

Success in Mathematics is just a click away...

With WileyPLUS, students and instructors will experience success in the classroom.

When students succeed in your course-when they stay on-task and make the breakthrough that turns confusion into confidence-they are
 empowered to realize the possibilities for greatness that lie within each of them. We know your goal is to create an environment where students reach their full potential and experience the exhilaration of academic success that will last them a lifetime. WileyPLUS can help you reach that goal.

WileyPLUS is an online suite of resources-including the complete text-that will help your students:

- come to class better prepared for your lectures
- get immediate feedback and context-sensitive help on assignments and quizzes
- track their progress throughout the course
"I just wanted to say how much this program helped me in studying... I was able to actually see my mistakes and correct them. ... I really think that other students should have the chance to use WileyPLUS."

Ashlee Krisko, Oakland University
www.wileyplus.com

FOR INSTRUCTORS

WileyPLUS is built around the activities you perform in your class each day. With WileyPLUS you can:

Prepare \& Present

Create outstanding class presentations using a wealth of resources such as PowerPoint"' slides, image galleries, interactive simulations, and more. You can even add materials you have created yourself.
"It has been a great help, and I believe it has helped me to achieve a better grade."

Michael Morris, Columbia Basin College

Create Assignments

Automate the assigning and grading homework or quizzes by using the provided question banks, or by writing your own.

Now Available with WebCT and eCollege!

FOR STUDENTS

You have the potential to make a difference!
WileyPLUS is a powerful online system packed with features to help you make the most
of your potential and get the best grade you can!
With WileyPLUS you get:

For more information on what WileyPLUS can do to help you and your students reach their potential, please visit www.wiley.wileyplus.com/experience

> of students surveyed said it made them better prepared for tests. *

[^0]
FOURTH EDIITON

EXPLORATIONS IN COLLEGE ALGEBRA

LINDA ALMGREN KIME JUDITH CIARK

University of Massachusetts, Boston, Retired

BEVERLY K. MICHAEL
University of Pittsburgh
in collaboration with

Norma M. Agras Miami Dade College
Robert F. Almgren Courant Institute, New York University Linda Falstein University of Massachusetts, Boston, Retired

Meg Hickey Massachusetts College of Art
John A. Lutts University of Massachusetts, Boston
Peg Kem McPartland Golden Gate University, Retired
Jeremiah V. Russell University of Massachusetts, Boston; Boston Public Schools

software developed by

Hubert Hohn Massachusetts College of Art
Funded by a National Science Foundation Grant

WILEY
JOHN WILEY \& SONS, INC.

Publisher	Laurie Rosatone
Acquisitions Editor	Jessica Jacobs
Assistant Editor	Michael Shroff
Editorial Assistant	Jeffrey Benson
Marketing Manager	Jaclyn Elkins
Production Manager	Dorothy Sinclair
Senior Production Editor	Sandra Dumas
Design Director	Harry Nolan
Senior Designer	Madelyn Lesure
Senior Media Editor	Stefanie Liebman
Production Management	Publication Services
Bicentennial Logo Design	Richard J. Pacifico

This book was set in 10/12 Times Roman by Publication Services, and printed and bound by Courier (Westford). The cover was printed by Courier (Westford).

This book is printed on acid-free paper. ∞
Copyright © 2008 John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permission.

To order books or for customer service call 1-800-CALL-WILEY(225-5945).

ISBN 978-0471-91688-8

Printed in the United States of America.

To our students, who inspired us.

A Letter from a Student

My name is Lexi Fournier and I am a freshman here at Pitt. This
in Colle A Algebra course using "'Explt. This courses varying from Before coming to Pitt, I had taken Explorations frustration, stress, and algebra to calculus, all of which produced math that I was requis, and a detestation for math of which produced and creative writing to take a math course here, I subject. When I was told by informing me of thajor; why do I need math? was livid. I am a pre-law non-math/science this new math class aimed at teachinger calmed me

At first I was majors the basic skills they will teaching recommend this skeptical, but I'm writing to you need in everyday life. been realistic mathe. What I have learned thus now to emphatically confidence and motivills presented in a "left brain"" in this course have relatable. The concivation. For once in my carain" method that fosters amorphous topics ads are clear and realistic (aseer as a student, math is to this class. I enjoy doing my my earlier math classes). I the abstract, the lessons are applicable my homework and projects becans look forward empowered by my underst my life and my future because I feel that This course is a understanding. my view on the subject and stimulate math department. It has altered call "everyday math." stimulated an appreciation for what I like to It is my belief that many students will fion for that to and helpful as I have. Thank you for your atte the class as encouraging Sincerely,

Lexi Fournier
Student, University of Pittsburgh

This text was born from a desire to reshape the college algebra course, to make it relevant and accessible to all of our students. Our goal is to shift the focus from learning a set of discrete mechanical rules to exploring how algebra is used in the social and physical sciences. Through connecting mathematics to real-life situations, we hope students come to appreciate its power and beauty.

Guiding Principles

The following principles guided our work.

- Develop mathematical concepts using real-world data and questions.
- Pose a wide variety of problems designed to promote mathematical reasoning in different contexts.
- Make connections among the multiple representations of functions.
- Emphasize communication skills, both written and oral.
- Facilitate the use of technology.
- Provide sufficient practice in skill building to enhance problem solving.

Evolution of Explorations in College Algebra

The fourth edition of Explorations is the result of a 15 -year long process. Funding by the National Science Foundation enabled us to develop and publish the first edition, and to work collaboratively with a nationwide consortium of schools. Faculty from selected schools in the consortium continued to work with us on the second, third, and now the fourth editions. During each stage of revision we solicited extensive feedback from our colleagues, reviewers and students.

Throughout the text, families of functions are used to model real-world phenomena. After an introductory chapter on data and functions, we first focus on linear and exponential functions, since these are the two most commonly used mathematical models. We then discuss logarithmic, power, quadratic, and polynomial functions and finally turn to ways to extend and combine all the types of functions we've studied to create new functions.

The text adopts a problem-solving approach, where examples and exercises lie on a continuum from open-ended, nonroutine questions to problems on algebraic skills. The materials are designed for flexibility of use and offer multiple options for a wide range of skill levels and departmental needs. The text is currently used in small classes, laboratory settings, and large lectures, and in both two- and four-year institutions.

Special Features and Supplements

An instructor is free to choose among a number of special features. The Instructor's Teaching Manual provides support for using these features and includes sample test questions. The Instructor's Solutions Manual contains answers to the even exercises and even problems in the Chapter Reviews. Both manuals are available free for adopters either online at www.wiley.com/college/kimeclark or in hardcopy by contacting your local Wiley representative.

Exploring Mathematical Ideas

Explorations These are open-ended investigations designed to be used in parallel with the text. They appear at the end of each chapter and in two chapter-length Extended Explorations.
New! Chapter Review: Putting It All Together Each review contains problems that apply all of the basic concepts in the chapter. The answers to the odd-numbered problems are in the back of the text.
Check Your Understanding A set of mostly true/false questions at the end of each chapter (with answers in the back of the text) offer students a chance to assess their understanding of that chapter's mathematical ideas.

? SOMETHING TO THNNK ABout

Something to Think About Provocative questions, posed throughout the text, can be used to generate class discussion or for independent inquiry.

60-Second Summaries Short writing assignments in the exercises and Explorations ask students to succinctly summarize their findings.

LD
Readings A variety of articles related to topics covered in the text are available on the course website at $w w w$.wiley.com/college/kimeclark.

Using Technology

COURSE Technology is not required to teach this course. However, we provide numerous
WEBSITE resources, described below, for teaching with technology that can be downloaded from the course website at www.wiley.com /college/kimeclark.
Graphing Calculator Manual The manual offers step-by-step instructions for using the TI83/TI84 family of calculators that are coordinated with the chapters in the text. It is free on the course website or at a discount when packaged in hardcopy with the text.

Interactive Software for Mac and PC Programs for visualizing mathematical concepts, simulations, and practice in skill building are available on the course website. They may be used in classroom demonstrations or a computer lab, or downloaded for student use at home.

Excel and TI83/TI84 Graph Link Files Data files containing all the major data sets used in the text are available on the course website.

Practice in Skill Building

Algebra Aerobics These collections of skill-building practice problems are integrated throughout each chapter. Answers for all Algebra Aerobics problems are in the back of the text.

WileyPLUS This is a powerful online tool that provides a completely integrated suite of teaching and learning resources in one easy-to-use website. It offers an online assessment system with full gradebook capabilities, which contains algorithmically generated skill-building questions from the Algebra Aerobics problems and the exercises in each chapter. Faculty can view the online demo at www.wiley.com/college/wileyplus.

Overall Changes

Extensive faculty reviews guided our work on the fourth edition. The sequence of the chapters remains the same as in the third edition, but we have included

- New chapter reviews, called "Putting It All Together," with problems that bring together the major concepts of the chapter.
- A relocation of exercises from the end of the chapter to the end of each section.
- Expanded coverage of several topics, including function notation, range and domain, piecewise linear functions (including absolute value and step functions), rational functions, composition, and inverse functions.
- Extensive updates of the data sets.
- Revisions to many chapters for greater clarity.
- Many new problems and exercises, ranging from basic algebraic manipulations to real-world applications.

Detailed Changes

CHAPTER REVIEWS: "PUTTING IT ALL TOGETHER" appear at the end of each chapter.
CHAPTER 1: Making Sense of Data and Functions has a new section on the language of functions, with expanded coverage of function notation, domain, and range. Boxes have been added to highlight important concepts.
CHAPTER 2: Rates of Change and Linear Functions has a new subsection on piecewise linear functions, including the absolute value function and step functions.
EXTENDED EXPLORATION: Looking for Links between Education and Earnings uses an updated data set from the U.S. Census about 1000 individuals.
CHAPTER 5: Growth and Decay: An Introduction to Exponential Functions has an expanded discussion on constructing an exponential function given its doubling time or half-life.
CHAPTER 7: Power Functions has an added discussion of asymptotes for negative integer power functions.
CHAPTER 8: Quadratics, Polynomials, and Beyond has changed the most. The old Section 8.6 has been expanded and broken up into three sections. Section 8.6, "New Functions from Old," discusses the effect of stretching, compressing, shifting, reflecting, or rotating a function. Section 8.7, "Combining Two Functions," includes the algebra of functions and an expanded subsection on rational functions. Section 8.8, "Composition and Inverse Functions," extends the coverage of these topics.

Acknowledgments

We wish to express our appreciation to all those who helped and supported us during this extensive collaborative endeavor. We are grateful for the support of the National Science Foundation, whose funding made this project possible, and for the generous help of our program officers then, Elizabeth Teles and Marjorie Enneking. Our original Advisory Board, especially Deborah Hughes Hallett and Philip Morrison, and our original editor, Ruth Baruth provided invaluable advice and encouragement.

Over the last 15 years, through five printings (including a rough draft and preliminary edition), we worked with more faculty, students, TAs, staff, and administrators than we can possibly list here. We are deeply grateful for supportive colleagues at our own University. The generous and ongoing support we received from Theresa Mortimer, Patricia Davidson, Mark Pawlak, Maura Mast, Dick Cluster, Anthony Beckwith, Bob Seeley, Randy Albelda, Art MacEwan, Rachel Skvirsky, Brian Butler, among many others, helped to make this a successful project.

We are deeply indebted to Ann Ostberg and Rebecca Hubiak for their dedicated search for mathematical errors in the text and solutions, and finding (we hope) all of them. A text designed around the application of real-world data would have been impossible without the time-consuming and exacting research done by Patrick Jarrett, Justin Gross, and Jie Chen. Edmond Tomastik and Karl Schaffer were gracious enough to let us adapt some of their real-world examples in the text.

One of the joys of this project has been working with so many dedicated faculty who are searching for new ways to reach out to students. These faculty, and their teaching assistants and students all offered incredible support, encouragement, and a wealth of helpful suggestions. In particular, our heartfelt thanks to members of our original consortium: Sandi Athanassiou and all the wonderful TAs at University of Missouri, Columbia; Natalie Leone, University of Pittsburgh; Peggy Tibbs and John Watson, Arkansas Technical University; Josie Hamer, Robert Hoburg, and Bruce King, past and present faculty at Western Connecticut State University; Judy Stubblefield, Garden City Community College; Lida McDowell, Jan Davis, and Jeff Stuart, University of Southern Mississippi; Ann Steen, Santa Fe Community College; Leah Griffith, Rio Hondo College; Mark Mills, Central College; Tina Bond, Pensacola Junior College; and Curtis Card, Black Hills State University.

The following reviewers' thoughtful comments helped shape the fourth edition: Mark Gïnn, Appalachian State; Ernie Solheid, California State University, Fullerton; Pavlov Rameau, Florida International University; Karen Becker, Fort Lewis College; David Phillips, Georgia State University; Richard M. Aron and Beverly Reed, Kent State University; Nancy R. Johnson, Manatee Community College; Lauren Fern, University of Montana; Warren Bernard, Linda Green, and Laura Younts, Santa Fe Community College; Sarah Clifton, Southeastern Louisiana University; and Jonathan Prewett, University of Wyoming.

We are especially indebted to Laurie Rosatone at Wiley, whose gracious oversight helped to keep this project on track. Particular thanks goes to our new editors Jessica Jacobs, Acquisitions Editor; John-Paul Ramin, Developmental Editor; Michael Shroff, Assistant Editor; and their invaluable assistant Jeffrey Benson. It has been a great pleasure, both professionally and personally, to work with Maddy Lesure on her creative cover design and layout of the text. "Explorations" and the accompanying media would never have been produced without the experienced help from Sandra Dumas, Dorothy Sinclair, and Stefanie Liebman. Kudos to Jan Fisher at Publication Services. Throughout the production of this text, her cheerful attitude and professional skills made her a joy to work with. Over the years many others at Wiley have been extraordinarily helpful in dealing with the myriad of endless details in producing a mathematics textbook. Our thanks to all of them.

Our families couldn't help but become caught up in this time-consuming endeavor. Linda's husband, Milford, and her son Kristian were invaluable scientific and, more importantly, emotional resources. They offered unending encouragement and sympathetic shoulders. Judy's husband, Gerry, become our Consortium lawyer, and her daughters, Rachel, Caroline, and Kristin provided support, understanding, laughter, editorial help and whatever was needed. Beverly's husband, Dan, was patient and understanding about the amount of time this edition took. Her daughters Bridget and Megan would call from college to cheer her on and make sure she was not getting too stressed! All our family members ran errands, cooked meals, listened to our concerns, and gave us the time and space to work on the text. Our love and thanks.

Finally, we wish to thank all of our students. It is for them that this book was written.

Linda, Judy, and Bev

P.S. We've tried hard to write an error-free text, but we know that's impossible. You can alert us to any errors by sending an email to math@wiley.com. Be sure to reference Explorations in College Algebra. We would very much appreciate your input.

COVERING THECONTENTS

The following flow chart suggests some alternative paths through the chapters that have worked successfully for others.

The straight vertical path through Chapters 1,2,4,5, and 8, covering linear, exponential, quadratic and other polynomial functions, indicates the core content of the text. You may choose to cover these chapters in depth, spending time on the explorations, readings and student discussions, writing, and presentations. Or you may pick up the pace and include as many of the other chapters and Extended Explorations as is appropriate for your department's needs.

Kime07_FM.qxd 10/11/07 2:39 PM Page xii

TABLE OF CONTENTS

CHAPTER 1

MAKING SENSE OF

1.1 Describing Single-Variable DataDATA AND FUNCTIONSVisualizing Single-Variable Data 2Mean and Median: What is "Average" Anyway? 6An Introduction to Algebra Aerobics 71.2 Describing Relationships between Two Variables 13
Visualizing Two-Variable Data 13
Constructing a " 60 -Second Summary" 14
Using Equations to Describe Change 16
1.3 An Introduction to Functions 22
What is a Function? 22
Representing Functions in Multiple Ways 23
Independent and Dependent Variables 24
When is a Relationship Not a Function? 24
1.4 The Language of Functions 29
Function Notation 29
Domain and Range 33
1.5 Visualizing Functions 39
Is There a Maximum or Minimum Value? 39
Is the Function Increasing or Decreasing? 40
Is the Graph Concave Up or Concave Down? 40
Getting the Big Idea 42
CHAPTER SUMMARY 49
CHECK YOUR UNDERSTANDING 50
CHAPTER 1 REVIEW: PUTTING IT ALL TOGETHER 52
EXPLORATION 1.1 Collecting, Representing, and Analyzing Data 58
EXPLORATION 1.2 Picturing Functions 61
EXPLORATION 1.3 Deducing Formulas to Describe Data 63
CHAPTER 2
RATES OF CHANGE AND 2.1 Average Rates of Change 66
Describing Change in the U.S. Population over Time 66
Defining the Average Rate of Change 67
Limitations of the Average Rate of Change 68
2.2 Change in the Average Rate of Change 71
2.3 The Average Rate of Change is a Slope 76
Calculating Slopes 76
2.4 Putting a Slant on Data 82
Slanting the Slope: Choosing Different End Points 82
Slanting the Data with Words and Graphs 83
2.5 Linear Functions: When Rates of Change Are Constant 87
What If the U.S. Population Had Grown at a Constant Rate? 87
Real Examples of a Constant Rate of Change 87
The General Equation for a Linear Function 90
2.6 Visualizing Linear Functions 94
The Effect of b 94
The Effect of m 94
2.7 Finding Graphs and Equations of Linear Functions 99
Finding the Graph 99
Finding the Equation 100
2.8 Special Cases 108
Direct Proportionality 108
Horizontal and Vertical Lines 110
Parallel and Perpendicular Lines 112
Piecewise Linear Functions 114
The absolute value function 115
Step functions 117
2.9 Constructing Linear Models for Data 122
Fitting a Line to Data: The Kalama Study 123
Reinitializing the Independent Variable 125
Interpolation and Extrapolation: Making Predictions 126
CHAPTER SUMMARY 131
CHECK YOUR UNDERSTANDING 132
CHAPTER 2 REVIEW: PUTTING IT ALL TOGETHER 134
EXPLORATION 2.1 Having It Your Way 139
EXPLORATION 2.2A Looking at Lines with the Course Software 141
EXPLORATION 2.2B Looking at Lines with a Graphing Calculator 142
Using U.S. Census Data 146
Summarizing the Data: Regression Lines 148
Is There a Relationship between Education and Earnings? 148
Regression Lines: How Good a Fit? 151
Interpreting Regression Lines: Correlation vs. Causation 153
Raising More Questions 154
Do Earnings Depend on Age? 155
Do Earnings Depend upon Gender? 155
How Good are the Data? 157
How Good is the Analysis? 157
EXPLORING ON YOUR OWN 157
EXERCISES 159
CHAPTER 3

WHEN LINES MEET: LINEAR SYSTEMS
3.1 Systems of Linear Equations 1
An Economic Comparison of Solar vs. Conventional Heating Systems 166
3.2 Finding Solutions to Systems of Linear Equations 171
Visualizing Solutions 171
Strategies for Finding Solutions 172
Linear Systems in Economics: Supply and Demand 176
3.3 Reading between the Lines: Linear Inequalities 183
Above and Below the Line 183
Manipulating Inequalities 184
Reading between the Lines 185
Breakeven Points: Regions of Profit or Loss 187
3.4 Systems with Piecewise Linear Functions: Tax Plans 193
Graduated vs. Flat Income Tax 193
Comparing the Two Tax Models 195
The Case of Massachusetts 196
CHAPTER SUMMARY 201
CHECK YOUR UNDERSTANDING 202
CHAPTER 3 REVIEW: PUTTING IT ALL TOGETHER 204
EXPLORATION 3.1 Flat vs. Graduated Income Tax: Who Benefits? 209
CHAPTER 4
THE LAWS OFEXPONENTS ANDLOGARITHMS:MEASURINGTHE UNIVERSE
4.1 The Numbers of Science: Measuring Time and Space 212
Powers of 10 and the Metric System 212
Scientific notation 214
4.2 Positive Integer Exponents 218
Exponent Rules 219
Common Errors 221
Estimating Answers 223
4.3 Negative Integer Exponents 226
Evaluating $\left(\frac{a}{b}\right)^{-}$ 227
4.4 Converting Units 230
Converting Units within the Metric System 230
Converting between the Metric and English Systems 231
Using Multiple Conversion Factors 231
4.5 Fractional Exponents 235
Square Roots: Expressions of the Form a ${ }^{1 / 2}$ 235
nth Roots: Expressions of the Form a ${ }^{1 / n} 23$
Rules for Radicals 238
Fractional Powers: Expressions of the Form a ${ }^{m / n}$ 239
4.6 Orders of Magnitude 242
Comparing Numbers of Widely Differing Sizes 242
Orders of Magnitude 242
Graphing Numbers of Widely Differing Sizes: Log Scales 244
4.7 Logarithms Base 10 248
Finding the Logarithms of Powers of 10 248
Finding the Logarithm of Any Positive Number 250
Plotting Numbers on a Logarithmic Scale 251
CHAPTER SUMMARY 255
CHECK YOUR UNDERSTANDING 256
CHAPTER 4 REVIEW: PUTTING IT ALL TOGETHER 257
EXPLORATION 4.1 The Scale and the Tale of the Universe 260
EXPLORATION 4.2 Patterns in the Positions and Motions of the Planets 262
CHAPTER 5
GROWTH AND DECAY: 5.1 Exponential Growth 266
AN INTRODUCTION TO The Growth of E. coli Bacteria 266
EXPONENTIAL The General Exponential Growth Function 267FUNCTIONS
Looking at Real Growth Data for E. coli Bacteria 268
5.2 Linear vs. Exponential Growth Functions 271
Linear vs. Exponential Growth 271
Comparing the Average Rates of Change 273
A Linear vs. an Exponential Model through Two Points 274
Identifying Linear vs. Exponential Functions in a Data Table 275
5.3 Exponential Decay 279
The Decay of Iodine-131 279
The General Exponential Decay Function 279
5.4 Visualizing Exponential Functions 284
The Effect of the Base a 284
The Effect of the Initial Value C 285
Horizontal Asymptotes 287
5.5 Exponential Functions: A Constant Percent Change 290
Exponential Growth: Increasing by a Constant Percent 290
Exponential Decay: Decreasing by a Constant Percent 291
Revisiting Linear vs. Exponential Functions 293
5.6 Examples of Exponential Growth and Decay 298
Half-Life and Doubling Time 299
The "rule of 70 " 301
Compound Interest Rates 304
The Malthusian Dilemma 308
Forming a Fractal Tree 309
5.7 Semi-log Plots of Exponential Functions 316
CHAPTER SUMMARY 320
CHECK YOUR UNDERSTANDING 321
CHAPTER 5 REVIEW: PUTTING IT ALL TOGETHER 322
EXPLORATION 5.1 Properties of Exponential Functions 327
CHAPTER 6
LOGARITHMIC LINKS: 6.1 Using Logarithms to Solve Exponential Equations 330
LOGARITHMIC AND Estimating Solutions to Exponential Equations 330EXPONENTIALFUNCTIONS
Rules for Logarithms 331
Solving Exponential Equations 336
6.2 Base e and Continuous Compounding 340
What is e ? 340
Continuous Compounding 341
Exponential Functions Base e 344
6.3 The Natural Logarithm 349
6.4 Logarithmic Functions 352
The Graphs of Logarithmic Functions 353
The Relationship between Logarithmic and Exponential Functions 354
Logarithmic vs. exponential growth 354
Logarithmic and exponential functions are inverses of each other 355
Applications of Logarithmic Functions 357
Measuring acidity: The pH scale 357
Measuring noise: The decibel scale 359
6.5 Transforming Exponential Functions to Base e 3 363
Converting a to e^{k} 364
6.6 Using Semi-log Plots to Construct Exponential Models for Data 369
Why Do Semi-Log Plots of Exponential Functions Produce Straight Lines? 369
CHAPTER SUMMARY 374
CHECK YOUR UNDERSTANDING 375
CHAPTER 6 REVIEW: PUTTING IT ALL TOGETHER 377
EXPLORATION 6.1 Properties of Logarithmic Functions 380
CHAPTER 7
POWER FUNCTIONS
7.1 The Tension between Surface Area and Volume 384
Scaling Up a Cube 384
Size and Shape 386
7.2 Direct Proportionality: Power Functions with Positive Powers 389
Direct Proportionality 390
Properties of Direct Proportionality 390
Direct Proportionality with More Than One Variable 393
7.3 Visualizing Positive Integer Powers 397
The Graphs of $f(x)=x^{2}$ and $g(x)=x^{3}$ 397
Odd vs. Even Powers 399
Symmetry 400
The Effect of the Coefficient k 400
7.4 Comparing Power and Exponential Functions 405
Which Eventually Grows Faster, a Power Function or an Exponential Function? 405
7.5 Inverse Proportionality: Power Functions with Negative Integer Powers 409
Inverse Proportionality 410
Properties of Inverse Proportionality 411
Inverse Square Laws 415
7.6 Visualizing Negative Integer Power Functions 420
The Graphs of $f(x)=x^{-1}$ and $g(x)=x^{-2}$ 420
Odd vs. Even Powers 422
Asymptotes 423
Symmetry 423
The Effect of the Coefficient k 423
7.7 Using Logarithmic Scales to Find the Best Functional Model 429
Looking for Lines 429
Why is a Log-Log Plot of a Power Function a Straight Line? 430
Translating Power Functions into Equivalent Logarithmic Functions 430
Analyzing Weight and Height Data 431
Using a standard plot 431
Using a semi-log plot 431
Using a log-log plot 432
Allometry: The Effect of Scale 434
CHAPTER SUMMARY 442
CHECK YOUR UNDERSTANDING 443
CHAPTER 7 REVIEW: PUTTING IT ALL TOGETHER 444
EXPLORATION 7.1 Scaling Objects 448
EXPLORATION 7.2 Predicting Properties of Power Functions 450
EXPLORATION 7.3 Visualizing Power Functions with Negative Integer Powers 451
8.1 An Introduction to Quadratic Functions 454
The Simplest Quadratic 454
Designing parabolic devices 455
The General Quadratic 456
Properties of Quadratic Functions 457
Estimating the Vertex and Horizontal Intercepts 459
8.2 Finding the Vertex: Transformations of $y=x^{2}$ 463
Stretching and Compressing Vertically 464
Reflections across the Horizontal Axis 464
Shifting Vertically and Horizontally 465
Using Transformations to Get the Vertex Form 468
Finding the Vertex from the Standard Form 470
Converting between Standard and Vertex Forms 472
8.3 Finding the Horizontal Intercepts 480
Using Factoring to Find the Horizontal Intercepts 481
Factoring Quadratics 482
CHAPTER 8AND BEYOND
Using the Quadratic Formula to Find the Horizontal Intercepts 484
The discriminant 485
Imaginary and complex numbers 487
The Factored Form 488
8.4 The Average Rate of Change of a Quadratic Function 493
8.5 An Introduction to Polynomial Functions 498
Defining a Polynomial Function 498
Visualizing Polynomial Functions 500
Finding the Vertical Intercept 502
Finding the Horizontal Intercepts 503
8.6 New Functions from Old 510
Transforming a Function 510
Stretching, compressing and shifting 510
Reflections 511
Symmetry 512
8.7 Combining Two Functions 521
The Algebra of Functions 521
Rational Functions: The Quotient of Two Polynomials 524
Visualizing Rational Functions 525
8.8 Composition and Inverse Functions 531
Composing Two Functions 531
Composing More Than Two Functions 533
Inverse Functions: Returning the Original Value 534
A Final Example 540
CHAPTER SUMMARY 547
CHECK YOUR UNDERSTANDING 548
CHAPTER 8 REVIEW: PUTTING IT ALL TOGETHER 550
EXPLORATION 8.1 How Fast Are You? Using a Ruler to Make a Reaction Timer 555
AN EXTENDED EXPLORATION: THE MATHEMATICS OF MOTION
The Scientific Method 560
The Free-Fall Experiment 560
Interpreting Data from a Free-Fall Experiment 561
Deriving an Equation Relating Distance and Time 563
Returning to Galileo's Question 565
Velocity: Change in Distance over Time 565
Acceleration: Change in Velocity over Time 566
Deriving an Equation for the Height of an Object in Free Fall 568
Working with an Initial Upward Velocity 569
COLLECTING AND ANALYZING DATA FROM A FREE FALL EXPERIMENT 570
EXERCISES 573

See www.wiley.com/college/kimeclark for Course Software, Anthology of Readings, Excel and Graph Link data files, and the Graphing Calculator Manual. The Instructor's Teaching Manual and Instructor's Solutions Manual are also available on the site, but password protected to restrict access to Instructors.

[^0]: *Based upon 7,000 responses to student surveys in academic year 2006-2007

