X

Interested in learning
more about security?

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

The User Agent Field: Analyzing and Detecting the
Abnormal or Malicious in your Organization

Hackers are hiding within the noise of HTTP traffic. They understand that within this noise it is becoming
increasingly difficult to detect malicious traffic. They know that overworked analysts have little time to

detect malicious/abnormal HTTP traffic hiding amongst a mountain of legitimate HTTP traffic. However hackers
may be using unusual, alien to your organization, unique or just plain evil HTTP header request user agents.
When they do they become easier to identify. This paper aids intrusion analysts in understan...

Copyright SANS Institute
Author Retains Full Rights

O
ForeScout

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/602

The user agent field: Analyzing and detecting
the abnormal or malicious in your organization

GIAC (GCIA) Gold Certification

Author: Darren Manners, darrenmanners@manntechcomputersinc.com
Advisor: Robert Vandenbrink

Accepted: October 20t 2011

Abstract

Hackers are hiding within the noise of HTTP traffic. They understand that
within this noise it is becoming increasingly difficult to detect malicious traffic.
They know that overworked analysts have little time to detect malicious/abnormal
HTTP traffic hiding amongst a mountain of legitimate HTTP traffic. However hackers
may be using unusual, alien to your organization, unique or just plain evil HTTP
header request user agents. When they do they become easier to identify. This paper
aids intrusion analysts in understanding the user agent field and how it can be used
to detect malicious traffic. It will then show the analyst how, using free tools like
Wireshark, Tshark, Tcpdump and regex commands, to separate the normal from the
abnormal. It will build upon what we know about our own organizations. It will look
at how hackers are using the HTTP request header user agent field to attack
organizations. Malicious attacks using the user agent field in HTTP request headers
will be examined and discussed. Cross site scripting, SQL injection and other forms
of attacks will be shown along with mitigation techniques to avoid these attacks.

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization

1. Introduction

In the early days of the Internet, users had to type in text commands to
navigate. Tools were later developed, E.g. early browsers, to be the “user’s agent” so
that commands did not have to be typed in to navigate - the user could simply click
to navigate. In June 1999, RFC2616 (Fielding, LastIrvine, Gettys, Compaq, Mogul,
Compagq, Frystyk, Masinter, Xerox, Leach, Microsoft, Bernes-Lee, & MIT, 1999)
defined the protocol for HTTP (Hyper Text Transfer Protocol) 1.1. RFC2616 further
defines the protocol for the header field definitions, one definition being the use of
the user agent field in subsection 14.43. It was deduced in 1999 that a mechanism
was required to identify information about the user agent originating a request. The
aptly named user agent field does just that. The RFC states that the user agent field
is for statistical; protocol violation tracing and automated tailored responses.

If we fast forward a couple of decades to today’s technology we now see a
myriad of user agents being used to access HTTP information. It is like the
originators of the RFC saw the coming onslaught of user agents.

Modern examples of user agents are Mozilla Firefox, Internet Explorer and
Safari. (Understanding user-agent strings, 2011) The common term for these tools
are Internet browsers, however, user agents are not limited to just Internet
browsers, but it is where we find the majority of user agents. In fact any tool that
sends a HTTP request header on the user’s behalf can contain a user agent field.

One example would be the iTunes application. The user agent field is not mandatory
in HTTP requests and can be omitted, but as per the RFC it should be included. The
user agent field today is mainly used to present, manipulate or change information
to best suit the user agent being used. An example would be a mobile device
accessing a web page or to trigger an accessibility feature. Here the page can be
dynamically altered to enable the best use of a slower connection and/or a smaller
screen ("Detect mobile browsers," 2011) or changed to enable a user accessibility

feature, such as a larger font. (Allen, Ford & Spellman, 2010)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization

The RFC is pretty ambiguous in its definition of the user agent field, which in
turn allows for differing interpretations of the user agent field by different user
agents. This leads to potential security issues. It can also make identifying user
agents easier since particular tools/applications may use unique user agents, which
was, of course, its intention. As with most technology though, its legitimate use can
be altered in such a way to create unexpected situations that pose a potential
security risk. This includes active user agent injection, which can lead to cross-site
scripting (XSS) attacks or SQL injection. Malicious user agents can also be
responsible for denial of service and security bypass attacks. This paper will look at
some advanced attack methods being employed by hackers in the field. It seems
hackers are looking at all the trust functions available to them.

It would be fair to say then, if common user agents in the environment are
known, any new user agents or HTTP requests that do not include a user agent,
could possibly represent the introduction of a new tool. Further investigation
would be warranted if it is determined that no new user agent had been introduced
legitimately. So initially the known user agent field is gathered and parsed, this
would represent the normalized user agent field for the organization. A comparison
can be then conducted on subsequent agent fields to determine any abnormal user
agent fields. Further analysis of the abnormal user agent fields can be conducted to
determine intent, malicious or otherwise. HTTP request header data missing a user
agent should also be investigated and noted.

As an intrusion analyst the flood of HTTP traffic is difficult to ignore. Itis
even harder to process. It is usually the lifeblood of our organization so blocking
HTTP is not an option. We have to use data manipulation to be able to analyze the
mountain of information. Recently discovered advanced persistent threats have
shown malware using an HTTP client to beacon out to command and control
systems. (Higgins, 2011) Sometimes a custom user agent helps in identification, as
in the malware IKEE.B Botnet for the iPhone. (Porras, Saidi & Yegneswaran, 2009)
This malware uses the wget command with the —user-agent="HTMLGET 1.0”. Here

we would hunt for this user agent to identify this particular malware.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization

[t seems due to the enormous amount of traffic, analysis is impossible.
However, with careful constructs using regex like tools, we can carve and
manipulate the user agent data to illuminate even the darkest corners of our capture

file.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 5
organization

2. User Agent Technical Understanding

This section will start to explain the technical details of the HTTP request header
user agent.

2.1. How and where is the user agent used?

The user agent is found within HTTP request header. Figure 1-1 is an example

User A opens up a web
browser and connects to
www.sans.edu

Figure 1-1 Connection

HTTP REQUEST HEADER
Some examples are Request, Accept,Referer, Accept-Language
User-Agent,Accept-Encoding,Host, If-Modified-Since, If-None-match, Connection

HTTP REQUEST BODY

Optional lines. An example would be data sent in a form via POST request.

Figure 1-2 Feature

An HTTP request is made to www.sans.edu. Using Wireshark a capture file was

initiated with the filter ip.src == 192.168.1.10 in the filter field. The IP address

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 6
organization

is that of the clients’ machine. An HTTP packet was highlighted and after a right

mouse click the “follow TCP stream” was selected.

[Follow TCP Stream [E=R el

Stream Content

[m] »

Accept: 1mage/]peg application/x-ms-application, image/gif, application/xaml+xml,
image/pjpeg, 1ication/x-ms xbay app ication/vnd.ms-excel, application/vnd. ms—

powerpo1nt app?1cat1on/msword

Accept-Language: _en-Us
User-Agent: Mozilla/4.0 (compat1b1e; MSIE 7.0; windows NT 6.1; Trident/4.0;
fNET ELR 2.0.507 .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC
; Infopat

HTTP/1.1 200 OK

Date: Tue, 18 Oct 2011 12:27:10 GMT

Server : Apache

Ccontent-Type: text/html; charset=IS0-8859-1
Keep—A11ve timeout=5, max=100

Cconnection: Keep-Alive

Transfer-encoding: chunked

as8o

<!DOCTYPE html PUBLIC '—//WSC//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0org/TR/
xhtml1/DTD/xhtmll-transitional.

<html xmins="http://www.w3. org/1999/xhtm1 >

<head>

<meta http- equ1v— ‘Content-Type"” content— ‘text/html; charset=utf-8" />

<meta nameA goog1e site-verification”
content="cC-8x0erz3opiLx9v1ouczc6sgMfOZHYihIZWA19-KI" />

<meta name="msvalidate.Ol"” content="79C78EB33B8812273BEAA273668E9D92" />

<title>Masters Degree in Information Security - SANS Technology Institute</title>
Entire conversation (26918 bytes) [~]
[Eind][saveas |[print |© ascn © EBCDIC © Hex Dump © CArrays © Raw i

[Fitter out This stream | | Close] il

L —

Figure: 1-3 Wireshark HTTP request header cz:palre

The highlighted section in figure 1-3 represents the HTTP request header.
(Below that you see the HTTP response header). The header in 1-3 shows the user
agent field. The information contained will be discussed later in the document, but it

shows a lot of information. Some would say way too much information.

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0;
SLCCZ; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center
PC 6.0; InfoPath.3)

All this information was sent to tell the webserver about the clients’ user

agent.

2.2. What is the user agent?
The user agent is defined by RFC2616, under section 14.43. Quoting from the

RFC

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 7
organization

“The User-Agent request-header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing of protocol
violations, and automated recognition of user agents for the sake of tailoring
responses to avoid particular user agent limitations. User agents SHOULD include
this field with requests. The field can contain multiple product tokens (section 3.8)
and comments identifying the agent and any sub products, which form a significant
part of the user agent. By convention, the product tokens are listed in order of their

significance for identifying the application.

User-Agent ="User-Agent" ":" 1*(product | comment)”

(Fielding, et al 1999)

The above quotation from RFC2616 shows that in 1991 the user agent field had
three functions. Firstly it was to be used for statistical purposes. Websites can track
what user agents are connecting to them and can use this information to help guide
developers as to how to best display information to users. An example would be if
travel websites only see’s iPhone user agents connecting to them, perhaps
developers may tailor the site better for iPhones.

The second function was for the tracing of protocol violations. This is an error
control feature for user agents. If a particular error keeps occurring, the user agent
field can be examined to see if it is limited to a particular user agent.

The third function, to tailor responses based upon the user agent, is what the
user agent is mainly used for today. An example would be if we had an Internet
browser that was not able to handle Adobe flash, we could tailor the website based
upon the user agent to replace the flash with static html.

There are other uses for each of the functions, the uses are only limited to the
imagination. The RFC also stated that the user agent field could contain multiple
tokens and comments that identify the agent and any sub products. In the previous

user agent example the user agent has a token of “Trident/4.0;”

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 8
organization

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center
PC 6.0; InfoPath.3)

Trident 4.0 (also known as MSHTML) allows website code to detect the difference
between Internet Explorer 8 and 7 clients when Internet Explorer 8 is running in
compatibility mode.

The example above showed information about the user agent and information
about the operating system. ("What's a user Agent?," 2011) In the above example it
showed that the system was running Windows 7 service pack 1. This is type of
information leakage is very useful to hackers. (As of Internet Explorer 9 additions,

such as .NET, will no longer be sent in the user agent string.)

2.3. Examples
Here are some common examples of user agents and what they mean. ("What's

a user Agent?" 2011)

Examplel
‘ Mozilla/5.0 ‘ ‘ (iPad; U; CPU OS 3_2 like Mac OS X; en-us) ‘ ‘ AppleWebKit/531.21.10 (KHTML, like Gecko) ‘
| Version/4.0.4 || Mobile/7B334b || Safari/531.21.102011-10-16 20:23:50 |

Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us) AppleWebKit/531.21.10
(KHTML, like Gecko) Version/4.0.4 Mobile/7B334b

The above string can be broken down into various sections. Looking back at

RFC 2616:

User-Agent ="User-Agent" ":" 1*(product | comment)”

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 9
organization

The user agent is Mozilla/5.0. Mozilla is common to nearly all modern
browsers. The device is possibly an iPad 1 as its running an early 3_2 OS, but it is
impossible to tell. The Apple developer site gives more information ("Optimizing
web content,” 2011). (iPad; U; CPU OS 3_2 like Mac OS X; en-us) shows the platform
string. In this case an iPad. AppleWebKit/531.21.10 (KHTML, like Gecko) shows the
Webkit engine build number. Version/4.0.4 shows the safari family version number.
4.0.4. Mobile/7B334b shows the mobile version build number.

shoes the Safari build number.

It is evident that manufacturers can put anything they want to enable their
products to be identified and be treated by websites/applications accordingly. To
keep thinking like a hacker, this information is really useful especially if new
vulnerabilities are released for particular product versions. The attacks would be

adjusted based on the information found in the user agent field.

Example2
| BlackBerry8300/4.22 || Profile/MIDP-2.0 || Configuration/CLDC-1.1

| VendoriD/107 | UP.Link/6.2.3.15.02011-10-16 20:20:17 |

BlackBerry8300/4.2.2 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/107
UP.Link/6.2.3.15.02011-10-16 20:20:17

Still using RFC2616 the above user agent can be broken down. The format is
an older blackberry agent string (Astanley, 2010). BlackBerry8300/4.2.2 shows the
model type being a blackberry 8300 running an older version 4.2.2. Profile/MIDP-
2.0 shows the rendering engine is MIDP 2.0 (Java). Configuration/CLDC-1.1 shows
the connected limited device configuration ("Analyze UA," 2010). VendorID/107
shows the vendor signature id. Vendor id’s equate to the carrier that the blackberry
device is on. In this example 107 equates to Rogers. (Kcladygemini, 2010) No

information could be found with regards to the UP.Link field, but it could be related

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 0

to the gateway the Blackberry is using on the cellular network and the time it

accessed that gateway.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 1

3. Hunting down the user agent
This section will discuss how to begin to hunt down the user agent field
amongst the mountain of data. The reason the capture and the manipulation are
separate in this paper is that often we have to use the capture files given, or obtain
capture files from firewalls or other network devices. More often than not, we have

to use the capture file separated from the devices/networks that captured them.

3.1. Setup

The test machine was a virtual machine copy of Backtrack 5 R1.
("Downloads,") The host was an Apple Macbook Pro laptop running 10.6 OS. The
virtual machine was running inside VMFusion. The test host was a HP Desktop
running Microsoft Windows 7. All the tools used are freely available. A Cisco ASA
firewall was used to capture a variety of user agents running over a typical live

network via an access list and a capture command.

access-list 101 permit tcp any any eq http

capture capture_packets access-list 101 interface inside

This was used as the test network would not give the variety of user agents
that are currently in use in a modern network. The capture file was sanitized. The

demo network was set up as in the following figure 3-1:

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 2

Internet

Test Machine running
BT5 R1 VM

Test Host

Figure 3-1

3.2. Using Wireshark to capture and display user agent fields
Wireshark is a tool for capturing packets and performing detailed packet
analysis. Itis a free tool and is widely used by the information security community.
Simple packet filtering can be performed to select specific packets identified by the
filter. Wireshark already has an inbuilt filter to capture user agents contained in the
HTTP request header fields. (Lamping, Sharpe, NSComputers & Warnicke, 2011)

Below, this simple filter was used to filter a PCAP file.
“http.user_agent contains "Mozilla"”

The resultant packets, in figure 3-2, shows an HTTP request header that contains

the word “Mozilla” in the user agent field.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 3

[0 Intel(R) 82567LM-3 Gigabit Network Connection. [Wireshark 16,1 =le e

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
BN BEEXELE AesDT R QRQaf @B %% &8

Filter: | http.user_agent contains "Mozilla’| E]Expresslon.. Clear Apply

No. Time Source Destination Protocol Length Info

12162 97.298480 72.21.91.19 HTTP 576 GET /20100208/themes/xe/css/homepage.1c.css HTTP/1.1

® Frame 12162: 576 bytes on wire (4608 bits), 576 bytes captured (4608 bits)
= Ethernet II, Src: HewlettP_bb:54:bl (18:a9:05:bb:54:b1), Dst: Cisco_de:80:00 (00:16:9c:de:80:00)
© Destination: Cisco_de:80:00 (00:16:9c:de:80:00)
100 (00:16:9c:de:80:00)
.. = IG bit: Individual address (unicast)
.. = LG bit: Globally unique address (factory default)
= source: HewlettP_bb: (18:29:05:bb:54:b1)
Address: Hewlettp_| :bl (18:29:05:bb:54:b1)
....... (U .. = IG bit: Individual address (unicast)
= LG bit: Globally unique address (factory default)

Address: Cisco_de:

Type: IP (0x0800)

@ Transmission Control Protocol, Src Port: 56355 (56355), Dst Port: http (80), Seq: 1, Ack: 1, Len: 522
= Hypertext Transfer Protocol
'+ GET /20100208/themes/xe/css/homepage.1c.css HTTP/1.1\r\n

Accept: */*\r\n -

9 61 20 43 65 6e 74 65 72
0 49 6e 66 6f 50 6

%‘.ﬁr_@:ﬁ}ﬂ.‘ ST W -

h A
Dicalavad: OS Mackad: 0 Dcannad:-0

Figure 3-2 Packet Capture filter example

While this is very useful for filtering large number of packets individually, the
user agent string would have to be entered for each unique user agent to separate
them all. The results can be increased if we use more generic filters. The
requirement is to extract all unique user agent fields in the HTTP request headers
and also extract HTTP request headers that do not contain user agents.

To meet the requirement we can use the following filter
(http.request == 1 and http.user_agent) or (http.request == 1 and 'http.user_agent)
This is filtering for the existence of a HTTP request that contains a user agent or any
packet that contains a HTTP request regardless of whether it contains a user agent

or not. The filtered packets can then be exported for further manipulation.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 4

[Intel(R) 82567LM-

File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help
Qpen.. @O B | Qe 9D TFL QAR | @®®%| B
Open Recent »
Mo l [+] Bpression... Clear Apply
Import... Destination Protocol Length Info
% Close Ctrl+W 511 GET / HTTP/1.1
[Save Ctrl+s
@ SaveAs... Shift+Ctrl+S B
File Set ’
Export v
& print.. Cep | 2 CrH
SSL Session Key:
@ Quit Objects ’

n »

@ Frame 140: 511 bytes on wire (4088 bits), 511 bytes captured (4088 bits)
@ Ethernet II, Src: HewlettP_bb:54:bl (18:a9:05:bb:54:b1), Dst: Cisco_de:80:00 (00:16:9c:de:80:00)
+ Internet Protocol version 4, src: 164.106.110.113 (164.106.110.113), Dst: 164.106.114.96 (164.106.114.96)
@ Transmission Control Protocol, Src Port: 65130 (65130), Dst Port: http (80), Seq: 1, Ack: 1, Len: 457
-/ Hypertext Transfer Protocol
+ GET / HTTP/1.1\r\n
Accept: */*\r\n
Accept-Language: en-us\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Cent
Accept-Encoding: gzip, deflate\r\n
Host: www.mecc.edu\r\n
connection: Keep-Alive\r\n
Cookie: __utma=61697456.282666491.1315660981.1318876391.1318936271.82; __utmz=61697456.1315660981.1.1.utmcsr=(direct) |utmccn=(direct) |utmcmd=(none)\r\n ~

m »

m

0000 00 16 9c de 80 00 18 a9 05 bb 54 bl 08 00 45 00
0010 01 f1 04 ce 40 00 80 06 00 00 a4 6a 6e 71 a4 6a
0020 72 60 fe 6a 00 50 e7 bb 74 2a 32 68 fa d2 50 18
0030 40 b0 2b 8a 00 00 47 45 54 20 2f 20 48 54 54 50
0040 2f 31 2e 31 0d 0a 41 63 63 65 70 74 3a 20 2a 2f
0050 2a 0d Oa 41 63 63 65 7 74 2d 4c 61 6e 67 75 61
0060 7 65 3a 20 65 6e 2d 7 73 0d Oa 55 73 65 72 2d .
6f 7a 69 6¢c 6c 61 2f 34 Agent: M ozilla/4
61 74 69 62 6c 65 3b 20 .0 (comp atible;

3b 20 57 69 6e 64 6f 77 MSIE 7.0 ; window
3b 20 54 72 69 64 65 6e s NT 6.1 ; Triden
4c 43 43 32 3b 20 2e 4e t/4.0; S LCC2; .N
2e 30 2e 35 30 37 32 37 ET CLR 2 .0.50727

m

4c 52 20 33 2e 35 2e 33 ; .NET C LR 3.5.3
45 54 20 43 4c 52 20 33 0729; .N ET CLR 3
3b 20 4d 65 64 6.9 61 20 .0.30729 ; Media -

Data\l acal T, i NERA22S2.4CSAAN_ Dackate: 1256 Nicnlavac: 66 Markad: 0 Dzonnac: 0

T e Vw7 bl ~ il Al S ——— v X T]

Figure 3-2 Wireshark packet capture user agent filter

Select File >Export >File
Make sure that “Displayed” is selected; see figure 3-3, for export or you will export

all packets and not just the filtered packets.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1

organization | 5

-
[Wireshark: Export File

S

Savein: I Desktop j EF B2~
—
- -
P “
N Network
Recent Places t&\’ System Folder
Desktop
Desktop || File folder
w=l) D
4= ownloads
Li I ! File folder —
[
A
- | 15027001
== ¢l Filefolder L
@
N New folder
Network $ ‘ File folder
File name: I j &I
Save as type: IPIain text ("bd) LI Ca_‘ncel
Help
Packet Range Packet Format
| " Captured & [V Packet summary line
[& All packets [V Packet details:
I " Selected packet As displayed v
(" hA
-~ ™ Packet Bytes
¢ Range: ﬁ [Each packet on a new page
r

Figure 3-3 save a capture file

Wireshark will capture and filter the required packets; other alternatives will

have to be employed to manipulate the data for us to view only unique user agents.

In section 4 capture data will be manipulated to extract all unique user agents and

display them.

3.3. Using Snort to capture the user agent.

Snort is a free open source intrusion detection system/prevention system. It

is widely used by the security community. Using Snort will have its limitations, as

the idea is not to capture the traffic flow associated with the rule, but to capture

packets based on alerts. That doesn’t mean that Snort cannot be used as a packet

capture tool, just that it is not using snort to its best advantage. This is a simple

Author Name, email@address

© 2012 The SANS Institute

Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 6

capture command that will log in Tcpdump format. It has a simple TCP filter to

capture source and destination to port 80.

snort —-xv -1 /var/log/snort -F tcp port 80

Snort - Runs the snort command
-X Hex output
-V Verbose

-1 /var/log/snort Logto
-F tcp port 80 Filter TCP port 80 packets

To capture just packets containing user agents a simple Snort rule can be
used. (Babben, Biles & Orebaugh , 2005). Note that logging cannot be in binary
mode. It does not show the actual user agent in the useragents.log, but shows the
triggered alert in a separate useragent.log file. All the alert is saying is that an HTTP

packet contained a user-agent in its header field.

[#*] http user agent log [*¥]
10/14-01:18:40.286779 192.168.1.138:51754 ->_107.22.235.224:80
TCP TTL:64 TO0S:0x0 ID:64573 IpLen:20 DgmLen:658 DF

xpAP* Seq: OXFA4AF887 Ack: 0x983361ID8 Win: ©x8218 TcplLen: 32
TCP Options (3) => NOP NOP TS: 510912778 16000750
R R R R R R R R R A A A R R R R R A A e R R R A

Figure 3-4 Snort alert in useragents.log

To run snort in ascii logging mode use the command below

snort -K ascii -c snort.conf

snort Runs the snort command
-K ascii Specifies Ascii Logging
-C Use the configuration file snort.conf

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 7

This is the simple rule to alert on any HTTP request header packet containing an

alert.

log tcp SHOME_NET any <> any $SHTTP_PORTS (msg:"HTTP USER AGENT LOG";
flow:from_client; content:"user-agent"; logto:useragents.log; classtype:

attempted-recon; sid:10502; rev:1;)

You could add a content modifier “HTTP_header” to narrow the results to only the
HTTP header. A couple of changes had to be made to enable this to work in snort
version 2.8. (classtype:recon to classtype:attempted-recon, protocol “tcp” had to be

added as well.)

log tcp SHOME_NET any <> any $SHTTP_PORTS (msg:"HTTP USER AGENT LOG";
flow:from_client; content:"user-agent"; nocase; HTTP_header;

logto:/var/log/snort/useragents.log; classtype:attempted-recon; sid:10502; rev:1;)

This modified version will log the user agents to a file called useragents.log.
The log command could be change to an alert command to trigger an event. This is
really where the main use of Snort is; capturing specific user agents. These specific
user agents can be added to the rule list to trigger alerts on known evil user agents.

[t is better to use snort to capture specific user agents than collect all user agents.

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"HTTP
UserAgent TESTERS8.5 detected"; flow:established,to_server; content:"User-
Agent|3A| TESTERS8.5|28]host|3a|"; nocase; HTTP_header; pcre:"/\w+/i";
content:"|2c|ip|3a|"; nocase; HTTP_header; pcre:”/[0-9]{1,3}\.[0-9]{1,3}\.]0-
91{1,3}\.[0-9]{1,3}/i"; content:”|29|”; classtype:trojan-activity; sid:2011011201;

rev:1;)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 8
The above rule was taken from the emerging threats website. (Jonkman,

2011) They keep a good set of malicious user agents. Of course this signature based
detection will only work for known signatures going to the network. (To make it go

any direction you can change the “tcp $SEXTERNAL_NET any -> $HOME_NET
$HTTP_PORTS” to “tcp any any -> any any any” or change the direction operator “->”
to “<>”". New or one off user agents created by hackers will not be triggered. That is

why it is best to collect all user agents AND use rules of known user agents, rather

than just one or the other.

3.4. Using Tcpdump to capture and display user agent fields.
Tcpdump is a free tool that is used to capture packets off the wire. It is widely
used in the information security field. ("Tcpdump,” 2009)
Since the requirement is to capture HTTP packets with user agents and non
user agents in the request header, we can use a broad Tcpdump filter and use data
manipulation later to extract the unique user agents/no user agents.

The simple Tcpdump filter used is

tcpdump -Xnvvv -i ethO -w capture.pcap tcp port 80

-X print in hex and asci

-n do not run name resolution

-VVV more verbose output

-1 listen on interface

eth0 selected interface to listen on

-w capture.pcap write raw packets to capture file called capture.pcap
tcp port 80 filter on protocol tcp with source and destination of 80

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 1
organization | 9

File Edit View Terminal Help

:~# tcpdump -Xnvv -i eth® -w capture.pcap tcp port 80
tcpdump: listening on eth®, link-type EN16MB (Ethernet), capture size 65535 bytes
Got 230

Figure 3-5 Tcpdump running a packet capture

The dump will start and begin to count packets.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

\S)

The user agent field: Analyzing and detecting the abnormal or malicious in your
organization | 0

4. Manipulating the data to display user agents
This section will build on the previous section. It will begin to manipulate

the captured HTTP request header user agents.

4.1. Manipulating data to find unique user agent fields from a
capture file.

Packet capture files have been obtained from three methods of capturing
HTTP request header user agents. In those files are also packet captures of HTTP
request headers that do not contain a user agent. This section will concentrate on
extracting unique user agent strings.

The capture file that is being used is called capture.pcap. This was obtained
from an ASA. Using similar filtering to what was done previously in Wireshark; we
can use Tshark, the command line version of Wireshark, to extract the user agent

data. ("Tshark - Linux," 2011)
tshark -r capture.pcap -R http -T fields -e http.user_agent

The above command can be broken down

tshark Runs the Tshark program

-r capture.pcap Reads from the capture.pcap file
-R http Read Filter

-T fields Format output

-e http.user_agent field to print

The output is shown in a screenshot in figure 4-1.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 1

A v X root@bt: ~
File Edit View Terminal Help
ai NetSession Interface (7574ead) mac

[Akamai NetSession Interface (7574ead) mac
[Akamai NetSession Interface (7574ead) mac

[Akamai NetSession Interface (7574ead) mac

[Akamai NetSession Interface (7574ead) mac

client
e-PubSub/65.
-PubSub/65.2

-PubSub/65.
pple-PubSub/65.

-PubSub/65.
(Apple-PubSub/65.28

[Apple-PubSub/65.28

Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.6; rv:7.0.1) Gecko/20100101 Firefox/7.0.1
Mozilla/5.0 (Macintosh; Intel Magi0S X 10.6; rv:7.0.1) Gedko/201001018Firefox/7.0.1
Mozilla/5.0 (Magdftosh; diftel Mac 0S X'20.6; rv:7.0.1) Gecko/20100101 Firefox/7.0.1
Mozilla/5.0 (Macintosh; Intel Mac 0S X'10.6; rv:7.0.1) Gecko/20100101 Firefox/7.6.1
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 8) AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1 Safari/534.51.
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 6 8) AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1 Safari/534.51.
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 6 8) AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1 Safari/534.51

Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 6 8) AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1 Safari/534.51.22

e file "capture.pcap” appears to have been cut short in the middle of a packet.

Figure 4-1 Initial packet filter

As you can see figure 4-1 gives multiple entries for the same user agents. This can be

changed by adding the “| sort -u” command to the end.

tshark -r capture.pcap -R http -T fields -e http.user_agent | sort -u

Browse and run installed applications
File Edit View Terminal Help
:~# tshark -r capture.pcap -R http -T fields -e http.user agent | sort -u
Running as user "root" and group "root". This could be dangerous
tshark: The file "capture.pcap" appears to have been cut short in the middle of a packet.

Akamai NetSession Interface (7574ead) mac

Apple-PubSub/65.28
client
Cloud/1.5.1 CFNetwork/454.12.4 Darwin/10.8.0 (x86_64) (MacBookPro8%2C3)
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 6 8) AppleWebKit/534.51.22 (KHTML, like Gecko) Version/5.1.1 Safari/534.51.22
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.6; rv:7.0.1) Gecko/20100101 Firefox/7.08.1
5.0 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1

Figure 4-2 Sorted by unique entries

Now the results, in figure 4-2, can be sent to a text file by adding the “> out.txt”

command to the end of the previous command.

tshark -r capture.pcap -R http -T fields -e http.user_agent | sort —u > out.txt

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 2
This now shows the unique HTTP request header user agent strings that are

within the capture file.

At times the source and destination of the IP addresses will need to be shown, to aid
in identification. The following alteration of the above filter will show the unique

user agents and source/destination addresses.

tshark -r capture.pcap -R “http.request ==1 and http.user_agent” -T fields -e

http.user_agent —e ip.addr | sort -u > out.txt

~ v % root@bt: ~
File Edit View Terminal Help
e 164.106
164.

164.106.110.112,72.14.

,74.125

Figure 4-3 IP address shown in capture

Files can be compared to each other using this “diff” command. This would
be useful for comparing the list of known user agents against a file of new user

agents captured. An example is below:

diff -u unique.txt out.txt > investigate.txt

The file unique.txt contains our list of already known user agents. Out.txt

contains the newly captured agents. The files are Diff'd and placed into

investigate.txt to see what new user agents have been discovered.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 3

L IX

02:27:06.144152973 -0400
+++ out.txt 2011-10-14 02:39:18.072152972 -0400
@@ -1,8 +1,8 @@

+strange
Akamai NetSession Interface (7574ead) mac
Apple-PubSub/65.28
client
Cloud/1.5.1 CFNetwork/454.12.4 Darwin/10.8.0 (x86 64) (MacBeokPro8%2C3)
Mozilla/5.0 (Macintosh;iIntel Mac 0S X 10 6 8) AppleWebKit/534.51.22 (KHTML, li
ke Gecko) Version/5.1.1 Safaki/534.51.22
Mozillals5.0 (Ma€intosh; Intel\WMac 0S'X 10.6; rv:7.061) Gecko/20100101 Firefox/7
A oa!
-Mozilla/5.0 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1
+Mozilla/5.5 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1

~# 4

Figure 4-4 Diff output

The plus (+) signs represent new user agents that have been found. A grep

command can be used to pull the new strings “cat grep + investigate.txt”

#=# cat Imvestigate.®xt
out.txt 2011-10-14 02:39:18.072152972 -0400
@e -1,8 +1,8 @@

strange
Mozilla/5.5 (X11; Linux i686; rv:5.0.1) Gecko/20100101 Firefox/5.0.1
L~ I

Figure 4-5 New filtered agents

The two new user strings are shown in figure 4-5; strange and Mozilla/5.5.

4.2. Manipulating data to find HTTP request headers with blank
user agent fields from a capture file.

Now that the unique strings have been identified the HTTP request headers that
contain no user agents will need to be extracted. This is needed as some tools allow
the user/hacker to omit the user agent. Of course a missing user agent should be a
red flag as the RFC2616 states that the user agent “should” be used. But note the
word “should”. Continuing the previous examples, Tshark can be used to hunt down
the HTTP request headers that do not contain a user agent. The format is somewhat

ﬂ'"

different as the operator “!”, for “not”, cannot be used in the command line. Instead

the use of the word “not” is allowed. The following command will search a capture

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 4
file and look for HTTP request headers that do not contain user agent fields. Of
course, identification will still have to occur and for this the IP source and
destination will have to be collected so as to have some field to further the
investigation.
tshark -r capture.pcap -R “http.request == 1 and not http.user_agent” -T fields -

e ip.addr | sort -u > outempty.txt

File Edit View Terminal Help

:~# tshark -r capture3 -R "http.request == 1 and not http.user age
Running as user "root" and group "root". This could be dangerous.

192.168.1.138, 54.6.7.8

L~

Figure 4-6 no user agent filter

Here figure 4-6 shows a source that is connecting to a webserver that is not

nn «

using a user agent. (The tool being used is “wget” with the “—user-agent=""“ set.
This will omit the user agent field in the HTTP request header. So although a user
agent did not exist, the capture still shows the source and destination address. It
may be worth further investigation.

Files can be compared to each other using this “Diff” command as described

before.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 5

5. Following the streams
This section will show how to begin to conduct packet analysis on the targets

of interest identified by earlier analysis.

5.1. Using Wireshark to conduct the hunt.

Personally, the easiest way to track down what a particular interaction is
doing is to use Wireshark and follow the TCP streams. In this example traffic a user
agent called “FacebookTouch3.3.1 0S/3/1/3 en_US Carrier/unavailable has been
detected that is not part of normal operations.”

Rather than just open up Wireshark, an Internet search may yield some
information. A simple Google search reveals that Facebook touch is probably an
application resident on a mobile device. (This assumption is made due to the word
“carrier” in the user agent, as this is usually associated with mobile devices.)
Further Google searching shows that FacebookTouch is associated with touch
screen devices. This would tally with the assumption that the user agent belongs to
a mobile device.

If the full user agent is entered into Google, then it becomes clear that this is
an app that is installed on an Apple iPhone device. Be careful, as the app itself may
be the user agent regardless of the actual host. Further searching cannot find the
user agent associated with anything else other than an Apple iPhone. (The device
may still be a different touch controlled Apple device, like iPod Touch or iPad.)

Start up Wireshark and open the capture file.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your @ 2
organization | 6

2480 1.373135 10.46.152.2
2483 1.373653 10.46.152.2 69.171.242.58 171 POST /restserver.php HTTP/1.1

e —— ey >
|+ Frame 2480: 1198 bytes on wire (9584 bits), 1198 bytes captured (9584 bits)

|+ Ethernet II, Src: Cisco de:80:00 (00:16:9c:de:80:00), Dst: Cisco ad:fc:c5 (00:0c:30:ad:fc:c5)

|+ Internet Protocol Version 4, Src: 10.46.152.2 (10.46.152.2), Dst: 69.171.242.58 (69.171.242.58)

[+ Transmission Control Protocol, Src Port: 50222 (50222), Dst Port: http (80), Seq: 331, Ack: 1, Len: 1132
#2077(330), #2480(1132)]

0000 00 Oc 30 ad fc ¢5 00 16 9c de 80 00 08 00 45 00 N E. A
0010 04 a® ae 09 40 00 3f 06 af 38 ©a 2e 98 02 45 ab@.7. .8....E. ?
Frame (1198 bytes) | Reassembled TCP (1462 bytes)

@ File: "/root/asacapture” 312 KB 00:... - Packets: 2933 Displayed: 2 Marked: 0 Load time: 0:00.159 = Profile: Default A

Figure 5-1 Wireshark filter

Using the filter “http.user_agent contains Facebook” two packets are shown in figure

5-1.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

\S}

The user agent field: Analyzing and detecting the abnormal or malicious in your
organization

~

x asacapture [Wireshark 1.6.1 (SVN Rev Unknown from unknown)]

&http.user_agent contains Facebook l v | w.ﬁii ﬁﬁi ﬁﬂ' -if

No. Time Source Destination Protocol Length Info
HTTP 1198 POST /restserver.php HTTP/1.1
HTTP 171 POST /restserver.php HTTP/1.1

nce (toggle)

e Adc

Follow TCP Stream

— e >
+ Frame 2480: 1198 bytes on wire (9584 bits), 1198 bytes captured (9584 bits)
+ Ethernet II, Src: Cisco de:80:00 (00:16:9c:de:80:00), Dst: Cisco ad:fc:c5 (00:0c:30:ad:fc:c5)
+ Internet Protocol Version 4, Src: 10.46.152.2 (10.46.152.2), Dst: 69.171.242.58 (69.171.242.58)
+ Transmission Control Protocol, Src Port: 50222 (50222), Dst Port: http (80), Seq: 331, Ack: 1, Len: 1132
+| [2 Reassembled TCP Segments (1462 bytes): #2077(330), #2480(1132)]

=

‘Hvoertext Transfer Protocol
e —) »

"0000 00 0c 30 ad fc ¢5 00 16 9c de 80 00 68 00 45 00 ..0..... E.
(0016 04 a0 ae 09 40 00 3f 06 af 38 0a 2e 98 02 45 ab@.7. .8....E. o

@ File: "/root/asacapture” 312 KB 00:... - Packets: 2933 Displayed: 2 Marked: 0 Load time: 0:00.159 Profile: Default A

Figure 5-2 Follow TCP stream menu

Right mouse click, or Ctl clicking in Apple Macbook pro, brings up a sub menu
shown in figure 5-2. By selecting follow TCP stream we are able to assemble the
packets associated with this stream. It opens a window that shows the

conversation. From the original filter we know the IP address is 10.46.152.2.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 8

Stream Content

POST /restserver.php HTTP/1.1

Host: api-read.facebook.com

User-Agent: FacebookTouch3.3.1 05/3.1.3 en US Carrier/unavailable

Content-Type: multipart/form-data; boundary=3i2ndDfv2rTHiSisAbouNdArYfORhtTPEefj3q2f
IAccept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Content-Length: 1132

Connection: keep-alive

--312ndDfv2rTHiSisAbouNdArYfORhtTPEefj3q2f

--312ndDfv2rTHiSisAbouNdArYfORhtTPEefj3q2f
Content-Disposition: form-data; name="call id"

1319041655
--312ndDfv2rTHiSisAbouNdArYfORhtTPEefj3q2f
Content-Disposition: form-data; name="v"

1.0
--312ndDfv2rTHiSisAbouNdArYfORhtTPEefj3q2f

Content-Disposition: form-data; name="api key"
A

[Entire conversation (1462 bytes) v 1
[Find || saveAs H Print]O ASCII O EBCDIC O Hex Dump O C Arrays O Raw
Help [Filter Out This Stream] [Close J

Figure 5-3 Wireshark TCP stream result

The stream looks harmless enough, and confirms the earlier
assumption/research that this was linked to Facebook. Since the packet capture
was relatively small, for the sake of demonstration, no more packets were seen from
this IP address. If other user agents were spotted, in the same timeframe, we could

further narrow down or confirm the host device.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 2
organization | 9

6. Malicious examples of user agents

How can the hunter become the hunted? The answer is very simply - user
agents. User agents rely a great deal upon trust. The server trusts that the user will
not tamper with the user agent field. Trust that is not verified is a dream scenario
for hackers. Since the user agent can be tampered with en route to the server or on
the client itself, a hacker can manipulate the user agent to become any user agent
required. This may be good news for developers as they can render pages best
suited for the devices accessing them, and test without having to install different
user agents all the time, but it is great news for hackers. They can now even select
payloads of malicious software based upon the user agent.

There is now a whole industry devoted to collecting user agents accessing
websites. Content management systems harvest the user agents as additional
marketing data, after all knowing that 50% of your traffic is generated from iPad
users is extremely important. The information on your site may need to be tailored
to this fact, not just the rendering of the page. Advertisers may also be able to tailor
the advertisements being displayed to differing user agents. Now think like a hacker
for a minute.

If sites are collecting and storing this information in databases, not sanitized
and totally trusted, could we not manipulate the user agent field to be more evil? If
site admins are viewing this data in content management systems or other tools,
maybe the data is viewed in a webpage? What nefarious deeds can we do with un-
sanitized data - totally trusted data in a database; the answer it appears is a great

deal.

6.1. Stored and Reflected XSS.

Many admins are aware of the vulnerabilities posed by cross-site scripting. It
can be defined as untrusted addition of client side scripts to a web page, that when
viewed in an Internet browser, executes the script. ("The cross-site scripting,” 2002)
The concept is an old concept but many sites still do not validate user input, disable
scripts, encode the data or use some form of cookie security to mitigate the XSS

vulnerability. If they do some of those, the user agent is often overlooked.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 0
The HTTP request header user agent was always a prime candidate for XSS.
It is trusted, in other words the server trusts what the user agent says itis. Itis
collected and placed in a database for later analysis and it was not usually validated.
An administrator usually analyzes it. The perfect person; they have high-level
access that, once stolen, may lead to further infiltration into the targets systems.
There are many tools that can hold a request, allow a user to edit it, and then
continue with the request. Many proxy servers do this. The tool being used here is
Tamper Data. Itis a free tool made by Adam Judson and will allow the manipulation
of the user agent field very easily in Firefox.

To install tamper data in Backtrack 5, open up Firefox and go to the URL

[File Edit View History Bookmarks Tools Help

&% Tamper Data :: Add-ons for Fire...

gq'] St ‘L Bller| ENeeT el IN(US) https://addons.mozilla.org/en-US/firefox/addon/tamper-data/ VVG‘ [+ Q| @

B BackTrack Linux [Offensive Security EBExploit-DB Wy Aircrack-ng FJSEORG.org [iMusic v

Register or Login Other Applications ~ W

3, ADD-ONS
) -
4
EXTENSIONS | PERSONAS | THEMES | COLLECTIONS | MORE
‘ Welcome to Firefox Add-ons. Choose from thousands of extra features and styles to make Firefox your own. X

A » Extensions » Tamper Data

Jj Tamper Data B
01 user reviews
by Adam Judson
182,893 users

Use tamperdata to view and modify HTTP/HTTPS headers and post parameters...

Continue to Download -

Meet the Developer: Adam Judson

Learn why Tamper Data was created and find out what's next for this add-on.

[5]

=
ST —= = »

Figure 6-1 Tamper Data download

Continue to install as any normal plugin.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 1

File Edit View History Bookmarks Tools Help

«f End-User License Agreement... 2 Add-ons Manager
«< v Q
@ NoScript 2.1.0.3
Extra protection for your Firefox: NoScript allows JavasS... More ‘Preferences‘ | Disable | | Remove |
43 Get Add-ons
@ Extensions ﬁ More | Enable | | Remove |

[~ Appearance

Plugins

Figure 6-2 Enable Tamper Data

Once installed you will need to enable it in Add-ons Manager, restart the
Internet browser and set the preferences. The user agent can be tampered on a per
connection basis or you can change its default behavior.

The simplicity of a Stored XSS is that web analytical tools may add this to
their database without validation. At first this seems like an older exploitation, but
it seems history is never learned. A quick Google search shows that XSS, albeit a
reflected XSS, user agent vulnerabilities are still very much in evidence. For
instance, the vulnerability CVE-2011-3294 is a user agent reflected XSS attack
against a Tandberg CVS system, addressed as a fix on October 12th 2011. Here the
issue was that the user agent was present in a response page, this lead to a reflected

XSS exposure ("Tandberg video communications,” 2011)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 2

This is an HTTP request header user agent stored XSS generic example. A
victim could easily replace the hacker here as well. If in place of a hacker’s machine
a victim had their user agent modified, maybe they downloaded a modified
malicious Internet browser, then they would be unaware of the modified user agent.
They would happily go around the Internet attempting to spread their malicious
modified user agent, totally oblivious. For clarity sake, assume in the example the

hacker is directly modifying the user agent.

3. Web server stores the evil
user agent

2.Hacker connects
to Web server

WebServer

S

1. Hacker Modifies the User
agent with the evil script

Figure 6-3 Stored XSS stage 1

i) The hacker modifies the user agent using Tamper-Data. The user agent is
replaced with:
User-agent: Mozilla/5.0 = <script>alert(‘XSS Example’); </script><!—
Of course an evil hacker will place a more evil script. But this will suffice for
demonstration purposes.
ii) A web analytical tool stores the data without validation. The last known 20

user agents are displayed on the main page.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 3

WebServer
Admin open internet
browser and views user
agent section

Server returns evil
script to admin and is
executed by browser

Figure 6-4 Stored XSS stage 2

iii) An administrator opens a browser and enters the URL of the web analytical
tool.

iv) The browser parses the 20 user agents on the main page. The
Administrators browser parses the modified user agent, and the script is run.
(There are many helpful sites that will return your current user agent in the

webpage, as a tool to help admins or users).

The script can be a simple browser pop up or more complex, it can redirect
the browser to wherever the hacker wants it to point to. Itis really a case of
poisoning anything that is collected for web analytical purposes. In this case the
user agent. The ramifications of this attack are quite obvious. Ifitis possible to get
whoever is reviewing the logs to execute a redirect or script, then you can launch
simple or complex attacks. It could be a cookie session stealer, Metasploit exploit or
create a reverse shell. There are a multitude of possibilities. In our example we ran

a simple Javascript popup.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 4

This is a generic reflected XSS example.

i -1

WebServer

Victim Browses to website
that has reflected XSS
% vulnerability

1. Hacker sends malware to
the victim which includes a
proxy agent.

2. Malware on victim
changes browser settings to
use hackers proxy agent and

user agent

Figure 6-5 Reflected XSS stage 1

i) The hacker modifies the user agent. This could be done by malware -
creating a proxy, (15) modified Internet browser or maybe altering the
header en route via filters using a man in the middle attack. The user agent is

replaced with:

User-agent: Mozilla/5.0 = <script>alert(‘XSS Example’);</script> <!—

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 5

ii) The user opens up Internet browser and browses to a website that is

vulnerable to a reflected XSS.

i -1

WebServer

3. The web server
returns the users user
agent in the response

\ 4. The Victims browser
executes the script
Figure 6-6 Reflected XSS stage 2

iii) The website places the user agent in the response page.

iv) The users’ browser interprets and executes the script.

The proxy agent does not necessarily have to be on the victim’s machine, it
could be hosted elsewhere. As long as the victim’s browser proxy agent has been
changed somehow, maybe via malware, then the external proxy can alter the user
agent. The reflected differs from the stored in that the user agent must be altered
and the website must return that user agent in some way to the victim immediately.

If the user agent is modified and the web server just stores the user agent,
then it really a stored XSS attack. Even though malware altered the victim’s user
agent and the victim is left unaware. A couple of other vectors are available for user
agent injection like Active X (IE only), Plugins, XUL and XAML. (MustLive, 2011)

Some older vectors may still exist like Flash and Mocha, but these have been fixed in

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 6

the latest versions. HTTP://ha.ckers.org/xss.html is an excellent site for the nasty

things to put in user agents for XSS attacks.

6.2. Mitigating XSS user agent attacks.

Data should be validated and stored in such a way as no to pose a danger for
users reviewing it through an Internet browser. To mitigate these types of attacks,
ask yourself is the data really necessary to keep in the first place. This goes back to
basic security. If you don’t need to capture the user agent, then don’t. Validate the
user input. It is easy to forget about header information, but anything that can be
altered and is trusted by the server should be validated to ensure the information
conforms to policy. HTML, SQL and other scripting code should be removed from
the user agents. Input validation mitigation will be dependent upon the code and
version being used. This is an example to protect against reflected XSS in ASP.NET.
This should be in addition to other protection, not the sole protection. The code can

be added to the page or web.config

<pages validateRequest="true” />

Now if the hacker attempted to enter our test script then the following
should be displayed, unless display errors are switched off. ("Securing your asp.net,"

2004)

“Server Error in '/xssapp' Application.

A potentially dangerous Request.Form value was detected from the
client (searchTerms="<script>").
Description: Request Validation has detected a potentially dangerous

client input value, and processing of the request has been aborted.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3
organization | 7

This value may indicate an attempt to compromise the security of
your application, such as a cross-site scripting attack. You can disable
request validation by setting validateRequest=false in the Page
directive or in the configuration section.
However, it is strongly recommended that your application explicitly
check all inputs in this case.
Exception Details: System.Web.HTTPRequestValidationException: A
potentially dangerous Request.Form value was detected from the

client (searchTerms="<script>").

Input validation should take place server side. The length, range format and
type should be validated. Regular expression validators can be used to validate
input. Stored XSS user agents are usually stored in either a text file or database.
Rather than concentrate on the input validation, defenses against stored XSS should
concentrate on output validation. Of course if it is being stored on a database, input
validation will still have to be achieved to avoid any injection attack vectors. The
mitigation within the code will be dependent upon the code being used and the
version of that code. An example for output validation would use HtmlEncode to
encode unsafe output. This replaces html code with harmless variables that
represent that character. An example is “<” is replaced with “&It;” The encoded data
is not executed by the Internet browser.

If the information is needed, then store it in a safe manner. In the case of
reflected XSS is it really necessary to reply with a response containing the user
agent? If the budget is available, add a web application firewall in front of your
Internet facing servers. Tune the [PS/IDS to look for common XSS signatures as
well. There are plenty of rules available for snort to detect XSS. Be aware that many
rules seen may be looking for “GET” requests and may ignore user agents in “POST”

requests.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 3

6.3. SAQL injection via user agents

organization | 8

Another form of malicious use is to create an SQL injection attack via the user

agent field. This is simpler than it seems. As already mentioned, a large number of

web analytical tools store the user-agent in databases. Some of these, one example

being Avactis Shopping cart 1.9 (McRee, 2010) store the agents without validating

them first. The user agents are collected by web analytical software for later

analysis. They are read into a database. The malicious user agents SQL injection is

executed by the database as it is read into it. (Fig 6.7)

Web Server

Database reads user
agent data and executes
SQL injection

Database

Hacker creates a manual http request

Web analytics collects user
agent fields for marketing

with an SQL injection in the user agent
field

Figure 6.7 SQL diagram

The user agent is inserted into a database using some form of SQL query,

maybe by an update command. If the user agent is appended with a

“

« «

(single

quote) then vulnerable servers will see this as an escape string. This will cause the

SQL string to be incorrect and possibly return an error. An example user agent

would be

User-agent: Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS X; en-us)
AppleWebKit/531.21.10 (KHTML, like Gecko) Version/4.0.4 Mobile/7B334b

Safari/531.21.102011-10-16 20:23:50’

Note the single quote at the end.

Author Name, email@address

© 2012 The SANS Institute

Author retains full rights.

W

The user agent field: Analyzing and detecting the abnormal or malicious in your
organization | 9

Vulnerable Sever

2. Server returns an SQL error

% in its response page.

1. Hacker Modifies
User agent to include
an SQL query, “”

Figure 6-8 SQL diagram

The hacker can then start to experiment with various SQL statements to
manipulate the data and tables. In certain instances this may lead to remote
execution and may fully compromise the system. (Perhaps adding new user
accounts, or even, allowing access to the xp-cmdshell). Of course if the application
does not return an error, it does not mean that SQL injection was not possible. It
may still be vulnerable to blind SQL injection attacks. It seems a good proportion of
the exploits found in vulnerable applications are associated with shopping carts.
This makes sense, since they are interested in marketing, advertisements and

tracking user’s profiles.

6.4. Mitigating SQL injection user agent’s attacks.

SQL user agent injection mitigation again requires secure coding. In
ASP.NET, one way to protect against user agent SQL injection is to use command
parameters. This takes the input as a literal value. Command parameters can be
used in stored procedures and/or parameters. Input validation should also be

performed, constraining the input.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 0
The examples have been for ASP.NET but for any coding there are validators
and functions that can be used to store, recall and display user input safely. Often a
simple Google search will provide the answer to securing a particular code language.
Detection using standard IPS/IDS snort rules is difficult as legitimate user
agents can contain SQL language. Normal snort SQL rules may pick up on SQL

insertion, but remember that the HTTP request header must be searched as well.

6.5. Security bypass

The user agent can be spoofed to avoid security filtering. Often filtering
software will allow particular types of traffic based upon the user agent being sent
in the HTTP request header. An example of this was Websense Enterprise version
6.3.1. Here the Internet browser user agent was spoofed to be Realplayer, MSN
Messenger or Webex. Websense was identifying this traffic as non-HTTP. These
types of tunneled protocols were being allowed, so subsequently if the Internet
browser was incorrectly being identified as one of those protocols, Browsing was
being allowed. (mrhinkydink, 2007) (Fig 6.1)

This was an older security bypass attack. Remember the golden rule; those

who do not learn from history are doomed to repeat it. (Santayana, 1905)

Websense checks
rule set to see what
user agents are
allowed to what 5|tes

Good Web Server

Bad Web Server

Proxy Server

& &

Normal Browser Spoofed User
User agent Agent Header
Realplayer

Figure 6.1 Security Bypass

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 1
6.6. Denial of service
A user agent can also be used to cause a denial of service attack. An example of
this is a really old exploit against a SHOUTcast Server. (FraMe, 2001) Here the
server will crash when a very long (4KB) request is made in the HTTP request
header. (Fig 6.2) One more example is the Darwin Streaming Server 4.1.3. Another
long user agent string in a Describe request, using a user agent longer than 255
characters, will cause a denial of service. ("Cve-2004-0169," 2006) Although both

older exploits, it is worth still checking as coders are human and make mistakes.

A long user agent header caused the
server to crash

I

Proxy Server

Long User agent header

Figure 6.2 Long user agent header

7. Modifying your own user agent
A security administrator may modify the user agents either via a proxy

server or by directly modifying the user agent header directly.
7.1. Modifying via group policy

One method would be to modify your user agents and tag a company name at
the end. Although this would mean modifying the user agent for each machine, it
really shouldn’t be that complicated using Group Policies. ("How to change," 2011)
Modification is sometimes deliberately done for “branded” user agents. Here we
brand our own user agent. Open up the local group policy editor (or domain if doing

this for all machines - I recommend you test first!)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 2

= — — —— e =

_=[Local Group Policy Editor l‘: g
- - - S—

| Eile | Action View Help

Ll A sl o [EREY

15/ Local Computer Policy Name Description

4 & Computer Configuration
i [7] Software Settings
p» [Windows Settings
» [Administrative Templates
4 4% User Configuration
1> || Software Settings
4 [] Windows Settings
& Scripts (Logon/Logoff)
> i Security Settings
>yl Policy-based QoS
> = Deployed Printers
4 &1 Internet Explorer Maintenance
a Browser User Interface
@ Connection
&1 URLs
B Security

@ Programs
» [Administrative Templates

;=) Connection Settings
9

@Proxy Settings

@Automatic Browser Configu... Settings for automatic browser configuration

" User Agent String Settings for user agent string

Settings for connection settings

Settings for proxy

The User agent string can be modified. Note it will append a string to the end.

;Figure 7-1 Group Policy Editor

-
User Agent String

[ER=x=)

User Agent String

The user agent string is what the browser sends to visited servers to identify itself. Itis often used to keep
Internet traffic statistics. Other uses of the user agent string are discussed in the Help.

You can enter in custom text that will be appended to the default Internet Explorer string. The default string is
different for each platform. Here is an example user agent string for Windows NT:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT; YOUR CUSTOM STRING)

' ™ Customize string to be appended to user agent string:

string to be appended to user agent string:

[ok

] [Cancel]

Apply

==

Now rather than hunt for all user agents, the analyst can hunt for any user

Figure 7-2 User agent string entry

agents not containing the appended TAG. This would help, as even if hackers were

spoofing legitimate user agents, they may not know about, or use, the modified user

Author Name, email@address

© 2012 The SANS Institute

Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 3

agent. Of course the analyst would still have to change any other tool that makes

HTTP requests, but at least now the analyst has a lightened load.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 4

8. Conclusion

It is always amazing how the seeming innocuous can be the cause of security
breaches. Even more amazing is the fact that site and application developers still do
not learn from history. The HTTP request header user agent was the battlefield in
this paper. The paper has shown that user agents can and are manipulated very
easily. It has shown that there is a real and credible threat to organizations that do
not take precautions when dealing with user agent data. Sites such as www.user-
agents.org are extremely useful in hunting down unusual user agent strings that
start to appear in our organization.

We looked at Wireshark, Snort and TCPdump to capture traffic. Once
captured, we manipulated the traffic to show the unique user agents using Tshark or
traffic that was not using a user agent atall. This is our known/expected user agent
traffic for our organization. We used Snort in its intrusion detection mode to hunt
for known evil user agent strings at the same time as collecting HTTP request
header traffic. We compared new user agents against our organizations known user
agents to see if any new potential malicious user agents were evident. If so we can
start our incident handling procedure. If the new user agent was malicious then we
can create a new snort rule for earlier detection. Also it will aid in finding other
victims that may be compromised.

If we know the user agents that exist within our organization we can
potentially spot new, and perhaps malicious, user agents. Using simple filtering we
can start to dissect the mountain of HTTP traffic and discover new ways to look at
our data. Analyzing and filtering user agents should not be the only tool, but should
certainly be part of any incident analyst’s repertoire.

Hackers know that unusual agents may spell disaster and shine a light on
their activities within an organization. However, like coders, they are susceptible to
the same errors and mistypes in coding. Being aware of case sensitivity in user
agents and what user agents are in our live environment is imperative. After all, a
hacker that is using a legitimate user agent for an Apple iPad may think they will go

unnoticed. However what they don’t know is that the organization banned Apple

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 5
iPads long ago. Therefore the fact that they are using a legitimate user agent does
not necessarily matter. What matters is that the organization knows what agents
are legitimate for them.

As we security analysts begin to find new ways to shine a light on hacker
activities so they will find new ways to avoid us. In the case of user agents, hackers
have not only found ways to avoid us, but to turn the tables on us as we search
through user agent logs. E.g. XSS stored attack. We are looking for the smallest
mistake or slip up from a hacker. Often it is the small mistakes that can blow an
incident wide open. Again, remember the golden rule; those that do not learn from
history are doomed to repeat it.

Your best adversary is well trained, possibly well funded and has time on
their side. Your best defense is knowledge. Signature based defenses are cold war
technology. We are fighting a modern war, where the enemy can create specific
smart weapons targeted specifically at your organization. (E.g. Duqu and Stuxnet)
The advanced persistent threat has shown that reliance on signature based
detection and defenses are flawed. It is fine for conventional attacks, but we have to
think beyond signatures if we are to detect and defeat the enemy in the battlefields
of the future. As Sun Tzu pointed out “know your enemy and know yourself and you
can fight a hundred battles without disaster”. Perhaps knowing what he meant was
“know your enemies user agents and know your own user agents”. But that’s just

my interpretation.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 6

9. References

Allen, J., Ford, K., & Spellman, J. (2010, July 19). User agent accessibility guidelines
(uaag) 2.0. Retrieved from HTTP://www.w3.org/TR/UAAG20/

Allen, J., Texas School for the Blind , , Ford, K., Spellman, J., W3C/Web Accessibility
Initiative , , & (2011, July 19). Uaag overview. Retrieved from
HTTP://www.w3.0org/TR/UAAG20

Analyze UA. (2010). Retrieved from HTTP://user-agent-

string.info/?test=spamno&action=analyze&Fuas=BlackBerry8320/4.2.2
Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/129 UP.Link/6.3.1.15.0

Astanley. (2010, October 08). How to detect the blackberry browser [Online forum
comment]. Retrieved from HTTP://supportforums.blackberry.com/t5/Web-and-

WebWorks-Development/How-to-detect-the-BlackBerry-Browser/ta-p/559862

Babben, J., Biles, S., & Orebaugh , A. (2005). Snort cookbook. (1 ed., pp. 1-265).
O'Reilly Network Safari Retrieved from
HTTP://books.google.com/books?id=XwdBogJg2FIC&pg=PR9&Ipe=PR9&dg=0
596007914
citation&source=bl&ots=ZkvwkBjINU&sig=sX iih6pl EddSAoDocqCz2C66Q4
&hl=en&ei=1Y2hTqzoCoLv0gH2yYD7BA&sa=X&oi=book result&ct=result&r
esnum=1&ved=0CBoQ6AEwWAA

Cve-2004-0169. (2006, November). Retrieved from HTTP://cve.mitre.org/cgi-
bin/cvename.cgi?’name=CVE-2004-0169

Detect mobile browsers. (2011, October). Retrieved from

HTTP://detectmobilebrowsers.mobi/

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 7

Downloads. (n.d.). Retrieved from http://www.Backtrack-linux.org/downloads/

Fielding, R., Irvine, UC., Gettys, J., Compaq, W3C., Mogul, J., Compaq, , Frystyk, H.,
Masinter, L., Xerox., Leach, P., Microsoft., Bernes-Lee, T.,& MIT, W3C. (1999,
June). Hypertext transfer protocol HTTP/1.1. Retrieved from
HTTP://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

FraMe. (2001, August 04). Denial of service vulnerability in shoutcast server (user agent,

host). Retrieved from HTTP://www.securiteam.com/exploits/SYP031555Q.html

Higgins, K. (2011, August 03). Apt attackers used chinese-authored hacker tool to hide
their tracks [Web log message]. Retrieved from
HTTP://www.darkreading.com/advanced-threats/167901091/security/attacks-
breaches/231300171/apt-attackers-used-chinese-authored-hacker-tool-to-hide-

their-tracks.html

How to change your user agent without any tool. (2011, October 10). Retrieved from

HTTP://www.door2windows.com/how-to-change-Internet-Explorer-user-agent-

string-in-all-versions-of-Internet-Explorer-without-any-tool/

Kcladygemini (2010, February 18). List of vendor id's [Online forum comment].
Retrieved from HTTP://forums.crackberry.com/blackberry-themes-f16/list-
vendor-ids-18071/

Jonkman, M. (2011). Emerging threats rule documentation wiki. In M. Jonkman (Ed.),
Emerging Threats rule documentation wiki (r64 ed.). Emerging Threats. Retrieved

from http://doc.emergingthreats.net/

MustLive. (2011, June 06). Xss attacks via user-agent header. Retrieved from

http://websecurity.com.ua/5195/

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The user agent field: Analyzing and detecting the abnormal or malicious in your | 4
organization | 8

Lamping, U., Sharpe, R., NSComputers, , & Warnicke, E. (2011). Wireshark user's
guide: for wireshark 1.7. (1.7 ed., pp. 1-238). Retrieved from
HTTP://www.wireshark.org/download/docs/user-guide-a4.pdf

McRee , R. (2010, October 19). Checking for user-agent header sql injection vulns.
Retrieved from HTTP://holisticinfosec.blogspot.com/2010/10/checking-for-user-

agent-header-sql.html

mrhinkydink. (2007, December 12). Websense policy filtering bypass [Web log
message]. Retrieved from HTTP://mrhinkydink.blogspot.com/2007/12/websense-

policy-filtering-bypass.html

Optimizing web content. (2011, October 12). Retrieved from
HTTP://developer.apple.com/library/IOS/

Porras, P., Saidi, H., & Yegneswaran, V. (2009, December 21). An analysis of the ikee.b
(duh) iphone botnet. Retrieved from HTTP://mtc.sri.com/iPhone/

Santayana, G. (1905). Wikipedia George Santayana. Retrieved from
HTTP://en.wikiquote.org/wiki/George Santayana

Securing your asp.net app against cross-site scripting (xss) attacks. (2004, March 15).
Retrieved from

HTTP://www.wwwcoder.com/main/parentid/258/site/2885/68/default.aspx

Tandberg video communications server cross-site scripting (xss) vulnerability. (2011,
October 12). Retrieved from
HTTP://www.secureworks.com/research/advisories/SWRX-2011-003/

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

A

The user agent field: Analyzing and detecting the abnormal or malicious in your
organization

O

Tcepdump. (2009, March 05). Retrieved from
HTTP://www.tcpdump.org/tcpdump_man.html

The cross-site scripting (xss) faq. (2002, May). Retrieved from

http://www.cgisecurity.com/xss-fag.html

Tshark - linux man page. (2011). Retrieved from HTTP://man-
wiki.net/index.php/1:tshark

Understanding user-agent strings. In (2011). msdn.microsoft.com Microsoft.

What's a user agent? (2011). Retrieved from

HTTP://whatsmyuseragent.com/WhatsAUserAgent.asp

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Last Updated: October 5th, 2014

- Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SOS: SANS October Singapore 2014 Singapore, SG Oct 07, 2014 - Oct 18, 2014 Live Event
GridSecCon 2014 San Antonio, TXUS Oct 14, 2014 - Oct 14, 2014 Live Event
SANS Network Security 2014 Las Vegas, NVUS Oct 19, 2014 - Oct 27, 2014 Live Event
SANS Gulf Region 2014 Dubai, AE Nov 01, 2014 - Nov 13, 2014 Live Event
SANS Cyber Defense San Diego 2014 San Diego, CAUS Nov 03, 2014 - Nov 08, 2014 Live Event
SANS DFIRCON East 2014 Fort Lauderdale, FLUS | Nov 03, 2014 - Nov 08, 2014 Live Event
SANS Korea 2014 Seoul, KR Nov 10, 2014 - Nov 15, 2014 Live Event
SANS Tokyo Autumn 2014 Tokyo, JP Nov 10, 2014 - Nov 15, 2014 Live Event
SANS Sydney 2014 Sydney, AU Nov 10, 2014 - Nov 22, 2014 Live Event
Pen Test Hackfest Washington, DCUS Nov 13, 2014 - Nov 20, 2014 Live Event
SANS London 2014 London, GB Nov 15, 2014 - Nov 24, 2014 Live Event
SANS Hyderabad 2014 Hyderabad, IN Nov 24, 2014 - Nov 29, 2014 Live Event
Healthcare Cyber Security Summit San Francisco, CAUS Dec 03, 2014 - Dec 10, 2014 Live Event
SANS Cyber Defense Initiative 2014 Washington, DCUS Dec 10, 2014 - Dec 19, 2014 Live Event
SANS Oman 2015 Muscat, OM Jan 03, 2015 - Jan 08, 2015 Live Event
SANS Hong Kong 2014 OnlineHK Oct 06, 2014 - Oct 11, 2014 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=33692
http://www.sans.org/sos-sans-october-singapore-2014
http://www.sans.org/link.php?id=37617
http://www.sans.org/grid-sec-2014
http://www.sans.org/link.php?id=35227
http://www.sans.org/network-security-2014
http://www.sans.org/link.php?id=34755
http://www.sans.org/gulf-region-2014
http://www.sans.org/link.php?id=34890
http://www.sans.org/cyber-defense-san-diego-2014
http://www.sans.org/link.php?id=36160
http://www.sans.org/dfircon-east-2014
http://www.sans.org/link.php?id=34690
http://www.sans.org/korea-2014
http://www.sans.org/link.php?id=34705
http://www.sans.org/tokyo-autumn-2014
http://www.sans.org/link.php?id=34665
http://www.sans.org/sydney-2014
http://www.sans.org/link.php?id=36222
http://www.sans.org/sans-pen-test-hackfest-2014
http://www.sans.org/link.php?id=35805
http://www.sans.org/london-2014
http://www.sans.org/link.php?id=34950
http://www.sans.org/hyderabad-2014
http://www.sans.org/link.php?id=36735
http://www.sans.org/healthcare-summit-2014
http://www.sans.org/link.php?id=27534
http://www.sans.org/cyber-defense-initiative-2014
http://www.sans.org/link.php?id=35970
http://www.sans.org/oman-2015
http://www.sans.org/link.php?id=36565
http://www.sans.org/hong-kong-2014
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

