TAB LE 3.4 Summary of Discrete Compounding Formulas with Discrete Payments

Flow Type	Factor Notation	Formula	Excel Command	Cash Flow Diagram
$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~N} \\ & \mathrm{G} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	Compound amount (F/P, i,N) Present worth ($P / F, i, N$)	$F=P(1+i)^{N}$ $P=F(1+i)^{-N}$	$\begin{aligned} & =\mathrm{FV}(i, N, P,, 0) \\ & =\mathrm{PV}(i, N, F,, 0) \end{aligned}$	
$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{Q} \\ & \mathrm{U} \\ & \mathrm{~A} \\ & \mathrm{~L} \\ & \\ & \mathrm{P} \\ & \mathrm{~A} \\ & \mathrm{Y} \\ & \mathrm{M} \end{aligned}$	Compound amount (F/A, i,N) Sinking fund $(A / F, i, N)$	$F=A\left[\frac{(1+i)^{N}-1}{i}\right]$ $A=F\left[\frac{i}{(1+i)^{N}-1}\right]$	$=\operatorname{PV}(i, N, A, 0)$ $=\operatorname{PMT}(i, N, P, F, 0)$	
$\begin{gathered} \mathrm{E} \\ \mathrm{~N} \\ \mathrm{~T} \\ \\ \\ \mathrm{~S} \\ \mathrm{E} \\ \mathrm{R} \\ \mathrm{I} \\ \mathrm{E} \\ \mathrm{~S} \end{gathered}$	Present worth (P/A, i,N) Capital recovery (A/P, i,N)	$\begin{aligned} & P=A\left[\frac{(1+i)^{N}-1}{i(1+i)^{N}}\right] \\ & A=P\left[\frac{i(1+i)^{N}}{(1+i)^{N}-1}\right] \end{aligned}$	$\begin{aligned} & =\mathrm{PV}(i, N, A, 0) \\ & =\operatorname{PMT}(i, N,, P) \end{aligned}$	$\begin{gathered} A A A \quad A A \\ \uparrow \uparrow \uparrow-\uparrow \uparrow \\ \downarrow 123 N-1 N \end{gathered}$
$\begin{gathered} \mathrm{G} \\ \mathrm{R} \\ \mathrm{~A} \\ \mathrm{D} \\ \mathrm{I} \\ \mathrm{E} \\ \mathrm{~N} \\ \mathrm{~T} \end{gathered}$	Linear gradient Present worth (P/G, i,N) Conversion factor (A/G, i, N)	$P=G\left[\frac{(1+i)^{N}-i N-1}{i^{2}(1+i)^{N}}\right]$ $A=G\left[\frac{(1+i)^{N}-i N-1}{i\left[(1+i)^{N}-1\right]}\right]$		
$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{R} \\ & \mathrm{I} \\ & \mathrm{E} \\ & \mathrm{~S} \end{aligned}$	Geometric gradient Present worth $\left(P / A_{1}, g, i, N\right)$	$P=\left[\begin{array}{l} A_{1}\left[\frac{1-(1+g)^{N}(1+i)^{-N}}{i-g}\right] \\ A_{1}\left(\frac{N}{1+i}\right)(\text { if } i=g) \end{array}\right.$		

Summary of Project Analysis Methods				
Analysis Method	Description	Single Project Evaluation	Mutually Exclusive Projects	
			Revenue Projects	Service Projects
Payback period PP	A method for determining when in a project's history it breaks even. Management sets the benchmark PP°.	$\mathrm{PP}<\mathrm{PP}^{\circ}$	Select the one with shortest PP	
Discounted payback period $\mathrm{PP}(i)$	A variation of payback period when factors in the time value of money. Management sets the benchmark PP*.	$\mathrm{PP}(i)<\mathrm{PP}^{\bullet}$	Select the one with shortest $\mathrm{PP}(i)$	
Present worth $\text { PW }(i)$	An equivalent method which translates a project's cash flows into a net present value	$\mathrm{PW}(i)>0$	Select the one with the largest PW	Select the one with the least negative PW
Future worth $\mathrm{FW}(i)$	An equivalence method variation of the PW: a project's cash flows are translated into a net future value	$\mathrm{FW}(i)>0$	Select the one with the largest FW	Select the one with the least negative FW
Capitalized equivalent $\mathrm{CE}(i)$	An equivalence method variation of the PW of perpetual or very long-lived project that generates a constant annual net cash flow	$\mathrm{CE}(i)>0$	Select the one with the largest CE	Select the one with the least negative CE
Annual equivalence $\mathrm{AE}(i)$	An equivalence method and variation of the PW: a project's cash flows are translated into an annual equivalent sum	$\mathrm{AE}(i)>0$	Select the one with the largest AE	Select the one with the least negative AE
Internal rate of return IRR	A relative percentage method which measures the yield as a percentage of investment over the life of a project: The IRR must exceed the minimum required rate of return (MARR).	IRR > MARR	Incremental If IRR $_{\mathrm{A} 2-\mathrm{A} 1}>$ higher cost in	sis: $R R$, select the ent project, A2.
Benefit-cost ratio $\mathrm{BC}(i)$	An equivalence method to evaluate public projects by finding the ratio of the equivalent benefit over the equivalent cost	$\mathrm{BC}(i)>1$	Incremental If $\mathrm{BC}(i)_{\mathrm{A} 2-\mathrm{Al}}$ er cost invest	is: select the highproject, A2.

Summary of Useful Excel's Financial Functions (Part A)

Description		Excel Function	Example			Solution
SinglePayment	Find: F Given: P	$=\mathrm{FV}(i \%, N, 0,-P)$	Find the future worth of $\$ 500$ in 5 years at 8%.			$\begin{aligned} & =\mathrm{FV}(8 \%, 5,0,-500) \\ & =\$ 734.66 \end{aligned}$
Cash Flows	Find: P Given: F	$=\mathrm{PV}(i \%, N, 0, F)$	Find the present worth of $\$ 1,300$ due in 10 years at a 16% interest rate.			$\begin{aligned} & =\mathrm{PV}(16 \%, 10,0,1300) \\ & =(\$ 294.69) \end{aligned}$
Equal- PaymentSeries	Find: F Given: A	$=\mathrm{FV}(i \%, N, A)$	Find the future worth of a payment series of $\$ 200$ per year for 12 years at 6%.			$\begin{aligned} & =\mathrm{FV}(6 \%, 12,-200) \\ & =\$ 3,373.99 \end{aligned}$
	Find: P Given: A	$=\mathrm{PV}(i \%, N, A)$	Find the present worth of a payment series of $\$ 900$ per year for 5 years at 8% interest rate.			$\begin{aligned} & =P V(8 \%, 5,900) \\ & =(\$ 3,593,44) \end{aligned}$
	Find: A Given: P	$=\operatorname{PMT}(i \%, N,-P)$	What equal-annual-payment series is required to repay $\$ 25,000$ in 5 years at 9% interest rate?			$\begin{aligned} & =\operatorname{PMT}(9 \%, 5,-25000) \\ & =\$ 6,427.31 \end{aligned}$
	Find: A Given: F	$=\mathrm{PMT}(i \%, N, 0, F)$	What is the required annual savings to accumulate $\$ 50,000$ in 3 years at 7% interest rate?			$\begin{aligned} & =\operatorname{PMT}(7 \%, 3,0,50000) \\ & =(\$ 15,552.58) \end{aligned}$
Measures of Investment Worth	Find: NPW Given: Cash flow series	$=\mathrm{NPV}(i \%$, series $)$	Consider a project with the following cash flow series at 12% ($n=0,-\$ 200$; $n=1, \$ 150, n=2, \$ 300$, $n=3,250)$?			$\begin{aligned} & =\operatorname{NPV}(12 \%, \mathrm{~B} 3: \mathrm{B} 5)+\mathrm{B} 2 \\ & =\$ 351.03 \end{aligned}$
	Find: IRR Given: Cash flow series	$=\operatorname{IRR}$ (values, guess)	1	$\stackrel{\mathrm{A}}{\text { Period }}$	$\begin{gathered} \text { B } \\ \text { Cash } \\ \text { Flow } \end{gathered}$	$\begin{aligned} & =\operatorname{IRR}(\mathrm{B} 2: \mathrm{B} 5,10 \%) \\ & =89 \% \end{aligned}$
			2	0	-200	
			3	1	150	
			4	2	300	
			5	3	250	
	Find: AW Given: Cash flow series	$\begin{aligned} = & \text { PMT }(i \%, N, \\ & - \text { NPW }) \end{aligned}$				$\begin{aligned} = & \text { PMT(} 12 \%, 3, \\ & -351.03) \\ = & \$ 146.15 \end{aligned}$

Summary of Useful Excel's Financial Functions (Part B)

Description		Excel Function	Example	Solution
Loan Analysis Functions	Loan payment size	$=\mathrm{PMT}(i \%, N, P)$	Suppose you borrow $\$ 10,000$ at 9% interest to be paid in 48 equal monthly payments. Find the loan payment size.	$\begin{aligned} & =\operatorname{PMT}(9 \% / 12,48,10000) \\ & =(\$ 248.45) \end{aligned}$
	Interest payment	$=\operatorname{IMPT}(i \%, n, N, P)$	Find the portion of interest payment for the $10^{\text {th }}$ payment.	$\begin{aligned} & =\operatorname{IPMT}(9 \% / 12,10,48,10000) \\ & =(\$ 62.91) \end{aligned}$
	Principal payment	$=\operatorname{PPMT}(i \%, n, N, P)$	Find the portion of principal payment for the $10^{\text {th }}$ payment.	$\begin{aligned} & =\operatorname{PPMT}(9 \% / 12,10,48,10000) \\ & =(\$ 185.94) \end{aligned}$
	Cumulative interest payment	$\begin{aligned} & =\text { CUMIMPT }(i \%, N \text {, } \\ & P, \text { start_period, } \\ & \text { end_period) } \end{aligned}$	Find the total interest payment over 48 months.	$\begin{aligned} & =\text { CUMIMPT }(9 \% / 12, \\ & 48,10000,1,48) \\ & =\$ 1,944.82 \end{aligned}$
	Interest rate	$=\operatorname{RATE}(N, A, P, F)$	What nominal interest rate is being paid on the following financing arrangement? Loan amount:\$10,000, loan period: 60 months, and monthly payment: \$207.58.	$\begin{aligned} & =\text { RATE }(60,207.58,-10000) \\ & =0.7499 \% \end{aligned}$ $\mathrm{APR}=0.7499 \% \times 12=9 \%$
	Number of payments	$=\operatorname{NPER}(i \%, A, P, F)$	Find the number of months required to pay off a loan of \$10,000 with 12% APR where you can afford a monthly payment of $\$ 200$.	$\begin{aligned} & =\operatorname{NPER}(12 \% / 12,200,-10000) \\ & =69.66 \text { months } \end{aligned}$
Depreciation functions	Straight-line	$=$ SLN $($ cost, salvage, life)	$\begin{aligned} & \text { Cost }=\$ 100,000, \\ & S=\$ 20,000, \\ & \text { life }=5 \text { years } \end{aligned}$	$\begin{aligned} & =\operatorname{SLN}(100000,20000,5) \\ & =\$ 16,000 \end{aligned}$
	Declining balance	$=\mathrm{DB}($ cost, salvage, life, period, month)	Find the depreciation amount in period 3.	$\begin{aligned} & =\mathrm{DB}(100000,20000,5,3,12) \\ & =\$ 14,455 \end{aligned}$
	Double declining balance	$=\mathrm{DDB}$ (cost, salvage, life, period, factor)	Find the depreciation amount in period 3 with $\alpha=150 \%$,	$\begin{aligned} & =\operatorname{DDB}(100000,20000,5,3,1.5) \\ & =\$ 14,700 \end{aligned}$
	Declining balance with switching to straight-line	$=\mathrm{VDB}($ cost, salvage, life, strat_period, end_period, factor)	Find the depreciation amount in period 3 with $\alpha=150 \%$, with switching allowed.	$\begin{aligned} & =\operatorname{VDB}(100000,20000,5,3,4,1.5) \\ & =\$ 10,290 \end{aligned}$

