks as well.

Although GDOI uses IKE Phase 1, it defines a new Phase 2 exchange

called GROUPKEY-PULL. In fact, GDOI uses the IKE Phase 1 to protect the

new Phase 2 exchange. This new Phase 2 exchange is discussed further below.

New elements in GDOI

The GDOI protocol implements the GSA concept. Thus, although borrowing

Phase 1 from IKE (which is a unicast protocol), GDOI by necessity

introduced a number of new elements to cater for multicast-related

interactions between the GCKS and the members.

The GDOI protocol introduced several new payloads. These are as

follows (see Figure 5.7):

w GDOI SA;

w SA KEK (SAK), which follows the SA payload, where the KEK is the

key encryption key;

120 Architectures and protocols for group key management

w SA TEK (SAT), which follows the SA payload, where the TEK is the

traffic encryption key;

w KD Array (denoted as KD, or key download, as borrowed from

GSAKMP);

w Sequence number (SEQ);

w Proof of possession (POP).

In addition, the GDOI protocol introduced two new exchanges:

w A Phase 2 exchange to create Category 2 and Category 3 SAs.

The new Phase 2 exchange called GROUPKEY-PULL, downloads

KEK and/or TEK keying material, policy, and attributes for the group

member. The GROUPKEY-PULL exchange uses pull behavior, since

the member initiates the retrieval of these parameters from the

Figure 5.7 GDOI Phase 2 exchange.

5.4 Key distribution protocols 121

GCKS. The member is aware of the group through some announce-

ment scheme (such as the SDP), and initiates the pull.

w A datagram to create or modify the Category 2 and Category 3 SAs.

The GROUPKEY-PUSH datagram is pushed from the GCKS to the

members. The KEK or KEK array protects the GROUPKEY-PUSH

message, which creates a new Category 3 or Category 2 SA. When

the GROUPKEY-PUSH carries a TEK, it creates a new Category 3 SA.

Multiple Category 3 SAs can be specified through the SAT.

Note that the GCKS creates each Category 3 SA with a TEK on behalf of

the security protocol that multicasts data. The security protocol is the

protocol that will use the TEK for enciphering multicast data before it is

transmitted through IP multicast.

A security protocol uses the TEK and ‘‘owns’’ the Category 3 SA in the

same way that IPsec ESP uses the IKE Phase 2 keys and owns the Phase 2 SA.

When the GROUPKEY-PUSH message carries a KEK array (or key

hierarchy), it effectively dictates the creation of a new Category 2 SA. The

GCKS creates a new Category 2 SA with a KEK array in order to add or

remove group members, or to refresh the SAK or SAT [4, 5, 20].

Alternatively, membership may expire when the KEK expires [21], and

the GROUPKEY-PUSH message is not used to create Category 2 SAs for the

particular group. Use of LKH-style membership management (see Chapter 6)

is an option in GDOI.

The new GDOI Phase 2

The new GDOI Phase 2 is shown in Figure 5.7. The goal of the GDOI Phase 2

(or GROUPKEY-PULL exchange) is to establish a Category 2 and/or

Category 3 SA at the member for a particular group. The GDOI Phase 2 is

protected by the Phase 1 (which is in fact an IKE Phase 1). Furthermore,

multiple GROUPKEY-PULL exchanges may occur under a given Phase 1 SA.

One of the items transferred within the GROUPKEY-PULL exchange is

the KEK for the group. Since the KEK can in fact contain an array of keys, it

is also referred to a KEK array (which reflects the fact that it is a sequence of

keys made up from the keys of an LKH or a key tree).

Looking at Figure 5.7, the GROUPKEY-PULL exchange uses many IKE

definitions:

w SKEYID. IKE Phase 1 computes SKEYID a from the Diffie-Hellman

keying material exchanged in Phase 1. SKEYID a is the ‘‘key’’ in the

122 Architectures and protocols for group key management

keyed hash used in the GROUPKEY-PULL HASH payloads. As with

the IKE HASH payload generation (RFC 2409 section 5.5), each

GROUPKEY-PULL message hashes a uniquely defined set of values.

Nonces permute the HASH and provide some protection against

replay attacks. Replay protection is important to protect the GCKS

from attacks that a key management server will attract.

w Nonces. The GROUPKEY-PULL exchange uses nonces to guarantee

‘‘liveliness,’’ or that someone is not replaying a recent GROUPKEY-

PULL message. The replay attack is only useful in the context of the

current Phase 1. If a GROUPKEY-PULL message is replayed based on

a previous IKE Phase 1, the HASH calculation will fail due to a wrong

SKEYID a. The message will fail processing before the nonce is ever

evaluated. In order for either peer to get the benefit of the replay

protection, it must postpone as much processing as possible until it

receives the message in the protocol that proves the peer is live. For

example, the responder must not compute the shared Diffie-Hellman

number (if key exchange payloads were included) or install the new

SAs, until it receives a message with Nr included properly in the

HASH payload.

Nonces require an additional message in the protocol exchange

to ensure that the GCKS does not add a group member until it proves

liveliness. The GROUPKEY-PULL member-initiator expects to find its

nonce, Ni, in the HASH of a returned message. Furthermore, the

GROUPKEY-PULL GCKS-responder expects to see its nonce, Nr, in

the HASH of a returned message before providing group keying

material as in the following exchange.

w HDR. In Figure 5.7 HDR is an ISAKMP header payload that uses the

Phase 1 cookies and a message identifier (M-ID) as in IKE [19].

Note that nonces are included in the first two exchanges, with the

GCKS returning only the SA policy payload before liveliness is

proven. The HASH payloads prove that the peer has the Phase 1 secret

(SKEYID a) and the nonce for the exchange identified by M-ID. Once

liveliness is established, the last message completes the real

processing of downloading the KD payload.

w ID payload. In addition to the nonce and HASH payloads, the member

initiator identifies the group it wishes to join through the ISAKMP ID

payload. The GCKS-responder informs the member-initiator of the

current value of the sequence number in the SEQ payload. The

sequence number orders the GROUPKEY-PUSH datagrams.

5.4 Key distribution protocols 123

w SA payload, DOI, TEK, KEK, and SPI. The GCKS-responder informs the

member-initiator of the cryptographic policies of the group in the SA

payload, which describes the DOI, KEK, and/or TEK keying material,

and authentication transforms. The SPIs are also determined by the

GCKS, and downloaded in the SA payload chain.

w KD payload. The KEK SA contains the ISAKMP cookie pair for the

Category 2 SA, which is not negotiated, but downloaded. The TEK SA

also contains an SPI. The second message downloads this SA payload.

If a Category 2 SA is defined in the SA payload, then KD will contain

the KEK. If one or more Category 3 SAs is defined in the SA payload,

then KD will contain the TEKs. This is useful if there is an initial set of

TEKs for the particular group, and can obviate the need for future

TEK GROUPKEY-PUSH messages.

w Certificate and POP. The member may establish an identity in the

GROUPKEY-PULL exchange in an optional certificate (CERT) pay-

load that is separate from the Phase 1 identity.

When the member responder passes a new CERT, a POP payload

accompanies it. The POP payload demonstrates that the member or

GCKS principal has used the very secret that authenticates that

principal (namely, the principal’s private key that corresponds to the

public key used in the CERT payload). POP I is an ISAKMP signature

(SIG) payload containing a hash of the concatenated nonces Ni and

Nr signed by the member, when the member passes a CERT signed by

the group owner, to prove its authorization. POP R contains the hash

of the concatenated nonces Ni and Nr signed by the GCKS, when

the GCKS passes a CERT signed by the group owner, to prove its

authority to provide keys for a particular group. The use of the nonce

pair for the POP payload, transformed through the IKE pseudo

random function (PRF), is designed to withstand compromise of the

Category 1 (IKE Phase 1) key.

Updating SAs

One of the fundamental design aspects of the GSA model and GDOI is the use

of multicast itself to distribute certain control messages. An example of this

use of multicast is the updating of SAs using the GROUPKEY-PUSH message.

Note that the message itself is not dependent on IP multicast, and as such can

also be pushed using unicast delivery. The GROUPKEY-PUSH message

replaces a Category 2 SA KEK (or KEK array), and/or creates a new Category

3 SA. See Figure 5.8.

124 Architectures and protocols for group key management

As before, the SA defines the policy (e.g., crypto suite) and attributes

(e.g., SPI) for a Category 2 and/or Category 3 SA. The GCKS optionally

provides a CERT payload for verification of the SIG, which is a signature of a

hash of the entire message before encryption (including the header and

excluding the SIG payload itself). The KD is the key download payload

(described above).

If the SA defines an LKH-style KEK array or single KEK, the KD payload

contains a KEK or KEK array for a new Category 2 SA, which has a new

cookie pair. When the KD payload carries a new KEK SA, a Category 2 SA is

replaced with a new SA having the same group identifier and incrementing

the same sequence counter, which is initialized in message 4 of Figure 5.7. If

the SA defines an SA TEK payload, this informs the member that a new

Category 3 SA has been created, with keying material carried in the KD

payload.

Functional block diagram of GDOI

As further illustration of the GDOI protocol, Figure 5.9 shows the functional

block diagram (FBD) of the GCKS and member.

Members may be senders or receivers of multicast data. There are two

functional blocks in the figure which are labeled ‘‘GDOI,’’ and there is an arc

between them depicting the GDOI message exchange. Some of these

functional blocks and the arcs between them are peculiar to an operating

system (OS) or vendor product, such as vendor specifications for products

that support updates to the IPsec SAD and SPD. The AUTHORIZATION block

Figure 5.8 GDOI push message.

5.4 Key distribution protocols 125

is subject to group policy [22], but how this is done is specific to the GCKS

implementation. GDOI is open to supporting alternative authorization

designs.

Besides the AUTHORIZATION block there is an ANNOUNCEMENT

block. The announcement function is how a member receives announce-

ments of secure groups and sessions. The SDP [23] is one form that

the announcements might take. The announcement function may be

implemented in a session directory tool, an electronic program guide (EPG),

or by other means. The announcement function directs GDOI using an API,

which is peculiar to the host OS in its specifics.

The reader is directed to the specifications of GDOI in [6] for further

details on the GDOI protocol and to [24] for a formal analysis of the GDOI

protocol.

5.5 Summary

This chapter has focused on two related and important aspects of multicast

and group security; namely, architectures and protocols for group key

Figure 5.9 GDOI functional block diagram.

126 Architectures and protocols for group key management

management. In the area of architectures, two designs have been described,

representing two ends of a spectrum of possible architectures. These are the

layered (or hierarchic) architecture (represented by [1]) and the Iolus

architecture (represented by [2]).

The second part of the chapter sampled some group key management

protocols that have focused on security, key management, and SA manage-

ment to secure multicast and group communications. These are not meant to

be comprehensive, but provide an insight into the complexity of designing

protocols for group key management.

The chapter’s discussion on the issues and motivations for architectures

and protocols points to the fact that group key management cannot be

implemented independent of other factors in the wider environment, such

as the application of multicast, topological aspects, membership dynamics,

and others. These factors must be taken into consideration when architecting

security and deploying protocols for group key management.

References

[1] Hardjono, T., B. Cain, and I. Monga, ‘‘Intra-Domain Group Key Management

Protocol,’’ draft-ietf-ipsec-intragkm-02.txt, IETF, February 2000, work in

progress.

[2] Mittra, S., ‘‘Iolus: A Framework for Scalable Secure Multicasting,’’ in Proc. of

ACM SIGCOMM, Cannes, France, September 1997, pp. 277–288.

[3] Harney, H., and C. Muckenhirn, ‘‘Group Key Management Protocol (GKMP)

Architecture,’’ RFC 2094 (experimental), July 1997.

[4] Wallner, D., E. Harder, and R. Agee. ‘‘Key Management for Multicast: Issues

and Architectures,’’ RFC 2627 (informational), IETF, June 1999.

[5] Harney, H., et al., ‘‘Group Secure Association Key Management Protocol,’’

draft-ietf-msec-gsakmp-sec-00.txt, IETF, March 2001, work in progress.

[6] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[7] Ballardie, A., ‘‘Scalable Multicast Key Distribution,’’ RFC 1949 (experimental),

IETF, May 1996.

[8] Harkins, D., and N. Doraswamy, ‘‘A Secure Scalable Multicast Key Manage-

ment Protocol (MKMP),’’ draft-ieft-ipsec-mkmp-00.txt, IETF, November 1997,

expired.

[9] Valdvogel, M., et al., ‘‘The VersaKey Framework: Versatile Group Key

Management,’’ IEEE JSAC Special Issue on Service Enabling Platforms For

Networked Multimedia Systems, Vol. 17, No. 9, September 1999.

5.5 Summary 127

[10] Whetten, B., et al., ‘‘Reliable Multicast Transport Building Block for TRACK,’’

draft-ietf-rmt-bb-track-01.txt, IETF, March 2001, work in progress.

[11] Speakman, T., et al., ‘‘PGM Reliable Transport Protocol Specification,’’ RFC

3208 (experimental), IETF, December 2001.

[12] Meyer, D., ‘‘Administratively Scoped IP Multicast,’’ RFC 2365 (best current

practice), IETF, July 1998.

[13] Thaler, D., M. Handley, and D. Estrin, ‘‘The Internet Multicast Address

Allocation Architecture,’’ RFC 2908 (informational), IETF, September 2000.

[14] Wong, C. K., M. Gouda, and S. S. Lam, ‘‘Secure Group Communications

Using Key Graphs,’’ IEEE/ACM Tran. on Networking, Vol. 8, No. 1, February

2000, pp. 16–30.

[15] Dondeti, L. R., S. Mukherjee, and A. Samal, ‘‘Scalable Secure One-to-Many

Group Communication Using Dual Encryption,’’ Computer Communications,

Vol. 23, No. 17, November 2000, pp. 1681–1701.

[16] Molva, R., and A. Pannetrat, ‘‘Scalable Multicast Security in Dynamic

Groups,’’ in 6th ACM Conference on Computer and Communication Security,

Singapore, November 1999.

[17] Maughan, D., et al., ‘‘Internet Security Association and Key Management

Protocol (ISAKMP),’’ RFC 2408 (proposed standard), IETF, November 1998.

[18] Piper, D., ‘‘The Internet IP Security Domain of interpretation for ISAKMP,’’

RFC 2407 (proposed standard), IETF, November 1998.

[19] Harkins, D., and D. Carrel, ‘‘The Internet Key Exchange (IKE),’’RFC 2409

(proposed standard), IETF, November 1998.

[20] Balenson, D., D. McGrew, and A. Sherman, ‘‘Key Management for Large

Dynamic Groups: One-Way Function Trees and Amortized Initialization,’’

draft-irtf-smug-groupkeymgmt-oft-00.txt, IRTF, August 2000, work in

progress.

[21] Briscoe, B., ‘‘MARKS: Zero Side Effect Multicast Key Management Using

Arbitrarily Revealed Key Sequences,’’ in Proc. of First International Workshop on

Networked Group Communication (NGC), Pisa, Italy, November 1999.

[22] Harney, H., A. Colegrove, and P. McDaniel, ‘‘Principles of Policy in Secure

Groups,’’ in Proc. of Network and Distributed Systems Security 2001 Internet Society,

San Diego, CA, February 2001.

[23] Handley, M., and V. Jacobson, ‘‘SDP: Session Description Protocol,’’ RFC 2327

(proposed standard), IETF, April 1998.

[24] Meadows, C., P. Syverson, and I. Cervesato, ‘‘Formalizing GDOI Group Key

Management Requirements in NPATRL,’’ in Proc. 8th ACM Computer and

Communications Security Conference (CCS‘01), Philadelphia, PA, November 2001,

pp. 235–244.

128 Architectures and protocols for group key management

TE
AM
FL
Y

Team-Fly®

Group key management
algorithms

Privacy is a requirement of several group communication

applications such as conferencing, whereas access control is

a requirement of applications such as stock quote distribution

via the Internet. Both group privacy and access control can be

enforced by encrypting the group data and distributing the

group key to current members. Group members need to hold a

common key for group authentication as well (see Chapter 3).

In the previous two chapters we discuss GSAs, group key

distribution protocols, and architectures for efficient group key

management. We focus on group key distribution and scalable

rekeying algorithms in this chapter.

Group keys must be changed from time to time for various

reasons. The first purpose is to keep the encryption key fresh,

that is, to use the key for only a certain amount of time or for

encrypting a certain amount of data. The second requirement of

rekeying is specific to groups. Consider groups in which the

group owner wants to disallow joining members from decrypt-

ing past data, and departing members from decrypting future

data. To do so, the sender or the GCKS must change the group

key each time the group membership changes.

A naı̈ve group rekeying scheme encrypts the group key

separately for each of the remaining members of the group.

Clearly, such a scheme has computational and communication

complexity that is linear in group size, which is inefficient. In

the previous chapter, we discussed several secure group

management architectures, for example, Iolus, that propose

129

C H A P T E R

6
Contents

6.1 Batch and periodic rekeying3

6.2 MARKS5

6.3 LKH6

6.4 OFT11

6.5 Batch processing of
membership changes
in key trees15

6.6 Reliable transport of rekey
messages15

6.7 Stateless key revocation
algorithms17

6.8 Summary19

hierarchical subgrouping for efficient rekeying. At the cost of additional

infrastructure, those schemes limit rekeying due to membership changes to

the respective subgroup(s), instead of the whole group. But unless the

subgroups are very small in size, the naı̈ve rekeying scheme is inefficient for

subgroup rekeying as well. Scalable rekeying algorithm design and analysis is

the focus of this chapter. We discuss the various proposed group key

management algorithms proposed in the literature, and their suitability to

practical application scenarios.

First, we consider applications in which the GCKS rekeys the group at

fixed instances in the lifetime of the group, and knows each member’s

departure time when the member joins. MARKS is a mechanism for efficient

key distribution to such groups. Members receive random seeds from which

they can generate the group encryption keys used during the period(s) of

their subscription. Commercial applications such as satellite TV distribution

with metered charging (e.g., per hour or per boxing round), may use this

rekeying algorithm.

Next, we consider applications in which members may join or leave any

time. For military and other highly secretive communications, the GCKS

must rekey after each membership change to maintain strict forward and

backward access control. However, for commercial applications, periodic or

batch processing of membership changes may be sufficient, with provisions

for immediate rekeying, to evict a member, for example. Thus, we need a

general purpose group key management algorithm that can rekey a group

immediately or periodically, as necessary.

A common technique in several proposed group key management

schemes is to divide the members into subgroups, each of which has an

associated secret key, and distribute the group key encrypted with the

subgroup keys. Some of the proposed mechanisms update (some of) the

subset keys during rekeying, while others do not. Rekeying is stateful in

schemes that update subset keys. In other words, stateful rekeying schemes

use keys sent in past rekeying messages to protect current rekeying

messages. This property requires reliable transport of rekey messages, even

if the application does not need reliable data transmission.

One of the earliest and most popular group key management algorithms

known as LKH, assigns each member a leaf position in a logical key tree for

key distribution. Each internal node of the tree represents a subgroup that

contains all the descendant leaf nodes as members. Each member knows the

keys of all the subgroups it belongs to, or all the nodes in its path to the root

in the key tree. Each internal node’s key is protected by its children’s keys

during rekeying. When a member joins or leaves, the GCKS needs to change

and distribute only Oðlog nÞ keys, for a group of size n. Recall that the naı̈ve

130 Group key management algorithms

rekeying algorithm requires the GCKS to encrypt and transmit the group

key OðnÞ times.

Several improvements to LKH have been proposed in the literature. The

first one, known as LKH+, improves join rekeying efficiency, and a second

approach introduces a key construction scheme using one-way function

chains (OFCs), for efficient rekeying to handle member departures. Note that

in LKH and its enhancements mentioned so far, the group manager

generates and distributes all the keys.

In another key management scheme based on OFTs, members receive

secret information from the GCKS and compute some internal node keys in

the tree, including the group key. OFT reduces leave rekeying communica-

tion overhead, at the expense of additional computations at the GCKS and

the members. Unlike MARKS, LKH, LKH+, OFT, or OFC require no a priori

knowledge of group joins or leaves.

Recall that stateful rekeying algorithms, while efficient, require reliable

transport of rekey messages irrespective of application requirements.

Stateless rekeying algorithms get around this requirement by sending the

group key encrypted with predistributed KEKs, in rekeying messages. In

these schemes, only the group key is rekeyed and, therefore, rekey messages

are independent of past rekey messages. When group membership changes,

the remaining members are divided into several disjoin subsets, such that

each member belongs to exactly one of the subsets. The GCKS then sends

the new group key encrypted with the subset keys, predistributed to each

of the subset’s members individually. Notice that subset keys themselves are

not updated during rekeying.

In the rest of this chapter, we first discuss batch and periodic rekeying.

Next, we discuss MARKS and the stateful rekeying algorithms LKH, LKH+,

OFC, and OFT. We then discussion stateless rekeying mechanisms based on

subset trees and subset difference. Next, we discuss reliable transport of

rekey messages. We conclude the chapter with a summary and a discussion

on the applicability of group key management algorithms.

6.1 Batch and periodic rekeying

Group rekeying serves two major purposes. First, secret keys need to be

refreshed after they have been used to encrypt a certain amount of data, or

after they have been in use for a given amount of time, to thwart

cryptanalysis. Second and specific to groups, rekeying is used to ensure that

only current members can decrypt data. In other words, the GCKS may

change keys to disallow new members from getting access to past data

6.1 Batch and periodic rekeying 131

(backward access control), and departed or evicted members from getting

access to future data (forward access control). Rekeying to enforce forward

and backward access control is more difficult, since it needs to deal with

membership changes, and is more frequent in large or dynamic groups.

Therefore, we limit the rest of our discussion to rekeying due to membership

changes.

Some multicast applications, for example, military communications and

conferencing, may require that the group key be changed immediately after

each membership change, to enforce strict forward and backward access

control. It may even be necessary to stop data flow while such groups are

being rekeyed [1].

In large and highly dynamic groups, such an immediate rekeying policy

may result in frequent rekeying, and might overwhelm the GCKS

computationally [2]. Rekey communication overhead may also be seen as

too costly for efficient operation of the group. In such cases, it is possible to

relax forward and backward access control requirements slightly, to reduce

rekeying overhead. A GCKS may choose to rekey a group periodically, or

process group membership changes in batches [2–5]. Commercial applica-

tions such as Internet or satellite TV distribution may use batch or periodic

rekeying, employing immediate rekeying only in exceptional circumstances,

for example, when evicting misbehaving members.

Figure 6.1 illustrates immediate, periodic, and batch rekeying. In

immediate rekeying, the GCKS spawns a rekeying instance each time the

group membership changes. In batch rekeying, the GCKS rekeys after a few

group membership changes. The GCKS may choose to rekey, for example,

after r group membership changes or, alternatively, after r joins or r leaves.

In Figure 6.1, the GCKS rekeys after four membership changes. Finally, the

GCKS may rekey every t time units, irrespective of membership dynamics.

We refer to this final type of rekeying as periodic rekeying.

6.1.1 Trade-offs in batch rekeying

Batch or periodic rekeying comes at the expense of relaxing forward and

backward access control requirements. More precisely, note that when a

member departs, the GCKS does not rekey immediately. Instead, it waits

until the next rekeying instance (refer to Figure 6.2). But this is against the

forward access control rule. Due to batch rekeying, departing members

continue to get access to group data for a brief period (until the next rekeying

instance) after they leave.

Fortunately, joins in batch rekeying mode can be processed without

affecting strict backward access control. The GCKS has two options. The first

132 Group key management algorithms

Figure 6.1 Immediate, periodic, and batch rekeying.

Figure 6.2 Batch rekeying and forward access control.

6.1 Batch and periodic rekeying 133

approach is a variation of LKH+ [6] (see Section 6.3.4). The GCKS applies a

one-way function to the group key, and sends the new group key to the new

member. The existing members receive a notification about the application

of the one-way function, and compute the new group key. New members

become part of the key tree only at the next rekeying instance, as determined

by the batch or periodic rekeying scheme. In the second approach, joining

members are put on hold until the next rekeying instance. They cannot

decrypt group data until then.

6.2 MARKS

MARKS is a mechanism for key distribution to a group of members who

depart at prespecified time points [7]. Consider a secure group in which

members may join the group any time during the group, but the departure

time must be known at the time of join. Further assume that the GCKS

knows how long the secure group communication lasts.

To manage such secure groups, the GCKS divides the group’s life into

t time periods. Each time period has a corresponding group key. In all, there

are t group keys, K1;K2, . . . ;Kt. Each member joins the group and requests

to be a member between time periods say, t1 and t2. The GCKS supplies the

the group keys, Kt1;Kt1þ1, . . ., Kt2�1, Kt2, to that member. MARKS [7]

presents an efficient mechanism for such key distribution using a hierarchy

of seeds.

First we describe the mechanism used to construct a binary hierarchy of

seeds. The GCKS starts with a randomly generated seed as the root of the

hierarchy. We compute two seeds corresponding to the root’s children by

applying two different one-way functions gL and gR. The GCKS continues

this process until the number of leaves in the hierarchy of seeds is t, that is,

the number of periods in the group. Figure 6.3 depicts the seed generation

mechanism. The GCKS generates the root seed s0;0 and uses gL and gR to

compute s1;0 and s1;1, corresponding to the left and right children,

respectively. In the figure, the seed name si; j represents the jth seed at

depth i.

During registration, the GCKS sends the seeds necessary and sufficient

for the member to compute the group keys that the member is authorized to

receive. The seed hierarchy facilitates efficient distribution of group keys to

members. For example, to allow a member to remain in the group for

the entire duration, the GCKS needs to just send the root seed. In general,

given a seed corresponding to a node in the hierarchy, one can compute the

134 Group key management algorithms

seeds of all descendant nodes. In Figure 6.3, say member A is authorized to

receive K2;K3; . . . ;K6. Instead of sending the five group keys, GCKS sends

the three seeds, s2;1, s2;2 and s3;6.

Notice that all key distribution in MARKS is done during the registration

protocol. The advantage is that all the keys are transported over unicast; thus

it is easy to ensure reliable delivery. The disadvantage, however, is that we

cannot eliminate a member without rekeying the entire group, which is very

inefficient in large groups.

We conclude this section with an analysis of MARKS key distribution.

The minimum number of seeds that a GCKS could send a member is one

seed. The single seed could correspond to a leaf node, which reveals one

group key, or an internal node, which reveals 2h group keys, where h is the

height of the subtree. The maximum number of seeds are sent to a member

who is authorized to receive all group keys except the first and the last one,

that is, K2, K2, . . ., Kt�1. The GCKS needs to send the required seeds without

revealing K1 and Kt. Thus it cannot reveal the ancestors of sl;0 or of sl;2l�1 .

Instead, the GCKS sends the seeds of siblings of the ancestors of sl;0 sl;2l�1 . In

all, the GCKS sends 2 logðt=2Þ seeds. The worst-case one-way function

computation overhead applies to a member who stays in the group for

the entire duration. It receives the root seed and needs to compute all the

seeds in the hierarchy, that is, 2t � 2.

Figure 6.3 Key distribution in MARKS.

6.2 MARKS

6.2 MARKS 135

6.3 LKH

Logical key trees [6, 8, 9], where each node represents a KEK, facilitate

efficient rekeying of large groups. Each leaf node of the key tree is associated

with a member of the group, and the root node represents the group key.

Each internal node represents a logical subgroup, and that node’s key is

known to all members associated with its descendant leaf nodes. The logical

subgroup concept is in contrast to hierarchical subgrouping in Iolus [10] (see

Section 5.3), where subgroup managers are physical entities. The GCKS

holds all the KEKs, and sends only a subset of them to each member.

Each member’s unique leaf node position is the reference for key

distribution. Members belong to the subgroups represented by each of its leaf

node’s ancestors in the key tree. Thus, each member receives keys of all

nodes in the path from its leaf node to the root. When membership changes,

the GCKS changes and distributes only the keys known to the joining/

departing member. The number of keys each member holds is equal to the

height of the tree, that is, log n. In the rest of this section, we describe LKH

key distribution and rekeying mechanisms in detail.

The LKH key distribution rule is that each member receives all the keys

in the path from its associated leaf node to the root of the key tree.

Figure 6.4 is an example of an LKH. A, B, . . ., H are members, and all

other nodes represent keys. Corresponding to each of the members, we have

Figure 6.4 An example of a key hierarchy.

136 Group key management algorithms

leaf key nodes Ka;Kb; . . . ;Kh. We now examine some of the key assignments

which illustrate the rules explained earlier.

w A receives the keys, Ka;Kab;Ka:d;Ka:h, corresponding to the nodes in

its path to the root.

w The GCKS sends Ka:d to all the descendants of that node, that is, A, B,

C, and D.

w All members receive the group key Ka:h.

6.3.1 Initializing an LKH

We establish an LKH as follows. First, the GCKS creates a rooted binary

tree that has at least as many leaf nodes as there are members. Next, it shares

a separate, unique secret key with each one of the group members. These are

the leaf node keys. The GCKS then generates keys corresponding to each

internal node, and distributes each internal node key encrypted with each of

its children’s keys. Each internal node key is encrypted with two different

keys and sent to the group. In all, the GCKS sends n � 1 (number of nonleaf

nodes in a full tree) keys to a group of size n. Figure 6.5 illustrates

initialization of an LKH.

There is an alternative way of initializing a key tree. Recall that the

GCKS needs to send each member all the keys in its path to the root.

Following this rule, the GCKS separately sends each member the internal

node keys it needs, encrypted with the member’s leaf node (unique) key. In

all, the GCKS needs to send Oðn log nÞ encrypted keys, and hence this

approach is inefficient compared to the one described in the previous

paragraph.

6.3.2 Adding a member to a key tree

When a member joins the group, the GCKS needs to add the member to the

key tree. There are a couple of different possible scenarios. In the first, we

have an empty slot available for the new member. In the second scenario, we

have a full and balanced tree with no empty slots. We create an empty slot in

a key tree by splitting nodes.

Node splitting creates one or more empty slots in the tree [11]. The

GCKS may choose the root node, a leaf node or an internal node to split,

depending on how many empty slots it wants to create. For example,

splitting a leaf node creates one empty slot, and splitting the root node can

6.3 LKH 137

accommodate as many new members as the current membership. In general,

splitting a node creates 2l empty slots, where l is the level of the node

(assuming leaf nodes are at level 0).

6.3.3 Join rekeying in LKH

After the GCKS finds a leaf node to associate with the new member, it shares

the group key and other keys that the new member needs, to be part of the

LKH. The GCKS could just send the keys to the new member, encrypted with

the unique leaf node key that only the new member and the GCKS know.

Notice that if the new member were recording previous transmissions to the

group, it could decrypt some of that old data. To keep new members from

decrypting old data, that is, to enforce backward access control, the GCKS

needs to rekey the internal node keys that the new member receives.

The GCKS generates new keys to replace keys corresponding to the nodes

in the path from the new member’s position in the tree to the root. It needs

Figure 6.5 Initializing a binary key tree.

138 Group key management algorithms

TE
AM
FL
Y

Team-Fly®

to send all those keys securely to the new member. One way to do this is to

send the leaf node key during the registration protocol, and send the internal

node keys encrypted with the leaf node key given to the new member, via

the rekey protocol. The GCKS also sends each newly generated internal node

key encrypted separately with the key it is replacing, to the other members.

In Figure 6.6, E is the new member, and we assume that the GCKS splits

D’s leaf node to create a position for E in the key tree. It sends Ke to E during

registration. It then sends the new keys as follows:

w Ka:e, Kc:e, and Kde encrypted with Ke for E;

w Ka:e encrypted with Ka:d for A, B, C, and D;

w Kc:e encrypted with Kcd for C and D;

w Kde encrypted with Kd for D.

Join rekeying complexity in LKH

Consider join rekeying in a full and balanced binary key tree. The GCKS, as

explained earlier, needs to change all the internal node keys in the new

member’s path to the root. In other words, the GCKS needs to send log2 n

keys, where n is the number of members (leaf nodes in the key tree) in the

group. The GCKS encrypts and sends each of those internal node keys twice;

once for the new member and once for the existing members. Therefore, the

GCKS needs to send 2 log2 n keys.

Figure 6.6 Join rekeying in LKH.

6.3 LKH 139

6.3.4 Efficient join rekeying using LKH+

The second method of join rekeying works as follows. Recall that the GCKS

finds/creates a position for the new member in the key tree. It then generates

a new key to serve as the leaf node key of the new member. The new

member also receives keys of all internal nodes in its associated leaf node’s

path to the root. Some of these keys are new, and others replace existing keys

that are not going to be used further.

Several researchers suggested [6] generating the replacement internal

node keys by applying a one-way function to the keys they are replacing.

Note that the advantage is that the GCKS does not need to transmit any

keys to existing members. It just needs to notify the respective members of

the key updates. The GCKS does need to send the keys to the joining

member, however. Thus, join rekeying in LKH+ requires encryption and

transmission of only log2 n keys, that is, half that in LKH without any

enhancements.

6.3.5 Leave rekeying in LKH

When members leave a secure multicast group, the GCKS needs to rekey

the group to ensure forward access control. The GCKS needs to change only

the keys that the departing member knows, that is, the keys of nodes in the

departing member’s path to the root.

The GCKS has a choice in key tree maintenance. It can contract (i.e.,

delete empty nodes and corresponding links) the tree, or just remove the

departing member and leave the position empty. Note that the GCKS may

assign the empty position to a future member without sacrificing forward or

backward access control.

To prevent the departing member from extracting any of the keys from

the key tree, the GCKS changes all the keys the member knows, and sends

the new keys encrypted with keys that the member does not have access to.

In Figure 6.7, E is the departing member. The GCKS eliminates E’s position

in the tree. Among the keys that E knows, Ke and Kde are no longer necessary

for maintaining the group key. The GCKS replaces the other keys E knows,

that is, Ka:e and Kc:e, with Ka:d and Kcd, respectively. Now it needs to send

the new keys to the remaining members securely, without E being able to

decrypt them. Thus, it sends:

w Ka:d encrypted with Kab and Kcd;

w Kcd encrypted with Kc and Kd.

140 Group key management algorithms

Leave rekeying complexity

When a member leaves, the GCKS changes all the keys that the member

knows. Thus the GCKS rekeys as many keys as the length of the departing

member’s path to the root. In a full and balanced binary tree, that path

length is log2 n. Further, each new key Ki is encrypted twice; once per each

child of the internal node i. Thus, leave rekeying requires 2 log2 n key

encryptions and transmission.

6.3.6 Efficient leave rekeying using OFCs

It is possible to improve leave rekeying complexity using cryptographic

techniques to generate internal nodes keys from a single piece of random

information, ri [12]. In Figure 6.8, when E leaves, the GCKS generates

random data ri of length equivalent to the desired key size. It then uses a

length-doubling pseudorandom function [13] PRFðriÞ to generate LðriÞRðriÞ,

where jLðriÞj ¼ jRðriÞj ¼ jrij. With a cryptographically strong pseudorandom

function, given RðriÞ or LðriÞ, it is computationally infeasible to compute ri.

The GCKS repeatedly applies the one-way function (PRF) on ri to derive new

KEKs and hence the name OFC.

In our example, the GCKS sends ri encrypted with Kc and Kd to members

C and D respectively, and LðriÞ encrypted with Kab for A and B. The new keys,

Kcd ¼ RðriÞ and Ka:d ¼ RðLðriÞÞ are generated from ri. Notice that C and D can

compute both Kcd and Ka:d, whereas A and B can compute only Ka:d, which is

pursuant to the LKH key distribution rule.

Figure 6.7 Leave rekeying in LKH.

6.3 LKH 141

In general, consider a tree of height h in which a member L leaves. L’s

sibling M gets associated with its parent key node in the tree. The GCKS

generates ri and sends it securely to M. The new internal node keys are RðriÞ,

RðLðriÞÞ, RðLðLðriÞÞÞ, . . ., RðLhðriÞÞ, starting at M’s new parent node and

proceeding toward the root. For the members to compute the keys that they

are entitled to, the GCKS sends ri, LðriÞ, . . ., LhðriÞ encrypted with sibling node

keys of M’s ancestors in the key tree, starting with M’s own sibling node key.

More precisely, the GCKS sends:

w ri encrypted with M’s sibling node key;

w LðriÞ encrypted with M’s parent’s sibling node key;

w LðLðriÞÞ encrypted with M’s grandparent’s sibling node key;

w LðLðLðriÞÞÞ encrypted with M’s great grand parent’s sibling node key.

In all, the GCKS sends log2 n encrypted keys. Notice that in this

approach, the GCKS sends only half as many encrypted keys as in LKH.

Members are responsible for computing the other keys that the GCKS would

have sent in LKH without the OFC enhancement.

6.4 OFT

OFTs are also logical key trees used for efficient rekeying, but with

better leave rekeying efficiency compared to LKH [11]. OFT is in several

ways similar to LKH. The root key is used as the group key, and each member

Figure 6.8 Improving leave rekeying efficiency using OFC.

142 Group key management algorithms

is associated with a unique leaf node and knows the secret key of that node.

Further, each member knows the secret keys of the nodes in its associated

leaf key node’s path to the root. However, the GCKS does not send those

secret keys to the members. Instead, it supplies other keys that the members

use to compute their ancestors’ keys, including the group key.

The GCKS uses a one-way function g to compute a blinded key

corresponding to each KEK in the key tree. Given gðxÞ, it is computationally

infeasible to compute x. Each internal node key is computed by applying a

mixing function f to the blinded keys of its child node keys (see Figure 6.9).

The OFT key distribution rule is that each member receives the blinded

keys of the siblings of the nodes in the path from its associated leaf node to

the root of the tree.

We illustrate OFT key distribution in Figure 6.9. In the figure, the GCKS

shares a unique secret key, Ka, with A via a secure channel established during

the registration protocol. It then sends the blinded keys K 0
b, K 0

cd, and K 0
e:h, so A

can compute the unblinded keys Kab and Ka:d, and Ka:h, respectively.

Figure 6.9 OFT key distribution.

6.4 OFT 143

Let us examine f and g further with the help of Figures 6.9 and 6.10. In

the figures, K 0
b ¼ gðKbÞ and f ðKabÞ ¼ f ðK 0

a;K 0
bÞ: Typically, g is a hash (e.g., MD5,

SHA-1) function, whereas f is an XOR function.

6.4.1 Initializing an OFT

OFT initialization is efficient if the GCKS sends each blinded key once to the

group, instead of sending it separately to each member. We establish an OFT

as follows. The GCKS shares a unique secret with each member of the group

during registration. That secret serves as the leaf node key. Each member

computes the blinded version of its own leaf node key. The GCKS also

computes the blinded keys, and sends each leaf node’s blinded key,

encrypted with its sibling’s unblinded key. For example, in Figure 6.10,

the GCKS sends K 0
b encrypted with Ka. The GCKS then computes the

unblinded key of each node, ni, in the next level of the tree by applying the

mixing function to the blinded keys of ni’s children. Similarly, each member

Figure 6.10 Initializing an OFT.

144 Group key management algorithms

computes its parent node’s unblinded key using its own and its sibling’s

blinded keys. This process continues until all members compute the group

key.

In summary, the GCKS sends each blinded key, K 0
ni

, encrypted with ni’s

sibling’s unblinded key. Key computation proceeds from the leaf nodes to

the root.

6.4.2 Join rekeying in OFT

When a member joins, the GCKS creates a new position in the tree by

splitting a node. Note that OFT key computation requires each internal node

to have two children. Therefore, it is best to split a leaf node, and thus create

a single empty position for the new member. Internal and root node splitting

is inefficient at best.

To maintain a balanced and thus efficient key tree, it is desirable if the

GCKS splits the nearest leaf node from the root. After accommodating the

new member in the key tree, the GCKS shares a unique secret key with it.

The GCKS also changes the leaf node key of the new member’s sibling, and

computes all the new internal node keys. It then sends the blinded keys the

new member is entitled to, after encrypting them with the member’s unique

secret key. Existing members also need access to blinded keys that change,

due to the addition of the new member to the key tree. Recall that all the

blinded keys in the path from the new member’s position to the root change.

The GCKS encrypts each of those keys with the corresponding sibling’s

unblinded key, and sends it to the group.

We illustrate join rekeying in OFT using Figure 6.11. In the figure, E

joins and we may split the leaf node corresponding to D to create an empty

leaf node for E. The GCKS generates Ke and changes Kold
d to Kd. Note that C

knows K 0
d, and that would violate the OFT key distribution rule. Therefore,

the GCKS changes Kd and computes the new keys. It then sends:

w The new leaf node key (unblinded), Kd, and K 0
e encrypted with Kold

d ,

for D;

w K 0
ab, K 0

c, and K 0
d, encrypted with Ke for E;

w The new blinded keys, K 0
c:e and K 0

de, encrypted with Kab and Kc,

respectively.

All members then compute the other KEKs including the new group

key.

6.4 OFT 145

Join rekeying complexity in OFT

Consider a member joining a full and balanced binary OFT with n members

(after the join). The GCKS needs to send the new member log2 n blinded

keys. This corresponds to the number of nonleaf nodes in the member’s path

to the root. Further, the GCKS needs to send log2 n þ 1 blinded keys to the

other members. Thus, the GCKS needs to encrypt and send 2 log2 n þ 1

blinded keys when a member joins the group.

There is also cost associated with one-way function computations at

the GCKS during each join. Recall that the new member and its sibling have

new leaf node keys. Further, log2 n � 1 internal node keys in the path from

the new member to the root also change. Thus, in all, the GCKS needs to

compute log2 n þ 1 new blinded keys, when a member joins. This amounts

to log2 n þ 1 one-way function computations.

6.4.3 Leave rekeying in OFT

When a member leaves the group, the GCKS rekeys the group to maintain

forward access control. Unlike in LKH, the GCKS does not change all the keys

that the departing member knows. Note that it does not need to change all the

blinded keys supplied to the departing member. That is because the GCKS

does not use blinded keys to send any encrypted keys. Further, the departing

member cannot obtain future group keys or other keys, using the keys it has.

First, the GCKS contracts the tree. If the the departing member’s sibling

is a leaf node, it gets associated with its parent node. Otherwise, the sibling

node assumes its parent’s position in the OFT. The GCKS then triggers

Figure 6.11 Join rekeying in OFT.

146 Group key management algorithms

rekeying as follows. If the sibling is a leaf node, the GCKS changes its

unblinded key and sends the new unblinded key encrypted with the current

unblinded key. If the sibling is an internal node, the GCKS needs to pick

one of the internal node’s children to trigger rekeying in the group.

By convention, the GCKS chooses the left-most child, and changes its

unblinded key. This in effect results in rekeying of all the keys from the

rekeyed node’s position (departing member’s parent node’s position) in the

tree to the root.

In Figure 6.12, E leaves the group. The GCKS replaces E’s parent with E’s

sibling, D. It then changes Kd, and sends it encrypted with Kold
d . Owing to the

new Kd, we have two new blinded keys, that is, K 0
d and K 0

cd. The GCKS sends

these keys encrypted with their siblings’ unblinded keys, that is, Kc and Kab,

respectively.

Leave rekeying complexity in OFT

Consider an OFT that is full and balanced after deletion of the departing

member from the tree. The GCKS needs to send as many blinded keys as the

path length from the rekeyed node to the root. Thus it sends log2 n new blinded

keys to the group. In addition, the GCKS needs to send the new unblinded key

to the rekeyed node. In all, the GCKS sends log2 n þ 1 keys to the group.

Similar to join rekeying, the GCKS needs to perform some one-way

function computations as well. Notice that leave rekeying changes one leaf

node and log2 n � 1 internal node keys. The GCKS needs to compute blinded

keys of these new keys, and hence perform log2 n one-way function

computations.

Figure 6.12 Leave rekeying in OFT.

6.4 OFT 147

Notice that in terms of number keys sent to the group, OFT sends only

half as many keys as LKH to the group. However, the computation cost at the

GCKS does not decrease owing to the one-way function computations.

6.5 Batch processing of membership changes in key trees

In this section, we explore batch rekeying in logical key trees. Consider nj

joins and nl leaves to the group after the last rekeying instance. If nj > nl, the

GCKS needs to create only nj � nl slots in the key tree for the additional

members [3]. If nj # nl, key tree management is even simpler. The GCKS

assigns joining members to departing members’ positions in the key tree, and

may contract the tree if there are empty positions.

The GCKS may take advantage of the hierarchy in sending group key

updates. Depending on new or departed members’ positions in the key tree,

they may share some internal node keys. All of them certainly share the

group key. These shared KEKs need to be rekeyed only once for all the

membership changes combined. Analytically, r member departures result in

less than Oðrlog2nÞ rekeying overhead. If r is sufficiently large, the worst-case

rekeying overhead is Oðrlog2
n
r
Þ [3]. Yang et al. [3] provide a detailed analysis

of the average and worst-case batch rekeying overhead.

6.6 Reliable transport of rekey messages

Stateful group key management schemes such as LKH and OFT require

reliable transport of rekey messages, even if the application does not require

reliable data transmission. Thus, successful deployment of these GKMAs

requires mechanisms for reliable transport. Several solutions have been

proposed in the literature, and we briefly explore them in this section.

6.6.1 Repeated retransmission of rekey message

Rekeying messages are typically very small. A GDOI [14] rekey message for

immediate rekeying of a group containing tens of thousands of members,

using LKH, fits in a single IP packet.1 Batch rekeying or initialization of a key

tree may require a few packets, however. Thus, the simplest solution is to

repeatedly resend the rekey message to the group.

1. Assuming a packet of size equal to Ethernet maximum transmission unit (MTU).

148 Group key management algorithms

TE
AM
FL
Y

Team-Fly®

When members receive a data packet with an unknown SPI (see

Chapter 5), they are expected to contact the GCKS or one of its authorized

representatives. However, if a large number of members do not receive the

rekey message, there will be an implosion of requests for keys from the

members. Thus, we may need slightly more intelligent schemes for reliable

transport of rekey messages.

6.6.2 FEC for reliability

LKH has several interesting properties that can be exploited in designing an

efficient rekey transport protocol. First, consider that during immediate

rekeying using binary key trees, half the members need only one key and

only one (or two) member(s) needs, log2 n keys. Next, some keys (e.g.,

internal node keys) are more important than others (e.g., leaf node keys), in

that more members need them. For example, all members need the group

key. Thus instead of repeatedly sending the entire rekeying message, it may

be beneficial to prepare a rekeying message that contains keys based on their

importance, that is, their position in the key tree.

We have the following goals in reliable transport of rekey messages. First,

we would like to minimize the communication overhead while ensuring that

all members receive the new keys that they are entitled to. Second, we would

like to reduce the number of rounds in the rekeying process. Finally, we

would like to minimize the number of packets processed by each member;

especially by members that need fewer new keys.

Yang et al. [3, 5] propose a scheme based on proactive FEC for reliable

transport of batch rekeying messages. First, the GCKS divides the rekey

message into p packets. It then encodes them using either Reed Solomon [15]

or Tornado [16] codes, with a proactivity factor r, generating dðr � 1Þpe

additional key packets. Each packet contains a single instance of a key. The

proactivity factor, while increasing the number of packets in the current

rekeying message, aims to reduce the number of rounds of messages in each

rekeying instance. The GCKS then waits for NACKs from members. Each

member sends NACKs for keys that it needs, instead of attempting to

construct the entire rekey message from the FEC-encoded message. The

proactivity factor is computed per round and, after a few rounds, the GCKS

may choose to send keys to the remaining members via unicast.

6.6.3 Weighted key assignment for reliable transport

Weighted key assignment (WKA) [17]–based rekeying also sends rekeying

messages in several rounds, using NACKs from members for feedback.

6.6 Reliable transport of rekey messages 149

Instead of FEC encoding, WKA repeats keys in a rekey message, based on

assigned weights for keys. The key weight assignment is based on the

number of members that need to receive the key. In each round, the

GCKS packs the repeated keys into rekey packets, based on a depth-first or

breadth-first search on the key tree. The depth-first assignment works

better, since it potentially assigns all the keys required by a member to

one rekey packet. Replication in the next round is based on NACKs from

the members for packets containing keys it needs, not the entire rekey

message.

We end this section with a note that the schemes described here are

applicable to stateless rekeying as well. Note that while stateless rekeying

schemes are tolerant to rekey packet losses, they do not provide a way to

(re)generate lost rekey packets. Thus, if an application requires reliable data

transmission, stateless rekey messages also require reliable transport. In that

case, the GCKS may use proactive FEC or proactive weighted replication for

stateless rekeying as well.

6.7 Stateless key revocation algorithms

LKH, OFT, and the corresponding batch rekeying algorithms encrypt a

rekeyed KEK using either an older version of the KEK or another KEK in the

key tree. If a member goes off-line and fails to receive KEKs from a rekeying

instance, it may not be able to decipher messages from a future rekeying

instance. In this section we describe stateless rekeying schemes proposed in

the literature [18]. Rekey messages in these schemes are independent of past

rekeying messages, since the group key is encrypted with keys sent during

the registration phase, that is, over a secure and reliable unicast channel.

Thus, unlike LKH-based GKMAs, reliable transport is not required for

stateless rekeying algorithms.

Consider a secure group with an overall session membership of size N.

Note that the group size we refer to earlier in this section corresponds to the

number of members at a given instance in the group’s lifetime. Group size

changes as members leave or join, whereas session membership size remains

constant. More importantly, group size may be much smaller than session

size.

The GCKS divides the session membership into several different subsets,

and assigns a unique secret key per subset. Subset keys are long lived, and

typically do not change during the session. Each member belongs to multiple

subsets in the group, and receives or can compute the corresponding secret

keys.

150 Group key management algorithms

When R members leave, the GCKS sends the new group key encrypted

so that a member m can decrypt the group key iff m 2NnR. The GCKS

divides the remaining members’ set, NnR, into predefined disjoint subsets,

and sends the new group key encrypted with each of those subset

keys. Recall that the members receive the subset keys when they join the

group.

There are several ways to partition members into subsets, and to

predistribute subset keys. We describe two of them, that is, the complete

subtree method (STR) and the subset difference method (SDR). Subset keys

themselves can be shared keys or, alternatively, the GCKS may generate

asymmetric keys, and send the private keys to the corresponding subset

members.

6.7.1 STR for membership revocation

This scheme is similar to LKH in structure and initialization, but the

definition and the use of the key tree nodes is different. Unlike in LKH, the

leaf nodes represent members from the entire session; not just the current

membership. Each key tree node represents a subset in the group of all

members, containing the descendant leaves of the node. Thus, each member

receives the keys of all the nodes in its associated leaf node’s path to the root.

The similarities with LKH end there, however. The subset keys are never

updated or rekeyed. Only the group key changes and is distributed using the

subset keys. Figure 6.13 illustrates this key distribution. The subset keys

themselves are named after the corresponding subset membership. For

example, Ka:d is given to all members from A through D. In the figure,

member A receives the subset keys Ka, Kab, Ka:d, and Ka:h.

Membership revocation in STR works as follows. To process membership

changes, the GCKS determines a set R that contains the hosts whose

membership is currently being revoked, and hosts who are not currently

members (session membership � group membership). It then computes the

directed Steiner tree STðRÞ, spanning the root and the hosts in R. The GCKS

sends the group key encrypted with the subset keys of subtrees that hang off

STðRÞ. Figure 6.14 illustrates membership revocation of C, D, and F

following the STR scheme. In the figure, we have three subtrees that hang

off the Steiner tree, rooted at Kab, Ke, and Kgh. The GCKS sends the new

group key encrypted with these subtree keys.

A GCKS using STR sends OðRlog2
N
R
Þ encrypted keys in removing R

members from the group. Each member needs to search for the appropriate

subtree key to decrypt the message, and performs a single decryption to

6.7 Stateless key revocation algorithms 151

extract the group key. Each member stores Oðlog2NÞ keys. Note that N and R

(used in the context of a session) in this scheme may be much larger than n

and r (in the group context) used earlier in this chapter.

6.7.2 SDR for membership revocation

STR may result in too many subsets being formed due to member revocation,

and thus result in large communication overhead. SDR aims to lower the

overhead by defining more subsets. Furthermore, each member belongs to

more subsets, that is, OðNÞ in this scheme, compared to STR ðOðlog2NÞÞ [18].

Each subset in SDR is defined as the difference of two subsets in STR.

Thus in SDR, a subset Si; j ¼ Si �Sj, where Si �Sj. Further, Si and Sj

correspond to full binary subtrees of the group’s key tree. Figure 6.15

illustrates the concept of subset difference in key trees.

Membership revocation in SDR works as follows [18]. To revoke the

membership of hosts in R, the GCKS computes a subset cover of the

remaining members. First, it computes the directed Steiner tree STðRÞ of

Figure 6.13 Key distribution in STR.

152 Group key management algorithms

the revoked members. It then identifies the maximal chains ½Si1; Si2; . . . ; Sik�

such that:

w Si1; Si2; . . . ; Sik�1 have exactly one child.

w Sik is a leaf node or has two children.

w The parent of Si1 is either the root or has two children.

For each such chain with k $ 2, the GCKS sends the group key encrypted

with the subset key Ki1;ik.

Figure 6.16 illustrates membership revocation of C, D, and F in SDR.

Following the key distribution algorithm described earlier, we identify two

maximal chains in the figure, namely, ½S2; S5� and ½S3; S6; S13�. Thus the

GCKS sends the group key encrypted with K2;5 and K3;13. By definition of

SDR key assignment, only the remaining members that is, A, B, E, G, and H,

can decrypt the group key.

Revocation of R members following SDR requires transmission of at most

2R � 1 encrypted keys. Each member belongs to OðNÞ subsets, and hence

needs to search that space for the subset key required to decrypt the group

Figure 6.14 STR-based revocation.

6.7 Stateless key revocation algorithms 153

key. This can be optimized to Oðlog2NÞ. Naor et al. [18] provide a detailed

description and analysis of STR and SDR. Note that although SDR and STR

appear to use batch processing, they can maintain strict forward

and backward access control in immediate rekeying. However, immediate

rekeying using SDR or STR is typically more expensive, compared to LKH

and other similar stateful rekeying algorithms [19].

6.8 Summary

Group key management is one of the three building blocks of a multicast

security solution. This chapter surveys key management algorithms that

facilitate efficient distribution of a group key to very large and dynamic

groups. We summarize the schemes proposed in the literature for varying

application requirements.

The MARKS key distribution scheme is applicable to groups where

member departure times are known a priori. The GCKS distributes seeds that

Figure 6.15 Subset difference illustrated.

154 Group key management algorithms

members use to compute group keys. Seed distribution is done during

member registration using a reliable one-to-one secure channel. No

rekeying is necessary or possible in this scheme. Thus there is no need for

a reliable multicast channel, but there is also no scope of recovery when

seeds or keys are compromised. There is no limitation on members joining,

departing, and rejoining the group, as long as the departure information is

known at the time of join.

Some key management algorithms use a hierarchy of KEKs to achieve

scalability. Updates to KEKs are protected by an older version of the KEK or

other KEKs in the key tree. LKH, LKH+, OFT, and OFC are in this category.

In LKH, the GCKS is responsible for key generation and distribution; thus it

has the largest communication overhead in its class. LKH+ and OFC

introduce key computation techniques to reduce communication overhead

due to rekeying. Instead of sending all the new keys, the GCKS sends a

message or some secret information to the members, and they are

responsible for computing the new keys. OFT introduces a member

Figure 6.16 Membership revocation in SDR.

6.8 Summary 155

contributory key determination scheme. Members’ keys are used to

compute the group key. Thus, OFT reduces communication overhead

compared to LKH, but introduces additional computation overhead.

Hierarchical KEK-based schemes are dependent on reliable transmission

of rekey messages. If a member fails to receive messages from a rekeying

instance, it may not be able to decipher future rekey messages. On the

positive side, these schemes enforce strict forward and backward

access control. Further, they require no a priori knowledge of membership

dynamics.

STR and SDR provide stateless rekeying; thus obviating the need for

reliable transport of rekey messages. The GCKS partitions current group

membership into several disjoint subsets; each of which is associated with a

key. It then sends the group key encrypted with each subset key. Each

member belongs to exactly one of those subsets during a rekeying instance,

and can decrypt the group key. A major disadvantage of these schemes is that

they operate on session membership, which can be quite large compared to

group membership. Specifically, STR and SDR may be too expensive if

immediate rekeying is the norm in rekeying a group.

In highly dynamic groups, it is possible to sacrifice strict forward and

backward access control to reduce rekeying overhead, by batch processing of

membership changes. For commercial applications, batch rekeying may be

appropriate, with immediate rekeying only to remove compromised or

misbehaving members. All the schemes described in this chapter support

both batch rekeying and immediate rekeying.

References

[1] DeCleene, B., et al., ‘‘Secure Group Communications for Wireless Networks,’’

in Proc. of the IEEE MILCOM, Vienna, VA, October 2001, pp. 113–117.

[2] Setia, S., et al., ‘‘Kronos: A Scalable Rekeying Approach for Secure Multicast,’’

in Proc. of IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

[3] Yang, Y. R., et al., ‘‘Reliable Group Rekeying: Design and Performance

Analysis,’’ in Proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[4] Chang, I., et al., ‘‘Key Management for Secure Internet Multicast Using

Boolean Function Minimization Techniques,’’ in Proc. of IEEE INFOCOM, New

York, March 1999.

[5] Zhang, X. B., et al., ‘‘Protocol Design for Scalable and Reliable Group

Rekeying,’’ in Proc. of SPIE Conference on Scalability and Traffic Control in IP

Networks, Denver, CO, August 2001.

156 Group key management algorithms

[6] Valdvogel, M., et al., ‘‘The VersaKey Framework: Versatile Group Key

Management,’’ IEEE JSAC Special Issue on Service Enabling Platforms For

Networked Multimedia Systems, Vol. 17, No. 9, September 1999.

[7] Briscoe, B., ‘‘MARKS: Zero Side Effect Multicast Key Management Using

Arbitrarily Revealed Key Sequences,’’ in Proc. of First International Workshop on

Networked Group Communication (NGC), Pisa, Italy, November 1999.

[8] Wong, C. K., M. Gouda, and S. S. Lam, ‘‘Secure Group Communications Using

Key Graphs,’’ IEEE/ACM Trans. on Networking, Vol. 8, No. 1, February 2000,

pp. 16–30.

[9] Wallner, D., E. Harder, and R. Agee, ‘‘Key Management for Multicast: Issues

and Architectures,’’ RFC 2627(informational), IETF, June 1999.

[10] Mittra, S., ‘‘Iolus: A Framework for Scalable Secure Multicasting,’’ in Proc. of

ACM SIGCOMM, Cannes, France, September 1997, pp. 217–288.

[11] Balenson, D., D. McGrew, and A. Sherman, ‘‘Key Management for Large

Dynamic Groups: One-Way Function Trees and Amortized Initialization,’’

draft-irtf-smug-groupkeymgmt-oft-00.txt, IRTF, August 2000, work in

progress.

[12] Canetti, R., et al., ‘‘Multicast Security: A Taxonomy and Efficient Construc-

tions,’’ in Proc. of IEEE INFOCOM, New York, March 1999.

[13] Blum, M., and S. Micali, ‘‘How to Generate Cryptographically Strong

Sequences of Pseudo-Random Bits,’’ SIAM Journal of Computing, Vol. 13,

No. 4, November 1984.

[14] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[15] Wicker, Stephen B., and Vijay K. Bhargava (eds.), Reed-Solomon Codes and Their

Applications, John Wiley & Sons, September 1999.

[16] Luby, M. G., et al., ‘‘Efficient Erasure Correcting Codes,’’ IEEE Trans. on

Information Theory, Vol. 47, No. 2, February 2001, pp. 569–584.

[17] Setia, S., S. Zhu, and S. Jajodia, ‘‘A Comparative Performance Analysis of

Reliable Group Rekey Transport Protocols for Secure Multicast,’’ in Proc. of

Performance 2002, Rome, Italy, September 2002.

[18] Naor, D., M. Naor, and J. Lotspiech, ‘‘Revocation and Tracing Schemes for

Stateless Receivers,’’ in Advances in Cryptology—CRYPTO, Santa Barbara, CA:

Springer-Verlag Inc., LNCS 2139, August 2001.

[19] Chen, W., and L. R. Dondeti, ‘‘Performance Comparison of Stateful and

Stateless Group Rekeying Algorithms,’’ in Proc. of Fourth International Workshop

on Networked Group Communication (NGC), Boston, MA, October 2002.

6.8 Summary 157

TE
AM
FL
Y

Team-Fly®

Group security policy

The Merriam-Webster Dictionary [1] defines policy as ‘‘a

definite course or method of actions selected among

alternatives and in light of given conditions to guide and

determine present and future conditions.’’ This definition

serves the topic of group security policy very well, for there is a

wide range of application requirements and an equally vast

number of group security mechanisms.

Applications require multicast security for privacy, data

origin authentication, controlled access to group membership,

and other similar requirements. The communication could be

over the public Internet or intranets, with varying security

threats. On the other hand, from the previous chapters, we

know that there are several alternative mechanisms for

enforcing privacy, key distribution, data origin authentication,

etc. In this chapter, we discuss how application security

requirements, business models, and service level agreements

(SLAs) can be translated into group security policy, and

distributed and enforced using the group management entities

introduced in earlier chapters.

Application requirements are generally specified at a very

highlevel to begin with. For example, an application may

specify the use of ‘‘strong symmetric key encryption for secure

one-way transmission to an average of 10,000 members to

enforce periodic billing.’’ Such service agreements (between

say, content owners and service providers) must be translated

into protocols and algorithms, and enforced using a secure

multicast communications architecture.

159

C H A P T E R

7
Contents

7.1 Group security policy
framework

7.2 Classification of group security
policy

7.3 Group security policy
specification

7.4 Policy negotiation and
reconciliation

7.5 Group security policy
enforcement

7.6 Summary

There are several components to the group security policy problem

area (see Section 2.5). First, high-level group security requirements, and

requirements stipulated by the operating environment, must be translated

into policy specifications. Several policy specification languages have been

proposed in the literature for describing unicast as well as group security

requirements.

In unicast applications, policy may be negotiated, in that the participat-

ing entities may come to an agreement on the mechanisms used and on

operational behavior. In groups, negotiation or reconciliation is difficult and

becomes practically impossible for very large groups. Furthermore, in several

unicast and especially multicast applications following the provider-

subscriber(s) model, the provider might need the final say in the level of

data protection (e.g., use AES instead of 3DES for encryption), the frequency

of rekeying, and other similar factors. Thus in groups, the content owner or

the provider often dictates the policy, and hosts or end-users for whom the

policy is unacceptable may choose to not subscribe to the group. However,

providers may change policy (typically for future use), based on feedback

from potential customers. For example, if a large number of customer

machines have support for 3DES, but not AES, the provider may choose to

employ 3DES for encrypting future multicast session data.

The next issue is policy distribution. This is an area more specific to group

security policy. The policy distributor (typically the group manager) needs to

send information to members about how to decrypt and authenticate group

data. This information includes: mechanisms used for data protection;

group keys, and instructions on how to use them; expected behavior if a

group member does not receive keys; and so forth.

Policy enforcement is the final component of a group security policy

system. Enforcement includes allowing only authorized members to receive

data, as well as evicting misbehaving members. Policy enforcers must not

only have mechanisms to disallow illegal users from receiving group data,

but they must also be able to detect unauthorized behavior. In general, the

goal of policy enforcement is to ensure that the content owner’s

requirements are being met, while keeping the group operational.

Some applications might stipulate that the policy data must itself be

protected, and divulged only to authorized entities. Furthermore, they

may allow the GC some leeway in delegating its policy distribution and

enforcement duties. Metapolicy, in the context of group security policy, is

a set of rules governing the handling of policy data. Thus metapolicy

may specify that a small portion of the group policy may be used for

public announcement of the session information, while the rest must be

disseminated securely (e.g., along with key distribution). Furthermore,

160 Group security policy

the GC may be allowed to delegate policy distribution and enforcement

duties to either certain members, or to trusted third-party entities.

Before getting into the details of group security policy, we revisit the

definition of policy introduced at the beginning of this chapter. Note that

there may be changes in the operating environment during the lifetime of a

group, and several alternative sets of mechanisms may need to be employed

to handle each specific scenario. Thus, group security policy consists of a

specific selection of mechanisms to support the application requirements in

the given operating environment. The GC must also be able to handle

changes in the operating environment or group behavior (e.g., the addition

of a new sender). Therefore, the GC must be able to change policy during the

operation of the group, and distribute and enforce the new policy without

having to reinitialize the group.

The rest of this chapter is organized as follows. First, Section 7.1 describes

the various group entities from a policy perspective. Next, Section 7.2

describes a classification of a group security policy. The following section, 7.3,

describes group security policy specification languages. Policy negotiation

and reconciliation are the topics of Section 7.4. Section 7.5 contains a survey

of several group policy systems in the literature. Section 7.6 provides some

concluding remarks.

7.1 Group security policy framework

There are typically several different entities with different stakes in the

secure operation of a group. For example, cable TV providers may want to

distribute a PPV event to customers who paid for the event. Customers

having paid for the event expect that the advertised quality of service is

maintained. Similarly, in group conferencing, the participants may want to

ensure that their communications are not modified en route, and are sent to

authorized members whose identities are known to all participants. These

and other similar requirements of content owners and group members are

translated into group security policy, which is enforced using the various

mechanisms and entities (e.g., GCs) described so far in the previous chapters.

Policy also needs to take operating environmental conditions (e.g., increased

security threats in wireless communications) and infrastructure limitations

into consideration.

Group security policy is the third problem area (see Section 2.5) of

secure group communication. It ties together the first two problem areas,

namely, data origin authentication and group key distribution, with

application requirements and the changing conditions of operational

7.1 Group security policy framework 161

environments. In this section, we introduce several important entities [2, 3]

that specify, distribute, and enforce group security policies.

Content owners, owing to the fact that they own the data and are

interested in controlling distribution, are at the top of the chain of control to

be introduced in this section. They might specify high-level group security

policy. Note that content owners could be people (e.g., author Stephen King

distributing his new novel over the Internet), corporations (e.g., Microsoft

distributing software upgrades to paying customers), or group members

themselves (e.g., in a group conference).

The group owner/creator (GOC) is a logical entity that creates policy. If

policy is negotiated, the GOC contains the negotiated policy and fills any

gaps. It also interprets content owners’ or other application requirements to

create the list of authorized members (e.g., access control lists). It is

responsible for setting up the multicast session, making group announce-

ments, distributing policy to group controller(s), and updating policy during

the life of the group, if necessary. The GOC may choose to allow delegation of

group control functionality. Finally, the GOC holds the authority to delete

the group as well.

The GCKS (see Chapter 5) is the logical entity that distributes and

enforces policy. Its two functionalities, that is, membership management

and key distribution, may be separated if necessary. Thus, a GCKS may be

referred to as a GC as well, in reference to the policy distribution and

enforcement functionalities. The GCKS or its delegates are responsible for

enforcing access control (verifying membership authorization), policy

distribution, and enforcement.

A GCKS authorizes one or more designated hosts to send data to the

secure group.1 Members are expected to disregard data from any illegal

senders. Sender(s) also have an important role in enforcing policy. In

particular, data protection policy enforcement (other than key distribution

itself) is mainly in the sender’s control. For example, senders must use the

latest keys in protecting data. It is necessary for the GCKS to make sure that

the sender has received the latest policy and the keys.

Hosts become members of a secure group when a GCKS verifies their

authorization to receive data, and sends the latest policy and group keys.

Members have a somewhat limited role in enforcing policy. First, they are

expected to accept policy and keys only from an authorized GCKS or its

1. Multicast routing protocols such as PIM allow any host on the Internet to send data to a multicast group. PIM-

SSM supporting a one-to-many multicast model only is an exception. The next chapter on multicast routing

protocol protection discusses how to enforce authorized sending at the network layer.

162 Group security policy

authorized delegates (e.g., a subgroup controller or SGC in GSAKMP [4]).

Next, members are expected to accept data from authorized senders only.

The group policy specifies the list of authorized senders and GCs.

In all types of applications, the members also have an albeit minor

interest in the group policy being enforced. Even if end-users are not content

owners, they are interested in ensuring that the level of service is

maintained, and the protections offered are realized. A particular threat is

in a member revealing secret keys or broadcasting decrypted data. Detection

of such behavior and policy enforcement is one way to counter such threats.

In the simplest case, members not following policy (e.g., to not reveal/share

keys to unauthorized entities) are evicted.

In addition to the above group management–related entities, there

is another component of importance in a group security policy frame-

work [2]. The group policy repository is a database that stores the group’s

policy. It is a permanent store of the group’s policy, whereas the GCKS and

the GOC may store policy in volatile memory. Thus after a reboot they can

access the current group policy from the repository. The GOC is authorized to

read, create, modify, and delete a group’s policy, whereas the GCKS and GPS

have a read-only access to the policy repository.

Figure 7.1 shows various entities of a secure group from the policy

perspective. Notice the two different types of arrows used to indicate how

policy is distributed. The GOC has read and write access to the policy

repository, whereas the GCKS can only read from the repository. The GOC is

also responsible for supplying the appropriate amount of policy to the

announcement mechanism. The announcement may be sent via unicast or

multicast to group members. The members can obtain a copy of the

announcement, should they fail to receive it when it was sent via multicast.

Members have read-only access to the announcements, however.

The GCKS receives policy and any updates to policy from the GOC. It

may also download updates from the policy repository. Note that members

do not need to receive the entire policy. Several components of the policy

may be enforced, without the need to inform the members about them. The

GOC may determine what needs to be kept private from members, and the

GCKS may only distribute the minimum required for correct enforcement of

policy, as well as for better interoperability of secure group communication

protocols.

The GCKS distributes policy to authorized members via unicast (during

registration) or multicast (during rekeying). Thus, the framework allows

for dynamic policy updates. The GOC may change policy during the session

and send the new policy to the GCKS. The GCKS may rekey the group

to distribute and enforce the new policies. The change in policy, might

7.1 Group security policy framework 163

result, for example, in eviction of noncompliant members, a change in

the cryptographic mechanisms used, a change in rekeying frequency,

and so forth.

7.2 Classification of group security policy

Different applications have different requirements for securing group

communications. But designing a separate multicast security solution for

each class of applications is inefficient. It is better to design a group security

system that can support a wide variety of mechanisms, and employ those

mechanisms according to the specified policy of a given application. Group

security policy can be divided into several categories. In the following we

discuss these categories and the options within each category. Note that

neither the category list nor the options within it are meant to be exhaustive.

They are only intended to provide an insight into the scope of the problem.

Other similar classifications are available in the literature [5].

Figure 7.1 Group security policy distribution framework.

164 Group security policy

7.2.1 Announcement policy

Secure group announcement policy is a surprisingly tricky issue. The

announcement must be informative, to attract potential members to join the

group. On the other hand, revealing too much information about a group’s

policy (e.g., encryption algorithms used or rekeying frequency), might

compromise the security of the group.

Prospective members may want to know such information as minimal

system and bandwidth requirements, cryptographic algorithm support, and

trust model, before subscribing to a group. But such information may also be

beneficial to adversaries.

Application requirements help us strike a balance between revealing too

much or too little policy during group announcements. For example, for a

military application, the announcement might consist of a code word on a

predistributed Web page, while most of the policy is revealed only to the

authorized members by either a well-known or a prespecified GC. For

commercial applications vying to attract customer interest, it might be

beneficial to announce the minimum system and bandwidth requirements,

data protection policy, cryptographic algorithm support required, and so

forth. Thus the members who paid to obtain authorization to join the group

will not be denied access to the group at the time of registration.

As mentioned in the previous section, the GOC is responsible for making

the announcements. The metapolicy may specify how to appropriately

distribute/announce the nature of the group data to be sent, and the group

policy (determining which part is public and which is private). The GOC is

ultimately responsible for revealing only an appropriate portion of the policy

in group announcements.

Closed and open secure groups. Two types of secure groups have been

identified in the literature on group security policy [2]. First, closed secure

groups enforce privacy not only on data transmission, but also on

announcements and the group policy itself. Thus, group announcements

are sent to preselected hosts or end-users (e.g., to the executive team within

a company or individuals who have a certain security clearance in the

military context). In other words, group security policy is also private, and

revealed to authorized users only. Open secure groups, on the other hand,

make a public announcement about the group, in part indicating how one

can get authorization to become a member. The group is secure in that parts

of the policy are only revealed after authorization, and, more importantly,

data can be decrypted only by authorized members. Commercial applica-

tions, such as PPV TV, where members receive information about a program

and the price of admission, are examples of open secure groups.

7.2 Classification of group security policy 165

7.2.2 Membership policy

A group may allow members to remain anonymous. Members may buy

tokens for the service provided. Any user presenting a token may be

authorized to receive group data, without having to authenticate himself or

herself. However, more often than not, group owners require that members

authenticate themselves.

Membership policy specifies the qualifications to be a member and,

sometimes, the duration of membership. For example, membership may be

contingent on payments for PPV blocks of time. Alternatively, members over

a certain security level, or all vice presidents of a company, may be invited to

a secure group meeting.

Finally, membership policy may also specify whether a particular

member(s) must be present for the group to operate. For example, in

a corporate meeting, if the CEO must leave prematurely, the group may need

to be terminated.

7.2.3 Access control or authorization policy

To enforce access control, a GOC may prepare a list of members, known as an

ACL, specifying those allowed to participate in the group. The GOC

distributes ACLs to the GC, which may subsequently distribute them to

the SGCs. Authorization policy may generally be part of a secure group

announcement. ACLs may be inclusive or exclusive. The group policy in this

regard need only be revealed to the GCs. In other words, members need not

be notified about the nature of ACLs.

Distribution of ACLs to the GC and SGCs does not scale well to large and

dynamic groups. Authorization certificates and membership tokens work

better for group access control, because they are signed by the GOC and

verifiable by the GC or the SGCs, without any interaction with the GOC.

Thus they scale well to large groups, and are especially suitable for

applications that allow members to obtain group membership and join

while the group is operational. Members do need to know in advance about

certificate usage so they can obtain certificates from GOC-authorized

entities. The GOC is also responsible for specifying certificate revocation

policy, to allow ejection of misbehaving users from the group.

7.2.4 Data protection policy

A group owner may want to protect the privacy of the group’s communica-

tions. For IP multicast security, data may need to be encrypted, even if

166 Group security policy

privacy is not a requirement. More specifically, a GC may use encryption to

enforce controlled access to group data. Encryption policy generally consists

of encryption algorithms (e.g., 3DES and AES), key length, lifetime and so

forth. Replay protection is another typical requirement in secure data

communication. Timestamps and sequence numbers are two popular

techniques used to guard against replay attacks. Timestamps require clock

synchronization, which is difficult to maintain in large groups. Replay

protection policy specification may thus be dependent on system or

infrastructure support for clock synchronization.

Data authentication policy. Data origin authentication is another compo-

nent of data protection. A group owner may require group authentication,

that is, that the data originated within the group. For other groups, source

authentication may be required. Data authentication policy would then

include the source authentication algorithm policy. A source authentication

algorithm policy (see Chapter 3) may include data streaming parameters,

buffering requirements, synchronization requirements, and so forth. Non-

repudiation could be another requirement of data authentication.

During the transition from the old to the new group keys, senders may

stop sending data, start using the new key at a specified time, or use both sets

of keys for encrypting data [6]. For military applications, it may be necessary

to stop data transmission during group rekeying [7], whereas for commercial

applications, uninterrupted service may be the driving factor.

7.2.5 Group management delegation policy

In large and distributed groups, group management tasks may be delegated

for efficiency. A group’s policy could be to delegate group management to

trusted third parties or to members themselves [4].

Access control enforcement policy specifies how this functionality may

be delegated. For example, a group may require that the GC alone can allow

authorized entities to join the group. Small interactive groups may specify

that any member may allow a user to join, or that all members must validate

each prospective member.

It is also possible to separate group registration from rekeying, and offer

both as distributed services. Thus there may be several registration servers

that authorize members, download policy and keys, and specify the

authorized rekey server(s) that send updates to policy and keys.

7.2 Classification of group security policy 167

7.2.6 Key distribution policy

Key distribution is a major part of secure group communication and thus

comprises the majority of the policy as well. We divide the policy into two

parts: group registration and rekey policy. The registration policy may specify

a single registration server or multiple servers.

Similar to data, key transmissions must be protected. Therefore, key

distribution policy contains cryptographic mechanisms (e.g., encryption and

message integrity protection algorithms, and replay protection policy) for

secure transmission of keys. GDOI SA KEK payload [8] (see Section 5.4.3) , for

example, contains the policy enforced in protecting KEKs, including the

group key.

Rekeying policy. Rekeying policy may specify (a) the frequency of rekeying,

(b) whether immediate or batch rekeying must be employed, (c) the nature

of the rekey message transport mechanism (multicast or unicast, reliable or

not, reliable transport protocol used, etc.), (d) actions to be taken if a user is

out of synchronization and cannot decipher rekey messages, (e) whether

forward or backward confidentiality must be enforced, and (f) the group key

management algorithm used, and so on. There may also be some group

key management algorithm-specific policy. Recall that some of the group

key management algorithms are complex, and the members need to know

some algorithm parameters to decipher rekey messages correctly. For

example, LKH (see Chapter 6) policy may contain algorithm version, key

tree degree, and a per-key identity, at a minimum.

Members need not know the entire rekeying policy for correct

operation of the secure group. The group owner sends the rekeying policy

to the GCKS, and the GCKS (or the group owner itself) determines the

minimal subset of the policy that must be sent to the members. In the

above list, for example, members need to be aware of forward and

backward confidentiality policy or frequency of rekeying. However, they do

need to know the cryptographic algorithms used to decrypt and

authenticate the messages correctly, and the group key management

algorithm policy, to use the keys appropriately.

7.2.7 Compromise recovery policy

The group owner may specify that the GCKS should be able to detect and

evict compromised members from the group. Efficient rekeying to remove

members may also be a requirement.

168 Group security policy

TE
AM
FL
Y

Team-Fly®

Compromise detection could become complicated if many members are

compromised and take over the group. Group policy may specify a

requirement for protection against such attacks. For example, the policy

might stipulate that the group communications must be secure even after

r members are compromised.

7.3 Group security policy specification

Real-world group security requirements are typically high-level specifica-

tions, and often vague. Furthermore, some of the requirements may be

conflicting, particularly when there are multiple stakeholders in a secure

group. But we need a consistent group security policy specification for the

correct and deterministic operation of a group.

Thus on the one hand we have content owners being people,

corporations or businesses, specifying policy in natural languages (e.g.,

English). On the other hand, we need machine-friendly policy specifications

for automated negotiation, distribution, and enforcement. Several policy

specification languages have been proposed in the literature, for specifying

and enforcing quality of service, network access control, and network

management policy [9, 10].

Many policy specification languages [9] define roles [4, 10] of various

entities, rules of engagement, and actions to be taken when an event occurs.

Thus, a policy specification may contain several if event then action

statements. Different entities in the system may have the role of carrying

out the actions; at least they get affected by those actions. The following

examples, Ismene [11], CCNT [12], and the group security policy token (GSPT),

provide an insight into group security policy specification languages.

7.3.1 Ismene policy specification

Ismene considers provisioning, and authorization and access control as the two

central components of group security policy [11]. Next, it recognizes that

there is a group policy, specified by the group owner, to be reconciled with

local policies of individual members.

Ismene policies also follow the if . . . then . . . format mentioned earlier.

Each Ismene policy statement is a session requirement specification

(provisioning) or a policy enforcement action (authorization and access

control) statement. A tag identifies each policy statement. Examples of tags

include provision, join, confidentiality, integrity, and so forth. The

requirements and actions themselves are specified as conditionals and

consequences in the format:

7.3 Group security policy specification 169

tag: conditional(s) : consequence(s);

Ismene conditionals stem from the operational environment, the system

configuration, and user credentials. A consequence in a provisioning clause

may be one of the following. It may define how a requirement may be

enforced through configuration. Next, a pick consequence allows for

specification of alternative mechanisms that could be used for implementing

a security requirement. Finally, tag consequences give structure to policy.

Evaluation of policy enforcement action statements results either in an

accept or a reconfig consequence. In summary, Ismene policy language is

structured, supports provisioning and group events, and allows for dynamic

changes in policy. The following Ismene policy specifies access control using

ACLs, message integrity using HMAC-SHA-1, source authentication using

TESLA, encryption using AES, and rekeying using LKH.

group :¼<Ismene example policy>;
provision : :: access control, group management;

ACL :¼<fAliceg, fBobg, fCindyg>;

access control: is in list(ACL) :: allow member;

group management : :: key dist, rekeying, data protection;

key dist : :: config(GDOI());

rekeying : :: config(GDOI(GKMA ¼ LKH, encr algm ¼ AES));

data protection : :: config(MESP(data encr, data integrity));

data encr : :: config(encr algm ¼ AES);

data integrity : :: config(TESLA(MAC algm ¼ HMAC-SHA-1));

7.3.2 CCNT

The dynamic cryptographic context management (DCCM) system [13]

specifies a CCNT [12] to facilitate policy/context negotiation. DCCM defines

policy as the high-level system and security requirements, and context as the

specific set of mechanisms negotiated for a project.

CCNT is described using Backus-Naur Form (BNF) grammar, and

consists of specific values for various policy categories or axes. Examples of

categories and corresponding values include, level of security (e.g., high,

medium, or low), data authentication (e.g., RSA or DSA), entity authentica-

tion (e.g., passwords or RADIUS), encryption algorithm (e.g., AES or 3DES),

group key management algorithm (e.g., LKH or OFT), eviction restrictions

(e.g., cannot evict member X), and so forth. The policy specification itself is

the tuple declaring which mechanisms apply to the given project. Notice that

CCNT does not allow dynamic changes to policy in response to group events.

Using the following CCNT, Policy1(0,0,1,1,,) implies ‘‘access control using

170 Group security policy

ACLs, key management using GDOI, encryption using 3DES, and integrity

protection using MD5, with no source authentication employed.’’

Axes:

access control(ACLs, authorization certs)

key management protocol(GDOI, GSAKMP)

encryption algorithm(AES, 3DES)

MAC algorithm(SHA-1, MD5)

source authentication scheme(TESLA, Augmented chaining,

tree block hashing)

7.3.3 GSPT

The IETF MSEC working group has been working on standardizing a

common framework for group security policy. GSAKMP and eventually

GDOI may use the resulting structure to specify and distribute policy. The

GSPT data structure is a result of that process [14].

A GSPT consists of the security parameters that define the operation of a

group. The GSPT specifies the authorization policy, the access control policy,

and the mechanisms used for content protection. The token has an identity

and is signed by the GO. In the rest of this section, we describe the

components within a GSPT in detail.

Components of a GSPT

Figure 7.2 shows the components of a GSPT in detail. The first field is the

token ID, to uniquely identify a group. Next, we have the authorization field,

which defines the roles of various entities that manage the group. The access

control field specifies who can be senders or receivers of the group. Content

protection policy is specified by the mechanisms field in the GSPT. The final

field contains the GO’s signature, authenticating the policy token.

Token identification. Members and GCs must be able to uniquely identify a

secure group. Note that correct identification of a group is necessary for

secure operation of a group. Thus each group is assigned a unique group

identity. To protect against replay attacks, the GSPT contains a timestamp.

Recall that the controller or member receiving that token must verify

the validity of the token before using it. A receiver must verify that the

timestamp in the received GSPT is later than the latest timestamp in the

GSPT that it has successfully authenticated.

7.3 Group security policy specification 171

Authorization field. Recall that the GOC assigns the responsibility to

manage the group to a GC. For efficiency and fault tolerance, the GC may

be implemented as a distributed service. Furthermore, a GOC may designate

different clusters of servers to provide group registration and rekey

functionalities. The authorization field contains the identities of the GCs

and their assigned roles. Members are expected to accept group keys and

updates to policy from entities specified in the authorization field of the

GSPT. The GC has complete control over the operation of the group, and it

may further delegate group management tasks to other members. In other

words, the entities specified in the authorization field are distributors and

enforcers of group policy.

Access control field. The third field in GSPT specifies who can join the group.

This field has two subfields, namely, the permissions and the access list.

The permissions could be as simple as member and nonmember, or as

Figure 7.2 GSPT and its components.

172 Group security policy

all-encompassing as the hierarchical clearance levels used in military

applications. Permissions could specify who can be a sender and who can be

an SGC, and so on. An access list might contain the list of user identities that

have the specified permissions.

Mechanisms. The IETF group key management architecture (GKMArch)

[15] specifies three SAs: the data security SA, the registration SA, and the

rekey SA. Each of the SAs is associated with keys and several parameters

describing its purpose, lifetime, algorithm used, and so forth. The data

security SA specification may contain mechanisms for privacy, integrity, and

replay protection of group communications. The registration process consists

of access control enforcement and secure download of initial keys, both for

protection of future keys, and of data. Thus the registration SA specification

may contain mechanisms for secure channel establishment and group

membership authorization. The rekey SA policy specifies mechanisms for

compromise recovery, group key management, key encryption, key

transport, and so forth.

Validity of GSPT. A policy token must be signed to be considered valid by

the recipient. Thus the GCKS needs the group owner’s signature to consider

the GSPT authentic, and a member needs the group owner’s or the GCKS’

signature to consider the token valid. The policy token’s recipient must also

know that the token was not modified en route, and is fresh (i.e.,

distinguishable from a potential replay by an adversary).

7.3.4 Discussion on policy specification languages

We conclude this section with a brief comparison of the three policy

specification languages summarized earlier. All three policy languages

translate application-level group security requirements into machine-read-

able form for policy negotiation/distribution and enforcement. CCNT and

Ismene specify policy with negotiation or reconciliation in mind, whereas in

GSPT, the specification is final. Ismene and GSPT allow dynamic policy

changes to adapt to changing security requirements or operational

environmental considerations. Finally, Ismene allows policy specification

with conditionals and consequences, and is thus more powerful than the

other two. However, for most applications, GSPT policy specification may be

sufficient, and thus the IETF MSEC working group is in the process of

standardizing GSPT for use with GDOI and GSAKMP key distribution

protocols.

7.3 Group security policy specification

7.3 Group security policy specification 173

7.4 Policy negotiation and reconciliation

In a provider-subscriber model, it is intuitively appropriate that the providers

mandate who can be a subscriber, the level of protection required, and

actions to be taken when a group’s security is compromised. In other words,

providers may dictate policy. However, considering that the subscribers may

be paying for the services (e.g., in content streaming), the members may

demand a particular quality of service and maybe even some security

guarantees, such as protection against DoS attacks. In interactive applica-

tions such as group conferencing, several entities have an approximately

equal interest in protecting group communications. Therefore, negotiation

may be necessary to determine a mutually satisfactory group security policy.

In summary, synthesizing different group entities’ requirements at some

level is commonplace in policy specification.

The flip side is that, in large groups, satisfying potentially conflicting

requirements is a challenge. In the provider-subscriber model, the provider

may unilaterally make the final decision in resolving any conflicts. In

multisender groups, negotiation may be necessary to arrive at a consensus.

Alternatively, there may be a groupwide policy, and several sender-specific

policies to be applied to data originating at various senders.

For a familiar example of policy negotiation, recall SA negotiation in the

IKE [16] protocol. The initiator sends an SA payload containing severals

proposals: each containing a set of transforms. Each transform contains

values for attributes such as the encryption algorithm, message authentica-

tion algorithm, key length and lifetime, and so forth. The responder may

choose a transform that it supports and considers appropriate for protecting

the session being negotiated. If the responder does not find any transform

that it supports and deems appropriate, it can refuse the request to set up the

session.

We now summarize policy reconciliation in Ismene [11, 17] and policy

negotiation in the DCCM protocol [18].

7.4.1 Ismene policy reconciliation

Ismene policy reconciliation is via intersection of group and local policies.

However, reconciliation is only possible when group policy (specified by the

GOC) specifies some choices that can be narrowed down using local policy.

Thus if group policy specifies a single mechanism for encryption, there is no

need for visiting the local policy specification.

Reconciliation with several local policies may be done in several

different ways, including resolving based on the majority’s choice, and

174 Group security policy

resolving with each local policy in the order of the importance of the

member in the group. Majority choices may sound attractive at first, but

notice that in selecting the majority choice of each component

(e.g., encryption algorithm, message integrity, or user authentication

policy), we might eliminate all members. For example if A, B and C

have the local policies, <3DES;MD5; Password>, <AES;MD5; Cert>,

<3DES; SHA-1; Cert>, reconciliation with majority choices results in the

policy <3DES;MD5; Cert>, which disallows all three entities from participat-

ing in the group.

McDaniel et al., [17] report that, in the worst case, reconciliation of more

than two parties is intractable. They suggest the use of heuristics, such as

reconciling with each of the local policies, one by one. The other school of

thought is to disallow any automated negotiation of group security policy,

and have the group owner dictate policy. This is employed in GSPT,

described earlier in this chapter, and in GDOI, discussed in Chapter 5.

7.4.2 Policy negotiation in DCCM

DCCM differentiates between high-level policy and cryptographic context,

which identifies the specific cryptographic mechanisms employed for the

level of protection intended in the policy specification. The negotiated

cryptographic context applies to all the secure group sessions within a

project. Group or project managers negotiate policy: not individual

members.

The cryptographic context negotiation protocol (CCNP) for DCCM

projects works in three phases: the project initiator’s proposal, the nego-

tiators’ responses, and the resolution and dissemination by the mediator.

The project initiator generates a proposal based on local constraints, project

requirements, and organizational requirements. A mediator may be

involved in preparing the proposal. The mediator then forwards the proposal

to policy negotiators. The negotiators select a subset of the proposed policy,

based on local policy mappings (high-level language specification to

machine-interpretable rules and algorithms). Negotiators may return

multiple choices in the order of preference. The mediator is responsible for

collecting the responses and working with the initiator to arrive at an

intersection acceptable to all (or most) of the parties. If no single policy

(consisting of acceptable parameters in all categories proposed) is acceptable

to all negotiators, the mediator may ask the minority negotiators to support

the majority’s choice. The final step is for the mediator to distribute the

project context to the initiator, as well as the members.

7.4 Policy negotiation and reconciliation 175

We conclude this section with a note on the security threats of policy

negotiation. In closed secure groups, policy is private, and thus all policy

negotiation messages must be over a secure channel that offers confidentiality

and integrity protection. A particular threat to avoid is a man-in-the-middle

attack to force negotiating parties to agree on a level of security (policy) lower

than what they can support. This attack, known as a downgrade attack, is

especially affective in open secure groups, where policy negotiation may be

in the clear.

7.5 Group security policy enforcement

In this section, we discuss secure group policy distribution and enforcement.

The group owner sends policy to the GCKS. The policy specification may

include instructions for the GCKS on how much of the policy may be

revealed to the members. In the absence of such instructions, the GCKS

determines the minimum amount of policy that needs to be sent to members

for their participation in the group. Examples of policy that need not be

revealed include details of rekeying policy, such as whether immediate or

batch rekeying is going to be employed.

The GCKS typically enforces access control, group management

delegation, key distribution, and compromise recovery policies. The sender

is expected to enforce data protection policy. The members are expected to

follow the group security policy, or face eviction from the group.

7.5.1 Policy distribution and enforcement in GDOI

GDOI [8] (see Section 5.4.3) policy has only a relatively limited coverage,

compared to some of the other systems described in this chapter. More

specifically, GDOI only covers the interactions between the GCKS, a

member, and the senders. The communication between the group owner

and GCKS is out of scope of the protocol.

The GCKS enforces authorization policy before allowing users to join a

secure group. Apart from this functionality, the registration protocol of GDOI

securely distributes the group policy and keys. GDOI group policy consists of

rekeying and data protection policies. More specifically, the rekey SA

specifies the cryptographic mechanisms and other parameters (e.g., key

length and lifetime) used to enforce privacy, integrity, authentication, and

freshness of key update (rekeying) messages. The key update policy may also

contain a group key management algorithm policy. Next, the data protection

SA specifies the mechanisms used to protect group communications.

176 Group security policy

The rekey SA may be used to update both rekeying and data protection

policy. It is also possible to keep the policy private from evicted members.

The GCKS has the mandate to enforce such metapolicies. The sender is

expected to enforce the data protection policy by using the correct (e.g., the

latest) keys in encrypting and authenticating group data.

GDOI does not address membership management, however. The GCKS

depends on external mechanisms for: determining whether a user’s

membership has expired, detecting member misbehavior, handling requests

for early departures or membership renewal, and so forth. Note, however,

that it is possible to initialize and update the GCKS with information such as

membership duration, to support some of the above functionality. Absence

of member monitoring policy and mechanisms, as well as lack of support for

feedback channels from members to the GCKS, are clear handicaps in

supporting group membership management tasks.

7.5.2 Antigone policy framework

The Antigone policy framework consists of three layers: the policy layer, the

mechanisms layer and, finally, the broadcast transport layer. The policy layer

contains the group’s policy specification. The mechanisms layer supports the

distribution and enforcement of the policy. This layer supports several

mechanisms for various group operations, including member join and leave,

membership monitoring, and group rekeying. Each of these mechanisms

contain microprotocols. Membership monitoring, for instance, uses a

microprotocol for processing ‘‘heartbeat’’ messages from either a member

or a session leader. Other examples of microprotocols include join and leave

requests, key distribution, rekey message transport, and data transmission

with integrity and confidentiality. The broadcast transport is a group

communications abstraction in that applications would send data to the

group address, even in the absence of IP multicast support. The broadcast

transport layer takes care of group communications, using either unicast or

multicast.

Interlayer communication makes Antigone sensitive to group member-

ship behavior and changes in the operating environment. Specifically, the

mechanisms layer sends group events to the policy layer. The policy layer, in

response, delivers the appropriate course of action to the mechanisms layer.

Thus the mechanisms layer enforces group security policy, while being in

close interaction with the latest group policy.

The Antigone policy is distributed to members when they are permitted

to join the secure group. Unlike GDOI, Antigone does not provide

mechanisms to communicate policy changes to members. Note that in

7.5 Group security policy enforcement 177

such systems some of the policies can still be changed in reaction to changes

in the operational environment, but the new policy cannot be commu-

nicated to members. Consequently, some types of Antigone policies, such as

data protection policy or rekey message protection policy, cannot change,

whereas others, like frequency of rekeying, may change during the life of the

group.

7.5.3 GSAKMP policy distribution and enforcement

GSAKMP (see Section 5.4.2) describes policy by assigning roles to various

entities of the group. The group owner is either the content owner itself, or a

representative thereof, and is thus responsible for issuing policy. The policy

might depend on the value of the content, and the threat model under which

the group operates [3]. The GC is responsible for policy distribution and

enforcement. The GC may delegate these responsibilities (as allowed by the

policy) to members, which then act as SGCs. The GC is still responsible for

the creation of data encryption keys.

GSAKMP proposes the use of a policy token for specifying group security

policy. The policy token consists of group membership, key distribution, and

data protection rules of the group. The group owner signs the token for

authentication. Members and controllers are expected to verify authenticity

and follow or enforce the policy, as applicable.

Only authorized entities can be group members or SGCs in GSAKMP.

Once authorized, they get access to group keys and the policy. GSAKMP

expects all the group entities to verify the authenticity of the policy and

follow it. If the GC observes member or SGC misbehavior, it can evict that

entity. However, it is not clear how the GC detects noncompliance.

7.6 Summary

Group security policy is the third problem area of the IETF multicast security

framework. It specifies the cryptographic mechanisms employed to protect

group data, and actions to be taken in response to group membership

behavior or changes in the operational environment.

Content owners specify who can receive group data, and the general

level of data protection required. Such high-level requirements must be

translated into a machine-friendly specification for automated enforcement.

Policy may need to be negotiated at some point. In large groups, policy

negotiation is not practical. But, the service providers must have a general

understanding of the cryptographic and system capabilities of the prospec-

tive members. Besides, the problem has been proven to be intractable.

178 Group security policy

TE
AM
FL
Y

Team-Fly®

Small interactive groups contain several members who send data to the

group. The senders may have individual security requirements, and may

want to negotiate group security policy. Simple heuristic solutions have been

proposed in the literature for policy negotiation.

Policy distribution and enforcement is the task of the GC or its

authorized subordinates. The metapolicy specifies the parts of group policy

that can be publicly announced. The rest of the policy is distributed to

authorized membership only.

Key distribution policy is also enforced by the GC. The GC may also

monitor compliance and evict misbehaving or malignant members by

rekeying the group. Data protection policy is enforced by the senders. Group

policy enables members to detect data sent by unauthorized senders.

We conclude this chapter with a note on the state-of-the-art standards-

based solution to group security policy specification, enforcement, and

distribution. GDOI supports key distribution and data protection policy

specification and enforcement. Policy distribution can be restricted to

authorized membership only. For more complete specification of policy, the

IETF MSEC working group is developing the policy token approach.

References

[1] Merriam-Webster Dictionary (on-line version), http://www.m-w.com.

[2] Hardjono, T., and H. Harney, ‘‘Group Security Policy Management for IP

Multicast and Group Security,’’ in IFIP Networking, Pisa, Italy, May 2002,

poster.

[3] Harney, H., A. Colegrove, and P. McDaniel, ‘‘Principles of Policy in Secure

Groups,’’ in Proc. of Network and Distributed Systems Security Internet Society, San

Diego, CA, February 2001.

[4] Harney, H., et al., ‘‘Group Secure Association Key Management Protocol,’’

draft-ietf-msec-gsakmp-sec-00.txt, IETF, March 2001, work in progress.

[5] McDaniel, P., and A. Prakash, Antigone: Implementing Policy in Secure Group

Communication, Technical Report CSE-TR-426-00, Electrical Engineering and

Computer Science, University of Michigan, May 2000.

[6] McDaniel, P., A. Prakash, and P. Honeyman, ‘‘Antigone: A Flexible Frame-

work for Secure Group Communication,’’ in Proc. of the 8th USENIX Security

Symposium, Washington, D.C., August 1999, pp. 99–114.

[7] DeCleene, B., et al., ‘‘Secure Group Communications for Wireless Networks,’’

in Proc. of the IEEE MILCOM, Vienna, VA, October 2001, pp. 113–117.

7.6 Summary 179

[8] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[9] Sloman, M., and E. Lupu, ‘‘Security and Management Policy Specification,’’

IEEE Network, Special Issue on Policy-Based Networking, Vol. 16, No. 2, March/

April 2002, pp. 10–19.

[10] Meissner, A., L. Wolf, and R. Steinmetz, ‘‘A Novel Group Integrity Concept for

Multimedia Multicasting,’’ in Proc. of the 8th International Workshop on Interactive

Distributed Multimedia Systems (IDMS),’’ Lancaster, UK: Springer-Verlag, LNCS

2158, September 2001, pp. 233–244.

[11] McDaniel, P., and A. Prakash, Ismene: Provisioning and Policy Reconciliation in

Secure Group Communication, Technical Report CSE-TR-438-00, Electrical

Engineering and Computer Science, University of Michigan, December 2000.

[12] Balenson, D., et al., DCCM Cryptographic Context Negotiation Template, Technical

Report TIS Report 0745-2, TIS Labs at Network Associates, Inc., February

1999.

[13] Balenson, D., et al., DCCM Architecture and System Design, Technical Report TIS

Report 0709, TIS Labs at Network Associates, Inc., June 1998.

[14] Hardjono, T., et al., ‘‘Group Security Policy Token,’’ draft-ietf-msec-gspt-

00.txt, IETF, September 2001, work in progress.

[15] Baugher, M., et al., ‘‘Group Key Management Architecture,’’ draft-ietf-msec-

gkmarch-02.txt, IETF, March 2002, work in progress.

[16] Harkins, D., and D. Carrel, ‘‘The Internet Key Exchange (IKE),’’ RFC 2409

(proposed standard), IETF, November 1998.

[17] McDaniel, P., and A. Prakash, ‘‘Methods and Limitations of Security Policy

Reconciliation,’’ in Proc. of the IEEE Symposium on Security and Privacy, Oakland,

CA, IEEE Computer Society, May 2002, pp. 73–87.

[18] Balenson, D., et al., DCCM Cryptographic Context Negotiation Protocol, Technical

Report TIS Report 0757, TIS Labs at Network Associates, Inc., February 1999.

180 Group security policy

Securing multicast routing
protocols

A t the core of this infrastructure, and underlying its every-

day operation, is the routing of IP packets across different

ASs that make up the Internet. Similar to other software and

hardware systems, routers and routing protocols are designed

to follow a specific set of behaviors to achieve the effect of

efficiency in IP packet handling, forwarding, and delivery path

determination. At the microlevel, each AS executes one or

more intradomain routing protocols, while at the macrolevel

these ASs are interconnected to each other through one or

more interdomain routing protocols.

At both the intradomain and interdomain levels, the

correct execution of a protocol based on correct information is

crucial to the proper operation of the whole Internet. This is

true for both unicast and multicast routing protocols. Since

many multicast routing protocols rely on the unicast routing

table, it is important to provide security for the information

exchanged among routers, and the information stored within

routing tables.

The general meaning of the term security in the context of

routing protocols is that of protecting the routing information

from being illegally modified in transit (between routers) or in

storage (within a routing table), and protecting against bogus or

false routing information being injected into the network. Thus,

a router must be assured that any valid routing information it

receives is correct, and it must be provided with the ability to

detect and reject false information.

181

C H A P T E R

8
Contents

8.1 The three components of
multicast security

8.2 Overview of multicast routing

8.3 Security requirements in
unicast and multicast routing

8.4 PIM-SM security

8.5 MSDP security

8.6 IGMP security

8.7 Security in other routing
protocols

8.8 Summary

This chapter focuses on the issue of security in multicast routing and

multicast routing protocols. It begins by discussing some issues related to

security in routing, including security requirements, possible attacks to

multicast routing domains, and some possible ways to counter such attacks.

The chapter views the multicast distribution tree as consisting of two

identifiable parts: the core and the edges (or leaves). Corresponding to this

view, the chapter focuses on two protocols as examples of each part of the

tree. The PIM-SM protocol provides the core of the distribution tree, while at

the edges, the IGMP protocol provides access by hosts onto the tree. The

MSDP protocol is briefly discussed as an example of an interdomain routing

protocol. This chapter also discusses Core Based Tree (CBT) [1, 2] and HIP [3]

multicast routing protocol protection. As the discussions in this chapter focus

on security matters, the reader is assumed to have some familiarity with

these protocols.

8.1 The three components of multicast security

As mentioned in the previous chapters, there are three components required

to achieve IP multicast security: one of which is multicast routing protocol

security. The tight relationship among these three components for IP

multicast security cannot be overemphasized. All three are crucial to

providing security for IP multicast. These components are as follows (see

Figure 8.1):

1. End-to-end data protection. Data protection consists of the application

of cryptographic means end to end, to ensure that data delivered

through the multicast group is protected against illegal modifica-

tions (data integrity), that the data is verifiable as coming from its

original sender (source authentication), and that the data is only

readable by valid members of the group (data confidentiality). The

use of cryptography entails the delivery and management of keying

material to valid members of the group.

This area was covered in Chapter 4, and does not really pertain

to infrastructure protection. However, as we will see, the

techniques (such as group key and SA management) developed

for content protection are equally applicable to routing control

messages.

2. Multicast distribution tree protection. The multicast distribution tree

protection typically consists of security mechanisms to ensure that

tree behavior follows the specified protocol. That is, the multicast

182 Securing multicast routing protocols

routing protocol that affects the distribution tree must be protected

from attacks. In practice, this entails the protection of the control

messages exchanged amongst tree entities, resulting in the correct

operation of the tree. Examples of this include authentication of

control messages in MOSPF and in PIMv2. Although the aim is

uniform across all routing protocols, the methods used to achieve

tree protection are specific to each multicast routing protocol.

This area is covered in the current chapter.

Figure 8.1 Three components of multicast security.

8.1 The three components of multicast security 183

3. Membership access control at the subnet level. Membership access

control at the subnet level consists of membership authentication/

verification of the Querier (host) in a subnet, in the context of a

specific multicast group. In general, this consists of the host proving

its membership eligibility to a trusted authority in the subnet (e.g.,

an authentication server, the subnet router, or others).

Since this area is closely related to the second area above, it is

also covered in the current chapter.

One way to view the last two related areas is by considering the first

(distribution tree protection) as dealing with security issues ‘‘inside’’ the

multicast distribution tree, while the second (access control to the tree) as

dealing with security issues at the ‘‘edges’’ of the tree. The first area deals

almost exclusively with routers and interactions among routers, while the

second area deals with hosts and the first hop (last hop) routers that connect

the hosts to the distribution tree.

8.1.1 General types of attacks in multicast routing

One of the main factors that makes the basic IP multicast model [4] attractive

from the perspective of scalability is the anonymous receiver model

underlying it. In this model, any host in a subnet can join a multicast

group (through IGMP), by notifying its multicast router of its wish to join a

given multicast group.

The basic IP multicast model does not have any security features. Edge

multicast (subnet) routers do not maintain identification information about

the hosts that join the multicast groups, and they do not pass any

identification information about the host to upstream routers in the

distribution tree. The lack of maintenance of membership data (containing

host identification information) in the multicast distribution tree, including

the multicast (subnet) routers, allows IP multicast to scale to a large number

of participating hosts.

From the perspective of security, this lack of host identification

information represents a problem for access control. One of the possible

attacks that exploits the anonymous receiver underpinnings of IP multicast is

one in which a host simply joins a multicast group, without any intention of

using the data being delivered to it. In such an attack, the user/host

essentially extends or pulls the tree toward the subnet, effecting a wastage in

resources and state within all the affected routers. In this case, the encryption

of the multicast data does not provide any help, since the (encrypted)

packets still flow down the distribution tree to the malicious host.

184 Securing multicast routing protocols

Two general types of attacks that may be carried out to a multicast

distribution tree are as follows [5]:

1. Sender attacks: Here, the distribution tree is attacked by injection of

bogus packets with the correct multicast address, thereby causing

the packets to be sent to all receivers. The injection can occur at the

leaves of the tree (within subnets with host members) or anywhere

within the tree. This attack consumes bandwidth, since the packet

would be delivered to all host members. Although such attacks are

also possible within unicast, the impact is magnified in multicast

precisely due to the replication effect within the distribution tree.

2. Receiver attacks: Here nonmembers (from a data/group perspective)

simply join the group, causing the tree to expand, and multicast

traffic to be forwarded to them. Even if the traffic content is

encrypted by the source, the encrypted packets would still be for-

warded, thereby consuming bandwidth. The attackers then simply

discard the encrypted message, or may use it for cryptanalysis.

Both types of attacks result in the DoS to both the valid sender(s) and

receiver(s) in the multicast group.

8.1.2 Multicast routing and security

Routing security has been a contentious issue in the past due a number of

reasons. Router vendors and many ISPs do not perceive the security threats

to the Internet routing infrastructure as warranting solutions, which the

security community deems as minimal.

On one hand, many router vendors and ISPs believe that the security

problems that may arise within a routing domain can be solved using the

traditional humans- and- telephones approach. On the other hand, security

experts argue that the growth of the Internet and its applications will soon

outmode the humans- and- telephones approach, and that some security

features must be built into the routing protocol itself.

Here are some reasons often quoted by those reluctant to adopt protocol-

level security features:

w Among the service provider community, any unusual routing

behavior visible from their network operations center (NOC), such

as routing black holes, can be easily resolved through one network

administrator calling another, since these ISPs typically already have

peer relationships and SLAs.

8.1 The three components of multicast security 185

w Since the bulk of the Internet’s traffic today is Web related (i.e., HTTP

and/or TCP traffic), attacks to the DNS infrastructure would be more

attractive to the seasoned hacker. Thus, a hacker would get a greater

effect by attacking the global top-level DNS servers (and other DNS

servers), than by hacking into a router of an ISP.

w Distributed DoS attacks have historically been done against particular

entities (end points) in the Internet, and not the carrier itself. Since

many carriers and ISPs are only transport intermediaries, their main

focus is on bandwidth management and performance aspects of their

network. The end-point application of a connection is outside the

scope of their attention.

Notwithstanding these views, there are counter opinions that see the

Internet as a public infrastructure, and, in some cases, even a national

security infrastructure. As such, any security at the microlevel (e.g., router

and routing domain level) contributes to the security and robustness of the

Internet infrastructure as a whole. This latter view sees the use of manually

keyed MAC protection approaches on control packets in routing protocols as

being insufficient and unreliable. Security should be built into all network

protocol design, and not be added or retrofitted after the fact. A routing

domain should be self protecting, in the sense that it should only accept

authentic and authorized control messages, and that it should raise alarms at

the NOC when security checks and balances fail.

8.2 Overview of multicast routing

In general terms, a routing protocol establishes the best path of delivery of

datagrams (IP packets) from a source to a destination. In the context of IP

multicasting, the aim of a multicast routing protocol is to create a multicast

distribution tree, through which datagrams are delivered from one or more

sources (or senders) to one or more receivers. From a router’s perspective, the

router executes an instance of the routing protocol, in order to allow the

router to determine which interfaces to receive/deliver datagrams, and to

inform other routers about its view of the current state of the network.

From a domain’s perspective, the set of routers as a whole determines the

best path of packet delivery to end points (hosts) that reside in that domain,

and to end points that reside outside the domain. When a datagram is

destined to a single destination, that packet is called a unicast datagram and

the routing protocol is called a unicast routing protocol. When a datagram is

186 Securing multicast routing protocols

destined to a number of hosts that are members of a multicast group, that

datagram is typically referred to as a multicast datagram and the routing

protocol is referred to as a multicast routing protocol. In both cases, delivery is

based on a best-effort reliability of the IP datagram.

Multicast datagrams have a multicast address, which in IP version 4 (IPv4)

is the Class D address ranging from 224.0.0.0 to 239.255.255.255 (i.e.,

224.0.0.0/4). This address range is also known as the multicast group address.

A Class D address has its high-order four bits set to ‘‘1110,’’ with the

following 28 bits being the group ID. Multicast is different from broadcast in

that a broadcast address is used to send a datagram to all hosts within a

subnet.

A router typically has a routing table (or forwarding table) which

contains several fields, including the destination addresses, next hop routers

(toward a destination), and metrics. In essence, the router uses its routing

table to map datagrams at incoming interfaces to outgoing interfaces, with

the aim of processing the datagrams in as little time as possible. In many

cases, the multicast routing table is an extension of the unicast routing table,

in the sense that the multicast routing protocol makes use of and is

dependent upon the unicast routing table. However, in contrast to unicast

routing, in multicast routing a datagram may have to be forwarded to more

than one next hop routers. Abstractly speaking, a multicast router creates a

‘‘fanout’’ effect, where one datagram is replicated and sent out toward

multiple downstream routers. As a whole, a multicast routing protocol

creates a distribution tree, where each multicast router is a fanout point or

branch in the tree, and where the root of the distribution tree is the source

of the datagram. This is why the multicast routing table entries are usually

described in terms of (source, group) pairs, corresponding to the source

address and the destination multicast (group) address.

When a routing protocol spans multiple domains, they are usually

referred to as interdomain routing protocols. This is in contrast to intradomain

routing protocols that execute only within a single domain. Examples of

intradomain unicast routing protocols are the Routing Information Pro-

tocol (RIP) [6, 7] and the Open Shortest Path First (OSPF) protocol [8]. An

example of an interdomain routing protocol is border gateway protocol

(BGP) [9].

Another oft-used criterion for classifying multicast routing protocols is

whether the protocol is targeted at a dense or sparse population of receivers.

Examples of dense-mode multicast routing protocols are DVMRP [10, 11],

MOSPF [12, 13], and Protocol Independent Multicast-Dense Mode (PIM-

DM), [14], while examples of sparse mode multicast routing protocols are

PIM-SM [15], and Core-Based Tree (CBT) [1, 2].

8.2 Overview of multicast routing 187

In addition to a multicast routing protocol instance executing on

multicast routers, a group membership protocol is needed to allow a host to

indicate its wish to join/leave a multicast group. A group membership

protocol typically executes in hosts, and in the first hop multicast routers

that are nearest to the hosts.

In the following we look briefly at two multicast routing protocols:

DVMRP and PIM-SM. The reader is directed to [16] for more information on

routing protocols in general, and to [17] for multicast routing. In addition,

we briefly describe the IGMP and the recent Source Specific Multicast (SSM)

paradigm.

8.2.1 Classification of multicast routing protocols

There have been a number of proposed multicast routing protocols in the

past few years. Some have been more research oriented with very little

industry adoption, while others, though maybe less elegant, have gained

much ground in the industry. Although a complete review of all multicast

routing protocols is outside the scope of this chapter, in the following we

provide a classification and references for readers to follow up:

w Membership management protocol: IGMP;

w Flood and prune and dense mode protocols: DVMRP, PIM-DM, and

MOSPF;

w Core-based protocols: PIM-SM and CBT;

w Interdomain protocols: Border Gateway Multicast Protocol (BGMP)

and multicast source discovery protocol (MSDP).

Some of these protocols will be discussed below, while for information

on the others, the reader is directed to [17].

8.2.2 DVMRP

In networks that have plentiful bandwidth and the receivers are

densely distributed, ‘‘flood and prune’’ techniques may work quite well.

DVMRP [10, 11] is an example of a dense mode protocol. The protocol uses

the distance vector distributed routing algorithm to build per source-group

multicast delivery trees.

DVMRP implements the reverse path multicasting (RPM) algorithm [18] in

which a flood and prune approach is adopted. In the flood phase, the first

188 Securing multicast routing protocols

TE
AM
FL
Y

Team-Fly®

datagram for any (source, group) pair is flooded across the entire domain.

Directly attached routers in subnets (i.e., leaf routers) may then transmit

prune messages back toward the source if there are no group members on

their directly attached leaf subnets. The prune messages have the effect of

removing all branches that do not lead to group members from the tree,

thereby establishing a source-based shortest path tree.

Since the prune state for each (source, group) pair has an expiration time

in order to remove nonactive groups, for the remaining active (source,

group) pairs a subsequent datagram is then broadcast across all downstream

routers. The effect is that a new set of prune messages will be transmitted by

the leaf routers, thereby prolonging the source-based shortest path tree

associated with a given (source, group) pair.

DVMRP also allows a ‘‘graft’’ of a previously pruned branch of a group’s

delivery tree onto that tree again. Such a graft would occur in cases where a

router that had just sent a prune message for a (source, group) pair finds that

there are new members on the leaf subnet for that group. The router would

then send a graft message to the previous hop router for that source, which

in turn will cancel the previously received prune message. The graft message

is forwarded upstream hop by hop in a reliable manner (via a Graft-Ack

message and timeouts) toward the source, until it hits the nearest on-tree

router. Being a branch point on the tree, that router would then restore the

branch leading to the subnet in question that it previously pruned.

The reader is directed to [10, 11] for the full specification of the DVMRP

protocol. Details on RPM is discussed in [18], while an excellent discussion

on distance vector routing can be found in the classic work of [19].

8.2.3 PIM-SM

Sparse mode multicast routing protocols are aimed at environments where

the receiver population is sparsely distributed. Since sparse mode protocols

may be deployed across wide area networks (WANs), they use a different

strategy than dense mode protocols, and assume in advance that bandwidth

and reliability are at a minimum. The term ‘‘sparse’’ here refers not to the

lack of receivers in the group, but rather to the wide dispersion of the

receivers—possibly across wide geographic regions—which implies that

methods such as flooding of the network become impractical.

The PIM-SM protocol is an example of a multicast routing protocol

aimed at a sparsely populated region. Features of PIM-SM are [20]:

w PIM-SM maintains the traditional IP multicast service model of

receiver-initiated membership.

8.2 Overview of multicast routing 189

w PIM-SM uses explicit joins that propagate hop by hop from members’

directly connected routers toward the distribution tree.

w PIM-SM builds a shared multicast distribution tree centered at a

Rendezvous Point (RP), and then builds source-specific trees for those

sources whose data traffic warrants it.

w PIM-SM is not dependent on a specific unicast routing protocol:

hence the term ‘‘independent.’’

w PIM-SM uses soft state mechanisms to adapt to underlying network

conditions and group dynamics.

The PIM-SM approach is to require downstream members or receivers to

explicitly request to join a given multicast group. This is in contrast to the

dense mode version, which adopts a flood and prune strategy. At the heart of

the region is the RP. Each multicast group has a shared tree through which

receivers hear of sources. The RP is the root of this per-group shared tree,

called the RP tree. The shared tree (RP tree) is the set of paths connecting all

receivers of a group to its RP. A receiver on the RP tree receives packets from

all sources of the group, except those sources that were pruned off the RP

tree. For reliability, several routers may be configured in preparation to be

an RP. These are referred to as candidate RPs.

Each subnet that contains a member has a Designated Router (DR), which

is a PIM-router or a router that is running the PIM-SM protocol. The

designated router is the highest IP addressed PIM router on a multiaccess

LAN. Typically, the DR sets up multicast route entries, and sends

corresponding join/prune and register messages on behalf of directly

connected receivers and sources. The designated router may or may not

be the same router as the IGMP Querier (see IGMP discussion below). The

designated router may or may not be the long-term, last-hop router for the

group, or a particular source that is sending to the group. In fact, a router on

the LAN that has a lower metric route to the data source, or to the group’s

RP, may take over that role. Each group has exactly one RP, which is

selected from the RP-set using a mapping function from the group address

to one RP.

A member must indicate its wish to join a group using the IGMP protocol

to the PIM router (Designated Router) in its subnet, which would in turn

forward a PIM-join message upstream hop by hop to the RP of that group.

For hosts wishing to join a group, the DR has the task of forwarding join

requests upstream toward the RP. For the source or sender, the designated

router has the task of encapsulating the source’s datagrams (within

190 Securing multicast routing protocols

PIM-register messages) and unicasting it to the RP. The RP will in turn

decapsulate and transmit the datagrams through the tree to the receivers.

At this point, the RP may either join the source’s Shortest Path Tree (SPT)

or continue letting the designated router encapsulate data packets and

unicasting it to the RP, thereby having the designated router rely on the

shared tree emanating from the RP. Although the shared tree (RP-tree)

provides connectivity to the members of the group, it may not necessarily

provide the best delivery path across the network. To improve performance,

PIM-SM will allow receivers to ‘‘switch over’’ to a shortest path tree rooted

at the source, provided the receiver has already begun to receive data from

the source. This switchover is determined either by some threshold data rate

or by some other metric, although in fact the DR may be configured to

never switch over.

Other entities in PIM-SM that are involved in the running of a PIM

region are the bootstrap router (BSR) and the set of candidate RPs, from

which the RP is selected. The BSR is a dynamically elected router within a

PIM-SM domain responsible for constructing the RP set, and originating

bootstrap messages. The BSR for a PIM region constructs a set of RP IP

addresses—namely the RP set—based on candidate RP advertisements

received. The RP set information is distributed to all PIM routers in a domain,

in a bootstrap message.

The reader is directed to [15] for the current version of the PIM-SM

specifications, and to [20] for the previous specification, for a historical

perspective on PIM.

8.2.4 IGMP

Multicast routing protocols typically run on multicast routers, and thus a

method is needed to connect a host to its directly neighboring multicast

routers, in order for the host to indicate to the multicast routers which

groups it wishes to join. The protocol to carry out this function is called the

IGMP, which runs between hosts and their multicast routers.

In order to find out if there are still active members of a group in a given

leaf subnet, the multicast routers periodically sends out a host membership

query message (or Query for short). If multiple multicast routers are present

on the same leaf subnet or LAN, then one of them is elected to be the Querier

for that LAN. In this way the querier learns about group membership

information, and is therefore able to forward the multicast traffic of those

groups to its leaf subnet. Query messages are addressed to the all hosts group

(224.0.0.1). However, these messages have an IP TTL ¼ 1, which means

that the message is transmitted only to the directly attached subnet, and it is

not forwarded by other multicast routers.

8.2 Overview of multicast routing 191

In response, a host will return a Host Membership Report (or Report for

short) for each group to which it belongs. Note that the host will in fact send

a Report (for a group) by addressing it to the multicast group, thereby

allowing the Report to be heard by other hosts that are also members of that

group. Multicast routers will also hear this Report, since all their interfaces

are set to promiscuous mode. The Report has an IP TTL ¼ 1 which would

prevent the Report from being forwarded outside the subnet where the host

resides. In order to avoid host reporting of the same group reports, each host

must maintain a (random) delay timer for each group to which it belongs.

When hosts are waiting during their respective delay period and a Report for

the same group is heard from another host, then all of these waiting hosts

must reset their timers (for that group) to a new random value. This behavior

reduces traffic due to reports, and spreads the reports over time.

In IGMPv1 and IGMPv2 the multicast routers are not concerned about

specific hosts and the groups to which hosts belong. Instead, the routers only

want to know whether or not there is a member (at least one) of a group in

its subnet. This is true for multicast routers in general (i.e., a member is

present at an interface). The Querier in a subnet sends out IGMP Query

messages corresponding to a group on a periodic basis. If a matching Report is

not heard after a number of queries, the Querier then assumes that there are

no longer active members of that group in its subnet and the interface

corresponding to this group is removed. To prevent a new member host of a

group from waiting too long for a Query message, that host introduces itself

by immediately sending a Report to the group. This reduces the join latency

for cases where the host is in fact the only member of the group in the subnet

and thus where it will take some time for the data packets to arrive at that

subnet.

IGMP has evolved through three versions, with the current version

being IGMPv3 [21]. The other two versions are IGMPv1 [4] and

IGMPv2 [22].

IGMPv2 improves IGMPv1 by introducing a number of features. A

Querier election procedure is defined, based on the lowest IP address of the

multicast routers. A new Group-Specific Query message is introduced, allowing

query messages to be sent to a specific multicast group instead of all groups.

This Group-Specific Query message is particularly useful when used with

another new feature of IGMPv2: a new Leave Group message to be used by

hosts. When a host wishes to leave a given group, it sends out a Leave

Group message (for the group being departed from) to the all-routers

multicast address (224.0.0.2). This allows the Querier to immediately

inquire if the host was the last member of the group. The Querier does this

by sending Group-Specific Query messages to the same interface where

192 Securing multicast routing protocols

the earlier Leave Group message was received. If a Report is not heard for

that group, the Querier can thus remove the interface corresponding to this

group.

IGMPv3 introduces additional new features over IGMPv2. Notable is the

support for the Group-Source Report message, which allows a host to specify

the source from which it wishes to receive data. In particular, an Inclusion

Group-Source Report message allows a host to set the IP addresses of sources it

wishes to hear from, while an Exclusion Group-Source Report message allows

the host to ask for messages from a given source to be blocked. This is in

contrast to IGMPv1 and IGMPv2, where traffic from all the group’s sources

is received by a host. IGMPv3 also enhances the leave group message of

IGMPv2 by supporting a specific Group-Source Leave message. The Group-

Source Leave message allows a host to set the specific IP addresses of the

(source, group) pairs that it wishes to leave (in addition to the usual option

of simply leaving the whole group). The reader is directed to [21] for more

details on IGMPv3.

8.2.5 SSM

A recent shift in thinking within the multicast routing community has found

expression in the notion of Source Specific Multicast (SSM). Thus, SSM is not a

protocol as such, but rather a model and architecture to achieve more

practical and efficient multicast routing for the Internet. The basic model for

IP multicast in [4] allows any source (even anonymously) to send to the

group by simply transmitting an IP datagram with the multicast address in

question. Thus, the basic IP multicast model could be referred to as Any

Source Multicast (ASM), since any source can send. In contrast, in SSM, a

datagram with source IP address S and single source multicast destination

address G is delivered to each upper layer ‘‘socket’’ that has specifically

requested the reception of datagrams sent to address G by source S, and only

to those sockets [23]. SSM uses the notion of a ‘‘channel,’’ which is

essentially the network service identified by ðS;GÞ, for SSM address G and

source host address S. It is important to note that SSM provides network

layer support for one-to-many delivery only, although, like the ASM model,

SSM is receiver driven, and the set of receivers is unknown to the sender.

The motivations for SSM are explained as follows [23]:

w Elimination of cross delivery of traffic when two sources simulta-

neously use the same source-specific destination address. The

simultaneous use of an SSM destination address by multiple sources

is explicitly supported.

8.2 Overview of multicast routing 193

w Avoidance of the need for interhost coordination when choosing

source-specific addresses.

w Avoidance of many of the router protocols and algorithms that are

needed to provide the ASM service model.

The reader is directed to [23] for further information on the motivation

and architecture of SSM. A proposal to modify PIM-SM to conform to the

SSM model has been proposed in [15].

8.3 Security requirements in unicast and multicast routing

Although each routing protocol—either unicast or multicast—has its unique

protocol behavior and therefore security requirements, there are a number

of generic or common requirements that would need to be fulfilled in any

domain executing these routing protocols. Here, it is useful to distinguish

between control packet authentication at the routing protocol level

(intradomain) and routing information origin authentication at the AS

level (interdomain). These requirements are as follows:

w Protection of control messages. The term ‘‘protection’’ here means the

following functions:

w Authentication, either group authentication or source authentication.

w Integrity protection, against illegal modifications.

w Replay protection, against replay of valid control messages or other

bogus messages.

In essence, all control messages exchanged intradomain (and also

interdomain) should be protected against modifications, and routers

should be able to detect forged ones and react to them.

If symmetric key cryptography is used, then group authentication is

afforded, while if asymmetric key cryptography is deployed, then

source authentication can be provided. Routers are thus provided with

some assurance that control messages were sent by other legitimate

routers in the domain that are in possession of the correct keys.

Previous efforts relevant to this area have been reported in [24–30].

Note that confidentiality of routing information is rarely required,

although encryption may have its uses.

w Origin authentication of routing information. When route information is

advertised or propagated across several domains or AS, origin

194 Securing multicast routing protocols

authentication of the domain or AS issuing the route information must

be provided. Thus, when an AS is forwarding route information from

another AS, the recipient must be able to know the original AS that

created the route information. This requirement is particularly

relevant for interdomain routing protocols, such as BGP in unicast,

and MSDP or BGMP in multicast.

In unicast interdomain routing, the BGPv4 [9] allows two BGP

routers (border routers) to advertise to each other the available

routes in their respective ASs. Once a route is learned, the

information may be propagated further to other BGP routers of

other ASs. The problem here is that an AS several AS-hops away does

not have the ability to verify that the information has not been

modified since it was published by the origin AS. The original BGP

protocol provides only minimal security in the form of shared secret

key–based message digest computation of the TCP connection

between two border routers [31].

The Secure-BGP (S-BGP) protocol [32] has attempted to address

the security deficiencies of BGP, which have been described in more

detail in [33]. S-BGP introduced certificates and digital signatures to

allow an AS to prove its ownership of IP address blocks and AS

numbers, to prove its identity, and to allow a BGP router of an AS to

prove the router’s identity and its authorization to ‘‘speak’’ on behalf

of its AS. S-BGP also introduced a new BGP transitive path attribute,

which carries digital signatures (or ‘‘attestations’’) over the routing

information sent in a BGP update message. A recipient of the update

can thus use the signature and certificates to verify the address

prefixes and path information mentioned in the message.

S-BGP, however, has not gained much adoption by ISPs for a

number of reasons, including the oft-cited increase of message sizes

(due to digital signatures and certificates), and the need of AS-level

PKIs. Other previous efforts in this space have been reported

in [34, 35].

w Source authentication for domainwide sending. In many routing pro-

tocols, certain entities are given the task of sending out messages to

all other routers, either via a domainwide broadcast or via a special

multicast group. A group-shared symmetric key approach is

insufficient for message integrity protection, as it allows any router

(e.g., one that has been compromised or is malfunctioning) to also

send out the message carrying a MAC computed using the shared

group key. Recipient routers would not be able to verify the

8.3 Security requirements in unicast and multicast routing 195

authenticity of the message as coming from the authorized sender.

Thus, source authentication is required in this case, which can be

achieved using public key–based digital signatures.

w Efficient key management for routers. Given that cryptographic methods

are the most likely techniques to be used to provide control message

authentication, it follows that an efficient method for managing keys

is required for routers.

Key management is necessary for a number of reasons, two of

which are as follows. First, a router could be compromised, and its

key could be misused. Thus, there must be some way to revoke and

replace the keys within routers that are suspected of having been

compromised or tampered with. Second, cryptographic keys have a

limited lifetime from the perspective of the amount of traffic to which

a key is applied, even when control messages may be considerably

less in volume compared to data packets. Although the danger from

cryptanalysis may be low, keys must be able to be replaced regularly

according to some given policy.

If public key cryptography is to be utilized within routers,

efficient methods to manage digital certificates are required. Since

routers would typically use device certificates, manual installation

would probably be the easiest course of action for initial deployment.

However, since routers may be added to or removed from a domain,

a more automated certificate management approach may be

needed. The issue of PKI management brings with it other related

issues, such as the CA selection for intradomain and interdomain

messages.

w Detection of unusual routing behaviors. Although domainwide fluctua-

tion in routing behaviors can be detected by human operators,

additional router-level functions need to be added. These may range

from notification (to the operator) caused by failures in control

message authentication, to more sophisticated approaches based on

sudden changes in traffic volumes within a router’s incoming and

outgoing interfaces.

A concrete example in multicast routing would be repeated

joins and prunes to the same group from the same subnet (or subtree

of the distribution tree) that affects bandwidth in that part of the

network. Other examples would be a DoS attack in the form of

packets sent to all the Class D multicast addresses. In the context of

the PIM-SM protocol, the RP represents a unique target of attacks

from bogus register messages and other threats. Another more

196 Securing multicast routing protocols

subtle attack is one in which the attacker attempts to control or

influence the rates of traffic experienced by honest members of the

group.

w Containment of security breaches. Although they are difficult to define

and measure, security breaches within one domain should ideally be

confined as much as possible to that domain, with little or no effect

propagated to other domains. At the AS level, this also implies that

the autonomy of the AS has to be followed through, in that the

security mechanisms and policies deployed in one AS should not be

dependent on other ASs. A concrete example would be the situation

in which a DoS attack occurring in a transit AS affects adjacent ASs.

8.4 PIM-SM security

In this section we look more closely at the security issues and possible

solutions for the PIM-SM protocol. A brief introduction to PIM-SM

was provided in Section 8.2. However, further information on PIM-SM

may be found in [17, 36].

The section is divided into several parts. The first part (Section 8.4.1)

provides some historical background on the efforts in the IETF. The second

part (Section 8.4.2) discusses the proposal put forward by the PIM working

group in the IETF to improve the security of PIM. The third part

(Section 8.4.3) discusses a subsequent proposal called Simple Key Management

Protocol (SKMP), to manage the keys used with a PIM region. This is

followed by a discussion on the security issues around the revised PIM

specification (Section 8.4.4), for which some security-related suggestions

are provided (Section 8.4.5).

8.4.1 Background

The PIM Working Group in the IETF began addressing security issues in PIM-

SM in [37]. There, the authors identified the need for control message

authentication, and proposed a key arrangement (see Section 8.4.2). The

revised PIM-SM specification [15] provided further discussion on security

considerations, and a suggestion to use IPsec AH or ESP and a manual

method for deploying SAs among a group of routers (see Section 8.4.4).

In studying the definition and use of SAs in IPsec, the authors of the

revised PIM-SM [15] rediscovered something that has long been understood

within the multicast security community in the SMuG Research Group

8.4 PIM-SM security 197

(in the IRTF) and the MSEC Working Group (in the IETF), namely, that a

pair-wise SA (as defined by IPsec) is unsuitable for multisender and

multirecipient messages. Indeed, it is precisely this issue that motivated the

development of the GSA in [38, 39], which was then introduced into the

SMuG Research Group as [40] and later into the MSEC Working Group

in [41]. The immediate applicability of GSAs to PIM routers seeking to share

a single (group) SA is straightforward, as suggested again more recently

by [42].

In the following, we will discuss PIM security in a chronological fashion,

starting with the PIMv2 key arrangement as described in [37] (Section 8.4.2),

and the accompanying key management proposal of [43] (Section 8.4.3),

and ending with the security issues in the Revised PIM-SM specifications

(Sections 8.4.4 and 8.4.5).

8.4.2 PIM authentication

The discussion in the following sections is based on the PIM authentication

draft [37] published by the PIM Working Group in the IETF. The PIM

authentication draft also suggested a key arrangement for authentication

keys, to be applied for control message authentication within a PIM domain.

The aim of the PIM authentication draft is that when security is enabled, all

PIMv2 messages will use IPsec AH [44]. The authentication mechanism

suggested was HMAC-MD5-96 [45, 46] and HMAC-SHA1-96 [47].

The PIM authentication draft identifies the following entities in a PIM

domain that require keys: the bootstrap router (BSR), the RP, the designated

router, and other PIM routers. All keys are relevant and recognized only

within one PIM domain. The keys are as follows:

w BSR public key. All BSRs own an RSA [48] key pair1 and use the BSR

private key to sign an entire bootstrap message, while other PIM

routers only have the BSR public key to verify the signature. This

allows only authorized candidate BSRs to become a BSR. This RSA

public key pair is denoted here as ðSKbsr; PKbsrÞ.

w Equal opportunity key. All PIM routers in the same domain share a

single private (symmetric) key used to compute digests or MACs for

the protection of PIM control messages. This key is denoted as Keq.

1. Although the first version of the proposal in 1998 required one RSA key pair to be shared by all BSRs, the

second version of the proposal (IETF-45, July 1999) recognizes the need for each BSR to have a unique RSA

key pair.

198 Securing multicast routing protocols

TE
AM
FL
Y

Team-Fly®

This key is used for per hop authentication of control messages by

PIM routers in a given PIM domain.

w RP-key. All RPs and BSRs share another private (symmetric) key,

known as the RP-key and denoted as Krp. No other routers have this

key. For candidate RP advertisements, the digest is only calculated

with the RP-key Krp (instead of the equal opportunity key Keq). This

achieves the effect that only the authorized candidate RPs can

advertise their candidacy to the BSR.

For convenience, the keys of [37] will be referred to as primary keys in

order to distinguish them from other cryptographic keys.

8.4.3 SKMP for PIMv2

SKMP for PIMv2 [43] attempted to fill in a gap that the PIM authentica-

tion draft [37] introduced, namely, the management of the cryptographic

keys in a PIM domain. The approach of SKMP is to define additional

cryptographic keys to support the main PIM keys of [37], which are referred

to in SKMP as primary keys. The supporting keys themselves are referred in

to in SKMP as key management keys (KM-keys). Figure 8.2 shows both sets of

keys. SKMP introduces a DKD into the picture, which is the trusted entity

that controls key management for a PIM domain.

The intent is for the DKD to be a separate entity from other PIM entities

such as the BSR and RP. This is so as not too overload those PIM entities—

which are mainly routers—with key management functions. In addition,

DKD is assumed to be a trusted entity with stronger security hardening

against attacks. Given that the multiple routers can be candidate BSRs and

RPs, a more permanent entity (such as a key server) is more attractive from a

performance and security cost perspective. However, there are of course

situations where the DKD function could be assigned to a PIM entity.

SKMP restricted public keys

SKMP uses the notion of restricted public keys, in the sense that copies of

public keys of certain entities are (manually) assigned to (or known by) a

restricted type and number of PIM entities. For example, since only certain

messages are sent by the BSR to the RP, then only the RP (and candidate

RPs) should know the BSR’s public key used to verify or decrypt this

message.

This approach allows the option of using encryption by the sender (e.g.,

the BSR) using a private key, whose decryption is possible only by those in

8.4 PIM-SM security 199

possession of the matching public key. These keys will be denoted as

restricted public keys in the ensuing discussions. Furthermore, this approach

lends itself to a PIM domain deploying a closed private CA for their PKI

management, where the public keys and certificates are never known or

advertised outside the PIM domain or region.

SKMP key management approach

The KM-keys in SKMP are long-term keys used to protect the delivery of the

primary keys. The practical thinking here is that since the KM-keys are used

to protect the infrequent rekeying of the primary keys (i.e., far fewer in

frequency than the use of the primary keys on control messages), the KM-

keys need not themselves be rekeyed frequently.

The KM-keys in SKMP are as follows:

w DKD public key. The DKD is assigned the RSA public key pair (PKdkd,

SKdkd). Here, the public key PKdkd is only known by PIM routers

within the domain. Only the DKD knows the secret key SKdkd.

Figure 8.2 Key management keys in SKMP.

200 Securing multicast routing protocols

No other entities know these keys. This allows the DKD to send

encrypted (and/or signed) messages which will be readable only by

PIM routers.

w RP-BSR public key. All candidate RPs (namely, the routers from which

the set of RPs will be selected) and the BSR are assigned the restricted

RP-BSR public key PKrpbsr, whose matching secret key (namely,

SKrpbsr) is only known to the DKD. The DKD also knows the public

half PKrpbsr. Note that all RPs know the same public key PKrpbsr.

In essence, the RP-BSR secret key SKrpbsr is used for the DKD to

communicate securely with the BSR and the RPs (including the

candidate RPs).

SKMP also proposed the use of two long-term multicast groups which

are administratively scoped [49] for use only within the single PIM domain.

The first would be used to send keying material to PIM entities involved in

the bootstrapping of PIM, and the initial key dissemination. The second

group would be used to send keying material to the larger group of routers

running the PIM protocol. This is depicted in Figure 8.3. Key management

would then be performed using a separate group-key management protocol,

such as those described in Chapters 5 and 6.

The reader is directed to [43] for a detailed discussion on the key

management approach for PIMv2 proposed by SKMP.

Figure 8.3 Multicast groups for key management.

8.4 PIM-SM security 201

8.4.4 Revised PIM-SM: Security issues

The recent revised PIM-SM specification [15] identifies a number of security

issues in a more pronounced manner than previous versions of the PIM-SM

specification. In particular, the revised specification considers potential

attacks to the following types of messages (see Section 8.2.3):

w Forged Join/Prune messages. These are the messages issued by a DR

toward the RP. As mentioned earlier, this has the effect of either

pulling the tree into a subnet that has no legitimate members, or of

pruning the tree from a subnet that has legitimate members [5, 50].

w Forged Hello message. This is the message sent by a router in the

process of being a DR. A router that can forge a Hello message can

effectively set itself up as the DR in the LAN, particularly in the

absence of Assert messages. Since a DR has an important role in a LAN,

including forwarding group traffic to that LAN and register

encapsulating (to the RP) any traffic sent from legitimate hosts in

that LAN, this issue is a important one for PIM security.

w Forged Assert message. An attacker (host or router) that is able to send

a forged Assert message can trick the legitimate designated forwarder

to stop its task of forwarding traffic to that LAN, effectively starving

legitimate host members downstream.

w Forged Register message. This is the message sent by the DR to the RP

which has (encapsulated) data from the source. An attacker that is

able to send a forged Register message can trick the RP to

subsequently forwarding bogus traffic onto the distribution tree.

w Forged RegisterStop message. A forged RegisterStop message has the

effect of preventing a legitimate DR from registering packets (sent

from legitimate hosts downstream) to the RP, effectively preventing

those legitimate hosts from being able to send to the group.

Following [37], the revised PIM-SM specification also points to the need

of control message authentication using either IPsec AH or IPsec ESP to solve

the previous list of potential attacks. However, it goes further than [37] by

suggesting specific ways to deploy the IPsec parameters (e.g., SPI and SA):

w Link-local PIM messages. The link-local messages here are the Hello,

Join/Prune and Assert, which are all sent to the special all-PIM-routers

group at address 224.0.0.13. Here a single IPsec SA is to be used for

authentication of all link-local messages on a link, with the IPsec

202 Securing multicast routing protocols

replay option being enabled. However, there is an inherent problem

with using a single (identical) unicast SA for a many-to-many

communication, of which the special all-PIM-routers group is an

example.

In simple terms, the main issue with this approach is the fact that

the (unicast) SA model as it is defined in [51] is simply unsuitable for

group communications in which there are multiple senders and

multiple receivers. This problem was reported earlier in [52], and is

precisely the issue that is addressed by the MSEC Working Group in

the GDOI effort.2

As an illustration, in the PIM-SM scenario, a PIM router (say,

Router A) will receive link-local messages from other PIM routers (say

Router B, Router C, and Router D) in the domain. Each of these

routers will also receive messages from the others, hence representing

a many-to-many communication instance. As defined in the IPsec

specification, Router A will use the triple value <SPI, Destination

Address, ProtocolType> to index into its SAD and the SPD, in order to

finally locate the suitable key (in its possession) to apply to the

message. Since there is only a single (identical) SA installed at all the

routers for all link-local messages, Router A will not be able to

distinguish the sender of any given PIM message, as at the IPsec level

only the destination address (namely, a multicast address) is used to

index into the SAD/SPD. Granted, IPsec could also scan for the source

address, but such behavior is not part of the standard IPsec imple-

mentation, and thus cannot be guaranteed across all router vendors.

Furthermore, since a single SA is used in Router A for many

senders, the IPsec sequence numbering for replay protection is open

to collisions due to the fact that each sender (Router B, Router C, and

Router D) will maintain its own sequence numbers. This may, in

turn, result in legitimate packets being dropped by Router A.

w Bootstrap messages. A BSR sends out bootstrap messages to allow PIM

routers to map group addresses to RPs. Since the BSR is elected, only

a BSR should be able to send out such messages. Thus, source

authentication in this case is paramount.

2. As of this writing, the IPsec ESP specification is being updated to reflect a number of changes, including better

support for IP multicast traffic. More specifically, each entry in the SAD must now indicate whether the SA

lookup makes use of the source and destination IP addresses (represented by two bits). Although this goes a

long way to support SSM, there remain some open issues in ASM traffic processing, in regard to the use of

single SA for multisender multicast groups.

8.4 PIM-SM security 203

The recent work of [42] corrects the digital signature proposal

of [43] by suggesting that source authentication for bootstrap

messages be done at the PIM level, rather than at the IPsec level.

This is because the message is relayed from router to router and a

new packet is created at each hop. Therefore, origin authentication

would be lost if each router were to create a new packet and apply

IPsec. Hence, a digital signature at the PIM level would allow the

signature to be carried as part of the PIM payload from the BSR to

the intended recipients (PIM routers), which can then be assured of

the source authenticity of the information in the payload.

8.4.5 Revised PIM-SM: Possible solutions

As mentioned in Section 8.4.4, the revised PIM-SM specification has seen

the need for a group shared SA. However, as explained above and also in

Chapter 4, the IPsec definition of a unicast SA does not fit with the many-to-

many communications mode.

Bearing in mind that security functions come at a cost, and are best

integrated into the design of a protocol, there a number approaches that

could be adopted by implementers of PIM-SM:

w Shared SA with PIM-level sequence number. In this approach, the IPsec

sequence number would be ignored, and replay prevention would be

achieved using a PIM-level sequence number as part of the PIM

message payload. The shared (unicast) SA would be manually

configured into each router.

This would allow for immediate deployment without having to

resort to modifying IPsec. The cost here would be additional PIM-SM

design effort, and implementation of the sequence counter as part of

PIM-SM.

w GSA and GDOI. Since the GSA model [38, 39] and the GDOI protocol

[41] were developed for SA and key management in multiparty

communications, both lend themselves for use in PIM.

Here, each router would have to establish a Category 1 SA

(unicast) with the GCKS, under which a protected download of the

following items would occur:

w A unique predefined Category 3 SA to send data (i.e., PIM

messages) to other routers.

w N predefined Category 3 SAs to receive data (i.e., PIM messages)

from other N routers.

204 Securing multicast routing protocols

Other combinations based on the basic GSA are also possible. The

work of [53] suggests ways for a router to indicate that it is a sender,

and to which group it will be sending.

w Security at the PIM level. Another possibility would be to apply all

security functions, including digital signatures, at the PIM level,

thereby reducing or removing dependence on security features

provided by the lower layers of the protocol stack (e.g., IPsec).

Each of the above possible solutions has its advantages and difficulties,

either technical, or due to deployment considerations. Of the three, the most

promising would be the GSA and GDOI approach, since the GDOI protocol is

designed for one-to-many multicast. This would entail minimal changes to a

PIM-SM implementation, and would allow PIM-SM to rely on GDOI as a

separate layer underneath it. The cost would be that several instances of

GDOI would need to run in a PIM-SM domain to match the many-to-many

model of control message distribution among PIM entities. This may perhaps

require that extra state information and keys be maintained by PIM-SM

entities. However, this approach may be tolerable compared to adding

security specifics into the PIM-SM protocol, such as sequence numbering

and other mechanisms.

To conclude this section, it is clear that there are still a number of broad

security issues and deployment problems for multicast routing. Some are

unique to PIM-SM, but others are common to several routing protocols (e.g.,

securing IP packets for multireceiver communications). One point is clear,

however, that security must be taken into consideration from the earliest

stages of any protocol design effort. Security should not be relegated as an

afterthought when the protocol is almost complete or mature, or, even

worse, when it is already shipping as a product.

8.5 MSDP security

The aim of MSDP is to allow interdomain multicast routing through the

sharing of source information between routing domains. As described

in [54, 55], MSDP is a protocol to connect multiple PIM-SM domains

together, where each PIM-SM domain uses its own independent RP(s) and

does not have to depend on RPs in other domains. The MSDP approach has

the advantage that each PIM-SM domain is thus independent of other

domains, and that domains that contain only receivers (no senders) may

obtain data from groups without having to advertise the group membership.

8.5 MSDP security 205

The source discovery from one domain to another is achieved through

peering between MSDP-enabled PIM-SM routers in both domains. When a

domain D1 learns of a source in domain D2, the normal source tree building

mechanism in PIM-SM will be used to deliver multicast data over an

interdomain distribution tree. The learning of sources in other domains is

achieved through the use of a Source-Active message which is sent among

MSDP peers. Thus, when an RP (say, RP1) in a domain (say, D1) learns of a

new sender/source within its own domain D1 (through PIM Register

messages), RP1 will announce the new source to the MSDP peers (say, RP2)

by sending a source-active message to RP2. The source-active message

contains the source address (of the new sender), the group address (to

which the sender is sending), and the IP address of the RP announcing it

(namely, RP1 in domain D1). The inclusion of the address of the

announcing RP (here RP1) allows other RPs in other domains to

communicate directly to the announcing RP (RP1).

When an MSDP peer (say, RP2 in domain D2) receives a new source-

active message (say, from its MSDP peer RP1 in domain D1), it must

propagate it to other RPs that are MSDP peers, away from the originating RP

via a process referred to in [55] as peer-Reverse Path Forwarding (RPF) flooding.

In addition, the MSDP peer (namely RP2) must also check to see if there are

any group members in domain D2 that are interested in any group an-

nounced within the newly received source-active message. This is done by

the RP2 checking for an (*,G) entry with a nonempty outgoing interface list,

which implies that some system in the domain D2 is interested in the group.

If there is such an entry, then the RP (RP2) must trigger a (S,G) join

event toward the data source in the same manner as when a Join/Prune

message was received addressed to the RP itself. The effect of this is setting up

a branch of the source tree to this domain D2, and subsequent data packets

arriving at RP2 via this tree branch are simply forwarded down the existing

multicast shared tree inside domain D2. Leaf routers can then join the source

tree using the PIM-SM protocol. Figure 8.4 attempts to show this process.

A brief analysis of the security issues in MSDP (as specified in [54]) has

been reported in [56], based on the assumption that the same key

arrangement of [37] for PIM domains is deployed. The security analysis

essentially points to the need of source authentication (or origin authentica-

tion) for source-active messages, as these messages are in essence

interdomain advertisements.

Since RPs make up the set of MSDP peers, and since source-active

messages are propagated to other MSDP peers away from the origin, one

possible solution is to deploy public key cryptography and digital signatures

at the PIM level, for the payload of the source-active message. Thus, when an

206 Securing multicast routing protocols

MSDP peer (say, RP2 in domain D2) receives a new source-active message

(say, from its MSDP peer RP1 in domain D1), it should verify the signature of

RP1 before it propagates the information to other MSDP peers (say, RP3).

If the digital signature was applied to the source-active message at the PIM

level (instead of at the TCP level), RP2 could propagate the source-active

message unchanged, and the next recipient (RP3) could verify the origin of

the source-active message (namely RP1). This approach provides stronger

security compared to the simple HMAC preshared key approach commonly

advocated for TCP connections. The reader is directed to [56] for further

discussion of MSDP security.

8.6 IGMP security

As mentioned in Chapter 1, the second important area in routing

infrastructure protection is controlling access to the multicast distribution

tree. This concerns not only the issue of authentication of messages used by

membership protocols at the edge of the tree (e.g., IGMP [22]) at the

Figure 8.4 MSDP overview.

8.6 IGMP security 207

network layer, but also the issue of authorization, by which a host proves to

the tree that it is entitled to join the tree of a particular multicast group.

The problem of membership management security in IP multicast is a

multifaceted one, as it involves a number of factors in its actual application.

The basic IP multicast model of [4] focused on the method by which a host

would indicate to the multicast router the group(s) that host wanted to send

to or receive from. In that original design, a host could even send to a group

without receiving from it.

This design is very scalable, as the multicast distribution tree could

extend to any part of the network (be it a domain, an AS, or even the whole

Internet), with receivers on one part of the tree being unaware of other

receivers in a different part of the tree. Furthermore, since membership

management was perceived to occur at the edges of the multicast

distribution tree, the protocol implementing this function could be

independent from the multicast routing protocol that creates the tree. As

an example, version 2 of the IGMP protocol [22] essentially provides a

signaling mechanism for hosts to indicate their wish to join a given group

with a specific source. IGMPv2 does not carry or convey membership access

control information in any form, nor does it carry or convey policies

regarding group membership.

Multicast membership management security (more loosely referred to as

IGMP Security) is difficult to define because it represents the meeting point

of several factors, including user/hosts with different connection speeds,

network topologies with various restrictions, different (transit) ISPs and

routing policies, and various service models used for different multicast

service models.

Here, we adopt the following definition of membership management

security: It is the authorized access of identified/authentic users/hosts to

resources (connectivity, router resources, and data access) on a network

(run by carriers or ISPs) for a given multicast application that provides

security appropriate to the demands of the application.

There are differing opinions as to which level of security is required for

membership management. What is clear, however, is that techniques and

solutions must be developed and made available, from which multicast

applications can choose as appropriate to their specific needs. For example, a

service providing multicasted stock quotes will have different security

requirements from a service providing video-on-demand (VoD), which will

again be different from a service providing a real-time group chat or

neighborhoodwide multiplayer game. Some ISPs may not care how much

traffic a user consumes, while others may care about possible waste of

bandwidth by users.

208 Securing multicast routing protocols

TE
AM
FL
Y

Team-Fly®

8.6.1 Membership authorization and authentication issues

If we accept the notion that a user/host needs authorization to request a

multicast router to join a particular group, it follows that some entity must

have the power or authority to make the decision for that user/host. This

brings into the picture a number of possible authorities that may make that

decision. In the case of multicast applications, the main entities that have a

vested interest are two, namely, the network service provider (e.g., ISP) and

the content provider (e.g., PPV provider). The first provides access to the data

packets at the network layer through the use of various network protocols,

while the latter provides access to the data content through the use of

various cryptographic protection algorithms and key management protocols.

On the abstract level, regardless of which authority made the decision

for a given host, there must be agreement or alignment between the

authority that provides the network services (including the multicast

distribution tree) and the authority that provides access to the content

being multicasted. In other words, before any security methods for multicast

can be deployed there must be some mutual agreement between the

network service provider (e.g., ISP) and the content provider (e.g., PPV

provider). This is the basis for the preliminary proposal of [5].

Thus, in the abstract design, a secure group membership management

protocol must at least provide a method for the following:

w Authorization. A host (or the application on the host) must ‘‘prove’’ to

the distribution tree that it has permission to send to and/or receive

from a given multicast group G.

w Host identification/authentication. A host (or the application on the host)

must ‘‘prove’’ to an entity representing the connection point to the tree

that it is who it claims to be. This entity is most likely to be the closest

multicast router or the DR, which in turn may rely on another entity

[e.g., Authentication Authorization Accounting (AAA) server] to

verify both the host identity information and the authorization claims.

This requirement is important particularly in shared medium LANs or

subnets, where other hosts may be able to intercept or forge IP packets.

w Message authentication. Control messages exchanged between a host

and the multicast router (representing the connection point to the

tree) must, of course, be protected against illegal modifications, and

possibly have source authentication.

It is also important to note that the above requirements may be fulfilled

at different levels of the communications stack. Thus, for example, there

8.6 IGMP security 209

could be a case where the network (distribution tree) does not wish to deal

with authorization since bandwidth is plentiful, and that authorization

occurs at the application level. In this case, the distribution tree could be

oblivious to hosts connecting to it. Another scenario would be where

the multicast group is short lived and where the data traffic is encrypted from

the source. In this case, the distribution tree and the membership

management protocol at the tree’s edges may not care about providing

strong security, since the session is short and all states in the routers

pertaining to that session would soon be purged in any case.

8.6.2 Membership authorization approaches

The work of [5] provides a preliminary investigation into the notion of

multicast membership authorization. The method to convey authorization

for a host to join a group is the multicast access token. The KD is the assumed

point of convergence or agreement between the two authorities (namely,

the network service provider and the content provider). This is shown in

Figure 8.5.

In Figure 8.5, when a user/host (sender or receiver) wishes to join a

group (whose value-carrying data is assumed to be encrypted), it must first

obtain the group key from the KD and, at the same time, obtain a proof of

membership from the KD (as the content provider authority). This proof is

then presented to the network service provider (ISP) at the time when the

host requests (at the network level) the multicast router to join the group.

This is step 1 of Figure 8.5. This proof of membership is the access token.

The KD must provide the authorization entity (e.g., multicast routers,

AAA server) in the network with a matching list of authorized hosts and

other security parameters. This is step 2 of Figure 8.5. Alternatively, the KD

itself could take this role, eliminating the need of a separate authorization

entity. Note that the notion of an authorization entity was also proposed by

the work of [57].

At this point, the authorization entity could disseminate copies of the

authorization information to the multicast routers in the domain through a

special group (e.g., the all-multicast-routers group in PIM-SM), as shown in

step 3 of Figure 8.5. This was the approach suggested in [50, 58] in the

specific context of the PIM-SM protocol in which PIM routers were already

in possession of a cryptographic key (Keq in Section 8.4.2). Alternatively,

each router could retrieve the information periodically from the authoriza-

tion entity or query it as needed.

In step 4, the host presents the access token to the multicast router, as

the connection point to the distribution tree. The multicast router verifies

210 Securing multicast routing protocols

the authenticity of the access token, and checks the authorization

information carried in the token. This check could be done against a

copy of the authorization information cached at the multicast router, or

the multicast router could query the authorization entity. If the host is

authorized to join the group, then the network layer membership protocol

(e.g., IGMP) can begin to execute.

This concept of a user/host obtaining authorization before requesting a

router to join is also adopted in a more elaborate manner in [59]. There,

certificates and PKIs play an important role in the design, and the group key

manager (GKM) entity (see Chapter 5) is also proposed for reauthorizations.

The recent work of [60] proposes a kerberos-like approach, whereby tickets

are used for hosts to obtain authorization. The reader is directed to [59, 60]

for further details on each design. In the context of IPv6, the work of [61] has

begun to address possible solutions for multicast and anycast in IPv6.

Figure 8.5 Multicast access token concept.

8.6 IGMP security 211

8.6.3 Message authentication approaches

Once the host is connected to the tree and is executing the IGMP protocol

with the router, IGMP messages must be protected against modification and

forgery. This introduces the need of IGMP message authentication. Similar to

other protocols in the Internet, the IGMPv3 [21] protocol malfunctions in

the face of forged or bogus control messages. The IGMPv3 specification

provides some examples of specific scenarios (see Section 8.2.4 for an IGMP

overview):

w Query Message. A forged Query message from a machine with a lower

IP address than the current Querier will cause Querier duties to be

assigned to the forger. If the forger then sends no more Query

messages, other routers’ Other-Querier-Present timer will time out,

and one will resume the role of Querier. During this time, if the

forger ignores Leave Messages, traffic might flow to groups with no

members for up to a period of time specified by the Group

Membership Interval.

w Report messages. A forged Report message may cause multicast routers

to think there are members of a group on a network when there are

not. Forged Report messages from the local network are meaningless,

since joining a group by a host is generally an unprivileged operation,

so a local user may trivially gain the same result without forging any

messages. Forged Report messages from external sources are more

troublesome.

A forged Version 1 Report message may put a router into

‘‘version 1 members present’’ state for a particular group, meaning

that the router will ignore Leave messages. This can cause traffic to

flow to groups with no members for up to a period of time specified

by the Group Membership Interval. This can be solved by providing

routers with a configuration switch to ignore Version 1 messages

completely. This breaks automatic compatibility with Version 1 hosts,

so should only be used in situations where ‘‘fast leave’’ is critical.

w Leave messages. A forged Leave message will cause the Querier to send

out Group-Specific Queries for the group in question. This causes

extra processing on each router and on each member of the group,

but it cannot cause loss of desired traffic.

Although mutual authentication between a host and a multicast Router

(or between any two entities in general) is perhaps best provided using a

public key–based approach, often the message volume and the network

212 Securing multicast routing protocols

conditions render authentication based on symmetric key MACs to be the

most economic option. Thus, the host and the multicast router would share

(pair wise or group wise) a common symmetric key which is then used to

compute a keyed hash of messages exchanged between the host and the

multicast router.

In [5] this shared symmetric key is referred to as the IGMP-key. This

shared key could be established at the router either through a key

negotiation protocol (such as IKE), or a predefined key being delivered

from the KD to individual routers. The work of [62] proposed a message

format in IGMPv3 that would carry the MAC values and other parameters.

8.6.4 Open issues

At this point it is worthwhile to consider a number of specific open issues

regarding authorization via the access token concept and the need for

authentication of IGMP messages. As noted in [53] some IGMP messages are

in fact broadcasted in the local subnet, having the characteristics of group

messages, and thus have the same group authentication issues as multicasted

control messages in routing protocols (e.g., PIM-SM in Section 8.4.4).

Some of the open issues are as follows:

w Signature method on the access-token. If public key technology is used,

this implies that the multicast router must have the capability to

verify public key–based signatures and be installed with the public

key (and possibly digital certificate) of the signer, namely the KD.

Alternatively, all multicast routers could be assigned a symmetric

key that all share with the KD, and a MAC or HMAC method used to

provide group authentication.

However, as pointed out by [53], the mode of communicating

IGMP messages within a subnet is a many-to-many communication,

which in turn prevents the use of IPsec (AH or ESP), due to the IPsec

SA model for pair-wise communications (see Section 8.4.4).

w Layer at which authentication occurs. If public key–based digital

signatures are to be used, then the signatures should be applied at

the IGMP level instead at the IP packet level. If a MAC and symmetric

key approach is to be adopted, then the MAC authentication can be

carried out on either level.

Note that since the access token in [5] is not actually relayed by

the host to the router, and may be presented to the router at a later

time, IPsec-level authentication will be unsuitable as an option.

8.6 IGMP security 213

w Token lifetime and management. When the KD issues an access token,

the token must carry a lifetime, including a used-by-date and an

activate-by-date, matching the lifetime of the multicast group.

Although the lifetime information may not be useful to the routers,

it may help the multicast application software on the host to join/

leave groups. This brings up the issue of the need to manage tokens,

in that old or expired tokens need to be flushed out of the system and

domains.

In [50], within the specific context of PIM-SM deployment, the

access token is managed by introducing a list of valid tokens into the

domain through the special all-PIM-routers group. The list allows

routers in a PIM domain to verify any access token presented to it by

a host. Once used, the token’s ID is marked off the list of valid tokens.

In general, this approach, which is reminiscent of certificates and

certificate revocation lists, needs further study to see its impact on the

routing domain.

8.7 Security in other routing protocols

In this section, we summarize two multicast routing protocols for which

security mechanisms have been proposed in the literature. The CBT [63]

multicast routing protocol predates PIM-SM, and it is instructive to see how

secure routing works in that context. A secure multicast key distribution

(SMKD) protocol has been proposed [64] to protect CBT routing messages as

well as data.

HIP [3] is a hierarchical multicast routing protocol based on ordered CBT

(OCBT) for interdomain multicasting, and any multicast protocol for

intradomain multicasting. Keyed HIP (KHIP) [65] is an extension to the

HIP protocol to control access to the multicast distribution tree. Similar to

SMKD, KHIP protects both routing messages as well as multicast data. Both

of them support host authentication and authorization, as well as message

integrity. In the following, we briefly describe the routing protocol

protection mechanisms proposed in these schemes.

8.7.1 Secure CBT multicasting: SMKD

The SMKD protocol’s goal is to enforce group access control. The multicast

tree can be extended only by authorized hosts and routers. To enforce this,

the group initiator creates an ACL that consists of authorized members of the

group, and sends it to the the primary core. The initiator may also generate

another list of trusted network nodes. The primary core may share these lists

with the secondary cores as well.

214 Securing multicast routing protocols

A host requests to join the group by sending a self-signed token to the

edge CBT router. The token consists of the host’s identity, lifetime, and a

random number to serve as a nonce. For SMKD, IGMP needs to be modified

so that members can send the token along with a join request. The edge

router, R1, that receives a host’s request verifies the host’s authenticity and

message integrity. R1 then sends a CBT join request that includes the host’s

token as well its own token, toward the core. The whole join request is signed

by the edge router. Each CBT router, Rj, in the path to the core verifies the

authenticity of Rj�1’s request, replaces Rj�1’s token with its own token, and

signs the modified join request. It then forwards the request toward the core.

The core serves as the group key distribution center (GKDC). It verifies

the host’s token and the last router Ri’s token, and sends the ACL as part of a

signed join acknowledgment to Ri. The host must be in the ACL, and Ri must

be a trusted network node, for positive verification. The router authorization

verification process continues downstream. More specifically, Ri verifies

whether Ri�1 is part of the trusted network nodes’ list. After successful

authorization, all the routers, R1;R2; . . . ;Ri, in the path from the host to the

core become trusted authorized agents of the GKDC. They have the ACL and

can enforce group access control without having to forward future join

requests to the core.

In summary, SMKD uses hop-by-hop authentication and message

integrity verification upstream (from host to core or an authorized GKDC

agent). The GKDC verifies the host’s authorization to participate in the

group. There is hop-by-hop router authorization verification downstream.

Thus only trusted network nodes can become agents of GKDC.

The complete specification of SMKD includes a group key description as

well [64]. But the SMKD protocol only supports join request authorization

and key distribution. There is no support for excluding an active (say,

misbehaving) member, which is a severe limitation. Once a host or a router

is authorized to be part of the multicast distribution tree, it remains

authorized until the tree is torn down. Delegation of key distribution

functionality to trusted routers makes this scheme efficient.

8.7.2 KHIP

KHIP [65] is a secure version of the HIP multicast protocol. KHIP addresses a

more comprehensive threat model than SMKD. The goal is to be able to

provide multicast services, even in the presence of untrusted routers on the

path from authorized senders to authorized members. This protocol

considers replay and flooding attacks, as well as illegal branch creation

(pulling of the multicast tree), by malicious or misconfigured routers.

8.7 Security in other routing protocols 215

KHIP requires authorized members and routers to obtain authorization

certificates. Certificates contain the member’s ID, groups it is authorized to

join, lifetime, timestamp, its permissions (role as initiator, sender, receiver or

terminator of a group), and the member’s public key. Certificates are signed

by an authorization service. Core routers (or the center point [65]) also need

authorization certificates.

Only authorized routers are allowed to create branches, and they must

present a valid certificate to a trusted core do be able to do so. The core also

needs to present its authorization certificate along with the join acknowl-

edgment messages. KHIP uses nonces for replay protection of join messages.

It adds two additional messages to the OCBT join protocol, for exchanging

the nonces. All four messages for a router to join the HIP tree include the

message initiator’s certificate, and are signed. Unlike the normal OCBT join

request, KHIP join requests go all the way to a trusted core (or even the

center point), not the next hop router [65].

KHIP allows some unauthenticated control (flush and quit) messages, so

that branch failure detection can be delegated to untrusted routers as well.

This ensures prompt response to link and router failures. However, malicious

routers may take advantage of this capability to send bogus quit messages

upstream, or flush messages downstream.

KHIP proposes periodic branch teardown and reestablishment. This is

to ensure the presence of authorized nodes at both end points (router and

core) of a branch. It also mitigates bogus quit and flush messages sent by

malicious or misconfigured routers. The periodic branch teardown and

reestablishment allows the core to enforce stricter access control compared

to that in SMKD, described earlier. When a router’s certificate expires, it

can no longer pull the tree.

In summary, KHIP offers protection against flooding and replay attacks,

but cannot handle other types of DoS attacks, such as a malicious router

simply dropping packets or sending illegal flush messages. Also note that the

intradomain protocol(s) and the unicast protocols associated with KHIP must

be secure as well. Similar to SMKD, KHIP supports integrated group key

distribution as well [65]. The trusted routers act as subgroup managers for

scalable operation.

8.8 Summary

This chapter has focused on multicast routing security as an integral piece of

the whole problem of multicast security. Paramount to the correct operation

of any routing protocol is the integrity protection and authentication of

216 Securing multicast routing protocols

control messages that define the behavior of the protocol. In the context of

multicast routing, the problem of control message protection is even more

important than in unicast, since any attacks on the multicast distribution

tree impact a large number of receivers of data in the multicast group(s). The

two areas of focus in this chapter were multicast distribution tree protection

and membership access control. The first of these two pertains to the core of

the distribution tree, while the second pertains to the edges of the tree,

where hosts/receivers join the tree.

One undeniable and overwhelming conclusion of this chapter is the

necessity for public key cryptography at the routing level, in order to provide

source authentication (e.g., digital signatures). This is true despite the

reluctance on the part of routing protocol designers and router vendors to

implement this technology in their products. Many types of control messages

in multicast routing protocols require the source to be identified and require

the message to be integrity protected, something which cannot be achieved

with symmetric key cryptography alone.

If routing protocol designers and router vendors want to provide

advanced functionalities beyond today’s manual configuration of routers

(and routing domains), then these advanced functionalities imply that some

level of intelligence and decision-making capability must exist on the part of

routers and other network elements. Thus, sooner or later, some entity will

need to perform some decision making for the other entities, in the

domain. The result of this decision must then be made known to the other

network entities, and must be observed by these entities. This implies that

the decision-making entity must be trusted by the others, and that the

dissemination of the decision parameters must be source authentic and

integrity protected. Otherwise, there is little point in adding intelligence to

such network entities if decisions cannot be relayed with integrity and

source authenticity. This notion is not new but echoes, to different extents,

earlier efforts, such as [24, 66, 67].

The chapter has focused on the PIM-SM protocol as the main example of

a multicast routing protocol, for a number of reasons. Firstly, PIM-SM has

become the de facto multicast routing protocol in the industry, and there are

production sites that are employing PIM-SM. Secondly, PIM-SM is still

undergoing revisions—particularly in the context of the new paradigm of

SSM. This allows for security-related input into the PIM-SM evolution

process. Thirdly, and not least, the revised PIM-SM is an example of an

industry-driven protocol that more recently actually takes security issues

into its design considerations.

The second half of this chapter dealt with the issue of membership access

control, also referred to as the IGMP security problem, since IGMP is the

8.8 Summary 217

de facto protocol to perform group membership management between hosts

and (next hop) multicast routers. The main message of this section is that

membership access control requires both identification/authentication of the

host requesting access, and authorization of the host to join multicast groups.

The question then becomes how to satisfy these two requirements in a

routing domain, particularly when they involve several layers of the

communications stack. Approaches to this problem have been discussed, and

open issues are listed.

References

[1] Ballardie, A., ‘‘Core Based Trees (CBT Version 2) Multicast Routing,’’ RFC

2189 (experimental), IETF, September 1997.

[2] Ballardie, A., ‘‘Core Based Trees (CBT) Multicast Routing Architecture,’’ RFC

2201 (experimental), IETF, September 1997.

[3] Shields, C., and J. J. Garcia-Luna-Aceves, ‘‘HIP—A Protocol for Hierarchical

Multicast Routing,’’ Computer Communications, Vol. 23, November 2000,

pp. 628–641.

[4] Deering, S. E., ‘‘Host Extensions for IP multicasting,’’ RFC 1112 (standard),

IETF, August 1989.

[5] Hardjono, T., and B. Cain, Key Establishment for IGMP Authentication in IP

Multicast, Proc. of the 1st IEEE European Conference on Universal Multiservice

Networks (ECUMN 2000), Colmar, France, October 2000.

[6] Malkin, G., ‘‘RIP Version 2,’’ RFC 2453 (standard), IETF, November 1998.

[7] Baker, F., and R. Atkinson, ‘‘RIP-2 MD5 Authentication,’’ RFC 2082 (proposed

standard), IETF, Jan. 1997.

[8] Moy, J., ‘‘OSPF Version 2,’’ RFC 2328 (standard), IETF, April 1998.

[9] Rekhter, Y., and T. Li, ‘‘A Border Gateway Protocol 4 (BGP-4),’’ RFC 1771

(standards track), IETF, 1995.

[10] Pusateri, T., ‘‘Distance Vector Multicast Routing Protocol,’’ draft-ietf-idmr-

dvmrp-v3-10.txt, IETF, August 2000, work in progress.

[11] Waitzman, D., C. Partridge, and S. E. Deering, ‘‘Distance Vector Multicast

Routing Protocol,’’ RFC 1075 (experimental), IETF, November 1988.

[12] Moy, J., ‘‘Multicast Extensions to OSPF,’’ RFC 1584 (proposed standard), IETF,

March 1994.

[13] Moy, J., ‘‘MOSPF: Analysis and Experience,’’ RFC 1585 (informational), IETF,

March 1994.

218 Securing multicast routing protocols

TE
AM
FL
Y

Team-Fly®

[14] Adams, A., J. Nicholas, and W. Siadak, ‘‘Protocol Independent Multicast-

Dense Mode (PIM-DM): Protocol Specification (Revised),’’ draft-ietf-pim-dm-

new-v2-01.txt, IETF, February 2002, work in progress.

[15] Fenner, B., et al., ‘‘Protocol Independent Multicast-Sparse Mode (PIM-SM):

Protocol Specification (Revised),’’ draft-ietf-pim-sm-v2-new-05.txt, IETF,

March 2002, work in progress.

[16] Huitema, C., Routing in the Internet, 2nd ed., Upper Saddle River, NJ: Prentice

Hall, January 2000.

[17] Maufer, T.A., Deploying IP Multicast in the Enterprise, Upper Saddle River, NJ:

Prentice Hall, 1997.

[18] Deering, S. E., and D. R. Cheriton, ‘‘Multicast Routing in Datagram

Internetworks and Extended LANs,’’ ACM Trans. on Computer Systems, Vol. 8,

No. 2, May 1990, pp. 85–110.

[19] Perlman, R., Interconnections: Bridges, Routers, Switches, and Internetworking

Protocols, 2nd ed., Reading, MA: Addison-Wesley, October 1999.

[20] Deering, S., et al., ‘‘Protocol Independent Multicast-Sparse Mode: Motivations

and Architecture,’’ draft-ietf-pim-arch-05.txt, IETF, August 1998, work in

progress.

[21] Cain, B., et al., ‘‘Internet Group Management Protocol, Version 3,’’ draft-ietf-

idmr-igmp-v3-09.txt, IETF, January 2002, work in progress.

[22] Fenner, W., ‘‘Internet Group Management Protocol,’’ RFC 2236 (proposed

standard), IETF, November 1997.

[23] Holbrook, H., and B. Cain, ‘‘Source Specific Multicast for IP,’’ draft-ietf-ssm-

arch-00.txt, IETF, November 2001, work in progress.

[24] Perlman, R., Network Layer Protocols with Byzantine Robustness, Ph.D.

dissertation, MIT, Dept. of Electrical Engineering and Computer Science,

August 1988.

[25] Murphy, S., and M. Badger, ‘‘Digital Signature Protection of the OSPF Routing

Protocol,’’ Proc. of Network and Distributed System Security Symposium (NDSS),

San Diego, CA, February 1996.

[26] Hauser, R., T. Przygienda, and G. Tsudik, ‘‘Reducing the Cost of Security in

Link-State Routing,’’ Proc. of Network and Distributed Systems Security Symposium

(NDSS), San Diego, CA, Feb. 1997.

[27] Sirois, K. E., and S. T. Kent, ‘‘Securing the Nimrod Routing Architecture,’’ Proc.

of Network and Distributed Systems Security Symposium (NDSS), San Diego, CA,

Feb. 1997.

[28] Smith, B. R., S. Murthy, and J. J. Garcia-Luna-Aceves, ‘‘Securing Distance

Vector Routing Protocols,’’ Proc. of Network and Distributed Systems Security

Symposium (NDSS), San Diego, CA, Feb. 1997.

8.8 Summary 219

[29] Zhang, K., ‘‘Efficient Protocols for Signing Routing Messages,’’ Proc. of Net-

work and Distributed System Security Symposium (NDSS), San Diego, CA, 1998,

pp. 29–35.

[30] Murphy, S., M. Badger, and B. Wellington, ‘‘OSPF with Digital Signatures,’’

RFC 2154 (experimental), IETF, June 1997.

[31] Heffernan, A., ‘‘Protection of BGP Sessions via the TCP MD5 Signature

Option,’’ RFC 2385 (proposed standard), IETF, Aug. 1998.

[32] Kent, S., C. Lynn, and K. Seo, ‘‘Secure Border Gateway Protocol (Secure-

BGP),’’ IEEE Journal on Selected Areas in Communications, Vol. 18, No. 4, April

2000, pp. 582–592.

[33] Murphy, S., ‘‘BGP Security Analysis,’’ draft-murphy-bgp-secr-01.txt, IETF,

Aug. 1998, work in progress.

[34] Villamizar, C., et al., ‘‘Routing Policy System Security,’’ draft-ietf-rps-auth-

01.txt, IETF, May 1998, work in progress.

[35] Bates, T., et al., ‘‘DNS-Based NLRI Origin AS Verification in BGP,’’ draft-bates-

bgp4-nlri-orig-verif-00.txt, IETF, February 1998, work in progress.

[36] Paul, S., Multicasting on the Internet and its Applications, Norwell, MA: Kluwer

Academic Press, 1998.

[37] Wei, L., ‘‘Authenticating PIM Version 2 Messages,’’ draft-ietf-pim-v2-auth-

01.txt, IETF, May 1999, work in progress.

[38] Hardjono, T., M. Baugher, and H. Harney, ‘‘Group Security Association (GSA)

Management in IP Multicast,’’ Proc. of the 16th International Conference on

Information Security (IFIP/SEC), Paris, France, June 2001.

[39] Hardjono, T., M. Baugher, and H. Harney, ‘‘Group Key Management for

IP Multicast: Model and Architecture,’’ in IEEE 10th International Workshop on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-ICE 2001),

MIT, Cambridge, MA, June 2001.

[40] Harney, H., M. Baugher, and T. Hardjono, ‘‘GKM Building Block: Group

Security Association (GSA) Definition,’’ draft-irtf-smug-gkmbb-gsadef-01.txt,

IETF, September 2000, work in progress.

[41] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IRTF, March 2002, work in progress.

[42] Van Moffaert, A., and O. Paridaens, ‘‘Security Issues in Protocol Independent

Multicast-Sparse Mode (PIM-SM),’’ draft-irtf-gsec-pim-sm-security-issues-

01.txt, IRTF, February 2002, work in progress.

[43] Hardjono, T., and B. Cain, ‘‘Simple Key Management Protocol for PIM,’’ draft-

ietf-pim-simplekmp-01 txt, IETF, February 2000, work in progress.

[44] Kent, S., and R. Atkinson, ‘‘IP Authentication Header (AH),’’ RFC 2402

(proposed standard), IETF, November 1998.

220 Securing multicast routing protocols

[45] Madson, C., and R. Glenn, ‘‘The Use of HMAC-MD5-96 within ESP and AH,’’

RFC 2403 (proposed standard), IETF, November 1998.

[46] Rivest, R., ‘‘The MD5 Message-Digest Algorithm,’’ RFC 1321 (informational),

IETF, April 1992.

[47] Madson, C., and R. Glenn, ‘‘The Use of HMAC-SHA-1-96 within ESP and AH,’’

RFC 2404 (proposed standard), IETF, November 1998.

[48] PKCS1: RSA Encryption Standard, RSA Laboratories,1993.

[49] Hardjono, T., B. Cain, and I. Monga, ‘‘Intra-Domain Group Key Management

Protocol,’’ draft-ietf-ipsec-intragkm-02.txt, IETF, February 2000, work in

progress.

[50] Hardjono, T., ‘‘Router-Assistance for Receiver Access Control in PIM-SM,’’ in

Proc. of IEEE International Symposium on Computer Communications (ISCC),

Antibes, France, July 2000.

[51] Kent, S., and R. Atkinson, ‘‘Security Architecture for the Internet Protocol,’’

RFC 2401 (proposed standard), IETF, November 1998.

[52] Monga, I., and T. Hardjono, ‘‘Group Security Association (GSA) Definition

for IP Multicast,’’ draft-irtf-smug-gsadef-00.txt, IETF, February 1999, work in

progress.

[53] Van Moffaert, A., and O. Paridaens, ‘‘Security Issues in Internet Group

Management Protocol Version 3 (IGMPv3),’’ draft-irtf-gsec-igmpv3-security-

issues-01.txt, IRTF, February 2002, work in progress.

[54] Farinacci,D., et al., ‘‘Multicast Source Discovery Protocol (MSDP),’’ draft-ietf-

msdp-spec-03.txt, IETF, January 2000, work in progress.

[55] Meyer, D., and B. Fenner, ‘‘Multicast Source Discovery Protocol (MSDP),’’

draft-ietf-msdp-spec-13.txt, IETF, November 2001, work in progress.

[56] Hardjono, T., and B. Cain, ‘‘PIM-SM Security: Interdomain Issues and

Solutions,’’ in Preneel, Bart (ed.), Communications and Multimedia Security

(CMS’99), Leuven, Belgium: Kluwer, September 1999.

[57] Ishikawa, N., N. Yamanouchi, and O. Takahashi, ‘‘IGMP Extensions for

Authentication of IP Multicast Senders and Receivers,’’ draft-ishikawa-igmp-

auth-01.txt, IETF, August 1998, work in progress.

[58] He, H., T. Hardjono, and B. Cain, ‘‘Simple Multicast Receiver Access

Control,’’ draft-irtf-gsec-smrac-00.txt, IRTF, November 2001, work in

progress.

[59] Judge, P., and M. Ammar, ‘‘Gothic: A Group Access Control Architecture for

Secure Multicast and Anycast,’’ in Proc. of IEEE INFOCOM, New York, June

2002.

[60] Coan, B., et al., ‘‘HASM: Hierarchical Application-Level Secure Multicast,’’

draft-coan-hasm-00.txt, IRTF, November 2001, work in progress.

8.8 Summary 221

[61] Castelluccia, C., and G. Montenegro, ‘‘Securing Group Management in IPv6

with Cryptographically Generated Addresses,’’ draft-irtf-gsec-sgmv6-00.txt,

IRTF, February 2001, work in progress.

[62] He, H., B. Cain, and T. Hardjono, ‘‘Upload Authentication Information Using

IGMPv3,’’ draft-he-magma-igmpv3-auth-00.txt, IRTF, November 2001, work

in progress.

[63] Ballardie, T., P. Francis, and J. Crowcroft, ‘‘Core Based Trees (CBT): An

Architecture for Scalable Inter-domain Multicast Routing,’’ in Proc. of ACM

SIGCOMM, Ithaca, NY, September 1993.

[64] Ballardie, A., ‘‘Scalable Multicast Key Distribution,’’ RFC 1949 (experimental),

IETF, May 1996.

[65] Shields, C., and J. J. Garcia-Luna-Aceves, ‘‘KHIP—A Scalable Protocol for

Secure Multicast Routing,’’ in Proc. of ACM SIGCOMM, Cambridge, MA,

September 1999.

[66] Gong, L., and N. Shacham, ‘‘Elements of Trusted Multicasting,’’ in Proc.

IEEE International Conference on Network Protocols, Boston, MA, October 1994,

pp. 23–30.

[67] Ballardie, T., and J. Crowcroft, ‘‘Multicast-Specific Security Threats and

Counter-measures,’’ in Proc. of Network and Distributed System Security

Symposium (NDSS), San Diego, CA, February 1995, pp. 2–16.

222 Securing multicast routing protocols

Security in Reliable Multicast
protocols

Multicast routing protocols typically provide best-effort

delivery of data packets from senders to receivers. The

‘‘best-effort’’ delivery means just that: No guarantee is given as

to the actual delivery of data packets, and no ordering is

preserved for packets belonging to a message. This model of IP

multicast routing is consistent with unicast routing, and is

founded on the same fundamental notion of the connection-

less-oriented network underlying the Internet.

Since applications that employ IP multicast require relia-

bility of delivery, the function of reliability must be provided

above the multicast routing level. Thus, analogous to the

relationship between IP and TCP, a Reliable Multicast (RM)

protocol provides the reliability needed for the data packet

delivery by the underlying multicast routing protocol.

Since reliable group-oriented communications is by nature

more complex than reliable pair-wise communications

between two end points, it is hardly surprising that RM

protocols are more complex than their unicast counterparts.

Furthermore, the Reliable Multicast problem is compounded by

the fact that each application has its specific needs, and thus a

single general-purpose RM protocol would be impractical, if not

impossible, to construct.

The specific needs of each multicast application have

resulted in a large number of proposed RM protocols. These, in

turn, have their own security requirements and issues. Thus, a

223

C H A P T E R

9
Contents

9.1 Classification of RM protocols3

9.2 Generic security requirements
for RM protocols7

9.3 Security of TRACK protocols9

9.4 Security of NORM protocols14

9.5 Security of FEC-based
protocols20

9.6 Summary21

general-purpose security solution for all RM protocols would be impossible to

construct due to the sheer size of the design space.

Principle of separation

Similar to the principle of independence between multicast key manage-

ment (for data protection) and multicast routing [1] which was discussed in

Chapter 5, here we would like to put forward an analogous principle. The

principle is that of the separation between the security for Reliable Multicast

transport and the security for multicast routing.

Obvious as this principle may appear to be, it is worth explaining further.

What this principle means is that the instances of security protocols and their

application to Reliable Multicast at the transport layer should be indepen-

dent from the instances of those same security protocols (if they happen to be

the same), applied to multicast routing at the network layer. Thus, for

example, if an RM protocol instantiation uses a group key management (GKM)

protocol for key distribution (e.g., for authentication keys) and the multicast

routing protocol also happens to rely on the same GKM protocol (and the

same GKM entities), then the two instances of the GKM protocol must be

independent of one another. Hence, from the perspective of the security-

related entities, they are dealing with independent instances of the

application of security. An example would be IPsec, which can be used by

both the multicast routing protocol and by the RM protocol, even though

the same entities may be involved (e.g., the IP layer router that acts as a

suppression node for an RM protocol).

Note that this principle of separation is different from (and in fact does

not contradict) the basic tenet believed by many in the security community,

that the security of the whole is not equivalent to the ‘‘sum’’ or composition

of the security of the pieces or components (see, for example, [2, 3]). Rather,

the principle of separation is driven from the need for security to be

manageable, and for the parameters of security to be clearly identifiable and

controllable; something which in fact is necessary from the practical

perspective of defining and enforcing security.

Cryptographic protection versus heuristics

Although the current authors believe that authentication of control

messages is necessary for the correct and robust execution of protocols,

there is an alternative view that does not see the need for full-use

cryptographic protection for control messages. Instead, this latter opinion

suggests that a good RM protocol should be inherently resistant to bogus

224 Security in Reliable Multicast protocols

control messages. Furthermore, this view holds that, in practice, the

frequency of bogus control messages would be so low that it would not

impact the RM protocol substantially (so as to warrant cryptographic

protection).

By this line of reasoning, a case of suspicious or anomalous behavior of

certain receivers and RM entities would be detected and reacted to by the

congestion control mechanism and the throughput mechanisms as a whole.

Thus, for example, if a bogus NACK was sent by a misbehaving (or

compromised) receiver, then it would initially trigger a retransmission of the

concerned packet. However, if too many NACKs were sent by that same

entity or by a group of entities from the same topological vicinity, then the

upstream router would have built-in heuristics and knowledge to throttle

the outgoing interface(s) toward that vicinity. It remains unclear whether

this heuristic capability will be an inherent part of the congestion control

algorithm, or a separate algorithm to counter detected inconsistent

information in bogus control messages. Also, the amount of resources

consumed by the heuristic algorithm(s) to react to perceived attacks remains

to be seen.

We argue that although some RM protocols may provide sufficient

innate capabilities to counter bogus control messages, there is some virtue in

addressing the use of cryptographic protection on control (and data)

messages, and in investigating the mechanics of how this would be achieved

in practice. This is the purpose of the current chapter.

In the next section we discuss the classification of RM protocols as

defined by [4]. Since there are quite a number of RM protocols that have

been proposed—too many to be described here in detail—the reader is

directed to [4] for a brief classification of these protocols. In addition, the

works of [5–7] provide further details on the various RM protocols. This is

followed in Section 9.2 by a discussion on the generic security requirements

of all RM protocols. The remainder of the chapter then looks briefly into the

specific security requirements and possible solutions for the TRACK, NORM,

and FEC families of RM protocols.

9.1 Classification of RM protocols

The problem of providing reliability to IP multicast has been investigated for

a number years now, resulting in several RM protocols. An RM protocol is

intended to be deployed in conjunction with a multicast routing protocol

that creates the multicast distribution tree. Indeed, some RM protocols make

use of certain aspects of the distribution tree, such as its topology. Some of

9.1 Classification of RM protocols 225

these protocols have remained in the domain of research, while others are in

production and are being deployed in a commercial environment.

One broad approach to differentiating RM protocols is to see them as

being either sender-initiated or receiver-initiated. In the first case, the sender or

source has the responsibility of detecting lost packets, while in the second

case this is the task of the receiver. Usually, sender-initiated protocols use

positive acknowledgments (ACKs), while receiver-initiated approaches use

negative acknowledgments. These two basic approaches have their respective

drawbacks, either in terms of an explosion in the amount of state

information needed to be maintained by the sender and other entities, or

the number of messages that may overwhelm the sender and the network

as a whole. Thus, state explosion and message implosion are two common

drawbacks in RM approaches, which are typically solved by introducing a

hierarchy of local repair nodes, and/or by using suppression techniques. With

local repair nodes, the sender need not deal with lost packets, and they

reduce the message implosion at the sender. Local repair nodes also allow

the possibility of various entities performing the repair function, including

specialized servers or other group members. Suppression techniques (e.g.,

for NACKs) reduce both implosion and state, at the sender.

In the context of the IETF, the problem area of RM has been addressed

under the IRTF within the Reliable Multicast Research Group (RMRG) for

several years. In early 2000 a corresponding IETF working group was

created, called the RMT Working Group. One of the tasks of the

RMT Working Group is to standardize certain components or elements

(building blocks) that are common across multiple RM protocols. Examples

would be congestion control and good throughput mechanisms. To this end,

the RMT Working Group provided a definition of the design space for the RM

protocols [4] and attempted to categorize the protocols (or their compo-

nents) according to some aspects.

Two of these are discussed below, and are used to provide a framework

of discussion for the various security issues and solutions in subsequent

sections.

9.1.1 Good throughput strategies

The work of [4] identifies two important aspects of RM protocols, namely,

congestion control and good throughput. These two aspects are like two sides

of the same coin, in the sense that packet loss is symptomatic of congestion in

the network, which can be alleviated through good throughput mechan-

isms. Hence, one way to categorize RM protocols is to group them according

to the good throughput strategy that they use:

226 Security in Reliable Multicast protocols

w ACK-based strategy. Here the basic idea is that a positive acknowl-

edgment (known simply as ACK) is sent by the receiver for

every received data packet. Packets that are lost could be resent by

the sender or by any receiver that has obtained it. In essence,

congestion control occurs at the sender. This pure model is

impractical, since it suffers from the problem of implosion of ACKs

at the sender.

An improvement over the pure model can be achieved by

imposing a structure on the paths taken by the ACK messages, and

to provide intermediate entities that can process them. An example is

the hierarchic or tree structure used to arrange the receivers into

groups or subgroups. Here, a receiver would send ACKs to a

designated parent node, instead of to the sender. A parent node

acts as an aggregator of ACKs to its own parent node, and so on. The

nodes in the ACK tree are typically used only for ACK aggregation,

and not for data packet retransmission. The cost of this improvement

is the tree-building process, which can range from being dynamic

(e.g., Tree-Based Reliable Multicast or TRAM [8]) to statically

configured (e.g., Reliable Multicast Transport Protocol, RMTP-

II [9]). Other proposed structures include a ring formation in

which an ACK token is passed around [10], while other suggestions

on the basic ACK model include placing multiple ACKs inside a data

packet [11].

w NACK-based strategy. In a NACK-based strategy, rather than a receiver

or node sending an ACK for the packets it has received, the receiver

or node instead sends a NACK for those packets it did not receive.

The general aim is two fold:

w One NACK. Only a single NACK (for a data packet) must reach the

sender (or retransmission entity) as soon as the packet loss is

noticed by the receivers.

w One retransmit copy. Only one copy of the retransmitted data packet

must be received by the nodes or receivers that experience the

packet loss.

Since only a single NACK is needed, a method called NACK

suppression is employed to discard NACKs for the same data packet.

An example of this approach is the Scalable Reliable Multicast

(SRM) protocol [12] and the pragmatic general multicast (PGM)

protocol [13].

9.1 Classification of RM protocols 227

w Packet-level redundancy strategy. Another strategy is to add redundancy

within each packet (or within separate accompanying packets) in

such a way that a receiver needs only to obtain a certain subset of the

packets in order to reconstruct the complete message. Thus, the

sender must create encoding packets for each round (or collection) of

data packets. The analogy is that with FEC approaches that are used

to recover from corruption of data, but in this case it is performed at

the unit of packets.

Solutions based on FEC can be proactive or reactive (or a

combination of both). In the first case, the sender decides (before

sending the packets) how many encoding packets per round need to

be sent. In the reactive case, the sender starts by sending only the

original data packets, and reacts when it learns of packet losses (e.g.,

through ACKs or NACKs). After the sender learns that some packets

are missing, it then computes the encoding packets that are

calculated for the worst receiver: meaning the receiver is experienc-

ing the worst loss. An example of a protocol that employs packet-

level redundancy is [14].

9.1.2 Network entity participation and support

Another possible way of classifying RM protocols is to view them from the

perspective of the network entities that participate in the protocol. The work

of [4] recognizes four types of possible support that these network entities

may provide to create reliability:

1. Router-assisted approaches. In this category of RM protocols, routers

that are part of the multicast distribution tree help in providing

reliability to the data. The thinking in these designs is that since the

routers are already participating in the normal data distribution

tree, they are in a good position to assist in the delivery of missing

packets, in the aggregation of feedbacks, and in the suppression of

certain feedback types (e.g., multiple NACKs). Since routers

typically do not have large amounts of spare memory or central

processing unit (CPU) power, the amount of functionality that can

be added to routers is limited. The PGM protocol [13] is an example

of this category.

2. Server assisted approaches. In these approaches, the RM protocol relies

on the use of (nonrouter) network entities to help in the data

delivery to recipients, or in the aggregation of feedback coming from

228 Security in Reliable Multicast protocols

TE
AM
FL
Y

Team-Fly®

recipients. These entities are typically not senders/receivers in the

multicast distribution tree, and they are not defined as part of the

multicast routing protocol. Thus, they are present on the multicast

distribution tree solely to provide support for the RM protocol. As

such, the term ‘‘server’’ is often used, since these entities must have

capabilities beyond the usual router. An example is the RMTP-II [9]

protocol.

w Layered approaches. In layered approaches, several multicast groups

are used concurrently to deliver different sets of data packets,

possibly at differing speeds. Redundancy is added to the complete set

of packets to allow a receiver to establish the complete message just

from a minimal of N out of M pieces (where N # M). By sending

different sets over different multicast groups, the receiver has an

increased chance of obtaining the sufficient amount of packets to

reconstruct the entire message.

w Approaches without assistance. In this category of RM protocols, only

the senders and receivers are involved in the RM protocol. Thus, only

they maintain any state information pertaining to reliability. An

example of this type of RM protocol is SRM [12].

9.2 Generic security requirements for RM protocols

Similar to multicast routing protocols (and other communications proto-

cols), RM protocols also define their respective set of control messages to

inform different entities in the system about the state of the system as a

whole. Indeed, for this purpose some RM protocols even establish a logical

tree-like structure that parallels the multicast distribution tree at the routing

level. To ensure the correct functioning of an RM protocol according to its

specifications, there are a number of basic security requirements that need to

be fulfilled, some of which mirror the requirements listed in Chapter 8.

Basic protection requirements

Assuming data/content protection is a separate issue, the broad requirement

in Reliable Multicast protocols is for the protection of all control messages.

More specifically, the term ‘‘protection’’ means the following functions:

w Authentication, either group authentication or source authentication;

w Integrity protection, against illegal modifications;

9.2 Generic security requirements for RM protocols 229

w Replay protection, against the replay of valid control messages or other

bogus messages.

The mechanisms to achieve these would depend on the specific RM

protocol.

Layer of protection application

The issue of the layer at which cryptographic protection is applied comes to

the foreground in any discussion regarding security of Reliable Multicast.

Although each RM protocol instantiation will have its specific needs, it is

useful in discussions to provide a distinction among packet-level protection,

transport-level protection, and application-level protection. This is because

certain techniques may only be applicable to certain layers of the IP stack,

and those techniques may be unsuitable for certain RM protocols. Thus, for

example, source authentication could be best applied at the application layer

for cases where the RM protocol uses the sender as the sole retransmission

entity. In FEC-based protocols, integrity protection of data could be applied

at the application layer, to allow the receiver to detect inconsistencies due to

a bogus packet.

Note that, in practice, multiple protection methods may need to be

deployed at different layers. This is in order to solve the specific needs of the

multicast application that is relying on a specific RM protocol, which is in

turn using a given multicast routing protocol, all the while taking into

consideration the principle of separation in security.

Specific requirements of Reliable Multicast

More RM-specific security requirements based on the above protection

requirements are as follows:

w Protection of the structure-building phase and the operational phase of

RM protocols (some protocols distinguish between the two, since

they employ a procedure to create state at the entities, which is then

used to arrange the flow and delivery of ACKs, NACKs, and other

messages);

w Protection of ACKs, NACKs or other protocol-specific status-report-

ing messages sent by receivers in the multicast group;

w Protection of aggregated ACKs, NACKs or other protocol-specific

messages sent by aggregators or suppression nodes;

230 Security in Reliable Multicast protocols

w Protection of retransmitted data packets, whether they come from

the sender or other retransmission (repair) entities, via unicast, group

multicast, or subgroup multicast;

w Distinguishability by a receiver of an original (not previously sent)

data packet from a retransmitted data packet, independent of the

actual entity that sent it;

w Detection of anomalous behavior in both the data distribution tree

and the RM structure (e.g., tree) by both receivers and RM entities;

w An emergency procedure in the face of suspected DoS attacks, which

could possibly include a graceful degradation in the quality of service

delivered to the application employing multicast;

w Management of cryptographic keys and other keying material (e.g.,

SAs) used to provide protection to ACKs, NACKs or other protocol-

specific status-reporting messages.

9.3 Security of TRACK protocols

The TRACK family of RM protocols employs a tree structure to organize the

delivery of ACKs and NACKs [15]. All receivers are arranged into local

regions, where each region is assigned a repair entity (or repair node) to aid

in providing reliability [15]. The tree structure essentially acts as the control

channel over the data channel (namely, the multicast distribution tree).

These groups are arranged hierarchically in the form of a tree rooted at a

sender, with the repair entity representing the interior nodes of the tree, and

the receivers as the leaf nodes. Each receiver is assigned (through a protocol-

specific mechanism) a repair entity in the region in which the receiver

resides. Thus, the repair entity can be said to be the parent node of the

receiver. Periodically, receivers send control messages (ACKs or NACKs) to

their parent repair node, selectively acknowledging the packets they have

received, and requesting the ones they have missed. Retransmission is then

performed by that parent node.

For scalability, there might be multiple layers of repair entities, at the top

of which is the sender who needs to obtain the ACKs or NACKs pertaining to

some data packet. Hence, each repair node sends its control messages to the

repair node at the next level up the hierarchy. This process is repeated until

the messages reach the sender, informing it of the status of the group, and

notifying it when it is allowed to advance its transmission window. Here, in

the case of ACKs, the repair nodes effectively aggregate the selective positive

9.3 Security of TRACK protocols 231

acknowledgments from the receivers. In addition, in the case of NACKs, the

repair nodes perform the suppression of NACKs, thereby removing the

NACK implosion problem at the sender [15].

A repair node maintains a local multicast group consisting of only its

children and, in turn, it subscribes to the local multicast group of its parent. A

repair node uses this local multicast group for retransmissions to its children,

which also provides suppression of other negative retransmission requests

for that packet at other children. In order to provide reliability of data

packets, the repair node of a region must know the groups that its children

has joined, and must also obtain data packets from those groups. Thus, the

repair node of a region must in fact join every multicast group that its

descendants have joined [15].

9.3.1 Model of TRACK

Figure 9.1 attempts to illustrate a general model of Reliable Multicast based

on ACKs and NACKs, viewing it from the network entities that participate in

the protocol. In Figure 9.1, a multicast distribution tree is shown with a

number of receivers (R) at the leaves of the tree. A number of network

entities are given the task of assisting in the management of the ACK

messages, denoted as the designated node (D) and the top node (T).

Each designated node is charged to cater for a number of receivers, who

send their ACKs to the designated node. The designated nodes, in turn, are

arranged hierarchically in a tree structure where the upper-level nodes

receive (aggregated) ACKs from the lower-level nodes. The top node is the

entity at the root of the tree that provides feedback to the sender.

Figure 9.1 attempts to provide an abstraction of the various TRACK

protocols, notably RMTP-II and TRAM. Thus, in terms of specific protocols, it

is quite possible that the designated nodes are implemented as hosts, routers

or servers depending on the protocol. Similarly, the top node could be

implemented using the same entity as the sender, or it could be a special

retransmission server. Hopefully, the model provides a framework by which

one can identify and discuss security issues and requirements to be fulfilled

by (secure) RM protocols that exhibit properties like the model, leaving

details to the specifics of each RM protocol.

9.3.2 RMTP-II

The RMTP-II [9] protocol uses a static approach to tree building. The tree

structure is established through the configuration of a number of designated

receiver nodes (DR), without any dynamic election process. RMTP-II places

232 Security in Reliable Multicast protocols

receivers into local regions, where each region is assigned to a DR. These

groups are arranged hierarchically as a tree rooted at the top node (TN), with

the DRs representing the nodes of the tree, and the receivers as the leaves.

Each receiver node (RN) is assigned to a local designated receiver nodes. The

sender node connects directly to the TN, at the top layer of the hierarchy.

The receivers send their ACKs to the DR of their region. Retrans-

mission of lost packets may be done locally by the DR or globally from the

sender. Each DR sends its control messages to the DR at the next level up the

hierarchy. This process is repeated until the TN, which then forwards

the control messages to the appropriate sender. The DRs and TN aggregate

the positive acknowledgments from the receivers, and suppress the

redundant NACKs. A DR maintains a local multicast group to just its

children, and subscribes to the local multicast group of its parent. For

Figure 9.1 General model of TRACK protocols.

9.3 Security of TRACK protocols 233

retransmissions to its children, a DR can use either unicast or this local

multicast group. Figure 9.2 illustrates an RMTP-II tree.

Additional RMTP-II security requirements

RMTP-II has the same broad security requirements as the generic require-

ments mentioned in Section 9.2. However, in addition, RMTP-II also has a

specific requirement, namely, the optional data access by RMTP-II nodes [15].

Another way to express this is that the DRs and TN must have

nondecipherability of data packets as an option.

Recall that RMTP-II requires that a DR join all of the multicast groups

that its descendants have joined. Recall also that the sender (content

provider/distributor) may use encryption to provide content access control.

Requiring a DR to join data multicast groups for the purpose of caching and

retransmissions has implications when RMTP-II is deployed in some

Figure 9.2 RMTP-II tree structure.

234 Security in Reliable Multicast protocols

commercial environments. More specifically, DRs may be administered as

part of a reliability service offered by third parties such as ISPs. These third

parties may refuse the ability to decipher data packets, in order to avoid the

liabilities of having access to the data contents. Thus, from their perspective,

RMTP-II must allow them to prove to the content provider/distributor that

they do not possess the means to read or alter the contents transmitted

through the multicast groups.

In concrete terms, this requirement translates to the specific exclusion of

all DRs from the process of obtaining the data encryption/decryption key

through the GKM protocol. If a single GKM protocol instance is used to

manage keys for data packet encryption and keys for RMTP-II control

message protection, then the GKM protocol must be able to distinguish

between senders/receivers and RMTP-II entities. In the ISP scenario, it is

quite likely that the senders/receivers would need to obtain the data

encryption/decryption key from the content distributor, and obtain the

RMTP-II–related keys from the ISP.

Possible RMTP-II key arrangement

One way to satisfy the requirement of optional data access by RMTP-II nodes

is to separate data encryption from control message authentication [15]. The

idea is that separate cryptographic keys are used for achieving confidentiality

and authentication at different layers of the communications stack

(Figure 9.3). To achieve this, the work of [15] introduces three symmetric

keys, namely, the Group-Key, the RM-Key, and the Region-Key. Although

these keys could instead be public keys, the work of [15] focuses on the case

where they are symmetric keys, therefore affording only group authentica-

tion using symmetric key–based approaches (e.g., MAC). Their usage is

described in the following.

A receiver at the leaves of the RMTP-II tree must be given a copy of the

RM-Key and the Group-Key in order for the receiver to be able to

authenticate and decrypt the data packets.

A sender must be aware of a deployment of the protocol where the

RMTP-II nodes are forbidden (or refuse) to have the ability to decrypt data.

This means that the nodes will not have a copy of the Group-Key.

When a message is to be sent to the multicast group, the source must first

encrypt the message at the application layer using the Group-Key. If needed,

the source may also apply source authentication at the application layer.

The encrypted message is then passed down the communications stack

(at the source) to the RM layer, where the necessary RM-related headers/

9.3 Security of TRACK protocols 235

trailers and other parameters are added to the message. At this point, group

authentication using the RM-Key is applied at the RM layer.

In order to satisfy the requirement of optional data access by RMTP-II

nodes, a DR node will possess a copy of the RM-Key, but not the Group-Key.

This means that the DR will only be able to group-authenticate a packet, but

not decrypt it.

When a DR has to retransmit a (encrypted) packet, it will strip away the

authentication information and parameters set by the sender, and apply its

own authentication using its Region-Key. The Region-Key is a unique

symmetric key, shared only by receivers within a given RMTP region. This

retransmission is either via unicast or via subgroup multicast. Thus, the

Region-Key is in effect a ‘‘subgroup’’ key. Depending on the exact structure

of the RMTP hierarchy, other parent (or ancestor) DRs may also be given a

copy of a Region-Key, to provide further reliability in the case when a DR

crashes or becomes unavailable.

Finally, in order to protect the RMTP-II tree itself, another symmetric

key, called the DR-Key, is used by the RMTP-II entities. The DR-Key is

Figure 9.3 RMTP-II key arrangement.

236 Security in Reliable Multicast protocols

a symmetric key shared by all DRs and the TN within a given RMTP

hierarchy. The key is independent of any data stream, and is used to

authenticate control packets exchanged among the DRs/TN. Should a child-

DR request a retransmission of a lost data packet from its parent-DR, then the

parent-DR could unicast the (encrypted) packet to the child-DR, authenti-

cated using the DR-Key. Before the child-DR retransmits this data packet to

its own region, it must first authenticate the packet from the parent-DR

using the DR-Key. It would then apply authentication using its Region-Key,

before subgroup-multicasting it to its own children receivers.

9.3.3 TRAM

The TRAM protocol is another example of the TRACK class of RM protocols.

In TRAM, each receiver belongs to one of many repair groups, which are

dynamically created from a local subset of receivers, through an election

process. Within a repair group, one receiver becomes the group head, while

the remainder function as members of the group. With the exception of the

sender, each group head must also become a member of some other repair

group, thereby interconnecting the repair groups. Once having a group

head, the receivers can then report lost and successfully received packets to

the group head using a selective acknowledgment mechanism [8]. Since

repair groups are local, a group head would be located close to its members,

reducing or obviating latency.

One important aspect of TRAM is the construction of the repair tree,

which is done top down. The sender initiates the tree construction process

by multicasting a beacon message or data to the multicast group. Before

being able to attach to the tree, a receiver must discover or find a repair

head that can take on the receiver as a member of a repair group. This is

done by the member advertising the fact that it is seeking a repair head.

Similarly, a repair head may advertise that it is seeking members. The

advertisement is sent via multicast, using an expanding-ring-search, with

some scope control imposed over the message. A receiver uses the shortest

TTL distance as the basis for deciding the closest repair head with which it

will affiliate itself. On its part, a repair head must cache all the received data

messages, perform repairs, and process acknowledgments from members in

its repair group.

Additional TRAM security requirements

From the security perspective, TRAM has the same broad security

requirements as those listed in Section 9.2. In addition, some of the other

TRAM-specific requirements are as follows:

9.3 Security of TRACK protocols 237

w Beacon messages sent out by the sender must be provided with

source authentication to provide assurance to receivers that they

came from the true sender.

w Multicasted advertisements, either from a head-seeking member or

from a receiver seeking a head, must be authentic. This brings up the

issue of whether source authentication or group-authentication

should be provided. Furthermore, since the advertisements use

expanding-ring-search, the authentication method must take into

consideration this TTL-based ring search.

TRAM distinguishes among receivers by designating them as Eager-Head

receivers, Reluctant-Head receivers or Member-Only receivers. This opens

the possibility of limited deployment of public keys, where only Eager-Head

members are assigned a public key pair since they are the most likely to

become the head of a repair group. Copies of the public keys of Eager-Head

members could then be distributed based on the topological distribution of

the Eager-Heads, since other receivers will likely be affiliated with the same

subset of Eager-Heads (i.e., those that are nearby). The possibility of using

public key cryptography in TRAM, and the protection of the tree-building

phase of TRAM, need to be investigated further. The reader is directed

to [8, 16] for further details on the tree-building process in TRAM, and the

other control messages used by TRAM, for tree management.

9.4 Security of NORM protocols

Instead of using positive ACKs to indicate to a sender or a retransmission

entity the successful delivery of a given data packet, NORM protocols

employ NACKs to indicate packets that were not successfully received [17].

There is an inherent difference in philosophy between ACK-based and

NACK-based approaches: positive ACKs essentially determine the transmit

buffer management strategy, while NACKs—which should be fewer in

number—essentially determine repair and reliability.

The NACK-based strategy has a number of advantages. One advantage is

that a single NACK can benefit multiple receivers. That is, only one NACK

has to be transmitted by a receiver in order to effect a retransmission of a

(missing) packet that benefits multiple receivers. To prevent multiple NACKs

(for the same packet) from overwhelming the source (or retransmission

node), NACK-suppression entities are usually used by NORM protocols. These

entities simply discard superfluous NACKs.

238 Security in Reliable Multicast protocols

TE
AM
FL
Y

Team-Fly®

NORM protocols have two nice scalability features [4, 18]:

w The source does not need to know which receivers are missing any

given data packet: hence it does not need to keep track of the group

membership.

w The first NACK sent by a receiver for a given missing packet can

suppress further NACKs for the same packet sent by other receivers.

Thanks to the first feature, in the ideal case, memory and processing

requirements at the source are independent of the number of receivers.

Thanks to the second feature, the volume of feedback traffic is (almost)

constant, independent of the receiver population size.

9.4.1 Model of NORM

Figure 9.4 attempts to show a basic model of NORM protocols. A set of

suppression nodes (SNs) are employed to discard superfluous NACKs, and

are placed at strategic locations in the multicast distribution tree.

When a receiver sends a NACK toward the sender (or a known

retransmission entity), the appropriate suppression node will intercept the

NACK, and verify that it is not another NACK for the same data packet.

Although not shown, depending on the particular NORM protocol, the

suppression node may in fact also be the retransmission entity. Alternatively,

the retransmission entity could be associated with one (or more) suppression

nodes, and will only retransmit packets upon obtaining instructions to do so

from the suppression node.

Security requirements of NORM protocols

In general, NORM protocols would need to satisfy the security requirements

mentioned earlier in Section 9.2. One immediate concern is for the

authenticity of the NACK messages being sent by receivers toward the

sender (or other retransmission entities) upstream. The NACK messages

must be protected against modification of parts of their payload, and overall

protection must be provided against bogus NACKs being injected into the

routing path of the control messages.

Authentication of NACK messages can be provided through public key

digital signatures (source authentication) or through symmetric key

cryptography (group authentication). With public key–based authentica-

tion, each receiver would be assigned a public key pair, and a suppression

node would need to know the public keys (certificates) of all receivers

9.4 Security of NORM protocols 239

downstream to it. This, in turn, requires the distribution and management of

certificates in the domain.

The second option, using symmetric key–based authentication, is a

double-edged sword. Here, the advantage is that retransmissions can be done

by any receiver or suppression node that holds a copy of the symmetric key.

On the down side, any dishonest member could also transmit bogus

messages and thereby confuse the other receivers and even deny them

service. Since symmetric key–based authentication provides the most

promising approach in the near future to router vendors and ISPs, we

further discuss possible key arrangements for NORM protocols.

Possible key arrangement for NORM protocols

There are many ways in which symmetric keys can be introduced and

assigned to different NORM entities, through the use of appropriate key

Figure 9.4 General model of NORM protocols.

240 Security in Reliable Multicast protocols

management approaches. In the following, two broad key arrangement

strategies are discussed.

1. Flat arrangement. In this approach, all entities involved in the NORM

protocol share a common (group) symmetric key, called the NACK-

key. This is shown in Figure 9.5. The entities of main focus in this

case are the receivers, the sender(s), and the SNs. This approach

achieves group authentication (i.e., via MACs), in which the

recipient of any NACK message can conclude that the NACK was

sent by a holder of the NACK-key. The NACK-key should be used to

authenticate NACK messages only, and should never be applied to

data messages, even if the data is authenticated using the same

technology or even the same GKM-protocol instantiation. When a

Figure 9.5 Flat arrangement of NACK-keys.

9.4 Security of NORM protocols 241

receiver loses a packet, it will apply the NACK-key to the NACK

message that it transmits upstream.

The main advantage of this flat arrangement is that no topology

information is needed by the GKM protocol, since it treats all

involved entities equally and provides each with the same NACK-

key. Furthermore, depending on the specific NORM protocol, SNs

may be able to forward a NACK message without needing to modify

the message (e.g., to indicate that it originated from that SN), since

all relevant entities are in possession of the same NACK-key. Hence,

the SN is only required to verify the group authenticity of the

received NACK message, and then forward the message toward the

sender or another repair entity. This latter feature depends on

whether the NACK message is modified by the SN (e.g., TTL, hop-

count, or other fields).

The disadvantage in having the NACK-key arrangement is that

when a member leaves, the (old or current) NACK-key must be re-

placed, in order to prevent the ex-member from issuing unauthor-

ized NACK messages using the (old) NACK-key. Rekeying the

NACK-key when group membership changes ensures that only

authorized members/entities can send group-authentic NACK

messages. However, rekeying both keys when a member leaves

may create an unbearable overhead on the GKM protocol entities

and the SNs. One possible way around this problem is for the SNs to

be given several NACK-keys (with key identifiers or key IDs) in

advance by the KD for future use, while the receivers are given the

NACK-keys on a per-key basis or other release frequency. This

reduces the need for the SNs to be rekeyed each time there is a

change in group membership, since the key IDs allow the SNs to

swap keys and erase terminated (old) NACK-keys.

2. Logical hierarchical arrangement. An improvement over the flat

(groupwide) arrangement of a common NACK-key is the config-

uration of receivers into logical subgroups from the keying

perspective. Here, each subgroup of receivers is associated with

one (or few) SN. This association can be based on the topology of

the network (e.g., all receivers closest to an SN), statistics on some

network characteristics, or other aspects of the NORM protocol.

Alternatively, the logical arrangement of receivers and SNs can

simply be superimposed.

Each subgroup then shares a symmetric key (referred to here as

SG-key or Subgroup-key) with the SN associated with that logical

242 Security in Reliable Multicast protocols

subgroup. This permits an SN to authenticate NACK messages

coming only from its subgroup members (who are in possession of

the corresponding SG-key), with the alternative of dropping a

message that fails authentication or forwarding it upstream (with

the hope that another SN upstream may be able to authenticate it).

This is shown in Figure 9.6.

In considering the logical, hierarchical NACK-key arrangement, several

arrangements can be constructed for the sharing of keys between SNs and

members, although the principle of hierarchical arrangement of keys largely

remains the same. An important consideration regarding these key arrange-

ments is the impact on the entity that performs retransmissions, since that

entity may have to hold several keys in order to verify NACK messages.

Figure 9.6 Hierarchic arrangement of NACK-keys and SG-keys.

9.4 Security of NORM protocols 243

9.4.2 PGM

The PGM [13] reliable transport protocol represents an interesting instance

of a NORM protocol. PGM makes use of the same path (in reverse) as the

multicast distribution tree to deliver the selective NACKs sent by receivers

toward the source.

NACKs for missing packets travel in the reverse direction along the path

of the distribution tree. A receiver will repeatedly send (via unicast) a NACK

to the last-hop PGM network element on the multicast distribution tree. The

network elements at the multicast routing layer (i.e., the network layer)

forward the NACKs upstream, PGM-hop-by-PGM-hop, to the source. The

term ‘‘PGM-hop’’ implies that network elements in the distribution path

must be PGM entities, and must participate in the PGM protocol instance. A

NACK, in fact, travels through the same sequence of PGM network elements

(on the distribution tree) as the data packet (to which that NACK

corresponds). Retransmissions are done either by the source or by a repair

entity called the designated local repairer (DLR), which could be a router on

the multicast distribution tree or another entity designed to perform

retransmissions.

Since the NACK messages themselves could be lost, PGM defines a

network-layer hop-by-hop procedure for reliable NACK forwarding. When a

PGM network element receives a NACK at an interface, it will in return

transmit a NACK confirmation (NCF) message out that same interface. In

order to indicate to other PGM network elements that it has already

received a NACK for a given data packet, the NCF message is in fact sent via

multicast to the group. PGM network entities do not propagate NCF

messages, since they are essentially a hop-by-hop reliability mechanism for

the NACKs. The repair data packets are constrained in their delivery to only

those network segments from which NACKs originated, namely, where

there are members that did not receive the original transmission of the data

packet from the source.

In order to create PGM state information within network elements, a

source path message (SPM) is sent interleaved among the data packets by the

source. The transport session identifier (TSI)—which identifies sessions,

groups, and sources—allows the SPM to effect a source path state within the

network elements for individual sessions/sources (i.e., per TSIs).

Additional PGM security requirements

Besides the security requirements in Section 9.2, PGM has a number of

additional requirements that need to be addressed.

244 Security in Reliable Multicast protocols

w Protection of PGM trees. The use of SPMs, NACKs, and NCFs essentially

creates an overlay PGM tree over the multicast distribution tree. This

implies that all the downstream control messages (i.e., SPMs and

NCFs) and upstream control messages (i.e., NACKs) must be

protected against illegal modification and other attacks (e.g., replay)

mentioned in Section 9.2. For NCFs, since PGM network elements

use multicast to send out NCFs, this implies that a separate instance

of a secure multicast group is needed to protect the multicasted NCFs.

For SPMs, since the source is the entity that sends out SPMs

interleaved with the data for a given TSI, this implies that SPM

protection must be separate from data protection, since the SPMs are

addressed to the PGM network elements, instead of receivers.

w Protection of PGM leaves. When a receiver unicasts a NACK repeatedly

to the last-hop PGM network element, the NACK must be authentic,

integrity-protected, and replay-protected.

Possible PGM key arrangement

Ideally, PGM network elements should have their unique public key pairs.

This may be attractive, depending on the amount of NCFs, SPMs, and NACKs

exchanged within a domain. An alternative to public key digital signatures

is to employ shared symmetric keys, which is discussed in the following (see

Figure 9.7).

Here, one symmetric key—the PGM-key—could be used per TSI/

session/source to provide a long-term cryptographic key that is shared

among the PGM network elements within the domain, excluding the

sources and receivers. The PGM-key is used to provide protection of all NCFs,

SPMs, and NACKs in the domain independent of the TSI/session/source. In

effect, the interior of the PGM tree is protected separately from the PGM

leaves, where the sources are considered to be at the leaves.

The cost of using a PGM-key that is shared only by PGM network

elements in the interior of the PGM tree, is the need for the last-hop (next-

hop) PGM network element to provide separate protection when dealing

with sources and receivers:

w Last-Hop-key. For NACKs issued by a receiver, the receiver and its last-

hop PGM network element would share a symmetric Last-Hop-key

(LH-key). The receiver’s last-hop PGM network element then

substitutes that NACK with its own NACK, and provides protection

using the PGM-key. Other PGM network elements upstream can

then authenticate that (substituted) NACK without having to share a

9.4 Security of NORM protocols 245

key with the receiver, since they share the PGM-key with that last-

hop PGM network element. Note that an LH-key can be pair-wise

unique between a receiver and its last-hop PGM network element, or

it can be shared by a set of receivers downstream to a last-hop PGM

network element.

w SPM-key. For SPMs interleaved (by a source) among the data packets,

a separate SPM-key could be established as a pair-wise key between

the source and its next-hop PGM network element. If other PGM

network elements are required to also authenticate SPMs (in addition

to authentication by the source’s next-hop PGM network element),

then this SPM-key would need to be distributed to all PGM network

elements in the interior of the PGM tree.

Figure 9.7 Possible key arrangement for PGM.

246 Security in Reliable Multicast protocols

One way to accomplish this distribution is for the source’s next-

hop PGM network element to encrypt the SPM-key under the PGM-

key, followed by the transmission of the encrypted result to the other

PGM network element. The transmission could be done through the

same path as the SPMs (e.g., via the multicast distribution tree).

Other non-PGM entities would not be able to obtain the SPM-key,

since they are not in possession of the PGM-key. In essence, the

source’s next-hop PGM network element vouches for the SPM-

key. This solution may require changes to the current PGM

specifications.

9.5 Security of FEC-based protocols

As mentioned previously, the implosion of messages at the sender represents

one problem faced by many RM procotols, which can be addressed using

techniques such as local repair and suppression. Another approach—which

is a departure from the sender-initiated and receiver-initiated frame of

thought—is to simply dispense with ACKs or NACKs aimed at the sender.

This is the basis of the FEC-based RM protocols, for which the reader is

directed to [19, 20] for detailed information about packet-based FECs.

In the FEC-based strategy, no back channel, in the sense of ACKs and

NACKs, is assumed. Thus receivers need not send messages to the sender,

and the sender will therefore not suffer the implosion problem. Instead, the

sender incorporates redundancy into the data, to help the receiver in

reconstructing the original message. In the most primitive case, the sender

could send the same messages repeatedly—which is perhaps acceptable for

some limited environments. However, a more intelligent way is to

redundantly encode packets using ðn; kÞ-encoding. In the packet-level

ðn; kÞ-encoding the k source packets are encoded into n packets, where n is

greater than k. The receiver then needs only to obtain any unique k packets

out of the sent n packets to reconstruct the original message.

As mentioned in [21], most—if not all—FEC-based approaches are

especially vulnerable to DoS attacks by attackers who try to send forged

packets to the session that would prevent successful reconstruction by

receivers, or that would cause inaccurate reconstruction of large portions of

the data object by receivers.

To overcome potential DoS attacks, protection in FEC-based schemes

should be provided both at the application layer and at the packet level (see

Section 9.2). At the application layer, integrity protection—and possibly

group authentication or source authentication—should be provided to the

9.5 Security of FEC-based protocols 247

message (e.g., file) before it is delivered to the FEC layer where the ðn; kÞ-

encoding will be applied. Then, each of the n packets would need individual

integrity protection and authentication, so that a receiver could immediately

discard bad packets, instead of passing them up from the network layer to the

transport layer or application layer.

At the packet level, group authentication or source authentication could

be provided. The shortcoming of group authentication via a group-shared

symmetric key is that any dishonest receiver can forge packets. On the other

hand, public key–based digital signatures on a per-packet basis is too

expensive in term of resource consumption.

One possible source-authentication method is to use the TESLA

protocol [22], which was described earlier in Chapter 3. TESLA provides

comprehensive support for source authentication of a multicast stream using

MACs. TESLA uses the approach of committing to a MAC key first, and

revealing it after a preadvertised delay. The applicability of TESLA would

depend on the specific application of the FEC-based RM protocol, and, more

specifically, on whether receivers can tolerate the delayed authentication

imposed by TESLA.

The reader is directed to [22] for further details on TESLA, and to [23] for

a proposal on a framework to use source authentication within the context

of IPsec.

9.6 Summary

This chapter has focused on the broad problem of the security of RM

protocols, which provide the reliability needed over the data packet delivery

by the underlying multicast routing protocol. RM protocols are in general

more complex than unicast reliable transport protocols (e.g., TCP).

Furthermore, each application that uses an RM protocol has its specific

needs. The specific needs of each multicast application has prompted several

proposals for RM, each having its own specific security requirements.

The three basic requirements of RM protocols are the same for other

protocols in general: namely, the need for control messages to be authentic,

the need to be integrity-protected, and the need to be replay-protected.

Section 9.2 provides further RM-specific requirements that are common

across several RM protocols.

The three families of RM protocols discussed are the TRACK protocols,

the NORM protocols, and the FEC-based protocols. The TRACK family of RM

protocols employs a tree structure to organize the delivery of ACKs and

NACKs. All receivers are arranged into local regions, where each region is

assigned a repair entity to aid in providing reliability. The tree structure

248 Security in Reliable Multicast protocols

TE
AM
FL
Y

Team-Fly®

essentially acts as the control channel over the data channel (namely, the

multicast distribution tree). In contrast, the NORM protocols employ NACKs

to indicate packets that were not successfully received. Suppression entities

in NORM protocols help in discarding superfluous NACKs, thereby avoiding

the implosion problem at the sender. In the FEC-based strategy, no back

channel is assumed, and the sender instead incorporates redundancy into

the data to help the receiver in reconstructing the original message. Thus, the

strategy avoids the implosion problem entirely.

The security issues of an RM protocol from each of the three families

were discussed. In particular, attention was given to the RMTP-II protocol

and the TRAM protocol from the TRACK family, while the PGM protocol

was selected from the NORM family. These specific protocol instantiations

were chosen due to the fact that they have seen deployment in production

environments, as opposed to laboratories only. Since the security of FEC-

based protocols is tightly related to the TESLA proposal discussed in

Chapter 3, only a limited discussion was provided, in order to prevent

repetition of the earlier discussion.

Since a general-purpose security solution for all RM protocols would be

impossible to construct due to the sheer size of the design space, this chapter

has approached the subject of RM protocol security more from a practical

survey perspective. It has provided security requirements for families of RM

protocols, and for three specific RM protocols (namely, RMTP-II, TRAM, and

PGM) it has suggested some cryptographic key arrangements to help achieve

the authentication and integrity of control messages used in those protocols.

However, further security analysis and design will need to be conducted on

these three RM protocols (and others like them), in order to gain some

assurance of their security.

References

[1] Hardjono, T., B. Cain, and N. Doraswamy, ‘‘A Framework for Group Key

Management for Multicast Security,’’ draft-ietf-ipsec-gkmframework-03.txt,

IETF, August 2000, work in progress.

[2] McCullough, D., ‘‘Noninterference and the Composability of Security Proper-

ties,’’ in Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA: IEEE

Computer Society, April 1988, pp. 177–186.

[3] McLean, J., and C. Meadows, ‘‘Composable Security Properties,’’ in Proc. of

the IEEE Computer Security Foundations Workshop II, IEEE Computer Society,

1989.

9.6 Summary 249

[4] Handley, M., et al., ‘‘The Reliable Multicast Design Space for Bulk Data

Transfer,’’ RFC 2887 (informational), IETF, August 2000.

[5] Paul, S., Multicasting on the Internet and Its Applications, Norwell, MA: Kluwer

Academic Press, 1998.

[6] Towsley, D., J. Kurose, and S. Pingali, ‘‘A Comparison of Sender-Initiated and

Receiver-Initiated Reliable Multicast Protocols,’’ IEEE JSAC, Vol. 15, No. 3,

April 1997.

[7] Levine, B., and J. J. Garcia-Luna-Aceves, ‘‘A Comparison of Reliable Multicast

Protocols,’’ ACM Multimedia Systems Journal, Vol. 6, No. 5, August 1998,

pp. 334–348.

[8] Chiu, D., et al., TRAM: A Tree-Based Reliable Multicast Protocol, Technical Report

SML TR-98-66, Sun Microsystems, July 1998.

[9] Montgomery, T., et al., ‘‘The RMTP-II Protocol,’’ draft-whetten-rmtp-ii-00.txt,

IETF, April 1998, work in progress.

[10] Whetten, B., T. Montgomery, and S. Kaplan, ‘‘A High Perfomance Totally

Ordered Multicast Protocol,’’ in Birman, K. P., F. Mattern, and A. Schipper

(eds.), Theory and Practice in Distributed Systems: International Workshop,

New York: Springer-Verlag, 1995, pp. 33–57.

[11] Miller, K., et al., ‘‘Starburst Multicast File Transfer Protocol (MFTP)

Specification,’’ draft-miller-mftp-spec-03.txt, IRTF, April 1998, work in

progress.

[12] Floyd, S., et al., ‘‘A Reliable Multicast Framework for Light-Weight Sessions

and Application Level Framing,’’ IEEE/ACM Trans. on Networking, Vol. 5, No. 6,

December 1997, pp. 784–803.

[13] Speakman, T., et al., ‘‘PGM Reliable Transport Protocol Specification,’’ RFC

3208 (experimental), IETF, December 2001.

[14] Byers, J. W., et al., ‘‘A Digital Fountain Approach to Reliable Distribution

of Bulk Data,’’ in Proc. of ACM SIGCOMM, Vancouver, Canada, September

1998.

[15] Hardjono, T., and B. Whetten, ‘‘Security Requirements for TRACK,’’ draft-ietf-

rmt-pi-track-security-00.txt, IETF, June 2000, work in progress.

[16] Kadansky, M., J. Wesley, and J. Provino, ‘‘Tree-Based Reliable Multicast

(TRAM),’’ draft-kadansky-rmt-tram-02.txt, IETF, January 2000, work in

progress.

[17] Adamson, B., et al., ‘‘Nack-Oriented Reliable Multicast Protocol (NORM),’’

draft-ietf-rmt-pi-norm-04.txt, IETF, March 2002, work in progress.

[18] Hardjono, T., L. Vicisano, and L. Dondeti, ‘‘Security Considerations for NORM

Protocols,’’ March 2001, Internet draft in preparation.

250 Security in Reliable Multicast protocols

[19] Huitema, C., ‘‘The Case for Packet Level FEC,’’ in Proc. of the IFIP 5th

International Workshop on Protocols for High Speed Networks, Sophia Antipolis,

France: IFIP, October 1996.

[20] Luby, M., et al., ‘‘The Use of Forward Error Correction in Reliable Multicast,’’

draft-ietf-rmt-info-fec-02.txt, IETF, February 2002, work in progress.

[21] Luby, M., et al., ‘‘Asynchronous Layered Coding Protocol Instantiation,’’ draft-

ietf-rmt-pi-alc-08.txt, IETF, April 2002, work in progress.

[22] Perrig, A., et al., ‘‘Efficient and Secure Source Authentication for Multicast,’’

in Proc. of Network and Distributed System Security Symposium (NDSS), San Diego,

CA, February 2001, pp. 35–46.

[23] Canetti, R., P. Rohatgi, and P. Cheng, ‘‘Multicast Data Security Transforma-

tions: Requirements, Considerations, and Proposed Design,’’ draft-irtf-smug-

data-transforms-00.txt, IRTF, June 2000, work in progress.

9.6 Summary 251

Applications of multicast
and their security

Multicast and group communications have been studied for

over 2 decades now, and various aspects of this area have

been put to practical use. Much of the interest in this broad area

has been driven by the wide scope of applications, and by the

enormous potential of multicast and group communications.

In this chapter we briefly look into a few examples or case

studies where multicast has been deployed to satisfy one or

more requirements of the specific area of application. Each

example reflects the decision of its respective architects to

deploy multicast in their network, and—due to the specific

architectures—each has deployed specific protocols for routing,

reliability, and other functions.

For each of these examples, the current chapter discusses

the general security requirements and possible approaches to

satisfy them. The discussion on the various security issues

surrounding these cases is not intended to be comprehensive,

due to the fact that considerable familiarity with the field of

application, together with a comprehensive security and threat

analysis, is needed to arrive at a strong security solution.

Instead, these case studies are intended to show that multicast

and group communications are indeed being deployed in real-

life scenarios, that these scenarios have serious security

requirements to be fulfilled, and that the technologies that

have been discussed in the previous chapters have immediate

applicability in answering some or all of these requirements.

253

C H A P T E R

10
Contents

10.1 Stock market data
distribution

10.2 Local area IP
Television

10.3 Nonreal-time multicast
distribution

10.4 SecureGroups project

10.5 Summary

10.1 Stock market data distribution

The distribution of stock market data has been one interesting application of

multicast, both for private and public networks.

In the public network case, there has been interest in providing stock-

tick information on the user’s desktop, albeit with a 10- or 20-minute delay.

Here, multicast at the IP layer provides a very compelling method of delivery

of the information on the Internet, to a wide audience of users.

The private networks case refers to those networks that provide very

specific high-quality information in real-time, to a closed membership of

receivers. An example of this later case is the Securities Industry Automation

Corporation (SIAC) network, described in the following.

10.1.1 Background

SIAC operates and maintains two separate computer environments to

process trade and quote information on behalf of the Consolidated Tape/

Quote Association (CTA/CQ). The trade information is processed by the

Consolidated Tape System (CTS) while the quote information is handled by

the Consolidated Quotation System (CQS). Both systems run on fault-

tolerant computer platforms at different physical sites, to provide redun-

dancy in the face of possible disasters. The thinking is that if a site disaster

should occur at either location, all of the computer processing would be

transferred to the surviving site at reduced capacity (65% capacity). The aim

is to have the surviving site recover the services within 2 hours, while a full-

site disaster can be recovered on a next-day basis. SIAC’s two operating sites

are located on two separate power grids, and have multiple redundant

communications paths connecting the two facilities. The sites have

uninterrupted power supplies, as well as emergency generator backups.

All of SIAC’s fault tolerant systems utilize a SIAC-developed software

environment that allows for a common operations interface and internal

processing infrastructure [1].

10.1.2 Network topology

The CTS and CQS receive their data from the nine market centers over

network-based TCP/IP connections. Each market center has redundant

communication paths into the two operating environments, and each uses

diverse common telephone carriers to send its trade and quote data to SIAC.

SIAC uses a high-bandwidth router backbone network to simultaneously

distribute, via IP multicast, trade and quote information to the 66 CTS and 62

CQS subscribers (data recipients).

254 Applications of multicast and their security

These data recipients receive their data over T-1 and T-3 communica-

tions facilities from both sites, through diverse common carriers. Indepen-

dent of where the system is actually located (of the two sites) both streams of

data are simultaneously distributed out of both sites using a SIAC-developed

multicast packet replicator (MPR). This provides the data recipients with live

redundant streams.

SIAC’s design and implementation of IP multicast technology allows

trade and quote data to be distributed to recipients in a fair manner over a

network, and eliminates any dependency where one data recipient having a

problem might impact another data recipient. If a recipient experiences loss

in data due to problems with its own system, an automated retransmission

facility allows the recipient to request and receive the retransmissions.

The CTS and CQS receive trade and quote information from the nine

market centers using a standard message format. Each system validates its

respective message formats, verifies the information against its databases

(e.g., valid symbol, etc.), consolidates the information with the other

market centers’ information, and disseminates the information to the data

recipients over its respective common standard message formats via the IP

multicast network. A timestamp is included in every trade and quote

message, and they are in turn stored in the system for both on-line and

after hours processing. Figure 10.1 shows a general architecture of the

SIAC CTS/CQS system, with its multicast network to its subscribers. The

diagram also shows a possible use of a key server—one at the CTS/CQS

and one at each subscriber, in order to carry out key distribution and key

management for the cryptographic keys used to protect the data being

transmitted through the multicast network.

10.1.3 Security requirements and possible approaches

Aside from the requirements of transmission reliability and timeliness of

delivery, there are a number of security-related requirements that need to be

fulfilled by the data distribution service. Two foremost requirements are data

integrity and source authentication. (In some cases data confidentiality

through encryption may be deployed, depending on the specific require-

ments of the subscriber of the service.)

Data integrity is crucial, because a subscriber needs the assurance

that the stock market information being transmitted has not been modified

in transit. The accuracy of stock information at any given time is paramount

for the subscriber, and has drastic implications on the financial future of

the subscriber. Sophisticated attacks on the stock price information of a given

listed company can result in the financial demise of that company.

10.1 Stock market data distribution 255

Source authentication of timely stock market data is important, because

a subscriber needs assurance of the origin of the information. Although in

theory a subscriber may rely on another subscriber to relay accurate

information with a few seconds delay, in practice every subscriber can only

afford to trust a single entity—in this case SIAC and its system—to provide it

with authentic information. The enormous value of the data being

transmitted makes integrity, source authentication, and timeliness para-

mount requirements.

Although the current authors are not privy to the detailed workings of

SIAC’s stock market data distribution network, there are some general

approaches that can be adopted to minimize potential attacks to the

network. These include the following:

w Closed network. Since the membership of subscribers is not expected to

be dynamic over shorts periods of time, and since the value of the

data is high, providing a closed network in itself already provides

Figure 10.1 Stock market example.

256 Applications of multicast and their security

some level of security. Each subscriber could be assigned a

permanent IP address, and administratively scoped multicast could

be used to prevent IP multicast packets from leaving the network.

w Unidirectional multicast. Since the source of the transmission in this

example is the CTS/CQS system at SIAC, and since the subscri-

bers do not transmit data to other subscribers, a unidirectional

multicast approach is perhaps the most appropriate for this case. At

the multicast routing level, this can be achieved through the

appropriate setup of IGMP (version 3), and of the multicast routing

protocol, PIM-SSM.

w Authentication and integrity. Data integrity can be provided using a

keyed hash function (MAC), with the MAC-key being shared only by

legitimate members (subscribers) of the group. Source authentication

can be achieved using asymmetric cryptography (e.g., public key–

based digital signatures), but it is typically more expensive in

computational cost. Chapter 3 discusses several approaches to

providing authentication and integrity.

Although not widely tested or deployed, another possible idea proposed

in [2] is to establish a multicast VPN, by using a multicast address on a

VPN, based on IPsec ESP in tunnel mode. This is shown in Figure 10.2.

This idea is particularly attractive here since the subscribers/receivers are

fixed, and the multicast VPN can be used instead of a one-to-one IPsec VPN

from the sender to each subscriber. In effect, in the multicast VPN idea, a

one-to-many tunnel is established from the sender (SIAC) to the many

receivers (subscribers). From a routing perspective, the multicast routing

protocol executing in the network should simply forward the IPsec packets

(with a multicast destination address) to the receivers in the group. In order

to provide the IPsec SA management for the group of subscribers, the GSA

definition and its management using the GDOI approach can be used (see

Chapters 4 and 5).

10.2 Local area IP Television

The Internet remains an attractive distribution network for content to

IP-enabled television and other network devices. A number of companies

continue to invest in developing content-related technologies, including

content delivery networks (CDNs) and IP-based consumer electronic

devices, such as IP-enabled television, entertainment centers, and net-

worked game consoles. At the consumer’s end, IP multicast provides a most

10.2 Local area IP Television 257

attractive delivery mechanism for local area delivery of content/program-

ming to a well-defined network with a reasonable amount of bandwidth.

10.2.1 Background

A number of companies are currently developing systems for content

delivery to densely inhabited environments with rich bandwidth. An

example of such an environment would be apartment complexes with LAN

capabilities, and with high-speed access to the open Internet at several nodes.

The central concept is that for such apartment buildings IP multicast can

be used to deliver content either in near real-time, or in a stored video

approach. The user’s IP-TV can then join certain multicast groups, either

short-lived groups or long-lived sessions. The multicast groups can be relaying

content in near real-time or in a prerecorded (stored) mode, that is replayed

at frequent intervals. Since the environment is local, and is based on LANs

or wireless LANs, a dense-mode multicast routing protocol can be used.

In addition, users in the apartment complex could create their own

multicast groups to share various activities, such as live chats, multiplayer

games, and even their own closed network ‘‘TV broadcasting,’’ with

programs of their own creation.

Figure 10.2 Notion of multicast VPNs.

258 Applications of multicast and their security

TE
AM
FL
Y

Team-Fly®

10.2.2 Network topology

A general illustration of this application of multicast is shown in Figure 10.3.

In this Figure, an apartment building consists of several floors, each of which

in turn contains a number of receivers in the form of IP Television devices.

Although the diagram shows a separate router for each floor, other

configurations are possible, and would be largely determined by the

distribution of users and the type/speed of the underlying network. Thus,

for example, it is possible that several floors may share a single router.

At the other extreme, it is also quite possible that the entire building

shares one single subnet, thereby possibly located only a single hop from the

actual source, which could be the Content Management Server (CMS).

Figure 10.3 shows several entities, notably the content management

server (CMS), the key server, the video server, and the video store. The intent is

to convey the notion that several functions need to be supported in such an

environment to make IP multicast attractive. Thus for example, the CMS

could be the heart of the system, which controls the incoming content from

the content distributor. The CMS would record and store content that was

delivered on a regular basis (e.g., news or stock quotes) and it would request

(to the content distributor) content that was preordered by one or more

users ahead of time.

Figure 10.3 Local area IP television example.

10.2 Local area IP Television 259

An important function of the system is to provide controlled access to the

various multicast groups in the IP-TV network. This is the role of the key

server, which runs a group key management protcol, with the IP-TV

receivers as its host/members. For each multicast group (or session), an IP-

TV receiver (i.e., a group member) would need to obtain an decryption key

(or group key) from the the key server.

From a multicast routing perspective, possible protocols would include

dense-mode protocols such as DVMRP, PIM-DM, and MOSPF (See Chapter 8

or [3]). Using the topology in Figure 10.3, each router in the apartment floor

would be a multicast router, and would also run the IGMP protocol with its

respective members (namely the IP-TV receivers). The source for externally

based content would be the CMS. In addition, each IP-TV receiver could be a

source for its own multicast group (provided it was not transmitting rights-

carrying or copyrighted contents).

As such, an important assumption in this scenario is that the IP-TV client

contains built-in copyright protection functions or incorporates a digital

rights management (DRM) client. Such a DRM capability would minimize

the threat from illegal copying and/or redistribution of the content by users.

Without copyright protection, a user could simply forward contents to other

users, either in the apartment complex or at external locations (e.g., through

a VPN). Currently, there are a number of efforts in the various content-

related industries. An example is the OpenCable Architecture Platform

(OCAP) proposal from CableLabs, which would incorporate DRM capabil-

ities into next generation IP-enabled set-top-boxes.

The above example of local area IP-TV provides an attractive source of

additional revenue for apartment complex owners, and may even become

the core business for service providers that carry out the installation,

management, billing, and maintenance of this service based on off-the-shelf

hardware and software.

10.2.3 Security requirements and possible approaches

In considering the security requirements of the IP-TV scenario, it is useful to

distinguish between externally sourced content being retransmitted by the

CMS, and internally sourced content being transmitted by a user for the

user’s private multicast group. In the first case, the CMS would provide this

service, and charge users for accessing the content (e.g., movies and TV

programs). Billing could be based on a PPV model, and each program could

employ a separate multicast group with a limited lifetime. In the second case,

billing could be based on either volume of traffic or a fixed monthly price per

owner/creator of each multicast group.

260 Applications of multicast and their security

From a security perspective the value of the content being delivered

through the multicast groups determines the security requirements of the

scheme. The requirements include, among others, the following:

w User/client identification and authentication. For billing purposes, when

an IP-TV client requests to join a given multicast group or session

being transmitted by the CMS, and asks the key server for a key to

decipher the content, that client must be identified and authenticated

by the key server.

w Confidentiality. For valuable content (e.g., movies) encryption pro-

vides a means for controlling access to the content. As such, con-

fidentiality (in the sense of encryption) is an important requirement.

For private (local) multicast groups, the group owner/creator should

be provided with the option of providing confidentiality for the

group’s traffic.

w Source authentication. For certain types of content, the transmission

source of the content matters. For example, for private (local)

multicast groups, members should be able to identify senders to the

group. For groups owned by the CMS, the IP-TV client may be

configured to accept content that originated from the CMS only.

w Copy protection. Although outside the scope of multicast security, copy

protection or DRM functions should be provided as part and parcel of

the IP-TV client or application. This is especially true for rights-

carrying content (which includes most commercial content, such as

movies and TV programs), in order to prevent the content from being

illegally copied and retransmitted by a user.

10.3 Nonreal-time multicast distribution

Consider distribution of the next Windows operating system software update

to Microsoft’s customers, distribution of a training video to all Ford dealers,

or distribution of software or database updates to all Wal-Mart stores.

Considering the large number of receivers, these applications are better

served by a multicast-based push distribution model, than a unicast based

pull model.

Typically, data transmission in these applications does not need to be

in real time; however, reliable transmission is a requirement. In most cases,

the sender has the data available in advance, and has the buffer space to

hold the data. In other words, there are no limits on sender-side buffering.

10.3 Nonreal-time multicast distribution 261

On the other hand, since receivers are typically end-user devices, receiver-

side buffering must be kept to a minimum. Consider also that receivers may

have heterogeneous connectivity to the Internet. Some of them may have

broadband access, whereas others may be using a dial-up connection. Thus,

there may be multiple multicast sessions serving the receivers; for example,

one for each service level. Receivers may also need to be grouped based on

the number of hops to the sender.

In the following, we describe a protocol called MFTP [4, 5] that supports

applications such as those listed earlier.1

10.3.1 MFTP

MFTP supports simultaneous file transfer to a group of members. An MFTP

server streams data, packaged into data transmission unit (DTU) messages, to

receivers, without waiting to process feedback. Members send feedback,

aggregated into ranges of DTUs, after the first pass of the transmission has

been completed. Intermediate agents may be employed to further aggregate

receivers’ feedback for scalable operation. The MFTP server processes

feedback after each pass, consisting of either file or repair data transmission.

MFTP data streams are announced on a public group, and users are

invited to join a private group to receive the data. MFTP operates over UDP

and consists of two protocols: the multicast control protocol (MCP), and the

multicast data protocol (MDP). MCP provides a functionality similar to that

of IGMP, at the application layer. MCP messages include join and leave

messages from the server to receivers, and a query message from a client to a

server, to find a public address. MCP also has an echo message for an MFTP

entity (server or client) to ‘‘ping’’ another MFTP entity. MDP is used for

reliable data transfers as well as group announcements. Announce is an MDP

message from the server to the public group address, and a registration

message is from a prospective member to the server. The server sends DTUs

to members via the private group address, and may ask for member status.

The members may respond with an ACK or a NACK. Other MDP messages

are completion or abort from the server, and done or quit from a member.

MFTP supports several different types of groups: closed groups, open

limited groups, and open unlimited groups. The classification is based on

how tightly the sender can control data download to receivers. In closed

groups, the sender invites members to join the group, and ensures that all of

them register and receive data. In open limited groups, members are invited,

1. There are several similar protocols such as FCAST [6] reported in the literature.

262 Applications of multicast and their security

but are not obligated to join. Once a member registers, however, the sender

must ensure that the member receives data. Finally, in open unlimited

groups, the sender does not specify a member list in the group announce-

ment, and thus any host can register to receive data. Members may also leave

the group when they are no longer interested in the data being sent.

An example MFTP session works as follows. A server sends the group

announcement on the public group that all potential participants are

expected to monitor. The announcement contains information such as the

type of group (e.g., closed or open limited), the list of members that must

respond, the nature of the group data to be sent and so forth. Closed groups

are typically employed when the sender has a list of members that must

receive the data transmission. Thus after receiving an announcement of

a closed group, members whose identities are in the members’ list, must

register. For reliability, the sender repeats the announcement several times.

The sender may also include acknowledgments for member registrations in

announcement messages. For example, it may delete the members that have

successfully registered from the members’ list.

An MFTP registration message conveys a member’s intent to join the

group. In closed groups, members must register and express at least their lack

of interest in joining the group. Other parameters in the registration message

include the sender’s address, port, member address, and so forth. The

sender’s and members’ parameters are repeated for the benefit of

intermediate feedback aggregators. These entities may consolidate the

registration messages, and just send client addresses to the sender, along

with their intent, if necessary.

For data transmission, the sender (MFTP server) packages data into DTU

messages. The server then sends the whole file to the private multicast

group, without waiting to process feedback. Members are expected to store

the received data and note any missing or corrupted DTUs. To avoid feedback

implosion, MFTP groups DTUs into blocks. Thus, MFTP divides the file to be

transmitted into equal-sized blocks and the blocks into data that can fit into a

single DTU message.

Data transmission proceeds in several passes. The first pass contains the

whole file, whereas the subsequent passes contain only the DTUs that were

reported to be missing by at least one member. The DTUs are stamped with

the same block and the DTU number in the header, so that a retransmitted

DTU is indistinguishable from the copy that was originally transmitted.

The MFTP server requests the clients to report the file receive status after

each pass. The status response MDP message from the clients contains a

bitmap of the missing or corrupted DTUs per block. Retransmission passes

may continue either until all clients receive data, or when a delivery time

10.3 Nonreal-time multicast distribution 263

limit timer expires. When the timer expires, the server just sends an abort

message to the remaining clients.

Several real-world applications use MFTP for reliable and efficient data/

file delivery to large groups. For example, the U.S. National Weather Service

plans to collect Doppler Weather Surveillance Radar (WSR-88D) data from

all radars in the country, and distribute them to all WSR-88D government

and nongovernment users, using MFTP [7]. This centralized radar data

collection and dissemination is called Radar Product Central Collection/

Distribution Service (RPCCDS). RPCCDS plans to provide data as individual

files via unicast ftp or as a tape archive (tar) file to closed or open groups as

defined by MFTP.

Several large corporations including Ford Motor Company, Boeing, Toys

‘‘R’’ Us, and Sherwin Williams also use MFTP to send software or inventory

database updates to dealerships, branch offices, or franchise stores.

Traditionally, such updates are sent via unicast or on CD-ROMs shipped

via mail, which may take a few days to a week to reach all the receivers.

10.3.2 Security requirements of MFTP applications

As noted earlier, MFTP is being used widely in corporate intranet settings as

well as for file distribution over the Internet. There are several security

requirements to consider, however. First, servers may want to ensure that

only authorized receivers get access to the MFTP data. Next, most

applications need to know that the data is being sent by the claimer source.

Also, consider that some of the data that needs to be sent via MFTP could be

proprietary or sensitive, and needs to be confidential. Examples of such data

include a company’s inventory, automobile dealer training material, and so

forth.

Aside from the content protection and access control requirements,

MFTP protocol security is also of concern. MCP messages contain NACKs,

data reception status, registration requests, and so forth. Some MDP

messages such as abort and done, also convey control information between

MFTP entities. MFTP architecture also supports the use of aggregators to

reduce the implosion of NACK messages. Modification of any of these

messages may cause denial of service to one or more (when aggregation is

involved) receivers.

10.3.3 Security solutions for MFTP

In this section, we explore possible solutions based on typical MFTP

applications for the above-listed security requirements.

264 Applications of multicast and their security

Access control and confidentiality

A rudimentary form of access control in MFTP can be achieved by the server

allowing registration messages only from authenticated, predesignated

hosts. This applies to closed as well as open groups. The disadvantage to

this simplistic solution is that eavesdroppers or hosts on a LAN shared with

an authorized host can get access to the confidential data sent using MFTP.

The solution to both access control and confidentiality of MFTP data is

encryption and distribution of the keys to only the authorized members.

We may use IPsec ESP [8] or MESP [9] for the multicast data transmission.

For key distribution, we need a closer look at the applications’ requirements.

First, notice that members are generally interested in downloading a

complete file via MFTP. Thus, the typical membership span is for the lifetime

of a group. In other words, there is no need for rekeying due to membership

changes.

During member registration, the server verifies whether the prospective

member is authorized to receive the MFTP data. This might involve

authentication of the host, and a check to see if the host is in the list of

members that an MFTP server distributes as part of the announcement. For

access control and key distribution, the MFTP server could use the GDOI [10]

(see Chapter 5) registration protocol. Using GDOI, the MFTP server

downloads a common key via unicast to all the authorized members.

Data origin authentication

Data origin authentication can be achieved in MFTP rather easily. First, let us

examine the properties of MFTP applications that influence our choice of a

source authentication protocol. In most cases, the data (a tar file, for

example) is available to the sender in advance. The receivers wait until they

receive the complete file. Thus the sender could compute a digest of the

entire file and send the signed digest along with the file. While this solution

is simple, it may lead to DoS attacks on the receiver’s buffer space. Notice that

the receiver needs to receive the entire file before being able to determine

whether the contents are authentic. Even if the adversary can introduce only

one fake packet, the entire file may need to be discarded. For similar reasons,

hash chaining will not work. Thus the best solution is block hashing, so that

each packet can be authenticated as it is received. Notice, however, that the

computation and communication overhead in this approach is quite high. If

overhead is a concern, we may use TESLA. The disadvantages there,

however, are the need for clock synchronization and probabilistic

authentication. Thus, receivers may need to request retransmission of

some DTUs, since the TESLA security condition could not be verified.

10.3 Nonreal-time multicast distribution 265

Chapter 3 has a detailed description of the aforementioned source authen-

tication schemes.

Protecting MFTP control messages

Most of the MDP and MCP control messages are sent via unicast, while some

of them are sent by the server to the MFTP clients via multicast. Few others

are sent upstream by the feedback aggregators. First, let us consider the

control messages from the clients to the server or vice versa, without

involving the aggregators. Notice that if GDOI is used for registration, there is

a shared secret key between each receiver and the sender. The client can use

this key (or a key derived from the secret) to authenticate the control

messages using HMAC [11]. Servers can use techniques similar to those used

for MDP data communication (see Section 10.3.3). Aggregators are typically

involved in unicast communication, and those messages can be authenti-

cated by sharing MAC keys between clients and aggregators, aggregators and

aggregators, and aggregators and the server.

10.4 SecureGroups project

In military and other mission-critical applications, several group commu-

nication scenarios are common. For example, command and control offices

disseminate information and orders to soldiers in the battlefield or training

grounds, and spy satellites and planes send maps and photographs of

target areas to multiple command and control centers. Apart from these

one-to-many communication scenarios, there may be many-to-many

communication between soldiers in the battlefield. Securing such group

communications is essential. Another factor to consider is the possibility of

group communication between coalitions of countries, with the potential for

dynamic partition and merging of coalition partners.

While some of the command and control centers are stationary, most

entities are mobile, and the communication is typically over wireless links to

those mobile units. We must also consider that devices of heterogeneous

computation and communication capacity will be in use. For example,

soldiers may carry handheld computers, whereas tanks may be equipped

with server-class machines.

The SecureGroups [12] project is part of a Defense Advanced Research

Project Agency (DARPA)-funded program to investigate secure group

communication in dynamic coalition environment. For scalable key

distribution, the intradomain key management part of the IKAM protocol,

described in Chapter 5, is being used for key distribution. When members are

mobile, hierarchical node-based group key management (decentralized)

266 Applications of multicast and their security

works better than LKH-based (centralized GCKS) approaches. If the AKDs

are geographically distributed, mobile members can get access to new group

keys as long as they are near one of the AKDs.

An airborne warning and control system (AWACS) plane could serve

as the DKD, and tanks could serve as AKDs. This model works well for

coalitions as well. Each coalition partner could form a secure group at

the area level, and the primary partner could control the domain-level key

distribution.

The DKD is responsible for generating the TEKs, and distributing them to

authorized AKDs. The AKDs are responsible for enforcing access control to

the area, as well as forwarding the TEKs to authorized area members. The

DKD may be colocated with the sender, and that has a special application for

military applications. For strict confidentiality, data transmission must be

stopped during rekeying. Otherwise, evicted members may get access to

some secret data sent during the rekeying process. If the DKD is colocated

with the sender, we can stop data transmission without any latency.

10.4.1 Impact of mobility on group key management

Mobility complicates key management by allowing members to not only

leave or join a session, but also to transfer between networks while

remaining in the session. Since a mobile user may accumulate information

about the local security services for each area he or she visits, the key

management system must consider the level of trust to impart to these

mobile members, and the performance implications should the member

leave the session. Furthermore, as a member moves, the network latency

between the member and the key management services may change, and

result in additional performance degradation. Some rekeying strategies

include: immediate rekeying of the area key, delaying rekeying until the

member leaves the domain, or something in between (such as rekeying

when a member holds more than a given number of area keys, or when

more than a given number of nonmembers hold an area key).

Member registration is the most computationally expensive phase in

group key distribution. Thus it is important that the registration process is

not repeated when members move between areas. Thus AKDs should be

able to securely hand off members to other AKDs. The All-AKD-key may be

used for such hand-offs.

AKDs themselves may be mobile as well. That may result in some

members being too far away from their AKD. In that case, members may join

another AKD or elect an AKD from among themselves. Thus secure election

algorithms are needed for AKD election.

10.4 SecureGroups project 267

10.5 Summary

Despite the slow deployment of multicast, there are several corporations and

organizations using multicast for efficient data transmission in intranets or

over the Internet. Multicast security will only increase multicast use. There

are several applications that need, for example, the concept of a GSA and the

key download feature of GDOI, for efficient secure group communication.

Otherwise, the sender has to separately encrypt data for each member, thus

undoing the benefits of multicast.

This chapter describes security requirements and solutions for real-world

applications involving real-time and nonreal-time multimedia and data

transmissions. Stock quote distribution and IP-television are the real-time

applications, and MFTP is an example in the nonreal-time category. We also

discuss security requirements and some solutions for key distribution to

mobile members in wireless environments.

The lesson is that most of the applications’ requirements can be satisfied

with group security architectures, algorithms, and protocols proposed in the

literature and being standardized at the IETF. Notice also that in most

commercial applications, immediate rekeying of highly dynamic and large

groups is not a requirement. Efficient group key initialization, batch

rekeying, and source authentication schemes are of immediate concern.

There are also some open research problems such as the reliable

transmission of rekey messages, and efficient group key management for

mobile groups communicating over wireless links.

References

[1] Demchack, Tom., ‘‘Memo on (Stock Market) Data Dissemination,’’ http://

admin.spa.org/liz/newfisd/news/sec 051001memo.html, May 2001, Securities

and Exchange Commission (SEC) memo.

[2] Hardjono, T., ‘‘Multicast Tunnels Using IPsec ESP,’’ in Proc. of the 10th IEEE

Workshop on Local and Metropolitan Area Networks, Sydney, Autralia, November

1999.

[3] Paul, S., Multicasting on the Internet and Its Applications, Norwell, MA: Kluwer

Academic Press, 1998.

[4] Miller, C. K., Multicast Networking and Applications, Reading, MA: Addison-

Wesley, 1998.

[5] Miller, K., et al., ‘‘Starburst Multicast File Transfer Protocol (MFTP)

Specification,’’ draft-miller-mftp-spec-03.txt, IRTF, April 1998, work in

progress.

268 Applications of multicast and their security

TE
AM
FL
Y

Team-Fly®

[6] Gemmell, J., E. Scholler, and J. Gray, ‘‘Fcast Multicast File Distribution,’’ IEEE

Network, Vol. 14, No. 1, January 2000, pp. 58–68.

[7] Operations Demonstation Plan for the Radar Product Central Collection/Distribution

Service (RPCCDS), TechReport, U.S. Department of Commerce, June 2000.

[8] Kent, S., and R. Atkinson, ‘‘IP Encapsulating Security Payload (ESP),’’ RFC

2406 (proposed standard), IETF, November 1998.

[9] Canetti, R., P. Rohatgi, and P. Cheng, ‘‘Multicast Data Security Transforma-

tions: Requirements, Considerations, and Proposed Design,’’ draft-irtf-smug-

data-transforms-00.txt, IRTF, June 2000, work in progress.

[10] Baugher, M., et al., ‘‘Group Domain of Interpretation for ISAKMP,’’ draft-ietf-

msec-gdoi-04.txt, IETF, March 2002, work in progress.

[11] Krawczyk, H., M. Bellare, and R. Canetti, ‘‘HMAC: Keyed-Hashing for

Message Authentication,’’ RFC 2104 (informational), IETF, February 1997.

[12] DeCleene, B., et al., ‘‘Secure Group Communications for Wireless Networks,’’

in Proc. of the IEEE MILCOM, Vienna, VA, October 2001, pp. 113–117.

10.5 Summary 269

Conclusion and future work

Multicast security standardization and research efforts have

come a long way, but there is a great deal of work to be

done as well. For example, there are several applications that

currently need a way to send the same key securely to a large

number of registered customers. This key may need to be

changed daily or just monthly in some cases. Thus, for many

applications, implementation and deployment of a GSA

establishment protocol along with IPsec provides a working

solution. More precisely, deployment of IPsec ESP for secure

multicast data transmission, and GDOI or GSAKMP for key

distribution meets the security requirements of many con-

temporary applications of multicast.

Commercial applications in general are expected to employ

batch rekeying for efficiency. In such applications, immediate

rekeying may be employed only to revoke a misbehaving

member. Immediate rekeying to maintain strict forward and

backward confidentiality may be a requirement in military

applications and in interactive group conferencing. GDOI and

GSAKMP do support transport of rekeying algorithms for

immediate or batch rekeying.

However, there are some open areas for research as well as

standardization in group key distribution. Reliable transport of

rekey messages, secure group membership management, and

GSA synchronization are areas where research and standardi-

zation efforts are ongoing. Several elegant solutions for the

reliable transport of rekey messages have been proposed in the

literature, and the standardization efforts are well under way.

271

C H A P T E R

11
Contents

11.1 IETF multicast security
framework

11.2 Secure multicast data
transmission

11.3 Group key distribution

11.4 Policy

11.5 Infrastructure protection

11.6 Future direction and final
words

Membership management and member deregistration are areas that need

more work.

Group authentication and simple forms of source authentication can

also be supported using IPsec ESP. Source authentication techniques that

amortize the cost of digital signatures need MESP or AMESP, which have

been proposed, and are on their way to standardization. Replay protection in

the presence of multiple senders, and IPsec support for SSM are open areas

for standardization.

Several group policy systems have been proposed and prototyped, and

the GSPT standardization is making good progress. GSPT integrated with

GDOI or GSAKMP, along with MESP (or AMESP), will provide protocol and

policy support to most algorithms for multicast security.

In summary, sufficient work has been done in the IETF MSEC working

group, for development and deployment of simple multicast security

solutions. The previous chapter illustrates this point in detail, in the case

of example applications such as MFTP and stock quote distribution. In the

rest of this chapter, we summarize the standards and research work done in

multicast and group security, and discuss ongoing and future work.

11.1 IETF multicast security framework

The IETF multicast security framework serves as a starting reference for

application designers, in that they need to find solutions for secure multicast

data transmission, group key distribution, and secure group policy manage-

ment. The framework also points out how a centralized or a distributed

design might incorporate the three problem areas (see Chapter 2). Note that

the security framework only addresses issues related to multicast content

protection. Multicast routing protocol protection is discussed in the latter

sections of this chapter.

11.2 Secure multicast data transmission

There are three major requirements for secure data transmission: data

confidentiality, message integrity (also known as data origin authentication),

and protection against replay attacks. IPsec has been designed with a single

source and one or more destinations in mind. Thus, IPsec as defined

in RFC24011 provides confidentiality, rudimentary message integrity, and

1. RFC2401 is currently being revised, and the new IPsec specification may have additional support for multicast

data protection.

272 Conclusion and future work

protection against replay attacks for one-to-many multicast data transmis-

sions. Multisender multicast introduces new challenges in that replay

protection requires a separate per-sender sequence number to be maintained

by all the receivers. General-purpose message integrity or data origin

authentication is the topic of Section 11.2.2 (also see Chapter 3).

The use of the IPsec SA identifier for SSM is currently a point of

contention. SSM is the prevalent model of multicast from one sender to

many receivers. Recall that an IPsec SA is identified by the triple <SPI,

destination address, protocol ID(ESP/AH)>. The SPI is chosen by the receiver

and the destination address, and could be either a unicast or a multicast

address. In multicast, there are multiple receivers and thus the receiver can

no longer choose the SPI. Instead, in secure multicast protocols (e.g., GDOI

or GSAKMP), the GCKS chooses the SPI. The destination address is a class D

IP address. However, in SSM, a multicast group is identified by the

tuple <source address, destination address>. Thus, ðS1;GÞ and ðS2;GÞ are two

different groups, but the IPsec SA identifier does not allow expression of

such distinct groups. The simple solution is to add the source address to the

SA identifier, but that comes at the cost of modifying existing IPsec

implementations.

Another suggestion is that a unique SPI, along with the destination

address, is sufficient to avoid any SA identifier collisions. However, if

different GCKSs manage the two groups ðS1;GÞ and ðS2;GÞ, and if they select

the same random number for an SPI, a member subscribing to the two secure

groups cannot determine whether a particular packet was sent by S1 or S2,

since the SA identifier would be same.

However, the current SPI definition works for single-sender multicast

using classic IP multicast (also known as any-source multicast), where a

group address alone uniquely identifies a multicast group, and thus the SA

identifier triple is unique per secure group.

11.2.1 Group authentication

Applications where group members are content with knowing that one of

the other members has sent the data can use IPsec ESP for maintaining

message integrity. An example would be a group of routers that accept

routing updates only from each other. We can form a secure group of such

routers by distributing a common secret seed to all of them. That seed can be

used to derive a group encryption key and a group authentication key. Note,

however, that most applications have receivers that must be able to

determine the source of the multicast data.

11.2 Secure multicast data transmission 273

11.2.2 Source authentication

Several source authentication mechanisms, described in Chapter 3, amortize

the cost of digital signatures over multiple packets, and in some cases over

the entire content sent in a multicast session. While there is a choice of

source authentication schemes, each of them is designed with specific

application requirements and resource constraints at the sender or the

receivers, in mind.

For example, hash chaining is best for reliable or semireliable (limited

bursty losses) data transfers. Block hashing on the other hand facilitates

immediate authentication of data over lossy channels, but at the expense of

increased communication overhead. MAC chaining is best suited for

applications where the sender and receivers have limited buffer space, are

in loose synchronization with each other, and have bandwidth and

computational constraints.

IPsec offers support only for group authentication, but work is under

way at the IETF on the design of MESP and AMESP to support the various

data source authentication schemes proposed in the literature.

Replay protection. Replay protection for multicast traffic is a topic of active

discussion in the IETF IPsec Working Group. In IPsec, the sender uses a

32-bit sequence number2 for replay protection. For single-sender multicast,

this works without any modification. It is very difficult, if not impossible, to

extend the concept of a single sequence number for multisender multicast.

Receivers must maintain a separate sequence number per sender.

11.3 Group key distribution

For confidentiality or group authentication, the GCKS needs to share a

common key with members of the group. GDOI and GSAKMP are protocols

that serve the purpose.

For group key establishment, the GCKS needs to share a separate key

with each member of the group. When a member joins, the GCKS can send

the new group key encrypted with the old key to the group members.

Membership revocation, on the other hand, requires the GCKS to send the

new group key encrypted separately for each (or some) of the remaining

2. A 64-bit extended sequence number is currently being proposed in the revised version of ESP, for replay

protection of long or high data rate sessions.

274 Conclusion and future work

members. This naive form of rekeying does not scale to large groups.

However, there are several ways to improve the efficiency of rekeying:

by taking advantage of application requirements, or with smart key

arrangements.

In MFTP applications, the sender divides data into blocks for efficient

NACK aggregation. We might take advantage of that property and encrypt

each block of data with a different group key. If access to the group is in terms

of blocks of data or time, per-block encryption is appropriate. Examples of

such applications include PPV event distribution, where blocks of time are

sold. MARKS is a scheme designed for efficient key distribution to members

whose departure time is known at the time of their join.

For groups where members may join and leave at any time, and where

strict forward and backward confidentiality must be maintained, the LKH or

its variants can be used for efficient rekeying. Military communications and

interactive groups are examples of applications that require immediate

rekeying.

For most commercial applications, batch or periodic rekeying is

appropriate. The GCKS processes member joins or departures in a batch,

for efficiency. However, members’ departure times do not need to be known

a priori. Thus, the GCKS may evict a member as necessary; conversely,

members may choose to leave the group when they wish.

11.3.1 Reliable transport of rekey messages

Group rekeying messages are sent using multicast for efficient transmission.

However, Reliable Multicast protocol standardization is ongoing at the IETF.

Fortunately, rekey messages are often small, and take up only one or two IP

packets for even large groups. Thus, it makes sense to design special-purpose

reliable transport mechanisms for sending rekey messages.

The simplest form of reliable transport is to send a rekey message more

than once. However, that does not guarantee that all members will receive

the rekey messages. For such guarantees, application designers need to use

the FEC-based transport of LKH keys. This scheme relies on member

feedback to retransmit lost packets. After a few rounds of FEC, if any

members have still not received the keys they need, the GCKS sends keys to

members using unicast.

A more efficient scheme is based on the idea of assigning weights to LKH

keys. The group key, since it needs to be sent to all members, gets the highest

weight. LKH keys corresponding to parent nodes of leaf keys get the least

weight. The weights are used by the GCKS to determine the redundancy of

each key in a rekey message. This scheme also uses NACKs for feedback,

11.3 Group key distribution 275

but the retransmission messages consist of repeated keys, with the number of

repetitions based on the weights of keys. Standardization of reliable

transport of rekey messages is underway.

Stateful and stateless rekeying

In stateful rekeying algorithms such as LKH, the GCKS uses keys sent via the

rekeying protocol to protect KEKs as well as the group key. Thus, when

stateful rekeying is being used, if a member was off-line during a rekeying

instance, it could not decipher any future rekey messages. On the contrary,

in stateless rekeying algorithms, the GCKS uses the keys it shares with

members during the registration phase, to send the new group key. Thus

stateless rekeying needs to be employed in applications where members may

go off-line frequently. However, stateless rekeying is expensive for imme-

diate rekeying.

Note also that stateless rekeying is not really reliable. It only handles

members going off-line. If a rekey message is lost in transmission, members

cannot decipher data encrypted with the group key sent in the rekey

message.

11.3.2 Secure multicast group management

Secure multicast group management is a topic that has not received much

attention. The GCKS may need to control data transmission, monitor the

sender(s) and members closely, debug multicast data flow, and so on. For

example, military applications may require that data streaming be stopped

during rekeying. This is to ensure that members to be evicted do not receive

any more secure data, once the decision to evict them has been made.

Another requirement may be for a GCKS to keep a close watch on the

members. For example, it may be necessary to stop multicast data from

flowing to LANs where all authorized members have gone off-line. This

practice makes it difficult for nonmembers to get access to encrypted data for

cryptanalysis. Membership management of large groups is a difficult

problem. Consider that processing heart-beat messages from all authorized

members is computation intensive, and does not scale. More importantly,

this may be a requirement only in highly secure groups.

GSA synchronization

During the lifetime of a group, a member may find its GSA to be out of sync

with the sender’s GSA. There are several possible solutions, with subtle

276 Conclusion and future work

variations, for the member to synchronize with the sender. We may require

that the member in question to go through the registration process again.

Alternatively, the member and the GCKS may keep the unicast SA

established during initial registration active until the member leaves the

group. Both of these schemes have advantages and disadvantages. The first is

efficient because the GCKS does not need to maintain additional state, but is

inefficient considering that the entire registration process must be repeated.

The second approach avoids having to repeat the registration process, but at

the cost of keeping additional state.

Deregistration

In the event of a graceful shutdown, or when a member does not want to be

charged anymore for data, it may want to notify the GCKS. Thus, we may

need a back channel for communication between members and the GCKS.

This is similar to member registration, but serves the opposite purpose, and

hence the name, deregistration.

Similar to the out-of-sync case, deregistration could be achieved by

keeping the one-to-one secure communication channel between every

member and the GCKS open, or by establishing a secure channel anew, for

the purpose of deregistration.

11.3.3 Distributed group key management

A centralized GCKS is a single point of failure and attack, and is a

performance bottleneck. Several solutions have been proposed to mitigate

this problem. First, the services provided by the GCKS may be distributed to

several entities. Second, we may separate the registration and rekey

functionalities. Alternatively, the GCKS may delegate its registration as

well as rekey functionalities to members or trusted third-party entities (e.g.,

IKAM, Iolus, or DEP; see Chapter 5).

It is also possible to distribute the computation and communication

overhead during rekeying, to the members. Distributed versions of LKH and

OFT have been proposed in the literature to achieve this purpose.

11.3.4 Secure group communication between mobile members

in wireless environments

Consider mobile members served by an infrastructure of group managers, as

in IKAM or Iolus. In addition to joining or leaving the group itself, members

may move between subgroups (or areas, in the case of IKAM). Mobility may

11.3 Group key distribution 277

necessitate rekeying, since members may join one subgroup and leave from

another. Thus, evicted or departed members may hold keys of subgroups

they visited even after they leave the group, which may lead to the

compromise of group keys. In summary, subgroup managers must keep

track of members that move and rekey their subgroup, when members who

visited the subgroup eventually leave the group. A simpler, but more

expensive solution would be for the subgroup to be rekeyed whenever a

member moves from the subgroup.

Member mobility may be processed as a leave from one subgroup

combined with a join into a second subgroup. However, if the first subgroup

manager can ‘‘introduce’’ the member to the second subgroup manager, the

transfer could avoid repeating the expensive registration protocol in its

entirety. A member or the subgroup manager determining the right time for

member hand-off is another interesting problem.

Subgroup managers themselves may be mobile, and that may result in

members of a subgroup out of reach of a manager. In that case, the group

manager may select a new subgroup manager, or the members may elect a

subgroup manager.

11.4 Policy

Policy is an important piece of the multicast security puzzle in that it provides

a way for the GCKS or the group owner to specify the mechanisms used to

manage the group, and it provides information to members on how to use

the keys sent, decrypt data, and so forth.

The group security policy token standardization goes a long way in

achieving this purpose. That is a work in progress at the MSEC Working

Group. Secure group announcements, group policy distribution, and

updates are also problems that are currently under investigation.

11.5 Infrastructure protection

As mentioned at the outset and also in Chapter 8, infrastructure protection

represents an important aspect of providing overall security to multicast.

Two aspects of multicast infrastructure protection are the protection of the

multicast distribution tree and membership access control at the subnet

level.

The two generic classification of attacks are sender attacks and receiver

attacks. In the first case, a malicious sender sends bogus packets to a

278 Conclusion and future work

TE
AM
FL
Y

Team-Fly®

multicast group (addressed to the group’s multicast address), with the effect

that all members of that group receive the bogus packets. In the latter case, a

user (nonmember of a group) issues a join request to the group, which in

effect extends or pulls the multicast distribution tree to that user’s subnet.

The aim of this latter type of attack is to waste resources, such as bandwidth

and state in routers, therefore content encryption does not aid in preventing

such attacks. In order to protect against both types of attacks, security needs

to be provided at the routing level (at the core of the distribution tree) and at

the host membership level (at the edges of the distribution tree).

Unicast and multicast routing have been studied and developed for over

two decades now, and thus several routing protocols exist today. Multicast

routing protocols can be classified into those that pertain to intradomain

routing (e.g., flood and prune protocols, dense-mode protocols, and core-

based protocols) and those that focus on connecting domains together

(interdomain). Chapter 8 discusses a number of these protocols.

The nature of routing in the Internet creates a number of security

requirements relating to the routing protocols being deployed. These include

the protection of control messages being exchanged by routing-related

entities within a routing domain, origin authentication of route advertise-

ments, source authentication in domainwide sending of both data and

control packets, detection of routing misbehavior, and others. Chapter 8

discusses PIM-SM as a case study of a multicast routing protocol for a sparse

distribution of receivers, and explores its security requirements and possible

solutions that can be deployed. Also discussed in the context of PIM-SM

security are the SKMP key management protocol for PIM-SM, and the MSDP

interdomain protocol that connects together multiple PIM-SM domains.

Complementing routing protection is the need for membership manage-

ment security at the edges of the distribution tree. Membership management

provides control over members accessing the tree (sending or receiving

packets), and more specifically control over nonmembers accessing the

distribution tree. The basic IP multicast model defined originally in RFC1112

focused on the method by which a host would indicate to the multicast

router the group(s) that host wanted to send to or receive from. The model

did not incorporate any membership authentication features, and did not

propagate host/user identity information within the distribution tree. In that

original design, a host could even send to a group without receiving from it.

The advantage of that basic model is its scalability.

Thus, in the broader picture, membership management security

must include the authorized access of identified/authentic users/hosts to

resources (connectivity, router resources, and data access) on a network, for

a given multicast application. The specific requirements for membership

11.5 Infrastructure protection 279

management security include host identification/authentication, authoriza-

tion for a host to send/receive, and the authentication of control messages

exchanged between a host and the multicast router at the edge of the

distribution tree.

11.6 Future direction and final words

As mentioned in the beginning of this book, the area of multicast security is

still in its infancy, even though the broader fields of IP multicast and of group

communications have been studied for well over a decade now.

The work in this book represents a snapshot of the current state of affairs

in the area of multicast and group security in the Internet, as reflected by the

IETF as the primary standards-setting body for IP-related protocols. Much

work still needs to be done in the area of multicast security. Currently, efforts

are continuing in the IETF and IRTF in providing solutions to the multicast

security problem.

Within the MSEC Working Group in the IETF, progress has been made

in completing a number of work items, covering architectures, protocols,

and algorithms:

Problem area 1: Secure multicast data handling. Currently both the MESP

and AMESP draft proposals are being further refined and finalized, with the

aim of progressing to proposed standard. Similarly, work continues on the

TESLA proposal for source authentication. Close collaboration is maintained

with the RMT Working Group: notably with the FEC-based efforts.

Source authentication remains a difficult problem to solve. As

mentioned previously, public key cryptography tend to be computationally

expensive for a per-packet usage. Hence, further research into source

authentication—particularly in the context of lossy channels and unreliable

transport—needs to be carried out.

Problem area 2: Management of keying material. The area of group key

management has progressed considerably, with work on the GKM

architecture nearing completion.

Corresponding to the GKM architecture are two GKM protocols: namely,

the GDOI and GSAKMP (light version), both of which are also nearing

completion. These implement the GSA model defined earlier.

Another related effort in this area is the Multimedia Internet Keying

(MIKEY) protocol, which is particularly relevant to the real-time multimedia

280 Conclusion and future work

environment. The protocol is designed to work with multimedia-related

protocols, notably the Session Initiation Protocol (SIP) and the Secure Real-

Time Transport Protocol (SRTP). This work item is also nearing completion.

Problem area 3: Multicast security policies. As mentioned previously,

although seemingly straightforward, multicast security policy represents a

difficult area of work, mainly due to the dependencies that policy has with

other protocols, and with the specific area of application. Thus, for example,

there is the issue of which part of a group policy should be made public

through the announcement mechanism employed by the application.

Current work in the IETF has been derived from previous efforts related

to the GKMP and GSAKMP protocols, both of which define a policy token to

convey policy-related information and parameters. Some work from the

Antigone system has also been introduced into the IETF.

Looking further ahead, there are some open issues that will need to be

brought into the MSEC Working Group in the IETF once these issues are

scoped and defined, and some solutions are proposed (i.e., in the GSEC

Research Group). These include:

w Many-to-many multicast security. Here there are multiple senders

and receivers. Although the current GSA model and definition is

extensible to multiple senders, one open issue is with IPsec, notably,

the need to use the source address when identifying SAs and related

parameters.

w Distributed group key management. This is where multiple key servers

and policy servers may cater to different subsets of receivers and

different parts of the Internet with different membership densities.

The IKAM architecture and the GSAKMP protocol have

addressed this problem to different degrees, and thus will be the

basis for conducting further work on this issue. Solutions will build

on existing protocols from the various IETF working groups.

w Multicast security in mobile wireless and ad hoc networks. The area of

wireless ad hoc networks represents a new, emerging paradigm in

computing and communications. Deploying multicast in those

environments will introduce new issues, including those pertaining

to security.

Although currently out of scope for the MSEC Working Group,

this area of work will be addressed in the immediate future by the

GSEC Research Group in the IRTF.

11.6 Future direction and final words 281

Finally, as these developments in the MSEC Working Group and GSEC

Research Group continue—together with developments in other protocols

and technologies—it is inevitable that some parts of this book will become

out of date. Our hope, however, is that this book can be a reference point to

newcomers and oldtimers alike, and that the book can provide fundamental

concepts and notions that are solid and applicable, regardless of the future

shape of the solutions to the multicast security problem.

282 Conclusion and future work

Glossary

Administratively scoped multicast The concept of administratively

scoped (admin-scoped) multicast, described in RFC2365, pertains to the

scoping of multicast-related messages within a network. The key properties

of administratively scoped IP multicast are, firstly, that packets addressed to

administratively scoped multicast addresses do not cross configured

administrative boundaries, and, secondly, that administratively scoped

multicast addresses are locally assigned (and thus are not required to be

unique across administrative boundaries). RFC2365 defines the adminis-

tratively scoped IPv4 multicast space to be in the range 239.0.0.0 to

239.255.255.255.

Amortization of digital signatures Digital signing each data packet

supports individual packet authenticity verification. However, this intro-

duces large computational and communication overhead. Practical source

authentication schemes amortize the cost of a digital signature over multiple

packets.

Back channel In the context of group key management, the back

channel is used by a member of the group to report its status and other

messages to the KD or the GCKS.

Backward rekey The rekeying of a TEK in a group, in order to prevent

new members from decrypting previous traffic in the group, which they

may have recorded. A new TEK replaces an existing one whenever one or

more new members join the group. It is also known as backward secrecy or

backward access control.

Batch rekeying Group rekeying to process several membership changes,

that is, member departures and/or joins. Typical thresholds for batch

283

rekeying include number of membership changes, member joins or

departures. Also refer to periodic rekeying.

Blinding function One-way functions transform a given value x into y,

such that given y, it is computationally infeasible to compute x. One-way

functions are sometimes referred to as blinding functions.

Border gateway protocol version 4 (BGP-4) BGP-4 is the primary

exterior routing protocol deployed today for the global Internet. Described

in RFC 1771, BGP-4 is essentially based on the distance-vector algorithm,

with some additional features. Overall, the function of BGP-4 in an AS is to

advertise routes (or BGP paths) available in that AS to the other BGP peers

in other ASs. This is done by BGP peers pair-wise exchanging their

respective routing tables over a TCP connection. Since these routing tables

are large, in practice only the changes (deltas) are exchanged. The set of

BGP-related RFCs are RFC 1772 (BGP application), RFC 1773 (BGP

experience) and RFC 1774 (BGP protocol analysis).

Building blocks approach The approach to solving a complex problem

by subdividing the problem into manageable ‘‘blocks.’’ Here, each block

must serve a well-defined function, and its relationship with other blocks

must be clearly defined. Besides being more manageable, the approach

inherently has a number of advantages, including the use and reuse of the

functional block independently of the whole, and the ability to combine

different blocks to satisfy multiple functions.

Categories of SAs The GSA model defines three categories of SAs that

make up a GSA. The term ‘‘category’’ is used to indicate the three SAs that

are used in group key management to achieve different purposes.

Class D address See Multicast address.

Closed and open secure groups Closed secure groups enforce privacy, not

only on data transmission, but also on group announcements as well as on

the group policy itself. Thus, group announcements are sent to preselected

hosts or end-users (e.g., to the executive team within a company or

individuals who have a certain security clearance in the military context).

Open secure groups, on the other hand, make a public announcement about

the group, in part indicating how one can get authorization to become a

member.

Content owners Content owners, owing to the fact that they own the

data and are interested in controlling distribution, are at the top of the chain

284 Glossary

of control in issuing policy. They might specify high-level group security

policy.

Control group A multicast group whose traffic consists only of control

messages, including key management messages, typically from one multi-

cast support entity (e.g., key servers, routers) to other support entities or

group members. As an example, in the PIM-SM protocol, there is a special

multicast group address reserved only for PIM routers.

Core based tree (CBT) protocol CBT is a multicast routing architecture

that builds a single delivery tree per group, which is shared by all of the

group’s senders and receivers. Most multicast algorithms build one multicast

tree per sender (a subnetwork); the tree being rooted at the sender’s

subnetwork. The primary advantage of the shared tree approach is that it

typically offers more favorable scaling characteristics than all other multicast

algorithms. The CBT architecture is described in RFC 2201.

Data group A multicast group whose traffic consists only of data

messages from a member sender (i.e., end-user) to the other member

receivers.

Data/key translation The process by an intermediary entity of decryp-

tion of a message (under a key), followed immediately by encryption of the

message (under a different key). Typically, the intermediary entity or

‘‘translation entity’’ is not the end-customer or intended recipient of the

message.

Denial of quality of service (DQoS) attack In the context of IP

multicast, this attack is not a complete DoS in the sense of traditionally

known DoS attacks, but rather an intolerable degradation in the quality of

service provided by IP multicast to its application (e.g., PPV or video

streaming).

Distance vector multicast routing protocol (DVMRP) DVMRP is an

multicast routing protocol based on the distance-vector algorithm or the

Bellman-Ford algorithm. Described in RFC 1075, DVMRP is an interior

routing protocol, meaning that it functions within the boundaries of a single

AS. Like in other distance-vector routing protocols, a router simply informs

its neighbors of its routing table. A receiving router then recalculates the

lowest cost of delivery of packets for each network path. This is simply done

by choosing the neighbor who advertised the lowest cost. The result is then

added into that router’s routing table. Distance-vector algorithms are

described in RFC 1058.

Glossary 285

Distance-vector routing protocols Distance-vector routing protocols

are those that are based on the distance-vector algorithm to compute

available routes or paths. In distance-vector routing protocols, each router

simply inform its neighbors of its routing table. For each network path, the

receiving routers pick the neighbor advertising the lowest cost, and then add

this entry into its routing table (for future advertisement).

Forward rekey The rekeying of a TEK in a group, in order to prevent

departing members from decrypting future traffic in the group. A new TEK

replaces an existing one whenever one or more members leave the group. It

is also known as forward secrecy or forward access control.

Group address See Multicast address.

Group authentication Provides a weak form of message integrity in that

receivers can verify whether data has been modified by nonmembers in

transit. Also see source authentication.

Group key management The set of functions, protocols, and procedures

for the management of cryptographic keys, security associations, policies,

keying material, and other parameters pertaining to entities communicating

within a group.

Group owner/creator (GOC) The GOC is a logical entity that creates

policy. If policy is negotiated, the GOC contains the negotiated policy and

fills any gaps. Otherwise, it interprets content owners’ or application

requirements to create the list of authorized members (e.g., ACLs), creates

the group, and distributes policy to the group manager or controller.

Group policy distribution Policy negotiation may not converge in

groups. Thus, a policy distributor (typically the group manager) needs to

send information to members about how to decrypt and authenticate group

data. This information includes: mechanisms used for data protection;

group keys, and instructions on how to use them; expected behavior if a

group member does not receive keys, and so forth.

Group security association (GSA) The multicast counterpart of the

unicast SA. A GSA is defined to consist of an aggregate three SAs: namely,

Category 1 SA (or SA1), Category 2 SA (or SA2), and Category 3 SA (or

SA3). SA1 is used for the (bidirectional) unicast communications between a

member and the KD. SA2 is used for the multicast of control messages

(unidirectional) from the KD. SA3 is used for the multicast of data messages

(unidirectional) from the sender.

286 Glossary

Group Security Association Database (GSAD) The SAD, containing

parameters pertaining to a GSA of a multicast group.

Group Security Policy Database (GSPD) The SPD, containing para-

meters pertaining to the SA policies of a multicast group.

Hash chaining A popular digital signature cost amortization technique

for efficient source authentication. The sender divides the data stream into

several blocks and signs the first/last block, which includes the hashes of

other blocks. Those blocks contain hashes of one or more blocks in the

stream, thus forming a chain of hashes.

Heuristics-based protection In the context of Reliable Multicast (RM),

this refers to the use of heuristics-based algorithms to detect and react to

DoS attacks to RM entities. This is in contrast to a cryptographic approach in

which the integrity and authentication of all control messages are achieved

through cryptographic means.

Immediate rekeying Rekeying after each membership change to

enforce strict forward or backward access control. The sender may even

stop data transmission to during immediate rekeying. Also see batch and

periodic rekeying.

Independence of group key management The notion that, regardless

of the scope of a group key management protocol, such a protocol must

be independent of (or decoupled from) the underlying multicast routing

protocol, thereby allowing it to be used in conjunction with various

multicast routing protocols. For a group key management protocol to be

independent from multicast routing protocols, the group key manage-

ment protocol must not rely on the structures (e.g., multicast

distribution tree) and mechanisms inherent to any particular routing

protocol.

Internet group management protocol (IGMP) IGMP is the protocol

used for a host to indicate its wish to join (leave) a multicast group. Initially

described in 1989 in RFC 1112, IGMPv2 is described in RFC 2236, while the

most recent version, namely IGMPv3, is described in RFC 3376. Multicast

routers use IGMP queries and reports to find out if there are still active

members of a group in a given leaf subnet. If multiple multicast routers are

present on the same leaf subnet or LAN, then one of them is elected to be

the Querier for that LAN. In this way, the Querier learns about group

membership information, and is therefore able to forward multicast traffic

of those groups to its leaf subnet.

Glossary 287

Key encryption key (KEK) The cryptographic key used to encrypt the

TEK and other keying material in a multicast group.

Key management algorithms In the context of group key manage-

ment, an algorithm is used to maintain the logical arrangement of keys held

by the members and other entities. Thus, for example, some algorithms

maintain a logical tree structure where members are placed at the leaves of the

tree, with each leaf having a key derived from other keys located in the

interior nodes of the tree.

Key management architectures In the context of group key manage-

ment, the term architecture is used to express the concept or notion that

entities that are involved in group key management are purposely arranged

or configured in relation to one another to achieve an intended effect. Two

common architectures in group key management are hierarchic and flat

architectures.

Key management protocols In the context of group key management,

the term protocol is used to refer to the procedures, message exchanges, and

message payloads that govern the behavior of the entities involved in

supporting a group (e.g., servers), and those participating in a group (e.g.,

hosts).

Layered reliable multicast The category of Reliable Multicast protocols

in which several multicast groups are used concurrently to deliver different

sets of data packets; possibly at differing speeds. Redundancy is added to the

complete set of packets to allow a receiver to establish the complete message

from just a minimal of N out of M pieces (where N < M). By sending

different sets over different multicast groups, the receiver has an increased

chance of obtaining a sufficient amount of packets to reconstruct the entire

message.

Link state routing protocols Routers participating in a link state

routing protocol have a complete knowledge about the entire topology.

Periodically, a router verifies the status of all its neighboring routers (i.e.,

link state) and then this link status information is advertised by the router to

other routers in the AS through a link state advertisement, which is flooded

throughout the network. This message will be received by all the routers

within the routing domain. Each router then updates its view of the

topology. To reach any destination network, the router first computes the

routes by using Dijkstra’s shortest path algorithm.

288 Glossary

TE
AM
FL
Y

Team-Fly®

Logical key hierarchy (LKH) LKH is a logical hierarchy of keys for

efficient group rekeying. Each node of the tree represents a key, with the

root node representing the group key, and each leaf node representing a key

known to exactly one member and the group controller/key server. Each

member knows all the keys in its path to the root.

Metapolicy A metapolicy in the context of group security policy is a set of

rules governing the handling of policy data. For example, a meta policy in

groups may specify that a small portion of the group policy may be used for

public announcement of the session information, while the rest must be

disseminated securely (e.g., along with key distribution).

Multicast address Multicast datagrams have a multicast address, which, in

IPv4 is the Class D address ranging from 224.0.0.0 to 239.255.255.255 (i.e.,

224.0.0.0/4). This address range is also known as the multicast group address.

A Class D address has its high-order four bits set to ‘‘1110,’’ with the following

28-bits being the group ID. Multicast is different from broadcast in that a

broadcast address is used to send a datagram to all hosts within a subnet.

Multicast distribution tree The state information in routers and

network elements within an AS, with regard to a multicast group. Since

each of these routers typically has one incoming interface and multiple

outgoing interfaces, the routers logically represent a branch point or fan out

point in a logical tree-like structure that is rooted at the sender(s) within the

group. Hence the term ‘‘distribution tree.’’

Multicast open shortest path first (MOSPF) protocol RFC 1584

describes the multicast extensions to OSPF. Building on the notion of areas

within an OSPF routing domain, in MOSPF each router in an area

maintains a local group database that holds information about the groups

present on all the attached networks for which this router acts as designated

router. The local group database is indexed based on <multicast group,

attached network > pairs. For each multicast group in its group database, a

router will flood group-membership link state advertisements throughout

the area. These group-membership link state advertisements list the router

that acts as the designated router for the network with group members.

MOSPF is data driven, meaning that the multicast distribution tree is created

only when the first datagram for a <source, group> pair is received, at which

point the router that receives the datagram builds the shortest-path tree for

this particular source using the Dijkstra’s algorithm.

Multicast routers IP routers and network elements that run or execute

an instance of a multicast routing protocol. Multicast routers typically are

Glossary 289

also unicast routers, since they also run an instance of a unicast routing

protocol.

Multicast routing protocols Routing protocols that are designed to

deliver IP packets from one or more source IP addresses to a destination IP

multicast address. The destination address is a special address in the Class D

range of addresses in IPv4, and is also referred to as the group address.

Examples are the DVMRP, MOSPF, and PIM protocols.

Multicast source discovery protocol (MSDP) MSDP connects multi-

ple PIM-SM domains together, thereby allowing interdomain multicast

routing through the sharing of source information between routing

domains. Since each PIM-SM domain uses its own independent RP(s), it

does not have to depend on RPs in other domains. The MSDP approach has

the advantage that each PIM-SM domain is independent of the other, and

domains that contain only receivers (no senders) may obtain data from

groups without having to advertise the group membership.

Negative acknowledgment (NACK) Control message used in RM

protocols to indicate loss of a packet at a receiver.

Negative-acknowledgment oriented Reliable Multicast (NORM)

protocols The family of RM protocols in which NACKs are employed to

indicate packets that were not successfully received. NORM protocols have

two attractive scalability features; namely, that the source does not need to

know which receivers are missing any given data packet (hence it doesn’t

need to keep track of the group membership), and that the first NACK sent by

a receiver for a given missing packet can suppress further NACKs for the same

packet sent by other receivers.

Open shortest path first (OSPF) protocol OSPF is a link state routing

protocol described in RFC 1583. It is a protocol used for interior routing

within an AS. Like other protocols that use the link state algorithm, each

router in the AS holds only a partial map of the network. When links go

down (and up), this link status information is advertised by the router to

other routers in the AS through a link state advertisement, which is flooded

throughout the network. Upon receiving a link state advertisement, these

routers then recalculate the available routes.

Origin authentication Origin authentication in the context of inter-

domain routing—notably in the BGP-4 and S-BGP protocols—refers to the

ability to authenticate the publisher of a given piece of routing update

information. This ability is needed if the information has been passed along

from one BGP peer to another (i.e., from one AS to another). In this way,

290 Glossary

the recipient AS (i.e., BGP router) several AS hops away, can be assured of

the origin and freshness of the information before that AS (i.e., BGP router)

adds the information to its routing table. Another more generalized term is

‘‘source authentication.’’

Packet-level redundancy A good throughput strategy deployed in

Reliable Multicast protocols, in which redundancy is added within each

packet (or within separate accompanying packets), in such a way that a

receiver needs only to obtain a certain subset of the packets in order to

reconstruct the complete message. The sender must create encoding packets

for each round (or collection) of data packets.

Periodic rekeying Group rekeying after a prespecified amount of time

passes, typically resulting in batch processing of membership changes. Note

that periodic rekeying is applicable even if no membership changes occur.

Also refer to batch rekeying.

Positive acknowledgment (ACK) Control message used in Reliable

Multicast protocols to indicate successful receipt of a packet by a receiver.

Principle of separation In the context of Reliable Multicast and

multicast routing, the principle refers to the separation of the security for

reliable multicast transport from the security for multicast routing. What

this principle means is that the instances of security protocols and their

application to RM protocols at the transport layer should be independent

from the instances of those same security protocols applied to multicast

routing protocols at the network layer.

Probabilistic packet authentication Some source authentication me-

chanisms may not be able to verify the authenticity of some packets due to

the loss of the message integrity information contained in other packets. Thus

packet losses during transmission may result in some packets being dropped.

Such schemes only support probabilistic authentication of multicast packets.

Protocol independent multicast-sparse mode (PIM-SM) PIM-SM is

a multicast routing protocol for a sparsely distributed population of

receivers. Described in RFC 2362, PIM-SM has a number of features.

PIM-SM maintains the traditional IP multicast service model of receiver-

initiated membership. PIM-SM uses explicit joins that propagate hop by hop

from members’ directly connected routers toward the distribution tree.

PIM-SM builds a shared multicast distribution tree centered at a

Rendezvous Point (RP), and then builds source-specific trees for those

sources whose data traffic warrants it. The term ‘‘independent’’ means that

PIM-SM is not dependent on a specific unicast routing protocol.

Glossary 291

Protocol instantiations (PI) A specific protocol realization that imple-

ments one or more building blocks.

Receiver access control Controlling access by receivers/members of a

multicast group to the distribution tree. The aim is to allow only members of

the group to attach to the distribution tree, to obtain IP packets destined to

the group.

Receiver attacks Attacks to the multicast distribution tree by way of

nonmembers (from a data/group perspective) simply joining the group. This

causes the tree to expand, and multicast traffic to be forwarded to them.

Even if the traffic content is encrypted by the source, the encrypted packets

would still be forwarded regardless, thereby consuming bandwidth.

Receiver-initiated Reliable Multicast The underlying approach or

strategy in RM, in which the receiver has the responsibility of detecting lost

packets and reacting to the loss. Usually sender-initiated protocols use

NACKs. For example, a receiver would send a NACK (toward the sender or

source) for every packet it misses.

Repair nodes Repair nodes are used in a number of RM protocols to

alleviate the problems of state explosion and message implosion. Local

repair nodes prevent the sender from having to deal with lost packets and

reduce the message implosion at the sender. Local repair nodes also allow

the possibility of various entities performing the repair, including specialized

servers or other group members.

Router assisted Reliable Multicast The category of RM protocols in

which routers that are part of the multicast distribution tree help in

providing reliability to the data. These routers may assist in the delivery of

missing packets, in the aggregation of feedbacks, and in the suppression of

certain feedback types (e.g., multiple NACKs).

Routing information protocol (RIP) RIP is one of the earliest

developed unicast routing protocols for the Internet. Initially described in

RFC 1058, it was replaced by RFC 1388 (in January 1993), and then by

RIPv2, described in RFC 1723 (November 1994). RIPv2 allows RIP messages

to carry more information, including payload for a simple authentication

method. Another important addition to RIPv2 was the support for subnet

masks. RIP is an example of a distance-vector routing protocol.

Routing protocols Communications protocols to create and control state

information within routers and network elements, in order for them to

route IP packets in the most efficient manner from a source IP address to a

292 Glossary

destination IP address in the IP network. A routing protocol establishes the

best path of delivery of datagrams (IP packets) from a source to a

destination.

Secure-BGP (S-BGP) The S-BGP protocol addresses the security

deficiencies of the BGP-4 protocol, such as the lack of origin authentica-

tion. S-BGP introduced certificates and digital signatures to allow an AS to

prove its ownership of IP address blocks and AS numbers, to prove its

identity, and to allow a BGP router of an AS to prove the router’s identity

and its authorization to ‘‘speak’’ on behalf of its AS. S-BGP also introduced

a new BGP transitive path attribute, which carries digital signatures (or

attestations) over the routing information sent in a BGP update message.

A recipient of the update can thus use the signature and certificates to

verify the address prefixes and path information mentioned in the

message.

Sender access control Controlling access by senders/members of a

multicast group to the distribution tree. The aim is to allow only members of

the group to send IP packets destined to the group.

Sender attacks Attacks to a multicast distribution tree in which bogus

packets with the correct multicast address are sent to the group by an

attacker. This attack consumes bandwidth, since the packet would be

delivered to all members. Although such attacks are also possible within

unicast, the impact is magnified in multicast precisely due to the replication

effect within the distribution tree.

Sender-initiated Reliable Multicast The underlying approach or

strategy in RM, in which the sender or source has the responsibility of

detecting lost packets and reacting to the loss. Usually, sender-initiated

protocols use ACKs. For example, a receiver would send an ACK (toward

the sender or source) for every packet it receives.

Server assisted Reliable Multicast The category of RM protocols in

which the protocol relies on the use of (nonrouter) network entities to help

in data delivery to recipients, or in the aggregation of feedback coming from

recipients. These entities are typically not senders/receivers in the multicast

distribution tree, and they are not defined as part of the multicast routing

protocol.

Source authentication With source authentication of group data,

receivers can verify to themselves that data has not been modified in

transit. Source authentication may not imply non-repudiation. Source

authentication techniques typically rely on digital signatures, but may use

Glossary 293

amortization techniques to reduce per-packet computation and commu-

nication overhead.

Source specific multicast (SSM) The limitations and deployment

problems with the current Internet standard multicast—the term used to

refer to such current protocols as PIM-SM, MSDP, and M-BGP—have

resulted in the SSM concept. In PIM it is technically a subset of PIM-SM for

one-to-many multicast. SSM removes the need for an RP, for Class D

address allocation (since all joins contain (S, G) pair information), and a

simpler implementation (compared to the full PIM-SM). SSM is designed to

work with IGMPv3. The SSM Working Group in the IETF was established in

the year 2000.

Suppression nodes Suppression nodes are used in a number of RM

protocols to alleviate the problems of state explosion and message

implosion. Suppression nodes are used in particular by receiver-initiated

reliable multicast protocols that employ NACKs for lost packets. When

multiple receivers lose the same data packet, rather than multiple NACKs

(for the same lost data packet) overwhelming the sender or source, a

suppression node can discard NACKs referring to the same lost data packet,

and forward only a single NACK to the sender or source.

Traffic encryption key (TEK) The cryptographic key used to encrypt

data traffic in a multicast group.

Tree-based ACK (TRACK) protocols The family of RM protocols in

which a tree structure is used to organize the delivery of ACKs or NACKs.

Typically, the receivers are arranged into local regions, where each region is

assigned a repair entity (or repair node) to aid in providing reliability. The

tree structure essentially acts as the control channel over the data channel

(namely, the multicast distribution tree).

Tree building phase The tree building phase in RM protocols is the

phase in which the protocol constructs a tree structure used to organize the

delivery of ACKs or NACKs.

Unicast routing protocols Routing protocols that are designed to deliver

IP packets from a single source IP address to a single destination IP address.

Examples are the RIP and OSPF protocols.

294 Glossary

About the authors

Thomas Hardjono is the principal scientist at VeriSign. His current area

of work covers new technologies in security, including certificates and

PKI management, WLAN security, digital rights management, Web services

security, cryptographic protocols and algorithms, and multicast and

network security. Over the years, he has been responsible for a number

of roles, ranging from software engineer to principal architect at a number

of organizations, including NTT, Bay Networks, and Nortel Networks.

Dr. Hardjono has been the cochair of the Secure Multicast Group (SMuG) in

the Internet Research Task Force (IRTF) since its establishment in early

1998. He oversaw the transition of the work in SMuG into the Multicast

Security (MSEC) Working Group in the Internet Engineering Task Force

(IETF), and has been the cochair of the MSEC Working Group since its

establishment in 2000. He has a Ph.D. in computer science from the

University of New South Wales and is a member of the IEEE and ACM.

Lakshminath R. Dondeti is a senior research engineer in the Strategic

Protocols and Standards group in the Advanced Technology Investments

division of Nortel Networks. His doctoral dissertation was in the area of

secure group communication, and he has been conducting active research in

the areas of group key distribution protocol design and performance analysis

for several years. He is an active contributor to the IRTF SMuG, GSEC, and

IETF MSEC Working Groups, and was one of the first to implement the

group domain of interpretation (GDOI) protocol. His current interests are

in the areas of wireless and ad hoc secure multicast content and routing

protocol security. He is currently a cochair of the IRTF GSEC Research Group.

He has a Ph.D. in computer science from the University of Nebraska–Lincoln,

and is a member of the IEEE ComSoc and ACM SIGCOMM.

295

Index

A
Access control, 4

backward, 8

forward, 8

to group information, 117

membership, 184

MFTP, 265

policy, 166

Access control lists (ACLs), 12

All or nothing flaws, 49

Announcement policy, 165

Anonymity, 25

Antigone policy framework, 177–78

Any Source Multicast (ASM), 193

Application layer MESP (AMESP), 6

Applications

local area IP TV, 257–61

many-to-many, 24

multicast, 253–68

nonreal-time multicast distribution,

261–66

PPV, 11

SecureGroups project, 266–67

of secure multicasting, 13

stock market data distribution, 254–57

Area multicast address allocation entity

(AMAAE), 96, 100

Attacks

DoS, 2

downgrade, 176

DQoS, 21

receiver, 185, 278

sender, 185, 278

Augmented chaining, 59

defined, 59

delay, 60

illustrated, 60

Authenticated key exchange (AKE), 77

Authentication, 45–70

of control messages, 183

data integrity and, 47

data origin, 265–66

group, 6, 32, 39–40, 48–49

hash chaining for, 55–61

hop-by-hop, 215

host, 209

immediate, 66–67

issues, 46–50

MAC-based, 5

MAC support, 47–48

membership, 209–10

message, 209

origin, 194–95

PIM, 198–99

policy, 167

problem components, 46–47

source, 6, 32, 39, 47, 49–50, 195–96

Authorization, 208, 209–11

B
Backus-Naur Form (BNF), 170

Backward rekey, 82

297

Batch rekeying, 131–34

forward access control and, 133

illustrated, 133

joins in, 132

trade-offs, 132–34

Block hashing, 51–52, 54, 69

Bootstrap routers (BSRs), 191

Border Gateway Multicast Protocol (BGMP), 188

Border Gateway Protocol (BGP), 187

Building blocks, 34–42

advantages, 35–36

criteria, 37

functional, 38–42

motivation for, 34–38

multicast data confidentiality, 38–39

multicast group authentication, 39–40

multicast group membership management, 40

multicast key management, 40–41

multicast policy management, 41–42

multicast source authentication/data integ-

rity, 39

sharing of standardized technologies, 37

C
CCNT, 11, 170–71

defined, 170

dynamic changes and, 170

See also Policy specification

Compromise recovery policy, 168–69

Content distribution network (CDN), 26

Control groups, 99–100

Control messages

authentication of, 183

MFTP, 266

protection of, 194

Core-Based Tree (CBT), 187

Cryptographic context negotiation protocol

(CCNP), 175

Cryptographic context negotiation template.

See CCNT

D
Data integrity, 39, 47

Data protection policy, 166–67

DCCM

CCNP for, 175

policy negotiation in, 175–76

Denial of quality of service (DQoS) attacks, 21

Denial of service (DoS) attacks, 2

distributed, 186

FEC-based protocols and, 247

Deregistration, 40, 277

Designated local repairer (DLR), 244

Digital signatures

individual packet authentication,

51–55

for source authentication, 50–55

Disclosure delay, 63

Distance vector multicast routing protocol

(DVMRP), 20, 187, 188–89

defined, 188

‘‘graft,’’ 189

RPM algorithm, 188

Distributed group key management, 277

Domain multicast address allocation entity

(DMAAE), 96

Downgrade attack, 176

E
Efficient multichained stream signature (EMSS),

58

Encapsulating security payload (ESP), 5–6,

68–69

definition, 68

multicast, 6

F
FEC-based protocols, 247–48

DoS attacks and, 247

redundancy, 247

security, 247–48

Forward error correction (FEC), 58

proactive/reactive solutions, 228

for reliability, 149

See also FEC-based protocols

Forward migration path, 78

Forward rekey, 82

Future directions, 280–82

G
GDOI protocol, 92, 117–26, 271

defined, 117–18

exchanges, 121–22

298 Index

TE
AM
FL
Y

Team-Fly®

functional block diagram, 125–26

IKE and, 119–20

mapping, to GSA model, 118–19

membership management and, 177

new elements in, 120–22

new Phase 2, 122–24

payloads, 120–21

policy coverage, 176

policy distribution, 176–77

policy enforcement, 176–77

push message, 125

updating SAs, 124–25

See also Key distribution protocols

GKMP protocol, 92, 108–12

compromise recovery support, 109

cooperative key generation process, 109

defined, 108–9

entities, 109–10

group controller (GC), 109

group key controller identification,

110, 111

group key creation, 110–11

group key distribution, 111

group member (GM), 109

group rekey, 111, 112

group token (GT), 110

LKHs, 92

receiver-initiated multicast, 111–12

sender-initiated multicast, 110–11

See also Key distribution protocols

Group authentication, 39–40, 68–69

advantage, 39–40

applications, 48

defined, 6, 32, 48

providing, 48–49

in secure multicast data transmission, 273

See also Authentication

Group controller and key server (GCKS), 7

blinded key, 143, 144

defined, 7, 29

entities, 29, 30

for group key establishment, 274

for policy distribution/enforcement, 11

registration, 7, 8

secret key, 143

with STR, 151

Group controller (GC), 109

Group domain of interpretation, 9

Group key, 73

controller, 110, 111

creation, 110, 111

Group key distribution, 2, 111, 274–78

architectures, 9

distributed group key management, 277

reliable transport, 275–76

secure group communication, 277–78

secure multicast group management, 276–77

Group key management, 22, 73–88

abstractions, 80

algorithms, 10, 129–56

architectural issues/motivations, 93–94

architectures, 91–108

defined, 73, 87

distributed, 277

model for, 74–76

problem classification, 86–87

protocols, 108–26, 224

requirements, 76–79

scalability, 23

security requirements, 79–82

summary, 88

Group key manager (GKM) entity, 211

GROUPKEY-PULL exchange, 123, 124

Group management

delegation policy, 167

secure multicast, 276–77

Group member (GM), 109

Group membership

access control, 184

density, 93

dynamics, 8–9, 93

geographic spread of, 93

management, 40

protocol, 188

Group owner/creator (GOC), 162

Group rekeying, 8–9

GKMP, 111, 112

purposes, 131

Groups

control, 99–100

for data and control, 96–98

establishment, 113–15, 116

maintenance, 115–16

policy distribution in, 12

reliability of, 93

repair, 237

Index 299

Groups (continued)

resilience of, 93

scalable registration/initialization of, 8

termination, 116

Group secrecy (GS), 68–69

Group security agents, 104, 105

defined, 104

keys, 105

subgroups and, 105

See also Iolus

Group security association (GSA), 9

database (GSAD), 41

defining, 85–86

definition illustration, 84

management, 82–86

mapping GDOI to, 118–19

model, 83–85

multiple SAs, 81

synchronization, 276–77

Group security association key management

protocol. See GSAKMP protocol

Group security controller (GSC), 103

Group security intermediaries (GSIs), 103–4

Group security policy, 159–79

access control policy, 166

announcement policy, 165

authorization policy, 166

classification of, 164–69

components, 12

compromise recovery policy, 168–69

data, 160

data authentication policy, 167

database (GSPD), 41

data protection policy, 166–67

defined, 2, 159

distribution, 160, 163, 176–78

distribution framework, 164

enforcement, 160, 176–78

framework, 161–64

group management delegation policy, 167

group owner/creator (GOC), 162

identification, 116

key distribution policy, 168

membership policy, 166

negotiation, 160, 175–76

problem components, 160

reconciliation, 175–76

rekeying policy, 168

specification, 11, 169–73

summary, 178–79

updating, 163

verification of, 117

Group security policy token (GSPT), 169,

171–73

access control field, 172–73

authorization field, 172

components, 171–73

defined, 171

illustrated, 172

mechanisms, 173

security parameters, 171

standardization, 278

token identification, 171

validity of, 173

Group TEK (GTEK), 110

Group token (GT), 110

GSAKMP protocol, 9, 92, 112–17, 271

defined, 112

entities, 112–13

flow illustration, 114

group establishment, 113–15

group establishment without underlying SA,

116

group maintenance, 115–16

group termination, 115

header and message format, 112

policy distribution, 178

policy enforcement, 178

policy token, 116–17

protocol flows, 113–16

subordinate controllers (SCs), 113

See also Key distribution protocols

H
Hash chaining, 55–61

augmented chaining and, 59, 60

defined, 55

efficiency, 56

EMSS and, 58

graph representation, 56–57

graph representation illustration, 57

illustrated, 55

limitations, 56

piggybacking and, 59–60

variations, 57

See also Authentication

300 Index

I
Identities, 25

IKAM, 94–103

architecture example, 97

basic model, 95

defined, 92, 94

key arrangement, 98, 100–103

keys, 98–99

multicast groups, 96–98

objective, 94

private keys, 101–3

public keys, 101

two-level hierarchy, 94–95

See also Group key management

IKE

defined, 7

GDOI and, 119–20

Phase 1, 120

Phase 2, 120

SA negotiation in, 174

use of, 80

uses, 119

Infrastructure protection, 12–13, 278–80

Integrity protection, 2

Interdomain routing protocols, 187

Internet Engineering Task Force (IETF), xvii,

xviii, 42, 280, 281
group key management architecture

(GKMArch), 173

MSEC Working Group, 280, 281, 282

multicast security efforts, 25–26

multicast security Reference Framework,

27–28, 272

problem scope, 25–30

Secure Multicast Reference Framework, 81

Internet group management protocol (IGMP), 2,

3, 21, 191–93, 207–14, 217

defined, 191

IGMPv1, 192

IGMPv2, 192, 208

IGMPv3, 193

Leave message, 212

membership authorization approaches,

210–11

message authentication approaches, 212–13

multicast access token, 210, 211, 213

open issues, 213–14

Querier, 190

Query message, 212

Report message, 212

security, 207–14

SMKD and, 215

Internet Research Task Force (IRTF), xviii, 280

Internet security association and key manage-

ment protocol (ISAKMP), 9

defined, 119

framework, 76

HDR, 123

unicast SA as defined in, 79

versatility, 78

Internet service providers (ISPs), 4

Internet standard multicast (ISM), 4–5

Intradomain routing protocols, 187

Iolus, 103–8

data/key forwarding in, 107

data translation, 106–7

defined, 92, 103

group security agents, 104, 105

GSC, 103

GSIs, 103–4

hierarchical subgrouping, 104–5

key translation, 107–8

limitations, 108

secure group communication, 106–8

subgroup illustration, 105

subgroup key management, 105–6

See also Group key management

IP multicast

communications, 3

design, 3

scalability, 1–2

IPsec, 36

Ismene, 169–70

characteristics, 170

conditionals, 170

defined, 169

policies, 169

policy reconciliation, 174–75

See also Policy specification

J
Join rekeying, 138–40

complexity, 139, 146

illustrated, 139

with LKH, 138–39

with LKH+, 140

Index 301

Join rekeying (continued)

in OFT, 145–46

See also Rekeying

K
Key distribution center (KDC), 73

Key distribution policy, 168

Key distribution protocols, 108–26

GDOI, 117–26

GKMP, 108–12

GSAKMP, 112–17

Key distributors (KDs)

area (AKDs), 96, 97, 98, 99

control channels, 75

domain (DKDs), 96, 97

preferred, 75

trusted, 73

Keyed HIP (KHIP), 214, 215–16

defined, 215

goal, 215

nonces for replay protection, 216

periodic branch teardown/reestablishment,

216

unauthenticated control, 216

Keyed material management, 7–11, 12–13,

280–81

defined, 30

multicast data handling, 30, 31–32

multicast security policies, 31, 33–34

problem areas, 30–34

solutions, 32

Key Encryption Keys (KEKs), 10, 91, 150

hierarchical schemes, 156

shared, 148

L
Leave rekeying, 140–41

complexity, 141, 147

illustrated, 141

improving, 142

with OFCs, 141–42

in OFT, 146–48

See also Rekeying

LKH, 10, 136–42

defined, 130

improvements, 131

initializing, 137

join rekeying in, 138–39

key distribution rule, 136

key hierarchy example, 136

key tree member, adding, 137–38

LKH+, 131

join rekeying with, 140

requirements, 140

Local area IP TV, 257–61

approaches, 261

background, 258

Content Management Server (CMS), 259

defined, 257–58

illustrated, 259

network topology, 259–60

security requirements, 260–61

See also Applications

Logical key hierarchies. See LKH

Loose synchronization, 63

M
MAC-based source authentication, 61–68

packet processing, 65

of packets by sender, 64–65

TESLA and, 61–64, 65–68

See also Source authentication

Management

group key, 10, 22, 23, 73–88, 91–108

GSA, 82–86

keyed material, 7–11, 12–13, 30–34

multicast key, 22, 40–41

multicast policy, 41–42

multicast security policy, 33

unicast key, 22

Many-to-many multicast applications, 24

MARKS, 131, 134–35, 154

analysis, 135

defined, 130, 134

key distribution in, 135

Membership policy, 166

Message authentication code (MAC)

authentication, 5

authentication support, 47–48

computation, 67

keys, 62

MFTP, 13, 262–66

access control, 265

application use of, 264

confidentiality, 265

302 Index

control messages, 266

data origin authentication, 265–66

data streams, 262

defined, 262

group support, 262–63

registration message, 263

security requirements, 264

security solutions, 264–66

server requests, 263

session example, 263

MSEC Working Group, 280, 281, 282

Multicast

addresses, 187

applications of, 253–68

content protection, 5–12

defined, 2–3

VPNs, 257, 258

Multicast access token, 210

concept illustration, 211

defined, 210

lifetime/management, 214

signature method on, 213

See also Internet group management protocol

(IGMP)

Multicast address allocation server (MAAS),

96

Multicast data

authentication, 45–70

confidentiality, 38–39

encrypting, 3

handling, 30, 31–32

Multicast data protocol (MDP), 262

Multicast distribution tree

controlled access to, 20–21

creating, 186

protection, 182–83

Multicast ESP (MESP), 68–69

application layer, 6

defined, 6

goals, 68

IETF working group, 68

Multicast extensions to open shortest path first

(MOSPF), 20, 187

Multicast ftp. See MFTP

Multicast key management, 22, 40–41

components, 40

defined, 40

Multicast policy management, 41–42

Multicast routing, 279

attack types, 184–85

overview, 186–94

security and, 185–86

security requirements, 194–97

Multicast routing protocols, 181–218

aim of, 186

classification of, 188

defined, 187

execution of, 181

interdomain, 187

intradomain, 187

security in, 214–16

Multicast security

components, 182–86

components illustration, 183

end-to-end protection, 182

IETF efforts, 25–26

IETF reference framework, 27–28

motivation for, 2–5

multicast distribution tree protection,

182–83

problem areas, 2

problem scope, 17–18

as problem to solve, 1

Multicast security policies, 11–12, 281

creation, 33

defined, 31

information, 34

management, 33

translation, 33, 34

Multicast source discovery protocol (MSDP),

188, 205–7

advantage, 205

defined, 205

overview, 207

peers, 206, 207

security, 205–7

Source-Active message, 206

Multimedia Internet Keying (MIKEY) protocol,

280

N
Negative acknowledgments (NACKs), 226

aggregated, 230

NORM protocols, 238

protection of, 230

Index 303

Negativeacknowledgments(NACKs)(continued)

protocols, 24

suppression, 227

Network operations center (NOC), 185

Nonreal-time multicast distribution,

261–66

defined, 261–62

MFTP, 262–64

security requirements, 264

security solutions, 264–66

See also Applications

Nonrepudiation, 6

NORM protocols, 238–47, 248–49

defined, 238

flat arrangement, 241–42

key arrangement, 240–43

logical hierarchical arrangement,

242–43

model illustration, 240

model of, 239–43

NACKs, 238

NACK-suppression entities, 238

PGM, 244–47

scalability features, 239

security requirements, 239–40

See also Reliable Multicast (RM) protocols

O
OFC, 131, 141–42

OFT, 142–48

defined, 131, 142–43

initializing, 144–45

join rekeying in, 145–46

key distribution, 143

leave rekeying in, 146–48

Open Shortest Path First (OSPF) protocol,

187

Ordered CBT (OCBT), 214

Organization, this book, xviii–xix

<ind>Origin authentication, 2, 194–95

P
Pay-per-view (PPV) application, 11

Perfect forward secrecy (PFS), 77

PGM, 244–47

defined, 244

designated local repairer (DLR), 244

key arrangement, 245–47

Last-Hop key, 245–46

leaves protection, 245

NACK confirmation (NCF) message, 244

security requirements, 244–45

source path message (SPM), 244

SPM-key, 246–47

tree protection, 245

See also NORM protocols

Piggybacking, 59–60

PIM-DM, 187

PIM-SM, 188, 189–91, 217

Assert message, 202

background, 197–98

bootstrap messages, 203

defined, 182

entities, 190–91

features, 189–90

Hello message, 202

Join/Prune messages, 202

link-local messages, 202–3

message attacks, 202

Register message, 202

Register/Stop message, 202

revised, security issues, 202–4

revised, solutions, 204–5

security, 197–205

Policy distribution, 160, 163

in GDOI, 176–77

GSAKMP, 178

Policy enforcement, 160, 176–78

in GDOI, 176–77

GSAKMP, 178

See also Group security policy

Policy negotiation, 160, 174–76

in DCCM, 175–76

example, 174

See also Group security policy

Policy server, 30

Policy specification, 169–73

CCNT, 170–71

GSPT, 171–73

Ismene, 169–70

languages, 173

See also Group security policy

Positive acknowledgments (ACKs), 226

aggregated, 230

protection of, 230

304 Index

Pragmatic general multicast (PGM), 227

Private keys

IKAM, 101–3

pair-oriented, 102

shared, 101–2

Protocol Independent Multicast (PIM), 3

authentication, 198–99

BSR public key, 198

Dense Mode. See PIM-DM

equal opportunity key, 198–99

RP-key, 199

Sparse Mode. See PIM-SM

working group, 187

Public key infrastructure (PKI), 78, 101

Public keys

BSR, 198

IKAM, 101

SKMP, 199–200

R
Real-time transport protocol (RTP), 36

Receiver attacks, 185, 278

Receivers

heterogeneous, 67

packet processing at, 65–66

TESLA, 64

TESLA packet processing at, 65–66

Reference framework, 27–28, 42

centralized/distributed designs, 30

defined, 28

development of, 27

GCKS, 29

horizontal view, 28

illustrated, 27

policy server, 30

sender/receiver, 29

vertical view, 28

Rekeying

batch, 131–34

group, 8–9, 111, 112

immediate, 133

join, 138–39, 140, 145–46

leave, 140–42, 146–48

periodic, 131–32

policy, 168

stateful, 276

stateless, 276

Rekey messages, 148–50

reliable transport of, 10–11, 275–76

repeated retransmission of, 148–49

small, 10

Reliable Multicast Research Group (RMRG), 26,

226

Reliable Multicast (RM) protocols, 13, 18,

223–49

ACK-based strategy, 227

classification of, 225–29

cryptographic protection vs. heuristics,

224–25

defined, 223

deployment, 225

differentiating, 226

entities, 93–94

FEC-based, 247–48

function of, 23

generic security requirements, 229–31

layer of protection application, 230

NACK-based strategy, 227

network entity participation/support, 228–29

NORM, 238–47

operation, 24

PGM, 244–47

principle of separation, 224

protection requirements, 229–30

RMTP-II, 232–37

security of, 23–24

security requirements, 229–31

specific requirements, 230–31

summary, 248–49

throughput strategies, 226–28

TRACK, 231–38

TRAM, 237–38

Reliable Multicast Transport (RMT), 26, 34, 37

Reliable transport

FEC for, 149

of rekey messages, 148–50

WKA for, 149–50

Reverse path multicasting (RPM) algorithm, 188

RMTP-II, 232–37

defined, 232

designated receiver nodes (DR), 232

DR-Key, 236–37

Group-Key, 235

key arrangement, 235–37

optional data access, 234

Index 305

RMTP-II (continued)

receiver nodes (RN), 233

Region-Key, 235

RM-Key, 235

security requirements, 234–35

symmetric keys, 235

top node (TN), 233

tree structure, 234

See also Reliable Multicast (RM) protocols;

TRACK protocols

Routing Information Protocol (RIP), 187

Routing tables, 187

S
SDR, 151, 156

description/analysis, 154

illustrated, 154

member revocation illustration, 155

for membership revocation, 152–54

See also STR

Secure-BGP (S-BGP) protocol, 195

Secure group communication, 277–78

SecureGroups project, 266–67

airborne warning and control system

(AWACS), 267

defined, 266

key group management, 267

mobility impact, 267

See also Applications

Secure hash algorithm (SHA), 52

Secure multicast data transmission, 272–74, 280

group authentication, 273

requirements, 272

source authentication, 274

Secure multicast key distribution (SMKD) pro-

tocol, 214–15

goal, 214

hop-by-hop authentication, 215

IGMP and, 215

specification, 215

Secure Real-Time Transport Protocol (SRTP),

281

Security association databases (SADs), 36

Security associations (SAs)

management functions, 75

minimum number of, 82

SA1, 83, 85

SA2, 83, 85–86

SA3, 83, 86

updating, 124–25

Sender attacks, 185, 278

Service level agreements (SLAs), 159

Session Initiation Protocol (SIP), 281

Shared private keys, 101–2

Simple Key Management Protocol (SKMP),

197

key management approach, 200–201

key management keys in, 200

multicast groups, 201

for PIMv2, 199–201

restricted public keys, 199–200

SMuG

defined, 26

near-standard documents, 26

Reference Framework, 27

Source authentication, 6, 32, 39

defined, 48

digital signatures for, 50–55

for domainwide sending, 195–96

lossy streaming, 50

MAC-based, 61–68

mechanisms, 47

providing, 49

real-time streaming, 50

reliable bulk data transmission, 49

reliable streaming, 49–50

in secure multicast data transmission, 274

See also Authentication

Source path message (SPM), 244

Source-Specific Multicast (SSM), 193–94

‘‘channels,’’ 193

defined, 4, 193

model, 12, 194

motivations, 193–94

Star hashing, 51–52

defined, 51

illustrated, 52

Stateful rekeying, 276

Stateless key revocation algorithms, 150–51

Stateless rekeying, 276

Station-to-station (STS) protocol, 77

Stock market data distribution, 254–57

approaches, 256–57

background, 254

Consolidated Quotation System (CQS), 254,

255, 257

306 Index

Consolidated Tape System (CTS), 254, 255,

257

defined, 254

illustrated, 256

network topology, 254–55

security requirements, 255–57

See also Applications

STR, 151, 156

description/analysis, 154

GCKS using, 151

key distribution, 152

for membership revocation, 151–52

revocation, 153

subsets, 152

See also SDR

Streaming

lossy, 50

real-time, 50

reliable, 49–50

Subgroup keys (SGKs), 105–6

Subgroup managers (SGMs), 9

T
Timed efficient stream loss-tolerant

authentication (TESLA), 248

applicability analysis, 67–68

defined, 61

disclosure delay, 63

enhancements, 66–67

immediate authentication, 66–67

initialization, 63–64

intervals, 66

key chain commitment, 63

loose synchronization, 63

loss tolerance, 66

MAC key chaining, 62

MAC keys, 62

packet contents, 65

packet processing at receivers in, 65–66

receivers, 64

security condition, verifying, 65

time intervals, 62

TRACK protocols, 231–38, 248–49

defined, 231

model, 232

model illustration, 233

repair node, 232

RMTP-II, 232–37

scalability, 231

TRAM, 237–38

tree structure, 231

See also Reliable multicast (RM) protocols

Traffic encryption key (TEK), 110

TRAM, 237–38

defined, 37

public key cryptography in, 238

repair groups, 237

repair tree, 237

security requirements, 237–38

See also Reliable multicast (RM) protocols;

TRACK protocols

Tree hashing, 52–55

block hash computation in, 54

computational overhead, 54

defined, 52

hash verification in, 54

illustrated, 53

Trust relationships, 24–25

U
Unicast routing, 279

protocols, 186

security requirements, 194–97

User datagram protocol (UDP), 38

V
Virtual private networks (VPNs), 13, 257, 258

W
Weighted key assignment (WKA), 149–50

defined, 149

for reliable transport, 149–50

repeat keys, 150

Index 307

	sample.pdf
	sterling.com
	Welcome to Sterling Software

