
CHAPTER 4
DATA LINK LAYER

117

Application Layer

Fundamental Concepts

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Technologies

LAN WLAN

Backbone

WAN

Internet

Network Management

The Three Faces of Networking

Security

Network

Network Management

N

etw
ork Design

Data Link
Layer

117-147_Fitzg04.qxd 7/15/06 11:28 AM Page 117

THE DATA link layer (also called layer 2) is responsible for moving a message

from one computer or network device to the next computer or network device in the

overall path from sender or receiver. It controls the way messages are sent on the physical

media. Both the sender and receiver have to agree on the rules or protocols that govern

how they will communicate with each other. A data link protocol determines who can

transmit at what time, where a message begins and ends, and how a receiver recognizes

and corrects a transmission error. In this chapter, we discuss these processes, as well as

several important sources of errors.

OBJECTIVES

■ Understand the role of the data link layer
■ Become familiar with two basic approaches to controlling access to the media
■ Become familiar with common sources of error and their prevention
■ Understand three common error detection and correction methods
■ Become familiar with several commonly used data link protocols

CHAPTER OUTLINE

INTRODUCTION

MEDIA ACCESS CONTROL

Controlled Access

Contention

Relative Performance

ERROR CONTROL

Sources of Errors

Error Prevention

Error Detection

Error Correction via Retransmission

Forward Error Correction

Error Control in Practice

DATA LINK PROTOCOLS

Asynchronous Transmission

118 CHAPTER 4 DATA LINK LAYER

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 118

Asynchronous File Transfer Protocols

Synchronous Transmission

TRANSMISSION EFFICIENCY

IMPLICATIONS FOR MANAGEMENT

SUMMARY

INTRODUCTION

In Chapter 1, we introduced the concept of layers in data communications. The data link
layer sits between the physical layer (hardware such as the circuits, computers, and multi-
plexers described in Chapter 3) and the network layer (that performs addressing and rout-
ing, as described in Chapter 5).

The data link layer accepts messages from the network layer and controls the hard-
ware that actually transmits them. The data link layer is responsible for getting a message
from one computer to another without errors. The data link layer also accepts streams of
bits from the physical layer and organizes them into coherent messages that it passes to
the network layer.

Both the sender and receiver have to agree on the rules or protocols that govern how
their data link layers will communicate with each other. A data link protocol performs
three functions:

• Controls when computers transmit (media access control)

• Detects and corrects transmission errors (error control)

• Identifies the start and end of a message (message delineation)

MEDIA ACCESS CONTROL

Media access control refers to the need to control when computers transmit. With point-
to-point full-duplex configurations, media access control is unnecessary because there are
only two computers on the circuit and full duplex permits either computer to transmit at
any time.

Media access control becomes important when several computers share the same
communication circuit, such as a point-to-point configuration with a half-duplex configu-
ration that requires computers to take turns, or a multipoint configuration in which several
computers share the same circuit. Here, it is critical to ensure that no two computers at-
tempt to transmit data at the same time—but if they do, there must be a way to recover
from the problem. There are two fundamental approaches to media access control: con-
trolled access and contention.

MEDIA ACCESS CONTROL 119

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 119

Controlled Access

Most computer networks managed by a host mainframe computer use controlled access.
In this case, the mainframe controls the circuit and determines which clients can access
media at what time.

Polling is the process of sending a signal to a client (a computer or terminal) that
gives it permission to transmit or asks it to receive. With polling, the clients store all
messages that need to be transmitted. Periodically, the server (usually a mainframe
computer) polls the client to see if it has data to send. If the client has data to send, it
does so. If the client has no data to send, it responds negatively, and the server asks an-
other client if it has data to send.

In other words, polling is analogous to a classroom situation in which the instructor
calls on the students who raise their hands. The instructor acts like the server. To gain ac-
cess to the media, students raise their hands and the instructor recognizes them so they
can contribute. When they have finished, the instructor again takes charge and allows
someone else to comment.

There are several types of polling. With roll-call polling, the server works consecu-
tively through a list of clients, first polling client 1, then client 2, and so on, until all are
polled. Roll-call polling can be modified to select clients in priority so that some get
polled more often than others. For example, one could increase the priority of client 1 by
using a polling sequence such as 1, 2, 3, 1, 4, 5, 1, 6, 7, 1, 8, 9.

Typically, roll-call polling involves some waiting because the server has to poll a
client and then wait for a response. The response might be an incoming message
that was waiting to be sent, a negative response indicating nothing is to be sent, or the
full “time-out period” may expire because the client is temporarily out of service (e.g.,
it is malfunctioning or the user has turned it off). Usually, a timer “times out” the
client after waiting several seconds without getting a response. If some sort of fail-safe
time-out is not used, the system poll might lock up indefinitely on an out-of-service
client.

With hub polling (often called token passing), one computer starts the poll and
passes it to the next computer on the multipoint circuit, which sends its message and
passes the poll to the next. That computer then passes the poll to the next, and so on, until
it reaches the first computer, which restarts the process again.

Contention

Contention is the opposite of controlled access. Computers wait until the circuit is free
(i.e., no other computers are transmitting) and then transmit whenever they have data to
send. Contention is commonly used in Ethernet LANs.

As an analogy, suppose that you are talking with some friends. Each person tries to
get the floor when the previous speaker finishes. Usually, the others yield to the first per-
son who jumps in at the precise moment the previous speaker stops. Sometimes two peo-
ple attempt to talk at the same time, so there must be some technique to continue the
conversation after such a verbal collision occurs.

120 CHAPTER 4 DATA LINK LAYER

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 120

Relative Performance

Which media access control approach is best: controlled access or contention? There is no
simple answer. The key consideration is throughput—which approach will permit the
most amount of user data to be transmitted through the network.

In general, contention approaches work better than controlled approaches for small
networks that have low usage. In this case, each computer can transmit when necessary,
without waiting for permission. Because usage is low, there is little chance of a collision.
In contrast, computers in a controlled access environment must wait for permission, so
even if no other computer needs to transmit, they must wait for the poll.

The reverse is true for large networks with high usage: controlled access works
better. In high-volume networks, many computers want to transmit, and the probability
of a collision using contention is high. Collisions are very costly in terms of throughput
because they waste circuit capacity during the collision and require both computers to re-
transmit later. Controlled access prevents collisions and makes more efficient use of the
circuit, and although response time does increase, it does so more gradually (Figure 4.1).

The key to selecting the best access control technique is to find the crossover point be-
tween controlled and contention. Although there is no one correct answer, because it de-
pends on how many messages the computers in the network transmit, most experts believe
that the crossover point is often around 20 computers (lower for busy computers, higher for
less-busy computers). For this reason, when we build shared multipoint circuits like those
often used in LANs, we try to put no more than 20 computers on any one shared circuit.

ERROR CONTROL

Before learning the control mechanisms that can be implemented to protect a network
from errors, you should realize that there are human errors and network errors. Human er-
rors, such as a mistake in typing a number, usually are controlled through the application

ERROR CONTROL 121

Traffic

R
es

po
ns

e
tim

e

Contention

Low
Short

Long

High

Controlled
access

FIGURE 4.1 Relative response times.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 121

program. Network errors, such as those that occur during transmission, are controlled by
the network hardware and software.

There are two categories of network errors: corrupted data (data that have been
changed) and lost data. Networks should be designed to (1) prevent, (2) detect, and (3)
correct both corrupted data and lost data. We begin by examining the sources of errors and
how to prevent them and then turn to error detection and correction.

Network errors are a fact of life in data communications networks. Depending on
the type of circuit, they may occur every few hours, minutes, or seconds because of noise
on the lines. No network can eliminate all errors, but most errors can be prevented, de-
tected, and corrected by proper design. IXCs that provide data transmission circuits pro-
vide statistical measures specifying typical error rates and the pattern of errors that can be
expected on the circuits they lease. For example, the error rate might be stated as 1 in
500,000, meaning there is 1 bit in error for every 500,000 bits transmitted.

Normally, errors appear in bursts. In a burst error, more than 1 data bit is changed
by the error-causing condition. In other words, errors are not uniformly distributed in
time. Although an error rate might be stated as 1 in 500,000, errors are more likely to
occur as 100 bits every 50,000,000 bits. The fact that errors tend to be clustered in bursts
rather than evenly dispersed is both good and bad. If the errors were not clustered, an
error rate of 1 bit in 500,000 would make it rare for 2 erroneous bits to occur in the same
character. Consequently, simple character-checking schemes would be effective at detect-
ing errors. When errors are #ore or less evenly distrib#ted, it is not di#ficult to gras# the
me#ning even when the error #ate is high, as it is in this #entence (1 charac#er in 20). But
burst errors are the rule rather than the exception, often obliterating 100 or more bits at a
time. This makes it more difficult to recover the meaning, so more reliance must be placed
on special #######1 or numeric error detection and correction methods. The positive side
is that there are long periods of error-free transmission, meaning that very few messages
encounter errors.

Sources of Errors

Line noise and distortion can cause data communication errors. The focus in this sec-
tion is on electrical media such as twisted-pair wire and coaxial cable, because they are
more likely to suffer from noise than are optical media such as fiber-optic cable. In this
case, noise is undesirable electrical signals (for fiber-optic cable, it is undesirable light).
Noise is introduced by equipment or natural disturbances, and it degrades the perfor-
mance of a communication circuit. Noise manifests itself as extra bits, missing bits, or
bits that have been “flipped” (i.e., changed from 1 to 0 or vice versa). Figure 4.2 sum-
marizes the major sources of error and ways to prevent them. The first six sources listed
there are the most important; the last three are more common in analog rather than digi-
tal circuits.

Line outages are a catastrophic cause of errors and incomplete transmission. Occa-
sionally, a communication circuit fails for a brief period. This type of failure may be
caused by faulty telephone end office equipment, storms, loss of the carrier signal, and

122 CHAPTER 4 DATA LINK LAYER

1In case you could not guess, the word is logical.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 122

any other failure that causes a short circuit. The most common cause of line outages are
storms that cause damage to circuits or facilities.

White noise or Gaussian noise (the familiar background hiss or static on radios and
telephones) is caused by the thermal agitation of electrons and therefore is inescapable.
Even if the equipment were perfect and the wires were perfectly insulated from any and
all external interference, there still would be some white noise. White noise usually is not
a problem unless it becomes so strong that it obliterates the transmission. In this case, the
strength of the electrical signal is increased so it overpowers the white noise; in technical
terms, we increase the signal-to-noise ratio.

Impulse noise (sometimes called spikes) is the primary source of errors in data com-
munications. Impulse noise is heard as a click or a crackling noise and can last as long as
1⁄100 of a second. Such a click does not really affect voice communications, but it can oblit-
erate a group of data, causing a burst error. At 1.5 Mbps, 15,000 bits would be changed by
a spike of 1⁄100 of a second. Some of the sources of impulse noise are voltage changes in
adjacent lines, lightning flashes during thunderstorms, fluorescent lights, and poor connec-
tions in circuits.

Cross-talk occurs when one circuit picks up signals in another. You experience
cross-talk during telephone calls when you hear other conversations in the background. It
occurs between pairs of wires that are carrying separate signals, in multiplexed links car-
rying many discrete signals, or in microwave links in which one antenna picks up a
minute reflection from another antenna. Cross-talk between lines increases with increased
communication distance, increased proximity of the two wires, increased signal strength,
and higher-frequency signals. Wet or damp weather can also increase cross-talk. Like
white noise, cross-talk has such a low signal strength that it normally is not bothersome.

Echoes can cause errors. Echoes are caused by poor connections that cause the sig-
nal to reflect back to the transmitting equipment. If the strength of the echo is strong
enough to be detected, it causes errors. Echoes, like cross-talk and white noise, have such
a low signal strength that they normally are not bothersome. Echoes can also occur in
fiber-optic cables when connections between cables are not properly aligned.

ERROR CONTROL 123

FIGURE 4.2 Sources of errors and ways to minimize them.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 123

Attenuation is the loss of power a signal suffers as it travels from the transmitting
computer to the receiving computer. Some power is absorbed by the medium or is lost be-
fore it reaches the receiver. As the medium absorbs power, the signal becomes weaker,
and the receiving equipment has less and less chance of correctly interpreting the data.
This power loss is a function of the transmission method and circuit medium. High fre-
quencies lose power more rapidly than do low frequencies during transmission, so the re-
ceived signal can thus be distorted by unequal loss of its component frequencies.
Attenuation increases as frequency increases or as the diameter of the wire decreases.

Intermodulation noise is a special type of cross-talk. The signals from two circuits
combine to form a new signal that falls into a frequency band reserved for another signal.
This type of noise is similar to harmonics in music. On a multiplexed line, many different
signals are amplified together, and slight variations in the adjustment of the equipment
can cause intermodulation noise. A maladjusted modem may transmit a strong frequency
tone when not transmitting data, thus producing this type of noise.

Jitter may affect the accuracy of the data being transmitted because minute varia-
tions in amplitude, phase, and frequency always occur. The generation of a pure carrier
signal in an analog circuit is impossible. The signal may be impaired by continuous and
rapid gain and/or phase changes. This jitter may be random or periodic. Phase jitter during
a telephone call causes the voice to fluctuate in volume.

Harmonic distortion usually is caused by an amplifier on a circuit that does not cor-
rectly represent its output with what was delivered to it on the input side. Phase hits are
short-term shifts “out of phase,” with the possibility of a shift back into phase.

Error Prevention

There are many techniques to prevent errors (or at least reduce them), depending on the sit-
uation. Shielding (protecting wires by covering them with an insulating coating) is one of
the best ways to prevent impulse noise, cross-talk, and intermodulation noise. Many different
types of wires and cables are available with different amounts of shielding. In general, the
greater the shielding, the more expensive the cable and the more difficult it is to install.

Moving cables away from sources of noise (especially power sources) can also re-
duce impulse noise, cross-talk, and intermodulation noise. For impulse noise, this means
avoiding lights and heavy machinery. Locating communication cables away from power
cables is always a good idea. For cross-talk, this means physically separating the cables
from other communication cables.

Cross-talk and intermodulation noise is often caused by improper multiplexing.
Changing multiplexing techniques (e.g., from FDM to TDM) or changing the frequencies
or size of the guardbands in FDM can help.

Many types of noise (e.g., echoes, white noise, jitter, harmonic distortion) can be
caused by poorly maintained equipment or poor connections and splices among cables.
This is particularly true for echo in fiber-optic cables, which is almost always caused by
poor connections. The solution here is obvious: Tune the transmission equipment and redo
the connections.

To avoid attenuation, telephone circuits have repeaters or amplifiers spaced
throughout their length. The distance between them depends on the amount of power lost
per unit length of the transmission line. An amplifier takes the incoming signal, increases

124 CHAPTER 4 DATA LINK LAYER

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 124

its strength, and retransmits it on the next section of the circuit. They are typically used on
analog circuits such as the telephone company’s voice circuits. The distance between the
amplifiers depends on the amount of attenuation, although 1- to 10-mile intervals are
common. On analog circuits, it is important to recognize that the noise and distortion are
also amplified, along with the signal. This means some noise from a previous circuit is re-
generated and amplified each time the signal is amplified.

Repeaters are commonly used on digital circuits. A repeater receives the incoming sig-
nal, translates it into a digital message, and retransmits the message. Because the message is
recreated at each repeater, noise and distortion from the previous circuit are not amplified.
This provides a much cleaner signal and results in a lower error rate for digital circuits.

If the circuit is provided by a common carrier such as the telephone company, you
can lease a more expensive conditioned circuit. A conditioned circuit is one that has been
certified by the carrier to experience fewer errors. There are several levels of conditioning
that provide increasingly fewer errors at increasingly higher cost. Conditioned circuits em-
ploy a variety of the techniques described previously (e.g., shielding) to provide less noise.

Error Detection

It is possible to develop data transmission methodologies that give very high error detec-
tion and correction performance. The only way to do error detection and correction is to
send extra data with each message. These error detection data are added to each message
by the data link layer of the sender on the basis of some mathematical calculations per-
formed on the message (in some cases, error-detection methods are built into the hardware
itself). The receiver performs the same mathematical calculations on the message it re-
ceives and matches its results against the error-detection data that were transmitted with
the message. If the two match, the message is assumed to be correct. If they don’t match,
an error has occurred.

ERROR CONTROL 125

Several years ago, the Univer-
sity of Georgia radio station received FCC (Fed-
eral Communications Commission) approval to
broadcast using a stronger signal. Immediately
after the station started broadcasting with the
new signal, the campus backbone network (BN)
became unusable because of impulse noise. It
took 2 days to link the impulse noise to the radio
station, and when the radio station returned to its
usual broadcast signal, the problem disappeared.

However, this was only the first step in the
problem. The radio station wanted to broadcast
at full strength, and there was no good reason

for why the stronger broadcast should affect the
BN in this way. After 2 weeks of effort, the prob-
lem was discovered. A short section of the BN
ran above ground between two buildings. It
turned out that the specific brand of outdoor
cable we used was particularly tasty to squirrels.
They had eaten the outer insulating coating off of
the cable, making it act like an antennae to re-
ceive the radio signals. The cable was replaced
with a steel-coated armored cable so the squir-
rels could not eat the insulation. Things worked
fine when the radio station returned to its
stronger signal.

MANAGEMENT

FOCUS

4-1 FINDING THE SOURCE OF IMPULSE NOISE

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 125

In general, the larger the amount of error-detection data sent, the greater the ability
to detect an error. However, as the amount of error-detection data is increased, the
throughput of useful data is reduced, because more of the available capacity is used to
transmit these error-detection data and less is used to transmit the actual message itself.
Therefore, the efficiency of data throughput varies inversely as the desired amount of
error detection is increased.

Three well-known error-detection methods are parity checking, checksum, and
cyclic redundancy checking.

Parity Checking One of the oldest and simplest error-detection methods is parity.
With this technique, one additional bit is added to each byte in the message. The value of
this additional parity bit is based on the number of 1’s in each byte transmitted. This par-
ity bit is set to make the total number of 1’s in the byte (including the parity bit) either an
even number or an odd number. Figure 4.3 gives an example.

A little thought will convince you that any single error (a switch of a 1 to a 0 or vice
versa) will be detected by parity, but it cannot determine which bit was in error. You will
know an error occurred, but not what the error was. But if two bits are switched, the parity
check will not detect any error. It is easy to see that parity can detect errors only when an
odd number of bits have been switched; any even number of errors cancel one another out.
Therefore, the probability of detecting an error, given that one has occurred, is only about
50 percent. Many networks today do not use parity because of its low error-detection rate.
When parity is used, protocols are described as having odd parity or even parity.

Checksum With the checksum technique, a checksum (typically 1 byte) is added to the
end of the message. The checksum is calculated by adding the decimal value of each charac-
ter in the message, dividing the sum by 255, and using the remainder as the checksum. The
receiver calculates its own checksum in the same way and compares it with the transmitted
checksum. If the two values are equal, the message is presumed to contain no errors. Use of
checksum detects close to 95 percent of the errors for multiple-bit burst errors.

Cyclical Redundancy Check One of the most popular error-checking schemes is
cyclical redundancy check (CRC). It adds 8, 16, 24, or 32 bits to the message. With CRC,

126 CHAPTER 4 DATA LINK LAYER

FIGURE 4.3 Using parity for error detection.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 126

a message is treated as one long binary number, P. Before transmission, the data link layer
(or hardware device) divides P by a fixed binary number, G, resulting in a whole number,
Q, and a remainder, R/G. So, P/G = Q + R/G. For example, if P = 58 and G = 8, then Q =
7 and R = 2. G is chosen so that the remainder, R, will be either 8 bits, 16 bits, 24 bits, or
32 bits.2

The remainder, R, is appended to the message as the error-checking characters be-
fore transmission. The receiving hardware divides the received message by the same G,
which generates an R. The receiving hardware checks to ascertain whether the received R
agrees with the locally generated R. If it does not, the message is assumed to be in error.

CRC performs quite well. The most commonly used CRC codes are CRC-16 (a
16-bit version), CRC-CCITT (another 16-bit version), and CRC-32 (a 32-bit version). The
probability of detecting an error is 100 percent for all errors of the same length as the
CRC or less. For example, CRC-16 is guaranteed to detect errors if 16 or fewer bits are af-
fected. If the burst error is longer than the CRC, then CRC is not perfect but is close to it.
CRC-16 will detect about 99.998 percent of all burst errors longer than 16 bits, whereas
CRC-32 will detect about 99.99999998 percent of all burst errors longer than 32 bits.

Error Correction via Retransmission

Once error has been detected, it must be corrected. The simplest, most effective, least ex-
pensive, and most commonly used method for error correction is retransmission. With re-
transmission, a receiver that detects an error simply asks the sender to retransmit the
message until it is received without error. This is often called Automatic Repeat reQuest
(ARQ). There are two types of ARQ: stop-and-wait and continuous.

Stop-and-Wait ARQ With stop-and-wait ARQ, the sender stops and waits for a
response from the receiver after each data packet. After receiving a packet, the receiver
sends either an acknowledgement (ACK), if the packet was received without error, or a
negative acknowledgment (NAK), if the message contained an error. If it is an NAK, the
sender resends the previous message. If it is an ACK, the sender continues with the next
message. Stop-and-wait ARQ is by definition a half-duplex transmission technique
(Figure 4.4).

Continuous ARQ With continuous ARQ, the sender does not wait for an acknowl-
edgment after sending a message; it immediately sends the next one. Although the
messages are being transmitted, the sender examines the stream of returning acknowledg-
ments. If it receives an NAK, the sender retransmits the needed messages. The packets
that are retransmitted may be only those containing an error (called Link Access Protocol
for Modems [LAP-M]) or may be the first packet with an error and all those that followed
it (called Go-Back-N ARQ). LAP-M is better because it is more efficient.

Continuous ARQ is by definition a full-duplex transmission technique, because both
the sender and the receiver are transmitting simultaneously. (The sender is sending mes-

ERROR CONTROL 127

2CRC is actually more complicated than this because it uses polynominal division, not “normal” division as il-
lustrated here. Ross Willams provides an excellent tutorial on CRC at www.ross.net/crc/crcpaper.html.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 127

sages, and the receiver is sending ACKs and NAKs.) Figure 4.5 illustrates the flow of
messages on a communication circuit using continuous ARQ. Continuous ARQ is some-
times called sliding window because of the visual imagery the early network designers
used to think about continuous ARQ. Visualize the sender having a set of messages to
send in memory stacked in order from first to last. Now imagine a window that moves
through the stack from first to last. As a message is sent, the window expands to cover it,
meaning that the sender is waiting for an ACK for the message. As an ACK is received for
a message, the window moves forward, dropping the message out of the bottom of the
window, indicating that it has been sent and received successfully.

Both stop-and-wait ARQ and continuous ARQ are also important in providing flow
control, which means ensuring that the computer sending the message is not transmitting
too quickly for the receiver. For example, if a client computer was sending information
too quickly for a server computer to store a file being uploaded, the server might run out
of memory to store the file. By using ACKs and NAKs, the receiver can control the rate at
which it receives information. With stop-and-wait ARQ, the receiver does not send an
ACK until it is ready to receive more packets. In continuous ARQ, the sender and receiver
usually agree on the size of the sliding window. Once the sender has transmitted the maxi-
mum number of packets permitted in the sliding window, it cannot send any more packets
until the receiver sends an ACK.

Forward Error Correction

Forward error correction uses codes containing sufficient redundancy to prevent errors by
detecting and correcting them at the receiving end without retransmission of the original
message. The redundancy, or extra bits required, varies with different schemes. It ranges

128 CHAPTER 4 DATA LINK LAYER

Packet A

Sender Receiver

ACK

Packet B

NAK

Packet B

ACK

No errors
detected

Errors
detected

No errors
detected

FIGURE 4.4 Stop-and-wait ARQ (Automatic Repeat reQuest). ACK = acknowledg-
ment; NAK = negative acknowledgment.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 128

from a small percentage of extra bits to 100 percent redundancy, with the number of error-
detecting bits roughly equaling the number of data bits. One of the characteristics of many
error-correcting codes is that there must be a minimum number of error-free bits between
bursts of errors.

Forward error correction is commonly used in satellite transmission. A round trip
from the earth station to the satellite and back includes a significant delay. Error rates can
fluctuate depending on the condition of equipment, sunspots, or the weather. Indeed,
some weather conditions make it impossible to transmit without some errors, making for-
ward error correction essential. Compared with satellite equipment costs, the additional
cost of forward error correction is insignificant.

Error Control in Practice

In the OSI model (see Chapter 1), error control is defined to be a layer-2 function—it is
the responsibility of the data link layer. However, in practice, we have moved away from

ERROR CONTROL 129

FIGURE 4.5 Continuous ARQ (Automatic Repeat reQuest). ACK = acknowledgment;
NAK = negative acknowledgment.

Packet A

Sender Receiver

Packet B

ACK A

Packet C

ACK B

Packet D

No errors
detected

No errors
detected

NAK C

Packet C

ACK D

ACK C

No errors
detected

No errors
detected

Errors
detected

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 129

this. Most network hardware and software available today provide an error control func-
tion at the data link layer, but it is turned off. Most network cables are very reliable and er-
rors are far less common than they were in the 1980s.

Therefore, most data link layer software today is configured to detect errors, but not
correct them. Any time a packet with an error is discovered, it is simply discarded. The
exceptions to this tend to be wireless technologies and a few WAN technologies where er-
rors are more common.

The implication from this is that error correction must be performed by software at
higher layers. This software must be able to detect lost packets (i.e., those that have been
discarded) and request the sender to retransmit them. This is commonly done by the trans-
port layer using continuous ARQ as we shall see in the next chapter.

DATA LINK PROTOCOLS

In this section, we outline several commonly used data link layer protocols, which are
summarized in Figure 4.7. Here we focus on message delineation, which indicates where

130 CHAPTER 4 DATA LINK LAYER

To see how error-correcting
codes work, consider the example of a forward
error checking code in Figure 4.6, called a Ham-
ming code, after its inventor, R. W. Hamming.
This code is a very simple approach, capable of
correcting 1-bit errors. More sophisticated tech-
niques (e.g., Reed–Solomon) are commonly used
today, but this will give you a sense of how they
work.

The Hamming code associates even parity
bits with unique combinations of data bits. With
a 4-data-bit code as an example, a character
might be represented by the data-bit configura-
tion 1010. Three parity bits, P1, P2, and P4, are
added, resulting in a 7-bit code, shown in the
upper half of Figure 4.6. Notice that the data bits
(D3, D5, D6, D7) are 1010 and the parity bits (P1, P2,
P4) are 101.

As depicted in the upper half of Figure 4.6,
parity bit P1 applies to data bits D3, D5, and D7.
Parity bit P2 applies to data bits D3, D6, and D7.
Parity bit P4 applies to data bits D5, D6, and D7.
For the example, in which D3, D5, D6, D7 = 1010,
P1 must equal 1 because there is only a single 1
among D3, D5 and D7 and parity must be even.

Similarly, P2 must be 0 because D3 and D6 are
1’s. P4 is 1 because D6 is the only 1 among D5,
D6, and D7.

Now, assume that during the transmission,
data bit D7 is changed from a 0 to a 1 by line
noise. Because this data bit is being checked by
P1, P2, and P4, all 3 parity bits now show odd par-
ity instead of the correct even parity. D7 is the
only data bit that is monitored by all 3 parity bits;
therefore, when D7 is in error, all 3 parity bits
show an incorrect parity. In this way, the receiv-
ing equipment can determine which bit was in
error and reverse its state, thus correcting the
error without retransmission.

The lower half of the figure is a table that de-
termines the location of the bit in error. A 1 in
the table means that the corresponding parity
bit indicates a parity error. Conversely, a 0
means the parity check is correct. These 0’s and
1’s form a binary number that indicates the nu-
meric location of the erroneous bit. In the previ-
ous example, P1, P2, and P4 checks all failed,
yielding 111, or a decimal 7, the subscript of the
erroneous bit.

TECHNICAL

FOCUS

4-1 HOW FORWARD ERROR CORRECTION WORKS

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 130

DATA LINK PROTOCOLS 131

0 = Corresponding parity
 check is correct

1 = Corresponding parity
 check fails

Determines in which
bit the error occured

P
4

P
2

P
1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

no error
P

1
P

2
D

3
P

4
D

5
D

6
D

7

P
1

P
2

D
3

P
4

D
5

D
6

D
7

1 0 1 1 0 1 0

Checking relations between parity bits (P) and data bits (D)

Interpreting parity bit patterns

FIGURE 4.6 Hamming code for forward error correction.

*Varies depending on the message length.

ARQ = Automatic Repeat reQuest; CRC = cyclical redundancy check; HDLC = high-level data link control; PPP =
Point-to-Point Protocol; SDLC = synchronous data link control.

FIGURE 4.7 Protocol summary.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 131

a message starts and stops, and the various parts or fields within the message. For exam-
ple, you must clearly indicate which part of a message or packet of data is the error-
control portion; otherwise, the receiver cannot use it properly to determine if an error has
occurred.

Asynchronous Transmission

Asynchronous transmission often is referred to as start–stop transmission because the
transmitting computer can transmit a character whenever it is convenient, and the receiv-
ing computer will accept that character. It is typically used on point-to-point full-duplex
circuits (i.e., circuits that have only two computers on them), so media access control is
not a concern. If you use VT100 protocol, or connect to a UNIX or Linux computer using
Telnet, chances are you are using asynchronous transmission.

With asynchronous transmission, each character is transmitted independently of all
other characters. To separate the characters and synchronize transmission, a start bit and a
stop bit are put on the front and back of each individual character. For example, if we are
using 7-bit ASCII with even parity, the total transmission is 10 bits for each character
(1 start bit, 7 bits for the letter, 1 parity bit, 1 stop bit).

The start bit and stop bit are the opposite of each other. Typically, the start bit is a 0
and the stop bit is a 1. There is no fixed distance between characters because the terminal
transmits the character as soon as it is typed, which varies with the speed of the typist. The
recognition of the start and stop of each message (called synchronization) takes place for
each individual character because the start bit is a signal that tells the receiver to start sam-
pling the incoming bits of a character so the data bits can be interpreted into their proper
character structure. A stop bit informs the receiver that the character has been received
and resets it for recognition of the next start bit.

When the sender is waiting for the user to type the next character, no data is sent;
the communication circuit is idle. This idle time really is artificial—some signal always
must be sent down the circuit. For example, suppose we are using a unipolar digital sig-
naling technique where +5 volts indicates a 1 and 0 volts indicates a 0 (see Chapter 3).
Even if we send 0 volts, we are still sending a signal, a 0 in this case. Asynchronous trans-
mission defines the idle signal (the signal that is sent down the circuit when no data are
being transmitted) as the same as the stop bit. When the sender finishes transmitting a let-
ter and is waiting for more data to send, it sends a continuous series of stop bits. Figure
4.8 shows an example of asynchronous transmission.

Some older protocols have two stop bits instead of the traditional single stop bit.
The use of both a start bit and a stop bit is changing; some protocols have eliminated the
stop bit altogether.

Asynchronous File Transfer Protocols

Today, data transmission by microcomputers often means the transfer of data files. In gen-
eral, microcomputer file transfer protocols are used on asynchronous point-to-point cir-
cuits, typically across telephone lines via a modem. All file transfer protocols have two
characteristics in common. First, these protocols are designed to transmit error-free data
from one computer to another. Second, because there is a large amount of data to be trans-

132 CHAPTER 4 DATA LINK LAYER

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 132

mitted, it makes more sense to group the data together into blocks of data that are trans-
mitted at the same time, rather than sending each character individually via standard asyn-
chronous transmission. This section discusses the structure of the data blocks (also called
packets or frames) used by several common protocols.

Xmodem The Xmodem protocol takes the data being transmitted and divides it into
blocks (Figure 4.9). Each block has a start-of-header (SOH) character, a 1-byte block num-
ber, 128 bytes of data, and a 1-byte checksum for error checking. Even though this protocol
was developed for microcomputer-to-microcomputer communications, it often is used for
microcomputer-to-mainframe communications. Xmodem uses stop-and-wait ARQ.

Xmodem-CRC improves error detection accuracy of the Xmodem protocol. It re-
places the checksum with a more rigorous 1-byte cyclical redundancy check (CRC-8).

Xmodem-1K increases the efficiency of Xmodem-CRC by using data blocks of
1,024 bytes instead of the 128-character blocks of the original Xmodem. Efficiency and
throughput are discussed in more detail later in this chapter.

Zmodem Zmodem is a newer protocol and not a subset of Xmodem. It incorporates fea-
tures of several protocols. It uses a more powerful error-detection method (CRC-32) with
continuous ARQ. Zmodem also dynamically adjusts its packet size according to communi-
cation circuit conditions to increase efficiency. Usually Zmodem is preferred to Xmodem.

Synchronous Transmission

With synchronous transmission, all the letters or data in one group of data is transmitted at
one time as a block of data. This block of data is called a frame or packet, depending on

DATA LINK PROTOCOLS 133

0V

+3V
0 1 1 1 0 1 0 1 10

Idle Idle

Stop
bit

Parity
bit

7 bit ASCII data
Start
bit

FIGURE 4.8 Asynchronous transmission. ASCII = United States of America
Standard Code for Information Interchange.

FIGURE 4.9 Xmodem format.

Checksum
(1 byte)

Message
(128 bytes)

Packet #
compliment

(1 byte)

STX
(1 byte)

Packet #
(1 byte)

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 133

the protocol, but the meaning is the same. For example, a terminal or microcomputer will
save all the keystrokes typed by the user and transmit them only when the user presses a
special “transmit” key. In this case, the start and end of the entire packet must be marked,
not the start and end of each letter. Synchronous transmission is often used on both point-
to-point and multipoint. For multipoint circuits, each packet must include a destination
address and a source address, and media access control is important.

The start and end of each packet (synchronization) sometimes is established by
adding synchronization characters (SYN) to the start of the packet. Depending on the pro-
tocol, there may be anywhere from one to eight SYN characters. After the SYN charac-
ters, the transmitting computer sends a long stream of data that may contain thousands of
bits. Knowing what code is being used, the receiving computer counts off the appropriate
number of bits for the first character, assumes this is the first character, and passes it to the
computer. It then counts off the bits for the second character, and so on.

In summary, asynchronous data transmission means each character is transmitted
as a totally independent entity with its own start and stop bits to inform the receiving
computer that the character is beginning and ending. Synchronous transmission means
whole blocks of data are transmitted as packets after the sender and the receiver have
been synchronized.

There are many protocols for synchronous transmission. They fall into three broad
categories: byte-oriented protocols, bit-oriented protocols, and byte-count protocols. In
this next section, we discuss four common synchronous data link protocols.

Synchronous Data Link Control Synchronous data link control (SDLC) is a
mainframe protocol developed by IBM in 1972 that is still in use today. SDLC is a bit-
oriented protocol, because the data contained in the frame do not have to be in 8-bit bytes.
SDLC is therefore more flexible than byte-oriented protocols. It uses a controlled-access
media access protocol. If you use a 3270 protocol, you’re using SDLC.

Figure 4.10 shows a typical SDLC packet (or frame, as it is called). Each SDLC
frame begins and ends with a special bit pattern (01111110), known as the flag. The ad-
dress field identifies the destination. The length of the address field is usually 8 bits but
can be set at 16 bits; all computers on the same network must use the same length. The
control field identifies the kind of frame that is being transmitted, either information or su-
pervisory. An information frame is used for the transfer and reception of messages, frame
numbering of contiguous frames, and the like. A supervisory frame is used to transmit ac-
knowledgments (ACKs and NAKs). The message field is of variable length and is the
user’s message. The frame check sequence field is a 32-bit CRC code (some older ver-
sions use a 16-bit CRC).

134 CHAPTER 4 DATA LINK LAYER

Flag
(8 bits)

Frame
check

sequence
(32 bits)

Message
(variable)

Control
(8 bits)

Flag
(8 bits)

Address
(8 bits)

FIGURE 4.10 SDLC (synchronous data link control) format.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 134

SDLC and other bit-oriented protocols suffer from a transparency problem; that is,
the protocol is not “transparent” because it cannot automatically send all types of data with
any bit patterns. It is possible that the user’s data to be transmitted contains the same bit
pattern as the flag (01111110). If this is not prevented, the receiver will mistakenly believe
that this data marks the end of the frame and ignore all the data that follows it. The solution
is called bit stuffing. Anytime the sender encounters five 1’s in a row in the user’s data to
be transmitted, the sender “stuffs” one extra bit, a 0, into the message and continues to
transmit. Anytime the receiver encounters five 1’s followed by a 0 (i.e., 111110), the re-
ceiver automatically deletes the 0 and continues to process the data stream. Conversely, if
the receiver encounters five 1’s followed by a 1 (i.e., 111111) it knows to expect another 0
as part of the flag. This technique works, but it increases the complexity of the protocol.

High-Level Data Link Control High-level data link control (HDLC) is a formal
standard developed by the ISO. HDLC is essentially the same as SDLC, except that the ad-
dress and control fields can be longer. HDLC also has several additional benefits that are
beyond the scope of this book, such as a larger sliding window for continuous ARQ. It uses
a controlled-access media access protocol. One variant, Link Access Protocol–Balanced
(LAP-B), uses the same structure as HDLC but is a scaled-down version of HDLC (i.e.,
provides fewer of those benefits mentioned that are “beyond the scope of this book”).

Ethernet (IEEE 802.3) Ethernet is a very popular LAN protocol, conceived by Bob
Metcalfe in 1973 and developed jointly by Digital, Intel, and Xerox in the 1970s. Since then,
Ethernet has been further refined and developed into a formal standard called IEEE 802.3 ac.3

Ethernet is a byte-count protocol because instead of using special characters or bit patterns to
mark the end of a packet, it includes a field that specifies the length of the message portion of
the packet. Unlike SDLC and HDLC, Ethernet has no transparency problems. Any bit pattern
can be transmitted, because Ethernet uses the number of bytes, not control characters, to de-
lineate the message. Ethernet uses a contention media access protocol.

Figure 4.11 shows a typical Ethernet packet. The packet starts with a 7-byte pream-
ble which is a repeating pattern of ones and zeros (10101010). This is followed by a start
of frame delimiter, which acts like the flag in SDLC to mark the start of the frame. The des-
tination address specifies the receiver, whereas the source address specifies the sender.
The length indicates the length in 8-bit bytes of the message portion of the packet. The

DATA LINK PROTOCOLS 135

3A competing version of Ethernet called Ethernet II is also available. Ethernet II and IEEE 802.3 Ethernet are
similar but differ enough to be incompatible. In this book, we discuss only IEEE 802.3 Ethernet.

FIGURE 4.11 Ethernet 802.3ac packet layout.

Preamble

7
bytes

Start of
Frame

1
byte

Destination
Address

6
bytes

Source
Address

6
bytes

VLAN
Tag

4
bytes

Length

2
bytes

Control

1-2
bytes

Data

43-1497
bytes

Frame check
sequence

4
bytes

DSAP

1
byte

SSAP

1
byte

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 135

VLAN tag field is an optional 4-byte address field used by virtual LANs (VLANs), which
are discussed in Chapter 8. The Ethernet packet uses this field only when VLANs are in
use; otherwise the field is omitted, and the length field immediately follows the source ad-
dress field. When the VLAN tag field is in use, the first 2 bytes are set to the number
24,832 (hexadecimal 81-00), which is obviously an impossible packet length. When Eth-
ernet sees this length, it knows that the VLAN tag field is in use. When the length is some
other value, it assumes that VLAN tags are not in use and that the length field immedi-
ately follows the source address field. The DSAP and SSAP are used to pass control infor-
mation between the sender and receiver. These are often used to indicate the type of
network layer protocol the packet contains (e.g., TCP/IP or IPX/SPX, as described in
Chapter 5). The control field is used to hold the packet sequence numbers and ACKs and
NAKs used for error control, as well as to enable the data link layers of communicating
computers to exchange other control information. The last 2 bits in the first byte are used
to indicate the type of control information being passed and whether the control field is
1 or 2 bytes (e.g., if the last 2 bits of the control field are 11, then the control field is 1
byte in length). In most cases, the control field is 1-byte long. The maximum length of the
message is 1,500 bytes. The packet ends with a CRC-32 frame check sequence used for
error detection.

136 CHAPTER 4 DATA LINK LAYER

A DAY IN THE LIFE: NETWORK SUPPORT TECHNICIAN

When a help call arrives at the help desk, the help
desk staff (first-level support) spends up to 10
minutes attempting to solve the problem. If they
can’t, then the problem is passed to the second-
level support, the network support technician.

A typical day in the life of a network support
technician starts by working on computers from
the day before. Troubleshooting usually begins
with a series of diagnostic tests to eliminate
hardware problems. The next step, for a laptop,
is to remove the hard disk and replace it with a
hard disk containing a correct standard image. If
the computer passes those tests then the prob-
lem is usually software. Then the fun begins.

Once a computer has been fixed it is impor-
tant to document all the hardware and/or soft-
ware changes to help track problem computers
or problem software. Sometimes a problem is
new but relatively straightforward to correct
once it has been diagnosed. In this case, the
technician will change the standard support

process followed by the technicians working at
the help desk to catch the problem before it is es-
calated to the network support technicians. In
other cases, a new entry is made into the organi-
zation’s technical support knowledge base so
that if another technician (or user) encounters the
problem it is easier for him or her to diagnose
and correct the problem. About 10% of the time
of the network technician is spent documenting
solutions to problems.

Network support technicians also are the ones
who manage new inventory and set up and con-
figure new computers as they arrive from the
manufacturer. They are also the ones responsible
for deploying new software and standard desk-
top images across the network. Many companies
also set aside standard times for routine training;
in our case, every Friday, several hours is de-
voted to regular training.

With thanks to Doug Strough

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 136

Point-to-Point Protocol Point-to-Point Protocol (PPP) is a byte-oriented proto-
col developed in the early 1990s that is used to dial up from home computers to an ISP. It
is designed to transfer data over a point-to-point telephone line but provides an address so
that it can be used on multipoint circuits. The message may be up to 1,500 bytes in length.
PPP uses CRC-16 for error control.

TRANSMISSION EFFICIENCY

One objective of a data communication network is to move the highest possible volume of
accurate information through the network. The higher the volume, the greater the result-
ing network’s efficiency and the lower the cost. Network efficiency is affected by charac-
teristics of the circuits such as error rates and maximum transmission speed, as well as by
the speed of transmitting and receiving equipment, the error-detection and control
methodology, and the protocol used by the data link layer.

Each protocol we discussed uses some bits or bytes to delineate the start and end of
each message and to control error. These bits and bytes are necessary for the transmission
to occur, but they are not part of the message. They add no value to the user, but they
count against the total number of bits that can be transmitted.

Each communication protocol has both information bits and overhead bits. Informa-
tion bits are those used to convey the user’s meaning. Overhead bits are used for purposes
such as error checking and marking the start and end of characters and packets. A parity
bit used for error checking is an overhead bit because it is not used to send the user’s data;
if you did not care about errors, the overhead error checking bit could be omitted and the
users could still understand the message.

Transmission efficiency is defined as the total number of information bits (i.e., bits
in the message sent by the user) divided by the total bits in transmission (i.e., information
bits plus overhead bits). For example, let’s calculate the transmission efficiency of asyn-
chronous transmission. Assume we are using 7-bit ASCII. We have 1 bit for parity, plus
1 start bit and 1 stop bit. Therefore, there are 7 bits of information in each letter, but the
total bits per letter is 10 (7 + 3). The efficiency of the asynchronous transmission system
is 7 bits of information divided by 10 total bits, or 70 percent.

In other words, with asynchronous transmission, only 70 percent of the data rate is
available for the user; 30 percent is used by the transmission protocol. If we have a com-
munication circuit using a dial-up modem receiving 56 Kbps, the user sees an effective
data rate (or throughput) of 39.2 Kbps. This is very inefficient.

We can improve efficiency by reducing the number of overhead bits in each mes-
sage or by increasing the number of information bits. For example, if we remove the stop
bits from asynchronous transmission, efficiency increases to 7⁄9, or 77.8 percent. The
throughput of a dial-up modem at 56 Kbps would increase 43.6 Kbps, which is not great
but is at least a little better.

The same basic formula can be used to calculate the efficiency of asynchronous file
transfer or synchronous transmission. For example, suppose we are using SDLC. The
number of information bits is calculated by determining how many information characters
are in the message. If the message portion of the frame contains 100 information charac-
ters and we are using an 8-bit code, then there are 100 × 8 = 800 bits of information. The

TRANSMISSION EFFICIENCY 137

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 137

total number of bits is the 800 information bits plus the overhead bits that are inserted for
delineation and error control. Figure 4.10 shows that SDLC has a beginning flag (8 bits),
an address (8 bits), a control field (8 bits), a frame check sequence (assume we use a
CRC-32 with 32 bits), and an ending flag (8 bits). This is a total of 64 overhead bits; thus,
efficiency is 800/(800 + 64) = 92.6 percent. If the circuit provides a data rate of 56 Kbps,
then the effective data rate available to the user is about 51.9 Kbps.

This example shows that synchronous networks usually are more efficient than asyn-
chronous networks and some protocols are more efficient than others. The longer the mes-
sage (1,000 characters as opposed to 100), the more efficient the protocol. For example,
suppose the message in the SDLC example were 1,000 bytes. The efficiency here would be
99.2 percent, or 8,000/(8000 + 64), giving an effective data rate of about 55.6 Kbps.

This example should also show why Zmodem (with a message length of 1,024
bytes) is more efficient than Xmodem (with a message length of 128 bytes). The general
rule is that the larger the message field, the more efficient the protocol.

So why not have 10,000-byte or even 100,000-byte packets to really increase effi-
ciency? The answer is that anytime a packet is received containing an error, the entire
packet must be retransmitted. Thus, if an entire file is sent as one large packet (e.g., 100K)
and 1 bit is received in error, all 100,000 bytes must be sent again. Clearly, this is a waste
of capacity. Furthermore, the probability that a packet contains an error increases with the
size of the packet; larger packets are more likely to contain errors than are smaller ones,
simply due to the laws of probability.

Thus, in designing a protocol, there is a trade-off between large and small packets.
Small packets are less efficient but are less likely to contain errors and cost less (in terms
of circuit capacity) to retransmit if there is an error (Figure 4.12).

Throughput is the total number of information bits received per second, after taking
into account the overhead bits and the need to retransmit packets containing errors. Gen-
erally speaking, small packets provide better throughput for circuits with more errors,
whereas larger packets provide better throughput in less-error-prone networks. Fortu-

138 CHAPTER 4 DATA LINK LAYER

Packet size

T
hr

ou
gh

pu
t

Optimum
packet size

Small packets
have

low efficiency

Large packets
increase probability
of errors and need
for retransmission

FIGURE 4.12 Packet size effects on throughput.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 138

nately, in most real networks, the curve shown in Figure 4.12 is very flat on top, meaning
that there is a range of packet sizes that provide almost optimum performance. Packet
sizes vary greatly among different networks, but most packet sizes tend to be between
2,000 and 4,000 bytes.

Calculating the actual throughput of a data communications network is complex be-
cause it depends not only on the efficiency of the data link protocol but also on the error
rate and number of retransmissions that occur. Transmission rate of information bits
(TRIB) is a measure of the effective number of information bits that is transmitted over a
communication circuit per unit of time. The basic TRIB equation from ANSI is shown in
Figure 4.13, along with an example.

IMPLICATIONS FOR MANAGEMENT

You can think of the data link layer protocol as the fundamental “language” spoken by
networks. This protocol must be compatible with the physical cables that are used, but in
many cases the physical cables can support a variety of different protocols. Each device
on the network speaks a particular data link layer protocol. In the past, there were literally
dozens of protocols that were used; each protocol was custom-tailored to specific needs of
the devices and application software in use. Where different devices or cables from differ-
ent parts of the organization were connected, we used a translator to convert from the data
link protocol spoken by one device into the protocol spoken by another device.

As the Internet has become more prominent and as it has become more important to
move data from one part of an organization to the other, the need to translate among differ-
ent data link layer protocols has become more and more costly. It is now more important to

IMPLICATIONS FOR MANAGEMENT 139

Optimizing performance in a
network, particularly a client–server network, can
be difficult because few network managers real-
ize the importance of the packet size. Selecting
the right—or the wrong—packet size can have
greater effects on performance than anything
you might do to the server.

Standard Commercial, a multinational to-
bacco and agricultural company, noticed a de-
crease in network performance when they
upgraded to a new server. They tested the effects
of using packet sizes between 500 bytes to 32,000
bytes. In their tests, a packet size of 512 bytes re-
quired a total of 455,000 bytes transmitted over
their network to transfer the test messages. In
contrast, the 32,000-byte packets were far more

efficient, cutting the total data by 44 percent to
257,000 bytes.

However, the problem with 32,000-byte pack-
ets was a noticeable response time delay be-
cause messages were saved until the 32,000-byte
packets were full before transmitting.

The ideal packet size depends on the specific
application and the pattern of messages it gener-
ates. For Standard Commercial, the ideal packet
size appeared to be between 4,000 and 8,000. Un-
fortunately, not all network software packages
enable network managers to fine-tune packet
sizes in this way.

SOURCE: “Sleuthing for the Right Packet Size,” In-
foWorld, January 16, 1995.

MANAGEMENT

FOCUS

4-2 SLEUTHING FOR THE RIGHT PACKET SIZE

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 139

provide a few widely used protocols for all networks than to custom tailor protocols to the
needs of specific devices or applications. Today, businesses are moving rapidly to reduce the
number of different protocols spoken by their networking equipment and converge on a few
standard protocols that used widely throughout the network.

We still do use different protocols in different parts of the network where there are
important reasons for doing so. For example, local area networks often have different
needs than wide area networks, so their data link layer protocols typically are still differ-
ent, but even here we are seeing a few organizations move to standardize protocols.

140 CHAPTER 4 DATA LINK LAYER

FORMULA FOR CALCULATING TRIB

Number of information bits accepted

Total time required to get the bits accepted
TRIB =

TRIB =
K(M – C) (1 – P)

(M/R) + T

TRIB = = 3,908 bits per second
7(400 – 10) (1 – 0.01)

(400/600) + 0.025

=

=

=

=

=

=

information bits per character

packet length in characters

data transmission rate in characters per second

average number of noninformation characters per block (control characters)

probability that a block will require retransmission because of error

time between blocks in seconds, such as modem delay/turnaround time on half duplex, echo sup-
pressor delay on dial-up, and propogation delay on satellite transmission. This is the time required to
reverse the direction of transmission from send to receive or receive to send on a half-duplex circuit.
It can be obtained from the modem specification book and may be referred to as reclocking time.

where K

M

R

C

P

T

=

=

=

=

=

=

7 bits per character (information)

400 characters per block

600 characters per second (derived from 4,800 bps divided by 8 bits/character)

10 control characters per block

0.01 (10–2) or 1 retransmission per 100 blocks transmitted—1%

25 milliseconds (0.025) turnaround time

where K

M

R

C

P

T

If all factors in the calculation remain constant except for the circuit, which is changed to full duplex (no turn-
around time delays, T = 0), then the TRIB increases to 4,504 bps.

Look at the equation where the turnaround value (T) is 0.025. If therre is a further propagation delay time of
475 milliseconds (0.475), this figure changes to 0.500. For demonstrating how a satellite channel affects TRIB,
the total delay time is now 500 milliseconds. Still using the figures above (except for the new 0.500 delay time),
we reduce the TRIB for our half-duplex satellite link to 2,317 bps, which is almost half of the full-duplex (no
turnaround time) 4,054 bps.

The following TRIB example shows the calculation of throughput assuming a 4,800-bps half-duplex circuit.

FIGURE 4.13 Calculating TRIB (transmission rate of information bits).

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 140

This move to standardize data link layer protocols means that networking equip-
ment and networking staff need to understand fewer protocols—their job is becoming
simpler, which in turn means that the cost to buy and maintain network equipment and to
train networking staff is gradually decreasing (and the side benefit to students is that there
are fewer protocols to learn!). The downside, of course, is that some applications may take
longer to run over protocols are not perfectly suited to them. As network capacities in the
physical layer continue to increase, this has proven to be far less important than the signif-
icant cost savings that can be realized from standardization.

SUMMARY

Media Access Control Media access control refers to controlling when computers transmit. There
are three basic approaches. With roll-call polling, the server polls client computers to see if they
have data to send; computers can transmit only when they have been polled. With hub polling or
token passing, the computers themselves manage when they can transmit by passing a token to one
other; no computer can transmit unless it has the token. With contention, computers listen and trans-
mit only when no others are transmitting. In general, contention approaches work better for small
networks that have low levels of usage, whereas polling approaches work better for networks with
high usage.

Sources and Prevention of Error Errors occur in all networks. Errors tend to occur in groups (or
bursts) rather than 1 bit at a time. The primary sources of errors are impulse noises (e.g., lightning),
cross-talk, echo, and attenuation. Errors can be prevented (or at least reduced) by shielding the ca-
bles; moving cables away from sources of noise and power sources; using repeaters (and, to a lesser
extent, amplifiers); and improving the quality of the equipment, media, and their connections.

Error Detection and Correction All error-detection schemes attach additional error-detection
data, based on a mathematical calculation, to the user’s message. The receiver performs the same cal-
culation on incoming messages, and if the results of this calculation do not match the error-detection
data on the incoming message, an error has occurred. Parity, LRC, and CRC are the most common
error-detection schemes. The most common error-correction technique is simply to ask the sender to
retransmit the message until it is received without error. A different approach, forward error correc-
tion, includes sufficient information to allow the receiver to correct the error in most cases without
asking for a retransmission.

Message Delineation Message delineation means to indicate the start and end of a message.
Asynchronous transmission uses start and stop bits on each letter to mark where they begin and end.
Synchronous techniques (e.g., SDLC, HDLC, token ring, Ethernet, PPP) or file transfer protocols
(e.g., Xmodem, Zmodem) group blocks of data together into packets or frames that use special char-
acters or bit patterns to mark the start and end of entire messages.

Transmission Efficiency and Throughput Every protocol adds additional bits to the user’s mes-
sage before sending it (e.g., for error detection). These bits are called overhead bits because they add
no value to the user; they simply ensure correct data transfer. The efficiency of a transmission proto-
col is the number of information bits sent by the user divided by the total number of bits transferred
(information bits plus overhead bits). Synchronous transmission provides greater efficiency than
does asynchronous transmission. In general, protocols with larger packet sizes provide greater effi-
ciency than do those with small packet sizes. The drawback to large packet sizes is that they are
more likely to be affected by errors and thus require more retransmission. Small packet sizes are
therefore better suited to error-prone circuits, and large packets, to error-free circuits.

SUMMARY 141

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 141

142 CHAPTER 4 DATA LINK LAYER

QUESTIONS

1. What does the data link layer do?
2. What is media access control, and why is it important?
3. Under what conditions is media access control unim-

portant?
4. Compare and contrast roll-call polling, hub polling

(or token passing), and contention.
5. Which is better, hub polling or contention? Explain.
6. Define two fundamental types of errors.
7. Errors normally appear in _____, which is when

more than 1 data bit is changed by the error-causing
condition.

8. Is there any difference in the error rates of lower-
speed lines and higher-speed lines?

9. Briefly define noise.
10. Describe four types of noise. Which is likely to pose

the greatest problem to network managers?

11. How do amplifiers differ from repeaters?
12. What are three ways of reducing errors and the types

of noise they affect?
13. Describe three approaches to detecting errors, includ-

ing how they work, the probability of detecting an
error, and any other benefits or limitations.

14. Briefly describe how even parity and odd parity
work.

15. Briefly describe how checksum works.
16. How does CRC work?
17. How does forward error correction work? How is it

different from other error-correction methods?
18. Under what circumstances is forward error correc-

tion desirable?
19. Compare and contrast stop-and-wait ARQ and con-

tinuous ARQ.

KEY TERMS

acknowledgement (ACK)
amplifier
asynchronous transmis-

sion
attenuation
Automatic Repeat reQuest

(ARQ)
block check character

(BCC)
burst error
checksum
contention
continuous ARQ
cyclical redundancy check

(CRC)
echo
efficiency
error detection with re-

transmission
error prevention
error rate

Ethernet (IEEE 802.3)
even parity
flow control
forward error correction
frame
Gaussian noise
Go-Back-N ARQ
Hamming code
harmonic distortion
high-level data link con-

trol (HDLC)
hub polling
impulse noise
information bits
intermodulation noise
jitter
line noise
line outage
Link Access Protocol-

Balanced (LAP-B)

Link Access Protocol
for Modems (LAP-
M)

media access control
negative acknowledg-

ment (NAK)
odd parity
overhead bits
packet
parity bit
parity checking
Point-to-Point Protocol

(PPP)
polling
repeater
roll-call polling
Serial Line Internet

Protocol (SLIP)
sliding window
start bit

stop-and-wait ARQ
stop bit
synchronization
synchronous data link

control (SDLC)
synchronous transmis-

sion
throughput
token passing
token ring (IEEE

802.5)
transmission efficiency
transmission rate of in-

formation bits
(TRIB)

white noise
Xmodem
Zmodem

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 142

EXERCISES 143

EXERCISES

4-1. Draw how a series of four separate messages would
be successfully sent from one computer to another if
the first message was transferred without error, the
second was initially transmitted with an error, the
third was initially lost, and the ACK for the fourth
was initially lost.

4-2. How efficient would a 6-bit code be in asynchronous
transmission if it had 1 parity bit, 1 start bit, and 2
stop bits? (Some old equipment uses 2 stop bits.)

4-3. What is the transmission rate of information bits if
you use ASCII (8 bits plus 1 parity bit), a 1,000-char-
acter block, 56 Kbps modem transmission speed, 20
control characters per block, an error rate of 1 per-
cent, and a 30-millisecond turnaround time? What is
the TRIB if you add a half-second delay to the turn-
around time because of satellite delay?

4-4. Search the Web to find a software vendor that sells a
package that supports each of the following protocols:

Zmodem, SDLC, HDLC, Ethernet, and PPP (i.e., one
package that supports SDLC, another [or the same] for
Zmodem, and so on).

4-5. Investigate the network at your organization (or a
service offered by an IXC) to find out the average
error rates.

4-6. What is the efficiency if a 100-byte file is transmitted
using Ethernet? A 10,000-byte file?

4-7. What is the propagation delay on a circuit using a
LEO satellite orbiting 500 miles above the earth if
the speed of the signal is 186,000 miles per second?
If the satellite is 22,000 miles above the earth?

4-8. Suppose you are going to connect the computers in
your house or apartment. What media would you
use? Why? Would this change if you were building a
new house?

20. Which is the simplest (least sophisticated) protocol
described in this chapter?

21. How do the various types of Xmodem differ from
Zmodem?

22. Describe the packet layouts for SDLC and Ethernet.
23. What is transparency, and why is this a problem with

SDLC?
24. How does SDLC overcome transparency problems?
25. Explain why Ethernet does not suffer from trans-

parency problems.
26. Why do SDLC packets need an address?
27. What is transmission efficiency?
28. How do information bits differ from overhead bits?
29. Are stop bits necessary in asynchronous transmis-

sion? Explain using a diagram.
30. During the 1990s, there was intense competition be-

tween two technologies (10-Mbps Ethernet and
16-Mbps token ring) for the LAN market. Ethernet

was promoted by a consortium of vendors, whereas
token ring was primarily an IBM product, even
though it was standardized. Ethernet won, and no one
talks about token ring anymore. Token ring used a
hub-polling–based approach. Outline a number of
reasons why Ethernet might have won. Hint: The rea-
sons were both technical and business.

31. Under what conditions does a data link layer proto-
col need an address?

32. Are large packet sizes better than small packet sizes?
Expain.

33. What media access control technique does your class
use?

34. Show how the word “HI” would be sent using asyn-
chronous transmission using even parity (make as-
sumptions about the bit patterns needed). Show how
it would be sent using Ethernet.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 143

144 CHAPTER 4 DATA LINK LAYER

MINI-CASES

I. Smith, Smith, Smith, and Smith

Smith, Smith, Smith, and Smith is a regional accounting firm that is putting up a new headquarters building. The
building will have a backbone network that connects eight LANs (two on each floor). The company is very con-
cerned with network errors. What advice would you give regarding the design of the building and network cable
planning that would help reduce network errors?

II. Worldwide Charity

Worldwide Charity is a charitable organization whose mission is to improve education levels in developing coun-
tries. In each country where it is involved, the organization has a small headquarters and usually 5 to 10 offices in
outlying towns. Staff members communicate with one another via e-mail on older computers donated to the orga-
nization. Because Internet service is not reliable in many of the towns in these countries, the staff members usu-
ally phone headquarters and use a very simple Linux e-mail system that uses a server-based network architecture.
They also upload and download files. What data link layer protocols should they use for the file transfer? What
range of packet sizes is likely to be used?

III. Industrial Products

Industrial Products is a small light-manufacturing firm that produces a variety of control systems for heavy indus-
try. They have a network that connects their office building and warehouse that has functioned well for the last
year, but over the past week, users have begun to complain that the network is slow. Clarence Hung, the network
manager, did a quick check of number of orders over the past week and saw no real change, suggesting that there
has been no major increase in network traffic. What would you suggest that Clarence do next?

IV. Alpha Corp.

Alpha Corp. is trying to decide the size of the connection it needs to the Internet. They estimate that they will
send and receive a total of about 1,000 e-mails per hour and that each e-mail message is about 1,500 bytes in size.
They also estimate that they will send and receive a total of about 3,000 Web pages per hour and that each page is
about 40,000 bytes in size. 1. Without considering transmission efficiency, how large an Internet connection
would you recommend in terms of bits per second (assuming that each byte is 8 bits in length)? 2. Assuming they
use a synchronous data link layer protocol with an efficiency of about 90%, how large an Internet connection
would you recommend? 3. Suppose Alpha wants to be sure that its Internet connection will provide sufficient ca-
pacity the next 2 years, how large an Internet connection would you recommend?

CASE STUDY

NEXT-DAY AIR SERVICE

See the Web site.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 144

HANDS-ON ACTIVITY 145

HANDS-ON ACTIVITY

Capturing Packets on Your Network

In this chapter, we discussed several data link layer proto-
cols, such as SDLC and Ethernet. The objective of this
Activity is for you to see the data link layer packets in ac-
tion on your network.

Ethereal is one of the many tools that permit users
to examine the packets in their network. It is called a
packet sniffer because it enables you to see inside the
packets that your computer sends, as well as packets sent
by other users on your LAN. In other words, you can
eavesdrop on the other users on your LAN to see what
Web sites they visit and even the e-mail they send. We
don’t recommend using it for this reason, but it is impor-

tant that you understand that someone else could be using
Ethereal to sniff your packets to see and record what you
are doing on the Internet.

1. Use your browser to connect to www.ethereal.com
and download and install the Ethereal software.

2. When you start Ethereal you will see a screen like
that in Figure 4.14, minus the two smaller windows
on top.
a. Click Capture
b. Click Interfaces
c. Click the Capture button beside your Ethernet con-

nection (wireless LAN or traditional LAN).

FIGURE 4.14 Capturing packets with Ethereal.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 145

146 CHAPTER 4 DATA LINK LAYER

3. Ethereal will capture all packets moving through
your LAN. To make sure you have something to see,
open your Web browser and visit one or two Web
sites. After you have captured packets for 30–60 sec-
onds, return to Ethereal and click Stop.

4. Figure 4.15 shows the packets captured on my home
network. The top window in Ethereal displays the
complete list of packets in chronological order. Each
packet is numbered; I’ve scrolled the window, so the
first packet shown is packet 11. Ethereal lists the
time, the source IP address, the destination IP ad-
dress, the protocol, and some additional information
about each packet. The IP addresses will be ex-
plained in more detail in the next chapter.

For the moment, look at packet number 16, the
second HTTP packet from the top. I’ve clicked on this
packet, so the middle window shows the inside of the
packet. The first line in this second window says the
frame (or packet if you prefer) is 1091 bytes long. It
contains an Ethernet II packet, an Internet Protocol
(IP) packet, a Transmission Control Protocol (TCP)
Packet, and a Hypertext Transfer Protocol (HTTP)
packet. Remember in Chapter 1 that Figure 1.4 de-
scribed how each packet was placed inside another
packet as the message moved through the layers and
was transmitted.

Click on the plus sign (+) in front of the HTTP
packet to expand it. Ethereal shows the contents of

FIGURE 4.15 Analyzing packets with Ethereal.

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 146

HANDS-ON ACTIVITY 147

the HTTP packet. By reading the data inside the
HTTP packet, you can see that this packet was an
HTTP request to my.yahoo.com that contained a
cookie. If you look closely, you’ll see that the sending
computer was a Tablet PC—that’s some of the op-
tional information my Web browser (Internet Ex-
plorer) included in the HTTP header.

The bottom window in Figure 4.15 shows the
exact bytes that were captured. The section high-
lighted in grey shows the HTTP packet. The numbers
on the left show the data in hexadecimal format
while the data on the right show the text version. The
data before the highlighted section is the TCP packet.

From Chapter 2, you know that the client
sends an HTTP request packet to request a Web page,
and the Web server sends back an HTTP response
packet. Packet number 25 in the top window in Fig-
ure 4.15 is the HTTP response sent back to my com-
puter by the Yahoo server. You can see that the
destination IP address in my HTTP request is the
source IP address of this HTTP packet.

5. Figure 4.15 also shows what happen when you click
the plus sign (+) in front of the Ethernet II packet to
expand it. You can see that this Ethernet packet has a
destination address and source address (e.g.,
00:02:2d:85:cb:e0).

117-147_Fitzg04.qxd 7/5/06 6:26 PM Page 147

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

