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PREFACE

Applied Calculus for the Managerial, Life, and Social Sciences, Fifth Edition,
is suitable for use in a two-semester or three-quarter introductory calculus
course for students in the managerial, life, and social sciences. As with the
previous editions, our objective in Applied Calculus for the Managerial, Life,
and Social Sciences is twofold: (1) to write a textbook that is readable by
students and (2) to make the book a useful teaching tool for instructors. We
hope that with the present edition we have come one step closer to realizing
our goal. The fifth edition of this text incorporates many suggestions by users
of the earlier editions.

FEATURES

The following list includes some of the many important features of the book:
m Coverage of Topics The book contains more than enough material for
the usual applied calculus course. Optional sections have been marked with
an asterisk in the table of contents, thereby allowing the instructor to be
flexible in choosing the topics most suitable for his or her course.

m Approach The problem-solving approach is stressed throughout the book.
Numerous examples and solved problems are used to amplify each new con-
cept or result in order to facilitate students’ comprehension of the material.
Figures are used extensively to help students visualize concepts and ideas.

u Level of Presentation Our approach is intuitive, and we state the results
informally. However, we have taken special care to ensure that this approach
does not compromise the mathematical content and accuracy. Proofs of certain
results are given, but they may be omitted if desired.

B Applications The text is application oriented. Many interesting, relevant,
and up-to-date applications are drawn from the fields of business, economics,
social and behavioral sciences, life sciences, physical sciences, and other fields
of general interest. Some of these applications have their source in newspapers,
weekly periodicals, and other magazines. Applications are found in the illustra-
tive examples in the main body of the text as well as in the exercise sets. In
fact, one goal of the text is to include at least one real-life application in each
section (whenever feasible).

m Sources We have included sources for those applications that are based
on real-life data.

m Exercises FEach section of the text is accompanied by an extensive set of
exercises containing an ample set of problems of a routine, computational
nature that will help students master new techniques. The routine problems
are followed by an extensive set of application-oriented problems that test
students’ mastery of the topics.

vii



viii ™ PREFACE

m Self-Check Exercises Every section has self-check exercises, with solu-
tions, to help students monitor their own progress.

m Portfolios These interviews are designed to convey to the student the
real-world experiences of professionals who have a background in mathematics
and use it in their professions.

B Group Discussion Questions These are optional questions, appearing
throughout the main body of the text, that can be discussed in class or assigned
as homework. These questions generally require more thought and effort than
the usual exercises. Complete solutions to these exercises are given in the
Complete Solutions Manual.

TECHNOLOGY

Exploring with Technology Questions

These optional questions appear throughout the main body of the text and
serve to enhance the student’s understanding of the concepts and theory
presented. Complete solutions to these exercises are given in the Complete
Solutions Manual.

Using Technology Subsections

These pages contain optional material and are placed at the end of the sections
for which their use is appropriate. The subsections are written in the traditional
example—exercise format, with answers given at the back of the book. They
may be used in the classroom if desired or as material for self-study by
the student.

As many up-to-date and relevant applications have been introduced in
these subsections, they provide students with an opportunity to interpret
results in a real-life setting.

Student Resources on the Web

Students and instructors will now have access to these additional materials at
the Brooks/Cole World Wide Web site:
http://www.brookscole.com/product/0534378439

m Review material and practice chapter quizzes and tests
m Group projects and extended problems for each chapter

m Instructions, including keystrokes, for the procedures referenced in the text
for specific calculators (TI-82, TI-83, TI-85, TI-86, and other popular
models)

B Modified Using Technology sections for CAS systems, including the com-
mand statements for Mathematica, Maple, and other popular system

New IN THE FieTH EpiTiON

m Exercises that emphasize the understanding of concepts and theory have
been added to most sections. These new exercises are usually near the end
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of the exercise sets and take the form of true or false questions. More
questions asking for the interpretation of graphs have also been added.

More real-life applications, with sources, have been added; for example,
the narrowing gender gap, net-connected computers in Europe, the growth
of the Indian gaming industry, accumulation years for baby boomers, the
growth of online shopping, online banking usage, the document manage-
ment business, portable phone usage, growth of international e-mail, the
growth of the prison population, marijuana arrests, blood alcohol level after
drinking, senior citizen’s health care costs, and the spread of HIV. Examples
of other new applications are a coast guard patrol search mission, the
yield of an apple orchard, blowing soap bubbles, absorption of drugs, loan
amortization, and the transmission of disease.

The section on mathematical modeling has been expanded and strength-
ened. It now includes a new subsection on constructing mathematical mod-
els. A Using Technology section, Constructing Mathematical Models from
Raw Data, has also been added.

A new section, Series with Positive Terms, has been added to Chapter 11.
The test for divergence, the integral test, the convergence of p-series, and
comparison tests are discussed in this section.

More Group Discussion questions and Exploring with Technology questions
have been added.

More Using Technology sections and exercises have been added.
Coverage of the equation of a circle has been added to Chapter 1.
Instructions for the TI-83 and TI-86 calculators are on the Web site.

SUPPLEMENTS

Student’s Solutions Manual, available at extra cost to students, includes the
solutions to odd-numbered exercises. ISBN 0-534-38788-8

Instructor’s Complete Solutions Manual, available only to instructors, in-
cludes solutions to all exercises. ISBN 0-534-38787-X.

BCA Testing is a browser-based test and quiz generator with the capacity
to post quizzes on the Web with automatic grading. ISBN 0-534-38793-4.
A printed copy of the test items is available by request through your Brooks
Cole/Thomson Learning sales representative.

Graphing Calculator Supplement, by Ryan & Hester, both of Texas A&M
University, is available to both students and instructors. The manual devel-
ops selected examples and exercises and also includes additional problems
for reinforcement. It is specifically written for use with the TI line of pro-
grammable graphics calculators. ISBN 0-534-37403-4

m Applied Calculus with Microsoft Excel, by Chester Piascik, Bryant College,

illustrates key topics in applied calculus through the use of Microsoft Excel.
Explanations of Excel instructions and formulas reinforce underlying math-
ematical concepts. The author encourages students to be active learners,
asking them to verbalize and verify the mathematical concepts behind the
spreadsheet results. ISBN 0-534-37058-6
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The first two sections of this chapter contain a brief review of

algebra. We then introduce the Cartesian coordinate system, which
allows us to represent points in the plane in terms of ordered pairs
of real numbers. This in turn enables us to compute the distance
between two points algebraically. This chapter also covers straight
lines. The slope of a straight line plays an important role in the

study of calculus.

What sales figure can be predicied for next year? In
Example 10, page 46, you will see how the manager of

a local sporting goods store used sales figures from the |
previous years fo predict the sales level for next year.
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1.1 Precalculus Review |

FIGURE 1.1
The real number line

Sections 1.1 and 1.2 review some of the basic concepts and techniques of
algebra that are essential in the study of calculus. The material in this review
will help you work through the examples and exercises in this book. You can
read through this material now and do the exercises in areas where you feel
a little “‘rusty,” or you can review the material on an as-needed basis as you
study the text. We begin our review with a discussion of real numbers.

THE REAL NUMBER LINE

The real number system is made up of the set of real numbers together with
the usual operations of addition, subtraction, multiplication, and division.
Real numbers may be represented geometrically by points on a line. Such
a line is called the real number, or coordinate, line and can be constructed as
follows. Arbitrarily select a point on a straightline to represent the number zero.
This point is called the origin. If the line is horizontal, then a point at a conve-
nient distance to the right of the origin is chosen to represent the number 1.
This determines the scale for the number line. Each positive real number lies
at an appropriate distance to the right of the origin, and each negative real
number lies at an appropriate distance to the left of the origin (Figure 1.1).

Origin

Negative direction l Positive direction

T T T 4 T
-4 -3 -2 T -1 0
2

D= —=>0
e

o 4

w -+

3 —0
N4

=

A one-to-one correspondence is set up between the set of all real numbers
and the set of points on the number line; that is, exactly one point on the line
is associated with each real number. Conversely, exactly one real number is
associated with each point on the line. The real number that is associated
with a point on the real number line is called the coordinate of that point.

INTERVALS

Throughout this book, we will often restrict our attention to certain subsets
of the set of real numbers. For example, if x denotes the number of cars
rolling off a plant assembly line each day, then x must be nonnegative—that
is, x = 0. Further, suppose management decides that the daily production
must not exceed 200 cars. Then, x must satisfy the inequality 0 = x < 200.
More generally, we will be interested in the following subsets of real
numbers: open intervals, closed intervals, and half-open intervals. The set of
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all real numbers that lie strictly between two fixed numbers a and b is called
an open interval (a, b). It consists of all real numbers x that satisfy the
inequalities a < x < b, and it is called “open” because neither of its end
points is included in the interval. A closed interval contains both of its end
points. Thus, the set of all real numbers x that satisfy the inequalities a <
x = b is the closed interval [a, b]. Notice that square brackets are used to
indicate that the end points are included in this interval. Half-open intervals
contain only one of their end points. Thus, the interval [a, b) is the set of all
real numbers x that satisfy a = x < b, whereas the interval (a, b] is described
by the inequalities a < x = b. Examples of these finite intervals are illustrated
in Table 1.1.

Table 1.1 Finite Intervals

Interval Graph Example
Open (a, b) 3 x (-2,1) ———t——t—>x
a b -3 -2-1 01 2 3
Closed [a, b] t . x [—1,2] et x
a b -1 0 1 2
Half-open (a, b] : ;'7 x (3, 3] (l) ’l i ; ; x
3
Half-open [a, b) ; ; x [-2,3) ﬁ(') i i ; x
—2

In addition to finite intervals, we will encounter infinite intervals. Exam-
ples of infinite intervals are the half lines (a, ®), [a, ©), (=%, a), and (—©, a]
defined by the set of all real numbers that satisfy x > a, x = a, x < a, and
Xx = a, respectively. The symbol «, called infinity, is not a real number. It is
used here only for notational purposes in conjunction with the definition of
infinite intervals. The notation (—oo, ) is used for the set of all real numbers
x since, by definition, the inequalities —% < x < % hold for any real number
x. Infinite intervals are illustrated in Table 1.2.

Table 1.2 Infinite Intervals

Interval Graph Example

(a, ) ¢ x (2, ) —t—F x
a 0 1 2

[a, =) F X [—1, ») .’ } X
a -1 0

(=, a) > x (==, 1) — x

a 0 1
(=, a] 3 x —o0, —3] ——t——t—>x

N}
|
=
(=]
—_
[\
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Properties of Inequalities

EXAMPLE 1

SOLUTION v

PROPERTIES OF INEQUALITIES

In practical applications, intervals are often found by solving one or more
inequalities involving a variable. In such situations, the following properties
may be used to advantage.

If a, b, and c are any real numbers, then

Example
Property 1 Ifa<bandb <c, 2<3and3<8,502<8
then a < c.
Property 2 If a < b, then —5< —=3,s0 =5 + 2 < —3 + 2; that is,
a+c<b+ec -3 < -1
Property 3 Ifa<bandc >0, —5 < =3, and since 2 > 0, we have
then ac < bc. (=5)(2) < (=3)(2); that is, —10 < —6
Property 4 If a < b and c <0, —2 < 4, and since —3 < 0, we have
then ac > bc. (=2)(=3) > (4)(=3); that is, 6 > —12

Similar properties hold if each inequality sign, <, between a and b is replaced
by =, >, or =.

A real number is a solution of an inequality involving a variable if a true
statement is obtained when the variable is replaced by that number. The set
of all real numbers satisfying the inequality is called the solution set.

Find the set of real numbers that satisfy —1 = 2x — 5 < 7.

Add 5 to each member of the given double inequality, obtaining

4 =2x <12

Next, multiply each member of the resulting double inequality by 1/2, yielding

2=x<6

Thus, the solution is the set of all values of x lying in the interval [2, 6).



EXAMPLE 2

SOLUTION v

Absolute Value

FIGURE 1.2
The absolute value of a number
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The management of Corbyco, a giant conglomerate, has estimated that x
thousand dollars is needed to purchase

100,000(—1 + V1 + 0.001x)

shares of common stock of the Starr Communications Company. Determine
how much money Corbyco needs in order to purchase at least 100,000 shares
of Starr’s stock.

The amount of cash Corbyco needs to purchase at least 100,000 shares is
found by solving the inequality

100,000(—1 + V1 + 0.001x) = 100,000

Proceeding, we find

-1+V1+0001x=1
V1+0.00lx =2

1+0.00lx=4 (Square both sides.)
0.001x =3
x = 3000

so Corbyco needs at least $3,000,000.

ABSOLUTE VALUE

The absolute value of a number a is denoted by |a| and is defined by

a ifa=0
la] = .
—a ifa<0

Since —a is a positive number when a is negative, it follows that the absolute
value of a number is always nonnegative. For example, |5| = 5 and |-5| =
—(—5) = 5. Geometrically, |a| is the distance between the origin and the point
on the number line that represents the number a (Figure 1.2).

<—|5|—><—|5|— <=—|a|—s=—I|a|—>

| | | | | |
T T T X T T T X

-5 0 5 -a 0 a

(a) (b)
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Absolute Value Properties
If a and b are any real numbers, then

Example
Property 5 |—a| = |q |-3| = =(=3) =3 = |3
Property 6 |ab| = |a] [b] (@(=3)|=|-6]=6
=[2]1-3|
-3 3] 3 |-3
Property 7 al _ld (b#0 ‘ﬁ_)‘ = ‘—‘ ===
YT bl Tl S e Fl e
Property 8  |a + b| < |a| + || 8+ (=5)|=31=3
=8+ -5
=13

Property 8 is called the triangle inequality.

EXAMPLE 3 Evaluate each of the following expressions:
a. |[m—5+3 b. V3 —2| + 2 - V3

a. Since 7 — 5 < 0, we see that |7 — 5| = —(7 — 5). Therefore,
m =5 +3=—-(r—-5)+3=8—-nm

b. Since V3 — 2 < 0, we see that [V3 — 2| = —(V/3 — 2). Next, observe that
2 —V3>0,5s02 — V3| =2 — V3. Therefore,

V3 —2|+2-V3=—(V3-2)+2—-V3)
=4-2V3=22-V3)

EXPONENTS AND RADICALS

Recall that if b is any real number and n is a positive integer, then the
expression b" (read “b to the power n”’) is defined as the number

pP=beb-b+---+b

——

n factors

The number b is called the base, and the superscript # is called the power of
the exponential expression b". For example,

5=2¢2:2:2.:0 = Zl === Z2) ==
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If b # 0, we define
=1

For example, 2° = 1 and (—#)° = 1, but the expression 0° is undefined.
Next, recall that if n is a positive integer, then the expression b is defined
to be the number that, when raised to the nth power, is equal to b. Thus,

(bl/n)n =5bH
Such a number, if it exists, is called the nth root of b, also written /b.

Observe that the nth root of a negative number is not defined when # is even.
For example, the square root of —2 is not defined because there is no real
number b such that b*> = —2. Also, given a number b, more than one number
might satisfy our definition of the nth root. For example, both 3 and —3
squared equal 9, and each is a square root of 9. So, to avoid ambiguity, we
define b'" to be the positive nth root of b whenever it exists. Thus, V9 =
912 =3,

Next, recall that if p/q (p, g, positive integers with g # 0) is a rational
number in lowest terms, then the expression b is defined as the number
(bY9)? or, equivalently, Wb, whenever it exists. Expressions involving negative
rational exponents are taken care of by the definition

1

e = _—_
b br/a

Definition of a" (a > 0)

Example Definition of a” (a > 0) Example

Integer exponent: If n is a
positive integer, then

(n factors of a)

Zero exponent: If 1 is equal

to zero, then

a=1
(0°is not defined.)

Negative exponent: If 7 is a

positive integer, then

I
ar=- (a#0)

Fractional exponent:
a. If n is a positive integer,

25-2.2.2-2-2 then
(5 factors) a' or Va 162 = V16
=32 denotes the nth root of a. =4
b. If m and n are positive in-
tegers, then
7 =1 am =Na" = (Va)y" 83 = (V8
=4
c. If m and n are positive in-
tegers, then
L, 1 I | _ 1
622@ a /Zam/n (a#O) 93/22@




10

1 = PRELIMINARIES

A

EXAMPLE 4

Examples are
2% = (2'7) ~ (1.4142)° ~ 2.8283
and

T 1 1 1
45/2_(41/2)5_5_5

The rules defining the exponential expression a”, where a > 0 for all rational
values of n, are given in Table 1.3.

The first three definitions in Table 1.3 are also valid for negative values
of a, whereas the fourth definition is valid only for negative values of a when
n is odd. Thus,

(—8)B=V-8=-2 (nis odd.)
(—8)"? hasnoreal value  (niseven.)

Finally, note that it can be shown that a" has meaning for all real numbers n.
For example, using a pocket calculator with a “y** key, we see that 22~
2.665144.

The five laws of exponents are listed in Table 1.4.

Table 1.4 The Laws of Exponents

Law Example
1. a"-q" = am+n x2 . x3 — x2+3 — xS
am . x7 3
2. —=a" (a#0) F=x74=x3
3 (am)n = q"" (x4)3 — x4~3 — x12
4. (ab)" = a" - b" 2x)* = 2* - x* = 16x*
a\"_ a x) x* X
s(4)-2 =0 (5)-%-%

These laws are valid for any real numbers a, b, m, and n whenever the
quantities are defined.

Remember, (x%)* # x°. The correct equation is (x2)? = x*3 = x°.

The next several examples illustrate the use of the laws of exponents.
Simplify the expressions:

1654 32 -2
a 3@ b o (6% d (y)? e (

161/2 xl/4
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a. (3x?)(4x%) = 12x*" = 12x° (Law 1)
16 5/4-1/2 3/4 \4/_ 3 3
b. 1612 =16 =164 = (V16 =2°=8 (Law 2)
c. (62°) = 6233 = 6% =6 = 36 (Law 3)
4
d. ()2 = (1F) Ay )2 = xBDYA) = yopd = % (Law 4)

e

— ==t = — Law 5
i ) -1/2 y3 ( )

y3/2 -2 B y(s/z)(—Z) _ y—s x12
X

We can also use the laws of exponents to simplify expressions involving
radicals, as illustrated in the next example.

EXAMPLE 5 Simplify the expressions. (Assume x, y, and n are positive.)
— 6
a. V16x'y® b. V12mn - V3m'n c. V27

Vay

a. W = (16xy8)114 = 1614 « x¥4y84 = 2xy?

b. V12min - V3m'n = V36mtn? = (36mtn?)"2 = 362 « m¥2n?? = 6m'n

/276 _ (_27x6)1/3 B 071363 L 3_xz
\3/8_y3 - (8y3)1/3 - 81/3y3/3 - 2y

When a radical appears in the numerator or denominator of an algebraic
expression, we often try to simplify the expression by eliminating the radical
from the numerator or denominator. This process, called rationalization, is
illustrated in the next two examples.

EXAMPLE & Rationalize the denominator of the expression S .
2Vx
B3 Ve Vi 3wa 3 o
2Vx 2Vx Vx 2Vx 2x 2
EXAMPLE 7 Rationalize the numerator of the expression 2xx
T 3Vx _3Vx Vx_3Va? _ 3x _ 3
2¢ 2 Vx 2Vx 2Vx 2V
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In Exercises 1-4, determine whether the
statement is true or false.

2.5

. = — . — — L = >

1. -3 <-20 2. -5=-5 33 6
5 11
4._€< E

In Exercises 5-10, show the given interval on
a number line.

5. (3,6) 6. (-2, 5]

8. [-% 4]

7. [-1, 4)

9. (0, ) 10. (<0, 5]

In Exercises 11-20, find the values of x that
satisfy the inequality (inequalities).

1L 2x +4 <8 12. =6 >4 + 5x
13. —4x =20 14. —12 = —3x
15. -6 <x—-2<4 16 0=x+1=4
17.x+1>4 or x+2<-1
8.x+1>2 or x—1<-2
19.x+3>1 and x—2<1

20 x —4=1 and x+3>2

In Exercises 21-30, evaluate the expression.

21. |6 + 2| 22. 4 + |4
|-12 + 4] 02— 14
23. [16 — 12| 24 1624
25. \V3|-2| + 3|- V3| 26. |1 + V2|-2|
27, |r — 1] + 2 28. |7 — 6| — 3

29. V21| +]3- V2|
30. 2V3 - 3| — V3 -4

In Exercises 31-36, suppose a and b are real
numbers other than zero and that a > b. State
whether the inequality is true or false.

32. 451

3. b —a>0 b

33. 2> b 34, —>

Q=
S| =

35. @ > b? 36. —a < —b

In Exercises 37-42, determine whether the
statement is true for all real numhbers a and b.

37. |—al=a 38. |pY = b?
39. la — 4] =4 — q 40. la + 1| = |a| + 1

M la+bl=ld+ b 42 |a-b|=ld - |

In Exercises 43-58, evaluate the expression.

43. 277 44, 8
1 0
45. <7§> 46. (7'?)*

O (]

775_72 -1 9 -1/2
49. (—7_2 > 50. <R>

51. (125%3)712 52. V/2°
53. V32 54. 3/_—8
V8 27
16581612 93.95 -12
55. T 56. ( R )
625 . 6719

57167 (8)"° 88 S

In Exercises 59-68, determine whether the
statement is true or false. Give a reason for
your choice.

59. x* + 2x* = 3x* 60. 3222 = 62

61. x3 - 2x%2 = 2x° 62. 33 +3 =34
24}:

63. 5 =24 64. (22 -3 =6
1 1 42 q

05 == T

67. (12712 =1 68. 527 - (25)3 = 25



In Exercises 69-74, rewrite the expression us-
ing positive exponents only.

69. (xy)2 70, 3513 . 5778
x—1/3
71. W 72. Vx'-V9x?

73. 12%s + 1)7° 4. (x — y)(x 1+ y ™

In Exercises 75-90, simplify the expression.
(Assume x, y, r, s, and t are positive.)

713

75. % 76. (49x2)1"
o Sxby’
77. (xy73)(x3y%) 78. 2y
x3/4 x3y2 2
. T 80. (-

x3 —213 e =12

o (2)" w ()
V() ()
N —

85. Vx 2. Vi4xS 86. V81xty*
87. —V16x%y? 88. Yyt

89. Vo6dxty? 90. V27r° - Vst

In Exercises 91-94, use the fact that 2'2 =~
1.414 and 3'2 ~ 1.732 to evaluate the expres-
sion without using a calculator.

91. 237 92, 82 93. 94 94. 62

In Exercises 95-98, use the fact that 102 =
3.162 and 10" =~ 2.154 to evaluate the expres-
sion without using a calculator.

95. 10 96. 1000 97. 10%
98. (0.0001)"'"

In Exercises 99-104, rationalize the denomi-
nator of the expression.

100. 3 101.

3
2Vx Vxy

2y
99, e
V3y
5x? 1 2x
102. 103. — 104.  |—
V3x Vx y
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In Exercises 105-110, rationalize the numera-
tor of the expression.

2Vx Vx 2y
105. =~ 106. = 107. 2
3/ 2 3/ 2
108, 3|2 109. VX2 110, =2
3y y 2x

111. DRrIVING RANGE OF A CAR  An advertisement for a certain
car states that the EPA fuel economy is 20 mpg city and
27 mpg highway and that the car’s fuel-tank capacity is
18.1 gal. Assuming ideal driving conditions, determine
the driving range for the car from the foregoing data.

112. Find the minimum cost C (in dollars), given that
5(C =25 =175+ 25C

113. Find the maximum profit P (in dollars) given that
6(P — 2500) = 4(P + 2400)

114. CeLsius AND FAHRENHEIT TEMPERATURES The relationship
between Celsius (°C) and Fahrenheit (°F) temperatures
is given by the formula

C=%(F—32)

a. If the temperature range for Montreal during the
month of January is —15° < °C < —5°, find the range
in degrees Fahrenheit in Montreal for the same period.
b. If the temperature range for New York City during
the month of June is 63° < °F < 80°, find the range in
degrees Celsius in New York City for the same period.

115. MEETING SALES TARGETS A salesman’s monthly commis-
sion is 15% on all sales over $12,000. If his goal is to
make a commission of at least $3000 per month, what
minimum monthly sales figures must he attain?

116. MArKUP oN A CAR  The markup on a used car was at
least 30% of its current wholesale price. If the car was
sold for $5600, what was the maximum wholesale price?

117. QuaLity ConTROL  The PAR Manufacturing Company
manufactures steel rods. Suppose the rods ordered by
a customer are manufactured to a specification of 0.5 in.
and are acceptable only if they are within the tolerance
limits of 0.49 in. and 0.51 in. Letting x denote the di-
ameter of a rod, write an inequality using absolute value
to express a criterion involving x that must be satisfied
in order for a rod to be acceptable.

118. QuaLiTYy ConTROL The diameter x (in inches) of a batch
of ball bearings manufactured by PAR Manufacturing
satisfies the inequality

|x — 0.1] = 0.01
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120.
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What is the smallest diameter a ball bearing in the batch
can have? The largest diameter?

MeeTING PROFIT GOALS A manufacturer of a certain
commodity has estimated that her profit in thousands
of dollars is given by the expression

—6x2 + 30x — 10

where x (in thousands) is the number of units produced.
What production range will enable the manufacturer
to realize a profit of at least $14,000 on the commodity?

DistriBuTION OF INCOMES The distribution of income in
a certain city can be described by the exponential model
y = (2.8 - 10")(x)"'5, where y is the number of families
with an income of x or more dollars.

a. How many families in this city have an income of
$20,000 or more?

1.2 Precalculus Review Il

b. How many families have an income of $40,000 or
more?
c¢. How many families have an income of $100,000 or
more?

In Exercises 121-124, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

121. If a < b,thena —c> b — c.
122. |a — b| = |b — 4

123. |a — b| = |b]| + |a]

124. Va* — b = |a| — |b]

OPERATIONS WITH ALGEBRAIC EXPRESSIONS

In calculus we often work with algebraic expressions such as

2x4/3 _ x1/3 + 1,

2 3wy+2
Vi x+1°

2xr—x — 2x3+2x + 1

An algebraic expression of the form ax”, where the coefficient a is a real
number and z is a nonnegative integer, is called a monomial, meaning it
consists of one term. For example, 7x* is a monomial. A polynomial is a
monomial or the sum of two or more monomials. For example,

X*+4x+4,  xX*+5  x+3xF+3, xytaxyty

are all polynomials.

Constant terms and terms containing the same variable factor are called
like, or similar, terms. Like terms may be combined by adding or subtracting
their numerical coefficients. For example,

3x +7x=10x and %xy + 3xy = %xy

The distributive property of the real number system,
ab +ac=a-(b + c)

is used to justify this procedure.
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To add or subtract two or more algebraic expressions, first remove the
parentheses and then combine like terms. The resulting expression is written
in order of decreasing degree from left to right.

a, (2x* + 3% + 4x + 6) — (Bx* + 9 + 3x?)
=2x*+3x3 4+ 4x + 6 — 3x* — 9x3 — 3x? (Remove
parentheses.)
=24 =3x*+3x* -9 -3+ 4x + 6

=—xt—6x—-3x2+4 +6 (Combine like terms.)

b. 268 — {2 —[t— (2t —1)] + 4}
=20 —{ — [t — 2t + 1] + 4}

=2 —{r - [+ 1]+ 4} (Remove parentheses and combine
like terms within brackets.)

=280—-{+rt—1+ 4} (Remove brackets.)
=20 — {2+t + 3} (Combine like terms within the braces.)
=28—-1P—-rt-3 (Remove braces.)

An algebraic expression is said to be simplified if none of its terms are similar.
Observe that when the algebraic expression in Example 1b was simplified,
the innermost grouping symbols were removed first; that is, the parentheses
() were removed first, the brackets [ ] second, and the braces {} third.
When algebraic expressions are multiplied, each term of one algebraic

expression is multiplied by each term of the other. The resulting algebraic
expression is then simplified.

Perform the indicated operations:

a. (x* + 1)(3x* + 10x + 3) b. (¢! + e e — e'(e' — e7)

a. (x2 4+ 1)(3x* + 10x + 3) = x*(3x*> + 10x + 3) + 1(3x* + 10x + 3)
= 3x*+ 10x3 + 3x2 + 3x* + 10x + 3
=3x* 4+ 10x3 + 6x* + 10x + 3

b. (e +e e —e(e' —e") =&+ —e¥ + ¢
= —e¥+ e+ e
=1+1 (Recall that ¢ = 1.)
=2

Certain product formulas that are frequently used in algebraic computations
are given in Table 1.5.

* The symbol ® indicates that these examples were selected from the calculus portion of the text in order
to help you review the algebraic computations you will actually be using in calculus.
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SOLUTION v

Formula Example
(a + b)? = a® + 2ab + b? (2x +3y)> = 2x)* + 2(2x)(3y) + (3y)*
=4x% + 12xy + 9)*
(a — b)? = a®> — 2ab + b? (4x — 2y)? = (4x)* — 2(4x)(2y) + (2y)*
= 16x2? — 16xy + 4y*
(a+b)a—b)=a -0V 2x +y)2x —y) = 2x)* = (y)
=4x? —y?
FACTORING

Factoring is the process of expressing an algebraic expression as a product of
other algebraic expressions. For example, by applying the distributive prop-
erty, we may write

3k —x=xBx - 1)

The first step in factoring an algebraic expression is to check to see whether
it contains any common terms. If it does, the greatest common term is then
factored out. For example, the common factor of the algebraic expression
2a* + 4ax + 6a is 2a, because

2a* + 4ax + 6a = 2a - ax + 2a-2x + 2a -3 = 2a(ax + 2x + 3)

Factor out the greatest common factor in each of the following expressions:

a. —0.32 + 3 b. 2x3? — 3x1? ¢ 2ye” + 2xyde’
d. 4x(x + 1)1 — 2x? (%) (x+1)12

a. —0.3¢ + 3t = —0.3¢(r — 10)
b. 2x¥? — 3x1? = x1(2x — 3)
¢ 2y + 2xy’e” = 2yev’ (1 + xy?)

d. 4x(x + 1) — 2x? (%) (x+ 1) =dx(x + D — x(x + 1)7'?

=x(x + D) "4(x + D"(x + 12 — x]

=x(x + 1)"[4(x + 1) — x]

=x(x+1)"@4x +4—x)=x(x +1)"(3x + 4)
Here we select (x + 1)~ as the common factor because it is “‘contained” in
each algebraic term. In particular, observe that

(x + 1)712x + 1)12(x + 1)1 = (x + 1)1

Sometimes an algebraic expression may be factored by regrouping and
rearranging its terms and then factoring out a common term. This technique
is illustrated in Example 4.
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Factor:

a. 2ax + 2ay + bx + by b.3x\/;—4—2\/;+6x

a. First, factor the common term 2a from the first two terms and the common
term b from the last two terms. Thus,

2ax + 2ay + bx + by = 2a(x + y) + b(x + y)

Since (x + y) is common to both terms of the polynomial, we may factor it
out. Hence,

2a(x +y) + b(x +y) = (x + y)(2a + b)
b. 3xVy—4-2Vy+6x=3xVy—-2Vy+6x—4
=Vy(3x —2) +2(3x — 2)
=(Bx—2)(Vy+2)
The first step in factoring a polynomial is to find the common factors.
The next step is to express the polynomial as the product of a constant and/
or one or more prime polynomials.

Certain product formulas that are useful in factoring binomials and trino-
mials are listed in Table 1.6.

Table 1.6

Formula Example

Difference of two squares
2=y =(x+y)(x —y) x2 =36 =(x + 6)(x — 6)
8x2 =2y =2(4x? — y?)
=22x + y)2x — y)
9—-a*=0CB+d)3 - d)
Perfect-square trinomial
x4+ 2xy +y*=(x +y) x2+ 8x + 16 = (x + 4)?
x?—=2xy +y'=(x —y) 4x> — 4xy + y* = 2x — y)?
Sum of two cubes
XHy=x+ty)P-xy+y) 22+27=7+ (3)
=(z+3)(z?—-3z+9)
Difference of two cubes

=y = (- y)? Fay 4y 8 =y = (2x) - ()
= 2x — y¥)(4x? + 2xy* + yY)

The factors of the second-degree polynomial with integral coefficients
px*+qgx +r

are (ax + b)(cx + d), where ac = p, ad + bc = q, and bd = r. Since only a
limited number of choices are possible, we use a trial-and-error method to
factor polynomials having this form.
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For example, to factor x> — 2x — 3, we first observe that the only possible
first-degree terms are

(x )(x ) (Since the coefficient of x? is 1)

Next, we observe that the product of the constant terms is (—3). This gives
us the following possible factors:

(x =D +3)
(x+ 1D(x—3)

Looking once again at the polynomial x*> — 2x — 3, we see that the coefficient
of x is —2. Checking to see which set of factors yields —2 for the coefficient
of x, we find that

Coefficients of inner terms Factors
Coefficients of outer terms )
l J Outer terms
D@ + MHB) =2 (x — 1) + 3)
)
Inner terms

Coefficients of inner terms

l Coefficients of outer terms Outer terms
J
H@) + (1)(=3) = -2 (x+ D~ 3)
)

Inner terms
and we conclude that the correct factorization is
X =2x—-3=(x+1)x—3)

With practice, you will soon find that you can perform many of these steps
mentally and the need to write out each step will be eliminated.

Factor:

a. 3x2+4x — 4 b. 3x? — 6x — 24

a. Using trial and error, we find that the correct factorization is
3x?+4x —4=(0CBx —2)(x +2)

b. Since each term has the common factor 3, we have
3x? — 6x — 24 = 3(x> — 2x — 8)

Using the trial-and-error method of factorization, we find that

X =2x—8=(x—4)(x +2)



Quadratic Formula

1.2 = PRECALCULUS REVIEW I 19

Thus, we have

3x2 — 6x — 24 =3(x — H(x +2)

Roots oF PoLYNOMIAL EQUATIONS
A polynomial equation of degree # in the variable x is an equation of the form
a,x" + a,.x" '+ - +a,=0

where n is a nonnegative integer and ay, a4, ..., a, are real numbers with
a, # 0. For example, the equation

2+ 8 —6x*+3x+1=0

is a polynomial equation of degree 5 in x.

The roots of a polynomial equation are precisely the values of x that
satisfy the given equation.* One way of finding the roots of a polynomial
equation is to first factor the polynomial and then solve the resulting equation.
For example, the polynomial equation

X =3x2+2x=0
may be rewritten in the form
x(x*=3x+2)=0 or x(x—-1x-—-2)=0

Since the product of two real numbers can be equal to zero if and only if one
(or both) of the factors is equal to zero, we have

x =0, x—1=0, or x—2=0

from which we see that the desired roots are x = 0, 1, and 2.

THE QUADRATIC FORMULA

In general, the problem of finding the roots of a polynomial equation is a
difficult one. But the roots of a quadratic equation (a polynomial equation
of degree 2) are easily found either by factoring or by using the following
quadratic formula.

The solutions of the equation ax? + bx + ¢ = 0 (a # 0) are given by

x:—bt\/bz—4ac
2a

* In this book, we are interested only in the real roots of an equation.
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Solve each of the following quadratic equations:
a2x*+5x—-12=0 b. x> = —3x + 8

a. The equation is in standard form, witha = 2, b = 5, and ¢ = —12. Using
the quadratic formula, we find

- —b* Vb’ —dac_ -5+ V5 -4(2)(=12)

2a 2(2)
_-5*VI21 =511
4 4
3
= —4 or 5

This equation can also be solved by factoring. Thus,

22 +5x - 12=2x = 3)(x+4) =0
from which we see that the desired roots are x = 3/2 or x = —4, as ob-
tained earlier.

b. We first rewrite the given equation in the standard form x + 3x — 8 = 0,
from which we see thata = 1, b = 3, and ¢ = —8. Using the quadratic formula,
we find

—b* Vb’ —dac _ —3*V3 —41)(-8)

2a 2(1)
_ -3 +V4l
2
That is, the solutions are
_3% V4 17 and _S_T VAL 47

In this case, the quadratic formula proves quite handy!

RATIONAL EXPRESSIONS

Quotients of polynomials are called rational expressions. Examples of rational
expressions are

6x — 1 3x2y® — 2xy 2
2x +3° 4x ’ Sab

Since rational expressions are quotients in which the variables represent
real numbers, the properties of the real numbers apply to rational expressions
as well, and operations with rational fractions are performed in the same
manner as operations with arithmetic fractions. For example, using the proper-
ties of the real number system, we may write

ac _a

_ a,_a
bc b b b

where a, b, and c are any real numbers and b and c are not zero.

C_
c
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Similarly, using the same properties of real numbers, we may write

(x+2)(x=3) x+2

= #2,3
(x—2)(x-3) x-2 (r#2,3)
after ““canceling” the common factors.
A An example of incorrect cancellation is
B4 v
3
Instead, we need to write
3+4x 3 4x 4x
3 33 ! 3

A rational expression is simplified, or in lowest terms, when the numerator
and denominator have no common factors other than 1 and —1 and the
expression contains no negative exponents.

® MG

2 —
x*+2x—-3 b.

Simplify the following expressions:
[(F+4)(2t—4) — (= 4t + 4)(21)]

a.
x2+4x+3

SOLUTION v

(£ + 4y

X+2x—-3 (x+3)(x—-1) x-—1

A ¥ +dx+3 x+3)E+1) x+1
b. [(F+4)(2t —4) — (£ — 4t + 4)(21)]

(£ + 4y

20— 42 +8—16 -2+ 82— g  (Caryoutthe

= ) 2 indicated
(t + 4) multiplication.)

_4r—16 (Combine like terms.)
= ombine like terms.

(£ +4)y

4 — 4)
= m (Factor.)

The operations of multiplication and division are performed with algebraic
fractions in the same manner as with arithmetic fractions (Table 1.7).

Operation

Example

If P, O, R, and S are polynomials, then

Multiplication

65 os (@570
Division
g—§=§-%=P—i (O,R,S #0)

2x (x+1) _ 2x(x+1)_ 2x°+2x
y -1 y(y—-1) y -y

x’+3 y+1_x*+3  x _x*+3x
R y Y+l y+y
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When rational expressions are multiplied and divided, the resulting expres-
sions should be simplified.

EXAMPLE 8 Perform the indicated operations and simplify:
2x—8 x*+4x+4
x+2 x*-16
0 2x—8 xX*+4x+4
A
_2x—4) . (x +2)
x+2 (x+4H)x—4

_ 2 —Hx +2)(x +2) [Cancel the common
x+2)(x+4)(x—4) factors (x + 2)(x — 4).]

_2(x+2)

 ox+4

For rational expressions, the operations of addition and subtraction are
performed by finding a common denominator of the fractions and then adding
or subtracting the fractions. Table 1.8 shows the rules for fractions with equal
denominators.

Table 1.8

Operation Example

If P, O, and R are polynomials, then

Addition
P QO P+Q0 2x 6x 2x + 6x 8x
== + = =
R R R (R#0) x+2 x+2 x+2 x+2
Subtraction
P QO _P-Q 3y y _3y—-y_ 2y
== = R - = =
R R R (R#0) y—Xx y—x y—x y—Xx

To add or subtract fractions that have different denominators, first find
a common denominator, preferably the least common denominator (LCD).
Then carry out the indicated operations following the procedure described in
Table 1.8.

To find the LCD of two or more rational expressions:

1. Find the prime factors of each denominator.

2. Form the product of the different prime factors that occur in the denomina-
tors. Each prime factor in this product should be raised to the highest
power of that factor appearing in the denominators.

X X X
__|.__
A 2+y7é2 y
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@ EXAMPLE © Simplify:

2x 6(3x?%) 1 1
. + .
a xX+1 x*+2 b x+h x

L2 66
X241 X¥+2
2x(+2)+6(Bx)(2+1)
B (¥ + 1)(x* +2)
_ 2x*+ 4x + 18x* + 18x?
P+ DE+2)
_ 20x* + 18x> + 4x
(PP +2)
~ 2x(10x* + 9x + 2)
P+ +2)
h 11 x Llx+h [LCD = (x)(x + h)]
xt+h x x+h x x x+h
_ X  x+h
Cx(x+h) x(x+h)
_x—x—h
~ x(x+h)
_ —h
~x(x+h)

[LCD = (x* + 1)(x* + 2)]

OTHER ALGEBRAIC FRACTIONS

The techniques used to simplify rational expressions may also be used to
simplify algebraic fractions in which the numerator and denominator are not
polynomials, as illustrated in Example 10.

EXAMPLE 10 Simplify:

-2 -2

x+1 bx‘H—y‘1
4 Txoy
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SOLUTION v 1+ 1 1.x+1+ 1 x+1+1
x+1: x+1

a x+1: x+1
’ 4 x 4 x2—4
X — - X———
X X X X
_x+t2  x x+2 X

Txt+l -4 x+1 (x+2)(x-2)

_ X
B (x+1D(x—2)

1 1 y+x
_+_
bx1+y’1 Xy _ xy <7"7]>
'xfz—y’2 l_l_y2_x2 S
Xy )
:y+x. x2y2 :y+x. (xy)2

xy Y -x xy (y+a)(y—x)

EXAMPLE 11 Perform the given operations and simplify:

X222+ 1)1 4xd —6x2 +x — 2 122
: L= eVt
1 xa_hee il P Gaig T ovEAS

a PRI+ D" A’ -6 +x -2 x(@x -6+ x—2)
’ x—1 x(x—1DRx2+1)  (x—1)X2x2+1)"1"

_ x(4x* —6x*+x —2)
(x —1)P@2x2+1)'?

2 2
L+6\/2x2+ =L+6(2x2+3)1’2

> V2xt+3 (2x* +3)1?
_12x% + 6(2x% + 3)12(2x? + 3)12
- (2x2 + 3)12

_ 1207+ 6(2x2 + 3)
(2x* + 3)17

_ 24>+ 18 _ 6(4x> +3)
3" Varts
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SOLUTION v

EXAMPLE 13

SOLUTION v
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RATIONALIZING ALGEBRAIC FRACTIONS

When the denominator of an algebraic fraction contains sums or differences
involving radicals, we may rationalize the denominator—that is, transform
the fraction into an equivalent one with a denominator that does not contain
radicals. In doing so, we make use of the fact that

(Va+Vb)(Va—-Vb)=(Va)y - (Vb)
=a-—>

This procedure is illustrated in Example 12.

1
1+Vx

Rationalize the denominator:

Upon multiplying the numerator and the denominator by (1 — \/)_c), we obtain

1 1 1-Vix
1+Vx 1+Vx 1-Va
11—V
1= (Vay
_1-Vi
1—x

In other situations, it may be necessary to rationalize the numerator of
an algebraic expression. In calculus, for example, one encounters the follow-
ing problem.

Vi+h—1

Rationalize the numerator: 7

Vit+h—-1_V1+h-1 V1i+h+1

h K NI+ h+1
_(V1+hy-Qy
(VI + R +1)
__l+h-1 [(VI+hyP=V1+h-V1+h
R(V1+h+1) =1+
B h
Ch(V1+ R+ 1)
1

VIt R+



26 1 = PRELIMINARIES

In Exercises 1-22, perform the indicated oper-
ations and simplify each expression.

L (7x% — 2x + 5) + (2x2 + 5x — 4)

2. (3x2 + 5xy + 2y) + (4 — 3xy — 2x?)
-Gy -2y + D) - (=3 —T7)

. 3(2a — b) — 4(b — 2a)
Lx—2x—[-x— (1 - x)

A v A W

3PP+l —xx - 2x - D} +2

1 (1 .
7.(3 1+e> <3 1+e>

3 1 1 1
. — — [ + +_ +_ -
AR 100 XY 120

9, 3\/§+8—2\/5+%\/§—%\/§

8 ,.,2 16 16
L ox Sy —xl— —x —2x +
10 9x 3x 3x 3x 2x +2

1L (x + 8)(x — 2) 12. (5x + 2)(3x — 4)
13. (a + 50 14. (Ga — 4b)?
15. (x + 2y)? 16. (6 — 3x)?

17. 2x + y)2x — y)
19. (x* — 1)(2x) — x*(2x)

20. (x1/2 + 1) (%xfl&) —_ (x1/2 — 1) <%x71/2)
21 2( + Vi) — 212

18. (3x +2)(2 — 3x)

22, 2x% + (—x + 1)

In Exercises 23-30, factor out the greatest
common factor from each expression.

23. 4x° — 12x* — 6x°
24, 4x%y?z — 2x°y? + 6x3y?z?
25. 7a* — 42a°b* + 49a°b

26. 3x*? — 2x13 27. e* — xe™*

28. 2ye” + 2xy%e”’ 29, 2x 7 — %x’”

1(2 0 5
30. 2<3u 2u

In Exercises 31-44, factor each expression.
31. 6ac + 3bc — 4ad — 2bd

32.3x* —x2+3x -1
33. 44> — b? 34, 12x% — 3y?

35. 10 — 14x — 1247 36. x* — 2x — 15

37. 3x> — 6x — 24 38. 3x> —4x — 4
39. 1242 — 2x — 30 40. (x +yy — 1
41. 9x? — 16y? 42. 84> — 2ab — 6b*
43, x% + 125 44, 3 - 27

In Exercises 45-52, perform the indicated op-
erations and simplify each expression.

45. (2 + y)x — xy(2y) 46, 2kr(R — r) — kr?
47. 2(x — 1)(2x + 2P4(x — 1) + (2x + 2)]

48. 5x%(3x? + 1)"(6x) + (3x2 + 1)(2x)

49, 4(x — 17(2x + 2)(2) + (2x + 2)"Q)(x — 1)
50. (x2 + 1)(4x* — 3x2 + 2x) — (x* — x* + x?)(2x)
SL (2 + 2)[5(x* + 2) — 3](2x)

52. (x2 — 4)(x* + 4)(2x + 8) — (x? + 8x — 4)(4x?)

In Exercises 53-58, find the real roots of each
equation by factoring.

53.x24+x—-12=0 54.3x> —x—4=0

55. 4 +2t—2=0 56. —6x*+x +12=0

57.}‘x2—x+1=0 58.%a2+a—12=0

In Exercises 59-64, solve the equation by us-
ing the quadratic formula.

59. 4x?+5x —6=0 60. 3x2—4x+1=0
61. 8x> —8& —3=0 62. x> —6x+6=0

63. 2x* +4x -3 =0 64. 2x* +7x —15=0



In Exercises 65-70, simplify the expression.

xX2+x—2 2a> — 3ab — 9b?
65. x*—4 66. 2ab? + 3b3

1282+ 12t + 3 x3 4+ 2x2—3x
67. 412 —1 68. —22—x+3

(4x—1D(3B) - GBx+1)4)

69. (4x — 1)

7 1+ x2)%2) — 2x(2)(1 + x2)(2x)
: (1 + x?*

In Exercises 71-88, perform the indicated op-
erations and simplify each expression.

7 2a2—2b2. 4a + 4b
‘' b—a a*+2ab+b?
2 _

72.x 6x+9. 3x+6

x2—x—6 2x*—T7x+3

3+ -1, x—1

73. 2x+6 x4+ 2x-3
2 _ 2 _ 2
74, 3x? — 4xy — 4y . 2y —x)
x%y x3y
58 1 a+1l b-2
75— 42 76. L2~
>3Gi+2 73 L VR
2x 3x —xe* |
T 1 2x+5 Wit
4 5
79'x2—9 x2—6x+9
X 2x+3
. +
80 1-x x*—-1
1 11
81. ’1“ sz.x{
1-= 1-—
X xy

4x?
83, ———+ V22 +7
2V2x2+17

4
84. 6(2x +1)*Vx? +x +M

2Vxr+x
2x(x + 1)1 — (x + 1)1?
x2

85.
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(2 + )2 — 2x2(x2 + 1)1
1—x?

86.

87 Cx+ 12— (x+2)2x+1)12
’ 2x+1

2(2x = 3)'F — (x = 1)(2x — 3) 2"
88. TR

In Exercises 89-94, rationalize the denomina-
tor of each expression.

1 1
89.\/5_1 90.\/)_(4_5

1 a
9l.m 92.1_\/Z
03 Va+ Vb 04 2Va+ Vb
"Va-Vb “2Va-Vb

In Exercises 95-100, rationalize the numera-
tor of each expression.

e
95.L; 96.ﬁ
3
97.1—\/5 98'\/}—1
3 X
g9 L+ Va+2 100, VX 3-Vax
) Vx+2 ) 3

In Exercises 101-104, determine whether the

statement is true or false. If it is true, explain

why it is true. If it is false, give an example to

show why it is false.

101. If b* —4ac > 0, then ax®> + bx + ¢ = 0, a # 0, has two
real roots.

102. If b* —4ac < 0, then ax®> + bx + ¢ = 0, a # 0, has no
real roots.

a a a
. =(=+=
103 b+c (b c>

104. V(a + b)(b —a) = VB> — a* for all real numbers a
and b.
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lo3 The Cartesian Coordinate System

FIGURE 1.3
The Cartesian coordinate system

y
yraxis Origin
O| x-axis
FIGURE 1.4

An ordered pair (x, )
y

y o P(x,y)

THE CARTESIAN COORDINATE SYSTEM

In Section 1.1 we saw how a one-to-one correspondence between the set of
real numbers and the points on a straight line leads to a coordinate system
on a line (a one-dimensional space).

A similar representation for points in a plane (a two-dimensional space)
is realized through the Cartesian coordinate system, which is constructed as
follows: Take two perpendicular lines, one of which is normally chosen to be
horizontal. These lines intersect at a point O, called the origin (Figure 1.3).
The horizontal line is called the x-axis, and the vertical line is called the y-axis.
A number scale is set up along the x-axis, with the positive numbers lying to
the right of the origin and the negative numbers lying to the left of it. Similarly,
a number scale is set up along the y-axis, with the positive numbers lying
above the origin and the negative numbers lying below it.

The number scales on the two axes need not be the same. Indeed, in
many applications different quantities are represented by x and y. For example,
x may represent the number of typewriters sold and y the total revenue
resulting from the sales. In such cases it is often desirable to choose different
number scales to represent the different quantities. Note, however, that the
zeros of both number scales coincide at the origin of the two-dimensional
coordinate system.

A point in the plane can now be represented uniquely in this coordinate
system by an ordered pair of numbers—that is, a pair (x, y), where x is the
first number and y the second. To see this, let P be any point in the plane
(Figure 1.4). Draw perpendiculars from P to the x-axis and y-axis, respectively.
Then the number x is precisely the number that corresponds to the point on
the x-axis at which the perpendicular through P hits the x-axis. Similarly, y
is the number that corresponds to the point on the y-axis at which the perpen-
dicular through P crosses the y-axis.

Conversely, given an ordered pair (x, y) with x as the first number and y
the second, a point P in the plane is uniquely determined as follows: Locate
the point on the x-axis represented by the number x and draw a line through
that point parallel to the y-axis. Next, locate the point on the y-axis represented
by the number y and draw a line through that point parallel to the x-axis.
The point of intersection of these two lines is the point P (see Figure 1.4).

In the ordered pair (x, y), x is called the abscissa, or x-coordinate, y is
called the ordinate, or y-coordinate, and x and y together are referred to as
the coordinates of the point P.

Letting (a, b) denote the point P with x-coordinate a and y-coordinate b,
the points A = (2,3), B =(-2,3),C = (-2,-3),D = (2, =3), E = (3, 2),
F=(4,0),and G = (0, —5) are plotted in Figure 1.5. The fact that, in general,
(x, y) # (v, x) is clearly illustrated by points A and E.

The axes divide the plane into four quadrants. Quadrant I consists of the
points (x, y) that satisty x > 0 and y > 0; Quadrant II, the points (x, y), where
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FIGURE 1.5 FIGURE 1.6
Several points in the Carfesian plane The four quadrants in the
y Carfesian plane
a4 y
B(-2,3)® T *A2.3) Quadrant IT | Quadrant I
2T ®EB,2) =+ ++)
T F(4,0) 0 *
_I_v, I _.1 i I I3 i I5 ! Quadrant 11T | Quadrant IV
T (=-) (+-)
24
C(-2,-3)e® + eD(2,-3)
44
4 G(0,-5)
-6 +
FIGURE 1.7 x < 0 and y > 0; Quadrant III, the points (x, y), where x < 0 and y < 0; and
The distance d between the Quadrant IV, the points (x, y), where x > 0 and y < 0 (Figure 1.6).

points (x;, y1) and (x;, y3)

y
/ () THE DISTANCE FORMULA
d
One immediate benefit that arises from using the Cartesian coordinate system
is that the distance between any two points in the plane may be expressed
)
X

solely in terms of their coordinates. Suppose, for example, (x;, y;) and
(x2, y,) are any two points in the plane (Figure 1.7). Then the distance between
these two points can be computed using the following formula.

(x5 ¥,

Distance Formula
The distance d between two points P;(x;, y;) and P,(x,, y,) in the plane is given by

d = V(XQ - x1)2 aF (yz - y1)2 (1)

For a proof of this result, see Exercise 46, page 36.
In what follows, we give several applications of the distance formula.

EXAMPLE 1 Find the distance between the points (—4, 3) and (2, 6).

Let P,(—4, 3) and P,(2, 6) be points in the plane. Then, we have

x = —4, yi =3, X, =2, Y. =6
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Using Formula (1), we have
d=V[2— (-4 + (6 -3y
VETE

Group Discussion

Refer to Example 1. Suppose we label the point (2, 6) as P; and the
point (—4, 3) as P,. (1) Show that the distance d between the two points
is the same as that obtained earlier. (2) Prove that, in general, the distance
d in formula (1) is independent of the way we label the two points.

EXAMPLE 2 Let P(x, y) denote a point lying on the circle with radius r and center
C(h, k) (Figure 1.8). Find a relationship between x and y.

FIGURE 1.3 y
A circle with radius r and center C(h, k)

P(x, y)

TN By the definition of a circle, the distance between C(h, k) and P(x, y) is r.
Using Formula (1), we have

Vi + (5 kp =
which, upon squaring both sides, gives the equation
(= by + (v~ =

that must be satisfied by the variables x and y.

A summary of the result obtained in Example 2 follows.

Equation of a Circle _ ‘ . -
An equation of the circle with center C(h, k) and radius r is given by

(x =R+ (y—ky=r 2



EXAMPLE 3

SOLUTION v

FIGURE 1.9

EXAMPLE 4
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Find an equation of the circle with:

a. Radius 2 and center (—1, 3).

b. Radius 3 and center located at the origin.

a. We use Formula (2) with » = 2, h = —1, and k = 3, obtaining
x—(CDP+(»—-3F=22 o (x+1)P+(y—-37>=4

(Figure 1.9a).
b. Using Formula (2) with r = 3 and & = k = 0, we obtain

xt+ y? =32 or x*+y?=9
(Figure 1.9b).

3 NIV

(a) The circle with radius 2 and cenfer (—1, 3) (b) The circle with radius 3 and center (0, 0)

Group Discussion
1. Use the distance formula to help you describe the set of points
in the xy-plane satisfying each of the following inequalities.
a (x —h)?2+(y—kyP=r b. (x —h)?+ (y — k)2 <r?
¢ x—h+ (y —k)}=r d (x —hP+(y —kP?>r
2. Consider the equation x> + y* = 4.
a. Show that y = =V4 — x%
b. Describe the set of points (x, y) in the xy-plane satisfying the following
equations:
() y=Vi-—x
(i) y = —V4 —x?

APPLICATION

In the following diagram (Figure 1.10), S represents the position of a power
relay station located on a straight coastal highway, and M shows the location
of a marine biology experimental station on an island. A cable is to be laid
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FIGURE 1.10

Cable connecting relay station $ to experi-

mental stafion M

SOLUTION v

M(0, 3000)

P(1000, 800)

Wv ® X
0] S
(10,000, 0) (20,000, 0)

connecting the relay station with the experimental station. If the cost of
running the cable on land is $2 per running foot and the cost of running the
cable underwater is $6 per running foot, find the total cost for laying the
cable.

The length of cable required on land is given by the distance from P to Q
plus the distance from Q to S. The distance is

V(10,000 — 1000)2 + (0 — 800) + V(20,000 — 10,000)* + (0 — 0’
— /9000 + 8007 + 10,000

= V81,640,000 + 10,000
~19,035.49

or approximately 19,035.49 feet. Next, we see that the length of cable required
underwater is given by the distance from M to P. This distance is

V(0 = 1000)* + (3000 — 800)* = V10002 + 22002
= V5,840,000
~ 2416.61
or approximately 2416.61 feet. Therefore, the total cost for laying the cable is

2(19,035.49) + 6(2416.61) = 52,570.64

or approximately $52,571.
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Group Discussion
D In the Cartesian coordinate system, the two axes are perpendicular
to each other. Consider a coordinate system in which the x- and y-axes are
noncollinear (that is, the axes do not lie along a straight line) and are not
perpendicular to each other (see the accompanying figure).

y

1. Describe how a point is represented in this coordinate system by an
ordered pair (x, y) of real numbers. Conversely, show how an ordered pair
(x, y) of real numbers uniquely determines a point in the plane.

2. Suppose you want to find a formula for the distance between two points
Pi(x1, y1) and P,(x,, y,) in the plane. What is the advantage that the
Cartesian coordinate system has over the coordinate system under consider-
ation? Comment on your answer.

1. a. Plot the points A(4, —2), B(2, 3), and C(—3, 1).
b. Find the distance between the points A and B; between B and C; between A
and C.
c. Use the Pythagorean theorem to show that the triangle with vertices A, B, and
C is a right triangle.

2. The figure at the top of page 34 shows the location of cities A, B, and C. Suppose
a pilot wishes to fly from city A to city C but must make a mandatory stopover in
city B. If the single-engine light plane has a range of 650 miles, can she make the
trip without refueling in city B?
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y (miles)
300 + C(600, 320)
200 +
100 +
T B(200, 50)
—t— 1+ x (miles)
A0, 0) 100 300 400 500 600 700

Solutions to Self-Check Exercises 1.3 can be found on page 36.

In Exercises 1-6, refer to the following figure
and determine the coordinates of each point
and the quadrant in which it is located.

3+ oA

<4 'Y L ]
5L € F
_51
Ee -+
74
1. A 2. B 3. C
4. D 5. E 6. F

In Exercises 7-12, refer to the following
figure.

y
Be 4+
2+ oA
Ce D -+
————+—1— F————+— x
-6 -4 2 -+ 2 4 o 6
-2OF G
Ee T
_44

7. Which point has coordinates (4, 2)?
8. What are the coordinates of point B?
9. Which points have negative y-coordinates?

10. Which point has a negative x-coordinate and a nega-
tive y-coordinate?

11. Which point has an x-coordinate that is equal to zero?
12. Which point has a y-coordinate that is equal to zero?

In Exercises 13-20, sketch a set of coordinate
axes and plot each point.

13. (-2, 5) 14. (1,3)

15. (3, -1) 16. (3, —4)
17. (8, —7/2) 18. (-5/2,3/2)
19. (4.5, —4.5) 20. (12, —3.4)

In Exercises 21-24, find the distance hetween
the given points.

21. (1, 3) and (4, 7)
23. (—1,3) and (4, 9)

22. (1, 0) and (4, 4)
24. (=2, 1) and (10, 6)

25. Find the coordinates of the points that are 10 units away
from the origin and have a y-coordinate equal to —6.

26. Find the coordinates of the points that are 5 units away
from the origin and have an x-coordinate equal to 3.

27. Show that the points (3, 4), (=3, 7), (=6, 1), and (0, —2)
form the vertices of a square.

28. Show that the triangle with vertices (=5, 2), (=2, 5), and
(5, —2) is a right triangle.
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In Exercises 29-34, find an equation of the cir-

cl
29

30
31

37.

e that satisfies the given conditions.
. Radius 5 and center (2, —3)

. Radius 3 and center (=2, —4)

. Radius 5 and center at the origin

. Center at the origin and passes through (2, 3)
. Center (2, —3) and passes through (5, 2)

. Center (—a, a) and radius 2a

. DISTANCE TRAVELED A grand tour of four cities begins at
city A and makes successive stops at cities B, C, and D
before returning to city A. If the cities are located as
shown in the following figure, find the total distance
covered on the tour.

y (miles)

C(-800, 800)
q

500

B (400, 300)

D (-800, 0)

-500

——t—— x (miles)

500

" A0, 0)

. DELIVERY CHARGES A furniture store offers free setup and
delivery services to all points within a 25-mi radius of
its warehouse distribution center. If you live 20 mi east
and 14 mi south of the warehouse, will you incur a deliv-
ery charge? Justify your answer.

TrRAVELTIME Towns A, B, C, and D are located as shown
in the following figure. Two highways link town A to

y (miles)

(800, 1500) D(1300, 1500)

} x (miles)

40.
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town D. Route 1 runs from town A to town D via town
B, and route 2 runs from town A to town D via town
C. If a salesman wishes to drive from town A to town
D and traffic conditions are such that he could expect to
average the same speed on either route, which highway
should he take in order to arrive in the shortest time?

. MiNImIZING SHIPPING CosTS Refer to the figure for Exer-

cise 37. Suppose a fleet of 100 automobiles are to be
shipped from an assembly plant in town A to town D.
They may be shipped either by freight train along Route
1 at a cost of 11 cents/mile per automobile or by truck
along Route 2 at a cost of 103 cents/mile per automobile.
Which means of transportation minimizes the shipping
cost? What is the net savings?

. ConsuMER DecisioNs Ivan wishes to determine which an-

tenna he should purchase for his home. The TV store
has supplied him with the following information:

Range in Miles

VHF UHF Model Price
30 20 A $40
45 35 B $50
60 40 C $60
75 55 D $70

Ivan wishes to receive channel 17 (VHF), which is lo-
cated 25 mi east and 35 mi north of his home, and channel
38 (UHF), which is located 20 mi south and 32 mi west
of his home. Which model will allow him to receive
both channels at the least cost? (Assume that the terrain
between Ivan’s home and both broadcasting stations is
flat.)

CaLcutATING THE CosT ofF LAYING CABLE In the following
diagram, S represents the position of a power relay sta-
tion located on a coastal highway, and M shows the
location of a marine biology experimental station on an

y

M(0, 3000)

(10,000, 0) (20,000, 0)
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island. A cable is to be laid connecting the relay station
with the experimental station. If the cost of running the
cable on land is $2/running foot and the cost of running
cable under water is $6/running foot, find an expression
in terms of x that gives the total cost for laying the cable.
Use this expression to find the total cost when x = 900;
when x = 1000.

Two ships leave port at the same time. Ship A sails north
at a speed of 20 mph while ship B sails east at a speed
of 30 mph.

a. Find an expression in terms of the time ¢ (in hours)
giving the distance between the two ships.

b. Using the expression obtained in part (a), find the
distance between the two ships 2 hr after leaving port.

In Exercises 42-45, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

42.

43.

The point (—a, b) is symmetric to the point (a, b) with
respect to the y-axis.

The point (—a, —b) is symmetric to the point (a, b) with
respect to the origin.

SOLUTIONS 10 SELF-CHECK EXERCISES 1.8

44.

45.

46.

If the distance between the points P;(a, b) and P,(c, d)
is D, then the distance between the points P;(a, b) and
Psi(kc, kd), (k # 0), is given by |k|D.

The circle with equation kx*> + ky®> = a’ lies inside the
circle with equation x* + y* = 4% provided k > 1.

Let (x;,y,) and (x,, y,) be two points lying in the xy-plane.
Show that the distance between the two points is given
by

d= \/(xz - Xl)z + (- Y1)2

Hint: Refer to the accompanying figure and use the Pythago-
rean theorem.

y

1. a. The points are plotted in the following figure:
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FIGURE 1.11
Linear depreciation of an asset

N

100,000\

30,000

V()
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b. The distance between A and B is

d(A,B)=V(2 -4+ [3— (2)]
=V(-2P+5=V4+25=V29

The distance between B and C is

d(B,C)=V(-3-2+(1—-3)
= V(=52 + (=2P=V25+4=V29

The distance between A and C is

d(A,C)=V(-3—-4Y+[1 - (-2)F
= V(-7 +3=V49+9="V58

¢. We will show that
[d(A, O)F = [d(A, B)]’ + [d(B, O)F

From part (b), we see that [d(A, B)]* = 29, [d(B, C)]* = 29, and [d(A, C)]* = 58,
and the desired result follows.

2. The distance between city A and city B is
d(A, B) = V200? + 50% =~ 206

or 206 mi. The distance between city B and city C is

d(B, C) = V[600 — 200] + [320 — 50]°
= V4002 + 2707 ~ 483

or 483 mi. Therefore, the total distance the pilot would have to cover is 689 mi, so
she must refuel in city B.

In computing income tax, business firms are allowed by law to depreciate
certain assets such as buildings, machines, furniture, automobiles, and so on,
over a period of time. Linear depreciation, or the straight-line method, is
often used for this purpose. The graph of the straight line shown in Figure
1.11 describes the book value V of a computer that has an initial value of
$100,000 and that is being depreciated linearly over 5 years with a scrap value
of $30,000. Note that only the solid portion of the straight line is of interest
here.

The book value of the computer at the end of year ¢, where ¢ lies between
0 and 5, can be read directly from the graph. But there is one shortcoming
in this approach: The result depends on how accurately you draw and read
the graph. A better and more accurate method is based on finding an algebraic
representation of the depreciation line.
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FIGURE 1.12
m is undefined

Slope of a
Nonvertical Line

FIGURE 1.13

Slope of a Line

To see how a straight line in the xy-plane may be described algebraically, we
need to first recall certain properties of straight lines. Let L denote the unique
straight line that passes through the two distinct points (x;, y;) and (x;, y,).
If x; = x,, then L is a vertical line, and the slope is undefined (Figure 1.12).

y L

@ (x5 )

9 (xp yz)

If x; # x,, we define the slope of L as follows:

If (x;, y;) and (x,, y,) are any two distinct points on a nonvertical line L, then
the slope m of L is given by

_Ay_ymn
m_Ax X, — Xy &)

See Figure 1.13.

Observe that the slope of a straight line is a constant whenever it is defined.
The number Ay = y, — y; (Ay is read ‘““delta y”’) is a measure of the vertical
change in y, and Ax = x, — x; is a measure of the horizontal change in x, as
shown in Figure 1.13. From this figure we can see that the slope m of a straight
line L is a measure of the rate of change of y with respect to x.

Figure 1.14a shows a straight line L, with slope 2. Observe that L, has
the property that a unit increase in x results in a 2-unit increase in y. To see



FIGURE 1.14

FIGURE 1.15
A family of straight lines

m=-1

m=-2 Y m=

EXAMPLE 1

FIGURE 1.16
L has slope —4/3 and passes through
(=2, 5).
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AN

(a) The line rises (m > 0). (b) The line falls (m << 0).

this, let Ax = 1 in Formula (3) so that m = Ay. Since m = 2, we conclude
that Ay = 2. Similarly, Figure 1.14b shows a line L, with slope —1. Observe
that a straight line with positive slope slants upward from left to right (y
increases as x increases), whereas a line with negative slope slants downward
from left to right (y decreases as x increases). Finally, Figure 1.15 shows a
family of straight lines passing through the origin with indicated slopes.

Sketch the straight line that passes through the point (—2,5) and has slope
—4/3.

First, plot the point (=2, 5) (Figure 1.16). Next, recall that a slope of —4/3
indicates that an increase of 1 unit in the x-direction produces a decrease of
4/3 units in the y-direction, or equivalently, a 3-unit increase in the x-direction
produces a 3(4/3), or 4-unit, decrease in the y-direction. Using this information,
we plot the point (1, 1) and draw the line through the two points.

-2,5)

Group Discussion

Show that the slope of a nonvertical line is independent of the two
distinct points Pi(x;, y;) and P,(x,, y,) used to compute it.
Hint: Suppose we pick two other distinct points, Ps(x;, y;) and Py(x4, y,) lying on L. Draw
a picture and use similar triangles to demonstrate that using P; and P, gives the same value
as that obtained using P, and P,.
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EXAMPLE 2

FIGURE 1.17
L passes through (5, 3) and (—1, 1).

EXAMPLE 3

FIGURE 1.18
The slope of the horizontal line L is 0.

y

(-2,5) (3,5)

Parallel Lines

EXAMPLE 4

Find the slope m of the line that passes through the points (—1, 1) and (5, 3).

Choose (x;, y;) to be the point (—1, 1) and (x,, y,) to be the point (5, 3).
Then, with x, = =1, y;, = 1, x, = 5, and y, = 3, we find

=y 3-1 1
e —x 5-(-1) 3

[Using (3)]

(Figure 1.17). Try to verify that the result obtained would have been the same
had we chosen the point (—1, 1) to be (x,, y,) and the point (5, 3) to be (x;, y;).

y
5 =+
1 ,3)
N L
1 _L
// R
-3 -1 1 3 5

Find the slope of the line that passes through the points (=2, 5) and (3, 5).

The slope of the required line is given by

m:izgzo
3—(-2) 5

(Figure 1.18).

IEXXXYTE 1n general, the slope of a horizontal line is zero.

We can use the slope of a straight line to determine whether a line is
parallel to another line.

Two distinct lines are parallel if and only if their slopes are equal or their slopes
are undefined.

Let L, be a line that passes through the points (=2, 9) and (1, 3) and let L,
be the line that passes through the points (—4, 10) and (3, —4). Determine
whether L, and L, are parallel.



SOLUTION

FIGURE 1.19
L, and L, have the same slope and hence
are parallel.

FIGURE 1.20
The vertical line x = a
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The slope m; of L, is given by

3—-9
ml—l_—(_z)— 2

The slope m, of L, is given by

—4-10

R S

ny

Since m; = m,, the lines L; and L, are in fact parallel (Figure 1.19).

EQUATIONS OF LINES

We will now show that every straight line lying in the xy-plane may be repre-
sented by an equation involving the variables x and y. One immediate benefit
of this is that problems involving straight lines may be solved algebraically.

Let L be a straight line parallel to the y-axis (perpendicular to the x-
axis) (Figure 1.20). Then, L crosses the x-axis at some point (a, 0) with the
x-coordinate given by x = a, where a is some real number. Any other point
on L has the form (a, y), where y is an appropriate number. Therefore, the
vertical line L is described by the sole condition

xX=a
y
L and this is, accordingly, the equation of L. For example, the equation x = —2
@, 7) represents a vertical line 2 units to the left of the y-axis, and the equation
x = 3 represents a vertical line 3 units to the right of the y-axis (Figure 1.21).
Next, suppose L is a nonvertical line so that it has a well-defined slope
m. Suppose (x;, y;) is a fixed point lying on L and (x, y) is a variable point
on L distinct from (x;, y,) (Figure 1.22).
(@ 0)
FIGURE 1.21 FIGURE 1.22
The verfical lines x = —2 and L passes through (x,, ;) and has
x=13 slope m.
y y L
5 -+
T x, y)
x==2 3+ x=3
] —+
- : - ——>x @)
3 | -1 1 5
X
)4
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Using Formula (3) with the point (x,, y;) = (x, y), we find that the slope
of L is given by

Y~ h
X — X1

m =

Upon multiplying both sides of the equation by x — x;, we obtain Formula (4).

Point-Slope Form
An equation of the line that has slope m and passes through the point (x, y;)

is given by

y =y =mx — x) “@

Equation (4) is called the point-slope form of the equation of a line since it
utilizes a given point (x;, y;) on a line and the slope m of the line.

EXAMPLE 5 Find an equation of the line that passes through the point (1, 3) and has slope 2.

JITEIIT  Using the point-slope form of the equation of a line with the point (1, 3) and
m = 2, we obtain

FIGURE 1.23
L passes through (1, 3) and has o B )
slope 2. y—3=2x-1) [(y = y) = m(x — x)]

which, when simplified, becomes

2x —y+1=0
F sy (Figure 1.23).
EXAMPLE ® Find an equation of the line that passes through the points (=3, 2) and (4, —1).

TITEINTA  The slope of the line is given by

_ -2
Ao (3

3
7



FIGURE 1.24
L passes through (—3, 2) and
(4, —-1).

Perpendicular Lines
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Using the point-slope form of the equation of a line with the point (4, —1)
and the slope m = —3/7, we have

3
y+1= —5()6—4) [(y =) =m(x —x)]

Ty +7=-3x+12
3x+7y—-5=0

(Figure 1.24).

Group Discussion
Consider the slope-intercept form of a straight line y = mx + b.
Describe the family of straight lines obtained by keeping:

1. The value of m fixed and allowing the value of b to vary.
2. The value of b fixed and allowing the value of m to vary.

We can use the slope of a straight line to determine whether a line is
perpendicular to another line.

If L, and L, are two distinct nonvertical lines that have slopes m; and m,,
respectively, then L, is perpendicular to L, (written L, L L,) if and only if

m=—-—
my

If the line L, is vertical (so that its slope is undefined), then L, is perpendicular
to another line, L,, if and only if L, is horizontal (so that its slope is zero).
For a proof of these results, see Exercise 83, page 52.
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EXAMPLE 7

FIGURE 1.26
The line L has x-intercept a and
y-intercept b.

y

L
\ 0, b)

1. Use a graphing utility to plot the straight lines L, and L, with equations

Find an equation of the line that passes through the point (3, 1) and is
perpendicular to the line of Example 5.

Since the slope of the line in Example 5 is 2, the slope of the required line is
given by m = —1/2, the negative reciprocal of 2. Using the point-slope form
of the equation of a line, we obtain

1
yol=-5G=3) (- =mb—x)
2y —2=—x+3
x+2y—=5=0
(See Figure 1.25).

FIGURE 1.25
L, is perpendicular fo L, and passes
through (3, 1).

A straight line L that is neither horizontal nor vertical cuts the x-axis and
the y-axis at, say, points (a, 0) and (0, b), respectively (Figure 1.26). The
numbers a and b are called the x-intercept and y-intercept, respectively, of L.

2x +y —5=0and 41x + 20y — 11 = 0 on the same set of axes using the standard

viewing rectangle.

a. Can you tell if the lines L, and L, are parallel to each other?
b. Verify your observations by computing the slopes of L, and L, algebraically.
2. Use a graphing utility to plot the straight lines L; and L, with equations x + 2y — 5 = 0 and
5x —y + 5 = 0 on the same set of axes using the standard viewing rectangle.
a. Can you tell if the lines L; and L, are perpendicular to each other?
b. Verify your observation by computing the slopes of L, and L, algebraically.
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Now, let L be a line with slope m and y-intercept b. Using Formula (4),
the point-slope form of the equation of a line, with the point (0, ) and slope
m, we have

y—b=m(x—-0)
y=mx+b

Slope-Intercept Form
The equation of the line that has slope m and intersects the y-axis at the point

(0, b) is given by
y=mx +b )

EXAMPLE 8 Find an equation of the line that has slope 3 and y-intercept —4.

IR Using Equation (5) with m = 3 and b = —4, we obtain the required equation

y=3x—-4

EXAMPLE 9 Determine the slope and y-intercept of the line whose equation is 3x —
4y = 8.

SOLUTION v Rewrite the given equation in the slope-intercept form and obtain

y= %x -2
Comparing this result with Equation (5), we find m = 3/4 and b = -2, and
we conclude that the slope and y-intercept of the given line are 3/4 and
—2, respectively.

1. Use a graphing utility to plot the straight lines with equations y = —2x + 3,
y=—-x+3,y=x+3,and y = 2.5x + 3 on the same set of axes using the standard
viewing rectangle. What effect does changing the coefficient m of x in the equation y = mx + b have
on its graph?

2. Use a graphing utility to plot the straight lines with equations y = 2x — 2,y = 2x — 1, y = 2x,
y =2x + 1,and y = 2x + 4 on the same set of axes using the standard viewing rectangle. What effect
does changing the constant b in the equation y = mx + b have on its graph?

3. Describe in words the effect of changing both m and b in the equation y = mx + b.
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EXAMPLE 10

SOLUTION v

FIGURE 1.27
Sales of a sporting goods store

(=]

Sales in thousands of dollars
—_ (3] (98] B wn [} ~J
o & & 5 & &
<
o
o

1 2 3 4 5 6
Years

EXAMPLE 11

SOLUTION v

Group Discussion
D Refer to Example 11.
Can the equation predicting
the value of the art object be

used to predict long-term
growth?

APPLICATIONS

The sales manager of a local sporting goods store plotted sales versus time
for the last 5 years and found the points to lie approximately along a straight
line (Figure 1.27). By using the points corresponding to the first and fifth
years, find an equation of the trend line. What sales figure can be predicted
for the sixth year?

Using Formula (3) with the points (1, 20) and (5, 60), we find that the slope

of the required line is given by

L _60-20 _
5-1

10

Next, using the point-slope form of the equation of a line with the point
(1, 20) and m = 10, we obtain
y—20= 10(x - 1) [(y =y) =m(x —x))]
y=10x + 10

as the required equation.

The sales figure for the sixth year is obtained by letting x = 6 in the last
equation, giving

y =170

or $70,000.

Suppose an art object purchased for $50,000 is expected to appreciate in value
at a constant rate of $5000 per year for the next 5 years. Use Formula (5) to
write an equation predicting the value of the art object in the next several
years. What will its value be 3 years from the date of purchase?

Let x denote the time (in years) that has elapsed since the date the object
was purchased and let y denote the object’s value (in dollars). Then, y =
50,000 when x = 0. Furthermore, the slope of the required equation is given
by m = 5000, since each unit increase in x (1 year) implies an increase of
5000 units (dollars) in y. Using (5) with m = 5000 and b = 50,000, we obtain

y = 5000x + 50,000 (y = mx + b)
Three years from the date of purchase, the value of the object will be given by
y = 5000(3) + 50,000
or $65,000.

GENERAL EQUATION OF A LINE

We have considered several forms of the equation of a straight line in the
plane. These different forms of the equation are equivalent to each other. In
fact, each is a special case of the following equation.



General Form of a
Linear Equation

EXAMPLE 12

SOLUTION v

FIGURE 1.28

To sketch 3x — 4y — 12 = 0, first
find the x-intercept, 4, and the y-inter-
cept, —3.

Equations of Straight
Lines

1.4 = STRAIGHT LINES 4

The equation
Ax+ By +C=0 (6)

where A, B, and C are constants and A and B are not both zero, is called the
general form of a linear equation in the variables x and y.

We will now state (without proof) an important result concerning the
algebraic representation of straight lines in the plane.

An equation of a straight line is a linear equation; conversely, every linear
equation represents a straight line.

This result justifies the use of the adjective /inear describing Equation (6).

Sketch the straight line represented by the equation
3x —4y —12=0

Since every straight line is uniquely determined by two distinct points, we
need find only two such points through which the line passes in order to sketch
it. For convenience let us compute the x- and y-intercepts. Setting y = 0, we
find x = 4; thus, the x-intercept is 4. Setting x = 0 gives y = —3, and the y-
intercept is —3. A sketch of the line appears in Figure 1.28.

/ 0,-3)

Following is a summary of the common forms of the equations of straight
lines discussed in this section.

Vertical line: X =a
Horizontal line: y=>b
Point-slope form: y =y =m(x — x)

Slope-intercept form: y = mx + b
General form: Ax + By + C=0
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SELF-CHECKk ExErcises 1.4

1. Determine the number a so that the line passing through the points (g, 2) and (3, 6)
is parallel to a line with slope 4.

2. Find an equation of the line that passes through the point (3, —1) and is perpendicular
to a line with slope —1/2.

3. Does the point (3, —3) lie on the line with equation 2x — 3y — 12 = 0? Sketch

the graph of the line.

4. The percentage of people over age 65 who have high school diplomas is summarized

in the following table:

Year, x

1960 1965 1970 1975 1980 1985 1990

Percentage with

Diplomas, y

20 25 30 36 42 47 52

Source: The World Almanac

a. Plot the percentage of people over age 65 who have high school diplomas (y)

versus the year (x).

b. Draw the straight line L through the points (1960, 20) and (1990, 52).

c. Find an equation of the line L.

d. Assuming the trend continued, estimate the percentage of people over age 65
who had high school diplomas by the year 2000.

Solutions to Self-Check Exercises 1.4 can be found on page 53.

1.4 Exercises

In Exercises 1-6, match the statement with
one of the graphs (a)-(f).

1. The slope of the line is zero.
2. The slope of the line is undefined.

3. The slope of the line is positive, and its y-intercept is

positive.

4. The slope of the line is positive, and its y-intercept is
negative.

5. The slope of the line is negative, and its x-intercept
is negative.

6. The slope of the line is negative, and its x-intercept is
positive.
a. y
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In Exercises 7-10, find the slope of the line
shown in each figure.

7. y

\

~

|

N A

o 4+
=

-2+
8. \y
4
2__
— : ———+—>x
-2 1 2\ 4
-2+
9. y
2__
—+—t — ——>x
-4 -2 1 2
-2+
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10. y

In Exercises 11-16, find the slope of the line
that passes through each pair of points.

11. (4,3) and (5, 8) 12. (4,5) and (3, 8)

13. (—2,3) and (4, 8) 14. (-2, —2) and (4, —4)
15. (a,b) and (c, d)

16. (—a +1,b — 1) and (a + 1, —b)

17. Given the equation y = 4x — 3, answer the following
questions:
a. If x increases by 1 unit, what is the corresponding
change in y?
b. If x decreases by 2 units, what is the corresponding
change in y?

18. Given the equation 2x + 3y = 4, answer the following
questions:
a. Is the slope of the line described by this equation
positive or negative?
b. As x increases in value, does y increase or decrease?
c. If x decreases by 2 units, what is the corresponding
change in y?

In Exercises 19 and 20, determine whether the
line through each pair of points is parallel.

19. A1, —2), B(=3, —10) and C(1, 5), D(—1, 1)
20. A(2,3), B(2, —2) and C(-2, 4), D(=2, 5)

In Exercises 21 and 22, determine whether the
line through each pair of points is perpen-
dicular.

21. A(-2,5), B(4,2) and C(~1, —2), D(3, 6)
22. A(2,0), B(1, —2) and C(4, 2), D(-8, 4)

23. If the line passing through the points (1, a) and (4, —2)
is parallel to the line passing through the points (2, 8)
and (=7, a + 4), what is the value of a?

24. If the line passing through the points (a, 1) and (5, 8) is
parallel to the line passing through the points (4, 9) and
(a + 2, 1), what is the value of a?

25. Find an equation of the horizontal line that passes
through (—4, —3).

26. Find an equation of the vertical line that passes through

©, 5).

In Exercises 27-30, find an equation of the line
that passes through the point and has the indi-
cated slope m.

27. 3, —4);m =2
29. (=3,2);m =0

28. (2,4); m
30. (1,2); m

-1
-12

In Exercises 31-34, find an equation of the line
that passes through the given points.

31. (2,4) and (3, 7) 32. (2,1) and (2, 5)
33. (1,2) and (=3, —-2) 34. (=1, —2) and (3, —4)

In Exercises 35-38, find an equation of the line
that has slope m and y-intercept b.

35. m=3;b=4 36. m = —2;b = —1
37. m=0,b=5 38. m = —1/2;b = 3/4

In Exercises 39-44, write the equation in the
slope-intercept form and then find the slope
and y-intercept of the corresponding line.

39.x—2y=0 40.y-2=0

41. 2x -3y —9=0 42.3x —4y +8=0

43. 2x + 4y = 14 4. 5x + 8y —24=0

45. Find an equation of the line that passes through the
point (=2, 2) and is parallel to the line 2x — 4y — 8 = 0.

46. Find an equation of the line that passes through the
point (2, 4) and is perpendicular to the line 3x + 4y —
22 =0.

In Exercises 47-52, find an equation of the line
that satisfies the given condition.

47. The line parallel to the x-axis and 6 units below it

48. The line passing through the origin and parallel to the
line joining the points (2, 4) and (4, 7)

49. The line passing through the point (a, b) with slope equal
to zero



50. The line passing through (—3,4) and parallel to the x-axis

51. The line passing through (=5, —4) and parallel to the
line joining (—3, 2) and (6, 8)

52. The line passing through (a, b) with undefined slope

53. Given that the point P(—3, 5) lies on the line kx +
3y +9 =0, find k.

54. Given that the point P(2, —3) lies on the line —2x +
ky + 10 = 0, find k.

In Exercises 55-60, sketch the straight line
defined by the given linear equation by finding
the x- and y-intercepts.

Hint: See Example 12, page 47.

55.3x -2y +6=0 56. 2x — Sy + 10 =0

57.x+2y—4=0 58.2x + 3y — 15=10
59.y+5=0 60. —2x — 8y +24 =0

61. Show that an equation of a line through the points (a, 0)
and (0, b) with a # 0 and b # 0 can be written in the
form

+2=1

Q=
S =

(Recall that the numbers a and b are the x- and
y-intercepts, respectively, of the line. This form of an
equation of a line is called the intercept form.)

In Exercises 62-65, use the results of Exercise
61 to find an equation of a line with the given
x- and y-intercepts.

62. x-intercept 3; y-intercept 4

63. x-intercept —2; y-intercept —4
64. x-intercept —3; y-intercept §
65. x-intercept 4; y-intercept —3%

In Exercises 66 and 67, determine whether the
given points lie on a straight line.

66. A(~1,7), B(2, —2), and C(5, —9)

67. A(-2, 1), B(1,7), and C(4, 13)

68. SociAL SECURITY CONTRIBUTIONS For wages less than the
maximum taxable wage base, Social Security contribu-
tions by employees are 7.65% of the employee’s wages.

69.

70.

71.

72.
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a. Find an equation that expresses the relationship be-
tween the wages earned (x) and the Social Security taxes
paid (y) by an employee who earns less than the maxi-
mum taxable wage base.

b. For each additional dollar that an employee earns,
by how much is his or her Social Security contribution
increased? (Assume that the employee’s wages are less
than the maximum taxable wage base.)

c. What Social Security contributions will an employee
who earns $35,000 (which is less than the maximum
taxable wage base) be required to make?

CoLLEGE AbmissioNs Using data compiled by the Admis-
sions Office at Faber University, college admissions offi-
cers estimate that 55% of the students who are offered
admission to the freshman class at the university will
actually enroll.

a. Find an equation that expresses the relationship be-
tween the number of students who actually enroll (y)
and the number of students who are offered admission
to the university (x).

b. If the desired freshman class size for the upcoming
academic year is 1100 students, how many students
should be admitted?

WEIGHT oF WHALES The equation W = 3.51L — 192, ex-
pressing the relationship between the length L (in feet)
and the expected weight W (in British tons) of adult
blue whales, was adopted in the late 1960s by the Interna-
tional Whaling Commission.

a. What is the expected weight of an 80-ft blue whale?
b. Sketch the straight line that represents the equation.

THE NARROWING GENDER GAP Since the founding of the
Equal Employment Opportunity Commission and the
passage of equal-pay laws, the gulf between men’s and
women’s earnings has continued to close gradually. At
the beginning of 1990 (¢ = 0), women’s wages were 68%
of men’s wages. However, women’s wages were pro-
jected to be 80% of men’s wages by the beginning of the
year 2000 (¢ = 10). If this gap between women’s and
men’s wages continued to narrow linearly, what percent-
age of men’s wages were women’s wages expected to be
at the beginning of 2002?

Source: Journal of Economic Perspectives

IDEAL HEIGHTS AND WEIGHTS FOR WOMEN The Venus Health
Club for Women provides its members with the following
table, which gives the average desirable weight (in
pounds) for women of a certain height (in inches):

Height, x 60 63 66 69 72

Weight, y 108 118 129 140 152
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73.

74.

~
W
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a. Plot the weight (y) versus the height (x).

b. Draw a straight line L through the points correspond-
ing to heights of 5 ft and 6 ft.

c. Derive an equation of the line L.

d. Using the equation of part (c), estimate the average
desirable weight for a woman who is 5 ft 5 in. tall.

Cost of A CommonITY A manufacturer obtained the fol-
lowing data relating the cost y (in dollars) to the number
of units (x) of a commodity produced:

No.
of Units

Produced, x 0 20 40 60 80 100

Cost, y 200 208 222 230 242 250

a. Plot the cost (y) versus the quantity produced (x).
b. Draw the straight line through the points (0, 200) and
(100, 250).

c. Derive an equation of the straight line of part (b).
d. Taking this equation to be an approximation of the
relationship between the cost and the level of produc-
tion, estimate the cost of producing 54 units of the com-
modity.

DiciTaL TV SErViCES The percentage of homes with digi-
tal TV services, which stood at 5% at the beginning of
1999 (¢ = 0) is projected to grow linearly so that at the
beginning of 2003 (¢ = 4) the percentage of such homes
is projected to be 25%.

a. Derive an equation of the line passing through the
points A(0, 5) and B(4, 25).

b. Plot the line with the equation found in part (a).

c. Using the equation found in part (a), find the percent-
age of homes with digital TV services at the beginning
of 2001.

Source: Paul Kagan Associates

. SALES GROWTH Metro Department Store’s annual sales

(in millions of dollars) during the past 5 yr were:

Annual Sales, x 58 62 72 84 90

Year, y 1 2 3 4 5

a. Plot the annual sales (y) versus the year (x).

b. Draw a straight line L through the points correspond-
ing to the first and fifth years.

c. Derive an equation of the line L.

d. Using the equation found in part (c), estimate Metro’s
annual sales 4 yr from now (x = 9).

Exercises 76-80, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

76.

71.

78.

79.

80.

81.

82.

83.

Suppose the slope of a line L is —1/2 and P is a given
point on L. If Q is the point on L lying 4 units to the
left of P, then Q is situated 2 units above P.

The line with equation Ax + By + C = 0, (B # 0), and
the line with equation ax + by + ¢ = 0, (b # 0), are
parallel if Ab — aB = 0.

If the slope of the line L, is positive, then the slope of
aline L, perpendicular to L, may be positive or negative.

The lines with equations ax + by + ¢, = 0 and bx —
ay + ¢, = 0, where a # 0 and b # 0, are perpendicular
to each other.

If L is the line with equation Ax + By + C = 0, where

A # 0, then L crosses the x-axis at the point (—% O).

Is there a difference between the statements ““The slope
of a straight line is zero’” and ““The slope of a straight line
does not exist (is not defined)”’? Explain your answer.

Show that two distinct lines with equations a;x +
by + ¢; = 0 and a,x + b,y + ¢, = 0, respectively, are
parallel if and only if a;b, — bja, = 0.

Hint: Write each equation in the slope-intercept form and
compare.

Prove that if a line L, with slope m;, is perpendicular to
a line L, with slope m,, then mym, = —1.
Hint: Refer to the following figure. Show that m; = b and

m, = c. Next, apply the Pythagorean theorem to triangles OAC,
OCB, and OBA to show that 1 = —bc.
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SoLUTIONS 10 SELF-CHECK EXERCISES 1.4

1. The slope of the line that passes through the points (a, 2) and (3, 6) is

m:672

3—-a
4

" 3-a

Since this line is parallel to a line with slope 4, m must be equal to 4; that is,

4 =
3—a

or, upon multiplying both sides of the equation by 3 — g,

4=4(3-a)

4=12—4a
4a=8
a=72

2. Since the required line L is perpendicular to a line with slope —1/2, the slope of
L is

1

il

Next, using the point-slope form of the equation of a line, we have

y—(=1D)=2(x-3)

y+1=2x-6
y=2x—-17
3. Substituting x = 3 and y = —3 into the left-hand side of the given equation, we

find
2(3) = 3(-3)—-12=3

which is not equal to zero (the right-hand side). Therefore, (3, —3) does not liec on
the line with equation 2x — 3y — 12 = 0.

Setting x = 0, we find y = —4, the y-intercept. Next, setting y = 0 gives x =
6, the x-intercept. We now draw the line passing through the points (0, —4) and
(6, 0) as shown.

y

m—ay—lzyL
| | | | : : X
6
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4. a. and b. See the accompanying figure.

60
50
40
30
20
10

Percentage with diplomas

1960 1970 1980 1990
Year

c. The slope of L is

m=—22—20 _32_16
1990 — 1960 30 15

Using the point-slope form of the equation of a line with the point (1960, 20), we
find

y*ZOZ%(X*196O)=16 7M

15 15
16 672
=—x-—=+
Y715 3 T2
_16 612
15 3

d. To estimate the percentage of people over age 65 who had high school diplomas
by the year 2000, let x = 2000 in the equation obtained in part (c). Thus, the
required estimate is

16 6212
y = 75 (2000) — =55 ~ 62.67

or approximately 63%.

Group projects for this chapter can be found at the Brooks/Cole Web site:
http://www.brookscole.com/product/0534378439
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CHAPTER 1 Summary of Principal Formulas and Terms

Formulas

1. Quadratic formula

2. Distance between two points
3. Slope of a line

4. Equation of a vertical line
5. Equation of a horizontal line

6. Point-slope form of the equation of
a line

7. Slope-intercept form of the
equation of a line

8. General equation of a line

Terms

real number (coordinate) line
open interval

closed interval

half-open interval

finite interval

infinite interval

absolute value

b VETam
2a
d=V(xn—x)+ (- )
=N
X, — Xy
x=a
y=2>

triangle inequality

polynomial

roots of a polynomial equation
Cartesian coordinate system
ordered pair

parallel lines

perpendicular lines
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CHAPTER TREVIEW EXERCISES

In Exercises 1-4, find the values of x that sat-
isfy the inequality (inequalities).

L. x+3=2x+9 2. 2=3x+1=7
3.x—-3>2 or x+3<-1

4. 2x*> > 50

In Exercises 5-8, evaluate the expression.

5-12
—4-3

5. |-5+ 7|+ |-2| 6. ‘

7. 20 — 6| — 7
8. |[V3—4|+4—-2V3|

In Exercises 9-14, evaluate the expression.

9 32 56
9. (Z) 10. 5
11. (3-4)7 12. (—8)*
.93 .15 ¢
13, 8-29¢-3) 1, 3V34
2-9° V18
In Exercises 15-19, simplify the expression.
4(x2+y) a’h™
15. ZEy 16. —(a3b‘2)‘3
V16x%yz
17. ———— (x, y, and z positive)
V81xyz®

18. (2x%*)(—3x7?) <%x‘1’2>

2\ -2 3\ 3
19. 3xy 3xy
4x3y 2x?
In Exercises 20-23, factor the expression.
20. —27%3 + 1007r? 21. 20w + 2ow? + 2ulow

22,16 — x? 23. 12 — 6 — 18¢

In Exercises 24-27, solve the equation by
factoring.

24. 8x* +2x —3=0 25. —6x* —10x +4 =0

26. —x*—2x>+3x=0 27. 2x*+ x2=1

In Exercises 28 and 29, use the gquadratic for-
mula to solve the quadratic equation.

28. x* = 2x—-5=0 29.2x* +8x +7=0

In Exercises 30-33, perform the indicated op-
erations and simplify the expression.
30 (t + 6)(60) — (60r + 180)

) (t+6)

6x n 1
2(3x2+2) 4(x+2)

2 4x 3
.2 +
32 3<2x2—1) 3<3x—1>

3.2 L avi

31

Vx+1
34. Rationalize the numerator:
V-1
x—1

35. Rationalize the denominator:

V-1
2Vx

In Exercises 36 and 37, find the distance he-
tween the two points.

36. (-2, —3) and (1, —7)
37. (%\@) and (—%,2\/3)

In Exercises 38-43, find an equation of the line
L that passes through the point (-2, 4) and
satisfies the condition.

38. L is a vertical line.

39. L is a horizontal line.
. 7
40. L passes through the point <3,§>.

41. The x-intercept of L is 3.
42. L is parallel to the line 5x — 2y = 6.

43. L is perpendicular to the line 4x + 3y = 6.



44.

45.

46.

Find an equation of the straight line that passes through
the point (2, 3) and is parallel to the line with equation
3x +4y —8=0.

Find an equation of the straight line that passes through
the point (—1, 3) and is parallel to the line passing
through the points (=3, 4) and (2, 1).

Find an equation of the line that passes through the
point (=2, —4) and is perpendicular to the line with
equation 2x — 3y — 24 = 0.
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47. Sketch the graph of the equation 3x — 4y = 24.

48. Sketch the graph of the line that passes through the point
(3, 2) and has slope —2/3.

49. Find the minimum cost C (in dollars) given that
2(15C + 80) = 2(2.5C — 20)
50. Find the maximum revenue R (in dollars) given that

12(2R — 320) = 4(3R + 240)

Additional study hints and sample chapter tests can be found at the Brooks/Cole Web site:
http://www.brookscole.com/product/0534378439



FUNCTION$ LIMI
THE DERIVATI

Functions and Their Graphs

The Algebra of Functions

Functions and Mathematical Models
Limits

One-Sided Limits and Continuity

The Derivative

AND




In this chapter we define a function, a special relationship

between two variables. The concept of a function enables us to
describe many relationships that exist in applications. We also begin
the study of differential calculus. Historically, differential calculus
was developed in response to the problem of finding the tangent
line to an arbitrary curve. But it quickly became apparent that solving
this problem provided mathematicians with a method for solving
many practical problems involving the rate of change of one quantity
with respect to another. The basic tool used in differential calculus
is the derivative of a function. The concept of the derivative is based,

in turn, on a more fundamental notion—that of the limit of a function.

How does the change in the demand for a certain make
of tires affect the unit price of the tires? The management
of the Titan Tire Company has determined the demand

function that relates the unit price of its Super Titan tires
to the quantity demanded. In Example 7, page 165, you
will see how this function can be used to compute the
rate of change of the unit price of the Super Titan fires
with respect to the quantity demanded.
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2.] Functions and Their Graphs

Function

FUNCTIONS

A manufacturer would like to know how his company’s profit is related to its
production level; a biologist would like to know how the size of the population
of a certain culture of bacteria will change over time; a psychologist would
like to know the relationship between the learning time of an individual and
the length of a vocabulary list; and a chemist would like to know how the
initial speed of a chemical reaction is related to the amount of substrate used.
In each instance we are concerned with the same question: How does one
quantity depend upon another? The relationship between two quantities is
conveniently described in mathematics by using the concept of a function.

A function is a rule that assigns to each element in a set A one and only one
element in a set B.

The set A is called the domain of the function. It is customary to denote a
function by a letter of the alphabet, such as the letter f. If x is an element in
the domain of a function f, then the element in B that f associates with x is
written f(x) (read “fof x’) and is called the value of fat x. The set comprising
all the values assumed by y = f(x) as x takes on all possible values in its
domain is called the range of the function f.

We can think of a function f as a machine. The domain is the set of inputs
(raw material) for the machine, the rule describes how the input is to be
processed, and the value(s) of the function are the outputs of the machine
(Figure 2.1).

We can also think of a function f as a mapping in which an element x in
the domain of fis mapped onto a unique element f(x) in B (Figure 2.2).

FIGURE 2.1 FIGURE 2.2
A function machine The function f viewed as a mapping
Input
x A B
t /\f('x>
X
f

|

f®)
Output



EXAMPLE 1

SOLUTION v

EXAMPLE 2
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1. It is important to understand that the output f(x) associated with an input
x is unique. To appreciate the importance of this uniqueness property,
consider a rule that associates with each item x in a department store its
selling price y. Then, each x must correspond to one and only one y. Notice,
however, that different x’s may be associated with the same y. In the
context of the present example, this says that different items may have the
same price.

2. Although the sets A and B that appear in the definition of a function may
be quite arbitrary, in this book they will denote sets of real numbers.

An example of a function may be taken from the familiar relationship
between the area of a circle and its radius. Letting x and y denote the radius
and area of a circle, respectively, we have, from elementary geometry,

y = m’ M)

Equation (1) defines y as a function of x since for each admissible value of x
(that is, for each nonnegative number representing the radius of a certain
circle) there corresponds precisely one number y = zx? that gives the area of
the circle. The rule defining this “area function’” may be written as

fx) = mx? (¢))

To compute the area of a circle of radius 5 inches, we simply replace x in
Equation (2) with the number 5. Thus, the area of the circle is

f(5) = u5* =257

or 257 square inches
In general, to evaluate a function at a specific value of x, we replace x
with that value, as illustrated in Examples 1 and 2.

Let the function f be defined by the rule f(x) = 2x* — x + 1. Compute:
a. f(1) b. f(—2) c. f(a) d. f(a + h)

a. f(H) =20 - +1=2-1+1=2

b. f(=2) =2(2Y—-(-2)+1=8+2+1=11

c. fla)=2@)} —(a) +1=2a>—-a+1

d fae+h)=2(a+hyY—(a+h) +1=2a+4ah +2h* —a—h+1

The Thermo-Master Company manufactures an indoor—outdoor thermometer
at its Mexican subsidiary. Management estimates that the profit (in dollars)
realizable by Thermo-Master in the manufacture and sale of x thermometers
per week is

P(x) = —0.001x> + 8 — 5000
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SOLUTION v

EXAMPLE 3

FIGURE 2.3

Find Thermo-Master’s weekly profit if its level of production is (a) 1000
thermometers per week and (b) 2000 thermometers per week.

a. The weekly profit realizable by Thermo-Master when the level of produc-
tion is 1000 units per week is found by evaluating the profit function P at
x = 1000. Thus,

P(1000) = —0.001(1000)> + 8(1000) — 5000 = 2000

or $2000.
b. When the level of production is 2000 units per week, the weekly profit is
given by

P(2000) = —0.001(2000)2 + 8(2000) — 5000 = 7000
or $7000.

DETERMINING THE DOMAIN OF A FUNCTION

Suppose we are given the function y = f(x).* Then, the variable x is called
the independent variable. The variable y, whose value depends on x, is called
the dependent variable.

In determining the domain of a function, we need to find what restrictions,
if any, are to be placed on the independent variable x. In many practical
applications the domain of a function is dictated by the nature of the problem,
as illustrated in Example 3.

An open box is to be made from a rectangular piece of cardboard 16 inches
long and 10 inches wide by cutting away identical squares (x by x inches)
from each corner and folding up the resulting flaps (Figure 2.3). Find an
expression that gives the volume V of the box as a function of x. What is the
domain of the function?

10 10 —2x

T
4 <
x x /< />\

— > Q%
¥ le—16-20—| ¥ 0\% ©”
| 16 | 3/\/
(a) The box is constructed by cutting x- by (b) The dimensions of the resulting hox
xinch squares from each comer. are (10 — 2x) by (16 — 2x) by x
inches.

* 1t is customary to refer to a function f as f(x) or by the equation y = f(x) defining it.



SOLUTION

EXAMPLE 4

SOLUTION
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The dimensions of the box are (16 — 2x) inches long, (10 — 2x) inches wide,
and x inches high, so its volume (in cubic inches) is given by

V=f(x)= (16 — 2x)(10 — 2x)x (Length - width - height)
= (160 — 52x + 4x?*)x
=4x* — 52x* + 160x

Since the length of each side of the box must be greater than or equal to zero,
we see that

16 —2x =0, 10 — 2x = 0, x=0
simultaneously; that is,
x =8, x =15, x=0

All three inequalities are satisfied simultaneously provided that 0 < x =< 5.
Thus, the domain of the function fis the interval [0, 5].

In general, if a function is defined by a rule relating x to f(x) without
specific mention of its domain, it is understood that the domain will consist
of all values of x for which f(x) is a real number. In this connection, you
should keep in mind that (1) division by zero is not permitted and (2) the
square root of a negative number is not defined.

Find the domain of each of the functions defined by the following equations:
a. f(x) = Vx—1 b. f(x) = ﬁ ¢ f(x) =x>+3

a. Since the square root of a negative number is undefined, it is necessary
that x — 1 = 0. The inequality is satisfied by the set of real numbers x = 1.
Thus, the domain of fis the interval [1, «).

b. The only restriction on x is that x2 — 4 be different from zero since division
by zero is not allowed. But (x> —4) = (x + 2)(x —2) = 0if x = =2 or
x = 2. Thus, the domain of f in this case consists of the intervals
(=, =2), (=2, 2), and (2, ).

c. Here, any real number satisfies the equation, so the domain of f is the set
of all real numbers.

GRAPHS OF FUNCTIONS

If fis a function with domain A, then corresponding to each real number x
in A there is precisely one real number f(x). We can also express this fact by
using ordered pairs of real numbers. Write each number x in A as the first
member of an ordered pair and each number f(x) corresponding to x as the
second member of the ordered pair. This gives exactly one ordered pair
(x, f(x)) for each x in A. This observation leads to an alternative definition
of a function f:
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Graph of a Function
of One Variable

FIGURE 2.4
The graph of f

EXAMPLE 5

SOLUTION v

A function f with domain A is the set of all ordered pairs (x, f(x)) where
x belongs to A.

Observe that the condition that there be one and only one number f(x)
corresponding to each number x in A translates into the requirement that no
two ordered pairs have the same first number.

Since ordered pairs of real numbers correspond to points in the plane,
we have found a way to exhibit a function graphically.

The graph of a function f is the set of all points (x, y) in the xy-plane such that
x is in the domain of fand y = f(x).

Figure 2.4 shows the graph of a function f. Observe that the y-coordinate of
the point (x, y) on the graph of f gives the height of that point (the distance
above the x-axis), if f(x) is positive. If f(x) is negative, then —f(x) gives the
depth of the point (x, y) (the distance below the x-axis). Also, observe that
the domain of fis a set of real numbers lying on the x-axis, whereas the range
of flies on the y-axis.

y

(x, )
y=fix)

Range

Domain

The graph of a function fis shown in Figure 2.5.

a. What is the value of f(3)? The value of f(5)?

b. What is the height or depth of the point (3, f(3)) from the x-axis? The
point (5, f(5)) from the x-axis?

¢. What is the domain of f? The range of f?

a. From the graph of f, we see that y = —2 when x = 3 and conclude that
f(3) = —2. Similarly, we see that f(5) = 3.

b. Since the point (3, —2) lies below the x-axis, we see that the depth of the
point (3, f(3)) is —f(3) = —(—2) = 2 units below the x-axis. The point
(5, f(5)) lies above the x-axis and is located at a height of f(5), or 3 units
above the x-axis.



FIGURE 2.5

EXAMPLE 6

SOLUTION v

FIGURE 2.6
The graph of y = x* + 1is a
parahola.
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y=fx

2 1\3/5 7 .

c. Observe that x may take on all values between x = —1 and x = 7, inclusive,
and so the domain of fis [—1, 7]. Next, observe that as x takes on all values
in the domain of f, f(x) takes on all values between —2 and 7, inclusive.
(You can easily see this by running your index finger along the x-axis from
x = —1 to x = 7 and observing the corresponding values assumed by the
y-coordinate of each point of the graph of f.) Therefore, the range of f is
[—2, 7]

Much information about the graph of a function can be gained by plotting
a few points on its graph. Later on we will develop more systematic and
sophisticated techniques for graphing functions.

Sketch the graph of the function defined by the equation y = x* + 1. What
is the range of f?

The domain of the function is the set of all real numbers. By assigning several
values to the variable x and computing the corresponding values for y, we
obtain the following solutions to the equation y = x* + 1:

x -3 =2 -1 0 1 2 3
y 10 5 2 1 2 5 10

By plotting these points and then connecting them with a smooth curve, we
obtain the graph of y = f(x), which is a parabola (Figure 2.6). To determine
the range of f, we observe that x> = 0, if x is any real number and so
x%* 4+ 1 = 1 for all real numbers x. We conclude that the range of fis [1, ).
The graph of f confirms this result visually.

Some functions are defined in a piecewise fashion, as Examples 7 and
8 show.
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EXAMPLE 7

SOLUTION v

Group Discussion d
D Let f(x) = x2
1. Plot the graphs of F(x) = x*> + ¢ on the same set of axes
forc=-2,-1,—-3,0,3%,1, 2.
2. Plot the graphs of G(x) = (x + ¢)* on the same set of axes for ¢ = —2,
-1, -3,0,31, 2.
3. Plot the graphs of H(x) = cx? on the same set of axes for ¢ = =2, —1,
-5 —1,0,%,3 1, 2.
4. Study the family of graphs in parts 1-3 and describe the relationship
between the graph of a function f and the graphs of the functions defined
by (i) y = f(x) + ¢, (il) y = f(x + ¢), and (iii) y = ¢f(x), where cis a constant.

The Madison Finance Company plans to open two branch offices 2 years from
now in two separate locations: an industrial complex and a newly developed
commercial center in the city. As a result of these expansion plans, Madison’s
total deposits during the next 5 years are expected to grow in accordance with
the rule

V2x+20 if0=x=2
fx)=141

§x2+20 if2<x=S5

where y = f(x) gives the total amount of money (in millions of dollars) on
deposit with Madison in year x (x = 0 corresponds to the present). Sketch
the graph of the function f.

The function f is defined in a piecewise fashion on the interval [0, 5]. In the
subdomain [0, 2], the rule for fis given by f(x) = V2x + 20. The values of
f(x) corresponding to x = 0, 1, and 2 may be tabulated as follows:

x 0 1 2
f(x) 20 21.4 22

Next, in the subdomain (2, 5], the rule for fis given by f(x) = 3x% + 20. The
values of f(x) corresponding to x = 3,4, and 5 are shown in the following table:

x 3 4 5
f(x) 24.5 28 325

Using the values of f(x) in this table, we sketch the graph of the function f
as shown in Figure 2.7.



FIGURE 2.7

We obtain the graph of the function
y = f(x) by graphing

y = V2x+ 20 over [0, 2]

and y = 3x2 + 20 over (2, 5).

EXAMPLE 8

SOLUTION v

FIGURE 2.3

The graph of y = f(x) is obtained
by graphing

y = —xover (—eo, 0)

and y = Vx over [0, o).
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N (7% [9%)
W o W

Million dollars

393
[=]

Sketch the graph of the function f defined by

ifx <0

ifx=0

—X

f(x):{\/)—c

The function f is defined in a piecewise fashion on the set of all real numbers.
In the subdomain (—, 0), the rule for fis given by f(x) = —x. The equation
y = —x is a linear equation in the slope-intercept form (with slope —1 and
intercept 0). Therefore, the graph of f corresponding to the subdomain
(=, 0) is the half line shown in Figure 2.8. Next, in the subdomain [0, ),

the rule for f is given by f(x) = Vx. The values of f(x) corresponding to
x=0,1,2,3,4,9, and 16 are shown in the following table:

x 0 1 2 3 4 9 16
V2 V3 2 3 4

f(x) 0 1

Using these values, we sketch the graph of the function f as shown in Figure 2.8.
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FIGURE 2.9
Since a vertical line passes through
the curve at more than one point,
we deduce that it is not the graph
of a fundtion.

Vertical-Line Test

EXAMPLE 9

SOLUTION v

THE VERTICAL-LINE TEST

Although it is true that every function f of a variable x has a graph in the xy-
plane, it is important to realize that not every curve in the xy-plane is the
graph of a function. For example, consider the curve depicted in Figure 2.9.
This is the graph of the equation y*> = x. In general, the graph of an equation
is the set of all ordered pairs (x, y) that satisfy the given equation. Observe
that the points (9, —3) and (9, 3) both lie on the curve. This implies that the
number x = 9 is associated with rwo numbers: y = —3 and y = 3. But this
clearly violates the uniqueness property of a function. Thus, we conclude that
the curve under consideration cannot be the graph of a function.

y
x=9
T ©.3)
—t—t—t—t—+— X
1 4 8 12
4+ 9,-3)
_8+

This example suggests the following test for determining when a curve is
the graph of a function.

A curve in the xy-plane is the graph of a function y = f(x) if and only if each
vertical line intersects it in at most one point.

Determine which of the curves shown in Figure 2.10 are the graphs of functions
of x.

The curves depicted in Figure 2.10a, c, and d are graphs of functions because
each curve satisfies the requirement that each vertical line intersects the curve
in at most one point. Note that the vertical line shown in Figure 2.10c does
not intersect the graph because the point on the x-axis through which this
line passes does not lie in the domain of the function. The curve depicted in
Figure 2.10b is not the graph of a function because the vertical line shown
there intersects the graph at three points.



FIGURE 2.10

The vertical-line test can be used to
determine which of these curves are
graphs of functions.
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—

(a)

(b)

NS

(c)

X X

(d)

1.

2.

3.

Let f be the function defined by
Vx+1

X

flx) =

a. Find the domain of f.
b. Compute f(3).
c¢. Compute f(a + h).
Statistics obtained by Amoco Corporation show that more and more motorists are
pumping their own gas. The following function gives self-serve sales as a percentage
of all U.S. gas sales:

6+ 17 if0=t=6

1) =
f® {15.98(t—6)“4+53 if6<r=20

Here ¢ is measured in years, with ¢t = 0 corresponding to the beginning of 1974.
a. Sketch the graph of the function f.

b. What percentage of all gas sales at the beginning of 1978 were self-serve? At
the beginning of 19947

Source: Amoco Corporation

Let f(x) = V2x + 1 + 2. Determine whether the point (4, 6) lies on the graph of f.

Solutions to Self-Check Exercises 2.1 can be found on page 74.
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1.

10.

11.

12.

. Let f be the function defined by f(z) =

Let f be the function defined by f(x) = 5x + 6. Find
f(S)? f(_3)7 f(a)’ f(_a)7 and f(a + 3)

. Let f be the function defined by f(x) = 4x — 3. Find

f4). £G), f(0), f(a), and f(a + 1).

. Let g be the function defined by g(x) = 3x* — 6x — 3.

Find g(0), g(—1), g(a), g(—a), and g(x + 1).

. Let h be the function defined by h(x) = x* — x* +

x + 1. Find h(=5), h(0), h(a), and h(—a).

2t

. Let s be the function defined by s(¢) = T Find s(4),

-1
5(0), s(a), s(2 + a), and s(¢ + 1).

. Let g be the function defined by g(u) = (3u — 2)*. Find

g(1), g(6), g(%), and g(u + 1).

2t
. Find
Vi—1

f2), f(@), flx + 1), and f(x — 1).

. Let f be the function defined by f(x) = 2 + 2V5 —x.

Find f(—4), f(1), f(4), and f(x + 5).

. Let f be the function defined by

x2+1
fx)= {\/)_c
Find f(—2), f(0), and f(1).
Let g be the function defined by

ifx=0

ifx>0

—1x+1 ifx<?2
gx)=1 2
Vx—2 ifx=2

Find g(-2), g(0), g(2), and g(4).
Let f be the function defined by

—1x2+3 ifx<1
fx)=1 2
2x2+1 ifx=1

Find f(—1), f(0), f(1), and f(2).
Let f be the function defined by
2+V1l-x ifx=1
f=4y_1
1-x

Find £(0), f(1), and £(2).

ifx>1

13.

14.

Refer to the graph of the function f in the following
figure.

y
6 +

a. Find the value of f(0).

b. Find the value of x for which (i) f(x) = 3 and
(if) f(x) = 0.

c. Find the domain of f.

d. Find the range of f.

Refer to the graph of the function f in the following
figure.

—_— N W R W =)
" N N N N "
t t t t t t

a. Find the value of f(7).

b. Find the values of x corresponding to the point on
the graph of flocated at a height of 5 units from the x-
axis.

¢. Find the points on the x-axis at which the graph of f
crosses it. What are the values of f(x) at those points?
d. Find the domain and range of f.



In Exercises 15-18, determine whether the
point lies on the graph of the function.

15. (2, V3); g(x) = Va2 —1

x+1

+2
Vxr+7

16. (3, 3); f(x) =

t—1|
t+1

17. (=2, =3); f(r) = |

[t +1]
£+1

18. (—3, —%); h(t) =

In Exercises 19-32, find the domain of the
function.

19. f(x) = x*+ 3 20. f(x) =7 — x*

2. ) = 22 2. g0 = 21

23. f(x) = Vxl + 1 24. f(x) = Vx—5

25. f(x) = V5 —x 26. g(x) = V2x2 + 3

7. flo) = 28, f(x) = ﬁ

29 f(x) = (x + 3y 30. g(x) = 2(x — 1)

3 ) = 32. f(x) = %

33. Let f be a function defined by the rule f(x) = x* —

x — 6.
a. Find the domain of f.
b. Compute f(x) for x = =3, =2, -1, 0,3, 1, 2, 3.
c. Use the results obtained in parts (a) and (b) to sketch
the graph of f.
34. Let f be a function defined by the rule f(x) = 2x* +
x — 3.
a. Find the domain of f.
b. Compute f(x) for x = -3, =2, -1, —3, 0, 1, 2, 3.
c. Use the results obtained in parts (a) and (b) to sketch
the graph of f.

In Exercises 35-46, sketch the graph of the
function with the given rule. Find the domain
and range of the function.

35. f(x) =2x* + 1 36. f(x) =9 — x?

37. f(x) =2 + Vx 38. g(x) =4 — Vax

39. f(x) = V1—x
41. f(x) = x| — 1
“ f()_{x ifx<0
T T ok k1 itx=0
@ ) {4—x ifx<2
. X) =
2x —2 ifx=2
i f()_{—x+l ifx=1
T T e o1 x>
—x—1 ifx<—-1
46. f(x) = 0 if-1=x=1
x4l ifx>1
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40. f(x) = Vx—1

4. f(x) =[x + 1

In Exercises 47-54, use the vertical-line test
to determine whether the graph represents y
as a function of x.

47.

49.

51.

52.

y 48. y
G \> x
/
y 50. y
\5 o—
/




72 2 = FUNCTIONS, LIMITS, AND THE DERIVATIVE

53. y 54. y

xlT x
1]

55. The circumference of a circle is given by C(r) = 2,
where r is the radius of the circle. What is the circumfer-
ence of a circle with a 5-in. radius?

56. The volume of a sphere of radius r is given by V(r) =
smr’. Compute V(2.1) and V(2). What does the quantity
V(2.1) — V(2) measure?

57. GROWTH oF A CANCEROUS TuMOR The volume of a spherical
cancer tumor is given by the function

V(r) = sar’

where r is the radius of the tumor in centimeters. By
what factor is the volume of the tumor increased if its
radius is doubled?

58. GRowTH oF A CANCEROUS TUMOR The surface area of a
spherical cancer tumor is given by the function

S(r) = 4nr?

where r is the radius of the tumor in centimeters. After
extensive chemotherapy treatment, the surface area of
the tumor is reduced by 75%. What is the radius of the
tumor after treatment?

59. SALES OF PRERECORDED Music The following graphs show
the sales y of prerecorded music (in billions of dollars)
by format as a function of time ¢ (in years) with t = 0
corresponding to 1985.

y (billions of dollars)

CDs

Cassettes

—_— N W kR NN

t (years)

a. In what years were the sales of prerecorded cassettes
greater than those of prerecorded CDs?

b. In what years were the sales of prerecorded CDs
greater than those of prerecorded cassettes?

c. In what year were the sales of prerecorded cassettes

the same as those of prerecorded CDs? Estimate the
level of sales in each format at that time.
Source: Recording Industry Association of America

60. THE GENDER GAP The following graph shows the ratio of

Ratio of women’s to men’s earnings

women’s earnings to men’s from 1960 through 1990.

y
(30, 0.66)

(20, 0.60)

t t t t (years)

a. Write the rule for the function f giving the ratio of
women’s earnings to men’s in year ¢, with ¢+ = 0 corre-
sponding to 1960.

Hint: The function fis defined piecewise and is linear over each
of three subintervals.

b. In what decade(s) was the gender gap expanding?
Shrinking?

c. Refer to part (b). How fast was the gender gap (the
ratio/year) expanding or shrinking in each of these de-
cades?

Source: U.S. Bureau of Labor Statistics

61. CLOSING THE GENDER GAP IN EDUCATION The following graph

0.8 4

0.6 ¢

shows the ratio of bachelor’s degrees earned by women
to men from 1960 through 1990.

y

(30, 1.1)

(20, 0.95)

% % % t (years)

a. Write the rule for the function f giving the ratio of
bachelor’s degrees earned by women to men in year ¢,
with ¢ = 0 corresponding to 1960.

Hint: The function fis defined piecewise and is linear over each
of two subintervals.

b. How fast was the ratio changing in the period from
1960 through 1980? The decade from 1980 to 1990?

c. In what year (approximately) was the number of
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66.

67.

bachelor’s degrees earned by women equal for the first
time to that earned by men?
Source: Department of Education

ConsumptioN FunctioN The consumption function in a
certain economy is given by the equation

C(y) = 0.75y + 6

where C(y) is the personal consumption expenditure, y
is the disposable personal income, and both C(y) and y
are measured in billions of dollars. Find C(0), C(50),
and C(100).

SALES TAXES In a certain state the sales tax 7 on the
amount of taxable goods is 6% of the value of the goods
purchased (x), where both T and x are measured in
dollars.

a. Express T as a function of x.

b. Find 7(200) and 7'(5.65).

SURFACE AREA OF A SINGLE-CELLED ORGANISM The surface
area § of a single-celled organism may be found by multi-
plying 47 times the square of the radius r of the cell.
Express § as a function of r.

. FrRIEND’S RULE Friend’s rule, a method for calculating

pediatric drug dosages, is based on a child’s age. If a
denotes the adult dosage (in milligrams) and if ¢ is the
age of the child (in years), then the child’s dosage is
given by

2
D(t) = % ta
If the adult dose of a substance is 500 mg, how much
should a 4-yr-old child receive?

COLAs Social Security recipients receive an automatic
cost-of-living adjustment (COLA) once each year. Their
monthly benefit is increased by the amount that con-
sumer prices increased during the preceding year. Sup-
pose that consumer prices increased by 5.3% during the
preceding year.

a. Express the adjusted monthly benefit of a Social Secu-
rity recipient as a function of his or her current monthly
benefit.

b. If Harrington’s monthly Social Security benefit is now
$620, what will be his adjusted monthly benefit?

Cost of RENTING A TRUCK The Ace Truck Leasing Com-
pany leases a certain size truck at $30/day and $.15/mi,
whereas the Acme Truck Leasing Company leases the
same size truck at $25/day and $.20/mi.

a. Find the daily cost of leasing from each company as
a function of the number of miles driven.

b. Sketch the graphs of the two functions on the same
set of axes.

¢. Which company should a customer rent a truck from
for 1 day if she plans to drive at most 70 mi and wishes
to minimize her cost?

68.

69.

70.

71.

72.

73.
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LINEAR DEPRECIATION A new machine was purchased by
the National Textile Company for $120,000. For income
tax purposes, the machine is depreciated linearly over
10 yr; that is, the book value of the machine decreases
at a constant rate, so that at the end of 10 yr the book
value is zero.

a. Express the book value of the machine (V) as a func-
tion of the age, in years, of the machine (n).

b. Sketch the graph of the function in part (a).

c. Find the book value of the machine at the end of the
sixth year.

d. Find the rate at which the machine is being depreci-
ated each year.

LINEAR DEPRECIATION Refer to Exercise 68. An office
building worth $1 million when completed in 1985 was
depreciated linearly over 50 years. What was the book
value of the building in 2000? What will the book value
be in 2004? In 2008? (Assume that the book value of
the building will be zero at the end of the 50th year.)

BovLE’s Law  As a consequence of Boyle’s law, the pres-
sure P of a fixed sample of gas held at a constant tempera-
ture is related to the volume V of the gas by the rule

P=fV) =%

where k is a constant. What is the domain of the function
f? Sketch the graph of the function f.

PoisevilLle’s LAW  According to a law discovered by the
nineteenth-century physician Poiseuille, the velocity (in
centimeters/second) of blood r centimeters from the cen-
tral axis of an artery is given by

v(r) = k(R?> = r?)

where k is a constant and R is the radius of the artery.
Suppose that for a certain artery, k = 1000 and R = 0.2
so that v(r) = 1000(0.04 — r?).

a. What is the domain of the function v(r)?

b. Compute v(0), v(0.1), and v(0.2) and interpret
your results.

PopuLaTioN GROWTH A study prepared for a certain Sun-
belt town’s Chamber of Commerce projected that the
population of the town in the next 3 yr will grow ac-
cording to the rule

P(x) = 50,000 + 30x** + 20x

where P(x) denotes the population x mo from now. By
how much will the population increase during the next
9 mo? During the next 16 mo?

WoRKER EFFICIENCY An efficiency study conducted for the
Elektra Electronics Company showed that the number
of “Space Commander”’ walkie-talkies assembled by the
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average worker ¢ hr after starting work at 8:00 A.M. is
given by

N(t) = =3 + 612 + 15¢ O0=t=4)

How many walkie-talkies can an average worker be ex-
pected to assemble between 8:00 and 9:00 A.M.? Between
9:00 and 10:00 A.m.?

LEARNING CURVES The Emory Secretarial School finds
from experience that the average student taking ad-
vanced typing will progress according to the rule

60 + 180

NO =%

where N(¢) measures the number of words/minute the
student can type after r wk in the course. How fast can
the average student be expected to type after 2 wk in
the course? After 4 wk in the course?

PoLitics Political scientists have discovered the follow-
ing empirical rule, known as the “cube rule,” which gives
the relationship between the proportion of seats in the
House of Representatives won by Democratic candi-
dates s(x) and the proportion of popular votes x received
by the Democratic presidential candidate:

x3

S()C):)W_x)3 (Oﬁxﬁl)

Compute s(0.6) and interpret your result.

Home SHOPPING INDUSTRY  According to industry sources,
revenue from the home shopping industry for the years
since its inception may be approximated by the function

—0.03£ + 0.25¢> — 0.12¢
0.57t — 0.63

if0=r=3

R(t) =
® { if3<r=11

where R(f) measures the revenue in billions of dollars
and ¢ is measured in years, with t = 0 corresponding to
the beginning of 1984. What was the revenue at the
beginning of 19857 At the beginning of 1993?

Source: Paul Kagan Associates

PostaL REGULATIONS The postage for first-class mail is 34
cents for the first ounce or fraction thereof and 21 cents
for each additional ounce or fraction thereof. Any parcel

SOLUTIONS 10 SELF-CHECK EXERCISES 2.1

78.

not exceeding 12 ounces may be sent by first-class mail.
Letting x denote the weight of a parcel in ounces and
f(x) the postage in cents, complete the following descrip-
tion of the “postage function” f:

34 ifo<x=1

55 ifl<x=2
fx)=

2 ifll<x=12

a. What is the domain of f?
b. Sketch the graph of f.

Harsor CLEANUP The amount of solids discharged from
the MWRA (Massachusetts Water Resources Author-
ity) sewage treatment plant on Deer Island (near Boston
Harbor) is given by the function

130 ifo=r=1
—30t + 160 ifl<r=2
f(t) =14 100 if2<tr=4
=512+ 25t + 80 if4<r=6
1.25¢2 - 2625t + 162.5 if6 <tr=10

where f(¢) is measured in tons/day and ¢ is measured in
years, with ¢ = 0 corresponding to 1989.

Source: Metropolitan District Commission

a. What amount of solids were discharged per day in
1989? In 1992? In 19967

b. Sketch the graph of f.

In Exercises 79-82, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

79. If a = b, then f(a) = f(b).

80. If f(a) = f(b), then a = b.

81. If fis a function, then f(a + b) = f(a) + f(b).

82. A vertical line must intersect the graph of y = f(x) at

exactly one point.

1. a. The expression under the radical sign must be nonnegative, so x + 1 = 0 or
x = —1. Also, x # 0 because division by zero is not permitted. Therefore, the
domain of fis [—1, 0) U (0, »).
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Vv V.
e fla + h) = (aa++hl3 +1_ aa++hh+ 1

. a. For ¢ in the subdomain [0, 6], the rule for fis given by f(t) = 6t + 17. The
equation y = 6t + 17 is a linear equation, so that portion of the graph of fis the
line segment joining the points (0, 17) and (6, 53). Next, in the subdomain (6, 20],
the rule for fis given by f(¢) = 15.98(t — 6)"* + 53. Using a calculator, we construct
the following table of values of f(¢) for selected values of t.

t 6 8 10 12 14 16 18 20
f(#) 53 72 756 78 799 814 827 839

We have included ¢ = 6 in the table, although it does not lie in the subdomain
of the function under consideration, in order to help us obtain a better sketch of
that portion of the graph of fin the subdomain (6, 20]. The graph of fis as follows:

100

Percentage
IN N )
S S S

[\
(=]

Years

b. The percentage of all self-serve gas sales at the beginning of 1978 is found by
evaluating f at t = 4. Since this point lies in the interval [0, 6], we use the rule
f(t) = 6t + 17 and find

f(4) = 6(4) + 17

giving 41% as the required figure. The percentage of all self-serve gas sales at the
beginning of 1994 is given by

f(20) = 15.98(20 — 6)'"* + 53
or approximately 83.9%.

. A point (x, y) lies on the graph of the function f if and only if the coordinates
satisfy the equation y = f(x). Now,

f@=V2(4)+1+2=V9+2=5+6

and we conclude that the given point does not lie on the graph of f.



Using Technology

FIGURE T1
The graph of

EXAMPLE 1

y=2—4x -5

in the viewing rectangle [—10, 10]
X [-10, 10]
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EXAMPLE 2

SOLUTION v

GRAPHING A FUNCTION

Most of the graphs of functions in this book can be plotted with the help of
a graphing utility. Furthermore, a graphing utility can be used to analyze the
nature of a function. However, the amount and accuracy of the information
obtained using a graphing utility depend on the experience and sophistication
of the user. As you progress through this book, you will see that the more
knowledge of calculus you gain, the more effective the graphing utility will
prove as a tool in problem solving.

FINDING A SuiTABLE VIEWING RECTANGLE

The first step in plotting the graph of a function with a graphing utility is to
select a suitable viewing rectangle. We usually do this by experimenting. For
example, you might first plot the graph using the standard viewing rectangle
[—10,10] by [—10, 10]. If necessary, you then might adjust the viewing rectangle
by enlarging it or reducing it to obtain a sufficiently complete view of the
graph or at least the portion of the graph that is of interest.

Plot the graph of f(x) = 2x> — 4x — 5 in the standard viewing rectangle.

The graph of f, shown in Figure T1, is a parabola. From our previous work
(Example 6, Section 2.1), we know that the figure does give a good view of
the graph.

v

Let f(x) = x3(x — 3)*%

a. Plot the graph of fin the standard viewing rectangle.
b. Plot the graph of fin the rectangle [—1, 5] X [—40, 40].

a. The graph of fin the standard viewing rectangle is shown in Figure T2a.
Since the graph does not appear to be complete, we need to adjust the
viewing rectangle.



FIGURE T2

An incomplete skeich of f(x) =
x{x — 3)"is shown in (a), and @
complete sketch is shown in (b).

EXAMPLE 3

SOLUTION v

FIGURE T3

The graph of

f(x) = x3 — 4x2 + 4x + 2
in the standard viewing rectangle

N

(a) (b)

b. The graph of fin the rectangle [—1, 5] X [—40, 40], shown in Figure T2b,
is an improvement over the previous graph. (Later we will be able to show
that the figure does in fact give a rather complete view of the graph of f.)

EvaLuaTING A FuNcTION

A graphing utility can be used to find the value of a function with minimal
effort, as the next example shows.

Let f(x) = x* — 4x* + 4x + 2.

. Plot the graph of fin the standard viewing rectangle.
. Find f(3) and verify your result by direct computation.
. Find f(4.215).

e e

a. The graph of fis shown in Figure T3.

./

b. Using the evaluation function of the graphing utility and the value 3 for
x, we find y = 5. This result is verified by computing

f3) =3 —-43) +4B)+2=27-36+12+2=5

77



EXAMPLE 4

SOLUTION v

FIGURE T4

The graph of fin the viewing rectan-
gle [0, 71 x [0, 12]

78

c. Using the evaluation function of the graphing utility and the value 4.215
for x, we find y = 22.679738375. Thus, f(4.215) = 22.679738375. The efficacy
of the graphing utility is clearly demonstrated here!

The anticipated rise in the number of Alzheimer’s patients in the United
States is given by

£(1) = —0.0277¢ + 03346 — 1.1261£ + 1.7575¢ + 3.7745 O=t=6)

where f(f) is measured in millions and ¢ is measured in decades, with ¢ = 0
corresponding to the beginning of 1990.

a. Use a graphing utility to plot the graph of f in the viewing rectangle
[0,7] X [0, 12].

b. What was the anticipated number of Alzheimer’s patients in the United
States at the beginning of the year 2000 (+ = 1)? At the beginning of
2030 (t = 4)?

Source: Alzheimer’s Association

a. The graph of f in the viewing rectangle [0, 7] X [0, 12] is shown in Figure T4.

b. Using the evaluation function of the graphing utility and the value 1 for
x, we see that the anticipated number of Alzheimer’s patients at the begin-
ning of the year 2000 was

£(1) = 4.7128

or approximately 4.7 million. The anticipated number of Alzheimer’s pa-
tients at the beginning of 2030 is given by

f(4) = 7.1101

or approximately 7.1 million.



In Exercises 1-8, plot the graph of the function
fin the standard viewing window.

1. f(x) = 2x* — 16x + 29 2. f(x) = —x* — 10x — 20
3o fx)=x —2x*+x -2

4. f(x) = —2.01x> + 1.21x2 — 0.78x + 1

5. f(x) = 02x* — 2.1x2 + 1

6. f(x) = —04x* + 1.2x — 12

Vi +
Vx -1

—_

7. fx) = 2xVx2 + 1 8. f(x) =

In Exercises 9-20, plot the graph of the func-
tion fin (a) the standard viewing window and
(b) the indicated window.

9. f(x) = 2x2 — 32x + 125; [5, 15] X [=5, 10]

10. f(x) = x* + 20x + 95; [-20, 10] X [—15, —5]

11. f(x) = x* — 20x2 + 8x — 10; [—20, 20] X [—1200, 100]
12. f(x) = —2x° + 10x* — 15x — 5; [-10, 10] X [—100, 100]
13. f(x) = x* — 2x* + 8; [—2, 2] X [6, 10]

14. f(x) = x* — 2x% [-1, 3] X [-2, 2]

15, f(x) = x + ;1& [-1, 3] X [=5, 5]

16. f(x) = ﬁ; [=5, 5] X [5, 5]

17. f(x) =2 — ﬁ; [-3,3] X [0, 3]

18. f(x) = x — 2Vx; [0, 20] X [—2, 10]
19. f(x) = xV4 —x%[-3, 3] X [-2, 2]

20. f(x) = Wx_ L [0, 50] X [-0.25, 0.25]

In Exercises 21-30, plot the graph of the func-
tion f in an appropriate viewing window.
(Note: The answer is not unigue.)

21. f(x) = x> — 4x + 16 22, f(x) = —x*+2x — 11

23. f(x) = 2x* — 10x> + 5x — 10

24, f(x) = —x3 + 5x* — 14x + 20

25. f(x) = 2x* — 3x> + 5x* — 20x + 40
26. f(x) = —2x* + 5x> — 4

3

2x* — 3x
B ="t

X
x*+1

27. f(x) =

29. f(x) = 02Vx — 0.3x3 30. f(x) = Vx(2x — 1)}
In Exercises 31-34, use the evaluation func-
tion of your graphing utility to find the value
of f at the given value of x and verify your re-
sult by direct computation.

3. f(x) = 33+ 55> —2x + 8 x = —1

32 f(x) =2x* =33+ 2x* +x — 5;x =2

j

x*=3x2 7=
33. f(x) = P ;x =1 34.f(x)=m;x=2

In Exercises 35-42, use the evaluation func-
tion of your graphing utility to find the value
of f at the indicated value of x. Express your
answer accurate to four decimal places.

35. f(x) = 3x> — 2x* + x — 4;x = 2.145
36. f(x) = 2x> + 5x> + 3x + 1;x = —0.27
37. f(x) = 5x* — 2x* + 8 — 3;x = 1.28
38, f(x) =4x* =3+ 1;x = —242

X —=3x+1

39. f(x) = 2 g ¥ =241
2x +5
40. f(x) = m;x =-1.72

41. f(x) = V2x2+ 1+ V3x>— 1;x = 0.62

42, f(x) = 2x(3x* + 5)13;x = —6.24

43. MANUFACTURING CAPACITY Data obtained from the Fed-
eral Reserve show that the annual increase in manufac-
turing capacity between 1988 and 1994 is given by

79
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f(#) = 0.0388889s* — 0.283333¢* + 0.477778¢
+2.04286 0=r=6)

where f(¢) is a percentage and ¢ is measured in years,
with ¢ = 0 corresponding to the beginning of 1988.

a. Use a graphing utility to plot the graph of fin the
viewing rectangle [0, 8] X [0, 4].

b. What was the annual increase in manufacturing ca-
pacity at the beginning of 1990 (¢ = 2)? At the beginning
of 1992 (t = 4)?

Source: Federal Reserve

DEcLINE OF UNION MEMBERSHIP The total union member-
ship as a percentage of the private workforce is given
by

f() = 0.00017¢* — 0.00921¢* + 0.15437¢*
—1.360723¢ + 16.8028 0=r=10)

where ¢ is measured in years, with = 0 corresponding
to the beginning of 1983.

a. Plot the graph of fin the viewing rectangle [0, 11] X
[8, 20].

80
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b. What was the total union membership as a percentage
of the private force at the beginning of 19867 At the
beginning of 19937

Source: American Federation of Labor and Congress of
Industrial Organizations

KeepING wiTH THE TRAFFIC FLow By driving at a speed
to match the prevailing traffic speed, you decrease the
chances of an accident. According to a University of
Virginia School of Engineering and Applied Science
study, the number of accidents per 100 million vehicle
miles, y, is related to the deviation from the mean speed,
x, in mph by the equation

y = 1.05x — 21.95x> + 155.9x — 327.3 (6=x=11)

a. Plot the graph of y in the viewing rectangle [6, 11] X
[20, 150].

b. What is the number of accidents per 100 million vehi-
cle miles if the deviation from the mean speed is 6 mph,
8 mph, and 11 mph?

Source: University of Virginia School of Engineering
and Applied Science
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2.2 THE ALGEBRA OF FUNCTIONS

FIGURE 2.11
S(1) — R(1) gives the federal bud-
get deficit at any time 1.

The Sum, Difference, Product,
and Quotient of Functions

Let S(f) and R(¢) denote, respectively, the federal government’s spending
and revenue at any time f, measured in billions of dollars. The graphs of
these functions for the period between 1981 and 1991 are shown in
Figure 2.11.

y

1,100
" 1,000
ks Spending y =50
S 900
L
o
2 S(t) - R(®)
2 800
=
=
= 700 / Revenue

600

1981 °82 ’83 84 85 t ’86 *87 ’88 ’89 ’90 91
Years

Source: Office of Management and Budget

The budget deficit at any time ¢ is given by S(¢f) — R(¢) billion dollars.
This observation suggests that we can define a function D whose value at any
time ¢ is given by D(f) = S(¢) — R(¢). The function D, the difference of the
two functions § and R, is written D = § — R, and may be called the “‘deficit
function” since it gives the budget deficit at any time ¢. It has the same domain
as the functions § and R.

Most functions are built up from other, generally simpler, functions. For
example, we may view the function f(x) = 2x + 4 as the sum of the two
functions g(x) = 2x and h(x) = 4. The function g(x) = 2x may in turn be
viewed as the product of the functions p(x) = 2 and ¢g(x) = x.

In general, given the functions f and g, we define the sum f + g,
the difference f — g, the product fg, and the quotient f/g of f and g as
follows.
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The Sum, Difference,
Product, and
Quotient of Functions

EXAMPLE 1

SOLUTION v

Let f and g be functions with domains A and B, respectively. Then the sum
f + g, difference f — g, and product fg of f and g are functions with domain
A N B* and rule given by
(f + ©k) = f(x) + glx)  (Sum)
(f — 9 = f(x) — g(x) (Difference)
(f8)(x) = f(x)g(x) (Product)

The quotient f/g of f and g has domain A N B excluding all points x such that
g(x) = 0 and rule given by

j—c =M uotien
<g> ey (Quotieny

*A N B is read “A intersected with B”” and denotes the set of all points common to both A and B.

Let f(x) = Vx + 1 and g(x) = 2x + 1. Find the sum s, the difference d, the
product p, and the quotient g of the functions f and g.

Since the domain of fis A = [—1, ) and the domain of g is B = (— %, ),
we see that the domain of s, d, and p is A N B = [—1, ). The rules follow.

s)=(f+gx) =fx) +gx)=Vx+1+2x+1
dx)=(f-gx) =fx) —gx)=Vx+1-2x+1)=Vx+1-2x—-1
p(x) = (fe)(x) = flx)g(x) = Vx +12x + 1) = 2x + )Vx + 1

The quotient function g has rule

_ f) _Vx+1
q(x)—< )( )_g(x) 2x+1

Its domain is [—1, ) together with the restriction x # — 3. We denote this
by [~1, —4) U (=}, ).

APPLICATIONS

The mathematical formulation of a problem arising from a practical situation
often leads to an expression that involves the combination of functions. Con-
sider, for example, the costs incurred in operating a business. Costs that remain
more or less constant regardless of the firm’s level of activity are called fixed
costs. Examples of fixed costs are rental fees and executive salaries. On the
other hand, costs that vary with production or sales are called variable costs.
Examples of variable costs are wages and costs of raw materials. The total
cost of operating a business is thus given by the sum of the variable costs and
the fixed costs, as illustrated in the next example.



EXAMPLE 2

SOLUTION v

EXAMPLE 3

SOLUTION v
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Suppose Puritron, a manufacturer of water filters, has a monthly fixed cost
of $10,000 and a variable cost of

—0.0001x> + 10x (0 = x = 40,000)

dollars, where x denotes the number of filters manufactured per month. Find
a function C that gives the total cost incurred by Puritron in the manufacture
of x filters.

Puritron’s monthly fixed cost is always $10,000, regardless of the level of
production, and it is described by the constant function F(x) = 10,000. Next,
the variable cost is described by the function V(x) = —0.0001x* + 10x. Since
the total cost incurred by Puritron at any level of production is the sum of
the variable cost and the fixed cost, we see that the required total cost function
is given by

C(x)

V(x) + F(x)
= —0.0001x2 + 10x + 10,000 (0 = x = 40,000)
Next, the total profit realized by a firm in operating a business is the

difference between the total revenue realized and the total cost incurred; that
is, P(x) = R(x) — C(x).

Refer to Example 2. Suppose that the total revenue realized by Puritron from
the sale of x water filters is given by the total revenue function

R(x) = —0.0005x> + 20x (0 = x = 40,000)

a. Find the total profit function—that is, the function that describes the total
profit Puritron realizes in manufacturing and selling x water filters per
month.

b. What is the profit when the level of production is 10,000 filters per month?

a. The total profit realized by Puritron in manufacturing and selling x water
filters per month is the difference between the total revenue realized and
the total cost incurred. Thus, the required total profit function is given by

P(x) = R(x) — C(x)
= (—0.0005x2 + 20x) — (—0.0001x> + 10x + 10,000)
= —0.0004x + 10x — 10,000

b. The profit realized by Puritron when the level of production is 10,000 filters
per month is

P(10,000) = —0.0004(10,000)> + 10(10,000) — 10,000 = 50,000
or $50,000 per month.

COMPOSITION OF FUNCTIONS

Another way to build up a function from other functions is through a process
known as the composition of functions. Consider, for example, the function
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The Composition of
Two Functions

h, whose rule is given by A(x) = Vx*>— 1. Let f and g be functions defined
by the rules f(x) = x> — 1 and g(x) = Vx. Evaluating the function g at the
point f(x) [remember that for each real number x in the domain of f, f(x) is
simply a real number], we find that

g(f(x) =Vflx) =V -1

which is just the rule defining the function A!
In general, the composition of a function g with a function f is defined
as follows.

Let f and g be functions. Then the composition of g and f is the function g - f
defined by

(g > Nx) = g(f(x))

The domain of g - fis the set of all x in the domain of f such that f(x) lies in
the domain of g.

The function g - f (read ““g circle ) is also called a composite function. The
interpretation of the function 2 = g o f as a machine is illustrated in Figure
2.12, and its interpretation as a mapping is shown in Figure 2.13.

FIGURE 2.12 FIGURE 2.13
The composite function h = g - fis found The function h = g - f viewed as a
by evaluating f ot x and then g at f(x), in mapping
that order.
X f 8

|

x ey h(x)=g(f(x))

l h = g of
F&)
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SOLUTION v

SOLUTION v
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Let f(x) = x> — 1 and g(x) = Vx + 1. Compute:
a. The rule for the composite function g ° f.
b. The rule for the composite function f - g.
a. To find the rule for the composite function g - f, evaluate the function g
at f(x). Therefore,
(> N)x) =g(f(x) =Vflx) +1=Vx—1+1

b. To find the rule for the composite function f - g, evaluate the function f
at g(x). Thus,

(fog)x) = f(g(x)) = (gx)P —1=(Vx+1y -1
=x+2Vx+1—-1=x+2Vx

Example 4 reminds us that in general g - f is different from f - g, so care
must be taken regarding the order when computing a composite function.

Group Discussion d
Let f(x) = Vx + 1 for x = 0 and let g(x) = (x — 1)?
for x = 1. | '
1. Show that (g - f)(x) and (f° g)(x) = x. (Remark: The function g is said
to be the inverse of f and vice versa.)

2. Plot the graphs of f and g together with the straight line y = x. Describe
the relationship between the graphs of f and g.

An environmental impact study conducted for Oxnard’s City Environmental
Management Department indicates that, under existing environmental protec-
tion laws, the level of carbon monoxide present in the air due to pollution
from automobile exhaust will be 0.01x** parts per million (ppm) when the
number of motor vehicles is x thousand. A separate study conducted by a
state government agency estimates that ¢ years from now the number of motor
vehicles in Oxnard will be 0.2¢> + 4¢ + 64 thousand.

a. Find an expression for the concentration of carbon monoxide in the air
due to automobile exhaust ¢ years from now.
b. What will be the level of concentration 5 years from now?

a. The level of carbon monoxide present in the air due to pollution from
automobile exhaust is described by the function g(x) = 0.01x?*?, where x
is the number (in thousands) of motor vehicles. But the number of motor
vehicles x (in thousands) ¢ years from now may be estimated by the rule
f(t) = 0.2¢2 + 4t + 64. Therefore, the concentration of carbon monoxide
due to automobile exhaust ¢ years from now is given by

C@®) = (g~ f)t) = g(f(r)) = 0.01(0.2¢2 + 4t + 64)*?

parts per million.



MICHAEL MARCHLIK

TiTLE: Project Manager
InsTiTUTION: Ebasco Services Incorporated

Calculus wasn’t Mike Marchlik’s favorite college subject. In fact,
it was not until he started his first job that the “lights went on” and

he realized how using calculus allowed him to solve real problems in
his everyday work.

Marchlik emphasizes that he doesn’t do “number crunching”
himself. “I don’t work out integrals, but in my work I use computer
models that do that.” The important issue is not computation but
how the answers relate to client problems.

Marchlik’s clients typically process highly toxic or explosive materi-
als. Ebasco evaluates a client site, such as a chemical plant, to determine
how safety systems might fail and what the probable consequences might be.

To avoid a major disaster like the one that occurred in Bhopal, India, in
1984, Marchlik and his team might be asked to determine how quickly a
poisonous chemical would spread if a leak occurred. Or they might help avert
a disaster like the one that rocked the Houston area in 1989. In that incident,
hydrocarbon vapor exploded at a Phillips 66 chemical plant, shaking office
buildings in Houston, 12 miles away. Several people were killed, and hundreds
were injured. Property damage totaled $1.39 billion.

In assessing risks for a fuel-storage depot, Ebasco considers variables such
as weather conditions, including probable wind speed, the flow properties of
a gas, and possible ignition sources. With today’s more powerful computers,
the models can involve a system of very complex equations to project likely sce-
narios.

Mathematical models vary, however. One model might forecast how much
gas will flow out of a hole and how quickly it will disperse. Another model
might project where the gas will go, depending on local factors such as tempera-
ture and wind speed. Choosing the right model is essential. A model based
on flat terrain when the client’s storage depot is set among hills is going to
produce the wrong answer.

Marchlik and his team run several models together to come up with their
projections. Each model uses “‘equations that have to be integrated to come
up with solutions.” The bottom line? Marchlik stresses that ‘“‘calculus is at
the very heart” of Ebasco’s risk-assessment work.

Ebasco is a diversified engineering and con-
struction company. In addition fo designing
and building electric generafing focilities, the
company provides clients with studies. Their
studies include analyses of potential hazards,
recommendations for safe work practices, and
evaluations of responses to emergencies in
chemical plants, fuel-storage depots, nuclear
facilities, and hozardous waste sites. As a
project manager, Marchlik deals directly with
clients to help them understand and imple-
ment Ebasco’s recommendations fo ensure a

safer environment.




1. Let f and g be functions defined by the rules
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b. The level of concentration 5 years from now will be

C(5) = 0.01[0.2(5)* + 4(5) + 64]**
= (0.01)89%* =~ 0.20
parts per million.

X
1+x

fx)=Vx+1 and g(x)=

respectively. Find the rules for
a. the sum s, the difference d, the product p, and the quotient g of f and g.
b. the composite functions fo g and g - f.

. Health-care spending per person by the private sector includes payments by individu-

als, corporations, and their insurance companies and is approximated by the function
f() = 2.5 + 31.3¢ + 406 (0 =¢=20)
where f(¢) is measured in dollars and ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1975. The corresponding government spending—including ex-
penditures for Medicaid, Medicare, and other federal, state, and local government
public health care—is
g(H) = 1.4 + 29.6¢ + 251 0=r=20)
where ¢ has the same meaning as before.
a. Find a function that gives the difference between private and government health-
care spending per person at any time .
b. What was the difference between private and government expenditures per
person at the beginning of 1985? At the beginning of 1993?
Source: Health Care Financing Administration

Solutions to Self-Check Exercises 2.2 can be found on page 89.

In Exercises 1-8, let f(x) = x® + 5, g(x) = In Exercises 19-24, find the functions f + g,
x? — 2, and h(x) = 2x + 4. Find the rule for f-g, fg, and f/g.
each function.

1. f+g

s. L
4

In Exercises 9-18, let f(x) =

2. f—g
6. 1 =8

" h

3. fg
/g
7. h

Vx+1, and h(x) = 2x® — 1. Fi
each function.

9. f+g
4
13. "
17.M
g

10. g — f
14. E
g
gh
18. =—
g f

11. fg

Ig
15. o

19. f(x) = x>+ 5, g(x) = Vx — 2
4. gf

20. f(x) = Vx—1;g(x) =x*+1
8. fgh

21. f(x) = Vx+3;g(x) = %1
-1, gbo = *

X
nd the rule for

1 1
22. f(x) = e glx) = 71

12 gf
fh _xtl o x+2
16. 2 23. f(x) Py g(x) Py

24, f(x) =x*+ 1;g(x) = Vx+1
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In Exercises 25-30, find the rules for the com-
posite functions f-gand g- f.

25. f(x) = x> + x + 1; g(x) = °

26. f(x) =3x*+2x + 1;g(x) =x+3
27. f(x) = Vx + L glx) = x> — 1

28. f(x) =2Vx + 3; g(x) = x> + 1

x .

29. f() = =gl = 1

30. f(x) = Vx+1;g(x) = L

x—1

In Exercises 31-34, evaluate h(2), where
h=g-f.
3L f(x) = x2+x + 1; g(x) = x?

32, fx) = Vai—1; gx)=3x+1

B f(x) = 5 gx) = Vi
34. f(x) = ﬁ; glx) =x*+1

In Exercises 35-42, find functions f and gsuch
that h = g- f. (Note: The answer is not unique.)

35. h(x) = (2¢° + x> + 1) 36. h(x) = (3x2 — 4)73
37. h(x) = Vx:—1 38. h(x) = (2x — 3)"

1 1
3. h(x) = 40 h(x) = =—
1
41. h(x) = —(3x2 oy
42, h(x) = ﬁ‘i‘ V2x +1

In Exercises 43-46, find f(a+ h) — f(a) for each
function. Simplify your answer.

43, f(x) =3x + 4 44. f(x) = —%x +3
45. f(x) =4 — x? 46. f(x) =x*—2x +1
47. If f(x) = x*> + 1, find and simplify

f(a+hl/)l_f(a) (h?éo)

48. If f(x) = 1/x, find and simplify

f((l‘f‘h}:_f((l) (h?éo)

49. MANUFACTURING CosTS TMI, Inc.,, a manufacturer of
blank audiocassette tapes, has a monthly fixed cost of
$12,100 and a variable cost of $.60/tape. Find a function
C that gives the total cost incurred by TMI in the manu-
facture of x tapes/month.

50. CosT OF PRODUCING ELECTRONIC ORGANIZERS Apollo, Inc.,
manufactures its electronic organizers at a variable cost
of

V(x) = 0.000003x* — 0.03x> + 200x

dollars, where x denotes the number of units manufac-
tured per month. The monthly fixed cost attributable to
the division that produces these electronic organizers is
$100,000. Find a function C that gives the total cost
incurred by the manufacture of x electronic organizers.
What is the total cost incurred in producing 2000
units/month?

51. Cost ofF PRoDUCING ELECTRONIC ORGANIZERS Refer to Exer-

cise 50. Suppose the total revenue realized by Apollo
from the sale of x electronic organizers is given by the
total revenue function

R(x) = —0.1x% + 500x (0 = x = 5000)

where x is measured in dollars.

a. Find the total profit function.

b. What is the profit when 1500 units are produced and
sold each month?

52. OVERCROWDING OF PRISONS The 1980s saw a trend toward

old-fashioned punitive deterrence as opposed to the
more liberal penal policies and community-based correc-
tions popular in the 1960s and early 1970s. As a result,
prisons became more crowded, and the gap between
the number of people in prison and the prison capacity
widened. Based on figures from the U.S. Department of
Justice, the number of prisoners (in thousands) in federal
and state prisons is approximated by the function

N(t) = 3.50 + 267t + 4362 (0 =t=10)

where ¢ is measured in years and ¢ = 0 corresponds to
1983. The number of inmates for which prisons were
designed is given by

C(r) = 24.3t + 365 (0 =t=10)

where C(¢) is measured in thousands and ¢ has the same
meaning as before.

a. Find an expression that shows the gap between the
number of prisoners and the number of inmates for
which the prisons were designed at any time ¢.

b. Find the gap at the beginning of 1983 and at the
beginning of 1986.

Source: U.S. Department of Justice



53.

. HOTEL OCCUPANCY RATE

EFFECT OF MORTGAGE RATES ON HOUSING STARTS A study
prepared for the National Association of Realtors esti-
mated that the number of housing starts per year over
the next 5 yr will be

7
N0 =100
million units, where r (percent) is the mortgage rate.
Suppose the mortgage rate over the next t mo is

10t + 150

110 0=t=24)

r(t) =

percent/year.

a. Find an expression for the number of housing starts
per year as a function of ¢, t months from now.

b. Using the result from part (a), determine the number
of housing starts at present, 12 mo from now, and 18
mo from now.

The occupancy rate of the all-
suite Wonderland Hotel, located near an amusement
park, is given by the function

10, 10, 200

=—p P4
r(t) 1! 3t+ 9z+55 O=r=11)

where ¢ is measured in months and ¢ = 0 corresponds
to the beginning of January. Management has estimated
that the monthly revenue (in thousands of dollars) is
approximated by the function

3 5.9,

= — + =
R ==35000" 507

(0 =r=100)

where r is the occupancy rate.

SoLUTIONS T0 SELF-CHECK EXERCISES 2.2

. HOUSING STARTS AND CONSTRUCTION JOBS
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a. What is the hotel’s occupancy rate at the beginning
of January? At the beginning of June?

b. What is the hotel’s monthly revenue at the beginning
of January? At the beginning of June?

Hint: Compute R(r(0)) and R(r(5)).

The president of
a major housing construction firm reports that the num-
ber of construction jobs (in millions) created is given by

N(x) = 1.42x

where x denotes the number of housing starts. Suppose
the number of housing starts in the next  mo is expected
to be

_ 7(t + 10)?
*() = (t+10)> +2(t + 15)

million units/year. Find an expression for the number
of jobs created per month in the next t mo. How many
jobs will have been created 6 months and 12 mo from
now?

In Exercises 56-59, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

56. If f and g are functions with domain D, then f + g =

g+ f

57. If g - fis defined at x = a, then f- g must also be defined

at x = a.

58. If f and g are functions, then fo g = g f.

59. If fis a function, then fo f = f~

Loa 500 = f0) + () = Vi 1+

d(x) = f(x) — g(x) = Vx +1 -

P) = f@g() = (Vx+1) 15~
f) _ Va1l _ (Vx+1)(1+x)

ATEY

X
1+x

_x(Vx+1)

1+x

_x
1+x

X
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b. (fog)(x) = flg(x)) = ,llex+ 1

Vi+l _Vx+1
(6 N =800 =1 VA T~ Ve 2
2. a. The difference between private and government health-care spending per person
at any time ¢ is given by the function d with the rule
d(t) = f(¢) — g(t) = (2.5¢* + 31.3t + 406)
— (1.41* + 29.6r + 251)
=112+ 1.7t + 155

b. The difference between private and government expenditures per person at the
beginning of 1985 is given by

d(10) = 1.1(10* + 1.7(10) + 155

or $282/person.
The difference between private and government expenditures per person at
the beginning of 1993 is given by

d(18) = 1.1(18)* + 1.7(18) + 155
or $542/person.

2.3 Functions and Mathematical Models

MATHEMATICAL MODELS

Before we can apply mathematics to solving real-world problems, we must
be able to formulate those problems in the language of mathematics. This
process is referred to as mathematical modeling. A mathematical model may
describe precisely the problem under consideration, or, more likely than not,
it may provide only an acceptable approximation of the problem. For example,
the accumulated amount A at the end of ¢ years when a sum of P dollars is
deposited in a fixed bank account, earning interest at the rate of r percent
per year compounded m times a year, is given exactly by the formula (model)

r mt
A=P<1+—>
m

However, the size of a cancer tumor may be approximated by the volume
of a sphere,

4
V==ur
3
where 7 is the radius of the tumor in centimeters.
The many techniques used in constructing mathematical models of practi-
cal problems range from theoretical consideration of the problem on the one



EXAMPLE 1

2.3 = FUNCTIONS AND MATHEMATICAL MODELS 91

extreme to an interpretation of data associated with the problem on the other.
The model for the accumulated amount of a fixed bank account mentioned
earlier may be derived theoretically (see Chapter 5). Later we will see how
linear equations (models) can be constructed from a given set of data points.
In calculus we are concerned primarily with how one (dependent) variable
depends on one or more (independent) variables. Consequently, most of our
mathematical models will involve functions of one or more variables.* Once
a function has been constructed to describe a specific real-world problem, a
host of questions pertaining to the problem may be answered by analyzing
the function (mathematical model). For example, if we have a function that
gives the population of a certain culture of bacteria at any time ¢, then we
can determine how fast the population is increasing or decreasing at any time
t, and so on. Conversely, if we have a model that gives the rate of change of
the cost of producing a certain item as a function of the level of production
and if we know the fixed cost incurred in producing this item, then we can
find the total cost incurred in producing a certain number of those items.
Before going on, let us look at two mathematical models. The first one
is used to estimate spending by business on computer security, and the second
is used to project the growth of the number of people enrolled in health
maintenance organizations (HMOs). These models are derived from data
using the least-squares technique. In the Using Technology section on page
105, you can see how mathematical models are constructed from raw data.

The estimated spending (in billions of dollars) by businesses on computer
security equipment and services from 1987 to 1993 is given in the following
table. The figures include spending for protection against computer criminals
who steal, erase, or alter data, along with protection against fires, electrical
failures, and natural disasters.

Year 1987 1988 1989 1990 1991 1992 1993
Spending 0.49 0.59 0.66 0.73 0.81 0.93 1.02

A mathematical model approximating the amount of spending over the period
in question is given by

S(f) = 0.08641 + 0.4879

where ¢ is measured in years, with ¢t = 0 corresponding to 1987.

a. Sketch the graph of the function § and the given data on the same set of axes.

b. Assuming that this trend continued, what was the spending by business on
computer security equipment and services in 1995 (¢ = 8).

c. What is the rate of increase of the annual expenditure over the period
in question?

Source: Frost & Sullivan, Inc.

* Functions of more than one variable will be studied later.
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FIGURE 2.14

Estimated spending by businesses on
computer security equipment and
services

SOLUTION v

SOLUTION v

y (billions of dollars)
1 -

0.8+
0.6+
0.4+

0.2

~

a. The graph of § is shown in Figure 2.14.
b. The estimated spending in 1995 is

S(8) = 0.0864(8) + 0.4879
~ 1.1791
or approximately $1.18 billion.
¢. The function S is linear, and so we conclude that the annual increase in

the expenditure is given by the slope of the straight line represented by S,
which is approximately $0.09 billion per year.

The number of people (in millions) enrolled in HMOs from 1988 to 1998 is
given in the following table.

Year 1988 1990 1992 1994 1996 1998
No. of People 32.7 36.5 414 51.1 66.5 78.0

A mathematical model approximating the number of people, N(¢), enrolled
in HMOs during this period is

N(f) = —0.0258¢ + 0.7465> — 0.3491¢ + 33.1444 (0 =t = 10)

where ¢ is measured in years and ¢ = 0 corresponds to 1988.

a. Sketch the graph of the function N to see how the model compares with
the actual data.

b. Assume that this trend continues and use the model to predict how many
people will be enrolled in HMOs at the beginning of 2002.

a. The graph of the function N is shown in Figure 2.15.
b. The number of people that will be enrolled in HMOs at the beginning of
2002 is given by

N(14) = —0.0258(14) + 0.7465(14)> — 0.3491(14) + 33.1444
= 103.7758

or approximately 103.8 million people.



FIGURE 2.15

The graph of y = N(1) approximates the
number of people enrolled in HMOs from
1988 to 1998.

Polynomial Function
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y (millions)
70
60

50

40 y=N (1) =—0.02587 + 0.7465¢2 - 0.3491¢ + 33.1444

t (years)

We will discuss several mathematical models from the field of economics
later in this section, but first we review some important functions that are the
basis for many mathematical models.

PoLYNOMIAL FUNCTIONS

We begin by recalling a special class of functions, polynomial functions.

A polynomial function of degree n is a function of the form
f(x) = ax" + ax™' + -+ - + a,x + a, (ap # 0)

where ay, a, . . ., a, are constants and » is a nonnegative integer.

For example, the functions

f(x)=4x’ =3x*+x*—x+8
g(x) = 0.001x> — 2x? 4+ 20x + 400

are polynomial functions of degrees 5 and 3, respectively. Observe that a
polynomial function is defined everywhere so that it has domain (—o, ).
A polynomial function of degree 1 (n = 1)

fx) = apx + a (ap # 0)

is the equation of a straight line in the slope-intercept form with slope m =
ay and y-intercept b = a; (see Section 1.4). For this reason, a polynomial
function of degree 1 is called a linear function. For example, the linear function
f(x) = 2x + 3 may be written as a linear equation in x and y—namely,
y =2x + 3 or2x — y + 3 = 0. Conversely, the linear equation 2x — 3y +
4 = 0 can be solved for y in terms of x to yield the linear function y =

f(x) =3x + 3.
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A polynomial function of degree 2 is referred to as a quadratic function.
A polynomial function of degree 3 is called a cubic function, and so on. The
mathematical model in Example 2 involves a cubic function.

RATIONAL AND POWER FUNCTIONS

Another important class of functions is rational functions. A rational function
is simply the quotient of two polynomials. Examples of rational functions are

3+ xt-x+1

F(x) P
x2+1
G(x)_x2—1

In general, a rational function has the form

R(x) = ]Lx)

g(x)

where f(x) and g(x) are polynomial functions. Since division by zero is not
allowed, we conclude that the domain of a rational function is the set of all
real numbers except the zeros of g—that is, the roots of the equation g(x) =
0. Thus, the domain of the function F is the set of all numbers except x = 2,
whereas the domain of the function G is the set of all numbers except those
that satisfy x> — 1 = 0 or x = *1.

Functions of the form

f) =x

where r is any real number, are called power functions. We encountered
examples of power functions earlier in our work. For example, the functions

f(x) = Vx = x1 and g(x)= )% =x

are power functions.

Many of the functions we will encounter later will involve combinations
of the functions introduced here. For example, the following functions may
be viewed as suitable combinations of such functions:

fo) = 1
¢(0) = VE I T
h(x) = (1 + 20" +m

As with polynomials of degree 3 or greater, analyzing the properties of these
functions is facilitated by using the tools of calculus, to be developed later.
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FIGURE 2.16
A demand curve

p

p=fx)

SOLUTION v
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A study of driving costs based on 1992 model compact (six-cylinder) cars found
that the average cost (car payments, gas, insurance, upkeep, and depreciation),
measured in cents per mile, is approximated by the function

2095

5+ 2008

C(x)=

where x (in thousands) denotes the number of miles the car is driven in 1
year. Using this model, estimate the average cost of driving a compact car
10,000 miles a year and 20,000 miles a year.

Source: Runzheimer International Study

The average cost of driving a compact car 10,000 miles a year is given by

2095
1022

~ 333

C(10) = ==2 +20.08

or approximately 33 cents per mile. The average cost of driving 20,000 miles
a year is given by

2095
202

~23.0

C(20) =

+ 20.08

or approximately 23 cents per mile.

Some Economic MODELS

In the remainder of this section, we look at some economic models.

In a free market economy, consumer demand for a particular commodity
depends on the commodity’s unit price. A demand equation expresses the
relationship between the unit price and the quantity demanded. The graph
of the demand equation is called a demand curve. In general, the quantity
demanded of a commodity decreases as the commodity’s unit price increases,
and vice versa. Accordingly, a demand function defined by p = f(x), where
p measures the unit price and x measures the number of units of the commodity
in question, is generally characterized as a decreasing function of x; that is,
p = f(x) decreases as x increases. Since both x and p assume only nonnegative
values, the demand curve is that part of the graph of f(x) that lies in the first
quadrant (Figure 2.16).

In a competitive market a relationship also exists between the unit price
of a commodity and the commodity’s availability in the market. In general,
an increase in the commodity’s unit price induces the producer to increase
the supply of the commodity. Conversely, a decrease in the unit price generally
leads to a drop in the supply. The equation that expresses the relation between
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EXAMPLE 4

SOLUTION v

FIGURE 2.18
Market equilibrium corresponds to (x;, py),
the point at which the supply and demand
curves intersect.

FIGURE 2.17
A supply curve

p p

Demand

p=fx) P,

the unit price and the quantity supplied is called a supply equation, and its
graph is called a supply curve. A supply function defined by p = f(x) is
generally characterized as an increasing function of x; that is, p = f(x) increases
as x increases. Since both x and p assume only nonnegative values, the supply
curve is that part of the graph of f(x) that lies in the first quadrant (Figure 2.17).

Under pure competition, the price of a commodity will eventually settle
at a level dictated by the following condition: that the supply of the commodity
be equal to the demand for it. If the price is too high, the consumer will not
buy, and if the price is too low, the supplier will not produce. Market equilib-
rium prevails when the quantity produced is equal to the quantity demanded.
The quantity produced at market equilibrium is called the equilibrium quan-
tity, and the corresponding price is called the equilibrium price.

Market equilibrium corresponds to the point at which the demand curve
and the supply curve intersect. In Figure 2.18 x, represents the equilibrium
quantity and p, the equilibrium price. The point (x,, py) lies on the supply
curve and therefore satisfies the supply equation. At the same time it also
lies on the demand curve and therefore satisfies the demand equation. Thus,
to find the point (x,, py), and hence the equilibrium quantity and price, we solve
the demand and supply equations simultaneously for x and p. For meaningful
solutions, x and p must both be positive.

The demand function for a certain brand of videocassette is given by
p =d(x) = —001x*> — 02x + 8
and the corresponding supply function is given by
p =s(x) = 001x2 + 0.1x + 3
where p is expressed in dollars and x is measured in units of a thousand. Find
the equilibrium quantity and price.
We solve the following system of equations:

p=-0.01x*-02x + 8
p= 001x*+0.1x+3
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FIGURE 2.19 Substituting the first equation into the second yields

The supply curve qnd the demand curve 001 — 02x + 8 = 0.00x + 01x + 3
intersect af the point (10, 5).

which is equivalent to

r©®
0.02x>+03x—-5=0
8 2x*+30x —500=0
6 x>+ 15x—=250=0
(10,5) (x+25)(x—-10)=0
4
Thus, x = —25 or x = 10. Since x must be nonnegative, the root x = —25 is
2 rejected. Therefore, the equilibrium quantity is 10,000 videocassettes. The
equilibrium price is given by
X
> 1015 20 p = 0.01(10y* + 0.1(10) + 3 =5

Units of a thousand

or $5 per videocassette (Figure 2.19).

1. a. Use a graphing utility to plot the straight lines L; and L, with equations y = 2x — 1 and
y = 2.1x + 3, respectively, on the same set of axes using the standard viewing rectangle.
Do the lines appear to intersect?

b. Plot the straight lines L, and L, using the viewing rectangle [—100, 100] X [—100, 100]. Do the lines
appear to intersect? Can you find the point of intersection using TRACE and zoom? Using the “intersection’
function of your graphing utility?

c. Find the point of intersection of L, and L, algebraically.

d. Comment on the effectiveness of the methods of solutions in parts (b) and (c).

2. a. Use a graphing utility to plot the straight lines L, and L, with equations y = 3x — 2and y = —2x + 3,
respectively, on the same set of axes using the standard viewing rectangle. Then use TRACE and zoom
to find the point of intersection of L, and L,. Repeat using the “intersection” function of your graphing
utility.

b. Find the point of intersection of L, and L, algebraically.
c¢. Comment on the effectiveness of the methods.

CONSTRUCTING MATHEMATICAL MODELS

We close this section by showing how some mathematical models can be
constructed using elementary geometric and algebraic arguments.

The owner of the Rancho Los Feliz has 3000 yards of fencing material with
which to enclose a rectangular piece of grazing land along the straight portion
of a river. Fencing is not required along the river. Letting x denote the width
of the rectangle, find a function f in the variable x giving the area of the
grazing land if she uses all of the fencing material (Figure 2.20).



98

2 = FUNCTIONS, LIMITS, AND THE DERIVATIVE

FIGURE 2.20

The rectangular grazing land has width x

and length y.

SOLUTION v

EXAMPLE 6

SOLUTION v

The area of the rectangular grazing land is A = xy. Next, observe that the
amount of fencing is 2x + y and this must be equal to 3000 since all the
fencing material is used; that is,

2x + y = 3000

From the equation we see that y = 3000 — 2x. Substituting this value of y
into the expression for A gives

A = xy = x(3000 — 2x) = 3000x — 2x*

Finally, observe that both x and y must be nonnegative since they represent
the width and length of a rectangle, respectively. Thus, x = 0 and y = 0. But
the latter is equivalent to 3000 — 2x = 0, or x = 1500. So the required function
is f(x) = 3000x — 2x? with domain 0 = x = 1500.

XYW Observe that if we view the function f(x) = 3000x — 2x? strictly
as a mathematical entity, then its domain is the set of all real numbers. But
physical consideration dictates that its domain should be restricted to the
interval [0, 1500].

If exactly 200 people sign up for a charter flight, the Leisure World Travel
Agency charges $300 per person. However, if more than 200 people sign up
for the flight (assume this is the case), then each fare is reduced by $1 for
each additional person. Letting x denote the number of passengers above 200,
find a function giving the revenue realized by the company.

If there are x passengers above 200, then the number of passengers signing
up for the flight is 200 + x. Furthermore, the fare will be $(300 — x) per
passenger. Therefore, the revenue will be

R= (200 + x)(300 — x) (Number of passengers times the fare
= —x2 + 100x + 60.000 per passenger)

Clearly, x must be nonnegative, and 300 — x = 0, or x =< 300. So the required
function is f(x) = —x2 + 100x + 60,000 with domain [0, 300].
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1. Thomas Young has suggested the following rule for calculating the dosage of medi-
cine for children from ages 1 to 12 years. If a denotes the adult dosage (in milligrams)
and ¢ is the age of the child (in years), then the child’s dosage is given by

at
t+12

D(n) =

If the adult dose of a substance is 500 mg, how much should a 4-yr-old child receive?

2. The demand function for Mrs. Baker’s cookies is given by

d(x)=—12—5x+4

where d(x) is the wholesale price in dollars per pound and x is the quantity demanded
each week, measured in thousands of pounds. The supply function for the cookies

is given by

ix—i—3

_1 ., 3
s =75¥ T 0% 3

where s(x) is the wholesale price in dollars per pound and x is the quantity, in
thousands of pounds, that will be made available in the market per week by the

supplier.

a. Sketch the graphs of the functions d and s.
b. Find the equilibrium quantity and price.

Solutions to Self-Check Exercises 2.3 can be found on page 108.

In Exercises 1-8, determine whether the equa-
tion defines y as a linear function of x. If so,
write it in the form y = mx + b.

1. 2x +3y =6 2. 2x +4y =17
3J.x=2y—4 4. 2x =3y + 8
5.2x —4y +9=0 6.3x — 6y +7=0
7.2x> -8y +4=0 8. 3Vx +4y=0

In Exercises 9-14, determine whether the
given function is a polynomial function, a ra-
tional function, or some other function. State
the degree of each polynomial function.

10. f(x) = ’;2__39

9. f(x) = 3x* = 2x* + 1

11. G(x) = 2(x* — 3)} 12. H(x) =2x3+5x2+6

13. f(f) = 22 + 3Vt

15.

16.

17.

14. f(l“) = (r36+8)

Find the constants m and b in the linear function
f(x) = mx + b so that f(0) = 2 and f(3) = —1.

Find the constants m and b in the linear function
f(x) = mx + b so that f(2) = 4 and the straight line
represented by f has slope —1.

A manufacturer has a monthly fixed cost of $40,000 and
a production cost of $8 for each unit produced. The
product sells for $12/unit.

a. What is the cost function?

b. What is the revenue function?

c. What is the profit function?

d. Compute the profit (loss) corresponding to produc-
tion levels of 8000 and 12,000 units.
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18.

19.

20.

21.

22,

23.
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A manufacturer has a monthly fixed cost of $100,000
and a production cost of $14 for each unit produced.
The product sells for $20/unit.

a. What is the cost function?

b. What is the revenue function?

c¢. What is the profit function?

d. Compute the profit (loss) corresponding to produc-
tion levels of 12,000 and 20,000 units.

DisposaBLE INcomE Economists define the disposable
annual income for an individual by the equation D =
(1 = r)T, where T is the individual’s total income and
r is the net rate at which he or she is taxed. What is the
disposable income for an individual whose income is
$40,000 and whose net tax rate is 28%?

DruG DosAGES A method sometimes used by pediatri-
cians to calculate the dosage of medicine for children is
based on the child’s surface area. If a denotes the adult
dosage (in milligrams) and S is the surface area of the
child (in square meters), then the child’s dosage is given
by

Sa
D(S)= 17
If the adult dose of a substance is 500 mg, how much
should a child whose surface area is 0.4 m? receive?

CowLING”s RuLe  Cowling’s rule is a method for calculat-
ing pediatric drug dosages. If a denotes the adult dosage
(in milligrams) and ¢ is the age of the child (in years),
then the child’s dosage is given by

t+1
b= (7) “
If the adult dose of a substance is 500 mg, how much
should a 4-yr-old child receive?

WoRKER EFFICIENCY  An efficiency study showed that the
average worker at Delphi Electronics assembled cordless
telephones at the rate of

f(t)=—%t2+6z+10 O=t=4)
phones/hour, ¢ hr after starting work during the morning
shift. At what rate does the average worker assemble
telephones 2 hr after starting work?

REVENUE FuncTions  The revenue (in dollars) realized by
Apollo, Inc., from the sale of its inkjet printers is given
by

R(x) = —0.1x* + 500x

where x denotes the number of units manufactured per
month. What is Apollo’s revenue when 1000 units are
produced?

24.

26.

27.

28.

. E-mAIL USAGE

EFFECT OF ADVERTISING ON SALES The quarterly profit of
Cunningham Realty depends on the amount of money
x spent on advertising per quarter according to the rule
P(x)=—§1—gx2+7x+30 (0=x=50)

where P(x) and x are measured in thousands of dollars.
What is Cunningham’s profit when its quarterly advertis-
ing budget is $28,000?

The number of international e-mailings
per day (in millions) is approximated by the function

f(t) = 38.571> — 2429t + 79.14 0=t=4)

where ¢ is measured in years with ¢+ = 0 corresponding
to the beginning of 1998.

a. Sketch the graph of f.

b. How many international e-mailings per day were
there at the beginning of the year 2000?

Source: Pioneer Consulting

DocumeNt MANAGEMENT The size (measured in millions
of dollars) of the document-management business is de-
scribed by the function

fl) = 022¢ + 1.4t + 3.77 O=t=6)

where ¢ is measured in years with ¢t = 0 corresponding
to the beginning of 1996.

a. Sketch the graph of f.

b. What was the size of the document-management busi-
ness at the beginning of the year 2000?

Source: Sun Trust Equitable Securities

Reaction ofF A FrROG TO A DRUG  Experiments conducted
by A.J. Clark suggest that the response R(x) of a frog’s
heart muscle to the injection of x units of acetylcholine
(as a percentage of the maximum possible effect of the
drug) may be approximated by the rational function

(x=0)

where b is a positive constant that depends on the partic-
ular frog.

a. If a concentration of 40 units of acetylcholine pro-
duces a response of 50% for a certain frog, find the
“response function” for this frog.

b. Using the model found in part (a), find the response
of the frog’s heart muscle when 60 units of acetylcholine
are administered.

ForecasTING SALES The annual sales of the Crimson
Drug Store are expected to be given by

S() =23 + 04t



29.

30.

32.

. LINEAR DEPRECIATION

million dollars ¢ yr from now, whereas the annual sales
of the Cambridge Drug Store are expected to be given
by

S(@) =12 + 0.6¢

million dollars ¢ yr from now. When will the annual sales
of the Cambridge Drug Store first surpass the annual
sales of the Crimson Drug Store?

CRICKET CHIRPING AND TEMPERATURE Entomologists have
discovered that a linear relationship exists between the
number of chirps of crickets of a certain species and
the air temperature. When the temperature is 70°F, the
crickets chirp at the rate of 120 times/minute, and when
the temperature is 80°F, they chirp at the rate of 160
times/minute.

a. Find an equation giving the relationship between the
air temperature T and the number of chirps per minute,
N, of the crickets.

b. Find N as a function of T and use this formula to
determine the rate at which the crickets chirp when the
temperature is 102°F.

LINEAR DEPRECIATION In computing income tax, business
firms are allowed by law to depreciate certain assets such
as buildings, machines, furniture, automobiles, and so
on, over a period of time. The linear depreciation, or
straight-line method, is often used for this purpose. Sup-
pose an asset has an initial value of $C and is to be
depreciated linearly over n years with a scrap value of
$S. Show that the book value of the asset at any time ¢
(0 =t = n) is given by the linear function

_c_=95)
V(t)—C—Tt

Hint: Find an equation of the straight line that passes through
the points (0, C) and (n, S). Then rewrite the equation in the
slope-intercept form.

Using the linear depreciation
model of Exercise 30, find the book value of a printing
machine at the end of the second year if its initial value
is $100,000 and it is depreciated linearly over 5 years
with a scrap value of $30,000.

PRricE ofF IVORY  According to the World Wildlife Fund,
a group in the forefront of the fight against illegal ivory
trade, the price of ivory (in dollars per kilo) compiled
from a variety of legal and black market sources is ap-
proximated by the function

837t + 7.44
2.84t + 51.68

f(t)—{ ifo=r=8§
if8<t=30

where ¢ is measured in years and ¢t = 0 corresponds to
the beginning of 1970.

EEL
%)
@

. SALES OF DIGITAL TVS

. SENIOR CITIZENS” HEALTH CARE

. PRICE OF AUTOMOBILE PARTS
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a. Sketch the graph of the function f.
b. What was the price of ivory at the beginning of 1970?
At the beginning of 1990?

The number of homes with digital
TVs is expected to grow according to the function

f(r) = 017141> + 0.6657¢ + 0.7143 0=t=6)

where ¢ is measured in years with ¢+ = 0 corresponding
to the beginning of the year 2000 and f(¢) is measured
in millions of homes.

a. How many homes had digital TVs at the beginning
of the year 20007

b. How many homes will have digital TVs at the begin-
ning of 2005?

Source: Consumer Electronics Manufacturers Associ-
ation

According to a study con-
ducted for the Senate Select Committee on Aging, the
out-of-pocket cost to senior citizens for health care, f(¢)
(as a percentage of income), in year ¢ where ¢ = 0 corre-
sponds to 1977, is given by

212

7 ifo=tr=7
y=4t+7 if7<t=10
%z+11 if10 <t <20

a. Sketch the graph of f.

b. What was the out-of-pocket cost to senior citizens for
health care in 1982? In 1992?

Source: Senate Select Committee on Aging, AARP

For years, automobile manu-
facturers had a monopoly on the replacement-parts mar-
ket, particularly for sheet metal parts such as fenders,
doors, and hoods, the parts most often damaged in a
crash. Beginning in the late 1970s, however, competition
appeared on the scene. In a report conducted by an
insurance company to study the effects of the competi-
tion, the price of an OEM (original equipment manufac-
turer) fender for a particular 1983 model car was found
to be

110

f(t):1 0=r=2)

~t+1

2
where f(¢) is measured in dollars and ¢ is in years. Over
the same period of time, the price of a non-OEM fender
for the car was found to be

2
g(z):26<}1t2—1> +32 0=t=2)
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where g(¢) is also measured in dollars. Find a function
h(r) that gives the difference in price between an OEM
fender and a non-OEM fender. Compute /(0), #(1), and
h(2). What does the result of your computation seem to
say about the price gap between OEM and non-OEM
fenders over the 2 yr?

For the demand equations in Exercises 36-39,
where x represents the quantity demanded in
units of a thousand and p is the unit price in
dollars, (a) sketch the demand curve and (b)
determine the quantity demanded when the
unit price is set at $p.

36. p=—-x>+36;p=11 3l.p=—-x*+16;p =7
38.p=V9—xZp=2 39. p=VI18—x%,p=3

For the supply equations in Exercises 40-43,
where x is the quantity supplied in units of a
thousand and p is the unit price in dollars, (a)
sketch the supply curve and (b) determine the
price at which the supplier will make 2000
units of the commodity available in the
market.

40. p = 2x* + 18 41. p = x* + 16x + 40

2. p=x>+x+10 3. p=x*+2x+3

44. DEmAND FOR CLock RADIOS In the accompanying figure,
L, is the demand curve for the model A clock radios
manufactured by Ace Radio, Inc., and L, is the demand
curve for their model B clock radios. Which line has the
greater slope? Interpret your results.

SUe

Ly

45. SuppLy of CLock RApIoS In the accompanying figure, L,
is the supply curve for the model A clock radios manufac-
tured by Ace Radio, Inc., and L, is the supply curve for
their model B clock radios. Which line has the greater
slope? Interpret your results.

46.

47.

48.

49.

L,

DEmAND FOR SMOKE ALARMS ~ The demand function for the
Sentinel smoke alarm is given by

30

[ — < <
P=002x+1 (0=x=10)

where x (measured in units of a thousand) is the quantity
demanded per week and p is the unit price in dollars.
Sketch the graph of the demand function. What is the
unit price that corresponds to a quantity demanded of
10,000 units?

DemaND ForR CoMMODITIES  Assume that the demand func-
tion for a certain commodity has the form

p=V—ax*+b

where x is the quantity demanded, measured in units of
a thousand, and p is the unit price in dollars. Suppose
the quantity demanded is 6000 (x = 6) when the unit
price is $8 and 8000 (x = 8) when the unit price is $6.
Determine the demand equation. What is the quantity
demanded when the unit price is set at $7.50?

SuppLy Funcrions The supply function for the Luminar
desk lamp is given by

(a=0,b=0)

p = 01x*+ 05x + 15

where x is the quantity supplied (in thousands) and p is
the unit price in dollars. Sketch the graph of the supply
function. What unit price will induce the supplier to
make 5000 lamps available in the marketplace?

SuppLy FuncrioNs Suppliers of transistor radios will
market 10,000 units when the unit price is $20 and 62,500
units when the unit price is $35. Determine the supply
function if it is known to have the form

p=aVx+b (a=0,b=0)

where x is the quantity supplied and p is the unit price
in dollars. Sketch the graph of the supply function. What
unit price will induce the supplier to make 40,000 transis-
tor radios available in the marketplace?
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Suppose the demand and supply equations for a certain
commodity are given by p = ax + band p = cx + d,
respectively, where a < 0, ¢ > 0, and b > d > 0 (see
the accompanying figure).

a. Find the equilibrium quantity and equilibrium price
in terms of a, b, ¢, and d.

b. Use part (a) to determine what happens to the market
equilibrium if ¢ is increased while a, b, and d remain
fixed. Interpret your answer in economic terms.

c. Use part (a) to determine what happens to the market
equilibrium if b is decreased while a, ¢, and d remain
fixed. Interpret your answer in economic terms.

P
p=cx+d

p=ax+b

For each pair of supply and demand equations
in Exercises 51-54, where x represents the
quantity demanded in units of a thousand and
p the unit price in dollars, find the equilibrium
quantity and the equilibrium price.

51.
52.
53.

54.
5S.

56.

p=—2x>+80 and p = 15x + 30

p=—x*—2x+100 and p = 8x + 25

11p+3x—66=0 and 2p’+p —x =10

p=60—2x* and p = x>+ 9x + 30
MARKET EauiLiBriUM The weekly demand and supply
functions for Sportsman 5 X 7 tents are given by
p=—-01x*— x+40
p= 01x2+2x+20
respectively, where p is measured in dollars and x is

measured in units of a hundred. Find the equilibrium
quantity and price.

MARKET EquiLIBRIUM  The management of the Titan Tire
Company has determined that the weekly demand and
supply functions for their Super Titan tires are given by

p=144— x?

p= 48-0—%)(2

57.

58.
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respectively, where p is measured in dollars and x is
measured in units of a thousand. Find the equilibrium
quantity and price.

WALKING VERSUS RUNNING The oxygen consumption (in
milliliter/pound/minute) for a person walking at x mph
is approximated by the function

f(x):§x2+§x+10 0=x=9)

3

where the oxygen consumption for a runner at x mph
is approximated by the function

gx) =11x + 10 d=x=9

a. Sketch the graphs of f and g.

b. At what speed is the oxygen consumption the same
for a walker as it is for a runner? What is the level of
oxygen consumption at that speed?

c¢. What happens to the oxygen consumption of the
walker and the runner at speeds beyond that found in
part (b)?

Source: Exercise Physiology, by William McArdley,
Frank Katch, and Victor Katch

ENcLOSING AN AREA  Patricia wishes to have a rectangular-
shaped garden in her backyard. She has 80 ft of fencing
material with which to enclose her garden. Letting x
denote the width of the garden, find a function f in
the variable x giving the area of the garden. What is
its domain?

. ENcLosING AN AREA Patricia’s neighbor, Juanita, also

wishes to have a rectangular-shaped garden in her back-
yard. But Juanita wants her garden to have an area of
250 ft>. Letting x denote the width of the garden, find a
function fin the variable x giving the length of the fencing
material required to construct the garden. What is the
domain of the function?

Hint: Refer to the figure for Exercise 58. The amount of fencing
material required is equal to the perimeter of the rectangle,
which is twice the width plus twice the length of the rectangle.

(continued on p. 108)



Using Technology

EXAMPLE 1

SOLUTION

FIGURE T1
The graphs of f and g in the standard view-
ing window

EXAMPLE 2

SOLUTION v

FIGURE T2
The graphs of d and s in the window
[0, 151 x [0, 10]
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FINDING THE POINTS OF INTERSECTION OF TWO
GRAPHS AND MODELING

A graphing utility can be used to find the point(s) of intersection of the graphs
of two functions.

Find the points of intersection of the graphs of

f(x) = 0.3x2 — 1.4x — 3 and g(x) = —04x* + 0.8x + 6.4

The graphs of both f and g in the standard viewing rectangle are shown in
Figure T1. Using TRACE and zoowm or the function for finding the points of
intersection of two graphs on your graphing utility, we find the point(s) of
intersection, accurate to four decimal places, to be (—2.4158, 2.1329) and

(5.5587, —1.5125).

Consider the demand and supply functions

p =d(x) = —0.01x* — 02x + 8 and p =s(x) = 0.01x> + 0.1x + 3
of Example 4 in Section 2.3.

a. Plot the graphs of d and s in the viewing rectangle [0, 15] X [0, 10].
b. Verify that the equilibrium point is (10, 5), as obtained in Example 4.

a. The graphs of d and s are shown in Figure T2.

b. Using TRACE and zoom or the function for finding the point of intersection
of two graphs, we see that x = 10 and y = 5, so the equilibrium point is
(10, 5), as obtained before.



EXAMPLE 3

Indian Gaming
Industry

SOLUTION v

FIGURE T3

The graph of fin the viewing rectangle
[0, 81 < [0, 10]

CONSTRUCTING MATHEMATICAL MODELS FROM RAW DATA

A graphing utility can sometimes be used to construct mathematical models
from sets of data. For example, if the points corresponding to the given data
are scattered about a straight line, then one uses LINR (linear regression) from
the sTAT cALc (statistical calculation) menu of the graphing utility to obtain
a function (model) that approximates the data at hand. If the points seem to
be scattered along a parabola (the graph of a quadratic function), then one
uses P2REG (second-order polynomial regression), and so on.

Details for using the items in the srar cac menu can be found at the Web site:
http://www.brookscole.com/product/0534378439

The following data gives the estimated gross revenues (in billions of dollars)
from the Indian gaming industries from 1990 (¢ = 0) to 1997 (¢ = 7).

Year 0 1 2 3 4 5 6 7
Revenue 0.5 0.7 1.6 2.6 3.4 4.8 5.6 6.8

a. Use a graphing utility to find a polynomial function f of degree 4 that
models the data.

b. Plot the graph of the function f, using the viewing rectangle [0, 8] X [0, 10].

c. Use the function evaluation capability of the graphing utility to compute
f(0), f(1), ..., f(7) and compare these values with the original data.

Source: Christiansen/Cummings Associates

a. Choosing P4rREG (fourth-order polynomial regression) from the STAT CALC
(statistical calculations) menu of a graphing utility, we find

f(®) = 0.00379¢* — 0.06616¢* + 0.41667¢> — 0.07291¢ + 0.48333

=

. The graph of fis shown in Figure T3.

c. The required values, which compare favorably with the given data, follow:

t 0 1 2 3 4 5 6 7
f(t) 0.5 0.8 1.5 2.5 3.6 4.6 5.7 6.8
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In Exercises 1-6, find the points of intersec-
tion of the graphs of the functions. Express
your answer accurate to four decimal places.

1 f(x) =12x + 3.8; g(x) = —0.4x> + 1.2x + 7.5

2. f(x) = 02x*> — 1.3x — 3; g(x) = —1.3x + 2.8

3. f(x) = 03x — 1.7x — 3.2; g(x) = —0.4x> + 0.9x + 6.7
4. f(x) = —03x> + 0.6x + 3.2; g(x) = 0.2x> — 1.2x — 4.8
5. f(x) = 0.3x% — 1.8x2 + 2.1x — 2; g(x) = 2.1x — 4.2

6. f(x) = —02x° + 1.2x2 — 1.2x + 2; g(x) = —0.2x* +
0.8x +2.1

7. The monthly demand and supply functions for a certain
brand of wall clock are given by

p=—02x*—1.2x+ 50
p= 01x*+32x+25

respectively, where p is measured in dollars and x is mea-
sured in units of a hundred.

a. Plot the graphs of both functions in an appropriate
viewing rectangle.

b. Find the equilibrium quantity and price.

8. The quantity demanded x (in units of a hundred) of
Mikado miniature cameras per week is related to the unit
price p (in dollars) by

p=—02x2+ 80

The quantity x (in units of a hundred) that the supplier
is willing to make available in the market is related to
the unit price p (in dollars) by

p=01x2+x + 40

a. Plot the graphs of both functions in an appropriate
viewing rectangle.
b. Find the equilibrium quantity and price.
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In Exercises 9-14, use the sTar caLc menu of a
graphing utility to construct a mathematical
model associated with given data.

9. SALES OF DIGITAL SIGNAL PROCESSORS The projected sales
(in billions of dollars) of digital signal processors
(DSPs) follow:

Year 1997 1998 1999 2000 2001 2002

Sales 31 4 5 6.2 8 10

a. Use P2REG to find a second-degree polynomial regres-
sion model for the data. Let t = 0 correspond to 1997.
b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 5] X [0, 12].

c¢. Compute the values of f(¢) for t = 0, 1, 2, 3, 4, and
5. How does your model compare with the given data?

Source: A. G. Edwards & Sons, Inc.
10. PrisoN PopuLaTioN The following data gives the past,

present, and projected U.S. prison population (in mil-
lions) from 1980 through 2005.

Year 1980 1985 1990 1995 2000 2005

Population 052 0.77 118 1.64 223 320

a. Letting ¢ = 0 correspond to the beginning of 1980
and supposing ¢ is measured in 5-yr intervals, use P2REG
to find a second-degree polynomial regression model
based on the given data.

b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 5] X [0, 3.5].

c¢. Compute f(0), (1), f(2), f(3), f(4), and f(5). Compare
these values with the given data.

11. DiGITAL TV SHIPMENTS The estimated number of digital
TV shipments between the year 2000 and 2006 (in mil-
lions of units) is given in the following table:



12.

13.

Year 2000 2001 2002 2003 2004 2005 2006
Units
Shipped 143 257 4.1 6 8.1 10

a. Use P3REG to find a third-degree polynomial regres-
sion model for the data. Let + = 0 correspond to the
year 2000.

b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 6] X [0, 11].

c¢. Compute the values of f(¢) fort =0, 1,2, 3, 4, 5, and
6.

Source: Consumer Electronics Manufacturers Association

ON-LINE SHOPPING The following data gives the revenue
per year (in billions of dollars) from Internet shopping.

Year 1997 1998 1999 2000 2001

Revenue 2.4 5 8 12 17.4

a. Use P3REG to find a third-degree polynomial regres-
sion model for the data. Let ¢ = 0 correspond to 1997.
b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 4] X [0, 20].

c¢. Compare the values of fat¢ = 0, 1, 2, 3, and 4 with
the given data.

Source: Forrester Research, Inc.

CasLE AD REVENUE The past and projected revenues (in
billions of dollars) from cable advertisement for the years
1995 through the year 2000 follow:

Year 1995 1996 1997 1998 1999 2000
i 5.1 6.6 8.1 9.4 11.1 13.7
Revenue

a. Use P3REG to find a third-degree polynomial regres-
sion model for the data. Let ¢ = 0 correspond to 1995.

14.

15.

b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 6] X [0, 14].

c¢. Compare the values of fat¢ = 1, 2, 3, 4, and 5 with
the given data.

Source: National Cable Television Association

ON-LINE SPENDING The following data gives the world-
wide spending and projected spending (in billions of
dollars) on the Web from 1997 through 2002.

Year 1997 1998 1999 2000 2001 2002

Spending 5.0 105 205 375 60 95

a. Choose P4REG to find a fourth-degree polynomial re-
gression model for the data. Let + = 0 correspond to
1997.

b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 5] X [0, 100].

Source: International Data Corporation

MARIUANA ARRESTS The number of arrests (in thou-

sands) for marijuana sales and possession in New York
City from 1992 through 1997 is given below.

Year 1992 1993 1994 1995 1996 1997
No.of 5, 55 88 117 185 275
Arrests

a. Use P4REG to find a fourth-degree polynomial regres-
sion model for the data. Let t = 0 correspond to 1992.
b. Plot the graph of the function f found in part (a),
using the viewing rectangle [0, 5] X [0, 30].

c. Compare the values of fat¢ =0, 1, 2, 3, 4, and 5 with
the given data.

Source: New York State Division of Criminal Justice
Services

107



108

60.

61.
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PACKAGING By cutting away identical squares from each
corner of a rectangular piece of cardboard and folding
up the resulting flaps, an open box may be made. If the
cardboard is 15 in. long and 8 in. wide and the square
cutaways have dimensions of x in. by x in., find a function
giving the volume of the resulting box.

pe X
X X
8 8-2x
— )
x |<—15—2x—>| x
15

ConsTruction CosTs A rectangular box is to have a
square base and a volume of 20 ft*. The material for the
base costs 30 cents/ft?, the material for the sides costs
10 cents/ft?, and the material for the top costs 20 cents/
ft>. Letting x denote the length of one side of the base,
find a function in the variable x giving the cost of con-
structing the box.

S—x —/

SoLUTIONS 10 SELF-CHECK EXERCISES 2.3

62.

63.

AReA OF A NormAN WiNDOW A Norman window has the
shape of a rectangle surmounted by a semicircle (see
the accompanying figure). Suppose a Norman window
is to have a perimeter of 28 ft; find a function in the
variable x giving the area of the window.

_>| x

*1
_li
YIELD oF AN APPLE ORCHARD An apple orchard has an
average yield of 36 bushels of apples/tree if tree density
is 22 trees/acre. For each unit increase in tree density,
the yield decreases by 2 bushels. Letting x denote the

number of trees beyond 22/acre, find a function in x that
gives the yield of apples.

In Exercises 64-67, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

64.

65.

66.

67.

A polynomial function is a sum of constant multiples of
power functions.

A polynomial function is a rational function, but the
converse is false.

If r > 0, then the power function f(x) = x” is defined
for all nonnegative values of x.

The function f(x) = 2* is a power function.

1. Since the adult dose of the substance is 500 mg, a = 500; thus, the rule in this case

1S

A 4-yr-old should receive

_500¢
b=

_ 500(4)
b@W=1"n

or 125 mg of the substance.
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2. a. The graphs of the functions d and s are shown in the following figure:

2
- =x+
)4 15x 4
1 ,.1 .3
P= 755 10" T2

3
2 _— g
75x +10x+2 15x-i-4
1, (1 2 5
75" +(10+15>x 20
1,.7 5
— +_ —_— =
755 T3 370

Multiplying both sides of the last equation by 150, we have

2x7+35x —375=0
(2x — 15)(x +25) =0

Thus, x = —25 or x = 15/2 = 7.5. Since x must be nonnegative, we take x = 7.5,
and the equilibrium quantity is 7500 pounds. The equilibrium price is given by

2 (15
P“B(E)*“

or $3/pound.
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2.4 Limits

FIGURE 2.21

INTRODUCTION TO CALCULUS

Historically, the development of calculus by Isaac Newton (1642-1727) and
Gottfried Wilhelm Leibniz (1646-1716) resulted from the investigation of the
following problems:

1. Finding the tangent line to a curve at a given point on the curve (Figure
2.21a)

2. Finding the area of a planar region bounded by an arbitrary curve (Fig-
ure 2.21b)

(a) What is the slope of the tangent (b) What is the area of the region R?
line T at point P?

The tangent-line problem might appear to be unrelated to any practical
applications of mathematics, but as you will see later, the problem of finding
the rate of change of one quantity with respect to another is mathematically
equivalent to the geometric problem of finding the slope of the tangent line
to a curve at a given point on the curve. It is precisely the discovery of the
relationship between these two problems that spurred the development of
calculus in the seventeenth century and made it such an indispensable tool for
solving practical problems. The following are a few examples of such problems:

® Finding the velocity of an object

m Finding the rate of change of a bacteria population with respect to time

m Finding the rate of change of a company’s profit with respect to time

m Finding the rate of change of a travel agency’s revenue with respect to the
agency’s expenditure for advertising

The study of the tangent-line problem led to the creation of differential
calculus, which relies on the concept of the derivative of a function. The study
of the area problem led to the creation of integral calculus, which relies on
the concept of the antiderivative, or integral, of a function. (The derivative of
a function and the integral of a function are intimately related, as you will



FIGURE 2.22
A maglev moving along an elevated mono-
rail track
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see in Section 6.4.) Both the derivative of a function and the integral of a
function are defined in terms of a more fundamental concept—the limit—our
next topic.

A REAL-LIFE EXAMPLE

From data obtained in a test run conducted on a prototype of a maglev
(magnetic levitation train), which moves along a straight monorail track, engi-
neers have determined that the position of the maglev (in feet) from the origin
at time ¢ is given by

s = f(1) = 4t (0 =t =130) (©))

where f is called the position function of the maglev. The position of the
maglev at time ¢ = 0, 1, 2, 3, ..., 10, measured from its initial position, is

fl0)=0, f1)=4, f2)=16, f(3)=136,..., f(10) =400
feet (Figure 2.22).

s (feet)

=

Suppose we want to find the velocity of the maglev at ¢ = 2. This is just
the velocity of the maglev as shown on its speedometer at that precise instant
of time. Offhand, calculating this quantity using only Equation (3) appears
to be an impossible task; but consider what quantities we can compute using
this relationship. Obviously, we can compute the position of the maglev at
any time ¢ as we did earlier for some selected values of ¢. Using these values,
we can then compute the average velocity of the maglev over an interval of
time. For example, the average velocity of the train over the time interval
[2, 4] is given by

Distance covered _ f(4) — f(2)

Time elapsed 4—-2
_4#) -4
2
_64—16
== = 24

or 24 feet/second.
Although this is not quite the velocity of the maglev at + = 2, it does
provide us with an approximation of its velocity at that time.
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Can we do better? Intuitively, the smaller the time interval we pick (with
t = 2 as the left end point), the better the average velocity over that time
interval will approximate the actual velocity of the maglev at t = 2.*

Now, let’s describe this process in general terms. Let ¢+ > 2. Then, the
average velocity of the maglev over the time interval [2, {] is given by

fO-fQ) _4°-42) _ 4 -4
t—2 t—2 t—2

)

By choosing the values of ¢ closer and closer to 2, we obtain a sequence of
numbers that gives the average velocities of the maglev over smaller and
smaller time intervals. As we observed earlier, this sequence of numbers
should approach the instantaneous velocity of the train at t = 2.

Let’s try some sample calculations. Using Equation (4) and taking the
sequence ¢t = 2.5, 2.1, 2.01, 2.001, and 2.0001, which approaches 2, we find

2
The average velocity over [2,2.5] is % =18, or 18 feet/second
. . 4212 - 4)
The average velocity over [2, 2.1] is S1-3 16.4, or 16.4 feet/second

and so forth. These results are summarized in Table 2.1.

t approaches 2 from the right.

t 2.5 2.1 2.01 2.001 2.0001
Average Velocity 18 16.4 16.04 16.004 16.0004
over [2, t]

Average velocity approaches 16 from the right.

From Table 2.1, we see that the average velocity of the maglev seems to
approach the number 16 as it is computed over smaller and smaller time
intervals. These computations suggest that the instantaneous velocity of the
train at ¢ = 2 is 16 feet/second.

IEEITYYW Notice that we cannot obtain the instantaneous velocity for the
maglev at ¢ = 2 by substituting ¢ = 2 into Equation (4) because this value of
t is not in the domain of the average velocity function.

INTUITIVE DEFINITION OF A LimiIT
Consider the function g defined by

s =24

t—2

* Actually, any interval containing ¢ = 2 will do.



FIGURE 2.23
As t approaches t = 2 from either
direction, g(1) approaches y = 16.
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which gives the average velocity of the maglev [see Equation (4)]. Suppose
we are required to determine the value that g(¢) approaches as ¢ approaches
the (fixed) number 2. If we take the sequence of values of ¢ approaching 2
from the right-hand side, as we did earlier, we see that g(f) approaches the
number 16. Similarly, if we take a sequence of values of ¢ approaching 2 from
the left, such as r = 1.5, 1.9, 1.99, 1.999, and 1.9999, we obtain the results
shown in Table 2.2.

t approaches 2 from the left.

t 1.5 1.9 1.99 1.999 1.9999
g(d 14 15.6 15.96 15.996 15.9996

g(1) approaches 16 from the left.

Observe that g(¢) approaches the number 16 as ¢ approaches 2—this time
from the left-hand side. In other words, as ¢ approaches 2 from either side of
2, g(t) approaches 16. In this situation, we say that the limit of g(¢) as ¢
approaches 2 is 16, written

4 -4 _

pa— 16

lm () =l

The graph of the function g, shown in Figure 2.23, confirms this observation.

~ 4@ -4
y=g)=———

20 +
18 1
16 4
14
12

Observe that the point t = 2 is not in the domain of the function g [for
this reason, the point (2, 16) is missing from the graph of g]. This, however,
is inconsequential because the value, if any, of g(¢) at ¢ = 2 plays no role in
computing the limit.

This example leads to the following informal definition.



114 2 = FUNCTIONS, LIMITS, AND THE DERIVATIVE

Limit of a Function
The function f has the limit L as x approaches a, written

lim f(x) = L

X—a

if the value f(x) can be made as close to the number L as we please by taking
x sufficiently close to (but not equal to) a.

1. Use a graphing utility to plot the graph of
_Ax =4
8 (X ) - x—2

in the viewing rectangle [0, 3] X [0, 20].

2. Use zoom and TRACE to describe what happens to the values of f(x) as x approaches 2, first from the
right and then from the left.

3. What happens to the y-value when x takes on the value 2? Explain.

4. Reconcile your results with those of the preceding example.

EVALUATING THE LimIT OF A FUNCTION

Let us now consider some examples involving the computation of limits.

EXAMPLE 1 Let f(x) = x* and evaluate li1121 fx).

The graph of fis shown in Figure 2.24. You can see that f(x) can be made as
close to the number 8 as we please by taking x sufficiently close to 2. Therefore,

limx?=8

x—2

FIGURE 2.24 y

f(x) is close o 8 whenever x is dose to 2.
8 -+ y=r
6+
a1




EXAMPLE 2

SOLUTION v

FIGURE 2.25
|in} glx) =3

EXAMPLE 3

SOLUTION v

FIGURE 2.26
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Let

()_{x+2 ifx#1
Y971 ifx=1

Evaluate lirrll g(x).

The domain of g is the set of all real numbers. From the graph of g shown
in Figure 2.25, we see that g(x) can be made as close to 3 as we please by
taking x sufficiently close to 1. Therefore,

linll gx)=3

N\

4

-+ o

w4
=

Observe that g(1) = 1, which is not equal to the limit of the function g
as x approaches 1. [Once again, the value of g(x) at x = 1 has no bearing on
the existence or value of the limit of g as x approaches 1.]

Evaluate the limit of the following functions as x approaches the indicated
point.

ifx<0 1

a. f(x)={_1 ifoO;x:() b. g(x) =

x2;x=0

The graphs of the functions f and g are shown in Figure 2.26.

T T
-2 -1

(a) Iim0 f(x) does not exist. (b) Iim0 g(x) does not exist.

a. Referring to Figure 2.26a, we see that no matter how close x is to x = 0,
f(x) takes on the values 1 or —1, depending on whether x is positive or
negative. Thus, there is no single real number L that f(x) approaches as
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x approaches zero. We conclude that the limit of f(x) does not exist as x
approaches zero.

b. Referring to Figure 2.26b, we see that as x approaches x = 0 (from either
side), g(x) increases without bound and thus does not approach any specific
real number. We conclude, accordingly, that the limit of g(x) does not exist
as x approaches zero.

Group Discussion
Consider the graph of the function # whose graph is depicted in the
following figure:

I AN
VA AV

It has the property that as x approaches 0 from either the right or the left,
the curve oscillates more and more frequently between the lines y = —1
and y = 1.

1. Explain why lin(} h(x) does not exist.

2. Compare this function with those in Example 3. More specifically, discuss
the different ways the functions fail to have a limit at x = 0.

Until now, we have relied on knowing the actual values of a function or
the graph of a function near x = a to help us evaluate the limit of the function
f(x) as x approaches a. The following properties of limits, which we list without
proof, enable us to evaluate limits of functions algebraically.

Properties of Limits
Suppose

lim f(x) = L and lim g(x) = M

X—a X—a

Then,
1. lim[f(x)]" = [limf(x)]"= L’ (r, areal number)
x—a x—a

2. lim c¢f(x) = clim f(x) = cL (c, areal number)
3. lim[f(x) = g(x)] = lim f(x) £ limg(x) = L = M
4. lim[f(x)309)] = [lim F)][im g(x)] = L

lim f(x)
5. lim ) e’ L (Provided M # 0)

—a8(x)  limgx) M

X—a




EXAMPLE 4

SOLUTION v
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Use Theorem 1 to evaluate the following limits.

a, lirrzl x3 b. lirr41 5x3? ¢ lim (5x* - 2)
X—> X—> x—1
L 2xP 41
d. lim 2x° Va? + 7 e. lim =
x—3 =2 X+ 1
a. limx® = [lim x]3 (Property 1)
x—2 x—2
=2'=8 (lim x = 2)
b. lim 5x%* = S[Iim x3/2] (Property 2)
x—4 x—4
= 5(4)"2 = 40
C. 1im(5x4 — 2) = lim 5x* — lim 2 (Property 3)
x—1 x—1 x—1

117

To evaluate lim 2, observe that the constant function g(x) = 2 has value 2

x—1

for all values of x. Therefore, g(x) must approach the limit 2 as x approaches

x = 1 (or any other point for that matter!). Therefore,

lm(5x* — 2) = 5(1)* =2 =3
x—1

d. Iim2x* Vx?+7=21imx* Vx> +7 (Property 2)

x—=3 x—3

=21lim x*lim Vx? + 7 (Property 4)
-3

x—=3 X3

= 2(3)3 V3247 (Property 1)
=2(27) V16 =216

: 2
o 41 M)

e I T T T+ 1) (Property 3)
x—2
_r+1_9_
2+1 3

INDETERMINATE FORMS

Let’s emphasize once again that Property 5 of limits is valid only when the
limit of the function that appears in the denominator is not equal to zero at

the point in question.

If the numerator has a limit different from zero and the denominator has
a limit equal to zero, then the limit of the quotient does not exist at the point
in question. This is the case with the function g(x) = 1/x* in Example 3b.
Here, as x approaches zero, the numerator approaches 1 but the denominator
approaches zero, so the quotient becomes arbitrarily large. Thus, as observed

earlier, the limit does not exist.
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Strategy for
Evaluating
Indeterminate
Forms

EXAMPLE 5

SOLUTION v

Next, consider

2 _
lim 3% — 4)
x—2 X — 2

which we evaluated earlier by looking at the values of the function for x near
x = 2. If we attempt to evaluate this expression by applying Property 5 of
limits, we see that both the numerator and denominator of the function

4(x* - 4)
x—2

approach zero as x approaches 2; that is, we obtain an expression of the form
0/0. In this event, we say that the limit of the quotient f(x)/g(x) as x approaches
2 has the indeterminate form 0/0.

We will need to evaluate limits of this type when we discuss the derivative
of a function, a fundamental concept in the study of calculus. As the name
suggests, the meaningless expression 0/0 does not provide us with a solution
to our problem. One strategy that can be used to solve this type of prob-
lem follows.

1. Replace the given function with an appropriate one that takes on the
same values as the original function everywhere except at x = a.
2. Evaluate the limit of this function as x approaches a.

Examples 5 and 6 illustrate this strategy.

Evaluate:

2 _
hmu

=2 X—2
Since both the numerator and the denominator of this expression approach

zero as x approaches 2, we have the indeterminate form 0/0. We rewrite

4x*—4) 4x-2)(x+?2)
x—2 (x—=2)

which, upon canceling the common factors, is equivalent to 4(x + 2). Next,
we replace 4(x? — 4)/(x — 2) with 4(x + 2) and take the limit as x approaches
2, obtaining

2
tim 2= _ iy 4(x +2) =16

x—2 X — x—=2
The graphs of the functions

fx) = 4());2_—_24) and gx)=4(x+2)



FIGURE 2.27
The graphs of f(x) and g(x) are identical
except at the point (2, 16).

1. Use a graphing utility to plot the graph of
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are shown in Figure 2.27a-b. Observe that the graphs are identical except
when x = 2. The function g is defined for all values of x and, in particular,
its value at x = 2 is g(2) = 4(2 + 2) = 16. Thus, the point (2, 16) is on the
graph of g. However, the function f is not defined at x = 2. Since f(x) = g(x)
for all values of x except x = 2, it follows that the graph of f must look exactly
like the graph of g, with the exception that the point (2, 16) is missing from
the graph of f. This illustrates graphically why we can evaluate the limit of
f by evaluating the limit of the “equivalent” function g.

24
20
16

12 1

43! — 4) (b) g0 = 4(x + 2)

(a) f() = —— 7

XYW Notice that the limit in Example 5 is the same limit that we evalu-
ated earlier when we discussed the instantaneous velocity of a maglev at a
specified time.

fy ==

in the viewing rectangle [0, 3] X [0, 20]. Then use zoom and TRACE to find

. 4P —4)
lxlg x—2

2. Use a graphing utility to plot the graph of g (x) = 4(x + 2) in the viewing rectangle [0, 3] X [0, 20]. Then
use zooM and TRACE to find lim 4(x + 2). What happens to the y-value when x takes on the value 2? Explain.

x—2

3. Can you distinguish between the graphs of f and g?
4. Reconcile your results with those of Example 5.



120

~ W

. Use a graphing utility to plot the graph of
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EXAMPLE & Evaluate:

. V1+h-1
lim——
=0 h

Letting & approach zero, we obtain the indeterminate form 0/0. Next, we
rationalize the numerator of the quotient (see page 25) by multiplying
both the numerator and the denominator by the expression (V1 + & + 1), ob-
taining

Vi+h—-1 (Vli+h-1)(V1+h+1)
h h(V1+h+1)

_ 1+h-1
h(V1+h+ 1)

B h

Ch(V1+h+1)

[(Va—Vb)(Va+Vb)=a—b]

1
CNV1I+h+1
Therefore,
i Ytth-t 1
h—0 h =0 V1+h+1

V1+x-—1

glx) = P

in the viewing rectangle [—1, 2] X [0, 1]. Then use zoom and TRACE to find

. Vi+x—-1
= —

by observing the values of g(x) as x approaches 0 from the left and from the right.
Use a graphing utility to plot the graph of

fx) = ——t

V1+x+1

in the viewing rectangle [—1, 2] X [0, 1]. Then use zoom and TRACE to find
lim 1
=0 V1 +x+1

What happens to the y-value when x takes on the value 0? Explain.

. Can you distinguish between the graphs of f and g?
. Reconcile your results with those of Example 6.



FIGURE 2.28
The graph of P() gives the population of
fruit flies in a laboratory experiment.

FIGURE 2.29
W .
The graph of y = o has a horizontal

asymptote at y = 2.

2.4 m [IMITS 121

LimITS AT INFINITY

Up to now we have studied the limit of a function as x approaches a (finite)
number a. There are occasions, however, when we want to know whether
f(x) approaches a unique number as x increases without bound. Consider, for
example, the function P, giving the number of fruit flies (Drosophila) in a
container under controlled laboratory conditions, as a function of a time ¢.
The graph of P is shown in Figure 2.28. You can see from the graph of P
that, as ¢ increases without bound (gets larger and larger), P(¢) approaches
the number 400. This number, called the carrying capacity of the environment,
is determined by the amount of living space and food available, as well as
other environmental factors.

y

400+ y=400

Number of fruit flies

1 1 1 1 1 1 t
O T T T T T T

10 20 30 40 50 60
Days

As another example, suppose we are given the function

f) = 12szx2

and we want to determine what happens to f(x) as x gets larger and larger.
Picking the sequence of numbers 1, 2, 5, 10, 100, and 1000 and computing the
corresponding values of f(x), we obtain the following table of values:

X 1 2 5 10 100 1000

f(x) 1 1.6 1.92 1.98 1.9998 1.999998

From the table, we see that as x gets larger and larger, f(x) gets closer and
closer to 2. The graph of the function f shown in Figure 2.29 confirms this
observation. We call the line y = 2 a horizontal asymptote.*

y
=2
Sl
| 2
YT
—t—t —t—t x
-3 -1 1 3

* We will discuss asymptotes in greater detail in Section 4.3.
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In this situation we say that the limit of the function

2x?

=10

as x increases without bound is 2, written

. 2x?
lxlgol 1+x2 2

In the general case, the following definition is applicable:
Limit of

a Function
at Infinity

The function f has the limit L as x increases without bound (or, as x approaches
infinity), written

lim f(x) =L

X—>©

if f(x) can be made arbitrarily close to L by taking x large enough.
Similarly, the function f has the limit M as x decreases without bound (or
as x approaches negative infinity), written

lirfl fx)=M

if f(x) can be made arbitrarily close to M by taking x to be negative and
sufficiently large in absolute value.

EXAMPLE 7 Let f and g be the functions

-1 ifx<o0 1
={71 S0 e -k
Evaluate:
a. lim f(x) and lim f(x) b. lim g(x) and lim g(x)

The graphs of f(x) and g(x) are shown in Figure 2.30. Referring to the graphs
of the respective functions, we see that

a. lim f(x) =1 and lim f(x) = -1

b. limlz=0 and lim%zo

x—ow X x—=-0o X
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FIGURE 2.30 y

1+

(a) im f) = Tond lim fix) = —1 (b) lim gx =0ond lim g(x) =0

X— r—>— (— —®©

All the properties of limits listed in Theorem 1 are valid when a is replaced
by » or —. In addition, we have the following property for the limit at infinity.

For all n > 0,

provided that % is defined.

1. Use a graphing utility to plot the graphs of

1

_ 1 1
)H-W, )’2—;, and Y3—F

in the viewing rectangle [0, 200] X [0, 0.5]. What can you say about limln if n =05 n =1, and

n = 1.5? Are these results predicted by Theorem 2?
2. Use a graphing utility to plot the graphs of

1
y1=; and yz=ﬁ

in the viewing rectangle [—50, 0] X [—0.5, 0]. What can you say about lim ln ifn=1andn = g?
Are these results predicted by Theorem 2?
Hint: To graph y,, write it in the form y2 = 1/(x"(1/3))"5.
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EXAMPLE 8

SOLUTION v

EXAMPLE 9

SOLUTION v

In evaluating the limit at infinity of a rational function, the following
technique is often used: Divide the numerator and denominator of the expres-
sion by x", where n is the highest power present in the denominator of the ex-
pression.

Evaluate:

limx2 -x+3
X—® 2x3 +1

Since the limits of both the numerator and the denominator do not exist as
x approaches infinity, the property pertaining to the limit of a quotient (Prop-
erty 5) is not applicable. Let us divide the numerator and denominator of the
rational expression by x°, obtaining

1 1 3
_—_—|——
fmP X3 X X X
X—® 2x3+1 X—® 1
2+

L0=050_0 )

- = = Slng ecorem
240 2

Let

Compute lim f(x) if it exists.

Again, we see that Property 5 is not applicable. Dividing the numerator and
the denominator by x2, we obtain

8 4
+___
lim3x2+8x_4—lim3 x  x?
X—0 2+ - _x—>°0
2x*+4x —5 2+4_1_%
X X
lim3+81iml—4liml2
_XA)OO x—o X x—w X
lir112—i-41im1—51iml2
X0 x—o X x—o X
=3+0—0
2+0-0

== (Using Theorem 2)



EXAMPLE 10

SOLUTION v

EXAMPLE 11
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26 —=3x2+ 1
Let f(x) = i ad and evaluate:
a. lim f(x) b. lim f(x)

a. Dividing the numerator and the denominator of the rational expression
by x2, we obtain

1

— +_

hmw—]imzx ’ X
e X224+ 4 ow

x>+ 2x+4 1+Z+i

Since the numerator becomes arbitrarily large whereas the denominator ap-
proaches 1 as x approaches infinity, we see that the quotient f(x) gets larger
and larger as x approaches infinity. In other words, the limit does not exist.
We indicate this by writing

2 =3x2+1

lim—————————— =
e X2+ 2x+4

b. Once again, dividing both the numerator and the denominator by x2, we
obtain

1
2x —3+—
lim —2x3 — 3% +1 = lim —x ’ x
e X2+ 2x+ 4 X—>—0 2 4
1+=+5
X X

In this case the numerator becomes arbitrarily large in magnitude but negative
in sign, whereas the denominator approaches 1 as x approaches negative
infinity. Therefore, the quotient f(x) decreases without bound, and the limit
does not exist. We indicate this by writing

28 —=3x+1

lim———————=—-
v—mw X2+ 2x+ 4

Example 11 gives an application of the concept of the limit of a function
at infinity.

The Custom Office Company makes a line of executive desks. It is estimated
that the total cost of making x Senior Executive Model desks is C(x) =
100x + 200,000 dollars per year, so that the average cost of making x desks
is given by

_ C(x) _ 100x + 200,000
X X

100+ 200),(000

C(x)

dollars per desk. Evaluate lim C(x) and interpret your results.

x—®
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SOLUTION v

FIGURE 2.31
As the level of production increases, the
average cost approaches S100 per desk.

lim C(x) = lim

X—® x—®

( 100 + 200§000>

= lim 100 + lim =100

X—>® X—>®

200,000
x

A sketch of the graph of the function C(x) appears in Figure 2.31. The result
we obtained is fully expected if we consider its economic implications. Note
that as the level of production increases, the fixed cost per desk produced,
represented by the term (200,000/x), drops steadily. The average cost should
approach a constant unit cost of production—$100 in this case.

y=100

: 1 : 1 X

T T
1000 2000

Group Discussion
Consider the graph of the function f depicted in the following figure:

y
14+
}/i\ : : \:/, / )
14+
It has the property that the curve oscillates between y = —1 and y = 1

indefinitely in either direction.
1. Explain why lim f(x) and lim f(x) do not exist.

2. Compare this function with those of Example 10. More specifically,
discuss the different ways each function fails to have a limit at infinity or
minus infinity.
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1. Find the indicated limit if it exists.

. VxX*+7+V3x-5
a. lim

=3 x+2

.o x2—x-2
b lim =3

2. The average cost per disc (in dollars) incurred by the Herald Record Company in
pressing x compact audio discs is given by the average cost function
Clx)=18+ %ﬁ

Evaluate lim C(x) and interpret your result.

X—®

Solutions to Self-Check Exercises 2.4 can be found on page 135.

function f to determine lim f(x) at the indi-
cated value of a, if it exists.

Loy=rm o 2

In Exercises 1-8, use the graph of the given 7. y 8. y
v=f 7]
2__
1 4
y=f@) ——+— = x
3T -4 -3-2-1 1 2
2T a=-2

In Exercises 9-16, complete the table by com-
puting f(x) at the given values of x. Use these

y results to estimate the indicated limit (f it
31 o2EMW exists).
2__
/‘/ 9. flx) =x*+1; lirr21 f(x)
I/r } —t—+—=>x
—2-bp 23 x 19 199 1999 2001 201 21
a=1

S

10. f(x) = 2x* — 1; lirrll fx)

x 09 099 0999 1001 101 11

J)
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x| .. x -1 ifx=3
11. f(x) = —=;lim f(x) 18. =3
X7 e FO=\ e 48 ifx>3 (a=3)
X -0.1 -0.01 -0.001 0.001 0.01 0.1 ; fr<1
Jx) 19. f(x)=40 ifx=1 (a=1)
—x+2 ifx>1
Il
2. fx) = 3 lim f(x) —2x+4 ifx<l1
x 09 099 099 1001 101 11 20. flx) =14 ifx=1 (@=1)
x2+1 ifx>1
Sx)
’n x| ifx#=0 0
1 S =1, (a=0)
13. f(x) = G- lim f(x)
~ x—1] ifx#1 _
x 09 099 0999 1001 101 1.1 flx )‘ fr=1 (@=1)
Sx)
In Exercises 23-40, find the indicated limit.
23. lim 3 24. lim —3
14. f(x) = —5:lim f(x) = A
25. lim x 26. lim —3x
x 1.9 199 1999 2001 201 21 =3 =
: _ 2 3 2
70 27. lim(1 — 2¢%) 28. lim(4r* = 21 + 1)
29. im(2x® — 3x* + x + 2)
xX2+x—2 =l
15. f(x) = ———Z%;1im f(x)
x=1 T 30. lim(4x® — 2007 + 2x + 1)
X 0.9 0.99 0.999 1.001 1.01 1.1
31. lim(2s* — 1)(2s + 4) 32, lim(x? + 1)(x* — 4)
f(x) 5—0 x—2
3
B S S Er
16. f(x) = ——lim f(x)
T 35. lim Vx +2 36. lim V5x +2
x—2 x—-2
X 0.9 0.99 0.999 1.001 1.01 1.1
2x3+ 4
im Vot 2 i
Jfx) 37. Xlil}l} 2x* +x 38. lx1£121 o
39, lim 22X +8 40, tim VX 7
In Exercises 17-22, sketch the graph of the Tl 2x+4 T3 20— V2x +3
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function f and evaluate lim f(x), if it exists,

x—a

In Exercises 41-48, find the indicated limit

. given that lim f(x) = 3 and lim g(x) = 4.
ifx=0 x—a x—a

ifx>0 (@=0) 41, lim [f(x) = g(v)] 42. lim 2f(x)

for the given values of a.

17. f(x) = {): !

43. lim [2f(x) — 3g(x)] 44. lim [f(x)g(x)]



45, lim Vg(x) 46. lim V/5£(x) + 3g(x)

47. 1im 2/ = £)

) - f)
g0 4. lim

C e f(x) + Vg(x)

x—a

In Exercises 49-62, find the indicated limit, if
it exists.

2 2 _
49, lim ¥ 50. lim =2
-1 X = -2 X+
2 2 _
51. limX—= 52, lim 2 3%
x—=0 X =0 X
. x*=25 . b+1
53 lim =3 54 fim3=
55. lim — 56. lim 2
-1 X — 1 =2 X — 2
xX—x—6 . 22—8
S7. xliIszz-i-x—Z S8. lzl—I}zlz—Z
59. lim Va1
-l X — 1
Vx+1
Hint: Multipl .
int utlpyby\/;_’_1
. x—4
60. lim
x—4 \/_; — 2
Hint: See Exercise 59.
x—1 . 4—x?
61. lxlfll X+ xr—2x 62. ;}HPz 2x2 + x°

In Exercises 63-68, use the graph of the func-
tion f to determine lim f(x) and lim f(x), if

x> X—>—0

they exist.

63. y 64. y
| f=2x2-10 f)=x3-x
5
— — x
1 1 23
1 -5
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65. y 66. y
x2
=55
1__
—+— x —+— ——+—=x
2 32— 123
67. y
y V—x ifx=0
68. =
T& =12 o0
x+1

In Exercises 69-72, complete the table by com-
puting f(x) at the given values of x. Use the
results to guess at the indicated limits, if
they exist.

69. f(0) =

x 1 10
fx)

lirB f(x) and lir_rL fx)

100 1000

X -1 —10 —100 —1000

J)

70. f(x) = xz-:cl;

x 1 10
Jx)

ling f(x)and lil‘_rio flx)

100 1000

—10 —100 —1000

S(x)

(continued on p. 133)
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EXAMPLE 1

SOLUTION v

FIGURE T1

xX—1
The graph of f(x) = .
rectangle [—2, 2] x [0, 4]

130

in the viewing

FINDING THE LIMIT OF A FUNCTION
A graphing utility can be used to help us find the limit of a function, if it

exists, as illustrated in the following examples.
=1

x—1°

Let f(x) =

a. Plot the graph of fin the viewing rectangle [—2, 2] X [0, 4].
x*—=1

b. Use zoowm to find lim .
-1 X — 1

c. Verify your result by evaluating the limit algebraically.

a. The graph of fin the viewing rectangle [—2,2] X [0, 4] is shown in Figure T1.

b. Using zoom-IN repeatedly, we see that the y-value approaches 3 as the x-
value approaches 1. We conclude, accordingly, that

3

=3

. X
lim
-1 X — 1

c¢. We compute
3 _ — 2
lim * 1_ lim x-D(*+x+1)
w1 x—1 x—1 x—1
=lim(x*+x+1)=3
x—1

XYM I you attempt to find the limit in Example 1 by using the evaluation
function of your graphing utility to find the value of f(x) when x = 1, you
will see that the graphing utility does not display the y-value. This happens
because the point x = 1 is not in the domain of f.



EXAMPLE 2

FIGURE T2
The graph of f(x) = (1 + x)"/*in the
viewing rectangle [—1, 11 X< [0, 4]

EXAMPLE 3

SOLUTION v

Use zoow to find lim (1 + x)'™.
x—0

We first plot the graph of f(x) = (1 + x)' in a suitable viewing rectangle.
Figure T2 shows a plot of fin the rectangle [—1, 1] X [0, 4]. Using zoom-IN
repeatedly, we see that lirrol (1 + x)'* = 2.71828.

N

H-“""H—-—._._‘__‘_

The limit of f(x) = (1 + x)"* as x approaches zero, denoted by the letter
e, plays a very important role in the study of mathematics and its applications
(see Section 5.6). Thus,

lim (1 +x)*=e
x—0
where, as we have just seen, e ~ 2.71828.

When organic waste is dumped into a pond, the oxidation process that takes
place reduces the pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. Suppose that the oxygen content
t days after the organic waste has been dumped into the pond is given by

_ 2+ 10t + 100
f(e) =100 <z2 +20¢ + 100)

percent of its normal level.

a. Plot the graph of fin the viewing rectangle [0, 200] X [70, 100].
b. What can you say about f(#) when ¢ is very large?
c. Verify your observation in part (b) by evaluating lim f(¢).

. The graph of fis shown in Figure T3.
. From the graph of f it appears that f(¢) approaches 100 steadily as ¢ gets

=]
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FIGURE T3
The graph of fin the viewing rectangle
[0, 200] < [70, 100]

larger and larger. This observation tells us that eventually the oxygen
content of the pond will be restored to its natural level.
c. To verify the observation made in part (b), we compute

lim £(7) = lim 100 (
= =

2+ 10t + 100
2+ 20t + 100

10, 100
=100 lim | ——— | =100
o 1+?+1%

In Exercises 1-10, use a graphing utility to find
the indicated limit by first plotting the graph
of the function in a suitable viewing rectangle
and then using the zoom-in feature of the calcu-
lator.

2x*—2x*+3x—3 23+ 3x*—x+2

im0 AT
3 4 _
3. lim X1 4 T
—-1X+ 1 x—»-1 X —
X —xt—-x+1 . x>+ 2x*—16
S lim=—5—" 6 lim S v — 16
— 3/2
7 limYXF1-1 g fimEtH” -8
10 X x—0 X
) » 2 —1
9. lim (1 + 2x) 10. lim
x—0 x—0 X

11. Use a graphing utility to show that lim does not

. -3 X
exist.

132

12.

13.

3 _
Use a graphing utility to show that lim % does

c 2 -
not exist. o

CiTy PLANNING A major developer is building a 5000-
acre complex of homes, offices, stores, schools, and
churches in the rural community of Marlboro. As a result
of this development, the planners have estimated that
Marlboro’s population (in thousands) ¢ yr from now will
be given by

_25¢ 4 125¢ + 200
PO == siv a0

a. Plot the graph of P in the viewing rectangle [0, 50] X
[0, 30].

b. What will be the population of Marlboro in the long
run?

Hint: Find lim P(?).

=%



71 f(x) = 3x’ = x* + 10; lim f(x) and lim f(x)

x 1 5 10 100 1000
Jx)
x -1 -5 -10 —-100 —1000
Jx)

72. f(x) = |jcc—|; lim f(x) and lim f(x)
x 1 10 100 -1 -10 —-100

J)

In Exercises 73-80, find the indicated limits,
if they exist.

2
73. lim 222 74, lim X1
xaw.x_s X—>—® x+2
3 2 2
75, lim 2 X Pl g 2t
e X+ 1 oo XT— X
x4+
77. 1
x~1>r—nw .X3 - 1
4 __ 2
78. lim 4x* —3x*+1

e 22X+ X+ x4+ 1

X—-x*+x-1
79. Ilm——————
? VLIE x0+2x2+1

. 2x>—1
80l e+ 1

81. Toxic WAsTE A city’s main well was recently found to be
contaminated with trichloroethylene, a cancer-causing
chemical, as a result of an abandoned chemical dump
leaching chemicals into the water. A proposal submitted
to city council members indicates that the cost, measured
in millions of dollars, of removing x percent of the toxic
pollutant is given by

0.5x
€ =150 —x

(0 < x < 100)

a. Find the cost of removing 50%, 60%, 70%, 80%, 90%,
and 95% of the pollutant.

82.

83.

84.

8s.
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b. Evaluate

0.5x
100 — x

lim
x—100

and interpret your result.

A DoomspAy SiTuATioN The population of a certain
breed of rabbits introduced into an isolated island is
given by

72
P(t) = 9—;

0<t<9)

where ¢ is measured in months.

a. Find the number of rabbits present in the island ini-
tially.

b. Show that the population of rabbits is increasing with-
out bound.

c. Sketch the graph of the function P.

(Comment: This phenomenon is referred to as a dooms-
day situation.)

Averace Cost  The average cost per disc in dollars in-
curred by the Herald Record Company in pressing x
video discs is given by the average cost function

To)=22+ Ziﬁ

Evaluate lim C(x) and interpret your result.

X—0
CONCENTRATION OF A DRUG IN THE BLOODSTREAM The con-
centration of a certain drug in a patient’s bloodstream
t hr after injection is given by

0.2t

U=

mg/cm’. Evaluate lim C(f) and interpret your result.
P

Box OFFicE RECEIPTS The total worldwide box office re-

ceipts for a long-running blockbuster movie are approxi-

mated by the function

where T'(x) is measured in millions of dollars and x is
the number of months since the movie’s release.

a. What are the total box office receipts after the first
month? The second month? The third month?

b. What will the movie gross in the long run?
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86.

87.
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PopuLATION GROWTH A major corporation is building a
4325-acre complex of homes, offices, stores, schools, and
churches in the rural community of Glen Cove. As a
result of this development, the planners have estimated
that Glen Cove’s population (in thousands) ¢ yr from
now will be given by

2512 + 125¢ + 200

PO = 12+ 5t + 40

a. What is the current population of Glen Cove?
b. What will the population be in the long run?

DriviNG CosTs A study of driving costs of 1992 model
subcompact (four-cylinder) cars found that the average
cost (car payments, gas, insurance, upkeep, and deprecia-
tion), measured in cents per mile, is approximated by
the function

Cx) = Z;ﬂ +17.80

22
where x denotes the number of miles (in thousands) the
car is driven in a year.
a. What is the average cost of driving a subcompact car
5000 mi/yr? 10,000 mi/yr? 15,000 mi/yr? 20,000 mi/yr?
25,000 mi/yr?
b. Use part (a) to help sketch the graph of the func-
tion C.
c¢. What happens to the average cost as the number of
miles driven increases without bound?

Exercises 89-94, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

89.

90.

91.

If lim f(x) exists, then fis defined at x = a.
If lim f(x) = 4 and lim g(x) = 0, then lim f(x)g(x) = 0.
x—=0 x—=0 x—0

If 1in21 f(x) = 3 and 1in21 g(x) = 0, then linzl [f)])/[g(x)]

does not exist.

92.

93.

9.

9s.

96.

97.

If lin31 f(x) = 0 and lin31 g(x) = 0, then 111131 [f(0)])/[g(x)]

does not exist.

. X 3 . X . 3
+ = +
1xlf>lzl<x+1 x—l) lxlilzlx-i-l lxlggx—l

lim 2 2 zlimz_x,ﬁmi
= \x—1 x—-1 = x—1 w—1x—1
SPEED OF A CHEMICAL REACTION Certain proteins, known

as enzymes, serve as catalysts for chemical reactions in
living things. In 1913 Leonor Michaelis and L. M. Menten
discovered the following formula giving the initial speed
V (in moles/liter/second) at which the reaction begins
in terms of the amount of substrate x (the substance
being acted upon, measured in moles/liter):

ax
x+b

V=

where a and b are positive constants. Evaluate

Jim —
x—o X + b

and interpret your result.

Show by means of an example that lim [f(x) + g(x)]
may exist even though neither lim f(x) nor lim g(x)

exists. Does this example contradict Theorem 1?

Show by means of an example that lim [f(x)g(x)] may
exist even though neither lim f(x) nor lim g(x) exists.

Does this example contradict Theorem 1?
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SOLUTIONS 10 SELF-CHECK EXERCISES 2.4

Va2 +7+V3x—-5_ V9+7+V33)-5

1. a. lim xt2 342
_Vi6+V4
5
_6
5
b. Letting x approach —1 leads to the indeterminate form 0/0. Thus, we proceed
as follows:
Lox=x=2 . (x+1D(x—2)
I = =3 M )2 = 3)
.X— )
= }lr}l] %—3 (Canceling the common factors)
__—1-2
2(-1) -3
_3
5
2. lim C(x) = lim <1.8 + @)
=1im 1.8 + lim 3000

X—® e X

=18

Our computation reveals that, as the production of audio discs increases ‘‘without
bound,” the average cost drops and approaches a unit cost of $1.80/disc.

2.5 one-Sided Limits and Continuity

FIGURE 2.32
The function f does not have a limit as x ONE-SIDED LIMITS
approaches zero. Consider the function f defined by
’ x—1 ifx<0
f(x)_{x—i-l ifx=0
y=fx)
1 4 From the graph of f shown in Figure 2.32, we see that the function f does not
have a limit as x approaches zero because no matter how close x is to zero,
: : x f(x) takes on values that are close to 1 if x is positive and values that are close
-1 1 to —1 if x is negative. Therefore, f(x) cannot be close to a single number
-1p L—no matter how close x is to zero. Now, if we restrict x to be greater than
zero (to the right of zero), then we see that f(x) can be made as close to the
number 1 as we please by taking x sufficiently close to zero. In this situation
we say that the right-hand limit of f as x approaches zero (from the right) is
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One-Sided Limits

EXAMPLE 1

1, written

lim f(x) = 1

x—0

Similarly, we see that f(x) can be made as close to the number —1 as we
please by taking x sufficiently close to, but to the left of, zero. In this situation
we say that the left-hand limit of f as x approaches zero (from the left) is
—1, written

lim f(x) = —1

x—0"

These limits are called one-sided limits. More generally, we have the follow-
ing definitions.

The function fhas the right-hand limit L as x approaches a from the right, written

lim f(x) =L

X—>

if the values f(x) can be made as close to L as we please by taking x sufficiently
close to (but not equal to) a and to the right of a.
Similarly, the function f has the left-hand limit M as x approaches a from
the left, written
lim f(x) =M
X—a

if the values f(x) can be made as close to M as we please by taking x sufficiently
close to (but not equal to) a and to the left of a.

The connection between one-sided limits and the two-sided limit defined
earlier is given by the following theorem.

Let f be a function that is defined for all values of x close to x = a with
the possible exception of a itself. Then,

lim f(x) = L if and only if lim f(x) = lim f(x) =L

x—a X— x—a

Thus, the two-sided limit exists if and only if the one-sided limits exist and
are equal.

Let

Vx o ifx>0
—Xx ifx=0

ifx <0

—1
and g@)={1 ifx=0

f(x) ={



SOLUTION v

FIGURE 2.33
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a. Show that lim f(x) exists by studying the one-sided limits of fas x approaches
x—0

x = 0.
b. Show that lirrol g(x) does not exist.

a. For x > 0, we find

lim f(x) = lim Vx=0

x—0 x—0
and forx =0

lim f(x) = lim (—x) =0

=0 x—0"

Thus,
lim f(x) =0

x—0

(Figure 2.33a).
b. We have

lim g(x) = —1 and lim g(x) =1

=07 0"

and since these one-sided limits are not equal, we conclude that lim g(x) does
not exist (Figure 2.33b). =0

y y
2__
1+ —eeeeeeee
} } } } X X
-2 -1 1 2
(a) Iing f(x) exists. (b) Iin}] g(x) does not exist.

CONTINUOUS FUNCTIONS

Continuous functions will play an important role throughout most of our study
of calculus. Loosely speaking, a function is continuous at a point if the graph
of the function at that point is devoid of holes, gaps, jumps, or breaks. Consider,
for example, the graph of the function f depicted in Figure 2.34.

Let’s take a closer look at the behavior of f at or near each of the points
x =a,x = b, x = ¢, and x = d. First, note that fis not defined at x = a; that
is, the point x = a is not in the domain of f, thereby resulting in a “hole” in
the graph of f. Next, observe that the value of f at b, f(b), is not equal to the
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FIGURE 2.34
The graph of this function is not continuous
stx=agx=hbx=cadx=4d

Continvity at a Point

FIGURE 2.35
The graph of fis continuous on the inferval

(a, b).

=

limit of f(x) as x approaches b, resulting in a “jump”” in the graph of f at that
point. The function f does not have a limit at x = ¢ since the left-hand and
right-hand limits of f(x) are not equal, also resulting in a jump in the graph
of f at that point. Finally, the limit of f does not exist at x = d, resulting in a
break in the graph of f. The function fis discontinuous at each of these points.
It is continuous at all other points.

A function fis continuous at the point x = a if the following conditions are sat-
isfied:

1. f(a) is defined. 2. lim f(x) exists. 3. lim f(x) = f(a)

Thus, a function fis continuous at the point x = a if the limit of f at the point
x = a exists and has the value f(a). Geometrically, fis continuous at the point
x = a if proximity of x to a implies the proximity of f(x) to f(a).

If fis not continuous at x = q, then f is said to be discontinuous at
x = a. Also, fis continuous on an interval if fis continuous at every point in
the interval.

Figure 2.35 depicts the graph of a continuous function on the interval
(a, b). Notice that the graph of the function over the stated interval can be
sketched without lifting one’s pencil from the paper.

/— y=fx)

=
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EXAMPLE 2 Find the values of x for which each of the following functions is continuous.
x2—4 x+2  ifx#2
. =x + ) = . =
a f(x)=x+2 b. g(x) P c. h(x) {1 fr—2
. 1 .
-1 fx<0 = fx>0
d.F(x)={ o e. Gr)=1x "F
1 ifx=0 .
-1 ifx=0

The graph of each function is shown in Figure 2.36.

FIGURE 2.36

y=F(x) y=Gx)
P —

1¢

(d) (e)

a. The function f is continuous everywhere because the three conditions for
continuity are satisfied for all values of x.
b. The function g is discontinuous at the point x = 2 because g is not defined
at that point. It is continuous everywhere else.
c. The function # is discontinuous at x = 2 because the third condition for
continuity is violated; the limit of 4(x) as x approaches 2 exists and has the
value 4, but this limit is not equal to #(2) = 1. It is continuous for all other
values of x.
d. The function F is continuous everywhere except at the point x = 0, where
the limit of F(x) fails to exist as x approaches zero (see Example 3a, Sec-
tion 2.4).
e. Since the limit of G(x) does not exist as x approaches zero, we conclude
that G fails to be continuous at x = 0. The function G is continuous at all
other points.
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Properties of Continuous
Functions

Continvity of Polynomial
and Rational Functions

EXAMPLE 3

SOLUTION v

PROPERTIES OF CONTINUOUS FUNCTIONS

The following properties of continuous functions follow directly from the
definition of continuity and the corresponding properties of limits. They are
stated without proof.

1. The constant function f(x) = c is continuous everywhere.

2. The identity function f(x) = x is continuous everywhere.

If f and g are continuous at x = a, then

3. [f(x)]", where n is a real number, is continuous at x = a whenever it is defined
at that point.

4. f £ g is continuous at x = a.

5. fg is continuous at x = a.

6. f/g is continuous at x = a provided g(a) # 0.

Using these properties of continuous functions, we can prove the following
results. (A proof is sketched in Exercise 102, page 154.)

1. A polynomial function y = P(x) is continuous at every point x.

2. A rational function R(x) = p(x)/q(x) is continuous at every point x where
q(x) # 0.

Find the values of x for which each of the following functions is continuous.

10 _
a f) =30 +2¢—x+10 b g =%
I s
¢ h(x) = x2—3x+2

a. The function fis a polynomial function of degree 3, so f(x) is continuous
for all values of x.

b. The function g is a rational function. Observe that the denominator of
g—namely, x? + 1—is never equal to zero. Therefore, we conclude that g is
continuous for all values of x.

¢. The function 4 is a rational function. In this case, however, the denominator
of his equal to zero at x = 1 and x = 2, which can be seen by factoring it. Thus,

X=3x+2=x-2)x—-1)

We therefore conclude that / is continuous everywhere except at x = 1 and
x = 2, where it is discontinuous.



EXAMPLE 4

FIGURE 2.37
A learning curve that is disconfinuous at
= f]

Knowledge of subject

y (%)

100

—

t (time)

FIGURE 2.38
The position of the maglev

FIGURE 2.39
If 5 < s < s,, then there must be at
least one # ( =< #, =< 1) such that

f(fg) = 5.
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APPLICATIONS

Up to this point, most of the applications we have discussed involved functions
that are continuous everywhere. In Example 4 we consider an application
from the field of educational psychology that involves a discontinuous function.

Figure 2.37 depicts the learning curve associated with a certain individual.
Beginning with no knowledge of the subject being taught, the individual makes
steady progress toward understanding it over the time interval 0 =< ¢ < ¢. In
this instance, the individual’s progress slows as we approach time ¢, because
he fails to grasp a particularly difficult concept. All of a sudden, a breakthrough
occurs at time t;, propelling his knowledge of the subject to a higher level.
The curve is discontinuous at t;.

INTERMEDIATE VALUE THEOREM

Let’s look again at our model of the motion of the maglev on a straight stretch
of track. We know that the train cannot vanish at any instant of time and it
cannot skip portions of the track and reappear someplace else. To put it
another way, the train cannot occupy the positions s; and s, without at least,
at some time, occupying an intermediate position (Figure 2.38).

O 0w OO0 @

—+—o4— —F f ¢+ t
S1 K $2 S1 N 52
Not possible Possible

To state this fact mathematically, recall that the position of the maglev as a
function of time is described by

f) = 4 (0=1r=10)

Suppose the position of the maglev is s; at some time # and its position is s,
at some time #, (Figure 2.39).

Hht+r——————
Ss3rr————

SSt+r———

g

S
-

)
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Then, if s; is any number between s; and s, giving an intermediate position
of the maglev, there must be at least one # between #, and #, giving the time
at which the train is at s;—that is, f(t;) = ss.

This discussion carries the gist of the intermediate value theorem. The
proof of this theorem can be found in most advanced calculus texts.

The Intermediate Value Theorem

If fis a continuous function on a closed interval [a, b] and M is any number
between f(a) and f(b), then there is at least one number c in [a, b] such
that f(c) = M (Figure 2.40).

FIGURE 2.40

y y
() -
7
|
for={ = I
; 2 x
(a) f() = M (b) f(c) = f(e) = fle) = M

To illustrate the intermediate value theorem, let’s look at the example
involving the motion of the maglev again (see Figure 2.22, page 111). Notice
that the initial position of the train is f(0) = 0 and the position at the end of
its test run is f(10) = 400. Furthermore, the function fis continuous on [0, 10].
So, the intermediate value theorem guarantees that if we arbitrarily pick a
number between 0 and 400—say, 100—giving the position of the maglev,
there must be a 7 (read “t bar”’) between 0 and 10 at which time the train is
at the position s = 100. To find the value of 7, we solve the equation f(7) =
s, or

47> = 100

giving 7 = 5 (¢t must lie between 0 and 10).

must be continuous. The conclusion of the intermediate value theorem may

f It is important to remember when we use Theorem 4 that the function f
not hold if fis not continuous (see Exercise 103).

The next theorem is an immediate consequence of the intermediate value
theorem. It not only tells us when a zero of a function f [root of the equation
f(x) = 0] exists but also provides the basis for a method of approximating it.



FIGURE 2.42

f(a) < 0 and f(b) > 0, but the graph of
f does not cross the x-axis befween a and b
because f is discontinuous.

EXAMPLE 5

SOLUTION
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Existence of Zeros of a Continuous Function

If fis a continuous function on a closed interval [a, b], and if f(a) and f(b)
have opposite signs, then there is at least one solution of the equation
f(x) = 0 in the interval (a, b) (Figure 2.41).

FIGURE 2.41
If f(a) and f(h) have opposite signs, there must be at least one
number ¢ (¢ < ¢ < b) such that f(c) = 0.

y y
fb) T
fl@ 1
} T X T I\ } X
a G b @ © b
fl@)+
fb) + flep) =fle)) =0

Geometrically, this property states that if the graph of a continuous function
goes from above the x-axis to below the x-axis, or vice versa, it must cross the
x-axis. This is not necessarily true if the function is discontinuous (Figure 2.42).

) T— — — —

I
f(d)_"_—//

Let f(x) = x* + x + 1.

a. Show that fis continuous for all values of x.
b. Compute f(—1) and f(1) and use the results to deduce that there must be
at least one point x = ¢, where c lies in the interval (=1, 1) and f(c) = 0.

a. The function fis a polynomial function of degree 3 and is therefore continu-
ous everywhere.
b. f(-1)=(-1)P+(-1)+1=-1

fy=1r*+1+1=3
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Since f(—1) and f(1) have opposite signs, Theorem 5 tells us that there must
be at least one point x = ¢ with —1 < ¢ < 1 such that f(c) = 0.

The next example shows how the intermediate value theorem can be used to
help us find the zero of a function.

EXAMPLE & Let f(x) = x> + x — 1. Since f is a polynomial function, it is continuous
everywhere. Observe that f(0) = —1 and f(1) = 1 so that Theorem 5 guarantees

the existence of at least one root of the equation f(x) = 0 in (0, 1).*
We can locate the root more precisely by using Theorem 5 once again as
follows: Evaluate f(x) at the midpoint of [0, 1], obtaining

£(0.5) = —0.375

Because f(0.5) < 0 and f(1) > 0, Theorem 5 now tells us that the root must
| Table 2.3 [ESGNUIAN,

Step Root of F() = 0 Lies In Repeat the process: Evaluate f(x) at the midpoint of [0.5, 1], which is

1 (0, 1)

2 (051) 05 2+ L_o7s

3 (0.5, 0.75)

4 (0.625, 0.75) Thus,

5 (0.625, 0.6875) _

6 (0.65625, 0.6875) £(0.75) = 0.1719

7 (0.671875, 0.6875) Because f(0.5) < 0 and f(0.75) > 0, Theorem 5 tells us that the root is in (0.5,
8 (0.6796875, 0.6875) 0.75). This process can be continued. Table 2.3 summarizes the results of our
9 (0.6796875, 0.6835937)  computations through nine steps.

From Table 2.3 we see that the root is approximately 0.68, accurate to
two decimal places. By continuing the process through a sufficient number of
steps, we can obtain as accurate an approximation to the root as we please.

EEIYYW The process of finding the root of f(x) = 0 used in Example 6 is
called the method of bisection. It is crude but effective.

1. Evaluate lim f(x) and lim f(x), where

x—=-1" x—>-1

1 ifx<-—1

f(x)_{l—i-\/x-i-l ifx=—1

Does lim f(x) exist?
x——1

* It can be shown that f has precisely one zero in (0, 1) (see Exercise 97, Section 4.1.).
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2. Determine the values of x for which the given function is discontinuous. At each
point of discontinuity, indicate which condition(s) for continuity are violated. Sketch
the graph of the function.

—x*+1
a. f(x) =

x—1

—x+1
b. g(x) =42

-x+3

ifx=1
ifx>1
ifx<—1
if-1<x=1
ifx>1

Solutions to Self-Check Exercises 2.5 can be found on page 154.

In Exercises 1-8, use the graph of the function
f to find Ilim f(x), lim f(x), amllinat f(x) at the

x—a x—a’

indicated value of a, if the limit exists.
1. y 2. y
y=fx)

3 -+

5 —
4__
2T 3+ y=£x)

s 1
7

2/ 1 1 2 —t——+—+ X
1 2 3 45 '6\
a=2 a=73
3 y 4 y
2 | y=fv
14
F—F— — X
-3 -2 - 1 2
a=-1 a=1
5 y 6. y
4__
3T lm 2 1
2T y=fx)
\\ l——
— —t—+—=>x } —t X
-2 -1 1 2 l -1 1 2
a=1 a=0

7 y 8 y
2 2
A y=fx) y=fx)
1+ 1+
X T } } T
-2 -1 1 2
a=0

In Exercises 9-14, refer to the graph of the
function fand determine whether each state-
ment is true or false.

9. lim f(x) = 1 10. lim f(x) = f(0)
11 lim f(x) = 2

=2

12. lim f(x) = 3

x—-2

14. lim f(x) = 3

x5

13. 1in31 f(x) does not exist.
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In Exercises 15-20, refer to the graph of the 40. lim f(x) and lim f(x), where
function fand determine whether each state- =0
ment is true or false.

y f(x):{

at |

x—0"

—x+1 ifx=0
2x+3 ifx>0

41. lim f(x) and lim f(x), where

31 N\ = - lin n
N

| f()_{\/x—i-S ifx=1
—— P P2 Vi ite<t
3 2 -1 1 2 3 45 6
42. lim f(x) and lim f(x), where
1" 1"
15, lim f(x) =2 16. lim f(x) = 2 {x oI ifre1
x—-3 = =
TO - viTr itx<t
17. lim f(x) = 1 18. lim f(x) = 3
2 x—d”
19. L d . i _ In Exercises 43-50, determine the values of x,
. xljlf(x) ocs not exist. 20. lim f(x) = 2 if any, at which each function is discontinu-

ous. At each point of discontinuity, state the

In Exercises 21-42, find the indicated one- condition(s) for continuity that are violated.

sided limit, if it exists. y 2x—4 ifx=0
. . 43. flx) = .
21. lim(2x + 4) 22, lim(3x — 4) s 1 ifx>0
-1t x—-1"
23, fim X3 24, 1im 22 ; x
e X2 Xt 5
-5
25. lim 1 26. lim 1
=07 X x—0
-10
.ox—1 . x+1
217. 111;11 o 28. th* o
y B x2+1 ifx#0
29. lim Vax 30. lim 2Vx — 2 u“. =10 itx=0
0" =2+ 10
31. lim 2x + V2 +x) 32. lim x(1 +V5+x)
=2 =5 5
33, lim L% 34, lim LF
-1 1-—x -1 1-x TR R R T T B
| I S — | I S — X
2 4-3-2-1 T 123 4
35. lim = —2 36. lim 23
=2 X 2 x—-3" x=+ 1
-9 Y5+ 10 45 y ={x+5 ifx=0
37. 1113 Y +3 38. XEI}} m * f(x) 245 ifx>0
5
39. lim f(x) and lim f(x), where ) / \ L
x—0 x—0 ~10 _5_5 1 5 10
fx) = {2x ifx <0
V7 itx=0




46. y fx) = |x — 1]

y x+5  ifx<0
47. fx)=42 ifx=0
5 —X>+5 ifx>0

y xr— .
1 ifx# —1
48. T fy=qx+1
1 1 ifx=—1
—+— / —+— X
y —lx|+1 ifx#0
49, =
U {o ifx=0
g L it =0
50. fx)=3x
1 ifx=0
T T } } T T X
-3 -2 -1 1 2 3

In Exercises 51-66, find the values of x for

which each function is continuous.
51 f(x) = 2x2 + x — 1

52 fx) =x* —2x>+x — 1
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2 X
53 f(x)—x2+1 54. f(x) e
2 x+1
55 f(x)_m 56. f(x)= 1
2x+1 x—1
57 f()_x2+x—2 58'f()_xz-i-Zx—S
s f()_{ ifx=1
P ox -1 ifx>1
60 f()_{—x+1 ifx=-1
R T |
oL f()_{—2x+1 ifx<0
e T
6 f()_{x+l ifx=1
STl e i1
2
il ST
63. f(x)=4 x—1
2 ifx=1
2 _
Sl T
64. f(x)=14 x+2
1 ifx=—-2
lx—1]
65. f(x)=|x+l| 66. f(x)=m

In Exercises 67-70, determine all values of x
at which the function is discontinuous.

. xx _ 1
67. f(x) = o1 68. f(x) = G-DGE=2) )
X2 =2x x2=3x+2
O 10 =5z O
71. THE PosSTAGE FUNCTION The graph of the “postage func-
tion”
34 ifo<x=1

55 ifl<x=2
f=4¢ .

265 ifll<x=12

where x denotes the weight of a parcel in ounces and
f(x) the postage in cents, is shown in the figure on page
148. Determine the values of x for which f is discon-
tinuous.



148

72.

73.
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y(¢)

x (0z.)

INVENTORY CONTROL As part of an optimal inventory
policy, the manager of an office supply company orders
500 reams of photocopy paper every 20 days. The ac-
companying graph shows the actual inventory level of
paper in an office supply store during the first 60 busi-
ness days of 2001. Determine the values of ¢ for which
the “inventory function” is discontinuous and give an
interpretation of the graph.

y
800 +
q
z 600 + .
g
(=2
400
200 T
f f f t
20 40 60
Days

LEarNING CurVES The following graph describes the
progress Michael made in solving a problem correctly
during a mathematics quiz. Here, y denotes the percent-
age of work completed, and x is measured in minutes.
Give an interpretation of the graph.

¥ (%)

100 +

} } = x
Ral X3 X3

Minutes

74. AILING FINANCIAL INSTITUTIONS The Franklin Savings and

Millions of dollars

Loan Company acquired two ailing financial institu-
tions in 1992. One of them was acquired at time ¢ =
T, and the other was acquired at time t = T, ( = 0
corresponds to the beginning of 1992). The following
graph shows the total amount of money on deposit with
Franklin. Explain the significance of the discontinuities
of the function at 7, and 7,.

[=) [e22]
(=3 (=)
(=] (=]
| |
T T

400 /

200 +

Months

75. ENERGY CoNsumPTION The following graph shows the

Gallons

amount of home heating oil remaining in a 200-gallon
tank over a 120-day period (¢ = 0 corresponds to Octo-
ber 1). Explain why the function is discontinuous at
t=40,t=70,t= 95, and ¢t = 110.

200 \

100\\\&

10 20 30 40 50 60 70 80 90 100110 120
Days

76. PRIME INTEREST RATE The function P, whose graph fol-

lows, gives the prime rate (the interest rate banks
charge their best corporate customers) as a function of
time for the first 32 wk in 1989. Determine the values of
t for which P is discontinuous and interpret your results.
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y (percent per year)

77.

78.

79.

80.

81.

} } } } } t (weeks)

ADMINISTRATION OF AN INTRAVENOUS SOLUTION A dextrose
solution is being administered to a patient intrave-
nously. The 1-liter (L) bottle holding the solution is
removed and replaced by another as soon as the con-
tents drop to approximately 5% of the initial (1-L)
amount. The rate of discharge is constant, and it takes
6 hr to discharge 95% of the contents of a full bottle.
Draw a graph showing the amount of dextrose solution
in a bottle in the IV system over a 24-hr period, assum-
ing that we started with a full bottle.

CommissioNs The base salary of a salesman working
on commission is $12,000. For each $50,000 of sales
beyond $100,000, he is paid a $1000 commission. Sketch
a graph showing his earnings as a function of the level
of his sales x. Determine the values of x for which the
function fis discontinuous.

PArKING FEES The fee charged per car in a downtown
parking lot is $1 for the first half hour and $.50 for
each additional half hour or part thereof, subject to a
maximum of $5. Derive a function frelating the parking
fee to the length of time a car is left in the lot. Sketch
the graph of f and determine the values of x for which
the function f is discontinuous.

Commonity PRICES The function that gives the cost of
a certain commodity is defined by

Sx if0<x<10
4x if10=x<30
3.5x if30=x<60
325x ifx=60

Clx) =

where x is the number of pounds of a certain commodity
sold and C(x) is measured in dollars. Sketch the graph
of the function C and determine the values of x for
which the function C is discontinuous.

ENERGY EXPENDED BY A FISH Suppose that a fish swimming
a distance of L ft at a speed of v ft/sec relative to the
water and against a current flowing at the rate of
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u ft/sec (u < v) expends a total energy given by

E(v) =

V—u

where E is measured in foot-pounds (ft-1b) and a is a
constant.
a. Evaluate lim E(v) and interpret your result.

+
v—u

b. Evaluate lim E(v) and interpret your result.

v

82. Let
A )_{x+2 ifx=1
V7 ke x>
Find the value of k that will make f continuous on
(_007 oo).
83. Let
2
Sk, S TN )
fy=qx+2
k ifx=-2

For what value of k will f be continuous on (—o, ©)?

84. a. Suppose fis continuous at a and g is discontinuous
at a. Is the sum f + g discontinuous at a? Explain.
b. Suppose f and g are both discontinuous at a. Is the
sum f + g necessarily discontinuous at a? Explain.

85. a. Suppose fis continuous at a and g is discontinuous
at a. Is the product fg necessarily discontinuous at a?
Explain.

b. Suppose f and g are both discontinuous at a. Is the
product fg necessarily discontinuous at a? Explain.

In Exercises 86-89, (a) show that the function
fis continuous for all values of xin the interval
[a, b1 and (b) prove that f must have at least
one zero in the interval (a, b) by showing that
f(a) and f(bh) have opposite signs.

86. f(x) =x*—-6x+8a=1,b=3
87. fx) =x* - 2x>+3x +2;a=-1,b=1
88. f(x) =24 —3x2—36x +14,a=0,b =1

89. f(x) = 2x°® = 5x** a=14,b = 16

(continued on p. 154)



Using Technology

FIGURE T1
The graph of f(x) = ﬁ in the view-
ing rectangle [—4, 41 < [—10, 10]

FIGURE T2
The graph of g(x) = p——
in the standard viewing rectangle
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2+ xE—Tx—6

FINDING THE POINTS OF DISCONTINUITY OF A FUNCTION

You can very often recognize the points of discontinuity of a function f
by examining its graph. For example, Figure T1 shows the graph of f(x) =
x/(x? — 1) obtained using a graphing utility. It is evident that fis discontinuous
at x = —1 and x = 1. This observation is also borne out by the fact that both
these points are not in the domain of f.

o

ﬁ“n

Consider the function

2x3+x*—Tx—6
x2—x—2

glx) =

Using a graphing utility we obtain the graph of g shown in Figure T2. An
examination of this graph does not reveal any points of discontinuity. However,
if we factor both the numerator and the denominator of the rational expression,
we see that

_(x+D(x—2)2x +3)
EX) = D - 2)
=2x+3

provided x #* —1 and x # 2, so that its graph in fact looks like that shown in
Figure T3.




FIGURE T3
The graph of g has holes at (—1, 1) and
(2,7)

EXAMPLE 1

SOLUTION v

FIGURE T4
The graph of fin the viewing rectangle
[-5 5] x[-24]

This example shows the limitation of the graphing utility and reminds us
of the importance of studying functions analytically!

GRAPHING FUNCTIONS DEFINED PIECEWISE

The following example illustrates how to plot the graphs of functions defined
in a piecewise manner on a graphing utility.

Plot the graph of

skl el
fx) = )Z—C sl

We enter the function
yvil=x+1Dx=1)+ Q2x)(x>1)

The graph of the function in the viewing rectangle [—5, 5] X [—2, 4] is shown
in Figure T4.

xﬁmaxh___
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EXAMPLE 2

SOLUTION v

FIGURE T5
The graph of P in the viewing rectangle
[0, 121 < [0, 80]

The percentage of U.S. households, P(f), watching television during weekdays
between the hours of 4 p.M. and 4 A.M. is given by
P(t) = {0.01354t4 — 0.49375¢° + 2.58333¢* + 3.8t + 31.60704 if0=t=38
1.35¢* — 33.05¢ + 208 if8§<r=12

where ¢ is measured in hours, with ¢ = 0 corresponding to 4 p.M. Plot the

graph of P in the viewing rectangle [0, 12] X [0, 80].

Source: A. C. Nielsen Co.

We enter the function

y2 = (0.01354x"4 — 0.49375x"3 + 2.58333x"2 + 3.8x + 31.60704)(x = 0)(x = 8)
+ (1.35x"2 — 33.05x + 208)(x > 8)(x = 12)

The graph of P is shown in Figure T5.

In Exercises 1-10, use a graphing utility to plot 7 _ 2x*—3x — 2x?
the graph of fand to spot the points of discon- - fO) = 2x*—3x—2
tinuity of f. Then use analytical means to verify i s )
your ohservation and find all points of discon- 8. f(x) = w
tinuity. ox* —x—1
2 +1 _ X —2x
l-f(x):xz_x Z'f(x):x2+x—2 b i) xt+23—x—-2
Hint: x* + 2x* —x =2 = (X — 1)(x + 2)
N R 4 ) = —=—>— :
o 2 * - X —X
x*=x—2 \/J_c(x +1) 10. f(x) = P T
6P+ _2—x*—13x -6 Hint: x¥ — x + x'% — 1= (¢ = 1)(x + 1)
= ) = 2x>—x G i) = 2x2—5x—3 Can you explain why part of the graph is missing?
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In Exercises 11-14, use a graphing utility to
plot the graph of f in the indicated viewing
rectangle.

1. 09 _{—1 ifx=1

T T 41 itx> 15[=5,5] % [~2,8]
1x2—2x ifx=3

12. f(x) = 13

—x+6 ifx>3;[0,7] X [-5,5]

ifx=0

2
B 70 = {x/ﬁ ifx > 0:[~2,2] X [~4.4]

14, () = {—x2+x+2 ifx=1
T T e — =4 iftx>1[-4,4] X [-5,5]
15. FLIGHT PATH oF A PLANE The function
0 it 0=x<1
] —0.00411523x* + 0.0679012x> .
fx) = —0.123457x + 0.0596708 11 1=x<10
15 if10 = x = 100

16.

where both x and f(x) are measured in units of 1000 ft,
describes the flight path of a plane taking off from the
origin and climbing to an altitude of 15,000 ft. Plot the
graph of f to visualize the trajectory of the plane.

Home SHOPPING INDUSTRY According to industry sources,
revenue from the home shopping industry for the years
since its inception may be approximated by the function

—0.03£ + 0.25¢> — 0.12¢
0.57t — 0.63

if0=r=3

R(t) =
@ { if3<r=11

where R(f) measures the revenue in billions of dollars
and ¢ is measured in years, with ¢+ = 0 corresponding to
the beginning of 1984. Plot the graph of R.

Source: Paul Kagan Associates
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In Exercises 90-91, use the intermediate value
theorem to find the value of ¢ such that
f(ec) = M.

90.

91.

92.

93.

94.

fx)=x*—x+1lon[-1,4 ;M =7
fx)=x>—4x+60n[0,3; M =2

Use the method of bisection (see Example 6) to find
the root of the equation x* — x + 1 = 0 accurate to
two decimal places.

Use the method of bisection to find the root of the
equation x® 4+ 2x — 7 = 0 accurate to two decimal places.

Joan is looking straight out a window of an apartment
building at a height of 32 ft from the ground. A boy
throws a tennis ball straight up by the side of the build-
ing where the window is located. Suppose the height
of the ball (measured in feet) from the ground at time
tis h(t) = 4 + 64t — 16~

a. Show that #(0) = 4 and h(2) = 68.

b. Use the intermediate value theorem to conclude that
the ball must cross Joan’s line of sight at least once.
c. At what time(s) does the ball cross Joan’s line of
sight? Interpret your results.

In Exercises 95-99, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

95.

96.

97.

Suppose the function fis defined on the interval [a, b].
If f(a) and f(b) have the same sign, then f has no zero
in [a, b].

If lim f(x) = L, then lim f(x) — lim f(x) # 0.

b
x—a x—a

If lim f(x) = L and lim f(x) = L, then f(a) = L.

x—a X

SOLUTIONS 10 SELF-CHECK EXERCISES 2.5

98.

99.

100.

101.

102.

103.

If lim f(x) = L and g(a) = M, then lim f(x)g(x) = LM.

If fis continuous on [—2, 3], f(—=2) = 3 and f(3) = 1,
then there exists at least one number c in [—2, 3] such
that f(c) = 2.

Let f(x) = x — V1 —x%

a. Show that f is continuous for all values of x in the
interval [—1, 1].

b. Show that f has at least one zero in [—1, 1].

c. Find the zeros of fin [—1, 1] by solving the equation
flx) =0.

x2

x2+1

a. Show that f is continuous for all values of x.

b. Show that f(x) is nonnegative for all values of x.
c. Show that fhas a zero at x = 0. Does this contradict
Theorem 5?

Let f(x) =

a. Prove that a polynomial function y = P(x) is continu-
ous at every point x. Follow these steps:
(1) Use Properties 2 and 3 of continuous functions
to establish that the function g(x) = x", where
n is a positive integer, is continuous everywhere.
(2) Use Properties 1 and 5 to show that f(x) = cx”,
where c is a constant and 7 is a positive integer,
is continuous everywhere.
(3) Use Property 4 to complete the proof of the
result.
b. Prove that a rational function R(x) = p(x)/q(x) is
continuous at every point x, where g(x) # 0.
Hint: Use the result of part (a) and Property 6.

Show that the conclusion of the intermediate value
theorem does not hold if fis discontinuous on [a, b].

1. For x < =1, f(x) = 1, and so

lim f(x)= lim 1=1

x—>-1" x—>-1"

Forx = —1,f(x) =1 + Vx+1, and so

lim f(x) = lim (1+Vx+1)=1

x—-1

x—=-1



2.6 The Derivative

FIGURE 2.43
Graph showing the position s of a maglev
at fime ¢

5 (ft)
60 T
w0l s=f)
20
———— t (sec)
12
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Since the left-hand and right-hand limits of f exist as x approaches x = —1 and
both are equal to 1, we conclude that

lim f(x) =1
x—-1
2. a. The graph of fis as follows:

y

We see that f is continuous everywhere.
b. The graph of g is as follows:

y

4__
3__

1-x
} } } } } } X
-3 -2 -1 1 2 3\4

Since g is not defined at x = —1, it is discontinuous there. It is continuous every-
where else.

AN INTUITIVE EXAMPLE

We mentioned in Section 2.4 that the problem of finding the rate of change
of one quantity with respect to another is mathematically equivalent to the
problem of finding the slope of the tangent line to a curve at a given point on
the curve. Before going on to establish this relationship, let’s show its plausibil-
ity by looking at it from an intuitive point of view.

Consider the motion of the maglev discussed in Section 2.4. Recall that
the position of the maglev at any time ¢ is given by

s = f(t) = 48 (0 =t =30)

where s is measured in feet and ¢ in seconds. The graph of the function fis
sketched in Figure 2.43.
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FIGURE 2.44

EXAMPLE 1

FIGURE 2.45

The number of Social Security beneficiaries
from 1990 through 2045. We can use the
slope of the tangent line at the indicated
points to estimate the rate at which the
number of Social Security beneficiaries will
be changing.

2 = FUNCTIONS, LIMITS, AND THE DERIVATIVE

Observe that the graph of f rises slowly at first but more rapidly as ¢
increases, reflecting the fact that the speed of the maglev is increasing with
time. This observation suggests a relationship between the speed of the maglev
at any time ¢ and the steepness of the curve at the point corresponding to this
value of t. Thus, it would appear that we can solve the problem of finding the
speed of the maglev at any time if we can find a way to measure the steepness
of the curve at any point on the curve.

To discover a yardstick that will measure the steepness of a curve, consider
the graph of a function f such as the one shown in Figure 2.44a. Think of the
curve as representing a stretch of roller coaster track (Figure 2.44b). When
the car is at the point P on the curve, a passenger sitting erect in the car and
looking straight ahead will have a line of sight that is parallel to the line 7,
the tangent to the curve at P.

As Figure 2.44a suggests, the steepness of the curve—that is, the rate at
which y is increasing or decreasing with respect to x—is given by the slope
of the tangent line to the graph of f at the point P(x, f(x)). But for now we
will show how this relationship can be used to estimate the rate of change of
a function from its graph.

\
T ST
.,QQJO
¥ =f) of

y=f

P(x, f(x))

(a) Tis the tangent line to the curve af P. (b) Tis parallel to the line of sight.

The graph of the function y = N(¢), shown in Figure 2.45, gives the number
of Social Security beneficiaries from the beginning of 1990 (¢ = 0) through
the year 2045 (¢t = 55).

y
T, (Slope =1.15)

80

2 701

S

S 60+
w0l P T (Slope =7)
40 1 1 1 1 1 l‘

11—t
0 5 10 15 20 25 30 35 40 45 5055
Years



SOLUTION v

FIGURE 2.46
As @ approaches P along the curve C the
secant lines approach the tangent line T.
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Use the graph of y = N(¢) to estimate the rate at which the number of
Social Security beneficiaries was growing at the beginning of the year 2000
(t = 10). How fast will the number be growing at the beginning of 2025 (t =
35)? [Assume that the rate of change of the function N at any value of ¢ is
given by the slope of the tangent line at the point P(¢, N(¢)).]

Source: Social Security Administration

From the figure, we see that the slope of the tangent line 7 to the graph of
y = N(¢) at P,(10, 44.7) is approximately 0.5. This tells us that the quantity
y is increasing at the rate of 1/2 unit per unit increase in #, when
t = 10. In other words, at the beginning of the year 2000, the number of Social
Security beneficiaries was increasing at the rate of approximately 0.5 million,
or 500,000, per year.

The slope of the tangent line 7, at P,(35, 71.9) is approximately 1.15. This
tells us that at the beginning of 2025 the number of Social Security beneficiaries
will be growing at the rate of approximately 1.15 million, or 1,150,000, per year.

SLOPE OF A TANGENT LINE

In Example 1 we answered the questions raised by drawing the graph of the
function N and estimating the position of the tangent lines. Ideally, however,
we would like to solve a problem analytically whenever possible. To do this
we need a precise definition of the slope of a tangent line to a curve.

To define the tangent line to a curve C at a point P on the curve, fix P
and let O be any point on C distinct from P (Figure 2.46). The straight line
passing through P and Q is called a secant line.

Secant lines

P(x, f(x))

Now, as the point Q is allowed to move toward P along the curve, the
secant line through P and Q rotates about the fixed point P and approaches
a fixed line through P. This fixed line, which is the limiting position of the
secant lines through P and Q as Q approaches P, is the tangent line to the
graph of f at the point P.
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FIGURE 2.47

y

O(x + h, f(x + h))

Y=

x+h - h—
-~ h—

h

h

(a) The points P(x, f(x)) and Q(x + h, f(x + ) (b) As h approaches zero, @ approaches P.

Slope of a
Tangent Line

We can describe the process more precisely as follows. Suppose the curve
C is the graph of a function f defined by y = f(x). Then the point P is described
by P(x, f(x)) and the point Q by Q(x + h, f(x + h)), where h is some
appropriate nonzero number (Figure 2.47a). Observe that we can make Q
approach P along the curve C by letting & approach zero (Figure 2.47b).

Next, using the formula for the slope of a line, we can write the slope of
the secant line passing through P(x, f(x)) and Q(x + A, f(x + h)) as

fee+h) = fx) _ flx+h) = f(x) )
(x+h)—x h

As observed earlier, Q approaches P, and therefore the secant line through
P and Q approaches the tangent line T as & approaches zero. Consequently,
we might expect that the slope of the secant line would approach the slope of
the tangent line 7 as & approaches zero. This leads to the following definition.

The slope of the tangent line to the graph f at the point P(x, f(x)) is given by
hmf(x +h})l _f(x) (6)

h—0

if it exists.



FIGURE 2.48
fix + h) — f(x) is the change in y that
corresponds fo a change h in x.
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RATES OF CHANGE

We now show that the problem of finding the slope of the tangent line to the
graph of a function f at the point P(x, f(x)) is mathematically equivalent to
the problem of finding the rate of change of f at x. To see this, suppose we
are given a function fthat describes the relationship between the two quantities
x and y:

y = f(x)

The number f(x + &) — f(x) measures the change in y that corresponds to a
change 4 in x (Figure 2.48).

y=/®

O(x + h, f(x + h))
fx+h)

T

S+ h) - f(x)

P(x, f(x))
fx)

Then, the difference quotient

fle+ 10 = /9 -

measures the average rate of change of y with respect to x over the interval
[x, x + h]. For example, if y measures the position of a car at time x, then
quotient (7) gives the average velocity of the car over the time interval
[x, x + A].

Observe that the difference quotient (7) is the same as (5). We conclude
that the difference quotient (7) also measures the slope of the secant line that
passes through the two points P(x, f(x)) and Q(x + A, f(x + h)) lying on the
graph of y = f(x). Next, by taking the limit of the difference quotient (7) as
h goes to zero—that is, by evaluating

lim w 8)

h—0

we obtain the rate of change of f at x. For example, if y measures the position
of a car at time x, then the limit (8) gives the velocity of the car at time x.
For emphasis, the rate of change of a function f at x is often called the
instantaneous rate of change of f at x. This distinguishes it from the average
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rate of change of f, which is computed over an interval [x, x + h] rather than
at a point x.

Observe that the limit (8) is the same as (6). Therefore, the limit of the
difference quotient also measures the slope of the tangent line to the graph

of y = f(x) at the point (x, f(x)).
The following summarizes this discussion.

Average and
Instantaneous
Rates of Change

The average rate of change of f over the interval [x, x + #] or slope of the secant
line to the graph of f through the points (x, f(x)) and (x + A, f(x + h)) is

fx+h) —fx)

5 ©)
) i The instantaneous rate of change of f at x or slope of the tangent line to the
D Group Discussion graph of f at (x, f(x)) is
Explain the difference
between the average rate of limw 10)
h—0

change of a function and the
instantaneous rate of change
of a function.

THE DERIVATIVE

The limit (6), or (10), which measures both the slope of the tangent line to
the graph of y = f(x) at the point P(x, f(x)) and the (instantaneous) rate of
change of f at x is given a special name: the derivative of f at x.

Derivative of

a Function The derivative of a function fwith respect to x is the function f’ (read “fprime”),

defined by
fx+h) — f(x)
i an

£(x) = lim
h—0

The domain of f’ is the set of all x where the limit exists.

Thus, the derivative of a function fis a function f* that gives the slope of the
tangent line to the graph of f at any point (x, f(x)) and also the rate of change
of f at x (Figure 2.49).

FIGURE 2.49 y
The slope of the tangent line at P(x, f(x)) y =)
is f'(x); f changes at the rate of f'(x)
units per unit change in x at x.




Four-Step Process
for Finding f'(x)

EXAMPLE 2

SOLUTION v

EXAMPLE 3
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Other notations for the derivative of f include:

D, f(x) (Read “d sub x of f of x”*)

dy , :
— (Read “dydx”)
dx

y' (Read “‘y prime”)

The last two are used when the rule for fis written in the form y = f(x).
The calculation of the derivative of f is facilitated using the following
four-step process.

1. Compute f(x + h).
2. Form the difference f(x + k) — f(x).

(x+h) — fx)
- :

3. Form the quotient !

4. Compute f'(x) = lim w
h—0 h

Find the slope of the tangent line to the graph of f(x) = 3x + 5 at any point

(x, f(x))-

The slope of the tangent line at any point on the graph of fis given by the
derivative of f at x. To find the derivative, we use the four-step process:

Step1 f(x+h)=3x+h)+5=3x+3h+5
Step2 f(x+h)—f(x)=CBx+3h+5) —0CBx+5) =3h

flc+ ) = f() _ 30 _

Step 3 7 7

Step4  f(x) = gr%w —lim3 =3

h—0

We expect this result since the tangent line to any point on a straight line
must coincide with the line itself and therefore must have the same slope as
the line. In this case the graph of f is a straight line with slope 3.

Let f(x) = x~

a. Compute f'(x).
b. Compute f'(2) and interpret your result.
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TINETI2  a. To find f'(x), we use the four-step process:

FIGURE 2.50 Step 1 f(x + h) = (x + hy? = x* + 2xh + I’
The fangent .line to the gruph of f(X) = x Step 2 f(x + h) - f(x) =x24+2xh + h? — x2=2xh + h? = h(2x + l’l)

at (2, 4) Step3 L& h}z —f) _ h(2xh+ h s 1

1 Step4  f(x) = lhingw = lim (2x + h) = 2x

+ b. f'(2) = 2(2) = 4. This result tells us that the slope of the tangent line to
y=x2 4+ 2,4 the graph of f at the point (2, 4) is 4. It also tells us that the function f is
-+ changing at the rate of 4 units per unit change in x at x = 2. The graph of
+ f and the tangent line at (2, 4) are shown in Figure 2.50.

1. Consider the function f(x) = x? of Example 3. Suppose we want to compute f'(2) using
Equation (11). Thus,

oy = JCTR) - f2) _ . 2+ h)-2
@) =lim h fm =,
Use a graphing utility to plot the graph of
2+x)—4
glx) = Chab)iL. x)

in the viewing rectangle [—3, 3] X [-2, 6].
2. Use zoom and TRACE to find lirrol g(x).

3. Explain why the limit found in part 2 is f'(2).

EXAMPLE 4 Let f(x) = x* — 4x.

a. Compute f'(x).

b. Find the point on the graph of f where the tangent line to the curve
is horizontal.

c. Sketch the graph of f and the tangent line to the curve at the point found
in part (b).

d. What is the rate of change of f at this point?

I  a. To find f'(x), we use the four-step process:

Step1 f(x+h)=(x+hP—4x+h) =x>+2xh + h* — 4x — 4h
Step2 f(x + h) — f(x) = x>+ 2xh + h* — 4x — 4h — (x* — 4x)
= 2xh + W — 4h = h(2x + h — 4)



FIGURE 2.51
The tangent line to the graph of y =
Xt —Adxat (2, —4)isy = —4

Y

y=x2-4x

N+

) =
W

y=-

2.-4)

4

EXAMPLE 5

SOLUTION

L1

Group Discussion
Can the tangent line to
the graph of a function inter-
sect the graph at more than
one point? Explain your an-
swer using illustrations.

FIGURE 2.52
The tangent line to the graph of f(x) =
1/xat (1, 1)
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Step 3 2x +h — 4

fx+h)—f(x) h@Cx+h—4)
h B h B

Step4  f'(x) = limw —lim (2x +h — 4) = 2x — 4

h—0 h—0

b. Ata point on the graph of fwhere the tangent line to the curve is horizontal
and hence has slope zero, the derivative f’ of fis zero. Accordingly, to find
such point(s) we set f'(x) = 0, which gives 2x — 4 = 0, or x = 2. The
corresponding value of y is given by y = f(2) = —4, and the required point
is (2, —4).

c. The graph of f and the tangent line are shown in Figure 2.51.

d. The rate of change of f at x = 2 is zero.

Let f(x) = 1/x.

a. Compute f'(x).

b. Find the slope of the tangent line 7 to the graph of f at the point where
x=1

c. Find an equation of the tangent line 7 in part (b).

a. To find f'(x), we use the four-step process:

Step 1 f(X+h):ﬁ
1 1 x—(x+h)_ h
Step 2 f(x+h)_f(x)_x+h_;_ x(x+h)  x(x+h)
fath—fx) ___h 11
Step 3 7 T X(x+h) h x(x +h)

fokhy =) L
h

4 f(x) =1 __1
Step 4 ['(x) pak) 0 x(x+h) x?

b. The slope of the tangent line 7 to the graph of f where x = 1 is given by
/@y =-1

c. Whenx =1,y = f(1) = 1 and T is tangent to the graph of f at the point
(1, 1). From part (b), we know that the slope of T'is —1. Thus, an equation
of Tis

y=1=-1(x—-1)
y=—x+2

(Figure 2.52).
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1. Use the results of Example 5 to draw the graph of f(x) = 1/x and its tangent line at the
point (1, 1) by plotting the graphs of y; = 1/x and y, = —x + 2 in the viewing rectangle
[—4, 4] X [—4, 4].

2. Some graphing utilities draw the tangent line to the graph of a function at a given point automatically—you
need only specify the function and give the x-coordinate of the point of tangency. If your graphing utility
has this feature, verify the result of part 1 without finding an equation of the tangent line.

Group Discussion
D Consider the following alternative approach to the definition of the
derivative of a function: Let 4 be a positive number and suppose P(x — h,
f(x — h)) and Q(x + A, f(x + h)) are two points on the graph of f.

1. Give a geometric and a physical interpretation of the quotient

fx+h) —fx—h)
2h

Make a sketch to illustrate your answer.
2. Give a geometric and a physical interpretation of the limit

lim flx +h)2;lf(x —h)

Make a sketch to illustrate your answer.
3. Explain why it makes sense to define

f/(x) — lhlirol f(x + h)z;lf(x — h)

4. Using the definition given in part (c), formulate a four-step process for
finding f’(x) similar to that given on page 161 and use it to find the derivative
of f(x) = x% Compare your answer with that obtained in Example 3 on

page 162.
APPLICATIONS
EXAMPLE & Suppose the distance (in feet) covered by a car moving along a straight road

t seconds after starting from rest is given by the function f(¢) = 2¢2 (0 = t = 30).

a. Calculate the average velocity of the car over the time intervals [22, 23],
[22, 22.1], and [22, 22.01].

b. Calculate the (instantaneous) velocity of the car when ¢ = 22.

c¢. Compare the results obtained in part (a) with that obtained in part (b).



SOLUTION

EXAMPLE 7

FIGURE 2.53
The graph of the demand function
p=144 — &
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a. We first compute the average velocity (average rate of change of f) over

the interval [¢t, ¢t + h] using Formula (9). We find
fie+h) = f(t) _2(+h)y—2¢
h h

_ 202 + 4th + 2h? — 277
h

=4t +2h

Next, using ¢t = 22 and & = 1, we find that the average velocity of the car
over the time interval [22, 23] is

4(22) + 2(1) = 90

or 90 feet per second. Similarly, using t = 22, A = 0.1, and & = 0.01, we
find that its average velocities over the time intervals [22, 22.1] and [22,
22.01] are 88.2 and 88.02 feet per second, respectively.

. Using the limit (10), we see that the instantaneous velocity of the car at

any time ¢ is given by

lim w = lim (4t + 2h) [Using the results from part (a)]
h—0 h—0

= 4

In particular, the velocity of the car 22 seconds from rest (¢t = 22) is given
by

v = 4(22)

or 88 feet per second.

. The computations in part (a) show that, as the time intervals over which

the average velocity of the car are computed become smaller and smaller,
the average velocities over these intervals do approach 88 feet per second,
the instantaneous velocity of the car at ¢ = 22.

The management of the Titan Tire Company has determined that the weekly
demand function for their Super Titan tires is given by

p=f(x) =144 — x?

where p is measured in dollars and x is measured in units of a thousand
(Figure 2.53).

20

5 10 15
Thousands of units
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a.

SOLUTION v a.

Find the average rate of change in the unit price of a tire if the quantity
demanded is between 5000 and 6000 tires, between 5000 and 5100 tires,
and between 5000 and 5010 tires.

What is the instantaneous rate of change of the unit price when the quantity
demanded is 5000 units?

The average rate of change of the unit price of a tire if the quantity
demanded is between x and x + A is
flx+h)—f(x) [144 — (x + h)’] — (144 — x?)
h h
144 — x? = 2x(h) — K> — 144 + x?
h

=—-2x—h
To find the average rate of change of the unit price of a tire when the
quantity demanded is between 5000 and 6000 tires (that is, over the interval
[5, 6]), we take x = 5 and & = 1, obtaining
-2(5)-1=-11
or —$11 per 1000 tires. (Remember, x is measured in units of a thousand.)
Similarly, taking # = 0.1 and 4 = 0.01 with x = 5, we find that the average
rates of change of the unit price when the quantities demanded are between
5000 and 5100 and between 5000 and 5010 are —$10.10 and —$10.01 per
1000 tires, respectively.
The instantaneous rate of change of the unit price of a tire when the
quantity demanded is x units is given by
ﬁmw = lim (—2x — h)
h—0 h—0
= —2x
In particular, the instantaneous rate of change of the unit price per tire when
the quantity demanded is 5000 is given by —2(5), or —$10 per 1000 tires.

[Using the results from part (a)]

The derivative of a function provides us with a tool for measuring the

rate of change of one quantity with respect to another. Table 2.4 lists several
other applications involving this limit.

Table 2.4

f(a+ h) — f(a) . fla+ h) - f(a)
_— lim —————
h h0 h
x stands for y stands for measures the measures the
Time Concentration of a drug Average rate of change in Instantaneous rate of
in the bloodstream at the concentration of the change in the concentra-
time x drug over the time inter- tion of the drug in the
val [a,a + h] bloodstream at time x = a
Number of Revenue at a sales level Average rate of change in Instantaneous rate of
items sold of x units the revenue when the change in the revenue
sales level is between when the sales level is a

x=aandx=a+h units



2.6 = THE DERIVATIVE 167

Table 2.4 (continued)

x stands for

y stands for

fla+ h) — f(a)
h
measures the

. fla+ h) — f(a)

lim——

10 h
measures the

Time

Time

Temperature
in a chemical
reaction

Volume of sales at time x

Population of Drosophila
(fruit flies) at time x

Amount of product
formed in the chemical
reaction when the tem-
perature is x degrees

Average rate of change in
the volume of sales
over the time interval
[a,a + h]

Average rate of growth of
the fruit fly population
over the time interval
[a,a + h]

Average rate of formation
of chemical product
over the temperature
range [a,a + h]

Instantaneous rate of
change in the volume of
sales at time x = a

Instantaneous rate of
change of the fruit fly
population at time x = a

Instantaneous rate of forma-
tion of chemical product
when the temperature is a
degrees

EXAMPLE 8

DIFFERENTIABILITY AND CONTINUITY

In practical applications, one encounters functions that fail to be differenti-
able—that is, do not have a derivative at certain values in the domain of the
function f. It can be shown that a continuous function f fails to be differenti-
able at a point x = a when the graph of f makes an abrupt change of direction
at that point. We call such a point a “corner.” A function also fails to be
differentiable at a point where the tangent line is vertical since the slope of
a vertical line is undefined. These cases are illustrated in Figure 2.54.

FIGURE 2.54 y

/|

(a, f(a)

Y

(a,f(a))

(a) The graph makes an abrupt change of
direction af x = a.

a

a

(b) The slope at x = a is undefined.

The next example illustrates a function that is not differentiable at a point.

Mary works at the B&O department store, where, on a weekday, she is paid

$6 per hour for the first 8 hours and $9 per hour for overtime. The function

6x
fx) = {9x — 24

if0=x=8§
if8 <x

gives Mary’s earnings on a weekday in which she worked x hours. Sketch the
graph of the function f and explain why it is not differentiable at x = 8.



168

SOLUTION

FIGURE 2.55
The function fis not differentiable of
(8, 48).

1. Use a graphing utility to plot the graph of f(x) = x* in the viewing rectangle

[—2, 2] X [~2, 2].

2 = FUNCTIONS, LIMITS, AND THE DERIVATIVE

The graph of f is shown in Figure 2.55. Observe that the graph of f has a
corner at x = 8 and consequently is not differentiable at x = 8.

y
90 +
70 +
g 4
E 07 (8, 48)
5307 ’
104+
—H—+———++—+—++++—>
2 4 6 8 10 1
Hours

We close this section by mentioning the connection between the continuity
and the differentiability of a function at a given value x = a in the domain
of f. By reexamining the function of Example 8, it becomes clear that f is
continuous everywhere and, in particular, when x = 8. This shows that in
general the continuity of a function at a point x = a does not necessarily
imply the differentiability of the function at that point. The converse, however,
is true: If a function f is differentiable at a point x = a, then it is continu-
ous there.

2. Use the graphing utility to draw the tangent line to the graph of f at the point (0, 0). Can you explain
why the process breaks down?

Differentiability
and Continvity

EXAMPLE 9

FIGURE 2.56
The graph of this function is not differenti-
able at the points a—g.

If a function is differentiable at x = a, then it is continuous at x = a.

For a proof of this result, see Exercise 59, page 174.

Figure 2.56 depicts a portion of the graph of a function. Explain why the
function fails to be differentiable at each of the points x = a, b, ¢, d, e, f, and g.

y

/ x




1. AVERAGE WEIGHT OF AN INFANT The following graph shows
the weight measurements of the average infant from the
time of birth (¢ = 0) through age 2 (¢ = 24). By computing

Average weight of infants (in pounds)
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The function fails to be differentiable at the points x = a, b, and ¢ because
it is discontinuous at each of these points. The derivative of the function does
not exist at x = d, e, and f because it has a kink at each of these points.
Finally, the function is not differentiable at x = g because the tangent line is
vertical at that point.

Suppose a function f is differentiable at x = a. Can there be two
tangent lines to the graphs of f at the point (a, f(a))? Explain your answer.

1. Let f(x) = —x*> — 2x + 3.

a.

b
c
d.
e

Find the derivative f’ of f, using the definition of the derivative.

. Find the slope of the tangent line to the graph of f at the point (0, 3).
. Find the rate of change of f when x = 0.
Find an equation of the tangent line to the graph of f at the point (0, 3).
. Sketch the graph of f and the tangent line to the curve at the point (0, 3).

2. The losses (in millions of dollars) due to bad loans extended chiefly in agriculture,
real estate, shipping, and energy by the Franklin Bank are estimated to be

A =f(t) = —£ + 10t + 30

(0=r=10)

where ¢ is the time in years (t = 0 corresponds to the beginning of 1994). How fast
were the losses mounting at the beginning of 1997? At the beginning of 1999? How
fast will the losses be mounting at the beginning of 2001? Interpret your results.

Solutions to Self-Check Exercises 2.6 can be found on page 174.

: : : : T T T T T T
2T4 6 8 10 12 14 16 18 20 22 24

3

Months

the slopes of the respective tangent lines, estimate the
rate of change of the average infant’s weight when ¢ =
3 and when ¢ = 18. What is the average rate of change

in the average infant’s weight over the first year of life?

Volume of wood produced
(cubic meters/hectare)

2. ForesTRY The following graph shows the volume of
wood produced in a single-species forest. Here f(¢) is

T T T
10 15 20 30 40
Years

50
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measured in cubic meters per hectare and ¢ is measured in
years. By computing the slopes of the respective tangent
lines, estimate the rate at which the wood grown is chang-
ing at the beginning of year 10 and at the beginning of
year 30.

Source: The Random House Encyclopedia

. TV-ViEwinG PATTERNS The following graph shows the
percentage of U.S. households watching television dur-
ing a 24-hr period on a weekday (¢ = 0 corresponds to 6
A.M.). By computing the slopes of the respective tangent
lines, estimate the rate of change of the percentage
of households watching television at 4 p.M. and
11 p.Mm.

Source: A. C. Nielsen Company

y (%)

—rt t (hr)

T T T T |\= T
10 12 14 16 18 20 22 24

N =+
N~ 4
o+
oo

4. CroP YIELD Productivity and yield of cultivated crops
are often reduced by insect pests. The following graph
shows the relationship between the yield of a certain
crop, f(x), as a function of the density of aphids x.
(Aphids are small insects that suck plant juices.) Here,
f(x) is measured in kilograms/4000 square meters, and
x is measured in hundreds of aphids per bean stem. By
computing the slopes of the respective tangent lines,
estimate the rate of change of the crop yield with respect
to the density of aphids when that density is 200 aphids/
bean stem and when it is 800 aphids/bean stem.
Source: The Random House Encyclopedia

“.;\5 1000 ~

on

<

=2

-a 500

oy

5
Il Il Il Tl Il T? Il X
T T T T T T T T

200 400 600 800 1000 1200 1400 1600
Aphids per bean stem

5. The position of car A and car B, starting out side by

side and traveling along a straight road, is given by s =
f(t) and s = g(¢), respectively, where s is measured in
feet and ¢ is measured in seconds (see the accompanying
figure).

S
s=g@

s =f()

n 5] I3

a. Which car is traveling faster at ¢, ?

b. What can you say about the speed of the cars at #,?
Hint: Compare tangent lines.

¢. Which car is traveling faster at #?

d. What can you say about the positions of the cars at #;?

. The velocity of car A and car B, starting out side by side

and traveling along a straight road, is given by v = f(¢)
and v = g(¢), respectively, where v is measured in feet/
second and ¢ is measured in seconds (see the accom-
panying figure).

4

v=£()

a. What can you say about the velocity and acceleration
of the two cars at #; ? (Acceleration is the rate of change
of velocity.)

b. What can you say about the velocity and acceleration
of the two cars at t,?

. EFFECT OF A BACTERICIDE ON BACTERIA In the following fig-

ure, f(¢) gives the population P, of a certain bacteria
culture at time ¢ after a portion of bactericide A was
introduced into the population at ¢t = 0. The graph of g
gives the population P, of a similar bacteria culture at
time ¢ after a portion of bactericide B was introduced
into the population at ¢t = 0.

a. Which population is decreasing faster at ¢ ?

b. Which population is decreasing faster at #,?



¢. Which bactericide is more effective in reducing the
population of bacteria in the short run? In the long run?

8. MARKET SHARE The following figure shows the devasta-
ting effect the opening of a new discount department
store had on an established department store in a small
town. The revenue of the discount store at time ¢ (in
months) is given by f(¢) million dollars, whereas the
revenue of the established department store at time ¢
is given by g(¢) million dollars. Answer the following
questions by giving the value of ¢ at which the specified
event took place.

y
y=g() y=f®

hit 1B

a. The revenue of the established department store is
decreasing at the slowest rate.

b. The revenue of the established department store is
decreasing at the fastest rate.

¢. The revenue of the discount store first overtakes that
of the established store.

d. The revenue of the discount store is increasing at the
fastest rate.

In Exercises 9-16, use the four-step process
to find the slope of the tangent line to the
graph of the given function at any point.

9. f(x) =13 10. f(x) = —6
11. f(x) =2x + 7 12. f(x) = 8 — 4x
13. f(x) = 3x? 14. f(x) = —%xz

15. f(x) = —x* + 3x 16. f(x) = 2x* + 5x
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Exercises 17-22, find the slope of the tan-

gent line to the graph of each function at the

ven point and determine an equation of the

tangent line.
17. f(x) = 2x + 7 at (2, 11)

18. f(x) = —3x + 4 at (—1,7)

19. f(x) = 3x*at (1, 3)

20. f(x) = 3x — x?at (=2, —10)

21.

22. f(x) = 23_x at (1, %)

23.

24.

25.

26.

Let f(x) = 2x> + 1.

a. Find the derivative f* of f.

b. Find an equation of the tangent line to the curve at
the point (1, 3).

c. Sketch the graph of f.

Let f(x) = x* + 6x.

a. Find the derivative f' of f.

b. Find the point on the graph of f where the tangent
line to the curve is horizontal.

Hint: Find the value of x for which f'(x) = 0.

c. Sketch the graph of fand the tangent line to the curve
at the point found in part (b).

Let f(x) = x* — 2x + 1.

a. Find the derivative f' of f.

b. Find the point on the graph of f where the tangent
line to the curve is horizontal.

c. Sketch the graph of fand the tangent line to the curve
at the point found in part (b).

d. What is the rate of change of f at this point?

Let f(x) = ﬁ

a. Find the derivative f' of f.

b. Find an equation of the tangent line to the curve at
the point (=1, —3).

c. Sketch the graph of f.

27. Lety = f(x) = x> + x.

a. Find the average rate of change of y with respect to
x in the interval from x = 2 to x = 3, from x = 2 to
x =25,and from x = 2tox = 2.1.

b. Find the (instantaneous) rate of change of y at x = 2.
c. Compare the results obtained in part (a) with that of
part (b).
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28.

29.

30.

31.

32.

33.
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Lety = f(x) = x> — 4x.

a. Find the average rate of change of y with respect to
x in the interval from x = 3 to x = 4, from x = 3 to
x = 3.5, and from x = 3 tox = 3.1.

b. Find the (instantaneous) rate of change of y at x = 3.
c. Compare the results obtained in part (a) with that of
part (b).

Veroaity oF A CAR  Suppose the distance s (in feet) cov-
ered by a car moving along a straight road ¢ sec after
starting from rest is given by the function f(¢) = 2¢* +
48t.

a. Calculate the average velocity of the car over the
time intervals [20, 21], [20, 20.1], and [20, 20.01].

b. Calculate the (instantaneous) velocity of the car when
t = 20.

c¢. Compare the results of part (a) with that of part (b).

VELOCITY OF A BALL THROWN INTO THE AIR A ball is thrown
straight up with an initial velocity of 128 ft/sec, so that
its height (in feet) after ¢ sec is given by s(t) = 128t —
167

a. What is the average velocity of the ball over the time
intervals [2, 3], [2, 2.5], and [2, 2.1]?

b. What is the instantaneous velocity at time ¢ = 2?

c. What is the instantaneous velocity at time ¢ = 57 Is
the ball rising or falling at this time?

d. When will the ball hit the ground?

During the construction of a high-rise building, a worker
accidentally dropped his portable electric screwdriver
from a height of 400 ft. After ¢ sec, the screwdriver had
fallen a distance of s = 16¢* ft.

a. How long did it take the screwdriver to reach the
ground?

b. What was the average velocity of the screwdriver
between the time it was dropped and the time it hit the
ground?

c. What was the velocity of the screwdriver at the time
it hit the ground?

A hot air balloon rises vertically from the ground so that
its height after ¢ sec is h = 31> + 3¢ ft (0 = ¢ = 60).

a. What is the height of the balloon at the end of 40
sec?

b. What is the average velocity of the balloon between
t = 0and ¢ = 40?

c¢. Whatis the velocity of the balloon at the end of 40 sec?

At a temperature of 20°C, the volume V (in liters) of
1.33 g of O, is related to its pressure p (in atmospheres)
by the formula V = 1/p.

34.

36.

37.

a. What is the average rate of change of V with respect
to p as p increases from p = 2 to p = 3?

b. What is the rate of change of V with respect to p
when p = 2?

Cost oF PRODUCING SURFBOARDS The total cost C(x) (in
dollars) incurred by the Aloha Company in manufactur-
ing x surfboards a day is given by

C(x) = —10x* + 300x + 130 (0 = x = 15)

a. Find C'(x).

b. What is the rate of change of the total cost when the
level of production is ten surfboards a day?

c. What is the average cost Aloha incurs in manufactur-
ing ten surfboards a day?

. EFFECT OF ADVERTISING ON PROFIT The quarterly profit (in

thousands of dollars) of Cunningham Realty is given by

P(x)= —%x2+7x+30 (0=x=50)
where x (in thousands of dollars) is the amount of money
Cunningham spends on advertising per quarter.

a. Find P'(x).

b. What is the rate of change of Cunningham’s quarterly
profit if the amount it spends on advertising is $10,000/
quarter (x = 10) and $30,000/quarter (x = 30)?

DeEmMAND FOR TENTS The demand function for the Sports-
man 5 X 7 tents is given by

p=fx) = —0.1x* — x + 40

where p is measured in dollars and x is measured in units
of a thousand.

a. Find the average rate of change in the unit price of
a tent if the quantity demanded is between 5000 and
5050 tents; between 5000 and 5010 tents.

b. What is the rate of change of the unit price if the
quantity demanded is 5000?

A CountrY’s GDP  The gross domestic product (GDP)
of a certain country is projected to be

N@) =8+ 2t + 50 (0=r=)5)

billion dollars ¢ yr from now. What will be the rate of
change of the country’s GDP 2 yr and 4 yr from now?

. GROWTH OF BACTERIA  Under a set of controlled laboratory

conditions, the size of the population of a certain bacteria
culture at time ¢ (in minutes) is described by the function

P=f(t)=3>+2t+1

Find the rate of population growth at ¢+ = 10 min.



In Exercises 39-43, let x and f(x) represent
the given quantities. Fix x = a and let h he a
small positive number. Give an interpretation
of the quantities

f(a+ h) — f(a) and lim f(a+ h) — f(a)
h B0 h

39. x denotes time, and f(x) denotes the population of seals
at time x.

40. x denotes time, and f(x) denotes the prime interest rate
at time x.

41. x denotes time, and f(x) denotes a country’s industrial
production.

42. x denotes the level of production of a certain commodity,
and f(x) denotes the total cost incurred in producing x
units of the commodity.

43. x denotes altitude, and f(x) denotes atmospheric
pressure.

In each of Exercises 44-49, the graph of a func-
tion is shown. For each function, state
whether or not (a) f(x) has a limit at x = a,
(b) f(x) is continuous at x = a, and (c) f(x) is
differentiable at x = a. Justify your answers.

44. y 45. y

=

=

46.

=
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4. ), 9.

50. The distance s (in feet) covered by a motorcycle traveling

in a straight line and starting from rest in ¢ sec is given
by the function

s(t) = =018 + 21 + 24¢

Calculate the motorcycle’s average velocity over the time
interval [2, 2 + k] for A = 1, 0.1, 0.01, 0.001, 0.0001, and
0.00001 and use your results to guess at the motorcycle’s
instantaneous velocity at 1 = 2.

51. The daily total cost C(x) incurred by Trappee and Sons,

Inc., for producing x cases of Texa-Pep hot sauce is given
by

C(x) = 0.000002x° + 5x + 400

Calculate

C(100 + h) — C(100)
h

forh =1,0.1,0.01, 0.001, and 0.0001 and use your results
to estimate the rate of change of the total cost function
when the level of production is 100 cases/day.

In Exercises 52 and 53, determine whether the

statement is true or false. If it is true, explain

why it is true. If it is false, give an example to

show why it is false.

52. If fis continuous at x = a, then f is differentiable at
X = a.

53. If fis continuous at x = a and g is differentiable at x =
a, then lim f(x)g(x) = f(a)g(a).

54. Sketch the graph of the function f(x) = |x + 1| and show
that the function does not have a derivative at x = —1.
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55. Sketch the graph of the function f(x) = 1/(x — 1) and 58. Prove that the derivative of the function f(x) = |x| for

show that the function does not have a derivative at x # 0 is given by
x=1 o { 1 ifx>0
x =
56. Let -1 ifx<0
Hint: Recall the definition of the absolute value of a number.
x? ifx=1 59. Show that if a function f is differentiable at a point
fex) = ax+b ifx>1 X = a, then f must be continuous at that point.
Hint: Write
Find the values of a and b so that f is continuous and 100 — fla) = [ flx) — f(a)] - a)
has a derivative at x = 1. Sketch the graph of f. X—a

Use the product rule for limits and the definition of the deriva-

57. Sketch the graph of the function f(x) = x?3. Is the func- tive to show that
tion continuous at x = 0? Does f'(0) exist? Why, or lim[ f(x) — f(a)] =0
why not? o

SOoLUTIONS 10 SELF-CHECK EXERCISES 2.6

1 oa f(x) = %E%w

. [~ +h)P=2(x+h)+3] - (—x2—2x+3)
= lim

0 h

. —x*=2xh—h*—2x—2h+3+x*+2x—-3
= lim

h—0 h
h(=2x—h—-2)

= lim
h—0

=lim(-2x—h—-2)=—-2x—-2

h—0

b. From the result of part (a), we see that the slope of the tangent line to the graph
of f at any point (x, f(x)) is given by

fl(x)=-2x-2

In particular, the slope of the tangent line to the graph of f at (0, 3) is

f0)=-2
c. The rate of change of f when x = 0 is given by f'(0) = —2, or —2 units/unit
change in x.
d. Using the result from part (b), we see that an equation of the required tangent
line is

y—3=-2(x-0)
y=-2x+3
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y=-x2-2x+3

—t F—— X
/ 1 \ y=-2x+3

2. The rate of change of the losses at any time ¢ is given by

f’(l‘) _ lhlil(}f(t + h})l 7f(l)

. [=(@+ k)4 10(t + k) + 30] — (=% + 10t + 30)
= lim

h—0 h

. —1*—2th—h>+10t+10h + 30 + > — 101 — 30
= lim

h—0 h
_ limh(—2t — h +10)

h=0 h

=lim (=2t — h + 10)
h—0

=-2t+10

175

Therefore, the rate of change of the losses suffered by the bank at the beginning

of 1997 (t = 3) was

'3 =-23)+10=4

That is, the losses were increasing at the rate of $4 million/year. At the beginning

of 1999 (t = 5),

£1(5) = —2(5) + 10 =0

and we see that the growth in losses due to bad loans was zero at this point. At

the beginning of 2001 (t = 7),

F1(7) = =2(7) + 10 = —4

and we conclude that the losses will be decreasing at the rate of $4 million/year.

Group projects for this chapter can be found af the Brooks/Cole Web site:
http://www.brookscole.com/produci/0534378439



Using Technology

EXAMPLE 1

SOLUTION v

FIGURE T1

The graph of f(x) = x* — 4x and the tan-
gent line y = 2x — 9 in the standard
viewing rectangle

176

GRAPHING A FUNCTION AND ITS TANGENT LINES

We can use a graphing utility to plot the graph of a function f and the tangent
line at any point on the graph.

Let f(x) = x* — 4x.

a. Find an equation of the tangent line to the graph of f at the point (3, —3).
b. Plot both the graph of fand the tangent line found in part (a) on the same
set of axes.

a. The slope of the tangent line at any point on the graph of f is given by
f'(x). But from Example 4 (page 162) we find f'(x) = 2x — 4. Using this
result, we see that the slope of the required tangent line is

f3)=203)-4=2

Finally, using the point-slope form of the equation of a line, we find that
an equation of the tangent line is

y=(=3)=2(x-3)
y+3=2x—-6
y=2x—09.

b. The graph of f in the standard viewing rectangle and the tangent line
of interest are shown in Figure T1.

XYW Some graphing utilities will draw both the graph of a function f
and the tangent line to the graph of f at a specified point when the function
and the specified value of x are entered.



EXAMPLE 2

SOLUTION v

FIGURE T2

The graph of f(x) = V/x and the tangent
line y = 4x + 1 in the viewing rectangle
[0, 15] x [0, 4]

FINDING THE DERIVATIVE OF A FUNCTION AT A GIVEN POINT
The numerical derivative operation of a graphing utility can be used to give
an approximate value of the derivative of a function for a given value of x.
Let f(x) = V.

a. Use the numerical derivative operation of a graphing utility to find the
derivative of f at (4, 2).

b. Find an equation of the tangent line to the graph of f at (4, 2).

c. Plot the graph of f and the tangent line on the same set of axes.

a. Using the numerical derivative operation of a graphing utility, we find that

ORE

b. An equation of the required tangent line is

y=2=3G—4
y=%x+1

¢. The graph of f and the tangent line in the viewing rectangle [0, 15] X [0, 4]
is shown in Figure T2.
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In Exercises 1-10, (a) find an equation of the
tangent line to the graph of fat the indicated
point and (b) use a graphing utility to plot the
graph of fand the tangent line on the same set
of axes. Use a suitahle viewing rectangle.

L f(x) = 4x — 3; (2, 5)

2. f(x) = —2x + 5 (1, 3)

3. f(x) = 2% + x; (=2, 6)
4 f(x) = —x* + 2x; (1, 1)
5. f(x) =2 + x — 3, (2,7)

6. f(x) = —3x* +2x — 1; (1, —2)

1
7. f(x) =x + J_C; 1,2)

8. f(x) = x — )16; (1, 0)

9. f(x) = Vx; (4,2)

10. f(x) = %; (4, %)
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In Exercises 11-20, (a) use the numerical de-
rivative operation of a graphing utility to find
the derivative of f for the given value of x (to
two desired places of accuracy), (b) find an
equation of the tangent line to the graph of f
at the indicated point, and (c) plot the graph
of f and the tangent line on the same set of
axes. Use a suitable viewing rectangle.

1. fx) =x*+x+ 1;x=1; (1, 3)

12, f(x) = =23 + 3x> + 2;x = —1;(—1,7)
13. f(x) = x* = 3x>+ 1;x = 2;(2,5)

14. f(x) = —x*+3x + 1;x=1; (1, 3)

15. f(x) = x — Vi, x = 4 4,2)

16. f(x) = x*? — x; x = 4; (4, 4)

1 1
17. f(x) = s 1;x=1; <1, E)

18, fx) = =~ ;x=3;<3,%)

x+1
19. f(x) = xVx> + 1;x =2;(2,2V5)

20. f(x) = \/)%;x -1 <1, %)
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Formulas

1. Average rate of change of f over
[x,x + A]
or
Slope of the secant line to the
graph of f through (x, f(x)) and
(x + A, f(x + h))
or
Difference quotient

2. Instantaneous rate of change of f at

(x, f(x))
or
Slope of tangent line to the graph

of f at (x, f(x)) at x
or
Derivative of f

Terms

function

domain

range

independent variable
dependent variable
ordered pairs

graph of a function
graph of an equation
vertical-line test
composite function
polynomial function
linear function
quadratic function
cubic function

rational function

CHAPTER 2 Summary of Principal Formulas and Terms

fx+h) = fx)
h

e D)=

h—0

power function

demand function

supply function

market equilibrium
equilibrium quantity
equilibrium price

limit of a function
indeterminate form

limit of a function at infinity
right-hand limit of a function
left-hand limit of a function
continuity of a function at a point
secant line

tangent line to the graph of f

differentiable function

CHAPTER 2 Review EXERCISES

1. Find the domain of each function: 2. Let f(x) = 3x* + 5x — 2. Find:
a. f(—2) b. f(a + 2)

+3
a. f(x) = V9—x b. f(x) = ﬁ ¢. f(2a) d. f(a + h)
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3. Let y? = 2x + 1.
a. Sketch the graph of this equation.
b. Is y a function of x? Why?
c. Is x a function of y? Why?

4. Sketch the graph of the function defined by

x+1 ifx<1
—x2+4x—-1 ifx=1

flx)= {

5. Let f(x) = 1/x and g(x) = 2x + 3. Find:
a. f(x)g(x) b. f(x)/g(x)
¢ f(g(x) d. g(f(x))

In Exercises 6-19, find the indicated limits, if
they exist.

6. lim (5x — 3) 7. lim(x? + 1)
x—0 x—1

8. lim(3x* + 4)(2x — 1)
x——1

x—3 . x+3
o lm 3 10,1 355
. x*=2x-3 . 3
11. Im — 12. Iim V2x* =5
x—-2 x2+5x+6 x—3
. 4x -3 . x—1
13. lim 14. lim ——
3 \/x+1 1" X(x_l)
— 2
15. lim Va-1 16. lim ——
- x—1 voo X2 — 1
.ox+1 . 3x*+2x+4
17. XLHPM X 18. IYLIE 2x?—3x+1
2
19. lim —
foerl

20. Sketch the graph of the function

2x—3 ifx=2
—x+3 ifx>2

flx)= {

and evaluate lim f(x), lim f(x), and lim f(x) at the point

a = 2, if the limits exist.
21. Sketch the graph of the function

4—x ifx=2

x+2 ifx>2

flx)= {

and evaluate lim f(x), lim f(x), and lim f(x) at the point

x—a x—a

a = 2, if the limits exist.

In Exercises 22-25, determine all values of x
for which each function is discontinuous.

22

23

) {x+3 ifx#2

. g(x) =

§ 0 ifx=2
3x+4

A e

1 .
24. f(x) — (x+ 1)2 lfx7é 1
) ifx=-1
[2x]
25. ==
5. fx) = =
26. Lety = x* + 2.

27.

28.

29.

30.

31.

a. Find the average rate of change of y with respect to
x in the intervals [1, 2], [1, 1.5], and [1, 1.1].
b. Find the (instantaneous) rate of change of y at x = 1.

Use the definition of the derivative to find the slope of
the tangent line to the graph of the function f(x) =
3x + 5 at any point P(x, f(x)) on the graph.

Use the definition of the derivative to find the slope of
the tangent line to the graph of the function f(x) =
—1/x at any point P(x, f(x)) on the graph.

Use the definition of the derivative to find the slope of
the tangent line to the graph of the function f(x) =
gx + 5 at the point (=2, 2) and determine an equation
of the tangent line.

Use the definition of the derivative to find the slope of
the tangent line to the graph of the function f(x) = —x?
at the point (2, —4) and determine an equation of the
tangent line.

The graph of the function fis shown in the accompany-
ing figure.

a. Is f continuous at x = a? Why?

b. Is f differentiable at x = a? Justify your answers.

=




32.

33.

34.

35.

36.

37.

38.

39.

Sales of a certain clock radio are approximated by the
relationship S(x) = 6000x + 30,000 (0 = x = 5), where
S(x) denotes the number of clock radios sold in year x
(x = 0 corresponds to the year 1996). Find the number
of clock radios expected to be sold in the year 2000.

A company’s total sales (in millions of dollars) are
approximately linear as a function of time (in years).
Sales in 1996 were $2.4 million, whereas sales in 2001
amounted to $7.4 million.

a. Find an equation that gives the company’s sales as a
function of time.

b. What were the sales in 19997

A company has a fixed cost of $30,000 and a production
cost of $6 for each unit it manufactures. A unit sells for
$10.

a. What is the cost function?

b. What is the revenue function?

c¢. What is the profit function?

d. Compute the profit (loss) corresponding to produc-
tion levels of 6000, 8000, and 12,000 units, respectively.

Find the point of intersection of the two straight lines
having the equations y = $x + 6 and 3x — 2y + 3 = 0.

The cost and revenue functions for a certain firm are
given by C(x) = 12x + 20,000 and R(x) = 20x, respec-
tively. Find the company’s break-even point.

Given the demand equation 3x + p — 40 = 0 and the
supply equation 2x — p + 10 = 0, where p is the unit
price in dollars and x represents the quantity in units of
a thousand, determine the equilibrium quantity and the
equilibrium price.

Clark’s rule is a method for calculating pediatric drug
dosages based on a child’s weight. If a denotes the adult
dosage (in milligrams) and if w is the weight of the child
(in pounds), then the child’s dosage is given by

aw.
150

If the adult dose of a substance is 500 mg, how much
should a child who weighs 35 Ib receive?

D(w) =

The monthly revenue R (in hundreds of dollars) realized
in the sale of Royal electric shavers is related to the unit
price p (in dollars) by the equation

1
R(p)=—5p*+30p

Find the revenue when an electric shaver is priced at $30.
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40. The membership of the newly opened Venus Health
Club is approximated by the function

N(x) = 200(4 + x)* 1l=x=29

where N(x) denotes the number of members x months
after the club’s grand opening. Find N(0) and N(12) and
interpret your results.

41. Psychologist L. L. Thurstone discovered the following
model for the relationship between the learning time 7'
and the length of a list n:

T=f(n)=AnVn—b

where A and b are constants that depend on the person
and the task. Suppose that, for a certain person and a
certain task, A = 4 and b = 4. Compute f(4), f(5), ...,
f(12) and use this information to sketch the graph of the
function f. Interpret your results.

42. The monthly demand and supply functions for the Lumi-
nar desk lamp are given by

p=d(x)=—-11x>+ 1.5x + 40
p=s(x) =0.1x*+0.5x + 15

respectively, where p is measured in dollars and x in units
of a thousand. Find the equilibrium quantity and price.

43. The Photo-Mart transfers movie films to videocassettes.
The fees charged for this service are shown in the follow-
ing table. Find a function C relating the cost C(x) to the
number of feet x of film transferred. Sketch the graph
of the function C and discuss its continuity.

Length of Film in Feet, x Price ($) for Conversion

1=x=100 5.00
100 < x = 200 9.00
200 < x = 300 12.50
300 < x = 400 15.00

x > 400 7 + 0.02x

44. The average cost (in dollars) of producing x units of a
certain commodity is given by

T =20 +4xﬂ

Evaluate lim C(x) and interpret your results.

x—®

Additional study hints and sample chapter tests can be found at the Brooks/Cole Web site:
http://www.brookscole.com/product/0534378439
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This chapter gives several rules that will greatly simplify the

task of finding the derivative of a function, thus enabling us to study
how fast one quantity is changing with respect to another in many
real-world situations. For example, we will be able to find how fast
the population of an endangered species of whales grows after
certain conservation measures have been implemented, how fast
an economy’s consumer price index (CPI) is changing at any time,
and how fast the learning time changes with respect to the length
of a list. We also see how these rules of differentiation facilitate
the study of marginal analysis, the study of the rate of change of
economic quantities. Finally, we introduce the notion of the differen-
tial of a function. Using differentials is a relatively easy way of
approximating the change in one quantity due to a small change in

a related quantity.

How is a pond’s oxygen content affected by organic waste?
In Example 7, page 202, you will see how to find the
rate af which oxygen is being restored fo the pond after

organic waste has been dumped into it.
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3.1 Basic Rules of Differentiation

Rule 1: Derivative
of a Constant

FIGURE 3.1
The slope of the tangent line to the graph

of f(x) = ¢ where cis a constant, is zero.

y

f(x)=c

FouRr BASIC RULES

The method used in Chapter 2 for computing the derivative of a function is
based on a faithful interpretation of the definition of the derivative as the
limit of a quotient. Thus, to find the rule for the derivative f’ of a function f,
we first computed the difference quotient

fx+h) — f(x)
h

and then evaluated its limit as 4 approached zero. As you have probably
observed, this method is tedious even for relatively simple functions.

The main purpose of this chapter is to derive certain rules that will simplify
the process of finding the derivative of a function. Throughout this book we
will use the notation

d
W]

[read “d, d x of f of x”’] to mean ‘“‘the derivative of f with respect to x at x.”
In stating the rules of differentiation, we assume that the functions f and g
are differentiable.

P (c)=0 (c, a constant)

The derivative of a constant function is equal to zero.

We can see this from a geometric viewpoint by recalling that the graph
of a constant function is a straight line parallel to the x-axis (Figure 3.1). Since
the tangent line to a straight line at any point on the line coincides with the
straight line itself, its slope [as given by the derivative of f(x) = ¢] must be
zero. We can also use the definition of the derivative to prove this result
by computing
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EXAMPLE 1 a. If f(x) = 28, then
ooy 4 _
fe) =4 @28) =0
b. If f(x) = —2, then

) =4 (-2)=0

Rule 2: The Power Rule

If n is any real number, then ix (x") = nx""L.

d.

Let’s verify the power rule for the special case n = 2. If f(x) = x% then
ey = ooy g S ER) — f(x)
fix) = - () = lim 0

2 42
— lim (x+h)}—x
h—0

x>+ 2xh + h* — x?

= lim h
2
—im 2 i (2 + ) = 20
h—0 h—0

as we set out to show.

The proof of the power rule for the general case is not easy to prove and
will be omitted. However, you will be asked to prove the rule for the special
case n = 3 in Exercise 72, page 196.

EXAMPLE 2 a. If f(x) = x, then
d .
P =L@ = p=
b. If f(x) = 8, then
) = -4 (%) = 847
F) = 56 = 8
c. If f(x) = x°?, then

' :i 52 :§ 31
) =2 () =3
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To differentiate a function whose rule involves a radical, we first rewrite
the rule using fractional powers. The resulting expression can then be differen-
tiated using the power rule.

EXAMPLE 3 Find the derivative of the following functions:

1
a. f(x)=Vx  b. gx)=—
XF
T a. Rewriting Vi in the form x'2, we obtain

£ =L ()

.\ 1 . .
b. Rewriting o in the form x ', we obtain
X

&) =4 (1)

I ST |

- 3x P 3x43
Rule 3: Derivative of a
Constant Multiple of a %[cf(x)]=cdii[f(x)] (c, a constant)

Function

The derivative of a constant times a differentiable function is equal to the
constant times the derivative of the function.

This result follows from the following computations.
If g(x) = c¢f(x), then

§'(x) = lim gx+h) —glx) _ lim of(x + hf); — cf(x)
= climf(x +h) —fx)
h—0 h

= of"(x)
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EXAMPLE 4 a. If f(x) = 5x°, then
! _i 3) = i 3
f(x)_dx(sx) de(x)
= 5(3x%) = 15x2

f1x) =4 Gx)

Rule 4: The Sum Rule ; ; ;
10 + g00] = - [f0)] 5 [8()]

The derivative of the sum (difference) of two differentiable functions is equal
to the sum (difference) of their derivatives.

This result may be extended to the sum and difference of any finite number
of differentiable functions. Let’s verify the rule for a sum of two functions.

If s(x) = f(x) + g(x), then

s(x + h) — s(x)

§'(x) = lim h
= lim [fCx + h) + g(x +:)] — [f(x) + 8(x)]
= lim [fCx + k) — f(¥)] ; [8(x + ) — g(x)]
_ lhif[}f(x + ’2 —f) lg}g(x + h})l —8(x)
=f'(x) +&'(x)

EXAMPLE 5 Find the derivatives of the following functions:
2
a f(x) =4 +3x* -8 +x+3 b. g(t)=%+%
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SOLUTION v

EXAMPLE &

a. f(x) = %(4)(5 L3 8¢+ x4 3)

_d sy 4y dogo . d a
dx(4x)+dx(3x) dx(Sx)+dx(x)+dx(3)
=20x*+12x* — 16x + 1

b. Here, the independent variable is ¢ instead of x, so we differentiate with
respect to t. Thus,

g'()= dit <% *+ 5l_3> (Rewriting% as t’3>

2
==t — 15"

5

268 —175 R | e
= 50 Rewriting ¢ astjand simplifying

Find the slope and an equation of the tangent line to the graph of f(x) =
2x + 1/Vx at the point (1, 3).

The slope of the tangent line at any point on the graph of fis given by

d ( 1 )
'(x) =—(2x +——=
F =k (2x+
= i (2x + x71/2) <Rewritin 1 _1_ x""2>
dx & \/); X"
I 5 .
=2- Ex (Using the sum rule)
1
=2- 2532

In particular, the slope of the tangent line to the graph of f at (1, 3) (where
x=1)is

i — _ 1 — — 1 = g
f (1) =2 2(13/2) 2 2 2

Using the point-slope form of the equation of a line with slope 3/2 and the
point (1, 3), we see that an equation of the tangent line is

3
y—3=§ x—1) [(y = y) = m(x = x))]

or, upon simplification,



FIGURE 3.2

EXAMPLE 7

SOLUTION

The whale population after year f is given

by N(7).

y
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APPLICATIONS

A group of marine biologists at the Neptune Institute of Oceanography recom-
mended that a series of conservation measures be carried out over the next
decade to save a certain species of whale from extinction. After implementing
the conservation measures, the population of this species is expected to be

N(r) = 3% + 22 — 10t + 600 (0 =1=10)

where N(¢) denotes the population at the end of year ¢. Find the rate of growth
of the whale population when ¢t = 2 and ¢t = 6. How large will the whale
population be 8 years after implementing the conservation measures?

The rate of growth of the whale population at any time ¢ is given by
N(@) =92+ 4t — 10
In particular, when ¢t = 2 and ¢ = 6, we have

N'(2) = 9(2)* + 4(2) — 10
=34

N'(6) = 9(6)> + 4(6) — 10
=338

so the whale population’s rate of growth will be 34 whales per year after 2
years and 338 per year after 6 years.
The whale population at the end of the eighth year will be

N(8) = 3(8)° + 2(8)* — 10(8) + 600
= 2184 whales

The graph of the function N appears in Figure 3.2. Note the rapid growth of
the population in the later years, as the conservation measures begin to pay
off, compared with the growth in the early years.

The altitude of a rocket (in feet) r seconds into flight is given by
s =f(t) = = + 966> + 195t + 5

a. Find an expression v for the rocket’s velocity at any time ¢.

b. Compute the rocket’s velocity when ¢ = 0, 30, 50, 65, and 70. Interpret
your results.

c. Using the results from the solution to part (b) and the observation that at
the highest point in its trajectory the rocket’s velocity is zero, find the maximum
altitude attained by the rocket.
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a. The rocket’s velocity at any time ¢ is given by
v=F(»)=-3%+192t + 195
b. The rocket’s velocity when ¢ = 0, 30, 50, 65, and 70 is given by
f(0) = =3(0)* + 192(0) + 195 = 195
f'(30) = —3(30)* + 192(30) + 195 = 3255
£'(50) = —3(50)* + 192(50) + 195 = 2295
f1(65) = —=3(65)* +192(65) + 195 =0
f'(70) = =3(70)* + 192(70) + 195 = —1065
or 195, 3255, 2295, 0, and —1065 feet per second (ft/sec).

F'G“REI3'3‘ o Thus, the rocket has an initial velocity of 195 ft/sec at = 0 and accelerates
"_‘e rocket's alftude f seconds into flight is ¢, velocity of 3255 ft/sec at ¢ = 30. Fifty seconds into the flight, the rocket’s
given by f(1) velocity is 2295 ft/sec, which is less than the velocity at ¢ = 30. This means
s that the rocket begins to decelerate after an initial period of acceleration.
(Later on we will learn how to determine the rocket’s maximum velocity.)
150,000+ The deceleration continues: The velocity is O ft/sec at t = 65 and —1065
= s=f() ft/sec when ¢ = 70. This number tells us that 70 seconds into flight the rocket
£ 100,000 + is heading back to Earth with a speed of 1065 ft/sec.
c. The results of part (b) show that the rocket’s velocity is zero when ¢t = 65.
50,000 4 At this instant, the rocket’s maximum altitude is
s = f(65) = —(65)* + 96(65)* + 195(65) + 5
F—t—+—+— t —
20 40 60 80 10 = 143,655 feet
Seconds A sketch of the graph of f appears in Figure 3.3.
01 ! DI0C 4

Refer to Example 8.

1. Use a graphing utility to plot the graph of the velocity function
v=f(t) = =32 + 192¢ + 195

using the viewing rectangle [0, 120] X [—=5000, 5000]. Then, using zoom and TRACE or the root-finding
capability of your graphing utility, verify that f'(65) = 0.
2. Plot the graph of the position function of the rocket

s =f@) = = + 9682 + 195t + 5

using the viewing rectangle [0, 120] X [0, 150,000]. Then, using zoom and TRACE repeatedly, verify that
the maximum altitude of the rocket is 143,655 feet.

3. Use zoom and TRACE or the root-finding capability of your graphing utility to find when the rocket
returns to Earth.
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1. Find the derivative of each of the following functions using the rules of differentia-
tion.
a. f(x) = 1.5x* + 2x1
3
b. g(x) 2Vx + v
2. Let f(x) = 2x* — 3x2 + 2x — 1.
a. Compute f'(x).
b. What is the slope of the tangent line to the graph of f when x = 2?
c. What is the rate of change of the function f at x = 2?

3. A certain country’s gross domestic product (GDP) (in millions of dollars) is de-
scribed by the function
G(t) = =28 + 45 + 20t + 6000 O=r=11)

where ¢t = 0 corresponds to the beginning of 1990.

a. At what rate was the GDP changing at the beginning of 1995? At the beginning
of 19977 At the beginning of 2000?

b. What was the average rate of growth of the GDP over the period 1995-2000?

Solutions to Self-Check Exercises 3.1 can be found on page 197.

In Exercises 1-34, find the derivative of the PAo+yr—1
function f by using the rules of differenti- 24. f(x) = -
ation. o .
1. f(x) = -3 2. f(x) = 365 25. f(x) =4x* - 3" + 2
3 flx) =x 4. f(x) = ¥’ 26. f(x) = 5x*3 — %x” +x2-3x+1
5. flx) = x*! 6. f(x) = x°8 .
217. = 3x7! + 4x72 28. = — Z(x 3 — 46
7. f) = 3¢ 8. f(¥) = —2x J) =3 e ) = =367 =)
9. f(r) = ar? 10. f(r) = 41} 29. (1) = %— 5’—3 +%
11. f(x) = 9x'” 12. f(x) = 5x* s o
30. f(x) = —3——2——+200
13. f(x) = 3Vx 14. f(u) = % ¥ @ X
u = — S ) 3
15. f(x) = Tx 16. f(x) = 03x12 3L f(x) = 2x — 5V 32 f() =20+ VP
17. f(x) = 5x* = 3x + 7 18. f(x) =x* — 322 + 1 33. f(x) =%—% 34. f(x) =%+%+1
X
19. flx) = =¥ +2x* -6 20. f(x) =x* = 2x* + 5 35. Let f(x) — 22 — 4x. Find:
21. f(x) = 0.03x> — 0.4x + 10 a. f’(_z) b. f/(o) c. f/(z)
22. f(x) = 0002)(3 - 0.05)(2 + 0.1x — 20 36. Let f(x) — 4x5/4 + 2x3/2 + x. Find:
3 — 4x? . (0) b. f'(16)
23. f(x) = Xo4ar+3 a

b (continued on p. 194)
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FIGURE T1

EXAMPLE 1

SOLUTION v

EXAMPLE 2

SOLUTION v

192

FINDING THE RATE OF CHANGE OF A FUNCTION

We can use the numerical derivative operation of a graphing utility to obtain
the value of the derivative at a given value of x. Since the derivative of a
function f(x) measures the rate of change of the function with respect to x,
the numerical derivative operation can be used to answer questions pertaining
to the rate of change of one quantity y with respect to another quantity x,
where y = f(x), for a specific value of x.

Let y = 38 + 2V

a. Use the numerical derivative operation of a graphing utility to find how
fast y is changing with respect to ¢ when ¢ = 1.
b. Verify the result of part (a), using the rules of differentiation of this section.

a. Write f(f) = 3£ + 2V Using the numerical derivative operation of a
graphing utility, we find that the rate of change of y with respect to f when
t = 1is given by f'(1) = 10.

b. Here, f(¢) = 3¢ + 2¢'* and

1 1
"O=92+2|=t1?) =92+ —
A0 (2 ) Vi

Using this result, we see that when ¢ = 1, y is changing at the rate of

4 — 2 L:
f(l)—9(1)+\/I 10

units per unit change in ¢, as obtained earlier.

According to the U.S. Department of Energy and the Shell Development
Company, a typical car’s fuel economy depends on the speed it is driven and
is approximated by the function

f(x) = 0.00000310315x* — 0.000455174 x>
+ 0.00287869x2 + 1.25986x 0=x=75)
where x is measured in mph and f(x) is measured in miles per gallon (mpg).

a. Use a graphing utility to graph the function f on the interval [0, 75].
b. Find the rate of change of f when x = 20 and x = 50.

c. Interpret your results.

Source: U.S. Department of Energy and the Shell Development Company

a. The result is shown in Figure T1.

b. Using the numerical derivative operation of a graphing utility, we see that
f(20) = 0.9280996. The rate of change of f when x = 50 is given by
f'(50) = —0.314501.

c. The results of part (b) tell us that when a typical car is being driven at
20 mph, its fuel economy increases at the rate of approximately 0.9 mpg
per 1 mph increase in its speed. At a speed of 50 mph, its fuel economy
decreases at the rate of approximately 0.3 mpg per 1 mph increase in
its speed.



In Exercises 1-6, use the numerical derivative
operation of a graphing utility to find the rate
of change of f(x) at the given value of x. Give
your answer accurate to four decimal places.

1. f(x) =4x° = 3x* + 2x> + 1;x = 0.5

2. f(x) = x>+ 4x* + 3;x =04

3. f(x) =x — 2Vx;x = 3

4. f(x) =

Vx—1
X

s x=2

5. f(x) =x? — xB; x =12

6. f(x) =2x" + x;x =2

7.

. GROWTH oF HMOs

CARBON MONOXIDE IN THE ATMOSPHERE The projected aver-
age global atmosphere concentration of carbon monoxide
is approximated by the function

f() = 0.881443¢* — 1.45533¢° + 0.695876¢*
+2.87801¢ + 293 O=t=4)

where t is measured in 40-yr intervals, with ¢ = 0 corre-
sponding to the beginning of 1860 and f(¢) is measured
in parts per million by volume.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 4] X [280, 400].

b. Use a graphing utility to estimate how fast the pro-
jected average global atmospheric concentration of car-
bon monoxide was changing at the beginning of the year
1900 (¢ = 1) and at the beginning of 2000 (¢ = 3.5).
Source: “‘Beyond the Limits,” Meadows et al.

Based on data compiled by the Group
Health Association of America, the number of people
receiving their care in an HMO (Health Maintenance
Organization) from the beginning of 1984 through 1994
is approximated by the function

£(t) = 0.0514> — 0.853* + 6.8147t
+156524  (0=t=11)

where f(t) gives the number of people in millions and ¢
is measured in years, with ¢ = 0 corresponding to the
beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing window [0, 12] X [0, 80].

b. How fast was the number of people receiving their
care in an HMO growing at the beginning of 19927
Source: Group Health Association of America

9.

10.

11.

Home SALES  According to the Greater Boston Real Estate
Board—Multiple Listing Service, the average number of
days a single-family home remains for sale from listing
to accepted offer is approximated by the function

£(t) = 0.0171911¢* — 0.662121£° + 6.18083¢>
— 8.97086¢ + 53.3357 (0=:=10)

where ¢ is measured in years, with ¢+ = 0 corresponding
to the beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 120].

b. How fast was the average number of days a single-
family home remained for sale from listing to accepted
offer changing at the beginning of 1984 (¢ = 0)? At the
beginning of 1988 (¢ = 4)?

Source: Greater Boston Real Estate Board—Multiple
Listing Service

SPREAD OF HIV  The estimated number of children newly
infected with HIV through mother-to-child contact
worldwide is given by

£(t) = —0.2083¢> + 3.03571* + 44.0476¢
+200.2857 0=t=12)

where f(t) is measured in thousands and ¢ is measured
in years with ¢ = 0 corresponding to the beginning of
1990.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 800].

b. How fast was the estimated number of children newly
infected with HIV through mother-to-child contact
worldwide increasing at the beginning of the year 2000?
Source: United Nations

MANUFACTURING CAPACITY Data obtained from the Fed-
eral Reserve shows that the annual change in manufac-
turing capacity between 1988 and 1994 is given by

() = 0.0388889° — 0.283333¢2

+ 0.477778t + 2.04286 0=t=6)
where f(¢) is a percentage and ¢ is measured in years,
with ¢ = 0 corresponding to the beginning of 1988.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 8] X [0, 4].

b. How fast was f(¢) changing at the beginning of 1990
(t = 2)? At the beginning of 1992 (t = 4)?

Source: Federal Reserve

193
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In Exercises 37-40, find the given limit by eval-
uating the derivative of a suitable function at
an appropriate point.

Hint: Look at the definition of the derivative.

3 _ S

37, lim LA =1 38, lim*> L

h—0 -1 X —

Hint: Let A = x — 1.
2 —_

30, [ 3@ AP =@+ h) 10

h—0 h

L 1=+
40. an()l (1 + £)?

In Exercises 41-44, find the slope and an equa-
tion of the tangent line to the graph of the func-
tion f at the specified point.

41. f(x) = 2x* — 3x + 4; (2, 6)

2. f(x) = — gxz + 2x + 2; <*1,*§)

43, f(x) =x* =3+ 2 —x + 1; (1, 0)

1. (4 5)

Vi "2

45. Let f(x) = x*.
a. Find the point on the graph of f where the tangent
line is horizontal.

b. Sketch the graph of f and draw the horizontal tan-
gent line.

4. f(x) = Vx +

46. Let f(x) = x* — 4x2 Find the point(s) on the graph of f
where the tangent line is horizontal.

47. Let f(x) = x* + 1.
a. Find the point(s) on the graph of f where the slope
of the tangent line is equal to 12.
b. Find the equation(s) of the tangent line(s) of
part (a).
c. Sketch the graph of f showing the tangent line(s).

48. Let f(x) = 3x° + x> — 12x + 6. Find the values of x for
which:
a. f'(x) = —12
c f'(x) =12

b. f'(x) =0

49. Let f(x) = x* — x> — x% Find the point(s) on the graph
of f where the slope of the tangent line is equal to:
a. —2x b. 0 c. 10x

50. A straight line perpendicular to and passing through the
point of tangency of the tangent line is called the normal

53.

54.

to the curve. Find an equation of the tangent line and
the normal to the curve y = x* — 3x + 1 at the point
(2. 3).

. GROWTH oF A CANCEROUS TuMOR The volume of a spherical

cancer tumor is given by the function
4
V(r) ==ur?
(=3
where r is the radius of the tumor in centimeters. Find

the rate of change in the volume of the tumor when:

2
a.r=-cm

5
3 b.r—4cm

. VELociTY OF BLoOD IN AN ARTERY The velocity (in centime-

ters per second) of blood r centimeters from the central
axis of an artery is given by

v(r) = k(R* — r?)

where k is a constant and R is the radius of the artery
(see the accompanying figure). Suppose that £ = 1000
and R = 0.2 cm. Find v(0.1) and v’(0.1) and interpret
your results.

R\ -

Kr

Blood vessel

EFFECT OF STOPPING ON AVERAGE SPEED  According to data
from a study by General Motors, the average speed of
your trip A (in mph) is related to the number of stops
per mile you make on the trip x by the equation
26.5

A= 05
Compute dA/dx for x = 0.25 and x = 2 and interpret
your results.
Source: General Motors
WoRKER EFFICIENCY An efficiency study conducted for
the Elektra Electronics Company showed that the num-
ber of “Space Commander” walkie-talkies assembled by
the average worker ¢ hr after starting work at 8 A.M. is
given by

N(@t) = = + 682 + 15¢

a. Find the rate at which the average worker will be
assembling walkie-talkies ¢ hr after starting work.

b. At what rate will the average worker be assembling
walkie-talkies at 10 A.m.?7 At 11 A.m.?

c¢. How many walkie-talkies will the average worker as-
semble between 10 A.m. and 11 A.m.?
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56.

57.

. CURBING POPULATION GROWTH

CoNsumER PRICE INDEX An economy’s consumer price in-
dex (CPI) is described by the function

I(r) = —0.2¢ + 32 + 100 0=t=10)

where ¢ = 0 corresponds to 1990.

a. At what rate was the CPI changing in 1995? In 1997?
In 2000?

b. What was the average rate of increase in the CPI
over the period from 1995 to 2000?

EFFECT OF ADVERTISING ON SALES  The relationship between
the amount of money x that the Cannon Precision Instru-
ments Corporation spends on advertising and the com-
pany’s total sales S(x) is given by the function

S(x) = —0.002x° + 0.6x* + x + 500 (0 = x = 200)

where x is measured in thousands of dollars. Find the
rate of change of the sales with respect to the amount
of money spent on advertising. Are Cannon’s total sales
increasing at a faster rate when the amount of money
spent on advertising is (a) $100,000 or (b) $150,000?

Popuration GrRowTH A study prepared for a Sunbelt
town’s chamber of commerce projected that the town’s
population in the next 3 yr will grow according to the
rule

P(t) = 50,000 + 30632 + 20t

where P(r) denotes the population r months from now.
How fast will the population be increasing 9 mo and 16
mo from now?

Five years ago, the govern-
ment of a Pacific island state launched an extensive pro-
paganda campaign toward curbing the country’s popula-
tion growth. According to the Census Department, the
population (measured in thousands of people) for the
following 4 yr was

P(t)=— %ﬁ + 64t + 3000
where ¢ is measured in years and ¢ = 0 at the start of

the campaign. Find the rate of change of the population
at the end of years 1, 2, 3, and 4. Was the plan working?

. CONSERVATION OF SPECIES A certain species of turtle faces

extinction because dealers collect truckloads of turtle
eggs to be sold as aphrodisiacs. After severe conservation
measures are implemented, it is hoped that the turtle
population will grow according to the rule

N(t) = 26 + 32 — 4t + 1000 (0 =t=10)

where N(f) denotes the population at the end of year .

60.

61.

62.

. INCREASE IN TEMPORARY WORKERS

3.1 = BASIC RULES OF DIFFERENTIATION 195

Find the rate of growth of the turtle population when
t = 2 and ¢t = 8. What will be the population 10 yr after
the conservation measures are implemented?

FLIGHT oF A Rocker The altitude (in feet) of a rocket ¢
sec into flight is given by

s = f() = =28 + 1148 + 480t + 1 (t=0)

a. Find an expression v for the rocket’s velocity at any
time ¢.

b. Compute the rocket’s velocity when ¢t = 0, 20, 40, and
60. Interpret your results.

c. Using the results from the solution to part (b), find
the maximum altitude attained by the rocket.

Hint: At its highest point, the velocity of the rocket is zero.

STOPPING DISTANCE OF A RACING CAR  During a test by the
editors of an auto magazine, the stopping distance s (in
feet) of the MacPherson X-2 racing car conformed to
the rule

s = f(t) = 120t — 15¢ (t=0)

where ¢ was the time (in seconds) after the brakes were
applied.

a. Find an expression for the car’s velocity v at any
time ¢.

b. What was the car’s velocity when the brakes were
first applied?

c¢. What was the car’s stopping distance for that particu-
lar test?

Hint: The stopping time is found by setting v = 0.

DemanD FunctioNs The demand function for the Lumi-
nar desk lamp is given by

p = f(x) = —0.1x* — 04x + 35

where x is the quantity demanded (measured in thou-
sands) and p is the unit price in dollars.

a. Find f'(x).

b. What is the rate of change of the unit price when the
quantity demanded is 10,000 units (x = 10)? What is the
unit price at that level of demand?

According to the Labor
Department, the number of temporary workers (in mil-
lions) is estimated to be

N(f) = 0.0252 + 0.255¢ + 1.505 0=¢=5)

where ¢ is measured in years, with ¢ = 0 corresponding
to 1991.

a. How many temporary workers were there at the be-
ginning of 1994?

b. How fast was the number of temporary workers grow-
ing at the beginning of 19947

Source: Labor Department
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64.

65.

66.

67.

68.
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SALES OF DIGITAL SIGNAL PrROCESSORS The sales of digital
signal processors (DSPs) in billions of dollars is projected
to be

S(r) = 0.142 + 0.68¢ + 3.1 (0=r=6)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1997.

a. What were the sales of DSPs at the beginning of
1997? What will be the sales at the beginning of 2002?
b. How fast was the level of sales increasing at the begin-
ning of 1997? How fast will the level of sales be increasing
at the beginning of 2002?

Source: World Semiconductor Trade Statistics

SuppLy FuncTioNs The supply function for a certain
make of transistor radio is given by

p = f(x) = 0.0001x%* + 10

where x is the quantity supplied and p is the unit price
in dollars.

a. Find f'(x).

b. What is the rate of change of the unit price if the
quantity supplied is 10,000 transistor radios?

PorTaBLE PHONES The percentage of the U.S. population
with portable phones is projected to be

P(t) = 24.41% (1 =1=10)

where ¢ is measured in years, with ¢+ = 1 corresponding
to the beginning of 1998.

a. What percentage of the U.S. population is expected
to have portable phones by the beginning of 2006?

b. How fast is the percentage of the U.S. population
with portable phones expected to be changing at the
beginning of 2006?

Source: BancAmerica Robertson Stephens

AVERAGE SPEED OF A VEHICLE ON A HIGHWAY The average
speed of a vehicle on a stretch of Route 134 between
6 a.m. and 10 A.M. on a typical weekday is approximated
by the function

f() = 20t — 40Vt + 50 0=t=4)

where f(¢) is measured in miles per hour and ¢is measured
in hours, t = 0 corresponding to 6 A.M.

a. Compute f'(7).

b. Compute f(0), f(1), and f(2) and interpret your re-
sults.

¢. Compute f'(3), f'(1), and f'(2) and interpret your re-
sults.

HEALTH-CARE SPENDING Despite efforts at cost contain-
ment, the cost of the Medicare program is increasing at

69.

a high rate. Two major reasons for this increase are
an aging population and the constant development and
extensive use by physicians of new technologies. Based
on data from the Health Care Financing Administration
and the U.S. Census Bureau, health-care spending
through the year 2000 may be approximated by the func-
tion

S(f) = 0.02836¢° — 0.05167¢ + 9.60881¢
+41.9 (0=r=35)

where S(7) is the spending in billions of dollars and ¢
is measured in years, with ¢+ = 0 corresponding to the
beginning of 1965.

a. Find an expression for the rate of change of health-
care spending at any time t.

b. How fast was health-care spending changing at the
beginning of 1980? How fast was health-care spending
changing at the beginning of 2000?

c¢. What was the amount of health-care spending at the
beginning of 1980? What was the amount of health-care
spending at the beginning of 2000?

Source: Health Care Financing Administration

ON-LINE SHOPPING Retail revenue per year from Internet
shopping is approximated by the function

F() = 0.0758 + 0.025¢ + 2.45¢ + 2.4 (0=t=4)

where f(r) is measured in billions of dollars and ¢ is
measured in years with t = 0 corresponding to the begin-
ning of 1997.

a. Find an expression giving the rate of change of the
retail revenue per year from Internet shopping at any
time ¢.

b. How fast was the retail revenue per year from In-
ternet shopping changing at the beginning of the year
2000?

c. What was the retail revenue per year from Internet
shopping at the beginning of the year 2000?

Source: Forrester Research, Inc.

In Exercises 70 and 71, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

70.

71.
72.

If f and g are differentiable, then

L 21w = 58(0)] = 2 (x) — 58'(x)

If f(x) = @, then f'(x) = x7*!
Prove the power rule (Rule 2) for the special case n = 3.

(x + h)’ — x3:|

Hint: Compute lhlilg [ h



3.1 = BASIC RULES OF DIFFERENTIATION 197

SoLUTIONS T0 SELF-CHECK EXERCISES 3.1

L a f(x) = %(1.5;52) + % (2x19)

= (1.5)(2x) + (2)(1.5x%)
=3x + 3Vx = 3(x + Vi)

b. /() = < (207 + <L 31

= (2)<%x1/2> + (3)(_ %xm)

= 12 _ %x—z/z
1 _ 2x —3
= Ex P(2x—3)= 23

2. a f(x) = %(m) - % (3x?) + % (2x) — d% (1)
= (2)(3x%) — (3)(2v) +2
=6x?—6x +2
b. The slope of the tangent line to the graph of f when x = 2 is given by
/2y =612 —-6(2) +2=14

c. The rate of change of f at x = 2 is given by f'(2). Using the results of part (b),
we see that f'(2) is 14 units/unit change in x.

3. a. The rate at which the GDP was changing at any time 7 (0 < r < 11) is given by
G'(f) = —61* + 90r + 20

In particular, the rates of change of the GDP at the beginning of the years 1995
(t =5),1997 (t = 7), and 2000 (¢ = 10) are given by

G'(5) = 320, G'(7) =356, and G'(10) = 320

respectively—that is, by $320 million/year, $356 million/year, and $320 million/
year, respectively.

b. The average rate of growth of the GDP over the period from the beginning of
1995 (¢ = 5) to the beginning of 2000 (¢ = 10) is given by

G(10) — G(5) _ [~2(10)° + 45(10)* + 20(10) + 6000]

10-5 5
[22(5)° + 45(5)* + 20(5) + 6000]
5
_ 8700 — 6975
5

or $345 million/year.
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3.2 The Product and Quotient Rules

Rule 5: The Product Rule

A

EXAMPLE 1

SOLUTION v

EXAMPLE 2

In this section we study two more rules of differentiation: the product rule
and the quotient rule.

THE PRODUCT RULE

The derivative of the product of two differentiable functions is given by the
following rule:

L 10801 = 708/ @) + g ()

The derivative of the product of two functions is the first function times the
derivative of the second plus the second function times the derivative of the first.

The product rule may be extended to the case involving the product of
any finite number of functions (see Exercise 63, page 207). We prove the
product rule at the end of this section.

The derivative of the product of two functions is not given by the product of
the derivatives of the functions; that is, in general

L A0g) # 7 g ()

Find the derivative of the function

flx) = 2x* = D)(x* + 3)
By the product rule,

P = e = DA+ 3) + (0 +3) L e 1)

=(2x*=1)(BxH) + (x> + 3)(4x)
=6x*—3x2+4x* +12x
=10x* —3x*+ 12x

= x(10x* - 3x + 12)

Differentiate (that is, find the derivative of) the function

f(x) = x3(Vx + 1)



SOLUTION v

Rule 6: The Quotient Rule

A
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First, we express the function in exponential form, obtaining
1) = € (x'? + 1)
By the product rule,

d d
, — 43 12 12 3
f'(x) xdx(x +1) + (x +1)dxx
=x’3 <%x”z> + (x"2+1)(3x?)
_ 1 512 512 2
= Ex + 3x°%2 4+ 3x

= %xs’z + 3x?

EHIIIX® We can also solve the problem by first expanding the product
before differentiating f. Examples for which this is not possible will be consid-
ered in Section 3.3, where the true value of the product rule will be appreciated.

THE QUOTIENT RULE

The derivative of the quotient of two differentiable functions is given by the
following rule:

4[] g@F @) - (g ()
ax [@] =T or LA

As an aid to remembering this expression, observe that it has the following
form:

kel
(Denominator) (

Derivative of

Derivative of
numerator

denominator

) — (Numerator) <

(Square of denominator)

For a proof of the quotient rule, see Exercise 64, page 207.

The derivative of a quotient is not equal to the quotient of the derivatives;
that is,

dlfx)| . [x)
dx [g(x)] “ e )
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For example, if f(x) = x3 and g(x) = x2, then

4[] 569

which is not equal to

d .,
re_ax™) a3
gx) d,, 2x 2

7 )

. , . X
EXAMPLE 3 Find f'(x) if f(x) = 5——-

SOLUTION v Using the quotient rule, we obtain

(2x—4)%(x) —xa%(Zx—4)

fo = (2x — 4)
_@2x=4)1) - x(@2)
2x—4)y
_2x—4-2x_ 4
(2x — 4)* (2x — 4)*
Find f'(x) if f(x) = ii . }

SOLUTION v By the quotient rule,

’ (xz—l)d%c(xz+1)—(x2+1)%(x2—1)
1 = =
_ (P -1DEx) -+ D2y
(2= 1y
_2x°—2x—2x7—2x
(2= 1y
4x

EXAMPLE 5 Find h'(x) if

=

h(x) =

—_

x4+
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172

Rewrite A(x) in the form A(x) = ﬁ By the quotient rule, we find

d d
2 a oy a4
(x +1)dx(x )—x dx(x +1)

P = (T 1y
1 _
(x2+1) (Ex ”2> - x'?(2x)
N (x24+1)?
1x’”z(x2 +1—4x?)
_ 2 (Factoring out 3x 2
(x*+ 1) from the numerator)
__1-3x
2Vx(x? + 1)
APPLICATIONS
EXAMPLE & The sales (in millions of dollars) of a laser disc recording of a hit movie ¢
years from the date of release is given by
_ 5t
SO =231

a. Find the rate at which the sales are changing at time t.

b. How fast are the sales changing at the time the laser discs are released
(t = 0)? Two years from the date of release?

JINRIIEA  a. The rate at which the sales are changing at time ¢ is given by S’(f). Using
the quotient rule, we obtain

on_ d| St _ d t
S(t)_dt|:l‘2+1:| Sdt[t2+1]

| @E+DHA) - 20
‘5[ @+ 1y ]

_5[ﬁ+1—m1_5a—ﬂ)
UL @+ | @1y

b. The rate at which the sales are changing at the time the laser discs are

released is given by

51 -0)
m+1y‘5

5'(0) =

That is, they are increasing at the rate of $5 million per year.
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FIGURE 3.4
After a spectacular rise, the sales begin to
taper off.

Refer to Example 6.

Two years from the date of release, the sales are changing at the rate of

S5(1-4) 3

SO =+~

=-0.6

That is, they are decreasing at the rate of $600,000 per year.
The graph of the function § is shown in Figure 3.4.

S (1)

3__

Millions of dollars
[\)
1
T

1. Use a graphing utility to plot the graph of the function S using the viewing rectangle [0, 10] X [0, 3].
2. Use TRACE and zooM to determine the coordinates of the highest point on the graph of § in the interval

[0, 10]. Interpret your results.

EXAMPLE 7

Group Discussion

Suppose the revenue of a company is given by R(x) = xp(x), where
x is the number of units of the product sold at a unit price of p(x) dollars.
1. Compute R’(x) and explain, in words, the relationship between R’(x)
and p(x) and/or its derivative.
2. What can you say about R’(x) if p(x) is constant? Is this expected?

When organic waste is dumped into a pond, the oxidation process that takes
place reduces the pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. Suppose the oxygen content ¢
days after organic waste has been dumped into the pond is given by

2
t+10t+100] (0<1< )

f(#) =100 [rz + 207 + 100

percent of its normal level.
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a. Derive a general expression that gives the rate of change of the pond’s
oxygen level at any time ¢.

b. How fast is the pond’s oxygen content changing 1 day, 10 days, and 20
days after the organic waste has been dumped?

TITT a. The rate of change of the pond’s oxygen level at any time ¢ is given by the

£(f) = 100

=100

=100

=100

=100

derivative of the function f. Thus, the required expression is

d |+ 10z + 100
dt| > + 20t + 100

[ (¢ + 20¢ + 100) diz (¢* + 10¢ + 100) — (22 + 10¢ + 100) d% (2> + 20t + 100)

(£* + 20z + 100)?

[ (¢2 + 20¢ + 100)(2¢ + 10) — (£2 + 10t + 100)(2¢ + 20)
L (¢* + 20t + 100)?

[213 + 1012 + 4012 + 200t + 200z + 1000 — 2¢3 — 2072 — 2012 — 200t — 200¢ — 2000
(£ + 20r + 100)?

102 — 1000
| (£2 + 20¢ + 100)?

b. The rate at which the pond’s oxygen content is changing 1 day after the
organic waste has been dumped is given by

o 10-1000 |_
f(1) =100 [(1 +20 + 100)2] = 676

That is, it is dropping at the rate of 6.8% per day. After 10 days the rate is

L 10(10)2 — 1000 |
f(10) =100 [(100 + 200 + 100)2} B

That is, it is neither increasing nor decreasing. After 20 days the rate is

o 10(20)> — 1000
f(20) =100 [(400 + 400 + 100)?

} =0.37

That is, the oxygen content is increasing at the rate of 0.37% per day, and the
restoration process has indeed begun.



204 3 = DIFFERENTIATION

Group Discussion
D Consider a particle moving along a straight line. Newton’s second
law of motion states that the external force F acting on the particle is equal
to the rate of change of its momentum. Thus,

d
F= E(mv)

where m, the mass of the particle, and v, its velocity, are both functions of
time .
1. Use the product rule to show that

and explain the expression on the right-hand side in words.
2. Use the results of part 1 to show that if the mass of a particle is constant,
then F = ma, where a is the acceleration of the particle.

VERIFICATION OF THE PRODUCT RULE
We will now verify the product rule. If p(x) = f(x)g(x), then

p'(x) = lhlf[} p(x + h}z _p(x)
o f g+ ) — f()g()
h—0 h

By adding —f(x + h)g(x) + f(x + h)g(x) (which is zero!) to the numerator
and factoring, we have

p'(x) = lim fx+m)[gx+h) - g(X)}} tg[fx + h) — f(0)]

:%ﬂﬂwHoFu+2—ﬂm]ﬂﬁﬂyw+2—ﬂwﬂ

= lhln(} f(x + h) [g(x + h}? — g(x)]

[ﬂX+2—f@q

+ lim g(x) (By Property 3 of limits)
h—0

= 1hm(} F(x+h)- En&w
i £ = 100

+ i :
hlir(} g(X) h—0

= f(x)g'(x) + g(x)f'(x)

Observe that in the second from the last link in the chain of equalities, we
have used the fact that lim f(x + &) = f(x) because fis continuous at x.
h—0

(By Property 4 of limits)
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. Find the derivative of f(x) =
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2x+1
xr-1

. What is the slope of the tangent line to the graph of

flx) = (x> + DH(2x* - 3x>+ 1)

at the point (2, 25)? How fast is the function f changing when x = 2?
The total sales of the Security Products Corporation in its first 2 yr of operation
are given by

0.37°
S=f(t)=1+0.4t2 0=r=2)

where S is measured in millions of dollars and ¢ = 0 corresponds to the date Security
Products began operations. How fast were the sales increasing at the beginning of
the company’s second year of operation?

Solutions to Self-Check Exercises 3.2 can be found on page 210.

In Exercises 1-30, find the derivative of the -1 1-2¢

given function. 17. flx) = Zxx +1 18. fin) = 1+3¢

1. =2x(x>+ 1 2. =3x%(x — 1 __1 __u

;EX)) ( X(x): | ) o B0 = 2. fw) =

J.f)=0¢—- DRt +1 2 3
21, f(s) = S 2 2. fx) = 22

4. f(x) = 2x + 3)(x — 4) 8 =577 =0

5. f(x) = Bx + 1)(x2 — 2) 23. f(x) = xz\/fl 24. f(x) = x\Z—Cl

6. f(x) = (x + DHQ2x>—3x + 1) x2+2 x+1
25. f(x) = ——— 26. f(x) = 555 %

7. () = (¢ — D)(x + 1) x*+x+1 x 2x*+2x+3
27 f(x) = (x+D(x2+1)

8. f(x) = (x* — 12x)(3x> + 2x) ' x—2

9. f(w) = W* — w2 +w — 1)(w? +2)

10. f(x) = %xf’ +(x2+ D2 =-x-1)

11. f(x) = 5x> + 1)2Vx — 1)
12. (1) = 1 + V)22 - 3)

13. f(x) = (x? — 5x + 2) ( ‘%)

4 f(x) = (< + 2x + 1) (2 +)%>

15. f(x) = ﬁ 16. g(x) =

28. f(x) = (3x* - 1) <x2 —i)
+28

X x—1
2= 5T
30. f(x) = %Yi_x
In Exercises 31-34, suppose fand g are func-
tions that are differentiable at x = 1 and that
f)=2,fF)=-1,g01) = -2, g(1) = 3. Find
the value of h'(1).
31. h(x) = f(x)g(x) 32. h(x) = (x* + 1)g(x)
2x+4 3. ) = LD 3 = L8

x + g(x) f(x) —g(x)
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In Exercises 35-38, find the derivative of each
of the given functions and evaluate f'(x) at the
given value of x.

35 f(x) = @x — (x> +3);x =1

2x + 1
36.f(x):2x_1;x:2

X
37. f(x) = m;x = -1

38, f(x) = (Vx + 2x)(x** — x);x = 4

In Exercises 39-42, find the slope and an equa-
tion of the tangent line to the graph of the func-
tion f at the specified point.

39. f(x) = (x* + D)(x* — 2); (2, 18)

0. f() = 2 (2, g)

x+1
41. f(x) = PR 1; (1,1)
1+2x!2 5
Q. f() =75 <4, §>

43. Find an equation of the tangent line to the graph of the
function f(x) = (x*+ 1)(3x% — 4x + 2) at the point (1,2).

44. Find an equation of the tangent line to the graph of the

3x > at the point (2, 3).

function f(x) = o

45. Let f(x) = (x? + 1)(2 — x). Find the point(s) on the
graph of f where the tangent line is horizontal.

46. Let f(x) = ﬁ Find the point(s) on the graph of f
where the tangent line is horizontal.

47. Find the point(s) on the graph of the function f(x) =
(x2 + 6)(x — 5) where the slope of the tangent line is
equal to —2.

48. Find the point(s) on the graph of the function f(x) =
x+1
x—1

where the slope of the tangent line is equal to —1/2.

49. A straight line perpendicular to and passing through the
point of tangency of the tangent line is called the normal
to the curve. Find the equation of the tangent line and

the normal to the curve y = 1 1 at the point (1, 3).

+ x?
50. CONCENTRATION OF A DRUG IN THE BLOODSTREAM The concen-
tration of a certain drug in a patient’s bloodstream ¢ hr

52.

54.

after injection is given by

0.2t
?+1

C() =

a. Find the rate at which the concentration of the drug
is changing with respect to time.

b. How fast is the concentration changing 3 hr, 1 hr, and
2 hr after the injection?

. Cost oF REmovING Toxic WASTE A city’s main well was

recently found to be contaminated with trichloroethyl-
ene, a cancer-causing chemical, as a result of an aban-
doned chemical dump leaching chemicals into the water.
A proposal submitted to the city’s council members indi-
cates that the cost, measured in millions of dollars, of
removing x percent of the toxic pollutant is given by

0.5x
100 — x

C(x) =

Find C'(80), C'(90), C'(95), and C'(99) and interpret
your results.
Druc DosaGes Thomas Young has suggested the follow-
ing rule for calculating the dosage of medicine for chil-
dren 1 to 12 yr old. If a denotes the adult dosage (in
milligrams) and if # is the child’s age (in years), then the
child’s dosage is given by
_at

bO=r13
Suppose that the adult dosage of a substance is 500 mg.
Find an expression that gives the rate of change of a
child’s dosage with respect to the child’s age. What is
the rate of change of a child’s dosage with respect to his
or her age for a 6-yr-old child? For a 10-yr-old child?

. EFFECT OF BACTERICIDE The number of bacteria N(¢) in a

certain culture ¢ min after an experimental bactericide
is introduced obeys the rule

10,000

o+ 2000

N(@) =

Find the rate of change of the number of bacteria in the
culture 1 minute after and 2 minutes after the bactericide
is introduced. What is the population of the bacteria
in the culture 1 min and 2 min after the bactericide
is introduced?

Demanp Funcrions The demand function for the Si-
card wristwatch is given by

50

A = 001+ 1

(0=x=20)

where x (measured in units of a thousand) is the quantity
demanded per week and d(x) is the unit price in dollars.



5S.

56.

57.

58.

a. Find d'(x).
b. Find d’'(5), d'(10), and d'(15) and interpret your re-
sults.

LearNING CURVES From experience, the Emory Secre-
tarial School knows that the average student taking Ad-
vanced Typing will progress according to the rule

607 + 180

N = t+6

(t=0)

where N(f) measures the number of words per minute
the student can type after ¢+ wk in the course.

a. Find an expression for N'(t).

b. Compute N'(¢) for t = 1, 3, 4, and 7 and interpret
your results.

c. Sketch the graph of the function N. Does it confirm
the results obtained in part (b)?

d. What will be the average student’s typing speed at
the end of the 12-wk course?

Box Ofrice REcEIPTS The total worldwide box office re-
ceipts for a long-running movie are approximated by the
function

120x?

T(x) = x*+4

where T(x) is measured in millions of dollars and x is
the number of years since the movie’s release. How fast
are the total receipts changing 1 yr, 3 yr, and 5 yr after
its release?

FORMALDEHYDE LEVELS A study on formaldehyde levels in
900 homes indicates that emissions of various chemicals
can decrease over time. The formaldehyde level (parts
per million) in an average home in the study is given by

_ 0.055¢ +0.26
t+2

4i0) O=r=12)
where ¢ is the age of the house in years. How fast is the
formaldehyde level of the average house dropping when
it is new? At the beginning of its fourth year?

Source: Bonneville Power Administration

PopuLATION GROWTH A major corporation is building a
4325-acre complex of homes, offices, stores, schools, and
churches in the rural community of Glen Cove. As a
result of this development, the planners have estimated
that Glen Cove’s population (in thousands) ¢ yr from
now will be given by

2512+ 125t + 200

P = £+ 5t +40

a. Find the rate at which Glen Cove’s population is
changing with respect to time.
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b. What will be the population after 10 yr? At what rate
will the population be increasing when ¢ = 10?

In Exercises 59-62, determine whether the
statement is true or false. If it is true, explain

hy it is true. If it is false, give an example to

show why it is false.

59

60

61

62

63

64

. If fand g are differentiable, then

2 [f08(0] = £ (g ().
. If fis differentiable, then

L ()] = ) + 3 (0)
. If fis differentiable, then
4 [@} _f®)

dx | x* 2x
. If f, g, and h are differentiable, then

1Pumm}
dx| h(x)

_ ['(x)g(x)h(x) + f(x)g' ()h(x) = f(x)g(x)h’ (x)

[h(0)] '

. Extend the product rule for differentiation to the
following case involving the product of three differ-
entiable functions: Let h(x) = u(x)v(x)w(x) and
show that #'(x) = u(x)v(x)w'(x) + wu(x)v’'(x)w(x) +
u' (x)v(x)w(x).

Hint: Let f(x) = u(x)v(x), g(x) = w(x), and h(x) = f(x)g(x),
and apply the product rule to the function 4.

. Prove the quotient rule for differentiation (Rule 6).
Hint: Verify the following steps:

g, KOt ) = k(x) _ fe+ Mg(x) = f(x)g(x + h)
h hg(x + h)g(x)

b. By adding [—f(x)g(x) + f(x)g(x)] to the numerator
and simplifying,

k(x +h) — k(x) _ 1
h g(x +h)g(x)

X{V“+2_ﬂn]“”

_ [w} : f(x)}

k(x + h) — k(x)
h

c. k'(x) =lim
h—0

_ 8Wf'(x) — f(0)g'(x)
[g(x)F
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EXAMPLE 1

SOLUTION

EXAMPLE 2

Importance of
Time in Treating
Heart Attacks

SOLUTION v

FIGURE T1

THE PRODUCT AND QUOTIENT RULES
Let f(x) = 2Vx + 0.5x) (0.3x3 + 2x — %) Find f'(0.2).

Using the numerical derivative operation of a graphing utility, we find

£(0.2) = 6.47974948127

According to the American Heart Association, the treatment benefit for heart
attacks depends on the time to treatment and is described by the function

() = —16.94¢ + 203.28
t +2.0328

0=t=12)

where ¢ is measured in hours and f(¢) is a percentage.

a. Use a graphing utility to graph the function f using the viewing rectangle
[0, 13] X [0, 120].

b. Use a graphing utility to find the derivative of f when ¢t = 0 and ¢ = 2.

c. Interpret the results obtained in part (b).

Source: American Heart Association

a. The graph of fis shown in Figure T1.




b. Using the numerical derivative operation of a graphing utility, we find

£(0) ~ —57.5266
£(2) ~ —14.6165

c. The results of part (b) show that the treatment benefit drops off at the
rate of 58% per hour at the time when the heart attack first occurs and falls
off at the rate of 15% per hour when the time to treatment is 2 hours. Thus,
it is extremely urgent that a patient suffering a heart attack receive medical
attention as soon as possible.

In Exercises 1-6, use the numerical derivative
operation of a graphing utility to find the rate
of change of f(x) at the given value of x. Give
your answer accurate to four decimal places.

L f(x) = 2x2 + 1)(x* + 3x + 4); x = —0.5
2. fx) = (Vx+ D2x2+x - 3);x=15
_ Vx-1,
3. f(x) _\/;+13
\/)_c(x2+4)'x:4

x=3

4 foy = XD,
5. f(x) = —\/’_‘Sfl"_l); x=1
X2+ Vi),

cx =1

6. flx) = 1+Vax

7. New ConsTructioN JoBs The president of a major housing
construction company claims that the number of construc-

tion jobs created in the next t months is given by

71* + 140t + 700
Q) =1 < 322 + 807 + 550 )

where f(f) is measured in millions of jobs per year. At
what rate will construction jobs be created 1 yr from now,
assuming her projection is correct?

. PopuLaTION GROWTH A major corporation is building a

4325-acre complex of homes, offices, stores, schools, and
churches in the rural community of Glen Cove. As a result
of this development, the planners have estimated that
Glen Cove’s population (in thousands) ¢ yr from now will
be given by

2582 + 125¢ + 200

PO=""5 540

a. What will be the population 10 yr from now?
b. At what rate will the population be increasing 10 yr
from now?

209
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SOLUTIONS 10 SELF-CHECK EXERCISES 8.2

1. We use the quotient rule to obtain

(x?— 1)%(2)6 +1)—2x+ 1)(%6()(2 -1)
f/(x): (X2_1)2

_ (=D - 2x+1D(2x)
(17

_2x*—2—4x*—2x
R
—2x2—2x—2

=1y
o 2(x2+x+ 1)
i

2. The slope of the tangent line to the graph of f at any point is given by
U — 2 d 3 2
f'(x)=(x*+ 1)3(2x —-3x*+1)

+(2x*—=3x*+ 1)diix(x2 +1)
= (x?+1)(6x*—6x) + 2x* —3x*+1)(2x)
In particular, the slope of the tangent line to the graph of f when x = 2 is

@) =@+ Dl6(2) — 6(2)]
+[2(2) - 3(2%) + 1][2(2)]
=60+20=280

Note that it is not necessary to simplify the expression for f'(x) since we are required
only to evaluate the expression at x = 2. We also conclude, from this result, that
the function fis changing at the rate of 80 units/unit change in x when x = 2.

3. The rate at which the company’s total sales are changing at any time ¢ is given by

d d
+0.41%) —(0.37) — (0.3£) — (1 + 0.4£
(1 04t)dt(03t) (03t)dt(1 0.41%)
(1+0.422

_ (1 +0.42)(0.9¢%) — (0.3£)(0.8¢)
a (1+0.4¢%)?

§'(0) =

Therefore, at the beginning of the second year of operation, Security Products’
sales were increasing at the rate of

say=* 0.4)((10.2)0—4 )(20.3)(0.8) 0520408

or $520,408/year.
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This section introduces another rule of differentiation called the chain rule.
When used in conjunction with the rules of differentiation developed in the
last two sections, the chain rule enables us to greatly enlarge the class of
functions we are able to differentiate.

THE CHAIN RuULE

Consider the function A(x) = (x2 + x + 1)%. If we were to compute h'(x)
using only the rules of differentiation from the previous sections, then our
approach might be to expand /(x). Thus,

hx)=x*+x+1)P>=x*+x+1)x*+x+1)
=x*+2°3+3x2+2x + 1
from which we find
h(x) =4x* + 6x2 + 6x + 2

But what about the function H(x) = (x* + x + 1)!%? The same technique
may be used to find the derivative of the function H, but the amount of work
involved in this case would be prodigious! Consider, also, the function
G(x) = Vx? + 1. For each of the two functions H and G, the rules of differenti-
ation of the previous sections cannot be applied directly to compute the
derivatives H' and G'.

Observe that both H and G are composite functions; that is, each is
composed of, or built up from, simpler functions. For example, the function
H is composed of the two simpler functions f(x) = x> + x + 1 and g(x) = x'®
as follows:

H(x) = g[ o] = [f)]™
=@ +x+1)"

In a similar manner, we see that the function G is composed of the two simpler
functions f(x) = x> + 1 and g(x) = Vx. Thus,

G(x) = g[f(x)] = Vfx)
VT
As a first step toward finding the derivative &’ of a composite function
h = go f defined by h(x) = g[f(x)], we write
w=flx) and y=g[flx)] =g

The dependency of /& on g and fis illustrated in Figure 3.5. Since u is a function
of x, we may compute the derivative of u with respect to x, if fis a differentiable
function, obtaining du/dx = f'(x). Next, if g is a differentiable function of u,
we may compute the derivative of g with respect to u, obtaining dy/du =
g'(u). Now, since the function /4 is composed of the function g and the function
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FIGURE 3.5
The composite function h(x) = g[ f(x)]

Rule 7: The Chain Rule

X f)=u y =g =glf(x)]

f, we might suspect that the rule 4’'(x) for the derivative 4’ of & will be given
by an expression that involves the rules for the derivatives of f and g. But
how do we combine these derivatives to yield 4'?

This question can be answered by interpreting the derivative of each
function as giving the rate of change of that function. For example, suppose
u = f(x) changes three times as fast as x—that is,

sy = du _
) =5=3
And suppose y = g(u) changes twice as fast as u—that is,
oy = @Y _
8 (M) - du 2

Then, we would expect y = h(x) to change six times as fast as x—that is,

h(x) =g'wfx) =(2)3) =6
or equivalently,

dy _dy du_ _
dx du dx @)B3) =6

This observation suggests the following result, which we state without proof.

If h(x) = g[f(x)], then

d
B () = S g(f(0) = g () ' (x) @
Equivalently, if we write y = h(x) = g(u), where u = f(x), then
by dy dy
dx du dx @

1. If we label the composite function /4 in the following manner

Inside function

!
h(x) = ?’[f(X)]

Outside function

then A'(x) is just the derivative of the “outside function” evaluated at the
“inside function” times the derivative of the “inside function.”



The General Power Rule

EXAMPLE 1

SOLUTION v

3.3 = THE CHAIN RULE K]

2. Equation (2) can be remembered by observing that if we “‘cancel” the du’s,
then

dy _dy e _dy
dx dwa dx dx

THE CHAIN RULE FOR POWERS OF FUNCTIONS

Many composite functions have the special form A(x) = g(f(x)), where g is
defined by the rule g(x) = x" (n, a real number)—that is,

h(x) = [f(0)]"

In other words, the function /4 is given by the power of a function f. The func-
tions

h(x)=(2+x+17 H=@+x+1)", G=Vii+1

discussed earlier are examples of this type of composite function. By using
the following corollary of the chain rule, the general power rule, we can find
the derivative of this type of function much more easily than by using the
chain rule directly.

If the function fis differentiable and A(x) = [f(x)]" (n, a real number), then

B ) = L) = nl F1 () @

To see this, we observe that A(x) = g(f(x)), where g(x) = x", so that, by
virtue of the chain rule, we have

h'(x) = g'(f(x)) " (x)
= n[f)]"'f'(x)

since g'(x) = nx"L.

Find H'(x), if
H(x) = (x> + x + 1)®

Using the general power rule, we obtain
H'(x) = 100(x> + x + 1)99%@2 +x+1)

=100(x2+x + 1)*(2x + 1)

Observe the bonus that comes from using the chain rule: The answer is
completely factored.
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EXAMPLE 2
SoLuTion v |

EXAMPLE 3
CSoLuTioN v |

EXAMPLE 4

SOLUTION

EXAMPLE 5

Differentiate the function G(x) = Vx? + 1.

We rewrite the function G(x) as
Gx) = (x*+ 1)»
and apply the general power rule, obtaining
' — 1 2 —1/21 2
G'(x) 2(x +1) dx(x +1)

X

Vxr+1

= % (x2+1)1"22x =

Differentiate the function f(x) = x*(2x + 3)°

Applying the product rule followed by the general power rule, we obtain
Fe) =L @r+ 3y + @+ 3L ()
dx dx

= (x)5(2x + 3)*- % (2x +3) + (2x + 3)’(2x)

=5x*(2x + 3)%(2) + 2x(2x + 3)°
=2x(2x + 3)*(5x + 2x + 3) = 2x(7x + 3)(2x + 3)*
Find f’ (x) if f(x) = m

Rewriting f(x) and then applying the general power rule, we obtain

U — i 1 — i 2 -2
Fx) = dx [(4)62 — 7)2] Cdx (45 =7)

d
- 2 -3 2 _
2(4x* —=17) e (4x*=17)

16x

R BT

Find the slope of the tangent line to the graph of the function

o= (353)

at the point (0, ).



SOLUTION v

Refer to Example 5.

1.

2.
3.
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The slope of the tangent line to the graph of f at any point is given by f'(x).
To compute f'(x), we use the general power rule followed by the quotient
rule, obtaining

oy o f(2x+ 1\ d (2x+1
f(x)_3<3x+2> dx<3x+2>

_; <2x + 1>2[(3x +2)(2) — (2x + 1)(3)]

3x+2 (3x +2)?
_ g (2t l6x +4—6x—3
3x+2 (Bx +2)
_32x+ 1y
(3x +2)*

In particular, the slope of the tangent line to the graph of fat (0, §) is given by

oy L3017 3
IO =052 16

Use a graphing utility to plot the graph of the function f using the viewing rectangle [—-2, 1] X [—1, 2].
Then draw the tangent line to the graph of f at the point (0, 5).

For a better picture, repeat part 1 using the viewing rectangle [—1, 1] X [-0.1, 0.3].

Use the numerical differentiation capability of the graphing utility to verify that the slope of the tangent

line at (0, 3) is 15.

APPLICATIONS

The membership of The Fitness Center, which opened a few years ago, is
approximated by the function

N(t) = 100(64 + 4r)*? (0=r=52)
where N(¢) gives the number of members at the beginning of week ¢.

a. Find N'(¢).

b. How fast was the center’s membership increasing initially (¢ = 0)?

c. How fast was the membership increasing at the beginning of the 40th week?
d. What was the membership when the center first opened? At the beginning
of the 40th week?
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SOLUTION v a. Using the general power rule, we obtain

N (@) = 110064 + 40

d
— + 2/3
1002 (64 + 40)

= 2 -13 i
100 < 3> (64 + 4¢) 7 (64 + 4¢)

= 23@ (64 + 41)13(4)
_ 800
3(64 + 41)

b. The rate at which the membership was increasing when the center first
opened is given by

800

N =364y~

66.7

or approximately 67 people per week.
c. The rate at which the membership was increasing at the beginning of the
40th week is given by

800

N'(40) = 3065+ 1607 ~

43.9

or approximately 44 people per week.

d. The membership when the center first opened is given by
N(0) = 100(64)** = 100(16)

or approximately 1600 people. The membership at the beginning of the 40th
week is given by

N(40) = 100(64 + 160)** ~ 3688.3
or approximately 3688 people.

Group Discussion
D The profit P of a one-product software manufacturer depends on
the number of units of its products sold. The manufacturer estimates that
it will sell x units of its product per week. Suppose P = g(x) and x = £(¢),
where g and f are differentiable functions.
1. Write an expression giving the rate of change of the profit with respect
to the number of units sold.
2. Write an expression giving the rate of change of the number of units
sold per week.
3. Write an expression giving the rate of change of the profit per week.




FIGURE 3.6
Cross section of the aorta

3.3 = THE CHAIN RULE n7

Arteriosclerosis begins during childhood when plaque (soft masses of fatty
material) forms in the arterial walls, blocking the flow of blood through the
arteries and leading to heart attacks, strokes, and gangrene. Suppose the
idealized cross section of the aorta is circular with radius a cm and by year ¢
the thickness of the plaque (assume it is uniform) is & = f(¢) cm (Figure 3.6).
Then the area of the opening is given by A = 7(a — h)? square centimeters
(cm?).

Suppose the radius of an individual’s artery is 1 cm (¢ = 1) and the
thickness of the plaque in year ¢ is given by

h =g() =1 - 0.01(10,000 — #*)"2 cm
Since the area of the arterial opening is given by
A = f(h) = m(1 = hy

the rate at which A is changing with respect to time is given by

dd—f: = Z—fl . % =f'(h)-g'(® (By the chain rule)
1 _ sing the chai
=2m(1 - h)(—l)[—o.m <§> (10,000 — £ 1/2(—2z)} fﬁ;‘?;fcejC .
0.01¢
= 21— h) [(10,000 - tz)m]
__0.02a(1 - h)t
V10,000 — £

For example, when ¢ = 50,
h = g(50) = 1 — 0.01(10,000 — 2500)"* ~ 0.134

so that

dA _ 0.027(1 - 0.134)50 _

dt V10,000 — 2500

That is, the area of the arterial opening is decreasing at the rate of 0.03
cm?/year.

—0.03

Group Discussion

Suppose the population P of a certain bacteria culture is given by
P = f(T), where T is the temperature of the medium. Further, suppose
the temperature T is a function of time ¢ in seconds—that is, 7' = g(¢).
Give an interpretation of each of the following quantities:

L ;l_l; 5 62_1: 3. ‘Z_f 4 (fo9) 5 f(g(0)g )
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EXAMPLE 1

EXAMPLE 2

SOLUTION v

FINDING THE DERIVATIVE OF A COMPOSITE FUNCTION

Find the rate of change of f(x) = Vx(1 + 0.02x2)* when x = 2.1.
Using the numerical derivative operation of a graphing utility, we find

f'(2.1) = 0.582146320119
or approximately 0.58 unit per unit change in x.
The management of Astro World (‘““The Amusement Park of the Future”)

estimates that the total number of visitors (in thousands) to the amusement
park ¢ hours after opening time at 9 A.M. is given by

What is the rate at which visitors are admitted to the amusement park at
10:30 A.m.?

Using the numerical derivative operation of a graphing utility, we find
N'(1.5) =~ 6.8481

or approximately 6848 visitors per hour.



In Exercises 1-6, use the numerical derivative
operation of a graphing utility to find the rate
of change of f(x) at the given value of x. Give
your answer accurate to four decimal places.

L f(x) = Vxl—x* x =05

2. fx) =x — V1—x%x =04
3. f(x) = xV1—x%x =02

4. f(x) = (x + Va2 +4)2x =1

V1 + x?
5. f(x) = Pt -1

x3

6.f(x)=m;x=3

7. WorLDWIDE PRODUCTION OF VEHICLES According to Automo-
tive News, the worldwide production of vehicles between
1960 and 1990 is given by the function

£(t) = 16.5V1 + 2.2t (0 =¢=23)

where f(¢) is measured in units of a million and ¢ is mea-
sured in decades, with ¢ = 0 corresponding to the begin-
ning of 1960. What was the rate of change of the worldwide
production of vehicles at the beginning of 1970? At the
beginning of 1980?

Source: Automotive News

. AccumuLATION YEARS People from their mid-40s to their

mid-50s are in the prime investing years. Demographic
studies of this type are of particular importance to finan-
cial institutions. The function

N(1) = 344(1 + 0.32125¢)'5 O0=r=12)

gives the projected number of people in this age group
in the United States (in millions) in year ¢t where ¢ = 0
corresponds to the beginning of 1996.

a. How large is this segment of the population projected
to be at the beginning of 2005?

b. How fast will this segment of the population be grow-
ing at the beginning of 2005?

Source: Census Bureau

219
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1. Find the derivative of

-1
f0) == ==

2. Suppose the life expectancy at birth (in years) of a female in a certain country is
described by the function

g(H) = 50.02(1 + 1.09¢)* (0 = 1 = 150)

where ¢ is measured in years and ¢ = 0 corresponds to the beginning of 1900.

a. What is the life expectancy at birth of a female born at the beginning of 1980?
At the beginning of the year 20007

b. How fast is the life expectancy at birth of a female born at any time ¢ changing?

Solutions to Self-Check Exercises 3.3 can be found on page 223.

In Exercises 1-46, find the derivative of the 25. f(t) = (171 = 172)} 26. f(v) = (v + dv7?)°
given function. 27, ) = VitT+ VioI

1 f(x) = 2x — 1)* 2. f(x) = (1 — x)?
3. f(x) = (2 + 2 A F(1) = 2t — 1y 28, f(u) = Qu + 12 4+ (w* - 1)
5. f(x) = (2x - X 6. fx) = 3 — ) B S =206 43RG =06+ )
: 31 f(x) = (x — 1)2(2x + 1)*
7. f(x) = 2x + 1) 8. f() =5 (F + 1) .
9. flx) = (x* = 4)*" 10. f(r) = (3* = 2t + 1)** (x + 3)3 x+1)°
33. = 34, =
11 f(x) = V3x—2 12. f(t) = V3 —t == 1) (x - 1)
. f(x) = V1-x’ 14. f(x) = V2’ = 2x +3 35. 5(1) = (21:— 1>3’2 36. g(s) - <s2 . %)3/2
1 2
15. f(x) = ﬁ 16. f(x) = Tﬂ
( x1+ ) (x 1 ) 3. g(u) - 3uu-:_12 38 g(x) = Z ti
17. f(l) = m 18. f(x) = —m . o
39. f(x) = m 40. g(u) = m
__ _ 4
19.y= (4x' + )" 20. f(5) o2+ 1 AL 7o) = (3x? + 1)} C@—-1y
ch() =T Q2. g0 = 5—5
21. f(x) = (3x> + 2x + 1) (=1 (Br+2)
2. f(t) = (5 + 20 — 1 + 4) 4. o = 2L 4. f(0) = #
23 f(x) = (¢ + 1) = (& + 1) —
_ t+1 _ Vxl+1
24 f(5) = (2t — 1) + (2 + 1) 5. 80) = o= 46. fo) = T=—



: L dy du _dy
In Exercises 47-52, find du’ dx’ and dx"
47. y = u*® and u =3x*-1
48.y=Vu and u=Tx — 2x2
49.y=u and u=2x"—-x+1
50. y=2u*+1 and u=x>+1
51y = \/L_H—L and u=x>—x
Vu
52. y=% and u=Vx+1
53. Suppose F(x) = g(f(x)) and f(2) = 3, f'(2) = =3,

g(3) = 5, and g'(3) = 4. find F'(2).

54. Suppose h = f - g. Find h'(0) given that f(0) = 6,

f'(5) = =2, g(0) =5, and g'(0) = 3.

55. Suppose F(x) = f(x* + 1). Find F'(1) if f'(2) = 3.

56. Let F(x) = f(f(x)). Does it follow that F'(x) = [f'(x)]*?

Hint: Let f(x) = x%

57. Suppose h = g o f. Does it follow that A’ = g’ - f'?

Hint: Let f(x) = x and g(x) = x%

58. Suppose i = fo g. Show that &' = (f' - g)g’.

In Exercises 59-62, find an equation of the tan-
gent line to the graph of the function at the
given point.

59. f(x) = (1 = 0)(x* = )% (2, -9)

x+1
x—1

60. f(x) = ( ) G.4)

61. f(x) = xV2x*+7, (3, 15)

8
62. f(x) Voo (2,2)
63. TELEVISION VIEWING The number of viewers of a tele-
vision series introduced several years ago is approxi-
mated by the function

N(x) = (60 + 2x)** (1=x=26)

where N(x) (measured in millions) denotes the number
of weekly viewers of the series in the xth week. Find
the rate of increase of the weekly audience at the end
of week 2 and at the end of week 12. How many viewers
were there in week 2 and in week 247

64.

65.

66.

67.

68.
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MALE LiFe EXPECTANCY Suppose the life expectancy of a
male at birth in a certain country is described by the
function

£(t) = 46.9(1 + 1.097)"" (0 = ¢ = 150)

where ¢ is measured in years and ¢ = 0 corresponds to
the beginning of 1900. How long can a male born at the
beginning of the year 2000 in that country expect to live?
What is the rate of change of the life expectancy of
a male born in that country at the beginning of the
year 2000?

CONCENTRATION OF CARBON MONOXIDE IN THE AIR  According
to a joint study conducted by Oxnard’s Environmental
Management Department and a state government
agency, the concentration of carbon monoxide in the air
due to automobile exhaust ¢ yr from now is given by

C(f) = 0.01(0.2> + 4t + 64)**

parts per million.

a. Find the rate at which the level of carbon monoxide
is changing with respect to time.

b. Find the rate at which the level of carbon monoxide
will be changing 5 yr from now.

CONTINUING EDUCATION ENROLLMENT ~ The registrar of Kel-
logg University estimates that the total student enroll-

ment in the Continuing Education division will be given
by

20,000
V1 +0.2¢

where N(t) denotes the number of students enrolled in
the division ¢ yr from now. Find an expression for N'(f).
How fast is the student enrollment increasing currently?
How fast will it be increasing 5 yr from now?

AIrR PoLLuTioN  According to the South Coast Air Quality
Management District, the level of nitrogen dioxide, a
brown gas that impairs breathing, present in the atmo-
sphere on a certain May day in downtown Los Angeles
is approximated by

N@t) = - + 21,000

A(t) = 0.038(1 — T)* + 602 O=t=7)

where A(f) is measured in pollutant standard index and
tis measured in hours, with ¢ = 0 corresponding to 7 A.M.
a. Find A'(2).

b. Find A’(1), A’(3), and A’(4) and interpret your re-
sults.

EFFEcT OF LUXURY TAX ON CONSUMPTION Government econ-
omists of a developing country determined that the pur-
chase of imported perfume is related to a proposed



m

69.

70.

71.

72.

73.
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“luxury tax” by the formula

N(x) = V10,000 — 40x — 0.02x2 (0 = x =200)

where N(x) measures the percentage of normal con-
sumption of perfume when a “luxury tax’ of x percent
is imposed on it. Find the rate of change of N(x) for
taxes of 10%, 100%, and 150%.

PuLse RATE OF AN ATHLETE The pulse rate (the number of
heartbeats per minute) of a long-distance runner ¢ sec-
onds after leaving the starting line is given by

300V3Er? + 2t + 25

P = t+25

(1=0)
Compute P’'(f). How fast is the athlete’s pulse rate in-
creasing 10 sec, 60 sec, and 2 min into the run? What is
her pulse rate 2 min into the run?

THURSTONE LEARNING MoDEL Psychologist L. L. Thurstone
suggested the following relationship between learning
time 7 and the length of a list n:

T =f(n) =AnVn-—-»>

where A and b are constants that depend on the person
and the task.

a. Compute d7/dn and interpret your result.

b. For a certain person and a certain task, suppose
A =4andb = 4. Compute f'(13) and f'(29) and interpret
your results.

OiL SpiLLs  In calm waters, the oil spilling from the rup-
tured hull of a grounded tanker spreads in all directions.
Assuming that the area polluted is a circle and that its
radius is increasing at a rate of 2 ft/sec, determine how
fast the area is increasing when the radius of the circle
is 40 ft.

ARTERIOSCLEROSIS Refer to Example 7, page 217. Suppose
the radius of an individual’s artery is 1 cm and the thick-

ness of the plaque (in centimeters) ¢ yr from now is given
by

0.5¢2
£+ 10

h=g(t)= (0=r=10)
How fast will the arterial opening be decreasing 5 yr
from now?

TrAFFIC FLOW  Opened in the late 1950s, the Central Ar-
tery in downtown Boston was designed to move 75,000
vehicles a day. The number of vehicles moved per day

is approximated by the function
x = f(t) = 6.25¢ + 19.75t + 74.75 O0=t=5)

where x is measured in thousands and 7 in decades, with
t = 0 corresponding to the beginning of 1959. Suppose

74.

76.

the average speed of traffic flow in mph is given by
S = g(x) = —0.00075x* + 67.5 (75 = x = 350)

where x has the same meaning as before. What was the
rate of change of the average speed of traffic flow at the
beginning of 1999? What was the average speed of traffic
flow at that time?

HoteL Occupancy RATES The occupancy rate of the all-
suite Wonderland Hotel, located near an amusement
park, is given by the function

~ 10, 10 200

== -—=r+=—t+ =r=12
r(t) Slt 31‘ 9t 60 0=t )
where ¢ is measured in months and ¢ = 0 corresponds
to the beginning of January. Management has estimated
that the monthly revenue (in thousands of dollars per

month) is approximated by the function
+ 2y (0=r=100)

where r is the occupancy rate.

a. Find an expression that gives the rate of change of
Wonderland’s occupancy rate with respect to time.

b. Find an expression that gives the rate of change of
Wonderland’s monthly revenue with respect to the occu-
pancy rate.

c. What is the rate of change of Wonderland’s monthly
revenue with respect to time at the beginning of January?
At the beginning of June?

Hint: Use the chain rule to find R'(r(0))r'(0) and
R'(r(6))r'(6).

. EFFecT oF Housing STArRTS oN JoBs The president of a

major housing construction firm claims that the number
of construction jobs created is given by

N(x) = 1.42x

where x denotes the number of housing starts. Suppose
the number of housing starts in the next t mo is expected
to be

7>+ 140¢ + 700

*() = 377800 + 550

million units/year. Find an expression that gives the rate
at which the number of construction jobs will be created
t mo from now. At what rate will construction jobs be
created 1 yr from now?

DemanD FOR PCs  The quantity demanded per month, x,
of a certain make of personal computer (PC) is related
to the average unit price, p (in dollars), of PCs by the
equation

x=f(p)= % V810,000 — p?



It is estimated that t mo from now, the average price of
a PC will be given by

p(i) = 400
1+3Ve

dollars. Find the rate at which the quantity demanded
per month of the PCs will be changing 16 mo from now.

77. CRUISE SHIP BooKINGS The management of Cruise World,
operators of Caribbean luxury cruises, expects that the
percentage of young adults booking passage on their
cruises in the years ahead will rise dramatically. They
have constructed the following model, which gives the
percentage of young adult passengers in year ¢:

r+2t+4
P—f(f)—”(m)

Young adults normally pick shorter cruises and generally
spend less on their passage. The following model gives
an approximation of the average amount of money R
(in dollars) spent per passenger on a cruise when the
percentage of young adults is p:

R(p) = 1000 (%)

Find the rate at which the price of the average passage
will be changing 2 yr from now.

+ 200 (0=r=60)

(0=r=5)

In Exercises 78-81, determine whether the

statement is true or false. If it is true, explain

why it is true. If it is false, give an example to

show why it is false.

78. If f and g are differentiable and & = f - g, then
h'(x) = f'[g(x)]g’ (x).

SOLUTIONS 10 SELF-CHECK EXERCISES 3.3

1. Rewriting, we have

79.

80.

81.

82.

83.

3.3 = THE CHAIN RULE 2723

If f is differentiable and c is a constant, then
L [fen] = ef (ex)
dx '

If f is differentiable, then

A \Jaipy = L)

If fis differentiable, then

d 1 (1
G- G)
In Section 3.1 we proved that

d ny — n—1
e (x") = nx

for the special case when n = 2. Use the chain rule to
show that

d 1/ 1 1/n—1
— (x'") = =x'""
dx ) n

for any nonzero integer n, assuming that f(x) = x'" is
differentiable.

Hint: Let f(x) = x'" so that [ f(x)]" = x. Differentiate both sides
with respect to x.

With the aid of Exercise 82, prove that
dix (x") =rx!

for any rational number r.

Hint: Let r = m/n, where m and n are integers with n # 0, and
write x” = (x™)!n.

f) = =22 = 1)

Using the general power rule, we find

f'@)

= — i 2 —1/2
o 2x*=1)

- <— %) (=)L (20— 1)

S C R

- 2x
(2)(2 _ 1)3/2
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2. a. The life expectancy at birth of a female born at the beginning of 1980 is given
by

g(80) = 50.02[1 + 1.09(80)]"! ~ 78.29

or approximately 78 yr. Similarly, the life expectancy at birth of a female born at
the beginning of the year 2000 is given by

g(100) = 50.02[1 + 1.09(100)]"! ~ 80.04

or approximately 80 yr.
b. The rate of change of the life expectancy at birth of a female born at any time
t is given by g'(#). Using the general power rule, we have

g'(h)= 50.02% (1 + 1.09¢)*

= (50.02)(0.1)(1 + 1.09z)*°-9d1t (1 + 1.09)

= (50.02)(0.1)(1.09)(1 + 1.09¢) "
= 5.45218(1 + 1.091) %

_ 545218
(1 +1.090)%

3.4 Marginal Functions in Economics

Marginal analysis is the study of the rate of change of economic quantities.
For example, an economist is not merely concerned with the value of an
economy’s gross domestic product (GDP) at a given time but is equally con-
cerned with the rate at which it is growing or declining. In the same vein, a
manufacturer is not only interested in the total cost corresponding to a certain
level of production of a commodity but is also interested in the rate of change
of the total cost with respect to the level of production, and so on. Let’s begin
with an example to explain the meaning of the adjective marginal, as used
by economists.

CosST FUNCTIONS

Suppose the total cost in dollars incurred per week by the Polaraire Company
for manufacturing x refrigerators is given by the total cost function

C(x) = 8000 + 200x — 0.2x° (0 = x = 400)

a. What is the actual cost incurred for manufacturing the 251st refrigerator?
b. Find the rate of change of the total cost function with respect to x when
x = 250.

c¢. Compare the results obtained in parts (a) and (b).
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a. The actual cost incurred in producing the 251st refrigerator is the difference
between the total cost incurred in producing the first 251 refrigerators and
the total cost of producing the first 250 refrigerators:

C(251) — C(250) = [8000 + 200(251) — 0.2(251)]
— [8000 + 200(250) — 0.2(250)?]
= 45,599.8 — 45,500
= 99.80

or $99.80.

b. The rate of change of the total cost function C with respect to x is given
by the derivative of C—that is, C'(x) = 200 — 0.4x. Thus, when the level of
production is 250 refrigerators, the rate of change of the total cost with respect
to x is given by

C’(250) = 200 — 0.4(250)
=100

or $100.
c. From the solution to part (a), we know that the actual cost for producing
the 251st refrigerator is $99.80. This answer is very closely approximated by

the answer to part (b), $100. To see why this is so, observe that the difference
C(251) — C(250) may be written in the form

C(251) — C(250) _ C(250 + 1) — C(250) _ C(250 + h) — C(250)
1 1 h

where & = 1. In other words, the difference C(251) — C(250) is precisely
the average rate of change of the total cost function C over the interval
[250, 251], or, equivalently, the slope of the secant line through the points
(250, 45,500) and (251, 45,599.8). However, the number C’(250) = 100 is the
instantaneous rate of change of the total cost function C at x = 250, or,
equivalently, the slope of the tangent line to the graph of C at x = 250.

Now when 4 is small, the average rate of change of the function C is a
good approximation to the instantaneous rate of change of the function C,
or, equivalently, the slope of the secant line through the points in question is
a good approximation to the slope of the tangent line through the point in
question. Thus, we may expect

C(251) — C(250) _ C(250 + h) — C(250)
1 h

iy €50 + hz = CO0) _ 150
h—0

C(251) — C(250) =

which is precisely the case in this example.
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SOLUTION v

FIGURE 3.7
The cost of producing x calculators is given

by C(x).

30,000
20,000

10,000

100 300 500 700

The actual cost incurred in producing an additional unit of a certain
commodity given that a plant is already at a certain level of operation is called
the marginal cost. Knowing this cost is very important to management in their
decision-making processes. As we saw in Example 1, the marginal cost is
approximated by the rate of change of the total cost function evaluated at
the appropriate point. For this reason, economists have defined the marginal
cost function to be the derivative of the corresponding total cost function. In
other words, if C is a total cost function, then the marginal cost function is
defined to be its derivative C'. Thus, the adjective marginal is synonymous
with derivative of.

A subsidiary of the Elektra Electronics Company manufactures a programma-
ble pocket calculator. Management determined that the daily total cost of
producing these calculators (in dollars) is given by

C(x) = 0.0001x* — 0.08x> + 40x + 5000
where x stands for the number of calculators produced.

a. Find the marginal cost function.
b. What is the marginal cost when x = 200, 300, 400, and 600?
c. Interpret your results.

a. The marginal cost function C' is given by the derivative of the total cost
function C. Thus,

C’(x) = 0.0003x> — 0.16x + 40
b. The marginal cost when x = 200, 300, 400, and 600 is given by

C’(200) = 0.0003(200)> — 0.16(200) + 40 = 20
C’(300) = 0.0003(300)> — 0.16(300) + 40 = 19
C'(400) = 0.0003(400)> — 0.16(400) + 40 = 24
C’(600) = 0.0003(600) — 0.16(600) + 40 = 52

or $20, $19, $24, and $52, respectively.

c. From the results of part (b), we see that Elektra’s actual cost for producing
the 201st calculator is approximately $20. The actual cost incurred for produc-
ing one additional calculator when the level of production is already 300
calculators is approximately $19, and so on. Observe that when the level of
production is already 600 units, the actual cost of producing one additional
unit is approximately $52. The higher cost for producing this additional unit
when the level of production is 600 units may be the result of several factors,
among them excessive costs incurred because of overtime or higher mainte-
nance, production breakdown caused by greater stress and strain on the equip-
ment, and so on. The graph of the total cost function appears in Figure 3.7.
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SOLUTION v
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AVERAGE COST FUNCTIONS

Let’s now introduce another marginal concept closely related to the marginal
cost. Let C(x) denote the total cost incurred in producing x units of a certain
commodity. Then the average cost of producing x units of the commodity is
obtained by dividing the total production cost by the number of units produced.
This leads to the following definition.

Suppose C(x) is a total cost function. Then the average cost function, denoted
by C(x) (read “C bar of x7), is

€@
X

C))

The derivative C’(x) of the average cost function, called the marginal average
cost function, measures the rate of change of the average cost function with
respect to the number of units produced.

The total cost of producing x units of a certain commodity is given by
C(x) = 400 + 20x

dollars.

. Find the average cost function C.

. Find the marginal average cost function C'.
. Interpret the results obtained in parts (a) and (b).

e e

a. The average cost function is given by

_ C(x) _ 400 + 20x
X x

0 + 30
X

C(x)

=

. The marginal average cost function is

— 400
C (x) = - ?

c. Since the marginal average cost function is negative for all admissible values
of x, the rate of change of the average cost function is negative for all x > 0;
that is, C(x) decreases as x increases. However, the graph of C always lies
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FIGURE 3.8
As the level of production increases, the
average cost approaches $20.

SOLUTION v

100

y=6(x)=20+4xﬂ)

60

20+

above the horizontal line y = 20, but it approaches the line since

lim C(x) = lim <20 + @> =20
A sketch of the graph of the function C(x) appears in Figure 3.8. This result
is fully expected if we consider the economic implications. Note that as the
level of production increases, the fixed cost per unit of production, represented
by the term (400/x), drops steadily. The average cost approaches the constant
unit of production, which is $20 in this case.

Once again consider the subsidiary of the Elektra Electronics Company. The
daily total cost for producing its programmable calculators is given by

C(x) = 0.0001x* — 0.08x* + 40x + 5000

dollars, where x stands for the number of calculators produced (see Exam-
ple 2).

a. Find the average cost function C.

b. Find the marginal average cost function C'. Compute C’(500).

c. Sketch the graph of the function C and interpret the results obtained in
parts (a) and (b).

a. The average cost function is given by

C(x) B 5000

Cx)= 00001x—008x+40+T
b. The marginal average cost function is given by
T (x) = 0.0002x — 0.08 — 220
Also,
C 5000
/ = 0.0002 —0.08 = 2209 _
C'(500) = 0.0002(500) — 0.08 (500) 0

¢. To sketch the graph of the function a_observe that if x is a small positive
number, then C(x) > 0. Furthermore, C(x) becomes arbitrarily large as x
approaches zero from the right, since the term (5000/x) becomes arbitrarily



FIGURE 3.9
The average cost reaches a minimum of
$35 when 500 calculators are produced.
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Refer to Example 4.
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large as x approaches zero. Next, the result C'(500) = 0 obtained in part (b)
tells us that the tangent line to the graph of the function C is horizontal at
the point (500, 35) on the graph. Finally, plotting the points on the graph
corresponding to, say, x = 100, 200, 300, ..., 900, we obtain the sketch in
Figure 3.9. As expected, the average cost drops as the level of production
increases. But in this case, as opposed to the case in Example 3, the average
cost reaches a minimum value of $35, corresponding to a production level of
500, and increases thereafter.

This phenomenon is typical in situations where the marginal cost increases
from some point on as production increases, as in Example 2. This situation
is in contrast to that of Example 3, in which the marginal cost remains constant
at any level of production.

1. Use a graphing utility to plot the graph of the average cost function

C(x) = 0.0001x> — 0.08x + 40 + 5(lﬁ

using the viewing rectangle [0, 1000] X [0, 100]. Then, using zoom and TRACE, show that the lowest point
on the graph of C is (500, 35). _
2. Draw the tangent line to the graph of C at (500, 35). What is its slope? Is this expected?

Plot the graph of the marginal average cost function
5000

x2

C'(x) = 0.0002x — 0.08 —

using the viewing rectangle [0, 2000] X [—1, 1]. Then use zoom and TRACE to show that the zero of the
function C’ occurs at x = 500. Verify this result using the root-finding capability of your graphing utility.
Is this result compatible with that obtained in part (2)? Explain your answer.

REVENUE FUNCTIONS

Another marginal concept, the marginal revenue function, is associated with
the revenue function R, given by

R(x) = px ®)

where x is the number of units sold of a certain commodity and p is the unit
selling price. In general, however, the unit selling price p of a commodity
is related to the quantity x of the commodity demanded. This relationship,
p = f(x), is called a demand equation (see Section 2.3). Solving the demand
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EXAMPLE 5

SOLUTION v

equation for p in terms of x, we obtain the unit price function f, given by

p = fx)

Thus, the revenue function R is given by

R(x) = px = x/(x)

where fis the unit price function. The derivative R’ of the function R, called
the marginal revenue function, measures the rate of change of the revenue
function.

Suppose the relationship between the unit price p in dollars and the quantity
demanded x of the Acrosonic model F loudspeaker system is given by the
equation

p = —0.02x + 400 (0 = x = 20,000)
a. Find the revenue function R.
b. Find the marginal revenue function R'.
¢. Compute R'(2000) and interpret your result.

a. The revenue function R is given by

R(x) = px
= x(—0.02x + 400)
= —0.02x> + 400x (0 = x = 20,000)

b. The marginal revenue function R’ is given by

R'(x) = —0.04x + 400
c. R’(2000) = —0.04(2000) + 400 = 320

Thus, the actual revenue to be realized from the sale of the 2001st loudspeaker
system is approximately $320.

PROFIT FUNCTIONS

Our final example of a marginal function involves the profit function. The
profit function P is given by

P(x) = R(x) — C(x) (©)

where R and C are the revenue and cost functions and x is the number of
units of a commodity produced and sold. The marginal profit function P’(x)
measures the rate of change of the profit function P and provides us with a
good approximation of the actual profit or loss realized from the sale of the
(x + 1)st unit of the commodity (assuming the xth unit has been sold).
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SOLUTION v

FIGURE 3.10
The total profit made when x loudspeakers
are produced is given by P(x).
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Refer to Example 5. Suppose the cost of producing x units of the Acrosonic
model F loudspeaker is

C(x) = 100x + 200,000 dollars

Find the profit function P.

Find the marginal profit function P’.
Compute P'(2000) and interpret your result.
Sketch the graph of the profit function P.

e Fe

®

From the solution to Example 5(a), we have
R(x) = —0.02x* + 400x
Thus, the required profit function P is given by
P(x) = R(x) = C(x)
= (—0.02x% + 400x) — (100x + 200,000)
—0.02x2 + 300x — 200,000

b. The marginal profit function P’ is given by
P'(x) = —0.04x + 300

c. P’(2000) = —0.04(2000) + 300 = 220

Thus, the actual profit realized from the sale of the 2001st loudspeaker system
is approximately $220.
d. The graph of the profit function P appears in Figure 3.10.

ELASTICITY OF DEMAND

Finally, let us use the marginal concepts introduced in this section to derive
an important criterion used by economists to analyze the demand function:
elasticity of demand.

In what follows, it will be convenient to write the demand function f in
the form x = f(p); that is, we will think of the quantity demanded of a certain
commodity as a function of its unit price. Since the quantity demanded of a
commodity usually decreases as its unit price increases, the function fis typi-
cally a decreasing function of p (Figure 3.11a).

fp) f(p)

fp)T
S(p+h)

(a) A demand function (b) f(p + h) is the quantity demanded when

the unit price increases from p to p + h dollars.
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Suppose the unit price of a commodity is increased by 4 dollars from p
dollars to (p + h) dollars (Figure 3.11b). Then the quantity demanded drops
from f(p) units to f(p + h) units, a change of [ f(p + h) — f(p)] units. The
percentage change in the unit price is

ﬁ (100) <Changein unit price) (100)
p Price p

and the corresponding percentage change in the quantity demanded is

100 [f(p + h) - f(P)] <Change in quantity demanded) (100)

f(p) Quantity demanded at price p

Now, one good way to measure the effect that a percentage change in price
has on the percentage change in the quantity demanded is to look at the ratio
of the latter to the former. We find

00 [f(p +h) = f(p)]
Percentage change in the quantity demanded _ f(p)
Percentage change in the unit price 100 (ﬁ)

fp +h) — f(p)
h

f(p)
p

If fis differentiable at p, then
+ h) — ,
fp 2 fp) £(p)

when 4 is small. Therefore, if / is small, then the ratio is approximately equal to

f'(p) _ pf'(p)
flp)  f(p)
p

Economists call the negative of this quantity the elasticity of demand.

Elasticity of

Demand If fis a differentiable demand function defined by x = f(p), then the elasticity

of demand at price p is given by

-4

IEXXXXXH 1t will be shown later (Section 4.1) that if f is decreasing on an
interval, then f'(p) < 0 for p in that interval. In light of this, we see that since

pf'(p)

both p and f(p) are positive, the quantity “=-—"= is negative. Because econo-

f(p)
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Elasticity of Demand
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mists would rather work with a positive value, the elasticity of demand E(p)
is defined to be the negative of this quantity.
Consider the demand equation

p = —0.02x + 400 (0 = x = 20,000)

which describes the relationship between the unit price in dollars and the
quantity demanded x of the Acrosonic model F loudspeaker systems.

a. Find the elasticity of demand E(p).
b. Compute E(100) and interpret your result.
¢. Compute E(300) and interpret your result.

a. Solving the given demand equation for x in terms of p, we find
x = f(p) = =50p + 20,000

from which we see that

f(p) = =50
Therefore,
__pf'p)_ ___ p(=50)
E(p) £(p) —50p + 20,000
__ D
400 — p

b. E(100) = _10__1 which is the elasticity of demand when p = 100
' 400 — 100 3’ y p '

To interpret this result, recall that E£(100) is the negative of the ratio of the
percentage change in the quantity demanded to the percentage change in the
unit price when p = 100. Therefore, our result tells us that when the unit
price p is set at $100 per speaker, an increase of 1% in the unit price will
cause an increase of approximately 0.33% in the quantity demanded.

300
400 — 300
p = 300. It tells us that when the unit price is set at $300 per speaker, an
increase of 1% in the unit price will cause a decrease of approximately 3% in
the quantity demanded.

c. E(300) = = 3, which is the elasticity of demand when

Economists often use the following terminology to describe demand in
terms of elasticity.

The demand is said to be elastic if E(p) > 1.
The demand is said to be unitary if E(p) = 1.
The demand is said to be inelastic if E(p) < 1.
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As an illustration, our computations in Example 7 revealed that demand
for Acrosonic loudspeakers is elastic when p = 300 but inelastic when p = 100.
These computations confirm that when demand is elastic, a small percentage
change in the unit price will result in a greater percentage change in the
quantity demanded; and when demand is inelastic, a small percentage change
in the unit price will cause a smaller percentage change in the quantity de-
manded. Finally, when demand is unitary, a small percentage change in the
unit price will result in the same percentage change in the quantity demanded.

We can describe the way revenue responds to changes in the unit price
using the notion of elasticity. If the quantity demanded of a certain commodity
is related to its unit price by the equation x = f(p), then the revenue realized
through the sale of x units of the commodity at a price of p dollars each is

R(p) = px = pf(p)

The rate of change of the revenue with respect to the unit price p is given by
R'(p) = f(p) + pf'(p)

= f(p) [1 + 1%1(5)]

=fp)[1 - E(p)]

Now, suppose demand is elastic when the unit price is set at a dollars. Then
E(a) > 1,and so 1 — E(a) < 0. Since f(p) is positive for all values of p, we
see that

R'(a) = f@)[1 — E(a)] <0

and so R(p) is decreasing at p = a. This implies that a small increase in the
unit price when p = a results in a decrease in the revenue, whereas a small
decrease in the unit price will result in an increase in the revenue. Similarly,
you can show that if the demand is inelastic when the unit price is set at a
dollars, then a small increase in the unit price will cause the revenue to
increase, and a small decrease in the unit price will cause the revenue to
decrease. Finally, if the demand is unitary when the unit price is set at a
dollars, then E(a) = 1 and R'(a) = 0. This implies that a small increase or
decrease in the unit price will not result in a change in the revenue. The
following statements summarize this discussion.

1. If the demand is elastic at p (E(p) > 1), then an increase in the unit
price will cause the revenue to decrease, whereas a decrease in the unit
price will cause the revenue to increase.

2. If the demand is inelastic at p (E(p) < 1), then an increase in the unit
price will cause the revenue to increase, and a decrease in the unit price
will cause the revenue to decrease.

3. If the demand is unitary at p (E(p) = 1), then an increase in the unit
price will cause the revenue to stay about the same.

These results are illustrated in Figure 3.12.



FIGURE 3.12

The revenue is increasing on an interval
where the demand is inelastic, decreasing
on an interval where the demand is elastic,
and stationary at the point where the de-
mand is unitary.

EXAMPLE 8

SOLUTION v
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y

y=R(p)

Demand  Demand

is is
inelastic. elastic.
Ep)=1
pd p

<—E(p)<|—<—E@p)>1—>

XYW As an aid to remembering this, note the following:

1. If demand is elastic, then the change in revenue and the change in the unit
price move in opposite directions.
2. If demand is inelastic, then they move in the same direction.

Refer to Example 7.

a. Is demand elastic, unitary, or inelastic when p = 100? When p = 300?
b. If the price is $100, will raising the unit price slightly cause the revenue to
increase or decrease?

a. From the results of Example 7, we see that £(100) = 3 < 1 and E(300) =
3 > 1. We conclude accordingly that demand is inelastic when p = 100 and
elastic when p = 300.

b. Since demand is inelastic when p = 100, raising the unit price slightly will
cause the revenue to increase.

SELF-CHECK EXERCISES 3.4

1. The weekly demand for Pulsar VCRs (videocassette recorders) is given by the
demand equation

p = —0.02x + 300 (0 = x = 15,000)

where p denotes the wholesale unit price in dollars and x denotes the quantity
demanded. The weekly total cost function associated with manufacturing these
VCRs is

C(x) = 0.000003x* — 0.04x* + 200x + 70,000 dollars

a. Find the revenue function R and the profit function P.

b. Find the marginal cost function C’, the marginal revenue function R’, and the
marginal profit function P’.

c. Find the marginal average cost function C'.

d. Compute C'(3000), R'(3000), and P'(3000) and interpret your results.

2. Refer to the preceding exercise. Determine whether the demand is elastic, unitary,
or inelastic when p = 100 and when p = 200.

Solutions to Self-Check Exercises 3.4 can be found on page 239.
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1.

Propuction Costs The graph of a typical total cost func-
tion C(x) associated with the manufacture of x units of
a certain commodity is shown in the following figure.
a. Explain why the function C is always increasing.

b. As the level of production x increases, the cost per
unit drops so that C(x) increases but at a slower pace.
However, a level of production is soon reached at which
the cost per unit begins to increase dramatically (due
to a shortage of raw material, overtime, breakdown of
machinery due to excessive stress and strain) so that
C(x) continues to increase at a faster pace. Use the graph
of Cto find the approximate level of production x, where
this occurs.

y(©$)

y=Cw)

x (thousands)

A calculator is recommended for Exercises
2-33.

2.

MareINAL CosT The total weekly cost (in dollars) in-
curred by the Lincoln Record Company in pressing x
long-playing records is

C(x) = 2000 + 2x — 0.0001x? (0 = x = 6000)

a. What is the actual cost incurred in producing the
1001st and the 2001st record?
b. What is the marginal cost when x = 1000 and 2000?

. MaArGINAL CosT A division of Ditton Industries manufac-

tures the Futura model microwave oven. The daily cost
(in dollars) of producing these microwave ovens is

C(x) = 0.0002x* — 0.06x* + 120x + 5000

where x stands for the number of units produced.

a. What is the actual cost incurred in manufacturing the
101st oven? The 201st oven? The 301st oven?

b. What is the marginal cost when x = 100, 200, and 300?

. MarGINAL AVERAGE CosT The Custom Office Company

makes a line of executive desks. It is estimated that the

total cost for making x units of their Senior Executive
Model is

C(x) = 100x + 200,000

dollars per year.

a. Find the average cost function C.

b. Find the marginal average cost function C’.

¢. What happens to C(x) when x is very large? Interpret
your results.

. MARGINAL AVERAGE CoST The management of the

ThermoMaster Company, whose Mexican subsidiary
manufactures an indoor—outdoor thermometer, has esti-
mated that the total weekly cost (in dollars) for produc-
ing x thermometers is

C(x) = 5000 + 2x

a. Find the average cost function C.
b. Find the marginal average cost function C'.
c. Interpret your results.

. Find the average cost function C and the marginal aver-

age cost function C’ associated with the total cost func-
tion C of Exercise 2.

. Find the average cost function C and the marginal aver-

age cost function C' associated with the total cost func-
tion C of Exercise 3.

. MARGINAL REVENUE The Williams Commuter Air Service

realizes a monthly revenue of
R(x) = 8000x — 100x>

dollars when the price charged per passenger is x dollars.
a. Find the marginal revenue R'.

b. Compute R'(39), R'(40), and R'(41). What do your
results imply?

. MARGINAL REVENUE The management of the Acrosonic

Company plans to market the Electro-Stat, an electro-
static speaker system. The marketing department has
determined that the demand for these speakers is

p = —0.04x + 800 (0 = x = 20,000)

where p denotes the speaker’s unit price (in dollars) and
x denotes the quantity demanded.

a. Find the revenue function R.

b. Find the marginal revenue function R'.

¢. Compute R'(5000) and interpret your result.



10.

11.

12.

MARGINAL PROFIT Lynbrook West, an apartment com-
plex, has 100 two-bedroom units. The monthly profit (in
dollars) realized from renting x apartments is

P(x) = —10x2 + 1760x — 50,000

a. What is the actual profit realized from renting the 51st
unit, assuming that 50 units have already been rented?
b. Compute the marginal profit when x = 50 and com-
pare your results with that obtained in part (a).

MARGINAL PROFIT Refer to Exercise 9. Acrosonic’s pro-
duction department estimates that the total cost (in dol-
lars) incurred in manufacturing x Electro-Stat speaker
systems in the first year of production will be

C(x) = 200x + 300,000

1~

. Find the profit function P.

. Find the marginal profit function P’.

. Compute P’(5000) and P’(8000).

. Sketch the graph of the profit function and interpret
your results.

e T

MARGINAL CosT, REVENUE, AND PROFIT The weekly demand
for the Pulsar 25 color console television is

p = 600 — 0.05x (0 = x = 12,000)
where p denotes the wholesale unit price in dollars and
x denotes the quantity demanded. The weekly total cost

function associated with manufacturing the Pulsar 25 is
given by

C(x) = 0.000002x* — 0.03x> + 400x + 80,000

where C(x) denotes the total cost incurred in producing
X sets.

a. Find the revenue function R and the profit func-
tion P.

b. Find the marginal cost function C’, the marginal reve-
nue function R’, and the marginal profit function P’.
c¢. Compute C'(2000), R'(2000), and P’(2000) and inter-
pret your results.

d. Sketch the graphs of the functions C, R, and P and
interpret parts (b) and (c) using the graphs obtained.

. MArGINAL CoST, REVENUE, AND PROFIT The Pulsar Corpo-

ration also manufactures a series of 19-inch color televi-
sion sets. The quantity x of these sets demanded each
week is related to the wholesale unit price p by the
equation

p = —0.006x + 180

14.

16.

17.

18.
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The weekly total cost incurred by Pulsar for producing
X sets is

C(x) = 0.000002x* — 0.02x* + 120x + 60,000

dollars. Answer the questions in Exercise 12 for these
data.

MarGINAL AVERAGE CosT Find the average cost function
C associated with the total cost function C of Exercise
12.

a. What is the marginal average cost function C'?

b. Compute C'(5,000) and C’(10,000) and interpret
your results.

¢. Sketch the graph of C.

. MARGINAL AVERAGE CosT Find the average cost function

C associated with the total cost function C of Exercise
13.

a. What is the marginal average cost function Cc'?

b. Compute C’(5,000) and C'(10,000) and interpret
your results.

MARGINAL REVENUE The quantity of Sicard wristwatches
demanded per month is related to the unit price by the
equation

50
P=foer1  (0=x=20
where p is measured in dollars and x in units of a thou-
sand.
a. Find the revenue function R.
b. Find the marginal revenue function R’.
¢. Compute R’(2) and interpret your result.

MARGINAL PROPENSITY TO CONSUME  The consumption func-
tion of the U.S. economy for 1929 to 1941 is

C(x) = 0.712x + 95.05

where C(x) is the personal consumption expenditure and
x is the personal income, both measured in billions of
dollars. Find the rate of change of consumption with
respect to income, dC/dx. This quantity is called the
marginal propensity to consume.

MARGINAL PROPENSITY TO CoNSUME Refer to Exercise 17.
Suppose a certain economy’s consumption function is

C(x) = 0.873x" + 20.34

where C(x) and x are measured in billions of dollars.
Find the marginal propensity to consume when x = 10.
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19. MARGINAL PROPENSITY TO SAVE Suppose C(x) measures an
economy’s personal consumption expenditure and x the
personal income, both in billions of dollars. Then,

S(x) = x — C(x) (Income minus consumption)
measures the economy’s savings corresponding to an
income of x billion dollars. Show that

ds 1 dC

dx dx
The quantity dS/dx is called the marginal propensity
to save.

20. Refer to Exercise 19. For the consumption function of
Exercise 17, find the marginal propensity to save.

21. Refer to Exercise 19. For the consumption function of
Exercise 18, find the marginal propensity to save when
x = 10.

For each demand equation in Exercises 22-27,
compute the elasticity of demand and deter-
mine whether the demand is elastic, unitary,
or inelastic at the indicated price.

22.x:—%p+9;p:2

23. x —%p+20;p:10

24.x+%p—20=0;p=30

25.04x +p —20=0;p =10
26. p =144 — x*; p = 96

27. p =169 — x%, p =29

28. ELasTicairy of DEmAND The management of the Titan Tire
Company has determined that the quantity demanded
x of their Super Titan tires per week is related to the
unit price p by the equation

x=V144 -p
where p is measured in dollars and x in units of a thou-

sand.

a. Compute the elasticity of demand when p = 63, 96,
and 108.

b. Interpret the results obtained in part (a).

c. Is the demand elastic, unitary, or inelastic when
p = 63, 96, and 108?

29.

30.

31.

32.

EcasTiciTy of DEmAND The demand equation for the Ro-
land portable hair dryer is given by

— 1 2

x—§(225—p) (0=p=15)

where x (measured in units of a hundred) is the quantity
demanded per week and p is the unit price in dollars.
a. Is the demand elastic or inelastic when p = 8 and
when p = 10?
b. When is the demand unitary?
Hint: Solve E(p) = 1 for p.
c. If the unit price is lowered slightly from $10, will the
revenue increase or decrease?

d. If the unit price is increased slightly from $8, will the
revenue increase or decrease?

ELasticity of DEmAND The quantity demanded per week
x (in units of a hundred) of the Mikado miniature camera
is related to the unit price p (in dollars) by the demand
equation

x = V400 - 5p

a. Is the demand elastic or inelastic when p = 40? When
p = 60?

b. When is the demand unitary?

c. If the unit price is lowered slightly from $60, will the
revenue increase or decrease?

d. If the unit price is increased slightly from $40, will
the revenue increase or decrease?

(0 =p =280)

ELasticity of DEMAND The proprietor of the Showplace,
a video club, has estimated that the rental price p (in
dollars) of prerecorded videocassette tapes is related to
the quantity x rented per week by the demand equation

x=%\/36fp2 (0=p=6)

Currently, the rental price is $2/tape.

a. Is the demand elastic or inelastic at this rental price?
b. If the rental price is increased, will the revenue in-
crease or decrease?

ELasticity of DEmAND The demand function for a certain
make of exercise bicycle sold exclusively through cable
television is

p=V9-0.02x

where p is the unit price in hundreds of dollars and x is
the quantity demanded per week. Compute the elasticity
of demand and determine the range of prices corre-
sponding to inelastic, unitary, and elastic demand.
Hint: Solve the equation E(p) = 1.

(0 =x =450)



33. ELasTiaty ofF DEmAND The demand equation for the
Sicard wristwatch is given by

50-p

x=10 (0 < p = 50)

where x (measured in units of a thousand) is the quantity
demanded per week and p is the unit price in dollars.
Compute the elasticity of demand and determine the
range of prices corresponding to inelastic, unitary, and
elastic demand.

SOLUTIONS 10 SELF-CHECK EXERCISES 3.4

1. a. R(x) =px
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In Exercises 34 and 35, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

34. If C is a differentiable total cost function, then the mar-
ginal average cost function is

xC'(x) — C(x)

Ty =2

35. If the marginal profit function is positive at x = a, then
it makes sense to decrease the level of production.

= x(—0.02x + 300)

= —0.02x + 300x
P(x) = R(x) = C(x)

(0 = x = 15,000)

= —0.02x* + 300x
—(0.000003x> — 0.04x* + 200x + 70,000)
= —0.000003x* + 0.02x* + 100x — 70,000

b. C’(x) = 0.000009x% — 0.08x + 200
R’'(x) = —0.04x + 300
P’(x) = —0.000009x> + 0.04x + 100

c. The average cost function is

Therefore, the marginal average cost function is

Cx)
X
_ 0.000003x" — 0.04x* + 200x + 70,000
X
= 0.000003x2 — 0.04x + 200 + _7Of00
C'(x) = 0.000006x — 0.04 — 70)7200

d. Using the results from part (b), we find

C’(3000) = 0.000009(3000)> — 0.08(3000) + 200

=41
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That is, when the level of production is already 3000 VCRs, the actual cost of
producing one additional VCR is approximately $41. Next,

R'(3000) = —0.04(3000) + 300 = 180

That is, the actual revenue to be realized from selling the 3001st VCR is approxi-
mately $180. Finally,

P"(3000) = —0.000009(3000)* + 0.04(3000) + 100
=139

That is, the actual profit realized from selling the 3001st VCR is approximately $139.
2. We first solve the given demand equation for x in terms of p, obtaining

x = f(p) = —50p + 15,000

f'(p)=-50
Therefore,
__pf'(p)_ _ P _
Ep) f(p) —50p + 15,000 0
__p
300 —p (0= p <300)
Next, we compute
100 1
EQ00) =356 " 100 =2 =1

and we conclude that demand is inelastic when p = 100. Also,

200
E(ZOO) :m=2>1

and we see that demand is elastic when p = 200.

3.5 Higher-Order Derivatives

HIGHER-ORDER DERIVATIVES

The derivative f” of a function f is also a function. As such, the differentiability
of f' may be considered. Thus, the function f’ has a derivative f” at a point
x in the domain of f' if the limit of the quotient

feth) - fx)
h

exists as 4 approaches zero. In other words, it is the derivative of the first deriv-
ative.

The function f” obtained in this manner is called the second derivative
of the function f, just as the derivative f’ of fis often called the first derivative
of f. Continuing in this fashion, we are led to considering the third, fourth,
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and higher-order derivatives of f whenever they exist. Notations for the first,
second, third, and, in general, nth derivatives of a function f at a point x are

f1@), £, f1(x), oy fO(x)
or D'f(x), D*f(x), D*f(x), ..., D"f(x)
If fis written in the form y = f(x), then the notations for its derivatives are

yl’ y"’ ym’ o ’y(n)
dy d?y d3y d"y

dx’ dx? dx® " dx"

or D'y, D%, D%,...,D"y
respectively.
EXAMPLE 1 Find the derivatives of all orders of the polynomial function

fx)=x —3x'+4x  — 2+ x — 8

JINET  We have

f'(x)=5x* =123+ 12x* — 4x + 1
f'(x)= %f’(x) =20x* — 36x2 + 24x — 4

F700) = L 1) = 6007 — T2x + 24
dx
d
4) — % m — —
f9(x) I f"(x) =120x — 72

) = 4L () = 120

and, in general,

fOx) =0 (for n > 5)
Find the third derivative of the function f defined by y = x?*. What is its
domain?
We have

" _ g _l —4/3:_2 —4/3
Y (3)( 3)" 9%

so the required derivative is

mo__ _z _ﬂ —7/3_§ =713 — 8
Y _< 9)( 3>x “7t T s
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FIGURE 3.13
The graph of the function y = x*

EXAMPLE 3

The common domain of the functions f’, f”, and f” is the set of all real
numbers except x = 0. The domain of y = x?? is the set of all real numbers.
The graph of the function y = x** appears in Figure 3.13.

XYW Always simplify an expression before differentiating it to obtain
the next order derivative.

Find the second derivative of the function y = (2x% + 3)*2,

We have, using the general power rule,
y' = % (2x* + 3)12(4x) = 6x(2x* + 3)12
Next, using the product rule and then the chain rule, we find
y" = (6x) - 4 (2x*+3)" + 4 (6x) | (2x* + 3)'?
dx dx

— (6v) @ (2x? + 3) 12(4x) + 6(2x7 + 3

= 1262242 + 3) 12 + 6(22 + 3)12
= 6(2x + 3)" "7 2x> + (2x* + 3)]
_ 6(4x* + 3)

Vi t3

APPLICATIONS

Just as the derivative of a function f at a point x measures the rate of change
of the function f at that point, the second derivative of f (the derivative of f")
measures the rate of change of the derivative f’ of the function f. The third
derivative of the function f, f”, measures the rate of change of f”, and so on.

In Chapter 4 we will discuss applications involving the geometric interpre-
tation of the second derivative of a function. The following example gives an
interpretation of the second derivative in a familiar role.



EXAMPLE 4

SOLUTION v

EXAMPLE 5

SOLUTION v

FIGURE 3.14

The CPI of a cerfain economy from year a

to year b is given by I(1).
1(r)
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Refer to the example on page 111. The distance s (in feet) covered by a
maglev moving along a straight track ¢ seconds after starting from rest is given
by the function s = 42 (0 < ¢t = 10). What is the maglev’s acceleration at the
end of 30 seconds?
The velocity of the maglev ¢ seconds from rest is given by
ds _d
=—=—(4*) =8t
"= )
The acceleration of the maglev ¢ seconds from rest is given by the rate of
change of the velocity of +—that is,
d d(ds\ d’s d
“‘E”‘E(E) “ar 4™ 78

or 8 feet per second per second, normally abbreviated, 8 ft/sec’.
A ball is thrown straight up into the air from the roof of a building. The
height of the ball as measured from the ground is given by

s = —16r* + 24t + 120

where s is measured in feet and ¢ in seconds. Find the velocity and acceleration
of the ball 3 seconds after it is thrown into the air.

The velocity v and acceleration a of the ball at any time ¢ are given by

_ds_d ., -
v_dt dt( 1617 + 24t + 120) 32t + 24
and
d’t _d (ds d
= — = — || — = —(— + = —
a= dt( dr) (=32 +24) = =32

Therefore, the velocity of the ball 3 seconds after it is thrown into the air is
v=-323)+24=-72

That is, the ball is falling downward at a speed of 72 ft/sec. The acceleration
of the ball is 32 ft/sec’ downward at any time during the motion.

Another interpretation of the second derivative of a function—this time
from the field of economics—follows. Suppose the consumer price index (CPI)
of an economy between the years a and b is described by the function ()
(a =t = b) (Figure 3.14). Then, the first derivative of I, I'(¢), gives the rate
of inflation of the economy at any time ¢. The second derivative of I, I"(¢),
gives the rate of change of the inflation rate at any time t. Thus, when the
economist or politician claims that “inflation is slowing,” what he or she is
saying is that the rate of inflation is decreasing. Mathematically, this is equiva-
lent to noting that the second derivative I"(f) is negative at the time ¢ under
consideration. Observe that /'(f) could be positive at a time when I"(¢) is
negative (see Example 6). Thus, one may not draw the conclusion from the
aforementioned quote that prices of goods and services are about to drop!



244 3 = DIFFERENTIATION

EXAMPLE &

SOLUTION v

FIGURE 3.15
The CPI of an economy is given by I(1).

1(6)

An economy’s CPI is described by the function

I(r) = =027 + 3 + 100 0=t=9)

where ¢ = 0 corresponds to the year 1991. Compute I'(6) and I”(6) and use
these results to show that even though the CPI was rising at the beginning of
1997, “inflation was moderating” at that time.

We find

I'(t)=—-06r+6t and I'(t)= —12+6

Thus,
I'(6) = —0.6(6)> + 6(6) = 144
I'6) = —12(6) + 6= —12

Our computations reveal that at the beginning of 1997 (¢ = 6), the CPI was
increasing at the rate of 14.4 points per year, whereas the rate of the inflation
rate was decreasing by 1.2 points per year. Thus, inflation was moderating at
that time (Figure 3.15). In Section 4.2, we will see that relief actually began
in early 1996.

1. Find the third derivative of
fx) =2x° = 3x* + x> — 6x + 10
2. Let

1
1+x

flx) =
Find f'(x), f"(x), and f"(x).

3. A certain species of turtle faces extinction because dealers collect truckloads of
turtle eggs to be sold as aphrodisiacs. After severe conservation measures are

implemented, it is hoped that the turtle population will grow according to the rule
N(f) = 26 + 3¢ — 4t + 1000 0O=r=10)

where N(¢) denotes the population at the end of year . Compute N"(2) and N"(8)
and interpret your results.

Solutions to Self-Check Exercises 3.5 can be found on page 248.
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In Exercises 1-20, find the first and second
derivatives of the given function.

L f(x) =4x* —2x + 1

2. f(x) = —02x% + 0.3x + 4

3. f(x) = 2x° = 3x* + 1

4, g(x) = —3x> + 24x* + 6x — 64

5. h(t) =t =28 + 612 — 3t + 10

6. fx) =x"—x*+x*—x*+x-1

L f(x) = (x4 2) 8. g(t) = (3¢ + 1)
. g(0) = (2 — 17(3r)

10. A(x) = (x> + 1)’(x — 1)

N=J |

11. f(x) = (2x* + 2)’”
12. h(w) = (W? + 2w + 4)3?

13. f(x) = x(x* + 1)? 14. g(u) = uu — 1y’

15 f() = 57 16. (1) = L -
17. f(s) =§;1 18, () = "

20. f(x) = V2x —1

In Exercises 21-28, find the third derivative
of the given function.

21. f(x) = 3x* — 4x°
22, f(x) = 3x> — 6x* + 2x% — 8x + 12

1
23. f(x) = )_C

25. g(s) = V3s—2
27. f(x) = 2x — 3)*

2. f(x) =%

26. g(t) = V2t +3
28. g(t) = (3> — 1)y

29. AcceLERATION OF A FALLING OBJECT During the construc-
tion of an office building, a hammer is accidentally
dropped from a height of 256 ft. The distance the ham-
mer falls in 7 secis s = 16¢%. What is the hammer’s velocity
when it strikes the ground? What is its acceleration?

30.

31.

33.

AcceLERATION OF A CAR  The distance s (in feet) covered

by a car ¢ sec after starting from rest is given by
s=—1+ 82+ 20t 0=r=06)

Find a general expression for the car’s acceleration at

any time #(0 = ¢ = 6). Show that the car is decelerating
2% sec after starting from rest.

CRIME RATES The number of major crimes committed
in Bronxville between 1988 and 1995 is approximated
by the function

N(t) = —0.1¢° + 1.5¢* + 100 O=r=17)
where N(f) denotes the number of crimes committed in
year t and ¢t = 0 corresponds to the year 1988. Enraged
by the dramatic increase in the crime rate, Bronxville’s
citizens, with the help of the local police, organized
“Neighborhood Crime Watch” groups in early 1992 to
combat this menace.
a. Verify that the crime rate was increasing from 1988
through 1995.
Hint: Compute N'(0), N'(1), ..., N'(7).
b. Show that the Neighborhood Crime Watch program
was working by computing N"(4), N"(5), N"(6), and
N"(7).

. GDP oF A DeveLoPING COUNTRY A developing country’s

gross domestic product (GDP) from 1992 to 2000 is ap-

proximated by the function
G(t) = =026 + 2412 + 60 (0=t=23)

where G(f) is measured in billions of dollars and r = 0

corresponds to the year 1992.

a. Compute G’(0), G'(1), ..., G'(8).

b. Compute G"(0), G"(1), ..., G"(8).

c. Using the results obtained in parts (a) and (b), show

that after a spectacular growth rate in the early years,
the growth of the GDP cooled off.

TesT FLIGHT oF A VTOL 1In a test flight of the McCord
Terrier, McCord Aviation’s experimental VTOL (verti-
cal takeoff and landing) aircraft, it was determined that
t sec after lift-off, when the craft was operated in the

(continued on p. 248)
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EXAMPLE 1

EXAMPLE 2

SOLUTION v

FINDING THE SECOND DERIVATIVE OF A FUNCTION
AT A GIVEN POINT
Some graphing utilities have the capability of numerically computing the

second derivative of a function at a point. If your graphing utility has this
capability, use it to work through the examples and exercises of this section.

Use the (second) numerical derivative operation of a graphing utility to find
the second derivative of f(x) = Vx when x = 4.

Using the (second) numerical derivative operation of a graphing utility, we find

f"(4) = der2 (x".5, x, 4) = —0.03125

The anticipated rise in Alzheimer’s patients in the United States is given by

f(®) = —0.02765¢* + 0.33461° — 1.1261¢
+ 1.7575¢ + 3.7745 (0=t=6)

where f(¢) is measured in millions and ¢ is measured in decades, with ¢ = 0
corresponding to the beginning of 1990.

a. How fast is the number of Alzheimer’s patients in the United States antici-
pated to be changing at the beginning of 20307

b. How fast is the rate of change of the number of Alzheimer’s patients in
the United States anticipated to be changing at the beginning of 2030?

c. Plot the graph of fin the viewing rectangle [0, 7] X [0, 12].

Source: Alzheimer’s Association

a. Using the numerical derivative operation of a graphing utility, we find
that the number of Alzheimer’s patients at the beginning of 2030 can be
anticipated to be changing at the rate of

(4 = 1.7311

That is, the number is increasing at the rate of approximately 1.7 million
patients per decade.

b. Using the (second) numerical derivative operation of a graphing utility,
we find that

F1(4) = 0.4694

That is, the rate of change of the number of Alzheimer’s patients is increas-
ing at the rate of approximately 0.5 million patients per decade per decade.



c. The graph is shown in Figure T1.

FIGURE T1

The graph of fin the viewing window
[0, 71 % [0, 12]

In Exercises 1-8, find the value of the second
derivative of fat the given value of x. Express
your answer correct to four decimal places.

L f(x) =2 =32+ 1;x = -1
2. f(x) = 2.5x° = 3x3 + 1.5x + 4;x = 2.1
3. f(x) = 21x3 — 42x17 + 42;x = 14

4. f(x) = 1.7x** — 32x3 + 42x —32;x =22

xX*+2x-35
5.f(x)=x3—+1;x=2.1
X +x+2
6.f(x)=m;x=l.2
72 4k Ror?2 4k 1l
7. f(x)=w;x=0.5
Vx—1
8 fx) =——F3;x =23
1) 2x+Vx +4

9. RATE oF BANK FAILURES The Federal Deposit Insurance
Corporation (FDIC) estimates that the rate at which

10.

banks were failing between 1982 and 1994 is given by

£(f) = —0.063447¢* — 1.953283¢ + 14.6325761>
— 6.684704¢ + 47.458874 (0=t=12)

where f(¢) is measured in the number of banks per year
and ¢ is measured in years, with ¢+ = 0 corresponding to
the beginning of 1982. Compute f”(6) and interpret your
results.

Source: Federal Deposit Insurance Corporation

MuLTimEDIA SALES  According to the Electronic Indus-
tries Association, sales in the multimedia market (hard-
ware and software) are expected to be

S(f) = —0.0094¢* + 0.12047 — 0.0868¢>
+0.0195¢ + 3.3325 (0=r=10)

where S(¢) is measured in billions of dollars and ¢ is
measured in years, with ¢+ = 0 corresponding to 1990.
Compute S”(7) and interpret your results.
Source: Electronics Industries Association

247
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vertical takeoff mode, its altitude (in feet) was

h(t):11—6t4—t3+4t2 0=r=38)

a. Find an expression for the craft’s velocity at time ¢.
b. Find the craft’s velocity when ¢ = 0 (the initial veloc-
ity), t = 4,and ¢ = 8.

c. Find an expression for the craft’s acceleration at
time ¢.

d. Find the craft’s acceleration when ¢t = 0, 4, and 8.
e. Find the craft’s height when ¢ = 0, 4, and 8.

U.S. Census  According to the U.S. Census Bureau, the
number of Americans aged 45 to 54 will be approxi-
mately

N(7) = —0.00233¢* + 0.00633¢> — 0.05417¢*
+ 1.3467t + 25

million people in year ¢, where ¢+ = 0 corresponds to
the beginning of 1990. Compute N'(10) and N"(10) and
interpret your results.

Source: U.S. Census Bureau

AR PURIFICATION During testing of a certain brand of
air purifier, it was determined that the amount of smoke
remaining ¢ min after the start of the test was

A(f) = —0.00006¢° + 0.00468¢* — 0.1316¢°
+1.915¢* — 17.63t + 100

percent of the original amount. Compute A’(10) and
A"(10) and interpret your results.
Source: Consumer Reports

SoLUTIONS T0 SELF-CHECK EXERCISES 3.5

Exercises 36-39, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

36.

37.

38.

39.

40.

41.

42.

If the second derivative of f exists at x = a, then

f"(@) = [f' @}

If h = fg where f and g have second-order derivatives,
then

h'(x) = f"(x)g(x) + 2f'(x)g"(x) + f(x)g"(x)

If f(x) is a polynomial function of degree n, then

fo(x) = 0.

Suppose P(t) represents the population of bacteria at
time ¢ and suppose P'(f) > 0 and P"(¢) < 0; then the
population is increasing at time ¢ but at a decreasing rate.

Let f be the function defined by the rule f(x) = x7".
Show that f has first- and second-order derivatives at all
points x, in particular at x = 0. Show also that the third
derivative of f does not exist at x = 0.

Construct a function f that has derivatives of order up
through and including » at a point a but fails to have
the (n + 1)st derivative there.

Hint: See Exercise 40.

Show that a polynomial function has derivatives of all
orders.

Hint: Let P(x) = apx" + ax"!' + a,x"* + -+ + a, be a
polynomial of degree n, where n is a positive integer and a,,
a,...,a,are constants with a, # 0. Compute P'(x), P"(x),. ...

L f/(x)=10x*—9x*+2x — 6
f"(x) =40x* — 18x +2
f"(x) = 120x* — 18

2. We write f(x) = (1 + x)! and use the general power rule, obtaining

£ = (=D + 024 (10 = =1+ 97201

—-1+x)?%t=-

_ L
(1+x)?
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Continuing, we find

£ = ~(=2)(1 +x)”
_2
(1+x)?
() =2(=3)1 +x)™*
=—6(1+x)"
-__6
1+ x)*

=2(1+x)3=

3.N@)=6t>+61—4
N'(t) =12t + 6 =6(2t + 1)

Therefore, N"(2) = 30 and N"(8) = 102. The results of our computations reveal
that at the end of year 2, the rate of growth of the turtle population is increasing
at the rate of 30 turtles/year/year. At the end of year 8, the rate is increasing at
the rate of 102 turtles/year/year. Clearly, the conservation measures are paying
off handsomely.

3.6 Implicit Differentiation and Related Rates

DIFFERENTIATING IMPLICITLY

Up to now we have dealt with functions expressed in the form y = f(x); that
is, the dependent variable y is expressed explicitly in terms of the independent
variable x. However, not all functions are expressed in this form. Consider,
for example, the equation

xXy+y—x*+1=0 8

This equation does express y implicitly as a function of x. In fact, solving (8)
for y in terms of x, we obtain

(x2 +1)y= xt—1 (Implicit equation)

(Explicit equation)

which gives an explicit representation of f.
Next, consider the equation

V=¥ -y+2*—x=38

When certain restrictions are placed on x and y, this equation defines y as a
function of x. But in this instance, we would be hard pressed to find y explicitly
in terms of x. The following question arises naturally: How does one go about
computing dy/dx in this case?

As it turns out, thanks to the chain rule, a method does exist for computing
the derivative of a function directly from the implicit equation defining the
function. This method is called implicit differentiation and is demonstrated
in the next several examples.
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EXAMPLE 1

Finding Z—)’; by Implicit

Differentiation

EXAMPLE 2

SOLUTION v

Find % given the equation y* = x.
Differentiating both sides of the equation with respect to x, we obtain
d, , _d
0=
To carry out the differentiation of the term % y?, we note that y is a function
of x. Writing y = f(x) to remind us of this fact, we find that
d 2y — i 2 it _
dx (y ) - dx [f(x)] [Writing y = f(x)]
= 2f(x)f’ (x) (Using the chain rule)
=2y— [Returning to using y instead of f(x)]

Therefore, the equation

L =Le

is equivalent to

dy _
Zy dx
. dy .
| for = yiel
Solving for . yields
dy_1
dx 2y

Before considering other examples, let us summarize the important steps
involved in implicit differentiation. (Here we assume that dy/dx exists.)

1. Differentiate both sides of the equation with respect to x. (Make sure that
the derivative of any term involving y includes the factor dy/dx.)

2. Solve the resulting equation for dy/dx in terms of x and y.
Find dy/dx given the equation

y-y+2i-x=38

Differentiating both sides of the given equation with respect to x, we obtain

L)L+ -Lm =0



Group Discussion
D Refer to Example 2.
Suppose we think of the equa-
tion y> — y + 2x* — x = 8 as
defining x implicitly as a func-
tion of y. Find dx/dy and justify
your method of solution.

EXAMPLE 3

SOLUTION v

FIGURE 3.16

The line x + /3y — 4 = 0 is tangent
to the graph of the function y = f(x).

y

5__

3T X+\3y-4=0
\/ Iy

I-N&y:ﬂﬂz
1 1 1 1 1

T T T T T T T
30 2 4N
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Now, recalling that y is a function of x, we apply the chain rule to the first
two terms on the left. Thus,

3y2z—i}—%+6x2—1=0

dy
2_ =1 —6x2
By -1 Ir 1-6x

dy 1-6x*

dx  3y2—1

Consider the equation x* + y? = 4,

(]

. Find dy/dx by implicit differentiation.
. Find the slope of the tangent line to the graph of the function y = f(x) at

the point (1, V/3).

. Find an equation of the tangent line of part (b).

. Differentiating both sides of the equation with respect to x, we obtain

dior =4
dx(x +y)_dx(4)

IS
() + 2 (37) = 0

2x+2y%=0
dy  x
Ay (y#0)

. The slope of the tangent line to the graph of the function at the point

1, \/3) is given by

1

wy V3

(Note: This notation is read “dy/dx evaluated at the point (1, V/3).”)

X

dyl
vy oy

dx

. An equation of the tangent line in question is found by using the point-

slope form of the equation of a line with the slope m = —1/V/3 and the
point (1, V/3). Thus,

-1,
y_\/__ \/g(x 1)

V3y—3=-x+1
x+V3y—4=0

A sketch of this tangent line is shown in Figure 3.16.
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EXAMPLE 4

SOLUTION v

We can also solve the equation x> + y* = 4 explicitly for y in terms
of x. If we do this, we obtain

y= i\/4——x2
From this, we see that the equation x* + y? = 4 defines the two functions
y=fx)=Vi-x
y=glx)=-Va-»

Since the point (1, V/3) does not lie on the graph of y = g(x), we conclude
that

v= 0= VA=

is the required function. The graph of fis the upper semicircle shown in
Figure 3.16.

Group Discussion
Refer to Example 3. Yet another function defined implicitly by the
equation x? + y? = 4 is the function

h) {\/4—x2 if—2=x<0
= x =

Y -V4-x* if 0=x=2
1. Sketch the graph of A.

2. Show that h'(x) = —x/y.
3. Find an equation of the tangent line to the graph of % at the point

1, —V3).

To find dy/dx at a specific point (a, b), differentiate the given equation
implicitly with respect to x and then replace x and y by a and b, respectively,
before solving the equation for dy/dx. This often simplifies the amount of
algebra involved.

Find dy/dx given that x and y are related by the equation

xyd+6xt=y + 12
and that y = 2 when x = 1.

Differentiating both sides of the given equation with respect to x, we obtain

d, .. d, , d d

= + = = + =

)+ (60) = () + 5 (12)
dy [Using the product

d d
2 - () +y*- o (x)+12x = dx rule on%(xzy"’)]

dy dy
222 4 xy? + 12x ===
3x%y . 2xy’ + 12x i



EXAMPLE 5

SOLUTION

3.6 = [MPLICIT DIFFERENTIATION AND RELATED RATES 253

Substituting x = 1 and y = 2 into this equation gives

3(1)2(2)2% +2(1)(2) + 12(1) = %

dy dy

. dy
and, solving for i

dy _ 28

dx 11

Note that it is not necessary to find an explicit expression for dy/dx.

IETYYW 1n Examples 3 and 4, you can verify that the points at which we
evaluated dy/dx actually lie on the curve in question by showing that the
coordinates of the points satisfy the given equations.

Find dy/dx given that x and y are related by the equation

Vx?+y?—xt=5
Differentiating both sides of the given equation with respect to x, we obtain
d , , d d [Writing Vx? +y? =
il + )2 - = (x2)=—(5 X2 ,2\112
Ty ) =2 (9) (7 + )]
(Using the general
%(Jﬂ + y2)71/2d;dx (x*+y)—2x=0 power rule on the

first term)

1,., _ dy
— + 2\-1/2 + — | — =
> (x*+y?) <2x 2y dx) 2x=0

dy [Transposing 2x and
2x + 2y = = 4x(x* + y*)1? multiplying both sides
dx by 2(x* + y)'7]

2y% = 4x(x® + y?)? = 2x

dy _2xVx’+y’—x
dx y

RELATED RATES

Implicit differentiation is a useful technique for solving a class of problems
known as related rates problems. For example, suppose x and y are each
functions of a third variable ¢. Here, x might denote the mortgage rate and y
the number of single-family homes sold at any time ¢. Further, suppose we
have an equation that gives the relationship between x and y (the number of
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EXAMPLE &

SOLUTION v

houses sold y is related to the mortgage rate x). Differentiating both sides of
this equation implicitly with respect to ¢, we obtain an equation that gives a
relationship between dx/dt and dy/dt. In the context of our example, this
equation gives us a relationship between the rate of change of the mortgage
rate and the rate of change of the number of houses sold, as a function of
time. Thus, knowing

@ (How fast the mortgage rate
dt is changing at time ¢)

we can determine

ﬂ (How fast the sale of houses is changing
dt at that instant of time)

A study prepared for the National Association of Realtors estimates that the
number of housing starts in the Southwest, N(¢) (in units of a million), over
the next 5 years is related to the mortgage rate r(¢) (percent per year) by
the equation

ON? + r = 36

What is the rate of change of the number of housing starts with respect to
time when the mortgage rate is 11% per year and is increasing at the rate of
1.5% per year?

We are given that

dr _

r=11 and i 1.5

at a certain instant of time, and we are required to find dN/dt. First, by
substituting r = 11 into the given equation, we find

ON?+ 11 =36
25

222

N 9

or N = 5/3 (we reject the negative root). Next, differentiating the given
equation implicitly on both sides with respect to ¢, we obtain

d oty 1 4y d
S ONY) + 2() =5 (36)

18N dLV T ﬂ‘ _ (Use the chain rule
dt dt on the first term.)

Then, substituting N = 5/3 and dr/dt = 1.5 into this equation gives

5\dN
S +15=
18<3>dt 1.5=0



EXAMPLE 7

SOLUTION v
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Solving this equation for dN/dt then gives

dN_ 15
30" 0.05

Thus, at the instant of time under consideration, the number of housing starts

is decreasing at the rate of 50,000 units per year.

A major audiotape manufacturer is willing to make x thousand ten packs of
metal alloy audiocassette tapes per week available in the marketplace when
the wholesale price is $p per ten pack. It is known that the relationship between
x and p is governed by the supply equation

xX=3xp+p*=5

How fast is the supply of tapes changing when the price per ten pack is $11,
the quantity supplied is 4000 ten packs, and the wholesale price per ten pack
is increasing at the rate of 10 cents per ten pack per week?

We are given that

@,

— 11 —4
p=1, x=4 —

at a certain instant of time, and we are required to find dx/dt. Differentiating
the given equation on both sides with respect to ¢, we obtain

42~ L Gwp) + L () = £ 5)

dx dx dp dp _ (Use the product rule
sz -3 <P dr * xE) +2p dr 0 on the second term.)

Substituting the given values of p, x, and dp/dt into the last equation, we have

2(4) % -3 [(11) % + 4(0.1)} +2(11)(0.1) = 0

dx dx
= -33=-12+22=
8dt 33dt 12+22=0
dx
25—=1
5alt
dx
dt—0.04

Thus, at the instant of time under consideration the supply of ten pack audio-
cassettes is increasing at the rate of (0.04)(1000), or 40, ten packs per week.

In certain related problems, we need to formulate the problem mathemati-
cally before analyzing it. The following guidelines can be used to help solve
problems of this type.
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Solving Related Rates

1. Assign a variable to each quantity. Draw a diagram if needed.
Problems & duantity &

2. Write the given values of the variables and their rates of change with respect
to t.

3. Find an equation giving the relationship between the variables.
4. Differentiate both sides of this equation implicitly with respect to z.

5. Replace the variables and their derivatives by the numerical data found in
step 2 and solve the equation for the required rate of change.

At a distance of 4000 feet from the launch site, a spectator is observing a
rocket being launched. If the rocket lifts off vertically and is rising at a speed
of 600 feet/second when it is at an altitude of 3000 feet, how fast is the distance
between the rocket and the spectator changing at that instant?

SOLUTION » JRSIC I OC:
y = the altitude of the rocket
x = the distance between the rocket and the spectator

at any time ¢ (Figure 3.17).

FIGURE 3.17

The rate at which x is changing with respect

to time is related to the rafe of change of |

y with respect fo fime. -
Rocket .

| 4000 ft |
Launching pad

Step 2 We are given that at a certain instant of time

_ dy _
y = 3000 and i 600

and are asked to find dx/dt at that instant.
Step 3 Applying the Pythagorean theorem to the right triangle in Figure
3.17, we find that

x% = y? + 4000°
Therefore, when y = 3000,
x = V3000% + 4000> = 5000
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Step 4 Next, we differentiate the equation x? = y? + 4000? with respect to
t, obtaining
dx __ dy
2P
(Remember, both x and y are functions of ¢.)
Step 5 Substituting x = 5000, y = 3000, and dy/dt = 600, we find

2(5000) % = 2(3000)(600)

dx
— =360
dt
Therefore, the distance between the rocket and the spectator is

changing at a rate of 360 feet/second.

A

Be sure that you do not replace the variables in the equation found in step
3 by their numerical values before differentiating the equation.

1. Given the equation x* + 3xy + y* = 4, find dy/dx by implicit differentiation.

2. Find an equation of the tangent line to the graph of 16x* + 9y* = 144 at the point

)

Solutions to Self-Check Exercises 3.6 can be found on page 260.

In Exercises 1-8, find the derivative dy/dx 13. x> = 2xy = 6 14. x* + 5xy + y2 =10
(a) by solving each of the given implicit equa-
tions for y explicitly in terms of x and (h) by 15. x%y? —xy = 8 16. x’y* — 2xy* =5
differentiating each of the given equations " v ;" v
implicitly. Show that, in each case, theresults  17- % Ty~ =1 18. x™ + y™ =1
are equivalent. 19 Vity=x 20. (2x + 3y)" = x2
L.x+2y=5 2.3x+4y =6
11 1.1
Joxy=1 4. xy—y—1=0 21.;4‘?—1 22.;4‘?—5
3.2 _ 2y, _ 42 1 =
S x-xioxy=4 6. ¥y —x+y-1=0 23 Vay=x+y 24. Viy =2x +?
X Yy
7. =—x*=1 8. =—-2x"=4 x+y x—y
X = _ L =
y 2.5 =3 % 575

In Exercises 9-30, find dy/dx by implicit dif-
ferentiation.

9. x>+ y? =16 10. 2x* + y> =16
11 x2 - 2y? =16 12. +y’+y—4=0

29.

30.

L xy? = x2 4 2

28.

x+y)P+x+y'=0

(x + )0 =x2+25

Xyl = x + 2y}
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In Exercises 31-34, find an equation of the tan-
gent line to the graph of the function fdefined

by
31

32.
33.
34.

the given equation at the indicated point.
4x? + 9y? = 36; (0, 2)

y2 — x? = 16; (2, 2\V5)
Xy =y 4+xy—-1=0;(1,1)

x—-y-1Y=x0,-1)

In Exercises 35-38, find the second derivative
d?y/dx? of each of the functions defined im-
plicitly by the given equation.

35.
37.
39.

40.

41.

42.

xy =1 36. x> + y* =28
yr—xy =38 38, x1? + yB =1
The volume of a right-circular cylinder of radius r and

height & is V = @r’h. Suppose the radius and height of
the cylinder are changing with respect to time t.

a. Find a relationship between dV/dt, dr/dt, and dh/dt.
b. At a certain instant of time, the radius and height of
the cylinder are 2 and 6 in. and are increasing at the rate
of 0.1 and 0.3 in./sec, respectively. How fast is the volume
of the cylinder increasing?

A car leaves an intersection traveling west. Its position
4 seconds later is 20 ft from the intersection. At the same
time, another car leaves the same intersection heading
north so that its position 4 sec later is 28 ft from the
intersection. If the speed of the cars at that instant of
time is 9 ft/sec and 11 ft/sec, respectively, find the rate
at which the distance between the two cars is changing.

PRICE-DEMAND  Suppose the quantity demanded weekly
of the Super Titan radial tires is related to its unit price
by the equation

p+x? = 144

where p is measured in dollars and x is measured in
units of a thousand. How fast is the quantity demanded
changing when x = 9, p = 63, and the price per tire is
increasing at the rate of $2/week?

PRICE-SUPPLY Suppose the quantity x of Super Titan
radial tires made available per week in the marketplace
by the Titan Tire Company is related to the unit selling
price by the equation

1 2
—=x*=48
P™3
where x is measured in units of a thousand and p is in

dollars. How fast is the weekly supply of Super Titan
radial tires being introduced into the marketplace when

4.

4s.

46.

47.

48.

. PRICE-DEMAND

X = 6, p = 66, and the price per tire is decreasing at the
rate of $3/week?

The demand equation for a certain brand
of metal alloy audiocassette tape is

100x* + 9p* = 3600

where x represents the number (in thousands) of ten
packs demanded per week when the unit price is $p.
How fast is the quantity demanded increasing when the
unit price per ten pack is $14 and the selling price is
dropping at the rate of $.15 per ten pack per week?
Hint: To find the value of x when p = 14, solve the equation
100x2 + 9p? = 3600 for x when p = 14.

EFFECT OF PRICE ON SUPPLY Suppose the wholesale price
of a certain brand of medium-size eggs p (in dollars per
carton) is related to the weekly supply x (in thousands
of cartons) by the equation

625p* — x* = 100

If 25,000 cartons of eggs are available at the beginning
of a certain week and the price is falling at the rate of
2 cents/carton/week, at what rate is the supply falling?
Hint: To find the value of p when x = 25, solve the supply
equation for p when x = 25.

SuppLY-DemAND Refer to Exercise 44. If 25,000 cartons
of eggs are available at the beginning of a certain week
and the supply is falling at the rate of 1000 cartons/week,
at what rate is the wholesale price changing?

ELasTiciTy oF DEMAND  The demand function for a certain
make of cartridge typewriter ribbon is

p=—00lx>— 0.1x + 6

where p is the unit price in dollars and x is the quantity
demanded each week, measured in units of a thousand.
Compute the elasticity of demand and determine
whether the demand is inelastic, unitary, or elastic when
x = 10.

ELasticity of DEMAND The demand function for a certain
brand of compact disc is

p = —0.01x? — 0.2x + 8

where p is the wholesale unit price in dollars and x is
the quantity demanded each week, measured in units
of a thousand. Compute the elasticity of demand and
determine whether the demand is inelastic, unitary, or
elastic when x = 15.

The volume V of a cube with sides of length x in. is
changing with respect to time. At a certain instant of
time, the sides of the cube are 5 in. long and increasing
at the rate of 0.1 in./sec. How fast is the volume of the
cube changing at that instant of time?



49.

50.

51.

52.

53.

54.

55.

56.

OiL Spitts  In calm waters, oil spilling from the ruptured
hull of a grounded tanker spreads in all directions. If
the area polluted is a circle and its radius is increasing
at a rate of 2 ft/sec, determine how fast the area is
increasing when the radius of the circle is 40 ft.

Two ships leave the same port at noon. Ship A sails
north at 15 mph, and ship B sails east at 12 mph. How
fast is the distance between them changing at 1 p.m.?

A car leaves an intersection traveling east. Its position
t sec later is given by x = > + ¢ ft. At the same time,
another car leaves the same intersection heading north,
traveling y = £ + 3¢ ft in ¢ sec. Find the rate at which
the distance between the two cars will be changing
5 sec later.

At a distance of 50 ft from the pad, a man observes a
helicopter taking off from a heliport. If the helicopter
lifts off vertically and is rising at a speed of 44 ft/sec
when it is at an altitude of 120 ft, how fast is the distance
between the helicopter and the man changing at that in-
stant?

A spectator watches a rowing race from the edge of a
river bank. The lead boat is moving in a straight line
that is 120 ft from the river bank. If the boat is moving
at a constant speed of 20 ft/sec, how fast is the boat
moving away from the spectator when it is 50 ft past her?

A boat is pulled toward a dock by means of a rope which
is wound on a drum that is located 4 ft above the bow
of the boat. If the rope is being pulled in at the rate of
3 ft/sec, how fast is the boat approaching the dock when
it is 25 ft from the dock?

Assume that a snowball is in the shape of a sphere. If
the snowball melts at a rate that is proportional to its
surface area, show that its radius decreases at a con-
stant rate.

Hint: Its volume is V = (4/3)nr, and its surface area is S = 4ar2.

BLowing Soap BugBLEs  Carlos is blowing air into a soap
bubble at the rate of 8 cm®/sec. Assuming that the bubble
is spherical, how fast is its radius changing at the instant
of time when the radius is 10 cm? How fast is the surface
area of the bubble changing at that instant of time?
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57. CoasT GUARD PATROL SEARCH MissioN  The pilot of a Coast

Guard patrol aircraft on a search mission had just spotted
a disabled fishing trawler and decided to go in for a
closer look. Flying at a constant altitude of 1000 ft and
at a steady speed of 264 ft/sec, the aircraft passed directly
over the trawler. How fast was the aircraft receding from
the trawler when it was 1500 ft from it?

e=>

1000 ft

«fiw

58. A coffee pot in the form of a circular cylinder of radius

4 in. is being filled with water flowing at a constant rate.
If the water level is rising at the rate of 0.4 in./sec, what
is the rate at which water is flowing into the coffee pot?

N y

59. A 6-ft tall man is walking away from a street light 18 ft

high at a speed of 6 ft/sec. How fast is the tip of his
shadow moving along the ground?

60. A 20-ft ladder leaning against a wall begins to slide. How

fast is the top of the ladder sliding down the wall at the
instant of time when the bottom of the ladder is 12 ft
from the wall and sliding away from the wall at the rate
of 5 ft/sec?

Hint: Refer to the adjacent figure. By the Pythagorean theorem,
x* + y* = 400. Find dy/dt when x = 12 and dx/dt = 5.

Wl

20-ft ladder,

5 ft/sec
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61.

62.
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The base of a 13-ft ladder leaning against a wall begins
to slide away from the wall. At the instant of time when
the base is 12 ft from the wall, the base is moving at the
rate of 8 ft/sec. How fast is the top of the ladder sliding
down the wall at that instant of time?

Hint: Refer to the hint in Problem 60.

Water flows from a tank of constant cross-sectional area
50 ft* through an orifice of constant cross-sectional area
1.4 ft? located at the bottom of the tank (see the figure).

SOoLUTIONS 10 SELF-CHECK EXERCISES 3.6

Initially, the height of the water in the tank was 20 ft
and its height ¢ sec later is given by the equation

2\/E+21—51—2V20=0 (0= t=50V20)

How fast was the height of the water decreasing when
its height was 8 ft?

In Exercises 63 and 64, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

63. If f and g are differentiable and f(x)g(y) = 0, then
dy _ _f'()ey)

= ey U070 and g(0)#0)
64. If f and g are differentiable and f(x) + g(y) = 0, then
dy _ ')
e g'(y)

1. Differentiating both sides of the equation with respect to x, we have

3x2+ 3y +3xy’ + 3y’ =0
(P +y)+(x+y)y =0
__ Xty
x+y?

2. To find the slope of the tangent line to the graph of the function at any point, we
differentiate the equation implicitly with respect to x, obtaining

32x + 18yy' =0

Ve

In particular, the slope of the tangent line at <2, - —> is

3

o 162) 8

ET
3

Using the point-slope form of the equation of a line, we find

=

_4_\/5):L(x_2)

3/ 35

_8V5 36V5_8V5  12V5
15 15 15 5
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EXAMPLE 1

SOLUTION v
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The Millers are planning to buy a house in the near future and estimate that
they will need a 30-year fixed-rate mortgage for $120,000. If the interest rate
increases from the present rate of 9% per year to 9.4% per year between now
and the time the Millers decide to secure the loan, approximately how much
more per month will their mortgage be? (You will be asked to answer this
question in Exercise 44, page 272.)

Questions such as this, in which one wishes to estimate the change in the
dependent variable (monthly mortgage payment) corresponding to a small
change in the independent variable (interest rate per year), occur in many
real-life applications. For example:

B An economist would like to know how a small increase in a country’s capital
expenditure will affect the country’s gross domestic output.

B A sociologist would like to know how a small increase in the amount of
capital investment in a housing project will affect the crime rate.

B A businesswoman would like to know how raising a product’s unit price
by a small amount will affect her profit.

B A bacteriologist would like to know how a small increase in the amount
of a bactericide will affect a population of bacteria.

To calculate these changes and estimate their effects, we use the differential
of a function, a concept that will be introduced shortly.

INCREMENTS

Let x denote a variable quantity and suppose x changes from x; to x,. This
change in x is called the increment in x and is denoted by the symbol Ax
(read “delta x”). Thus,

Ax=x,— x4 (Final value minus initial value) (9)

Find the increment in x:

a. As x changes from 3 to 3.2 b. As x changes from 3 to 2.7

a. Here, x;, = 3 and x, = 3.2, so
Ax=x,—x,=32-3=02

b. Here, x; = 3 and x, = 2.7. Therefore,
Ax=x,—x,=27—-3=-03

Observe that Ax plays the same role that 4 played in Section 2.4.
Now, suppose two quantities, x and y, are related by an equation
y = f(x), where f is a function. If x changes from x to x + Ax, then the



JOHN DECKER

TitLE: Mortgage Counselor
InsTiTUTION: A major bank

John Decker stresses that he and his colleagues “‘strive to grant
loans. That’s our job.”” But before allowing someone to file a formal
application, Decker takes the person over several “prequalification
hurdles” to gauge his or her ability to handle a mortgage.

To start, Decker relies on a two-tiered, debt-to-income ratio to
see whether a person has sufficient gross monthly income to make
payments. Under the first tier, the proposed monthly payment (princi-
pal and interest, property tax, homeowner’s insurance, and, when
applicable, a condo fee) cannot exceed 28% of an individual’s gross
monthly income. If Decker’s initial calculations are positive, he then
must determine the individual’s ability to meet monthly mortgage payments
while also repaying other debts, such as car and student loans, credit cards,
alimony, and so on. These combined payments cannot exceed 36% percent
of gross monthly income. A typical person with an $800 mortgage obligation
and $550 in other payments would have to earn $3750 per month to clear
these first two hurdles.

Contrary to popular belief, bankers want to lend money. “The idea is to
grant mortgages,” says Decker, which contribute substantially to a bank’s
profitability. But lending money means making sensible decisions about how
much to lend as well as a person’s ability to repay the loan.

Using a loan-to-value formula, banks might lend 80% of a property’s
value. In such cases, the applicant puts 20% down to make the purchase. Or
the bank may decide to lend up to 95% or as little as 75% of the appraised value.

Understandably, banks don’t like to see bankruptcies, late payments, or
liens on a personal credit history. Decker notes, however, that even this hurdle
doesn’t necessarily mean failure in securing a mortgage. He works closely
with each individual to overcome any stigma that might prompt a rejection.

Once Decker has put together a successful mortgage application, it is
reviewed internally. Then, even though a mortgage is granted, it might come
through at a slightly higher interest rate—10.4% instead of the expected 10%
rate. Differentials would be used to compute the change in monthly payments,
for although this might seem like a small change, on a large mortgage it
can be enough of a variable to affect the new customer’s ability to make
monthly payments.

Using the debt-to-income ratio, Decker plugs the new variable into his
formulas to determine whether a problem exists. These formulas used to
compute the monthly payments involve the use of exponential functions. On
a $100,000, 30-year, fixed-rate mortgage, payments will increase about $30
per month. Decker notes that such a small increase doesn’t usually pose a
significant problem.

If a customer can’t make the new payment, however, Decker explores
alternatives until he finds a solution. For Decker, it comes down to this: “If
there is any possible way to give a loan, we’re going to make it work.”

Decker's job is simple: to lend money fo
people who want to buy a home. The hard
part is deciding whether applicants qualify
for one of the bank’s 40 different mortgage
plans. Sifting through income figures, current
indebtedness, and credit history helps Decker
determine which individuals make the best

mortgage candidates.




FIGURE 3.18
An increment of Ax in x induces an incre-
ment of Ay = f(x + Ax) — f(x)iny.

SOLUTION v

FIGURE 3.19
If Ax is small, dy is a good approximation
of Ay.
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f(x +Ax) T T

J& T

X X+ Ax

e e

corresponding change in y is called the increment in y. It is denoted by Ay
and is defined in Figure 3.18 by

Ay = f(x + Ax) — f(x)

Let y = x° Find Ax and Ay:
a. When x changes from 2 to 2.01

(10)

b. When x changes from 2 to 1.98
Let f(x) = x°
a. Here, Ax = 2.01 — 2 = 0.01. Next,

Ay = fx + Ax) — flx) = f(2.01) - f(2)
= (2.01)° — 2° = 8.120601 — 8 = 0.120601

b. Here, Ax = 1.98 — 2 = —0.02. Next,

Ay = fx + Ax) — flx) = f(1.98) — f(2)
= (1.98)° — 2° = 7.762392 — 8 = —0.237608

DIFFERENTIALS

We can obtain a relatively quick and simple way of approximating Ay, the
change in y due to a small change Ax, by examining the graph of the function
f shown in Figure 3.19.

y

fx+Ax) +

J& T
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The Differential

EXAMPLE 3

SOLUTION v

Observe that near the point of tangency P, the tangent line 7 is close to the
graph of f. Therefore, if Ax is small, then dy is a good approximation of Ay.
We can find an expression for dy as follows: Notice that the slope of T is
given by

dy

Ax (Rise divided by run)

However, the slope of T is given by f'(x). Therefore, we have
L )
or dy = f'(x)Ax. Thus, we have the approximation
Ay = dy = f'(x)Ax

in terms of the derivative of f at x. The quantity dy is called the differential
of y.

Let y = f(x) define a differentiable function of x. Then,

1. The differential dx of the independent variable x is dx = Ax.
2. The differential dy of the dependent variable y is

dy = f'(x)Ax = f'(x)dx an

1. For the independent variable x: There is no difference between Ax and
dx—both measure the change in x from x to x + Ax.

2. For the dependent variable y: Ay measures the actual change in y as x
changes from x to x + Ax, whereas dy measures the approximate change
in y corresponding to the same change in x.

3. The differential dy depends on both x and dx, but for fixed x, dy is a linear
function of dx.

Lety = x°.

a. Find the differential dy of y.

b. Use dy to approximate Ay when x changes from 2 to 2.01.
c. Use dy to approximate Ay when x changes from 2 to 1.98.
d. Compare the results of part (b) with those of Example 2.

a. Let f(x) = x°. Then,
dy = f'(x) dx = 3x%x



SOLUTION v

EXAMPLE 5
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b. Here, x = 2 and dx = 2.01 — 2 = 0.01. Therefore,
dy = 3x? dx = 3(2)*(0.01) = 0.12
c¢. Here, x = 2 and dx = 1.98 — 2 = —0.02. Therefore,
dy = 3x* dx = 3(2)*(—0.02) = —0.24

d. As you can see, both approximations 0.12 and —0.24 are quite close to the
actual changes of Ay obtained in Example 2: 0.120601 and —0.237608.

Observe how much easier it is to find an approximation to the exact
change in a function with the help of the differential, rather than calculating
the exact change in the function itself. In the following examples, we take
advantage of this fact.

Approximate the value of V26.5 using differentials. Verify your result using
the key on your calculator.

Since we want to compute the square root of a number, let’s consider the
function y = f(x) = Vx. Since 25 is the number nearest 26.5 whose square
root is readily recognized, let’s take x = 25. We want to know the change in
v, Ay, as x changes from x = 25 to x = 26.5, an increase of Ax = 1.5 units.
Using Equation (11), we find

Ay ~dy = f'(x)Ax

] "(19) = (f—o)(1.5> = 0.15

1
[2\/}
Therefore,

V265 —V25=Ay~0.15
V265~V25+0.15=5.15

The exact value of V'26.5, rounded off to five decimal places, is 5.14782. Thus,
the error incurred in the approximation is 0.00218.

APPLICATIONS

The total cost incurred in operating a certain type of truck on a 500-mile trip,
traveling at an average speed of v mph, is estimated to be

C(u):125+v+ifo

dollars. Find the approximate change in the total operating cost when the
average speed is increased from 55 mph to 58 mph.
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SOLUTION

EXAMPLE &

SOLUTION v

= IENIEN

The Rings of
Neptune

FIGURE 3.20

With v = 55 and Av = dv = 3, we find

AC~dC = C'(v)dv = (1 - 45?()) .3
v=>55
4500
= (1 ﬁ)(3) ~ —1.46

so the total operating cost is found to decrease by $1.46. This might explain
why so many independent truckers often exceed the 55 mph speed limit.

The relationship between the amount of money x spent by Cannon Precision
Instruments on advertising and Cannon’s total sales S(x) is given by the
function

S(x) = —0.002x + 0.6x> + x + 500 (0 = x = 200)

where x is measured in thousands of dollars. Use differentials to estimate the
change in Cannon’s total sales if advertising expenditures are increased from
$100,000 (x = 100) to $105,000 (x = 105).

The required change in sales is given by
AS = dS = §'(100)dx
—0.006x2 + 1.2x + 1|,=100 * (5) (dx = 105 — 100 = 5)
(—60 + 120 + 1)(5) = 305
—that is, an increase of $305,000.

a. A ring has an inner radius of r units and an outer radius of R units, where
(R — r) is small in comparison to r (Figure 3.20a). Use differentials to estimate
the area of the ring.

b. Recent observations, including those of Voyager I and II, showed that
Neptune’s ring system is considerably more complex than had been believed.
For one thing, it is made up of a large number of distinguishable rings rather
than one continuous great ring as previously thought (Figure 3.20b). The

dr=R-r

(a) The area of the ring is the circumference of (b) Neptune and its rings.
the inner circle fimes the thickness.



SOLUTION v

EXAMPLE 8

EXAMPLE 9

SOLUTION v
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outermost ring, 1989N1R, has an inner radius of approximately 62,900 kilome-
ters (measured from the center of the planet), and a radial width of approxi-
mately 50 kilometers. Using these data, estimate the area of the ring.

a. Using the fact that the area of a circle of radius x is A = f(x) = 7x?, we find

wR: — = f(R) ~ ()

=AA (Remember, AA = change in f when
~dA x changes fromx = rtox = R.)
= f'(rydr

where dr = R — r. So, we see that the area of the ring is approximately
2ar(R — r) square units. In words, the area of the ring is approximately equal to

Circumference of the inner circle X Thickness of the ring

b. Applying the results of part (a) with » = 62,900 and dr = 50, we find that
the area of the ring is approximately 27(62,900)(50), or 19,760,618 square
kilometers, which is roughly 4% of Earth’s surface.

Before looking at the next example, we need to familiarize ourselves with
some terminology. If a quantity with exact value g is measured or calculated
with an error of Ag, then the quantity Ag/q is called the relative error in
the measurement or calculation of g. If the quantity Aq/q is expressed as a
percentage, it is then called the percentage error. Because Ag is approximated
by dgq, we normally approximate the relative error Ag/q by dq/q.

Suppose the radius of a ball-bearing is measured to be 0.5 inch, with a maxi-
mum error of =0.0002 inch. Then, the relative error in r is

dr _ +0.0002

= +0.0004
r 0.5 0.000

and the percentage error is =0.04%.

Suppose the side of a cube is measured with a maximum percentage error of
2%. Use differentials to estimate the maximum percentage error in the calcu-
lated volume of the cube.

Suppose the side of the cube is x, so its volume is

V=x

We are given that

%‘ = 0.02. Now,

dV = 3x%dx
and so

d_V: 3x2dx _ 3@
| % x3 X
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Therefore,

‘dVV =3 || =3(0.02) = 0.06

dx
X

and we see that the maximum percentage error in the measurement of the
volume of the cube is 6%.

Finally, we want to point out that if at some point in reading this section
you have a sense of déja vu, do not be surprised, because the notion of the
differential was first used in Section 3.4 (see Example 1). There we took
Ax =1 since we were interested in finding the marginal cost when the level
of production was increased from x = 250 to x = 251. If we had used differen-
tials, we would have found

C(251) — C(250) ~ C'(250)dx

so that taking dx = Ax = 1, we have C(251) — C(250) =~ C'(250), which
agrees with the result obtained in Example 1. Thus, in Section 3.4, we touched
upon the notion of the differential, albeit in the special case in which dx = 1.

1. Find the differential of f(x) = Vx + 1.

2. A certain country’s government economists have determined that the demand equa-
tion for corn in that country is given by

125
x2+1

p=flx)=

where p is expressed in dollars per bushel and x, the quantity demanded per year,
is measured in billions of bushels. The economists are forecasting a harvest of 6
billion bushels for the year. If the actual production of corn were 6.2 billion bushels
for the year instead, what would be the approximate drop in the predicted price
of corn per bushel?

Solutions to Self-Check Exercises 3.7 can be found on page 273.

In Exercises 1-14, find the differential of the

given function.

1. f(x) = 2x?
3. fx) =x—x
5 f(x) = Vx+1

7. f(x) = 2x%2 4 x'7

2. f(x) =
4. f(x) =

6. f(x) =

8. flx) =

2 3
9. f(x) =x + )—C 10. f(x) = m
3x2+1 _ 2
1. f(x) = ;‘2—:1 2. fx) = 2;‘ ++11
2% + x
3 13. f(x) = V3x?—x 14. f(x) = (2x* + 3)18
Vx 15. Let f be a function defined by

3x56 + Tx*B y=flx)=x"~-1



16.

17.

18.

a. Find the differential of f.

b. Use your result from part (a) to find the approximate
change in y if x changes from 1 to 1.02.

c. Find the actual change in y if x changes from 1 to 1.02
and compare your result with that obtained in part (b).

Let f be a function defined by
y=fx) =3x>—-2x + 6

a. Find the differential of f.

b. Use your result from part (a) to find the approximate
change in y if x changes from 2 to 1.97.

c. Find the actual change in y if x changes from 2 to 1.97
and compare your result with that obtained in part (b).

Let f be a function defined by
1
y=fe)=1

a. Find the differential of f.

b. Use your result from part (a) to find the approximate
change in y if x changes from —1 to —0.95.

c. Find the actual change in y if x changes from —1 to
—0.95 and compare your result with that obtained in
part (b).

Let f be a function defined by
y=fx)=V2x+1

a. Find the differential of f.

b. Use your result from part (a) to find the approximate
change in y if x changes from 4 to 4.1.

c. Find the actual change in y if x changes from 4 to 4.1
and compare your result with that obtained in part (b).

In Exercises 19-26, use differentials to ap-
proximate the given quantity.

19.
22.
25.

27.

28.

V10 20. V17 21. V495
V99.7 23. V7.8 24. V81.6
10.089 26. V0.00096
1
Use a differential to approximate V4.02 + .
PP V4,02

Hint: Let f(x) = Vi + % and compute dy with x = 4 and
x
dx = 0.02.

2(4.98)

Use a differential to approximate m

Hint: Study the hint for Exercise 27.

3.7 = DIFFERENTIALS 269

A calculator is recommended for the remain-
der of this exercise set.

29.

33.

34.

ERrROR EsTimATION The length of each edge of a cube is
12 cm, with a possible error in measurement of 0.02 cm.
Use differentials to estimate the error that might occur
when the volume of the cube is calculated.

. ESTIMATING THE AMOUNT OF PAINT REQUIRED A coat of paint

of thickness 0.05 cm is to be applied uniformly to the
faces of a cube of edge 30 cm. Use differentials to find
the approximate amount of paint required for the job.

. ERROR ESTIMATION A hemisphere-shaped dome of radius

60 ft is to be coated with a layer of rust-proofer before
painting. Use differentials to estimate the amount of
rust-proofer needed if the coat is to be 0.01 in. thick.
Hint: The volume of a hemisphere of radius r is V = 3ar.

. GROWTH OF A CANCEROUS TuMOR The volume of a spherical

cancer tumor is given by
V(r)= gnr3

If the radius of a tumor is estimated at 1.1 cm, with a
maximum error in measurement of 0.005 cm, determine
the error that might occur when the volume of the tumor
is calculated.

UnclLocGING ARTERIES Research done in the 1930s by the
French physiologist Jean Poiseuille showed that the re-
sistance R of a blood vessel of length / and radius r is
R = ki/r*, where k is a constant. Suppose a dose of the
drug TPA increases r by 10%. How will this affect the
resistance R? Assume that / is constant.

GROSS DomesTic PRODUCT An economist has determined
that a certain country’s gross domestic product (GDP)
is approximated by the function f(x) = 640x*, where

f(x) is measured in billions of dollars and x is the capital
outlay in billions of dollars. Use differentials to estimate
the change in the country’s GDP if the country’s capital
expenditure changes from $243 billion to $248 billion.

. LEARNING CURVES The length of time (in seconds) a cer-

tain individual takes to learn a list of #n items is approxi-
mated by

fn)y=4nVn—4

Use differentials to approximate the additional time it
takes the individual to learn the items on a list when n
is increased from 85 to 90 items.

(continued on p. 272)
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EXAMPLE 1

EXAMPLE 2

SOLUTION v

FINDING THE DIFFERENTIAL
OF A FUNCTION

The calculation of the differential of f at a given value of x involves the
evaluation of the derivative of f at that point and can be facilitated through
the use of the numerical derivative function.

Use dy to approximate Ay if y = x%(2x2 + x + 1)*° and x changes from 2 to 1.98.

Let f(x) = x*(2x*> + x + 1)*. Since dx = 1.98 — 2 = —0.02, we find the
required approximation to be
dy = f'(2) - (=0.02)
But using the numerical derivative operation, we find
f'(2) = 30.5758132855

and so
dy = (—0.02)(30.5758132855) = —0.611516266

The Meyers are considering the purchase of a house in the near future and
estimate that they will need a loan of $120,000. Based on a 30-year conventional
mortgage with an interest rate of r per year, their monthly repayment will be

10,0007

r )30
— + —
1 <1 12)

dollars. If the interest rate increases from the present rate of 10%/year to
10.2% per year between now and the time the Meyers decide to secure the loan,
approximately how much more per month will their mortgage payment be?

P=

Let’s write

10,000~

7 =360
1-(1+=
(1+5)

Then the increase in the mortgage payment will be approximately

dP = f'(0.1)dr = £'(0.1)(0.002) (Since dr = 0.102 — 0.1)
= (8867.59947979)(0.002) ~ 17.7352 (Using the numerical

derivative operation)

P=f(r) =

or approximately $17.74 per month.



In Exercises 1-6, use dy to approximate Ay for
the function y = f(x) when x changes from x =
atox=h.

1. f(x) = 0.21x7 — 3.22x* + 5.43x* + 1.42x + 12.42;a = 3,
b =3.01

0.2x*+3.1
2. f(x) = m, a=2,b=196

3 f(x) = V22x*+13x+4;,a=1,b = 1.03
4. f(x) =xV2x*—x+4a=2,b=198
Vx2+4

x—1

5. f(x) = ;a=4,b =41

3
6. f(x) =21x>+ —=+5;a=3,b =295
1) v

7. CALCULATING MORTGAGE PAYMENTS Refer to Example 2.
How much more per month will the Meyers’ mortgage

payment be if the interest rate increases from 10% to
10.3%/year? To 10.4%/year? To 10.5%/year?

. ESTIMATING THE AREA OF A RING OF NEPTUNE The ring

1989N2R of the planet Neptune has an inner radius of
approximately 53,200 km (measured from the center of
the planet) and a radial width of 15 km. Use differentials
to estimate the area of the ring.

. EFFECT OF PRICE INCREASE ON QUANTITY DEMANDED The quan-

tity demanded per week of the Alpha Sports Watch, x
(in thousands), is related to its unit price of p dollars by
the equation

_ _ 50—-p
x=f(p) 10,/—p

Use differentials to find the decrease in the quantity of
the watches demanded per week if the unit price is in-
creased from $40 to $42.

(0=p =50)

m



m

36.

37.

40.

. DEMAND-PRICE
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EFFECT OF ADVERTISING ON PROFITS The relationship be-
tween Cunningham Realty’s quarterly profits, P(x), and
the amount of money x spent on advertising per quarter
is described by the function
P(x)=—%x2+7x+30 (0=x=50)
where both P(x) and x are measured in thousands of
dollars. Use differentials to estimate the increase in

profits when advertising expenditure each quarter is in-
creased from $24,000 to $26,000.

EFFEcT OF MORTGAGE RATES ON HOUSING STARTS A study
prepared for the National Association of Realtors esti-
mates that the number of housing starts per year over
the next 5 yr will be

7
N -
") =TT 002
million units, where r (percent) is the mortgage rate.
Use differentials to estimate the decrease in the number
of housing starts when the mortgage rate is increased
from 12% to 12.5%.

. SuppLY-PRICE The supply equation for a certain brand

of transistor radio is given by
p=s(x)=03Vx+10

where x is the quantity supplied and p is the unit price
in dollars. Use differentials to approximate the change
in price when the quantity supplied is increased from
10,000 units to 10,500 units.

The demand function for the Sentinel
smoke alarm is given by

30
P=d0=Ge T
where x is the quantity demanded (in units of a thousand)
and p is the unit price in dollars. Use differentials to
estimate the change in the price p when the quantity
demanded changes from 5000 to 5500 units/wk.

SURFACE AREA OF AN ANIMAL Animal physiologists use the
formula

S = kW

to calculate an animal’s surface area (in square meters)
from its weight W (in kilograms), where & is a constant
that depends on the animal under consideration. Sup-

41.

42,

44,

pose a physiologist calculates the surface area of a horse
(k = 0.1). If the horse’s weight is estimated at 300 kg,
with a maximum error in measurement of 0.6 kg, deter-
mine the percentage error in the calculation of the
horse’s surface area.

FORECASTING PROFITS The management of Trappee and
Sons, Inc., forecast that they will sell 200,000 cases of
their Texa-Pep hot sauce next year. Their annual profit
is described by

P(x) = —0.000032x° + 6x — 100

thousand dollars, where x is measured in thousands of
cases. If the maximum error in the forecast is 15%, deter-
mine the corresponding error in Trappee’s profits.

ForecASTING ComMoDITY PRICES A certain country’s gov-
ernment economists have determined that the demand
equation for soybeans in that country is given by

55
i T

where p is expressed in dollars per bushel and x, the
quantity demanded per year, is measured in billions of
bushels. The economists are forecasting a harvest of 1.8
billion bushels for the year, with a maximum error of
15% in their forecast. Determine the corresponding max-
imum error in the predicted price per bushel of soybeans.

. CRIME STUDIES A sociologist has found that the number

of serious crimes in a certain city per year is described
by the function

_500(400 + 20x)'2

NO =5 oy

where x (in cents per dollar deposited) is the level of
reinvestment in the area in conventional mortgages by
the city’s ten largest banks. Use differentials to estimate
the change in the number of crimes if the level of rein-
vestment changes from 20 cents/dollar deposited to 22
cents/dollar deposited.

FinancING A HOME The Millers are planning to buy a
home in the near future and estimate that they will need
a 30-yr fixed-rate mortgage for $120,000. Their monthly
payment P (in dollars) can be computed using the for-
mula



10,0007

- p )0
— + —_—
1 <1 12)

where r is the interest rate per year.

a. Find the differential of P.

b. If the interest rate increases from the present rate of
9%lyear to 9.2%/year between now and the time the
Millers decide to secure the loan, approximately how
much more will their monthly mortgage payment be?
How much more will it be if the interest rate increases
to 9.3%/year? To 9.4%/year? To 9.5%/year?

SOLUTIONS 10 SELF-CHECK EXERCISES 3.7

1. We find
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In Exercises 45 and 46, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

45. If y = ax + b where a and b are constants, then Ay = dy.

46. If A = f(x), then the percentage change in A is

Therefore, the required differential of fis

2. We first compute the differential

100f'(x)
o @
oy = L —1/2:L
F=gx=
1
dy—z\/)_cdx
_ 250x
T

Next, using Equation (11) with x = 6 and dx = 0.2, we find

250(6)

W= =T Ge vy

(0.2) = —0.22

or a drop in price of 22 cents/bushel.

CHAPTER 3 Summary of Principal Formulas and Terms

Formulas

1. Derivative of a constant

2. Power rule

3. Constant multiple rule

4. Sum rule

5. Product rule

d

— (¢) = 0, c a constant
dx

L (x") = nx"!

dx

d%c(cu) = c%,caconstant
%(utv)=%ij—z
dix(uv)—uj—z+v%
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10.
11.

13.

. Quotient rule

. Chain rule
. General power rule

. Average cost function

Revenue function

Profit function

. Elasticity of demand

Differential of y

Terms

marginal cost function

marginal average cost function

marginal revenue function

marginal profit function

elastic demand

CHAPTER 3 Review EXERCISES

1.

3.

5.

In Exercises 1-30, find the derivative of the Vi
given function. 12. h(1) = Vit 1 3. f(x) =
flx) =3x" = 2x* + 3x? = 2x + 1
14.f()—212+1 15. f(x) =
2. f(x) = 4x% + 2x* + 3x2 = 2
16. f(x) = 2x* + x)° 17. f(x) =
gx) = 227 +3x71 +2 18. h(x) = (\/‘ +2) 19. f(r) =
4. f(t) = 262 — 38 — 12 20. g(n) = V1-2r 21. 5(r) =
22. f(x) = (2x —3x2 4+ 1)
gy =2t + 4732 + 2 1\2
23. h(x) = <x + ;) 24. h(x) =
hx) = x* + 2 TR =+ 2+
Lot 25. h(1) = (2 + 1)*(21) 26. f(x) =
g6) =25 = 14 % 9. h(x) = * - 2 27. g(x) = Va(@ =1 28 f(x) =
V3x +2
Cx+1 P 29. h(x) = 5" 30. f(t) =
J0 =50 W80 = 3n57 3

10.

du

d(u)_tdx "
dx \v v?

dv

dy _dy du

dx  du dx

d ny — rﬁl@

E(u ) = nu y

=\ _ C(x)

==

R(x) = px

P(x) = R(x) — C(x)
__pf'(p)

B0 =="5)

dy = f'(x)dx

unitary demand

inelastic demand

second derivative of f

implicit differentiation

related rates

Vx—1

Vx+1

x(x +1)
-1

(3)(3 - 2)®
V2rr+1
(32 — 2t + 5)?

1+x
(2x*+ 1)

(2x + 1)3(x® + x)?

Vxi+2
N

2t+1
(t+1)




In Exercises 31-36, find the second derivative
of the given function.

3. f(x) =2x* =33 + 2x2 + x + 4

32, g(x) = Vx + 33. h(1) =

_r
£+4

35. f(x) = V2 + 1

5=

4. f(x) = (X + x + 1)
36. f(r) = (> + 1)°

In Exercises 37-42, find dy/dx by implicit dif-
ferentiation.

37. 6x> = 3y* =9 38. 2x* = 3xy =4

39. y* + 3x? =3y 40. x* + 2x%y? + y2 =10

41. x> — 4xy — y* =12
42, 3x’y —4xy +x — 2y =6

43. Let f(x) = 2x* — 3x2 — 1l6x + 3.
a. Find the points on the graph of f at which the slope
of the tangent line is equal to —4.
b. Find the equation(s) of the tangent line(s) of part (a).

44. Let f(x) = 3x° + 3x* — 4x + 1.
a. Find the points on the graph of f at which the slope
of the tangent line is equal to —2.
b. Find the equation(s) of the tangent line(s) of part (a).

45. Find an equation of the tangent line to the graph of

y = V4 — x? at the point (1, V3).

46. Find an equation of the tangent line to the graph of y =
x(x + 1)’ at the point (1, 32).

47. Find the third derivative of the function

=5

What is its domain?

48. WorLbwIDE NETWoRKED PCs The number of worldwide
networked PCs (in millions) is given by

N(f) = 3.136x% + 3.954x + 116.468 (0=t=09)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1991.

a. How many worldwide networked PCs were there at
the beginning of 19977

b. How fast was the number of worldwide networked
PCs changing at the beginning of 1997?
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49. The number of subscribers to CNC Cable Television in
the town of Randolph is approximated by the function

N(x) = 1000(1 + 2x)12 (1 =x=30

where N(x) denotes the number of subscribers to the
service in the xth week. Find the rate of increase in the
number of subscribers at the end of the 12th week.

50. The total weekly cost in dollars incurred by the Herald
Record Company in pressing x video discs is given by
the total cost function

C(x) = 2500 + 2.2x (0 = x = 8000)

a. What is the marginal cost when x = 1000? When
x = 2000?

b. Find the average cost function C and the marginal
average cost function C’.

c¢. Using the results from part (b), show that the average
cost incurred by Herald in pressing a video disc ap-
proaches $2.20/disc when the level of production is
high enough.

51. The marketing department of Telecon Corporation has
determined that the demand for their cordless phones
obeys the relationship

p = —0.02x + 600 (0 = x = 30,000)

where p denotes the phone’s unit price (in dollars) and
x denotes the quantity demanded.

a. Find the revenue function R.

b. Find the marginal revenue function R'.

c. Compute R’'(10,000) and interpret your result.

52. The weekly demand for the Lectro-Copy photocopying
machine is given by the demand equation

p = 2000 — 0.04x (0 = x = 50,000)

where p denotes the wholesale unit price in dollars and
x denotes the quantity demanded. The weekly total cost
function for manufacturing these copiers is given by

C(x) = 0.000002x* — 0.02x*> + 1000x + 120,000

where C(x) denotes the total cost incurred in producing
X units.

a. Find the revenue function R, the profit function P,
and the average cost function C.

b. Find the marginal cost function C’, the marginal reve-
nue function R’, the marginal profit function P’, and the
marginal average cost function C'.

¢. Compute C’(3000), R'(3000), and P'(3000).

d. Compute C’(5000) and C’(8000) and interpret your
results.
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This chapter further explores the power of the derivative, which

we use to help analyze the properties of functions. The information
obtained can then be used to accurately sketch graphs of functions.
We also see how the derivative is used in solving a large class of
optimization problems, including finding what level of production
will yield a maximum profit for a company, finding what level of
production will result in minimal cost to a company, finding the
maximum height attained by a rocket, finding the maximum velocity
at which air is expelled when a person coughs, and a host of

other problems.

What is the maximum altitude and the maximum velocity
attained by the rocket? In Example 7, page 348, you
will see how the techniques of calculus can be used to

help answer these questions.
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4.1 Applications of the First Derivative

DETERMINING THE INTERVALS WHERE
A FUNCTION IS INCREASING OR DECREASING

According to a study by the U.S. Department of Energy and the Shell Develop-
ment Company, a typical car’s fuel economy as a function of its speed is
described by the graph shown in Figure 4.1. Observe that the fuel economy
f(x) in miles per gallon (mpg) improves as x, the vehicle’s speed in miles per
hour (mph), increases from 0 to 42, and then drops as the speed increases
beyond 42 mph. We use the terms increasing and decreasing to describe the
behavior of a function as we move from left to right along its graph.

FIGURE 4.1 )
A typical car’s fuel economy improves as 35
the speed at which it is driven increases 30
from 0 mph to 42 mph and drops at =25
speeds greater than 42 mph. 5 20
=15
E 10
5
) , Gy

10 20 30 40 50 60 70 80
Speed, mph

(=]

Source: U.S. Department of Energy and Shell Development Co.

More precisely, we have the following definitions.

Increusmg and Decreusmg A function fis increasing on an interval (a, b) if for any two numbers x; and x,

Functions in (a, b), f(x1) < f(x,) whenever x; < x, (Figure 4.2a).
A function f is decreasing on an interval (a, b) if for any two numbers x; and
X, in (a, b), f(x;) > f(x,) whenever x; < x, (Figure 4.2b).

FIGURE 4.2 y y

fxy) o) +

f(xl) T f(xz) .

.

——— X ——+— X
ax x, b a x; x, b

(a) fis increasing on (a, b). (b) fis decreasing on (a, b).



FIGURE 4.3

EXAMPLE 1

SOLUTION
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We say that f is increasing at a point c if there exists an interval (a, b)
containing ¢ such that f is increasing on (a, b). Similarly, we say that f is
decreasing at a point c if there exists an interval (a, b) containing c such that
f is decreasing on (a, b).

Since the rate of change of a function at a point x = ¢ is given by the
derivative of the function at that point, the derivative lends itself naturally to
being a tool for determining the intervals where a differentiable function is
increasing or decreasing. Indeed, as we saw in Chapter 2, the derivative of a
function at a point measures both the slope of the tangent line to the graph
of the function at that point and the rate of change of the function at the
same point. In fact, at a point where the derivative is positive, the slope of
the tangent line to the graph is positive, and the function is increasing. At a
point where the derivative is negative, the slope of the tangent line to the
graph is negative, and the function is decreasing (Figure 4.3).

y=f)
y=fx

=
=

f©)>0 € <0

(a) fis increasing at x = ¢ (b) fis decreasing ot x = .

These observations lead to the following important theorem, which we
state without proof.

a. If f'(x) > 0 for each value of x in an interval (a, b), then fis increasing
on (a, b).

b. If f'(x) < 0 for each value of x in an interval (a, b), then fis decreasing
on (a, b).

c. If f'(x) = 0 for each value of x in an interval (a, b), then fis constant
on (a, b).

Find the interval where the function f(x) = x? is increasing and the interval
where it is decreasing.
The derivative of f(x) = x?is f'(x) = 2x. Since
f'x)=2x>0 ifx>0
and fl(x)=2x<0 ifx<0

f is increasing on the interval (0, «) and decreasing on the interval (—o0, 0)
(Figure 4.4).
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FIGURE 4.4

The graph of f falls on (— <o, 0) where
f'(x) < 0 and rises on (0, ) where
f'(x) > 0.

Determining the Intervals
Where a Function Is
Increasing or Decreasing

EXAMPLE 2

SOLUTION v

Recall that the graph of a continuous function cannot have any breaks.
As a consequence, a continuous function cannot change sign unless it equals
zero for some value of x. (See Theorem 5, page 143.) This observation suggests
the following procedure for determining the sign of the derivative f' of a
function f, and hence the intervals where the function fis increasing and where
it is decreasing.

1. Find all values of x for which f'(x) = 0 or f’ is discontinuous and identify
the open intervals determined by these points.

2. Select a test point ¢ in each interval found in step 1 and determine the sign
of f'(c) in that interval.
a. If f'(c) > 0, fis increasing on that interval.
b. If f'(c) < 0, fis decreasing on that interval.

Determine the intervals where the function f(x) = x* — 3x? — 24x + 32 is
increasing and where it is decreasing.

1. The derivative of fis
f'(x) =3x> — 6x — 24 =3(x +2)(x — 4)

and it is continuous everywhere. The zeros of f'(x) are x = —2 and
x = 4, and these points divide the real line into the intervals (—o, —2),
(=2, 4), and (4, »).

2. To determine the sign of f'(x) in the intervals (—o, —2), (=2, 4), and
(4, »), compute f’(x) at a convenient test point in each interval. The results
are shown in the following table:

Interval Test Point ¢ f'(c) Sign of f'(x)
(=, =2) -3 21 +
(—2,4) 0 —24 -

(4, ) 5 21 +




FIGURE 4.5
Sign diagram for f’

+++0-----— 0+ +++
f f f X
-2 0 4
FIGURE 4.6

The graph of frises on (—c0, —2), falls
on (—2, 4), and rises again on (4, o).

Refer to Example 2.
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Using these results, we obtain the sign diagram shown in Figure 4.5.
We conclude that f is increasing on the intervals (—o, —2) and (4, «)
and is decreasing on the interval (—2, 4). Figure 4.6 shows the graph
of f.

y=x3-3x2-24x+32

1. Use a graphing utility to plot the graphs of

and its derivative function

flx) = x* — 3x? — 24x + 32

f'(x) = 3x* — 6x — 24

using the viewing rectangle [—10, 10] X [—50, 70].

2. By looking at the graph of f’, determine the intervals where f’(x) > 0 and the intervals where f'(x) < 0.
Next, look at the graph of f and determine the intervals where it is increasing and the intervals where
it is decreasing. Describe the relationship. Is it what you expected?

EHETIX® Do not be concerned with how the graphs in this section are
obtained. We will learn how to sketch these graphs later. However, if you are
familiar with the use of a graphing utility, you may go ahead and verify
each graph.
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EXAMPLE 3 Find the interval where the function f(x) = x* is increasing and the interval
where it is decreasing.

TITFINTE 1. The derivative of fis

Group Discussion
True or false? If f is
continuous at ¢ and f is in-

creasing at ¢, then f'(c) # 0.
Explain your answer.

Hint: Consider f(x) = x> and ¢ = 0.

FIGURE 4.7
Sign diagram for f’

FIGURE 4.8
f decreases on (— <o, 0) and increases on

(0, o).

2
3l

fiw=3a=

The function f' is not defined at x = 0, so f' is discontinuous there. It is
continuous everywhere else. Furthermore, f' is not equal to zero anywhere.
The point x = 0 divides the real line (the domain of f) into the intervals
(=90, 0) and (0, =).

. Pick a test point (say, x = —1) in the interval (—, 0) and compute

Fn =~

[SSERS

Since f'(—1) < 0, we see that f'(x) < 0 on (—, 0). Next, we pick a test
point (say, x = 1) in the interval (0, «) and compute

=2

Since f'(1) > 0, we see that f'(x) > 0 on (0, ). Figure 4.7 shows these
results in the form of a sign diagram.

f'not defined at x =0

We conclude that fis decreasing on the interval (—, 0) and increasing
on the interval (0, «). The graph of f, shown in Figure 4.8, confirms
these results.




EXAMPLE 4

SOLUTION v

FIGURE 4.9
f’ does not change sign as we move across
x=0.

FIGURE 4.10

The graph of frises on (—c0, —1), falls
on (—1, 0) and (0, 1), and rises again on
(1, o).
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Find the intervals where the function f(x) = x + 1/x is increasing and where
it is decreasing.

1. The derivative of fis

, 1 x*-1
fo)=1-5==53

Since f’ is not defined at x = 0, it is discontinuous there. Furthermore,
f'(x) is equal to zero when x> — 1 = 0 or x = *1. These values of x
partition the domain of f' into the open intervals (—o, —1), (=1, 0),
(0, 1), and (1, =), where the sign of f’ is different from zero.

2. To determine the sign of f" in each of these intervals, we compute f'(x)
at the test points x = —2, —3, 3, and 2, respectively, obtaining f'(-2) = %,
f'(=%) = =3, f'(3) = —3, and f'(2) = % From the sign diagram for f’
(Figure 4.9), we conclude that fis increasing on (—o°, —1) and (1, «) and
decreasing on (—1, 0) and (0, 1).

f"is not defined at x =0

+4++4+0-—-§y--0++++
—t—t x

T
-1 0 1

The graph of f appears in Figure 4.10. Note that f’ does not change sign
as we move across the point of discontinuity, x = 0. (Compare this with
Example 3.)

y
4
2+ 1
y=x+—
—t—+—+ —t—+— X
4 -2 1 2 4
12
/\'—4

Example 4 reminds us that we must not automatically conclude that the
derivative f' must change sign when we move across a point of discontinuity
or a zero of f'.
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1. Use a graphing utility to sketch the graphs of f(x) = x* — ax fora = -2, —1, 0, 1, 2, using

Group Discussion

D Consider the profit function P associated with a certain commodity
defined by P(x) = R(x) — C(x) (x=0)
where R is the revenue function, C is the total cost function, and x is the
number of units of the product produced and sold.
1. Find an expression for P’'(x).
2. Find relationships in terms of the derivatives of R and C so that

a. P is increasing at x = a.

b. P is decreasing at x = a.

c¢. P is neither increasing nor decreasing at x = a.
Hint: Recall that the derivative of a function at x = a measures the rate of change of the
function at that point.

3. Explain the results of part 2 in economic terms.

the viewing rectangle [—2, 2] X [—2, 2].
2. Use the results of part 1 to guess at the values of a so that f is increasing on (—o, ).
3. Prove your conjecture analytically.

FIGURE 4.11
USS. budget deficit from 1980 to 1991

Billions of dollars

RELATIVE EXTREMA

Besides helping us determine where the graph of a function is increasing and
decreasing, the first derivative may be used to help us locate certain ‘high
points” and ““low points” on the graph of f. Knowing these points is invaluable
in sketching the graphs of functions and solving optimization problems. These
“high points” and “‘low points” correspond to the relative (local) maxima and
relative minima of a function. They are so called because they are the highest
or the lowest points when compared with points nearby.

The graph shown in Figure 4.11 gives the U.S. budget deficit from 1980

y
400 +
Relative maxima
300 +
200 +
100 +
Relative minima
—t —t —t— —t —t t
1 2 3 4 5 6 7 8 9 10 11

Years

Source: Office of Management and Budget



Relative Maximum

FIGURE 4.12
f has a relafive maximum ot x = x; and
at x = x;.

Relative Minimum
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(t = 0) through 1991. The relative maxima and the relative minima of the
function f are indicated on the graph.
More generally, we have the following definition:

A function f has a relative maximum at x = c if there exists an open interval
(a, b) containing c such that f(x) = f(c) for all x in (a, b).

Geometrically, this means that there is some interval containing x = ¢
such that no point on the graph of f with its x-coordinate in that interval can
lie above the point (c, f(c)); that is, f(c) is the largest value of f(x) in some
interval around x = c. Figure 4.12 depicts the graph of a function f that has
a relative maximum at x = x; and another at x = x;.

Observe that all the points on the graph of f with x-coordinates in the
interval /; containing x; (shown in blue) lie on or below the point (x;, f(x;)).

y
(x5, f(x3))
(Xlaf(xl)) y=f(x)
]1 13
== f == f X
xl xz x3 )C4

This is also true for the point (x3, f(x;)) and the interval /5. Thus, even though
there are points on the graph of f that are ‘higher” than the points
(x1, f(x1)) and (x3, f(x3)), the latter points are “highest” relative to points in
their respective neighborhoods (intervals). Points on the graph of a function
f that are “highest” and “lowest” with respect to all points in the domain of
f will be studied in Section 4.4.

The definition of the relative minimum of a function parallels that of the
relative maximum of a function.

A function f has a relative minimum at x = c if there exists an open interval
(a, b) containing c such that f(x) = f(c) for all x in (a, b).

The graph of the function f, depicted in Figure 4.12, has a relative minimum
at x = x, and another at x = x4.



286 4 = \PPLICATIONS OF THE DERIVATIVE

FIGURE 4.14

f'(0) = 0, but f does not have a relative
extremum at (0, 0).

FIGURE 4.13

FINDING THE RELATIVE EXTREMA

We refer to the relative maximum and relative minimum of a function as the
relative extrema of that function. As a first step in our quest to find the relative
extrema of a function, we consider functions that have derivatives at such
points. Suppose that f is a function that is differentiable in some interval
(a, b) that contains a point x = ¢ and that f has a relative maximum at x = ¢
(Figure 4.13a).

a c b a c b

(a) f has a relative maximum at (b) f has a relative minimum at
X=c X=c

Observe that the slope of the tangent line to the graph of f must change
from positive to negative as we move across the point x = ¢ from left to right.
Therefore, the tangent line to the graph of f at the point (¢, f(c)) must be
horizontal; that is, f'(c) = 0 (Figure 4.13a).

Using a similar argument, it may be shown that the derivative f’ of a
differentiable function f must also be equal to zero at a point x = ¢, where f
has a relative minimum (Figure 4.13b).

This analysis reveals an important characteristic of the relative extrema
of a differentiable function f: At any point c where f has a relative extremum,

f'(c) = 0.

Before we develop a procedure for finding such points, a few words of caution
are in order. First, this result tells us that if a differentiable function f has a
relative extremum at a point x = ¢, then f'(c¢) = 0. The converse of this
statement—if f'(c) = 0 at some point x = ¢, then f must have a relative
extremum at that point—is not true. Consider, for example, the function
f(x) = x> Here, f'(x) = 3x% s0 f'(0) = 0. Yet, fhas neither a relative maximum
nor a relative minimum at x = 0 (Figure 4.14).

Second, our result assumes that the function is differentiable and thus
has a derivative at a point that gives rise to a relative extremum. The functions
f(x) = |x| and g(x) = x?¥* demonstrate that a relative extremum of a function
may exist at a point at which the derivative does not exist. Both these functions
fail to be differentiable at x = 0, but each has a relative minimum there.
Figure 4.15 shows the graphs of these functions. Note that the slopes of the



FIGURE 4.15

Each of these functions has a relative exire-
mum at (0, 0), but the derivative does not
exist there.

Critical Point of f

FIGURE 4.16
Critical points of f
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y =
3= x23

(a) (b)

tangent lines change from negative to positive as we move across x = 0, just
as in the case of a function that is differentiable at a value of x that gives rise
to a relative minimum.

We refer to a point in the domain of f that may give rise to a relative
extremum as a critical point.

A critical point of a function f is any point x in the domain of f such that
f'(x) = 0 or f'(x) does not exist.

Figure 4.16 depicts the graph of a function that has critical points at x = q,
b, ¢, d, and e. Observe that f'(x) = 0 at x = a, b, and c. Next, since there is
a corner at x = d, f'(x) does not exist there. Finally, f'(x) does not exist at
x = e because the tangent line there is vertical. Also, observe that the critical
points x = a, b, and d give rise to relative extrema of f, whereas the critical
points x = ¢ and x = e do not.

y
Corner

Horizontal
tangents

Vertical tangent

Having defined what a critical point is, we can now state a formal procedure
for finding the relative extrema of a continuous function that is differentiable
everywhere except at isolated values of x. Incorporated into the procedure is
the so-called first derivative test, which helps us determine whether a point
gives rise to a relative maximum or a relative minimum of the function f.
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Procedure for Finding
Relative Extrema (the
First Derivative Test)

EXAMPLE 5

FIGURE 4.17
f has a relafive minimum at x = 0.

EXAMPLE &

FIGURE 4.18
Sign diagram for

1. Determine the critical points of f.

2. Determine the sign of f'(x) to the left and right of each critical point.
a. If f'(x) changes sign from positive to negative as we move across a critical
point x = ¢, then f(c) is a relative maximum.
b. If f'(x) changes sign from negative to positive as we move across a critical
point x = c, then f(c) is a relative minimum.
c. If f'(x) does not change sign as we move across a critical point
x = ¢, then f(c) is not a relative extremum.

Find the relative maxima and relative minima of the function f(x) = x

The derivative of f(x) = x? is given by f’(x) = 2x. Setting f'(x) = 0 yields
x = 0 as the only critical point of f. Since
f'x)<0 ifx<0
and f'(x)>0 ifx>0
we see that f'(x) changes sign from negative to positive as we move across

the critical point x = 0. Thus, we conclude that f(0) = 0 is a relative minimum
of f (Figure 4.17).

Find the relative maxima and relative minima of the function f(x) = x2* (see
Example 3).

The derivative of fis f'(x) = (2/3)x'. As noted in Example 3, f’ is not
defined at x = 0, is continuous everywhere else, and is not equal to zero in
its domain. Thus, x = 0 is the only critical point of the function f.

The sign diagram obtained in Example 3 is reproduced in Figure 4.18.
We can see that the sign of f'(x) changes from negative to positive as we

f'not defined at x =0

7777777 +++++ 4+




FIGURE 4.19
f has a relafive minimum at x = 0.

EXAMPLE 7

SOLUTION v

FIGURE 4.20
Sign diagram for f/
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move across x = 0 from left to right. Thus, an application of the first derivative
test tells us that f(0) = 0 is a relative minimum of f (Figure 4.19).

Group Discussion .
Recall that the average cost function C is defined by
C= C(x)
X
where C(x) is the total cost function and x is the number of units of a
commodity manufactured (see Section 3.4).
1. Show that

C'(x) = (x> 0)

C'(x) — C(x)
X

2. Use the result of part 1 to conclude that C is decreasing for values of

x at which C’(x) < C(x). Find similar conditions for which C is increasing

and for which C is constant.

3. Explain the results of part 2 in economic terms.

Find the relative maxima and relative minima of the function
fx) = x* — 3x* — 24x + 32

The derivative of fis
fl(x)=3x2—6x—24=3(x+2)(x —4)

and it is continuous everywhere. The zeros of f'(x), x = —2 and x = 4, are
the only critical points of the function f. The sign diagram for f' is shown in
Figure 4.20. Examine the two critical points x = —2 and x = 4 for a relative
extremum using the first derivative test and the sign diagram for f:

1. The critical point x = —2: Since the function f'(x) changes sign from positive
to negative as we move across x = —2 from left to right, we conclude that
a relative maximum of foccurs at x = —2. The value of f(x) whenx = =2 is

f(=2) = (=2)° = 3(—2)* — 24(~2) + 32 = 60
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FIGURE 4.21

f has a relafive maximum ot x = —2 and
a relotive minimum af x = 4.

FIGURE 4.22

EXAMPLE 8

SOLUTION v

x = 0is not a critical point because f is
not defined at x = 0.

f"is not defined at x =0

++++0- -
1

L,,()++++

X

-1

0

1

FIGURE 4.23

f()()=x+l
X
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2. The critical point x = 4: f'(x) changes sign from negative to positive as we

move across x = 4 from left to right, so f(4) = —48 is a relative minimum
of f. The graph of f appears in Figure 4.21.

Relative y
maximum

y=x3-3x2-24x+32

> Relative minimum

Find the relative maxima and the relative minima of the function

1
= + —
fl) =x+
The derivative of fis
, 1 -1 _(x+Dx-1)
f(x):1_P: P x?
Since f' is equal to zero at x = —1 and x = 1, these are critical points for the

function f. Next, observe that f’ is discontinuous at x = 0. However, because
fis not defined at that point, the point x = 0 does not qualify as a critical point
of f. Figure 4.22 shows the sign diagram for f'.

Since f'(x) changes sign from positive to negative as we move across
x = —1 from left to right, the first derivative test implies that f(—1) = —2 is
a relative maximum of the function f. Next, f'(x) changes sign from negative
to positive as we move across x = 1 from left to right, so f(1) = 2 is a relative
minimum of the function f. The graph of f appears in Figure 4.23. Note that
this function has a relative maximum that lies below its relative minimum.

y

Relative
minimum

| | X
T T T T T T T T

-2 4 2 4

L2

__\ Relative
maximum

L —4




Refer to Example 8.
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1. Use a graphing utility to plot the graphs of f(x) = x + 1/x and its derivative function f'(x) = 1 — 1/x?,
using the viewing rectangle [—4, 4] X [=8, §].

2. By studying the graph of f’, determine the critical points of f. Next, note the sign of f’(x) immediately
to the left and to the right of each critical point. What can you conclude about each critical point? Are
your conclusions borne out by the graph of f?

EXAMPLE 9

SOLUTION v

FIGURE 4.24
The profit function is increasing on
(0, 7500) and decreasing on (7500, o).

EXAMPLE 10

APPLICATIONS

The profit function of the Acrosonic Company is given by
P(x) = —0.02x* + 300x — 200,000

dollars, where x is the number of Acrosonic model F loudspeaker systems
produced. Find where the function P is increasing and where it is decreasing.

The derivative P’ of the function P is
P'(x) = —0.04x + 300 = —0.04(x — 7500)

Thus, P’'(x) = 0 when x = 7500. Furthermore, P'(x) > 0 for x in the interval
(0, 7500), and P'(x) < O for x in the interval (7500, o). This means that
the profit function P is increasing on (0, 7500) and decreasing on (7500, o)
(Figure 4.24).

1000
800
600
400
200

y=Px)

Thousands of dollars

LIS N B B e R | X
—200% 2 46 81012 \16
Units of a thousand

The number of major crimes committed in the city of Bronxville from 1993
to 2000 is approximated by the function

N(t) = —0.18 + 1.52 + 100 0O=t=17)

where N(¢) denotes the number of crimes committed in year ¢ and t = 0
corresponds to the beginning of 1993. Find where the function N is increasing
and where it is decreasing.
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IINTTYA  The derivative N’ of the function N is
N'(t) = —0.372 + 3t = —0.3¢(t — 10)

Since N'(¢t) > 0 for ¢ in the interval (0, 7), the function N is increasing
throughout that interval (Figure 4.25).

FIGURE 4.25 y
The number of crimes, N(#), is increasing
over the 7-year inferval.

_
o 4
w4
s+
o+
o+
a4+

1. Find the intervals where the function f(x) = x* — x> — 12x + 3 is increasing and
the intervals where it is decreasing.
xZ

1—x*

2. Find the relative extrema of f(x) =

Solutions to Self-Check Exercises 4.1 can be found on page 301.

4.1 Exercises

In Exercises 1-8, you are given the graph of a 5.
function f. Determine the intervals where fis
increasing, constant, or decreasing.

1 1
5 5 -1 |
3 y 4 y
i 7 8.
1 2-—\./ y y
y
: > x — ——>x I+
7/2 -1 12 2 -1 | 12 : : . | x
-1 1 -1 1
/\"‘2 T-1 T-1!




9.

Elevation

THEBOSTON MARATHON The graph of the function fshown
in the accompanying figure gives the elevation of that
part of the Boston Marathon course that includes the
notorious Heartbreak Hill. Determine the intervals
(stretches of the course) where the function fis increas-
ing (the runner is laboring), where it is constant (the
runner is taking a breather), and where it is decreasing
(the runner is coasting).

y (fo)

300T

[
=1
<

100T

I
[
I
[
I
—
T T

x (miles)
1 21.721.8 22.7

Exercises 10-35, find the interval(s) where

each function is increasing and the interval(s)
where it is decreasing.

10.

12.

14.

16.

18.

19.

20.

22.

24.

26.

28.

30.

32.

34.

fx) =4 — 5x 1L f(x) =3x +5
fx)y =2x>+x +1 13. f(x) = x* — 3x
f(x) = x* — 3x2 15. g(x) = x — x°
fx) =x*—=3x + 4 17. g(x) = x* + 3x2 + 1

f(x)=§x3—2x2—6x—2

f(x)=%x3—3x2+9x+20

glx) =x*—2x*+ 4 21, h(x) = x* — 4x* + 10
1 1
h(x) = m 23. f(x) = Y—2
_ 2 ot
g(l) = m 25. h(l) = m
fx)y =x*+5 27. f(x) = x¥
fx) = (x = 5)* 29. f(x) = Vx+1
gx) =xVx+1 3L f(x) = V16 — x2
h(x) = xle 3. fr) = L1

X 1
gx) = Griy 35. flx) = G-Iy
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In Exercises 36-43, you are given the graph of
a function f. Determine the relative maxima
and relative minima, if any.

36.
1
-1
38. y
_324
40. y 41. y
3
2T 2
1 I I
T T X
1 2
T : X
-1 1
1. .
(3.3)




29

43.

~
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In Exercises 44-47, match the graph of the
function with the graph of its derivative in

(a)-(d).
44.

46.

(a)

(b)

y'
O —
——) . X

() (d) Y

In Exercises 48-71, find the relative maxima
and relative minima, if any, of each function.

48.

50.

52.
54.

58.

59.
60.
61.

62.

64.

65.

66.

68.

70.
72.

73.

gx) =x*+3x + 8 49. f(x) = x* — 4x

h(t) = =2 + 61 + 6 51.f(x)=%xz_2x+4
) = x5 53, 1) — X + 2
fl) =x*=3x+6 55. g(x) =x’ —3x’ + 4
1,
f(x)—ix—x
_1 .,
F(x) = 3% —x* = 3x + 4
_1, )
h(x) =5 xt =3¢ +4x =8
glx)y=x*—4x’+8

F(t) = 3r — 20£ + 20
flx) =3x* = 2x* + 4

X x+1
h(x) = P 63. g(x) = P
glx) =2x* + @ + 10

flx) =x + )26 + 2
g() = 5 67. f() = 75
2 32
g() = 69. f(x) = 5
gx) =xVx—4 7. f(x) = (x — 1)
A stone is thrown straight up from the roof of an 80-ft

building. The distance (in feet) of the stone from the
ground at any time ¢ (in seconds) is given by

h(t) = =161 + 64¢ + 80

When is the stone rising, and when is it falling? If the
stone were to miss the building, when would it hit the
ground? Sketch the graph of 4.

Hint: The stone is on the ground when A(f) = 0.

ProFiT FuNcTioNs The Mexican subsidiary of the
Thermo-Master Company manufactures an indoor—
outdoor thermometer. Management estimates that the
profit (in dollars) realizable by the company for the
manufacture and sale of x units of thermometers per
week is

P(x) = —0.001x> + 8x — 5000



74.

76.

71.

78.

. ENVIRONMENT OF FORESTS

Find the intervals where the profit function P is increas-
ing and the intervals where P is decreasing.

FLIGHT oF A Rocker The height (in feet) attained by a
rocket ¢ sec into flight is given by the function

h(t) = — %ﬁ + 1672 + 33t + 10

When is the rocket rising, and when is it descending?
Following the lead of the Na-
tional Wildlife Federation, the Department of the Inte-
rior of a South American country began to record an
index of environmental quality that measured progress
and decline in the environmental quality of its forests.
The index for the years 1984 through 1994 is approxi-
mated by the function

I(t):1t3—§t2+80 (0=r=10)

3
where t = 0 corresponds to the year 1984. Find the
intervals where the function / is increasing and the inter-
vals where it is decreasing. Interpret your results.
Source: World Almanac

AVERAGE SPEED OF A HIGHWAY VEHICLE The average speed
of a vehicle on a stretch of Route 134 between
6 A.M. and 10 A.M. on a typical weekday is approximated
by the function

f(t) = 20t — 40Vt + 50 (0=t=4)

where f(r) is measured in miles per hour and ¢ is mea-
sured in hours, with ¢ = 0 corresponding to 6 A.m. Find
the interval where fis increasing and the interval where
fis decreasing and interpret your results.

AVERAGE CosT  The average cost (in dollars) incurred by
the Lincoln Record Company per week in pressing x
compact discs is given by

—0.0001x + 2 + @

C(x) = (0 < x = 6000)
Show that C(x) is always decreasing over the interval
(0, 6000).

AIr PoLLutioN  According to the South Coast Air Qual-
ity Management District, the level of nitrogen dioxide,
a brown gas that impairs breathing, present in the atmo-
sphere on a certain May day in downtown Los Angeles
is approximated by

A(t) = 0.032( — 7)* + 60.2 O=t=7)

where A (¢) is measured in pollutant standard index (PSI)
and ¢ is measured in hours with ¢ = 0 corresponding to
7 a.m. At what time of day is the air pollution increasing,
and at what time is it decreasing?

80.

81.

82.

83.

79.
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PrROJECTED RETIREMENT FUNDS Based on data from the
Central Provident Fund of a certain country (a govern-
ment agency similar to the Social Security Administra-
tion), the estimated cash in the fund in 1995 is given by

A(t) = —96.6¢* + 403.68°

+ 66097 + 250 0=r=5)

where A(f) is measured in billions of dollars and ¢ is
measured in decades, with ¢t = 0 corresponding to the
year 1995. Find the interval where A is increasing and
the interval where A is decreasing and interpret your
results.

Hint: Use the quadratic formula.

LEARNING CURVES The Emory Secretarial School finds
from experience that the average student taking Ad-
vanced Typing will progress according to the rule

60z + 180
N(it)y=—"7"= t=0
(0 =" (t=0)
where N(¢) measures the number of words per minute
the student can type after t weeks in the course. Compute
N'(t) and use this result to show that the function N is
increasing on the interval (0, ).

DRrUG CONCENTRATION IN THE BLooD The concentration (in
milligrams per cubic centimeter) of a certain drug in a
patient’s body ¢ hr after injection is given by

t2

=371

0=r=4)

When is the concentration of the drug increasing, and
when is it decreasing?

AGE OF DRIVERS IN CRASH FATALITIES The number of crash
fatalities per 100,000 vehicle miles of travel (based on
1994 data) is approximated by the model

1) = 15
0.08333x2 + 1.91667x + 1

(O=x=11)

where x is the age of the driver in years with x = 0
corresponding to age 16. Show that f is decreasing on
(0, 11) and interpret your result.

Source: National Highway Traffic Safety Administration

AIr PoLLuTioN The amount of nitrogen dioxide, a brown
gas that impairs breathing, present in the atmosphere
on a certain May day in the city of Long Beach is approxi-
mated by

136

AW = 10250 a5y

+28 O=r=11)
where A () is measured in pollutant standard index (PSI)
and ¢ is measured in hours, with ¢ = 0 corresponding to

(continued on p. 300)



Using Technology

EXAMPLE 1

SOLUTION v

FIGURE T1

The graph of fin the viewing reciangle
[—2 4] x [-10, 10]
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USING THE FIRST DERIVATIVE
TO ANALYZE A FUNCTION

A graphing utility is an effective tool for analyzing the properties of functions.
This is especially true when we also bring into play the power of calculus, as
the following examples show.

Let f(x) = 2.4x* — 82x% + 2.7x* + 4x + 1.

a. Use a graphing utility to plot the graph of f.

b. Find the intervals where f is increasing and the intervals where f is
decreasing.

c. Find the relative extrema of f.

a. The graph of fin the viewing rectangle [—2, 4] X [—10, 10] is shown in
Figure T1.

SN

\/

f'(x) = 9.6x° — 24.6x* + 5.4x + 4

b. We compute

and observe that f’ is continuous everywhere, so the critical points of f
occur at values of x where f'(x) = 0. To solve this last equation, observe
that f'(x) is a polynomial function of degree 3. The easiest way to solve
the polynomial equation

9.6x3> —24.6x> + 54x +4 =0

is to use the function on a graphing utility for solving polynomial equations.
(Not all graphing utilities have this function.) You can also use TRACE and
zoowm, but this will not give the same accuracy without a much greater
effort.

We find

x; = 2.22564943249, x, =~ 0.63272944121, x; = —0.295878873696



EXAMPLE 2

SOLUTION v

FIGURE T2
The graph of fin the viewing rectangle
(-4 21 x[-21]

Referring to Figure T1, we conclude that fis decreasing on (—o0, —0.2959)
and (0.6327, 2.2256) (correct to four decimal places) and fis increasing on
(—=0.2959, 0.6327) and (2.2256, ).

c. Using the evaluation function of a graphing utility, we find the value of f
at each of the critical points found in part (b). Upon referring to Figure
T1 once again, we see that f(x;) =~ 0.2836 and f(x;) =~ —8.2366 are relative
minimum values of f and f(x,) =~ 2.9194 is a relative maximum value of f.

EEYYW The equation f'(x) = 0 in Example 1 is a polynomial equation,
and so it is easily solved using the function for solving polynomial equations.
We could also solve the equation using the function for finding the roots of
equations, but that would require much more work. For equations that are
not polynomial equations, however, our only choice is to use the function for
finding the roots of equations.

If the derivative of a function is difficult to compute or simplify and we
do not require great precision in the solution, we can find the relative extrema
of the function using a combination of zoom and TRACE. This technique,
which does not require the use of the derivative of f, is illustrated in the
following example.

Let f(x) = x3(x? + 1)7%23,

a. Use a graphing utility to plot the graph of f.*
b. Find the relative extrema of f.

a. The graph of f in the viewing rectangle [—4, 2] X [—2, 1] is shown in
Figure T2.

b. From the graph of fin Figure T2, we see that f has relative maxima when
x = —2 and x =~ 0.25 and a relative minimum when x =~ —0.75. To obtain
a better approximation of the first relative maximum, we zoom-in with the

* Functions of the form f(x) = 37* are called exponential functions, and we will study them in greater detail
in Chapter 5.
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cursor at approximately the point on the graph corresponding to x ~ —2.
Then, using TRACE, we see that a relative maximum occurs when x =~ —1.76
with value y =~ —1.01. Similarly, we find the other relative maximum where
x =~ 0.20 with value y =~ 0.44. Repeating the procedure, we find the relative
minimum at the point where x ~ —0.86 and y =~ —1.07.

Finally, we comment that if you have access to a computer and software
such as Derive, Maple, or Mathematica, then symbolic differentiation will
yield the derivative f'(x) of any differentiable function. This software
will also solve the equation f'(x) = 0 with ease. Thus, the use of a computer
will simplify even more greatly the analysis of functions.

In Exercises 1-4, use a graphing utility to find
(a) the intervals where fis increasing and the
intervals where fis decreasing and (b) the rel-
ative extrema of f. Express your answers accu-
rate to four decimal places.

1. f(x) = 34x* — 6.2x> + 1.8x* + 3x — 2
2. f(x) = 1.8x* — 9.1x> + 5x — 4
3. f(x) = 20> — 5%+ 8x2 — 3x + 2

4. f(x) = 3x° —4x> + 3x — 1

In Exercises 5-8, use the ZOON and TRACE fea-
tures of a graphing utility to find (a) the inter-
vals where f is increasing and the intervals
where fis decreasing and (b) the relative ex-
trema of f. Express your answers accurate to
two decimal places.

5. f(x) = (2x + D)2 + 1)28
6. () = [ = D" +

1—x?

7. f(x) =x —

Va(x? =1y

8. flx) = ~—2
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9.

10.

RATE oF BANK FAILURES The Federal Deposit Insurance
Company (FDIC) estimates that the rate at which banks
were failing between 1982 and 1994 is given by

f(£) = 0.063447¢* — 1.953283¢° + 14.632576¢
— 6.684704t + 47.458874 0=r=12)

where f(¢) is measured in the number of banks per year
and ¢ is measured in years, with ¢ = 0 corresponding to
the beginning of 1982.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 13] X [0, 220].

b. Determine the intervals where f is increasing and
where fis decreasing and interpret your result.

c. Find the relative maximum of f and interpret your
result.

Source: Federal Deposit Insurance Corporation

MANUFACTURING CAPACITY Data obtained from the Fed-
eral Reserve show that the annual increase in manufac-
turing capacity between 1988 and 1994 is given by

f(£) = 0.0388889¢° — 0.283333¢> + 0.477778¢t
+ 2.04286 0=r=6)

where f(f) is a percentage and ¢ is measured in years,
with ¢ = 0 corresponding to the beginning of 1988.



11.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 8] X [0, 4].

b. Determine the intervals where f is increasing and
where fis decreasing and interpret your result.

Source: Federal Reserve

Home SaLEs  According to the Greater Boston Real Es-
tate Board—Multiple Listing Service, the average num-
ber of days a single-family home remains for sale from
listing to accepted offer is approximated by the function

£(£) = 0.0171911#* — 0.662121¢ + 6.18083>
— 8.97086¢ + 53.3357 (0=t=10)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 120].

b. Use the graph of fto find, approximately, the intervals
where fis increasing and the intervals where fis decreas-
ing. What does this result tell us about the sales of single-
family homes in the greater Boston area from 1984
through 1994?

Source: Greater Boston Real Estate Board—Multiple
Listing Service

12.

13.

MoORNING TRAFFIC RUSH The speed of traffic flow on a
certain stretch of Route 123 between 6 A.M. and 10 A.m.
on a typical weekday is approximated by the function

f(t) = 20t — 40V + 52 0=r1=4)
where f(¢) is measured in miles per hour and ¢ is measured
in hours, with ¢+ = 0 corresponding to 6 A.Mm. Find the
interval where f is increasing, the interval where f is
decreasing, and the relative extrema of f. Interpret
your results.

AIr PoLLuTioN The amount of nitrogen dioxide, a brown
gas that impairs breathing, present in the atmosphere
on a certain May day in the city of Long Beach, is approx-
imated by

136

AW =T 0250 =25y

+28 O=r=11)

where A (f) is measured in pollutant standard index (PSI)
and ¢ is measured in hours, with ¢ = 0 corresponding to
7 A.M. When is the PSI increasing and when is it decreas-
ing? At what time is the PSI highest, and what is its
value at that time?
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84.

85.

86.
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7 a.m. Find the intervals where A is increasing and where
A is decreasing and interpret your results.

PRISON OVERCROWDING The 1980s saw a trend toward old-
fashioned punitive deterrence as opposed to the more
liberal penal policies and community-based corrections
popular in the 1960s and early 1970s. As a result, prisons
became more crowded, and the gap between the number
of people in prison and the prison capacity widened.
Based on figures from the U.S. Department of Justice,
the number of prisoners (in thousands) in federal and
state prisons is approximated by the function

N(t) = 3.5¢ + 267t + 4362 (0 =t=10)

where ¢ is measured in years and ¢ = 0 corresponds to
1984. The number of inmates for which prisons were
designed is given by

C(t) = 2431 + 365 (0=t=10)

where C(¢) is measured in thousands and ¢ has the same
meaning as before. Show that the gap between the num-
ber of prisoners and the number for which the prisons
were designed has been widening at any time .
Source: U.S. Dept. of Justice

Hint: First, write a function G that gives the gap between the
number of prisoners and the number for which the prisons were

designed at any time ¢. Then show that G'(¢) > 0 for all values
of ¢ in the interval (0, 10).

Using Theorem 1, verify that the linear function f(x) =
mx + bis (a) increasing everywhere if m > 0, (b) decreas-
ing everywhere if m < 0, and (c) constant if m = 0.
In what interval is the quadratic function

f(x) = ax* + bx + ¢ (a #0)

increasing? In what interval is f decreasing?

Exercises 87-92, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

87.

88.

89.

90.

If fis decreasing on (a, b), then f'(x) < 0 for each x
in (a, b).

If f and g are both increasing on (a, b), then f + g is
increasing on (a, b).

If f and g are both decreasing on (a, b), then f — g is
decreasing on (a, b).

If f(x) and g(x) are positive on (a, b) and both fand g
are increasing on (a, b), then fg is increasing on (a, b).

91.

92.

93.

9.

95.

96.

97.

98.

If f'(c) = 0, then f has a relative maximum or a relative
minimum at x = c.

If f has a relative minimum at x = ¢, then f'(c) = 0.
Let

—3x
2x+4

ifx<0

1) { ifx=0
a. Compute f'(x) and show that it changes sign from
negative to positive as we move across x = 0.

b. Show that f does not have a relative minimum at
x = 0. Does this contradict the first derivative test?
Explain your answer.

Let

—x2+3 ifx#0

1) {2 ifx=0

a. Compute f’(x) and show that it changes sign from
positive to negative as we move across x = 0.

b. Show that f does not have a relative maximum at
x = 0. Does this contradict the first derivative test?
Explain your answer.

Show that the quadratic function

fx) = ax* + bx + ¢ (a # 0)

has a relative extremum when x = —b/2a. Also, show
that the relative extremum is a relative maximum if
a < 0 and a relative minimum if a > 0.

Show that the cubic function

fx)=ax®*+bx*+cx+d (a # 0)

has no relative extremum if and only if 5> — 3ac = 0.

Refer to Example 6, page 144.

a. Show that fis increasing on the interval (0, 1).

b. Show that f(0) = —1 and f(1) = 1 and use the result
of part (a) together with the intermediate value theorem
to conclude that there is exactly one root of f(x) = 0 in
0, 1).

Show that the function

ax +b
cx+d

flx)=

does not have a relative extremum if ad — bc # 0. What
can you say about fif ad — bc = 0?
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SoLuTIiONS 10 SELF-CHECK EXERCISES 4.1

1. The derivative of fis
fl(x)=2x*=2x—12=2(x + 2)(x — 3)

and it is continuous everywhere. The zeros of f'(x) are x = —2 and x = 3. The
sign diagram of f’ is shown in the accompanying figure. We conclude that f is
increasing on the intervals (—oo, —2) and (3, «) and decreasing on the interval
(=2, 3).

+++++0 - —-—-——-—-—-——-—= 0+ + + +
T T T } } } } X

2. The derivative of fis
(=)L @) -1 -
f'() = - -
(1 —x?)?

_ (1 =x)@2x) —x*(=2x) __ 2x
(1 — x?)? (1 —x?)?

and it is continuous everywhere except at x = *1. Since f'(x) is equal to zero at
x = 0,x = 0 is a critical point of f. Next, observe that f'(x) is discontinuous at
x = =1, but since these points are not in the domain of f, they do not qualify as
critical points of f. Finally, from the sign diagram of f’ shown in the accompanying
figure, we conclude that f(0) = 0 is a relative minimum of f.

f'is not defined at x =% 1

————— ———()+++‘+++++
f f f x

-1 0 1

4.2 Applications of the Second Derivative

DETERMINING THE INTERVALS OF CONCAVITY

Consider the graphs shown in Figure 4.26, which give the estimated population
of the world and of the United States through the year 2000. Both graphs are
rising, indicating that both the U.S. population and the world population will
continue to increase through the year 2000. But observe that the graph in
Figure 4.26a opens upward, whereas the graph in Figure 4.26b opens down-
ward. What is the significance of this? To answer this question, let us look at
the slopes of the tangent lines to various points on each graph (Figure 4.27).
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FIGURE 4.26 y y

6 300

5 250

4 200

3 150

2 100

X X

1950 60 °70 ’80 90 2000 1950 °60 70 ’80 90 2000

(a) World population in billions (b) U.S. population in millions

Source: U.S. Dept. of Commerce and Worldwatch Institute

In Figure 4.27a we see that the slopes of the tangent lines to the graph
are increasing as we move from left to right. Since the slope of the tangent
line to the graph at a point on the graph measures the rate of change of the
function at that point, we conclude that the world population is not only
increasing through the year 2000 but is increasing at an increasing pace. A
similar analysis of Figure 4.27b reveals that the U.S. population is increasing,
but at a decreasing pace.

(a) Slopes of tangent lines are (b) Slopes of tangent lines are
increasing. decreasing.

The shape of a curve can be described using the notion of concavity.

Concavity of a

Function f Let the function f be differentiable on an interval (a, b). Then,

1. fis concave upward on (a, b) if f’ is increasing on (a, b).

2. fis concave downward on (a, b) if f' is decreasing on (a, b).



FIGURE 4.28

Determining the
Intervals of
Concavity of f
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=

f f f x

a b a b

(a) fis concave upward on (g, b). (b) fis concave downward on (g, b).

Geometrically, a curve is concave upward if it lies above its tangent lines
(Figure 4.28a). Similarly, a curve is concave downward if it lies below its
tangent lines (Figure 4.28b).

We also say that fis concave upward at a point x = c if there exists an
interval (a, b) containing ¢ in which fis concave upward. Similarly, we say
that fis concave downward at a point x = c if there exists an interval (a, b)
containing c in which fis concave downward.

If a function fhas a second derivative f”, we can use f” to determine the
intervals of concavity of the function. Recall that f”(x) measures the rate of
change of the slope f'(x) of the tangent line to the graph of f at the point
(x, f(x)). Thus, if f"(x) > 0 on an interval (a, b), then the slopes of the tangent
lines to the graph of f are increasing on (a, b) and so fis concave upward on
(a, b). Similarly, if f"(x) < 0 on (a, b), then fis concave downward on (a, b).
These observations suggest the following theorem.

a. If f"(x) > 0 for each value of x in (a, b), then fis concave upward on
(a, b).

b. If f"(x) < 0 for each value of x in (a, b), then fis concave downward
on (a, b).

The following procedure, based on the conclusions of Theorem 2, may
be used to determine the intervals of concavity of a function.

1. Determine the values of x for which f” is zero or where f” is not defined,
and identify the open intervals determined by these points.

2. Determine the sign of f” in each interval found in step 1. To do this, compute
f"(c), where c is any conveniently chosen test point in the interval.
a. If f"(c) > 0, fis concave upward on that interval.
b. If f"(c) < 0, fis concave downward on that interval.
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EXAMPLE 1

FIGURE 4.29
Sign diagram for "

FIGURE 4.30
fis concave downward on (— oo, 1) and
concave upward on (1, o).

EXAMPLE 2

FIGURE 4.31
The sign diagram for "

Determine where the function f(x) = x* — 3x* — 24x + 32 is concave upward
and where it is concave downward.

Here,
f'(x) =3x2—6x—24
f'(x)=6x—6=6(x—1)

and f" is defined everywhere. Setting f”(x) = 0 gives x = 1. The sign diagram
of f" appears in Figure 4.29. We conclude that fis concave downward on the
interval (—o, 1) and is concave upward on the interval (1, «). Figure 4.30
shows the graph of f.

y

Ty=x3-322-24x+32

Determine the intervals where the function f(x) = x + 1/x is concave upward
and where it is concave downward.

We have

() =1- L
f(x)_l xz

" — 2
=12
We deduce from the sign diagram for f” (Figure 4.31) that the function fis

concave downward on the interval (—, 0) and concave upward on the interval
(0, ). The graph of fis sketched in Figure 4.32.

f"is not defined at x =0

——————— +++++ 4+




FIGURE 4.32

fis concave downward on (— <o, 0) and

concave upward on (0, o).

Refer to Example 1.
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1. Use a graphing utility to plot the graph of

and its second derivative

fx) = x* — 3x% — 24x + 32

f'(x) =6x —6

using the viewing rectangle [—10, 10] X [—80, 90].

2. By studying the graph of f”, determine the intervals where f"(x) > 0 and the intervals where f"(x) < 0.
Next, look at the graph of f and determine the intervals where the graph of fis concave upward and the
intervals where the graph of fis concave downward. Are these observations what you might have expected?

FIGURE 4.33

The graph of § has a point of inflection at

(50, 2700).

Thousands of dollars

y

T T T T T
20 40 60 80 10
Thousands of dollars

INFLECTION POINTS

Figure 4.33 shows the total sales S of a manufacturer of automobile air condi-
tioners versus the amount of money x that the company spends on advertising
its product. Notice that the graph of the continuous function y = S(x) changes
concavity—from upward to downward—at the point (50, 2700). This point is
called an inflection point of S. To understand the significance of this inflection
point, observe that the total sales increase rather slowly at first, but as more
money is spent on advertising, the total sales increase rapidly. This rapid
increase reflects the effectiveness of the company’s ads. However, a point is
soon reached after which any additional advertising expenditure results in
increased sales but at a slower rate of increase. This point, commonly known
as the point of diminishing returns, is the point of inflection of the function
S. We will return to this example later.
Let’s now state formally the definition of an inflection point.
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Inflection Point

FIGURE 4.34
At each point of inflection, the graph of a
function crosses ifs tangent line.

Finding Inflection
Points

A

EXAMPLE 3

FIGURE 4.35
Sign diagram for "

A point on the graph of a differentiable function fat which the concavity changes
is called an inflection point.

Observe that the graph of a function crosses its tangent line at a point of

inflection (Figure 4.34).

Concave
upward

Concave

upward Concave

downward

Concave
upward

Concave Concave
downward downward

The following procedure may be used to find inflection points.

1. Compute f"(x).
2. Determine the points in the domain of f for which f”(x) = 0 or f”(x) does
not exist.

3. Determine the sign of f”(x) to the left and right of each point x = ¢ found
in step 2. If there is a change in the sign of f”(x) as we move across the point
x = ¢, then (¢, f(c)) is an inflection point of f.

The points determined in step 2 are only candidates for the inflection points
of f. For example, you can easily verify that f”(0) = 0 if f(x) = x* but a
sketch of the graph of f will show that (0, 0) is not an inflection point of f.

Find the points of inflection of the function f(x) = x°.

£ =3
f"(x) = 6x

Observe that f” is continuous everywhere and is zero if x = 0. The sign
diagram of f” is shown in Figure 4.35. From this diagram, we see that f"(x)

——————— O+ + ++ + + +
} X

0




FIGURE 4.36
f has an inflection point at (0, 0).

EXAMPLE 4

FIGURE 4.37
Sign diagram for f”

Sf"not defined here

FIGURE 4.38
f has an inflection point at (1, 0).
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changes sign as we move across x = 0. Thus, the point (0, 0) is an inflection
point of the function f (Figure 4.36).

Determine the intervals where the function f(x) = (x — 1)** is concave upward
and where it is concave downward and find the inflection points of f.

The first derivative of fis
' — 5 213
f@=2x-1

and the second derivative of fis

J(x) = % (x—1)""= 9(x 1_01)1/3

We see that f” is not defined at x = 1. Furthermore, f”(x) is not equal to
zero anywhere. The sign diagram of f” is shown in Figure 4.37. From the sign
diagram, we see that fis concave downward on (—, 1) and concave upward
on (1, ). Next, since x = 1 does lie in the domain of f, our computations
also reveal that the point (1, 0) is an inflection point of f (Figure 4.38).

y
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EXAMPLE 5 Determine the intervals where the function

1
x2+1

f(x) =

is concave upward and where it is concave downward and find the inflection
points of f.

JINEITTYA  The first derivative of fis

fl(x)= 6% (x+1)t=2x(x2+1)? (Using the general power rule)

___2x
(x> + 1)

Next, using the quotient rule, we find

_ (2 + 1D)X(=2) + (20)2(x* + D(2x)

f"(x) 2+ 1)
_ @+ D[22+ 1) +8x7] (¥ + 1)(6x — 2)
(x> + 1) x>+ 1)
= M C. l th f, t Q
FIGURE 4.39 (x2 n 1)3 (Canceling the common factors)
Sign diagram for f”
bbb _ o Observe that f” is continuous everywhere and is zero if
f f f X
-3 0 3
= 5 3x-1=0
, 1
x*=z
FIGURE 4.40 3
The graph of f(x) = ZL]
. y X+ or x = *V/3/3. The sign diagram for f” is shown in Figure 4.39. Iir/gm the
15 concave upwarc: on sign diagram for f”, we see that f is concave upward on (—o, —V3/3) U
(_doo' _\/3/3) Ud(\/§/3’ ) (V3/3, ») and concave downward on (—V/3/3, V/3/3). Also, observe that
un_\c;)gcuve\/o!vnwur on f"(x) changes sign as we move across the points x = —V/3/3 and x =
( 3/3, V3/3). V/3/3. Since
y
1
f<_£ S L3 e (V)23
3 1/3+1 4 3 4

I —t x we see that the points (—V/3/3, 3/4) and (V/3/3, 3/4) are inflection points of

-1 L2 f. The graph of fis shown in Figure 4.40.



EXAMPLE &

SOLUTION v

FIGURE 4.41
The graph of S(x) has a point of inflection
at (50, 2700).
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Group Discussion
D 1. Suppose (¢, f(c)) is an inflection point of f. Can you conclude
that f has a relative extremum at x = ¢? Explain your answer.
2. True or false: A polynomial function of degree 3 has exactly one inflec-
tion point.
Hint: Study the function f(x) = ax® + bx> + ¢x + d (a # 0).

APPLICATIONS

Examples 6 and 7 illustrate familiar interpretations of the significance of the
inflection point of a function.

The total sales S (in thousands of dollars) of the Arctic Air Corporation, a
manufacturer of automobile air conditioners, is related to the amount of
money x (in thousands of dollars) the company spends on advertising its
products by the formula

S = —0.01x* + 1.5x* + 200 (0 = x = 100)

Find the inflection point of the function S.

The first two derivatives of S are given by

S’ = —0.03x2+ 3x
S" = —0.06x + 3

Setting §” = 0 gives x = 50 as the only candidate for an inflection point of
S. Moreover, since

S§”">0 for x<50
§"<0 for x>50

the point (50, 2700) is an inflection point of the function S. The graph of
S appears in Figure 4.41. Notice that this is the graph of the function we
discussed earlier.

Thousands of dollars

T T T T T X
20 40 60 80 100
Thousands of dollars
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FIGURE 4.42

EXAMPLE 7

SOLUTION v

The graph of /(1) has a point of inflection

at (5, 150).

1(1)

FIGURE 4.43

An economy’s consumer price index (CPI) is described by the function
I(r) = —0.2£ + 3¢ + 100 0=t=09)

where ¢t = 0 corresponds to the year 1991. Find the point of inflection of the
function [ and discuss its significance.

The first two derivatives of I are given by
I'(t) = —0.682 + 61
I'ty=—-12t+6=-12(t—95)

Setting 1"(f) = 0 gives t = 5 as the only candidate for an inflection point of
1. Next, we observe that

[">0 for <5
1I"<0 for t>5

so the point (5, 150) is an inflection point of /. The graph of [ is sketched in
Figure 4.42.

Since the second derivative of I measures the rate of change of the inflation
rate, our computations reveal that the rate of inflation had in fact peaked at
t = 5. Thus, relief actually began at the beginning of 1996.

THE SECOND DERIVATIVE TEST

We now show how the second derivative f” of a function f can be used to
help us determine whether a critical point of fis a relative extremum of f.
Figure 4.43a shows the graph of a function that has a relative maximum at
x = c. Observe that f is concave downward at that point. Similarly, Figure
4.43b shows that at a relative minimum of f the graph is concave upward. But
from our previous work we know that f is concave downward at x = c if
f"(c) < 0 and fis concave upward at x = c if f"(c) > 0. These observations
suggest the following alternative procedure for determining whether a critical
point of f gives rise to a relative extremum of f. This result is called the second
derivative test and is applicable when f” exists.

y y
7i/ _—_ [(©)>0 ,
F(c)<0
} X } X
C C
(a) f has a relotive maximum at (b) f has a relative minimum ot

X==« X=10C



The Second
Derivative Test

EXAMPLE 8

SOLUTION v
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1. Compute f’(x) and f"(x).
2. Find all the critical points of f at which f'(x) = 0.

3. Compute f"(c) for each such critical point c.
a. If f”(c) < 0, then f has a relative maximum at c.
b. If f"(c) > 0, then f has a relative minimum at c.
c. If f"(c) = 0, the test fails; that is, it is inconclusive.

XYW As stated in step 3c, the second derivative test does not yield a
conclusion if f"(c) = 0 or if f”(c) does not exist. In other words, x = ¢ may
give rise to a relative extremum or an inflection point (see Exercise 91, page
320). In such cases, you should revert to the first derivative test.

Determine the relative extrema of the function
flx) = x* — 3x2 — 24x + 32

using the second derivative test. (See Example 7, Section 4.1.)

We have
fl(x) =3x> — 6x — 24 = 3(x + 2)(x — 4)

so f'(x) = 0 gives x = —2 and x = 4, the critical points of f, as in Example
7. Next, we compute

f'x)y=6x—6=06(x—1)
Since
f'(=2)=6(-2-1)=-18<0

the second derivative test implies that f(—2) = 60 is a relative maximum of
f- Also,

4 =64—-1)=18>0

and the second derivative test implies that f(4) = —48 is a relative minimum
of f, which confirms the results obtained earlier.

Group Discussion
Suppose a function f has the following properties:

1. f"(x) > O for all x in an interval (a, b).
2. There is a point ¢ between a and b such that f'(c) = 0.

What special property can you ascribe to the point (c, f(c))? Answer the
question if Property 1 is replaced by the property that f”(x) < 0 for all x
in (a, b).
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COMPARING THE FIRST AND SECOND DERIVATIVE TESTS

Notice that both the first derivative test and the second derivative test are
used to classify the critical points of f. What are the pros and cons of the two
tests? Since the second derivative test is applicable only when f” exists, it is
less versatile than the first derivative test. For example, it cannot be used to
locate the relative minimum f(0) = 0 of the function f(x) = x%.

Furthermore, the second derivative test is inconclusive when f” is equal
to zero at a critical point of f, whereas the first derivative test always yields
positive conclusions. The second derivative test is also inconvenient to use
when f” is difficult to compute. On the plus side, if f” is computed easily, then
we use the second derivative test since it involves just the evaluation of f” at
the critical point(s) of f. Also, the conclusions of the second derivative test
are important in theoretical work.

We close this section by summarizing the different roles played by the
first derivative f’ and the second derivative f” of a function f in determining
the properties of the graph of f. The first derivative f' tells us where f is
increasing and where f is decreasing, whereas the second derivative f” tells
us where f is concave upward and where f is concave downward. These
different properties of f are reflected by the signs of ' and f” in the interval
of interest. The following table shows the general characteristics of the
function f for various possible combinations of the signs of f' and f” in the
interval (a, b).

Signs of Properties of General Shape of
f and f' the Graph of f the Graph of f
f'(x)>0 f increasing J
f'(x) >0 f concave upward
f'(x)>0 f increasing /
f'(x) <0 f concave downward
fllx) <0 f decreasing
f'(x) >0 f concave upward \
fllx) <0 f decreasing "\
f'(x) <0 f concave downward

1. Determine where the function f(x) = 4x* — 3x? + 6 is concave upward and where
it is concave downward.

2. Using the second derivative test, if applicable, find the relative extrema of the
function f(x) = 2x* — 3x* — 12x — 10.
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3. A certain country’s gross domestic product (GDP) (in millions of dollars) in year

t is described by the function

G(f) = =2 + 45¢* + 20t + 6000

O=r=11

where ¢ = 0 corresponds to the beginning of the year 1989. Find the inflection point
of the function G and discuss its significance.

Solutions to Self-Check Exercises

4.2 can be found on page 320.

In Exercises 1-8, you are given the graph of a 4.
function f. Determine the intervals where fis
concave upward and where it is concave
downward. Also, find all inflection points of f,

if any.
1. y

./

—
|
(3]
| 4
—_
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N
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2__
1+
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2L

In Exercises 9-12, determine which graph—a,
b, or c—is the graph of the function fwith the

specified properties.
9. f(2) =1, f(2) > 0,and f"(2) <0
(a) y

8

™~

(b) ¥

-

<
\,_.
o -

(c)

:

A\

10. £(1) = 2, f'(x) > 0 on (=, 1) U (1, »), and f"(1) = 0

(@

- W

1 1

T T
\

\

(b) y

2__

/
M1 2 '

() y

2__

/l
12 !

11. f'(0) is undefined, fis decreasing on (— o, 0), fis concave
downward on (0, 3), and f has an inflection point at
x =3.
(a) y

(b) y




(¢ y

12. fis decreasing on (—, 2) and increasing on (2, »), fis
concave upward on (1, ), and f has inflection points at
x=0and x = 1.

(a) y

\

1+

(b) y

(c) y
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13.

14.

15.

EFFECT OF ADVERTISING ON BANK DEP0SITS The following
graphs were used by the CEO of the Madison Savings
Bank to illustrate what effect a projected promotional
campaign would have on its deposits over the next year.
The functions D, and D, give the projected amount of
money on deposit with the bank over the next 12 mo
with and without the proposed promotional campaign,
respectively.

a. Determine the signs of D{(t), D;(t), D{(¢t), and D5(¢)
on the interval (0, 12).

b. Explain the significance of your results in the context
of the problem.

y=Di®)

y=D(t)

12

AssempLY TIME oF A WoRKER In the following graph, N ()
gives the number of transistor radios assembled by the
average worker by the ¢th hour, where ¢ = 0 corresponds
to 8 A.m. and 0 = ¢t = 4. Explain the significance of the
inflection point P shown on the graph.

y=N(@)

t (hrs)

N ———

7S S

WATER PoLLUTION When organic waste is dumped into a
pond, the oxidation process that takes place reduces the
pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. In the
graph on page 316, P(t) gives the oxygen content (as a
percentage of its normal level) # days after organic waste
has been dumped into the pond. Explain the significance
of the inflection point Q.
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t (days)

In Exercises 16-21 show that the function is
concave upward wherever it is defined.

16. f(x) = 4x* — 12x + 7

17. g(x) =x4+%x2+ 6x + 10

19, () = =

21 g(x) = —V4—-x2

18. h(x) = %
20. h(x) = Vx> +4

In Exercises 22-43, determine where the func-
tion is concave upward and where it is con-
cave downward.

22. g(x) = —x*+3x + 4
24, g(x) = x* — x
26. f(x) = 3x* —6x*+ x — 8

23. f(x) =2x>* - 3x + 4
25. f(x) = x* =1

27. f(x) = x* —6x°+2x + 8

28. f(x) = Vx 29, f(x) = x7
30. g(x) = Vx -2 31 f(x) = V4 —x
2. g = 3. f(x) = ﬁ
M. g = 3. 1) = 51—
36. flx) =2 i 3. h(t) = %

1 1
38. h(r) = — m 39. g(x) = x + F
40. f(x) = (x — 2% AL g() = (26 — 4P
2. o) =2 . ) =

In Exercises 44-55, find the inflection points,
if any, of each function.

4. g(x) = x* — 61 45, f(x) = x> -2

46. g(x) = 2x* — 3x* + 18x — 8

47. f(x) = 6x> — 18x> + 12x — 15

49, f(x) =3x* —4x* + 1
51. g(1) = Vi

53. fx) = (x — 1)* + 2

48. f(x) = x* = 2x* + 6
50. f(x) = Vx
52, f(x) = (x — 2)*

54, f(x) = 2 + % 55, f(x) =

1+ x?

In Exercises 56-73, find the relative extrema,
if any, of each function. Use the second deriva-
tive test, if applicable.

56. g(x) = 2x*+3x + 7 57. f(x) = —x* +2x + 4
58. g(x) = x* — 6x 59. f(x) =2x* + 1
60. f(x) =2x>+3x> — 12x — 4

61. f(x) = %xS —-2x> = 5x - 10

62.f(t)=21+% 63. g(t)=t+%
64. fx) = -2 65. f(x) = —~
: x2+1 : 1—x
66. g(x)=x2+)2—c &7, f(t)=t2—$
68. g(x) = — 69. g(s) = —
-8 T e NSV
X x4
70. f(x)—xz_i_1 71. f(x)—x_1
x2+4 2—x
72. f(x)_x2—1 73. g(x)—(x_'_z)3

74. EFFecT OF BUDGET CuTs ON DRUG-RELATED CRIMES The fol-
lowing graphs were used by a police commissioner to
illustrate what effect a budget cut would have on crime
in the city. The number N, () gives the projected number

y y=N,(1)

y=N,®

12



~
wn

76.

77.

. DEmAND FOR RNs

of drug-related crimes in the next 12 mo. The number
N,(1) gives the projected number of drug-related crimes
in the same time frame if next year’s budget is cut.

a. Explain why N{(¢) and N;(¢) are both positive on the
interval (0, 12).

b. What are the signs of N7 (¢) and N5 (¢) on the interval
(0, 12)?

c. Interpret the results of part (b).

The following graph gives the total
number of help-wanted ads for RNs (registered nurses)
in 22 cities over the last 12 mo as a function of time ¢
(t measured in months).

a. Explain why N'(¢) is positive on the interval (0, 12).
b. Determine the signs of N”(¢) on the interval (0, 6)
and the interval (6, 12).

c. Interpret the results of part (b).

Y

y=N@)

} t
6 12

In the following figure, water is poured into the vase at
a constant rate (in appropriate units), and the water level
rises to a height of f(¢) units at time ¢ as measured from
the base of the vase. The graph of f follows. Explain the
shape of the curve in terms of its concavity. What is the
significance of the inflection point?

y

Concave
downward

X

Concave
upward

R
£
v

Inflection point

In the following figure, water is poured into an urn at a
constant rate (in appropriate units), and the water level
rises to a height of f(¢) units at time ¢ as measured from
the base of the urn. Sketch the graph of f and explain
its shape, indicating where it is concave upward and
concave downward. Indicate the inflection point on the
graph and explain its significance.

Hint: Study Exercise 76.
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78.

79.

80.

81.

EFFECT OF ADVERTISING ON HOTEL REVENUE The total annual
revenue R of the Miramar Resorts Hotel is related to
the amount of money x the hotel spends on advertising
its services by the function

R(x) = —0.003x* + 1.35x* + 2x + 8000
(0 =x=400)

where both R and x are measured in thousands of dollars.
Find the inflection point of R and discuss its significance.

EFFECT OF ADVERTISING ON SALES The total sales S of the
Cannon Precision Instruments Corporation is related to
the amount of money x that Cannon spends on advertis-
ing its products by the function

S(x) = —0.002x> + 0.6x2 + x + 500
(0 =x =200)

where S and x are measured in thousands of dollars.
Find the inflection point of the function S and discuss
its significance.

FORECASTING PROFITS As a result of increasing energy
costs, the growth rate of the profit of the 4-yr-old Venice
Glassblowing Company has begun to decline. Venice’s
management, after consulting with energy experts, de-
cides to implement certain energy-conservation mea-
sures aimed at cutting energy bills. The general manager
reports that, according to his calculations, the growth
rate of Venice’s profit should be on the increase again
within 4 yr. If Venice’s profit (in hundreds of dollars) x
years from now is given by the function

P(x) = x* — 9x* + 40x + 50 (0=x=23)

determine whether the general manager’s forecast will
be accurate.

Hint: Find the inflection point of the function P and study the
concavity of P.

WoRKER EFFICIENCY An efficiency study conducted for the
Elektra Electronics Company showed that the number
of Space Commander walkie-talkies assembled by the
average worker ¢ hours after starting work at 8 A.M. is
given by

N(@) = = + 62 + 15¢ O0=t=4)

At what time during the morning shift is the average
worker performing at peak efficiency?
(continued on p. 320)
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EXAMPLE 1

SOLUTION v

FIGURE T1
The graph of fin the viewing rectangle
[—3, 31 X [-25, 60]

318

FINDING THE INFLECTION POINTS
OF A FUNCTION

A graphing utility can be used to find the inflection points of a function and
hence the intervals where the graph of the function is concave upward and
the intervals where it is concave downward. Some graphing utilities have an
operation for finding inflection points directly. If your graphing utility has this
capability, use it to work through the example and exercises in this section.

Let f(x) = 2.5x5 — 12.4x° + 42x> — 52x + 4.

a. Use a graphing utility to plot the graph of f.

b. Find the inflection points of f.

c. Find the intervals where f is concave upward and where it is concave
downward.

a. The graph of f using the viewing rectangle [—3, 3] X [—25, 60] is shown
in Figure T1.

o

| N

b. From Figure T1 we see that f has three inflection points—one occurring
at the point where the x-coordinate is approximately —1, another at the
point where x =~ 0, and the third at the point where x ~ 1. To find the first
inflection point, we use the inflection operation, moving the cursor to the
point on the graph of f where x =~ —1. We obtain the point (—1.2728,
34.6395) (accurate to four decimal places). Next, setting the cursor near
the point x = 0 yields the inflection point (0.1139, 3.4440). Finally, with the
cursor set at x = 1, we obtain the third inflection point (1.1589, —10.4594).

c. From the results of part (b), we see that fis concave upward on the intervals
(—1.2728,0.1139) and (1.1589, o) and concave downward on (— o, —1.2728)
and (0.1139, 1.1589).



In Exercises 1-8, use a graphing utility to find
(a) the intervals where f is concave upward
and the intervals where f is concave down-
ward and (b) the inflection points of f. Express
your answers accurate to four decimal places.

1 f(x) = 1.8x* — 42x* + 2.1x + 2

2. f(x) = 21x* + 3183 + 2% —x + 12

3. f(x) = 1.2x° — 2x* + 32x% — 4x + 2

4. f(x) = —2.1x° + 32x3 — 2.2x% + 42x — 4
5. f(x) = 32+ 1)718

6. f(x) = x*(x* — 1)°

7 f) =t
8. f(x) = x\}xl

9. GRowTHoF HMOs Based on data compiled by the Group
Health Association of America, the number of people
receiving their care in an HMO (Health Maintenance
Organization) from the beginning of 1984 through 1994
is approximated by the function

f@®) = 0.0514¢* — 0.853¢* + 6.8147¢ + 15.6524
O<tr=11)

where f(f) gives the number of people in millions and ¢
is measured in years, with + = 0 corresponding to the
beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 120].

b. Find the points of inflection of f.

c. At what time in the given time interval was the num-
ber of people receiving their care at an HMO increasing
fastest?

Source: Group Health Association of America

10. MANUFACTURING CAPACITY Data obtained from the Fed-
eral Reserve show that the annual increase in manufac-

11.

12.

turing capacity between 1988 and 1994 is given by

f(r) = 0.0388889¢° — 0.283333¢> + 0.477778t
+ 2.04286 0=r=6)

where f(f) is a percentage and ¢ is measured in years,
with ¢ = 0 corresponding to the beginning of 1988.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 8] X [0, 4].

b. Find the point of inflection and interpret your result.
Source: Federal Reserve

Time on the Market According to the Greater Boston
Real Estate Board—Multiple Listing Service, the
average number of days a single-family home remains
for sale from listing to accepted offer is approximated
by the function

£(f) = 0.0171911¢* — 0.6621217 + 6.18083
— 8.97086¢ + 53.3357 (0=t=10)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 120].

b. Find the points of inflection and interpret your result.
Source: Greater Boston Real Estate Board—Multiple
Listing Service

MuLTiMEDIA SALES  According to the Electronic Industries

Association, sales in the multimedia market (hardware
and software) are expected to be

S(f) = —0.0094¢* + 0.1204¢° — 0.0868¢>
+0.0195¢ + 3.3325 (0=t=10)

where S(¢) is measured in billions of dollars and ¢ is
measured in years, with = 0 corresponding to 1990.
a. Plot the graph of S in the viewing rectangle [0, 12] X
[0, 25].

b. Find the inflection point of S and interpret your result.
Source: Electronic Industries Association

319
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CosT oF PRODUCING CALCULATORS A subsidiary of Elektra
Electronics manufactures programmable calculators.
Management determines that the daily cost C(x) (in
dollars) of producing these calculators is

C(x) = 0.0001x* — 0.08x2 + 40x + 5000

where x is the number of calculators produced. Find the
inflection point of the function C and interpret your
result.

. FLIGHT oF A RockeT The altitude (in feet) of a rocket ¢

sec into flight is given by
s = f(t) = —£ + 54> + 4801 + 6

Find the point of inflection of the function fand interpret
your result. What is the maximum velocity attained by
the rocket?

. AIr Poriution The level of ozone, an invisible gas that

irritates and impairs breathing, present in the atmo-
sphere on a certain May day in the city of Riverside was
approximated by

A(r) = 1.0974F — 0.0915¢ 0=t=11)

where A (f) is measured in pollutant standard index (PSI)
and ¢ is measured in hours, with ¢ = 0 corresponding to
7 aM. Use the second derivative test to show that the
function A has a relative maximum at approximately
t = 9. Interpret your results.

Exercises 85-87, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

85.

If the graph of fis concave upward on (a, b) then the
graph of —fis concave downward on (a, b).

SOLUTIONS 10 SELF-CHECK EXERCISES 4.2

1. We first compute

86.

87.

88.

89.

90.

91.

If the graph of fis concave upward on (a, ¢) and concave
downward on (c, b), where a < ¢ < b, then f has an
inflection point at x = c.

If x = c is a critical point of f where a < ¢ < b and
f"(x) < 0 on (a, b), then f has a relative maximum at
x=c

Show that the quadratic function

f(x) = ax* + bx + ¢ (a #0)

is concave upward if a > 0 and concave downward if
a < 0. Thus, by examining the sign of the coefficient of
x?, one can tell immediately whether the parabola opens
upward or downward.

Suppose f has an inflection point at (a, f(a)). Must the
function f’ have a relative extremum at x = a? Explain
your answer.

Show that the cubic function

fx) =ax* + bx* + ex +d (a #0)

has one and only one inflection point. Find the coordi-
nates of this point.

Consider the functions f(x) = x° g(x) = x* and
h(x) = —x*

a. Show that x = 0 is a critical point of each of the
functions f, g, and h.

b. Show that the second derivative of each of the func-
tions f, g, and & equals zero at x = 0.

c. Show that f has neither a relative maximum nor a
relative minimum at x = 0, that g has a relative minimum
at x = 0, and that 4 has a relative maximum at x = 0.

f'(x) =12x2 — 6x
f'(x)=24x—-6=6(4x—1)

Observe that f” is continuous everywhere and has a zero at x = ;. The sign diagram
of f” is shown in the accompanying figure.

—————— O+ + ++ + +

=)
e 4



4.3 Curve Sketching

4.3 m CURVE SKETCHING 3N

From the sign diagram for f”, we see that fis concave upward on (%, ®) and concave
downward on (—, 7).

2. First, we find the critical points of f by solving the equation

ffx)=6x>—x—-12=0

That is,
Bx+4)2x—-3)=0
giving x = —% and x = §. Next, we compute
F(x) = 12x — 1
Since

" 4 j— _i — -
f(—§>—12( 3> 1=-17<0

the second derivative test implies that f (—%) = 37 is a relative maximum of f. Also,

f”<%>=12<%>—1=17>0

and we see that f(3) = —12 is a relative minimum.

3. We compute the second derivative of G. Thus,

G'(t) = —6* +90¢ + 20
G"(f) = —12t + 90

Now, G" is continuous everywhere, and G"(¢) = 0, where ¢t = ¥, giving t = ¥ as
the only candidate for an inflection point of G. Since G"(f) > 0 for t < ¥ and
G’(f) < 0 for t > ¥, we see that the point (¥, 28%) is an inflection point of G.
The results of our computations tell us that the country’s GDP was increasing most
rapidly at the beginning of July 1996.

A REAL-LIFE EXAMPLE

As we have seen on numerous occasions, the graph of a function is a useful
aid for visualizing the function’s properties. From a practical point of view,
the graph of a function also gives, at one glance, a complete summary of all
the information captured by the function.

Consider, for example, the graph of the function giving the Dow-Jones
Industrial Average (DJIA) on Black Monday, October 19, 1987 (Figure 4.44).
Here, t = 0 corresponds to 8:30 aA.Mm., when the market was open for business,
and ¢ = 7.5 corresponds to 4 p.M., the closing time. The following information
may be gleaned from studying the graph.

The graph is decreasing rapidly from ¢t = 0 to ¢t = 1, reflecting the sharp
drop in the index in the first hour of trading. The point (1, 2047) is a relative
minimum point of the function, and this turning point coincides with the start
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FIGURE 4.44
The Dow-Jones Industrial Average on Black
Monday

FIGURE 4.45
The graph of f has a verfical asymptote at
x=1

2200
(2,2150)

2100

(1,2047)
2000
(4, 2006)

DJIA

1900

1800

1700

Source: Wall Street Journal

of an aborted recovery. The short-lived rally, represented by the portion of
the graph that is increasing on the interval (1, 2), quickly fizzled out at t = 2
(10:30 A.M.). The relative maximum point (2, 2150) marks the highest point
of the recovery. The function is decreasing in the rest of the interval. The
point (4, 2006) is an inflection point of the function; it shows that there was
a temporary respite at t = 4 (12:30 p.m.). However, selling pressure continued
unabated, and the DJIA continued to fall until the closing bell. Finally, the
graph also shows that the index opened at the high of the day [f(0) = 2247
is the absolute maximum of the function] and closed at the low of the day
[ f(15/2) = 1739 is the absolute minimum of the function], a drop of 508 points!*

Before we turn our attention to the actual task of sketching the graph of
a function, let’s look at some properties of graphs that will be helpful in
this connection.

VERTICAL ASYMPTOTES

Before going on, you might want to review the material on one-sided limits
and the limit at infinity of a function (Sections 2.4 and 2.5).
Consider the graph of the function

x+1
fx) =

shown in Figure 4.45. Observe that f(x) increases without bound (tends to
infinity) as x approaches x = 1 from the right; that is,

.ox+1
lim = o0
x—>l+x—1

* Absolute maxima and absolute minima of functions are covered in Section 4.4.
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You can verify this by taking a sequence of values of x approaching x = 1
from the right and looking at the corresponding values of f(x).

Here is another way of looking at the situation: Observe that if x is a
number that is a little larger than 1, then both (x + 1) and (x — 1) are positive,
so (x + 1)/(x — 1) is also positive. As x approaches x = 1, the numerator
(x + 1) approaches the number 2, but the denominator (x — 1) approaches
zero, so the quotient (x + 1)/(x — 1) approaches infinity, as observed earlier.
The line x = 1 is called a vertical asymptote of the graph of f.

For the function f(x) = (x + 1)/(x — 1), you can show that

and this tells us how f(x) approaches the asymptote x = 1 from the left.
More generally, we have the following definition:

Vertical Asymptote

The line x = a is a vertical asymptote of the graph of a function f if either

1im+ f(x)=0 or -

X—a

or

lim f(x) =0 Qr —o™

x—a -

XYW Although a vertical asymptote of a graph is not part of the graph,
it serves as a useful aid for sketching the graph.

For rational functions

P(x)
X)=—-—+%
=5 )
there is a simple criterion for determining whether the graph of f has any
vertical asymptotes.

Finding Vertical
Asymptotes of
Rational Functions fx) = 2&)

Suppose fis a rational function

Q(x)

where P and Q are polynomial functions. Then, the line x = a is a vertical
asymptote of the graph of fif Q(a) = 0 but P(a) # 0.

For the function
x+1
f) =T

considered earlier, P(x) = x + 1 and Q(x) = x — 1. Observe that Q(1) = 0
but P(1) = 2 # 0, so x = 1 is a vertical asymptote of the graph of f.
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EXAMPLE 1

SOLUTION v

FIGURE 4.46
x = —2and x = 2 are vertical asymp-
totes of the graph of f.

Find the vertical asymptotes of the graph of the function

2

o =1

The function fis a rational function with P(x) = x? and Q(x) = 4 — x2 The
zeros of Q are found by solving

4 —-x2=0
—that is,
2-v2+x)=0

giving x = —2 and x = 2. These are candidates for the vertical asymptotes of
the graph of f. Examining x = —2, we compute P(—=2) = (=2)* = 4 # 0, and
we see that x = —2 is indeed a vertical asymptote of the graph of f. Similarly,
we find P(2) = 2> = 4 # 0, and so x = 2 is also a vertical asymptote of the
graph of f. The graph of f sketched in Figure 4.46 confirms these results.

x=-2

Recall that in order for the line x = a to be a vertical asymptote of the graph
of a rational function f, only the denominator of f(x) must be equal to zero
at x = 0. If both P(a) and Q(a) are equal to zero, then x = a need not be a
vertical asymptote. For example, look at the function

_ 4(x2—4)

f) ===

whose graph appears in Figure 2.27a, page 119.

HORIZONTAL ASYMPTOTES
Let’s return to the function f defined by

floy =24

(Figure 4.47).



FIGURE 4.47
The graph of f has a horizontal asymptote
ay=1

Horizontal Asymptote
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y
4+
2__
N I T T N X
T T T T T T T
-2
-2 1
1\ x=1

Observe that f(x) approaches the horizontal line y = 1 as x approaches
infinity, and, in this case, f(x) approaches y = 1 as x approaches minus infinity
as well. The line y = 1 is called a horizontal asymptote of the graph of f.
More generally, we have the following definition.

The line y = b is a horizontal asymptote of the graph of a function fif either

lim f(x) =b or lim f(x)=»5b

For the function

x+1
x) =
f) =
we see that
1
+1 1y
. X 1 X (Divide numerator and
IVEE x—1 }{133 1 denominator by x.)
X
=1
Also,
1
1+-
. ox+1 . X
lim = lim
x——0 X — 1 X—>— 1
1-=
X

=1

In either case, we conclude that y = 1 is a horizontal asymptote of the graph
of f, as observed earlier.
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EXAMPLE 2

SOLUTION v

FIGURE 4.48
The graph of f has a horizontal asymptote
aty = -1

Find the horizontal asymptotes of the graph of the function

2

fo =75
4 — x?
We compute
lim x’ = lim (Dividing numerator and
o 4 —x2 o 4 denominator by x?)
X2
= -1

and so y = —1 is a horizontal asymptote, as before. The graph of f sketched
in Figure 4.48 confirms this result.

x=-2

We next state an important property of polynomial functions.

A polynomial function has no vertical or horizontal asymptotes.

To see this, note that a polynomial function P(x) can be written as a rational
function with denominator equal to 1. Thus,

P(x) = £
1
Since the denominator is never equal to zero, P has no vertical asymptotes.
Next, if P is a polynomial of degree greater than or equal to 1, then
lim P(x) lim P(x)

x>0

and

are either infinity or minus infinity; that is, they do not exist. Therefore, P
has no horizontal asymptotes.

In the last two sections, we saw how the first and second derivatives of a
function are used to reveal various properties of the graph of a function f.
We now show how this information can be used to help us sketch the graph
of f. We begin by giving a general procedure for curve sketching.



A Guide to Curve
Sketching

FIGURE 4.49

Sign diagram for f’

EXAMPLE 3

SOLUTION v

++++++0---0+++ +

0

1

2

T X

3
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. Determine the domain of f.

. Find the x- and y-intercepts of f.*

. Determine the behavior of f for large absolute values of x.

. Find all horizontal and vertical asymptotes of f.

. Determine the intervals where f is increasing and where fis decreasing.
. Find the relative extrema of f.

Determine the concavity of f.

. Find the inflection points of f.

o N AU A RN =

. Plot a few additional points to help further identify the shape of the graph
of f and sketch the graph.

We now illustrate the techniques of curve sketching with several examples.

Two STEP-BY-STEP EXAMPLES

Sketch the graph of the function
y=f(x) =x*—6x>+ 9% +2

Obtain the following information on the graph of f.

1. The domain of fis the interval (—oo, ).

2. By setting x = 0, we find that the y-intercept is 2. The x-intercept is found
by setting y = 0, which in this case leads to a cubic equation. Since the
solution is not readily found, we will not use this information.

3. Since

lim f(x) = lim (x* —6x*+9x +2) = —©
and lim f(x) = lim (x* — 6x> + 9x + 2) =

we see that f decreases without bound as x decreases without bound and
that f increases without bound as x increases without bound.
4. Since fis a polynomial function, there are no asymptotes.

fl(x)=3x*=12x +9 =3(x>—4x + 3)
=3x—-3)(x—-1)
5. Setting f'(x) = 0 gives x = 1 or x = 3. The sign diagram for f’ shows that

f is increasing on the intervals (—o0, 1) and (3, ©) and decreasing on the
interval (1, 3) (Figure 4.49).

* The equation f(x) = 0 may be difficult to solve, in which case one may decide against finding the x-intercepts
or use technology, if available, for assistance.
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FIGURE 4.50
Sign diagram for "

FIGURE 4.51
We first plot the intercept, the relative
extrema, and the inflection point.

y
74
(1,6)
6+ m=— Relative maximum
5+ Point of inflection
44 ./
3+  Intercept
2 ¥ Nl Relative
1L (:2)  minimum
—t—t—+—+— X
1 2 3 4 5 6

FIGURE 4.52
The graph of y = x* — 6x? + 9x + 2

of f.

6. From the results of step 5, we see that x = 1 and x = 3 are critical points

of f. Furthermore, f’ changes sign from positive to negative as we move
across x = 1, so a relative maximum of f occurs at x = 1. Similarly, we see
that a relative minimum of f occurs at x = 3. Now,

fH)y=1-6+9+2=6
f3)=3"-6(32+93)+2=2
so f(1) = 6 is a relative maximum of f and f(3) = 2 is a relative minimum

f'(x) = 6x — 12 = 6(x — 2)
which is equal to zero when x = 2. The sign diagram of f” shows that fis

concave downward on the interval (—o0, 2) and concave upward on the
interval (2, ) (Figure 4.50).

. From the results of step 7, we see that f” changes sign as we move across

the point x = 2. Next,
f2)=2"-6(22+92) +2=4
and so the required inflection point of fis (2, 4).

9. Summarizing, we have

Domain (— o, o)

Intercept 0,2)

lim f(x); lim f(x) — o0} 0o

Asymptotes None

Intervals where fis /7 or 7 on(—,1)U (3,%); N on(l,3)

Relative extrema Rel. max. at (1, 6); rel. min. at (3, 2)

Concavity Downward on (—, 2); upward on
(2, )

Point of inflection (2,4)

In general, it is a good idea to start graphing by plotting the intercept,
relative extrema, and inflection point (Figure 4.51). Then, using the rest of
the information, we complete the graph of f, as sketched in Figure 4.52.

—_ N W AR 2




EXAMPLE 4

FIGURE 4.53
The sign diagram for f’

SOLUTION v

f"is not defined here

********* |

0

1

X
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Group Discussion
D The average price of gasoline at the pump over a 3-month period,
during which there was a temporary shortage of oil, is described by the
function f defined on the interval [0, 3]. During the first month, the price
was increasing at an increasing rate. Starting with the second month, the
good news was that the rate of increase was slowing down, although the
price of gas was still increasing. This pattern continued until the end of the
second month. The price of gas peaked at the end of ¢+ = 2 and began to
fall at an increasing rate until ¢ = 3.
1. Describe the signs of f'(¢) and f"(¢) over each of the intervals (0, 1),
(1, 2), and (2, 3).
2. Make a sketch showing a plausible graph of f over [0, 3].

S

ketch the graph of the function

x+1
y=fx=7"7

Obtain the following information:

1. fis undefined when x = 1, so the domain of fis the set of all real numbers

2.

3.

4.

6.

other than x = 1.
Setting y = 0 gives —1, the x-intercept of f. Next, setting x = 0 gives —1
as the y-intercept of f.

Earlier we found that
im L1 and m 2L o1
X*)O(‘«x_l )H—wx—l

(see page 325). Consequently, we see that f(x) approaches the line y = 1
as |x| becomes arbitrarily large. For x > 1, f(x) > 1 and f(x) approaches
the line y = 1 from above. For x < 1, f(x) < 1, so f(x) approaches the line
y = 1 from below.
The straight line x = 1 is a vertical asymptote of the graph of f. Also, from
the results of step 3, we conclude that y = 1 is a horizontal asymptote of
the graph of f.
R TE R N €D S

f (x) - (x _ 1)2 - (x _ 1)2
and is discontinuous at x = 1. The sign diagram of f* shows that f'(x) <0
whenever it is defined. Thus, f is decreasing on the intervals (—o, 1) and
(1, ) (Figure 4.53).
From the results of step 5, we see that there are no critical points of f since
f'(x) is never equal to zero for any value of x in the domain of f.
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4
(xr—1)°
The sign diagram of f” shows immediately that fis concave downward on
the interval (— o0, 1) and concave upward on the interval (1, o) (Figure 4.54).

7. f1(x) = d% [2(x — 1) = 4(x — 1) =

FIGURE 4.54 /"is not defined here
The sign diagram for f”

8. From the results of step 7, we see that there are no candidates for inflection
points of fsince f”(x) is never equal to zero for any value of x in the domain
of f. Hence, f has no inflection points.

9. Summarizing, we have

FIGURE 4.55

The graph of £ has a horizontal asymptote Domain (=, 1) U (1, »)
ty =1 fical asymptote at ' '
?{i ] and a vertical asymptote a Intercepts 0, = 1): (1, 0)
lim f(x); lim f(x) 1;1
y X—>—0© X—>0
4 Asymptotes x = 11is a vertical asymptote;
4L y = 1 is a horizontal asymptote
+ Intervals where fis / or ™ Noon (—o0, 1) U (1, )
2T Relative extrema None
T Concavity Downward on (—o0, 1); upward on
i S A (1, @)
-2 2 4 . . .
Points of inflection None
_2 -
1y x=1
The graph of fis sketched in Figure 4.55.

1. Find the horizontal and vertical asymptotes of the graph of the function

f =2

2. Sketch the graph of the function
fx) =§x3 —2x*—6x + 4

Solutions to Self-Check Exercises 4.3 can be found on page 339.
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In Exercises 1-10, find the horizontal and ver-
tical asymptotes of the graph.

1. v

y=
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9. x3—x
’ 27. glv) = x(x+1)

1+ xh—x?

28. flx) = x(x—1)(x+2)

=

In Exercises 29 and 30, you are given the
graphs of two functions fand g. One function
is the derivative function of the other. ldentify

10. y each of them.
\V », y
x2-4 104
T o= . 0
T 75+
— | | _— i 4
2\ L /2 '\
+ : T : } } I X
-3 -2 -1 1 2 3
+ 25
54
=75+
In Exercises 11-28, find the horizontal and f _104+
vertical asymptotes of the graph of the func-
tion. (You need not sketch the graph.)
_1 _ 1 30. y
11. f(x) = r 12. f(x) T2 0
f
2 1
13. f(x) = - ; 14. g(x) = m
4
x—1 t+1
. = . o 2
1510 =5 16800 =57
} T T } } } X
17. h(x) = x* = 3x> + x + 1 -2 -1 2 ! 2 3 4
18. g(x) =2x + x2 + 1 -4
g 6
19 £ 20 X
S0 =55 L8 =5
31. TermINAL VELOCITY A skydiver leaps from the gondola
21, f(x) = 3x 22, g(x) = — 2x of a hpt-air bal.loon. As she frf%e-falls., air resistanf:e,
x*—x—6 xX*+x—-2 which is proportional to her velocity, builds up to a point
where it balances the force due to gravity. The resulting
5 2 motion may be described in terms of her velocity as
23. g(t) =2 + ——5 24. =1+ —
8(1) (t—2) f() x—3 follows: Starting at rest (zero velocity), her velocity in-
creases and approaches a constant velocity, called the
1 — . : .
25. f(x) = x2 2 26. h(x) = 22 X t(?rmtnal velocity. Sketch a graph of her velocity v versus
x*—4 x*+x time ¢.



In Exercises 32-35, use the information sum-
marized in the table to sketch the graph of f.

32. fl(x) =x* = 3x*+ 1

Domain
Intercept
Asymptotes

Intervals where fis 7 and

Relative extrema

(—oo’ OO)

y-intercept: 1

None

7 on (—oo’ 0) U (2’ OO);
N on (0, 2)

Rel. max. at (0, 1);
rel. min. at (2, —3)

Concavity Downward on (—, 1);
upward on (1, «)
Point of inflection 1, -1)
1
33. f(x) = 5 (x* — 4x%)

Domain (=, )

Intercepts x-intercepts: 0, 4;
y-intercept: 0

Asymptotes None

Intervals where fis ~ and ™ 7 on (3, »);

Relative extrema
Concavity

Points of inflection

N on (—, 0) U (0, 3)
Rel. min. at (3, —3)
Downward on (0, 2);

upward on (—o, 0) U

2, )

(0, 0) and (2, —16/9)

4x — 4
3M. f(x) =
fx) = =5
Domain (=0, 0) U (0, »)
Intercept x-intercept: 1
Asymptotes x-axis and y-axis

Intervals where fis /7 and

Relative extrema
Concavity

Points of inflection

7 on (0, 2);

N oon (—o, 0) U (2, »)
Rel. max. at (2, 1)
Downward on (=, 0) U

(0, 3); upward on (3, «)
(3, 8/9)

35. f(x) = x — 3x!8

Domain
Intercepts
Asymptotes

Intervals where fis /7 and

Relative extrema
Concavity

Points of inflection

(=, @)

x-intercepts: +3V3,0
None

7 on (=, —=1) U (1, «);

N oon (—1,1)
Rel. max. at (—1, 2); rel.
min. at (1, —2)

Downward on (—, 0);
upward on (0, )
0,0
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In Exercises 36-59, sketch the graph of the
function, using the curve-sketching guide of
this section.

36. f(x) =x*—2x+3 37. g(x) =4 — 3x — 2x°
38. f(x) =2x* + 1 39. h(x) =x*—3x +1
40. f(¢r) = 22 — 152 + 361 — 20
1. f(x) = —2x° + 3x> + 12x + 2
42. f(t) = 3¢t* + 48
43. h(x) = %x“ —2x3 —6x2+ 8
4. f(x) = Vx2+5 4. f(t) = V' —4
46. f(x) = V¥ 47, g(x) = %x VA
1 2
48. f(x) = T+l 49, g(x) = m
X x+2
50. g(x)—x_1 51. h(x)—x_2
X i
52. g(x) = 4 53. f(t) = m
_x'=9 _ =2
54. fx) = 5= 55, 8() = -
1 o+l
56. h(x)—xz_x_2 57. g(t)_—tz—Zz—l
58. g(x) = (x +2)" + 1 59. h(x) = (x — 1) + 1
60. Cost oF REmovING Toxic POLLUTANTS A city’s main well

61.

was recently found to be contaminated with trichloroeth-
ylene (a cancer-causing chemical) as a result of an aban-
doned chemical dump leaching chemicals into the water.
A proposal submitted to the city council indicated that
the cost, measured in millions of dollars, of removing
x% of the toxic pollutants is given by

0.5x
100 — x

C(x) =

a. Find the vertical asymptote of C(x).
b. Is it possible to remove 100% of the toxic pollutant
from the water?

AVERAGE CosT oF PRODUCING VIDEO Discs The average cost
per disc (in dollars) incurred by the Herald Record Com-
pany in pressing x video discs is given by the average
cost function

T =22+ @

a. Find the horizontal asymptote of C(x).
b. What is the limiting value of the average cost?
(continued on p. 338)



Using Technology

EXAMPLE 1

FIGURE T1
The graph of fin the standard viewing
reciangle

FIGURE T2
The graph of fin the viewing rectangle

[—10, 101 x [—120, 10]

334

ANALYZING THE PROPERTIES OF A FUNCTION

One of the main purposes of studying Section 4.3 is to see how the many
concepts of calculus come together to paint a picture of a function. The
techniques of graphing also play a very practical role. For example, using the
techniques of graphing developed in Section 4.3, you can tell if the graph of
afunction generated by a graphing utility is reasonably complete. Furthermore,
these techniques can often reveal details that are missing from a graph.

Consider the function f(x) = 2x* — 3.5x*> + x — 10. A plot of the graph of f
in the standard viewing rectangle is shown in Figure T1. Since the domain of
f is the interval (—o0, ), we see that Figure T1 does not reveal the part of
the graph to the left of the y-axis. This suggests that we enlarge the viewing
rectangle accordingly. Figure T2 shows the graph of fin the viewing rectangle
[—10, 10] X [—20, 10].

/

The behavior of ffor large values of f[lim f(x) = —o and lim f(x) = %]

suggests that this viewing rectangle has captured a sufficiently complete picture
of f. Next, an analysis of the first derivative of f,

flx)=6x2—7x+1=(6x —1)(x —1)



FIGURE T3
The graph of fin the viewing rectangle
[=1 2] X [-11, 8]

EXAMPLE 2

SOLUTION v

reveals that f has critical values at x = 1/6 and x = 1. In fact, a sign diagram
of f shows that f has a relative maximum at x = 1/6 and a relative minimum
at x = 1, details that are not revealed in the graph of f shown in Figure T2.
To examine this portion of the graph of f, we use, say, the viewing rectangle
[—1, 2] X [—11, —8]. The resulting graph of f is shown in Figure T3, which
certainly reveals the hitherto missing details! Thus, through an interaction of
calculus and a graphing utility, we are able to obtain a good picture of the
properties of f.

p

FINDING x-INTERCEPTS

As noted in Section 4.3, it is not always easy to find the x-intercepts of the
graph of a function. But this information is very important in applications.
By using the function for solving polynomial equations or the function for
finding the roots of an equation, we can solve the equation f(x) = 0 quite
easily and hence yield the x-intercepts of the graph of a function.

Let f(x) = x* — 3x* + x + 1.5.

a. Use the function for solving polynomial equations on a graphing utility to
find the x-intercepts of the graph of f.

b. Use the function for finding the roots of an equation on a graphing utility
to find the x-intercepts of the graph of f.

a. Observe that fis a polynomial function of degree 3, and so we may use
the function for solving polynomial equations to solve the equation
x> —=3x2+ x + 1.5 = 0 [ f(x) = 0]. We find that the solutions (x-intercepts)
are

x; =~ —0.525687120865, x, =~ 1.2586520225, x; == 2.26703509836

335



FIGURE T4
The graph of
fX) =x* =3+ x+ 15

336

EXAMPLE 3

SOLUTION v

b. Using the graph of f (Figure T4), we see that x; =~ —0.5, x, =~ 1, and x; =~ 2.
Using the function for finding the roots of an equation on a graphing utility,
and these values of x as initial guesses, we find

x; = —0.5256871209, x, = 1.2586520225, x5 =~ 2.2670350984

IEEAIYX® The function for solving polynomial equations on a graphing utility
will solve a polynomial equation f(x) = 0, where fis a polynomial function.
The function for finding the roots of a polynomial, however, will solve equa-
tions f(x) = 0 even if fis not a polynomial.

Unless payroll taxes are increased significantly and/or benefits are scaled back
drastically, it is a matter of time before the current Social Security system
goes broke. Based on data from the Board of Trustees of the Social Security
Administration, the assets of the system—the Social Security “trust fund”—
may be approximated by

£(f) = —0.0129¢ + 0.3087¢ + 2.1760¢” + 62.8466¢ + 506.2955 (0= ¢ =35)

where f(¢) is measured in millions of dollars and ¢ is measured in years, with
t = 0 corresponding to 1995.

a. Use a graphing calculator to sketch the graph of f.

b. Based on this model, when can the Social Security system be expected to
go broke?

Source: Social Security Administration

a. The graph of fin the window [0, 35] X [—1000, 3500] is shown in Figure T5.

b. Using the function for finding the roots on a graphing utility, we find that
y = 0 when r =~ 34.1, and this tells us that the system is expected to go
broke around 2029.



FIGURE T5

In Exercises 1-4, use the method of Example
1 to analyze the function. (Note: Your answers
will not be unique.)

1 f(x) = 4x* — 4x> + x + 10

2. f(x) =x>+2x* +x — 12
3 f(x)=1x“+x3+lx2—10
) 2 2

4. f(x) = 2.25x* — 4x* + 2x* + 2

In Exercises 5-10, find the x-intercepts of the

graph of f. Give your answer accurate to four
decimal places.

5. f(x) = 02x° — 1.2x2 + 0.8x + 2.1
6. f(x) = —0.5x3 + 1.7x2 — 1.2
7. f(x) = 0.3x* — 1.2x% + 0.8x* + 1.1x — 2
8 f(x) = —02x* + 0.8x* — 2.1x + 1.2
9. fx) =22 - Vx+1-3
10. f(x) =x — V1-x?

337
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62.

63.

64.
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CONCENTRATION OF A DRUG IN THE BLOODSTREAM The concen-
tration (in milligrams per cubic centimeter) of a certain
drug in a patient’s bloodstream ¢ hr after injection is
given by

0.2t
£+1

Cn) =

a. Find the horizontal asymptote of C(t).
b. Interpret your result.

EFFEcT oF ENZYMES ON CHEMICAL REACTIONS Certain pro-
teins, known as enzymes, serve as catalysts for chemical
reactions in living things. In 1913 Leonor Michaelis and
L. M. Menten discovered the following formula giving
the initial speed V (in moles per liter per second) at
which the reaction begins in terms of the amount of
substrate x (the substance that is being acted upon, mea-
sured in moles per liter):

ax
x+b

V=

where a and b are positive constants.
a. Find the horizontal asymptote of V.
b. Interpret your result.

WoRrkKER EFFICIENCY  An efficiency study showed that the
total number of cordless telephones assembled by an
average worker at Delphi Electronics ¢ hr after starting
work at 8 A.M. is given by

N(l)=*%t3+3t2+10t 0=r=4

Sketch the graph of the function N and interpret your re-
sults.

. GDP oF A DeveLoPING COUNTRY A developing country’s

gross domestic product (GDP) from 1992 to 2000 is ap-
proximated by the function

G(@t) = —0.28 + 2.4 + 60 0=r=238)
where G(¢) is measured in billions of dollars and t = 0
corresponds to the year 1992. Sketch the graph of the
function G and interpret your results.

66.

67.

68.

69.

CONCENTRATION OF A DRUG IN THE BLOODSTREAM The concen-
tration (in millimeters per cubic centimeter) of a certain
drug in a patient’s bloodstream ¢ hours after injection is
given by

0.2t
£+1

c(@) =

Sketch the graph of the function C and interpret your re-
sults.

OxvGen CoNTENT ofF A PoND When organic waste is
dumped into a pond, the oxidation process that takes
place reduces the pond’s oxygen content. However,
given time, nature will restore the oxygen content to its
natural level. Suppose the oxygen content ¢ days after
organic waste has been dumped into the pond is given
by

0=t<w)

P—4r+4
£+4

f(t) =100 (

percent of its normal level. Sketch the graph of the func-
tion f and interpret your results.

Box-0Frice RECEIPTS The total worldwide box-office re-
ceipts for a long-running movie are approximated by the
function

120x?
() =va

where T'(x) is measured in millions of dollars and x is
the number of years since the movie’s release. Sketch
the graph of the function 7T and interpret your results.

Cost oF REMOVING Toxic POLLUTANTS A city’s main well
was recently found to be contaminated with trichloroeth-
ylene, a cancer-causing chemical, as a result of an aban-
doned chemical dump leaching chemicals into the water.
A proposal submitted to the city council indicates that
the cost, measured in millions of dollars, of removing
X% of the toxic pollutant is given by

0.5x
C) =100 —x

Sketch the graph of the function C and interpret your re-
sults.
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SOLUTIONS 10 SELF-CHECK EXERCISES 4.3

1. Since

. 2x . .
lim = lim Divide the numerator
2
e Xt =1 o 1-—= and denominator by x2.)

==
©

=2
we see that y = 2 is a horizontal asymptote. Next, since
X¥=-1=x+Dx—-1)=0

implies x = —1 or x = 1, these are candidates for the vertical asymptotes of f. Since
the numerator of fis not equal to zero for x = —1 or x = 1, we conclude that x =
—1 and x = 1 are vertical asymptotes of the graph of f.

2. We obtain the following information on the graph of f.
(1) The domain of fis the interval (—o, ).
(2) By setting x = 0, we find the y-intercept is 4.

(3) Since

. . 2

lim f(x) = lim <§x3 —2x*—6x+ 4) = —w
and lim f(x) = lim <§x3 —2x?—6x + 4) =

we see that f(x) decreases without bound as x decreases without bound and that
f(x) increases without bound as x increases without bound.
(4) Since fis a polynomial function, there are no asymptotes.
fl(x)=2x2—4x—6=2(x*-2x—3)
=2(x+1)(x—-3)

(5) Setting f'(x) = 0 gives x = —1 or x = 3. The accompanying sign diagram for
f' shows that f is increasing on the intervals (—o, —1) and (3, «) and decreasing

on (—1, 3).
++++0- - - - - — 0+ + + +
1+ x
-1 0 3
Sign diagram for f”
(6) From the results of step 5, we see that x = —1 and x = 3 are critical points of f.
Furthermore, the sign diagram of f' tells us that x = —1 gives rise to a relative

maximum of fand x = 3 gives rise to a relative minimum of f. Now,
A1) =2 (-1 - 21y - 6(-1) + 4= 2

1) = % By —203;-6(3) +4=-14
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so f(—=1) = 22/3 is a relative maximum of f and f(3) = —14 is a relative minimum
of f.
(7) ffx)=4x—-4=4(x-1)

which is equal to zero when x = 1. The accompanying sign diagram of f” shows
that f is concave downward on the interval (—o, 1) and concave upward on the
interval (1, «).

0 1
Sign diagram for /"

(8) From the results of step 7, we see that x = 1 is the only candidate for an
inflection point of f. Since f”(x) changes sign as we move across the point x = 1
and

F0) =2y =207 = 6(1) +4 = =2

we see that the required inflection point is (1, —10/3).
(9) Summarizing this information, we have

Domain (=0, )

Intercept 0, 4)

Intervals where fis 7~ or ~ 7 on (=, =1) U (3, ®); N~ on (-1, 3)
Relative extrema Rel. max. at (=1, 22/3); rel. min. at (3, —14)
Concavity Downward on (—°, 1); upward on (1, »)
Point of inflection (1, —10/3)

lim f(x); lim f(x) —o0;

Asymptotes None

The graph of fis sketched in the accompanying figure.

y=32x3-2x2-6x+4
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FIGURE 4.56
f(f) gives the average age of cars in use in
year £, tin [0, 441,

The Absolute Extrema of
a Function f
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ABSOLUTE EXTREMA

The graph of the function f in Figure 4.56 shows the average age of cars in
use in the United States from the beginning of 1946 (¢ = 0) to the beginning
of 1990 (¢t = 44). Observe that the highest average age of cars in use during
this period is 9 years, whereas the lowest average age of cars in use during
the same period is 53 years. The number 9, the largest value of f(r) for all
values of ¢ in the interval [0, 44] (the domain of f) is called the absolute
maximum value of f on that interval. The number 5%, the smallest value of
f(¢) for all values of ¢ in [0, 44], is called the absolute minimum value of f on
that interval. Notice, too, that the absolute maximum value of fis attained at
the end point t = 0 of the interval, whereas the absolute minimum value of
f is attained at the two interior points ¢ = 12 (corresponding to 1958) and
t = 23 (corresponding to 1969).

¥ (years)
0 94 Absolute maximum
=
g
g 87T
3] Absolute minimum y=f()
5 41
]
)
<
% 6T
<
g
< 5+
} } | t (years)
0 12 23 44

Source: American Automobile Association

A precise definition of the absolute extrema (absolute maximum or abso-
lute minimum) of a function follows.

If f(x) = f(c) for all x in the domain of f, then f(c) is called the absolute maximum
value of f.
If f(x) = f(c) for all x in the domain of f, then f(c) is called the absolute minimum
value of f.

Figure 4.57 shows the graphs of several functions and gives the absolute
maximum and absolute minimum of each function, if they exist.
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FIGURE 4.57

y y
4+ y=x?
3 —+
2__
1 —+
+—t +— X }
-2 -1 1 2 —2/ -1
(a) f(0) = 0 is the absolute mini- (b) f(0) = 4 is the absolute maxi-
mum of f; f has no absolute mum of f; fhas no absolute
maximum. minimum.
y y
LY xvﬁ 2T y=x
2T 1+
{ t X +— +—t X
-1 , 1 -2 112
Zis

() f(\/f/ 2) = 1/2 s the absolute maxi-  (d) £ has no absolute extrema.
mum of f f(—=\V/2/2) = —1/2 is the

absolute minimum of f.

ABSOLUTE EXTREMA ON A CLOSED INTERVAL

As the preceding examples show, a continuous function defined on an arbitrary
interval does not always have an absolute maximum or an absolute minimum.
But an important case arises often in practical applications in which both the
absolute maximum and the absolute minimum of a function are guaranteed
to exist. This occurs when a continuous function is defined on a closed interval.
Let’s state this important result in the form of a theorem, whose proof we
will omit.

If a function fis continuous on a closed interval [a, b], then f has both
an absolute maximum value and an absolute minimum value on [a, b].

Observe that if an absolute extremum of a continuous function f occurs
at a point in an open interval (a, b), then it must be a relative extremum of
f and hence its x-coordinate must be a critical point of f. Otherwise, the



FIGURE 4.58

The relative minimum of f at x, is the abso-
lute minimum of £ The right end point b
gives rise fo the absolute maximum value

f(b) of £

Finding the Absolute
Extrema of fon a
Closed Interval

EXAMPLE 1

FIGURE 4.59
F has an absolute minimum value of 0 and
an absolute maximum value of 4.

4.4 m QOPTIMIZATION | 343

y
Absolute

maximum

Rel.atlve y=f(x)

maximum
Relative
minimum Absolute
minimum
X
a Xy Xy X3 b

absolute extremum of f must occur at one or both of the end points of the
interval [a, b]. A typical situation is illustrated in Figure 4.58.

Here x,, x,, and x; are critical points of f. The absolute minimum of f
occurs at x;, which lies in the open interval (a, b) and is a critical point of f.
The absolute maximum of foccurs at b, an end point. This observation suggests
the following procedure for finding the absolute extrema of a continuous
function on a closed interval.

1. Find the critical points of f that lie in (a, b).

2. Compute the value of f at each critical point found in step 1 and compute
f(a) and f(b).

3. The absolute maximum value and absolute minimum value of fwill correspond
to the largest and smallest numbers, respectively, found in step 2.

Find the absolute extrema of the function F(x) = x? defined on the interval
[—1, 2]

The function F is continuous on the closed interval [—1, 2] and differentiable
on the open interval (—1, 2). The derivative of F is
F'(x) = 2x

so x = 0 is the only critical point of F. Next, evaluate F(x) at x = —1, x =
0, and x = 2. Thus,

F(-1)=1, F@0)=0, FQ)=4

It follows that O is the absolute minimum value of F and 4 is the absolute
maximum value of F. The graph of F, in Figure 4.59, confirms our results.
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EXAMPLE 2

SOLUTION

FIGURE 4.60
f has an absolute maximum value of 4 and
an absolute minimum value of —4.

Let f(x) = x> — 2x> — 4x + 4. (This is the function of Example 2.)

4 = \PPLICATIONS OF THE DERIVATIVE

Find the absolute extrema of the function
fx)=x—2x* —4x + 4

defined on the interval [0, 3].

The function f is continuous on the closed interval [0, 3] and differentiable
on the open interval (0, 3). The derivative of fis

flx) =3x>—4x —4=0Bx +2)(x —2)

and it is equal to zero when x = —% and x = 2. Since the point x = —3 lies
outside the interval [0, 3], it is dropped from further consideration, and
x = 2 is seen to be the sole critical point of f. Next, we evaluate f(x) at the
critical point of f as well as the end points of f, obtaining

f0)y=4, f2)=-4, f3) =1

From these results, we conclude that —4 is the absolute minimum value of f
and 4 is the absolute maximum value of f. The graph of f, which appears in
Figure 4.60, confirms our results. Observe that the absolute maximum of f
occurs at the end point x = 0 of the interval [0, 3], while the absolute minimum
of foccurs at x = 2, which is a point in the interval (0, 3).

Absolute maximum
44 y=x3-2x2-4x+4
2 -+
——+— — ’ ——>x
-4 1 2 4
2+
-4+ Absolute minimum

1. Use a graphing utility to plot the graph of f, using the viewing rectangle [0, 3] X [—5, 5]. Use TRACE to
find the absolute extrema of f on the interval [0, 3] and thus verify the results obtained analytically in

Example 2.

2. Plot the graph of f using the viewing rectangle [—2, 1] X [=5, 6]. Use zoom and TRACE to find the
absolute extrema of f on the interval [—2, 1]. Verify your results analytically.



EXAMPLE 3

SOLUTION v

FIGURE 4.61
f has an absolute minimum value of
f(0) = 0 and an absolute maximum value

of £(8) = 4.

Absolute
maximum

B NG

} } }
2 4 6 8
Absolute minimum

EXAMPLE 4

SOLUTION v
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Find the absolute maximum and absolute minimum values of the function
f(x) = x* on the interval [—1, 8].

The derivative of fis

, 2 2
f(x)=§x 1/3:3161/3

Note that f” is not defined at x = 0, is continuous everywhere else, and does
not equal zero for all x. Therefore, x = 0 is the only critical point of f.
Evaluating f(x) at x = —1, 0, and 8, we obtain

fH=1, f0)=0, f8) =4

We conclude that the absolute minimum value of fis 0, attained at x = 0,
and the absolute maximum value of fis 4, attained at x = 8 (Figure 4.61).

APPLICATIONS

Many real-world applications call for finding the absolute maximum value or
the absolute minimum value of a given function. For example, management
is interested in finding what level of production will yield the maximum profit
for a company; a farmer is interested in finding the right amount of fertilizer
to maximize crop yield; a doctor is interested in finding the maximum concen-
tration of a drug in a patient’s body and the time at which it occurs; and an
engineer is interested in finding the dimension of a container with a specified
shape and volume that can be constructed at a minimum cost.

The Acrosonic Company’s total profit (in dollars) from manufacturing and
selling x units of their model F loudspeaker systems is given by

P(x) = —0.02x* + 300x — 200,000 (0 = x = 20,000)
How many units of the loudspeaker system must Acrosonic produce to max-

imize its profits?

To find the absolute maximum of P on [0, 20,000], first find the critical points
of P on the interval (0, 20,000). To do this, compute

P'(x) = —0.04x + 300

Solving the equation P'(x) = 0 gives x = 7500. Next, evaluate P(x) at
x = 7500 as well as the end points x = 0 and x = 20,000 of the interval
[0, 20,000], obtaining

P(0) = —200,000
P(7500) = 925,000
P(20,000) = —2,200,000
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FIGURE 4.62

P has an absolute maximum at

(7500, 925,000).

FIGURE 4.63

Y Absolute
§ 1000 + / maximum
S 800+
5] —p
g 60T y=P@)

g 400+
3
< 200+
F
——t—t—t—N+>=x
_200{2 4 6 81012 \16
7 Units of a thousand

EXAMPLE 5

SOLUTION v

The velocity of airflow is greatest when the
radivs of the contracted trachea is 2R.

v

Absolute
maximum

v=f(r)
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From these computations we see that the absolute maximum value of the
function P is 925,000. Thus, by producing 7500 units, Acrosonic will realize a
maximum profit of $925,000. The graph of P is sketched in Figure 4.62.

Group Discussion

D Recall that the total profit function P is defined as P(x) = R(x) —
C(x), where R is the total revenue function, C is the total cost function,
and x is the number of units of a product produced and sold. (Assume all
derivatives exist.)

1. Show that at the level of production x, that yields the maximum profit
for the company, the following two conditions are satisfied:

R'(x¢) = C'(xy) R"(x) < C"(x)

2. Interpret the two conditions in part 1 in economic terms and explain
why they make sense.

and

When a person coughs, the trachea (windpipe) contracts, allowing air to be
expelled at a maximum velocity. It can be shown that during a cough the
velocity v of airflow is given by the function

v=7F(>r)=k*(R—-r)

where r is the trachea’s radius (in centimeters) during a cough, R is the
trachea’s normal radius (in centimeters), and k is a positive constant that
depends on the length of the trachea. Find the radius r for which the velocity
of airflow is greatest.

To find the absolute maximum of f on [0, R], first find the critical points of f
on the interval (0, R). We compute

f,(r) = 2kr(R - I’) — kr? (Using the product rule)
= —3kr* + 2kRr = kr(=3r + 2R)
Setting f'(r) = 0 gives r = 0 or r = 3R, and so r = 3R is the sole critical point

of f (r = 0 is an end point). Evaluating f(r) at r = 3R, as well as at the end
points r = 0 and r = R, we obtain

f0)=0

2 4k
i)

f(R)=0

from which we deduce that the velocity of airflow is greatest when the radius
of the contracted trachea is § R—that is, when the radius is contracted by
approximately 33%. The graph of the function fis shown in Figure 4.63.
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SOLUTION v

FIGURE 4.64
The minimum average cost is $35 per unit.
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Group Discussion
D Prove that if a cost function C(x) is concave upward [C"(x) > 0],
then the level of production that will result in the smallest average produc-
tion cost occurs when

Cx) = C'(x)
—that is, when the average cost C(x) is equal to the marginal cost C'(x).
Hints:
1. Show that
E,(X) — XC,(X) ; C(X)

x
so that the critical point of the function C occurs when

xC'(x) — C(x) =0
2. Show that at a critical point of C

Use the second derivative test to reach the desired conclusion.

The daily average cost function (in dollars per unit) of the Elektra Electronics
Company is given by

C(x) = 0.0001x2 — 0.08x + 40 + Sgﬂ (x>0)

where x stands for the number of programmable calculators Elektra produces.
Show that a production level of 500 units per day results in a minimum average
cost for the company.

The domain of the function C is the interval (0, «), which is not closed. To
solve the problem, we resort to the graphic method. Using the techniques of
graphing from the last section, we sketch the graph of C (Figure 4.64).

y

100 _
y=C)

80 +

4 Absolute
60 + minimum
40 +
204 (500, 35)

LI S B N R x

200 400 600 800 1000

Now,

5000

x2

C'(x) = 0.0002x — 0.08 —



348

4 = \PPLICATIONS OF THE DERIVATIVE

Refer to the preceding Group Discussion and Example 6.

Substituting the given value of x, 500, into C'(x) gives C'(500) = 0, so x =
500 is a critical point of C. Next,

C7(x) = 0.0002 + 10)}&

3

Thus,

10,000
(500)?

and by the second derivative test, a relative minimum of the function C occurs

at the point x = 500. Furthermore, C"(x) > 0 for x > 0, which implies that

the graph of C is concave upward everywhere, so the relative minimum of

C must be the absolute minimum of C. The minimum average cost is given by
5000

C(500) = 0.0001(500)* — 0.08(500) + 40 + -

C"(500) = 0.0002 + > 0

=35
or $35 per unit.

1. Using a graphing utility, plot the graphs of

and

C(x) = 0.0001x% — 0.08x + 40 + @

C’(x) = 0.0003x> — 0.16x + 40

using the viewing rectangle [0, 1000] X [0, 150].
Note: C(x) = 0.0001x* — 0.08x> + 40x + 5000 (Why?)

2. Find the point of intersection of the graphs of C and C' and thus verify the assertion in the Group
Discussion for the special case studied in Example 6.

EXAMPLE 7

SOLUTION v

The altitude (in feet) of a rocket ¢ seconds into flight is given by
s=f()=—-+96*+ 195t + 5 (t=0)

a. Find the maximum altitude attained by the rocket.
b. Find the maximum velocity attained by the rocket.

a. The maximum altitude attained by the rocket is given by the largest value
of the function f in the closed interval [0, T'], where T denotes the time the
rocket impacts Earth. We know that such a number exists because the domi-
nant term in the expression for the continuous function fis —#. So for ¢
large enough, the value of f(f) must change from positive to negative and, in
particular, it must attain the value 0 for some 7.



FIGURE 4.65

The maximum altitude of the rocket is
143,655 feet.

N

150,000 - Absolute—, ' g5 143 655)
maximum

s=£(0)
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FIGURE 4.66
The maximum velocity of the rocket is
3267 feet per second.

v

(32, 3267)

v=f'(0)

Absolute
maximum
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To find the absolute maximum of f, compute
f'(t) = =362+ 192t + 195
=-3(—-65)(+1)
and solve the equation f'(f) = 0, obtaining t = —1 and ¢ = 65. Ignore t = —1

since it lies outside the interval [0, T']. This leaves the critical point ¢t = 65 of
f. Continuing, we compute

£(0) =5,  f(65) = 143655, f(T) =0

and conclude, accordingly, that the absolute maximum value of fis 143,655.
Thus, the maximum altitude of the rocket is 143,655 feet, attained 65 seconds
into flight. The graph of fis sketched in Figure 4.65.

b. To find the maximum velocity attained by the rocket, find the largest value
of the function that describes the rocket’s velocity at any time /—namely,

v=f"(t)=-3+ 192t + 195 (t=0)
We find the critical point of v by setting v’ = 0. But
v’ = —6t+ 192
and the critical point of v is t = 32. Since
v'=-6<0

the second derivative test implies that a relative maximum of v occurs at
t = 32. Our computation has in fact clarified the property of the “velocity
curve.” Since v” < 0 everywhere, the velocity curve is concave downward
everywhere. With this observation, we assert that the relative maximum must
in fact be the absolute maximum of v. The maximum velocity of the rocket
is given by evaluating v at t = 32,

f'(32) = =3(32)* + 192(32) + 195

or 3267 feet per second. The graph of the velocity function v is sketched in
Figure 4.66.

1. Let f(x) = x — 2Vx.
a. Find the absolute extrema of f on the interval [0, 9].
b. Find the absolute extrema of f.
2. Find the absolute extrema of f(x) = 3x* + 4x* + 1 on [-2, 1].

3. The operating rate (expressed as a percentage) of factories, mines, and utilities in
a certain region of the country on the tth day of the year 2000 is given by the
function

1200¢

=80+ 55—
) =80+ 0,000

(0 =1=250)

On which day of the first 250 days of 2000 was the manufacturing capacity operating
rate highest?

Solutions to Self-Check Exercises 4.4 can be found on page 356.
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In Exercises 1-8, you are given the graph of a
function f defined on the indicated interval.
Find the absolute maximum and the absolute
minimum of f, if they exist.

1. y

fdefined on (-, «)

y
11
2
——+— —t—t—F+—t+>x
1 2 3 45
11
T2
fdefined on (-, )
3. y
12
} } x
-1 1
fdefined on (=, )
4. y

fdefined on [0, «)

5.

3
2_

f defined on [0, 2]

fdefined on (-1, )

y
3__
2__
1__
: &
- 1 2
14+
-2+ 3 27
2 Gs—13)

fdefined on [-1, 2]

[ defined on [-1, 3]



In Exercises 9-38, find the ahsolute maximum
value and the absolute minimum value, if any,
of the given function.

9.
11.

13.

15.
16.
17.
18.
19.
20.
21.

22.

23.

25.

27.

28.

29.

31.
32.
33.
34.

35.

36.

37.

38.

fix) =2x*+3x — 4 10. g(x) = —x2+4x + 3
h(x) = xB 12. f(x) = x¥°
1 X
f) = 1+ x? 14. f(x) = 1+ x?
f(x) = x* = 2x — 3 on [-2, 3]

g(x) =x*=2x —30n]|0,4]
f(x) = =x* + 4x + 6 on [0, 5]

f(x) = —x* + 4x + 6 on [3, 6]

f(x) = x* +3x* — 1 on[-3,2]

g(x) = x* +3x* — 1on[-3,1]

g(x) = 3x* + 4x3 on [-2, 1]

flx) = %x“ - §x3 — 2x* + 3 on [-2, 3]

f) == i 1 on[24] 2440 = —<on[2,4]
flx) = 4x + )1_5011 [1, 3] 26. f(x) = 9x — )1_5011 [1, 3]
flx) = %x2 —2Vx on [0, 3]

glx) = %xz — 4Vx on [0, 9]

30. g(x) =

fx) = )1? on (0, %) on (0, =)
f(x) = 3x*® — 2x on [0, 3]

g(x) = x* + 2x¥ on [-2, 2]

x+1

fx) = xB(* — 4) on [1, 2]

fx) = x¥B(x?* — 4) on [—1, 3]
flx) = xz)j_ > on [—1, 2]
0 = s on (21

— x —
flx) = —m on [—1, 1]

g(x) = xV4 —x?on [0, 2]

39.

40.

41.

42,

43.

4.
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A stone is thrown straight up from the roof of an 80-ft
building. The height (in feet) of the stone at any time ¢
(in seconds), measured from the ground, is given by

h(t) = —16£ + 64t + 80

What is the maximum height the stone reaches?

MaximizINGg PROFITS Lynbrook West, an apartment com-
plex, has 100 two-bedroom units. The monthly profit (in
dollars) realized from renting out x apartments is given
by

P(x) = —10x* + 1760x — 50,000

How many units should be rented out in order to max-
imize the monthly rental profit? What is the maximum
monthly profit realizable?

Maximizing ProFITS The estimated monthly profit (in
dollars) realizable by the Cannon Precision Instruments
Corporation for manufacturing and selling x units of its
model M1 camera is

P(x) = —0.04x> + 240x — 10,000

How many cameras should Cannon produce per month
in order to maximize its profits?

FLIGHT oF A RockeT The altitude (in feet) attained by a
model rocket ¢ sec into flight is given by the function

h(t) = *%t3+4t2+20t+2

Find the maximum altitude attained by the rocket.

FemaLe SeLr-EmpLoyep WoRKFORCE Based on data ob-
tained from the U.S. Department of Labor, the number
of nonfarm, full-time, self-employed women can be ap-
proximated by

N(t) = 0.817 — 1.14V1 + 1.53 (0=t=6)

where N(f) is measured in millions and ¢ is measured in
5-yr intervals, with ¢ = 0 corresponding to the beginning
of 1963. Determine the absolute extrema of the function
N on the interval [0, 6]. Interpret your results.

Source: U.S. Department of Labor

MaximiziNng ProFITS The management of Trappee and
Sons, Inc., producers of the famous Texa-Pep hot sauce,
estimate that their profit (in dollars) from the daily pro-
duction and sale of x cases (each case consisting of 24
bottles) of the hot sauce is given by

P(x) = —0.000002x* + 6x — 400

What is the largest possible profit Trappee can make in
1 day?
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46.

47.

48.

49.
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Maximizing PrRoFITS The quantity demanded per month
of the Walter Serkin recording of Beethoven’s Moonlight
Sonata, manufactured by Phonola Record Industries, is
related to the price per compact disc. The equation

p = —0.00042x + 6 (0 = x = 12,000)
where p denotes the unit price in dollars and x is the
number of discs demanded, relates the demand to the
price. The total monthly cost (in dollars) for pressing
and packaging x copies of this classical recording is given
by

C(x) = 600 + 2x — 0.00002x> (0 = x = 20,000)
How many copies should Phonola produce per month
in order to maximize its profits?

Hint: The revenue is R(x) = px, and the profit is P(x) =
R(x) — C(x).

Maximizing PrROFIT A manufacturer of tennis rackets
finds that the total cost C(x) (in dollars) of manufactur-
ing x rackets/day is given by C(x) = 400 + 4x + 0.0001x2.
Each racket can be sold at a price of p dollars, where p
is related to x by the demand equation p = 10 —
0.0004x. If all rackets that are manufactured can be sold,
find the daily level of production that will yield a maxi-
mum profit for the manufacturer.

Maximizing PrRoFIT The weekly demand for the Pulsar
25-in. color console television is given by the demand
equation

p = —0.05x + 600 (0 = x = 12,000)

where p denotes the wholesale unit price in dollars and
x denotes the quantity demanded. The weekly total cost
function associated with manufacturing these sets is
given by

C(x) = 0.000002x* — 0.03x* + 400x + 80,000

where C(x) denotes the total cost incurred in producing
x sets. Find the level of production that will yield a
maximum profit for the manufacturer.

Hint: Use the quadratic formula.

Minimizing Averace CosTs Suppose the total cost func-
tion for manufacturing a certain product is C(x) =
0.2(0.01x? + 120) dollars, where x represents the number
of units produced. Find the level of production that will
minimize the average cost.

MinimiziNGg ProbucTion Costs The total monthly cost (in
dollars) incurred by Cannon Precision Instruments Cor-
poration for manufacturing x units of the model M1

52.

wn
@

camera is given by the function
C(x) = 0.0025x* + 80x + 10,000

a. Find the average cost function C.

b. Find the level of production that results in the smallest
average production cost.

c. Find the level of production for which the average
cost is equal to the marginal cost.

d. Compare the result of part (c) with that of part (b).

. MiNIMIZING PRODUCTION CosTS  The daily total cost (in dol-

lars) incurred by Trappee and Sons, Inc., for producing
x cases of Texa-Pep hot sauce is given by the function

C(x) = 0.000002x> + 5x + 400

Using this function, answer the questions posed in Exer-
cise 49.

. MaximIZING REVENUE Suppose the quantity demanded

per week of a certain dress is related to the unit price
p by the demand equation p = V800 — x, where p is in
dollars and x is the number of dresses made. How many
dresses should be made and sold per week in order to
maximize the revenue?

Hint: R(x) = px.

MaximizING REVENUE The quantity demanded per month
of the Sicard wristwatch is related to the unit price by
the equation

50
= 0=x=20
P~ oot 1 (0= x=20)
where p is measured in dollars and x is measured in units
of a thousand. How many watches must be sold to yield
a maximum revenue?

. OxYGeN CoNTENT oF A PoND When organic waste is

dumped into a pond, the oxidation process that takes
place reduces the pond’s oxygen content. However,
given time, nature will restore the oxygen content to its
natural level. Suppose the oxygen content ¢ days after
organic waste has been dumped into the pond is given
by

r—4r+4
P +4

£(t) = 100 [

0=t<w»)

percent of its normal level.
a. When is the level of oxygen content lowest?
b. When is the rate of oxygen regeneration greatest?

. AIr PoLLuTioN The amount of nitrogen dioxide, a brown

gas that impairs breathing, present in the atmosphere
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on a certain May day in the city of Long Beach is approxi-
mated by

136

AW =1 0250 =25y

+28 O=r=11)

where A (¢) is measured in pollutant standard index (PST)
and ¢ is measured in hours, with ¢ = 0 corresponding to
7 aM. Determine the time of day when the pollution is
at its highest level.

MaximiziNG REVENUE The average revenue is defined as
the function
R(x) = Ri") (x>0)

Prove that if a revenue function R(x) is concave down-
ward [R"(x) < 0], then the level of sales that will result
in the largest average revenue occurs when R (x) = R'(x).

VELoaiTy ofF BLoob  According to a law discovered by the
nineteenth-century physician Jean Louis Marie Poiseu-
ille, the velocity (in centimeters per second) of blood r
cm from the central axis of an artery is given by

v(r) = k(R*> — r?)

where k is a constant and R is the radius of the artery.
Show that the velocity of blood is greatest along the
central axis.

GDP of A DeveLoriNg CoUNTRY A developing country’s
gross domestic product (GDP) from 1993 to 2001 is ap-
proximated by the function

G(t) = =027 + 2.4 + 60 (0=t=238)

where G(f) is measured in billions of dollars and r = 0
corresponds to the year 1993. Show that the growth rate
of the country’s GDP was maximal in 1997.

CRIME RATES  The number of major crimes committed in
the city of Bronxville between 1987 and 1994 is approxi-
mated by the function

N() = —0.1¢£ + 1.5 + 100 O=t=7)
where N(f) denotes the number of crimes committed in
year ¢ (¢t = 0 corresponds to the year 1987). Enraged by
the dramatic increase in the crime rate, the citizens of
Bronxville, with the help of the local police, organized
“Neighborhood Crime Watch” groups in early 1991 to
combat this menace. Show that the growth in the crime
rate was maximal in 1992, giving credence to the claim
that the Neighborhood Crime Watch program was
working.

59.

60.

61.

62.
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SOCIAL SECURITY SURPLUS Based on data from the Social
Security Administration, the estimated cash in the Social
Security retirement and disability trust funds may be
approximated by

f(£) = —0.0129¢* + 0.30877 + 2.1760¢> + 62.8466¢
+ 506.2955 (0=r=35)

where f(f) is measured in billions of dollars and ¢ is
measured in years, with ¢ = 0 corresponding to the year
1995. Show that the Social Security surplus will be at its
highest level at approximately the middle of the year
2018.

Hint: Show that ¢ = 23.6811 is an approximate critical point of
f@.

Source: Social Security Administration

ENErGY ExPENDED BY A FISH It has been conjectured that
a fish swimming a distance of L ft at a speed of v ft/sec
relative to the water and against a current flowing at the
rate of u ft/sec (u < v) expends a total energy given by

E@) =
®) v—u
where E is measured in foot-pounds (ft-1b) and a is a
constant. Find the speed v at which the fish must swim
in order to minimize the total energy expended. (Note:
This result has been verified by biologists.)

Reaction 10 A DrRUG The strength of a human body’s
reaction R to a dosage D of a certain drug is given by

k D
=D2[=—=
r-p:(%-2)

where k is a positive constant. Show that the maximum
reaction is achieved if the dosage is k units.

Refer to Exercise 61. Show that the rate of change in
the reaction R with respect to the dosage D is maximal
it D = k/2.

Exercises 63-66, determine whether the

statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

63.

64.

65.

If fis defined on a closed interval [a, b], then f has an
absolute maximum value.

If fis continuous on an open interval (a, b), then f does
not have an absolute minimum value.

If f is not continuous on the closed interval [a, b], then
f cannot have an absolute maximum value.
(continued on p. 356)
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EXAMPLE 1

SOLUTION v

FIGURE T1
The graph of fin the viewing rectangle
[-3, 3] X [-1, 5]
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FINDING THE ABSOLUTE EXTREMA OF A FUNCTION

Some graphing utilities have a function for finding the absolute maximum
and the absolute minimum values of a continuous function on a closed interval.
If your graphing utility has this capability, use it to work through the example
and exercises of this section.

2x + 4
Let f(x) = —(x2 Ty

a. Use a graphing utility to plot the graph of f in the viewing rectangle
[-3,3] X [-1, 5].

b. Find the absolute maximum and absolute minimum values of f on the
interval [—3, 3]. Express your answers accurate to four decimal places.

a. The graph of fis shown in Figure T1.

b. Using the function on a graphing utility for finding the absolute minimum
value of a continuous function on a closed interval, we find the absolute
minimum value of fto be —0.0632. Similarly, using the function for finding
the absolute maximum value, we find the absolute maximum value to
be 4.1593.

IXEIYXW Some graphing utilities will enable you to find the absolute mini-
mum and absolute maximum values of a continuous function on a closed
interval without having to graph the function.



In Exercises 1-6, use a graphing utility to find
the ahsolute maximum and the abhsolute mini-
mum values of fin the given interval using the
method of Example 1. Express your answers
accurate to four decimal places.

1 f(x) = 3x* — 4203 + 6.1x — 2; [-2, 3]
2. f(x) = 21x* — 3.2x3 + 4.1x%2 + 3x — 4, [1, 2]

2x% —3x2+ 1
310 =g 3

4. f(x) = Vx(x® — 4)%[0.5, 1]
. 70 =211, 3)

X —x*+1

6. f(x) = ——5 —:[1.3]

7. RATE oF BANK FAILURES The Federal Deposit Insurance
Company (FDIC) estimates that the rate at which banks
were failing between 1982 and 1994 is given by

£() = 0.063447¢* — 1.953283F° + 14.6325761
— 6.684704¢ + 47.458874 (0=r=12)

where f(¢) is the number of banks per year and ¢ is
measured in years, with = 0 corresponding to the begin-
ning of 1982.
a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 220].
b. What is the highest rate of bank failures during the
period in question?
Source: Federal Deposit Insurance Corporation

8. BosToN’s DAILY TEMPERATURE FOR 1993 The average daily
temperature in Boston for 1993 is given by

£(f) = 0.0434841¢* — 1.18523¢ + 9.38548¢>
—17.7553¢ + 38.9272 (0=r=12)

where f(¢) is measured in degrees Fahrenheit and ¢ is in
months, with ¢+ = 0 corresponding to the beginning of

10.

1993. Find the absolute extrema for f and interpret your
results.
Source: Robert Lautzenheiser, Climatologist

. TIME ON THE MARKET According to the Greater Boston

Real Estate Board—Multiple Listing Service, the aver-
age number of days a single-family home remains for
sale from listing to accepted offer is approximated by
the function

£(f) = 0.0171911¢* — 0.6621217 + 6.18083¢>
— 8.97086¢ + 53.3357 (0=t=10)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1984.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 12] X [0, 120].

b. Find the absolute maximum value and the absolute
minimum value of fin the interval [0, 12]. Interpret your
results.

Source: Greater Boston Real Estate Board—Multiple
Listing Service

WHY SSS BENEFITS MAY EXCEED PAYROLL TAXES Unless pay-
roll taxes are increased significantly and/or benefits are
scaled back drastically, it is a matter of time before the
current Social Security system goes broke. Based on
data from the Board of Trustees of the Social Security
Administration, the assets of the system—the Social Se-
curity “trust fund”—may be approximated by

f(t) = —0.0129¢* + 0.30877 + 2.1760¢>
+ 62.8466¢ + 506.2955 (0=r=35)

where f(f) is measured in millions of dollars and ¢ is
measured in years, with ¢ = 0 corresponding to 1995.
a. Use a graphing calculator to sketch the graph of f.
b. Based on this model, when will the Social Security
system start to pay out more benefits than it gets in
payroll taxes?

Source: Social Security Administration

355
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66. If f"(x) < 0 on (a, b) and f'(c) = 0 where a < ¢ < b,
then f(c) is the absolute maximum value of f on [a, b].

67. Let fbe a constant function—that is, let f(x) = ¢, where
¢ is some real number. Show that every point x = a is
an absolute maximum and, at the same time, an absolute
minimum of f.

68. Show that a polynomial function defined on the interval
(—o0, ) cannot have both an absolute maximum and
an absolute minimum unless it is a constant function.

609. One condition that must be satisfied before Theorem 3

SOLUTIONS 10 SELF-CHECK EXERCISES 4.4

(page 342) is applicable is that the function f must be
continuous on the closed interval [a, b]. Define a function
f on the closed interval [—1, 1] by

£ = iiUELﬂJ] (x # 0)
0 ifx=0

a. Show that f is not continuous at x = 0.

b. Show that f(x) does not attain an absolute maximum
or an absolute minimum on the interval [—1, 1].

c. Confirm your results by sketching the function f.

1. a. The function fis continuous in its domain and differentiable in the interval (0, 9).

The derivative of fis

x1/2 -1
x1/2

f)=1-x=

and it is equal to zero when x = 1. Evaluating f(x) at the end points x = 0 and
x = 9 and at the critical point x = 1 of f, we have

fO) =0, fM=-1 f9=3

From these results, we see that —1 is the absolute minimum value of f and 3 is the
absolute maximum value of f.

b. In this case, the domain of fis the interval [0, ), which is not closed. Therefore,
we resort to the graphic method. Using the techniques of graphing, we sketch in
the accompanying figure the graph of f.

Absolute

1 / minimum
H—— —t—+— X
/ 8

la,-n

The graph of f shows that —1 is the absolute minimum value of f, but f has no
absolute maximum since f(x) increases without bound as x increases without bound.

. The function fis continuous on the interval [—2, 1]. It is also differentiable on the

open interval (=2, 1). The derivative of fis

fl(x) = 12x° + 12x2 = 12x%(x + 1)



ans Optimization Il

Guidelines for Solving
Optimization Problems

4.5 = OPTIMIZATION Il 357

and it is continuous on (=2, 1). Setting f'(x) = 0 gives x = —1 and x = 0 as critical
points of f. Evaluating f(x) at these critical points of f as well as at the end points
of the interval [—2, 1], we obtain

f(=2)=17,  f(=1)=0, fO)=1 f1)=38

From these results, we see that 0 is the absolute minimum value of f and 17 is the

absolute maximum value of f.
3. The problem is solved by finding the absolute maximum of the function fon [0, 250].

Differentiating f(¢), we obtain

£ = (2 + 40,000)(1200) — 1200¢(2¢)
(£ + 40,000)°
_ —1200(* — 40,000)
(2 + 40,000)?

Upon setting f'(f) = 0 and solving the resulting equation, we obtain t = —200 or
200. Since —200 lies outside the interval [0, 250], we are interested only in the
critical point ¢ = 200 of f. Evaluating f(¢) at t = 0, t = 200, and ¢ = 250, we find

f(0) = 80,  £(200) = 83,  f(250) = 82.93

We conclude that the manufacturing capacity operating rate was the highest on the
200th day of 2000—that is, a little past the middle of July 2000.

Section 4.4 outlined how to find the solution to certain optimization problems
in which the objective function is given. In this section we consider problems
in which we are required to first find the appropriate function to be optimized.
The following guidelines will be useful for solving these problems.

1. Assign a letter to each variable mentioned in the problem. If appropriate,
draw and label a figure.

2. Find an expression for the quantity to be optimized.

3. Use the conditions given in the problem to write the quantity to be optimized
as a function f of one variable. Note any restrictions to be placed on the
domain of f from physical considerations of the problem.

4. Optimize the function f over its domain using the methods of Section 4.4.

IEETYYW 11 carrying out step 4, remember that if the function f to be opti-
mized is continuous on a closed interval, then the absolute maximum and
absolute minimum of f are, respectively, the largest and smallest values of
f(x) on the set composed of the critical points of f and the end points of the
interval. If the domain of f is not a closed interval, then we resort to the
graphic method.
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MAXIMIZATION PROBLEMS

EXAMPLE 1 A man wishes to have a rectangular-shaped garden in his backyard. He has
50 feet of fencing material with which to enclose his garden. Find the dimen-
sions for the largest garden he can have if he uses all of the fencing material.

SOLUTION v BERSIC

Step 2

FIGURE 4.67
What is the maximum rectangular area that
can be enclosed with 50 feet of fencing?

Step 3

Step 4

Let x and y denote the dimensions (in feet) of two adjacent sides of
the garden (Figure 4.67) and let A denote its area.
The area of the garden,

A =xy (1)

is the quantity to be maximized.
The perimeter of the rectangle, (2x + 2y) feet, must equal 50 feet.
Therefore, we have the equation

2x + 2y =50
Next, solving this equation for y in terms of x yields

y=25—x 2)
which, when substituted into Equation (1), gives

A=x(25-x)
= —x*+25x

(Remember, the function to be optimized must involve just one vari-
able.) Since the sides of the rectangle must be nonnegative, we must
have x = 0 and y = 25 — x = 0; that is, we must have 0 < x = 25.
Thus, the problem is reduced to that of finding the absolute maximum
of A = f(x) = —x* + 25x on the closed interval [0, 25].

Observe that f is continuous on [0, 25], so the absolute maximum
value of f must occur at the end point(s) or at the critical point(s)
of f. The derivative of the function A is given by

A '=f(x)=-2x+25
Setting A" = 0 gives
—2x +25=0

or x = 12.5, as the critical point of A. Next, we evaluate the function
A = f(x) at x = 12.5 and at the end points x = 0 and x = 25 of the
interval [0, 25], obtaining

f0)=0, f(125) =15625  f(25)=0

We see that the absolute maximum value of the function f is
156.25. From Equation (2) we see that when x = 12.5, the value of
y is given by y = 12.5. Thus, the garden would be of maximum area
(156.25 square feet) if it were in the form of a square with sides 12.5
feet long.



EXAMPLE 2

SOLUTION v

FIGURE 4.68

The dimensions of the open box are
(16 — 2x) by (10 — 2x) by x inches.
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By cutting away identical squares from each corner of a rectangular piece of
cardboard and folding up the resulting flaps, the cardboard may be turned
into an open box. If the cardboard is 16 inches long and 10 inches wide, find
the dimensions of the box that will yield the maximum volume.

Step1 Let x denote the length (in inches) of one side of each of the identical
squares to be cut out of the cardboard (Figure 4.68) and let V denote
the volume of the resulting box.

10 I()ch )x/
T — | RN )
x 16 — 2x——>| X o
| 16 | >/¥/

Step2 The dimensions of the box are (16 — 2x) inches long, (10 — 2x) inches
wide, and x inches high. Therefore, its volume (in cubic inches),

V=16 —2x)(10 — 2x)x
= 4()(3 — 13x2 + 40x) (Expanding the expression)

is the quantity to be maximized.

Step 3 Since each side of the box must be nonnegative, x must satisfy the
inequalities x = 0, 16 — 2x = 0, and 10 — 2x = 0. This set of
inequalities is satisfied if 0 = x = 5. Thus, the problem at hand is
equivalent to that of finding the absolute maximum of

V = f(x) = 4(x* — 13x% + 40x)

on the closed interval [0, 5].
Step 4 Observe that fis continuous on [0, 5], so the absolute maximum
value of f must be attained at the end point(s) or at the critical
point(s) of f.
Differentiating f(x), we obtain
f'(x) = 4(3x* — 26x + 40)
=43x —20)(x — 2)
Upon setting f'(x) = 0 and solving the resulting equation for x, we
obtain x = 20/3 or x = 2. Since 20/3 lies outside the interval [0, 5],
it is no longer considered, and we are interested only in the critical

point x = 2 of f. Next, evaluating f(x) at x = 0, x = 5 (the end points
of the interval [0, 5]), and x = 2, we obtain

f0)=0, f(2)=144, f(5) =0
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Thus, the volume of the box is maximized by taking x = 2. The
dimensions of the box are 12 X 6 X 2 inches, and the volume is 144
cubic inches.

Refer to Example 2.
1. Use a graphing utility to plot the graph of
f(x) = 4(x* — 13x2 + 40x)

using the viewing rectangle [0, 5] X [0, 150]. Explain what happens to f(x) as x increases from x = 0 to
x = 5 and give a physical interpretation.

2. Using zoom and TRACE, find the absolute maximum of f on the interval [0, 5] and thus verify the solution
for Example 2 obtained analytically.

A city’s Metropolitan Transit Authority (MTA) operates a subway line for
commuters from a certain suburb to the downtown metropolitan area. Cur-
rently, an average of 6000 passengers a day take the trains, paying a fare of
$1.50 per ride. The board of the MTA, contemplating raising the fare to $1.75
per ride in order to generate a larger revenue, engages the services of a
consulting firm. The firm’s study reveals that for each $.25 increase in fare,
the ridership will be reduced by an average of 1000 passengers a day. Thus,
the consulting firm recommends that MTA stick to the current fare of $1.50
per ride, which already yields a maximum revenue. Show that the consultants
are correct.

Step 1 Let x denote the number of passengers per day, p denote the fare
per ride, and R be MTA’s revenue.
Step 2 To find a relationship between x and p, observe that the given data
imply that when x = 6000, p = 1.5, and when x = 5000, p = 1.75.
Therefore, the points (6000, 1.5) and (5000, 1.75) lie on a straight
line. (Why?) To find the linear relationship between p and x, use
the point-slope form of the equation of a straight line. Now, the
slope of the line is

175150

M = 2000 — 6000 —0.00025

Therefore, the required equation is

p — 1.5 = —0.00025(x — 6000)
= —0.00025x + 1.5
p = —0.00025x + 3



FIGURE 4.69
f has an absolute maximum of 9000 when

x = 6000.

y
Absolute
10,000 +- maximum
8,000 +
=Rl
6,000 + y=Rx)
4,000 +
2,000
—t—t—t—+—1 X
6,000 12,000

L PES

SOLUTION v

FIGURE 4.70
We want fo minimize the amount of mate-
rial used fo construct the container.

f—)—

Step 3

Step 4
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Therefore, the revenue,

(Number of riders
times unit fare)

R = f(x) = xp = —0.00025x> + 3x

is the quantity to be maximized.

Since both p and x must be nonnegative, we see that 0 =< x = 12,000,
and the problem is that of finding the absolute maximum of the
function f on the closed interval [0, 12,000].

Observe that fis continuous on [0, 12,000]. To find the critical point
of R, we compute

£/(x) = —0.0005x + 3

and set it equal to zero, giving x = 6000. Evaluating the function f
at x = 6000, as well as at the end points x = 0 and x = 12,000, yields

f(0)=0
£(6000) = 9000
£(12,000) = 0

We conclude that a maximum revenue of $9000 per day is realized
when the ridership is 6000 per day. The optimum price of the fare
per ride is therefore $1.50, as recommended by the consultants. The
graph of the revenue function R is shown in Figure 4.69.

MINIMIZATION PROBLEMS

The Betty Moore Company requires that its corned beef hash containers have
a capacity of 54 cubic inches, have the shape of right-circular cylinders, and
be made of tin. Determine the radius and height of the container that requires
the least amount of metal.

Step 1

Step 2

Step 3

Let the radius and height of the container be r and % inches, respec-
tively, and let S denote the surface area of the container (Figure 4.70).
The amount of tin used to construct the container is given by the
total surface area of the cylinder. Now, the area of the base and the
top of the cylinder are each 77> square inches and the area of the
side is 2m7rrh square inches. Therefore,

S = 2mr? + 2arh A3)
is the quantity to be minimized.
The requirement that the volume of a container be 54 cubic inches
implies that
7r*h = 54 ()
Solving Equation (4) for &, we obtain
54
h="2
mr?

6
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FIGURE 4.71

The total surface area of the right cylindri-
cal container is graphed as a function of r.

Square inches

200

150

100

50

y

Inches

Step 4

which, when substituted into (3), yields

S =2mr*+ 277r<54>

g
=2mr* + @

Clearly, the radius r of the container must satisfy the inequality » > 0.
The problem now is reduced to finding the absolute minimum of the
function S = f(r) on the interval (0, «).
Using the curve-sketching techniques of Section 4.3, we obtain the
graph of fin Figure 4.71.

To find the critical point of f, we compute

S' =dnr — 1—028
;
and solve the equation S’ = 0 for r:
4y — @ =0
r
47’ — 108 =0
r= 27
77
3
r=—==2 )
Va

Next, let’s show that this value of r gives rise to the absolute
minimum of f. To show this, we first compute

§" = dp + 210
;

Since S” > 0 for r = 3/V/z, the second derivative test implies that
the value of r in Equation (6) gives rise to a relative minimum of f.
Finally, this relative minimum of fis also the absolute minimum of
fsince fis always concave upward (S” > 0 for all » > 0). To find the
height of the given container, we substitute the value of r given in
(6) into (5). Thus,

poSh_ 54
mr 3 2
()
547"
(M9
6 6



EXAMPLE 5

SOLUTION v

FIGURE 4.72

As each lot is depleted, the new lot arrives.
The average inventory level is x/2 if x is
the lot size.
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We conclude that the required container has a radius of approxi-
mately 2 inches and a height of approximately 4 inches, or twice the
size of the radius.

AN INVENTORY PROBLEM

One problem faced by many companies is that of controlling the inventory
of goods carried. Ideally, the manager must ensure that the company has
sufficient stock to meet customer demand at all times. At the same time, she
must make sure that this is accomplished without overstocking (incurring
unnecessary storage costs) and also without having to place orders too fre-
quently (incurring reordering costs).

The Dixie Import-Export Company is the sole agent for the Excalibur 250-
cc motorcycle. Management estimates that the demand for these motorcycles
is 10,000 per year and that they will sell at a uniform rate throughout the
year. The cost incurred in ordering each shipment of motorcycles is $10,000,
and the cost per year of storing each motorcycle is $200.

Dixie’s management faces the following problem: Ordering too many
motorcycles at one time ties up valuable storage space and increases the
storage cost. On the other hand, placing orders too frequently increases the
ordering costs. How large should each order be, and how often should orders
be placed, to minimize ordering and storage costs?

Let x denote the number of motorcycles in each order (the lot size). Then,
assuming that each shipment arrives just as the previous shipment has been
sold, the average number of motorcycles in storage during the year is x/2.
You can see that this is the case by examining Figure 4.72. Thus, Dixie’s
storage cost for the year is given by 200(x/2), or 100x dollars.

Inventory level

=

Average
inventory

NI=

Time

Next, since the company requires 10,000 motorcycles for the year and
since each order is for x motorcycles, the number of orders required is

10,000
x

This gives an ordering cost of

10,000 (10’;)00) _ 100,020,000
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FIGURE 4.73

( has an absolute minimum at
(1000, 200,000).

2.
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dollars for the year. Thus, the total yearly cost incurred by Dixie, which
includes the ordering and storage costs attributed to the sale of these motor-
cycles, is given by

C(x) = 100x + 100,020,000
The problem is reduced to finding the absolute minimum of the function
C in the interval (0, 10,000]. To accomplish this, we compute

C'(x) = 100 100,0020,000

Setting C'(x) = 0 and solving the resulting equation, we obtain x = *=1000.
Since the number —1000 is outside the domain of the function C, it is rejected,
leaving x = 1000 as the only critical point of C. Next, we find

200,000,000
C'(x) = — 3

Since C”(1000) > 0, the second derivative test implies that the critical point
x = 1000 is a relative minimum of the function C (Figure 4.73). Also, since
C"(x) > 0 for all x in (0, 10,000], the function C is concave upward everywhere
so that the point x = 1000 also gives the absolute minimum of C. Thus, to
minimize the ordering and storage costs, Dixie should place 10,000/1000, or
10, orders a year, each for a shipment of 1000 motorcycles.

C

Tl = 100x + 100,0())60,000

200,000

1,000 2,000 3,000

1. A man wishes to have an enclosed vegetable garden in his backyard. If the garden
is to be a rectangular area of 300 ft?, find the dimensions of the garden that will
minimize the amount of fencing material needed.

The demand for the Super Titan tires is 1,000,000/year. The setup cost for each
production run is $4000, and the manufacturing cost is $20/tire. The cost of storing
each tire over the year is $2. Assuming uniformity of demand throughout the year
and instantaneous production, determine how many tires should be manufactured
per production run in order to keep the production cost to a minimum.

Solutions to Self-Check Exercises 4.5 can be found on page 368.
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1. ENcLOSING THE LARGEST AREA The owner of the Rancho

Los Feliz has 3000 yd of fencing material with which to
enclose a rectangular piece of grazing land along the
straight portion of a river. If fencing is not required along
the river, what are the dimensions of the largest area he
can enclose? What is this area?

. ENcLoSING THE LARGEST AREA Refer to Exercise 1. As an
alternative plan, the owner of the Rancho Los Feliz
might use the 3000 yd of fencing material to enclose
the rectangular piece of grazing land along the straight
portion of the river and then subdivide it by means of
a fence running parallel to the sides. Again, no fencing
is required along the river. What are the dimensions of
the largest area that can be enclosed? What is this area?
(See the accompanying figure.)

-
\
L

. Minimizing ConsTrucTION CoSTS The management of the
UNICO department store has decided to enclose an 800-
ft* area outside the building for displaying potted plants
and flowers. One side will be formed by the external
wall of the store, two sides will be constructed of pine
boards, and the fourth side will be made of galvanized
steel fencing material. If the pine board fencing costs
$6/running foot and the steel fencing costs $3/running
foot, determine the dimensions of the enclosure that can
be erected at minimum cost.

Store

7.

. MinimizING ConsTRUCTION CoSTS A rectangular box is to

9.

. PAcKkAGING By cutting away identical squares from each

corner of a rectangular piece of cardboard and folding
up the resulting flaps, an open box may be made. If the
cardboard is 15 in. long and 8 in. wide, find the dimen-
sions of the box that will yield the maximum volume.

. METAL FABRICATION If an open box is made from a tin

sheet 8 in. square by cutting out identical squares from
each corner and bending up the resulting flaps, deter-
mine the dimensions of the largest box that can be made.

. Minimizing ConsTrucTion Costs If an open box has a

square base and a volume of 108 in.%, and is constructed
from a tin sheet, find the dimensions of the box, assuming
aminimum amount of material is used in its construction.

Minimizing ConsTRUCTION CosTS  What are the dimensions
of a closed rectangular box that has a square cross sec-
tion, a capacity of 128 in.%, and is constructed using the
least amount of material?

have a square base and a volume of 20 ft*. If the material
for the base costs 30 cents/square foot, the material for
the sides costs 10 cents/square foot, and the material
for the top costs 20 cents/square foot, determine the
dimensions of the box that can be constructed at mini-
mum cost.

1
y
|
J
va
S

PARCEL PosT REGULATIONS Postal regulations specify that
a parcel sent by parcel post may have a combined length
and girth of no more than 108 in. Find the dimensions
of a rectangular package that has a square cross section
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10.

12.

13.
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and the largest volume that may be sent through the
mail. What is the volume of such a package?

Hint: The length plus the girth is 4x + /4 (see the accompa-
nying figure).

Book DEsiGN A production editor at Saunders-Roe Pub-
lishing decided that the pages of a book should have 1-
in. margins at the top and bottom and 3-in. margins on
the sides. She further stipulated that each page should
have an area of 50 in.? (see the accompanying figure).
Determine the page dimensions that will result in the
maximum printed area on the page.

"

. PARCEL PosT REGULATIONS Postal regulations specify that

a parcel sent by parcel post may have a combined length
and girth of no more than 108 in. Find the dimensions
of the cylindrical package of greatest volume that may
be sent through the mail. What is the volume of such a
package? Compare with Exercise 9.

Hint: The length plus the girth is 2ar + [.

Minimizing Costs For its beef stew, the Betty Moore
Company uses tin containers that have the form of right
circular cylinders. Find the radius and height of a con-
tainer if it has a capacity of 36 in.* and is constructed
using the least amount of metal.

Propuct DEsiGN The cabinet that will enclose the Acro-
sonic model D loudspeaker system will be rectangular
and will have an internal volume of 2.4 ft®. For aesthetic
reasons, it has been decided that the height of the cabinet
is to be 1.5 times its width. If the top, bottom, and sides
of the cabinet are constructed of veneer costing 40 cents/
square foot and the front (ignore the cutouts in the
baffle) and rear are constructed of particle board costing

14.

16.

17.

20 cents/square foot, what are the dimensions of the
enclosure that can be constructed at a minimum cost?

DEsIGNING A NormAN WiNDOW A Norman window has the
shape of a rectangle surmounted by a semicircle (see
the accompanying figure). If a Norman window is to
have a perimeter of 28 ft, what should its dimensions be
in order to allow the maximum amount of light through
the window?

. OpTimAL CHARTER-FLIGHT FARE If exactly 200 people sign

up for a charter flight, the Leisure World Travel Agency
charges $300/person. However, if more than 200 people
sign up for the flight (assume this is the case), then
each fare is reduced by $1 for each additional person.
Determine how many passengers will result in a maxi-
mum revenue for the travel agency. What is the maxi-
mum revenue? What would be the fare per passenger
in this case?

Hint: Let x denote the number of passengers above 200. Show
that the revenue function R is given by R(x) = (200 + x) -
(300 — x).

Maximizing YIELD  An apple orchard has an average yield
of 36 bushels of apples/tree if tree density is 22 trees/
acre. For each unit increase in tree density, the yield
decreases by 2 bushels. How many trees should be
planted in order to maximize the yield?

STRENGTH OF A BEAM A wooden beam has a rectangular
cross section of height 4 in. and width w in. (see the
accompanying figure). The strength S of the beam is
directly proportional to its width and the square of its
height. What are the dimensions of the cross section of
the strongest beam that can be cut from a round log of
diameter 24 in.?

Hint: S = kh’w, where k is a constant of proportionality.




18.

19.

20.

DESIGNING A GRAIN SILO A grain silo has the shape of a
right circular cylinder surmounted by a hemisphere (see
the accompanying figure). If the silo is to have a capacity
of 504r ft*, find the radius and height of the silo that
requires the least amount of material to construct.

Hint: The volume of the silo is #r2h + %mr3, and the surface
area (including the floor) is #(3r> + 2rh).

ér—>|

Minimizing ConsTRUCTION CosTs In the following dia-
gram, S represents the position of a power relay station
located on a straight coast, and E shows the location of
a marine biology experimental station on an island. A
cable is to be laid connecting the relay station with the
experimental station. If the cost of running the cable on
land is $1/running foot and the cost of running the cable
under water is $3/running foot, locate the point P that
will result in a minimum cost (solve for x).

Island

- —— — —

3000'

| :

Land < x —>]<10,000 —x >
3000 <——— 10,000' ———>

FLIGHTS oF BIrDS During daylight hours, some birds fly
more slowly over water than over land because some of
their energy is expended in overcoming the downdrafts
of air over open bodies of water. Suppose a bird that
flies at a constant speed of 4 mph over water and 6 mph
over land starts its journey at the point E on an island
and ends at its nest N on the shore of the mainland, as
shown in the accompanying figure. Find the location of
the point P that allows the bird to complete its journey
in the minimum time (solve for x).

22,

23.

24,
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Island

— — —¢

/r E

3 mi

\l/ P N
>

12-x

exe‘f

12

. OPTIMAL SPEED OF A TRUCK A truck gets 400/x mpg when

driven at a constant speed of x mph (between 50 and
70 mph). If the price of fuel is $1/gallon and the driver
is paid $8/hour, at what speed between 50 and 70 mph
is it most economical to drive?

INVENTORY CONTROL AND PLANNING The demand for
motorcycle tires imported by the Dixie Import-Export
Company is 40,000/year and may be assumed to be uni-
form throughout the year. The cost of ordering a ship-
ment of tires is $400, and the cost of storing each tire
for a year is $2. Determine how many tires should be
in each shipment if the ordering and storage costs are
to be minimized. (Assume that each shipment arrives
just as the previous one has been sold.)

INVENTORY CONTROL AND PLANNING The McDuff Preserves
Company expects to bottle and sell 2,000,000 32-oz jars
of jam. The company orders its containers from the Con-
solidated Bottle Company. The cost of ordering a ship-
ment of bottles is $200, and the cost of storing each
empty bottle for a year is $.40. How many orders should
McDuff place per year and how many bottles should be
in each shipment if the ordering and storage costs are
to be minimized? (Assume that each shipment of bottles
is used up before the next shipment arrives.)

INVENTORY CONTROL AND PLANNING The Neilsen Cookie
Company sells its assorted butter cookies in containers
that have a net content of 1 Ib. The estimated demand
for the cookies is 1,000,000 units. The setup cost for each
production run is $500, and the manufacturing cost is
$.50 for each container of cookies. The cost of storing
each container of cookies over the year is $.40. Assuming
uniformity of demand throughout the year and instanta-
neous production, how many containers of cookies
should Neilsen produce per production run in order to
minimize the production cost?

Hint: Following the method of Example 5, show that the total
production cost is given by the function

C(x) =

0000 + 0.2 + 500,000

Then minimize the function C on the interval (0, 1,000,000).
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SOLUTIONS 10 SELF-CHECK EXERCISES 4.5

1. Let x and y (measured in feet) denote the length and width of the rectangular

garden. Since the area is to be 300 ft?, we have
xy = 300

Next, the amount of fencing to be used is given by the perimeter, and this quantity
is to be minimized. Thus, we want to minimize

2x + 2y

or, since y = 300/x (obtained by solving for y in the first equation), we see that the
expression to be minimized is

fr)=2x +2 <300>

X

=2x + 600
x
for positive values of x. Now,
, 600
f=2--—7

Setting f'(x) = 0 yields x = —V300 or x = V300. We consider only the critical
point x = V300 since —V300 lies outside the interval (0, ©). We then compute

1200
s

1) =

Since
F"(V300) >0

the second derivative test implies that a relative minimum of f occurs at x =
V/300. In fact, since f”(x) > 0 for all x in (0, ®), we conclude that x = V300 gives
rise to the absolute minimum of f. The corresponding value of y, obtained by
substituting this value of x into the equation xy = 300, is y = V/300. Therefore, the
required dimensions of the vegetable garden are approximately 17.3 ft X 17.3 ft.

. Let x denote the number of tires in each production run. Then, the average number

of tires in storage is x/2, so the storage cost incurred by the company is 2(x/2), or
x dollars. Next, since the company needs to manufacture 1,000,000 tires for the year
in order to meet the demand, the number of production runs is 1,000,000/x. This
gives setup costs amounting to

4000 (1,002,000) _ 4,000,000,000

X

dollars for the year. The total manufacturing cost is $20,000,000. Thus, the total
yearly cost incurred by the company is given by

4,000,000,000
AR —

C(x) = + 20,000,000
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Differentiating C(x), we find

Cl)=1- 4,000,090,000

X
Setting C'(x) = 0 gives x = 63,246 as the critical point in the interval (0, 1,000,000).
Next, we find

8,000,000,000
x3

C'(x) =

Since C"(x) > O for all x > 0, we see that C is concave upward for all x > 0.
Furthermore, C"(63,246) > 0 implies that x = 63,246 gives rise to a relative minimum
of C (by the second derivative test). Since C is always concave upward for x > 0,
Xx = 63,246 gives the absolute minimum of C. Therefore, the company should

manufacture 63,246 tires in each production run.

CHAPTER 4 Summary of Principal Terms

Terms

increasing function
decreasing function
relative maximum
relative minimum
relative extrema
critical point

first derivative test
concave upward

CHAPTER 4 Review EXERCISES

In Exercises 1-10, (a) find the intervals where
the given function fis increasing and where it
is decreasing, (b) find the relative extrema of
f, (c) find the intervals where fis concave up-
ward and where it is concave downward, and
(d) find the inflection points, if any, of f.

l.f(x):%x3—x2+x—6

2. f(x) = (x — 2)° 3. flx) = x* — 2x?

4.f(x):x+% 5.f(x)=xx_21
6. f(x) = Vx—1 7. flx) = (1 —x)!?

concave downward
inflection point

second derivative test
vertical asymptote
horizontal asymptote
absolute extrema
absolute maximum value

absolute minimum value

8. f(x) = xVx — 1 9. f(x) = =

x +

—_

1+x2

10. f(x) =

In Exercises 11-18, obtain as much informa-
tion as possible on each of the given functions.
Then use this information to sketch the graph
of the function.

11. f(x) =x*—5x + 5 12, f(x) = —2x* —x + 1

13. g(x) = 2x* — 6x* + 6x + 1
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14.g(x)=%x3fx2+xf3

15. h(x) = xVx—2 16. h(x) = 1 ixxz

2 1

17. ) =5 18. f(x) = x -

In Exercises 19-22, find the horizontal and
vertical asymptotes of the graphs of the given
functions. Do not sketch the graphs.

19. f(x) = 2x1+ - 20. f(x) = x%f :
21 f(x) = )% 2. f(x) = %

In Exercises 23-32, find the absolute maxi-
mum value and the abhsolute minimum value, if
any, of the given function.

23, f(x) =2x*+3x -2 24, g(x) = x*8
25. g(t) = V25— ¢

26.f(x)=%x3—x2+x+10n[0,2]

27. h(t) = £ — 62 on [2, 5]

X

28. g(x) = 1

on [0, 5]
29. f(x) = x — %on [1, 3]

30. h(r) = 8 — tl—zon [1, 3]
31 f(s) =sV1—s’on[—1,1]

32. f(x) = xx_zl on [—1, 3]

33. Odyssey Travel Agency’s monthly profit (in thousands
of dollars) depends on the amount of money x (in thou-
sands of dollars) spent on advertising per month ac-
cording to the rule

P(x) = —x>+ 8 + 20

What should Odyssey’s monthly advertising budget be
in order to maximize its monthly profits?

34. The Department of the Interior of an African country
began to record an index of environmental quality to
measure progress or decline in the environmental quality
of its wildlife. The index for the years 1984 through 1994
is approximated by the function

2
I(t)=% (0=r=10)
a. Compute I'(f) and show that I(¢) is decreasing on the
interval (0, 10).
b. Compute ”(¢). Study the concavity of the graph of I.
c. Sketch the graph of 1.
d. Interpret your results.

35. The weekly demand for video discs manufactured by
the Herald Record Company is given by

p = —0.0005x2 + 60

where p denotes the unit price in dollars and x denotes
the quantity demanded. The weekly total cost function
associated with producing these discs is given by

C(x) = —0.001x> + 18x + 4000

where C(x) denotes the total cost incurred in pressing
x discs. Find the production level that will yield a maxi-
mum profit for the manufacturer.

Hint: Use the quadratic formula.

36. The total monthly cost (in dollars) incurred by the Car-
lota Music Company in manufacturing x units of its Pro-
fessional Series guitars is given by the function

C(x) = 0.001x* + 100x + 4000

a. Find the average cost function C.
b. Determine the production level that will result in the
smallest average production cost.

37. The average worker at Wakefield Avionics, Inc., can
assemble

N(@) = =26 + 126 + 2¢ O=r=49

ready-to-fly radio-controlled model airplanes ¢ hr into
the 8 A.M. to 12 noon morning shift. At what time during
this shift is the average worker performing at peak effi-
ciency?

38. You wish to construct a closed rectangular box that has
a volume of 4 ft>. The length of the base of the box will
be twice as long as its width. The material for the top
and bottom of the box costs 30 cents/square foot. The
material for the sides of the box costs 20 cents/square
foot. Find the dimensions of the least expensive box that
can be constructed.
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39. The Lehen Vinters Company imports a certain brand of 40. Let
beer. The demand, which may be assumed to be uniform,

is 800,000 cases/year. The cost of ordering a shipment ¥+1 ifx#0

of beer is $500, and the cost of storing each case of beer fx) = {2 ifx=0

for a year is $2. Determine how many cases of beer

should be in each shipment if the ordering and storage a. Compute f'(x) and show that it does not change sign
costs are to be kept to a minimum. (Assume that each as we move across x = 0.

shipment of beer arrives just as the previous one has b. Show that fhas a relative maximum at x = 0. Does this

been sold.) contradict the first derivative test? Explain your answer.



EXPONEMIAL AND
LOGARITHMI CTIONS

Exponential Functions

Logarithmic Functions

Compound Interest

Differentiation of Exponential Functions
Differentiation of Logarithmic Functions

Exponential Functions as Mathematical Models




The exponential function is, without doubt, the most important
function in mathematics and its applications. After a brief introduc-
tion to the exponential function and its inverse, the logarithmic
function, we learn how to differentiate such functions. This lays the
foundation for exploring the many applications involving exponential
functions. For example, we look at the role played by exponential
functions in computing earned interest on a bank account, in study-
ing the growth of a bacteria population in the laboratory, in studying
the way radioactive matter decays, in studying the rate at which a
factory worker learns a certain process, and in studying the rate

at which a communicable disease is spread over time.

How many bacteria will there be in a culture af the end
of a certain period of fime? How fast will the bacteria
population be growing at the end of that fime? Example

1, page 426, answers these questions.
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5.1 Exponential Functions

FIGURE 5.1
Under continuous compounding, a sum of
money grows exponentially.

Exponential Function

EXPONENTIAL FUNCTIONS AND THEIR GRAPHS

Suppose you deposit a sum of $1000 in an account earning interest at the rate
of 10% per year compounded continuously (the way most financial institutions
compute interest). Then, the accumulated amount at the end of ¢ years
(0 =t = 20) is described by the function f, whose graph appears in Figure
5.1.* Such a function is called an exponential function. Observe that the graph
of frises rather slowly at first but very rapidly as time goes by. For purposes
of comparison, we have also shown the graph of the function y = g(¢) =
1000(1 + 0.10¢), giving the accumulated amount for the same principal ($1000)
but earning simple interest at the rate of 10% per year. The moral of the story:
It is never too early to save.

Exponential functions play an important role in many real-world applica-
tions, as you will see throughout this chapter.

Dollars

Observe that whenever b is a positive number and # is any real number, the
expression b" is a real number. This enables us to define an exponential
function as follows:

The function defined by
flx) = b* (b>0,b+1)

is called an exponential function with base b and exponent x. The domain of f
is the set of all real numbers.

* We will derive the rule for fin Section 5.3.
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EXAMPLE 1

EXAMPLE 2
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For example, the exponential function with base 2 is the function

flx) =2

with domain (—o, ). The values of f(x) for selected values of x follow:

f3)=2=8, f<%>=23/2=2-21/2:2\f2, fl0)=2"=1,

o1 2 _ 1 1
f-n=2"=, f<—§>=2 R

Computations involving exponentials are facilitated by the laws of expo-
nents. These laws were stated in Section 1.1, and you might want to review
the material there. For convenience, however, we will restate these laws.

Let a and b be positive numbers and let x and y be real numbers. Then,

L b b = b 4. (ab)* = a'b*
b* ey @ X B ax
2. 55="b 5.<5) ==

3. (bY) = b

The use of the laws of exponents is illustrated in the next example.

a. 167162 =16*12 = 16% =2°=32  (Law 1)
5/3
b. % =8P =g =64  (Law2)
c. (644/3)—1/2 = 64@R)(-12) = g4-23
1 1 1 1
T ey # 16 VY
1 1 11

d. (16-81) " =167 81 = o o =53 =

1n\4 a4
. (3 ) _3 0 (Law 5)

% (Law 4)

o

) ~3wow
Let f(x) = 2% Find the value of x for which f(x) = 16.

We want to solve the equation
2271 =16 = 24
But this equation holds if and only if
2x —1 =4 (" =b"=m=n)

giving x = 3.



376 5 = EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 3

FIGURE 5.2
The graph of y = 2

y

EXAMPLE 4

FIGURE 5.3
The graph of y = (1/2)*

Exponential functions play an important role in mathematical analysis.
Because of their special characteristics, they are some of the most useful
functions and are found in virtually every field where mathematics is applied.
To mention a few examples: Under ideal conditions the number of bacteria
present at any time ¢ in a culture may be described by an exponential function
of t; radioactive substances decay over time in accordance with an “exponen-
tial”” law of decay; money left on fixed deposit and earning compound interest
grows exponentially; and some of the most important distribution functions
encountered in statistics are exponential.

Let’s begin our investigation into the properties of exponential functions
by studying their graphs.

Sketch the graph of the exponential function y = 2*.

First, as discussed earlier, the domain of the exponential function y = f(x) =
2% is the set of real numbers. Next, putting x = 0 gives y = 2° = 1, the y-
intercept of f. There is no x-intercept since there is no value of x for which
y = 0. To find the range of f, consider the following table of values:

x =5 —4 -3 =2 -1 0 1 2 3 4 5
y 1/32 116 1/8 1/4 172 1 2 4 8§ 16 32

We see from these computations that 2* decreases and approaches zero as x
decreases without bound and that 2* increases without bound as x increases
without bound. Thus, the range of fis the interval (0, «)—that is, the set of
positive real numbers. Finally, we sketch the graph of y = f(x) = 2 in
Figure 5.2.

Sketch the graph of the exponential function y = (1/2)*.

The domain of the exponential function y = (1/2)*is the set of all real numbers.
The y-intercept is (1/2)° = 1; there is no x-intercept since there is no value
of x for which y = 0. From the following table of values

x -5 -4 -3 =2 -1 0 1 2 3 4 5
y 32 16 8 4 2 1 12 1/4 1/8 1/16 1/32

we deduce that (1/2)* = 1/2* increases without bound as x decreases without
bound and that (1/2)* decreases and approaches zero as x increases without
bound. Thus, the range of fis the interval (0, ). The graph of y = f(x) =
(1/2)* is sketched in Figure 5.3.

The functions y = 2*and y = (1/2)*, whose graphs you studied in Examples
3 and 4, are special cases of the exponential function y = f(x) = b*, obtained



FIGURE 5.4

y = bt is an increasing function of x if

b > 1, a constant function if b = 1, and
a decreasing function if 0 < b < 1.

Properties of the
Exponential Function
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by setting b = 2 and b = 1/2, respectively. In general, the exponential function
y = b* with b > 1 has a graph similar to y = 2%, whereas the graph of y = b*
for 0 < b < 1 is similar to that of y = (1/2)* (Exercises 27 and 28). When
b = 1, the function y = b* reduces to the constant function y = 1. For
comparison, the graphs of all three functions are sketched in Figure 5.4.

y=>b* y=>b*
O<b< b>1)

The exponential function y = b* (b > 0, b # 1) has the following properties:
1. Its domain is (—o°, ).

. Its range is (0, ).

. Its graph passes through the point (0, 1).

. It is continuous on (—o, ).

n A W N

. It is increasing on (—, ) if b > 1 and decreasing on (—, ») if b < 1.

THE BASE e

Exponential functions to the base e, where e is an irrational number whose
value is 2.7182818 . . ., play an important role in both theoretical and applied
problems. It can be shown, although we will not do so here, that
. 1\"
e=1lim|1+— @))
m— m
However, you may convince yourself of the plausibility of this definition of

the number e by examining Table 5.1, which may be constructed with the
help of a calculator.

m 10 100 1000 10,000 100,000 1,000,000

<1 +%’>m 2.59374 270481 2.71692 271815 2.71827  2.71828
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To obtain a visual confirmation of the fact that the expression (1 + 1/m)™ approaches

the number e = 2.71828. . . as m increases without bound, plot the graph of f(x) = (1 + 1/x)*
in a suitable viewing rectangle and observe that f(x) approaches 2.71828. .. as x increases without bound.
Use zooMm and TRACE to find the value of f(x) for large values of x.

EXAMPLE 5

FIGURE 5.5
The graph of y = &

EXAMPLE &

Sketch the graph of the function y = e*.

Since e > 1, it follows from our previous discussion that the graph of y = e*
is similar to the graph of y = 2* (see Figure 5.2). With the aid of a calculator,
we obtain the following table:

x -3 -2 -1 0 1 2 3
y 0.05 0.14 0.37 1 272 7.39 20.09

The graph of y = e* is sketched in Figure 5.5.

y

Next, we consider another exponential function to the base e that is closely
related to the previous function and is particularly useful in constructing
models that describe “‘exponential decay.”

Sketch the graph of the function y = e™.

Since e > 1, it follows that 0 < 1l/e < 1, so f(x) = e~ = 1l/e* =
(1/e)* is an exponential function with base less than 1. Therefore, it has a
graph similar to that of the exponential function y = (1/2)*. As before, we
construct the following table of values of y = e for selected values of x:

x -3 -2 -1 0 1 2 3
y 20.09 7.39 2.72 1 0.37 0.14 0.05




FIGURE 5.6
The graph of y = e
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Using this table, we sketch the graph of y = e in Figure 5.6.

39

1. Solve the equation 2**! -
2. Sketch the graph of y = %~

273 — 2x71.

Solutions to Self-Check Exercises 5.1 can be found on page 382.

In Exercises 1-8, evaluate the expression.

1La 43 4 b. 37 - 36
2. 2. (27 b. (372
3. a. 9(9)"” b. 5(5)1

t
)
e

(=T

5. (O

IS

(2929
b. e

(=3)°
6. a. 3. (9)—5/8 b. 234 . (4)—3/2
533,516 427 . 413
7. a. 50 b. 0

1 -1/4 27 -1/3 8 -1/3 81 -1/4
. o <R> (a> b- <ﬁ) (ﬁ)

In Exercises 9-16, simplify the expression.

9. a. (64x%)"
10. a. (2x%)(—4x7?)

6a>

3a73

b. (25x3y*)12
b. (4x7%)(—3x%)

4p~

11. a. b. m

13.
14.

15. a

16.

—3124,5/3

a y vy
. (2x3y2)3

(=]

. (xr/s)s/r

i)

50
(am . a*n)72
(am+n)2

®

b. x*3/5x8/3
b. (4x%y?z3)?
b. (xfb/a)fa/b

(x+y)x—y)
e,

x2n72y2n 13
b. Sn+1y,~n
X7y

In Exercises 17-26, solve the equation for x.

17.

19.

21.

23.

25.

26.

62x — 64
384 = 35

2.1)2 = (2.1)°

L 1 x-2
8= (32>

32— 123 427 =

2~ 4.2+ 4=0

0

18. 5 = 5°
20. 10> = 10+
22, (—13)2 = (—1.3)!

a1
2.3 =

(continued on p. 382)
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EXAMPLE 1

SOLUTION v

FIGURE T1

Although the proof is outside the scope of this book, it can be proved that
an exponential function of the form f(x) = b*, where b > 1, will ultimately
grow faster than the power function g(x) = x" for any positive real number
n. To give a visual demonstration of this result for the special case of the
exponential function f(x) = e*, we can use a graphing calculator to plot the
graphs of both f and g (for selected values of n) on the same set of axes in
an appropriate viewing rectangle and observe that the graph of f ultimately
lies above that of g.

Use a graphing utility to plot the graphs of (a) f(x) = ¢* and g(x) = x* on
the same set of axes in the viewing rectangle [0, 6] X [0, 250] and (b) f(x) = e*
and g(x) = x° in the viewing rectangle [0, 20] X [0, 1,000,000].

a. The graphs of f(x) = e* and g(x) = x* in the viewing rectangle [0, 6] X
[0, 250] are shown in Figure Tla.

b. The graphs of f(x) = ¢* and g(x) = x° in the viewing rectangle [0, 20] X
[0, 1,000,000] are shown in Figure T1b.

(a) The graphs of f(x) = e*and g(x) = x* in (b) The graphs of f(x) = e*and g(x) = »°
the viewing rectangle [0, 6] X [0, 250] in the viewing rectangle
[0, 20] x [0, 1,000,000]

In the exercises that follow, you are asked to use a graphing utility to reveal
the properties of exponential functions.



In Exercises 1 and 2, use a graphing utility to
plot the graphs of the functions fand g on the
same set of axes in the specified viewing rec-
tangle.

1. f(x) = e* and g(x) = x%; [0, 4] X [0, 30]
2. f(x) = e* and g(x) = x* [0, 15] X [0, 20,000]

In Exercises 3 and 4, use a graphing utility to
plot the graphs of the functions fand g on the
same set of axes in an appropriate viewing
rectangle to demonstrate that f ultimately
grows faster than g. (Note: Your answer will
not be unique.)

3. f(x) = 2* and g(x) = x*»
4. f(x) = 3* and g(x) = x°

5. Use a graphing utility to plot the graphs of f(x) = 27,
g(x) = 3%, and h(x) = 4* on the same set of axes in the
viewing rectangle [0, 5] X [0, 100]. Comment on the
relationship between the base b and the growth of the
function f(x) = b*.

6. Use a graphing utility to plot the graphs of f(x) =
(172), g(x) = (1/3)*, and h(x) = (1/4)* on the same set

10.

of axes in the viewing rectangle [0, 4] X [0, 1]. Comment
on the relationship between the base b and the growth
of the function f(x) = b*.

. Use a graphing utility to plot the graphs of f(x) = e,

g(x) = 2e*, and h(x) = 3e* on the same set of axes in
the viewing rectangle [—3, 3] X [0, 10]. Comment on the
role played by the constant k& in the graph of

fx) = ke*.

. Use a graphing utility to plot the graphs of f(x) = —e”,

g(x) = —2e*, and h(x) = —3e* on the same set of axes
in the viewing rectangle [—3, 3] X [—10, 0]. Comment
on the role played by the constant k in the graph of
f(x) = ke*.

. Use a graphing utility to plot the graphs of f(x) = e%,

g(x) = e, and h(x) = e'* on the same set of axes in
the viewing rectangle [—2, 2] X [0, 4]. Comment on the
role played by the constant k in the graph of f(x) = e*~

Use a graphing utility to plot the graphs of f(x) = e >,
g(x) = e, and h(x) = e '** on the same set of axes in
the viewing rectangle [—2, 2] X [0, 4]. Comment on the
role played by the constant k in the graph of f(x) = e*.

381
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In Exercises 27-35, sketch the graphs of the
given functions on the same axes. A calculator
is recommended for these exercises.

27.y=2%y=3%and y = 4*

oo ()

29. y=2"y=3"andy =4"

2

oo

30. y = 4% and y = 470
3Ly =4y =4 and y = 4*
32. y =¢',y = 2¢% and y = 3e*

33,y =€y =¢ and y = '™

SoLUTIONS T0 SELF-CHECK EXERCISES 5.1

1. 22x+1 . 2—3 — 2X—1

22x+l B
2x71 2 = 1
2(21+1)—(x—1)—3 =1
271 =1

1.5x

M. y=e" y=¢andy = e

35. y=05e*,y=e* andy = 2¢™*

In Exercises 36-39, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

36. (X2 + 1P =x"+1
37. eV = e'e’
38. If x < y, then e* < ¢’.

39. If 0 < b <1andx <y, then b* > b".

(Dividing both sides by 2*°1)

This is true if and only if x — 1 =0orx = 1.

2. We first construct the following table of values:

x -3

-2 -1 0 1 2 3 4

y=e* 03

04 0.7 1 1.5 22 33 5

Next, we plot these points and join them by a smooth curve to obtain the graph of
fshown in the accompanying figure.
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5.2 Logarithmic Functions

Logarithm of
x to the Base b

A

EXAMPLE 1

EXAMPLE 2

SOLUTION v

LOGARITHMS

You are already familiar with exponential equations of the form
b’ =x b>0,b%#1)

where the variable x is expressed in terms of a real number b and a variable
y. But what about solving this same equation for y? You may recall from your
study of algebra that the number y is called the logarithm of x to the base b
and is denoted by log, x. It is the exponent to which the base b must be raised
in order to obtain the number x.

y = log, x if and only if x = b’ (x>0)

Observe that the logarithm log, x is defined only for positive values of x.

a. logy, 100 = 2 since 100 = 10?
b. logs 125 = 3 since 125 = 5°
c. log3l = —3since = = L
27 27 3
d. logy 20 = 1 since 20 = 20!

3*3

Solve each of the following equations for x.

a. logzx = 4 b. logis 4 = x c. log. 8=3

a. By definition, log; x = 4 implies x = 3* = 8.
b. logis4 = x is equivalent to 4 = 16* = (4%)* = 4%, or 4! = 4%, from which
we deduce that

2x=1 (b"=b"=m=n)
=1
2
c. Referring once again to the definition, we see that the equation
log, 8 = 3 is equivalent to

8=2%=x°
x=2 (am=b"=a=D>)
The two widely used systems of logarithms are the system of common
logarithms, which uses the number 10 as the base, and the system of natural

logarithms, which uses the irrational number e = 2.71828. . . as the base. Also,
it is standard practice to write log for log;, and In for log,.
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Logarithmic Notation

Laws of Logarithms

EXAMPLE 3

EXAMPLE 4

log x = log, x (Common logarithm)

In x = log, x (Natural logarithm)

The system of natural logarithms is widely used in theoretical work. Using
natural logarithms rather than logarithms to other bases often leads to sim-
pler expressions.

LAWS OF LOGARITHMS

Computations involving logarithms are facilitated by the following laws of
logarithms.

If m and n are positive numbers, then
1. log, mn = logy m + logy n
2. log, % =log, m — log, n

3. log, m" = n log, m
4. logy 1 =0
5. logp b = 1

Do not confuse the expression log m/n (Law 2) with the expression
log m/log n. For example,

log100 _ 2 _
log10 1

log%=log100—log10=2—1=1;*é

You will be asked to prove these laws in Exercises 53—55. Their derivations
are based on the definition of a logarithm and the corresponding laws of
exponents. The following examples illustrate the properties of logarithms.

a. log(2-3) =log?2 + log3 b. ln%zlnS—ln?)

¢ logV7 =log7"? = %log 7 d. logs1 =0
e. log;s45=1

Given that log 2 = 0.3010, log 3 =~ 0.4771, and log 5 = 0.6990, use the laws
of logarithms to find

a. log 15 b. log 7.5 c. log 81 d. log 50



5.2 = [OGARITHMIC FUNCTIONS 385

SOLUTION a. Note that 15 = 3 - 5, so by Law 1 for logarithms,
log15=1og3-5
=log3 + log5
~ 0.4771 + 0.6990
=1.1761

. Observing that 7.5 = 15/2 = (3 - 5)/2, we apply Laws 1 and 2, obtaining
B)S)
2
=log3 + log5 —log2
~ 0.4771 + 0.6990 — 0.3010
= 0.8751

=3

log7.5 =log

¢. Since 81 = 3% we apply Law 3 to obtain
log 81 = log 3*
=4log3
~ 4(0.4771)
= 1.9084
d. We write 50 = 5 - 10 and find
log 50 = log(5)(10)
=log5 + log 10
~(0.6990 + 1 (Using Law 5)

=1.6990
EXAMPLE 5 Expand and simplify the following expressions:
2 21N/52 —
a. log; x%y? b. logzx 2—:1 c ln)+x1

SO a. log; x%y® = log; x* + log; y? (Law 1)
=2logsx +3log; y (Law 3)

2

b. logzx ; 1_ logy(x* + 1) — log, 2* (Law 2)

=logy(x>+ 1) — xlog, 2 (Law 3)

= logz(x2 +1)—x (Law 5)

Ve -1 x2(x? — 1)1 N
c. In " =In - (Rewriting)
e e
=Inx*+ 1n(x2 — 1)”2 —1Ine" (Laws 1 and 2)

=21nx+%ln(x2—1)—xlne (Law 3)

=21nx+%ln(x2—1)—x (Law 5)
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Logarithmic Function

FIGURE 5.7
The points (u, v) and (v, v) are mirror re-
flections of each other.

y
@ v) =
v+ L ]
u—+ o(v,u)
S B e ]
u v
FIGURE 5.8

The graphs of y = b* and y = log; x are
mirror reflections of each other.

LOGARITHMIC FUNCTIONS AND THEIR GRAPHS

The definition of the logarithm implies that if b and n are positive numbers
and b is different from 1, then the expression log, n is a real number. This
enables us to define a logarithmic function as follows:

The function defined by
f(x) = log, x b>0,b#1)

is called the logarithmic function with base b. The domain of f is the set of all
positive numbers.

One easy way to obtain the graph of the logarithmic function y = log, x
is to construct a table of values of the logarithm (base b). However, another
method—and a more instructive one—is based on exploiting the intimate
relationship between logarithmic and exponential functions.

If a point (u, v) lies on the graph of y = log, x, then

v = log,u
But we can also write this equation in exponential form as
u=>b

So the point (v, u) also lies on the graph of the function y = b*. Let’s look
at the relationship between the points (u, v) and (v, u) and the line y = x
(Figure 5.7). If we think of the line y = x as a mirror, then the point (v, u)
is the mirror reflection of the point (i, v). Similarly, the point (u, v) is a mirror
reflection of the point (v, u). We can take advantage of this relationship to
help us draw the graph of logarithmic functions. For example, if we wish to
draw the graph of y = log, x, where b > 1, then we need only draw the mirror
reflection of the graph of y = b* with respect to the line y = x (Figure 5.8).

y y=>b*
y=x

_/l ./fogbx

1

X

You may discover the following properties of the logarithmic function by
taking the reflection of the graph of an appropriate exponential function
(Exercises 31 and 32).



Properties of the
Logarithmic Function

EXAMPLE 6

FIGURE 5.9
The graph of y = In x is the mirror reflec-
tion of the graph of y = ¢

Properties Relating
e* and In x
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The logarithmic function y = log, x (b > 0, b # 1) has the following properties:
1. Its domain is (0, ©).

2. Its range is (—o°, ).

3. Its graph passes through the point (1, 0).

4. Tt is continuous on (0, ).
5. It is increasing on (0, «) if b > 1 and decreasing on (0, ) if b < 1.

Sketch the graph of the function y = In x.

We first sketch the graph of y = e*. Then, the required graph is obtained by
tracing the mirror reflection of the graph of y = e* with respect to the line
y = x (Figure 5.9).

y y=e*

_/1 ‘ﬁnx
x

PROPERTIES RELATING THE EXPONENTIAL
AND LOGARITHMIC FUNCTIONS

We made use of the relationship that exists between the exponential function
f(x) = e* and the logarithmic function g(x) = In x when we sketched the
graph of g in Example 6. This relationship is further described by the following
properties, which are an immediate consequence of the definition of the
logarithm of a number.

In

e =x (x>0) )

Ine* =x (for any real number x) A3

(Try to verify these properties.)
From Properties 2 and 3, we conclude that the composite function

(fo8)(x) = flg(x)]

:elnx:x

(g°f)(x) = g[f(x)]

=Ine* =x
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Thus,
flg(x)] = glf(x)]

=X

Any two functions f and g that satisfy this relationship are said to be inverses
of each other. Note that the function f undoes what the function g does, and
vice versa, so the composition of the two functions in any order results in the
identity function F(x) = x.

The relationships expressed in Equations (2) and (3) are useful in solving
equations that involve exponentials and logarithms.

You can demonstrate the validity of Properties 5 and 6, which state that the exponential
function f(x) = e* and the logarithmic function g(x) = In x are inverses of each other as follows:

1. Sketch the graph of (fo g)(x) = e, using the viewing rectangle [0, 10] X [0, 10]. Interpret the result.
2. Sketch the graph of (g  f)(x) = In e*, using the standard viewing rectangle. Interpret the result.

EXAMPLE 7 Solve the equation 2¢**2 = 5.

We first divide both sides of the equation by 2 to obtain

et = % =25

Next, taking the natural logarithm of each side of the equation and using
Equation (3), we have

Ine*?=1n2.5

x+2=1In25
x=—-24+1In25
~ —1.08

EXAMPLE 8 Solve the equation 5Inx + 3 = 0.

Adding —3 to both sides of the equation leads to
Slnx=-3

__3__
Inx=-%<=-06

and so

elnx — e—OAG
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Using equation (2), we conclude that

x=e 0
~ (.55

Group Discussion
D Consider the equation y = y,b*", where y,and k are positive constants
and b > 0, b # 1. Suppose we want to express y in the form y = y,e?*. Use
the laws of logarithms to show that p = k In b and hence that y = y,e*"»*
is an alternative form of y = y,b* using the base e.

1. Sketch the graph of y = 3* and y = log; x on the same set of axes.

2. Solve the equation 3e**! — 2 = 4.

Solutions to Self-Check Exercises 5.2 can be found on page 391.

In Exercises 1-10, express the given equation
in logarithmic form.

1. 2° = 64 2.3 =243
1 1

-2 = = 3 L
3.3 5 4. 5 125

1\ 1 1\
(1) -2 1y

Y
7. 3235 =8 8. 81%4 =27
9. 107% = 0.001 10. 167" = 0.5

In Exercises 11-16, use the facts that log 3 =
0.4771 and log 4 = 0.6021 to find the value of
the given logarithm.

11. log 12 12. logi

13. log 16 14. log V3
1

15. log 48 16. 10g ﬁ

In Exercises 17-26, use the laws of logarithms
to simplify the given expression.

17. log x(x + 1)* 18. log x(x> + 1)1~

Vx+1 e*
19. log 1 20. ln1 apr
21. In xe 22, Inx(x + 1)(x + 2)
1/2 2
23. In——— 24. In————
X*V1 4+ x? Vx(1 + x)?
25. In x* 26. In x**1

In Exercises 27-30, sketch the graph of the
given equation.

27. y = log; x 28. y = logi;3x
1
29. y =In2x 30.y=1n§x
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In Exercises 31 and 32, sketch the graphs of
the given equations on the same coordinate
axes.

31. y =2%and y = log, x

32. y=e¢*and y = In 3x

In Exercises 33-42, use logarithms to solve
the given equation for .

33, ' =8 34. %6’3‘ =09

35 5¢% =6 36. 4ot = 4

3. 2% — 4 =6 38 12 — ¢ =3
39, 1+5—26M =20 40. % =100
41. A = Be ™ 4. 1%3@/2:

43. BLooDp PRESSURE A normal child’s systolic blood pressure
may be approximated by the function

p(x) =m(nx) +b

where p(x) is measured in millimeters of mercury, x is
measured in pounds, and m and b are constants. Given
that m = 19.4 and b = 18, determine the systolic blood
pressure of a child who weighs 92 Ib.

44. MacniTupe oF EARTHQUAKES On the Richter scale, the
magnitude R of an earthquake is given by the formula

R= loglio

where 7is the intensity of the earthquake being measured
and I is the standard reference intensity.

a. Express the intensity / of an earthquake of magnitude
R =5 in terms of the standard intensity /.

b. Express the intensity / of an earthquake of magnitude
R = 8 in terms of the standard intensity /,. How many
times greater is the intensity of an earthquake of magni-
tude 8 than one of magnitude 5?

¢. In modern times the greatest loss of life attributable
to an earthquake occurred in eastern China in 1976.
Known as the Tangshan earthquake, it registered 8.2
on the Richter scale. How does the intensity of this
earthquake compare with the intensity of an earthquake
of magnitude R = 5?

45. Sounp INTENSITY  The relative loudness of a sound D of
intensity / is measured in decibels (db), where

D = 1010g1i
0

and I, is the standard threshold of audibility.

a. Express the intensity / of a 30-db sound (the sound
level of normal conversation) in terms of /.

b. Determine how many times greater the intensity of
an 80-db sound (rock music) is than that of a 30-db
sound.

¢. Prolonged noise above 150 db causes immediate and
permanent deafness. How does the intensity of a 150-
db sound compare with the intensity of an 80-db sound?

46. BArROMETRIC PRESSURE  Halley’s law states that the baro-
metric pressure (in inches of mercury) at an altitude
of x mi above sea level is approximately given by the
equation

p(x) = 29.92¢7 0% (x = 0)

If the barometric pressure as measured by a hot-air bal-
loonist is 20 in. of mercury, what is the balloonist’s al-
titude?

47. FoRreNSIC SCIENCE  Forensic scientists use the following
law to determine the time of death of accident or murder
victims. If 7 denotes the temperature of a body ¢ hr after
death, then

T=T,+ (T, — T,)(0.97)

where T is the air temperature and 7 is the body tem-
perature at the time of death. John Doe was found mur-
dered at midnight in his house, when the room tempera-
ture was 70°F and his body temperature was 80°F. When
was he killed? Assume that the normal body temperature
is 98.6°F.

In Exercises 48-51, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

48. (In x)* = 3 In x for all x in (0, ).

49. Ina — In b = In(a — b) for all positive real numbers a
and b.

50. The function f(x) = 1/In x is continuous on (1, ).

51. The function f(x) = In |x| is continuous for all x # 0.



52. a. Given that 2* = ¢*, find k.

b. Show that, in general, if b is a nonnegative real num-
ber, then any equation of the form y = b* may be written
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54. Use the definition of a logarithm to prove

log, m" = n log, m

in the form y = e*, for some real number k. 55. Use the definition of a logarithm to prove:
. . a. log,1 =0
53. Use the definition of a logarithm to prove: b. log, b = 1

a. log, mn = log, m + log, n

b. logb% =log, m —log, n

Hint: Let log, m = p and log, n = q. Then, b* = m and b? = n.

SOLUTIONS 70 SELF-CHECK EXERCISES 5.2

5.3 compound Interest

1. First, sketch the graph of y = 3* with the help of the following table of values:

x -3 -2 -1 0 1 2 3

y =3 1/27 1/9 1/3 0 3 9 27

Next, take the mirror reflection of this graph with respect to the line y = x to obtain
the graph of y = log; x.
2. 3e'-2=4
3ex+l — 6
ex+1 =7
Ine*' =1In2
(x+1ne=1In2 (Law 3)
x+1=In2 (Law 5)
x=In2-1
~ —0.3069

COMPOUND INTEREST

Compound interest is a natural application of the exponential function to
the business world. (Albert Einstein called compound interest the greatest
invention of mankind.) We begin by recalling that simple interest is interest
that is computed only on the original principal. Thus, if I denotes the interest
on a principal P (in dollars) at an interest rate of r per year for ¢ years, then
we have

I = Prt
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The accumulated amount A, the sum of the principal and interest after ¢ years,
is given by
A=P+I=P+ Prt
= P(l + rt) (Simple interest formula) )]

Frequently, interest earned is periodically added to the principal and
thereafter earns interest itself at the same rate. This is called compound
interest. To find a formula for the accumulated amount, let’s consider a numeri-
cal example. Suppose $1000 (the principal) is deposited in a bank for a term
of 3 years, earning interest at the rate of 8% per year (called the nominal, or
stated, rate) compounded annually. Then, using Formula (4) with P = 1000,
r = 0.08, and ¢+ = 1, we see that the accumulated amount at the end of the
first year is

A = P01 +r)
= 1000[1 + 0.08(1)] = 1000(1.08) = 1080
or $1080.

To find the accumulated amount A, at the end of the second year, we
use (4) once again, this time with P = A,. (Remember, the principal and
interest now earn interest over the second year.) We obtain

A2 = P(l + rt) :Al(l + rt)
=1000[1 + 0.08(1)][1 + 0.08(1)]
= 1000[1 + 0.08]> = 1000(1.08)? =~ 1166.40
or approximately $1166.40.

Finally, the accumulated amount A; at the end of the third year is found

using (4) with P = A,, giving
A3 = P(l + rt) :Az(l + rt)
=1000[1 + 0.08(1)]*[1 + 0.08(1)]
= 1000[1 + 0.08]° = 1000(1.08)* =~ 1259.71
or approximately $1259.71.

If you reexamine our calculations in this example, you will see that the

accumulated amounts at the end of each year have the following form:
First year: A, =1000(1 + 0.08) or A =P1+r)
Second year: A, =1000(1 + 0.08)> or  A,=P(1 +r)
Third year: A3 = 1000(1 + 0.08)° or A;=P{+r)
These observations suggest the following general result: If P dollars are in-

vested over a term of ¢ years earning interest at the rate of r per year com-
pounded annually, then the accumulated amount is

A =Pl +r) )

Formula (5) was derived under the assumption that interest was com-
pounded annually. In practice, however, interest is usually compounded more
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than once a year. The interval of time between successive interest calculations
is called the conversion period.

If interest at a nominal rate of r per year is compounded m times a year
on a principal of P dollars, then the simple interest rate per conversion period is

r (Annual interest rate)
m (Periods per year)

For example, if the nominal interest rate is 8% per year (r = 0.08) and interest
is compounded quarterly (m = 4), then

i=L=008_ o0
m 4

or 2% per period.

To find a general formula for the accumulated amount when a principal
of P dollars is deposited in a bank for a term of ¢ years and earns interest at
the (nominal) rate of r per year compounded m times per year, we proceed
as before wusing Formula (5) repeatedly with the interest rate
i = r/m. We see that the accumulated amount at the end of each period is
as follows:

First period: A= P01 +1)
Second period: A, = A, (1 +i) =[P(1 +)]A +i) =P + i)
Third period:  A; = A,(1 +i) =[PA + YA +i) =P1 + i)

nth period: A, =A 0 +)=[PA+ )1 +i)=PA+i)

But there are n = mt periods in ¢ years (number of conversion periods times
the term). Therefore, the accumulated amount at the end of ¢ years is given by

A =P+ i)

A =P( + i) (6)
where i = r/m, n = mt, and

A = Accumulated amount at the end of # conversion periods
P = Principal

r = Nominal interest rate per year
m = Number of conversion periods per year

t = Term (number of years)

Find the accumulated amount after 3 years if $1000 is invested at 8% per
year compounded (a) annually, (b) semiannually, (c) quarterly, and
(d) monthly.
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SOLUTION a. Here, P = 1000, r = 0.08, and m = 1. Thus, i = r = 0.08 and n = 3, so
Formula (6) gives
A =1000(1.08)*
=1259.71
or $1259.71.
b. Here, P = 1000, r = 0.08, and m = 2. Thus, i = 0.08/2 = 0.04 and n =
(3)(2) = 6, so that (6) gives
A =1000(1.04)¢
=1265.32
or $1265.32.
¢. In this case, P = 1000, r = 0.08, and m = 4. Thus, i = 0.08/4 = 0.02 and
n = (3)(4) = 12, so (6) gives
A =1000(1.02)12
= 1268.24

or $1268.24.

d. Here, P = 1000, r = 0.08, and m = 12. Thus, i = 0.08/12 = 0.0067 and
n = (3)(12) = 36, so (6) gives

A = 1000(1.0067)
= 1271.75

or $1271.75. These results are summarized in Table 5.2.

Nominal Conversion Interest Rate/ Initial Accumulated

Rate, r Period Conversion Period Investment Amount
8% Annual (m = 1) 8% $1000 $1259.71
8 Semiannual (m = 2) 4 1000 1265.32
8 Quarterly (m = 4) 2 1000 1268.24
8 Monthly (m = 12) 2/3 1000 1271.75

EFFECTIVE RATE OF INTEREST

In the last example we saw that the interest actually earned on an investment
depends on the frequency with which the interest is compounded. Thus, the
stated, or nominal, rate of 8% per year does not reflect the actual rate at
which interest is earned. This suggests that we need to find a common basis
for comparing interest rates. One such way of comparing interest rates is
provided by using the effective rate. The effective rate is the simple interest
rate that would produce the same accumulated amount in 1 year as the nominal
rate compounded m times a year. The effective rate is also called the true rate.
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To derive a relation between the nominal interest rate, r per year com-
pounded m times, and its corresponding effective rate, r.; per year, let’s assume
an initial investment of P dollars. Then, the accumulated amount after 1 year
at a simple interest rate of r,; per year is

A :P(l +re{[)

Also, the accumulated amount after 1 year at an interest rate of r per year
compounded m times a year is
; r\"
A=PA+iy="P <1 + —> (Since i = r/im)
m
Equating the two expressions gives

P +ry)=P (1 + 1)
m

r m
T+ra= (1 + —) (Dividing both sides by P)
m

or, upon solving for r,, we obtain the formula for computing the effective
rate of interest:

Fogp = <1 + %)m -1 0

where

reff = Effective rate of interest
r = Nominal interest rate per year
m = Number of conversion periods per year

Find the effective rate of interest corresponding to a nominal rate of 8% per
year compounded (a) annually, (b) semiannually, (c¢) quarterly, and (d)
monthly.

a. The effective rate of interest corresponding to a nominal rate of 8% per
year compounded annually is of course given by 8% per year. This result is
also confirmed by using Formula (7) with » = 0.08 and m = 1. Thus,

Fgr = (1 + 0.08) — 1 = 0.08
b. Let r = 0.08 and m = 2. Then, (7) yields

2
rcff:<1 +%> -1

= (1.04) — 1
— 0.0816

so the required effective rate is 8.16% per year.
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c. Let r = 0.08 and m = 4. Then, (7) yields

4
reff:<1+%> -1

= (1.02)" — 1
= 0.08243

so the corresponding effective rate in this case is 8.243% per year.
d. Let r = 0.08 and m = 12. Then, (7) yields

12
Fett = <1 +%) -1

= (1.0067)" — 1
= 0.08343

so the corresponding effective rate in this case is 8.343% per year.

Now, if the effective rate of interest r. is known, then the accumulated
amount after ¢ years on an investment of P dollars may be more readily
computed by using the formula

A = P(l + reff)t

The 1968 Truth in Lending Act passed by Congress requires that the
effective rate of interest be disclosed in all contracts involving interest charges.
The passage of this act has benefited consumers because they now have a
common basis for comparing the various nominal rates quoted by different
financial institutions. Furthermore, knowing the effective rate enables consum-
ers to compute the actual charges involved in a transaction. Thus, if the
effective rates of interest found in Example 2 were known, the accumulated
values of Example 1, shown in Table 5.3, could have been readily found.

Nominal Frequency of Effective Initial Accumulated Amount
Rate Interest Payment Rate Investment After 3 Years
8% Annually 8% $1000 1000(1 + 0.08)° = $1259.71
8 Semiannually 8.16 1000 1000(1 + 0.0816)° = 1265.32
8 Quarterly 8.243 1000 1000(1 + 0.08243)° = 1268.23
8 Monthly 8.343 1000 1000(1 + 0.08343)° = 1271.75

PRESENT VALUE

Let’s return to the compound interest Formula (6), which expresses the accu-
mulated amount at the end of n periods when interest at the rate of r is
compounded m times a year. The principal P in (6) is often referred to as the
present value, and the accumulated value A is called the future value since
it is realized at a future date. In certain instances an investor may wish to
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determine how much money he should invest now, at a fixed rate of interest,
so that he will realize a certain sum at some future date. This problem may
be solved by expressing P in terms of A. Thus, from (6) we find

P=AQ1+i)"

Here, as before, i = r/m, where m is the number of conversion periods per year.

P=A( + i)™ @®)

Find how much money should be deposited in a bank paying interest at the
rate of 6% per year compounded monthly so that at the end of 3 years the
accumulated amount will be $20,000.

Here, r = 006 and m = 12, so i = 0.06/12 = 0.005 and n =
(3)(12) = 36. Thus, the problem is to determine P given that A = 20,000.
Using Formula (8), we obtain

P = 20,000(1.005) %
~ 16,713

or $16,713.

Find the present value of $49,158.60 due in 5 years at an interest rate of 10%
per year compounded quarterly.

Using Formula (8) with r = 0.1 and m = 4, so that i = 0.1/4 = 0.025, n =
(4)(5) = 20, and A = 49,158.6, we obtain

P = (49,158.6)(1.025) ~ 30,000
or $30,000.

CONTINUOUS COMPOUNDING OF INTEREST

One question that arises naturally in the study of compound interest is: What
happens to the accumulated amount over a fixed period of time if the interest
is computed more and more frequently?

Intuition suggests that the more often interest is compounded, the larger
the accumulated amount will be. This is confirmed by the results of Example
1, where we found that the accumulated amounts did in fact increase when
we increased the number of conversion periods per year.

This leads us to another question: Does the accumulated amount approach
a limit when the interest is computed more and more frequently over a fixed
period of time?
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Continvous Compound
Interest Formula

To answer this question, let’s look again at the compound interest formula:
r mt
A=P (1 + —> )
m

Recall that m is the number of conversion periods per year. So to find an
answer to our problem, we should let m approach infinity (get larger and
larger) in (9). But first we will rewrite this equation in the form

A=P [(1 + L) ] [Since b = (b")]
m

Now, letting m — oo, we find that

lim [P (1 + i) } =p [lim <1 + i) ] (Why?)
m—sw m m—so m

Next, upon making the substitution u = m/r and observing that u — o as
m — o the foregoing expression reduces to

1\ t 1\“ rt
P[lim(l +—> ] =P[lim<1 +—) ]
Uu—>® u U—® u

lim (1 + %) =e [Using (1)]

But

u—

m |t
1imP[<1+l> ] = Per
m—w m

Our computations tell us that as the frequency with which interest is com-
pounded increases without bound, the accumulated amount approaches Pe".
In this situation, we say that interest is compounded continuously. Let’s sum-
marize this important result.

SO

A = pe (10)
where

P = Principal
r = Annual interest rate compounded continuously
t = Time in years

A = Accumulated amount at the end of # years

Find the accumulated amount after 3 years if $1000 is invested at 8% per year
compounded (a) daily (take the number of days in a year to be 365) and
(b) continuously.
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a. Using Formula (6) with P = 1000, » = 0.08, m = 365, and n = (365)(3) =
1095, we find

1095
A =1000 (1 + %) ~1271.22

or $1271.22.
b. Here we use Formula (10) with P = 1000, r = 0.08, and ¢ = 3, obtaining

A = 100000
~1271.25

or $1271.25.

account earning interest compounded continuously will eventually outgrow by far the accumulated amount
of an account earning interest at the same nominal rate but earning simple interest. Illustrate this fact using

the following example.

Suppose you deposit $1000 in account I, earning interest at the rate of 10% per year compounded
continuously so that the accumulated amount at the end of ¢ years is A;(¢f) = 1000¢"". Suppose you also
deposit $1000 in account II, earning simple interest at the rate of 10% per year so that the accumulated
amount at the end of ¢ years is A,(f) = 1000(1 + 0.1¢). Use a graphing utility to sketch the graphs of the
functions A, and A, in the viewing rectangle [0, 20] X [0, 10,000] to see the accumulated amounts A,(¢) and

A,(t) over a 20-year period.

Observe that the accumulated amounts corresponding to interest com-
pounded daily and interest compounded continuously differ by very little.
The continuous compound interest formula is a very important tool in theoreti-
cal work in financial analysis.

If we solve Formula (10) for P, we obtain

P = Ae™" an

which gives the present value in terms of the future (accumulated) value for
the case of continuous compounding.

The Blakely Investment Company owns an office building located in the
commercial district of a city. As a result of the continued success of an urban
renewal program, local business is enjoying a miniboom. The market value
of Blakely’s property is

V() = 300,000¢""

where V(¢) is measured in dollars and ¢ is the time in years from the present.
If the expected rate of inflation is 9% compounded continuously for the next
10 years, find an expression for the present value P(¢) of the market price of
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the property valid for the next 10 years. Compute P(7), P(8), and P(9), and
interpret your results.

I  Using Formula (11) with A = V(¢) and r = 0.09, we find that the present
value of the market price of the property ¢ years from now is
P(t) = V(t)e ™™
= 300,000 002 (0=r=10)

Letting t = 7, 8, and 9, respectively, we find that

P(7) = 300,000e V72 ~ 599 837, or $599,837
P(8) = 300,000e V82 ~ 600,640, or $600,640
PO = 300,000e 2O V92 ~ 598 115, or $598,115

From the results of these computations, we see that the present value of the
property’s market price seems to decrease after a certain period of growth.
This suggests that there is an optimal time for the owners to sell. Later we
will show that the highest present value of the property’s market price is
$600,779, which occurs at time ¢ = 7.72 years.

The effective rate of interest is given by

reff:<1+%> —1

where the number of conversion periods per year is m. In Exercise 27 you will be asked to show that the
effective rate of interest 7. corresponding to a nominal interest rate r per year compounded continuously
is given by

feff =e —1
To obtain a visual confirmation of this result, consider the special case where r = 0.1 (10% per year).

1. Use a graphing utility to plot the graph of both

y1=<1+0x;1>—1 and y,=e -1

in the viewing rectangle [0, 3] X [0, 0.12].
2. Does your result seem to imply that

approaches
feff =e — 1

as m increases without bound for the special case r = 0.1?
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1. Find the present value of $20,000 due in 3 yr at an interest rate of 12%/year
compounded monthly.

2. Glen is a retiree living on Social Security and the income from his investment.
Currently, his $100,000 investment in a 1-yr CD is yielding 11.6% interest com-

pounded daily. If he reinvests the principal ($100,000) on the due date of the CD
in another 1-yr CD paying 9.2% interest compounded daily, find the net decrease
in his yearly income from his investment.

@ 3. a. What is the accumulated amount after 5 yr if $10,000 is invested at 10%/year
compounded continuously?
b. Find the present value of $10,000 due in 5 yr at an interest rate of 10%/year

compounded continuously.

Solutions to Self-Check Exercises 5.3 can be found on page 404.

@ A calculator is recommended for these exer-
cises.

In Exercises 1-4, find the accumulated amount
A if the principal P is invested at an interest
rate of r per year for f years.

1. P = $2500, r = 7%, t = 10, compounded semiannually
2. P = $12,000, r = 8%, t = 10, compounded quarterly
3. P = $150,000, r = 10%, t = 4, compounded monthly
4. P = $150,000, r = 9%, t = 3, compounded daily

In Exercises 5 and 6, find the effective rate
corresponding to the given nominal rate.

5. a. 10%/year compounded semiannually
b. 9%/year compounded quarterly

. 8%lyear compounded monthly
. 8%lyear compounded daily

T

In Exercises 7 and 8, find the present value
of $40,000 due in 4 years at the given rate
of interest.

7. a. 8%/year compounded semiannually
b. 8%/year compounded quarterly

8. a. 7%/year compounded monthly
b. 9%/year compounded daily

10.

11.

12.

13.

. Find the accumulated amount after 4 yr if $5000 is in-

vested at 8%/year compounded continuously.

An amount of $25,000 is deposited in a bank that pays
interest at the rate of 7%/year, compounded annually.
What is the total amount on deposit at the end of 6 yr,
assuming there are no deposits or withdrawals during
those 6 yr? What is the interest earned in that period
of time?

Housine PRricEs The Estradas are planning to buy a
house 4 yr from now. Housing experts in their area have
estimated that the cost of a home will increase at a
rate of 9%/year during that 4-yr period. If this economic
prediction holds true, how much can they expect to pay
for a house that currently costs $80,000?

ENERGY CONSUMPTION A metropolitan utility company in
a western city of the United States expects the consump-
tion of electricity to increase by 8%/year during the next
decade, due mainly to the expected population increase.
If consumption does increase at this rate, find the amount
by which the utility company will have to increase its
generating capacity in order to meet the area’s needs at
the end of the decade.

Pension Funps The managers of a pension fund have
invested $1.5 million in U.S. government certificates of
deposit (CDs) that pay interest at the rate of 9.5%/year
compounded semiannually over a period of 10 yr. At
the end of this period, how much will the investment
be worth?
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14.

15.

16.

17.

18.

19.

20.

21.

22.
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SAVINGS ACCOUNTS Bernie invested a sum of money 5 yr
ago in a savings account, which has since paid interest
at the rate of 8%/yr compounded quarterly. His invest-
ment is now worth $22,289.22. How much did he origi-
nally invest?

Loan ConsoLIDATION The proprietors of the Coachmen
Inn secured two loans from the Union Bank: one for
$8000 due in 3 yr and one for $15,000 due in 6 yr, both
at an interest rate of 10%/yr compounded semiannually.
The bank agreed to allow the two loans to be consoli-
dated into one loan payable in 5 yr at the same interest
rate. How much will the proprietors have to pay the
bank at the end of 5 yr?

Tax-DererRED ANNUITIES Kate is in the 28% tax bracket
and has $25,000 available for investment during her cur-
rent tax year. Assume that she remains in the same tax
bracket over the next 10 yr and determine the accumu-
lated amount of her investment if she puts the $25,000
into a:

a. Tax-deferred annuity that pays 12%/year, tax de-
ferred for 10 yr.

b. Taxable instrument that pays 12%/year for 10 yr.
Hint: In this case the yield after taxes is 8.64%/year.

Consumer PricE INDEX At an annual inflation rate of
7.5%, how long will it take the Consumer Price Index
(CPI) to double?

INVESTMENT RETURNS Zoe purchased a house in 1993 for
$80,000. In 1999 she sold the house and made a net profit
of $28,000. Find the effective annual rate of return on
her investment over the 6-yr period.

INVESTMENT RETURNS Julio purchased 1000 shares of a
certain stock for $25,250 (including commissions). He
sold the shares 2 yr later and received $32,100 after
deducting commissions. Find the effective annual rate
of return on his investment over the 2-yr period.

INVESTMENT OPTIONS Investment A offers a 10% return
compounded semiannually, and investment B offers a
9.75% return compounded continuously. Which invest-
ment has a higher rate of return over a 4-yr period?

PRESENT VALUE Find the present value of $59,673 due in
5 yr at an interest rate of 8%/year compounded continu-
ously.

REAL ESTATE INVESTMENTS A condominium complex was
purchased by a group of private investors for $1.4 million
and sold 6 yr later for $3.6 million. Find the annual rate of
return (compounded continuously) on their investment.

. SAVING FOR CoLLEGE Having received a large inheritance,

a child’s parents wish to establish a trust for the child’s
college education. If 7 yr from now they need an esti-
mated $70,000, how much should they set aside in trust
now, if they invest the money at 10.5% compounded (a)
quarterly? (b) Continuously?

24.

25.

26.

27.

28.

29.

31.

EFFECT OF INFLATION ON SALARIES Omar’s current annual
salary is $35,000. How much will he need to earn 10 yr
from now in order to retain his present purchasing power
if the rate of inflation over that period is 6%/year? As-
sume that inflation is continuously compounded.

Pensions Eleni, who is now 50 years old, is employed
by a firm that guarantees her a pension of $40,000/year
at age 65. What is the present value of her first year’s
pension if inflation over the next 15 yr is (a) 6%?
(b) 8%? (c) 12%? Assume that inflation is continuously
compounded.

REAL ESTATE INVESTMENTS An investor purchased a piece
of waterfront property. Because of the development of
a marina in the vicinity, the market value of the property
is expected to increase according to the rule

V(t) = 80,000¢""

where V(¢) is measured in dollars and ¢ is the time in
years from the present. If the rate of inflation is expected
to be 9% compounded continuously for the next 8 yr, find
an expression for the present value P(¢) of the property’s
market price valid for the next 8 yr. What is P(r) expected
to be in 4 yr?

Show that the effective rate of interest 7.; that corre-
sponds to a nominal interest rate r per year compounded
continuously is given by

P =€ — 1

Hint: From Formula (7) we see that the effective rate 7. corre-
sponding to a nominal interest rate r per year compounded m
times a year is given by

Pm:<1+%) -1

Let m tend to infinity in this expression.

Refer to Exercise 27. Find the effective rate of interest
that corresponds to a nominal rate of 10%/year com-
pounded (a) quarterly, (b) monthly, and (c) continu-
ously.

INVESTMENT ANALYSIS Refer to Exercise 27. Bank A pays
interest on deposits at a 7% annual rate compounded
quarterly, and Bank B pays interest on deposits at a 7§%
annual rate compounded continuously. Which bank has
the higher effective rate of interest?

. INVESTMENT ANALYSIS Find the nominal rate of interest

that, when compounded monthly, yields an effective rate
of interest of 10%/year.

Hint: Use Equation (7).

INVESTMENT ANALYSIS Find the nominal rate of interest
that, when compounded continuously, yields an effective
rate of interest of 10%/year.

Hint: See Exercise 27.
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TiTLE: Assistant Vice President
InsTiTUTION: A large investment corporation

In the securities industry, buying and selling stocks and bonds has
always required a mastery of concepts and formulas that outsiders
find confusing. As a bond seller, Misato Nakazaki routinely uses
terms such as issue, maturity, current yield, callable and convertible
bonds, and so on.

These terms, however, are easily defined. When corporations
issue bonds, they are borrowing money at a fixed rate of interest. The
bonds are scheduled to mature—to be paid back—on a specific date
as much as 30 years into the future. Callable bonds allow the issuer
to pay off the loans prior to their expected maturity, reducing overall
interest payments. In its simplest terms, current yield is the price of a bond
multiplied by the interest rate at which the bond is issued. For example, a
bond with a face value of $1000 and an interest rate of 10% yields $100 per
year in interest payments. When that same bond is resold at a premium on
the secondary market for $1200, its current yield nets only an 8.3% rate of
return based on the higher purchase price.

Bonds attract investors for many reasons. A key variable is the sensitivity
of the bond’s price to future changes in interest rates. If investors get locked
into a low-paying bond when future bonds pay higher yields, they lose money.
Nakazaki stresses that “no one knows for sure what rates will be over time.”
Employing differentials allows her to calculate interest-rate sensitivity for
clients as they ponder purchase decisions.

Computerized formulas, “whose basis is calculus,” says Nakazaki, help
her factor the endless stream of numbers flowing across her desk.

On a typical day, Nakazaki might be given a bid on ‘10 million, GMAC,
8.5%, January 2005.” Translation: Her customer wants her to buy General
Motors Acceptance Corporation bonds with a face value of $10 million and
an interest rate of 8.5%, maturing in January 2005.

After she calls her firm’s trader to find out the yield on the bond in
question, Nakazaki enters the price and other variables, such as the interest
rate and date of maturity, and the computer prints out the answers. Nakazaki
can then relay to her client the bond’s current yield, accrued interest, and so on.
In Nakazaki’s rapid-fire work environment, such speed is essential. Nakazaki
cautions that “computer users have to understand what’s behind the formu-
las.” The software “‘relies on the basics of calculus. If people don’t understand
the formula, it’s useless for them to use the calculations.”

With an MBA from New York University,
Nakazaki typifies the younger generation of
Japanese women who have chosen to succeed
in the business world. Since earning her de-
gree, she has sold bonds for a global securities
firm in New York City.

Nakazaki's client list reads like a who's
who of the leading Japanese banks, insurance
companies, mutual funds, and corporations.
As institutional buyers, her dients purchase
large blocks of American corporate bonds and
mortgage-backed securities such as Ginnie

Maes.
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SoLUTIONS 10 SELF-CHECK EXERCISES 5.3

1. Using Formula (8) with r = 0.12 and m = 12, so that

i= % =001, n=(12)3)=36, A =20,000

we find the required present value to be

P =20,000(1.01)~%
= 13,978.50

or $13,978.50.

. The accumulated amount of Glen’s current investment is found by using Formula

(6) with P = 100,000, r = 0.116, and m = 360. Thus,

. 0.116

=0 = 0.0003222 and n =360
so the required accumulated amount is

A =100,000(1.0003222)%°
=112,296.59

or $112,296.59. Next, we compute the accumulated amount of Glen’s reinvestment.
Once again, using (6) with P = 100,000, r = 0.092, and m = 360 so that

0092 B
i=g, = 0000255  and  n =360

we find the required accumulated amount in this case to be
A = 100,000(1.0002556)*®

or $109,636.95. Therefore, Glen can expect to experience a net decrease in yearly
income of

112,296.59 — 109,636.95
or $2,659.64.

. a. Using Formula (10) with P = 10,000, » = 0.1, and ¢ = 5, we find that the required

accumulated amount is given by
A =10,000e*V®
=16,487.21

or $16,487.21.
b. Using Formula (11) with A = 10,000, r = 0.1, and ¢ = 5, we see that the required
present value is given by
P =10,000e™ Ve
= 6065.31

or $6065.31.
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5.4 Dpitferentiation of Exponential Functions

FIGURE 5.10
The graph of f shows the number of fami-
lies versus their annual income.

Rule 1: Derivative of the
Exponential Function

THE DERIVATIVE OF THE EXPONENTIAL FUNCTION

To study the effects of budget deficit-reduction plans at different income
levels, it is important to know the income distribution of American families.
Based on data from the House Budget Committee, the House Ways and
Means Committee, and the U.S. Census Bureau, the graph of f shown in
Figure 5.10 gives the number of American families y (in millions) as a function
of their annual income x (in thousands of dollars) in 1990.

_.
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Millions of families

=4
W
Il

0.251

0 } } } } } T }
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Thousands of dollars

X

Source: House Budget Committee, House
Ways and Means Committee, and U.S. Cen-
sus Bureau

Observe that the graph of f rises very quickly and then tapers off. From
the graph of f, you can see that the bulk of American families earned less
than $100,000 per year. In fact, 95% of U.S. families earned less than $102,358
per year in 1990. (We will refer to this model again in Using Technology at
the end of this section.)

To analyze mathematical models involving exponential and logarithmic
functions in greater detail, we need to develop rules for computing the deriva-
tive of these functions. We begin by looking at the rule for computing the
derivative of the exponential function.
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EXAMPLE 1

SOLUTION v

Thus, the derivative of the exponential function with base e is equal to the
function itself. To demonstrate the validity of this rule, we compute

fe+h) —fx)
h

f'(x) = lim

. ex+h — eF
= lim
h—0
. e(e"—1
= lim g (Writing e**" = e*e" and factoring)
=0 h
h
. eh—1
= e*lim (Why?)
h—0
To evaluate
. eh—1
lim

h—0

let’s refer to Table 5.4, which is constructed with the aid of a calculator. From
the table, we see that

e”—lz1

lim
h—0

(Although a rigorous proof of this fact is possible, it is beyond the scope of
this book. Also see Example 1, Using Technology, page 414.) Using this result,
we conclude that

flx)y=e-1=¢"

as we set out to show.

Table 5.4

h 0.1 0.01 0.001 -0.1 —0.01 —0.001

eh; ! 1.0517 1.0050 1.0005 0.9516 0.9950 0.9995

Compute the derivative of each of the following functions:
a. f(x) = x%* b. g(¢) = (' + 2)**

a. The product rule gives
’ — d 2,x
f10) = (e)
d d
— 2 2 (px + or — 2
* dx(e) ¢ dx(x)

= x%* + e*(2x)
= xe*(x +2)
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b. Using the general power rule, we find
3., d
14y — 2 + )12 L (ot
gD=3(+2" 2 (e +2)

3 3
= + 12 5t — = Lt t+ 12
2(6 2)"2e 2e(e 2)

Consider the exponential function f(x) = b* (b > 0, b # 1).

1. Use the definition of the derivative of a function to show that

h _
f'(x) =b*- limb 1

h—0

2. Use the result of part 1 to show that
2h—1

@
dx(2)—2 lim

h—0

d ... . 3—1
petC A

3. Use the technique in Using Technology, page 414, to show that (to two decimal places)

h _ h

lim L = 0.69 and lim

h—0 h—0

=1.10
4. Conclude from the results of parts 2 and 3 that
4 (2¥) = (0.69)2* and 4 (3%) = (1.10)3*
dx ’ dx ’
Thus,
d X — X
e b*)=k-b
where k is an appropriate constant.

5. The results of part 4 suggest that, for convenience, we pick the base b, where 2 < b < 3, so that k = 1.
This value of b is e = 2.718281828. . .. Thus,

d Xy — X
E(e)—e

This is why we prefer to work with the exponential function f(x) = e*.
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Rule 2: Chain Rule for
Exponential Functions

EXAMPLE 2

SOLUTION v

EXAMPLE 3

APPLYING THE CHAIN RULE TO EXPONENTIAL FUNCTIONS

To enlarge the class of exponential functions to be differentiated, we appeal

to the chain rule to obtain the following rule for differentiating composite

functions of the form A(x) = e™. An example of such a function is A(x) =
2-2x — 42 _

e¢* > Here, f(x) = x* — 2x.

If f(x) is a differentiable function, then

% () = /OF 1 (x)

To see this, observe that if 4(x) = g[ f(x)], where g(x) = e*, then by virtue
of the chain rule,

W (x) = g'(f(x)f'(x) = e/f'(x)
since g'(x) = e
As an aid to remembering the chain rule for exponential functions, observe
that it has the following form:
a (e/W) = e/@ . derivative of exponent
dx
1 _same_T

Find the derivative of each of the following functions.

a. f(x) = e* b. y=¢™* ¢ g(r) = et

d
4 = p2x — = p2x . = 2x
a. f'(x) =e e 2x) = e* -2 = 2e

d_y: —3xi _ - _ —3x
b. ¢ dx( 3x) 3e

¢ g'(t) = e - dit Q7 + 1) = (4 + 1)
Differentiate the function y = xe .

Using the product rule, followed by the chain rule, we find

dy d d
— —2x —2x
=X e T te T —(x
dx dx dx( )
d (Using the chain rule on
— yp2 _ -2
=xe xa( 2x) + e the first term)
— _2xe72x + e*Zx

=e (1 - 2x)



EXAMPLE 4

SOLUTION v

EXAMPLE 5

SOLUTION v

EXAMPLE &
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et
e +e "

Differentiate the function g(¢) =

Using the quotient rule, followed by the chain rule, we find

d d
t -ty 1y — pf t —t
(e te )dt(e) edt(e +e™)

g't)=

(e' +e7')?
_ (e te e —e(e—e™)
(e + e)?
e+l —e¥+1 ,
ey @V
-2
(e + e7)?

In Section 5.6 we will discuss some practical applications of the exponential
function

Q(t) = Qe

where Q, and k are positive constants and ¢ € [0, «). A quantity Q(¢) growing
according to this law experiences exponential growth. Show that for a quantity
Q(¢) experiencing exponential growth, the rate of growth of the quantity Q’(¢)
at any time ¢ is directly proportional to the amount of the quantity present.

Using the chain rule for exponential functions, we compute the derivative Q'
of the function Q. Thus,

0'() = Qe (k)
= Qve*(k)
= kQ,e"
= kQ(I) (Q(t) = Q()ek’)

which is the desired conclusion.

Find the points of inflection of the function f(x) = ¢

The first derivative of fis
fllx)= —2xe™
Differentiating f'(x) with respect to x yields
(%) = (=2x)(—2xe™) — 2™
=2¢(2x2— 1)
Setting f"(x) = 0 gives
26 (2x* = 1) =0
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FIGURE 5.11
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Sign diagram for "

- == =-0++ + +

(=]
)
Sl

FIGURE 5.12
The graph of y = e*" has two inflection

poinis.

SOLUTION v

Since e never equals zero for any real value of x, we see that x = +1/ V2
are the only candidates for inflection points of f. The sign diagram of f”, shown
in Figure 5.11, tells us that both x = —1/ V2andx =1/V2 give rise to inflection
points of f.

Next,

1 ( 1 > -12
——)=fl——x]=e
f( \/§> "\
and the inflection points of f are (—1/V2, e”?) and (1/V2, e '2). The graph
of f appears in Figure 5.12.

APPLICATION

Our final example involves finding the absolute maximum of an exponen-
tial function.

Refer to Example 6, Section 5.3. The present value of the market price of
the Blakely Office Building is given by

P(t) = 300,000¢ 00+ Vir2 (0=1=10)

Find the optimal present value of the building’s market price.
To find the maximum value of P over [0, 10], we compute
1) — —o0orsvin 4 1 12
P’(£)= 300,000e S -0.097 + = ¢
dt 2
= 300,000 0w Vi <—0 09+ t”2>
b . 4
Setting P'(¢) = 0 gives

—0.09 + 0

4112 =
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since e """V s never zero for any value of ¢. Solving this equation, we find
1

m =0.09
n” — 1

4(0.09)
__1
0.36
t="772

the sole critical point of the function P. Finally, evaluating P(¢) at the critical
point as well as at the end points of [0, 10], we have

t P(t)
0 300,000
7.72 600,779
10 592,838

We conclude, accordingly, that the optimal present value of the property’s
market price is $600,779 and that this will occur 7.72 years from now.

1. Let f(x) = xe™.
a. Find the first and second derivatives of f.
b. Find the relative extrema of f.
c. Find the inflection points of f.

2. An industrial asset is being depreciated at a rate so that its book value ¢ yr from
now will be

V() = 50,000e "
dollars. How fast will the book value of the asset be changing 3 yr from now?

Solutions to Self-Check Exercises 5.4 can be found on page 416.

In Exercises 1-28, find the derivative of the 7. f(x) = x%* 8. f(u) = u%e™
function.
1 f(x) = e* 2. f(x) = 3e* 0. f(x) = % 10. f(x) = g
3.g() =¢ 4, f(x) = e ™

et +e™

11. f(x) = 3(e* + ™) 12. f(x) =

5 fx) =e" + x 6. f(x) = 2e* — x* 2
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19
21
23
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27
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- fow) = 14, fe) = =

. flx) = 2> 16. f(t) = 4+
h(x) = e 18. f(x) = !

- flx) = 3e 20. f(x) = €0
Cflx) = (ef + )P 22, f(x) = (4 — e )
Sl = e 4. f1) = —e 7

. f(x) = (x — 1)e¥*? 26. f(s) = (s> + 1)8752
) =S 2. g() = 5

In Exercises 29-32, find the second derivative
of the function.

29
31

33.

34.

35.

36.

37.

38.

39.

40

. f(x) = e + 2e* 30. f(t) = 3¢ — Se!

. fx) = 2xe* 32. f(t) = e

Find an equation of the tangent line to the graph of
y = e*7? at the point (3, 1).

Find an equation of the tangent line to the graph of
y = e at the point (1, 1/e).

Determine the intervals where the function f(x) =
2 o . . ey e .
e is increasing and where it is decreasing.

Determine the intervals where the function f(x) = x%™
is increasing and where it is decreasing.

Determine the intervals of concavity for the function

fo) = 5.

Determine the intervals of concavity for the function

flx) = xe“.
Find the inflection point of the function f(x) = xe .

. Find the inflection point(s) of the function f(x) = 2¢ ™.

In Exercises 41-44, find the absolute extrema
of the function.

41. f(x) = ¢ on [-1, 1]

42. h(x) = e “on [-2,2]

43

. g(x) = 2x — 1)e™* on [0, =)

4. f(x) = xe™ on [0, 2]

In Exercises 45-48, use the curve-sketching
guidelines of Chapter 4, page 327, to sketch
the graph of the function.

45. f(1) = ¢ — 1 46. h(x) = &2
) 3
47. fx) =2 — e~ 48. f(x) = P

50.

51.

A calculator is recommended for Exercises
49-59.

49.

SALEs Promotion The Lady Bug, a women’s clothing
chain store, found that ¢ days after the end of a sales
promotion the volume of sales was given by

S(t) = 20,0001 + e*%) (0=¢=5)

dollars. Find the rate of change of The Lady Bug’s sales
volume whent =1,t=2,t=3,and t = 4.

ENERGY CoNSuMPTION OF APPLIANCES The average energy
consumption of the typical refrigerator/freezer manufac-
tured by York Industries is approximately

C(r) = 14867 + 500 (0 =t = 20)

kilowatt-hours (kWh) per year, where ¢ is measured in
years, with ¢t = 0 corresponding to 1972.

a. What was the average energy consumption of the
York refrigerator/freezer at the beginning of 1972?

b. Prove that the average energy consumption of the
York refrigerator/freezer is decreasing over the years in
question.

c. All refrigerator/freezers manufactured as of January
1, 1990, must meet the 950-kWh/year maximum energy-
consumption standard set by the National Appliance
Conservation Act. Show that the York refrigerator/
freezer satisfies this requirement.

PoLio ImmunizatioN Polio, a once-feared killer, declined
markedly in the United States in the 1950s after Jonas
Salk developed the inactivated polio vaccine and mass
immunization of children took place. The number of
polio cases in the United States from the beginning of
1959 to the beginning of 1963 is approximated by the
function

N(1) = 5.36009512—0.851 0=r=4)

where N(t) gives the number of polio cases (in thou-
sands) and ¢ is measured in years, with t = 0 correspond-
ing to the beginning of 1959.
a. Show that the function N is decreasing over the time
interval under consideration.
b. How fast was the number of polio cases decreasing
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at the beginning of 1959? At the beginning of 1962?
(Comment: Following the introduction of the oral vac-
cine developed by Dr. Albert B. Sabin in 1963, polio in
the United States has, for all practical purposes, been
eliminated.)

The percentage of alcohol in a
person’s bloodstream ¢ hr after drinking 8 fluid oz of
whiskey is given by

A(t) = 0.23te 0 0=r=12)

a. What is the percentage of alcohol in a person’s blood-
stream after 3 hr? After 8 hr?

b. How fast is the percentage of alcohol in a person’s
bloodstream changing after 3 hr? After 8 hr?

Source: Encyclopedia Britannica

. PricE oF PERFUME The monthly demand for a certain

brand of perfume is given by the demand equation
p = 100e0%2x + 150

where p denotes the retail unit price (in dollars) and x
denotes the quantity (in 1-0z bottles) demanded.

a. Find the rate of change of the price per bottle when
x = 1000 and when x = 2000.

b. What is the price per bottle when x = 1000? When
x = 2000?

. PricE of WINE The monthly demand for a certain brand

of table wine is given by the demand equation

3
p =240 (1 T35 6—0,0005.v>

where p denotes the wholesale price per case (in dollars)
and x denotes the number of cases demanded.

a. Find the rate of change of the price per case when
x = 1000.

b. What is the price per case when x = 1000?

. SPREAD OF AN EPIDEMIC During a flu epidemic, the total

number of students on a state university campus who
had contracted influenza by the xth day was given by

a. How many students had influenza initially?

b. Derive an expression for the rate at which the disease
was being spread and prove that the function N is increas-
ing on the interval (0, ).

c. Sketch the graph of N. What was the total number
of students who contracted influenza during that particu-
lar epidemic?

. Maximum OiL Propuction It has been estimated that the
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57.

9]
=]

60.

61.

413

total production of oil from a certain oil well is given
by

T(r) = —1000(¢ + 10)e " + 10,000

thousand barrels ¢ years after production has begun.
Determine the year when the oil well will be producing
at maximum capacity.

OpTiMAL SELLING TIME Refer to Exercise 26, page 402.

The present value of a piece of waterfront property pur-
chased by an investor is given by the function

P() = 80,000 V1200 (0=1=8)

Determine the optimal time (based on present value) for
the investor to sell the property. What is the property’s
optimal present value?

. 01L Usep 1o FueL PrRoDUCTIVITY A study on worldwide oil

use was prepared for a major oil company. The study
predicted that the amount of oil used to fuel productivity
in a certain country is given by

f(t) = 1.5 + 1.8te™'*

where f(f) denotes the number of barrels per $1000 of
economic output and ¢ is measured in decades (1 = 0
corresponds to 1965). Compute f'(0), f'(1), f'(2), and
f'(3) and interpret your results.

O=t=4)

. PERCENTAGE OF PoPULATION RELOCATING Based on data ob-

tained from the Census Bureau, the manager of Plym-
outh Van Lines estimates that the percentage of the total
population relocating in year ¢ (¢t = 0 corresponds to the
year 1960) may be approximated by the formula

P(t) = 20.6¢~ 00

Compute P’(10), P'(20), and P’'(30) and interpret
your results.

Price oF A CommoDpITY The price of a certain commodity
in dollars per unit at time ¢ (measured in weeks) is given
by p = 18 — 3¢ — 6e™™.

a. What is the price of the commodity at 1 = 0?

b. How fast is the price of the commodity changing at
t=10?

c. Find the equilibrium price of the commodity.

Hint: It is given by lim p.

0=t=235)

PricE oF A CommoDpITY The price of a certain commodity

in dollars per unit at time ¢ (measured in weeks) is given

byp =8 + 4e¥ + te™™.

a. What is the price of the commodity at t = 0?

b. How fast is the price of the commodity changing at

t=0?

c. Find the equilibrium price of the commodity.

Hint: It’s given by lim p. Also, use the fact that lim fe™ = 0.
P

(=

(continued on p. 416)



Using Technology

EXAMPLE 1

FIGURE T1

The graph of fin the viewing rectangle

[=1,11 X0, 2]

At the beginning of Section 5.4, we demonstrated via a table of values of
(e" — 1)/h for selected values of & the plausibility of the result

e”—l=

lim 1
h—0

To obtain a visual confirmation of this result, we plot the graph of

flx) =

e —1

in the viewing rectangle [—1, 1] X [0, 2] (Figure T1). From the graph of f, we
see that f(x) appears to approach 1 as x approaches 0.

-

______—~‘—*'F~

The numerical derivative function of a graphing utility will yield the
derivative of an exponential or logarithmic function for any value of x, just
as it did for algebraic functions.*

* The rules for differentiating logarithmic functions will be covered in Section 5.5. However, the exercises
given here can be done without using these rules.

In Exercises 1-6, use the numerical derivative 7. AN EXTINCTION SITUATION The number of saltwater croco-
operation of a graphing utility to find the rate diles in a certain area of northern Australia is given by
of change of f(x) at the given value of x. Give

your answer accurate to four decimal places. 300e 0024

L f(x) = X’ x = -1
2. f(x) = (Vx + 1)~ x = 0.5
3. f(x) = x*VInx; x =2

VxInx
4. f(x) = m; x =32

5. f(x) =e*In2x + 1); x = 0.5

oV

6.f(x)=ln(x2—+1);x=1

414

P(1) =5 w1

a. How many crocodiles were in the population initially?
b. Show that lim P(¢) = 0.

t—oo
¢. Use a graphing calculator to plot the graph of P in
the viewing rectangle [0, 200] X [0, 70].

(Comment: This phenomenon is referred to as an extinc-
tion situation.)

8. INcome oF AMERICAN FAMILIES Based on data compiled
by the House Budget Committee, the House Ways and
Means Committee, and the U.S. Census Bureau, it is



10.

11.

. WORLD POPULATION GROWTH

estimated that the number of American families y (in
millions) who earned x thousand dollars in 1990 is related
by the equation

y = 0.1584x o~ 0.0000016x+0.00011x*~0.0449Lx (x> 0)
a. Use a graphing utility to plot the graph of the equation
in the viewing rectangle [0, 150] X [0, 2].

b. How fast is y changing with respect to x when x =
10? When x = 50? Interpret your results.

Source: House Budget Committee, House Ways and
Means Committee, and U.S. Census Bureau

According to a study con-
ducted by the United Nations Population Division, the
world population (in billions) is approximated by the
function

12
f(t) - 1+ 3.749146*1.42804t

O=r=4

where ¢t is measured in half-centuries, with ¢ = 0 corre-
sponding to the beginning of 1950.

a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 5] X [0, 14].

b. How fast was the world population expected to in-
crease at the beginning of the year 2000?

Source: United Nations Population Division

LoaN AmorTiZATION The Sotos plan to secure a loan of
$160,000 to purchase a house. They are considering a
conventional 30-yr home mortgage at 9%/year on the
unpaid balance. It can be shown that the Sotos will have
an outstanding principal of

160,000(1.0075*° — 1.0075%)

)= 1.0075% — 1

dollars after making x monthly payments of $1287.40.
a. Use a graphing utility to plot the graph of B(x), using
the viewing rectangle [0, 360] X [0, 160,000].

b. Compute B(0) and B’(0) and interpret your results;
compute B(180) and B'(180) and interpret your results.

INCREASE IN JUVENILE OFFENDERS The number of youths
aged 15 to 19 will increase by 21% between 1994 and
2005, pushing up the crime rate. According to the Na-
tional Council on Crime and Delinquency, the number
of violent crime arrests of juveniles under age 18 in year
t is given by

£(f) = —0.438£2 + 9.002¢ + 107 (0 =r=13)

where f(¢) is measured in thousands and ¢ in years, with
t = 0 corresponding to 1989. According to the same
source, if trends like inner-city drug use and wider avail-

12.

13.

ability of guns continues, then the number of violent
crime arrests of juveniles under age 18 in year ¢ will be
given by

if0=r<4

—0.438¢2> + 9.002¢ + 107
g(t) = .
if4=r=13

99.45660'07824t

where g(¢) is measured in thousands and ¢ = 0 corre-
sponds to 1989.

a. Compute f(11) and g(11) and interpret your results.
b. Compute f'(11) and g’(11) and interpret your results.
Source: National Council on Crime and Delinquency

INCREASING CROP YIELDS If left untreated on bean stems,
aphids (small insects that suck plant juices) will multiply
at an increasing rate during the summer months and
reduce productivity and crop yield of cultivated crops.
But if the aphids are treated in mid-June, the numbers
decrease sharply to less than 100/bean stem, allowing
for steep rises in crop yield. The function

6261'152t

349e71.324(t71.5)

if0=tr<1.5

F@ { ifl5=¢r=3

gives the number of aphids in a typical bean stem at
time ¢, where ¢ is measured in months, with # = 0 corre-
sponding to the beginning of May.

a. How many aphids are there on a typical bean stem
at the beginning of June (¢ = 1)? At the beginning of
July (t = 2)?

b. How fast is the population of aphids changing at the
beginning of June? At the beginning of July?

Source: The Random House Encyclopedia

PERCENTAGE OF FEMALES IN THE LABOR FORCE Based on data
from the U.S. Census Bureau, the chief economist of
Manpower, Inc., constructed the following formula
giving the percentage of the total female population in
the civilian labor force, P(¢), at the beginning of the ¢th
decade (¢ = 0 corresponds to the year 1900):

74
1+26 e*O.166t+0.04536t270.0066t3

P(@) = O=r=11)

Assume this trend continued for the rest of the twentieth
century.

a. What was the percentage of the total female popula-
tion in the civilian labor force at the beginning of the
year 20007

b. What was the growth rate of the percentage of the
total female population in the civilian labor force at the
beginning of the year 2000?

Source: U.S. Census Bureau

415
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62. ABSORPTION OF DRrUGS A liquid carries a drug into an In Exercises 64-67, determine whether the
organ of volume V cm’ at the rate of a cm®/sec and leaves statement is true or false. If it is true, explain
at the same rate. The concentration of the drug in the why it is true. If it is false, give an example to
entering liquid is ¢ g/cm®. Letting x(¢) denote the concen- show why it is false.
tration of the drug in the organ at any time ¢, we have 64. If f(x) = 3% then f'(x) = x - 3*°L.

x(t) = c(1 — e™").
a. Show that x is an increasing function on (0, ). 65. If f(x) = e”, then f'(x) = e".

b. Sketch the graph of x.

63. ABSorRPTION OF DRUGS Refer to Exercise 62. Suppose the
maximum concentration of the drug in the organ must )
qui 67. It x> + ¢’ = 10, then y’ = —>
not exceed m g/cm’, where m < c. Show that the liquid »tx®+ e’ =10, then y” =
must not be allowed to enter the organ for a time longer
than

66. If f(x) = @*, then f'(x) = 7.

e’

minutes.

SOLUTIONS T0 SELF-CHECK EXERCISES 5.4

1. a. Using the product rule, we obtain

d d
! — -X + X
F)=x dax ¢ C
=—xe*+e*=(1—x)e"

Using the product rule once again, we obtain

FEO=0-0%errendaoy
=1 -x)(—e™)+e*(—1)
=—e*txet—eF=(x—2)

b. Setting f'(x) = 0 gives
1 —=x)e™ =

Since e™* # 0, we see that 1 — x = 0, and this gives x = 1 as the only critical point
of f. The sign diagram of f’ shown in the accompanying figure tells us that the point
(1, e7") is a relative maximum of f.

++++++++++0- - - - —
1 1
1 1 X

0 1

c. Setting f"(x) = 0 gives x — 2 = 0, so x = 2 is a candidate for an inflection point
of f. The sign diagram of f” (accompanying figure) shows that (2, 2e?) is an inflection
point of f.
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2. The rate of change of the book value of the asset ¢ yr from now is

’ — i —0.4¢
V'(5) = 50,000 e
= 50,000(—0.4)e 04 = —20,000e "

Therefore, 3 yr from now the book value of the asset will be changing at the rate
of

V'(3) = —20,000e4® = —20,000e'? ~ —6023.88

—that is, decreasing at the rate of approximately $6024/year.

5.5 bpitterentiation of Logarithmic Functions

Rule 3: Derivative of In x

EXAMPLE 1

THE DERIVATIVE OF In x

Let’s now turn our attention to the differentiation of logarithmic functions.

d. 1
Eln|x|—x (x#0)

To derive Rule 3, suppose x > 0 and write f(x) = In x in the equivalent form

X = ef(x)

Differentiating both sides of the equation with respect to x, we find, using
the chain rule,

1 = ef(r) . f’(x)
. , 1
from which we see that f(x)= el
or, since e/® = x,
o1
e =1

as we set out to show. You are asked to prove the rule for the case x < 0 in
Exercise 61.

Compute the derivative of each of the following functions:

a f(x)=xInx b.g(x)=lnTx
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SOLUTION

Rule 4: Chain Rule for
Logarithmic Functions

a. Using the product rule, we obtain
) =4 _ x4 4
flx)= Ir (xInx)=x I (Inx) + (Inx) Ir (x)
=x(l> +lnx=1+Inx
X

b. Using the quotient rule, we obtain

1
xdii(lnx) - (lnx)dix(x) :x (;) —Inx

2

_1—-Inx
2

§'(x) = X x? X

Group Discussion
You can derive the formula for the derivative of f(x) = In x directly
from the definition of the derivative, as follows.

1. Show that

flx) = Engf—(x h ’2 SO _ fim1n (1 + g)w

h—0

2. Put m = x/h and note that m — o as h — 0. Furthermore, f'(x) can be
written in the form

1 mlx
y —1; 4+ =
f'(x) igrolo In (1 m>

3. Finally, use both the fact that the natural logarithmic function is continu-
ous and the definition of the number e to show that

re =i |im (10 )| =

=

THE CHAIN RULE FOR LOGARITHMIC FUNCTIONS

To enlarge the class of logarithmic functions to be differentiated, we appeal
once more to the chain rule to obtain the following rule for differentiating
composite functions of the form 4(x) = In f(x), where f(x) is assumed to be
a positive differentiable function.

If f(x) is a differentiable function, then

s =28 >
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To see this, observe that h(x) = g[f(x)], where g(x) = In x (x > 0). Since
g'(x) = 1/x, we have, using the chain rule,

h'(x) = g'(f(x)) f'(x)
1, f'(x)
= — X) =
[ R e
Observe that in the special case f(x) = x, h(x) = In x, so the derivative of &
is, by Rule 3, given by h'(x) = 1/x.

EXAMPLE 2 Find the derivative of the function f(x) = In(x* + 1).

SOLUTION v Using Rule 4, we see immediately that

When differentiating functions involving logarithms, the rules of loga-
rithms may be used to advantage, as shown in Examples 3 and 4.

EXAMPLE 3 Differentiate the function y = In[(x? + 1)(x* + 2)°].

We first rewrite the given function using the properties of logarithms:
y = In[(x? + 1)(x* + 2)°]
=In(x?+ 1) + In(x* + 2)° (Inmn =Inm + Inn)
=In(x*+ 1) + 6 In(x* + 2) (Inm" = nlnm)
Differentiating and using Rule 4, we obtain
d%c(xz +1) 6%()63 +2)

!

y:

+
x2+1 x+2
_ 6(3x*) _  2x 18x?
xX2+1 x¥*+2 x*+1 x*+2

Use a graphing utility to plot the graphs of f(x) = In x; its first derivative function, f'(x) =
1/x; and its second derivative function, f”(x) = —1/x%, using the same viewing rectangle [0, 4] X [—3, 3].

1. Describe the properties of the graph of frevealed by studying the graph of f'(x). What can you say about
the rate of increase of f for large values of x?

2. Describe the properties of the graph of f revealed by studying the graph of f”(x). What can you say
about the concavity of f for large values of x?
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EXAMPLE 4.

EXAMPLE 5

Find the derivative of the function g(r) = In(e™").

Here again, to save a lot of work, we first simplify the given expression using
the properties of logarithms. We have

§() = In(Pe)

=InA+Ine” (Inmn =1Inm + Inn)
=2Int—7¢ (Inm"=nlnmandlne =1)
Therefore,
)
g(n=2-2=2020)

LOGARITHMIC DIFFERENTIATION

As we saw in the last two examples, the task of finding the derivative of a
given function can be made easier by first applying the laws of logarithms to
simplify the function. We now illustrate a process called logarithmic differenti-
ation, which not only simplifies the calculation of the derivatives of certain
functions but also enables us to compute the derivatives of functions we could
not otherwise differentiate using the techniques developed thus far.

Differentiate y = x(x + 1)(x*> + 1), using logarithmic differentiation.

First, we take the natural logarithm on both sides of the given equation,
obtaining

Iny =1Inx(x +1)(x*+ 1)

Next, we use the properties of logarithms to rewrite the right-hand side of
this equation, obtaining

Iny=Inx + In(x + 1) + In(x*> + 1)
If we differentiate both sides of this equation, we have

d

—Iny= d [Inx + In(x + 1) + In(x? + 1)]

dx
1 2x
x+1 x2+1

1
- (Using Rule 4)
X



Finding Z—)’: by Logarithmic

Differentiation

EXAMPLE 6
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To evaluate the expression on the left-hand side, note that y is a function of
x. Therefore, writing y = f(x) to remind us of this fact, we have

d d L
ey =g Inlf)] [Writingy = /()]
['x) .
=—2 (Using Rule 4)
fx)
= y; [Returning to using y instead of f(x)]
Therefore, we have
y' 1 1 2x

y x x+1 x*+1

Finally, solving for y’, we have

1 1 2x
r=y(=+ +
Y y(x x+1 x2+1>

=x(x+1)(x2+1)()1c+ ! + 2x>

x+1 x*+1

Before considering other examples, let’s summarize the important steps
involved in logarithmic differentiation.

1. Take the natural logarithm on both sides of the equation and use the
properties of logarithms to write any “‘complicated expression’ as a sum of
simpler terms.

2. Differentiate both sides of the equation with respect to x.

3. Solve the resulting equation for %

Differentiate y = x2(x — 1)(x? + 4)>.

Taking the natural logarithm on both sides of the given equation and using
the laws of logarithms, we obtain
Iny = Inx2(x — 1)(x? + 4)3
=Inx>+In(x — 1) + In(x*> + 4)}
=2Inx +In(x — 1) + 31In(x> + 4)
Differentiating both sides of the equation with respect to x, we have

y' 2 1 2x

d
—_ == -4 .
dxlny y x x-—1 x*+4
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Finally, solving for y’, we have

2 1 6x
=y (=4 +
Y y(x x—1 x? >

+4

2 1 6x
— 2y — 244y 24+ +
xX(x—1)(x*+4) <x P— x2+4>

EXAMPLE 7 Find the derivative of f(x) = x*(x > 0).

IR A word of caution! This function is neither a power function nor an exponential
function. Taking the natural logarithm on both sides of the equation gives

Inf(x) =lnx*=xInx

Differentiating both sides of the equation with respect to x, we obtain

) _ d A
) xdxlnx+(lnx)dxx
=x<1)+lnx
X
=1+Inx

Therefore,

f'(x) =fx)A +Inx) =x(1 + Inx)

Refer to Example 7.

1. Use a graphing utility to plot the graph of f(x) = x* using the viewing rectangle [0, 2] X [0, 2]. Then
use zooM and TRACE to show that

lim f(x) =1
x—0"
2. Use the results of part 1 and Example 7 to show that lim f’(x) = —oo. Justify your answer.

x—0

1. Find an equation of the tangent line to the graph of f(x) = x In(2x + 3) at the
point (—1, 0).
2. Use logarithmic differentiation to compute y’, given y = (2x + 1)’(3x + 4)°.

Solutions to Self-Check Exercises 5.5 can be found on page 424.
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In Exercises 1-32, find the derivative of the

function.

L f(x) =5Inx

3. f(x) = In(x + 1)
5. f(x) = In x*

7. f(x) = In Vx

9. f(x) = ln)%

11. f(x) = In(4x*> — 6x + 3)
12. f(x) = In(3x? — 2x + 1)

2x
13. f(x) = lnx+ 7
15. f(x) = x*Inx
17. f(x) = 21;”‘

19. f(v) = In(u — 2)°
21. f(x) = Vinx
23. f(x) = (In x)°
25, f(x) = In(x® + 1)
27. f(x) = e*Inx
29. f(t) = e* In(t + 1)

Inx

2. f(x) = In 5x
4. g(x) = In(2x + 1)
6. h(t) =2In?
8. f(x) = In(Vx + 1)

1
10. f(x) = In o

x+1
14. f(x) = lnx 1
16. f(x) = 3x* In 2x
3Inx
18. f(x) = P

20. f(x) = In(x* — 3)*
22. f(x) = Vinx + x
24, f(x) = 2(In x)*?
26. f(x) = InVx? — 4
28. f(x) = ¢*InVx + 3
30. g(t) = 2 1n(e* + 1)

43, y = 3* 4, y = x**?
45, y = (x> + 1)* 46. y = x"
47. Find an equation of the tangent line to the graph of

48.

49.

50.

51

52.

53.

54.
55.

56.

y = x In x at the point (1, 0).

Find an equation of the tangent line to the graph of
y = In x? at the point (2, In 4).

Determine the intervals where the function f(x) = In x?
is increasing and where it is decreasing.

. . . |
Determine the intervals where the function f(x) = %

is increasing and where it is decreasing.

Determine the intervals of concavity for the function
fx) = x* + In x2

Determine the intervals of concavity for the function
Inx
xX)=—-
f0) ==

Find the inflection points of the function f(x) =
In(x* + 1).

Find the inflection points of the function f(x) = x?In x.
Find the absolute extrema of the function f(x) = x — In x
on [z, 3].

Find the absolute extrema of the function g(x) = ﬁ on

2, ).

3. f) = == 32. 5(1) = Ett

In Exercises 33-36, find the second derivative
of the function.

33. f(x) = In 2x
35. f(x) = In(x* + 2)

34. f(x) = In(x + 5)

36. f(x) = (In x)°

In Exercises 37-46, use logarithmic differenti-
ation to find the derivative of the function.
37.y = (x + 1)*(x + 2)° 38. y = (Bx + 2)*(5x — 1)?
39. y = (x — 1)*(x + 1)*(x + 3)*

40. y = V3x +5(2x — 3)*

2x2 -1y V4 + 3x?
41. y = —= 2 9y=—-"
Vx+1 Vxr+ 1

In Exercises 57 and 58, use the guidelines on
page 327 to sketch the graph of the given
function.

57. f(x) = In(x — 1) 58. f(x) =2x — Inx

In Exercises 59 and 60, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

59. If f(x) = In 5, then f'(x) = 1/5.
60. If f(x) = In a*, then f'(x) = In a.

61. Prove that d%c In|x| = j—c (x # 0) for the case x < 0.

62. Use the definition of the derivative to show that

lim ln(xx-i- D_ 1

x—0
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SOLUTIONS 10 SELF-CHECK EXERCISES 5.5

1. The slope of the tangent line to the graph of f at any point (x, f(x)) lying on the
graph of fis given by f'(x). Using the product rule, we find

Fx) = % [cIn(2x + 3)]

d d
= xaln@x +3) + In(2x + 3) - E(x)

2
—x<2x+3>+ln(2x+3)-l
X

2
= + +
13 In(2x + 3)

In particular, the slope of the tangent line to the graph of f at the point (=1, 0) is

o1y 2 __
f(-D) == Fthnl=-2

Therefore, using the point-slope form of the equation of a line, we see that a
required equation is

y—0=-2(x+1)
y=-2x—-2
2. Taking the logarithm on both sides of the equation gives
Iny = In(2x + 1)’(3x + 4)’

=In(2x + 1)’ + In(3x + 4)°
=3In(2x + 1) +5In(3x + 4)

Differentiating both sides of the equation with respect to x, keeping in mind that
y is a function of x, we obtain

Y_5. 2 .3
y 32x-i-1Jr5 3x+4

B 2 5
_3[2x+1+3x+4}

6 15
_<2x+1+3x+4>

d
E(IHY) =

and

6 15
- 3 5.
y'=2x+1)CBx+4) <2x+1+3x+4>
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5.6 Exponential Functions as Mathematical Models

EXPONENTIAL GROWTH

FIGURE 5.13 Many problems arising from practical situations can be described mathemati-
Exponential growth cally in terms of exponential functions or functions closely related to the
exponential function. In this section we look at some applications involving

exponential functions from the fields of the life and social sciences.
In Section 5.1 we saw that the exponential function f(x) = b* is an increas-
0=0,¢"' ing function when b > 1. In particular, the function f(x) = e* shares this
property. From this result one may deduce that the function Q(r) = Q.e”,

where Q) and k are positive constants, has the following properties:

1. 0(0) = O,
2. Q(t) increases “‘rapidly” without bound as ¢ increases without bound (Fig-
' ure 5.13).

Q.

Property 1 follows from the computation
0(0) = Que’ = Qo

Next, to study the rate of change of the function Q(¢), we differentiate it with
respect to ¢, obtaining

Q') =5 (Que")

= Qodit (e)
~ kQye"
=kQ(1) 12)

Since Q(#) > 0 (because Q, is assumed to be positive) and k > 0, we see that
Q'(t) > 0 and so Q(¢) is an increasing function of . Our computation has in
fact shed more light on an important property of the function Q(¢). Equation
(12) says that the rate of increase of the function Q(¢) is proportional to the
amount Q(¢) of the quantity present at time ¢. The implication is that as Q(f)
increases, so does the rate of increase of Q(t), resulting in a very rapid increase
in Q(¢) as t increases without bound.
Thus, the exponential function

Q(t) = Qe 0=t< x) a3)

provides us with a mathematical model of a quantity Q(¢) that is initially
present in the amount of Q(0) = Q, and whose rate of growth at any time ¢
is directly proportional to the amount of the quantity present at time ¢. Such
a quantity is said to exhibit exponential growth, and the constant k is called
the growth constant. Interest earned on a fixed deposit when compounded
continuously exhibits exponential growth. Other examples of exponential
growth follow.
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SOLUTION v

Under ideal laboratory conditions, the number of bacteria in a culture grows
in accordance with the law Q(¢) = Q.e", where Q, denotes the number of
bacteria initially present in the culture, k is some constant determined by the
strain of bacteria under consideration, and ¢ is the elapsed time measured in
hours. Suppose 10,000 bacteria are present initially in the culture and 60,000
present 2 hours later.

a. How many bacteria will there be in the culture at the end of 4 hours?
b. What is the rate of growth of the population after 4 hours?

a. We are given that Q(0) = Q, = 10,000, so Q(r) = 10,000¢". Next, the
fact that 60,000 bacteria are present 2 hours later translates into Q(2) =
60,000. Thus,

60,000 = 10,000¢%
e* =6

Taking the natural logarithm on both sides of the equation, we obtain

Ine* =1In6
2k =1In6 (Sincelne =1)
k =~ 0.8959

Thus, the number of bacteria present at any time ¢ is given by
Q(r) = 10,000

In particular, the number of bacteria present in the culture at the end of 4
hours is given by

Q(4) = 10,000¢"¥%®
= 360,029
b. The rate of growth of the bacteria population at any time ¢ is given by
Q'(1) = kQ()

Thus, using the result from part (a), we find that the rate at which the popula-
tion is growing at the end of 4 hours is

Q'(4) = kQ(4)
~ (0.8959)(360,029)
~ 322,550

or approximately 322,550 bacteria per hour.

EXPONENTIAL DECAY

In contrast to exponential growth, a quantity exhibits exponential decay if it
decreases at a rate that is directly proportional to its size. Such a quantity



FIGURE 5.14
Exponential decay

0= Qe
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may be described by the exponential function
(1) = Que™ [t € [0, )] (14)

where the positive constant Q, measures the amount present initially (¢ = 0)
and k is some suitable positive number, called the decay constant. The choice
of this number is determined by the nature of the substance under consider-
ation. The graph of this function is sketched in Figure 5.14.

To verify the properties ascribed to the function Q(¢), we simply compute

0(0) = Que’ = Qg
Q') =45 (Que™)

d —kt
= QOZ: (e7)
= —kQoe™ = —kQ(?)

Radioactive substances decay exponentially. For example, the amount of ra-
dium present at any time 7 obeys the law Q(¢f) = Que™*, where Q, is the
initial amount present and k is a suitable positive constant. The half-life of a
radioactive substance is the time required for a given amount to be reduced
by one-half. Now, it is known that the half-life of radium is approximately
1600 years. Suppose initially there are 200 milligrams of pure radium. Find
the amount left after ¢ years. What is the amount left after 800 years?

The initial amount of radium present is 200 milligrams, so Q(0) = Q, = 200.
Thus, Q(f) = 200e *. Next, the datum concerning the half-life of radium
implies that Q(1600) = 100, and this gives

100 = 200¢ 150k

~1600k — l

¢ 2

Taking the natural logarithm on both sides of this equation yields
1
—1600k Ine = In 5
1
—1600k=ln§ (Ine=1)

k=— Lln <%> = 0.0004332
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SOLUTION v

SOLUTION v

Therefore, the amount of radium left after ¢ years is
Q(t) — 200670.000433%
In particular, the amount of radium left after 800 years is
Q(800) = 200 000033260) ~ 141.42

or approximately 141 milligrams.

Carbon 14, a radioactive isotope of carbon, has a half-life of 5770 years. What
is its decay constant?

We have Q(f) = Qe . Since the half-life of the element is 5770 years, half
of the substance is left at the end of that period. That is,

Q(5770) = Qe ™ =3 0,

1
e 50k = =

Taking the natural logarithm on both sides of this equation, we have

1

Ine 7% = In=
ne n2

—5770k = —0.693147
k =~ 0.00012

Carbon-14 dating is a well-known method used by anthropologists to
establish the age of animal and plant fossils. This method assumes that the
proportion of carbon 14 (C-14) present in the atmosphere has remained con-
stant over the past 50,000 years. Professor Willard Libby, recipient of the
Nobel Prize in chemistry in 1960, proposed this theory.

The amount of C-14 in the tissues of a living plant or animal is constant.
However, when an organism dies, it stops absorbing new quantities of C-14,
and the amount of C-14 in the remains diminishes because of the natural
decay of the radioactive substance. Thus, the approximate age of a plant or
animal fossil can be determined by measuring the amount of C-14 present in
the remains.

A skull from an archeological site has one-tenth the amount of C-14 that it
originally contained. Determine the approximate age of the skull.

Here,

O(t) = Qe ™

— Qoe—()A()O()Qt
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where Q, is the amount of C-14 present originally and k, the decay constant,
is equal to 0.00012 (see Example 3). Since Q(¢) = (1/10)Q,, we have

1
o Q, = Qe "o

In l = —0.00012¢ (Taking the natural

10 logarithm on both sides)
1
(o0
—0.00012
~19,200

or approximately 19,200 years.

LEARNING CURVES

The next example shows how the exponential function may be applied to
describe certain types of learning processes. Consider the function

0@1) = C — Ae™

where C, A, and k are positive constants. To sketch the graph of the function
Q, observe that its y-intercept is given by Q(0) = C — A. Next, we compute

Q'(f) = kAe ™™

Since both k and A are positive, we see that Q'(f) > 0 for all values of .
Thus, Q() is an increasing function of . Also,

lim Q(¢) = lim (C — Ae™*)

=1im C — lim Ae™*

t—oo t—
=C

so y = Cis a horizontal asymptote of Q. Thus, Q(¢) increases and approaches
the number C as t increases without bound. The graph of the function Q is
shown in Figure 5.15, where that part of the graph corresponding to the
negative values of ¢ is drawn with a gray line since, in practice, one normally
restricts the domain of the function to the interval [0, o).

Observe that Q(r) (t > 0) increases rather rapidly initially but that the
rate of increase slows down considerably after a while. To see this, we compute

lim Q'(f) = lim kAe™™ =0
[—>® >

This behavior of the graph of the function Q closely resembles the learning
pattern experienced by workers engaged in highly repetitive work. For exam-
ple, the productivity of an assembly-line worker increases very rapidly in the
early stages of the training period. This productivity increase is a direct result
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SOLUTION v

of the worker’s training and accumulated experience. But the rate of increase
of productivity slows as time goes by, and the worker’s productivity level
approaches some fixed level due to the limitations of the worker and the
machine. Because of this characteristic, the graph of the function Q(¢) =
C — Ae ™" is often called a learning curve.

The Camera Division of the Eastman Optical Company produces a 35-mm
single-lens reflex camera. Eastman’s training department determines that after
completing the basic training program, a new, previously inexperienced em-
ployee will be able to assemble

Q(r) = 50 — 30e~

model F cameras per day, ¢t months after the employee starts work on the
assembly line.

a. How many model F cameras can a new employee assemble per day after
basic training?

b. How many model F cameras can an employee with 1 month of experience
assemble per day? An employee with 2 months of experience? An employee
with 6 months of experience?

¢. How many model F cameras can the average experienced employee assem-
ble per day?

a. The number of model F cameras a new employee can assemble is given by
0(0) =50 —-30 =20

b. The number of model F cameras that an employee with 1 month of experi-
ence, 2 months of experience, and 6 months of experience can assemble
per day is given by

0(1) = 50 — 30e"5 ~ 31.80
0(2) = 50 — 30e~! ~ 38.96
0(6) = 50 — 30¢~* ~ 48.51

or approximately 32, 39, and 49, respectively.

c. As t increases without bound, Q(f) approaches 50. Hence, the average
experienced employee can ultimately be expected to assemble 50 model F
cameras per day.

Other applications of the learning curve are found in models that describe
the dissemination of information about a product or the velocity of an object
dropped into a viscous medium.

LoGISTIC GROWTH FUNCTIONS

Our last example of an application of exponential functions to the description
of natural phenomena involves the logistic (also called the S-shaped, or sigmoi-



FIGURE 5.16
A logistic curve

y
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dal) curve, which is the graph of the function

A

o@) = 1T Be ™

where A, B, and k are positive constants. The function Q is called a logistic
growth function, and the graph of the function Q is sketched in Figure 5.16.

Observe that Q(¢) increases rather rapidly for small values of z. In fact,
for small values of ¢, the logistic curve resembles an exponential growth curve.
However, the rate of growth of Q(t) decreases quite rapidly as ¢ increases and
Q(f) approaches the number A as ¢ increases without bound.

Thus, the logistic curve exhibits both the property of rapid growth of the
exponential growth curve as well as the “saturation” property of the learning
curve. Because of these characteristics, the logistic curve serves as a suitable
mathematical model for describing many natural phenomena. For example,
if a small number of rabbits were introduced to a tiny island in the South
Pacific, the rabbit population might be expected to grow very rapidly at first,
but the growth rate would decrease quickly as overcrowding, scarcity of food,
and other environmental factors affected it. The population would eventually
stabilize at a level compatible with the life-support capacity of the environ-
ment. Models describing the spread of rumors and epidemics are other exam-
ples of the application of the logistic curve.

The number of soldiers at Fort MacArthur who contracted influenza after ¢
days during a flu epidemic is approximated by the exponential model

5000

Q0 =1 1490w

If 40 soldiers contracted the flu by day 7, find how many soldiers contracted
the flu by day 15.
The given information implies that

5000

1T+ 14907 N0

0(7)=40 and  Q(7)

Thus,
40(1 + 1249¢77%) = 5000

5000
Tk = 2~ —
1+ 1249e¢ m 125

*— 124
1249
124
-7k =1n %
1n 124
k=— 1249 ~ (.33
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Refer to Example 6.

Therefore, the number of soldiers who contracted the flu after ¢ days is given by

5000
Q1) =T 12490

In particular, the number of soldiers who contracted the flu by day 15 is given by

5000
QU5 =15 549, 103

~ 508

or approximately 508 soldiers.

1. Use a graphing utility to plot the graph of the function Q, using the viewing rectangle [0, 40] X [0, 5000].
2. Find how long it takes for the first 1000 soldiers to contract the flu.

Hint: Plot the graphs of y;

Q(¢) and y, = 1000 and find the point of intersection of the two graphs.

Suppose that the population (in millions) of a country at any time ¢ grows in accordance
with the rule

— 1 kt_l
P—(Po-i-k)e X

where P denotes the population at any time ¢, k is a constant reflecting the natural
growth rate of the population, 7 is a constant giving the (constant) rate of immigration
into the country, and P, is the total population of the country at time ¢ = 0. The
population of the United States in the year 1980 (¢ = 0) was 226.5 million. If the
natural growth rate is 0.8% annually (k = 0.008) and net immigration is allowed at
the rate of half a million people per year (I = 0.5) until the end of the century, what
is the population of the United States expected to be in the year 2005?

Solutions to Self-Check Exercise 5.6 can be found on page 435.
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@ A calculator is recommended for this exer- continues to grow at its present rate of approximately
2%lyear and find the function Q(f) that expresses the
world population (in billions) as a function of time 7 (in

years) where ¢ = 0 corresponds to the beginning of 1990.

cise set.
1. ExpoNENTIAL GROWTH Given that a quantity Q(¢) is de-

scribed by the exponential growth function
Q(t) = 4005

where ¢ is measured in minutes, answer the following
questions.

a. What is the growth constant?

b. What quantity is present initially?

c. Using a calculator, complete the following table of
values:

t 0 10 20 100 1000
0

. EXPONENTIAL DECAY Given that a quantity Q(f) exhibiting
exponential decay is described by the function

O(1) = 2000

where ¢ is measured in years, answer the following ques-
tions.

a. What is the decay constant?

b. What quantity is present initially?

c. Using a calculator, complete the following table of
values:

t 0 5 10 20 100
0

. GROWTH OF BACTERIA The growth rate of the bacterium
Escherichia coli, a common bacterium found in the hu-
man intestine, is proportional to its size. Under ideal
laboratory conditions, when this bacterium is grown in
a nutrient broth medium, the number of cells in a culture
doubles approximately every 20 min.

a. If the initial cell population is 100, determine the
function Q(f) that expresses the exponential growth of
the number of cells of this bacterium as a function of
time ¢ (in minutes).

b. How long will it take for a colony of 100 cells to
increase to a population of 1 million?

c. If the initial cell population were 1000, how would
this alter our model?

. Wortp PopuLATION The world population at the begin-
ning of 1990 was 5.3 billion. Assume that the population

a. Using this function, complete the following table of
values and sketch the graph of the function Q.

Year 1990 1995 2000 2005

World
Population

Year 2010 2015 2020 2025

World
Population

b. Find the estimated rate of growth in the year 2005.

5. WorLp PopuLaTiON Refer to Exercise 4.

a. If the world population continues to grow at its present
rate of approximately 2%/year, find the length of time ¢,
required for the world population to triple in size.

b. Using the time 7, found in part (a), what would be the
world population if the growth rate were reduced to 1.8%?

6. RESALE VALUE A certain piece of machinery was pur-

chased 3 yr ago by the Garland Mills Company for
$500,000. Its present resale value is $320,000. Assuming
that the machine’s resale value decreases exponentially,
what will it be 4 yr from now?

. ATmospPHERIC PRESSURE If the temperature is constant,

then the atmospheric pressure P (in pounds per square
inch) varies with the altitude above sea level 4 in accor-
dance with the law

P = pe™

where p, is the atmospheric pressure at sea level and k
is a constant. If the atmospheric pressure is 15 Ib/in.” at
sea level and 12.5 1b/in.? at 4000 ft, find the atmospheric
pressure at an altitude of 12,000 ft. How fast is the atmo-
spheric pressure changing with respect to altitude at an
altitude of 12,000 ft?

. RaproacTive Decay The radioactive element polonium

decays according to the law

0() = 0y 27

where Q) is the initial amount and the time ¢ is measured
in days. If the amount of polonium left after 280 days
is 20 mg, what was the initial amount present?
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RapioAcTIVE DECAY Phosphorus 32 has a half-life of 14.2
days. If 100 g of this substance are present initially, find
the amount present after ¢+ days. What amount will be
left after 7.1 days? How fast is the phosphorus 32 de-
caying when ¢ = 7.1?

NucLEAR FALLOUT Strontium 90, a radioactive isotope of
strontium, is present in the fallout resulting from nuclear
explosions. It is especially hazardous to animal life, in-
cluding humans, because, upon ingestion of contami-
nated food, it is absorbed into the bone structure. Its
half-life is 27 yr. If the amount of strontium 90 in a
certain area is found to be four times the “‘safe” level,
find how much time must elapse before an ‘“‘acceptable
level” is reached.

CARBON-14 DATING Wood deposits recovered from an
archeological site contain 20% of the carbon 14 they
originally contained. How long ago did the tree from
which the wood was obtained die?

CARBON-14 DATING Skeletal remains of the so-called
“Pittsburgh Man,” unearthed in Pennsylvania, had lost
82% of the carbon 14 they originally contained. Deter-
mine the approximate age of the bones.

LEARNING CURVES The American Court Reporting Insti-
tute finds that the average student taking Advanced Ma-
chine Shorthand, an intensive 20-wk course, progresses
according to the function

0(r) = 120(1 — %) + 60 (0 = = 20)

where Q(f) measures the number of words (per minute)
of dictation that the student can take in machine short-
hand after ¢ wk in the course. Sketch the graph of the
function Q and answer the following questions.

a. What is the beginning shorthand speed for the aver-
age student in this course?

b. What shorthand speed does the average student at-
tain halfway through the course?

¢. How many words per minute can the average student
take after completing this course?

EFFECT OF ADVERTISING ON SALES The Metro Department
Store found that ¢t wk after the end of a sales promotion
the volume of sales was given by a function of the form

S(t) = B + Ae™ O=t=4)

where B = 50,000 and is equal to the average weekly
volume of sales before the promotion. The sales volumes
at the end of the first and third weeks were $83,515 and
$65,055, respectively. Assume that the sales volume is
decreasing exponentially.

a. Find the decay constant k.

b. Find the sales volume at the end of the fourth week.
c. How fast is the sales volume dropping at the end of
the fourth week?

15.

16.

17.

18.

DemaND FOR CompUuTERS The Universal Instruments Com-
pany found that the monthly demand for its new line of
Galaxy Home Computers ¢ mo after placing the line on
the market was given by

D(f) = 2000 — 1500¢~"% (t > 0)

Graph this function and answer the following questions.
a. What is the demand after 1 mo? After 1 yr?
After 2 yr? After 5 yr?

b. At what level is the demand expected to stabilize?
c. Find the rate of growth of the demand after the
tenth month.

Newton’s LAwW oF CooLING Newton’s law of cooling states
that the rate at which the temperature of an object
changes is proportional to the difference in temperature
between the object and that of the surrounding medium.
Thus, the temperature F(¢) of an object that is greater
than the temperature of its surrounding medium is given
by

F(it) =T + Ae™

where ¢ is the time expressed in minutes, 7 is the temper-
ature of the surrounding medium, and A and k are
constants. Suppose a cup of instant coffee is prepared
with boiling water (212°F) and left to cool on the counter
in a room where the temperature is 72°F. If k =
0.1865, determine when the coffee will be cool enough
to drink (say, 110°F).

SPREAD OF AN EPIDEMIC During a flu epidemic, the number
of children in the Woodbridge Community School Sys-
tem who contracted influenza after ¢ days was given by

1000
Q(l) - 1 + 199¢08

a. How many children were stricken by the flu after the
first day?

b. How many children had the flu after 10 days?

c¢. How many children eventually contracted the
disease?

GROWTH OF A FRUIT-FLY POPULATION On the basis of data
collected during an experiment, a biologist found that
the growth of the fruit fly (Drosophila) with a limited
food supply could be approximated by the exponential
model

400
N0 = 1539,
where ¢ denotes the number of days since the beginning
of the experiment.
a. What was the initial fruit-fly population in the experi-
ment?
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b. What was the maximum fruit-fly population that
could be expected under this laboratory condition?

¢. What was the population of the fruit-fly colony on
the 20th day?

d. How fast was the population changing on the 20th
day?

PERCENTAGE OF HouseHoLDS WiTH VCRS  According to esti-
mates by Paul Kroger Associates, the percentage of
households that own videocassette recorders (VCRs) is
given by

68

PO = 216700

O=r=12)

where ¢ is measured in years, with ¢ = 0 corresponding
to the beginning of 1985. What percentage of households
owned VCRs at the beginning of 1985? At the beginning
of 1995?

POPULATION GROWTH IN THE TWENTY-FIRST CENTURY The U.S.
population is approximated by the function

616.5

PO =1 4000w

where P(¢) is measured in millions of people and ¢ is
measured in 30-yr intervals, with ¢ = 0 corresponding to
1930. What is the expected population of the United
States in 2020 (¢ = 3)?

SPREAD OF A RUMOR Three hundred students attended
the dedication ceremony of a new building on a college
campus. The president of the traditionally female college
announced a new expansion program, which included
plans to make the college coeducational. The number
of students who learned of the new program ¢ hr later
is given by the function

3000
=15 gew

If 600 students on campus had heard about the new
program 2 hr after the ceremony, how many students
had heard about the policy after 4 hr? How fast was the
rumor spreading 4 hr after the ceremony?

SoLUTION 10 SELF-CHECK EXERCISE 5.6

22

24. GOMPERTZ GROWTH CURVE

435

. CHEMICAL MIXTURES Two chemicals react to form another
chemical. Suppose the amount of the chemical formed
in time ¢ (in hours) is given by

o[-]
=)

where x(¢) is measured in pounds. How many pounds
of the chemical are formed eventually?
Hint: You need to evaluate lim x(z).

1o
. CONCENTRATION OF GLUCOSE IN THE BLOODSTREAM A glucose
solution is administered intravenously into the blood-
stream at a constant rate of r mg/hr. As the glucose is
being administered, it is converted into other substances
and removed from the bloodstream. Suppose the con-
centration of the glucose solution at time ¢ is given by

co=¢-|(F) o

where C, is the concentration at time ¢t = 0 and k is a
constant.
a. Assuming that C, < r/k, evaluate

lim C(¢)

(o

x(1) =

and interpret your result.
b. Sketch the graph of the function C.

Consider the function

O(f) = Ce A"

where Q(¢) is the size of a quantity at time ¢ and A, C,

and k are positive constants. The graph of this function,

called the Gompertz growth curve, is used by biologists

to describe restricted population growth.

a. Show that the function Q is always increasing.

b. Find the time ¢ at which the growth rate Q’(t) is

increasing most rapidly.

Hint: Find the inflection point of Q.

c¢. Show that lim Q(¢) = C and interpret your result.
100

We are given that P, = 226.5, k = 0.008, and 7 = 0.5. So

P

0.008¢ __ 0.5

0.5
= (226.5 + —> e 0.008

0.008
= 289¢"™ — 62.5
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Therefore, the population in the year 2005 will be given by

P(25) = 289¢"2 — 62.5
~290.5

or approximately 290.5 million.

CHAPTER 5 Summary of Principal Formulas and Terms

Formulas
1. Exponential function with base b y = b*
2. The number e e = lim (1 F %) =2.71828
3. Exponential function with base e y=e*
4. Logarithmic function with base b y = log, x
5. Logarithmic function with base e y=Inx
6. Inverse properties of In x and e Ine*=x and e =x
7. Compound interest (accumulated A = P(1 + i)", where i = r/m and
amount) n = mt
8. Effective rate of interest Pt = <1 4 L) -1
m
9. Compound interest (present value) P = A( + i)™, where i = r/m and
n = mt
10. Continuous compound interest A = Pe"
11. Derivative of the exponential d
. —(e") =e"
function dx

12. Chain rule for exponential d (") = et du
dx dx

functions

13. Derivative of the logarithmic d 1
. —In|x| ==

function dx X
14. Chain rule for logarithmic d i) = 1ldu

functions dx T wdx
Terms
common logarithm exponential decay
natural logarithm decay constant
logarithmic differentiation half-life of a radioactive element
exponential growth logistic growth function

growth constant
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1. Sketch on the same set of coordinate axes the graphs of
the exponential functions defined by the equations.

S

In Exercises 2 and 3, express each in logarith-
mic form.

2\7* 27
2 (3) -2
In Exercises 4 and 5, solve each equation for x.

4. log,2x +1) =2
5.In(x —1) +In4 =In2x +4) —In2

a.y=2"

3. 167 = 0.125

In Exercises 6-8, giventhatin2 = x,In3 = y, and
In 5 - z, express each of the given logarithmic
values in terms of x, y, and z.

6. In 30 7. In 3.6 8. In75
9. Sketch the graph of the function y = logy(x + 3).
10. Sketch the graph of the function y = logs(x + 1).

In Exercises 11-28, find the derivative of the
function.

11. f(x) = xe* 12. f(t) = Vie'+ 1
13. g() = Vie™ 4. g(v) = e VIF 2
_ e e

15. y = 5o 16. f(x) = €
17. f(x) = .X,'e*xz 18. g(x) = (1 + eQx)}/Q
19. f(x) = x%* + ¢* 20. g(t) =tlnt
< =*
21. f(x) = In(e” + 1) 22. f(x) Inx
In x )
2. f0) =7 24,y = (x + 1)e
= 4x _ re”
25. y = In(e* + 3) 26. f(r) T
Inx exz
27. f(x) = _
f@ =1 28, g(x) = 5 —

29. Find the second derivative of the function y = In(3x + 1).

30. Find the second derivative of the function y = x In x.

31. Find 4'(0) if A(x) = g(f(x)), g(x) = x + (1/x), and
f(x) = e

32. Find #'(1) if h(x) = g(f(x)), g(x) = ;% and f(x) =

In x.

33.

34.

35.

36.

37.
38.
39.
40.

41.

42,

43.

4.

45.

46.
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Use logarithmic differentiation to find the derivative of
flx) = 2x* + 1)(x% + 2)%

Use logarithmic differentiation to find the derivative of
floy = X =2

(x=1)

Find an equation of the tangent line to the graph of
y = e ** at the point (1, e7?).

Find an equation of the tangent line to the graph of
y = xe * at the point (1, e™!).

Sketch the graph of the function f(x) = xe .
Sketch the graph of the function f(x) = x> — In x.
Find the absolute extrema of the function f(r) = te™.
Find the absolute extrema of the function
In¢
80y ==

on [1, 2].

A hotel was purchased by a conglomerate for $4.5 million
and sold 5 yr later for $8.2 million. Find the annual rate
of return (compounded continuously).

Find the present value of $119,346 due in 4 yr at an
interest rate of 10%/year compounded continuously.

A culture of bacteria that initially contained 2000 bacte-
ria has a count of 18,000 bacteria after 2 hr.

a. Determine the function Q(¢) that expresses the expo-
nential growth of the number of cells of this bacterium
as a function of time ¢ (in minutes).

b. Find the number of bacteria present after 4 hr.

The radioactive element radium has a half-life of 1600
yr. What is its decay constant?

The VCA Television Company found that the monthly
demand for its new line of video disc players ¢t mo after
placing the players on the market is given by

D(r) = 4000 — 3000e~%% =0
Graph this function and answer the following questions.
a. What was the demand after 1 mo? After 1 yr? After
2 yr?
b. At what level is the demand expected to stabilize?
During a flu epidemic, the number of students at a certain
university who contracted influenza after ¢ days could
be approximated by the exponential model
3000
oW = 1 + 499¢+
If 90 students contracted the flu by day 10, how many
students contracted the flu by day 20?
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Differential calculus is concerned with the problem of finding

the rate of change of one quantity with respect to another. In this
chapter we begin the study of the other branch of calculus, known
as integral calculus. Here we are interested in precisely the opposite
problem: If we know the rate of change of one quantity with respect
to another, can we find the relationship between the two quantities?
The principal tool used in the study of integral calculus is the antide-
rivative of a function, and we develop rules for antidifferentiation,
or integration, as the process of finding the antiderivative is called.
We also show that a link is established between differential and

integral calculus—via the fundamental theorem of calculus.

How much will the solar cell panels cost? The head of
Soloron Corporation’s research and development depart-
ment has projected that the cost of producing solar cell
panels will drop at a certain rafe in the next several

years. In Example 7, page 460, you will see how this
information can be used to predict the cost of solar cell
panels in the coming years.
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6.1 Antiderivatives and the Rules of Integration

FIGURE 6.1
A maglev moving along an elevated
monorail track

Antiderivative

ANTIDERIVATIVES

Let’s return, once again, to the example involving the motion of the maglev
(Figure 6.1).

In Chapter 2, we discussed the following problem:

If we know the position of the maglev at any time t, can we find its velocity at
time t?

As it turns out, if the position of the maglev is described by the position
function f, then its velocity at any time ¢ is given by f'(¢). Here f'—the velocity
function of the maglev—is just the derivative of f.

Now, in Chapters 6 and 7, we will consider precisely the opposite problem:

If we know the velocity of the maglev at any time t, can we find its position at
time t?

Stated another way, if we know the velocity function f* of the maglev, can
we find its position function f?

To solve this problem, we need the concept of an antiderivative of a
function.

A function F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in .

Thus, an antiderivative of a function fis a function F whose derivative is f.
For example, F(x) = x? is an antiderivative of f(x) = 2x because

) = L () = 2 =
Fi(x) = () = 20 = f(x)
and F(x) = x* + 2x + 1 is an antiderivative of f(x) = 3x* + 2 because

F'(x) =dii(x3 +2x+1)=3x>+2=f(x)



EXAMPLE 1

EXAMPLE 2

FIGURE 6.2
The graphs of some antiderivatives of

fix) =1
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Let F(x) = 5x° — 2x> + x — 1. Show that F is an antiderivative of f(x) =
x?—4x + 1.

Differentiating the function F, we obtain
Fx)=x*—4x+1=f(x)

and the desired result follows.

Let F(x) = x, G(x) = x + 2, and H(x) = x + C, where C is a constant. Show
that F, G, and H are all antiderivatives of the function f defined by f(x) = 1.

Since
F) =4 () = 1= fx)
G0 =4 (v +2) =1 = f(w)

H () =+ €)= 1= ()

we see that F, G, and H are indeed antiderivatives of f.

Example 2 shows that once an antiderivative G of a function fis known,
then another antiderivative of f may be found by adding an arbitrary constant
to the function G. The following theorem states that no function other than
one obtained in this manner can be an antiderivative of f. (We omit the proof.)

Let G be an antiderivative of a function f. Then, every antiderivative F of
f must be of the form F(x) = G(x) + C, where C is a constant.

Returning to Example 2, we see that there are infinitely many antideriva-
tives of the function f(x) = 1. We obtain each one by specifying the constant
C in the function F(x) = x + C. Figure 6.2 shows the graphs of some of these

F(x)=x+3(C=3)
F(x)=x+2(C=2)
Fx)=x+1(C=1)
Fx)=x (C=0)
F(x)=x—1(C=-1)
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antiderivatives for selected values of C. These graphs constitute part of a
family of infinitely many parallel straight lines, each having a slope equal to
1. This result is expected since there are infinitely many curves (straight lines)
with a given slope equal to 1. The antiderivatives F(x) = x + C (C, a constant)
are precisely the functions representing this family of straight lines.

EXAMPLE 3 Prove that the function G(x) = x? is an antiderivative of the function f(x) =
2x. Write a general expression for the antiderivatives of f.

Since G'(x) = 2x = f(x), we have shown that G(x) = x? is an antiderivative
of f(x) = 2x. By Theorem 1, every antiderivative of the function f(x) = 2x
has the form F(x) = x* + C, where C is some constant. The graphs of a few
of the antiderivatives of f are shown in Figure 6.3.

FIGURE 6.3
The graphs of some antiderivatives of
f(x) = 2x

Fx)=x2+1(C=1)
Fx)=x2 (C=0)

F)=x>-3(C=—3)

Let f(x) = x*> — 1.

1. Show that F(x) = 3x°* — x + C, where C is an arbitrary constant, is an antiderivative of f.

2. Use a graphing utility to plot the graphs of the antiderivatives of f corresponding to C = =2, C = —1,
C =0,C =1, and C = 2 on the same set of axes using the viewing rectangle [—4, 4] X [—4, 4].

3. If your graphing utility has the capability, draw the tangent line to each of the graphs in part 2 at the
point whose x-coordinate is 2. What can you say about this family of tangent lines?

4. What is the slope of a tangent line in this family? Explain how you obtained your answer.

THE INDEFINITE INTEGRAL

The process of finding all antiderivatives of a function is called antidifferentia-
tion, or integration. We use the symbol |, called an integral sign, to indicate
that the operation of integration is to be performed on some function f. Thus,

f f(x)dx = F(x) + C



Rule 1: The
Indefinite Integral
of a Constant

EXAMPLE 4

SOLUTION v
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[read “‘the indefinite integral of f(x) with respect to x equals F(x) plus C”]
tells us that the indefinite integral of f is the family of functions given by
F(x) + C, where F'(x) = f(x). The function f to be integrated is called the
integrand, and the constant Cis called a constant of integration. The expression
dx following the integrand f(x) reminds us that the operation is performed
with respect to x. If the independent variable is 7, we write | f(¢) dt instead.
In this sense both ¢ and x are “dummy variables.”
Using this notation, we can write the results of Examples 2 and 3 as

fldx=x+C and f2xdx=x2+K

where C and K are arbitrary constants.

BASIC INTEGRATION RULES

Our next task is to develop some rules for finding the indefinite integral of a
given function f. Because integration and differentiation are reverse opera-
tions, we discover many of the rules of integration by first making an “educated
guess’ at the antiderivative F of the function f to be integrated. Then this
result is verified by demonstrating that F' = f.

J' kdx=kx+ C (k, a constant)

To prove this result, observe that

) =5 (kv + €)= &

Find each of the following indefinite integrals:

a.dex b.fﬂ'zdx

Each of the integrands has the form f(x) = k, where k is a constant. Applying
Rule 1 in each case yields

a.Jde=2x+C b.jw2dx=772x+c
Next, from the rule of differentiation,

—x" = px"!

dx

we obtain the following rule of integration.
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Rule 2: The

n —_ 1 n+l _
Power Rule E dx=——=x""1 4 C (n#—1)

An antiderivative of a power function is another power function obtained from
the integrand by increasing its power by 1 and dividing the resulting expression
by the new power.

To prove this result, observe that

! _i 1 n+1
F(x)_dx|:n+1x +C}
n+1

1

n

n
= x"
=f(x)

EXAMPLE 5 Find each of the following indefinite integrals:

a. fx3 dx b. fxmdx c. Jde

x3/2

TITEINTPA Each integrand is a power function with exponent n # —1. Applying Rule 2
in each case yields the following results:

a. fx3dx =%x4+ C
b. Jxmdx = %x” +C= sz’2 +C
5 5

1 _ 1 -
c. JﬂdeJx Ndx =—xP+C=-2x1"+C

These results may be verified by differentiating each of the antiderivatives
and showing that the result is equal to the corresponding integrand.

The next rule tells us that a constant factor may be moved through an
integral sign.

Rule 3: The Indefinite
Integrul of a jcf(x)dx=cJ'f(x)dx (c, a constant)
Constant Multiple
of a Function
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SOLUTION v

Rule 4: The Sum
Rule

EXAMPLE 7
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The indefinite integral of a constant multiple of a function is equal to the constant
multiple of the indefinite integral of the function.

This result follows from the corresponding rule of differentiation (see Rule
3, Section 3.1).

Only a constant can be ““moved out” of an integral sign. For example, it would
be incorrect to write

szdx=x2f1dx
In fact, [ x> dx = 3x* + C, whereas x2 [ 1 dx = x*(x + C) = x* + Cx2

Find each of the following indefinite integrals:
a [20dr b [ —3x2dx

Each integrand has the form cf(x), where ¢ is a constant. Applying Rule 3,
we obtain:

a. f213dt=2ft3dt=2[%t4+l(}=%t4+2K=%t4+C

where C = 2K. From now on, we will write the constant of integration as C,
since any nonzero multiple of an arbitrary constant is an arbitrary constant.

b [~3x2dr=-3[x?dx=(-3)(-Dx+C=24C

X

J 1) + g dx = [ fx) dx + [ g(x) dx
[ 1) = g dx = [ £0x) dx = [ g(x) dx

The indefinite integral of a sum (difference) of two integrable functions is equal
to the sum (difference) of their indefinite integrals.

This result is easily extended to the case involving the sum and difference
of any finite number of functions. As in Rule 3, the proof of Rule 4 follows
from the corresponding rule of differentiation (see Rule 4, Section 3.1).

Find the indefinite integral

f (Bx> + 4x3? — 2x7 V) dx
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TINETT2  Applying the extended version of Rule 4, we find that
f (3x% + 4x*? — 2x71%) dx
= [3x dv + [ 47 dx = [ 2 ax

=3 fxs dx + 4fx3/2 dx — 2fx’”2 dx (Rule 3)

- 3) (%) X+ (4) (%) X2 = )@+ C (Rule2)

1 ..8
J— + = 512 1/2+
2x 5x 4x C

Observe that we have combined the three constants of integration, which
arise from evaluating the three indefinite integrals, to obtain one constant C.
After all, the sum of three arbitrary constants is also an arbitrary constant.

Rule 5: The Indefinite
Integral of the Jedi=e+c
Exponential Function

The indefinite integral of the exponential function with base e is equal to the
function itself (except, of course, for the constant of integration).

EXAMPLE 8 Find the indefinite integral

f (2e* — x%) dx

We have
f(Ze“—x3)dx=fZe“dx—fx3dx
=2Je"dx—fx3dx

=26*-%x4+C

The last rule of integration in this section covers the integration of the
function f(x) = x~!. Remember that this function constituted the only excep-
tional case in the integration of the power function f(x) = x” (see Rule 2).

Rule 6: The Indefinite

Integral of the fxfldx=f1dx=1n|x|+c (x #0)
Function f(x) = x! g
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SOLUTION v

FIGURE 6.4

The graphs of some of the functions

having the derivative f'(x) = 2x — 1.
Observe that the slopes of the tangent lines
to the graphs are the same for a fixed
value of x.
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To prove Rule 6, observe that

d 1 .
—In |x| == (See Rule 3, Section 5.5.)
dx x

Find the indefinite integral
f <2x + 3 + %) dx
X X

f(Zx+§+%)dx=f2xdx+f%dx+f%dx

=2fxdx+3f)1—cdx+4J'x’2dx

2 (%) x2+3In|x|+4(-1)x"'+C

=x2+3ln|x|—;+c

DIFFERENTIAL EQUATIONS

Let’s return to the problem posed at the beginning of the section: Given the
derivative of a function f', can we find the function f? As an example, suppose
we are given the function

ffx)y=2x—-1 §))

and we wish to find f(x). From what we now know, we can find f by integrating
Equation (1). Thus,

f(x)=ff'(x)dx=j(2x—1)dx=x2—x+c @

where C is an arbitrary constant. Thus, infinitely many functions have the
derivative f’, each differing from the other by a constant.

Equation (1) is called a differential equation. In general, a differential
equation is an equation that involves the derivative or differential of an
unknown function. [In the case of Equation (1), the unknown function is f.]
A solution of a differential equation is any function that satisfies the differential
equation. Thus, Equation (2) gives all the solutions of the differential Equation
(1), and itis, accordingly, called the general solution of the differential equation
fl(x) =2x — 1.

The graphs of f(x) = x> — x + C for selected values of C are shown in
Figure 6.4. These graphs have one property in common: For any fixed value
of x, the tangent lines to these graphs have the same slope. This follows
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EXAMPLE 10

SOLUTION v

because any member of the family f(x) = x> — x + C must have the same
slope at x—namely, 2x — 1!

Although there are infinitely many solutions to the differential equation
f'(x) = 2x — 1, we can obtain a particular solution by specifying the value
the function must assume at a certain value of x. For example, suppose we
stipulate that the function f under consideration must satisfy the condition
f(1) = 3 or, equivalently, the graph of f must pass through the point (1, 3).
Then, using the condition on the general solution f(x) = x* — x + C, we find that

fy=1-1+cCc=3

and C = 3. Thus, the particular solution is f(x) = x> — x + 3 (see Figure 6.4).

The condition f(1) = 3 is an example of an initial condition. More gener-
ally, an initial condition is a condition imposed on the value of f at a point
X = a.

INITIAL VALUE PROBLEMS

An initial value problem is one in which we are required to find a function
satisfying (1) a differential equation and (2) one or more initial conditions.
The following are examples of initial value problems.

Find the function f if it is known that
fl(x) =3x>—4x + 8 and f(1)=9
We are required to solve the initial value problem

fl(x) =3x>—4x + 8}
f=9

Integrating the function f’, we find
f) = [ £/x) ax

=f6ﬁ—4x+&dx

=x'=2x*+8x+C
Using the condition f(1) = 9, we have

9=f(1)=1-21)+81)+C=7+C
c=2

Therefore, the required function f is given by f(x) = x* — 2x> + 8x + 2.



EXAMPLE 11

SOLUTION v

EXAMPLE 12

SOLUTION v
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APPLICATIONS

In a test run of a maglev along a straight elevated monorail track, data obtained
from reading its speedometer indicate that the velocity of the maglev at time
t can be described by the velocity function

v(t) = 8t (0 =t =30)

Find the position function of the maglev. Assume that initially the maglev is
located at the origin of a coordinate line.

Let s(¢) denote the position of the maglev at any time ¢ (0 = ¢ = 30). Then,
s'(f) = v(¢). So, we have the initial value problem

s'(1) = 8t}
s(0)=0

Integrating both sides of the differential equation s'(f) = 8¢, we obtain
s(h) = Js’(t) dt = fStdt =4+ C

where C is an arbitrary constant. To evaluate C, we use the initial condition
s(0) = 0 to write
s(0)=40)+C=0 or cC=0

Therefore, the required position function is s(z) = 4¢* (0 = ¢t = 30).

The current circulation of the Investor’s Digest is 3000 copies per week. The
managing editor of the weekly projects a growth rate of

4 + 500

copies per week, t weeks from now, for the next 3 years. Based on her
projection, what will the circulation of the digest be 125 weeks from now?

Let S(¢) denote the circulation of the digest ¢ weeks from now. Then S'() is
the rate of change in the circulation in the rth week and is given by

S'(t) =4 + 5¢°

Furthermore, the current circulation of 3000 copies per week translates into
the initial condition S(0) = 3000. Integrating the differential equation with
respect to ¢ gives

Sm=jy@m=j@+wqm

t5/3
=4t+5<7>+C=4t+3t5’3+C

3
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To determine the value of C, we use the condition S(0) = 3000 to write

S(0) = 4(0) + 3(0) + C = 3000

which gives C = 3000. Therefore, the circulation of the digest t weeks from

now will be

S(t) = 4t + 3% + 3000

In particular, the circulation 125 weeks from now will be

S(125) = 4(125) + 3(125)°° + 3000 = 12,875

copies per week.

1. Evaluate f <L - )% + 3e"> dx.

Vx

2. Find the rule for the function f given that (1) the slope of the tangent line to the
graph of f at any point P(x, f(x)) is given by the expression 3x*> — 6x + 3 and (2)
the graph of f passes through the point (2, 9).

3. Suppose United Motors’ share of the new cars sold in a certain country is changing

at the rate of

£(t) = —0.01875¢ + 0.15t — 1.2

O=tr=12)

percent at year ¢ (¢ = 0 corresponds to the beginning of 1989). The company’s
market share at the beginning of 1989 was 48.4%. What was United Motors’ market
share at the beginning of 2001?

Solutions to Self-Check Exercises 6.1 can be found on page 454.

In Exercises 1-4, verify directly that F is an
antiderivative of f.

1.F(x)=%x3+2x2—x+2;f(x)=x2+4x—1

2. F(x) = xe* + m; f(x) = e*(1 + x)

3. Fx) = V2x° — L f(x) = %

4. Fx) =xInx —x; f(x) = Inx

In Exercises 5-8, (a) verify that Gis an antide-
rivative of f, (b) find all antiderivatives of f,
and (c) sketch the graphs of a few of the family
of antiderivatives found in part (h).

5. G(x) = 2x; f(x) = 2 6. G(x) = 2x% f(x) = 4x

7. G(x) = %x3; flx) = x? 8. G(x) = e f(x) = e*

In Exercises 9-50, find the indefinite integral.

9. [6ax 10. [V2dx
1. [xdx 12. (24 dx
13, [xtdx . [307ar
15, [ dx 16. [2u™ du
17. [x%dx 18. [3x% dx
19. )%dx 2. [ %dx



21.

23.

25.

217.

29.

31.

33.

35.

37.

38.

39.

41.

43.

45.

47.

48.

49.

[nViar 2.
j (3 — 2x) dx 24.
J (+x+x3)dx 26.
J4e" dx 28.
J' (1+x+e)dx 30.

N

j<4x3—§—1>dx 32.

j (52 + 232 — x) dx 34.

3
[(Va+==)ax 36.
Vix
3+ 2 __
J’<u 2u u)du
3u
oW+’ —u 1, 02 1
Hint: 3 —3u+ u 3
4_
J'xledx
4
Hint: £ 21=)«72—x’2
X

@+ De-2)ar 40.

jé(x“ — 2%+ 1) dx .

=

f(s fsl)*z 4.

f (e'+ 1) dt 46.

3 2 _
J'<x +xx2 x+1>dx

Hint: Simplify the integrand first.

£+ Vi
j IS dr
Hint: Simplify the integrand first.
Vx =1y
J% dx
X

Hint: Simplify the integrand first.

v

dt

J(1+u+u2)du

J 032+ 0020+ 2) ar

j(l +eY) dx

f(2+x+2x2+e*)dx

f<6x3+%—x>dx

J’(tS/Z + 2t1/2 _ 4t71/2) dt

j(\*/?—)%)dx

ju’z(l —u*+ u)du

f\/t(12+t—1)dt

f(\/a_c+)§c—2eX>dx

It

1

X

2

1

1
+_
Vi

Ja
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50. f(x + 1) (1 U%) dx

Hint: Simplify the integrand first.

In Exercises 51-58, find f(x) by solving the ini-
tial value problem.

5L ff(x) =2x + 1, f(1) =3
52. f'(x) = 3x* — 6x; f(2) = 4

53 f(x) =3 + dx — 1, f(2) = 9
! — L —
54. f'(x) 7 f(4) =2

55. f'(x) =1+ ]%;f(l) =2

56. f'(x) = e* — 2x; f(0) = 2

x+1 _
i =1

57. f'(x) =
58.f’(x)=1+ex+)1—c;f(1)=3+e

In Exercises 59-62, find the function f given
that the slope of the tangent line to the graph
of f at any point (x, f(x)) is f (x) and that the
graph of f passes through the given point.

59. f'(x) = 3271 (2, V2)
60. f/(1) = 2 — 2t + 3 (1, 2)

6L f(x) = e +x:(0,3) 62 f(x) = )2? +1(1L,2)

63. VeLoaTy of A CAR  The velocity of a car (in feet/second)
t sec after starting from rest is given by the function

f(t)y =2Vt (0=t=30)

Find the car’s position at any time ¢.

64. VELoaiTY oF A MAGLEV  The velocity (in feet/second) of a

maglev is

v(f) =02t + 3 (0 =r=120)

Attt =0, it is at the station. Find the function giving the
position of the maglev at time ¢, assuming that the motion
takes place along a straight stretch of track.

65. CostoF PrRopuCING CLoCKS The Lorimar Watch Company

manufactures travel clocks. The daily marginal cost
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67.

68.

69.
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function associated with producing these clocks is
C’(x) = 0.000009x* — 0.009x + 8

where C’(x) is measured in dollars/unit and x denotes the
number of units produced. Management has determined
that the daily fixed cost incurred in producing these
clocks is $120. Find the total cost incurred by Lorimar
in producing the first 500 travel clocks/day.

REVENUE FUNcTIONS The management of the Lorimar
Watch Company has determined that the daily marginal
revenue function associated with producing and selling
their travel clocks is given by

R'(x) = —0.009x + 12

where x denotes the number of units produced and sold
and R'(x) is measured in dollars/unit.

a. Determine the revenue function R(x) associated with
producing and selling these clocks.

b. What is the demand equation that relates the whole-
sale unit price with the quantity of travel clocks de-
manded?

ProFIT FunctioNs The Cannon Precision Instruments
Corporation makes an automatic electronic flash with
Thyrister circuitry. The estimated marginal profit associ-
ated with producing and selling these electronic flashes
is

(—0.004x + 20)

dollars/unit/month when the production level is x units
per month. Cannon’s fixed cost for producing and selling
these electronic flashes is $16,000/month. At what level
of production does Cannon realize a maximum profit?
What is the maximum monthly profit?

Cost oF ProDUCING GUITARS The Carlota Music Company
estimates that the marginal cost of manufacturing its
Professional Series guitars is

C'(x) = 0.002x + 100

dollars/month when the level of production is x guitars/
month. The fixed costs incurred by Carlota are $4000/
month. Find the total monthly cost incurred by Carlota
in manufacturing x guitars/month.

QuaLiTy CoNTROL As part of a quality-control program,
the chess sets manufactured by the Jones Brothers Com-
pany are subjected to a final inspection before packing.
The rate of increase in the number of sets checked per
hour by an inspector ¢ hr into the 8 A.Mm. to 12 noon
morning shift is approximately

N'(f) = =32 + 12t + 45 (0=¢=4)

70.

72.

a. Find an expression N(¢) that approximates the num-
ber of sets inspected at the end of ¢ hours.

Hint: N(0) = 0.

b. How many sets does the average inspector check dur-
ing a morning shift?

BALLAST DROPPED FROM A BALLOON A ballast is dropped
from a stationary hot-air balloon that is hovering at an
altitude of 400 ft. Its velocity after ¢ sec is —32¢ ft/sec.
a. Find the height A(f) of the ballast from the ground
at time .

Hint: 4'(¢) = —32¢ and h(0) = 400.

b. When will the ballast strike the ground?

c. Find the velocity of the ballast when it hits the ground.

Ballast
s

A calculator is recommended for Exercises
71-76.

71.

CABLE TV SuBSCRIBERS A study conducted by Tele-Cable,
Inc., estimates that the number of cable television sub-
scribers will grow at the rate of

100 + 210

new subscribers/month ¢ mo from the start date of the
service. If 5000 subscribers signed up for the service
before the starting date, how many subscribers will there
be 16 mo from that date?

AR PoLLuTION On an average summer day, the level of
carbon monoxide (CO) in a city’s air is 2 parts per million
(ppm). An environmental protection agency’s study pre-
dicts that, unless more stringent measures are taken to
protect the city’s atmosphere, the CO concentration
present in the air will increase at the rate of

0.003¢* + 0.06¢ + 0.1

ppm/year t yr from now. If no further pollution-control
efforts are made, what will be the CO concentration on
an average summer day 5 yr from now?
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PopuraTioN GROWTH The development of Astro World
(“The Amusement Park of the Future’’) on the outskirts
of a city will increase the city’s population at the rate
of

4500V% + 1000

people/year t yr from the start of construction. The popu-
lation before construction is 30,000. Determine the pro-
jected population 9 yr after construction of the park
has begun.

OzoNe PoLLuTioN The rate of change of the level of
ozone, an invisible gas that is an irritant and impairs
breathing, present in the atmosphere on a certain May
day in the city of Riverside is given by

R(r) = 3.2922¢> — 0.3661° (0 <t<11)

(measured in pollutant standard index per hour). Here,
t is measured in hours, with ¢ = 0 corresponding to 7
AM. Find the ozone level A(f) at any time ¢ assuming
that at 7 A.Mm. it is zero.

Hint: A'(f) = R(¢) and A(0) = 0.

SURFACE AREA OF A HuMAN Empirical data suggest that
the surface area of a 180-cm-tall human body changes
at the rate of

S/(W) = 0.131773W075

square meters/kilogram, where W is the weight of the
body in kilograms. If the surface area of a 180-cm-tall
human body weighing 70 kg is 1.886277 m?, what is the
surface area of a human body of the same height
weighing 75 kg?

FLIGHT oF A Rocker The velocity, in feet/second, of a
rocket ¢ sec into vertical flight is given by

v(t) = =32 + 192t + 120

Find an expression /(f) that gives the rocket’s altitude,
in feet, ¢ sec after liftoff. What is the altitude of the
rocket 30 sec after liftoff?

Hint: A'(¢) = v(¢); K(0) = 0.

Broop FLow IN AN ARTERY Nineteenth-century physician
Jean Louis Marie Poiseuille discovered that the rate of
change of the velocity of blood r cm from the central
axis of an artery (in centimeters/second/centimeters) is
given by

a(r)y = —kr

where k is a constant. If the radius of an artery is R cm,
find an expression for the velocity of blood as a function
of r (see the accompanying figure).

Hint: v'(r) = a(r) and v(R) = 0. (Why?)

78.

79.

80.

81.

82.

N7

Blood vessel

ACCELERATION OF A CAR A car traveling along a straight
road at 66 ft/sec accelerated to a speed of 88 ft/sec over
a distance of 440 ft. What was the acceleration of the
car, assuming it was constant?

DEceLERATION OF A CAR  What constant deceleration would
a car moving along a straight road have to be subjected
to if it were brought to rest from a speed of 88 ft/sec in
9 sec? What would be the stopping distance?

A tank has a constant cross-sectional area of 50 ft> and
an orifice of constant cross-sectional area of 3 ft? located
at the bottom of the tank (see the accompanying figure).

—

G

If the tank is filled with water to a height of 4 ft and
allowed to drain, then the height of the water decreases
at a rate that is described by the equation

dh 1 ( 5= t
dt 25( 20 50)

— =—>

(0 =1=50V20)

Find an expression for the height of the water at any
time ¢ if its height initially is 20 ft.

LAUNCHING A FIGHTER AIRCRAFT A fighter aircraft is
launched from the deck of a Nimitz-class aircraft carrier
with the help of a steam catapult. If the aircraft is to
attain a takeoff speed of at least 240 ft/sec after traveling
800 ft along the flight deck, find the minimum accelera-
tion it must be subjected to, assuming it is constant.

BANk DeposiTs The Madison Finance Company opened
two branches on September 1 (¢ = 0). Branch A is located
in an established industrial park, and branch B is located
in a fast-growing new development. The net rate at which
money was deposited into branch A and branch B in
the first 180 business days is given by the graphs of f
and g, respectively (see the figure). Which branch has a
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larger amount on deposit at the end of 180 business In Exercises 83-86, determine whether the
days? Justify your answer. statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

=

é y L 83. If F and G are antiderivatives of f on an interval /, then

5 F(x) = G(x) + Con L

3 Q)
=3 < 84. If F is an antiderivative of f on an interval /, then
fs| [ fx) dx = F(x).
S g
:a) é B 85. If f and g are integrable, then [ [2f(x) — 3g(x)] dx =
L y=g() 2 [ f(x) dx — 3 [ g(x) dx.

(days) 86. If f and g are integrable, then [ f(x)g(x) dx =
[J f(x) dx][J g(x) dx].

SoLUTIONS T0 SELF-CHECK EXERCISES 6.1

l.j L—g-i-SeX dx=f x’”z—z-i-SeX dx
Y X x

:fx’l’zdx—Z J' )1_c dx+3je-‘dx

=2x"?=21In|x| +3e*+ C
=2Vx —21In|x| +3e* + C

2. The slope of the tangent line to the graph of the function f at any point P(x, f(x))
is given by the derivative f’ of f. Thus, the first condition implies that

f'(x) =3x>—6x+3
which, upon integration, yields
flx) = f (3x? — 6x + 3) dx
=x'=3x2+3x+k

where k is the constant of integration.
To evaluate k, we use the initial condition (2), which implies that f(2) = 9, or

9=1f2)=2"-32)+32) +k
or k = 7. Hence, the required rule of definition of the function f is
fx) =x=3x2+3x +7

3. Let M(r) denote United Motors’ market share at year ¢. Then,
M) = [ f(e) e

= [ (-0.01875¢ + 0.15¢ = 1.2) d
= —0.00625¢ + 0.075¢2 — 1.2t + C
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To determine the value of C, we use the initial condition M(0) = 48.4, obtaining
C = 48.4. Therefore,

M(t) = —0.006256 + 00752 — 1.2t + 48.4

In particular, United Motors’ market share of new cars at the beginning of 2001 is
given by

M(12) = —0.00625(12)° + 0.075(12)
—1.2(12) + 48.4 = 34

or 34%.

6.2 Integration by Substitution

In Section 6.1 we developed certain rules of integration that are closely related
to the corresponding rules of differentiation in Chapters 3 and 5. In this section
we introduce a method of integration called the method of substitution, which
is related to the chain rule for differentiating functions. When used in conjunc-
tion with the rules of integration developed earlier, the method of substitution
is a powerful tool for integrating a large class of functions.

How THE METHOD OF SUBSTITUTION WORKS

Consider the indefinite integral
f 2(2x + 4) dx &)

One way of evaluating this integral is to expand the expression (2x + 4)3 and
then integrate the resulting integrand term by term. As an alternative ap-
proach, let’s see if we can simplify the integral by making a change of vari-
able. Write

u=2x+4
with differential
du =2 dx
If we substitute these quantities into Equation (3), we obtain
f2(2x +4)Ydx = j (2x + 4)’(2dx) = fus du
1 {u —2x+4

Rewriting du =2 dx

Now, the last integral involves a power function and is easily evaluated
using Rule 2 of Section 6.1. Thus,

JuSdu=%u6+C
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Therefore, using this result and replacing u by 2x + 4, we obtain
[2(2x + 4y ax =%(2x + 4+ C
We can verify that the foregoing result is indeed correct by computing

% |:% (2x + 4)6:| = % . 6(2x + 4)5(2) (Using the chain rule)
=2(2x + 4)5

and observing that the last expression is just the integrand of (3).

THE METHOD OF INTEGRATION BY SUBSTITUTION

To see why the approach used in evaluating the integral in (3) is successful,
write

flx) = x° and glx) =2x + 4

Then, g'(x) = 2 dx. Furthermore, the integrand of (3) is just the composition
of f and g. Thus,

(fo8)(x) = f(g(x))
= [s()P = (2x +4)
Therefore, (3) can be written as

[ fgeg' (x) ax @

Next, let’s show that an integral having the form (4) can always be writ-
ten as

| Fay au 3)
Suppose F'is an antiderivative of f. By the chain rule, we have
L [Fg()] = F (508 ()
Therefore,
| Fe(0)g' () dx = Fig(x)) + €
Letting F' = f and making the substitution u = g(x), we have
| Fg(e)g'(x) dx = Fu) + € = [ F'(w) du = [ fu) du

as we wished to show. Thus, if the transformed integral is readily evaluated,
as is the case with the integral (3), then the method of substitution will
prove successful.
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EXAMPLE 1

EXAMPLE 2

6.2 = [NTEGRATION BY SUBSTITUTION 457

Before we look at more examples, let’s summarize the steps involved in
integration by substitution.

Step 1

Step 2
Step 3

Step 4
Step 5

Let u = g(x), where g(x) is part of the integrand, usually the “inside
function” of the composite function f(g(x)).

Compute du = g'(x) dx.

Use the substitution « = g(x) and du = g'(x) dx to convert the entire
integral into one involving only u.

Evaluate the resulting integral.

Replace u by g(x) to obtain the final solution as a function of x.

EHEIYYW Sometimes we need to consider different choices of g for the
substitution u = g(x) in order to carry out step 3 and/or step 4.

Find [ 2x(x2 + 3)* dx.

Step1 Observe that the integrand involves the composite function
(x* + 3)* with “inside function” g(x) = x* + 3. So, we choose
u=x>+3.

Step 2 Compute du = 2x dx.

Step 3 Making the substitution u = x*> + 3 and du = 2x dx, we obtain

f2x(x2 +3)dx = J(x2 +3)'(2x dx) = Ju“ du
Rewriting
an integral involving only the variable u.

Step 4 Evaluate

f utdu = 1u5 +C

5
Step 5 Replacing u by x*> + 3, we obtain
J2x(x2 +3)dx = % x+3y’+C

Find [ 3V3x + 1 dx.

Step 1 The integrand involves the composite function V3x + 1 with ““inside
function” g(x) = 3x + 1. So, let u = 3x + 1.

Step 2 Compute du = 3 dx.

Step 3 Making the substitution u = 3x + 1 and du = 3 dx, we obtain

j3\/3x—+1dx=f\/3x—+1(3dx)=jx/ﬁdu

an integral involving only the variable u.
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Step 4 Evaluate
j\/ﬁdu = Jumdu =§u3’2 +C
Step 5 Replacing u by 3x + 1, we obtain

f3V3x+1dx=§(3x+1)3/2+ C

EXAMPLE 3 Find [ x2(x® + 1)*? dx.

Step 1 The integrand contains the composite function (x* + 1)*? with “in-
side function” g(x) = x* + 1. So, let u = x* + 1.
Step 2 Compute du = 3x* dx.
Step 3 Making the substitution # = x* + 1 and du = 3x* dx, or x*> dx =
1 du, we obtain

fxz(x3 + 1) dx = f (x* 4+ 1)*2(x? dx)
1 1
_ a2 _ 11,5
Ju <3 du> 3Ju du

an integral involving only the variable u.
Step 4 We evaluate

%fumdu: -§u5’2+C=%u5’2+C

W

Step 5 Replacing u by x* + 1, we obtain

fxz(x3 + 1) dx = %(ﬁ + 1)+ C

Group Discussion
D Let f(x) = x*(x® + 1)*2. Using the result of Example 3, we see that
an antiderivative of fis F(x) = &(x* + 1)°2. However, in terms of u (where
u = x* + 1), an antiderivative of fis G(u) = %u2. Compute F(2). Next,
suppose we want to compute F(2) using the function G instead. At what
value of u should you evaluate G(u) in order to obtain the desired result?
Explain your answer.

In the remaining examples, we drop the practice of labeling the steps
involved in evaluating each integral.
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EXAMPLE 4 Find [ e dx.

SOLUTION v Let u = —3x so that du = —3 dx, or dx = —% du. Then,

. X
EXAMPLE 5 Find f 32514

SOLUTION v Let u = 3x* + 1. Then, du = 6x dx, or x dx = § du. Making the appropriate
substitutions, we have

x _ (s
J3x2+1dx_fudu
111
=5/
=%ln|u|+C

= %ln(sz +1)+C (Since 3x* + 1> 0)

. In x)*
EXAMPLE 6 Find f %dx.

SOLUTION v Let u = In x. Then,

_d _1
du—dx(lnx)dx—xdx

(Inx)* 1 (nx)
[ e [0

=%ju2du

=%u3+C

=%(lnx)3 +C
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EXAMPLE 7

SOLUTION v

Group Discussion
Suppose [ f(u) du = F(u) + C.
1. Show that [ f(ax + b) dx = %F(ax + b) + C.

2. How can you use this result to facilitate the evaluation of integrals such
as [ (2x + 3)’ dx and [ ¢*2 dx? Explain your answer.

APPLICATIONS

Examples 7 and 8 show how the method of substitution can be used in practi-
cal situations.

In 1990 the head of the research and development department of the Soloron
Corporation claimed that the cost of producing solar cell panels would drop
at the rate of

_8

(3t +2)?
dollars per peak watt for the next ¢ years, with ¢+ = 0 corresponding to the
beginning of the year 1990. (A peak watt is the power produced at noon on
a sunny day.) In 1990 the panels, which are used for photovoltaic power
systems, cost $10 per peak watt. Find an expression giving the cost per peak
watt of producing solar cell panels at the beginning of year . What was the
cost at the beginning of 2000?

(0=r=10)

Let C(¢) denote the cost per peak watt for producing solar cell panels at the
beginning of year t. Then,

58

CO="Giroy

Integrating, we find that
_ —58
0= Gy

—58 j Gt +2) 2 dt

Let u = 3¢t + 2 so that
du =3dt or dt ==du

Then,

C(t) = —58 (%) j u? du

= - %(—l)u’l +k

58
=—— 4
3Gi+2) K



Refer to Example 7.
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where k is an arbitrary constant. To determine the value of k, note that the
cost per peak watt of producing solar cell panels at the beginning of 1990
(t = 0) was 10, or C(0) = 10. This gives

58
= — +4 =
C(0) 30) k=10
or k = 3. Therefore, the required expression is given by
58 1
= 4 —
=3+ "3

58+ (3t+2) _ 3t+60
© 3(3r+2) 33r+2)
1420
S 3r+2

The cost per peak watt for producing solar cell panels at the beginning of
2000 is given by

10+20
3(10) + 2

or approximately $.94 per peak watt.

C(10) = 0.94

1. Use a graphing utility to plot the graph of

t+ 20

CO=372

using the viewing rectangle [0, 10] X [0, 5]. Then, use the numerical differentiation capability of the
graphing utility to compute C’(10).

2. Plot the graph of

58

O Gy

using the viewing rectangle [0, 10] X [—10, 0]. Then, use the evaluation capability of the graphing utility
to find C'(10). Is this value of C’(10) the same as that obtained in part 1? Explain your answer.

A study prepared by the marketing department of the Universal Instruments
Company forecasts that, after its new line of Galaxy Home Computers is
introduced into the market, sales will grow at the rate of

2000 — 1500¢005 (0 =t = 60)

units per month. Find an expression that gives the total number of computers
that will sell + months after they become available on the market. How many
computers will Universal sell in the first year they are on the market?
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SOLUTION

Let N(f) denote the total number of computers that may be expected to be
sold ¢t months after their introduction in the market. Then, the rate of growth
of sales is given by N'(¢) units per month. Thus,

N'(£) = 2000 — 1500905
so that N() = f (2000 — 1500e " di
- f 2000 df — 1500 f ¢ 095 it

Upon integrating the second integral by the method of substitution, we obtain

. 1500 _ o (Letu = —0.05¢,
N(1) = 20001 + o= e + € then du = —0.05 dr.)

= 2000¢ + 30,000e~% + C

To determine the value of C, note that the number of computers sold at the
end of month 0 is nil, so N(0) = 0. This gives

N(0) = 30,000 + C=0 (Since " = 1)
or C = —30,000. Therefore, the required expression is given by

N(¢) = 2000z + 30,000¢ % — 30,000
= 2000z + 30,000(e™ "% — 1)
The number of computers that Universal can expect to sell in the first year
is given by
N(12) =2000(12) + 30,000(e 02 — 1)
= 10,464 units

l. Evaluatef V2x + 5dx.

xZ
2. Evaluate fmdx

3. Evaluate f xe 1 dx.

4. According to a joint study conducted by Oxnard’s Environmental Management

Department and a state government agency, the concentration of carbon monoxide
(CO) in the air due to automobile exhaust is increasing at the rate given by

_ 8(0.1+ 1)
O = 3000022 + 41 + 62y

parts per million (ppm) per year ¢. Currently, the CO concentration due to automo-
bile exhaust is 0.16 ppm. Find an expression giving the CO concentration ¢ yr
from now.

Solutions to Self-Check Exercises 6.2 can be found on page 465.
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In Exercises 1-50, find the indefinite integral.

1. j 4(4x + 3)* dx 2. f 4x(2x2 + 1Y dx
3. J'(x3 —2x)*(3x* = 2)dx
4. f(sz —2x + 1)(x3 — x>+ x)*dx
4x 3x2+2
S J(sz + 3)° dx 6. f(x +2x)2
7. j 3NVP+2dt 8. f 36(6 + 2)"2 dt
9. j (= 1)°x dx 10. f X2(2x° + 3) dx
x* x?
12. d
11.f1_x5dx j\/m X
2 x?
B, [ W [
0.3x — 02 202+ 1
15 03w —0ax 2% 16. | oo v 03 ™
X x2—1
1. [ 8.
19. je’“ dx 20. f e 002 dx
21 e 2. j e dr
23. J'xe”Z dx 24, f x2e* ! dx
25. J(e" —e*)dx 26. f (¥ +e*)dx
ex er
2. [ 2. [
Vi —1/x
e e
. [ dx 30. [Sax
e + x? er—e™
31. (eSx + x3)3 X 32. J-(ex + e—x)3/2
3. [en(er + 1) dx 3. [ (1 +e)dx
3
35. jln LN 36. fMdu
X u

1 1
3. | S 3. | Y
712
39, j ‘;nxdx 40. f%dx
41. f (xe"Z — xzf_ 2) dx 42. J' <xe"‘Z + exe_;_ 3) dx
x+1 e 1
b [ 44.je,u+udu
Hint: Let u = Vx — 1. Hint: Letv = e + u.
45. fx(x — 1) dx
Hint: u = x — 1 implies x = u + 1.
1-Vx
46.jmdr 47.j1+v;dx
t . 1 s _
Hint: ——=1-——. Hint: Letu = 1 + V.
1+ Vx I,
4s.J1_\/_xdx 49.[0(1 V)’ dv
Hint: Letu = 1 — V. Hint: Letu =1 — v.

50. f)ﬁ(x2 + 1) dx
Hint: Let u = x* + 1.

In Exercises 51-54, find the function f given
that the slope of the tangent line to the graph
of f at any point (x, f(x)) is f'(x) and that the
graph of f passes through the given point.

51. f'(x) = 5(2x — 1)% (1, 3)

52, f'(x) = \/_ ;(1,1)
53. f/(x) = —2xe**1;(1,0)
2x

X2+ 1

55. STUDENT ENROLLMENT The registrar of Kellogg University
estimates that the total student enrollment in the Contin-
uing Education division will grow at the rate of

54. f(x)=1— :(0,2)

N'(£) = 2000(1 + 0.21)"?

students/year ¢ yr from now. If the current student enroll-
ment is 1000, find an expression giving the total student
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enrollment ¢ yr from now. What will be the student
enrollment 5 yr from now?

TV Viewers: NEWSMAGAZINE SHOWS The number of view-
ers of a weekly TV newsmagazine show, introduced in
the 1995 season, has been increasing at the rate of

1\
+_
3 (2 2t>

million viewers/year in its ¢ th year on the air. The number
of viewers of the program during its first year on the air
is given by 9(5/2)*? million. Find how many viewers were
expected in the 2000 season.

(I=t=6)

DemANnD: LApies” Boors The rate of change of the unit
price p (in dollars) of Apex ladies’ boots is given by

') = —250x
px _(16+x2)3/2

where x is the quantity demanded daily in units of a
hundred. Find the demand function for these boots if
the quantity demanded daily is 300 pairs (x = 3) when
the unit price is $50/pair.

E A calculator is recommended for the remain-
ing exercises.

58.

60.

SuppLy: Lapies” Boots The rate of change of the unit
price p (in dollars) of Apex ladies’ boots is given by

P = E

where x is the number of pairs that the supplier will
make available in the market daily when the unit price
is $p/pair. Find the supply equation for these boots if
the quantity the supplier is willing to make available is
200 pairs daily (x = 2) when the unit price is $50/pair.

59. O1L SpiLL In calm waters the oil spilling from the rup-

tured hull of a grounded tanker forms an oil slick that
is circular in shape. If the radius r of the circle is increas-
ing at the rate of

30
V2t +4

feet/minute t min after the rupture occurs, find an expres-
sion for the radius at any time ¢. How large is the polluted
area 16 min after the rupture occurred?

Hint: r(0) = 0.

r(t) =

LiFE EXPECTANCY OF A FEMALE Suppose in a certain country
the life expectancy at birth of a female is changing at

61.

62.

63.

64.

the rate of

() = 345218
EW =T 1.0

years/year. Here, ¢ is measured in years, and ¢ = 0 corre-
sponds to the beginning of 1900. Find an expression g(t)
giving the life expectancy at birth (in years) of a female
in that country if the life expectancy at the beginning of
1900 is 50.02 yr. What is the life expectancy at birth of
a female born in the year 2000 in that country?

AVERAGE BIRTH HEIGHT oF Boys Using data collected at
Kaiser Hospital, pediatricians estimate that the average
height of male children changes at the rate of

Lo 52870607
WO = G5 24000y

inches/year, where the child’s height A(f) is measured in
inches and ¢, the child’s age, is measured in years, with
t = 0 corresponding to the age at birth. Find an expres-
sion A(r) for the average height of a boy at age ¢ if the
height at birth of an average child is 19.4 in. What is the
height of an average 8-yr-old boy?

LEARNING CURVES The average student enrolled in the 20-
wk Court Reporting I course at the American Institute of
Court Reporting progresses according to the rule
N'(t) = 6™ (0 =rt=20)

where N’(f) measures the rate of change in the number
of words per minute of dictation the student takes in
machine shorthand after ¢ wk in the course. Assuming
that the average student enrolled in this course begins
with a dictation speed of 60 words/minute, find an expres-
sion N(¢) that gives the dictation speed of the student
after r wk in the course.

SALES: LoupsPeAKERS In the first year they appeared in
the market, 2000 pairs of Acrosonic model F loudspeaker
systems were sold. Since then, sales of these loudspeaker
systems have been growing at the rate of

£(f) = 20003 — 2¢™)

units/year, where ¢ denotes the number of years these
systems have been on the market. Determine the number
of systems that were sold in the first 5 yr after their intro-
duction.

AMOUNT OF GLUCOSE IN THE BLOODSTREAM  Suppose a patient
is given a continuous intravenous infusion of glucose at
a constant rate of » mg/min. Then, the rate at which the
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amount of glucose in the bloodstream is changing at time
t due to this infusion is given by

A'(t) = re ™

mg/min, where a is a positive constant associated with
the rate at which excess glucose is eliminated from the
bloodstream and is dependent on the patient’s metabo-
lism rate. Derive an expression for the amount of glucose
in the bloodstream at time .

Hint: A(0) = 0.

CONCENTRATION OF A DRUG IN AN ORGAN A drug is carried
into an organ of volume V c¢cm’ by a liquid that enters
the organ at the rate of a cm®/sec and leaves it at the

SOLUTIONS 10 SELF-CHECK EXERCISES 6.2
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rate of b cm®/sec. The concentration of the drug in the
liquid entering the organ is ¢ g/cm’. If the concentration
of the drug in the organ at time ¢ is increasing at the
rate of

x'(t) = ‘1—/((16 — bxg)e

g/cm?/ sec, and the concentration of the drug in the organ
initially is x, g/cm’, show that the concentration of the
drug in the organ at time ¢ is given by

x(t) = % + (xo — %) e

1. Letu = 2x + 5. Then, du = 2 dx, or dx = 3 du. Making the appropriate substitutions,

we have

J\/2x—+5dx= fﬁ(%du) =%fu1’2du

_1 312
1(B)un+c

:1( 2x +5)y7+C

2. Let u = 2x* + 1, so that du = 6x* dx, or x* dx = § du. Making the appropriate

substitutions, we have

x2
f v+

l
6 5 6J’ =32 du

J' u?
-
1 _
—§(2x3+1) "2y cC
L.
3V2x3+1

3. Let u = 2x* — 1, so that du = 4x dx, or x dx = } du. Then,

xe 1l dx = 1 e'du
J |
= %e” +C

= %ez"z’l +C
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4. Let C(r) denote the CO concentration in the air due to automobile exhaust ¢ yr
from now. Then,

e 801+ 1)
O =50 = 3560020 + 4 + 6a)"
-8
300

(0.1¢ 4+ 1)(0.2¢> + 4t + 64) 717
Integrating, we find

@) = f% (0.1 + 1)(0.282 + 4¢ + 64) 15 dt

8

= ﬁj (011 + 1)(022 + 4t + 64) " dy

Let u = 0.2£* + 4t + 64, so that du = (0.4t + 4) dt = 4(0.1¢ + 1) dt, or
1
01t + 1) dt = Zdu

Then,
-8 (1 -173
C(l)—300 <4>ju du

= L § 2/3
150 <2 wh |+ k
= 0.01(02¢ + 41 + 64) + k

where k is an arbitrary constant. To determine the value of k, we use the condition
C(0) = 0.16, obtaining

C(0) =0.16 = 0.01(64)** + k
016 =0.16 + k
k=0
Therefore,

C(t) = 0.01(0.2¢% + 4 + 64)2°

6.3 Area and the Definite Integral

AN INTUITIVE LOOK

Suppose a certain state’s annual rate of petroleum consumption over a 4-year
period is constant and is given by the function

flr) =12 O=t=4)

where ¢ is measured in years and f(¢) in millions of barrels per year. Then,
the state’s total petroleum consumption over the period of time in question is

(1.2)(4 — 0) (Rate of consumption - time elapsed)



FIGURE 6.5
The total petroleum consumption is given by
the area of the rectangular region.

FIGURE 6.6
The daily petroleum consumption is given by
the “area” of the shaded region.

Million barrels per year

0.6 4

os TN _—
0.4+
0.3+
0.2+

0.1+

FIGURE 6.7
The area under the graph of fon

[a, b]

y

EXAMPLE 1
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12 y=f=12

Million barrels per year

or 4.8 million barrels. If you examine the graph of f shown in Figure 6.5, you
will see that this total is just the area of the rectangular region bounded above
by the graph of f, below by the #-axis, and to the left and right by the vertical
lines t = 0 (the y-axis) and ¢t = 4, respectively.

Figure 6.6 shows the actual petroleum consumption of a certain New
England state over a 4-year period from 1990 (¢ = 0) to 1994 (¢ = 4). Observe
that the rate of consumption is not constant; that is, the function f is not a
constant function. What is the state’s total petroleum consumption over this
4-year period? It seems reasonable to conjecture that it is given by the “area”
of the region bounded above by the graph of f, below by the t-axis, and to
the left and right by the vertical lines ¢t = 0 and ¢t = 4, respectively.

This example raises two questions:

1. What is the “‘area” of the region shown in Figure 6.6?7
2. How do we compute this area?

THE AREA PROBLEM

The preceding example touches on the second fundamental problem in calcu-
lus: Calculate the area of the region bounded by the graph of a nonnegative
function f, the x-axis, and the vertical lines x = a and x = b (Figure 6.7). This
area is called the area under the graph of f on the interval [a, b], or from a
to b.

DEFINING AREA—TwO EXAMPLES

Just as we used the slopes of secant lines (quantities that we could compute)
to help us define the slope of the tangent line to a point on the graph of a
function, we now adopt a parallel approach and use the areas of rectangles
(quantities that we can compute) to help us define the area under the graph
of a function. We begin by looking at a specific example.

Let f(x) = x?* and consider the region R under the graph of f on the interval
[0, 1] (Figure 6.8a). To obtain an approximation of the area of R, let’s construct
four nonoverlapping rectangles as follows: Divide the interval [0, 1] into



468 6 = INTEGRATION

four subintervals

1 11 13 3
KT P - A )
of equal length . Next, construct four rectangles with these subintervals as

bases and with heights given by the values of the function at the midpoints

1 3 5 7

8 8 8 8

of each subinterval. Then, each of these rectangles has width } and height

G G B 6

respectively (Figure 6.8b).
FIGURE 6.8 y y

The area of the region under the graph of 1+ [y=x y=x?
fon [0, 11 in (a) is approximated by the

sum of the areas of the four rectangles in ()

(b).

—_
olm
=
ool
wln 4
FNTN
ool
—_

(a) (b)

If we approximate the area A of S by the sum of the areas of the four
rectangles, we obtain

S IURRTRTY
=35+ )+ o) (5)]
A+ G+ (3] memmano-ey

1/(1 9 25 49 21
w(a*a*a*a) 4

or approximately 0.328125 square unit.



FIGURE 6.9
As n increases, the number of rectangles in-
creases, and the approximation improves.
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Following the procedure of Example 1, we can obtain approximations of
the area of the region R using any number n of rectangles (n = 4 in Example
1). Figure 6.9a shows the approximation of the area A of R using 8 rectangles
(n = 8), and Figure 6.9b shows the approximation of the area A of R using
16 rectangles.

1+ y=x* LT /y=x2

(@) n =8 (b)n=16

These figures suggest that the approximations seem to get better as n
increases. This is borne out by the results given in Table 6.1, which were
obtained using a computer.

Table 6.1

Number of Rectangles n 4

8 16 32 64 100 200

Approximation of A 0.328125

0.332031 0333008  0.333252  0.333313  0.333325  0.333331

EXAMPLE 2

Our computations seem to suggest that the approximations approach the
number 5 as n gets larger and larger. This result suggests that we define the
area of the region under the graph of f(x) = x? on the interval [0, 1] to be 3
square unit.

In Example 1 we chose the midpoint of each subinterval as the point at
which to evaluate f(x) to obtain the height of the approximating rectangle.
Let’s consider another example, this time choosing the left end point of
each subinterval.

Let R be the region under the graph of f(x) = 16 — x? on the interval [1, 3].
Find an approximation of the area A of R using four subintervals of [1, 3] of
equal length and picking the left end point of each subinterval to evaluate
f(x) to obtain the height of the approximating rectangle.
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FIGURE 6.10
The area of R in (a) is approximated by
the sum of the areas of the four rectangles

in (b).

SOLUTION v

—

olw
[\S)

lv
(98]
N

(a) (b)

The graph of f is sketched in Figure 6.10a. Since the length of [1, 3] is 2,
we see that the length of each subinterval is §, or 3. Therefore, the four

subintervals are
3 3 5 5
[1’5]’ [5’2]’ [2’5]’ [5’3]

The left end points of these subintervals are 1, §, 2, and 3, respectively,
so the heights of the approximating rectangles are f(1), f(3), f(2), and f(3),
respectively (Figure 6.10b). Therefore, the required approximation is

RN
=%[f(1) + f@) + f2) + f(%)]

=%{[16 — (1Y) + [16 - (%ﬂ

2
+ [16 — (2)*] + [16 - <%) }} [Recall that f(x) = 16 — x2.]

1 55 39\ _ 101
-2<15+4+1z+4>_ 7

or approximately 25.25 square units.

Table 6.2 shows the approximations of the area A of the region R of
Example 2 when 7 rectangles are used for the approximation and the heights
of the approximating rectangles are found by evaluating f(x) at the left end
points.

Once again, we see that the approximations seem to approach a unique
number as n gets larger and larger—this time the number is 233. This result

Tabhle 6.2

Number of Rectangles n 4

10 100 1,000 10,000 50,000 100,000

Approximation of A 25.2500

24.1200 23.4132 23.3413 23.3341 23.3335 23.3334




6.3 = AREA AND THE DEFINITE INTEGRAL 4

suggests that we define the area of the region under the graph of f(x) =
16 — x? on the interval [1, 3] to be 233 square units.

DEFINING AREA—THE GENERAL CASE

Examples 1 and 2 point the way to defining the area A under the graph of
an arbitrary but continuous and nonnegative function f on an interval [a, b]
(Figure 6.11a).

FIGURE 6.11 y y
The area of the region under the graph of _
fon [a, b] in (a) is approximated by the y=/(x) 74 N y=f(x)
sum of the areas of the n rectangles shown / X
in (b). §> A
R
x ;
a b ax, x, X, X, x,b
(a) (b)
Divide the interval [a, b] into n subintervals of equal length Ax =
(b — a)/n. Next, pick n arbitrary points x;, x,, ..., x,, called representative
points, from the first, second, ..., and nth subintervals, respectively (Figure

6.11b). Then, approximating the area A of the region R by the n rectangles
of width Ax and heights f(x,), f(x), . . . , f(x,,), so that the areas of the rectangles
are f(x))Ax, f(x,)Ax, ..., f(x,)Ax, we have

A = f(x)Ax + f(x))Ax + + -+ + f(x,)Ax

The sum on the right-hand side of this expression is called a Riemann
sum in honor of the German mathematician Bernhard Riemann (1826-1866).
Now, as the earlier examples seem to suggest, the Riemann sum will approach
a unique number as n becomes arbitrarily large.* We define this number to
be the area A of the region R.

The Area Under the

GI’(Iph of a Function Let f be a nonnegative continuous function on [a, b]. Then, the area of the

region under the graph of fis

A = lim [f(x;) + f(x) + -+« + f(x,)]Ax 6)
n—o
where x;, x,, ..., x, are arbitrary points in the n subintervals of [a, b] of equal

width Ax = (b — a)/n.

* Even though we chose the representative points to be the midpoints of the subintervals in Example 1 and
the left end points in Example 2, it can be shown that each of the respective sums will always approach a
unique number as n approaches infinity.



472

6 = INTEGRATION

The Definite Integral

THE DEFINITE INTEGRAL

As we have just seen, the area under the graph of a continuous nonnegative
function f on an interval [a, b] is defined by the limit of the Riemann sum

lim [f(x)Ax + f(x)Ax + - - - + f(x,)Ax]

We now turn our attention to the study of limits of Riemann sums involving
functions that are not necessarily nonnegative. Such limits arise in many
applications of calculus.

For example, the calculation of the distance covered by a body traveling
along a straight line involves evaluating a limit of this form. The computation
of the total revenue realized by a company over a certain time period, the
calculation of the total amount of electricity consumed in a typical home over
a 24-hour period, the average concentration of a drug in a body over a certain
interval of time, and the volume of a solid—all involve limits of this type.

We begin with the following definition.

Let f be defined on [a, b]. If
lim [ f(x;)Ax + f(x)Ax + -+ - + f(x,)Ax]

exists for all choices of representative points x;, x,, . . ., x, in the n subintervals
of [a, b] of equal width Ax = (b — a)/n, then this 11m1t is called the definite
integral of f from a to b and is denoted by f f(x) dx. Thus,

[} fe) dx = tim [£0e)Ax + fG)Ax + -+ + f(x,)Ax] )

The number a is the lower limit of integration, and the number b is the upper
limit of integration.

1. If f is nonnegative, then the limit in (7) is the same as the limit in (6);
therefore, the definite integral gives the area under the graph of fon [a, b].

2. The limit in (7) is denoted by the integral sign | because, as we will see
later, the definite integral and the antiderivative of a functlon f are related.

3. It is important to realize that the definite integral f f(x) dx is a number,
whereas the indefinite integral [ f(x) dx represents a family of functions
(the antiderivatives of f).

4. If the limit in (7) exists, we say that f is integrable on the interval [a, b].

WHEN IS A FUNCTION INTEGRABLE?

The following theorem, which we state without proof, guarantees that a contin-
uous function is integrable.



Integrability of a
Function

Geometric
Interpretation of
f” f(x) dx for
f(x) = 0 on [a, b]

FIGURE 6.12

If f(x) = 0 on [a, b], then

f f(x) dx = area under the graph
of fon [a, b].

Group Discussion
D Suppose f is nonposi-
tive [that is, f(x) =< 0] and con-
tinuous on [a, b]. Explain why

the area of the region below
the x-axis and above the graph

of fis given by f f(x) dx.
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Let f be contlnuous on [a, b]. Then, f is integrable on [a, b]; that is, the
definite integral f f(x) dx exists.

GEOMETRIC INTERPRETATION
OF THE DEFINITE INTEGRAL

If fis nonnegative and integrable on [a, b], then we have the following geomet-
ric interpretation of the definite integral f f(x) dx.

If f is nonnegative and continuous on [a, b], then
b
[} ) ax @®)
is equal to the area of the region under the graph of f on [a, b] (Figure 6.12).

y

y=f)

A= [0 f() dx

=

Next, let’s extend our geometric interpretation of the definite integral to
include the case where f assumes both positive as well as negative values on
[a, b]. Consider a typical Riemann sum of the function f,

fea)Ax + fln)Ax + -+ + flx,)Ax

corresponding to a partition of [a, b] into n subintervals of equal width
(b — a)/n, where xi, x,, ..., x, are representative points in the subintervals.
The sum consists of 7 terms in which a positive term corresponds to the area
of a rectangle of height f(x;) (for some positive integer k) lying above the
x-axis and a negative term corresponds to the area of a rectangle of height
—f(x;) lying below the x-axis. (See Figure 6.13, which depicts a situation with
n = 6).

As n gets larger and larger, the sums of the areas of the rectangles lying
above the x-axis seem to give a better and better approximation of the area
of the region lying above the x-axis (Figure 6.14). Similarly, the sums of the
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FIGURE 6.13

The positive terms in the Riemann sum are
associated with the areas of the rectangles
that lie above the x-axis, and the negafive
terms are associated with the areas of those
that lie below the x-axis.

FIGURE 6.14

As n gets larger, the approximations get bet-
ter. Here, n = 12 and we are approximat-
ing with twice as many rectangles as in
Figure 6.13.

Geometric
Interpretation of

J¥ f(x) dx on [a, b]

FIGURE 6.15
JHfx) dx =

area of R, — area of R, + area of R,

y
y=f®
N |
X
a x, X, Xy / X5 x4 b
y
y=f(x

S 4
o
=

areas of those rectangles lying below the x-axis seem to give a better and

better approximation of the area of the region lying below the x-axis.
These observations suggest the following geometric interpretation of the

definite integral for an arbitrary continuous function on an interval [a, b].

If f is continuous on [a, b], then
fb f(x) dx

is equal to the area of the region above [a, b] minus the area of the region below
[a, b] (Figure 6.15).

y
y=f(x)
R
} } X
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Find an approximation of the area of the region R under the graph of f(x) = 2x? + 1
on the interval [0, 3], using four subintervals of [0, 3] of equal length and picking the
midpoint of each subinterval as a representative point.

The solution to Self-Check Exercise 6.3 can be found on page 477.

In Exercises 1 and 2, find an approximation of
the area of the region R under the graph of f
by computing the Riemann sum of f corre-
sponding to the partition of the interval into
the subintervals shown in the accompanying
figures. In each case, use the midpoints of the
subintervals as the representative points.

1.

3.

2.7
y 94 o 2.5

\19 // N

\ y=f)

g0 8.5

45 \

/
fc

2.5 2.0

y=f(

Let f(x) = 3x.

a. Sketch the region R under the graph of f on the
interval [0, 2] and find its exact area using geometry.
b. Use a Riemann sum with four subintervals of equal
length (n = 4) to approximate the area of R. Choose
the representative points to be the left end points of the
subintervals.

c. Repeat part (b) with eight subintervals of equal length
(n =38).

d. Compare the approximations obtained in parts (b)
and (c) with the exact area found in part (a). Do the
approximations improve with larger n?

. Repeat Exercise 3, choosing the representative points

to be the right end points of the subintervals.

. Let f(x) = 4 — 2x.

a. Sketch the region R under the graph of f on the
interval [0, 2] and find its exact area using geometry.
b. Use a Riemann sum with five subintervals of equal
length (n = 5) to approximate the area of R. Choose
the representative points to be the left end points of the
subintervals.

c. Repeat part (b) with ten subintervals of equal length
(n = 10).

d. Compare the approximations obtained in parts (b)
and (c) with the exact area found in part (a). Do the
approximations improve with larger n?

. Repeat Exercise 5, choosing the representative points

to be the right end points of the subintervals.

. Let f(x) = x? and compute the Riemann sum of f over

the interval [2, 4], using:

a. Two subintervals of equal length (n = 2).

b. Five subintervals of equal length (n = 5).

c. Ten subintervals of equal length (n = 10).

In each case, choose the representative points to be the
midpoints of the subintervals.

d. Can you guess at the area of the region under the
graph of f on the interval [2, 4]?

. Repeat Exercise 7, choosing the representative points

to be the left end points of the subintervals.



476 6 = INTEGRATION

9. Repeat Exercise 7, choosing the representative points
to be the right end points of the subintervals.

10. Let f(x) = x° and compute the Riemann sum of f over
the interval [0, 1], using:
a. Two subintervals of equal length (n = 2).
b. Five subintervals of equal length (n = 5).
c. Ten subintervals of equal length (n = 10).
In each case, choose the representative points to be the
midpoints of the subintervals.
d. Can you guess at the area of the region under the
graph of f on the interval [0, 1]?

11. Repeat Exercise 10, choosing the representative points
to be the left end points of the subintervals.

12. Repeat Exercise 10, choosing the representative points
to be the right end points of the subintervals.

In Exercises 13-16, find an approximation of
the area of the region R under the graph of the
function f on the interval [a, b]. In each case,
use nsubintervals and choose the representa-
tive points as indicated.

13. f(x) = x> + 1; [0, 2]; n = 5; midpoints

14. f(x) = 4 — x?; [—1, 2]; n = 6; left end points
15. f(x) = )lc; [1, 3]; n = 4; right end points

16. f(x) = e%; [0, 3]; n = 5; midpoints

17. ReaL EsTATE Figure (a) shows a vacant lot with a 100-
ft frontage in a development. To estimate its area, we
introduce a coordinate system so that the x-axis coincides
with the edge of the straight road forming the lower
boundary of the property, as shown in Figure (b). Then,
thinking of the upper boundary of the property as the
graph of a continuous function fover the interval [0, 100],
we see that the problem is mathematically equivalent to
that of finding the area under the graph of f on [0, 100].
To estimate the area of the lot using a Riemann sum,
we divide the interval [0, 100] into five equal subintervals
of length 20 ft. Then, using surveyor’s equipment, we
measure the distance from the midpoint of each of these
subintervals to the upper boundary of the property.
These measurements give the values of f(x) at x = 10,
30, 50, 70, and 90. What is the approximate area of the
lot?

Road

(a)

80 100 | 110 | 100

8

f f f f f x (ft)
10 20 30 40 50 60 70 80 90 100

(b)

18. REAL ESTATE Use the technique of Exercise 17 to obtain
an estimate of the area of the vacant lot shown in the
accompanying figures.

Road

Road

(a)

v (fo

100 | 75 80 | 82.5

x (ft)

Il Il Il Il

T T T T

10 20 30 40 50 60 70 80
(b)
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SoLution 10 SELF-CHECK EXERCISE 6.3

The length of each subinterval is 4. Therefore, the four subintervals are

o3 2 2B

The representative points are §, §, ¥, and %, respectively. Therefore, the required

approximation is

663

_ (41 113 257 473\ _ 663
32

E I TR

N————
I

or approximately 20.72 square units.

6.4 The Fundamental Theorem of Calculus

THE FUNDAMENTAL THEOREM OF CALCULUS

In Section 6.3 we defined the definite integral of an arbitrary continuous
function on an interval [a, b] as a limit of Riemann sums. Calculating the
value of a definite integral by actually taking the limit of such sums is tedious
and in most cases impractical. It is important to realize that the numerical
results we obtained in Examples 1 and 2 of Section 6.3 were approximations
of the respective areas of the regions in question, even though these results
enabled us to conjecture what the actual areas might be. Fortunately, there
is a much better way of finding the exact value of a definite integral.

The following theorem shows how to evaluate the definite integral of a
continuous function provided we can find an antiderivative of that function.
Because of its importance in establishing the relationship between differentia-
tion and integration, this theorem—discovered independently by Sir Isaac
Newton (1642-1727) in England and Gottfried Wilhelm Leibniz (1646-1716)
in Germany—is called the fundamental theorem of calculus.
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EXAMPLE 1

SOLUTION v

FIGURE 6.16

The area of R can be computed in two
different ways.

The Fundamental Theorem of Calculus
Let f be continuous on [a, b]. Then,

[} 1) dx = F(b) = F(a) ©)

where F is any antiderivative of f; that is, F'(x) = f(x).

We will explain why this theorem is true at the end of this section.
When applying the fundamental theorem of calculus, it is convenient to
use the notation

g F(b) — F(a)

a

F(x)

For example, using this notation, Equation (9) is written

[/ oy dx = Fo) | = Fb) - Fa

Let R be the region under the graph of f(x) = x on the interval [1, 3]. Use
the fundamental theorem of calculus to find the area A of R and verify your
result by elementary means.

The region R is shown in Figure 6.16a. Since f is nonnegative on [1, 3], the
area of R is given by the definite integral of f from 1 to 3; that is,

A=ﬁxdx
y y
4 4__
y=f=x y=f(x)=x
3+ 3+
2+ 2 2
x=3 R,
1+ R 1+
R
/I } } } X } Il } } x
(1 2 3 4 1 2 3 4
x=1
(a) (b)

To evaluate the definite integral, observe that an antiderivative of

f(x) = xis F(x) = 3x* + C, where C is an arbitrary constant. Therefore, by
the fundamental theorem of calculus, we have

3

_ _1,
A—Lxdx—zx +C

1

= <§ + C) - (% + C) = 4 square units



EXAMPLE 2

SOLUTION v

FIGURE 6.17 |
The area of R is fo xtdx = 3.
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To verify this result by elementary means, observe that the area A is the area
of the rectangle R, (width X height) plus the area of the triangle R, (3 base X
height) (see Figure 6.16b); that is,

2(1)+%(2)(2):2+2:4

which agrees with the result obtained earlier.

Observe that in evaluating the definite integral in Example 1, the constant
of integration “‘dropped out.” This is true in general, for if F(x) + C denotes
an antiderivative of some function f, then

b
F(x)+ C| =[F() + C]—[F(a) + C]
=Fb)+C—F(a)—-C
= F(b) — F(a)
With this fact in mind, we may, in all future computations involving the

evaluations of a definite integral, drop the constant of integration from our
calculations.

FINDING THE AREA UNDER A CURVE

Having seen how effective the fundamental theorem of calculus is in helping
us find the area of simple regions, we now use it to find the area of more
complicated regions.

In Section 6.3 we conjectured that the area of the region R under the graph
of f(x) = x* on the interval [0, 1] was 3 square unit. Use the fundamental
theorem of calculus to verify this conjecture.

The region R is reproduced in Figure 6.17. Observe that f is nonnegative on
[0, 1], so the area of R is given by A = [} x* dx. Since an antide-

1+ {
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EXAMPLE 3

FIGURE 6.18 )
The area of Riis [~ (x* + 1) dx.

EXAMPLE 4

SOLUTION v

rivative of f(x) = x?is F(x) = 3x°, we see, using the fundamental theorem of
calculus, that

Yl

LS S Ty 121 i
A—fox dx—3x 0—3(1) 3(O)—35quareun1t

as we wished to show.

Find the area of the region R under the graph of y = x>+ 1 from x = —1 to
x = 2.

The region R under consideration is shown in Figure 6.18. Using the fundamen-
tal theorem of calculus, we find that the required area is

ﬁl (x*+1)dx= <%x3 + x)

2

-1

= E (8) + 2} - [%(—1)3 " (—1)] —6

or 6 square units.

y

y=fx)=x2+1

EVALUATING DEFINITE INTEGRALS

In Examples 4 and 5 we use the rules of integration of Section 6.1 to help us
evaluate the definite integrals.

Evaluate ﬁ (3x* + &%) dx.

3
3
Jl (Bx2+ e)dx = x* + ¢
1

=QR7+e)-(1+e)=26+e—¢



EXAMPLE 5

SOLUTION v

= I

SOLUTION v
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Evaluate f ? ()1—6 - l) dx.

i) o)

2

“ln x| +1
X

- <ln2+%> —(nl+1)

=1n2—1

Consider the definite integral [ 1_1 é dx.

(Recall,In1=0.)

1. Show that a formal application of Equation (9) leads to

fl lzdxz 1
-1x x

1

=—1-1=-2

-1

2. Observe that f(x) = 1/x? is positive at each value of x in [—1, 1] where
it is defined. Therefore, one might expect that the definite integral with
integrand f has a positive value, if it exists.

3. Explain this apparent contradiction in the result (1) and the observa-
tion (2).

APPLICATIONS

The management of Staedtler Office Equipment has determined that the
daily marginal cost function associated with producing battery-operated pencil
sharpeners is given by

C'(x) = 0.000006x> — 0.006x + 4

where C'(x) is measured in dollars per unit and x denotes the number of units
produced. Management has also determined that the daily fixed cost incurred
in producing these pencil sharpeners is $100. Find Staedtler’s daily total cost
for producing (a) the first 500 units and (b) the 201st through 400th units.

a. Since C’(x) is the marginal cost function, its antiderivative C(x) is the total
cost function. The daily fixed cost incurred in producing the pencil sharpeners
is C(0) dollars. Since the daily fixed cost is given as $100, we have C(0) =
100. We are required to find C(500). Let’s compute C(500) — C(0), the net
change in the total cost function C(x) over the interval [0, 500]. Using the
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FIGURE 6.19

fundamental theorem of calculus, we find

C(500) — C(0) = j e (x) d

= f ™ (0.000006x — 0.006x + 4) dx

500

= 0.000002x* — 0.003x? + 4x
0

= [0.000002(500)° — 0.003(500)* + 4(500)]
— [0.000002(0)* — 0.003(0)* + 4(0)]
= 1500

Therefore, C(500) = 1500 + C(0) = 1500 + 100 = 1600, so the total cost
incurred daily by Staedtler in producing 500 pencil sharpeners is $1600.

b. The daily total cost incurred by Staedtler in producing the 201st through
400th units of battery-operated pencil sharpeners is given by

C(400) — C(200) = f O (x) dx

200

= J “* (0.000006x2 — 0.006x + 4) dx

400

= 0.000002x* — 0.003x? + 4x
2

00

=552
or $552.

Since C’(x) is nonnegative for x in the interval (0, «), we have the follow-
ing geometric interpretation of the two definite integrals in Example 6:
0 x) dx is the area of the region under the graph of the function C’ from
% C'(x) dx is th f the regi der the graph of the function C’ f
x = 0 to x = 500, shown in Figure 6.19a, and [3) C’(x) dx is the area of the
region from x = 200 to x = 400, shown in Figure 6.19b.

A y=Cw)
3 4+
2 4+

T T X } 1 X
500 1000 f r\ 1000
200 400

500 400

(a) Area of B = [ C"(x) dx (b) Area of R, = [, C'(0) dx



EXAMPLE 7

SOLUTION v

You can demonstrate graphically that [ ; t dt = $x? as follows:
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An efficiency study conducted for the Elektra Electronics Company showed
that the rate at which Space Commander walkie-talkies are assembled by the
average worker ¢ hours after starting work at 8 A.m. is given by the function

f(t) = =32 + 12t + 15 (0=1=4)

Determine how many walkie-talkies can be assembled by the average worker
in the first hour of the morning shift.

Let N(¢) denote the number of walkie-talkies assembled by the average worker
t hours after starting work in the morning shift. Then, we have

N'(t) = f(t) = =32 + 12t + 15

Therefore, the number of units assembled by the average worker in the first
hour of the morning shift is

Na)—Nmy=ﬁNxom=fu—yuqm+1$m

1

=—1+6+15

0

=—r+ 617+ 15¢

=20

or 20 units.

1. Plot the graphs of y1 = [ g t dt and y2 = $x? on the same set of axes using the viewing rectangle [—5, 5] X

[0, 10].

2. Compare the graphs of y1 and y2 and draw the desired conclusion.

7 I

SOLUTION v

A certain city’s rate of electricity consumption is expected to grow exponen-
tially with a growth constant of k = 0.04. If the present rate of consumption
is 40 million kilowatt-hours (kWh) per year, what should the total production
of electricity be over the next 3 years in order to meet the projected demand?

If R(¢) denotes the expected rate of consumption of electricity ¢ years from
now, then
R(r) = 40e"™

million kWh per year. Next, if C(f) denotes the expected total consumption
of electricity over a period of ¢ years, then

C'(t) = R(?)
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Therefore, the total consumption of electricity expected over the next 3 years
is given by

3 _? 0.04
JOC (t) dt fo40€ dt

3

40

— e()‘04t

0.04° o
= 1000(e"2 — 1)
=1275

or 127.5 million kWh, the amount that must be produced over the next 3
years in order to meet the demand.

Group Discussion
D The definite integral [ 373 V9 — x? dx cannot be evaluated using the
fundamental theorem of calculus because the method of this section does
not enable us to find an antiderivative of the integrand. But the integral
can be evaluated by interpreting it as the area of a certain plane region.
What is the region? And what is the value of the integral?

VALIDITY OF THE FUNDAMENTAL THEOREM OF CALCULUS

To demonstrate the plausibility of the fundamental theorem of calculus for
the case where f is nonnegative on an interval [a, b], let’s define an ‘“‘area
function” A as follows. Let A(f) denote the area of the region R under the
graph of y = f(x) from x = a to x = ¢, where a = ¢ = b (Figure 6.20).

If & is a small positive number, then A(¢t + k) is the area of the region
under the graph of y = f(x) from x = a to x = ¢ + h. Therefore, the difference

A(t+ h) — A()
is the area under the graph of y = f(x) from x = ¢t to x = ¢t + h (Figure 6.21).

FIGURE 6.20 FIGURE 6.21
Alf) = area under the graph of f from At + h) — Alf) = area under the
x=atox=1 graph of ffrom x = ttox =1+ h
y y
AQ)
x=t x=b x=b
a : b ! a b ’
t+h




FIGURE 6.22

The area of the rectangle is h - f{1).

FIGURE 6.23

The area of R is given by A(b).

y

X

a

y=f(
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Now, the area of this last region can be approximated by the area of the
rectangle of width 4 and height f(¢#)—that is, by the expression 4 - f(¢) (Figure
6.22). Thus,

A(t+ h) — A() = h - f(¢)

where the approximations improve as 4 is taken to be smaller and smaller.
Dividing both sides of the foregoing relationship by /, we obtain

A(t+h)—A@)
Bt (0]

Taking the limit as / approaches zero, we find, by the definition of the deriva-
tive, that the left-hand side is

lirmA(t + h) — A(r)

10 h =A'0)

The right-hand side, which is independent of /, remains constant throughout
the limiting process. Because the approximation becomes exact as h ap-
proaches zero, we find that

A'(D) = f(1)

Since the foregoing equation holds for all values of ¢ in the interval [a, b], we
have shown that the area function A is an antiderivative of the function f(x).
By Theorem 1 of Section 6.1, we conclude that A (x) must have the form

Ax) = F(x) + C

where F'is any antiderivative of fand C is an arbitrary constant. To determine
the value of C, observe that A(a) = 0. This condition implies that

A(a) = Fa)+ C=0

or C = —F(a). Next, since the area of the region R is A(b) (Figure 6.23), we
see that the required area is

A(b)=F(®)+C
= F(b) — F(a)

Since the area of the region R is
b
j , f(x) dx
we have
[! ) ax = Fb) = F(a)

as we set out to show.
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SELF-CHECK EXERCISES 6.4

1. Evaluate f z (x + e¥) dx.
2. The daily marginal profit function associated with producing and selling Texa-Pep

hot sauce is

P'(x) = —0.000006x> + 6

where x denotes the number of cases (each case contains 24 bottles) produced and
sold daily and P’(x) is measured in dollars/unit. The fixed cost is $400.
a. What is the total profit realizable from producing and selling 1000 cases of Texa-

Pep per day?

b. What is the additional profit realizable if the production and sale of Texa-Pep
is increased from 1000 to 1200 cases/day?

Solutions to Self-Check Exercises 6.4 can be found on page 490.

In Exercises 1-4, find the area of the region
under the graph of the function fon the inter-
val [a, b], using the fundamental theorem of
calculus. Then verify your result using ge-
ometry.

L fx) = 2; (1, 4] 2. f(x) = 4 [-1,2]

3. f(x) = 2x; [1, 3] 4. f(x) = —%x +L L 4]

In Exercises 5-16, find the area of the region
under the graph of the function fon the inter-
val [a, b].

5. f(x) = 2x + 3;[—1, 2] 6. f(x) = 4x — 1; [2, 4]

7. f(x) = —x*> + 4, [-1, 2]
8. f(x) = 4x — x% [0, 4]

1.
;,

10. f(x) = = [2. 4]

9. f(x) = 1: 11,2]

11. f(x) = Vx; [1, 9] 12. f(x) = x% [1, 3]
13. f(x) = 1 — Vx; [-8, —1]

14. f(x) = \fo; [1, 9]

15. f(x) = €% [0, 2] 16. f(x) = e* — x; [1, 2]

In Exercises 17-40, evaluate the definite in-
tegral.

17. [[3ax 18. [ —2ax
19. [ (@x+3)dx 2. [ (4—x)adx
2. [ 2 2. [ 8xdx
2. [ (= 1)ax 24. [ Vudu
25. [ ax dx 26. 2 dx
27. [ @ =20+ 1) dx 28. ﬁ(t5—t3+1)dt
29, f“ldx 30. [ Zax
2 X 1 x
3 [ x(@ = 1)dx 32 [ =4 —1)dx

3. [(@—opdt 3. [ (e =1y

5. [ )%dx 3. [ )%dx
37 f Vi — L) dx 38 fV2x(\/§+\/§)dx
[ v !
4333 — 202+ 4 2 1 1
. [ SN 40. f1<1 +L—£+;>du

1 X



E A calculator is recommended for Exercises
41-47.

41.

42,

43.

4.

MARGINAL CosT A division of Ditton Industries manufac-
tures a deluxe toaster oven. Management has deter-
mined that the daily marginal cost function associated
with producing these toaster ovens is given by

C'(x) = 0.0003x> — 0.12x + 20

where C’(x) is measured in dollars/unit and x denotes
the number of units produced. Management has also
determined that the daily fixed cost incurred in the pro-
duction is $800.

a. Find the total cost incurred by Ditton in producing
the first 300 units of these toaster ovens per day.

b. What is the total cost incurred by Ditton in producing
the 201st through 300th units/day?

MARGINAL REVENUE The management of Ditton Indus-
tries has determined that the daily marginal revenue
function associated with selling x units of their deluxe
toaster ovens is given by

R'(x) = —0.1x + 40

where R’(x) is measured in dollars/unit.

a. Find the daily total revenue realized from the sale of
200 units of the toaster oven.

b. Find the additional revenue realized when the pro-
duction (and sales) level is increased from 200 to 300
units.

MARGINAL PROFIT Refer to Exercise 41. The daily mar-
ginal profit function associated with the production and
sales of the deluxe toaster ovens is known to be

P'(x) = —0.0003x> + 0.02x + 20

where x denotes the number of units manufactured and
sold daily and P’(x) is measured in dollars/unit.

a. Find the total profit realizable from the manufacture
and sale of 200 units of the toaster ovens per day.
Hint: P(200) — P(0) = [2 P'(x) dx, P(0) = —800.

b. What is the additional daily profit realizable if the
production and sale of the toaster ovens are increased
from 200 to 220 units/day?

ErFicieNcy Stupies Tempco Electronics, a division of
Tempco Toys, Inc., manufactures an electronic football
game. An efficiency study showed that the rate at which
the games are assembled by the average worker ¢ hr
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45.

46.

47.

48.

after starting work at 8 A.m. is

—%ﬁ+6t+20 O0=r=4)
units/hour.

a. Find the total number of games the average worker
can be expected to assemble in the 4-hr morning shift.
b. How many units can the average worker be expected
to assemble in the first hour of the morning shift? In the
second hour of the morning shift?

SPEEDBOAT RACING In a recent pretrial run for the world
water speed record, the velocity of the Sea Falcon II
t sec after firing the booster rocket was given by

v(t) = = + 20t + 440 0 =1t=20)

ft/sec. Find the distance covered by the boat over the
20-sec period after the booster rocket was activated.
Hint: The distance is given by [2 v(¢) dt.

Hanp-Hewp CompuTeRs  Annual sales (in millions of units)
of hand-held computers are expected to grow in accor-
dance with the function

£(£) = 0187 + 0.16¢ + 2.64 (0=r=6)

where ¢ is measured in years, with ¢ = 0 corresponding
to 1997. How many hand-held computers will be sold
over the 6-yr period between the beginning of 1997 and
the end of 2002?

Source: Dataquest, Inc.

U.S. Census  According to the U.S. Census Bureau, the
number of Americans aged 45 to 54 (which stood at 25
million at the beginning of 1990) grew at the rate of

R(t) = 0.00933¢ + 0.019¢2 — 0.10833¢ + 1.3467

million people/year, ¢ yr from the beginning of 1990.
How many Americans aged 45 to 54 were added to the
population between 1990 and the year 2000?

Source: U.S. Census Bureau

AR PURIFICATION To test air purifiers, the engineers run
a purifier in a smoke-filled 10 X 20-ft room. While con-
ducting a test for a certain brand of air purifier, it was
determined that the amount of smoke in the room was
decreasing at the rate of

R(r) = 0.00032¢* — 0.018727 + 0.3948¢2
—3.83t+17.63 (0=r=20)

percent of the (original) amount of the smoke per
minute, t min after the start of the test. How much smoke
was left in the room 5 min after the start of the test?
Ten minutes after the start of the test?
Source: Consumer Reports

(continued on p. 490)
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EXAMPLE 1

SOLUTION v

EVALUATING DEFINITE INTEGRALS

Some graphing utilities have an operation for finding the definite integral of
a function. If your graphing utility has this capability, use it to work through
the example and exercises of this section.

Use the numerical integral operation of a graphing utility to evaluate

Jz 2x +4 d

-1 (X2 + 1)
Using the numerical integral operation of a graphing utility, we find

j 22Xt A 692592225992

-1 (% + 1)



In Exercises 1-4, use a graphing utility to find
the area of the region under the graph of fon
the interval [a, b]. Express your answer to four
decimal places.

1. f(x) = 0.002x° + 0.032x* — 0.2x% + 2; [—1.1, 2.2]
2. f(x) = xVx*+1;[1, 2]
3. f(x) = Vxe™; [0, 3]

In x

4. flx) = Vi (1, 2]

In Exercises 5-10, use a graphing utility to
evaluate the definite integral.

5. j " (02x' - 0320 + 12x — 1) dx

6. ﬁ x(x* — 1)*? dx

J‘23x3+2x2+1 J'z\/)_c-f-ldx

v 2213 P 122+ 1
2 e ¢ —x 2
9. JU —\/m dx 10. fl e In(x* + 1) dx
11. Rework Exercise 47, Exercises 6.4.

12. Rework Exercise 48, Exercises 6.4.

13.

14.

15.

THE GroAL EpiDEMIC The number of AIDS-related
deaths/year in the United States is given by the function

f(t) = —53.254¢* + 673.7¢3 — 2801.07¢2
+ 8833.379¢ + 20,000 0=t=9)

where ¢ = 0 corresponds to the beginning of 1988. Find
the total number of AIDS-related deaths in the United
States between the beginning of 1988 and the end of
1996.

Source: Centers for Disease Control

MARIJUANA ARRESTS The number of arrests for marijuana
sales and possession in New York City grew at the rate
of approximately

£(£) = 0.0125¢* — 0.01389¢° + 0.55417¢>
+0.53294¢ + 4.95238 0=r=5)

thousand/year, where ¢ is measured in years, with = 0
corresponding to the beginning of 1992. Find the approx-
imate number of marijuana arrests in the city from the
beginning of 1992 to the end of 1997.

Source: State Division of Criminal Justice Services

PopuLaTioN GROWTH The population of a certain city is
projected to grow at the rate of 18Vt + 11n V¢ + 1 thou-
sand people/year ¢ yr from now. If the current population
is 800,000, what will be the population 45 yr from now?

489
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In Exercises 49-51, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

: 1 1
()

11 1
0. [ Sdx=—55

SOLUTIONS 10 SELF-CHECK EXERCISES 6.4

1. Jz (x + e dx =%x2 +e*

50. [ 2 (1 — x) dx gives the area of the region under the
graph of f(x) = 1 — x on the interval [0, 2].

51. The total revenue realized in selling the first 5000 units
of a product is given by

f " R'(x) dx = R(500) = R(0)

where R(x) is the total revenue.

2

0

[roree] [rose]

=2+e -1

=e2+1

2. a. We want P(1000). But

P(1000) = P(0) = ||

000 1000

P'(x) dx = [ (<0.000006x" + 6) dx

1000

= —0.000002x> + 6x

0

= —0.000002(1000)° + 6(1000)

= 4000

So, P(1000) = 4000 + P(0) = 4000 — 400, or $3600/day [P(0) = —C(0)].
b. The additional profit realizable is given by

o P’ (x) dx = —0.000002x* + 6x

1200

1000
= [~0.000002(1200)* + 6(1200)]

— [~0.000002(1000)* + 6(1000)]
= 3744 — 4000

= —256

That is, the company sustains a loss of $256/day if production is increased to 1200

cases/day.
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6.5 Evaluating Definite Integrals

Properties of the
Definite Integral

FIGURE 6.24
T f(x) dx = ,
Jifx) dx + [ fx) dx

y

M

This section continues our discussion of the applications of the fundamental
theorem of calculus.

PROPERTIES OF THE DEFINITE INTEGRAL

Before going on, we list the following useful properties of the definite integral,
some of which parallel the rules of integration of Section 6.1.

Let f and g be integrable functions; then,

1 ['fydx =0

: fif(x)dx= —f:f(x)dx

[lefydx=c " ey dx (¢, a constant)
1 £ g dx = [ ) dx = [ g(w) ax

[ feydx = [ ey dx+ [ fy e (a<c<b)

(8]

&)

PN

wn

Property 5 states that if ¢ is a number lying between a and b so that the
interval [a, b] is divided into the intervals [a, c] and [c, b], then the integral
of f over the interval [a, b] may be expressed as the sum of the integral of f
over the interval [a, ¢] and the integral of f over the interval [c, b].

Property 5 has the following geometric interpretation when fis nonnega-
tive. By definition

j: f(x) dx

is the area of the region under the graph of y = f(x) fromx = atox = b
(Figure 6.24). Similarly, we interpret the definite integrals

f ‘fydy  and f " f(x) dx

as the areas of the regions under the graph of y = f(x) fromx = atox = ¢
and from x = ¢ to x = b, respectively. Since the two regions do not overlap,
we see that

f:f(x) dx = f:f(x) dx + fff(x) dx
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THE METHOD OF SUBSTITUTION
FOR DEFINITE INTEGRALS

Our first example shows two approaches generally used when evaluating a
definite integral using the method of substitution.

EXAMPLE 1 Evaluate f 2x\/ 9 + x2dx.

SOLUTION Method 1 We first find the corresponding indefinite integral:
I= fx VO + x2dx
Make the substitution u = 9 + x? so that
du =i(9 + x%) dx
dx
=2xdx
1 . 4
xdx = 5 du (Dividing both sides by 2)
Then,

IZJ%\/;duZ%Ju”zdu
1

1 (Substituting
_1 3 ==(9 + x2)32 + ) ¢
=3u +C 3(9 x?) C 9 + xfor u)

Using this result, we now evaluate the given definite integral:

ﬁx\/9+x2dx=%(9 + x?)*?

4
0

= % [(9 + 16)3/2 _ 93/2]

:%(125 =27) =93—8= 32%
Method 2  Changing the Limits of Integration. As before, we make the substi-
tution
u=9+x? 10)
so that
du =2xdx
xdx = %du

Next, observe that the given definite integral is evaluated with
respect to x with the range of integration given by the interval
[0,4]. If we perform the integration with respect to u via the
substitution (10), then we must adjust the range of integration to



Refer to Example 1. You can confirm the results obtained there by using a graphing utility

as follows:
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reflect the fact that the integration is being performed with respect
to the new variable u. To determine the proper range of integra-
tion, note that when x = 0, Equation (10) implies that

u=9+0=

which gives the required lower limit of integration with respect
to u. Similarly, when x = 4,

u=9+16 =25

is the required upper limit of integration with respect to u. Thus,
the range of integration when the integration is performed with
respect to u is given by the interval [9, 25]. Therefore, we have

f4xv9+x2dx= fzsl\/;du=lf25u”zdu
0 9 2 2J)9

25

1 =l 32 _ Q3n
, =305 -9

==u

3

312

Lo 0y 2B _ 5,2
=3(125-27) = =323

which agrees with the result obtained using Method 1.

1. Use the numerical integration operation of the graphing utility to evaluate

2. Evaluate L f » Vu du.
2J)9

ﬁx\/9+x2dx

3. Conclude that f;x\/9 +x*dx = %J’f Vu du.

EXAMPLE 2

2
Evaluate f . xe dx.

Let u = 2x? so that du = 4x dx, or x dx = % du. When x = 0, u = 0, and
when x = 2, u = 8. This gives the lower and upper limits of integration with
respect to u. Making the indicated substitutions, we find

2 2.2 — 81 u =l uszl 8 _
foxe dx f04e du 1€, 4(e 1)
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2

X
EXAMPLE 3 Evaluate fox3 1 dx.

TR  Let u = x* + 1 so that du = 3x* dx, or x> dx = $ du. When x = 0, u = 1, and
when x = 1, u = 2. This gives the lower and upper limits of integration with
respect to u. Making the indicated substitutions, we find

1 x? _lpdu_1
f0x3+1dx_3jl u —3ln|u|

2
1

1 1
—g(an 1n1)—§1n2

FINDING THE AREA UNDER A CURVE

EXAMPLE 4 Find the area of the region R under the graph of f(x) = eM* from x = —1
tox = 1.
NI The region R is shown in Figure 6.25. Its area is given by
FIGURE 6.25 = [" Lanx
Area of R = f'_] el1/Dxy A= J_l e dx

To evaluate this integral, we make the substitution

y
y = eM/xgy 1
U==-x
x=-1 2
1
so that du = 3 dx
_/ dx - 2 du
R . ..
: : : : : X When x = —1, u = —3, and when x = 1, u = 3. Making the indicated
| 1 2 3 substitutions, we obtain

1 12
A= f e dx = 2f e'du
-1 -12

12

=2(el? — o712
-1 ( )

=2e"

or approximately 2.08 square units.

Group Discussion
Let f be a function defined piecewise by the rule

Vx ifo=x=1
f(x)z}c ifl<x=2

How would you use Property 5 of definite integrals to find the area of the
region under the graph of f on [0, 2]? What is the area?
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AVERAGE VALUE OF A FUNCTION

The average value of a function over an interval provides us with an application
of the definite integral. Recall that the average value of a set of n numbers
is the number

Vit y+ -ty
n

Now, suppose f is a continuous function defined on [a, b]. Let’s divide
the interval [a, b] into n subintervals of equal length (b — a)/n. Choose points
X1, X2, ..., X,1n the first, second, . . ., and nth subintervals, respectively. Then,
the average value of the numbers f(x;), f(x,), .. ., f(x,), given by

f) +f00) + -+ - + f(x)

n

is an approximation of the average of all the values of f(x) on the interval
[a, b]. This expression can be written in the form

b=a)] . L L 1

b —a) [f(xl) PR (GO R (G n]
:bia[ﬂm'b;a*ﬂxﬂ'b;“---+f<xn>-b2a]
- ﬁ [f)Ax + f()Ax + -+ + f(x,)Ax] )

As n gets larger and larger, the expression (11) approximates the average
value of f(x) over [a, b] with increasing accuracy. But the sum inside the
brackets in (11) is a Riemann sum of the function f over [a, b]. In view of
this, we have

lim

n—w

[f(xa +fln)+ -+ f(xn)]

n
1

—a

- [ ax

IEE [fGx)Ax + f(x)Ax + - - - + f(x,)Ax]

This discussion motivates the following definition.

The Average Value

of a Function Suppose f is integrable on [a, b]. Then the average value of f over [a, b] is

biaﬁ:f(x)dx
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EXAMPLE 5

EXAMPLE &

SOLUTION v

Find the average value of the function f(x) = Vx over the interval [0, 4].

The required average value is given by

. OJ xdx =— f x'2 dx

4
— % (43?)

x3/2

0

_1
6
4
3

APPLICATIONS
The interest rates charged by Madison Finance on auto loans for used cars

over a certain 6-month period in 2000 are approximated by the function

r(t)=—11—2t3 %tz 3t+12 0=t=6)

where ¢ is measured in months and r(¢) is the annual percentage rate. What is
the average rate on auto loans extended by Madison over the 6-month period?

The average rate over the 6-month period in question is given by

= Of (——3+—t2 3t+12>dt

= _l4 13 32 )
< gl ot~

6

0

1
6
-k @+ L@ -2@ 00|
9

or 9% per year.

The amount of a certain drug in a patient’s body ¢ days after it has been
administered is

C(t) = 5e ¥

units. Determine the average amount of the drug present in the patient’s body
for the first 4 days after the drug has been administered.



SOLUTION

FIGURE 6.26
The average value of f over [a, b] is k.

y =f(1y y=g) =k
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The average amount of the drug present in the patient’s body for the first 4
days after it has been administered is given by

1 4 —0.2¢t _§ 4 —0.2¢
[ setrar=3 [ e

—é _L —0.2t
~ 4 [( 0.2> ¢

= %(—Se-&8 +5)

)

~3.44
or approximately 3.44 units.

We now give a geometric interpretation of the average value of a function
fover aninterval [a, b]. Suppose f(x) is nonnegative so that the definite integral

j: f(x) dx

gives the area under the graph of ffrom x = a to x = b (Figure 6.26). Observe
that, in general, the “height” f(x) varies from point to point. Can we replace
f(x) by a constant function g(x) = k (which has constant height) such that
the areas under each of the two functions f and g are the same? If so, since
the area under the graph of g from x = a to x = b is k(b — a), we have

k(b — a) = jjf(x) dx

kzbiaﬁf(x)dx

so that k is the average value of f over [a, b]. Thus, the average value of a
function fover an interval [a, b] is the height of a rectangle with base of length
(b — a) that has the same area as that of the region under the graph of f from
x=atox =0>b.

1. Evaluate ﬁ V2x + 5 dx.
2. Find the average value of the function f(x) = 1 — x? over the interval [—1, 2].
3. The median price of a house in a southwestern state between January 1, 1995, and
January 1, 2000, is approximated by the function
f(o) =26 =72+ 17t + 190 O=tr=5)

where f(¢) is measured in thousands of dollars and ¢ is expressed in years (t = 0
corresponds to the beginning of 1995). Determine the average median price of a
house over that time interval.

Solutions to Self-Check Exercises 6.5 can be found on page 502.
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In Exercises 1-28, evaluate the given defi-
nite integral.

1. ﬁx(}c2 —1)*dx 2. f;x2(2x3 —1)*dx
3. f;xv5x2+4dx 4 ﬁwi—zdx
5. [+ )2 dx 6 [ @x—1)"ax
1 1 2 X
7. | ——=dx 8. dx
J.0\/2x-i-l JO x*+5

9. ﬁ(Zx—l)“dx
2
10. f (2x + 4)(a? + 4x — 8) dx
1. [ e+ 1)t dx
1 3 § 4 -2
fﬁl<x +4) (x* + 3x) 2 dx
13. ﬁx\/x—ldx 14. fjx\/x-i—ldx

Hint: Let u = x + 1.

12.

N

15. f zxexz dx 16. f; e dx
17. f; (e + x* + 1) dx 18. ﬁ (¢! — ) dr
Vi
19. [ xe?tdx 2. [[-dx
- X
21 f 2 i 2 dex
“lix =2 *Jo1 4+ 2x2
2 xr+2x 1 e
23. flx—3+3x271dx 24, J01+exdx
2 1 2 1
25. f (43“——) du 26. J' (1 +—+e-‘> dx
1 u 1 X
2 1 28 J'Zln_xd
27.f1 2e _de 3 M X

In Exercises 29-38, find the average value of
the given function fover the indicated interval
[a, b].

29. f(x) = 2x + 3; [0, 2] 30. f(x) =8 — x;[1, 4]
31. f(x) = 2x* — 3;[1, 3] 32. f(x) =4 — x4 [-2,3]
33, f(x) = x>+ 2x — 3; [-1, 2]

3. f(x) = x3%[-1,1] 35. f(x) = V2x + 1[0, 4]
36. f(x) = e [0, 4] 37. f(x) = xe*;[0,2]

38, f(x) = ﬁ; [0,2]

39.

40.

41.

42,

WorLb Propuction ofF CoAL A study proposed in 1980 by
researchers from the major producers and consumers of
the world’s coal concluded that coal could and must play
an important role in fueling global economic growth over
the next 20 yr. The world production of coal in 1980 was
3.5 billion metric tons. If output increased at the rate of
3.5¢"% billion metric tons /year in year ¢ (t = 0 corre-
sponding to 1980), determine how much coal was pro-
duced worldwide between 1980 and the end of the
century.

NewTon’s Law oF CooLING A bottle of white wine at room
temperature (68°F) is placed in a refrigerator at 4 p.m.
Its temperature after ¢ hr is changing at the rate of

_186—0.61

degrees Fahrenheit/hour. By how many degrees will the
temperature of the wine have dropped by 7 p.m.? What
will the temperature of the wine be at 7 p.m.?

NET INVESTMENT FLOW The net investment flow (rate of
capital formation) of the giant conglomerate LTF Incor-
porated is projected to be

1 2
=12+
NCLa

million dollars/year in year t. Find the accruement on
the company’s capital stock in the second year.

Hint: The amount is given by

2 1 )
=+
1t 2[ 1dt

Oi1L Propuction Based on a preliminary report by a geo-
logical survey team, it is estimated that a newly discov-
ered oil field can be expected to produce oil at the rate
of

2
R(t)=%+5 (0 =1=20)

thousand barrels/year, ¢ years after production begins.
Find the amount of oil that the field can be expected to



43.

44,

46.

47.

yield during the first 5 yr of production, assuming that
the projection holds true.

DEPRECIATION: DOUBLE DECLINING-BALANCE METHOD Sup-
pose a tractor purchased at a price of $60,000 is to be
depreciated by the double declining-balance method over
a period of 10 yr. It can be shown that the rate at which
the book value will be decreasing is given by

R(r) = 13388.61¢ 02214 0O=tr=10)
dollars/year at year t. Find the amount by which the
book value of the tractor will depreciate over the first
5 yr of its life.

VeLoaity oF A CAR A car moves along a straight road in

such a way that its velocity (in feet/second) at any time

t (in seconds) is given by
v(f) =3tV16 — ¢ O=t=4)

Find the distance traveled by the car in the 4 sec from

t=0tot =4

. AVERAGE TEMPERATURE The temperature (in °F) in Boston

over a 12-hr period on a certain December day was given
by

T = —0.05¢ + 0.4 + 3.8t + 5.6 O=tr=12)
where ¢ is measured in hours, with ¢ = 0 corresponding

to 6 aAM. Determine the average temperature on that
day over the 12-hr period from 6 A.M. to 6 P.M.

WHALE PoPULATION A group of marine biologists esti-
mates that if certain conservation measures are imple-
mented, the population of an endangered species of
whale will be

N() = 38 + 2¢* — 10t + 600 0 =t=10)
where N(f) denotes the population at the end of year ¢.

Find the average population of the whales over the next
10 yr.

CABLE TV SuBScrIBERS The manager of the Tele-Star Ca-
ble Television Service estimates that the total number
of subscribers to the service in a certain city ¢ yr from
now will be

40,000

NO =~ on

+ 50,000

Find the average number of cable television subscribers
over the next 5 yr if this prediction holds true.

48.

49.

wn
==Y

52.

53.

54.

55.
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AVERAGE YEARLY SALES The sales of the Universal Instru-
ments Company in the first ¢ yr of its operation are
approximated by the function

S(r) = tV02r +4

where S(¢) is measured in millions of dollars. What were
Universal’s average yearly sales over its first 5 yr of oper-
ation?

CONCENTRATION OF A DRUG IN THE BLOODSTREAM The concen-
tration of a certain drug in a patient’s bloodstream ¢ hr
after injection is

mg/cm’. Determine the average concentration of the
drug in the patient’s bloodstream over the first 4 hr after
the drug is injected.

. Refer to Exercise 44. Find the average velocity of the

car over the time interval [0, 4].

. FLow of BLoop IN AN ARTERY According to a law discov-

ered by nineteenth-century physician Jean Louis Marie
Poiseuille, the velocity of blood (in centimeters/second)
r cm from the central axis of an artery is given by

v(r) = k(R?> — 1?)

where k is a constant and R is the radius of the artery.
Find the average velocity of blood along a radius of the
artery (see accompanying figure).

. 1 (&
Hint: Evaluate Efo v(r)dr.

R
¥
7
Blood vessel

Prove Property 1 of the definite integral.

Hint: Let F be an antiderivative of f, and use the definition of
the definite integral.

Prove Property 2 of the definite integral.
Hint: See Exercise 52.

Verify by direct computation that
fxzdx = - flxzdx
1 3
Prove Property 3 of the definite integral.

Hint: See Exercise 52.
(continued on p. 502)
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EXAMPLE 1

SOLUTION v

EVALUATING DEFINITE INTEGRALS
FOR PIECEWISE-DEFINED FUNCTIONS

We continue using graphing utilities to find the definite integral of a function.
But here we will make use of Property 5 of the properties of the definite
integral (page 491).

Use the numerical integral operation of a graphing utility to evaluate
[ fxax

where

—x* ifx<0

flo) = {\fx itx=0
Using Property 5 of the definite integral, we can write
fz_l flx) dx = f: —x%dx + ﬁx”z dx
Using a graphing utility, we find
f: f(x) dx = fnlnt(—x"2, x, —1, 0) + fnlnt(x"0.5, x, 0, 2)

~ —0.333333 + 1.885618
= 1.552285



In Exercises 1-4, use Property 5 of the proper-
ties of the definite integral (page 491) to eval-
uate the definite integral accurate to six deci-

mal places.
1. J 2_1 f(x) dx, where

23x3 —=31x*+27x +3 ifx<1
fx) = R .
—1.7x>*+23x+43 ifx=1
Vix

\ X ifo=x<1
2. f " fx) dx, where flx) =4 1+

0.5¢7% ifx=1

xt=22+4 ifx<0

3. Jz—z f(x) dx, where f(x) = {2 ln(x + 62) ifx=0

4. J 6_2 f(x) dx, where

26°=3x*+x+2 if x<-1
fix)=q4V3x+4-5 if-1=x=4

x2—3x—-5 if x>4

5. AIDS IN MAssacHUSETTS The rate of growth (and decline)

of the number of AIDS cases diagnosed in Massachusetts
from the beginning of 1989 (+ = 0) through the end of
1997 (¢ = 8) is approximated by the function

69.83333¢% + 30.16667¢ + 1000 if0=r<3
1719 if3=r<4

—28.79167¢3 + 491.37500¢2 if4d=r=8
— 2985.083333¢ + 7640

fl) =

where f(t) is measured in the number of cases/year. Esti-
mate the total number of AIDS cases diagnosed in Massa-
chusetts from the beginning of 1989 through the end of
1997.

Source: Massachusetts Department of Health

501
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56. Verify by direct computation that
[[2Vidx=2 [ Vxdx
57. Verify by direct computation that
1 ) N 1 L
Jl)(l +x—e)dx= fodx-i- foxdx foe dx

What properties of the definite integral are demon-
strated in this exercise?

58. Verify by direct computation that
3 1 3
fo(l +x3)dx=f0(l +x3)dx+fl(1 +x%) dx

What property of the definite integral is demonstrated
here?

59. Verity by direct computation that
Jj 1 +x%dx

=[la+xyde+ [ +x)de+ [ (1 +x) dx

hence showing that Property 5 may be extended.

60. Evaluate f j (1 + Vx)e™dx.
0 . 3
61. Evaluate f ' fx) dx, given that f fx) dx = 4,

62. Evaluate f Z 4f(x) dx, given that f Z flx) dx = —1.

SOLUTIONS T0 SELF-CHECK EXERCISES 6.5

1. Let u = 2x + 5. Then, du = 2 dx, or dx = % du. Also, when x = 0, u =

63. Given that f  flxydx = —2and f ’ 8(0)dx =3, evaluate:
a [[ A + g dx
b. [ [g(x) = f0)] dx
e |1 [2fx) = 3g(0)] dx

64. Given that f : f(x) dx =2 and j z f(x) dx = 3, evaluate:
a. J': flx) dx
b. Jz flx)dx — ﬁl flx) dx

In Exercises 65-69, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

2 er
65. L\/mdx—o

3 dx 1 dx
66. Lx—2i_3x—2

V2

67. f;x\/x-i-ldx: \/x—i-lﬁ)xdx=%x2 x+1

1
0

68. If f' is continuous on [0, 2], then f Z f'(x)dx = f(2) — f0).

69. If f and g are continuous on [a, b] and k is a constant,
then

[ Tefe) + g dx = k [ foxy dx+ [ g(x) e

5, and

when x = 2, u = 9. Therefore,

JE \/2x+5dx=ﬁ(2x+5)”2dx

= %Jj u'” du

)

1
—— [93/2 _ 53/2]
3

9

5

=%(27—5\/§)



6.6 = AREA BETWEEN TWO CURVES 503

2. The required average value is given by

-9

3. The average median price of a house over the stated time interval is given by

5

R S IR 11, 75,17,
s—ofo(t 7t+17t+190)dl—5<4t S0+ 5041900

0

1L sy _ T sy 1 17 5y

—5[4(5) 35+ (5 +190(5)
= 205.417

or $205.417.

6.6 Area Between Two Curves

Suppose a certain country’s petroleum consumption is expected to grow at
the rate of f(¢) million barrels per year, ¢ years from now, for the next 5 years.
Then, the country’s total petroleum consumption over the period of time in
question is given by the area under the graph of f on the interval
[0, 5] (Figure 6.27).

Next, suppose that because of the implementation of certain energy-
conservation measures, the rate of growth of petroleum consumption is ex-
pected to be g(¢) million barrels per year instead. Then, the country’s projected
total petroleum consumption over the 5-year period is given by the area under
the graph of g on the interval [0, 5] (Figure 6.28).

FIGURE 6.27 FIGURE 6.28
At a rate of consumption f(f) million barrels At a rate of consumption of g(f) million bar-
per year, the total petroleum consumption is rels per year, the total petroleum consump-
given by the area of the region under the tion is given by the area of the region un-
graph of f. der the graph of g.
5 7 y=1@ =
ES S
2 2 =g
s 5
2 g
g :
= E
} t } t
5 5

Years Years
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FIGURE 6.29

The area of S gives the amount of petro-
leum that would be saved over the 5-year
period.

FIGURE 6.30,
Area of R = [, [f(x) — g(x)] dx

Therefore, the area of the shaded region S lying between the graphs of
fand g on the interval [0, 5] (Figure 6.29) gives the amount of petroleum that
would be saved over the 5-year period because of the conservation measures.

Y y=£(t)

y=g@®

Million barrels per year
t

~

Years

But the area of S is given by
Area under the graph of fon [a, b] — Area under the graph of g on [a, b]

= f;f(l) dr — ﬁg(t) dt
= f; [f(2) — g(9)] dt (By Property 4, Section 6.5)

This example shows that some practical problems can be solved by finding
the area of a region between two curves, which in turn can be found by
evaluating an appropriate definite integral.

FINDING THE AREA BETWEEN Two CURVES

We now turn our attention to the general problem of finding the area of a
plane region bounded both above and below by the graphs of functions. First,
consider the situation in which the graph of one function lies above that of
another. More specifically, let R be the region in the xy-plane (Figure 6.30)
that is bounded above by the graph of a continuous function f, below by a
continuous function g where f(x) = g(x) on [a, b] and to the left and right by
the vertical lines x = a and x = b, respectively. From the figure, we see that

Area of R = Area under f(x) — Area under g(x)
= ﬁ:f(x) dx — f:g(x) dx
= " 1100 - g@)) ax

upon using Property 4 of the definite integral.

y
y=f)
R y=gx)
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The Area Between

. . - .
Two Curves Let f and g be continuous functions such that f(x) = g(x) on the interval [a, b].

Then, the area of the region bounded above by y = f(x) and below by y = g(x)
on [a, b] is given by

[' 1) = g@)) ax (12)

Even though we assumed that both f and g were nonnegative in the
derivation of (12), it may be shown that this equation is valid if f and g are
not nonnegative (see Exercise 52). Also, observe that if g(x) is O for all x—that
is, when the lower boundary of the region R is the x-axis—Equation (12)
gives the area of the region under the curve y = f(x) from x = a to x = b,
as we would expect.

EXAMPLE 1 Find the area of the region bounded by the x-axis, the graph of y = —x2 +
4x — 8, and the lines x = —1 and x = 4.

IR The region R under consideration is shown in Figure 6.31. We can view R as
the region bounded above by the graph of f(x) = 0 (the x-axis) and below
by the graph of g(x) = —x* + 4x — 8 on [—1, 4]. Therefore, the area of R is

given by
FIGURE 6.31 . 5 R S
Area of R = — [, glx) dx L[f(x)—g(x)] X—f_l[ —(—x*+4x — 8)]dx
y Zﬁl(xz—4x+8)dx
_12 f F———1— x :lx3_2x2+8x4
3 -1
x=-1

= [% (64) — 2(16) + 8(4)] - B(—l) —2(1) + 8(—1)}

2
—313

or 313 square units.

EXAMPLE 2 Find the area of the region R bounded by the graphs of
flx) =2x -1 and glx) =x*—4

and the vertical lines x = 1 and x = 2.

TR  We first sketch the graphs of the functions f(x) = 2x — 1 and g(x) = x> — 4
and the vertical lines x = 1 and x = 2, and then we identify the region R

whose area is to be calculated (Figure 6.32).
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FIGURE 6.32z
Area of R = [ [fix) — g(x)] dx

Since the graph of f always lies above that of g for x in the interval
[1, 2], we see by Equation (12) that the required area is given by

1700 = g dx = [ [2x = 1) = (* = 4)] ax

=ﬁ(—x2+2x+3)dx
2

=—1x3+x2+3x
3 1

8 1 11
<—§+4+6)—<—§+1+3>—?

or 4 square units.

EXAMPLE 3 Find the area of the region R that is completely enclosed by the graphs of
the functions

fx)=2x -1 and gx) =x*—4

TITEINTYA  The region R is shown in Figure 6.33. First, we find the points of intersection
of the two curves. To do this, we solve the system that consists of the two

FIGURE 6.33 y

Area of R = [ [f(x) — glx)] dx (3.5)

(=1, -3)

y=2x-1



FIGURE 6.34

Area of R = [ ],] [fix) — gx)] dx

SOLUTION v

y y=x2-2x-1
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equations y = 2x — 1 and y = x*> — 4. Equating the two values of y gives

xX*—4=2x—-1
x*=2x-3=0
x+Dx—-3)=0
so x = —1 or x = 3. That is, the two curves intersect when x = —1 and x = 3.

Observe that we could also view the region R as the region bounded
above by the graph of the function f(x) = 2x — 1, below by the graph of the
function g(x) = x> — 4, and to the left and right by the vertical lines x = —1
and x = 3, respectively.

Next, since the graph of the function f always lies above that of the
function g on [—1, 3], we can use (12) to compute the desired area:

[ 1f@) = gdx = [ [@x = 1) = (> = 4)] dx

ﬁl(—xQ—l- 2x +3)dx

1 3 2 ?
=—§x~+x + 3x

-1
=(—9+9+9)—<§+1—3)=2
=10

or 103 square units.

Find the area of the region R bounded by the graphs of the functions
flx) = x2—2x —1 and g(x) = —er — 1

and the vertical lines x = —1 and x = 1.

The region R is shown in Figure 6.34. Since the graph of the function f always
lies above that of the function g, the area of the region R is given by

[ = g@)dx = [ [ =20 = 1) = (= = D] dx

= ﬁl (x> —2x+ e%) dx

1
— 43 _ 2+ X
3x X e_1
_(1_ (1 o
—<3 1+e> < 3 1+e>
2

==+4+e— 1 ,or 3.02 square units
3 e

Equation (12), which gives the area of the region between the curves
y = f(x) and y = g(x) for a = x = b, is valid when the graph of the function
f lies above that of the function g over the interval [a, b]. Example 5 shows
how to use (12) to find the area of a region when the latter condition does
not hold.
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FIGURE 6.35

Area of R, = area of R,

EXAMPLE 5

SOLUTION v

EXAMPLE 6

SOLUTION v

Find the area of the region bounded by the graph of the function f(x) = x?,
the x-axis, and the lines x = —1 and x = 1.

The region R under consideration can be thought of as composed of the two
subregions R, and R,, as shown in Figure 6.35.

Recall that the x-axis is represented by the function g(x) = 0. Since
g(x) = f(x) on [—1, 0], we see that the area of R, is given by

Jj [g(x) — f(x)] dx = ﬁl (0 — x%) dx = _f(ilx3 i

1 ,]° 1\ 1
1—0‘(‘z>—z

=——x
To find the area of R,, we observe that f(x) = g(x) on [0, 1], so it is given by

4
[ 1@ — g dx = [ = 0) dx = [ 2 dx

1

1 1
0 (4) 0= 4
Therefore, the area of R is 1 + %, or 3, square units.

By making use of symmetry, we could have obtained the same result
by computing

4

—2ji1x3dx or 2f;x3dx

as you may verify.

Group Discussion
D A function is even if it satisfies the condition f(—x) = f(x), and it is
odd if it satisfies the condition f(—x) = —f(x). Show that the graph of an
even function is symmetric with respect to the y-axis while the graph of
an odd function is symmetric with respect to the origin. Explain why

f(:af(x) dx =2 f;f(x) dx if fis even

f " fydxe=0 if fis odd

Find the area of the region completely enclosed by the graphs of the functions

fx) =x*=-3x+3 and g(x)=x+3

First, sketch the graphs of y = x* — 3x + 3 and y = x + 3 and then identify
the required region R. We can view the region R as being composed of the
two subregions R; and R,, as shown in Figure 6.36. By solving the equations
y=x+3andy = x* - 3x + 3 simultaneously, we find the points of intersection



FIGURE 6.36
Area of R, + Area of R,

= [*, [0 — g dx
+ J; Lglx) — flx)] d
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of the two curves. Equating the two values of y, we have

xX=3x+3=x+3

xX*—4x=0

x(x*=4)=0

x(x+2)(x—=2)=0
x=0,-2,2

Hence, the points of intersection of the two curves are (-2, 1), (0,3), and (2, 5).
For —2 = x = 0, we see that the graph of the function f lies above that
of the function g, so the area of the region R, is, by virtue of (12),

f(iz[(x3—3x+3) — (x+3)]dx = f(iz(x3—4x)dx

_l 4 _ 2O
—4x 2x .
=—(4-3)
=4

or 4 square units. For 0 = x = 2, the graph of the function g lies above that
of the function f, and the area of R, is given by

jz[(x+3) — (¥ = 3x + 3)] dx=f§(—x3+4x)dx

=—%x4+2x20

——4+8
=4

or 4 square units. Therefore, the required area is the sum of the area of the
two regions R, + R,—that is, 4 + 4, or 8 square units.

APPLICATION

In a 1994 study for a developing country’s Economic Development Board,
government economists and energy experts concluded that if the Energy
Conservation Bill were implemented in 1995, the country’s oil consumption
for the next 5 years would be expected to grow in accordance with the model

R(I) — zoe(mSt
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FIGURE 6.375
Area of § = fn [R(1) — RN dt

y

SOLUTION v

y=R®
= 200081

where ¢ is measured in years (¢t = 0 corresponding to the year 1995) and R(¢)
in millions of barrels per year. Without the government-imposed conservation
measures, however, the expected rate of growth of oil consumption would be
given by

Ri(t) = 20008

millions of barrels per year. Using these models, determine how much oil
would have been saved from 1995 through 2000 if the bill had been imple-
mented.

Under the Energy Conservation Bill, the total amount of oil that would have
been consumed between 1995 and 2000 is given by

f "R(r) dt = f 206" dr a3)

Without the bill, the total amount of oil that would have been consumed
between 1995 and 2000 is given by

J CR(0) dt = f 206" dr 4)

Equation (13) may be interpreted as the area of the region under the curve
y = R(¢t) from ¢t = 0 to ¢+ = 5. Similarly, we interpret (14) as the area of
the region under the curve y = R,(¢) from ¢ = 0 to ¢ = 5. Furthermore, note
that the graph of y = R(f) = 20¢%® always lies on or above the graph of
y = R(t) = 20" (t = 0). Thus, the area of the shaded region S in Figure
6.37 shows the amount of oil that would have been saved from 1995 to 2000
if the Energy Conservation Bill had been implemented. But the area of the
region S is given by

fz [Ri(f) — R(1)] dt = ﬁ; [20£098 — 20095]

=20 f; (eo.o& _ eo,OSx) dt
e0.0St e0.0St
=20 (m a 0.05) 0

60'4 60'25 1 1
40[(@‘@) - (m‘mﬂ

~9.3

5

or approximately 9.3 square units. Thus, the amount of oil that would have
been saved is 9.3 million barrels.
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Refer to Example 7. Suppose we want to construct a mathematical model giving the amount
of oil saved from 1995 through the year 1995 + x, where x = 0. For example, in Example 7, x = 5.

1. Show that this model is given by

X
F) = [ [Ri(®) = R()] e
= 250€"%* — 400" + 150
Hint: You may find it helpful to use some of the results of Example 7.

2. Use a graphing utility to plot the graph of F, using the viewing rectangle [0, 10] X [0, 50].
3. Find F(5) and thus confirm the result of Example 7.
4. What is the main advantage of this model?

1. Find the area of the region bounded by the graphs of f(x) = x> + 2 and g(x) =
1 — x and the vertical lines x = 0 and x = 1.

2. Find the area of the region completely enclosed by the graphs of f(x) = —x? +
6x + 5 and g(x) = x* + 5.

E 3. The management of the Kane Corporation, which operates a chain of hotels, expects

. its profits to grow at the rate of 1 + #2° million dollars/year ¢ yr from now. However,
with renovations and improvements of existing hotels and proposed acquisitions of
new hotels, Kane’s profits are expected to grow at the rate of ¢t — 2Vt + 4 million
dollars/year in the next decade. What additional profits are expected over the next
10 yr if the group implements the proposed plans?

Solutions to Self-Check Exercises 6.6 can be found on page 515.

In Exercises 1-8, find the area of the shaded
region.

1.

y=x3—6x2

T X T

6 -1 2
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y
. y =x{l-x?
it
y=0
N\ |
-1 1
y=0
1
-1+
4. y
. X
i y\4
} } } } X
1
1
-1t
x=-2 x=2
5. y
y=x-24x
e ~”/// x
4
14+
6. y
y=x-2
2__
y=Nx

y=x

1+ = x3

6 -5 -4 -3 -2

In Exercises 9-16, sketch the graph and find
the area of the region hounded helow by the
graph of each of the given functions and abhove
by the x-axis from x = ato x = bh.

9. f(x) = —x3a=—-1,b=2

10. f(x) =x*—4a=-2,b=2
1. f(x) =x*-5x+4a=1,b=3
12. f(x) = x%a=-1,b=0

13. f(x) = =1 - Vx;a=0,b=9

14.f(x)=%x—\/)_c;a=0,b=4

15. f(x) = —e@ 0= =2,b =4

16. f(x) = —xe " ;a=0,b=1

In Exercises 17-26, sketch the graphs of the
functions fand g and find the area of the region

enclosed by these graphs and the vertical
linesx=aand x=bh.

17. f(x) =x* +3,gx) =1l,a=1,b =3
18. f(x) =x +2,gx)=x>—4a=-1,b=2



19. f(x) = —x* +2x + 3,gx) = —x +3;a=0,b =2
20. f(x) =9 —x}, gx) =2x+3;a=-1,b=1

2L f(x) =x*+ 1, gx) = sx%a=—-1,b=2

D= )=

22 f(x) = Vx,gx) = —~x —lLia=1,b=4

23.f(x):)1—C,g(x):2x—l;a:1,b:4
1
24, f(x)=x2,g(x)=;;a:1,b:3

25. f(x) = e*, g(x) = )1_5; a=1,b=2
26. f(x) = x,g(x) =e*;a=1,b=3

In Exercises 27-34, sketch the graph and find
the area of the region hounded by the graph
of the function fand the lines y = 0, x = a, and
x=b.

27. f(x) =x;a=-1,b=2

28, f(x) =x*—2x;a=-1,b=1

29. f(x) = —x*+4x —3;a=-1,b=2

30. f(x) =x*—x%a=-1,b=1

3. f(x) =x* —4x* +3x;a=0,b=2

32, f(x) =4x"P + x**;a=—-1,b =8

3B.f(x) =e*—1l;a=-1,b=3

3. f(x) = xe"z; a=0,b=2

In Exercises 35-40, sketch the graph and find

the area of the region completely enclosed hy
the graphs of the given functions f and g.

35. f(x) = x + 2 and g(x) = x> — 4

36. f(x) = —x* + 4x and g(x) = 2x — 3

37. f(x) = x* and g(x) = x°

38. f(x) = x* — 6x? + 9x and g(x) = x* — 3x
39. f(x) = Vx and g(x) = x*

40. f(x) = 2x and g(x) = xVx +1
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41. EFFEcT OF ADVERTISING ON REVENUE In the accompanying
figure, the function f gives the rate of change of Odyssey
Travel’s revenue with respect to the amount x it spends
on advertising with their current advertising agency. By
engaging the services of a different advertising agency,
it is expected that Odyssey’s revenue will grow at the
rate given by the function g. Give an interpretation of
the area A of the region S and find an expression for A
in terms of a definite integral involving f and g.

R
R=g(x)
5 S
S
2
E R=f(x)
°
[a)
{ X
0 b

Dollars

42. PuLse RATE DURING EXERCISE In the accompanying figure,
the function f gives the rate of increase of an individual’s
pulse rate when he walked a prescribed course on a
treadmill 6 mo ago. The function g gives the rate of
increase of his pulse rate when he recently walked the
same prescribed course. Give an interpretation of the
area A of the region S and find an expression for A in
terms of a definite integral involving f and g.

y
y=f(n

S y=g(

Beats per second

~

Seconds

43. AIR PurirFicaTION To study the effectiveness of air purifi-
ers in removing smoke, engineers run each purifier in a
smoke-filled 10 X 20-ft room. In the accompanying fig-
ure, the function f gives the rate of change of the smoke
level/minute, t min after the start of the test, when a
brand A purifier is used. The function g gives the rate
of change of the smoke level/minute when a brand B
purifier is used.

a. Give an interpretation of the area of the region S.
b. Find an expression for the area of S in terms of a
definite integral involving f and g.
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44.

45.
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¥ (%/min)

a b

y=f(n
/-y =g(1

t (min)

Two cars start out side by side and travel along a straight
road. The velocity of car 1 is f(t) ft/sec, the velocity of
car 2 is g(¢) ft/sec over the interval [0, T],and 0 < T, < T.
Furthermore, suppose the graphs of f and g are as de-
picted in the accompanying figure. Denote the area of
region I by A, and the area of region II by A,.

a. Write the number
[ ls@ = s01ar = 170 - g0y de

in terms of A, and A,.
b. What does the number obtained in part (a) represent?

y

y=f(t)
\

1 r !
The rate of change of the revenue of company A over
the (time) interval [0, T] is f(¢) dollars/week, whereas
the rate of change of the revenue of company B over
the same period is g(¢) dollars/week. Suppose the graphs
of fand g are depicted in the accompanying figure. Find
an expression in terms of definite integrals involving f
and g giving the additional revenue that company B will
have over company A in the period [0, T].

y

46.

47.

48.

49.

TurBO-CHARGED ENGINE VS. STANDARD ENGINE In tests con-
ducted by Auto Test Magazine on two identical models
of the Phoenix Elite—one equipped with a standard
engine and the other with a turbo-charger—it was found
that the acceleration of the former is given by

a=ft)=4+08t O=t=12)

ft/sec/sec, t sec after starting from rest at full throttle,
whereas the acceleration of the latter is given by

a=gt) =4+ 12+ 0.032 0=r=12)

ft/sec/sec. How much faster is the turbo-charged model
moving than the model with the standard engine, at the
end of a 10-sec test run at full throttle?

ALTERNATIVE ENERGY SOURCES Because of the increasingly
important role played by coal as a viable alternative
energy source, the production of coal has been growing
at the rate of

3.560,051

billion metric tons/year ¢ yr from 1980 (which corre-
sponds to ¢ = 0). Had it not been for the energy crisis,
the rate of production of coal since 1980 might have
been only

3.560.011‘

billion metric tons/year ¢ yr from 1980. Determine how
much additional coal was produced between 1980 and
the end of the century as an alternate energy source.

EFFECT OF TV ADVERTISING ON CAR SALES Carl Williams, the
new proprietor of Carl Williams Auto Sales, estimates
that with extensive television advertising, car sales over
the next several years could be increasing at the rate of

5 60.3[

thousand cars/year ¢ yr from now, instead of at the cur-
rent rate of

(5 + 0.562)

thousand cars/year ¢ yr from now. Find how many more
cars Carl expects to sell over the next 5 yr by implement-
ing his advertising plans.

PopuLaTion GROWTH In an endeavor to curb population
growth in a Southeast Asian island state, the government
has decided to launch an extensive propaganda cam-
paign. Without curbs, the government expects the rate
of population growth to have been

6060.02r

thousand people/year ¢ yr from now, over the next 5 yr.
However, successful implementation of the proposed



campaign is expected to result in a population growth
rate of

-2 + 60

thousand people/yr ¢ yr from now, over the next 5 yr.
Assuming that the campaign is mounted, how many
fewer people will there be in that country 5 yr from now
than there would have been if no curbs had been im-
posed?

In Exercises 50 and 51, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

50.

51.

If fand g are continuous on [a, b] and either f(x) = g(x)
for all x in [a, b] or f(x) = g(x) for all x in [a, b], then
the area of the region bounded by the graphs of f and
g and the vertical lines x = a and x = b is given by

JU1f(x) = g()] dx.

The area of the region bounded by the graphs of f(x) =
2 —xand g(x) =4 — 2x2 and the vertical lines x = 0
and x = 2 is given by fo [f(x) — g(x)] dx.

SOLUTIONS 70 SELF-CHECK EXERCISES 6.6
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52. Show that the area of a region R bounded above by the

graph of a function fand below by the graph of a function
g from x = a to x = b is given by

[' 1700 = g0 dx

Hint: The validity of the formula was verified earlier for the
case when both f and g were nonnegative. Now, let f and g be
two functions such that f(x) = g(x) for a = x = b. Then, there
exists some nonnegative constant c¢ such that the curves y =
f(x) + cand y = g(x) + c are translated in the y-direction in
such a way that the region R’ has the same area as the region
R (see the accompanying figures). Show that the area of R’ is
given by

[0 + el = [g0) + clyax = [ 1) — g0) dx

y y
A
~
“ a R b \//\
X X
\w a / b
y=g(x)+c

y=x2+2

1. The region in question is shown in the accompanying figure. Since the graph of the
function f lies above that of the function g for 0 = x = 1, we see that the required
area is given by

[l + = —nlde= [ @ +x+1)dx

1 3
== +-x+
3x X )C0
1.1
=-+-+
32 !
_u
6

or ‘¢ square units.

2. The region in question is shown in the figure on page 518. To find the points of
intersection of the two curves, we solve the equation

—x*+6x+5=x*+5
2x*=6x=0
2x(x —3)=0

giving x = 0 or x = 3. Therefore, the points of intersection are (0, 5) and (3, 14).
(continued on p. 518)



Using Technology

EXAMPLE 1

SOLUTION

FIGURE T1
The region R is completely enclosed by the
graphs of fand g.

516

FINDING THE AREA BETWEEN Two CURVES

The numerical integral operation can also be used to find the area between
two curves. We do this by using the numerical integral operation to evaluate
an appropriate definite integral or the sum (difference) of appropriate definite
integrals. In the following example, the intersection operation is also used to
advantage to help us find the limits of integration.

Use a graphing utility to find the area of the region R that is completely
enclosed by the graphs of the functions

fx)=2x3—8x2+4x -3 and  g(x) = 3x* + 10x — 11

The graphs of f and g in the viewing rectangle [—3, 4] X [—20, 5] are shown
in Figure T1.

Using the intersection operation of a graphing utility, we find the x-coordinates
of the points of intersection of the two graphs to be approximately —1.04 and
0.65, respectively. Since the graph of f lies above that of g on the interval
[—1.04, 0.65], we see that the area of R is given by
A= f " [(2x* = 8x2 + 4x — 3) — (32 + 10x — 11)] dx
0.65

=] (X —11x’—6x + 8)dx

1.04

Using the numerical integral function of a graphing utility, we find A =~ 9.87,
and so the area of R is approximately 9.87 square units.



In Exercises 1-6, use a graphing utility to (a)
plot the graphs of the functions fand g and (b)
find the area of the region enclosed hy these
graphs and the vertical lines x = a and
x = b. Express your answers accurate to four
decimal places.

L f(x) =x*(x - 54 gx)=0;a=1,b=3

2. f(x) =x — V1 —x% gx) = 0;a = —%,b=%
3. f(x) =xPx + D2 gx) =xLa=12,b=2

4. f(x) =2,g(x) =In(1 + x*);a=-1,b=1

X =3
x4+ 1

5. f(x) = Vx, g(x) =

a=0,b=3

4
6. f(x) = m,g(x) =xta=-1,b=1

In Exercises 7-12, use a graphing utility to (a)
plot the graphs of the functions fand g and (b)
find the area of the region totally enclosed hy
the graphs of these functions.

7. f(x) = 2x* — 8x* + 4x — 3 and
g(x) = —=3x> + 10x — 10

8 f(x) = x* —2x* + 2 and g(x) = 4 — 2x?
9. f(x) = 2x> = 3x? + x + 5and g(x) = e* — 3

10. f(x) = %xz —3and g(x) = Inx

11. f(x) = xe™ and g(x) = x — 2Vx
12. f(x) = ¢ and g(x) = x*

517
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y=-x2+6x+5

Since the graph of f always lies above that of g for 0 = x = 3, we see that the
required area is given by

[l-x+6x+5) — @+ 5)]dx = [ (-2x + 6x) dx

3
= f§x3+3x2
= 18 +27

=9

0

or 9 square units.
3. The additional profits realizable over the next 10 yr are given by

[Mle-2Vie 4y -+ eoar
= ﬂo (t—20"+3—1F)dt

1 4 3 "
=—lz——l3/2+3l——[5/3
2 3 5 0

1 ,_4 31 3 513
== — = + —=

5 (10) 3 (10) 3(10) 5 (10)
~9.99

or approximately $10 million.
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6.7 Applications of the Definite Integral to Business and Economics

In this section we consider several applications of the definite integral in the
fields of business and economics.

CONSUMERS’ AND PRODUCERS’ SURPLUS

FIGURE 6.38 We begin by deriving a formula for computing the consumers’ surplus. Suppose
D(x) is a demand function. p = D(x) is the demand function that relates the unit price p of a commodity
to the quantity x demanded of it. Furthermore, suppose a fixed unit market
price has been established for the commodity and corresponding to this unit
price the quantity demanded is X units (Figure 6.38). Then, those consumers
who would be willing to pay a unit price higher than p for the commodity
would in effect experience a savings. This difference between what the consum-
P ers would be willing to pay for X units of the commodity and what they actually
x pay for them is called the consumers’ surplus.
To derive a formula for computing the consumers’ surplus, divide the
interval [0, X] into n subintervals, each of length Ax = X/n, and denote the
right end points of these subintervals by xi, x,, ..., x, = X (Figure 6.39).
We observe in Figure 6.39 that there are consumers who would pay a
unit price of at least D(x;) dollars for the first Ax units of the commodity
instead of the market price of p dollars per unit. The savings to these consumers
is approximated by

p

p=Dx)

=l

D(x))Ax — pAx = [D(x,) — p]Ax

FIGURE 6.39 p
Approximating consumers’ surplus by the
sum of the rectangles r,, r,, ..., 1,
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Consumers’ Surplus

FIGURE 6.40
Consumers’ surplus

p

p=D()

=1+

which is the area of the rectangle r,. Pursuing the same line of reasoning, we
find that the savings to the consumers who would be willing to pay a unit
price of at least D(x,) dollars for the next Ax units (from x; through x,) of
the commodity, instead of the market price of p dollars per unit, is approxi-
mated by

D(x2)Ax — pAx = [D(x,) — p]Ax

Continuing, we approximate the total savings to the consumers in purchasing
X units of the commodity by the sum

[D(x1) = p]Ax + [D(x,) — p]Ax + - - - + [D(x,) — p]Ax
= [D(x;) + D(x,) + - -+ + D(x,)]Ax — [pAx + pAx + - - - + pAx]
_—Ti_J

= [D(xy) + D(xy) + * -+ + D(x,)]Ax — npAx
= [D(xy) + D(xy) + - -+ + D(x,)]Ax — px

Now, the first term in the last expression is the Riemann sum of the demand
function p = D(x) over the interval [0, X] with representative points x;, x,,
..., Xx,. Letting n approach infinity, we obtain the following formula for the
consumers’ surplus CS.

The consumers’ surplus is given by
o= fjp(x) dx — p% as)

where D is the demand function, p is the unit market price, and x is the quan-
tity sold.

The consumers’ surplus is given by the area of the region bounded above by
the demand curve p = D(x) and below by the straight line p = p from
x = 0to x = x (Figure 6.40). We can also see this if we rewrite Equation (15)
in the form

[} D) - Pl dx

and interpret the result geometrically.

Analogously, we can derive a formula for computing the producers’ sur-
plus. Suppose p = S(x) is the supply equation that relates the unit price p of
a certain commodity to the quantity x that the supplier will make available
in the market at that price.

Again, suppose a fixed market price p has been established for the com-
modity and, corresponding to this unit price, a quantity of X units will be made



Producers’ Surplus

EXAMPLE 1
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available in the market by the supplier (Figure 6.41). Then, the suppliers
who would be willing to make the commodity available at a lower price stand
to gain from the fact that the market price is set as such. The difference
between what the suppliers actually receive and what they would be willing
to receive is called the producers’ surplus. Proceeding in a manner similar to
the derivation of the equation for computing the consumers’ surplus, we find
that the producers’ surplus PS is defined as follows:

The producers’ surplus is given by
PS=p% — [ S(x)dx (16)

where S(x) is the supply function, p is the unit market price, and x is the
quantity supplied.

Geometrically, the producers’ surplus is given by the area of the region
bounded above by the straight line p = p and below by the supply curve
p = S(x) from x = 0 to x = x (Figure 6.42).

FIGURE 6.41 FIGURE 6.42
S(x) is a supply function. Producers’ surplus
P P
p=Sx) p=Sx)
4 A

=l

=+

We can also show that the last statement is true by converting Equation
(16) to the form

[{1p = s dx

and interpreting the definite integral geometrically.

The demand function for a certain make of 10-speed bicycle is given by
p = D(x) = —0.001x> + 250

where p is the unit price in dollars and x is the quantity demanded in units
of a thousand. The supply function for these bicycles is given by

p = S(x) = 0.0006x* + 0.02x + 100
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where p stands for the unit price in dollars and x stands for the number of
bicycles that the supplier will put on the market, in units of a thousand.
Determine the consumers’ surplus and the producers’ surplus if the market
price of a bicycle is set at the equilibrium price.

SOLUTION v Recall that the equilibrium price is the unit price of the commodity when
market equilibrium occurs. We determine the equilibrium price by solving
for the point of intersection of the demand curve and the supply curve (Figure

FIGURE 6.43 6.43). To solve the system of equations

Consumers’ surplus and producers’ surplus
when market price = equilibrium price

p = —0.001x? + 250
b p = 0.0006x + 0.02x + 100
250
200+ CS we simply substitute the first equation into the second, obtaining
150+ p=p =160
10042 0.0006x2 + 0.02x + 100 = —0.001x* + 250
50+ 0.0016x2 + 0.02x — 150 =0
—t—t—+—+—>x 16x2 + 200x — 1,500,000 = 0
100 200 300 400 500 252 + 25¢ — 187,500 = 0

Factoring this last equation, we obtain
(2x + 625)(x — 300) = 0

Thus, x = —625/2 or x = 300. The first number lies outside the interval of
interest, so we are left with the solution x = 300, with a corresponding value of

p = —0.001(300)> + 250 = 160

Thus, the equilibrium point is (300, 160); that is, the equilibrium quantity is
300,000, and the equilibrium price is $160. Setting the market price at $160
per unit and using Formula (15) with p = 160 and X = 300, we find that the
consumers’ surplus is given by

Cs = f ™ (=0.001x* + 250) dx — (160)(300)
Y — x>+ 250x
3000

~300°
3000

18,000

300

— 48,000

0

+ (250)(300) — 48,000

or $18,000,000.



FIGURE 6.44
The time interval [0, T] is partitioned info

n subintervals.
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(Recall that x is measured in units of a thousand.) Next, using (16), we find
that the producers’ surplus is given by

PS = (160)(300) — f ™ (0.0006x” + 0.02x + 100) dx

300

= 48,000 — (0.0002x* + 0.01x2 + 100x)
0

= 48,000 — [(0.0002)(300)* + (0.01)(300)> + 100(300)]
= 11,700

or $11,700,000.

THE FUTURE AND PRESENT VALUE OF AN INCOME STREAM

To introduce the notion of the future and the present value of an income
stream, suppose a firm generates a stream of income over a period of time—the
revenue generated by a large chain of retail stores over a 5-year period, for
example. As the income is realized, it is reinvested and earns interest at a
fixed rate. The accumulated future income stream over the 5-year period is
the amount of money the firm ends up with at the end of that period.

The definite integral can be used to determine this accumulated, or total,
future income stream over a period of time. The total future value of an
income stream gives us a way to measure the value of such a stream. To find
the total future value of an income stream, suppose

R(t) = Rate of income generation at any time ¢ (Dollars per year)

r = Interest rate compounded continuously

T =Term (In years)
Let’s divide the time interval [0, T] into n subintervals of equal length
At = T/n and denote the right end points of these intervals by ¢, 15, ...,
t, = T, as shown in Figure 6.44.

If R is a continuous function on [0, 7], then R(¢) will not differ by much

from R(t)) in the subinterval [0, ;] provided that the subinterval is small

(which is true if n is large). Therefore, the income generated over the time
interval [0, ;] is approximately

R(tl)At (Constant rate of income - Length of time)

dollars. The future value of this amount, T years from now, calculated as if
it were earned at time ¢, is

[R(#)Af] e’ [Equation (10), Section 5.3)

dollars. Similarly, the income generated over the time interval [¢,, t,] is approxi-
mately P(t,)At dollars and has a future value, T years from now, of approxi-
mately

[R(t,)At]er ™)
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Accumulated or Total
Future Value of an
Income Stream

EXAMPLE 2

SOLUTION v

dollars. Therefore, the sum of the future values of the income stream generated
over the time interval [0, T] is approximately

R(t))e" ™AL + R(t,)e" ™At + - - - + R(t,)e" At
= eT[R(t))e At + R(t)e ™At + - - - + R(t,)e "At]

dollars. But this sum is just the Riemann sum of the function e’"R(t)e™ over
the interval [0, T'] with representative points ¢, t,, . . ., t,. Letting n approach
infinity, we obtain the following result.

The accumulated, or total, future value after 7 years of an income stream of
R(t) dollars per year, earning interest at the rate of r per year compounded
continuously, is given by

A=eT f "R(ye dt an

Crystal Car Wash recently bought an automatic car-washing machine that is
expected to generate $40,000 in revenue per year, ¢ years from now, for the
next 5 years. If the income is reinvested in a business earning interest at the
rate of 12% per year compounded continuously, find the total accumulated
value of this income stream at the end of 5 years.

We are required to find the total future value of the given income stream
after 5 years. Using Equation (17) with R(¢) = 40,000, » = 0.12, and T = 5,
we see that the required value is given by

60.12(5) fz 4070008—0A12t dt

(Integrate using the

= 06 [_ 40,000 60.121:| ’

0.12 0 substitution u = —0.121.)
0.6
= - % (790 — 1) ~ 274,039.60

or approximately $274,040.

Another way of measuring the value of an income stream is by considering
its present value. The present value of an income stream of R(¢) dollars per year
over a term of T years, earning interest at the rate of r per year compounded
continuously, is the principal P that will yield the same accumulated value as
the income stream itself when P is invested today for a period of T years at
the same rate of interest. In other words,

T
T — ,rT —rt
Pe e J . R(t)e " dt

Dividing both sides of the equation by e'T gives the following result.



Present Value of an
Income Stream

SOLUTION v
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The present value of an income stream of R(¢) dollars per year, earning interest
at the rate of r per year compounded continuously, is given by

PV = ["R@e)e de as)

The owner of a local cinema is considering two alternative plans for renovating
and improving the theater. Plan A calls for an immediate cash outlay of
$250,000, whereas plan B requires an immediate cash outlay of $180,000. It
has been estimated that adopting plan A would result in a net income stream
generated at the rate of

£(t) = 630,000

dollars per year, whereas adopting plan B would result in a net income stream
generated at the rate of

g(#) = 580,000
dollars per year for the next 3 years. If the prevailing interest rate for the

next 5 years is 10% per year, which plan will generate a higher net income
by the end of 3 years?

Since the initial outlay is $250,000, we find—using Equation (18) with R(¢) =
630,000, » = 0.1, and T = 3—that the present value of the net income under
plan A is given by

f ' 630.000¢" dr — 250,000

_ 630,000 o0t ’ — 250,000 (Integrate using the
0

-0.1 substitution « = —0.1¢.)
= —6,300,000e"% + 6,300,000 — 250,000
~ 1,382,845

or approximately $1,382,845.
To find the present value of the net income under plan B, we use (18)
with R(¢) = 580,000, r = 0.1, and T = 3, obtaining

f Z 580,000¢% d — 180,000

dollars. Proceeding as in the previous computation, we see that the required
value is $1,323,254 (Exercise 8).

Comparing the present value of each plan, we conclude that plan A would
generate a higher net income by the end of 3 years.



526

6 = INTEGRATION

Amount of an Annuity

7 I

XYW The function R in Example 3 is a constant function. If R is not a
constant function, then we may need more sophisticated techniques of integra-
tion to evaluate the integral in (18). Exercises 7.1 and 7.2 in Chapter 7 contain
problems of this type.

THE AMOUNT AND PRESENT VALUE OF AN ANNUITY

An annuity is a sequence of payments made at regular time intervals. The
time period in which these payments are made is called the ferm of the annuity.
Although the payments need not be equal in size, they are equal in many
important applications, and we will assume that they are equal in our discus-
sion. Examples of annuities are regular deposits to a savings account, monthly
home mortgage payments, and monthly insurance payments.

The amount of an annuity is the sum of the payments plus the interest
earned. A formula for computing the amount of an annuity A can be derived
with the help of (17). Let

P = Size of each payment in the annuity

r = Interest rate compounded continuously
T = Term of the annuity (in years)
m = Number of payments per year

The payments into the annuity constitute a constant income stream of
R(t) = mP dollars per year. With this value of R(¢), (17) yields

A=eT J’OTR(t)e”’ dt=eT JOT mPe ™" dt

=mPe™ | — e’
r

T
e 1:| :mTP(erT_l)

T

0

— mPerT —
r r

This leads us to the following formula.

The amount of an annuity is

Azgﬁeﬂ—u 19)

where P, r, T, and m are as defined earlier.

On January 1, 1990, Marcus Chapman deposited $2000 into an Individual
Retirement Account (IRA) paying interest at the rate of 10% per year com-
pounded continuously. Assuming that he deposits $2000 annually into the
account, how much will he have in his IRA at the beginning of the year 2006?



Refer to Example 4. Suppose Marcus wishes to know how much he will have in his IRA at

SOLUTION
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We use (19), with P = 2000, r = 0.1, T = 16, and m = 1, obtaining

_ 2000
A= 01 (e 1)

~ 79,060.65

Thus, Marcus will have approximately $79,061 in his account at the beginning
of the year 2006.

any time in the future, not just at the beginning of 2006, as you were asked to compute in the example.

1.

Using Formula (17) and the relevant data from Example 4, show that the required amount at any time
x (x measured in years, x > 0) is given by

A = f(x) = 20,000(e" — 1)

Use a graphing utility to plot the graph of f, using the viewing rectangle [0, 30] X [2000, 400,000].

Using zooM and TRACE, or using the function evaluation capability of your graphing utility, use the result
of part 2 to verify the result obtained in Example 4. Comment on the advantage of the mathematical
model found in part 1.

Present Value of
an Annvity

EXAMPLE 5

SOLUTION v

Using (18), we can derive the following formula for the present value of
an annuity.

The present value of an annuity is given by
PV = ’"TP (1 — er7) @0)

where P, r, T, and m are as defined earlier.

Tomas Perez, the proprietor of a hardware store, wants to establish a fund
from which he will withdraw $1000 per month for the next 10 years. If the
fund earns interest at the rate of 9% per year compounded continuously, how
much money does he need to establish the fund?

We want to find the present value of an annuity with P = 1000, r = 0.09,
T = 10, and m = 12. Using Equation (20), we find

12,000
0.09

~79,124.05

PV = 1- e—(o‘oo)(lo))

Thus, Tomas needs approximately $79,124 to establish the fund.
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FIGURE 6.45
A Lorentz curve

y
14+

y=f)

EXAMPLE &

SOLUTION v

FIGURE 6.46
19

The Lorentz curve f(x) = — x2 + —=x.

20

0.5+

]
20

LORENTZ CURVES AND INCOME DISTRIBUTIONS

One method used by economists to study the distribution of income in a
society is based on the Lorentz curve, named after American statistician M. D.
Lorentz. To describe the Lorentz curve, let f(x) denote the proportion of the
total income received by the poorest 100x% of the population for 0 = x = 1.
Using this terminology, f(0.3) = 0.1 simply states that the lowest 30% of the
income recipients receive 10% of the total income.

The function f has the following properties:

1. The domain of fis [0, 1].

2. The range of fis [0, 1].

3. f(0) = 0and f(1) = 1.

4. f(x) = x for every x in [0, 1].
5. fis increasing on [0, 1].

The first two properties follow from the fact that both x and f(x) are fractions
of a whole. Property 3 is a statement that 0% of the income recipients receive
0% of the total income and 100% of the income recipients receive 100% of
the total income. Property 4 follows from the fact that the lowest 100x% of
the income recipients cannot receive more than 100x% of the total income.
A typical Lorentz curve is shown in Figure 6.45.

A developing country’s income distribution is described by the function

19, 1
[ J— +_
f0x) = 55% + 55 %

. Sketch the Lorentz curve for the given function.
. Compute f(0.2) and f(0.8) and interpret your results.

[=pi ]

a. The Lorentz curve is shown in Figure 6.46.

_ oo L _
b. f0.2) = 20 (0.2)> + 0 (0.2) = 0.048
Thus, the lowest 20% of the people receive 4.8% of the total income.
=19 08p+L08) =
f(0.8) = 20 (0.8)* + 20 (0.8) = 0.648

Thus, the lowest 80% of the people receive 64.8% of the total income.

Next, let’s consider the Lorentz curve described by the function y =
f(x) = x. Since exactly 100x% of the total income is received by the lowest
100x% of income recipients, the line y = x is called the line of complete
equality. For example, 10% of the total income is received by the lowest 10%
of income recipients, 20% of the total income is received by the lowest 20%



FIGURE 6.47
The doser the Lorentz curve is to the line,
the more equitable the income distribution.

Coefficient of Inequality
of a Lorentz Curve
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of income recipients, and so on. Now, it is evident that the closer a Lorentz
curve is to this line, the more equitable the income distribution is among the
income recipients. But the proximity of a Lorentz curve to the line of complete
equality is reflected by the area between the Lorentz curve and the line y = x
(Figure 6.47). The closer the curve is to the line, the smaller the enclosed area.

This observation suggests that we may define a number, called the coeffi-
cient of inequality of a Lo