TABLE 3.4 Summary of Discrete Compounding Formulas with Discrete Payments

Flow Type	Factor Notation	Formula	Excel Command	Cash Flow Diagram
S I N	Compound amount (<i>F</i> / <i>P</i> , <i>i</i> , <i>N</i>)	$F = P(1+i)^N$	$= \operatorname{FV}(i, N, P,, 0)$	
G L E	Present worth (P/F, i, N)	$P = F(1+i)^{-N}$	$= \mathrm{PV}(i, N, F,, 0)$	\bigvee_{F} N
E Q U	Compound amount (F/A, i, N)	$F = A\left[\frac{(1+i)^N - 1}{i}\right]$	$= \mathrm{PV}(i, N, A,, 0)$	
A L P A Y M E	Sinking fund (<i>A</i> / <i>F</i> , <i>i</i> , <i>N</i>)	$A = F\left[\frac{i}{(1+i)^N - 1}\right]$	= PMT(i, N, P, F, 0)	$\underbrace{\begin{array}{c}01 \ 2 \ 3 \ N-I}_{A \ A \ A} F_{N}$
N T S	Present worth (<i>P</i> / <i>A</i> , <i>i</i> , <i>N</i>)	$P = A \left[\frac{(1+i)^{N} - 1}{i(1+i)^{N}} \right]$	$= \mathrm{PV}(i, N, A_{i}, 0)$	
E R I E S	Capital recovery (<i>A</i> / <i>P</i> , <i>i</i> , <i>N</i>)	$A = P \left[\frac{i(1+i)^{N}}{(1+i)^{N} - 1} \right]$	=PMT $(i, N,, P)$	↓1 2 3 <i>N</i> −1 <i>N</i>
G R A D I E N T	Linear gradient Present worth (P/G, i, N) Conversion factor (A/G, i, N)	$P = G \left[\frac{(1+i)^N - iN - 1}{i^2 (1+i)^N} \right]$ $A = G \left[\frac{(1+i)^N - iN - 1}{i[(1+i)^N - 1]} \right]$		(N-2)G G G M M P M
S E R I E S	Geometric gradient Present worth $(P/A_1, g, i, N)$	$P = \begin{bmatrix} A_1 \left[\frac{1 - (1 + g)^N (1 + i)^{-N}}{i - g} \right] \\ A_1 \left(\frac{N}{1 + i} \right) (\text{if } i = g) \end{bmatrix}$		$A_{1}(1+g)^{N-1}$ A_{1} A_{2} A

		Single	Mutually Exclusive Projects	
Analysis Method	Description	Project Evaluation	Revenue Projects	Service Projects
Payback period PP	A method for determining when in a project's history it breaks even. Management sets the benchmark PP°.	$PP < PP^{\circ}$	Select the one with shortest PP	
Discounted payback period PP(<i>i</i>)	A variation of payback period when factors in the time value of money. Management sets the benchmark PP [•] .	$PP(i) < PP^*$	Select the one with shortest PP(<i>i</i>)	
Present worth PW(<i>i</i>)	An equivalent method which translates a project's cash flows into a net present value	PW(i) > 0	Select the one with the largest PW	Select the one with the least negativ PW
Future worth FW(<i>i</i>)	An equivalence method variation of the PW: a project's cash flows are translated into a net future value	FW(i) > 0	Select the one with the largest FW	Select the or with the leas negative FW
Capitalized equivalent CE(<i>i</i>)	An equivalence method variation of the PW of perpetual or very long-lived project that generates a constant annual net cash flow	$\operatorname{CE}(i) > 0$	Select the one with the largest CE	Select the on with the leas negative CE
Annual equivalence AE(<i>i</i>)	An equivalence method and variation of the PW: a project's cash flows are translated into an annual equivalent sum	AE(i) > 0	Select the one with the largest AE	Select the or with the leas negative AE
Internal rate of return IRR	A relative percentage method which measures the yield as a percentage of investment over the life of a project: The IRR must exceed the minimum required rate of return (MARR).	IRR > MARR	Incremental analysis: If IRR _{A2-A1} > MARR, select the higher cost investment project, A2	
Benefit–cost ratio BC(<i>i</i>)	An equivalence method to evaluate public projects by finding the ratio of the equivalent benefit over the equivalent cost	BC(i) > 1	Incremental analysis: If $BC(i)_{A2-A1} > 1$, select the higher cost investment project, A2.	

Description		Excel Function	Example	Solution
Single- Payment	Find: F Given: P	$= \operatorname{FV}(i\%, N, 0, -P)$	Find the future worth of \$500 in 5 years at 8%.	=FV(8%, 5, 0, -500) =\$734.66
Cash Flows	Find: P Given: F	$= \operatorname{PV}(i\%, N, 0, F)$	Find the present worth of \$1,300 due in 10 years at a 16% interest rate.	=PV(16%, 10, 0, 1300) =(\$294.69)
	Find: F Given: A	$= \operatorname{FV}(i\%, N, A)$	Find the future worth of a payment series of \$200 per year for 12 years at 6%.	=FV(6%, 12, -200) =\$3,373.99
Equal- Payment- Series	Find: P Given: A	$= \operatorname{PV}(i\%, N, A)$	Find the present worth of a payment series of \$900 per year for 5 years at 8% interest rate.	=PV(8%, 5, 900) =(\$3,593,44)
	Find: A Given: P	= PMT(i%, N, -P)	What equal-annual-payment series is required to repay \$25,000 in 5 years at 9% interest rate?	=PMT(9%, 5, -25000) =\$6,427.31
	Find: A Given: F	= PMT(i%, N, 0, F)	What is the required annual savings to accumulate \$50,000 in 3 years at 7% interest rate?	=PMT(7%, 3, 0, 50000) =(\$15,552.58)
	Find: NPW Given: Cash flow series	=NPV(<i>i%</i> , series)	Consider a project with the following cash flow series at 12% ($n = 0, -\$200$; $n = 1, \$150, n = 2, \$300, n = 3, 250$)?	=NPV(12%, B3:B5)+B2 =\$351.03
Measures of Investment Worth	Find: IRR Given: Cash flow series	=IRR(values, guess)	AB1PeriodCash Flow20-200311504230053250	=IRR(B2:B5, 10%) =89%
	Find: AW Given: Cash flow series	=PMT (<i>i%</i> , <i>N</i> , -NPW)		=PMT(12%, 3, -351.03) =\$146.15

Summary of Useful Excel's Financial Functions (Part A)

cription	Excel Function	Example	Solution	
Loan payment size	= PMT(i%, N, P)	Suppose you borrow \$10,000 at 9% interest to be paid in 48 equal monthly payments. Find the loan payment size.	=PMT(9%/12, 48, 10000) =(\$248.45)	
Interest payment	$= \mathrm{IMPT}(i\%, n, N, P)$	Find the portion of interest payment for the 10 th payment.	=IPMT(9%/12, 10, 48, 10000) =(\$62.91)	
Principal payment	$= \operatorname{PPMT}(i\%, n, N, P)$	Find the portion of principal payment for the 10 th payment.	=PPMT(9%/12, 10, 48, 10000) =(\$185.94)	
Cumulative interest payment	=CUMIMPT(<i>i</i> %, <i>N</i> , <i>P</i> , start_period, end_period)	Find the total interest payment over 48 months.	=CUMIMPT(9%/12, 48, 10000, 1, 48) =\$1,944.82	
Interest rate	=RATE (N, A, P, F)	What nominal interest rate is being paid on the following financing arrangement? Loan amount:\$10,000, loan period: 60 months, and monthly payment: \$207.58.	$=RATE(60, 207.58, -10000)$ $= 0.7499\%$ $APR = 0.7499\% \times 12 = 9\%$	
Number of payments	=NPER $(i%, A, P, F)$	Find the number of months required to pay off a loan of \$10,000 with 12% APR where you can afford a monthly payment of \$200.	=NPER(12%/12, 200, -10000) =69.66 months	
Straight-line	=SLN(cost, salvage, life)	Cost = $$100,000,$ S = $$20,000,$ life = 5 years	=SLN(100000, 20000, 5) =\$16,000	
Declining balance	=DB(cost, salvage, life, period, month)	Find the depreciation amount in period 3.	=DB(100000, 20000, 5, 3, 12) =\$14,455	
Double declining balance	=DDB(cost, salvage, life, period, factor)	Find the depreciation amount in period 3 with $\alpha = 150\%$,	=DDB(100000, 20000, 5, 3, 1.5) =\$14,700	
Declining balance with switching to straight-line	=VDB(cost, salvage, life, strat_period, end_period, factor)	Find the depreciation amount in period 3 with $\alpha = 150\%$, with switching allowed.	=VDB(100000, 20000, 5, 3, 4, 1.5) =\$10,290	
	Loan payment size	Loan payment size $=PMT(i\%, N, P)$ Interest payment $=IMPT(i\%, n, N, P)$ Interest payment $=IMPT(i\%, n, N, P)$ Principal payment $=PPMT(i\%, n, N, P)$ Cumulative interest payment $=CUMIMPT(i\%, N, P)$ Interest rate $=CUMIMPT(i\%, N, P)$ Interest rate $=RATE(N, A, P, F)$ Number of payments $=NPER(i\%, A, P, F)$ Straight-line $=SLN(cost, salvage, life)$ Declining balance $=DDB(cost, salvage, life, period, factor)$ Declining balance $=VDB(cost, salvage, life, strat_period, factor)$	Loan payment size=PMT($i\%$, N , P)Suppose you borrow \$10,000 at 9% interest to be paid in 48 equal monthly payments. Find the loan payment size.Interest payment=IMPT($i\%$, n , N , P)Find the portion of interest payment for the 10^{th} payment.Principal payment=PPMT($i\%$, n , N , P)Find the portion of principal payment.Cumulative interest payment=CUMIMPT($i\%$, N , P Find the total interest payment end_period, end_period,Interest rate=CUMIMPT($i\%$, N , P , F Find the total interest payment end_period, months.Interest rate=RATE(N , A , P , F)What nominal interest rate is being paid on the following financing arrangement? Loan amount.\$10,000, loan periot: 60 months, and monthly payment: \$207.58.Number of payments=NPER($i\%$, A , P , F)Find the number of months required to pay off a loan of \$10,000 with 12% APR where you can afford a monthly payment of \$200.Straight-line=SLN(cost, salvage, life)Find the depreciation amount in period 3.Declining balance=DB(cost, salvage, life, period, factor)Find the depreciation amount in period 3 with $\alpha = 150\%$, with	

Summary of Useful Excel's Financial Functions (Part B)