

SELEGTION, PROTEGTION, AUTHENTIGATION

Create Password Policies That Baffle the Bad Guys, Not Your Users

- Master the 20 Pointers for Perfect Passwords
- Build Password Policies That Won't Be Ignored
- Check Out the soo Worst Passwords of All Time

Register for Free Membership to

solutions al syngress.com

Over the last few years, Syngress has published many bestselling and critically acclaimed books, including Tom Shinder's Configuring ISA Server 2004, Brian Caswell and Jay Beale's Snort 2.0 Intrusion Detection, and Angela Orebaugh and Gilbert Ramirez's Ethereal Packet Sniffing. One of the reasons for the success of these books has been our unique solutions@syngress.com program. Through this site, we've been able to provide readers a real time extension to the printed book.
As a registered owner of this book, you will qualify for free access to our members-only solutions@syngress.com program. Once you have registered, you will enjoy several benefits, including:

- Four downloadable e-booklets on topics related to the book. Each booklet is approximately 20-30 pages in Adobe PDF format. They have been selected by our editors from other best-selling Syngress books as providing topic coverage that is directly related to the coverage in this book.
- A comprehensive FAQ page that consolidates all of the key points of this book into an easy-to-search web page, providing you with the concise, easy-to-access data you need to perform your job.
- A "From the Author" Forum that allows the authors of this book to post timely updates links to related sites, or additional topic coverage that may have been requested by readers.

Just visit us at www.syngress.com/solutions and follow the simple registration process. You will need to have this book with you when you register.
Thank you for giving us the opportunity to serve your needs. And be sure to let us know if there is anything else we can do to make your job easier.

Perfect
 Passwords

SELEGTION, PROTEGTION, AUTHENTIGATION

Mark Burnett
Dave Kleiman Technical Editor

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively "Makers") of this book ("the Work") do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.
In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with computers, networks, data, and files.
Syngress Media ${ }^{\circledR}$, Syngress ${ }^{\circledR}$, "Career Advancement Through Skill Enhancement ${ }^{\circledR}$," "Ask the Author UPDATE®," and "Hack Proofing ${ }^{\circledR}$," are registered trademarks of Syngress Publishing, Inc. "Syngress:The Definition of a Serious Security Library" "TM ,"Mission Critical ${ }^{\text {TM }}$," and "The Only Way to Stop a Hacker is to Think Like One ${ }^{\text {TM " }}$ are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 83TMSW28HT
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T
PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Perfect Passwords: Selection, Protection, Authentication

Copyright © 2006 by Syngress Publishing, Inc. All rights reserved. Printed in Canada. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in Canada
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
ISBN: 1-59749-041-5

Publisher: Andrew Williams
Acquisitions Editor: Gary Byrne
Technical Editor: Dave Kleiman
Page Layout and Art: Patricia Lupien
Copy Editors: Michael McGee, Judy Eby
Indexer: Julie Kawabata

Distributed by O'Reilly Media, Inc. in the United States and Canada.

For information on rights, translations, and bulk purchases contact Matt Pedersen, Director of Sales and Rights, at Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

Acknowledgments

Syngress would like to acknowledge the following people for their kindness and support in making this book possible.

Syngress books are now distributed in the United States and Canada by O'Reilly Media, Inc. The enthusiasm and work ethic at O'Reilly are incredible, and we would like to thank everyone there for their time and efforts to bring Syngress books to market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko, Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark Wilson, Rick Brown, Tim Hinton, Kyle Hart, Sara Winge, Peter Pardo, Leslie Crandell, Regina Aggio Wilkinson, Pascal Honscher, Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn Barrett, John Chodacki, Rob Bullington, Kerry Beck, Karen Montgomery, and Patrick Dirden.

The incredibly hardworking team at Elsevier Science, including Jonathan Bunkell, Ian Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother, Miguel Sanchez, Klaus Beran, Emma Wyatt, Krista Leppiko, Marcel Koppes, Judy Chappell, Radek Janousek, Rosie Moss, David Lockley, Nicola Haden, Bill Kennedy, Martina Morris, Kai WuerflDavidek, Christiane Leipersberger, Yvonne Grueneklee, Nadia Balavoine, and Chris Reinders for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan, Pang Ai Hua, Joseph Chan, June Lim, and Siti Zuraidah Ahmad of Pansing Distributors for the enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer, Stephen O'Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane for distributing our books throughout Australia, New Zealand, Papua New Guinea, Fiji, Tonga, Solomon Islands, and the Cook Islands.

Author

Mark Burnett is a recognized security consultant, author, and researcher who specializes in hardening Microsoft Windows-based servers and networks. He has spent nearly a decade developing unique strategies and techniques for locking down Windows servers and maintaining his specialized expertise of Windows security. Mark is coauthor and technical editor of Microsoft Log Parser Toolkit (Syngress Publishing, ISBN: 1-932266-52-6), author of Hacking the Code: ASP.NET Web Application Security (Syngress Publishing, ISBN: 1-932266-65-8), coauthor of Maximum Windows 2000 Security (SAMS Publishing, ISBN: 0-672319-65-9), and coauthor of Stealing the Network: How to Own the Box (Syngress Publishing, ISBN: 1-931836-87-6). He also contributed to Dr. Tom Shinder's ISA Server and Beyond: Real World Security Solutions for Microsoft Enterprise Networks (Syngress Publishing, ISBN: 1-931836-66-3) and was a contributor and technical editor for Special Ops: Host and Network Security for Microsoft, UNIX, and Oracle (Syngress Publishing, ISBN: 1-931836-69-8). Mark speaks at security conferences and has published dozens of security articles that have appeared in publications such as Windows IT Pro Magazine (formerly Windows E.NET Magazine), Redmond Magazine, Windows Web Solutions, Security Administrator, SecurityFocus.com, TheRegister.co.uk, and WindowsSecrets.com, among others. Microsoft has twice recognized Mark's contribution to the Windows community with the Windows Server Most Valued Professional (MVP) award.

Technical Editor

Dave Kleiman (CAS, CCE, CIFI, CISM, CISSP, ISSAP, ISSMP, MCSE) has worked in the Information Technology Security sector since 1990. Currently, he is the owner of SecurityBreachResponse.com and is the Chief Information Security Officer for Securit-e-Doc, Inc. Before starting this position, he was Vice President of Technical Operations at Intelliswitch, Inc., where he supervised an international telecommunications and Internet service provider network. Dave is a recognized security expert; a former Florida Certified Law Enforcement Officer, he specializes in computer forensic investigations, incident response, intrusion analysis, security audits, and secure network infrastructures. He has written several secure installation and configuration guides about Microsoft technologies that are used by network professionals. He has developed a Windows Operating System lockdown tool, S-Lok (www.s-doc.com/products/slok.asp), which surpasses NSA, NIST, and Microsoft Common Criteria Guidelines. Dave was a contributing author to Microsoft Log Parser Toolkit (Syngress Publishing, ISBN: 1-932266-52-6). He is frequently a speaker at many national security conferences and is a regular contributor to many security-related newsletters, Web sites, and Internet forums. Dave is a member of several organizations, including the International Association of Counter Terrorism and Security Professionals (IACSP), International Society of Forensic Computer Examiners ${ }^{\circledR}$ (ISFCE), Information Systems Audit and Control Association ${ }^{\circledR}$ (ISACA), High Technology Crime Investigation Association (HTCIA), Network and Systems Professionals Association (NaSPA), Association of Certified Fraud Examiners (ACFE), Anti Terrorism Accreditation

Board (ATAB), and ASIS International ${ }^{\circledR}$. He is also a Secure Member and Sector Chief for Information Technology at The FBI's InfraGard ${ }^{\circledR}$ and a Member and Director of Education at the International Information Systems Forensics Association (IISFA).

Techical Reviewer

Ryan Russell (Blue Boar) has worked in the IT field for more than 13 years, focusing on information security for the last seven. He was the lead author of Hack Proofing Your Network, Second Edition (Syngress, ISBN: 1-928994-70-9), contributing author and technical editor of Stealing the Network: How to Own the Box (Syngress, ISBN: 1-931836-87-6) and other books in the Stealing the Network series, and a frequent technical editor for the Hack Proofing series of books from Syngress. He also was a technical adviser on Snort 2.0 Intrusion Detection (Syngress, ISBN: 1-931836-74-4). Ryan founded the vuln-dev mailing list and moderated it for three years under the alias "Blue Boar."

Contents

Chapter 1 Passwords: The Basics and Beyond 1
The Beginning 2
Our Passwords 3
Silly Human Behavior 5
You're Not That Clever 7
Weak Wordlist Words 7
Weak Wordlist Words with Numbers 8
Weak Wordlist Words with Simple Obfuscation 8
License Plate Passwords 8
Weak Wordlist Words Doubled 9
Garbled Randomness 9
Patterns or Sequences 9
Summary 10
Chapter 2 Meet Your Opponent 11
The Cracker 12
Why My Password? 12
Password Cracking 13
Plaintext, Encryption, and Hashes 13
How Your Password Falls 15
Smart Guesses 17
Dictionary Attacks 17
Brute-Force Attacks 18
Rainbow Tables 18
Social Engineering 18
Other Techniques 19
Winning the Numbers Game 19
Summary 21
Chapter 3 Is Random Really Random? 23
Randomness 24
What Is Randomness? 25
Even Distribution 26
Unpredictability 29
Uniqueness 30
Human Randomness 31
Machine Randomness 32
Compensating for Lack of Randomness 33
Less Predictable 35
More Unique 36
Chapter 4 Character Diversity: Beyond the Alphabet 39
Understanding Character Space 40
Password Permutations 43
Character Sets 45
Lowercase Letters 47
Uppercase Letters 47
Numbers 48
Symbols 49
Summary 52
Chapter 5 Password Length: Making It Count 53
Introduction 54
The Benefits of Long Passwords 54
Easy to Memorize 54
Easy to Type 57
Harder to Crack 58
Other Security Benefits 61
Building Longer Passwords 63
Adding Another Word 63
Bracketing 63
Number Patterns 64
Fun Words 64
Repetition 65
Prefixes and Suffixes 66
Colorizing 66
Sentences 66
Summary 67
Chapter 6 Time: The Enemy of All Secrets 69
Aging Passwords 70
It's About Time 70
Overbearing Policies 70
Password Expiration 71
Password Histories 72
Minimum Age 72
Did Administrators Win? 73
Chapter 7 Living with Passwords 75
Making Passwords Convenient 76
Remembering Passwords 76
Rhyming 77
Repetition 78
Visualization 78
Association 79
Humor and Irony 80
Chunking 81
Exaggeration 81
Offensiveness 81
Gripes 82
Other Memorization Tips 82
Typing Passwords 82
Key Loggers 83
Managing Passwords 83
The Difference Is Obscurity 84
Secret Questions 87
Summary 91
Chapter 8 Ten Password Pointers:
Building Strong Passwords 93
Introduction 94
Building Strong Passwords 94
Three Words 94
The E-Mail Address 96
The URL 98
The Title 98
Number Rhymes 99
Rhymes with One 100
Rhymes with Two 100
Rhymes with Three 100
Rhymes with Four 101
Rhymes with Five 101
Rhymes with Six 101
Rhymes with Seven 101
Rhymes with Eight 101
Rhymes with Nine 102
Get to the Point 102
The Confession 103
The Elbow Mambo 103
The Phone Number 104
Letter Swapping 104
Summary 106
Chapter 9 The 500 Worst Passwords of All Time 107
The Worst Passwords 108
The Passwords 109
Chapter 10 Another Ten Password Pointers Plus a Bonus Pointer 113
Password Complexity through Mangling 114
Diverse Dialects 114
Scrambling 115
Slicing and Dicing 115
Repetition 115
The Replacements 116
Over-punctuating 116
Slurring, Mumbling, and Stuttering 117
Non-words 117
Foreign and Slang 117
Typos 118
The Long Anticipated Valuable Bonus Tip 118
Chapter 11 The Three Rules for Strong Passwords 121
Introduction 122
The Rule of Complexity 122
Three Elements 122
A Thousand Trillion 122
The Rule of Uniqueness 123
The Rule of Secrecy 124
Summary 124
Chapter 12 Celebrate Password Day 125
Password Day 126
The Origin of Password Day 126
Celebrating Password Day 127
Summary 128
Chapter 13 The Three Elements of Authentication 129
Multifactor Authentication 130
The Three Basics 131
Something You Know 131
Something You Have 131
Something You Are 132
Multiple Layers 133
Summary 134
Appendix A Test Your Password 135
Appendix B Random Seed Words 137
Appendix C Complete Randomness 159
Index 177

Chapter 1

Passwords: The Basics and Beyond

Solutions in this chapter:

- The Beginning

Abstract

...alighting from his beast, he tied it up to a tree, and going to the entrance, pronounced the words which he had not forgotten, "Open, Sesame!? Hereat, as was its wont, the door flew open, and entering thereby he saw the goods and hoard of gold and silver untouched and lying as he had left them.

- Arabian Nights, The Forty Thieves

The Beginning

My fascination with security began perhaps a decade ago when I took my first job with the official title of software developer. I had written code casually for years, but this was the first time someone paid me to do it. I was a corporate employee. I wrote code all day. I had a network account that I logged in to every morning. Like almost everyone else at the company, I had a weak password that I swapped every three months with another weak password.

I had been interested in various aspects of security for a long time, but information at that time was scarce. Back then, you couldn't just search on Google for something; you found the good information by navigating an endless pathway of hyperlinks from one Web site to the next. The information that I did find was often obsolete, unreliable, or limited in context; thus, I was left unsatisfied.

Nevertheless, I studied everything I could find during any spare minute I had. After I read and reread stacks of printouts, they slowly started to make sense to me. Although I was merely a beginner, I learned a few tricks that enabled me to gain already some rank as the office hacker.

Then one morning I got my calling. A friend of mine who was one of the company executives pulled me into his office, explained a predicament the company faced, and told me that the company needed my help. The senior network administrator had been in a heated argument with the company vice president earlier that morning. In the middle of the argument, the network administrator slammed his keys on the table, cleared out his desk, and left the company. Now, the company management wanted me to break in to all the systems and recover all the administrator's passwords because the VP was too scorned to call the admin asking for the passwords. I knew that I didn't have the experience to take on such a task, but still I couldn't help being seduced by the challenge. I told him I would do it.

But once I sat down at my desk, reality set in; I was enormously intimidated by this undertaking. Sure, I knew a few tricks, but presuming that I could actually accomplish this task was absurd. I thought that perhaps I should have admitted to my friend that I wasn't as skilled as he thought. Had I gone too far? Had my own hubris clouded my judgment? As inconsequential as this incident might sound, it was my defining moment.

I could have failed. I would have failed that day if I had not discovered this remarkable truth about hackers: their superhuman skills don't make them successful; rather, everyone else fails so much at security that hackers just make it look easy. I discovered that people don't have strong passwords. Moreover, we use the same passwords repeatedly, never straying far from a few core passwords. When it comes to passwords, we just aren't that clever.

I obtained the administrator's Microsoft Access password and then his email password. Next, I got his Windows NT administrator password. One password at a time his security fell-superman12, superman23, superman95, Wonderwoman.

I didn't do anything special that day except discover this decisive weakness of human security-that is, that humans are horribly predictable. Late that night I e-mailed the list of passwords to my friend. I went home, buzzing from the thrill of what I had just accomplished.

The next morning I just happened to approach the office building at the same time as the company president and vice president. They both turned, and as if they had rehearsed it beforehand, opened the front door and bowed before me. I was confused at first, but then realized that they had already heard about the passwords I had collected. I walked through the doorway feeling happy for the recognition from the top of the company. I loved the attention, but from that point on, I was infatuated-almost obsessed-with security, passwords, and the character of human behavior.

Our Passwords

Passwords, in some form or another, have long been associated with security. We see it in literature all the time: to unlock a door, to pass a guard, or to distinguish friend from enemy. These ambiguous words or phrases are the keys to magical spells or the secret codes to identify one spy to another.

Secret codes are an indispensable part of our modern lives. We use them to check our e-mail and voice mailboxes. We need them to withdraw money from an ATM or to connect to our online banking account. We use them to authorize financial transactions and to buy and sell items on the Internet. We
use them to limit access to wireless Internet connections and to encrypt our most sensitive private data. You may even find yourself needing a password to order pizza, purchase flowers, rent a DVD, or get a car wash. We are a world of secrets.

Whether they are referred to as passwords, PINs, passcodes, or some other name, they are all secret keys that we hold to gain access to the protected portions of our lives.

Passwords are more than just a key. They serve several purposes. They authenticate us to a machine to prove our identity-a secret that only we should know. They ensure our privacy, keeping our sensitive information secure. They also enforce nonrepudiation, preventing us from later rejecting the validity of transactions authenticated with our passwords. Our username identifies us; the password validates us.

But passwords have some weaknesses: more than one person can possess knowledge of the secret at any one time. Unlike a physical key that only one person can hold at a time, you have no guarantee that someone else hasn't somehow obtained your password, with or without your knowledge.
Moreover, there is a constant threat of losing your password to someone else with malicious intent. Password thefts can and do happen on a daily basis-by the thousands. Your only defense is to build a strong password, protect it carefully, and change it regularly.

The other weakness with passwords is human behavior. Human nature is such that we do not fear threats that we do not perceive. We cannot imagine why someone would want to gain access to our e-mail or network accounts. We feel reasonably safe with the passwords that we select.

That one day at work, I walked past the company president and vice president, passed through the entrance, walked down the hall, and sat down at my desk. I logged in to my network account with my own weak password and was suddenly struck with the knowledge of my own weakness. I realized that my own security was just as fragile as the security system that I had broken the day before. Just seeing my last two passwords, someone could easily guess my current password and probably the next one after that. At least one other coworker already knew my password because I shared it with him one day when I was out sick so that he could access my files. I decided that day to change my attitude about passwords.

Silly Human Behavior

A number of years ago, I sat in an audience and watched a performance of the amazing Kreskin, a self-proclaimed mentalist. I watched as he consistently predicted and manipulated the human behavior of the audience. During his tricks, he explained that he didn't have any special powers, just an extraordinary understanding of human behavior.

He consistently guessed secrets selected by the audience and related facts about the personal lives of many audience members, facts such as their social security numbers or dates of birth. He is not alone. Psychics, fortune-tellers, mediums, magicians, and others often depend on human predictability for the success of their crafts. Undoubtedly, people just behave the same.

If you ask someone to name a vegetable, 98 percent of the time, that person will tell you a carrot. Tell someone to pick an even number between 50 and 100, where both digits are different, most commonly people will pick the number 68. Think of a card. The most common choices predictably are nine of diamonds, ace of spades, queen of hearts, or the six of clubs.

You might even find yourself with exceptional skills at predicting human nature, anticipating the behavior of others, for example, or guessing the ends of movies. Remarkably, as poor as we are at avoiding predictability, we are exceptionally capable of detecting predictability in others.

Consider the list of random passwords shown in Table 1.1. If you study the list for a few minutes, you will start to see simple and predictable patterns emerge.

Table 1.1 Random Passwords

bmw66	fuzzy1	trisha
Jessica1	Steven	123456
sa1856	Alexis	gregory2
843520	xmen94	brutus1
0214866	link11	lakers7
m9153p	1nani1	lamacod1
cyril87	Bubba1	pariz2
7082382	856899	letmein
100265	grady6	tiger69
jimmyd2	mpick1	cats999
wes333	mjordan2	supra1
053092	sti2000	bearcub
4Obelix	usa123	wargame6
6Bueler	Lieve27	dan1028
Franc1	3089172	13 crow
Nicole3	Roswell	ncc1701
elin97	67bird	jun0214
toyota4	rat22	password

The amazing thing is that this small list accurately represents the nature of human passwords. I could give you a list of a thousand or even a million passwords, and you would learn little more about passwords than you could from this small list.

I know because I have actually done it. Over the years I have collected real passwords from every source I could find. I have collected almost 4 million passwords, and my list continues to grow through an automated set of tools that scour the Internet for passwords, often using nothing more than ordinary search engines such as Google. I collected these passwords to gain a better understanding of how people select passwords. For five years I collected, researched, and stared at passwords-thousands of QWERTYs, thousands of 12345 s .

The most amazing discovery I made was absolutely nothing. Having more passwords did not change any of my password statistics; the choices of characters remained the same. The top 500 passwords were mostly the same. Password length, complexity, and lack of creativity-all unchanged.

In fact, my numbers were pretty close to other password studies conducted decades ago. Passwords were-and still are-predictably the same over and over: a number or two at the end, a couple of numbers at the beginning, all numbers, names of loved ones, dates, vehicles, sports teams, pop culture references, and the ever-present letmein and password. I could collect another four million passwords and would probably get the same results.

You're Not That Clever

If anything frustrates me about passwords, it is that so many people think they are being clever or unique, but they just aren't. If you could see a million passwords, you would probably be surprised to find that your password looks a lot like everyone else's. If you have ever gone on a long flight across the continental United States, you might have noticed that there is not a lot to see but thousands of square miles of empty space. Occasionally, you pass over a cluster of civilization, but then it's right back to empty land.

That is very much what I see when I look at passwords. So many possibilities remain untouched, while thousands cluster around the same few passwords.

Over the years, I began to categorize passwords by their patterns. Here are some of the most common categories of password-writing patterns. These are examples of what you should not do; never follow these patterns.

Weak Wordlist Words

This category includes dictionary words, your first or last name, a common password, or a simple phrase that you are likely to find on some wordlist somewhere. These passwords are the worst because they are so vulnerable to dictionary attacks as explained in the next chapter.

- cupcake
- auto
- badger
- letmein
- Jonathon
- Red Sox
- dirty dog

Weak Wordlist Words with Numbers

Only trivially stronger than a simple wordlist word, these passwords include numbers that people add to the front or end of a password in attempt at security or to meet specific policy requirements. Here are some examples:

- deer2000
- atlanta33
- dana55
- fred1234
- 99skip

Weak Wordlist Words with Simple Obfuscation

Again, these passwords are only slightly stronger than a simple wordlist word. These passwords usually have some simple character replacements or deliberate misspellings. Here are a few examples:

- B0ngh
- g0ldf1sh
- $\mathrm{j} @ \mathrm{ke}$

License Plate Passwords

These passwords include some short phrase that makes use of abbreviations, numbers, or other techniques. These passwords certainly are stronger than a wordlist word, but they are by no means unique. They often read like license plates. Here are some examples:

- sk8ordie
- just4fun
- dabomb
- kissme
- laterpeeps

Weak Wordlist Words Doubled

Most password-cracking tools will check for this simple pattern. Here are some examples:

- crabcrab
- patpat
- joejoe

Garbled Randomness

These passwords are technically more secure because they are random and less predictable, but as you will read in this book, having a password that is easy to remember and easy to type is also essential for security. Here are some examples:

- $9 \mathrm{uxg} \$ \mathrm{t} 5 \mathrm{C}$
- Bn2\#sz63j
- \&fM3tc8b

Patterns or Sequences

These passwords could fall into the category of wordlist words because they are so common. These passwords include some pattern or sequence that is based on the appearance or shape of letters or on the location of the keys on the keyboard.

- QWERTY
- 123456
- xcvb
- abc123
- typewriter (all letters on the same keyboard row)

Summary

The single most important aspect of information security is strong passwords. Likewise, the single greatest security failure is weak passwords. Network administrators blame users for selecting such poor passwords, and users blame network administrators for the inconvenience of their draconian password policies.

Further complicating the problem are hundreds of thousands of software and hardware products that have been and continue to be sold with default passwords that users never get around to changing (see defaultpassword.com to understand how big this problem really is).

People select poor passwords and do little to protect them. They share their passwords with others and use the same passwords repeatedly on multiple systems. At the same time, computing power has increased along with the number and quality of tools available to hackers.

Consequently, many have predicted that passwords, at least by themselves, will someday become obsolete. I hear people talk about retina or fingerprint scanners, but at some point, security will still involve some secret, some password.

The good news is that passwords don't have to be obsolete. In this book, I describe techniques for how you can build very strong passwords and explain how to protect your password from attack. All we need to do is follow some simple rules, use some basic common sense, and treat our passwords like real secrets. By implementing these practices, we can extend the life of this simple method of authentication.

The age of the password is not over yet.

Chapter 2

Meet Your Opponent

Solutions in this chapter:

- The Cracker
- Password Cracking

The Cracker

Password cracking is the method of employing various techniques and tools to guess, methodically determine, or otherwise obtain a password to gain unauthorized access to a protected resource. Password cracking is sometimes used to legitimately recover a lost password, and sometimes an administrator will use password cracking to test user passwords. But, for the most part, password cracking is used to steal passwords.

Some call it a game; others, a crime. But whatever it is called, both the most talented computer professionals and the novice use it. As one hacker told me, "[Password cracking] is power... the power to compel a system to yield its knowledge."

I met that hacker in an IRC room. Well known in the hacking underground for his specialized password-cracking software, this hacker agreed to speak with me on conditions of anonymity-not even a reference to his pseudonym. "I'm not a hacker or an exploiter. I just crack passwords," he told me, "but still everyone calls me a hacker. Hacker, cracker; it's all the same."

Why does he do it? "For trading, selling, sharing," he told me."It gets me respect, and, hey, it's fun and addicting," he explained, "and I'm not the only one doing this; it goes on all the time."

This is the reality. There are people who steal passwords for some form of gain, and it happens all the time.

Why My Password?

Perhaps the most common question I hear when it comes to security is, why would one individual have anything tantalizing enough for a hacker to steal his or her passwords? One reason for hackers' attacks might be to disguise their identities for purposes such as sending spam, or the attack might be just one jump in the process of leapfrogging toward bigger targets. The attack might be to perform financial transactions to defraud others, or it might be to gain access to one of your subscribed services. The fact is that you cannot even comprehend the ways in which your password would be useful to another.

Password theft is a huge problem. Some Web sites are obviously more attractive targets, but no target, no matter how small, is exempt from this problem.

Password Cracking

Password cracking, once a specialized skill, is now available to just about anyone using widely available tools with names like L0phtcrack, John the Ripper, and Cain \& Abel. However, before learning about password-cracking techniques, it is important to understand how a system stores your password.

Plaintext, Encryption, and Hashes

A system can use three basic methods to store your password. Every time you enter your password, the system must have some method to determine if you entered the correct password. It must store something.

The first-and most obvious-method is simply storing your password exactly as you entered it. This plaintext method stores the plain data without any obfuscation, encryption, or encoding. When you \log in to your computer or a network account, it can compare the password entered with the copy stored in a database. If they match, it lets you in. The problem with this method is that you cannot always trust the security of the database. Certain users on the system will have privileges to view these databases, and therefore, all passwords would be in plain view. This method also carries a huge risk because if a hacker gains access to the database, that hacker instantly has everyone's passwords.

Imagine how hotels provided you with room keys before the days of magnetic cards. The front desk clerk would turn around to a large board representing all the rooms in the hotel, pull a key off a hook, and hand it to you. However, a couple of spare keys to your room would still be on the hook. In other words, anyone who could walk behind the hotel desk could obtain the key to your hotel room. This is approximately equivalent to storing passwords in plain text. They are available to anyone within arm's reach.

Although the plaintext method provides little password security, far too many applications still use it to protect sensitive passwords. Many software developers still have limited security training, and they repeatedly make the mistake of relying on the plaintext method.

Another method is to encrypt each password before storing it in the database. Encryption combines plain text with another secret key to create a garbled string that can be retrieved only by using that same key. In other words, encryption is just storing a password protected by a password. Again, anyone with that master password would have access to the entire database, making it only a little more secure than plaintext.

Using the previous example of hotel keys, encryption would be equivalent to having all hotel keys in a locked box, and only front desk employees had a copy of the master key. This method is somewhat more secure, if you trust those employees.

Password encryption is generally not acceptable for many purposes, but it certainly is better than plaintext. Sometimes, an application must store a password and retrieve the plain text for later use, and there is no way around that. For example, Windows encrypts and stores various passwords to be able to start system services and to connect to various resources. You often see this when a login dialog box pops up, and your password is already entered, represented by a string of asterisks.

TIP

When you lose your password and must retrieve it, you can tell whether a system has stored your password as plain text or if it has been encrypted. If you go through the retrieval process and the system tells you your original password, you know your password is stored in a manner that someone else could retrieve. If that's the case, your password is only as secure as the entire system's security and only as trustworthy as those managing the system.

Unfortunately, encryption also suffers when programmers lack proper security training. All too often programmers try inventing their own encryption methods or use methods that have long been proven insufficient rather than relying on time-tested, widely accepted secure encryption algorithms.

The widely accepted solution for storing passwords is to use a password hash. A hash is the result of an algorithm-a complex formula-that modifies plain text in a complicated manner to produce a garbled string that represents the password. Hashing algorithms are one-way formulas because there is no reasonable way to calculate the original password from its hash. You can't just reverse the formula.

To check your password, a system will take your entry, run it through the same hashing algorithm, and then compare the result with the data stored in the hash database. If they match, the system knows that the two passwords must have been the same to produce the same hash.

Suppose you rent a safe deposit box at a local bank. You store your most sensitive items in the box, and the bank provides you with a set of two keys (see Figure 2.1). The important thing to remember is that those are the only two keys for your box. If you lose both of those keys, the bank will have to hire a locksmith to drill out the lock to gain access to your box. If you lose your key, and the bank manager tells you that the bank can provide another copy, watch out because the bank has a spare copy somewhere.

Figure 2.1 Keys and Locks

A password hash is similar to a lock. Someone cannot easily use the lock itself to construct a new key. Therefore, you can feel quite safe that someone can possess the lock without putting your key at risk. If a system uses password hashes, you can feel reasonably safe that your password is not directly exposed. It is not completely safe (this method carries some risks that I will explain later in this chapter), but it is the safest method commonly in use.

How Your Password Falls

The method used to steal your password depends on the target system. Some passwords, such as operating system passwords, have mechanisms to lock out after several failed attempts. You might also see this with sensitive online accounts such as on banking Web sites. Other times, a hacker might be able to use techniques to launch sophisticated offline attacks that are limited only by the attacker's CPU power and patience.

The difference between an online and an offline attack is that an online attack has the protection of the system where the password is stored. Offline attacks have no protection.

Online attacks use the normal login mechanisms of a system. Faced with a login prompt, an attacker can either manually enter passwords or use some software tool to automate the process. Online attacks are normally easy to detect-and block if necessary-so they are not usually successful. With an online attack, the attacker will want to guess your password with just a few guesses to avoid detection.

However, patient hackers can use stealthy methods with online attacks. For example, they could use an automated tool to try logging in with a different password once every hour 24 hours until it finds a valid password. Another method is to try a single common password and cycle through a large list of usernames to find those users with that password. Yet another method is to take several common username/password combinations and try them across hundreds, or even thousands, of Web sites.

Online attacks are difficult but there are enough people with enough weak passwords that they will always yield results. The benefit of an online attack is that it is simple to launch a quick, anonymous attack against a web site or even a single account.

Offline attacks are more sophisticated, but when they are successful, they usually provide a huge windfall for the attacker. Offline attacks occur when an intruder is somehow able to obtain access to the database of password hashes. I explained earlier that password hashes are one-way functions and that they cannot be directly converted into passwords, but if someone can steal the hashes, they can perform an offline attack.

If someone can obtain password hashes, they can perform dictionary and brute-force attacks, essentially trying millions of passwords until they find the right one. These attacks are equivalent to trying every key on a huge key chain until you find the one that opens the lock. Because there is no system to enforce lockouts or other countermeasures, attackers are free to try as many passwords as they want for as long as they want. Because so many people have weak passwords, they are quite vulnerable to offline attacks. It is not uncommon for a hacker to obtain passwords for 50 percent of all hashes in just a matter of minutes.

Offline attacks usually involve taking a password, hashing that password, and then comparing it against the hash in the hash database. If the attacker's search finds a hash that matches, that means the attacker guessed a correct password.

The prerequisite for an offline attack is that the attacker must have already broken the system's security enough to obtain the database of password hashes. Sometimes this requires a sophisticated attack, but all too often, programmers or system administrators make mistakes that expose these hashes. In fact, it is often possible for a hacker to obtain password hashes using nothing more than a search engine such as Google.

Knowing what to search for, an attacker could search for vulnerable Web sites, obtain their hashes, and set their software to crack those hashes until they find an account to gain access. This is quite common in the porn hacking community where some individuals, the exploiters, obtain the hashes, and others, the crackers, use their software to crack them. Once these hashes are cracked, the attackers can trade or even sell large lists of passwords to others.

In the following sections, I describe a few of the online and offline methods that password crackers use.

Smart Guesses

The easiest method to gain your password is simply to guess it. Many hackers simply try the five most common passwords for a particular system. They might also try a blank password and a password that is the same as the username. If they get nothing they just move on to the next account and keep trying until they find the accounts with weak passwords. These methods work by attempting them on large numbers of accounts. Hackers often use automated tools that allow for large-scale attacks.

If someone knows you, that person might try entering passwords related to your personal life-for instance, trying the name of your girlfriend or prized sports car. Someone might happen to know one or more passwords you have used elsewhere and try those. This technique is the most basic form of attack, but it is still very effective.

Dictionary Attacks

Dictionary attacks are usually offline attacks against a password, but they can also be effective online when used correctly. A dictionary attack involves taking a list of words, often a dictionary, and trying every word until a valid password is found. To facilitate dictionary attacks, many wordlists are available on the Internet at Web sites such as http://sourceforge.net/projects/wordlist.

Many software tools are available to automate dictionary attacks against various systems. Most of these tools are smart enough to try simple variants of
dictionary words, such as words followed by one or two numbers or simple letter substitutions.

Brute-Force Attacks

Brute-force attacks are more tedious but more complete versions of dictionary attacks. Brute-force attacks also involve trying millions of passwords, but they work by trying every combination of every letter and every punctuation symbol until a password is found. This type of attack could potentially take years to succeed, so it is often used as a last resort. Brute-force attacks are slow and time-consuming, but still quite common. I will cover brute-force attacks in more detail in the Chapter 4, "Character Diversity: Beyond the Alphabet."

Rainbow Tables

Offline attacks work by hashing millions of passwords in order to find hashes that match those of the target. Rainbow tables facilitate these attacks by precomputing the hashes for billions of passwords. These tables take a very long time to generate, but once you have the tables, you can crack a large number of passwords in a matter of seconds.

To make things easier, the Shmoo Group has computed these tables and made them freely available on its Web site, http://rainbowtables.shmoo.com/.

Rainbow tables are significant because they immediately make every password that contains fewer than 15 characters immediately vulnerable if exposed to an offline attack.

Social Engineering

Sometimes a hacker can get your password simply by asking for it. Although it is perhaps the oldest trick in the book, this technique is still quite effective.

Hackers might pose as help desk or support staff and try to trick you into revealing your password. They might send you an e-mail claiming that your eBay or PayPal account is suspended, providing a place for you to enter your password. They might even take advantage of your greed by providing some trick to get rich quick or take advantage of others and in the process take advantage of you.

The best defense for these types of attacks is simply never giving out your password to anyone, no matter who you think they are.

Other Techniques

Hackers have many techniques at their disposal. They can use key loggers to record every keystroke you type on your keyboard. They can use sniffers, specialized tools to watch network traffic to obtain passwords sent over the network unencrypted. They can exploit vulnerabilities in Web browsers to obtain cookies that might contain authentication information. They could even hold a gun to your head and just ask for your password. The techniques are numerous, and they constantly evolve.

Winning the Numbers Game

The most effective way to defeat password crackers is to use strong passwords. If your password is long enough, random enough, and does not contain personal information, obtaining your password using the most common techniques would be extremely difficult. A strong password is essential in this world.

Fortunately, the numbers can be on your side.
Most password-cracking techniques involve a trade-off of time or CPU power. Searching through billions of passwords while trying to find the right one takes time. However, computers are growing more powerful every year. It is not unusual for a password-cracking tool to be able to search through a million passwords per second- almost a hundred billion passwords a day.

This processing power means that you aren't safe enough forcing attackers to try a billion passwords; you need to force them to try a trillion, or a thousand trillion. The numbers are your only defense.

You need to make cracking your password so difficult that no one will have the patience or resources to do so. Throughout this book, I will explain how to gird yourself with this protection, but for now I will explain why the numbers are so important.

The complexity of your password determines how long it will take someone to crack your password. Your password should never be simple enough to be vulnerable to a dictionary attack, and you should hide your password among a thousand trillion other possible passwords. Thus, your password must comprise at least 10 characters and contain more than just lowercase letters.

A number like a trillion is hard to imagine. Here are some facts to put it into perspective:

- A trillion $(1,000,000,000,000)$ is a thousand billions, at least in most English-speaking countries. (In the United Kingdom, Ireland, Australia, and New Zealand a 1 followed by 12 zeroes is a called a billion).
- A light year-the distance it takes for light to travel in a year-is about 6 trillion miles.
- The moon has about 81,000 trillion tons of mass.
- The world?s 200 richest people have an estimated combined wealth of more than $\$ 1.3$ trillion
- It would take just over a trillion pennies to fill the entire Empire State Building.

On the other hand, IBM's Blue Gene/L supercomputer can operate at speeds of over 280 terfaflops, an abbreviation for a trillion floating-point operations per second. A trillion is a large number, but computing power can shrink it quite quickly.

Your password needs to be a single penny in a thousand Empire State Buildings full of pennies (see Figure 2.2). That is your only protection.

Figure 2.2 Make Your Password Like a Penny in a Thousand Empire State Buildings Full of Pennies

For someone to try cycling through a thousand trillion passwords, it would take them a very, very long time - at least using today's technology. If someone used a hundred computers, at the rate of a million passwords per second, expecting to crack your password on average halfway through, the time needed to crack your password would be 317,098 years.

Summary

Password security depends greatly on your own attitude and caution about security. If you are careless with your passwords, you can probably count on an attacker stealing it some day. You must also be careful about what information you reveal about yourself. Always remember that just about anything you post in a public Internet forum could be indexed by search engines such as Google.com and archive sites such as Archive.org. This information could be around for years, even decades. Old Web sites that you no longer have may still exist in some cache somewhere, available to anyone who wants to gather information about you. Numerous public sources of information also might reveal private information about you. Your e-mail address is probably already scattered throughout the Internet.

Always use caution when you publish any information on the Internet and consider the ramifications. Web sites such as eBay encourage sellers to create a profile page where you can provide personal information about yourself, your family, your pets, and your interests. This information can be useful for a hacker if your password is somehow related to that information. Furthermore, someone could use a Web site like eBay to determine what kinds of things you have bought or sold in the past. Again, this is all information that an attacker might use against you.

Be smart about what you publish and be smart about your password. This book should give you the ideas and techniques necessary to build strong, unbreakable passwords.

Chapter 3

Is Random Really Random?

Solutions in this chapter:

- Randomness
- Compensating for Lack of Randomness

Randomness

Password security essentially revolves around one basic strategy: creating a password that no one else can predict (or guess) within a reasonable amount of time, and then changing it regularly to continually make it difficult to predict.

It is not easy to "intentionally" be unpredictable. Human beings have to struggle to be random and sometimes in the process end up being even more predictable. Randomness-the most important aspect of password security-is what we struggle with the most.

Part of the problem is that we generally have a poor concept of random-ness-it is difficult to define. For example, when we gamble on a certain slot machine for a period of time with no luck, we tend to move on to another, perhaps luckier, machine. When someone scores a huge jackpot on a machine, they believe that it is now spent and move on to another machine. Gamblers talk so much about winning streaks, being hot or cold, and payout averages that they are almost superstitious about randomness. However, the flaw in this is that random has no preference and no memory. Randomness does not track statistics and is completely unpredictable. Sure, if you track enough slot machines over a long enough period of time they will pay off, but a slot machine could get three jackpots in a row or never hit a jackpot. Randomness does not know the difference-there is no trend or bias.

Note

I have heard gamblers theorize that gaming companies design slot machines specifically to benefit the casinos that own them, by somehow manipulating the randomness of the machine. However, this could not be farther from the truth. These companies go to great lengths to ensure that their machines are as random as possible; inconsistencies in their randomness could potentially be exploited. Kevin Mitnick writes about this in his book The Art of Intrusion (Wiley, ISBN: 0-7645-6959-7). In this book, he describes how four individuals found weaknesses in and exploited the random number generators in slot machines for their own benefit.

If it has been 100 years since the last 100 -year storm, do you think one is due any day? Additionally, after that storm, do you think people should worry about the next one?

We also have trouble recognizing whether data is random or not. Consider the first 50 digits of the value of Pi: 3.141592653589793238462643383279502884197169399375 . The number looks random, but if you looked at it long enough you might see some patterns. Is it truly random? If you had a computer generating random numbers repeatedly, it would eventually produce the number that represents Pi , although it might take decades to happen.

Note

Abstract

Pi is such a complex number that many people consider it close to being random. There is a 63 percent chance of finding the digits of your birthday in the first 100 million digits of Pi (see http://www.angio.net/pi/piquery).

Likewise, you may have heard that if you had enough monkeys randomly typing on typewriters they would eventually produce the entire works of Shakespeare. As unlikely as this seems, does it mean the works of Shakespeare are random? Are dice random? Is the static on a TV screen random? Are cloud formations random? Is your password random?

What Is Randomness?

Randomness is a strange concept. We do not really know what true randomness is. We call something random when we see no apparent pattern in a sequence. For example, we can see that the sequence $1,2,3,4,5$ is not random because we see a pattern. We can easily speculate how the sequence would continue. The sequence $10,100,1000,10000$ also has a recognizable pattern. On the other hand, the sequence $93,2,75,49,36$ has no apparent pattern and therefore, we cannot predict the next number in the sequence. If there is no formula or pattern we can use to reproduce the sequence, then we consider that sequence random. In other words, randomness is the absence of order.

The lack of order, however, does not guarantee that something is random. A sequence is only random if there is no way it can be reproduced given any circumstances or information (e.g., the value of Pi appears random but there is a specific method used to reproduce those digits).

It is difficult to actually determine if a sequence is truly random; therefore we look at several properties of a sequence to determine its randomness:

- Even Distribution An equal probability of distribution over the entire set of data.
- Unpredictability Any one piece of data has no relationship to any previous data and provides no information about the data to follow.
- Uniqueness It would be extremely rare to randomly produce the same sequence of data more than once. The longer the sequence, the more unique it becomes.

These three properties deem random data impossible to guess, therefore making randomness a vital element for strong passwords.

Unfortunately, completely random passwords are very difficult to remember and even if we could remember them, creating them would be a complicated task.

Even Distribution

Even distribution means that before producing a random sequence of data, there is an equal probability of all possible outcomes. Before you roll a dice, there is an equal chance of landing on any one of its sides. Because of this even distribution, we can assume that after a long period of time, randomly generated data will cover the entire data set.

Imagine a lawn sprinkler (see Figure 3.1). As it sprays out droplets of water, it is impossible to predict which blade of grass will be hit with any particular drop of water. Before any drop of water leaves the sprinkler, there is an equal probability that any blade of grass within range of the sprinkler will receive water. Likewise, if you run the sprinkler long enough, water will eventually cover all of the grass within the sprinkler's range. Furthermore, you can normally expect that all of the grass will receive approximately the same amount of water over a period of time, because the distribution is non-biased.

Figure 3.1 A Lawn Sprinkler

Human languages are not random; therefore, the passwords derived from these languages are also not random. If we counted the appearance of each different character in each different password, we would see that we are far from random. Figure 3.2 shows the actual distribution of password characters for over three million passwords. The figure clearly shows that most people prefer lowercase letters and some numbers in their passwords. If passwords were truly random, there would be a more even distribution like that in Figure 3.3, which represents passwords created by a computer random character generator.

Figure 3.2 Distribution of Password Characters

It is important to note that "even distribution" does not always mean that random data is evenly distributed. There is only the possibility that the data will be evenly distributed. The distribution in Figure 3.3 is not perfectly flat, because even distribution is the statistical average after many samples. If you flip a coin 100 times, you will not get exactly 50 heads and 50 tails. You may have 46 heads and 54 tails, or you may have 52 heads and 48 tails. The more you flip the coin, the closer it will get to the average of 50 percent each. Even distribution means that random data can take any format-evenly spread out, clustered, or a combination of the two. If you flip a coin, there is always the possibility of getting heads five times in a row. One outcome is just as likely as any other outcome.

Figure 3.3 Passwords Created by a Random Character Generator

Unpredictability

What makes something truly random is having no prior knowledge to help determine what data will appear next in a random sequence. In the English language, it is extremely rare for the letter "Q" to be followed by anything but the letter "U"'; therefore, the sequences of letters in English phrases are quite predictable and therefore not truly random. With perfect randomness, every piece of data is completely independent of every other piece of data. There is no memory and there is no relationship between any two pieces of data.

The English language is full of repetition, which is helpful when communicating, but also makes it predictable. Some letters are used more than others and some words are used more than others. Figure 3.2 demonstrates the uneven distribution of letter passwords, which are largely based on dictionary words.

This is why many security professionals recommend using completely random sequences of letters rather than English words-they are just too predictable.

You can gauge the unpredictability of a sequence by measuring its entropy. Entropy is the measure of disorder, or lack of information. Information density is basically a measure of how much redundancy there is in a data sequence.

To illustrate entropy, consider this phrase from William Shakespeare's Hamlet, "To be, or not to be." It is a short phrase made up of 20 characters, but how much information does it really contain? You might say that there are 20 pieces of information, but if you look closely, there really are only six unique letters in this phrase. Moreover, if you look closer, you might notice that there are only two word pairs, "to be" and "or not." Perhaps you could argue that the phrase is made up of only two pieces of information. You could even argue that the entire phrase is so common (Googling for that phrase turns up 2.3 million results) that the entire phrase is a single piece of information.

It turns out that the English language is estimated to be 50 percent redundant. In other words, you could leave out half of the letters in a sentence and it could still be understood. That also means that a password based on English words must be twice as long as a completely random password to have equivalent entropy.

Uniqueness

If you take a sequence of random data (e.g., ten random characters), you have a small chance of repeating the same 10 -character sequence twice. However, as the length increases, there is a smaller chance of repetition. That is why it is so difficult to randomly guess a valid credit card number. There are so many possible variations of credit card numbers that for every valid number there are potentially millions of unused numbers. Because random numbers are so evenly distributed and because there is no relationship between any two characters, chances are that truly random sequences will rarely repeat.

A lack of randomness is a huge weakness with most passwords. There simply are not enough different words, even if you consider all common languages and if you add numbers to the end of each word. Eight lowercase letters arranged in any order could potentially produce 26^{8} or $208,827,064,576$ possible words. However, in the entire English language, there are only about 17,000 eight-letter words, of which only about 500 are commonly used. That means that for every eight-letter English word there are more than 12 million eight-letter combinations that are not English words.

Because most passwords are not evenly distributed, unpredictable, or unique, they are vulnerable to attack and provide little security. Rather than being evenly distributed, most passwords are clustered together in groups of similar passwords.

To demonstrate the lack of randomness in passwords, compare the entire land surface of the United States to the total possible variations of eight char-
acters that you can type on a typical keyboard. The surface area represents the total number of passwords, only considering passwords of exactly eight characters. Now imagine millions of people picking a one-centimeter spot anywhere in the entire United States to represent their password. Based on actual password data, despite the fact that they had the entire area of the United States to utilize, 98 percent of all passwords would fit into an area about 36 inches square.

If you are trying to crack passwords, this is wonderful news. You do not have a huge space to search because most passwords are in approximately the same location.

Human Randomness

Because humans have such a poor understanding of randomness, it is very difficult for us to produce randomness on our own. Try this yourself. On a computer keyboard, type a long string of random characters. As you type, you will notice that it is difficult producing data that would be considered truly random. Chances are you will have many asdf and uiop sequences in your typing.

To make matters worse, the harder you try to be random, the more predictable you become (e.g., you might purposely avoid any redundancy or obvious patterns and as a result create other predictable patterns. Consider the "guess-which-hand" game. Put an object in one of your hands, place both hands behind your back, and ask a child to guess which hand the object is in. At that point, their guess will be somewhat random. Play it again and this time their guess is largely based on the result of the last game (e.g., if they correctly guessed the left hand last time, they might try guessing the left hand again the next time). On the other hand, they might be smarter and expect you to switch so they guess the right hand. Play the game repeatedly and you will see patterns develop in both your selection and the child's response.

If you give someone a handful of pennies and ask them to spread the pennies out randomly on a table, you will find that at first glance, most people seem capable of arranging the pennies in a manner that looks random. But, often if you look closely, there is some pattern that defines the randomness (e.g., although the pennies look randomly arranged, the spaces between each penny might actually be the same (see Figure 3.4). In our attempt to create randomness, we still fall back to some pattern.

Figure 3.4 A Seemingly Random Arrangement of Pennies

Our lack of randomness is evident in our passwords. We tend to use words close to our personal lives or our environment. We pick numbers and words that mean something to us rather than selecting from the entire range of available words. We might try to open a dictionary to a random page and pick a word, but even where we open the book or what part of the page we select from has some bias.

Machine Randomness

It turns out that computers have their own problems when it comes to creating randomness. You cannot just tell registers and circuits to pick a series of truly random characters. A computer needs precise instructions, even when it comes to knowing which random character to produce. As a result, computers use what is called a Pseudo Random Number Generator (PRNG). Pseudo random numbers are not truly random, but rather an algorithm that creates numbers that appear to be random, but that are actually a predictable sequence of numbers. The key to the randomness is the seed, a value used to initiate the random sequence. If you know the seed, you can reproduce the sequence of random numbers.

To address this, computers use sophisticated methods to seed their random number generators and to gather random data. These can be based on time, environmental factors, or user activity with a keyboard or mouse. Some have even taken it further in their quest for true randomness. Table 3.1 shows some publicly accessible sources of random data and the method used to produce this data

Table 3.1 Publicly Accessible Sources of Random Data

URL	Source of Entropy
www.random.org	Atmospheric noise collected with a radio
www.fourmilab.ch/hotbits	Radioactive decay of Krypton-85
www.lavarnd.org	Random noise from a CCD camera

Compensating for Lack of Randomness

Now that I have demonstrated how insufficient our supply of randomness is, I will tell you that it does not matter so much when it comes to passwords. This is because we can compensate for our lack of true randomness with a few tricks that work well for passwords.

I stated earlier that random sequences have an even distribution of characters. In other words, they guarantee there will not be an uneven selection of characters. As Figure 3.2 shows, we are uneven in our character selections but we do not have to be perfect to thwart password crackers. In fact, we only need a few dispersed characters to gain the same benefit. Just the possibility of having a few numbers or symbols anywhere in a password makes things harder for a cracker. There does not need to be an even distribution of characters, just enough to force the crackers to anticipate and check for them every time.

To illustrate this, consider the widely recognized game of Rock, Papers, Scissors (RPS). The game is very simple. Two players simultaneously select one of three hand gestures to represent rock, paper, or scissors. The winner is determined by these three rules:

1. Rock smashes scissors.
2. Scissors cut paper.
3. Paper covers rock.

Every gesture chosen has an equal chance of winning, losing, or drawing an opponent's gesture. RPS is a fascinating study of randomness, because rounds of RPS are basically series of random combinations. It has long been considered a fair method of selection or elimination.

At first glance, the results of any RPS round seem quite random and should even out over time, just like a coin toss or rolling dice. There are three
choices for each player and each player has the opportunity to choose any of these three in an unpredictable manner.

Strangely enough, this is not case. There are strategies and there are people who consistently win the game using these strategies. There are even competitions and world championships.

If you play against Stanford University's automated Roshambot (http://chappie.stanford.edu/~perry/roshambo/) long enough, odds are you will find yourself losing to the software program. The computer clearly has a better strategy than most humans do.

There are many advanced RPS strategies, called gambits, which go by names such as "Scissor Sandwich" and "Paper Dolls." A gambit is a series of three throws selected with strategic intent. There are only 27 possible gambits in RPS, and eight in particular that are most commonly used. These so-called "Great Eight" gambits are as follows:

- Avalanche (Rock-Rock-Rock)
- Bureaucrat (Paper-Paper-Paper)
- Crescendo (Paper-Scissors-Rock)
- Dénouement (Rock-Scissors-Paper)
- Fistfull o' Dollars (Rock-Paper-Paper)
- Paper Dolls (Paper-Scissors-Scissors)
- Scissor Sandwich (Paper-Scissors-Paper)
- Toolbox (Scissors-Scissors-Scissors)

Experienced RPS players chain these moves into larger combination strategies. It is interesting to note that of the above gambits, only two use all three gestures. In fact, there is not an even distribution of the three gestures among the great eight. Rock appears six times (25 percent), Paper appears ten times (42 percent), and Scissors appears eight times (33 percent). Yet these techniques work.

If you play RPS against someone who rarely, if ever, chooses Rock, you will still have to anticipate that they possibly could and therefore play as if they would suddenly change their strategy. The same is the case with passwords. Your password does not need to be a perfect mix of letters, numbers, and punctuation without any repetition to be effective. There just has to be enough diversity for an attacker to always have to consider that possibility.

Less Predictable

We are probably incapable of true unpredictability on our own, but that is okay. True unpredictability means that every piece of information in your password is independent of every other and that you cannot use partial knowledge of a password to predict the remainder. That means that a truly unpredictable password would be a stream of unrelated characters, which is always difficult to remember. On the other hand, as you try to improve the memorability of your password, you will undoubtedly increase predictability.

Fortunately, as explained in Chapter 2, "Meet the Opponent," cracking passwords is an all or nothing pursuit. If someone tries to guess your password, they will be either 100 percent right or 100 percent wrong; there is no in-between. The computer will never tell them that the password they entered is 20 percent incorrect. With that in mind, a password does not have to be completely unpredictable to be effective. All it takes is enough unpredictability to prevent the password from being vulnerable to attack. You can use the rest of the characters to help you remember the password.

Here are some examples of completely unpredictable passwords:

- $3 \mathrm{Kja} \& E y \#$
- u?7h\%dPW
- @bx8R2k\$

On the other hand, here are some better passwords that use unpredictability just enough to keep the password strong without sacrificing the ability to remember them:

- WhitenEighteen
- Fast+rocketing+
- creepy-FIVES
- Imp ort.ant
- cake and tape

If you look at these passwords, you can see that many individual characters might be predictable, based on the characters before and after. However, the password as a whole is not predictable and therefore sufficiently strong.

More Unique

There is no such thing as "more unique"-something is either unique or it is not, there are no levels of uniqueness. However, when it comes to passwords, you need to think in terms of being more unique. By this I mean that your password should be so different from anything else that even a super-fast cracking tool that tried every imaginable permutation still would not come across your password. This is where most people fail. Consider the following list of actual passwords based on the word dragon:
\$dragon, 01dragon, 108dragons, 12dragon, 13dragon, 19dragon, 1Dragon, 1 dragon1, 1dragon2, 1Dragons, 21 dragon, 2dragon, 2dragon5, 34dragon, 3dragon3, 44dragon, 4dragon, 4dragon4, 5dragons, 64dragon, 666dragon, 69dragon, 6dragon9, 77dragon, 79dragon, 7dragon2, 7dragon9, 7dragons, 87dragon, 89dragon, 96dragon, 9dragon, 9dragons, balldragon, bdragon, blackdragon, bluedragon, darkdragon, Drag0n, Drag0n11, drag0n21, drag0n22, drag0n42, drag0n8, drag0n89, drag0nFF, Drag0ns1, dragon, dragon ${ }^{\star} \mathrm{p}$, dragon@, dragon, Dragon0, dragon00, dragon01, dragon01p, dragon02, dragon03, dragon04, dragon05, dragon0512, Dragon06, dragon07, Dragon1, dragon10, dragon101, dragon11, dragon116, dragon12, dragon123, dragon1232, dragon13, dragon14, dragon15, dragon15a, dragon16, dragon17, dragon18, dragon19, dragon1966, dragon1976, Dragon2, dragon20, dragon21, dragon22, dragon23, dragon25, dragon26, dragon27, dragon28, dragon29, dragon31, dragon32, dragon323, dragon33, dragon3317, dragon34, dragon35, dragon36, dragon369, dragon37, dragon3x, Dragon4, dragon42, dragon43, dragon44, dragon45, dragon46, dragon47, dragon49, dragon4ever, dragon4m, dragon5, dragon50, dragon53, dragon54, Dragon5fist, dragon5m, dragon6, dragon60, dragon62, dragon63, Dragon64, dragon65, dragon66, dragon666, Dragon69, dragon6c, Dragon6f, Dragon7, dragon70, dragon71, dragon713, dragon72, dragon73, dragon74, dragon75, dragon76, dragon761, dragon77, dragon8, dragon81, Dragon85, dragon87, dragon88, dragon89974, dragon9, dragon93, DRAGON95, dragon96, dragon97, DRAGON98, dragon99, Dragona, dragonar, dragonas, dragonass, dragonb, dragonball, dragonballs, dragonballz, dragonbeam, dragonbone, dragonbreath, Dragonbz, dragonclaw, dragondb, dragone, dragone1, dragonef, Dragoner, dragones, dragoney, dragonf, Dragonf1, dragonfang, dragonfi, dragonfighter, dragonfire, dragonfire12, dragonfl, dragonfly1, dragonfly, dragonfly1, dragongod, dragongt, dragongu, dragonha, dragonhe, dragonhu, dragonj2, dragonj3, dragonja, dragonjd, dragonki, dragonl, dragonlady, dragonlance, dragonlord, dragonlords, dragonlvr, dragonman, DragonMaster, dragonn, dragonnes, dragonnor, Dragonor, dragonorb,
dragonos, dragonov, dragonp, dragonpa, dragonphoenix3, dragonR, dragonrage, dragonrat, dragonrd, dragonri, dragonron, dragons, dragons1, dragons2, dragons52, dragons531, dragons7, dragons9, dragonsf, dragonsign, dragonsl, dragonslayer, dragonsp, Dragonss, Dragonst, dragonsy, dragonsz, dragont, dragonta, dragontale, dragontalep, dragontR, dragonus, dragonw, dragonwa, dragonwi, Dragonwing1, dragonwo, dragonwolf, Dragonwyng, dragonx, dragonx1, dragonz, dragonz1, Dragonz4, dragonzz, firedragon, gothik_dragon, Greendragon, hcdragon, icedragon, mydragon, pdragon, pdragon9, pendragon, ratdragon9, rbdragon, rdragon, reddragon, redragon, sdragon, sdragon739, sexdragon, SilkDragon, silverdragon, snapdragon, Tdragon, tsdragon, wdragon, wdragon1, wikeddragon, xdragon, xdragon3x, yearofthedragon

If you study the list for a few moments, you will see that it would not be difficult for a computer to try 90 percent of those variants in very little time. While these passwords are unique, most of them are not different enough to resist exposure to a smart password cracker. You should also notice how consistent and predictable these passwords are.

Nevertheless, you might also notice that there are a few passwords that are somewhat less predictable than the rest. Passwords like gothik_dragon and dragonphoenix 3 are more unique in the sense that it would take many more permutations of the word dragon to arrive at those passwords. These passwords hint at the key to uniqueness: make your passwords longer. A long, unique password has much less chance of being cracked than a short unique password. It is simple math; the more characters you include in your password, the more opportunity you have to make it unique. In addition, since you already know that English is about 50 percent redundant, you should expect to make your passwords twice as long as you normally would.

Sure, humans are poor sources of randomness, but with a little help and some simple strategies, we can make up for that and have very strong passwords. The next two chapters, "Character Diversity: Beyond the Alphabet" and "Password Length: Making It Count," demonstrate ways that we can increase the distribution, unpredictability, and uniqueness of our passwords.

Chapter 4

Character Diversity: Beyond the Alphabet

Solutions in this chapter:

- Understanding Character Space

Understanding Character Space

A number of years ago I did technical support for a large PC manufacturer. One day I took a call from a customer who complained that his floppy drive would not accept his floppy disk. I have received similar calls many times in the past, and I knew he just wasn't inserting it correctly. After struggling for a few minutes and failing to get him to orient the disk properly, I decided on a new strategy.

I instructed the customer to hold the floppy disk and try to insert it. If it didn't fit in the slot, I told him to rotate it clockwise one turn and try it again. After trying all four sides, I had him flip it over and try the next four sides. I figured that there are only eight possible ways you could insert the disk, so he would eventually find the correct one. He eventually got it, but it somehow took him nine attempts to get it right!

This was essentially a brute-force method of finding the correct way to insert the disk. If you try every possible direction for inserting the disk, you will eventually find the correct one. In this case, it would take a maximum of eight attempts (or maybe nine for some people) to find the correct direction.

At the beginning of the last school year, my son wanted to ride his bike to school but he forgot the combination for his bicycle lock. I looked at the lock and saw that there were three dials, each one with the digits 0 through 9 (see Figure 4.1). Immediately I thought I might be able to discover the code using the brute-force method. To do this, I set all digits to 0 and pulled on the lock. It didn't open so I tried 001 , then 002 , then 003 , and so on. I knew that the combination was somewhere between 000 and 999-a thousand possible combinations.

Figure 4.1 A Bicycle Lock Having Three Dials, Each with 10 Numbers, Giving the Lock 1,000 Possible Combinations

Of course, I wouldn't have to always try all thousand combinations. It could just as likely be the first one I tried as the last. Statistically, there would be a 50 percent chance of me finding the correct combination halfway through, so I'd probably end up trying around 500 combinations. That might be a lot of work but it certainly is doable. I could just work my way through the possible combinations while watching TV, lying in bed, sitting on the toilet, or whenever I find spare time on my hands.

This is another example of a brute-force attack. If you try every possible combination, you'll eventually find the right one. In fact, you're guaranteed to ultimately find the correct one if you're diligent enough.

Brute Force...

How I Eventually Cracked the Lock

It turned out that cracking my son's bicycle lock didn't take 1,000 attempts after all. I discovered a flaw in the lock's design. I found that once I correctly set the leftmost number, I could slide the lock out one notch where the next dial stopped it. After I found the second number I could slide it out one more, and so on until the third number. This meant I could brute force one digit at a time-starting at 0 until I found the first digit, and then repeating the method for each dial thereafter. So there were a maximum of 10 solutions for each digit, for a total maximum of 30 attempts. It turns out I cracked the combination in about 15 attempts.

The correct way to have designed the lock is to have required all three digits to be correct before you could move the lock at all.

One thousand possible combinations is a lot, but imagine a bicycle lock that not only had the numbers 0 through 9 but also had the letters A through Z on each dial. That means there would be 36 possible settings for each dial. If there were three dials, each with 36 possible values, that would be a total of 36^{3} or 46,656 possible combinations. Simply by making the dials bigger, we made the lock's combination much more difficult to crack. The more values we can fit on each dial, the longer it would take to try all the combinations.

If we could fit every character available on a standard English keyboard on to each dial, then we could increase the number of possible combinations to more than 850,000 , with just three (very large) dials. So while someone
might be willing to try 1,000 combinations, few bikes would be worth the time put in to trying 850,000 possible solutions.

Cracking passwords using the brute force method means you try every possible value for each character position in the password until you find the correct password. For a five-character password, a cracker might start with aaaaa and go through every possible combination up to $z z z z z$. Obviously, this is a lot of permutations but there are specialized password cracking software applications that can rapidly try all possible passwords from aaaaa to $z z z z z z$ in a matter of seconds.

TIP
In reality, many automated password cracking tools do not go through each letter alphabetically, but rather start with the most common letters based on character frequency. Some tools are smart enough to adjust these character frequencies based on passwords it has already cracked.

To make things more difficult for password crackers, we use the same strategy as increasing the number of values on each dial of the bicycle lock. In other words, instead of using just lowercase letters for your password, you should use numbers, uppercase letters, punctuation, and so on. The next time you go to set a password and the system says you need numbers or punctuation in your password, essentially all you're doing is using a bigger dial. The bigger the dial, the longer it takes to brute force your password.

TIP

On most systems, passwords are case-sensitive. This means that it distinguishes between uppercase and lowercase letters, so the password Apple is not the same as apple. This is good because it allows more possible values for each character of your password.

This concept applies to just about anything you can brute force. For example, say you borrowed someone's key ring but do not know what key
will work on a particular lock. Clearly, the greater the number of keys on the ring, the longer it will take for you to find the correct one.

Password Permutations

Most people underestimate the number power of permutations. This is perhaps because we see them more as combinations, which are mathematically different. Combinations refer to all possible selections from a pool of items where the order is not important. Permutations are the same thing, except that they take into account the order, allowing for more possible results.

Imagine, for example, a simple lottery game where you pick any three numbers from 0 to 9 . You win if you match any of the winning numbers in any order. Suppose that you pick the numbers 1,2 , and 3 so if they draw out a 2 , then a 1 , then a 3 , you are a winner. If they draw the numbers 3 , then 2 , and then 1 , you are also a winner. In fact, given three numbers from 0 through 9 , there are only 220 different combinations so you would always have a 1 -in-220 chance of winning. This is called a combination.

I'll spare you the detailed math involved (see http://en.wikipedia.org/ wiki/Combinations_and_permutations for the full explanation), but the formula for this is

$$
\frac{(n+r-1)!}{r!(n-1)!}
$$

Where n is the pool of numbers from which you can select and r is the quantity available. In this example, if you worked it out, it would come out to 220 .

If you consider the order in which the numbers are drawn, the odds of winning decrease dramatically. Suppose that the lottery has a jackpot that you win if you match all three numbers in the exact order in which they were drawn (see Figure 4.2). And since we are comparing all this to passwords, suppose that any number could be drawn more than once. That means that the possible permutations are 10 numbers times 10 numbers times 10 numbers, or 10^{3}, or 1,000 .

Figure 4.2 In a Lottery If You Get a Win by Matching Any Three Numbers in Any Order, There Are 220 Possible Combinations. If Order Does Matter, Then There Are 1,000 Possible Permutations.

The difference between 220 and 1,000 is great, but to help you better understand the difference, let's look at how the numbers grow depending on how many numbers you can choose from, as Table 4.1 shows. If you increase the pool of numbers you can select from, the number of permutations increases dramatically.

Table 4.1 Increasing the Pool of Numbers Greatly Increases the Permutations

Selections	Combinations	Permutations
3	220	1,000
6	5,005	$1,000,000$
7	11,440	$10,000,000$
8	24,310	$100,000,000$
9	48,620	$1,000,000,000$
10	92,378	$10,000,000,000$
11	167,960	$100,000,000,000$
12	293,930	$1,000,000,000,000$
13	497,420	$10,000,000,000,000$
14	817,190	$100,000,000,000,000$
15	$1,307,504$	$1,000,000,000,000,000$

Iinstead of 0 through 9 , if you could pick any three numbers between 0 and 15 , it would result in 4,096 permutations. This number of permutations grows much faster than the number of combinations.

Just as with lottery numbers, the larger the pool of characters you use in your passwords, the more possible permutations there are. This can make a big difference in resisting a brute force attack.

Character Sets

Too many password policies seem random, rejecting one password but accepting a similar password for no obvious reason. A friend recently explained to me a new system that he has at his workplace. When you set a password, there is an interactive gauge that, as you type, rates your password as Poor, Average, Better, and Strong. He pointed out to me that he entered his typical password, the one he always uses, and it gave him a rating of Average. But to his surprise, he simply added an asterisk to the end of the password and it increased to a Strong rating. What he learned from this experience is that asterisks make your password stronger.

But that system is a bit misleading. It wasn't the asterisk itself that added to the password strength, but the fact that he pulled from a different character set.

Note

Johnny loved surfing the Web, and kept track of his passwords by writing them on Post-It notes. His mother noticed his Disney Online password was, "MickeyMinnieGoofyPluto," and asked why he chose such a long password. Johnny replied, "Because, they said it has to have at least four characters."

In password terms, a character set is a group of keyboard characters that someone might use in a password. The basic character sets are

- Numbers Digits 0 through 9
- Lowercase letters Lowercase letters from a through z
- Uppercase letters Uppercase letters from A through Z
- Symbols Other punctuation and symbols such as the tilde (\sim), asterisk ($*$), or equals sign ($=$).

Many systems try to evaluate the potential strength of your password by checking to see how many different character sets you use-the more the better.

When establishing a password policy, a system administrator might require that you use a mix of more than one character set in your password. In Windows, there is a standard password complexity setting that requires using characters from at least three character sets. If you get an error message saying that your password doesn't meet complexity requirements, it usually means it wants more character sets, so try adding some numbers and symbols. The following are some examples of using different character sets:

One Character Set:

- applepie
- 6565656

Two Character Sets:

- HappyCamper (uppercase and lowercase)
- notnothing! (lowercase and symbol)

Three Character Sets:

- 677Mustangs (uppercase, lowercase, numbers)
- wrong3@email.com (lowercase, symbols, number)

All Four Character Sets:

- Different-2day
- 4 Broken (shellfish)
- Www2.example.com

Note

Most of the automated brute-force tools that crackers use let you choose which characters to use in the attack. Most commonly, they will try only letters and numbers to keep the attack time reasonable. When they change this setting, they usually do so by character sets. Therefore, by using any character in a character set, you require the cracker to try all characters in that set.

Lowercase Letters

Most passwords consist of lowercase letters of the alphabet. More than 75 percent of all characters used in passwords are lowercase letters, and more than 60 percent of all passwords use all lowercase characters and nothing else. Lowercase letters are the basis for most passwords, but you should try to use other character sets in addition to your lowercase letters.

Lowercase letters are common simply because they are the easiest and fastest to type. This makes them useful when you make extra long passwords. In fact, you should think of lowercase letters as your main strategy to increase the bulk and complexity of your passwords.

Here are some examples of using lowercase letters creatively in your passwords:

- yer weather is colllder
- sitting at the mall in springville
- collidingwithatomss
- left at the firststoplight

Note how these passwords are all 20 characters or longer. They are easy to type and easy to remember. If you use passwords less than 15 characters, you should avoid using all lowercase letters and mix in other character sets.

Uppercase Letters

It is interesting to note that less than three percent of all passwords contain uppercase letters. Most of the time, uppercase letters appear only in the first or second character positions. In other words, most of these are capitalized words. Don't forget to use uppercase letters and be sure to use them unpredictably throughout your password.

The following shows some examples of using uppercase letters in your passwords:

- Evan the IV
- Call the FBI
- CRAVING.com
- Radio 99.3 KRPP
- whitefish.DLL

Numbers

Numbers are probably the most common method people use to increase the character sets in their passwords. The problem with numbers is that most people use them in such a predictable manner that they often do little to increase the strength of their passwords. You should still use numbers in your passwords, just be smart when you use them.

The most obvious weakness with using numbers is that there are only ten of them, which is only a small increase in character space. To make things worse, people tend to prefer some numbers over others. For example, most people use the number one much more than any other number. Figure 4.3 shows the breakdown of which numbers appear most frequently in passwords.

Figure 4.3 Number One Is the Most Common Number People Use in Their Passwords; Almost Twice As Much As Any Other Number

Looking at that chart, crackers could modify their brute-force strategy to only include the numbers one and two, which will get them a third of all passwords containing numbers.

In addition to using common numbers, people also tend to make patterns or sequences out of numbers. Examples of this are passwords that contain numeric strings such as $12345,1212,2005,99$, and so on. In fact, many of the top 500 passwords (shown in Chapter 9) are simple number sequences. Furthermore, if your password is Fluffy 12 and you are forced to change it, it is
too easy to derive a predictable password such as Fluffy 13. Avoid having more than 10 percent of your password be numbers, and avoid predictable numeric patterns.

The most common password pattern utilizing numbers is a dictionary word or name followed by one or two numbers, such as cecil6, ford99, katie5, or broncos 12 . You should avoid this pattern.

Almost a third of all passwords end in a number. Ten percent of all passwords end with the number one. If you use numbers in your password, try using them throughout your entire password and don't forget about the less popular numbers.

The following are some examples of how to use numbers in your passwords:

- 1515 Parsley Road
- 12 dozen dozens
- Channel 42 news
- Wasted 500 bucks
- Lost 7 socks
- Scoring 8 more points
- Go 50 miles on Rt. 80
- 1-800-go-NUTS

Symbols

Symbols are any characters that are not a number or a letter. This includes

- Punctuation Punctuation symbols for your language such as the period (.), comma (,), or apostrophe (").
- Keyboard symbols Non-punctuation symbols found on a standard keyboard, such as the tilde (\sim), backslash (\backslash), or pipe (\mid).
- Non-keyboard symbols Printable characters that do not appear on a standard keyboard and require special key sequences to type, such as the copyright symbol (©), the diaeresis ("), or the inverted question mark (¿).
- Nonprintable characters Special control characters that do not print but that you can sometimes, rarely, use in passwords. This includes characters such as the backspace, enter, or tab.

Modern computer systems support a much greater character space beyond that of a typical keyboard. If you run the Character Map program by opening the Start Menu, selecting Program Files, and opening the Accessories menu, you will see that there are many different characters available, depending on the font. In fact, Microsoft's Arial font contains more than 65,000 different characters and symbols from a variety of languages. The support for these extended characters is referred to as Unicode.

You can access any of these characters by using the Alt key on your keyboard. For example, if you open WordPad, you can create a smiley-face character (\odot) by holding down the Alt key, typing 9786 on the number pad, and then releasing the Alt key. Some typefaces may not support all these characters and will instead display a small box, but that does not matter because you never see your password anyway. Not all systems allow you to use these symbols in your passwords, but Windows will let you use any character code up to 65,535 .

Using symbols, especially non-keyboard symbols, allows for the greatest possible character space. This is equivalent to the bicycle lock with 65,535 different positions on each dial. An eight-character password utilizing this entire character space allows for $340,240,830,764,391,000,000,000$, $000,000,000,000,000$ different permutations. Although that password is still guessable, the chances are that no one will ever guess it in a single lifetime.

However, that isn't to say that you should always use these characters. Keep in mind that typing these character codes using the Alt key and the number pad is slow and cumbersome. In fact, if you consider the number of keystrokes, it might be just as effective to make your password longer, as I explain in Chapter 5. Nevertheless, utilizing the full character space might be effective in high-security situations or with passwords that you rarely have to type manually.

Spaces are another underutilized password character. Most people don't realize that many systems do allow for spaces in passwords. Windows, for example, lets you use spaces not only within your password but also before and after your password. If you create a password combination followed by three spaces, someone else would have to do the same to gain access to your account-the spaces are part of your password.

Using spaces is a particularly effective strategy because:

- They are easy to remember. In fact, they are just spaces-nothing to remember at all.
- They encourage users to create longer, multiword passwords.
- They are easy and natural to type.
- They extend the character space beyond lowercase letters and numbers.

The only disadvantage I can think of for using spaces is that hitting the space bar makes a unique sound different than other keys. Perhaps using too many spaces would be revealing enough to a very clever attacker, who also happens to be within earshot when you type your password. This is hardly enough of a disadvantage to avoid spaces though.

TIP
Spaces can save you in surprising ways. I once instructed a client to use spaces in passwords. One day he wrote down the Administrator password on a piece of paper as he was setting up a new system. The paper went missing without him noticing that it was gone. He did, however, notice the next day that someone had tried and failed several times to log in to that Administrator account. The logs led him directly to the culprit, who was promptly fired.

So what saved my client from this intrusion? When he set the password, he ended it with a single space, which he obviously did not write down on paper. The other employee was trying the written password-without the trailing space.

Like numbers, people generally use symbols in a predictable manner. You are more likely to see periods, exclamation points, and question marks at the end of a password and are more likely to find hyphens, dashes, and commas between dictionary words. Dollar signs usually precede numbers, and percent signs will more likely follow numbers. The single most common use of symbols is a hyphen character in the fourth, fifth, and sixth character positions of a password, such as in passwords like wall-orange and knot-five.

The following are some examples of integrating punctuation and symbols into your passwords:

- Making $\$ \$$ count
- $2+2+3$ isn't five
- $1 / 2$ the_meal
- Batman and/or/not Robin
- $<\mathrm{h} 1>$ Introduction $</ \mathrm{h} 1>$
- If $(x=0)$ then
- C: \backslash Program Files
- (999) dog-walk
- Smileys :) ;)
- Not! Again!?
- www.eatingcoldpizza-forbreakfast.com
- Staying "interconnected"

Summary

Character diversity is a key component of strong passwords. The purpose of using many different types of characters is to reduce the predictability and weakness of your passwords. Using numbers, uppercase letters, and symbols, if employed properly, can enhance the creativity and uniqueness of your passwords.

You want your password to be unique. In fact, you want them so unique that it would be unlikely for anyone else to have that very same password. Increasing the types of characters you use greatly increases your chances of building those unique passwords.

Chapter 5

Password Length: Making It Count

Solutions in this chapter:

- Benefits of Long Passwords
- Building Longer Passwords

Introduction

A couple of years ago, I was preparing to speak in front of a group at a conference. As I set up for the presentation, attendees slowly filled the room. I connected my laptop computer to the projector screen and logged in. This was my travel laptop. I password-protected my screensaver and set it to activate after just a few minutes of inactivity. And, of course, I had a very strong password.

As I set up, the screensaver activated several times, and each time I had to enter the password. As the audience filled, I started noticing occasional chuckles out in the audience that seemed to increase in volume each time. It took me a while, but I finally made the connection-they laughed each time I logged in to my laptop. My password at the time was 63 characters long. Apparently, they found that amusing.

But, if you know me, you know that I always use long passwords. Some people think I'm overly paranoid. Some people don't see how I can memorize passwords that long. However, using long passwords is the single most effective strategy in keeping your passwords secure. It is, in fact, so important that it can even make up for failing to follow any other password policy.

And they aren't that hard to remember.

The Benefits of Long Passwords

Long passwords are by no means the burden that most people imagine. Most people see long passwords as hard to remember and hard to type. The opposite is actually true. Long passwords certainly can be easier to remember, easier to type, but best of all, most difficult to break.

Easy to Memorize

The average adult in the U.S. has to remember 9.8 passwords, pin codes, or other bits of secret information. But for people who are around computers all day, such as IT professionals, they could easily find themselves having to keep track of 50 or more passwords. When you consider that many systems require you to regularly change your passwords (and you should on your own anyway), that's a lot of passwords to keep straight. Remembering all those passwords is obviously a big concern.

Sure, it seems logical that longer passwords might be more challenging to remember. But I say it's easier to remember long passwords than it is to remember short passwords-if you do them right.

Consider the following examples of short passwords that many security professionals would consider adequately secure based on widely accepted security best practices:

- Sup3rm@n
- Br9T\&o2_
- Bl4CK-hAt
- $\mathrm{Y}{ }^{\star} \mathrm{c} 77 \mathrm{pw} \$$
- 4W5T1UP

These might be fairly strong passwords, but you'd need some time to memorize them. If you studied those five passwords for a minute and then looked away, chances are you wouldn't be able to recall more than one or two of them. Go ahead and try it yourself. Now think about how much more difficult it would be if you had to remember a dozen different passwords like that, each of them unique. No wonder people hate passwords like these.

Now compare those with the following simpler, but longer passwords:

- skyisfalling
- in a coalmine.
- walnut-flavored
- orange toothpaste
- a hundred pesos

If you study this list for a minute, you'd quickly realize there's much less effort involved in memorizing these passwords, even though each is at least twice as long as those on the other list. Which ones would you rather have to memorize? It's interesting to note that the passwords on the second list are mathematically just as strong, (or stronger) as those on the first list. I'll explain just why this is true in more detail later in this chapter.

The actual number of characters in a password has nothing to do with our ability to memorize it. Our minds don't store information as individual characters; we see chunks of information and save those chunks, no matter how big they may be. For example, consider the phrase, three blind-folded mice. We don't memorize 18 letters, two spaces, and a dash. Instead, we memorize just four pieces of information-the four words in the phrase. We don't have to bother remembering the spaces, and perhaps not even the dash in the middle. That's the secret to long passwords-you may have a 24 -character
password but only have to remember a few pieces of information, and anyone can do that. In fact, if you visualize three blindfolded mice in your head, you really only have to remember one piece of information-that image in your head.

Part of the trick is that having more information actually helps you to remember it. If we left out any portion of the phrase three blindfolded mice, such as three \qquad mice, we would still remember that word due to the context that the other information provides (see Figure 5.1).

Figure 5.1 When Remembering a Long Password, Such As Three Blindfolded Mice, It's Easy Just to Remember a Simple Mental Image.

An interesting side effect of this is that with long passwords you can record small reminders without having to record your entire password. For example, you might write down blind mice as a reminder until you are comfortable with the new password. This also works well in those cases where you have no choice but to share a password with others. If others forget the password, you can simply remind them that it is the mice password without having to say the whole password within earshot of others.

Humans brains have plenty of capacity to store and retain information and even a small child can easily memorize entire nursery rhymes or songs. The trick is to put things into a form that our brains can easily work with. Using long passwords gives you more space and opportunity to incorporate patterns or memorization techniques, such as those I'll describe later in this chapter.

Easy to Type

Again, this goes against conventional wisdom, but I also say that you can type longer passwords faster than you can shorter passwords. In addition, you can type them more accurately.

There is one provision, however, that you must already know how to type. If all you do now is hunt and peck, a long password is just a lot more hunting and a lot more pecking. But, if you can already type reasonably well, you will find yourself spending much less time entering long passwords.

My reasoning is based on what I explained earlier: people think in terms of words and phrases, not individual letters. It turns out that when we type on a keyboard we do the same thing. In our minds, we don't spell out each individual letter, we verbalize the words in our minds and our fingers just type that word. What slows us down is when we have to think about what we're typing. You might notice that as you type, you pause slightly between each sentence and even a little between each word. You type it as you say it in your head (see Figure 5.2).

Figure 5.2 When Typing, You Don't Type Individual Letters But Whole Words at a Time. Long Passwords Using Known Words Are Easier than Short Ones Composed of Random Characters.

If you have a password like $c @ 45 \mathrm{Wa} \# B$, you tend to break it up into individual letters and hesitate as you think about, and type, each one. Furthermore, a password like $c @ 45 \mathrm{Wa} \# B$ requires reaching your fingers more across the keyboard and using extra keystrokes to hold down the shift key several times. Longer passwords, on the other hand, do not require as many
unique character sets (such as symbols or numbers) so you can focus on lowercase words you're more accustomed to typing.

Try it yourself. Time yourself typing passwords from the two lists in the previous section and you'll see the difference.

Another bonus with typing normal words is that you not only type them faster, but you tend to type them more accurately. The concept is still the same-people tend to type in words, as opposed to letters, and therefore are more accurate in doing so.

Harder to Crack

The greatest benefit of longer passwords is that password length is the single most important factor in building strong passwords. If your password is long enough, you really don't have to bother so much with numbers and symbols. Additionally, you don't have to worry about changing your password as frequently as you would with a shorter password.

There is a myth prevalent in the IT world that your password must be completely random and use a variety of character sets to be effective. Many system administrators would love seeing their users coming up with passwords like $7 m v 4$? $g H a$ or $Y 6+a 4 P \# 5$. While these passwords might be somewhat strong, this is not the only way to come up with strong passwords.

Often, administrators will try to force users to come up with strong passwords by implementing strong password requirements. If you've worked in an organization such as this, then you're well familiar with frustrating messages like that shown in Figure 5.3.

Figure 5.3: In an Effort to Force Users to Create Strong Passwords, Many Administrators Implement Complex and Confusing Password Policies.

There are two ways to increase the strength of your password: increase the character sets you use or increase the length of your password. In the previous chapter, I explained how you can use different character sets to make your password more resistant to brute-force attacks. Although this is an important strategy, it turns out that increasing the password length is just as effective, maybe even more effective. All it takes is adding a few characters to the length of a lowercase password to make it just as effective as a password that uses a mix of characters.

Consider this example: which do you think would have more possible combinations, rolling a 20 -sided die just once or rolling a regular six-sided die three times? It turns out that a 20 -sided die has only 20 possible outcomes, but rolling the six-sided die three times has 6^{3}, or 216 possible outcomes, as Figure 5.4 shows.

Figure 5.4 Which Has More Possible Outcomes: A Single 20-Sided Die or Three Six-Sided Dice?

If you compare this to passwords, Table 5.1 shows the difference between a password using all lowercase characters and a password that utilizes the full range of keyboard characters.

Table 5.1 To Strengthen a Password, You Can Increase Its Length or Make Use of More Character Sets

Length Lowercase Only	All Keyboard Characters	
3	17,576	857,375
4	456,976	$81,450,625$
5	$11,881,376$	$7,737,809,375$
6	$308,915,776$	$735,091,890,625$
7	$8,031,810,176$	$69,833,729,609,375$
8	$208,827,064,576$	$6,634,204,312,890,620$
9	$5,429,503,678,976$	$630,249,409,724,609,000$
10	$141,167,095,653,376$	$59,873,693,923,837,900,000$
11	$3,670,344,486,987,780$	$5,688,000,922,764,600,000,000$
12	$95,428,956,661,682,200$	$540,360,087,662,637,000,000,000$
13	$2,481,152,873,203,740,000$	$51,334,208,327,950,500,000,000,000$
14	$64,509,974,703,297,200,000$	$4,876,749,791,155,300,000,000,000,000$
15	$1,677,259,342,285,730,000,000$	$463,291,230,159,753,000,000,000,000,000$

According to this table, a seven-character password that incorporates the full range of keyboard characters is much more resistant to a brute-force attack than a seven-character lowercase password. However, a ten-character lowercase password has about twice as many permutations as the strong seven-character password. That means that a password such as dozennozes is more resistant to a brute-force attack than the password J\%3mPw6.

Note

Keep in mind that the numbers shown in Table 5.1 grow exponentially, so the longer the password, the more characters you'll need to keep them equivalent.

For example, a short password might just need one or two characters added; a long password might need five or more extra characters. Also, remember that these numbers mean absolutely nothing if you use easily guessable passwords such as dictionary words, the name of your cat, or your favorite sports team.

Sure, it's always better to incorporate symbols and numbers into your password, but if your password is long enough, say 20 characters or longer, it really doesn't make that much of a difference any more.

Did You Know?

Password Policies

If you're a system administrator and you enforce strict password policies, you may want to take a step back and rethink your strategy. A typical password policy might require a password of at least eight characters long and insist on the use of numbers and symbols. The problem with that policy is that you tend to get a whole lot of passwords like '72Mustang or Michael-23. While these aren't horrible passwords, they are somewhat predictable.

The bigger problem, however, is that users tend to get frustrated with password error messages, and many don't fully understand exactly how to avoid the message. Often, they just keep trying different passwords until one is finally accepted. So often, I hear users complain about their strict password policies at work-everyone hates them. Moreover, they resent the admins who enforce them.

There is an easier way, however, to ensure strong passwords without so much user frustration. Let them use whatever characters they want, even if they are all lowercase characters, but enforce a minimum password length that ensures adequate strength, say 15 characters or more. Users are more willing to enter longer passwords that always are accepted than struggle with entering the minimum number of character sets. Don't bother with complicated password policies, just enforce a minimum length.

On the same note, users also get frustrated with having to change their passwords every couple of months. Enforcing long passwords also helps make up for password aging policies; allowing users to stick with their passwords longer. Plus, users are more willing to come up with long passwords if they get to keep them for six months.

Other Security Benefits

Long passwords are mathematically more complex and therefore harder to crack, but there are also other security benefits to long passwords. The longer
the password, the more likely it is to be different than any anyone else's password, and uniqueness means strong passwords. If you have a password of at least 12 characters, you eliminate nearly all common dictionary words, names, and most other common passwords. The longer your password, the less likely it will appear on any precompiled list.

Figure 5.5 shows the breakdown of word lengths of various lists. The solid line represents the lengths of more than two million actual passwords. Notice how few passwords exceed seven characters in length. By the time you get to 12 characters in length, you have eliminated most common words. Finally, a password of more than 20 characters is not likely to appear on any list.

Figure 5.5 A comparison of Word Lengths in Various Word Lists, Few Lists Contain Words Longer Than 12 Characters

Most techniques for gathering passwords focus on going after the lowhanging fruit-trying common passwords that are six to eight characters in length. Using passwords beyond that length automatically excludes you from many attacks. For example, attackers sometimes use Rainbow Tables, as explained in Chapter 2, to precalculate hashes in order to speed up passwordcracking attacks. However, at this time there are no publicly available rainbow tables that go beyond eight characters in length. Using long passwords automatically protects you from rainbow table attacks.

Another real benefit is that in Windows, if you use a password that's 15 characters or longer, Windows does not store the LanMan hash. LanMan hashes are bad because they are particularly vulnerable to some types of password attacks (see Chapter 2 for more on LanMan hashes). If your password is 15 characters or longer, there is no LanMan hash for hackers to go after.

Building Longer Passwords

My own password strategy is to first build a long password, and then make it just a little longer.

However, sometimes the hardest part of building long passwords is coming up with creative techniques to make your passwords longer without making them any harder to remember. The following sections explore some techniques that might help.

Adding Another Word

The simplest way to make your password longer is to add another word along with some kind of punctuation. This can add six to eight characters to the length of your password but only requires remembering one or more pieces of information. Consider, for example, how adding a single word enhances the length of the passwords shown in Table 5.2.

Table 5.2 Adding a Word to Your Password

Before	After
Marty29 (seven characters)	Marty29-thumbnail (17 characters)
Shopping (eight characters)	Goin' shopping (14 characters)
4Chewbacca (ten characters)	4Chewbacca-chewy (16 characters)
Broncos (seven characters)	Broncos helmet. (15 characters)

Bracketing

Bracketing is a technique where you wrap your password in one or more symbols. These symbols could be parentheses, quotes, braces, or just about anything you want. Bracketing only adds a couple more characters to your password, but remember, your strategy should be to make your password longer, and then make it a bit longer. Bracketing is a great way to add that last little bit.

Some examples of bracketing are shown in Table 5.3.
Table 5.3 Bracketing Your Password

Before	After
Starfleet (nine characters)	*Starfleet* (11 characters)
Sugarless (nine characters)	"sugarless" (11 characters)
buyingmoretime (14 characters)	buying(more)time (16 characters)
jamesjames (ten characters)	<<jamesjames>> (14 characters)
Dawghouse (nine characters)	<!-dawghouse—> (14 characters)

Number Patterns

Normally, I would say that adding one or two numbers to the end of your password is not a great strategy, because it is so predictably common.
However, adding a long, formatted number somewhere in a password is very effective in increasing both the length and the character diversity of your password. It is okay to use simple patterns in this case because the password as a whole will still be unpredictable.

Some examples of number patterns in passwords are shown in Table 5.4.
Table 5.4 Adding Number Patterns to Your Password

Before	After
Dolphins (eight characters)	Dolphins \#919 (13 characters)
JudgeJudy (nine characters)	JudgeJudy 4:00pm (16 characters)
sphYnx (six characters)	$\$ 4.99$ sphYnx (12 characters)
terriers (eight characters)	93033 terriers (14 characters)

Fun Words

Some words are just more fun to speak or type than others. Consider, for example, the words guacamole, fandango, chimichanga, zygomatic, or vociferous, which are just more interesting than other words. Take advantage of this and try incorporating these words into your passwords. Other words are interesting for other reasons. For example, the word lollipop has just four letters and they all sit next to each other on an English keyboard.

The following is a small collection of words that are just plain fun to say: Ampersand, Bamboozle, Bangkok, Barf, Bongo, Booger, Brouhaha, Buttafuco, Buttock, Canonicalization, Cantankerous, Chimichanga, Circumlocution, Conundrum, Crustacean, Dag Nabbit, Flabbergasted, Flabbergasting, Flatulate, Floccinaucinihilipilification, Gibberish, Glockenspiel, Gobbledygook, Goulash, Hasselhoff, Hobgoblin, Idiosyncratic, Jambalaya, Juxtaposition, Kumquat, Loquacious, Lumpsucker, Mesopotamia, Nugget, Obfuscate, Oligopoly, Orangutan, Oscillate, Phlegm, Platypus, Plethora, Poo Poo Platter, Rancho Cucamonga, Ridiculous, Sassafras, Shenanigans, Spatula, Specificity, Stromboli, Supercalifragilisticexpialidocious, Supercilious, Superfluous, Titicaca, Tomfoolery, Turd, Vehement, Vehicular, Yadda Yadda, Zamboni, Zimbabwe, Zoology.

Repetition

If you have trouble coming up with long passwords, try incorporating repeating patterns. Repetition means that you just remember one piece of information and enter it two or three times. Repeating patterns are tricky because they're somewhat common and predictable. Some password cracking programs, for example, can take a standard dictionary and try repeating each word twice, and can try all those potential passwords in a matter of seconds.

But if your password is already strong on its own, you can bet that repeating it will make it much stronger, without requiring that you remember any additional information. If you slightly modify how you use repetition and incorporate different delimiters, you can further increase the password strength.

The following are some examples of effectively using repetition:

- whiteyogurt-yogurtwhite
- 21bear22bear23
- Pirate-PirateBoat
- tennis/friend/tennis
- 44 -forty-four-44
- heads-shoulders-knees-toes-knees-toes
- piano..girl..piano..girl

Prefixes and Suffixes

Adding prefixes and suffixes to regular words not only lengthens your password, it further ensures that your password is unique and will not appear on any common wordlist.

Prefixes and suffixes can be extremely effective with a little creativity:

- non-davincitized
- semi-tigerishly
- off-whitenessless
- pizzatized-sauce
- spicily-peppering

Colorizing

Sometimes when you're really stumped about how to enhance your password, try adding a little color. However, use these type of passwords cautiously because there really aren't that many basic colors to choose from. Nevertheless, they're an easy way to strengthen your password:

- greenish**sheeps
- alice+blue+bulldog
- Yellowing yellow roman
- Strawberry-blue-2
- Dark blue tornadoes

Sentences

Pass phrases have long been a good password strategy. Taking a simple word and turning it into a sentence gives you a chance to not only increase the length of your password but also incorporate punctuation and other symbols:

- Turn left, then turn right, ok?
- Buying 22 more bananas.
- Hiking up Mt. Maple
- It costs $\$ 3$ more.

Summary

If you want your password to be stronger, make it longer. Think 15 characters or more as a good baseline. But, for those passwords that will protect extrasensitive information, consider a password of 30 characters or more. Once you get comfortable with techniques like those covered in this chapter, you'll find that your longer passwords are easier to remember, easier to type, and much more difficult to crack. It's not that difficult, it can be fun, and even a child can do it.

Chapter 6

Time: The Enemy of All Secrets

Solutions in this chapter:

- Aging Passwords

Aging Passwords

Passwords are secrets and your best passwords should be your best-kept secrets. Nevertheless, passwords age and old secrets are poor secrets. Eventually, your password will expire. The system that handles your password may or may not force you to change an expired password; however, as with all expired items, you should discard it.

It's About Time

Some people say "time is money." Some say that "time flies." Some have "time on their hands" and others have "time to kill." However, time and passwords do not mix. Time is one aspect of password security that you cannot control; you cannot let your passwords get too old.

The primary reason you should regularly change passwords is because password cracking takes time and as time passes the risk of a password being cracked increases. There may be no one trying to crack your password, but you should take precautions based on the assumption that someone is. We do not expect to get in a car accident every time we drive, but we put our seatbelts on every time based on that assumption.

If a password were strong enough that it would take 60 days to crack, then after 60 days the chance of that password being compromised would increase. Every day that passes further increases the risk. Passwords are typed on keyboards, saved on disks, stored in memory, traverse networks, and are sometimes shared with others. All of these things potentially reduce the security of your password over time, and the only way to renew that security is to set a new password.

There are other risks with old passwords. People tend to become attached to passwords and use the same one on multiple systems. Having old passwords that are on multiple systems is dangerous. Regularly changing passwords is a good routine.

Overbearing Policies

Perhaps the most annoying of all password policies is password aging. Everyone hates the "Password Expired" message that pops up, especially when rushing to meet a big deadline or otherwise distracted. Moreover, all of the warnings do not really help.

Password policies enforced on computer systems have one primary objective: to prevent people from being careless with their passwords. However, people find ways around policies, so administrators design other policies to prevent people from bypassing the first policies.

Understanding the logic behind the policies can help you understand the need for these policies. Moreover, if you are an administrator who sets these policies, maybe you can adjust these policies to better accommodate your users.

Password Expiration

As mentioned earlier, password expiration is based on the assumption that someone is trying to obtain your password. This may or may not be true, but the fact is that there are many people trying to get many passwords and you do not want your password to be one of them.

Passwords expire because they cannot be protected 100 percent. Hackers have many tools at their disposal to collect passwords and password hashes. You may be the actual target or you may have just been an innocent bystander in another attack. There might be some people at your organization learning to become hackers, so they test out their skills on fellow employees. A system administrator might run the very same tools that hackers use to check the strength of passwords on the system. Your system might be infected with a worm or virus that installed a keylogger. There are thousands of ways your password could be compromised.

The only way to really combat this is to try to stay one step ahead of the hackers and keep changing your passwords. If someone already has your password, hopefully changing it will lock him or her out.

The optimal time to change your password depends on how strong your password is, how important the information that you protect with the password is, and how well protected the system that stores it is. We all have a number of passwords, protecting everything from our sensitive financial accounts to our online shopping carts. A compromise of some accounts would potentially be devastating, while losing a password on another account might be of no consequence. If you want to protect an account, use a strong password and change that password regularly. Some accounts can be left for a year without changing the password, but other passwords should be changed every three months.

Most administrators require users to change their passwords every 60 to 120 days, largely because most people have poor passwords. It turns out that even 60 days is not enough to protect a weak password, so this policy is not quite as effective as it seems. Most weak passwords can be cracked within 24 hours; therefore, 60 days provides little protection. Personally, I would rather choose a very strong password and not have to change it for 120 to 180 days. Any password, no matter how strong it is, eventually expires, but a strong password will last much longer than a weak one.

Creating a password aging policy is tricky. The first priority should be building strong passwords.

Password Histories

Password aging is an important policy, but as soon as administrators started enforcing this policy, users found ways to circumvent it. They would simply alternate between two passwords, switching back and forth every time they were forced to change their passwords. Another trick was to change their password then turn around and change it right back.

This obviously defeats the purpose of requiring a password change. To combat this, administrators found a mechanism called a password history to prevent reusing the same passwords repeatedly. A password history is a list of previous passwords that the system uses to prevent you from using the same passwords over again. Some systems keep track of the last few passwords and other systems keep track of more than 20 passwords.

Minimum Age

Everyone thought that was the solution but it did not take long for users to figure out that all they had to do was change their password enough times and then they could flush the list and go back to their original password. So rather than just come up with a better password, they would go through the effort to reset their password a dozen times just to get back to their original passwords. And administrators, rather than teaching people how to build strong passwords, countered with a minimum password age. In other words, after changing a password you had to wait a day before changing it again.

Did Administrators Win?

Now, users have to change their passwords regularly, they cannot reuse them, and they cannot flush their password histories. So are passwords any stronger? No. These policy restrictions have led users to write down their passwords every time they change them, and use predictable patterns such as incrementing a two-digit number after the password. In some ways, their passwords are even less secure.

We all need to step back and remember the original problem, that users normally do not have great passwords. If we all had great passwords, passwordaging policies would not be as important. Wouldn't it be great to only have to change your password once or twice a year?

Chapter 7

Living with Passwords

Solutions in this chapter:

- Making Passwords Convenient

Making Passwords Convenient

Let's face it; passwords aren't going away anytime soon. Because no matter how much the world's authentication technology advances, chances are it will in some way always depend on a secret that only you know. Meanwhile, pass-word-cracking methodologies will advance, and computers will become increasingly more powerful. You really won't be able to get away with your cupcake 55 or beachbum passwords for much longer. You need to learn how to build strong passwords that you can conveniently live with. By convenience, I mean a password that you can easily remember and type easily and quickly.

Remembering Passwords

When my youngest son was five years old, he had a 15-character password for our computer. He had to because that was my policy-even on my home network. Sure, that seems rather extreme for a home network, but I am a security consultant, so it is my job to keep up with the best security practices, even if it is at home. I am not worried about anyone cracking my son's password; it's just my policy, and everyone follows it. My family may hate it, but they follow it.

My son remembered his password just fine and had no trouble typing it in to the computer. What was his password? It was the letter O typed 15 times. He happened to like the letter O, and he could count to 15 so that was his password. The point is that he found a password that met my policy requirements yet it was something even he could remember. This is what can make passwords so easy to remember: we can build them based on our own experience. We remember the passwords that mean something to us.

Psychologists, scientists, educators, and others have developed many techniques for improving our ability to memorize information. We have all learned techniques such as mnemonics and association. All these techniques are based on the assumption that we are memorizing information that we did not choose. The advantage of memorizing passwords is that you get to choose what you are memorizing. So rather than worrying about how to memorize the passwords you select, you just have to select passwords that you can already memorize.

Several years ago, I set out to create Pafwert, a software application that would randomly generate strong passwords that are easy to remember. The biggest challenge was trying to find out what types of passwords people found
most memorable. I based many of my original attempts on well-known memorization techniques, but it turned out that these were not the most effective.

As humans we have different parts of the brain that are tuned for certain tasks. When we memorize something, we may use different parts of our brains. For example, a visual memory, such as remembering someone's face, may be handled by one part of the brain, whereas a memory of a process, such as driving a vehicle, is handled in a completely different manner. The information we remember might contain images, colors, shapes, sounds, smells, tastes, touch, positions, emotions, meaning, knowledge, context, time, and elements of language. The words in a password have some meaning to us, and the letters and characters may form some pattern. The words in a password make a certain sound as we say them in our heads, and typing the password is a kinesthetic process.

I found that the most memorable passwords were those that spread out the work across our brain, making use of various memorization techniques. This combination of techniques makes the password meaningful to us, and therefore, it is easy to remember.

We see this happen all the time with songs. We get some phrase of a song stuck in our heads while we cannot seem to remember other parts of the song (in which case we make up our own words or use the words blah blah blah in place of the real words). Why do some parts of the song stick in our heads, while other parts don't? Moreover, why do the most annoying songs seem to be the only ones that become stuck in our heads? That might actually be part of the answer-the fact that a song annoys us might give it meaning for us and therefore make it easier for us to remember.

In the following sections, we discuss some elements that you can use to make your passwords easier to remember.

Rhyming

Do you know what year Columbus sailed the ocean blue? If you know that answer, you probably know it because of a rhyme. Rhyming is a wonderful device that makes a password much easier to remember. Our minds seem to grasp rhymes in such a way that we instantly remember them with little or no effort. An entire phrase becomes a single piece of information in our minds that sometimes has a poetic or musical quality.

To show how much of a difference rhyming makes, consider the rhyming English spelling rule I before E except after C. This is a simple rule that English-
speaking children learn at a very young age. What makes the rule so simple is that it rhymes. If the rule were I before R except after H, it would have nowhere near the rhythmic echo as the real rule.

Here are some examples of passwords that use rhymes:

- Poor-white-dog-bite
- Icecream2extreme
- Teary/weary chicken theory
- Thick, thick Rick

Repetition

Like rhyming, repetition adds a sort of rhythmic echo to our passwords that our minds can easily recall. When used correctly, repetition can create tempo and rhythm in our passwords, thereby making them very easy to remember. And most important, repeating means your password is longer, but there's nothing new to memorize. Remember to integrate repetition into sounds, meanings, and other aspects of your password.

Here are some examples of repetition:

- Chicky-chicky running
- 2bitter@2bitter.com
- C:\files\myfiles \backslash newfiles \backslash
- Purple, purple pineapple

Visualization

Visualization can be a fun device for remembering passwords. We all use visual memories to a varying degree, but it is so much easier to remember a password that we can see in our mind. It doesn't have to be a single image; it can also be a journey or a process that we visualize. The more senses we involve, the easier it will be for us to remember. Here are some examples:

- Jabba the Hut doing the Cha-Cha
- Paquito sat on the apple!
- Frozen banana in my shoe
- Bun-mustard-hot dog-pickles
- Popping packing poppers

Association

It is sometimes intriguing how our minds wander from one thought to another, each thought triggered by an association from a previous thought. After a few minutes of our minds wandering, we marvel how we went from thinking about key lime pie to thinking about a mistake we made on our 1999 tax return. Our minds build complex and often nonsensical associations that trigger our memories. The interesting thing is that the association does not have to be a logical relationship. For example, we can remember a dentist appointment by tying a string around our finger. We see the string and remember our appointment through association (see Figure 7.1).

Figure 7.1 Tying a String on Your Finger As a Reminder

Several years ago, I was traveling for work and purchased a new notebook computer. That night I sat in my hotel room, installed Windows, and set a very strong administrator password. I then created a power user account that I could use daily. While traveling again about a year later, I happened to be in that very same city and at the very same hotel. I had a problem with my laptop and needed to \log in to the administrator account to fix it.

I then realized that I had not used that password the entire year and could not remember what I had set. I did not have that password recorded and faced a big problem. I stared around the room contemplating possible solutions. I looked at the furniture. I looked at the coffee pot on the desk. I looked at the curtains. Suddenly, I remembered my password that I had not used in about a year.

How did I remember it? I was sitting in that very same hotel staring at the same furniture, the same coffee pot, and the same curtains when I first set the password. Being back in that environment was enough for my mind to associate these items with my long-forgotten password.

Sure, it might help if your associations are related to the password itself, but this story shows how powerful mental associations can be.

Humor and Irony

If you are one of those people who can never remember a joke, this technique is probably not for you. Nevertheless, we remember things that stand out for us. And funny stuff stands out. Any amount of humor and irony will help you remember your passwords:

- Was Jimi Hendrix's modem a purple Hayes?
- Gone crazy....be back in 5 minutes.
- Your password is unique-like everyone else's we put the " K " in "Kwality."
- Had a handle on security... but it broke.
- A dyslexic man walks into a bra...
- A fish with no eyes is a f sh.
- My reality check just bounced.

Chunking

Chunking has been used for a long time as a memory technique to help people remember things such as phone numbers. A simple fact is that remembering two or three small chunks of information is easier than recalling one large chunk. Research has shown that humans have the capacity to memorize five to nine items at a time. However, we can bypass this limitation by splitting things into smaller chunks and memorizing the chunks.

Here are some ways to use chunking in your passwords:

- Xzr--FFF--8888
- GgggH123-->software
- C51..D45..R22
- Explor+ation+vaca+tion

Exaggeration

Exaggeration is a fun technique that I sometimes use to make memorable passwords. Exaggeration is the technique of extending visual images or facts beyond their expected physical or logical bounds. Here are some examples:

- 43 o'clock
- December 322, 2005
- I Kicked the back of my neck

Offensiveness

Offensive words certainly do stand out. And they will stand out in your minds if you use them in your passwords. Offensive words includes swear words, gross words, slang, racial and religious slurs, crude behaviors, putdowns, insults, alternate words for sexual organs, and so on. If it offends you, or you know it will offend someone else, chances are you will remember it. Here are some examples (Warning: some might be offended).

- brutus@wrinkly-penis.gov
- OK well, just use your imagination...

Gripes

Finally, if something really bugs you, use that for a password:

- It says 10 items or fewer!
- Why is it so hard for you to merge?
- Honk if you ARE Jesus
- Justfindanotherparkingspottheyaren'tgoingtopulloutyoulasyslob

Other Memorization Tips

Despite all these techniques, remembering complex passwords still requires some mental activity. Never try to remember a password in a rush or while you are distracted with other concerns. Don't set a new password right before a weekend or holiday. Relax and think about your password for a few minutes and process it into your mind. Try teaching yourself your password or explaining to yourself the steps you followed to remember the password.

Typing Passwords

When you build a password, you should also consider how you type the password. Before setting a password, I give it a trial run on the keyboard. Some passwords are just harder to type and some passwords are prone to typing mistakes. If your password doesn't flow on the keyboard, just pick something else. Watch out for passwords that force you to type slowly or make obvious movements such as holding down shift to type a punctuation symbol or moving your hand to the number pad to type a long sequence of numbers.

Another thing to consider is how your password sounds when you type it. You can easily tell when someone's password is the same as their username because you hear the same exact typing sounds twice in a row. Some keys, such as the spacebar, make a distinct sound when pressed. Sometimes keyboard sequences, such as QWERTY have a distinct sound to them once you train yourself to hear it. The way a password sounds obviously isn't a huge risk for most people, but it certainly is something to think about.

Note

Abstract

Researchers at the University of California at Berkeley recently showed that using a cheap microphone and widely available software, they could guess passwords just by hearing you type your password. By analyzing unique key click sounds, coupled with their knowledge of the English language, they could achieve accuracy as high as 90 percent.

Key Loggers

Perhaps the greatest risk to password security is a key logger. A key logger is a piece of software or hardware that captures every keystroke that you type. The problem is that no matter how strong your password is, it is completely vulnerable to a key logger attack. For a long time, law enforcement and other government agencies have used key loggers as a form of wiretap, but they are growing in popularity among crackers, and some viruses and worms now even install key loggers to look for passwords and private account numbers.

Anti-keylogger technology has improved lately and is available in an increasing number of products. These applications not only look for tracks left by specific key loggers, but also watch for suspicious behavior common among all key loggers.

Another threat that is much more difficult to detect is a hardware-based key logger. This device plugs in between your keyboard and your computer. These devices are very difficult to detect once installed, but fortunately, someone must have physical access to your computer to install the device. For sensitive systems such as government computers, physical security is the best defense against hardware key loggers.

Most users likely won't ever encounter a hardware key logger attached to their computers, but if you do actually discover one, you probably have much more to worry about than someone just discovering your password.

Managing Passwords

Although I have stressed the importance of remembering passwords, it probably isn't a good idea to rely on your memory alone, especially for accounts that you use infrequently. You should memorize your passwords, but it is prudent to keep a record of the passwords you use. Let's face it; there are just too
many passwords you have to remember, and even I record most of my passwords. We are constantly told not to write down our passwords, but that just means don't write them on a sticky note attached to your monitor (see Figure 7.2). And don't try to be clever by attaching it under your keyboard, phone, tissue box, or under your desk. Those have all been done and no matter how clever you think you are, you probably aren't.

Figure 7.2 Don’t Stick Passwords on Your Monitor

The Difference Is Obscurity

Writing your password down on a sticky note is a bad idea, but recording it in a safe location is a good idea. The difference is obscurity. Security through obscurity is weak security. Obscurity is relying on hiding something as your only means of defense. Real security uses time-tested security practices to ensure that something is safe.

A good example is how many people conceal spare keys to their houses that they can use in emergencies. As cliché as it sounds, many people still put spare keys under their doormats. Placing a key under a potted plant nearby isn't much better. Once someone discovers your hiding place, all security is lost. Therefore, security through obscurity is widely considered a weak form of security.

In contrast, the opposite of this is how a realtor might place a house key in a lock box attached to your doorknob. Anyone with the box's combination can obtain the key to open the door. This allows various realtors to show the house without having to copy and pass around keys. The combination on the lock box is an example of reliable security.

Security through obscurity is weak, but obscurity can be useful as an additional layer on top of legitimate security methods. In the lock box example, this would mean keeping the key in a lock box and then hiding the lock box. Someone would have to locate the box, but once he or she found it, that person would still have to deal with the combination.

Password management software is like a lock box. These software applications securely store your sensitive data by encrypting it with a strong master password. You can record all your passwords, but to retrieve them, you have to remember only the master password. Of course, you do have to memorize that master password, and it should be one of your strongest passwords. You protect all your passwords with one big strong password.

If you think about it, a password really is a form of obscurity. A password is a secret that compromises all security if someone else discovers it. The distinction between a password and the location of a house key is that passwords, hopefully, are not easy to discover and therefore are a strong secret. It is easier to search around a house for a key than to search a keyspace with trillions of combinations. Strong passwords allow for so many possible combinations that they are considered strong security. Therefore, using a password manager is not security through obscurity.

So many password managers are available that it is hard to recommend a specific one. If you visit software Web sites such as www.tucows.com/ downloads/Windows/Security/GeneralSecurity/PasswordManagers/ you can search through catalogs of these software applications to find one that best suits your needs. Make sure you feel comfortable using the application; otherwise, you won't use it.

There are alternatives to these tools that might work better in some situations. I personally prefer the flexibility of an Excel spreadsheet. But if you use

Excel, be sure to protect it with a password. You can do this when you save the document (see Figure 7.3).

Figure 7.3 Adding Password Protection to an Excel File

From there, set a Password to open and click on the Advanced button to select more encryption options (see Figure 7.4).

Figure 7.4 Encryption Options

Never use "Weak Encryption (XOR)" or "Office 97/2000-Compatible" encryption because they provide little protection, and both can be broken in just a few minutes or less. They are somewhat similar to the tiny locks some
people place on their luggage. Choose the Microsoft Strong Cryptographic Provider with a key length of 128 bits (the maximum allowed), as shown in Figure 7.5.

Figure 7.5 Encryption Types

Encryption Type

Choose an encryption type:
RC4, Microsoft Base Cryptographic Provider v1.0
RC4, Microsoft Base DSS and Diffie-Hellman Cryptographic Provider
RC4, Microsoft DH SChannel Cryptographic Provider
RC4, Microsoft Enhanced Cryptographic Provider v1.0
RC4, Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider
RC4, Microsoft Enhanced R5A and AES Cryptographic Provider (Prototype)
RC4, Microsoft RSA SChannel Cryptographic Frovider
RC4, Microsoft Strona Cryptoaraphic Provider
Choose a key length: 128
\checkmark Encrypt document properties
OK Cancel

Besides password protecting the file, it would also help to give it an obscure name. At least don't name it passwords.xls. You should also store the file in a secure location that has limited access. Another alternative is to store the file on a portable USB drive that you can take with you.

Secret Questions

To help verify a user's identity in the case of a lost password, many applications use secret questions. By answering a preselected question, a user can demonstrate some personal knowledge, thereby proving account ownership. A classic example is asking to provide a mother's maiden name.

To guess a secret question, an attacker would likely have to know something about the user, but secret questions break all the rules for strong passwords and have some significant weaknesses:

- An attacker can often discover the information with casual research.
- The answer to the question is usually a fact that will never change.
- Users reuse the same secret questions and answers across multiple Web sites.
- Someone close to the individual may know the answer to many of the questions.
- People rarely, if ever, change their secret questions.
- The answers are often case-insensitive and usually contain a limited character set.
- Some questions have a limited number of answers.
- With some questions, many people will have the same common answers.

Secret questions usually ask for some fact that hopefully only the account owner would know, and supposedly would never forget. Many Web sites assume that if the user can provide the answer to the question, this is sufficient to identify the user. However, many secret questions ask for facts that anyone could discover with little research. To make things worse, if someone discovers this information you can't just change a fact from the past.

Because of this weakness, it is important to understand that secret questions are not a strong means of authentication, and applications should use them only to initiate a password change request via e-mail or some other mechanism. This prevents anonymous attacks on the password reset process. Providing the answer to a secret question should never be enough to validate a user, but when combined with other factors, such as having access to the user's e-mail account, these answers can be effective in helping to identify a user. If you ever see a Web site or some application let you \log in to your account with a secret question alone, do us all a favor and drop them an email complaining about this risk.

I have also seen countless Web sites that provide great tips on avoiding easily guessable passwords, but then turn around and ask for a dog's name or what city you were born in to answer a secret question. Some secret questions are so easily guessable that they are absurd as a form of security.

Even if an attacker knows nothing about the target user, the nature of secret questions limits the possible range of answers. For example, consider the questions and ranges of answers shown in Table 7.1. As the table shows, many secret questions have so few possible answers that a brute-force attack against these secret questions is completely feasible. To make matters worse, some Web sites fail to detect or prevent brute-force attacks against secret questions. Security experts for years have told people to avoid using pet names, family names, or dates in passwords, but secret questions go directly against that advice.

Table 7.1 Secret Questions and Ranges of Answers

Question	Range of Answers
What is the name of your favorite pet?	The top 20 dog names are Max, Buddy, Molly, Bailey, Maggie, Lucy, Jake, Rocky, Sadie, Lucky, Daisy, Jack, Sam, Shadow, Bear, Buster, Lady, Ginger, Abby, and Toby.
In what city were you born?	The top 10 largest U.S. cities are New York, Los Angeles, Chicago, Houston, Philadelphia, Phoenix, San Diego, Dallas, San Antonio, and Detroit; one in three of all U.S. citizens live in the top 250 cities; the top 10 most common U.S. city names are Fairview, Midway, Oak Grove, Franklin, Riverside, Centerville, Mount Pleasant, Georgetown, Salem, and Greenwood.
What high school did you attend?	There are approximately 25,000 to 30,000 high schools in the U.S.; you can use classmates.com to get a list by U.S. state and city.
What is your favorite movie?	For a list of the all-time top 250 films, see www.imdb.com/top_250_films
What is your mother's maiden name?	There are approximately 25,000 common surnames; 1 in 10 U.S. citizens have the surname Smith, Johnson, Williams, Jones, Brown, Davis, Miller, Wilson, Moore, Taylor, Anderson, Thomas, Jackson, White, Harris, Martin, Thompson, Garcia, Martinez, Robinson, Clark, Rodriguez, Lewis, Lee, Walker, Hall, Allen, or Young.
What street did you grow up on?	The 10 most common street names are Second/2nd, Third/3rd, First/1st, Fourth/4th, Park, Fifth/5th, Main, Sixth/6th, Oak, Seventh/7th, Pine, Maple, Cedar, Eighth/8th, and Elm.

Table 7.1 continued Secret Questions and Ranges of Answers

Question	Range of Answers
What was the make of your	Most cars are built by Acura, Audi, first car? BMW, Buick, Cadillac, Chevrolet, Chrysler, Daewoo, Dodge, Ford, GMC, Honda, Hummer, Hyundai, Infiniti, Isuzu, Jaguar, Jeep, Kia, Land Rover, Lexus, Lincoln, Mazda, Mercedes-Benz, Mercury, Mitsubishi, Nissan, Oldsmobile, Plymouth, Pontiac, Porsche, Saab, Saturn, Subaru, Suzuki, Toyota, Volkswagen, and Volvo.
What is your anniversary?	The average length of a marriage is 7.2 years, giving 2,628 likely dates. What is your favorite color? There are around 100 common colors, even considering colors such as taupe, gainsboro, and fuschia.

The greatest threat with secret questions is that the answer is usually fixed, and an attacker can sometimes discover this information through research. Because there are usually a limited set of answers to secret questions, they are also vulnerable to brute-force attacks. Finally, secret questions are usually ineffective against attacks by those close to the user. Individuals such as ex-spouses, once-close business associates, or wayward teenage children may have sufficient information and sufficient motivation to break into a user's account. Once someone knows you, there is little you can do to protect yourself. It's not as if you can go and change your mother's maiden name.

When you set a secret question and answer pair, use caution to pick a strong question that has many possible answers. It might even be helpful to add a small secret code, such as a three-digit number and letter combination (see Appendix B). You can probably reuse that code on all your secret questions. It won't completely protect you but it will limit your exposure to certain types of attacks.

Sometimes an application will let you set your own secret question. If that is the case, watch out for common mistakes that people make. I often see secret questions that provide little security or make little sense. Here are examples of poor secret questions:

- What year were you born?
- What is your password?
- What is the capital of Georgia?

Select good questions, carefully considering the possible range of answers, as well as the likelihood of common answers. Use unique questions and try to avoid subjects that return short, one-word answers. Also try to avoid questions that others commonly use, such as mother's maiden name, pet name, or high school. But keep in mind that you should ask questions that users will always answer the same.

Here are some examples of good secret questions:

- What is the first and last name of your first boyfriend or girlfriend?
- Which phone number do you remember most from your childhood?
- What was your favorite place to visit as a child?
- Who was your favorite actor, musician, or artist when you were 16 ?

Summary

Remembering passwords can be easy if you build passwords that you already know you can remember. Our brains are terrible at processing random, unrelated pieces of information, but if we throw in a few techniques such as rhyming and association, we can develop passwords that we instantly remember.

Chapter 8

Ten Password Pointers: Building Strong Passwords

Solutions in this chapter:

- Building Strong Passwords

Introduction

Sometimes coming up with a good password can be difficult. When faced with choosing a password, many people seem to get some kind of tunnel vision and they suddenly cannot see beyond their own desk. At that point, all that comes to mind is a dog's name, a football team, or an item within immediate view. Most often, people simply use one of their favorite passwords-the ones they always use.

Building Strong Passwords

The secret to strong passwords is to not choose a password, but to build a password. Don't just think of some word and use that as your password. Use some specific technique to construct a complex password that is not only effective but easy to remember. Here are some of my favorite tips for building strong passwords that you yourself can use those times when you get stumped for ideas.

Warning

I shouldn't have to say this, but unfortunately it must be said: please don't use any of the password examples you see in this book or any place else as your actual password. They are simply examples. In fact, you are best off not even using these exact passwords patterns, but to instead be creative and use them as models for your own ideas.

Three Words

A simple technique for increasing the strength of your password is to just use more than one word. Some people would call this a pass phrase, but this particular technique is somewhat different. The difference is that you select three or more words that are not necessarily grammatically related, but have something else in common.

The technique revolves around picking three words that are related enough for you to easily remember them, but if others knew one of the words, they couldn't easily guess the other words.

For example, you could pick three synonyms, three homonyms, three antonyms, three words that rhyme, or three words that have the same prefix. The key here is to provide enough randomness that your password is not predictable. Try to throw in numbers, capitals, punctuation, or other variants to make your password even stronger.

The following are some examples:

- 33 free trees
- Walking, talking, keyring
- Little-ladle-lady
- ChalkingChangeRange

Our minds remember bits, or chunks of information. This pattern lets you easily create passwords of 20 or more characters. Despite that, all your brain has to do is remember a few bits of information-the three words you selected.

The key to this particular technique is to have one common element in each word to help you remember the password and to assist you in thinking of unique words beyond things personal or in your environment. By choosing words related to each other in different ways, it forces you to be more creative. There are many ways to connect words beyond meaning alone.

Did You Know?

You have probably heard of synonyms and antonyms, but have you heard of an oronym? Here is a list of various nym words and their meanings:

- Ambigram A word or words that can be read in more than one direction, such as rotated or reflected (SWIMS, MOM).
- Anagram Letters from one word rearranged to form another word (act versus cat).
- Ananym A pseudonym made by reversing a name (James versus Semaj).
- Antagonym A single word that has conflicting meanings (dust, as in remove dust versus dust, to add dust, as in dusting for fingerprints).
- Antonym Two words with opposite or near opposite meanings (up versus down).
- Autoantonym Same as an antagonym.
- Autonym A word that describes itself (mispelled is misspelled; noun is a noun).
- Capitonym A word that changes meaning when capitalized (Polish versus polish).
- Contranym, Contronym Same as antagonym.
- Exonym A place name that foreigners use instead of the name that locals use (Spain versus Espana).
- Heteronym Words that have the same spelling but different meanings or pronunciation (produce, read, convert).
- Homographs Same as heteronym.
- Homonym Words with the same pronunciation or spelling but different meanings (reign and rain).
- Homophone Words that are pronounced the same but spelled differently (flu versus flew).
- Hypernym The type of one word in relationship to another (bird is the hypernym of robin; animal is the hypernym of bird).
- Hyponym The specific type of one word in relationship to another (robin is a hyponym of bird; cat is the hyponym of animal).
- Oronym Similar to a homophone but made up of a series of words (ice cream versus I scream; kiss the sky versus kiss this guy).
- Pseudoantonym A word that appears to have a meaning opposite of its actual meaning (inflammable, unloose).
- Synonyms Two words that have the same or nearly the same meaning (build and assemble).

The E-Mail Address

People are usually surprised when they see me type in such long passwords and want to know how I remember these. It's simple: society has trained our brains to easily learn certain patterns, so I build passwords to mimic those patterns. These always make great passwords. One of my personal favorites is to pattern a password after a fake e-mail address. It is one of my favorites because it contains so many of the elements of a strong secret.

Here's how it works: first, think of a name of anything, fake or real. Then think of a symbolic, meaningful, funny, or ironic phrase related to that name. Finally, put those together, add a dot-com (or other extension), and you have an e-mail address password. Let me illustrate:
Pick a name:
Dr. Seuss
Choose a related phrase: Green Eggs
Result:
Dr.Seuss@greeneggs.com

Pick a name:
Choose a related phrase: The Muppets
Result:

Pick a name:
Choose a related phrase: Hates cats
Result:

Kermit@themuppets.org

Rover
Kermit
rover22@rover-hates-cats.net

These passwords are effective because we add a couple punctuation symbols and it's easy to increase the length of your passwords without making them any harder to remember. This pattern is particularly flexible and the combinations are endless.

Here are some more examples illustrating variants of this pattern:

- Cat-Lover2005@aol.com
- Your-mama@uglystick.com
- yoda@strong-this-password-is.net
- Ben@dover.org
- e-mailme@home
- me@com.net.org.com

The URL

Similar to the e-mail address password is the URL password. We're constantly bombarded with WWW addresses, so why not take advantage of that and model your passwords after that pattern? Here are some examples:

- www.sendallyourmoney.irs.gov

■ www.someone_smells.net

- ftp.droppedout.edu
- www.go.ahead.and.try.to.crack.this.password.com

TIP

There's no reason to stop with just one domain extension or even valid extensions. In the past, l've used extensions such as .com.net.com, .edu.sux, .gov.waste, and so on. The more you divert from the standards, the more opportunity you have to increase the entropy of the password, as explained in Chapter 3.

The Title

Sometimes you need to build a password and you're just stuck. No matter what you try, the system seems to reject it, saying that your password does not meet complexity requirements. Here's a simple pattern that should produce passwords that meet the requirements of even the strictest password system. This is how it works:

First, think of a title prefix.
Here's a list to choose from: Admiral, Baron, Brother, Capt., Captain, Chief, Colonel, Commander, Congressman, Count, Countess, Dame, Deacon, Deaconess, Doc, Doctor, Dr, Dr., Farmer, Father, Gen., General, Governor, Judge, Justice, King, Lady, Lieutenant, Lord, Madam, Madame, Mademoiselle, Major, Master, Mayor, Miss, Mister, Monsieur, Monsignor, Mother, Mr., Mrs., Ms., Officer, President, Prince, Princess, Private, Prof., Professor, Queen, Rabbi, Rev., Reverend, Sergeant, Seaman, Secretary, Senator, Sheikh, Sir, or Sister.

Next, think of a first name, male or female, or a surname.
Think of an adjective, something that describes a noun, such as cheerful, red, wet, and so on.

Finally, add a comma, and then an ordinal number, such as 1st, 2nd, 3rd, and so forth.

When you put these elements together, you should end up with passwords like these:

- President Pink, the 2nd
- Dr. Hurt, the 3rd
- Professor Pencil, the 1st
- 1st Lieutenant Lucky

The strength of this password pattern is that it produces long passwords and insures that you use capital letters, numbers, and usually punctuation symbols. Make sure you don't use your own name and this should meet just about any system complexity requirements. If the system still rejects your password, try leaving out the spaces.

In my own experience, the only times I have had this password rejected is when the system says my password is too long!

Number Rhymes

This pattern is another one of my personal favorites, but you need to be careful and creative because there are some limitations on how many unique passwords it will produce.

The pattern is simple: pick a number, preferably more than two digits, and then add on a word or phrase that rhymes with that number. You should end up with passwords like the following:

- 23 Strawberry!
- 209 Canadian Pine!
- Number 8, Armor Plate
- 425 Take a Drive!
- Number Two, Oh Phew!

To help you out with rhyming words we have included some basic rhyme lists in the next few sections of this chapter. Many of these rhyming words can be found at www.rhymezone.com.

The following mini-sections offer some words that rhyme with numbers.

Rhymes with One

Bun, Bunn, Done, Fun, Hun, None, Nun, Pun, Run, Shun, Son, Spun, Stun, Sun, Ton, Tonne, Won, Bank Run, Bon Ton, Bull Run, Cross Bun, Dry Run, End Run, Fowl Run, Gross Ton, Homerun, Home Run, Long Run, Long Ton, Make Fun, Mean Sun, Net Ton, Outdone, Outrun, Pit Run, Redone, Rerun, Short Ton, Ski Run, Undone, Chicken Run, Honey Bun, Hotdog Bun, Hot Cross Bun, Metric Ton, Midnight Sun, Overdone, Caramel Bun, Cinnamon Bun, Favorite Son, Frankfurter Bun, Hamburger Bun, In The Long Run.

Rhymes with Two

Bleu, Blew, Blue, Boo, Brew, Chew, Choo, Clue, Coup, Coups, Crew, Cue, Deux, Dew, Do, Doo, Drew, Ewe, Few, Flew, Flu, Foo, Glue, Gnu, Goo, Grew, Hue, Knew, New, Phew, Rue, Shoe, Shoo, Skew, Slew, Spew, Stew, Threw, Through, Thru, Too, You, And You, Bamboo, Beef Stew, Canoe, Dark Blue, Go Through, Go To, Ground Crew, Gym Shoe, Make Do, Not Due, Ooze Through, Slice Through, Soak Through, Speak To, Squeak Through, Stage Crew, Steel Blue, Thank You, Withdrew, Appeal To, Attach To, Cheese Fondue, Chicken Stew, Cobalt Blue, Grow Into, Hitherto, What Are You, LongOverdue, Blink 182, Chicken Cordon Bleu, Critical Review, Giant Kangaroo, Outrigger Canoe, With Reference To, Capital Of Peru, Giant Timber Bamboo, Literary Review, Security Review.

Rhymes with Three

At Sea, Banshee, Bay Tree, Beach Flea, Beach Pea, Bead Tree, Bean Tree, Black Pea, Black Sea, Black Tea, Debris, Decree, Deedee, Degree, Dundee, Fig Tree, Herb Tea, High Sea, Abductee, Absentee, Addressee, Christmas Tree, Detainee, Entrance Fee, Escapee, German Bee, Middle C, Third Degree, Vitamin B, Vitamin C, Vitamin D, Vitamin E, Vitamin G, Vitamin P, To The Lowest Degree, Africanized Honey Bee, Battle OfThe Bismarck Sea, Capital Of Tennessee, Mediterranean Sea.

Rhymes with Four

Boar, Bore, Chore, Core, Corps, Door, Drawer, For, Fore, Gore, More, Pour, Roar, Wore, Explore, Fall For, Front Door, Lead Ore, No More, Offshore, Price War, Restore, What For, Wild Boar, World War, Account For, Allow For, Anymore, Know The Score, Liquor Store, Sliding Door, Computer Store, Convenience Store, Department Store, Prisoner Of War, Responsible For, Uranium Ore, American Civil War.

Rhymes with Five

Clive, Clyve, Dive, Drive, Hive, I've, Jive, Live, Shive, Strive, Thrive, Alive, Arrive, C5, Connive, Contrive, Crash Dive, Deprive, Derive, Disc Drive, Disk Drive, Hard Drive, Let Drive, Line Drive, M5, Nose Dive, Revive, Survive, Swan Dive, Tape Drive, Test Drive, Backhand Drive, CD Drive, Come Alive, Fluid Drive, Forehand Drive, Power Dive, Take A Dive, External Drive, Internal Drive, Winchester Drive, Automatic Drive.

Rhymes with Six

Bix, Bricks, Brix, Chicks, Clicks, Cliques, Dix, Fickes, Fix, Flicks, Fricks, Frix, Hicks, Hix, Ickes, Kicks, Knicks, Licks, Mix, Nick's, Nicks, Nikk's, Nix, Nyx, Picks, Pix, Rick's, Ricks, Rix, Slicks, Styx, Ticks, Tics, Tricks, Vic’s, Vicks, Wickes, Wicks, Wix, Affix, Cake Mix, Conflicts, Depicts, Inflicts, Predicts, Quick Fix, Transfix, Bag OfTricks, Brownie Mix, Captain Hicks, Intermix, River Styx, Row Of Bricks, Lemonade Mix.

Rhymes with Seven

Bevan, Beven, Devan, Devon, Evan, Evon, Heaven, Kevan, Leaven, Levan, Previn, Eleven, Mcgrevin, Mcnevin, Seventh Heaven, Tree Of Heaven, Vault Of Heaven, Manna From Heaven , Kevin, 7-Eleven, , Momevin, Geven, Deven, Beven, Weven, Pevin, Feven, Geven, Jeven, Zeven, Meven, Breven, Toobeven.

Rhymes with Eight

Ate, Bait, Freightgate, Great, Hate, Late, Mate, Bank Rate, Baud Rate, Clean Slate, Collate, Crime Rate, Debate, Deflate, Dictate, Dilate, Kuwait, Lightweight, Lose Weight, Postdate, Steel Plate, Figure Skate, Mental State, Overrate, Overweight, Payment Rate, Police State, Procreate, Quarter Plate, Real Estate, Recreate, Reinstate, Roller Skate, Running Mate, Underrate,

Watergate, Collection Plate, Junior Lightweight, Prime Interest Rate, Public Debate, Recriminate, Remunerate, Repayment Rate, Reporting Weight, Second Estate, Turnover Rate, Vacancy Rate, Department Of State, Emotional State, Equivalent Weight, Maturity Date, Unemployment Rate, Alexander The Great, Capital Of Kuwait, Secretary Of State.

Rhymes with Nine

Brine, Dine, Fine, Line, Mine, Pine, Shine, Shrine, Twine, Vine, Whine, Wine, Blood Line, Blush Wine, Bread Line, Bus Line, Chalk Line, Chow Line, Combine, Confine, Consign, Hot Line, Incline, Malign, Nut Pine, Plumb Line, Plus Sign, Rail Line, Street Sign, Tree Line, Trend Line, White Pine, Chorus Line, Command Line, Copper Mine, Credit Line, Dollar Sign, Draw A Line, Draw The Line, Drop A Line, Equal Sign, Fishing Line, Melon Vine, Minus Sign, Opening Line, Percentage Sign, Telephone Line, Top OfThe Line, Unemployment Line, Personal Credit Line.

Get to the Point

What makes a password predictable is not just the meaning of your password, but also the actual words you use. One way to circumvent this problem is to say something in a roundabout way. For example, rather than using the password my sister, put it this way: my mother's husband's daughter. Instead of using the password stapler, instead use the password staple contortion device. Get the point?

Some examples:

- Lap-based computing device
- The circular filing cabinet
- Armpit odor prevention system

A variant of this technique is to take any word, phrase, or job title and make it sound politically correct:

- Waste collection engineer
- Follicle deprived

Yet another variant of this technique is to use a Jeopardy-like style where you use the answer as your password instead of the question. It doesn't really matter what the answer is, you're just using the actual question to make a strong password.

- What is the color of your car?
- Who was the first person to travel to Jupiter?

The Confession

One problem too many people have is sharing their passwords with others. It's just too easy when someone needs something that your password protects, to just hand the password over to them without thinking. Of course, as I explain in Chapter 11, this is not a good practice because a password should be a secret. You should never share your passwords with anyone else. So here's a trick to make yourself think twice before blurting out your password: make your password a confession-a real secret.

You could, for example, make your password I pick my nose at stoplights. Of course, this is just a made up confession, not something I am really admitting to. That would be disgusting. But suppose you yourself pick your nose at stoplights; this might be a good password for you. It certainly will help you keep your password to yourself.

So what secrets do you have? Do you dislike someone? Do you steal office supplies from your company? Wear a toupee? They're all great passwords.

The great thing about this password tip is that these passwords are also easy to remember. Whatever it is that popped into your head first is probably something you're self-conscious enough about to make you think of it first. Best of all, this might just be one of your best kept secrets. What better way to remember a password than by basing it on something that you already keep a secret?

The Elbow Mambo

You may have heard of dance moves called the pot stir, the duck walk, or the egg beater, but here's a chance to come up with your own dance move. Well, at least the name of it. There really isn't much to explain here, but maybe a few examples might get you started:

- The Puppy Hop
- The knee-dip-trip
- The Wild Boar
- The Larry King Shrug

Passwords based on these patterns are simple to remember, and probably easier than the dance moves themselves.

The Phone Number

I already mentioned using patterns our brains are accustomed to remembering. Another technique in this category is a password based on a phone number. When you think of these passwords, be sure to include numbers, punctuation, and letters.

The following are some examples:

- 1-800-Broken glasses
- (888) 888 -eight eight
- 1-900-puppies
- (222) New-Shoe

This pattern usually works well; just be careful not to use an easily guessable number such as your own number or some commonly known number. Although, the pattern "(888) 888-eight eight" might seem repetitive and simple, the fact that we utilize spaces,,$-\left(\begin{array}{l}\text {) , and that it's } 22 \text { characters long }\end{array}\right.$ makes it a difficult password to crack.

Note

Approximately 1 out of every 110,000 people uses the password 8675309, from the 1982 Tommy Tutone hit single Jenny.

Letter Swapping

One principle of strong passwords is to avoid using dictionary words as your password. A simple way to avoid doing this is using a couple of words together, separated by a space or hyphen. For years, AOL has used this technique for generating passwords on their mass-mailed free offer CDs. On these CDs, you will frequently see passwords such as ANTICS-ABSORB, HOLEROTS, or RAKED-GNOME. The only problem with this technique is that as computing power increases, it would not be difficult for a hacker to try every combination of two words to discover the password. Even current technology makes that feasible.

This password technique is similar to the two-words method. The difference is that it takes it one step further by swapping the first one or two letters of each word to make it less likely they will appear on a dictionary or common password list. These types of words are called spoonerisms.

This is what they look like:

- Sour Grape becomes Gour Srape
- Ford Mustang becomes Mord Fustang
- Slurred Speech becomes Spurred Sleech
- Dog-Poo becomes Pog-Doo
- Big Ditch! becomes Dig Bitch!

This pattern might help you to remember your password, given two new elements: humor and offensiveness. If something is funny, it's easier to remember. Same thing goes for offensive words. Sure, you might be offended by the password Dig Bitch, but chances are you probably will remember it. The only problem with that particular password is that by swapping letters it made two new words that are still dictionary words, so watch out for that.

Constructing a memorable password is easy if you take the time to learn some simple patterns such as those presented here. If you use these patterns or come up with your own, just be sure you don't make your passwords so similar that someone could guess many of your passwords just by seeing one of them. The goal is to make each and every password unique but still easy to remember.

Summary

By now, you should have a feel for the strategy here-follow patterns that are easy to remember but make your passwords less predictable. Think about building a password, rather than just choosing a password. Complex, multiword passwords are much more difficult to crack and they can be just as easy to remember as a short password. Best of all, sometimes all you need to remember the password is just one of the words contained in it to trigger remembering the rest.

Chapter 9

The 500 Worst Passwords of All Time

Solutions in this chapter:

- The Worst Passwords

The Worst Passwords

From the moment people started using passwords, it didn't take long to realize how many people picked the very same passwords over and over. Even the way people misspell words is consistent. In fact, people are so predictable that most hackers make use of lists of common passwords just like these.

To give you some insight into how predictable humans are, the following is a list of the 500 most common passwords. If you see your password on this list, please change it immediately. Keep in mind that every password listed here has been used by at least hundreds if not thousands of other people.

There are some interesting passwords on this list that show how people try to be clever, but even human cleverness is predictable. For example, look at these passwords that I found interesting:

- ncc1701 The ship number for the Starship Enterprise
- thx1138 The name of George Lucas' first movie, a 1971 remake of an earlier student project
- qazwsx Follows a simple pattern when typed on a typical keyboard
- 666666 Six sixes

■ 7777777 Seven sevens

- ou812 The title of a 1988 Van Halen album
- 8675309 The number mentioned in the 1982 Tommy Tutone song. The song supposedly caused an epidemic of people dialing 8675309 and asking for "Jenny."

Note

Approximately one out of every nine people uses at least one password on the list shown in Table 9.1! And one out of every 50 people uses one of the top 20 worst passwords.

The Passwords

Table 9.1 lists the top 500 worst passwords of all time, not considering character case. Don't blame me for the offensive words; you were the ones who picked these, not me.

Table 9.1 The Top 500 Worst Passwords of All Time

Top	Top	Top	Top	Top
$\mathbf{1 - 1 0 0}$	101-200	201-300	301-400	401-500
123456	porsche	firebird	prince	rosebud
password	guitar	butter	beach	jaguar
12345678	chelsea	united	amateur	great
1234	black	turtle	7777777	cool
pussy	diamond	steelers	muffin	cooper
12345	nascar	tiffany	redsox	1313
dragon	jackson	zxcvbn	star	scorpio
qwerty	cameron	tomcat	testing	mountain
696969	654321	golf	shannon	madison
mustang	computer	bond007	murphy	987654
letmein	amanda	bear	frank	brazil
baseball	wizard	tiger	hannah	lauren
master	xxxxxxxx	doctor	dave	japan
michael	money	gateway	eagle1	naked
football	phoenix	gators	11111	squirt
shadow	mickey	angel	mother	stars
monkey	bailey	junior	nathan	apple
abc123	knight	thx1138	raiders	alexis
pass	iceman	porno	steve	aaaa
fuckme	tigers	badboy	forever	bonnie
6969	purple	debbie	angela	peaches
jordan	andrea	spider	viper	jasmine
harley	horny	melissa	ou812	kevin
ranger	dakota	booger	jake	matt
iwantu	aaaaaa	1212	lovers	qwertyui

Table 9.1 continued The Top 500 Worst Passwords of All Time

Top	Top	Top	Top	Top
1-100	101-200	201-300	301-400	401-500
jennifer	player	flyers	suckit	danielle
hunter	sunshine	fish	gregory	beaver
fuck	morgan	porn	buddy	4321
2000	starwars	matrix	whatever	4128
test	boomer	teens	young	runner
batman	cowboys	scooby	nicholas	swimming
trustno1	edward	jason	lucky	dolphin
thomas	charles	walter	helpme	gordon
tigger	girls	cumshot	jackie	casper
robert	booboo	boston	monica	stupid
access	coffee	braves	midnight	shit
love	xxxxxx	yankee	college	saturn
buster	bulldog	lover	baby	gemini
1234567	ncc1701	barney	cunt	apples
soccer	rabbit	victor	brian	august
hockey	peanut	tucker	mark	3333
killer	john	princess	startrek	canada
george	johnny	mercedes	sierra	blazer
sexy	gandalf	5150	leather	cumming
andrew	spanky	doggie	232323	hunting
charlie	winter	zzzzzz	4444	kitty
superman	brandy	gunner	beavis	rainbow
asshole	compaq	horney	bigcock	112233
fuckyou	carlos	bubba	happy	arthur
dallas	tennis	2112	sophie	cream
jessica	james	fred	ladies	calvin
panties	mike	johnson	naughty	shaved
pepper	brandon	xxxxx	giants	surfer
1111	fender	tits	booty	samson
austin	anthony	member	blonde	kelly

Table 9.1 continued The Top 500 Worst Passwords of All Time

Top	Top	Top	Top	Top
1-100	101-200	201-300	301-400	401-500
william	blowme	boobs	fucked	paul
daniel	ferrari	donald	golden	mine
golfer	cookie	bigdaddy	0	king
summer	chicken	bronco	fire	racing
heather	maverick	penis	sandra	5555
hammer	chicago	voyager	pookie	eagle
yankees	joseph	rangers	packers	hentai
joshua	diablo	birdie	einstein	newyork
maggie	sexsex	trouble	dolphins	little
biteme	hardcore	white	0	redwings
enter	666666	topgun	chevy	smith
ashley	willie	bigtits	winston	sticky
thunder	welcome	bitches	warrior	cocacola
cowboy	chris	green	sammy	animal
silver	panther	super	slut	broncos
richard	yamaha	qazwsx	8675309	private
fucker	justin	magic	zxcvbnm	skippy
orange	banana	lakers	nipples	marvin
merlin	driver	rachel	power	blondes
michelle	marine	slayer	victoria	enjoy
corvette	angels	scott	asdfgh	girl
bigdog	fishing	2222	vagina	apollo
cheese	david	asdf	toyota	parker
matthew	maddog	video	travis	qwert
121212	hooters	london	hotdog	time
patrick	wilson	7777	paris	sydney
martin	butthead	marlboro	rock	women
freedom	dennis	srinivas	xxxx	voodoo
ginger	fucking	internet	extreme	magnum
blowjob	captain	action	redskins	juice

Table 9.1 continued The Top 500 Worst Passwords of All Time

Top	Top	Top	Top	Top
1-100	101-200	201-300	301-400	401-500
nicole	bigdick	carter	erotic	abgrtyu
sparky	chester	jasper	dirty	777777
yellow	smokey	monster	ford	dreams
camaro	xavier	teresa	freddy	maxwell
secret	steven	jeremy	arsenal	music
dick	viking	11111111	access14	rush2112
falcon	snoopy	bill	wolf	russia
taylor	blue	crystal	nipple	scorpion
111111	eagles	peter	iloveyou	rebecca
131313	winner	pussies	alex	tester
123123	samantha	cock	florida	mistress
bitch	house	beer	eric	phantom
hello	miller	rocket	legend	billy
scooter	flower	theman	movie	6666
please	jack	oliver	success	albert

Chapter 10

Another Ten Password Pointers Plus a Bonus Pointer

Solutions in this chapter:

- Password Complexity through Mangling

Password

Complexity through Mangling

Throughout this book, I have written about the importance of creating unique and unpredictable passwords. But I also advocate using passwords based on English words that are easier to remember. The problem is that English words are not unique and they are predictable. Even if you put a bunch of them together as a pass phrase, they are still quite predictable.

The solution is mangling, which is changing, distorting, mutating, or deforming a common phrase into something completely unique. Passwords that use diverse characters are strong and long passwords are strong, but diverse, long, mangled passwords are the strongest.

There is not much to password mangling. You come up with a password then go over it once using one of the below tips to modify the words enough so that they cannot be guessed. The ultimate goal is a password so unique that there would be a one-in-a-billion chance of anyone else having the very same password. The following are ten tips and an extremely valuable bonus tip that will get you started mangling.

Diverse Dialects

So, you have a strong common pass phrase but you are afraid it might not be strong enough. Would it be common if Elmer Fudd spoke it? Writing your phrase in a different dialect or accent is a great technique because the potential humor is easy to remember and the modifications are easy to remember how to accurately reproduce. Here are some examples of how you could use dialects to modify the phrase "I have fallen and I can't get up!"

- Elmer Fudd I have fawwen and I can't get up!
- Redneck Ahve fallen an' ah can't gittup!
- Hacker i've f4llen snd teh suck getting up
- Toddler Fallen mommy, get me1
- Pirate Ayyy blew me down matey an I can't be getting up!

Scrambling

Scrambling is a very simple technique; all you do is mix things up a bit. Move words around, reverse the meaning, whatever it takes. However, be careful not to mix it up so much that it takes you forever to remember how to type it. Here are some simple examples of scrambling:

- River-the Hudson
- To be to be or not!
- I'd rather not be not fishing...
- Please do not pool in my pee!

Slicing and Dicing

Pass phrases allow for more modifications to make your password truly unique. One technique, called "Slicing and Dicing," is like choosing a pass phrase and then taking a knife to it:

- near ly noon in norway
- im port ant in for ma tion
- betterthansli cedbread
- thenut typrof essor

It is so simple but it works so well. Add a few spaces, take a few out, and your password is now unique.

Repetition

Repetition was mentioned as a memory technique, but it is also great for pass-phrase mangling. Repetition is so useful that I use it in some form in most of the passwords I set. It is easier to remember one thing and type it twice. Just make sure you are smart how you do it. Typing the same thing twice is a common technique and very predictable. Instead, vary how you repeat things:

- reallyreally long is reallyreally strong
- I'll...be...back...
- No way no how no one

The Replacements

Replacing certain characters with others is a great technique that is commonly used, but one that is normally executed poorly. It is not that clever to replace your a's with @ or your o's with zeros. As you build your password, think of how you would say it on a very long license plate.

Here are some examples of replacements you could do:

- Gr8 vacashuns
- go armx, go navx
- companee policee
- h\&dsome frogs

Over-punctuating

Punctuation is the Swiss Army knife of pass-phrase mangling. Merely adding one punctuation symbol to all your passwords will do wonders for your password security. The whole purpose of password mangling is to ensure that someone cannot crack your password based on a common wordlist. There are many wordlists available, and some are quite effective.

All it takes to make sure your password does not appear on a wordlist is adding a few punctuation symbols. There are many things you can do with punctuation, including delimiting, bracketing, prefixing, suffixing, pattern building, and so forth. Here are some examples:

- After--->wards
- //lava//outlaw//
- Lenny-the-pirate.
- Mister :) AOL
- hide the ***** password
- --==//jetsons \backslash ==--
-sleeping again...zzz

As you use punctuation in your passwords, do not forget about the special symbol characters mentioned in the Chapter 4 . Also, remember that most modern operating systems consider the space to be a symbol character, so make good use of spaces as well.

Slurring, Mumbling, and Stuttering

If you have a speech impediment, why not take advantage of it to improve your passwords? Okay, you do not need a speech impediment to use this technique, but that is basically what it is. If it is unintelligible, it is likely hard to crack:

- th th th that's all fo fo folks
- ahmagonna gitta navacada
- Popolus rhodeisland
- The cccobalt mlion

Non-words

Passwords do not have to be "real" words to be easy to remember, they just need to look like real words. Fake English words are easy to remember, and you definitely will not find them on a wordlist, making them perfect for passwords.

- Kai's atmolingered wallet
- Sprained my forung
- 'Twas a complete outhacy
- Complete Pioforia

I never tire of this one technique. Here is a list of non-words to get you started:

Revitching, Sioter, Hassalic, Ephoich, Hasuxou, Stise, Ioxoaxay, Tisance, Eshasoaddify, Iaphouth, Hasoushi, Oumenoush, Ermenify, Dhapioz, Inxiag, Teencers, Oithoux, Tisechinph, Phoution, Tiarer, Ouhashane, Hacy, Hetisour, Wonnon, Forung, Emenis, Jhasoo, Outiofles, Thioquay, Souhas, Tiotheemen, Onrount, Tirea, Appleable, Tisominhas, Inzial, Shashafor, Menookings, Zoitislic, Qurettly, Hasoushedness, Thable, Inhasofer, Onzeaght, Etisizzy, Wuess, Eazify, Iahasosh, Achment.

Foreign and Slang

If you know a foreign language, throw some of those words in there, too. I'm not saying do your whole password in a different language, but mix multiple languages to increase the pool of possible words someone would have to test
to crack your password. If you cannot think of any foreign words, try slang, especially something you would not normally use or that does not quite fit your personality.

- Bailando with Mr. Dirt
- ichi-ni-san-shi-five
- Grandma's warez dump
- Walking $\mathrm{w} /$ the g dizzle

Typos

Typos in passwords are easy; it does not hurt to use them frequently. They are not a perfect solution because of the wordlists that are made up of commonly misspelled words, but they are a good start for mangling:

- Slay teh hyberbole!!
- Board 2 teers.
- blawing-mad
- Centralizing the sammon

The Long Anticipated Valuable Bonus Tip

Your password needs to be unique. It should be so different that you can be pretty sure that no one has ever used it and likely will never use it. How can you judge your password's uniqueness? You can't, but you can run a quick test to make sure you are not choosing a common password: Google for it.

If you search for your password and nothing comes up, chances are your password is sufficiently complex. It does not prove that your password is strong, but it does prove that it is not horribly weak. What is surprising is how many passwords you can find on Google. Many people find at least a few hits on their passwords, no matter how obscure they seem.

Table 10.1 lists the search results for several random passwords.

Table 10.1 Search Results for Random Passwords

Password	Google Hits
Brook55	2,290 results
20022002	25,600 results
baddog123	239 results
gizmo12	766 results
justin29	1,600 results
shark01	3,820 results
letmein	57,000 results
batman11	2,570 results
kahoona0	7 results
6969hune	2 results
salmongoat57	7 results

Remarkably, even passwords that seem somewhat complex still turn up results. I do not recommend looking up every password as part of your regular password selection process, because that has its own security risks. But it is helpful to try it on a few passwords to get an idea of what works and what does not. Go ahead; try it with some of your own passwords.

The fact is that people are predictable and hackers know that. Once you learn how to not be predictable, you are on the right track toward password security.

Chapter 11

The Three Rules for Strong Passwords

Solutions in this chapter:

- Introduction
- The Rule of Complexity
- The Rule of Uniqueness
- The Rule of Secrecy

Introduction

Everyone seems to have some advice on how to make strong passwords. Some of this advice is good; some of it is bad. I have grouped this advice into three basic rules: the rule of complexity, the rule of uniqueness, and the rule of secrecy. Use these rules as guidance in developing strong passwords.

The Rule of Complexity

Complexity makes a password strong. It ensures unpredictability and resistance to brute-force attacks. Complexity is a component of password length and diversity of content.

Three Elements

To ensure password complexity and augment length, your password should contain at least three elements. These elements have no specific definition, but they might include characters, numbers, symbols, words, or phrases. Each element is an opportunity for randomness. These elements can be loosely related and can sometimes employ repetition if used wisely. Here are some examples:

- Orchard/making-pies
- flour\&eggs\&milk
- 2crazy@doghouse.com
- Turn left,right,right

A Thousand Trillion

To protect against brute-force attacks, your password should allow for a keyspace of a thousand trillion passwords. Focus primarily on passwords that are 15 to 20 characters long with mostly lowercase letters to facilitate typing. However, also include the following elements whenever possible:

- Use uppercase letters in positions beyond the first character
- Use one or two numbers throughout the password, not just at the end and beginning
- Avoid passwords made up of more than 50 percent numbers
- Use punctuation and other symbols as delimiters or bracketing throughout the password
- Use spaces if the particular system allows
- Use high ASCII or Unicode characters when necessary for extra security

The Rule of Uniqueness

Uniqueness means that every password you use is exclusive to any particular system and distinct among all passwords. Here are some ways to make your passwords unique:

- Avoid using common passwords, common phrases, or dictionary words
- Never reuse the same password more than once, especially among different systems
- Avoid getting too attached to a single password
- Avoid words or numbers relating to yourself or your environment
- Avoid passwords that include personal dates or other significant numbers, pet names, relatives or loved ones, vehicle names, favorite sports teams, or other personal information
- Avoid using words connected to you that might lead to reuse
- Avoid using predictable patterns or sequences

Uniqueness also refers to uniqueness over time. To avoid stale passwords, refresh your passwords every three to six months. Never let any password remain unchanged for more than a year. Occasionally, change all your passwords at once, especially if you suspect a security incident.

The Rule of Secrecy

Always maintain the secrecy and confidentiality of your password to ensure its integrity as an authentication device. The following practices are necessary to maintain password secrecy:

- Do not share your password with others
- Avoid recording your passwords in an insecure manner
- Avoid saving passwords in Web browsers and other applications
- Always delete e-mails that contain a password
- Use a Web site's logout feature rather than just closing your browser
- Be smart with secret questions and answers
- Use one password while setting up and configuring a system and then change the password when the system is complete
- Always change passwords that are automatically assigned to you

Summary

To develop strong passwords, you need some guidelines to follow. This chapter covered three rules pertaining to the complexity, uniqueness, and secrecy of passwords. These rules will help you refine current password development (or creation) patterns and establish password policies that ensure your passwords remain an effective piece of your authentication mechanisms.

Chapter 12

Celebrate Password Day

Solutions in this chapter:

- Password Day
- Celebrating Password Day

Password Day

Password day is something that I celebrate maybe once or twice a year. It is such an important part of my password strategy that I thought it deserved its very own chapter.

Password day is an annual or semi-annual holiday where you still go to work, the banks and post office are open, and you don't get any presents, candy, or special recognition. What you do is spend a part of that day completely focusing on your passwords. Not just some of your passwords, all of your pass-words-in an attempt to make them all unique. Go through every account, service, subscription, membership, system, and device you have a password on, and change those passwords. Spend some time improving your password selection skills, and securely document your entire selection of passwords.

The Origin of Password Day

I started celebrating password day a few years ago after working on an investigation that tracked down who had broken into a financial services company. The company had very poor network security-quite typical for that timeand had been the target of a number of hacker attacks. They hired a security firm to audit their systems and found that their biggest weakness was user passwords. Many user accounts had passwords that exactly matched their usernames, predictable passwords such as password and administrator, and some accounts even had blank passwords. They implemented a stronger password policy and slowly began the process of changing passwords and updating system security.

Six months later they still found themselves continually targeted by hackers, despite their many efforts to secure their network. This all culminated in a particularly serious attack involving the theft of sensitive customer information. The hired me to analyze their web server log files to track down the point of intrusion. After a long week of digging through gigabytes of logs, I found that the hackers weren't doing anything really fancy; they were logging in using the same means that their employees did-through FTP, FrontPage, e-mail, and VPN access. Worst of all, the hackers were using passwords they had stolen from the employees themselves.

Although the users now had much stronger passwords, they still had a password problem. The problem this time was that although they regularly changed their passwords, the hackers always had at least one password that still worked. They would use that password to regain access and obtain the
remaining passwords. When that password would die, they used one of the others to once again regain access and obtain other passwords. Essentially, as they plugged up one hole, another leak would appear elsewhere.

My solution was to identify and change every single password they had, on every single system and device, all on the same day. For this company that was more than five hundred passwords. A week later, we repeated the entire process again. It was a lot of work, but that's all it took-the hackers were completely locked out and could no longer regain access.

A year later, I was hired by the same company to do some other consulting work and found that they implemented a policy to repeat this global password change at least once a year. Employees dubbed it password day. The strange thing was that they actually looked forward to password day. The boss bought lots of pizzas and everyone sat down thinking of cool passwords all day long. Not only did every employee change every password, but they were also given the time to change all their own personal passwords.

It was a simple security strategy that was amazingly effective. It involved users in the security process and was a good way to take care of those oftenoverlooked passwords that rarely get changed, such as router passwords or those for Hotmail accounts. No password, no matter how obscure, ever reached its first birthday.

Password day is very effective because hackers usually don't get all the way in to the core of your network on their first attempt. They gradually work their way in by gathering less significant passwords and other information and then spring-boarding their way to the more important stuff. Password day, however, effectively reduces the exposure to spring boarding.

Celebrating Password Day

Since that time, I decided to implement the same policy for myself. At least once a year I go through and change every one of my own passwords. It might seem paranoid or overkill, but there's no question that it increases my overall security.

The secret to celebrating password day is to think of it as a working hol-iday-a day where you can set aside all your normal projects and chores and dedicate a day or half a day to passwords alone. The trick is to make it fun; otherwise, it becomes a chore that never gets done. If you implement a password day at your company, make it a casual dress day, provide food or refreshments, gather people together into groups to change passwords together, or do whatever you think would make it more interesting. You might even want
to schedule it on a day that is already typically lazy, such as the last work day before another holiday.

When you celebrate password day, be careful not to overlook any password you might have. Take the time to document all systems with passwords to save yourself the effort the next time around. In particular, watch out for easily overlooked passwords that you rarely use. The following are some passwords that might be easy to overlook:

- Instant messenger accounts
- Router and switch passwords
- Hard-coded passwords in scripts and other programs
- Service accounts
- Local machine administrator accounts
- Active Directory recovery mode passwords
- Logins for domain name registration services (such as networksolutions.com or register.com)
- Logins for SSL certificate authorities
- Logins for ISP and other provider accounts
- BIOS passwords
- Database and other encryption keys
- PGP pass phrases

Keeping track of all these new passwords will be difficult, so take advantage of password storage utilities like those mentioned in Chapter 7. When you're all finished, remember to change the master password for your password program, too.

Summary

That's all there is to it. At least once a year make sure you change every password you own. It will greatly increase your overall security and is a good way to lock out hackers who might already have collected some account passwords. Make it fun and make it thorough.

For now, password day is a quiet holiday that I and a few of my clients celebrate. Perhaps the concept will some day catch on and we will see password day celebrations all across the world at all organizations, big and small.

Chapter 13

The Three Elements of Authentication

Solutions in this chapter:

- Multifactor Authentication

Multifactor Authentication

Many years ago I had the opportunity to work as the security guard for a major film production in the area where I lived. A friend got me the job, and on the first day, he gave me my instructions. The film production company was renting a local resident's ranch, and part of the contract required that they provide a security guard at the front entrance. That was me. My friend dropped me off at the front entrance and told me he'd be back around lunchtime.

I stopped him and asked how I was supposed to know who should be there and who shouldn't. He explained that there is simply no way to know that, so I should just wave at everyone who passes by. He paused for a minute, as if he had never really considered this question, and then told me that if someone looks suspicious enough, I could probably call him on his cell phone.

So I sat there for eight hours, waving at everyone who entered the gate. Everyone returned my wave, and everyone seemed to belong there, so there were no security incidents as far as the production company was concerned.

Looking back, I sometimes wonder how many businesses have equivalent security systems in place in their own computing environments. If you look like you belong there, you probably do, right?

My wife has a credit card with her picture on it on the face of the card. When she shops with that card, the merchant can look at her picture to make sure she is the true owner of the card. Of course, her face alone is not enough to validate the charge. She obviously must have the card in her possession and present it to the merchant. She must also sign the receipt or provide a PIN. Sometimes the merchants ask for additional photo identification, and sometimes they ask for a billing zip code. Sometimes the cashier will ask for the card and enter the three-digit card verification system (CVS) code into the cash register.

If there was ever any dispute of a charge, merchants who use all these measures have plenty of evidence to back up a transaction. On the other hand, a credit card for a gas station does not require such stringent checks. In fact, all you really need is to have the card in your possession. There is no evidence that it is actually you using the card. They completely rely on the fact that you would report a stolen or missing card as soon as possible.

Any time you authenticate yourself to a system, you use one or more methods or factors of authentication. The more you use, the more secure and more reliable the authentication.

For years we have seen movies where the character uses a thumbprint or retinal scan as authentication. This technology, although still nascent, is widely in use today. These forms of authentication, called biometrics, can greatly enhance the reliability and integrity of passwords.

The Three Basics

Any form of authentication is based on validating one of these three elements:

- Something you know
- Something you have
- Something you are

Something You Know

Something you know is a secret, such as a password, that you can produce at any time for the authenticating system.

A password is an essential element for any security system and cannot be neglected. Although movies and marketing campaigns would have you think otherwise, none of the other authentication methods reliably replace a password.

The other two methods of authentication are very effective when used in combination with a password, but these other methods are not reliable enough to work on their own. The whole concept of multifactor authentication is to provide multiple layers of security that work together. For example, you should swipe a card and then enter a password; swiping a card in itself is never adequate.

As I discuss in this book, passwords do have weaknesses. They completely depend on the prudence and common sense of the password holder. Someone could steal and use your password without your knowledge, and knowledge of your password alone is never absolute proof of your identity.

Something You Have

Something you have is any physical device that can be in only one place at a time. This could include any of the following:

- Magnetic stripe card A plastic card, such as a credit card, with a black magnetic strip on the back that contains basic account infor-
mation. The card might also include a code, such as a CVS code that is printed on the card. If someone steals the card, that person has the code, but this code helps prevent some types of fraud, such as stealing a credit card number from a carbon credit card slip. These codes also help verify possession of the card for phone or Internet orders.
- Smart card A smart card is a more intelligent version of a magnetic strip card. Smart cards have built-in microprocessors and memory storage, are generally more reliable, and provide somewhat better authentication than magnetic cards.
- USB key A USB key is a small device that plugs in to a Universal Serial Bus (USB) port of a computer. It provides additional authentication and often has large amounts of storage space for keeping private documents. A USB key might be a specialized authentication device or could simply be a USB disk appropriated for that purpose.
- Dongle A dongle is a small device that plugs in to printer, serial, keyboard, or other device ports on a computer. Dongles contain authentication information and sometimes contain encrypted copy protection routines. Software companies often use dongles to limit unauthorized copying of expensive software applications.

Something You Are

Something you are is the measurement of some physical or behavioral feature about yourself that normally will never change. Biometrics most often refers to fingerprint or retina (or iris) scanning, but much research has been done to use other methods for identifying an individual (see Figure 13.1). These include typing behavior, voice, recognition, facial feature, measurements of hands or other body parts, DNA sampling, or brain wave fingerprinting. And the list continues to grow.

Figure 13.1 Examples of Biometrics Include Retina and Fingerprint Scans

As I mentioned earlier, biometrics must always be accompanied by a password. The risk is that if your private biometric data is somehow compromised, you can't just go out and change your fingerprint every six months. Biometrics should be used only to enhance other forms of authentication.

Another problem with biometrics is that they are not perfect. They are basically a judgment call because sometimes our voices are hoarse, our eyes are bloodshot, or our fingers are injured or swollen. Biometric systems have been shown to exhibit some weaknesses and false positives. For example, facial recognition systems have been bypassed simply by holding up a picture of the target's face in front of the camera.

Multiple Layers

Using any one of these three methods is fallible, but combining two or more of them can have a huge impact on security. In fact, the U.S. banking regulators are requiring all U.S. banks to provide multifactor authentication for high-risk transactions by year-end 2006. Other industries are sure to follow.

However, problems are delaying the widespread deployment of multifactor authentication. The industry is still in its infancy, and the lack of standards makes some people hesitant to commit to a single technology. There are also expenses involved because multifactor authentication often requires specialized hardware and widespread software deployment.

It is an important aspect of security, but one that still has some growing up to do before it is widely integrated into our lives. In the meantime, keep your passwords strong-very strong.

Summary

In this chapter, we discussed the three different elements that we utilize for authentication, something you know, something you have, and something you are. Although this book is focused on building strong passwords (something you know), I cannot stress enough, the security benefit of combining this element of security with at least one of the other two elements, thus utilizing multifactor authentication.

Appendix A

Test Your Password

Want to see how I would rate your password? Here's a simple test:

1. Is your password more than 15 characters long?
2. Does your password have a good mix of mostly letters and a few numbers and punctuation symbols?
3. Does your password contain at least three pieces of random information?
4. Is your password completely absent of personal information?
5. If you typed your password in Google, would you get no results?
6. Are you the only person who knows this password?
7. Do you remember your password without having to look it up?
8. If you have your password recorded somewhere, is it in a secure location?
9. Is your password less than six months old?
10. Is your password one that has never been used anywhere else?
11. Can you type your password quickly without making mistakes?

If you answer yes to more than nine of these questions, you got my approval! But don't get too attached to your password; once it becomes stale, you should trash it and start all over again.

Appendix B

Random Seed Words

On the following pages are random seed words you can use in building your passwords. Don't use these as actual passwords, but use them to stimulate your creativity.

This list is available as a download from www.syngress.com/solutions.

standard secretary	space arrive	provision affect	anyway visit
music	ensure	please	capital
prepare	demand	happy	either
factor	statement	behaviour	season
other	attention	concerned	argument
anyone	principle	point	listen
pattern	doctor	function	prime
manage	choice	identify	economy
piece	refer	resource	element
discuss	feature	defence	finish
prove	couple	garden	fight
front	following	floor	train
evening	thank	style	maintain
royal	machine	feeling	attempt
plant	income	science	design
pressure	training	relate	suddenly
response	present	doubt	brother
catch	region	horse	improve
street	effort	force	avoid
knowledge	player	answer	wonder
despite	everyone	compare	title
design	present	suffer	hotel
enjoy	award	announce	aspect
suppose	village	forward	increase
instead	control	character	express
basis	whatever	normal	summer
series	modern	myself	determine
success	close	obtain	generally
natural	current	quickly	daughter
wrong	legal	indicate	exist
round	energy	forget	share
thought	finally	station	nearly
argue	degree	glass	smile
final	means	previous	sorry
future	growth	husband	skill
introduce	treatment	recently	claim
analysis	sound	publish	treat
enter	above	serious	remove

concern	encourage	apart	speaker
labour	addition	present	second
specific	round	appeal	career
customer	popular	cause	laugh
outside	affair	terms	weight
state	technique	attack	sound
whole	respect	effective	document
total	version	mouth	result
division	maybe	future	return
profit	ability	visit	medical
throw	campaign	little	recognise
procedure	heavy	advily	budget
assume	discover	enable	river
image	surface	trouble	existing
obviously	library	payment	start
unless	pupil	stone	tomorrow
military	record	refunty	opinion
proposal	refuse	reliday	realise

drink	partner	artist	district
fully	balance	agent	regular
strategy	sister	presence	reaction
extra	reader	along	impact
scene	below	strike	collect
slightly	trial	contact	debate
kitchen	damage	beginning	belief
speech	adopt	demand	shape
arise	newspaper	media	politics
network	meaning	relevant	reply
peace	light	employ	press
failure	essential	shoot	approach
employee	obvious	executive	western
ahead	nation	slowly	earth
scale	confirm	speed	public
attend	south	review	survive
hardly	length	order	estate
shoulder	branch	route	prison
otherwise	planning	telephone	settle
railway	trust	release	largely
directly	working	primary	observe
supply	studio	driver	limit
owner	positive	reform	straight
associate	spirit	annual	somebody
corner	college	nuclear	writer
match	accident	latter	weekend
sport	works	practical	clothes
status	league	emerge	active
beautiful	clear	distance	sight
offer	imagine	exercise	video
marriage	through	close	reality
civil	normally	island	regional
perform	strength	separate	vehicle
sentence	train	danger	worry
crime	target	credit	powerful
marry	travel	usual	possibly
truth	issue	candidate	cross
protect	complex	track	colleague
safety	supply	merely	charge

respond	painting	sheet	equal
employer			
carefully	entirely	category	capacity
comment	engine	equally	selection
grant	tonight	session	alone
ignore	prefer	cultural	football
phone	author	museum	victory
insurance	actual	threaten	factory
content	visitor	launch	rural
sample	forest	proper	twice
transport	repeat	audience	whereas
objective	contrast	famous	deliver
alone	extremely	master	nobody
flower	domestic	religious	invite
injury	commit	joint	retain
stick	threat	potential	aircraft
front	drink	broad	decade
mainly	relief	judge	cheap
battle	internal	formal	quiet
currently	strange	housing	bright
winter	excellent	concern	search
inside	fairly	freedom	limit
somewhere	technical	gentleman	spread
arrange	tradition	attract	flight
sleep	measure	appoint	account
progress	insist	chief	output
volume	farmer	total	address
enough	until	lovely	immediate
conflict	traffic	official	reduction
fresh	dinner	middle	interview
entry	consumer	unable	assess
smile	living	acquire	promote
promise	package	surely	everybody
senior	stuff	crisis	suitable
manner	award	propos	ought
touch	existence	impose	growing
sexual	coffee	market	reject
ordinary	standard	favour	while
cabinet	attack	before	dream

divide	whilst	metal	tooth
declare	contact	human	organise
handle	combine	widely	bridge
detailed	magazine	undertake	double
challenge	totally	brain	direct
notice	mental	expert	conclude
destroy	store	perfect	relative
mountain	thanks	disappear	soldier
limited	beside	ministry	climb
finance	critical	congress	breath
pension	touch	transfer	afford
influence	consist	reading	urban
afraid	silence	scientist	nurse
murder	institute	closely	narrow
weapon	dress	solicitor	liberal
offence	famgerous	plate	priority
absence	female	erowd	emphasis

fruit	beneath	these	while
passage	mechanism	people	point
vital	potential	because	house
united	defendant	between	different
device	chain	there	country
estimate	accompany	those	really
conduct	wonderful	after	provide
comment	enemy	thing	large
derive	panel	through	member
advance	deputy	still	always
advise	strike	child	follow
motor	married	become	without
satisfy	plenty	leave	within
winner	fashion	great	local
mistake	entire	where	where
incident	secondary	woman	during
focus	finding	system	bring
exercise	increased	might	begin
release	welfare	group	although
border	attach	number	example
prospect	typical	however	family
gather	meanwhile	another	rather
ancient	clean	again	social
brief	religion	world	write
elderly	count	course	state
persuade	hence	company	percent
overall	alright	shall	quite
index	first	under	start
circle	appeal	problem	right
creation	servant	against	every
drawing	which	never	month
anybody	would	service	night
matter	their	party	important
external	there	about	question
capable	could	something	business
recover	think	school	power
request	about	small	money
neighbour	other	place	change
theatre	should	before	interest

order
often young
national
whether
water
other
perhaps
level
until
though
policy
include
believe
council
already
possible
nothing
allow
effect
stand
study
since
result
happen
friend
right
least
right
almost
carry
authority
early
himself
public
together
report
after
before
market
appear
continue
political
later
court
office
produce
reason
minister
subject
person
involve
require
suggest
towards
anything
period
consider
change
society
process
mother
offer
voice
police
probably
expect
available
price
little
action
issue
remember
position
little
matter
community
remain

figure	around
research	patient
actually	activity
education	table
speak	including
today	church
enough	reach
programme	likely
minute	among
moment	death
centre	sense
control	staff
value	certain
health	student
decide	around
decision	language
develop	special
class	difficult
industry	morning
receive	across
several	product
return	stage
build	early
spend	committee
force	broperimes
condition	ground
itself	letter
paper	create
major	evidence
describe	clear
agree	practice
economic	support
increase	event
learn	beneral
father	section

accept	nature	amount	provided
further	structure	operation	channel
cause	necessary	human	damage
history	pound	simple	funny
parent	method	leader	severe
trade	central	share	search
watch	union	recent	vision
white	movement	picture	somewhat
situation	board	source	inside
whose	simply	security	trend
teacher	contain	serve	terrible
record	short	according	dress
manager	personal	contract	steal
relation	detail	occur	criminal
common	model	agreement	signal
strong	single	better	notion
whole	reduce	either	academic
field	establish	labour	lawyer
break	herself	various	outcome
yesterday	private	since	strongly
support	computer	close	surround
window	former	represent	explore
account	hospital	colour	corporate
explain	chapter	clearly	prisoner
usually	scheme	benefit	question
material	theory	animal	rapidly
cover	choose	heart	southern
apply	property	election	amongst
project	achieve	purpose	withdraw
raise	financial	liability	paint
indeed	officer	constant	judge
light	charge	expense	citizen
claim	director	writing	permanent
someone	drive	origin	separate
certainly	place	drive	ourselves
similar	approach	ticket	plastic
story	chance	editor	connect
quality	foreign	northern	plane
worker	along	switch	height

opening	massive	guilty	analyse
lesson	light	prior	anywhere
similarly	unique	round	average
shock	challenge	eastern	phrase
tenant	inflation	tension	long-term
middle	identity	enormous	lucky
somehow	unknown	score	restore
minor	badly	rarely	convince
negative	elect	prize	coast
knock	moreover	remaining	engineer
pursue	cancer	champion	domiance

chest	initially	habit	sugar
secret	arrival	round	frequency
efficient	protest	purchase	feature
suspect	silent	outside	furniture
tough	judgment	gradually	wooden
firmly	muscle	expansion	input
willing	opposite	angle	jacket
healthy	pollution	sensitive	actor
focus	wealth	ratio	producer
construct	kingdom	amount	hearing
saving	bread	sleep	equation
trade	camera	finance	hello
export	prince	preserve	alliance
daily	illness	wedding	smoke
abroad	submit	bishop	awareness
mostly	ideal	dependent	throat
sudden	relax	landscape	discovery
implement	penalty	mirror	festival
print	purchase	symptom	dance
calculate	tired	promotion	promise
guess	specify	global	principal
autumn	short	aside	brilliant
voluntary	monitor	tendency	proposed
valuable	statutory	reply	coach
recovery	federal	estimate	absolute
premise	captain	governor	drama
resolve	deeply	expected	recording
regularly	creature	invest	precisely
solve	locate	cycle	celebrate
plaintiff	being	alright	substance
critic	struggle	gallery	swing
communist	lifespan	emotional	rapid
layer	valley	regard	rough
recession	guard	cigarette	investor
slight	emergency	dance	compete
dramatic	dollar	predict	sweet
golden	convert	adequate	decline
temporary	marketing	variable	dealer
shortly	please	retire	solid

cloud	judgement	proud	carpet
across	exciting	tower	ownership
level	stream	deposit	fewer
enquiry	guarantee	adviser	workshop
fight	disaster	advanced	symbol
abuse	darkness	landlord	slide
guitar	organize	whenever	cross
cottage	tourist	delay	anxious
pause	policeman	green	behave
scope	castle	holder	nervous
emotion	figure	secret	guide
mixture	anger	edition	pleased
shirt	briefly	empire	remark
allowance	clock	negotiate	province
breach	expose	relative	steel
infection	custom	fellow	practise
resist	maximum	helpful	alcohol
qualify	earning	sweep	guidance
paragraph	priest	defeat	climate
consent	resign	unlike	enhance
written	store	primarily	waste
literary	comprise	tight	smooth
entrance	chamber	cricket	dominant
breathe	involved	whisper	conscious
cheek	confident	anxiety	formula
platform	circuit	print	electric
watch	radical	routine	sheep
borrow	detect	witness	medicine
birthday	stupid	gentle	strategic
knife	grand	curtain	disabled
extreme	numerous	mission	smell
peasant	classical	supplier	operator
armed	distinct	basically	mount
supreme	honour	assure	advance
overcome	FALSE	poverty	remote
greatly	square	prayer	favour
visual	differ	deserve	neither
genuine	truly	shift	worth
personnel	survival	split	barrier

worried	fixed	corridor	dream
pitch	count	behind	alongside
phone	precise	profile	ceiling
shape	range	bathroom	highlight
clinical	conduct	comfort	stick
apple	capture	shell	favourite
catalogue	cheque	reward	universe
publisher	economics	vegetable	request
opponent	sustain	junior	label
burden	secondly	mystery	confine
tackle	silly	violent	scream
historian	merchant	march	detective
stomach	lecture	found	adjust
outline	musical	dirty	designer
talent	leisure	straight	running
silver	check	pleasant	summit
democrat	cheese	surgery	weakness
fortune	fabric	transform	block
storage	lover	draft	so-called
reserve	childhood	unity	adapt
interval	supposed	airport	absorb
dimension	mouse	upset	encounter
honest	strain	pretend	defeat
awful	consult	plant	brick
confusion	minimum	known	blind
visible	monetary	admission	square
vessel	confuse	tissue	thereby
stand	smoke	pretty	protest
curve	movie	operating	assistant
accurate	cease	grateful	breast
mortgage	journal	classroom	concert
salary	shopping	turnover	squad
impress	palace	project	wonder
emphasise	exceed	sensible	cream
proof	isolated	shrug	tennis
interview	perceive	newly	pride
distant	poetry	tongue	expertise
lower	readily	refugee	govern
favourite	spite	delay	leather

observer	progress	forward	instal
margin	grade	multiple	suspend
reinforce	exploit	outer	notably
ideal	import	patient	wander
injure	potato	evolution	inspire
holding	repair	allocate	machinery
evident	passion	creative	undergo
universal	seize	judicial	nowhere
desperate	heaven	ideology	inspector
overseas	nerve	smell	balance
trouser	collapse	agenda	purchaser
register	printer	chicken	resort
album	button	transport	organ
guideline	coalition	illegal	deficit
disturb	ultimate	plain	convey
amendment	venture	opera	reserve
architect	timber	shelf	planet
objection	companion	strict	frequent
chart	horror	inside	intense
cattle	gesture	carriage	loose
doubt	remark	hurry	retail
react	clever	essay	grain
right	glance	treasury	particle
purely	broken	traveller	witness
fulfil	burst	chocolate	steady
commonly	charter	assault	rival
frighten	feminist	schedule	steam
grammar	discourse	format	crash
diary	carbon	murder	logic
flesh	taxation	seller	premium
summary	softly	lease	confront
infant	asleep	bitter	precede
storm	publicity	double	alarm
rugby	departure	stake	rational
virtue	welcome	flexible	incentive
specimen	reception	informal	bench
paint	cousin	stable	roughly
trace	sharply	sympathy	regarding
privilege	relieve	tunnel	ambition

since
vendor
stranger
spiritual
logical
fibre
attribute
sense
black
petrol
maker
generous
modest
bottom
dividend
devote
condemn
integrate
acute
barely
directive
providing
modify
swear
final
valid
wherever
mortality
medium
funeral
depending
classic
rubbish
minimum
slope
youngster
patch
ethnic
wholly
closure
automatic
liable
borough
suspicion
portrait
local
fragment
evaluate
reliable
weigh
medieval
clinic
shine
remedy
fence
freeze
eliminate
interior
voter
garage
pregnant
greet
disorder
formally
excuse
socialist
cancel
excess
exact
oblige
mutual
laughter
volunteer
trick
disposal
murmur
tonne
spell
clerk
curious
identical
applicant
removal
processor
cotton
reverse
hesitate
professor
admire
namely
electoral
delight
exposure
prompt
urgent
server
marginal
miner
guarantee
ceremony
monopoly
yield
discount
above
audit
uncle
contrary
explosion
tribunal
swallow
typically
cloth
cable
interrupt
crash
flame
rabbit
everyday
strip
stability
insect
brush
devise
organic
escape
interface
historic
collapse
temple
shade
craft
nursery
desirable
piano
assurance
advertise
arrest
switch
penny
respect
gross
superb
process
innocent
colony
wound
hardware
bible
float
satellite
marked
cathedral
motive
correct
gastric
comply

induce	drift	fraction	landing
mutter	assert	whereby	exchange
invasion	terrace	pensioner	debate
humour	uncertain	strictly	educate
upstairs	twist	await	initiate
emission	insight	coverage	virus
translate	undermine	wildlife	reporter
rhythm	tragedy	indicator	painful
battery	enforce	lightly	crrrectly
stimulus	march	hierarchy	complex
naked	leaflet	evolve	rumour
white	fellow	expert	imperial
toilet	adventure	creditor	remain
butter	mixed	compence	ocean
needle	rebel	mentally	cliff
surprise	equity	seminar	sociology
molecule	literally	label	sadly
fiction	loyalty	target	missile
learning	airline	continent	superior

classic	darling	secure	spectrum
appendix	decent	descend	intensive
doorway	liberty	backwards	invent
density	forever	excuse	suicide
shower	skirt	genetic	panic
current	tactic	portfolio	giant
nasty	import	consensus	casual
duration	accent	thesis	sphere
desert	compound	frown	precious
receipt	bastard	builder	envisage
native	cater	heating	sword
chapel	scholar	outside	crazy
amazing	faint	instinct	changing
hopefully	ghost	teenager	primary
fleet	sculpture	lonely	concede
developer	diagnosis	residence	besides
oxygen	delegate	radiation	unite
recipe	dialogue	extract	severely
crystal	repair	autonomy	insert
schedule	fantasy	graduate	instruct
midnight	leave	musician	exhibit
formerly	export	glory	brave
value	forth	persist	tutor
physics	allege	rescue	debut
stroke	pavement	equip	continued
truck	brand	partial	incidence
envelope	constable	worry	delicate
canal	filter	daily	killer
unionist	reign	contract	regret
directory	execute	update	gender
receiver	merit	assign	entertain
isolation	diagram	spring	cling
chemistry	organism	single	vertical
defender	elegant	commons	fetch
stance	lesser	weekly	strip
realistic	improved	stretch	assistant
socialist	reach	pregnancy	plead
subsidy	entity	happily	breed
content	locally	interfere	abolish

princess
excessive
digital
steep
grave
boost
random
outline
intervene
packet
safely
harsh
spell
spread
alleged
concrete
intensity
crack
fancy
resemble
waiting
scandal
fierce
parameter
tropical
colour
contest
courage
delighted
sponsor
carer
crack
trainer
remainder
related
inherit
resume
conceal
disclose
working
chronic
splendid
function
rider
firstly
conceive
terminal
accuracy
ambulance
living
offender
orchestra
brush
striker
guard
casualty
handsome
banking
painter
steadily
auditor
hostility spending
scarcely
pardon
double
criticize
guilt
payable
execution
elected
suite
solely
moral
collector
flavour
couple
faculty

basket	adjacent
drain	creep
horizon	round
mention	grace
happiness	theft
fighter	arrow
estimated	smart
copper	sergeant
legend	regulate
relevance	clash
decorate	assemble
incur	nowadays
parallel	giant
divorce	waiting
opposed	sandwich
trader	vanish
juice	commerce
forum	pursuit
research	post-war
hostile	collar
nightmare	waste
medal	skill
diamond	exclusion
speed	socialism
peaceful	upwards
horrible	instantly
scatter	appointed
monster	abstract
chaos	dynamic
nonsense	drawer
humanity	embrace
bureau	dismissal
advocate	magic
slave	endless
handle	definite
fishing	broadly
yield	affection
elbow	principal
sleeve	bloke

organiser	super	antibody	strand
communist	funding	wisdom	stuff
neutral	shared	unlike	seldom
breakdown	stitch	terrorist	coming
combined	ladder	fluid	actively
candle	keeper	ambitious	flash
venue	endorse	socially	regiment
supper	smash	petition	closed
analyst	shield	service	handful
vague	surgeon	flood	awkward
publicly	centre	taste	defect
marine	artistic	memorial	required
pause	classify	overall	flood
notable	explode	harbour	surplus
freely	orange	lighting	champagne
lively	comedy	empirical	liquid
script	ruler	shallow	welcome
geography	biscuit	decrease	rejection
reproduce	manual	reward	sentence
moving	overall	thrust	senior
terror	tighten	wrist	lacking
stable	adult	plain	colonial
founder	blanket	magnetic	primitive
signal	nearby	widen	whoever
utility	devil	hazard	commodity
shelter	adoption	dispose	planned
hitherto	workforce	dealing	coincide
poster	segment	absent	sanction
mature	portion	model	praise
cooking	deposit	reassure	dissolve
wealthy	matrix	initial	tempt
fucking	liver	naval	tightly
confess	fraud	monthly	encounter
miracle	signature	advisory	abortion
magic	verdict	fitness	custody
coloured	container	blank	composer
telephone	certainty	indirect	grasp
reduced	boring	economist	charm
tumour	electron	rally	waist

equality	desktop	swing	cruel
tribute	saint	subject	diversity
bearing	variable	slice	accused
auction	stamp	transmit	fucking
standing	slide	thigh	forecast
emperor	faction	dedicate	amend
mayor	enquire	mistake	ruling
rescue	brass	albeit	executive
commence	eager	sound	clarify
discharge	neglect	nurse	mining
profound	saying	cluster	minimal
takeover	ridge	discharge	strain
dolphin	yacht	propose	novel
effect	missing	obstacle	coastal
fortnight	extended	motorway	rising
elephant	delight	heritage	quota
spoil	valuation	breeding	minus
forwards	fossil	bucket	kilometre
breeze	diminish	campaign	fling
mineral	worship	meantime	migration

ankle tribe	diverse revive	distress spill	garment material
rightly	lounge	steward	monument
validity	dwelling	knight	realm
marble	parental	selective	toward
plunge	loyal	learner	reactor
maturity	outsider	semantic	furious
hidden	forbid	dignity	alike
contrast	inherent	senate	probe
tobacco	calendar	fiscal	feedback
clergy	basin	activate	suspect
trading	utterly	rival	solar
passive	rebuild	fortunate	carve
racial	pulse	jeans	qualified
sauce	suppress	select	membrane
fatal	predator	fitting	convict
banker	width	handicap	bacteria
make-up	stiff	crush	trading
interior	spine	towel	wound
eligible	betray	skilled	cabin
bunch	punish	defensive	trail
wicket	stall	villa	shaft
pronounce	lifestyle	frontier	treasure
ballet	compile	lordship	attribute
dancer	arouse	disagree	liquid
trail	headline	boyfriend	embassy
caution	divine	activist	exemption
donation	partially	viewer	array
added	sacred	harmony	terribly
elaborate	useless	textile	tablet
sufferer	tremble	merge	erosion
weaken	statue	invention	compel
renew	drunk	caravan	warehouse
gardener	tender	ending	promoter
restraint	molecular	stamp	motivate
dilemma	circulate	stroke	burning
embark	utterance	shock	vitamin
misery	linear	picture	lemon
radical	revision	praise	foreigner

powder
ancestor
woodland
serum
overnight
doubtful
doing
coach
binding
invisible
depart
brigade
ozone
consume
intact
glove
emergence
coffin
clutch
underline
trainee
scrutiny
neatly
follower
sterling
tariff
sunlight
penetrate
temper
skull
openly
grind
whale
throne
supervise
sickness
package
intake
within
inland
beast
morality
competent
uniform
reminder
bargain
decisive
bless
seemingly
spatial
bullet
overseas
cheer
illusion
instant
swiftly
medium
alarm
jewellery
winning
worldwide
guerrilla
desire
thread
prescribe
calcium
marker
chemist
redundant
legacy
debtor
mammal
testament
tragic
silver
spectacle
enzyme
layout
dictate
regain
probable
inclusion
booklet
laser
privately
bronze
mobile
metaphor
narrow
synthesis
diameter
silently
fusion
trigger
printing
onion
dislike
embody
sunshine
toxic
thinking
polite
apology
exile
miserable
outbreak
forecast
timing
premier
gravity
joint
terrify

Appendix C

Complete Randomness

Because it is so difficult for us as humans to be completely random, here are several pages of random sequences to help you out when you need to be just a little less predictable.

This list is available as a download from www.syngress.com/solutions.

163553 3i2 9y7 q47 447890669 S8x 4X8 29B 92Q 271 G48 $667 \quad 791 \quad 171$
 $4 \mathrm{g7}$ 7L9 YC3 6F1 237944 8wc 332156286 w66 531185 8WZ gy3 288815 148 aWj 856972723 k 8 d 298561 P 18 L 17476508841869712 I87 1S6 9t4 RqO 765 zRk 8y9 792401844224 dT6 5 T 3 9 931294164 SI D3s 97u 332 2W5 s86 581 742 4C4 842 7w7 791087 t29 Z19 128 6hC 346219747 34 L gC8 J37 bx9 22b 536139251 sx9 161 56X 371 s35 254 8rD 922782 949 Q2x p96 65G 611561794194 wal 6852354 v 3 h 2 a 7 t 8 ty8 224257 321 8B3 $995936623 \quad 832$ 7p8 77C $811 \quad 345 \quad 341 \quad 696328423936$ j29 u6N 124856 T27 113 B1m IzD 3J2 d69 o2w 266 8g8 781498 8c9 142373848 243 3AX 39j ZO7 378 9r1 686 8U5 3P7 167 7R1 483 14x 725872159 93n 3n2 U12 69y 99b 371639475 lr5 Hv8 853 sA4 643655 82I 6R8 L31 394 97p 5il 45C 959929958 8d5 746 6Pr 7Hl 3on 863 MYA 95T 6tS 435979 21u 778 1Vs g3E 65g 11M 9x8 28s 9jD 48v 6N5 97W 6C9 335 ML3 93H 97j 8118 a 867 v 216279 4h2 592 1k5 $724389 \mathrm{~m} 474 \mathrm{z1} 412094743565$ F1d Oz4 1D8 8f4 Ylk 2V2 2b8 x73 35D 3AZ 9w4 9j6 583 z7E B35 953947329 5W6 218616 m 67 2aa 891 lc4 6632719 v 3 Vsg 8Tl 4824 cZ 513 MaV L41 r4L 77f p64 559 48f 37S 7x5 T75 841 2B2 625113 g46 c48 13P 1W1 2on 5L3 x2B 895 64C yV1 342 F42 h4v 1W2 76N u9A S66 sZr 76F 264 W73 953 4 Lz 8 UL 381857262 i3e 462935 2B4 148 6S2 287 1w1 B74 v5Z 52d 211 7A1 218 27Y 7L1 6 m 8517816 6P5 VBy 2 d 9187 qr9 8115475474 kX 985 819923 87v 557 55q G29 Z56 599125821 9EP q63 83R 966 v77 8YQ 457 4 fc 334 94U 21w 368137358 M59 71R 398577 6X5 424 8Ii 7S6 7K8 3e3 42 s 927 E75 Os5 16y 9Y2 156451 z6E 47434 W 349371909439421519 755 3dB 924 D84 154 y28 91b 528 o24 396433487 S19 oX5 $179831 \quad$ B36 879174596 t66 T7M 79W 319183564 j56 1D2 n69 412627634226 uN1 6e3 5By 196555 19S a41 629 7x5 4K9 993797 L47 773 N3E $46 r 663$ 91E 452545869692868 Iw5 898 8H4 f48 273416 tR5 66q J44 426616 y38 952 7Q1 6gi 345 L12 382 7m6 p44 9h8 I5H 4v2 f47 118 l5H p97 ta4 SEP 752 GR6 882 17B 614477 1D3 Zl9 10O 5C9 3774 JE W37 2k1 4C9 484 7L1
 569 m 2 K y3P 57C R5O 41362579383 P 143866 u93 662 6H2 8P9 352133 2q7 767 7YH 2Ua 2Uy L49 872 47P 451 195 986 Z58 4j4 61p e2u z97 Ko7
 657954444 m66 b79 9aF G73 422 22g gU6 655159536652 e86 189 9b6 ob8 959 1T3 244 7s2 o59 W47 276 Cl2 129 N74 66Z 246 2J1 1Xd 412643 n8F 745443666618749688 94b 5j7 2GN 331 K39 9mI 132 d76 a47 368 458261137 lD5 3w6 33y J88 6s4 $1554 z 9$ U11 L71 3P1 799991869919 672 f21 hIl 3s2 A93 373 5p7 r99 245 118 393 A65 569 3x6 738 201 X1a 83 f 267444428263 84a 657565143 8X8 k85 489994 18W 324468 89M P7d 341 p78 Z55 14f t13 635 S29 34 F yb6 $184257 \quad 745844442$ 2N8 151 112 R79 294 m15 Vv2 61v 643 2R8 696511 87C 43Z 6dT 965 T7k 424 E44 $21243 z 33 j 643515$ e69 225 77n 501 p34 412 V34 Nc9 K62 GX5 577884 6J7 473 T72 232 7y8 m84 Cf6 638 k4v 55r w29 871221 D88 $6535 i 948 F$ 575267126 nC3 h53 O3d 2286 kz 95 B 677236944852388377 U3I 877 143 AhS 3W1 277 52N n14 764 4G8 64I 376 K95 262 L14 231 I56 Q65 H57 788 R89 C93 85q H1A 3X9 U49 t42 $1557964 N 7 \quad 23 \mathrm{C} 585 \quad 3 \mathrm{T6}$ b77 72 J 346 kX5 785 Dyp $11894575 a 378174$ k29 m71 3e7 z52 12A c38 676 cb8 f24 8b7 18L 219119 2K7 6i5 25q 691 33V 7C5 FVA 366 96t C45 172 G81 49y

336 A68 43Q 1M2 759388958363 I51 z26 6Z6 Z93 C17 585135868 61z $40 C 69 r$ U6x $34842 i \quad 425821319 \quad 3 h 662354 r 83 j 16 p 4 Q 1 \quad 338 \quad 782998$ 145315 AH3 $448 \quad 769$ 7s7 6 h4 $89157571 T 478172 \quad 227427$ 1wa 45 T p13 232482 2t3 7X9 2O2 22u 235342 k55 298 qx6 784 98j 845 u95 5em 4G2 927 c4t 5X8 cai 594 26M Y3R 758 6F1 37C X99 2NV wE9 E4O 623934723 34 k 391585572559 l2n Fk2 N6T 1VW 7X5 y89 6m1 791 c28 U45 G94 159 $59 f$ 71C 411330 g63 82v 2t5 552126 emB 184 Z16 $4 y y 39 H$ by7 VK6 448
 f55 78C D4i 980 282 L77 776 38h 842354 QJ6 995198 i41 EO3 485271 N4s Z44 334 f39 589 pD4 f5v 7c3 $467 \mathrm{Cz9}$ h21 168398797 Q33 4U9 59w 1TO 314884237631 5Gp 75D 238 58N 166 5V2 F88 k71 1LZ 774 Z2E 595 5AE 392 6lx r25 846798 A74 L12 635 99R 56S M8i ZJ8 F4p 760 7v2 665 95Q 444 8Gv 5X8 7I2 986 A92 262 14i o2S 687771832843 o5K 45W W2P 452 T 5 z q65 4Zl 9S5 3Z5 $497 \quad 5654 \mathrm{Z3}$ 121 k47 854933 6D6 KD9 94M R9a 1N2 4I6 773 6e4 946 473 77L XC9 m94 153 T8F 3518 X5 119 q29 A6j 4T4
 2HK 558451951886 93D 275 e87 $6442362224 x 1$ 13r U84 755 1W8 GgJ 212448216 t55 432743592 1f8 8j4 3j6 b8K 931263486 6J2 q99 J8q 474 bPO 4d4 4m5 2w7 615768 1s2 N62 4I1 96373946 C 378257 2B1 x1w 234645 3m9 P2q $177 \quad 765$ Mk3 $174 \quad 845$ 178 734 1r3 958149751 8y8 875 Zk2 qQ2 xo8 5Y1 H1T 957159 b9d 3704 LY vk9 3 b 6973 3Z3 K63 583178 gm3 98Y uz6 11A $6449318 z 8$ Z9W 724 d91 863 mMc 193547 m 22 851769 31F 543333 1d6 22V 6Z8 z5I Ij7 eH9 1k7 61s 9Z6 76X 969 192 rXm O51 637878 w91 244 4X3 $89 F 55782993275413157 A 524$ gC7 S11 468 8j2 t49 936 O19 8bV 577954 1Vh 370 Vy8 5V6 387290 91X 612 3VJ 876 4R3 E89 Z8B 5p9 629 4z6 757 x36 295 Z6B 787 U6M LZ2 127 J99 7c1 J98 $9571785 I M 6929 \mathrm{Cl}$ HZ9 186 94T $3971563755515 f 71909 T 485$ 381 PV4 334 1s4 O91 8c3 194 r8R 6jB 1HN F3P 585 b82 4J6 j99 764226 56s 586 59F 481 a35 685 3X9 $1557 \mathrm{Z3}$ Pe4 21T i76 1Q5 704 46G 1z6 J6x 5d2 C83 521 847515099185867 ri3 647 68L f79 153 6D3 5Zw 646 178 $3 Z 3827641$ Z52 $2 x Y 54 k$ x41 Y94 $6714 j 6$ t6i C2t $2894974 d 4$ N9E 2wT 17w h18 586 jo8 356652482 1M3 18g S59 i51 8e1 363 F93 ig9 411 9J9 $\begin{array}{lllllllllllllllll}714 & 135 & 731 & 3 V b & 544 & 736 & 904 & 873 & 834 & 156 & 84 m & 334 & 559 & 4 D 5 & 6 I 9 & 685 & 274\end{array}$ 7D2 747815919452 p26 N51 198 1B6 38v $48586594 k 498883293592$ $3315208963631121157648027013459 C Q \quad 3 g 231686 F 6 v 654 a 592$ $44568613841 D 1923689 F e$ f11 763276276 CD2 473327378 1EY 389
 21I 51968 T 314122 8I9 24865 P 34 k 6 r 18 s 54139682 j 2856175748 97 T 391836476 V41 T95 b4E 844849 z78 3A2 ej1 v49 418228 G51 895 817641378934 P47 394 Yu3 8K6 8Kj $52844 A 17 d$ y2A 18j 647 y59 Ska I90 415366 b5c 49 M 511648 87y 155 G39 754722848 8M9 $4726 \mathrm{z1} 589$ KA6 38w 733179 E83 $65143457169 v 2 f 2594$ anx $11374831335 m 6 T w$ $4 y i \quad 8 P 53275 v 8517$ 9n1 175 28E 1274 d3 4B4 419 M18 W12 56v 161679 8u3 939 e 37 le4 515194 122 s45 997 H12 s29 480 3b6 K19 $185 \quad 697892$
 928 sIz 7g7 1T7 8W3 Gs6 16S 4s9 T2E 4il KQ3 892 75e 72N 5b3 757875 816 A32 u4k 915221 5H5 216692 2A5 249610 HU6 551687 7m9 295853 955 85h 873783635931851715461861 QuH 23158574 q 7428752 m 4

922 m 37 A61 727882615 563 5A2 778 13J 997 B95 6at 677144 Q37 S6k b36 C15 754 dL3 493261213 83I 275 3h6 257 86I Z87 915 W33 $64 f 1 \mathrm{Z} 2$ 913857 un1 15H 596 9B8 752 g8y 516 58d 394555677757 Yp7 5gK 618 563495 e3I i8D 214 d68 7x4 742 8U2 169 5P5 R37 ak1 c79 55y 282 t26 468 2A4 55884 V 1118 f 6288283 1g6 u22 24738 H BI8 12 y 136 jT5 185 2 mD 911 h98 j74 ola 14 k 926716 u 24 vb 6 5A3 92842 F 37 m c28 3N5 13T m12 4a9 U76 8m6 GH6 988 597 745 268 32F $6564 z 5 \quad 3 j 4345$ H13 396 uB6 s1Q 56Z lg5 LC3 814426 9d4 456 2X8 NZ9 51d 52Y 8123114×5459 Co3 em8 b49 159 F43 P67 1G4 D54 492 1v2 e65 6v5 wE9 31g 826 43j 364338 9W4 7zY 366 7e8 8fv T82 Pl3 139159 2hW L73 P9v O27 769 82R 5J7 825
 Y4c 895 L1f 332 13V lnS MW3 82j 435 X35 236 Zc1 6fx 896854 5Q2 39v 455 73M 1y2 4724 rH 44 v 423 2R8 y78 271792268 1z7 bac 3496 G 3111 668 z1w 6Z6 887 15L 999164778 i18 292539836431 c52 b42 u45 o37
 $427188744134326 \mathrm{k} 1917380917 \mathrm{~W} \operatorname{m12} 9 \mathrm{z9}$ g72 71I Y98 6k8 72G772 55u 925 Z93 H5N 7il 1422886174 Ro 15552 j 59783 e 6848 k 6682962 741793 E43 415 98s 2U6 55g 99M 356429 7x8 X33 854 B59 T7I 35E p3M f94 29d 145937 Wk5 601 93n 549596438 33q wq1 G29 127 8Kd 76f k96 8E4 71X m29 8A7 $327 \quad 692$ 6H3 $482 \quad 325$ I85 Y13 $743 \quad 715$ Ud9 $37 \mathrm{~V} \quad 518$ 4u2 38 X 13 Z 18 g 842 98B 259188 b75 255 w74 2 s 8 O95 31 F i94 33 u 364 c13 345 V88 I4H oh6 46 C 825623581 U83 544 u12 88257 g 5ve 756678 95x 6A9 16T 4I5 547 2C3 973 P83 T36 3D6 12V 915 k4y 9d2 267 27Z 915 56d 5k8 4i1 828 lv2 186492 93s 579 36M 845214562517 i23 Pf1 AKe 341 487891343 P25 s8u 457 88V 371 Sw8 2G7 56M 3vM 797671483 MI4 B8Y 48791449687 I 712 2r5 33b 5X9 9J1 9sm $56674 \mathrm{k} \times 634249 \mathrm{Gz} 115741$ 6X5 56E UiA F1o 9J9 617 3W9 522 Fs9 935 Z2t 65 F c48 61v 425546816 1L5 f26 987 8Cw $42665758898697 z 967$ KP3 512 56k e26 c96 v67 973 6 k 8 5M1 912 C2y 249 73B S86 523 116 73H 1v1 49 F 641 D78 475 A32 6p6 V71 272822 F81 z37 2T4 1m6 427982 W 42478 m94 $6368473 \mathrm{z7}$ Y57 9s5 15q 6TE GE4 853 beZ TnL kSv 556 b22 62G 1a9 41L 63W p82 263541 s51 587 P9s M1m h3l 6L3 861226 51d 587 31a 19416812787 F 274 2SF 38j 451 7p2 18z 748937 3M2 7sw Sy1 731 P4k 6Ql YI6 257626 e95 52h 676 42 c 5 g 1 w 99943 b 78 b 79883674 85E 3 Fr 752 ab3 377 327 2M8 177 6ql 22W 331426 Y16 6N7 14n 35a W66 6R2 bW6 373 pk5 5s5 3aK 964 d99 879 371231398 36d 172 74N 34R 786 142 1Zf 68q g72 t3H 241 n45 562144
 163 9k5 6H9 3Z2 i11 51E 463 72L $296521291287183 \quad 335$ 2h9 221 5p6 220 6b9 D6I 213298 g34 put 18755 Y 476 e44 293 R48 12J 3lx 176779 638 32G 7G7 8v4 174 32X 225698 18T C71 6Ld 155 2R3 893 78G 6e5 381 393 8uI $8358196935224 y 7$ 7N3 Z88 e42 71647959 g 629343 d66 L75 219 Cg7 35n 793676 Kdf 6942 CT 961 75A $69 \mathrm{r} 518 \quad 35280 \mathrm{G} 855149637$
 Gj6 328 h4W P47 47w 235539 Pm6 59B 99p 43 S 874833 L53 91d 375 6B9
 179 Y2d 2G9 x72 64u 8S3 233 71z 3 t9 $818434599355018 \quad 512134993$ 8wq 592921 5A3 33X 567 Q6D C91 95931643174356 W L93 75Z 661 8RV 147 I2n 52Z 4 S8 861113594033831 T79 i13 5 h7 487114177963697 87 Z Gu9 M78 kn2 s84 k2L 6m8 68q 8 W 7486658 3Lb 954 9J5 136 95f 131

3 mk 8418268 z 3 67c 516 1ZN A19 Tr8 2T9 828 b86 7Q5 926 5BB CDB 7uF 43838169945 d 7 E 8896 48D G64 2g5 945 g21 095 71W 2444296 i 2 57K 28T $7845 i 7647$ uZ8 31q DAz 34B 2p3 75i 693 J5q 471 UM5 257 1AV 3e9
 647 44M D8i 987 3z2 VFh 11t 79J 646 5Q7 674588549137 WZ3 226 d93 $6672581552464741184 F 152555 u 5228717896 q u 787$ 26B wA8 8B4 $6 \mathrm{Z9} 4513 \mathrm{n} 39534 \mathrm{al} 351$ 8J5 W29 9P3 F5H L86 zM1 929152697 S44 88U 283368 h8G ZR8 709 B6p 921986 f71 $6895824618 Q 5$ t1l 358414291 418 9g4 1G5 69h 332138832 981 1z8 454842 S18 8m3 9e1 M91 E55 M7n 125524852 6AW u48 M9M 976823284 76d 2P6 z96 FX6 947 13p 317811 8D1 L25 357 7g2 219 8zG d2R 9R6 831 9W7 72z 6dZ bs4 181754388654 X9R d14 626564 7C4 45n 3z9 321 8b1 F18 E11 26G 889 Q27 555 544 5L5 857 h13 7Rn 638 17X i77 47P iE7 874538 28N 893 5B3 s32 724 66N 164
 $93243 X$ Y75 s98 5TG 82533284366522 a 851896345357585 b34 332 uIY C12 434 C14 4s3 3v3 273 8P4 qg7 689 59t 449 g5G g31 315409 22t gI5 84x $1355 f 6487$ x35 568 g8m 1Ms 19N $5156 \mathrm{P} 1 \mathrm{bI9} 685692$ 1u4 889 388 25h N87 397414 EQ4 j55 y89 lP5 d12 435 1s7 293 3V5 r55 27u 64s 94 C 76 P 125154 h84 734 eu2 811 7N5 41k $951413865199 \mathrm{w} 853 \times 5$ fz1 9rf 16881 m 88852177 x 92 f 9 v 4495 8R8 h73 99s F85 949 1f3 47B 913 $4 \mathrm{R} 2 \mathrm{78e} 9 \mathrm{Cc} \mathrm{J} 28557538$ C87 356 17g 449473 8F8 P71 K13 Ac2 595317 889 F2G 226 r47 822 P19 891375 e78 391 C8E 22C FHD 735454 B24 119 7fI Z31 91n 714 925 r29 142 912 889 298 6x6 945 6v9 jY3 395 iW9 633 136 eV9 $25365149297969 y 475642$ AA8 $1 q W 985491 \quad$ S49 433158 800 399489 6B3 184 7lr 839286 e68 696655 8W3 9S2 435 YDT r4K 62T 26W 953 92v 551 X9s 264 89b 127 MT1 H52 KFm 89I Yk9 C4y G99 577 Q59 4R2 882 F66 OHX 616 q5N 586 5C1 754466 7BD 448 h93 71R $439777 \quad 343987$ 281682763 5N2 S56 n98 2sK O2D T17 C27 272 59W 723 E4Z 737782 8Q5 831918 1Y2 87D 276255 8GN SS8 818 36q g11 596 9e6 437374 e6V nij 612652416 7V2 c56 259515652655 55c 6B1 921495 pX4 17U 252 5c5 $55 m 812858$ zeX 61p 8i9 813222976793523 5q5 19M Hk7 2r8 928 n38 q79 26I 466442 9I6 I27 392 49A la8 294 1dq 872 9U8 535588 1k2 R22 808463705391779436885448 W65 r9M 87j 273 v44 $723 \quad 3128 \mathrm{M} 4462$
 86u 61x 4w3 onS 592658349 9A8 6I8 c68 918847 73X 64U 1R8 Xiy 775 878 89z v45 w64 6H4 727 848 297484 7N4 28944 q 734818 71C 291 25z
 Y29 843 O87 H48 678 1T6 J3a $6726315 f 6$ s92 E82 819 Q89 534573418
 j63 177 9n1 827 15a o51 8f7 T54 4fD 735 3OV 49d Z57 494 OS7 33D 273 992 v65 6c9 C27 926 X18 85D 267 C11 523 55d $74311479 z \operatorname{Rd7} 599457$ 94 n 37 J 84 S 4 W 42 g 9815 g 9188 M 97 74D 9H4 336 32A 477388 I39 k3J 9w8 n25 462518758 ZBt 96M 541928 d63 652581824 71L X44 eF9 2P5 865 R8v 223426229717 J45 81A 55u 3a6 5X7 473178 u6x 4F8 q3W 4W1 526217 e87 48q 946682298282 Qv1 $6 a 82715 Y 5647$ T45 32U 385683 541 61s 94e $3618186 q 1583$ U26 45B 725 89W 414 8W2 224412934396 T7I 5r8 421313138161444 Z43 147 O71 377 7L7 6 z3 913 G32 398 Yb1 613339639 h89 25Y 268 R42 987575 1m2 $262133212 \quad 264691$ P12 963 277 8Vp 365 o59 557 6Un 7yu 5y4 E55 2d1 6pW A34 864176243 FJ5 D32

757

 514 4Sw Q48 T39 35x 165 l71 PX5 5Ne 4Dl $7475627712 \mathrm{ce} 176 \mathrm{kq3}$ EIU 452 2Tm $793 \quad 314 \quad 75 \mathrm{~V} 953277$ D1X g4a J6b 91b a35 709 7D6 461 MH3 93S 244417 nd1 vNs 3MK 3XI B72 C28 9h1 393 R49 899 813 219 2q8 319933 b66 3AU p66 44L 736 67v x81 52755 K E28 3 u 7 h 64 81s 428 7TR 24J 87F 191 K41 498756566 I71 757344877158646 Z76 Y4u 5YW 672 X2K 133 4 tB N98 386 r34 259 X86 S2x I1A 28d IBQ $4358378191 z 7$ 9p1 aS2 q64 921 Yc3 71w 961 5L3 993917558236468 e29 48X 3x2 $2 \mathrm{Z1}$ g99 Am6 294 910948 B53 R21 9828554 D 54531874795116 L 7 v 48669 f14 31A 95 g 897 8Z8 465525 88I 193 K63 8251617792256391329 9P 899 AAz 745 mm7 w4 b b75 92P e65 8Cn $493415 \quad 54 \mathrm{~g} 5593 \mathrm{~S} 3 \quad 34 \mathrm{R}$ h79 576 d6S 16Q qD7 4Ec 5wR 1gB 587 hd9 5Z6 4E7 345 5D9 Gq7 4Xs 363 t38 96I 8f6 388 3S1 63x QG3 596829434 G9T Hs8 956 f9h 296481726748 e61 116412336 674 R48 513 N84 6786 e 8 Ia7 S93 680 k 867 hb h24 137 54s 3PW c74 85m 215831 1vj $99589 k$ 12R A79 311965 Ya7 683684337 7b8 t61 2 t6 oll V78 697611758 y31 645 K77 663 5w1 93B 7gd 381511 Y27 D1r 8i6 124 7d6 979129 1T9 bW6 767 5FW xj6 516 5254 b 8602226 3r2 752 yVi 16j
 31N 363 m 2 S 755439449 139 E58 15I 557 N32 X3F $223 \quad 764186 \quad 647$ 7a4 55p $324 \quad 634$ a26 77E J92 $239 \quad 399761$ U92 493858442 U54 550578 d79 51g b8u 2g3 2A8 219 y2V 9WN 792 H27 nK2 193 rvp 53h 357 7xI qs1 k96 518 D3p 2n8 888 46K 868 Q9S 388 1v9 38T 1k2 $2256 r 5$ D96 4924 s5 427 6192115515236 Y 17 pl SL5 8I7 38 k 8576728878679 tl 486 I93 252 29h i5F 34P 7Bt XGm 6gb aJ1 43824468 s 81521 z 715857 TV5 37373 g 87 N 333 3v4 364445142 A71 z91 Ao6 $123 \quad 3761795 \mathrm{Z} 6581394$ 6W3 58n 5s9 54r 29c 8B4 853 OBc 927 q18 661 iN7 v4v 491 j33 4Oj T34 i22 758 64d 5u7 P6W 3Cp 183 6f1 129411771732 95X 918 z86 s84 818 739 K63 di9 3K5 56G 28W 2n1 3J3 144 T55 Svn Q22 6OQ 242559 M89 631 853452 3e1 5l9 6Z6 9f8 11e M89 K72 da8 m31 104 462129 46u 4p4 54B 83s G16 U48 878286 3QQ g78 785 61d $7566 Z 182771 j 747$ N95 zpY 601 953 Y17 24e 133 HL1 3X3 432971126 9Y9 $26 z 7745750974 Y 5$ S92 e72 RE6 R7U 92q X62 67V 82P 7I3 76s s62 R78 91t 3h9 667617 811 3Jq 594 C73 224 1N8 $7384 Q 5489891$ Ye4 28s 2n6 e19 771932256 5IX 55S 5p5
 858 z44 716 1H9 4g5 354 x85 47G 949359 59H M9R 345 4le 48T 51h 511 164 KU9 3fr 585 B3W 813 92F 31w 285 e41 6F3 $9138236446 Y 8643$ 97t 567 2Vf 759 n17 12424968569 E 641 9N4 766479 FKv 2K1 368 V48 U48 847813 8P8 8g7 V72 111 9W9 164 484231995905 BrG sj9 922 Kb 795 622 9Sn u84 9g8 6C3 m31 633 386 97R M32 na9 O38 358 sN7 854876915 62 Z 112531158848 93N 88Q D1E 62e 73Q dU9 6h9 555 88j YiK x73 675

 415 B84 E52 538 1N5 eLI 6Z1 b36 e75 $8351713 \mathrm{bR} 0486 \mathrm{Z7}$ hE6 857 2tk 829 o3r 9TC 79037 M 234 75A 86 z 294 IC6 508452 z76 05k 23m 742617 674424661688497927 g18 758411 9Sb 474 S83 7IU 3 z 3 2T1 D41 i56 CxI C46 7B2 W78 a85 L4R 9V9 884 48576 Z 529 V15 x27 556443373 55m 28U 659118623 h9v 19S D65 $5950853525498927444 y 8$ 8B3 a32 273 Ad9 9m2 769 63T 417 b9L 924 5q4 $27845 \mathrm{~m} 26 I 455$ 7p2 R51 Kp2 6642 b 6

738 8p5 246314513131 K3d 432 p37 $1634833767 h 4138$ k3y 951979 4 Y 2253 f79 142 9H7 6R8 642452345 e5p 358724 Y15 99W 7 Fb 8 p 88 5H2 452 8mK 3U6 229 3JR 9Sa 6A9 87D 718 1d5 w48 88R 8HZ 330997162 56G 25r 323241419 2fh N42 8D2 c96 $7738692 J 4199575 \quad 5 \mathrm{pK}$ Z79 357192 4V7 629 96h 178 263266338 X94 418 fq1 99N 9y4 378 V45 2B9 H46 C62 R52 c26 7T5 439849532 F74 WM1 5a7 99b 8 a 79812 S 6 c 2697 t 88642 U 887 G43 e75 447179977 1F1 96w s77 1GC 2 mv 251 s41 O51 314316198 693 XU9 498146125 X37 7Ul 748725257244952570 3C9 285 56w 58i R5k 52A L91 331 y65 95G 372 26s 8q9 f31 Fo6 851 k4a 2496982 K 4124 $\begin{array}{llllllllllllllllllllllllll}744 & 477 & 2 v I & 844 & 7 u 9 & 562 & 157 & 1 s 5 & 699 & 4 R 1 & 619 & 899 & 437 & 227 & 761 & 813 & 959\end{array}$ 235 Vx1 62E NT7 Pm4 7b8 94x 856 4y9 541 3q8 $80739184 Q 213$ F63 11H 68 H 46 B 42294142 s 15864 R 927981541 S 17463169489 97u 583 z15 54L 251 26C 815 6r1 5f7 621 913 269 w29 125 262 K76 735 z73 neR 369 937 e3w lns h51 Mq3 88r pq6 973 5a2 79g P5u f76 642231118 w93 812 148 g77 892999 93j X49 152658 53D a33 B24 123 R12 cil 63 g 819 kRK 32 t 76 N 958947863 8Gm 3a2 S28 hY2 216105746954 bEs 188167 8J4 767818 G16 D14 mw1 27A CaB 39I vZ2 8U4 878857 q98 SY7 E71 2Y1 178 $92193 n 974135302$ U23 745 8A7 83z 927494 h4x M97 429487881671 c55 855 6748519 s 2 8iY 64C 962 f81 k78 267161192713257841379 q8f 4V5 58q 199 c53 Z91 C65 6f6 697 al8 cuu 912 a5o rR9 579 dAO 481 mv5 Fn9 78468574 K j51 k23 163 E91 384 6f4 V98 I9i 9gM EN6 66U 24G 818978194644311385856211771 7il V65 6R9 74C 8L4 2F7 F82 94z 423 ah3 418 8a4 4XT 87q 83g AqQ 1Dc 474 9J8 11q $243738 \quad 812454496$ 119 I93 2a8 m82 248 1a3 754958678 n57 $69286 y 987783457$ 2d2 Lq9 243 G1O 62C 978814343778 3q6 597 u7d 1g9 324315 3az 7W5 78D 51t 1iq J3s RR7 816256 B29 590 E55 9YP R7x 764 lq7 8S1 6QU 367662311 672338 Gz1 C4g W45 524 482 143 33u 9N3 F16 x24 341127 78y w4c 4X4 967 4h5 4Cz 47J B82 68e z49 965534 55T 532 6M5 489276 N3v 91p 496 744 f36 hh8 434428 j92 17U 791 766 9p5 SCO Q39 383471 U16 341 29i S8b $9321994 N j 761576587$ 92d 7t1 $37947 p$ q53 S19 832457 89L 518 322450 rs5 452 W92 432 79n Q93 628 L78 7w2 537 f9K 322254 a75 98W 818784 Js9 695 6wD 26q 258247874 NW7 164 y37 19F JV4 185 B15 1R9 $68 x$ 3q9 $8255 Q 86 H 7115$ 56r $82812 Y 1187922 P 5512$ e91 U4v 314 3X7 2S9 153 N58 1o2 65P 2K7 799 35N qY3 3r6 $38 p 844443838 \quad 369 \quad 976 \quad 7 \mathrm{~g} 4$ D23 863 48G CLC 3J7 861 S84 s91 922 bgF 7p3 Q11 $175 \quad 554471769793$ 17c 5sO Y21 86r 15278 I 665 25c 182 N 5 W 279 o6A 187 5c9 765 mm 2 86I 69r 891467 g36 C48 6j8 888 Ph2 317864 2P1 292812 i5v 7y9 7U7 181 507996 C3Q 97j 2Wu 2r7 319391 7Y5 X24 967 3P6 p43 738 7m4 7Oz 396 SZ2 x77 18n $3415 z 1$ X66 4E4 14I g63 $8576780481816951 \mathrm{Xu} 493 \quad 542$ 175 B31 495481281313 79A 78q 442 41f 666939 f72 T8F 934 13w 588 we3 2i1 K83 13d 796914 H33 323316 wrs T74 b57 $7036314 k 7239999$ $47 e 736993391$ 1g5 w76 454898727 a74 22j 7c2 77J 252 38t 563 j57 5Q4 487 Rz4 C29 94d E88 956 941 495 68p 513 6w2 5Ou ZI4 639 D96 4c3 29627 v 2 OH rd6 437 Tx4 71t 5c6 i16 975 z42 386323 9VF h54 489934 506 MS7 QT1 214 9Q7 758616 28Q a49 63Z 84858858 J 27 g 333811 C 7 G98 u71 $84811145591 T 6593619736915851 f 756135298 i \quad 75 q 355$ a55 966 x4R 86453 h 118 a3J 8D8 466 8G7 335 ye9 583 1Q2 44r I6a Q94 774582 Nb8 168 r37 f45 yj7 8n3 S6J 5R7 17b 982947 DW3 8V5 E4d 461

R82 Pc4 427 p68 ld8 43484264769 k i24 X38 347 24v 449 Cg5 8s2 221 q64 72550662957 I 284 2r8 25I 7r2 6621835 Uy t34 $1412 \mathrm{H} 2 \mathrm{~W} 93 \mathrm{7Pl}$ 949 65S 73n 186 68b 298 88B K5M r1N 66R 6JE 741 W63 182984857220 8H8 n11 124226539652 54d 58z 853 7D1 5 d3 995 v1y 992 v88 578313 71K 337941 D13 c86 C55 99N 459 45Q 228 u84 c65 247 F63 4V1 436 44D
 715376864 uzn $17255398542295 F 19 u 662$ R81 9AG 651134 w15 ul9 8W4 94s 776413 98V 1u3 1bA 388 j30 5FC w51 G82 515692 3d9 4 z 3 6fJ 23v s6Q D75 5sX 9ko 2g8 z32 4B7 z8g 3827 J 5783 9K9 b56 697 c 38 mF 2
 2c6 9r2 235328855776 3Z6 J81 N13 228 x87 e61 643966823234 6h4 $8314 \mathrm{mS} 514428 \quad 8558 \mathrm{~g} 6654223 \mathrm{K79} \mathrm{Cg} 52752 \mathrm{~nL} 3 \mathrm{~S} 7755$ 89J 861 79J 839 61P $82613 z 7 y 4630$ t59 4b3 1e2 q90 5S3 5Z9 15685 Y t46 m65 995 k81 536 vB9 p7a 31K 986 oSC 93t 873577 1Ad 34c 719862665 F73 186 7615 n 556564 b 4 z 2 i3u $84 \mathrm{l} 9 \mathrm{a7} \mathrm{~s} 84 \mathrm{x} 962 \mathrm{~K} 2 \mathrm{~W} 468996492 \mathrm{u} 7975$ 62v 46 s 192 p 1 T 662 Gh9 54C $72153521176471 \mathrm{~g} 153 \quad 873$ 4w2 4341 k 2 2j8 562576 b82 7L8 91F s81 281925 N44 629835 6yr H19 892 X63 416 7qC 483 3F2 7A3 c7Z 13G 839641 63p S14 984 e79 254 e57 461 1x6 p19 650 6C7 153 U92 A5H 973 9s1 D38 3A5 745676 g26 729 T13 438 7f6 861 F94 62 Z nq7 938134217611 r23 63 y F98 285895 v11 B64 975499 O15 84r 3 rC 5 xn 8L1 h1S 487356956862406 L36 E68 768 B75 NH8 671595 8G8
 64 m 41 U 78 K 6 h 8 m 134 Cm w6R d42 j95 437 7g3 498 oIl 88854 F 2 n 1 Y 43 $37 \mathrm{~N} 5 \mathrm{qK} 77 \mathrm{U} \times 57492 \mathrm{x} 41188$ 6R4 8s6 5e1 kc1 W94 623 5W7 966923 92U 764 a41 2YF 4zC 2D9 572 557 4z8 6r6 C26 182837 Cbh 828951 SP6 n33 712 9g4 dv3 Z41 343 7k2 145151965 Uy1 157 S8S 06637456 K i6t b59 z35 4hq 737 roT JsF 263924325 1D8 W29 186 2XR 2 F 455944 E 9L8 71j 11 x 288 n 48736226851898 z3q 14D 1zR 7567921828 Gx 311591 vZI 519397 8D2 68G $5664 z 5554$ 3HY 94u 35648436 C 133 Y85 146 22k 23w 924392510 1fl $278911176619258315926 \quad 6939547834 \mathrm{e} 8$ 1L3 $3 q 6$ 7D3 o5l 2614 n 6780674517 511 98 r 6N7 472 9g2 363 7A1 9dZ G28 25F 1S8 219 1F9 131 KjS 129 kx5 5827 m 322366 U 18 F Qc1 342 l95 8j1 143 356 7CT 562793527 6R3 1b1 631 f71 j9a 66d 753523 1V7 444 XP8 939 766 6F8 48851262 M 423228248 v7l 343 rC7 58t 422 x3F 7p2 7XY 241 593 6d6 D27 ZE8 15t 691 x49 M48 645997819 r32 A76 4u1 188 qTA C47 549 9W1 O44 495 p47 74R PL8 3i8 356 9um 1K2 348 2y9 437 6r6 79B 441 766 23H 7J1 155 q93 253 778 O6D 155 5I3 52C 3 fb F35 J68 867 84K 370 p34 PT1 782 74F 929 7T8 465273 t3d H31 43 r 311 81B $3 \mathrm{v} 2 \quad 57423 \mathrm{~T}$ 1i4 899956586664 KN4 6k5 296172397614 12S 518 9R4 753 7w3 999795
 3Dd 178 97U P3U 355664973351 9J1 $3254 \mathrm{~K} 684683948 I \quad$ p94 851 K29 U7Y 885876968913 I12 184924 w8Z 42S 861 21R M7s 692255 NUr 66q OH6 qc5 ZI9 6E5 8j5 9Y6 $2423774 \mathrm{g7}$ F91 791 L8o 598477 6le 953 T13 P97 124 4E5 J6o 887623 R69 2K1 376 3yg h53 499 Q89 5vD V3t 96d J72 634 jW8 83c 457 1G4 9r8 91E O86 p2w 943 32f h82 R76 556 3U2 186 399 6 Zr 7142 T 9 b 28 6d4 215 5n9 698580245 38D 181629 fk1 C7D w33 597 456 g6o 8ul luS 393885 2J4 Kjg 252971 sW3 697 51P zmi 523589 c8F 786261 L83 W7V h15 432 1W2 2 m 6 I49 867116917 c2I 51V K35 b8N 524 97p S66 V9M 9U1 935 37G 751535653 29c $5 i 8$ p83 15c 31q 367 2G6 K2c

9q4 322 S77 128 K22 493242362 q83 76t 31r 629 3Rp 467 h76 945 29K 33 X M9y 117161125 6J8 82228 g 5996989 uc 8 A 412727 h y86 458 73f 8 Gn 85984461179 y 326 2S5 k88 81b m2c 6 S 7 g 38 ES5 6wd 485487 97L 7 z 3178953 kI 6766 N 77 i83 n44 46n jo1 Q73 2 r 4 y 1448438509444 S 4 Up H43 1U4 839 7A7 g8Q W3M L38 3v2 272918 26v h54 b94 37L 843 5F1 227 36n h98 F81 368 9a6 353 d68 7Q3 191 y29 386 9D7 485 IU9 vm2 5Z4 pw3 S43 Q1j 842 7B6 34I 676 9X3 49M 35w 558617 1Tx 553835 h6c 941
 S7t 63N 838 u43 9nQ 892 55P 649667 4H8 Yq7 s87 299497 7F7 1y9 ex7 6Z2 6j9 5D3 N37 748661 dA8 1s8 473 17r M5O 6N3 Dc4 9cn 5V1 146648 714 u4t 31988967486343 F C2T $3 \mathrm{u} 3 \mathrm{3} 424282 \mathrm{X1} 168$ q4i 183120 8h9 9564 el 26788343 H 394 4NQ 652914 Pe7 292 6MU a85 1K8 54x 186 a46 5or 579 5E3 2L5 53n 5652857967871926 G 9 2Xs $8 \mathrm{Z} 3 \quad 214471243$ 2rs 382 9r9 12q 498821429 V69 S94 WD4 i92 772 9CX 94120 S 372 G48 518
 121976 I54 924 Y44 855 a8O $636 \quad 923$ 2w3 646 j71 51n 129662 59d 72j 7s7 xp2 125 81e 5I3 49d 362737 3sk 8D5 lY4 892 8E6 685 Y6Z 155774 xv9 691411179 1Q8 K7i 6IT 85h 365 W26 3a1 XL1 aH8 84D 268 1X6 2fd 672142 31T 3e5 42d q93 57J 828 5w6 482 154 8Xm 83W 425547 7Y3 695 688 g27 482 Y49 464827 a41 L93 82K 2r5 911 259363 3ro 9A8 m34 656
 389771 Q18 xe1 292 7v3 3z7 5NX X12 u19 AE7 539 K52 268 3Ny B59 F33 $3 \mathrm{~T} 1 \mathrm{6v5} 5 \mathrm{~m} 1287$ 2q2 X7q K91 643 52p UJ3 K3m M81 885 14H k29 947823 $15 z$ v24 X11 3GK 135 n93 U57 4T7 185426 i92 55u 3L8 392 5VO Ui7 F85 127 5M6 385 11w 33353117944 I K8K iR9 q76 116883 Y62 O31 88847 K 2 Hr U14 9Y8 A51 25x 411 3dL 3kC 9k4 6636717 ig 53 Z 701372843 83e 595 27T 424 R34 4J5 849566 F45 593582071 1i2 852276 C31 v73 JPj 649 R77 k5A 83k 519679911847366346 T18 gR5 237157 nu6 B48 413 826 q85 397 u79 4pY 8F7 291 lbk y73 9V7 92H 222818415272 n8l a28 568 j94 6aC 203 6fp 77f 1Am e95 Ud6 p18 17e OA2 92G 841529 m59 w95 8K8 69D 373 E6h x35 212389113 j2s 17L 544 J82 P26 O78 1Y3 972189 059623819 t6j 261 N51 O92 3V8 4L2 67245 m CQ4 468 N3G 463787523 819475775 M49 789 u9x 535 B12 755 32i 2 Ty 125621 4vT 57Q 355233 5Q3 614938 c66 634 8t6 87S 527 77J 9n2 817 X83 dz7 7o7 316624 9P5 h96 34V 92m 4N7 j21 f33 416 2Q1 44e T97 165 J2N YRZ 644 H15 791426 19A 53r 59d 38k 1QA 6H3 H59 A76 558 FA4 vj5 24V 775 21x P95 6k4 786 f98 667 19N 754 3JQ 868 4M6 824694642 mT 446 i j3M 45H 955 1V9 56W 922 81e 861055 5B4 $21287 e \mathrm{k} 3 \mathrm{u} 782179692 \mathrm{r} 3 \mathrm{v} 5804 \mathrm{Cu} 1 \mathrm{X1} \mathrm{I} 45615$ 1P9 8E6 892 w76 255 r17 $4 \mathrm{G} 3 \quad 333976581867$ V7b 2 R3 $354 \quad 75 \mathrm{~h} 226$ 23N 543719629438 1A4 928 kr8 Pb7 3qG Y2k 485386277 V47 837 bGe 241 2A5 333 e71 156 vG6 m86 6Ag 88694799467 K 193 39s h6U 54J 8J5 3u5 692 S63 5U8 vL3 8v8 d61 76S 529 N58 l34 6394 SD t11 9H4 93K a73 589
 UEP 347 ND2 p77 132 8z5 566 1D5 586 D48 r34 517673 X64 Ju8 $47 r 306$
 w58 869 O68 257 9K8 293 t29 882871 l2b 375 M39 3a4 k96 726 Yi3 u32 132 V88 492215 1z1 912 81b 724336 qd1 363980 h88 Kpr 493 U5z 447 793411 s22 X72 292 7e1 755298 7Oo Ar5 R35 592 8g4 9E3 T27 G66 5NI s57 586 893 128 2V3 9D4 61Z 914327233430368 3c4 5i6 DPs 257926

9E9 w15 8T8 Kg5 U76 cT9 72M Ak7 51V 945 t99 4R8 k4H 819 74c 1wM hH1 995 z79 A6z 50F 165 55Y 887 19L G46 8x7 86d EW7 G56 7hw 4GQ 87G T92 439 69d 1rG 21z 86F 1AB 226 5X3 433 X9p U44 Q77 r39 Az6 4UX 198985 515622 QT2 4a9 277917723 3n2 78U $3 \mathrm{~V} 6 \quad 3547777149 \mathrm{zl}$ f64 p98 a58 827 27Z 398 6x6 Q61 94S 18K 6ej 822 62J 779833 nj7 p11 651871 U69
 9 g 8 2h7 le7 i91 911482365484487 Otv 184515 h35 5353 FY 8 Wv 228 K55 66c 36p 976947 6r6 216 6H4 42 i Q98 $367918 \quad 8126 q 4694248765$ 3i1 86A 297 B32 786 9L8 42d 486 w52 277 E93 G45 4H4 N77 829 39S Jm4
 294 Y66 9n5 SR6 511 724 B17 8C6 $1278958577956137 b 21178331 v u$ 5V4 453 f39 377996 3U2 84h 915329 6ny r4N 5ER 1698 C 6 i71 29K 3u7 i55 e84 449 H47 811439 Bt5 869 f45 155 Qh1 W83 $735 \quad 355$ 3q9 652972 b18 1s4 5ud r76 3a5 g88 187 353 K81 935 lsf 989752596 r22 508596 37 T 7295188712619 y 486927 W P1s j6A 517846 50w 63a 535 223 65B 827583 64u 636 H73 4ib 424455 r25 9C8 Sa2 $47 A 492638 \quad 339$ al7 138 9294483185 k 8 J37 85254 e 93478 a 2 al 14436 L 15179958437 z 797 66C 4s6 92C 794 mA7 1v9 567915285 je6 752261 82W 9v3 890 242 178 Dgw 89j $88965108651014143 Q 75597 e 5 J C 976$ FC3 75D 46B 221881 2U1 623 Pki Tq1 i9d 295 u19 238 iOx 181 m8j 22N 2Y5 798456671797
 1x5 753 77R tp8 k46 194 35q 258175699193 23S f97 9oM 98w 694 Qfh $47 z$ a68 54c 5r6 m62 W45 11y 7v3 W7D 515 N42 797 54U 8i2 Sx6 e41 454 5R8 332 9V9 982 41n 17G 941625558 7h7 $6 I 2169$ V67 R71 P44 366 r82
 243 Q18 H67 368 e6L 3c4 h7K N79 n23 5W5 539 7m4 852 gj8 $521 \quad 373 \quad 746$ 54 g 71 L C 93 7W6 415 V76 15V 336 V74 3L6 Ah8 144381 65P Y77 K26 987 466687 g9b 562274 1K8 615 w86 $484889454 \times 43 \quad 315$ c1l 477159327 b52 i32 5p2 743 b93 859546 3X9 476 l11 77D 7ea 53k d2u x38 880 b11 6R3 j92 o88 1m5 645986833 15Q 13N V77 23Q 62E 495 6r3 3I1 87p 784 9126 E 4524 G54 985 wg 2 5 7 Z 348225 8E1 i25 O25 j46 329 3W2 59I k46
 793358 5i3 4cn 51a g61 613639 q92 25C 4p9 1S8 a37 $7296666 I 5397$ Z67 515 F57 5Z7 2j3 836 91C 5Qs 52V 253 3I5 34p 219 22G 1r8 72u e39 5sE 94c 843 285 I9E 561133834 8Uy $8657 q 7373$ 2hm 95A 944261 56H 466766 96t 1mw 625812920526 Ix1 f4s 76 K 2 q 89185 q 5507266 6AH V84 546 3u9 7dx Y54 8e5 I35 87r 168 6P5 148 368 215 6I9 117 7j2 298 V23 81m 23v m55 83J n3F 1q4 665951589389439 Rd4 4620649 M 6341 78546 a 211564 7K2 819 8j7 5k9 211 7KQ 4734486 wV 2 B 5772 7oU 957 1jx 9ha $85 z 43 k 9619 y H 2 I 6$ q92 553265668948 V61 196 Tw1 R75 232 463 bA2 183485 2v6 6cE PF3 8EP www 395225369885909367 L66 516
 842 7K8 117319 k8T 286413447 G5i 3g5 812965 AsF nM3 776 83G 144 573 gf5 q88 r69 tT1 D61 566 h29 $661472573 \quad 358 \quad 224 \quad 532 \quad 396 \quad 6 \mathrm{~T} 2 \mathrm{mj} 5$ 913115991 R23 421529 8N4 71T 231 K27 2W2 545 rSN 95q 364341 96V $43 \mathrm{~m} k 2 \mathrm{n} 972$ 7Mm z15 62z 242132284 85A 5SQ 777 16D 1vO 69c 98M 4nt j72 e98 4j9 823359483 49z 2RY 2S3 3pZ Jj9 783 9Cd 4aK g8V 34r 414 64t $6177114 h 6 \mathrm{pV7} 418248$ 3w1 51Q 2N6 1J8 $55 \mathrm{~m} 963918 \quad 328$ 2J7 u27 y78 425819796 d39 329 6m1 82m e99 154 P5Y p33 408 n62 j43 V7Z 6S4

21b Q71 6w8 50U R1N U94 $284289215 \quad 279$ 2Y1 222 29P 716162754 4RJ $3 \mathrm{u} 7 \mathrm{~V} 5287 \mathrm{k} 4 \mathrm{k} 1 \quad 36 \mathrm{e} 1 \mathrm{Y} 3 \mathrm{OL}$ Q5y u59 $835 \mathrm{nB9} 958436$ 3H9 679455 64A 42846 n JX2 843 WI8 K42 491529 BE9 1vo 47 x 80587 P 583 35Z 896 TX8 kk2 E76 7Cb 95n A59 77h $824 \quad 645$ 195 G39 N76 251 183 V38 F63 225331 3C2 81G 329 32p 538 1M7 $3 q 5772$ bs6 p98 VB9 258 998 P8H 476776595 9A1 467697 T4s $4 q 5918$ D48 722334712 R51 387 $89 x$ 6t1 mY1 631 51p 99k w38 2s4 664 K9N 817675 N92 r85 $5864 y 5292$ sV3 yXm 3ql 5p2 C7m 83j y1e 775 9e7 288 Q2R oH3 288476 19C 73k 866 496 lj8 463 4a9 C26 238 818 38m 787 3M2 $58476 q$ Y84 qp3 711 toL M41 285634 3W2 smx X13 eb1 653955 U95 164 k75 9qS 12E 612 9d4 6R6 Oam
 855 c11 3ZF 798483 8w9 9W5 q84 8A5 532 65L 422 56X 781 699 9SS 241 $12444825 x 4 H u 354521$ CI3 kz2 fH1 gle T29 896 bjG 698287 VGY 243 R8h 766911445 L31 1VN 6U4 $925988 \quad 881815137 \quad 768666$
 f39 752 d3A $6751 z 76 Q 7475$ 85t 21e B19 $5195659 e 3$ 9LX 5R7 476 88R
 2g3 251954 x67 9M1 373 G65 351 2A8 O19 268762 U1A g43 r2V n17 537 13 g 945496 6P4 2594 F 7432243 57C 46126 e 451 B36 865 x63 622992 2N5 388 7Ko b93 42s 156 j92 673 8y1 v64 62d Yv6 314 lJ4 918236713 176729966 x58 ea3 vO7 872231623823424 e44 3461351 Gm 8 gu 537 e7W 1G3 71q DcI 9Q3 953 u57 1t7 717 6kF 2vC M5Y $1944 z 4871794$ PX4 433785 w82 73g 8b1 97j 3y2 C6U R27 7Mu 219 6n8 8b9 476 2N3 WO5 387 277 4Ag 8F8 14r U5D 8E8 2iy 311409216 O5Y h31 787 76R 3b1 143693 516579 p 3 K 216260652962335464 23w 87j pB6 p85 96z 82W 68P 769 860585917 83L T5j s16 7K2 8M1 386 4VM $6847 n 42 I 78 W 5$ A81 b53 6B1 u42 3R8 v9E j36 82j 65l 718 781 365 E25 8z2 62T L34 316 13R 989 xM3
 Ole 8YW 4s5 9E4 UTV 345839956 LG6 5QR 1v3 382 x98 s85 9N4 uX5 4YU 594358996222868 6sM L54 272 RF3 v72 7299 T6 287 6ah 449824 88a $x 59$ 4A8 O2x 682 P76 68C $866261 \quad 34 \mathrm{U} 426 \mathrm{k} 468696844 j 7147$ v1G 911 54 S U58 31p G67 305 667 X31 53N f44 1 g 6512216164 Z86 137826212 498 VG4 $71362622838 H$ 51e 93X 445 97U Yj9 19B 984586721 TA1 359 994 8E1 429473 d66 659148542883 ly6 793 w58 345 14t 1K7 66y 7M4 $3 \mathrm{z1} 935$ T45 D68 V53 6m9 82Z 569256799 39a 9D9 X33 614741 5M8 K96 J75 N49 g57 561 262 8vt 462 H82 496775 T39 217297 k18 586337 H27 251385265 r65 Y68 1F5 593672 19n 257 5Xs 923 i70 940 A33 25Q G51 82j t8v 288 F22 dX9 996 2a9 730 X39 158 8d2 664124 6q6 818 L29 853 4 L 7524 4h9 6l6 F77 776 vr7 $32685968 \mathrm{Z} 9642814 Q 7$ 8Ty CQ1 A8S 166 8V2 911233141832547 99x A59 638976 T31 $20851324 m 3 e 347434 r$ 294 G96 129 785 9p7 z61 292656 C63 Fpf 9 T 5 c 16 bPd 5 C 6 I25 443 Yn3 $8383183 W 8$ v7M 610 971 X28 953942 R46 1pZ 1I6 s71 42a G24 281 n93 388836 82W 35r 183679314249 j9h 4P8 $26232 M 679$ 9u4 83U R59 61b 604 H1A $5 \times 7186246 \mathrm{~m} 2 \mathrm{O}$ 9WJ 9Q3 SD8 7 CO q37 5P2 39 v 197434 Y83 Df4 w76 Tbq 37p 4ce 835 a35 248620 I5M $78645239254246 \mathrm{P} \quad 688$ 8w3 386 448587 99k 37 n 567 I 74 4Lf 388969 x33 2 L 3 X 4 q 564477833 6B8 6q2 77 m 97628 g 196273 7C9 9W5 b32 171 9v5 6m6 V79 2H6 212821 k 98576 $57 r$ z84 x87 775 w9d 837284 K99 n22 633 94r OpX b98 2D4 881 97W j5M 359659957242 16Z D34 624 7R7 I69 962 hs1 il3 7Y2 e31 61M U1Q gsT

D25

 486 K8Y 88z 89808966972 g V92 57Z 35a 4S2 Y33 4U6 63X Q97 RhY 181 474473 j5k 638 K7U 4il 692593449 132 11c R29 y89 Z55 157 U1E 765 958411 N56 9z4 V1W $2475212416279414 z 3$ N12 Zq9 113282 13h B35 97P 92b 571511 85X 98b 745 45i 18g 397558 1A3 h52 9dC 958 E81 Pr1 766 T79 851 N29 $42574593 F 63612151 \mathrm{~K}$ a54 U61 176695 X5j 563 c33 345989756664 8Es 77W 86t 7X6 wK6 I81 3WJ O22 B44 1A7 E37 mR1 212 7A4 885 4K1 $65187 \mathrm{t} 9396 \mathrm{cq} 191759 \mathrm{n} 2 \mathrm{c} 845 \mathrm{X14} 721 \quad 76 \mathrm{~h} 512861817$ 196423214483 15H 942 4H6 x3T N61 7h5 $6214743 r 6359$ J94 766 44w 792 56A 7Z7 847125 I83 598692 p67 r3D 824 6P3 n4w 175 32U 678527 53r 99u 396 Z5Z 124277 74r 78J 62y 277 5GX $79 \mathrm{~K} 3 Y 6$ U3v Cd9 816722 9M4 6j8 2014 Yi 9 v 2466629825 3Vk 2iM N36 $4 w 5$ J75 566934384258 x72 45D 4482 I8 711845 L12 83h x8W 181 v22 22N 959831994272 Q32 5s5 w3w 325 5j7 755125296 W4v Q5H 95V 5A4 118694 25J 788 7G6 2724922588484 mb H21 772 9H7 FJO 218 W1s NJ5

 564 9e7 857769 7B2 6R9 1m2 K39 4x1 $455768885 \quad 345$ r63 9c9 Ic4 458 H38 257673 4v4 A5d 68q $36619999 z$ L87 $935767 \quad 556$ h19 147317 5T9 f6N 414524666 y6B B98 L59 55h 817 2e5 6v5 9v7 G73 976674 5n4 h29 828 1Z9 558 x56 qe7 2872396944 s1 773 5A3 478 22e 8M4 Y6i Sp3 72Y S3l 957611 YD6 6FP 1B7 667 q73 j52 B44 570 5T3 274775 7y2 77i 216 27z 276 DO6 596 E15 1Y6 419677293 U46 4b1 216
 $78 L 46 u \quad 372$ hq6 4M4 638 52u 615 66F 343 e28 76M V89 217 x61 y94 w99
 9B7 8N5 6W4 43n p77 217958 152 65L 712 3×9 611 465 F77 996298 K65 e68 2MK 858433 ne3 889 33S 76s 774684732476 a81 mti 946 v23 82r d93 3w9 596 8U8 zta 86P 409 SZ2 2 fm 998 77b 615 13x 987 67L L65 936 vR1 p54 634594 78x pyz 135 Yz9 d7C 803949685 26i $6642 T 6179123$ vm9 2P3 217414 8N1 $123 \quad 677$ 7i5 262757457 a33 434171 Ph6 617 h81

 555771122 q49 342 1q5 98s 333 xFe 9625866949115 T 6 2S6 $3 \mathrm{Z4} 952$
 656 GIf 1f7 62M 879 3p4 1g3 6dD OT9 8y2 2w6 14q 679858 81q 1228 m 7 $16972 Y$ Of9 c24 8P9 396 O2h $5638864 \mathrm{E} 4 \times 16$ 6BQ 689 Q76 155 71X 957 6B7 755 AkA 829 9x8 751 4Ir 7hK P82 9pw 966 66h a6e 369468 f44 2J5 745 w18 417 6F4 249938731 D78 59b 816 c78 6v1 929986783992 U95 646 eu4 449 m86 996748 52h 58C 9U3 127 p8w 986 7x8 684 5j8 1V1 1RV 37i 797474 zi9 2El 248398771348 F31 326169 S61 iCb 1h3 214 l34 k12 98X 377 o35 2I4 oec 233875616 U88 6W8 81s 922154 91C A72 6g1 $1502 a 15 s 7379315$ D28 331275961981 lR2 $79 f 5 \times 6317169578498$ 12j 6E6 864 e2n 653 7e8 592 w74 4i6 5eq x68 722 S98 878 3d7 899775 MU1 xUD p29 8y3 743397893 15y 48 V 595 9Bc 445 2S3 181 77c fvS 756 772967253 9K5 575 i53 $5196826164 f j 3 M I \quad 177$ 8c6 52R 99m N78 697 345257 9u1 818 968963 79j $3984 Y 8$ C87 1F1 7H9 U34 27X 249 B78 2h3 $\begin{array}{llllllllllllllllllllllllllllll}4 \mathrm{k} 7 & 7 \mathrm{~mL} & 968 & 826 & 424 & 881 & 257 & 914 & 914 & 74 \mathrm{r} & 74 \mathrm{e} & 624 & 94 \mathrm{~V} & 854 & 67 \mathrm{Y} & 678 & 548\end{array}$

5Q9 4B4 8i6 L6u 8E3 5m5 T39 5h9 244 97X 2K5 j1E 615836674966 1M7 AFJ 6G3 184 138188 k96 $86112419819 B 63 \mathrm{~N} 5 \mathrm{z} 92 \mathrm{i} 7239 \mathrm{~T} 7$ 3G6 14M 6 C 8 C 25 7Ue 698 e71 Cy8 7Ef x7k 448 k44 Zx6 $1718725341 u 9551284$ UqA h48 m51 421 W39 9p9 712 H66 174882 8i3 916 47j 7F2 N4N 26e 6j2
 865198 mW5 98B 774441341389 OT6 524 s21 392 UD8 N89 215512 K32 qTf y8q 33f 91r EO7 446 3C7 L6U A35 343 3pP T69 7y1 7Yb 92Q 554303 f4c t24 3h1 rT4 287301 V2H 2DG 993 3qW b79 78852 S 950281866 BE3 036376873 la2 3el 1eN 115232 a53 2626 K 354 p 75184 c W74 545 7r2 941 12F 3Y1 5JE 819 Q69 j31 996 1k6 l98 $328759198 \quad 625812477$ b36 K25 14Y 124398 R88 b19 853864658158 d67 1sN 37 M 3R2 $60 \mathrm{~b} \quad 274$ 9TH m74 P93 gt4 572823 N83 Vz6 857561893517 73P 6W1 25J IaR 780 B83 899466324133 Y51 C6q 97N n2S s62 t45 63h 628 59X 26v 593126 Yot G4a 39R 82N 184 V75 $3796557 \mathrm{~b} 51859 \mathrm{Z7} 887$ 17s 3C2 2a3 s35 6o3 Dol
 899 Z12 94C 994 P44 154 4E9 9Yy 777326 96R K19 344684198 v2h 29q NtB 8HX 156824306 8BH 2uA 5J9 g11 cy7 217 68v v94 96347 T cz5 757 449 Slg 7K6 6U8 B34 36F 671 59X 8L7 319 2Xa 8X2 U93 6v1 536355 1w9 5YD WbN k53 225 89K g85 388571291 kG3 3 X 57313367 Ui 25316 r 19u $86737697 \mathrm{C} 9195 \mathrm{I9} 27137 \mathrm{Z}$ t45 81955 a i62 78y Da2 56U 1ZT 874367 698 93Q 808 5R1 949 c77 Y3h 83C 452 2C9 68h 575211 a7Z $78572 I$ b4R 4 gv 19 r 1515 C 4427 v89 e4n 45K 763 2iO 178 V91 U75 1a8 9qX Y3j 285 w76 98N 9j7 95w 5U2 48T 391 a99 4P4 x5W 96H 84s B24 956293 1d1 Y36 295 d53 52f 123581 2Q2 965778687 L9h 1XU 952 nW4 C28 3CY 381 13r 238926 q73 584 Q96 216 8F6 2526 p 7 Y 6 H 953222499 1V7 O27 Y54 868 485236 C88 lj2 678724 4F6 1s8 n54 88g 42g 4328 Z5 312992 J81 c34 $2 A 4$ b2Z i49 898854 5u5 84 k hqI 81 Z d3G lw5 le8 2Po 4HY A73 116543 3vS 41H $69449 Y$ G56 $1278742594 w 5752534$ fe3 871 ra9 xZ7 6A5 Q13 434 j92 3W7 3X9 2QM 16e 8Ep 721 k69 f1S g28 7Jr a6a 756 9C8 452288 73 f 832761673 6GL 39K 115311291 E61 g69 7q9 L65 363545 P89 699 $64 f 481688266375212$ 9s2 453826 hf1 266 e82 994 3v5 214 87S a42 381442865 6W5 791 1uS Q1B 462381721 69E 54e 87H 462291 T99 956 86w 822 23H 24J 54B D28 2i7 4H6 ZSN 638538163 P86 124922186 35i c3o 94k 35v 118292 dH6 835 U2B 473 U4R 914 h47 d68 4Xr 7Nn 918232 19p 629142988822 5i8 1n5 915155827 mvV 3P9 546 5U8 x81 kN5 761 93q 493 z5c 71z m33 295 2U9 243859 1cp 937 1dN JS4 $6575 u 7864115$ 846 5W8 I31 81549 g 385366394725 9U5 4 T 8 r42 8R3 5t2 e2m N69 c21 42 a 4 QN e43 421736623 5j5 667 63U u65 55192859 P 1sE 9 y 6 Gm 339 416791495 e26 289 h12 5V1 e27 6W2 B8R 859781916938635 71n 355 433437 ulh 319 s43 k9T V62 445 wU5 63u 918479 z33 d77 772 43p 615 B55 81n x46 157 29A 128 hw2 $92 k$ CFx 219132697225 A66 315566 43v
 5a3 927976 UF9 639 m 64626 36U 3 n 7 O53 46R 3 x 5 f 7893 k B1Z 689 t92 V9v 623 73Q 9 a 76263237 m 3 g 8243 M V4I KS8 761 z59 53C 4 S 485 k 143 1vI 5565 v 5653917 l64 7d7 6 go 174 1Go 261353 2g4 413 42T 33W 886 $6 i 7$ y24 788 2E9 8K2 437436 2a5 621 Opy t4F 287328 94u 47t 6Y2 Kq2 5S6 278 w14 Z3Q 3S2 248175846567 24N d85 148661 1L6 81379 U 236 S96 7l8 352 97s c3F 519916 1P2 9f1 33h O71 59k 931 3dx 8n5 $41348 u$ 796926 Pj7 576 21w kK2 6a2 ASQ 355 v69 raZ 3 F5 c62 zA5 869 5Hy 454

464 N6K G85 184 892387265 g84 p67 321879733558 pu8 $2 t \mathrm{P} \quad 7642$ r4 182799 O29 37d 468631353 94Q u1B 631877151 v43 g89 47x $5 z 9929$ 4 zl 657 2G6 75r 874 Z56 381 c26 812822 2g4 51S 96148246 p 35 W 643 q97 618 Y33 148198712 9r6 442 41b 549 8rw 4 w 3 18Y FX9 63z 4M6 693 109 jol 5y9 3n9 $55841 Q 1722864 W 44 i F 9 m 9995486$ W83 563 52M 4m5 dt2 $52542 r$ Fsn N6V 797753783 7SC 263 5W6 re6 475 86K 9Q3 c72 236 $98 N 769$ 7n5 885332 u25 906 6K6 79T 97753 x 509 k 85 P45 274 Vn9 1E3 2R4 127674 D81 7S1 MR4 Q3w 2E9 647313 4Zf 78j 239 hP2 412 2cK 9MC 444 7il qe3 826651 B42 2248775 P 8612 17h 5966 F 3 6uo C98 288 q24 537 6e1 842 37s h22 8M9 21f Y65 272182987979943 1z1 130 7o3 I5N 12 T 8 rV 993 94C 332415724 36H q27 858 V5i $8631 F 5633$ 33v 5j6 422 $6499471559 F Y$ X77 461 H89 11F 3r1 333678626289255 2Jx f6S 331 786 14G 753 32a z56 4193484 Z1 $34746537814 I$ q79 J62 562 7p7 dMN Bwl 72S 963 4il 976217 2v3 394482 fo7 7LM 13f 473273 T97 376139 1554497 F 32 Ab 5 Pb 248 luZ n49 291 V 304775418359 i 4686987 s5H b76 C76 756 Q79 n6J V79 111 24W 17X 771386221 67C w7r 5N3 V9o 367 $45 Y 13819668555 f 2 i 4$ Y2F 122 j94 71p 548596821 P31 99t Ld1 285 61822 X 9918732 CU 85 l 18X 62 K 769 3HL 57 t 46935792879 S 559 sXo
 385 I57 64T K86 458442151 81X W5T 944 t77 577 966 d41 $212865 \quad 6 \mathrm{~m} 9$ 795379 X48 58M 512 4gz 15M f18 C56 9i3 i72 639632 Y17 gOz l5b 714 385 p 3 z 29 u 61c 308711 2U2 67561 b 74 j w77 4Ut w84 59Z 52j 75K 4N5 I1C 4A2 142 Lbv 424 1Aa G44 578323 B88 Z37 495772 2w8 F48 985 9Dc 986 fK4 b9K 19r hW6 u3Y 392 64N 722 8S8 17u 547115 58t $3613 T O$ K12 456579 14C $52698177847 n \quad 8 P 9553 \mathrm{~T} 27443$ 3s2 b39 595 66R $915 \quad 231$ 124 2Wb 956 MvO 1m7 Qd1 oZ8 M44 411 xR8 77v 9D5 98e N23 678 1j4 3jr $1544 y 8$ u59 835976 6B8 52c 573 22j 17817485 P q42 k68 40J 77d 143 11K 34Q 63E 8G5 94m 96Z 318 b39 175 3t9 559336 n98 687 99s U95 B21 703 R27 3s8 d84 686381827585 5J8 413378379 q5E 65p $1 Y 9664$ t39 2x8 U1w 679 w31 La8 6s5 2C6 72m D67 1H1 237 u54 544819322554374 lv5 112 2s6 853641944 23e i23 W32 9V9 8P1 848624 G41 684 tM8 835
 r8f 424 6VC 215578449 is2 287 2q2 O6K 278243 12Y 46b 89d G48 2h7 1 pM 92 s 649925840 I34 704737865 WW7 $5 \mathrm{~s} 4 \times 3 \mathrm{v} 895$ 6w5 3342 MM 916 915 B92 851161685182384413522299 P84 65r 4i2 Bn3 153 1c6 9e3 $48 r 6 y 73 y 4$ q1B 723 41w 5e2 564 yO3 9Lm 454735211 3X4 938 35M 937 $3 B B 54922978 \mathrm{~s} 878$ 83N 389 91m w91 $9348758 Q 4438525288995$ e14 $78 z 6 L 9949532352945$ OJ9 4h5 OF3 56F 9Em 235 V6t 4534 LH 9 B 7 s3P Tr7 39W 73349 m 611 L66 16X 43q 22d 2f7 Qr9 M43 25d w35 3V5 X24 p5m $19631129 f 669$ 6W8 4n5 2ir 2516 K 3541533 9h8 386 Y9z 1YM 17j 395 9305342 n 5676793 t61 35g 3wO $58948 \mathrm{f} 813 \mathrm{H} 738 \mathrm{z4} \mathrm{Nj} 7 \mathrm{759} 753$ 24c u41 266425997 KL8 J47 5nL 129813 5v5 1J2 $42834 i$ X9d VO5 168 1ck 666691873941 8v7 9i5 92i 383 8CY C7W 6m7 K3C 6h2 334 G26 767435779625824779817 1A2 714 5je R61 589783 T97 Aj8 Q67 297634 65s 986 96T 3I2 1c2 a3B I72 Vd5 28E B18 O9t W88 K81 73h 52 S 191 bil 663 6aM 414661582139 x 33 Lzj 777218 A5s $656389 \mathrm{Ke9}$ p33 45r 35A 169181536981 C12 7h8 47P 78S A8L 97w 2Ud 9B1 5B1 24W 872169749 P52 23581777172 vc6 $76596 Y 649$ EY6 1Z3 11d 132888 315844914 22A 781293973233144 3iI r24 96r 781 283 1d1 7jC 4WV

25 Z 2D8 927 5N1 858623678 22Y IR7 R69 691 6W8 81i 854758 56u 25E 931134 k53 Mj2 1A6 57C G32 649 lq6 LP4 $6558 \mathrm{x} 4 \times 450869175 \mathrm{Y} 41844$ v67 Ob3 8h7 484 28D 6zc 81g 1Ec D33 228 x46 q81 Oed Z2Q 719 7n5 968 55T K28 428263392666681637 8R6 62L 168651827 73y fH3 574673 $4 \mathrm{Y} 742 \mathrm{p} 9 \mathrm{h7} 148$ 8m6 9c2 758 4Z9 R6f 835776167 5V6 4A1 G15 174983 389936 57P OA6 GW5 618 aO3 r61 232 HL4 5N9 $9389 b 33693 I 5$ g17 sz9 98X 4295756 d8 315 sOd 2197229 zE 883215484 Y22 398 DNH sM2 7Z1
 547 h56 478 J62 Z7G 766241 ny9 662 8W2 464864271475 8D7 363 58J G55 992 97c $27 \mathrm{X} 324637 \quad 862647$ s46 384 g77 259 gQ3 r66 6624424454 bm 5j5 297 u5j 918129485472 u71 5 c 3 2K5 69S 378 l38 368 Y25 189318512 A78 f23 923 51m 527 1n9 288536391 2XQ T24 78C 64w 482898943 69a Y98 u3S 74Q 8x5 3T1 87n 315 2E3 s8s 554 1X5 9P5 PA2 84y 9tE 34t li9 L75 933 ZPE k48 458 59u $82583111512 r 175233$ 193 p9m 394553 7y4 387649 o32 246 6fG 5w8 854 9yM $4 i 728 p 613658$ UY7 963466 6la 72L 315351 s65 Aq3 18U p4t 467 8r1 776 h54 1V5 6pd 47d 1W7 977 82F 514253598 k11 I32 971 1KM 9Tm t41 9b3 2Cj k77 177 $97 f$ j9d 364 s99 531 Tel A3g 15p 8cQ N73 17l rp6 573534 Q86 458 6d2 777 VG1 641 G7e 4575584 P 26 Y 7 Cc 3 M 848 f 559 N 5 v 915 K 9 X 14 E N83 48334586594 P w48 83948 i 3 c 6 O2f $655422526183 \quad 383$ J15 225 6W9 4 E 454 I 7 j 2165 9V5 91192 Q BO4 841 C91 844398 V57 952 J92 2J4 41a 726 JN5 837 f21 565 H88 637467 R73 x18 849731 Z66 le2 487 d39 391 16 x 13d S2l H32 866 7C2 631 FHe 285688 e81 3W3 D14 98497 z 93D 74k

 7r6 412 K5l e37 686952 E38 447 k88 B59 21L K51 85U 1Op 9 u 5 A53 792 G96 G72 r97 2E5 A29 Dq1 745 3r1 b15 65C 9E2 529856 L7U 97F 5274 ZZ R91 121 998 9z6 L91 3j7 971 221 646798358531929 A17 924 9v2 z64 31t 116 295957686274 G22 625 b69 786 665 tSv A99 71F 861 v33 525 2U2 823495 2J6 77g 378 5K5 Z92 141 34P $9246 \mathrm{Z5}$ A47 655 8C9 24h 988 P41 8Vv 163754 CWE 59Y 7b4 48z 39L M72 976825 uI1 692 22m 45c 81y 46 K 3 a 4 8y9 6657 ml 779 5r4 1 wf 1U9 Mg5 97U $54811953 \mathrm{c} 944 \quad 467679$ 28B 5129 ZM j2h $308163414 \quad 675 \quad 784$ h29 $35 \mathrm{r} 357 \quad 62 \mathrm{M} 8434 \mathrm{Gu} 3 \mathrm{md} 682$ 915 79a 271 k36 y2a 51b n28 59a r28 $37122 b 2773 u 7854$ u58 C71 51t 9B9 H47 538 v9L A85 972791 c55 385 N74 618 x63 36752182 F 54 Y 13R 7 c 2 Z 754585542 Y 1832 9L4 514 x4t p44 53S 7ws p27 711 s57 2R5 584 L43 8E3 M6x 355 N92 V2Z t69 234 47d 74a 585 16S 3Lk k94 q73 925 GX6 S2O 55138 X 383 35a 66H 889 AvY 36x 465885 7n1 51r 971 Kr4 4f6 6p4
 58Q VH5 5B7 689 lu2 P74 233 3qk 25s 649547 9PY D83 6J1 8p1 t82 759 328 O88 078 338288696874 w71 w56 315195241277 M44 $318684 \quad c 45$ 873693 61r 653562 58c 288 7j3 478415 6M2 59i 4M2 9m9 p68 m34 879 75 g u48 K18 432 P3s 795707736718243 k 61995 Co6 4N4 A9K 689 e12 QB3 Ij6 F6A 1kT 877 a44 771 jX9 X88 379 g15 665 95d 612145458555 T15 16j Hr3 X4f w4T 91a X48 63v 6bd 464 41y 993826 gx6 9cR 17D 354 C5d dI2 6Tn 591 6E5 894813 6xu v3s 8795 E 65 E 7357 6T1 y83 314 L22 532 89Y 163 38P jI1 $83121914595536743 Q$ j11 698 M5U 57X 553 2p6 68687846 J 194 y7W 425 9b2 795 P1N I56 hQh 394217 Z38 169749 2T5 A6f 892 Y11 782699 Nw1 627344 e21 734 76a 7t7 u3z 298186 M5K 784

759312 u23 4t5 11x $4848712914 g 2901$ Ae2 FB4 31a 8bY s22 7x8 419 18R XgG $77773258 F 682234$ N2p 997 M81 642764 3BA $89 r 497643$ s43 A31 719 92W 7Z4 631513 m5C 779 z84 d61 Y1H $8453612 H Z 116$ F45 174 89792 m Ty8 694334866767764 Z 444298362 J 459 f 69 K 396 8A4 46b 325782866 D98 563 733 27c 58b 686 Y29 AmT 93g 9v7 T2Q 625961 B77 595 Lz6 G2B m3f 224 8C9 618 6E1 44314962138414 k zs5 5c7 759 97s 915916633 SdD 549154 Y21 48T 3b2 942 K13 264 F98 5E2 43Q B5y 445 o3u 342546 t7K 316471750832274455399 w8e p99 6Tt $193 \quad 676996$ 771 8f6 $43791538 F$ 06v 9u6 $53516759 u 34323912 Q 86 \mathrm{X} 882981850$ X23 166781540 5I5 92X 415498 9N1 11T 297132 7QV 893 g14 981 4ea E96 33B z95 61B 3a6 886924 H15 1o3 285898474 q95 j34 95G 618 811 411 9QF 739 Iy2 6gU 13997714987714 E 452 y64 83j 416682665718 112 sJr 46t 9e3 106 4Q1 h16 562 62d 1p8 Y55 588 A73 656 9E4 a93 443 r3p 652 tm1 H8S 392 1Z5 qI7 761 a21 324 Ha8 633426 c65 77v 27p 847 265167699254 17s Q8e 643724065135 83U 23f K2A p7K 639 U32 955 2291124 Y 8593453 h2W 9624 g 7 8cC 9V1 866 D13 1e4 5D5 132767 82U XZ3 199452 e5V q66 b99 3D3 9jg t12 466518295 2S1 52k 42r s71 5F4 j82 11e 877 22n 6R5 448343 t42 F99 323 9U4 756252 QHJ $4532567 q r$ 18I 3q1 327 q38 543445663 D76 251151 o28 57x 3 X2 $1 \mathrm{~m} 4 \quad 39 \mathrm{~m} 2 \mathrm{~J} 3 \quad 339$ 476667 98y $2065214 Q 8474351824$ G13 321 $9 \mathrm{Z4}$ 71a 749 25N r4W 1H7 54m 73r 86Z 13885549 f 5a 342 2me 498 ic4 q5b 239172 R99 7A5 157 o49 u68 Z6i Tq4 47W 843 1d8 82i 181 61D 436 392 i46 341 1W7 311739641667 7a2 $83571754 \mathrm{I} 22858 \mathrm{~K} 27 r$ e92 679 O43 94v 182588 5D3 H13 871 1C2 $92 N$ S2I 964 K24 812 7Lp 93S 115029 878223 zX6 63G 254128630 H98 p55 51J 2U2 4p4 91W 821 36D 73H 5n6 128 3v9 W71 q2x Y62 y42 2e4 999278 1iX 82Y 94T 528 t2x 412 He4 868 95G 3GL $8433273 Z 7633$ 7aQ i7D I35 333 i73 x88 $4 \mathrm{H} 2 \quad 227$ 725 17a 274 J26 t19 59Y 614 C22 Q48 mK1 qx4 r11 296 w8X 215 s9Z c17 Z9c L17 17I E55 241 26h 616 8Vs 414 Y44 63T 732 i69 B15 45i i78 DZ1 938397 j29 61s 76B 67974 m yS9 Rs3 782389 Y2P M38 3 i3 602 1e8 183360 dmm 136
 298644 52D H81 A96 64l 7dg 7kX a85 1j5 962 725 z7b J4T $227 \quad 712182$ 56B I72 2Ty 66p 989 e78 Us2 1g3 1S1 y89 64g 8A2 236 1R5 908191293 58712874 s 977962 s6h 616087 31n x12 6A6 778 34I 38K 311773767 $89648813754 q$ y8M 1I2 79u 722929 83Q 55Y 47y $45272 \mathrm{e} 744 \quad 595 \quad 311$ 27T Q26 515 646 e69 t17 44D 7v9 7b4 2g3 4e3 mq2 E28 37i 265326197 125 j 4 H d52 218 S1N 44819189 f xQ3 9T6 $71156 q 3 A 585733 \mathrm{z}$ W49 95i 18952446799843 m 9 Y 8246 M23 331562 A23 129353867 O23 1T4 247 888796 6t5 24Q 5DB 318 h64 2465 Tq T89 z66 82O 9qn 952 Y44 431293 619997 b9u 764456 Eqg 15e I71 487 f93 2 F 21501 Y 8417 68d K42 12g 731 34E 773 6g9 997 x57 a7V 6N9 2y4 55i G25 165 667 569119 k86 263 A94 3Y5 58427742193164188351 V a87 143145 8e8 5R5 692458512 89v 372844 3Y2 6M2 4AE 229366781 59A Zn2 B66 76a n56 162 9V1 918 99v $34279 t 132$ 9S3 130 n98 89N 128581 t91 25 m 14257 b 33615345 V $1843326621 Q 4 \mathrm{kLd} 95 \mathrm{~L} 26512625428 \mathrm{H}$ Q39 617173 KLa 23 T 371268 NG2 32w 9I9 74i 147 L18 w34 98E 1K9 42K 9jH 21m 561 dih 183 qj1 136 aG1 889 s6E Tu7 824 25v 4AH Fx9 997623 3t7 282 8M1 994799687114 81E 4CD 1OB 764 Y53 174 h25 343191 92L $3 \mathrm{f7} \mathrm{~N} 6 \mathrm{z}$ 1W2 w86 835 I6r 643 455553475 Ue4 362 6FF 3 I8 716136 13H 976 8y7 693 c79 732 tD5 178

Index

A

ambigrams, 95
anagrams, 95
ananyms, 95
antagonyms, 95
antonyms, 95
association, for help with passwords, 79-80
authentication, multifactor, 130-134
autoanonyms, 95
autonyms, 96

B

bicycle lock, cracking code, 40-42
biometrics, 132-133
bracketing passwords, 63-64
brute-force attacks, 18, 40-42, 88

C

capitonyms, 96
case-sensitivity, 42, 45, 47
Character Map program, 50
character sets, 45-52
chunking, in passwords, 81
colors, in passwords, 66
combinations vs. permutations, 43-45
complexity, rule of, 122-123
confessions, as passwords, 103
contranyms, 96
crackers. See hackers

D

dance move names, as passwords, 103-104
dialects, mimicking in passwords, 114
dictionary attacks, 17-18
dongles, 132
"dragon," passwords based on word, 36-37

E

e-mail addresses, as passwords, 96-97
encrypting passwords, 13-14
even distribution, as characteristic of randomness, 26-29
exaggeration, in passwords, 81
Excel spreadsheets, 85-87
exonyms, 96

F

fake e-mail addresses, as passwords, 96-97
fake URLs, as passwords, 98
foreign words, 117-118
fun words, 64-65

G

Googling passwords, 118-119
gripes, in passwords, 82
guesses, smart, 17

H

hackers
characteristics, 12
online vs. offline attacks, 16-17
reasons to steal passwords, 12
types of attacks, 17-19
hashes, 14-15, 18
heternyms, 96
homographs, 96
homonyms, 96
homophones, 96
humans
becoming less predictable, 35 , 159-175
memorizing passwords, 54-56 predictability, 3, 5-7, 31-32
and randomness, 31-32
and social engineering, 18
humor, in passwords, 80-81
hypernyms, 96
hyponyms, 96

I

irony, in passwords, 80-81

K

key loggers, 19, 83

L

letter swapping, 104-105
license plates, 8
locks, bicycle, cracking code, 40-42
long passwords
benefits of, 54-63
creating, 63-66
as factor in strength, 58-61
memorizing, 54-56
repetition in, 65, 78, 115
rhyme in, 77-78, 99-102
typing ease, 57-58
uniqueness, 62
visualizing, 78-79
lowercase letters, 42, 45, 47

M

magnetic stripe cards, 131-132
mangled passwords, 114-119
memorizing passwords, 54-56
multifactor authentication, 130-134
mumbling, mimicking in passwords, 117

N

non-words, 117
numbers, in passwords adding as patterns, 64
making rhymes with, 99-102
overview, 45, 48-49
"nym" words, 95-96

0

obscurity, as security tool, 84-87
offensiveness, in passwords, 81-82
oronyms, 96

P

password day, 126-128
password histories, 72
password policies, 45-46, 61
passwords
aging, 70-74
association in, 79-80
based on word "dragon," 36-37
bracketing, 63-64
case-sensitivity, 42, 45, 47
changing, 126-128
chunking in, 81
colorizing, 66
common patterns, 7-9
confessional, 103
cracking, 13-21
dance move names as, 103-104
e-mail addresses as, 96-97
encrypting, 13-14
exaggeration in, 81
as form of authentication, 131
garbled randomness, 9
Googling, 118-119
gripes in, 82
and hackers, 12, 16-19
hashing algorithms for, 14-15
humor in, 80-81
irony in, 80-81
keeping track of, 83-87
license plates, 8
long, benefits of, 54-63
making complex, 19-21
making convenient, 76-91
managing, 83-87
mangling, 114-119
methods of stealing, 15-19
multiple purposes for, 4
offensiveness in, 81-82
online v s. offline attacks, 16-17
overpunctuating, 116
overview, 3-5
permutations, 43-45
phone numbers as, 104
plaintext, 13
predictability of, 3, 5-7, 31-32
random list, 5-6
random seed words for, 137-158
random sequences for, 159-175
and randomness, 33-37
reasons to change, 70
reasons to steal, 12
recording, 83-87
remembering, 76-82
repetition in, $65,78,115$
rhymes in, 77-78, 99-102
rule of complexity, 122-123
rule of secrecy, 124
rule of uniqueness, 123
strong, 19-21, 94-105
testing, 136
tools for cracking, 13, 17-18, 42, 46
typing, 82-83
URLs as, 98
visualizing, 78-79
ways to increase strength, 59-61
weak wordlist words, 7-9
weaknesses, 4-5
why they expire, 71-72
workplace policies, 45-46, 61
worst, 108-112
permutations, password, 43-45
personal secrets, as passwords, 103
phone numbers, as passwords, 104
phrases, as passwords, 66
Pi, 25
PINs. See passwords
plaintext, 13
policies, password, 45-46, 61
prefixes, 66, 98-99
Pseudo Random Number
Generator (PRNG), 32
pseudoantonyms, 96
punctuation, in passwords, 49, 51-52, 116

R

rainbow tables, 18, 62-63
random seed words, 137-158
random sequences, 159-175
randomness
characteristics, 26-31
compensating for lack, 33-37
human, 31-32
machine, 32-33
overview, 24-26
sources of data, 32-33
remembering passwords, 76-82
rhyming, 77-78, 99-102
Rock, Paper, Scissors game, 33-34
roundabout phrasings, 102-103

S

scrambling words, 115
secrecy, rule of, 124
secret questions, 87-91
secrets, as passwords, 103
seed words, 137-158
sentences, as passwords, 66
slang, 117-118
slicing and dicing, 115
slot machines, and randomness, 24
slurring, mimicking in passwords, 117
smart cards, 132
smart guesses, 17
sniffers, 19
social engineering, 18
spaces, in passwords, 50-51
special characters, in passwords, 49-52
strong passwords, 19-21, 94-105
stuttering, mimicking in passwords, 117
suffixes, 66
symbols, in passwords, 45, 49-52
synonyms, 95,96

T

title prefixes, 98-99
typing passwords, 82-83
typos, 118

U

uniqueness
as characteristic of randomness, 30-31
rule of, 123
unpredictability, as characteristic of randomness, 29-30
uppercase letters, 42, 45, 47
URLs, as passwords, 98
USB keys, 132

V

visualizing passwords, 78-79

W

Windows
allowable character codes, 46 and long passwords, 63
password complexity setting, 46
words
adding prefixes and suffixes, 66, 98-99
adding to make passwords
longer, 63
choosing three, 94-96
comparison of length, 62-63
and dialects, 114
foreign, 117-118
fun, 64-65
letter swapping, 104-105
mumbling, 117
and non-words, 117
"nym" words, 95-96
replacing characters, 116
rhyming, 77-78
roundabout phrasing, 102-103
scrambling, 115
slang, 117-118
slurring, 117
typos in, 118
weak wordlist, 7-9
worst passwords, 108-112
WWW addresses, as passwords, 98

Syngress: The Definition of a Serious Security Library

Syn•gress (sin-gres): noun, sing. Freedom from risk or danger; safety. See security.

AVAILABLE NOW!
 ORDER at
 www.syngress.com
 Securing IM and P2P Applications for the Enterprise

Marcus H. Sachs, Paul Piccard
As an IT Professional, you know that the majority of the workstations on your network now contain IM and P2P applications that you did not select, test, install, or configure. As a result, malicious hackers, as well as virus and worm writers are targeting these inadequately secured applications for attack This book will teach you how to take back control of your workstations and reap the benefits provided by these applications while protecting your network from the inherent dangers.
ISBN: 1-59749-017-2
Price: \$49.95 US \$69.95 CAN

Software Piracy Exposed

Paul Craig, Ron Honick, Mark Burnett For every $\$ 2$ worth of software pur-
AVAILABLE NOW!
ORDER at
www.syngress.com chased legally, \$1 worth of software is pirated illegally. For the first time ever, the dark underground of how software is stolen and traded over the internet is revealed. The technical detail provided will open the eyes of software users and manufacturers worldwide! This book is a tell-it-like-it-is exposé of how tens of billions of dollars worth of software is stolen every year.
ISBN: 1-93226-698-4
Price: \$39.95 US \$55.95 CAN

