
A N  E X T E N D E D  E X P L O R A T I O N

THE MATHEMATICS OF MOTION

OVERVIEW

In this extended exploration we use the laboratory methods of modern physicists to collect and analyze
data about freely falling bodies and then examine the questions asked by Galileo about bodies in motion.

After conducting this exploration, you should be able to

• understand the importance of the scientific method

• describe the relationship between distance and time for freely falling bodies

• derive equations describing the velocity and acceleration of a freely falling body
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The Scientific Method

Today we take for granted that scientists study physical phenomena in laboratories 
using sophisticated equipment. But in the early 1600s, when Galileo did his
experiments on motion, the concept of laboratory experiments was unknown. In his
attempts to understand nature, Galileo asked questions that could be tested directly in
experiments. His use of observation and direct experimentation and his discovery that
aspects of nature were subject to quantitative laws were of decisive importance, not
only in science but in the broad history of human ideas.

Ancient Greeks and medieval thinkers believed that basic truths existed within the
human mind and that these truths could be uncovered through reasoning, not empirical
experimentation. Their scientific method has been described as a “qualitative study of
nature.” Greek and medieval scientists were interested in why objects fall. They
believed that a heavier object fell faster than a lighter one because “it has weight and it
falls to the Earth because it, like every object, seeks its natural place, and the natural
place of heavy bodies is the center of the Earth. The natural place of a light body, such
as fire, is in the heavens, hence fire rises.”1

Galileo changed the question from why things fall to how things fall. This question
suggested other questions that could be tested directly by experiment: “By alternating
questions and experiments, Galileo was able to identify details in motion no one had
previously noticed or tried to observe.”2 His quantitative descriptions of objects in
motion led not only to new ways of thinking about motion, but also to new ways of
thinking about science. His process of careful observation and testing began the critical
transformation of science from a qualitative to a quantitative study of nature.3 Galileo’s
decision to search for quantitative descriptions “was the most profound and the most
fruitful thought that anyone has had about scientific methodology.”4 This approach
became known as the scientific method.

The Free Fall Experiment

In this extended exploration, you will conduct a modern version of Galileo’s free fall
experiment. This classic experiment records the distance that a freely falling object
falls during each fraction of a second. The experiment can be performed either with a
graphing calculator connected to a motion sensor or in a physics laboratory with an
apparatus that drops a heavy weight and records its position on a tape.

In this experiment, Galileo sought to answer the following questions:

How can we describe mathematically the distance an object falls over time?
Do freely falling objects fall at a constant speed? If the speed of freely falling
objects is not constant, is it increasing at a constant rate?

You can try to find answers to these questions by collecting and analyzing your own
data or by using the data provided as both Excel and graph link files. Instructions for
using technology to collect and analyze data are provided in the last section. The
following discussion will help you analyze your results and provide answers to
Galileo’s questions.
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Instructions for conducting
the free fall experiment are in the last section.

The software “Q11: Freely Falling
Objects” in Quadratic Functions provides a
simulation of the free fall experiment.

1M. Kline, Mathematics for the Nonmathematician (New York: Dover, 1967), p. 287.
2E. Cavicchi, “Watching Galileo’s Learning,” in the Anthology of Readings on the course website.
3Galileo’s scientific work was revolutionary in terms not only of science but also of the politics of the time;
his work was condemned by the ruling authorities, and he was arrested.

4M. Kline, op. cit., p. 288.
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Interpreting Data from a Free Fall Experiment

The sketch of a tape given in Figure 1 gives data collected by a group of students from
a falling-object experiment. Each dot represents how far the object fell in each
succeeding 1/60 of a second.

Since the first few dots are too close together to get accurate measurements, we
start measurements at the sixth dot, which we call dot0. At this point, the object is
already in motion. This dot is considered to be the starting point, and the time, t, at dot0

is set at 0 seconds. The next dot represents the position of the object 1/60 of a second
later. Time increases by 1/60 of a second for each successive dot. In addition to
assigning a time to each point, we also measure the total distance fallen, d (in cm), from
the point designated dot0. For every dot we have two values: the time, t, and the
distance fallen, d. At dot0, we have t 5 0 and d 5 0.

The time and distance measurements from the tape are recorded in Table 1 and
plotted on the graph in Figure 2. Time, t, is the independent variable, and distance, d, is
the dependent variable. The graph gives a representation of the data collected on
distance fallen over time, not a picture of the physical motion of the object. The graph
of the data looks more like a curve than a straight line, so we expect the average rates of
change between different pairs of points to be different. We know how to calculate the
average rate of change between two points and that it represents the slope of a line
segment connecting the two points:

average rate of change 5
change in distance

change in time
5 slope of line segment
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Figure 1 Tape from a
free fall experiment.

Total Distance
Time (sec) Fallen (cm)

0.0000 0.00
0.0167 1.72
0.0333 3.75
0.0500 6.10
0.0667 8.67
0.0833 11.58
0.1000 14.71
0.1167 18.10
0.1333 21.77
0.1500 25.71
0.1667 29.90
0.1833 34.45
0.2000 39.22
0.2167 44.22
0.2333 49.58
0.2500 55.15
0.2667 60.99
0.2833 67.11
0.3000 73.48
0.3167 80.10
0.3333 87.05
0.3500 94.23

Table 1

See the Excel or graph link file
FREEFALL, which contains the data in Table 1.
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Figure 2 Free fall: distance versus time.
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t d Average Rate of Change

0.0500 6.10

0.1333 21.77

0.0833 11.58

0.2333 49.58

0.2167 44.22

0.3333 87.05

Table 2

Figure 3 Slopes (or average velocities)
between three pairs of end points.

average velocity 5
change in distance 

change in time

21.77 2 6.10

0.1333 2 0.0500
< 188 cm/sec

49.58 2 11.58

0.2333 2 0.0833
< 253 cm/sec

87.05 2 44.22

0.3333 2 0.2167
< 367 cm/sec

5In everyday usage, “speed” and “velocity” are used interchangeably. In physics, “velocity” gives the direction
of motion by the sign of the number—positive for forward, negative for backward. “Speed” means the absolute
value, or magnitude, of the velocity. So speed is never negative, whereas velocity can be positive or negative.

Table 2 and Figure 3 show the increase in the average rate of change over time for three
different pairs of points. The time interval nearest the start of the fall shows a relatively
small change in the distance per time step and therefore a relatively gentle slope of 
188 cm/sec. The time interval farthest from the start of the fall shows a greater change
of distance per time step and a much steeper slope of 367 cm/sec.
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In this experiment the average rate of change has an additional important meaning.
For objects in motion, the change in distance divided by the change in time is also
called the average velocity for that time period. For example, in the calculations in
Table 2, the average rate of change of 188 cm/sec represents the average velocity of the
falling object between 0.0500 and 0.1333 second.

Important Questions

Do objects fall at a constant speed?5 The rate-of-change calculations and the graph in
Figure 3 indicate that the average rate of change of position with respect to time—the
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velocity—of the falling object is not constant. Moreover, the average velocity appears
to be increasing over time. In other words, as the object falls, it is moving faster and
faster. Our calculations agree with Galileo’s observations. He was the first person to
show that the velocity of a freely falling object is not constant.

This finding prompted Galileo to ask more questions. One of these questions was:
If the velocity of freely falling bodies is not constant, is it increasing at a constant rate?
Galileo discovered that the velocity of freely falling objects does increase at a constant
rate. If the rate of change of velocity with respect to time is constant, then the graph of
velocity versus time is a straight line. The slope of that line is constant and equals the
rate of change of velocity with respect to time. A theory of gravity has been built
around Galileo’s discovery of a constant rate of change for the velocity of a freely
falling body. This constant of nature, the gravitational constant of Earth, is denoted by g
and is approximately 980 cm/sec2.

Deriving an Equation Relating Distance and Time

Galileo wanted to describe mathematically the distance an object falls over time. Using
mathematical and technological tools not available in Galileo’s time, we can describe the
distance fallen over time in the free fall experiment using a “best-fit” function for our
data. Galileo had to describe his finding in words. Galileo described the free fall motion
first by direct measurement and then abstractly with a time-squared rule. “This
discovery was revolutionary, the first evidence that motion on Earth was subject to
mathematical laws.”6

Using Galileo’s finding that distance is related to time by a time-squared rule, we
use technology to find the following best-fit quadratic function for the free fall data in
Table 1:

d 5 487.8t2 1 98.73t 2 0.0528

Figure 4 shows a plot of the data and the function. If your curve-fitting program does
not provide a measure of closeness of fit, such as the correlation coefficient for
regression lines, you may have to rely on a visual judgment. Rounding the coefficients
to the nearest unit, we obtain the equation

d 5 488t2 1 99t 2 0

5 488t2 1 99t (1)

We now have a mathematical model for our free fall data.

The Free Fall Experiment 563

If you are interested in learning more about
how Galileo made his discoveries, read Elizabeth
Cavicchi’s “Watching Galileo’s Learning.”

Figure 4 Best-fit function for
distance versus time.
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6E. Cavicchi, “Watching Galileo’s Learning,” in the Anthology of Readings on the course website.
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What are the units for each term of the equation? Since d is in centimeters, each
term on the right-hand side of Equation (1) must also be in centimeters. Since t is in
seconds, the coefficient, 488, of t2 must be in centimeters per second squared:

The coefficient, 99, of t must be in centimeters per second, and the constant term, 0, in
centimeters.

If we ran the experiment again, how would the results compare? In one class, four
small groups did the free fall experiment, plotted the data, and found a corresponding best-
fit second-degree polynomial. The functions are listed below, along with Equation (1). In
each case we have rounded the coefficients to the nearest unit. All of the constant terms
rounded to 0.

d 5 488t2 1 99t (1)

d 5 486t2 1 72t (2)

d 5 484t2 1 173t (3)

d 5 486t2 1 73t (4)

d 5 495t2 1 97t (5)

Examine the coefficients of each of the terms in these equations. All the functions
have similar coefficients for the t2 term, very different coefficients for the t term, and
zero for the constant term. Why is this the case? Using concepts from physics, we can
describe what each of the coefficients represents.

The coefficients of the t2 term found in Equations (1) to (5) are all close to one-half
of 980 cm/sec2, or half of g, Earth’s gravitational constant. The data from this simple
experiment give very good estimates for .

The coefficient of the t term represents the initial velocity, v0, of the object when t 5 0.
In Equation (1), v0 5 99 cm/sec. Recall that we didn’t start to take measurements until
the sixth dot, the dot we called dot0. So at dot0, where we set t 5 0, the object was
already in motion with a velocity of approximately 99 cm/sec. The initial velocities, or
v0 values, in Equations (2) to (5) range from 72 to 173 cm/sec. Each v0 represents
approximately how fast the object was moving when t 5 0, the point chosen to begin
recording data in each of the various experiments.

The constant term rounded to zero in each of Equations (1) to (5). On the tape
where we set t 5 0, we set d 5 0. So we expect that in all our best-fit equations the
constant terms, which represent the distance at time zero, are approximately zero. If we
substitute zero for t in Equations (1) to (5), the value for d is indeed zero. If we looked
at additional experimental results, we might encounter some variation in the constant
term, but all should have values of approximately zero.

Galileo’s discoveries are the basis for the following equations relating distance
and time:

1
2 g

cm

sec2 ?
sec2

1
5 cm
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The general equation of motion of freely falling bodies that relates distance fallen,
d, to time, t, is

where v0 is the initial velocity and g is the acceleration due to gravity on Earth.

d 5
1

2
gt 2 1 v0t

For example, in our original model, d 5 488t2 1 99t, the coefficient 488 approximates
(in centimeters per second squared) and 99 approximates the initial velocity (in

centimeters per second).

1
2 g
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Returning to Galileo’s Question

If the velocity for freely falling bodies is not constant, is it increasing at a constant
rate? Galileo discovered that the rate of change of the velocity of a freely falling
object is constant. In this section we confirm his finding with data from the free fall
experiment.

Velocity: Change in Distance over Time

If the rate of change of velocity is constant, then the graph of velocity vs. time should
be a straight line. Previously we calculated the average rates of change of distance with
respect to time (or average velocities) for three arbitrarily chosen pairs of points. Now,
in Table 3 we calculate the average rates of change for all the pairs of adjacent points in
our free fall data. The results are in column 4. Since each computed velocity is the
average over an interval, for increased precision we associate each velocity with the
midpoint time of the interval instead of one of the end points. In Figure 5, we plot
velocity from the fourth column against the midpoint times from the third column. The
graph is strikingly linear.
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See “C3: Average Velocity and
Distance” in Rates of Change.

Time, t Distance Midpoint Velocity, v
(sec) Fallen, d (cm) Time, t (sec) (cm/sec)

0.0000 0.00
0.0167 1.72
0.0333 3.75
0.0500 6.10
0.0667 8.67
0.0833 11.58
0.1000 14.71
0.1167 18.10
0.1333 21.77
0.1500 25.71
0.1667 29.90
0.1833 34.45
0.2000 39.22
0.2167 44.22
0.2333 49.58
0.2500 55.15
0.2667 60.99
0.2833 67.11
0.3000 73.48
0.3167 80.10
0.3333 87.05
0.3500 94.23

Table 3 Figure 5 Best-fit linear function for average velocity versus time.

0.0083 103.2
0.0250 121.8
0.0417 141.0
0.0583 154.2
0.0750 174.6
0.0917 187.8
0.1083 203.4
0.1250 220.2
0.1417 236.4
0.1583 251.4
0.1750 273.0
0.1917 286.2
0.2083 300.0
0.2250 321.6
0.2417 334.2
0.2583 350.4
0.2750 367.2
0.2917 382.2
0.3083 397.2
0.3250 417.0
0.3417 430.8

Generating a best-fit linear function and rounding to the nearest unit, we obtain the
equation

average velocity 5 977t 1 98

where the average velocity, v, is in centimeters per second, and time t, is in seconds.
The graph of this function appears in Figure 5. The slope of the line is constant and
equals the rate of change of velocity with respect to time. So although the velocity is
not constant, its rate of change with respect to time is constant.
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The coefficient of t, 977, is the slope of the line and in physical terms represents g,
the acceleration due to gravity. The conventional value for g is 980 cm/sec2. So the
velocity of the freely falling object increases by about 980 cm/sec during each second
of free fall.

With this equation we can estimate the velocity at any given time t. When t 5 0,
then v 5 98 cm/sec. This means that the object was already moving at about 98 cm/sec
when we set t 5 0. In our experiment, the velocity when t 5 0 depends on where we
choose to start measuring our dots. If we had chosen a dot closer to the beginning of the
free fall, we would have had an initial velocity lower than 98 cm/sec. If we had chosen
a dot farther away from the start, we would have had an initial velocity higher than 98
cm/sec. Note that 98 cm/sec closely matches the value of 99 cm/sec in our best-fit
quadratic function (Equation 1).

Acceleration: Change in Velocity over Time

Acceleration means a change in velocity or speed. If you push the accelerator pedal in
a car down just a bit, the speed of the car increases slowly. If you floor the pedal, the
speed increases rapidly. The rate of change of velocity with respect to time is called
acceleration. Calculating the average rate of change of velocity with respect to time
gives an estimate of acceleration. For example, if a car is traveling at 20 mph and 1
hour later the car has accelerated to 60 mph, then

5 (40 mph)/hr 5 40 mi/hr2

In 1 hour, the velocity of the car changed from 20 to 60 mph, so its average acceleration
was 40 mph/hr, or 40 mi/hr2.

change in velocity 

change in time 
5
s60 2 20d mph

1 hr

The general equation that relates, v, the velocity of a freely falling body, to t, time, is

v 5 gt 1 v0

where v0 5 initial velocity (velocity at time t 5 0) and g is the acceleration due to
gravity.
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average acceleration 5
change in velocity 

change in time

Table 4 uses the average velocity data and midpoint time from Table 3 to calculate
average accelerations. Figure 6 shows the plot of average acceleration in centimeters
per second squared (the third column) versus time in seconds (the first column).

The data lie along a roughly horizontal line. The average acceleration values vary
between a low of 756 cm/sec2 and a high of 1296 cm/sec2 with a mean of 982.8.
Rounding off, we have

acceleration 980 cm/sec2

This expression confirms that for each additional second of free fall, the velocity of the
falling object increases by approximately 980 cm/sec. The longer it falls, the faster it
goes. We have verified a characteristic feature of gravity near the surface of Earth: It
causes objects to fall at a velocity that increases every second by about 980 cm/sec. We
say that the acceleration due to gravity near Earth’s surface is 980 cm/sec2.

<
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In order to express g in feet per second squared, we need to convert 980
centimeters to feet. We start with the fact that 1 ft 5 30.48 cm. So the conversion factor
for centimeters to feet is (1 ft)/(30.48 cm) 5 1. If we multiply 980 cm by
(1 ft)/(30.48 cm) to convert centimeters to feet, we get

So a value of 980 cm/sec2 for g is equivalent to approximately 32 ft/sec2.
The numerical value used for the constant g depends on the units being used for the

distance, d, and the time, t. The exact value of g also depends on where it is measured.7

The conventional values for g, the acceleration due to gravity near the surface of
Earth, are

g 5 32 ft/sec2

or equivalently g 5 980 cm/sec2 5 9.8 m/sec2

980 cm 5 s980 cmda 1 ft

30.48 cm
b < 32.15 ft < 32 ft
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Midpoint Average Average  
Time, Velocity, Acceleration
t (sec) v (cm/sec) (cm/sec2)

0.0083 103.2 n.a.
0.0250 121.8 1116
0.0417 141.0 1152
0.0583 154.2 792
0.0750 174.6 1224
0.0917 187.8 792
0.1083 203.4 936
0.1250 220.2 1008
0.1417 236.4 972
0.1583 251.4 900
0.1750 273.0 1296
0.1917 286.2 792
0.2083 300.0 828
0.2250 321.6 1296
0.2417 334.2 756
0.2583 350.4 972
0.2750 367.2 1008
0.2917 382.2 900
0.3083 397.2 900
0.3250 417.0 1188
0.3417 430.8 828

Table 4

Figure 6 Average acceleration for
free fall data.

7 Because Earth is rotating, is not a perfect sphere, and is not uniformly dense, there are variations in g
according to the latitude and elevation. The following are a few examples of local values for g.

Location North Latitude (deg) Elevation (m) g (cm/sec2)

Panama Canal 9 0 978.243
Jamaica 18 0 978.591
Denver, CO 40 1638 979.609
Pittsburgh, PA 40.5 235 980.118
Cambridge, MA 42 0 980.398
Greenland 70 0 982.534

Source: H. D. Young, University Physics, Vol. I, 8th ed. (Reading, MA: Addison-Wesley, 1992), p. 336.

A
cc

el
er

at
io

n 
(c

m
/s

ec
2
)

Time (sec)
0.0 0.1 0.2 0.3 0.4

500

1000

1500

Kime07_Math on Mot_559-578.qxd  10/11/07  9:10 AM  Page 567



Deriving an Equation for the Height of an Object in Free Fall

Assume we have the following motion equation relating distance fallen, d (in
centimeters), and time, t (in seconds):

d 5 490t2 1 45t

Also assume that when t 5 0, the height, h, of the object was 110 cm above the ground.
Until now, we have considered the distance from the point the object was dropped, a
value that increases as the object falls. How can we describe a different distance, the
height above ground of an object, as a function of time, a value that decreases as the
object falls?

At time zero, the distance fallen is zero and the height above the ground is 110
centimeters. After 0.05 second, the object has fallen about 3.5 centimeters, so its height
would be 110 2 3.5 5 106.5 cm. For an arbitrary distance d, we have h 5 110 2 d.
Table 5 gives associated values for time, t, distance fallen, d, and height above ground, h.
The graphs in Figure 7 show distance versus time and height versus time.
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Distance Fallen, d (cm) Height above Ground, h (cm)
Time, t (sec) (d 5 490 t 2 1 45 t) (h 5 110 2 d)

0.00 0.0 110.0
0.05 3.5 106.5
0.10 9.4 100.6
0.15 17.8 92.2
0.20 28.6 81.4
0.25 41.9 68.1
0.30 57.6 52.4
0.35 75.8 34.2
0.40 96.4 13.6

Table 5

Figure 7 Representations of free fall data.

How can we convert the equation d 5 490t2 1 45t, relating distance fallen and
time, to an equation relating height above ground and time? We know that the
relationship between height and distance is h 5 110 2 d. We can substitute the
expression for d into the height equation:

h 5 110 2 d

5 110 2 (490t2 1 45t)

5 110 2 490t2 2 45t (6)

120

100

80

60

40

20

D
is

ta
nc

e 
fa

lle
n 

(c
m

)

0.0 0.1 0.2 0.3
Time (sec)

0.4

120

100

80

60

40

20H
ei

gh
t 

ab
ov

e 
gr

ou
nd

 (
cm

)

0.0 0.1 0.2 0.3
Time (sec)

0.4

(a) Distance versus time (b) Height versus time

h

t

d

t

Kime07_Math on Mot_559-578.qxd  10/11/07  9:10 AM  Page 568



Switching the order of the terms, we could rewrite this equation as h 5 2490t2 2 45t 1 110.
The constant term, here 110 cm, represents the initial height when t 5 0. By placing the
constant term first as in Equation (6), we emphasize 110 cm as the initial or starting
value. Height equations often appear in the form h 5 c 1 bt 1 at2 to emphasize the
constant term c as the starting height. This is similar to writing linear equations in the
form y 5 b 1 mx to emphasize the constant term b as the base, or starting, value.

Note that in Equation (6) for height, the coefficients of both t and t2 are negative. If
we consider what happens to the height of an object in free fall, this makes sense. As
time increases, the height decreases. (See Table 5 and Figure 7.) When we were
measuring the increasing distance an object fell, we did not take into account
the direction in which it was going (up or down). We cared only about the magnitudes
(the absolute values) of distance and velocity, which were positive. But when we are
measuring a decreasing height or distance, we have to worry about direction. In this
case we define downward motion to be negative and upward motion to be positive. In
the height equation h 5 110 2 45t 2 490t2, the constant term, the initial height, is
110 cm. The change in height resulting from the initial velocity, 245t, is negative
because the object was moving down when we started to measure it. The change in
height caused by acceleration, 2490t2, is also negative because gravity pulls objects
downward in what we are now considering as a negative direction, reducing the height
of a falling object.

Once we have introduced the notion that downward motion is negative and upward
motion is positive, we can also deal with situations in which the initial velocity is
upward and the acceleration is downward. The velocity equation for this situation is

v 5 2gt 1 v0

where v0 could be either positive or negative, depending on whether the object is
thrown upward or downward, and the sign for the g term is negative because gravity
accelerates downward in the negative direction.
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If we treat upward motion as positive and downward motion as negative, then the
acceleration due to gravity is negative. So the general equations of motion of freely
falling bodies that relate height, h, and velocity, v, to time, t, are

where h0 5 initial height, g 5 acceleration due to gravity, and v0 5 initial velocity
(which can be positive or negative).

v 5 2gt 1 v0

h 5 h0 1 v0t 2 1
2gt 2

Working with an Initial Upward Velocity

If we want to use the general equation to describe the height of a thrown object, we
need to understand the meaning of each of the coefficients. Suppose a ball is thrown
upward with an initial velocity of 97 cm/sec from a height of 87 cm above the ground.
Describe the relationship between the height of the ball and time with an equation.

The initial height of the ball is 87 cm when t 5 0, so the constant term is 87 cm.
The coefficient of t, or the initial-velocity term, is 197 cm/sec since the initial motion
is upward. The coefficient of t2, the gravity term, is 2490 cm/sec2, since gravity causes
objects to fall down.

Substituting these values into the equation for height, we get

h 5 87 1 97t 2 490t 2
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The graph of the heights at each time in Figure 8 should not be confused with the
trajectory of a thrown object. The actual motion we are talking about is purely vertical—
straight up and straight down. The graph shows that the object travels up for a while
before it starts to fall. This corresponds with what we all know from practical experience
throwing balls. The upward (positive) velocity is decreased by the pull of gravity until
the object stops moving upward and begins to fall. The downward (negative) velocity is
then increased by the pull of gravity until the object strikes the ground.

Collecting and Analyzing Data from a Free Fall Experiment

Objective

• to describe mathematically how objects fall

Equipment/Materials

• graphing calculator with best-fit function capabilities or computer with spreadsheet
and function graphing program

• notebook for recording measurements and results (sample Lab Book on course website)

Equipment needed for collecting data in physics laboratory:

a. Free fall apparatus

b. Meter sticks 2 meters long

c. Masking tape

Equipment needed for collecting data with CBL® (Calculator-Based Laboratory
System®):

a. CBL® unit with AC-9201 power adapter

b. Vernier CBL® ultrasonic motion detector

c. Graphing calculator

d. Extension cord and some object to drop, such as a pillow or rubber ball

Preparation

If collecting data in a physics laboratory, schedule a time for doing the experiment and
have the laboratory assistant available to set up the equipment and assist with the

570 AN EXTENDED EXPLORATION: THE MATHEMATICS OF MOTION

t (sec) h (cm)

0.00 87.00
0.05 90.63
0.10 91.80
0.15 90.53
0.20 86.80
0.25 80.63
0.30 72.00
0.35 60.93
0.40 47.40
0.45 31.43
0.50 13.00

Table 6 Figure 8 Height of a thrown ball.
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If using precollected data, see the
Excel or graph link file FREEFALL.

Table 6 gives a series of values for heights corresponding to various times. Figure 8
plots height above ground (cm) vs. time (sec.).
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experiment. If collecting data with a CBL® unit with graphing calculator, instructions
for using a CBL® unit are in the Instructor’s Manual.

Procedure

The following procedures can be used for collecting data in a physics laboratory.8 If you
are collecting data with a CBL®, collect the data and go to the Results section. If you are
using the precollected data in the file FREEFALL, go directly to the Results section.

Collecting the data
Since the falling times are too short to record with a stopwatch, we use a free fall
apparatus. Every sixtieth of a second a spark jumps between the falling object or “bob”
and the vertical metal pole supporting the tape. Each spark burns a small dot on the
fixed tape, recording the bob’s position. The procedure is to:

1. Position the bob at the top of the column in its holder. 

2. Pull the tape down the column so that a fresh tape is ready to receive spark dots.

3. Be sure that the bob is motionless before you turn on the apparatus.

4. Turn on the spark switch and bob release switch as demonstrated by the laboratory
assistant.

5. Tear off the length of tape recording the fall of the bob.

Obtaining and recording measurements from the tapes 
The tape is a record of the distance fallen by the bob between each sixtieth-of-a-second
spark dot. Each pair of students should measure and record the distance between the
dots on the tape. Let d 5 the distance fallen in centimeters and t 5 time in seconds.

1. Fasten the tape to the table using masking tape.

2. Inspect the tape for missing dots. Caution: The sparking apparatus sometimes
misses a spark. If this happens, take proper account of it in numbering the dots.

3. Position the 2-meter stick on its edge along the dots on the tape. Use masking tape
to fasten the meter stick to the table, making sure that the spots line up in front of
the bottom edge of the meter stick so you can read their positions off of the stick.

4. Beginning with the sixth visible dot, mark the time for each spot on the tape; that
is, write t 5 0/60 sec by the sixth dot, t 5 1/60 by the next dot, t 5 2/60 by the next
dot, and so on, until you reach the end of the tape.

Note: The first five dots are ignored in order to increase accuracy of
measurements. One cannot be sure that the object is released exactly at the time of the
spark, instead of between sparks, and the first few dots are too close together to get
accurate measurements. When the body passes the sixth dot, it already has some
velocity, which we call v0, and this point is arbitrarily taken as the initial time, t 5 0.

5. Measure the distances (accurate to a fraction of a millimeter) from the sixth dot to
each of the other dots. Record each distance by the appropriate dot on the tape.

t = 0/60 2/601/60 3/60 4/60

d0 = 0 d1 = d2 = d3 = d4 =

Collecting and Analyzing Data from a Free Fall Experiment 571

8These procedures are adapted from “Laboratory Notes for Experiment 2: The Kinematics of Free Fall,”
University of Massachusetts, Boston, Elementary Physics 181.
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6. Recheck your measurements.

7. Clean your work area.

Results

Use your notebook to keep a record of your data, observations, graphs, and analysis of
the data.

a. Record the data obtained from your measurements on the tape or from using a
CBL® unit. If you are entering your data into a function graphing program or a
spreadsheet, you can use a printout of the data and staple it into your laboratory
notework. Your data should include time, t, and distance fallen, d, as in the
following table:

This table assumes regular time intervals of one-sixtieth of a second. Check your
equipment to see whether it uses a different interval size.

b. Note at which dot on the tape you started to make your measurements.

Analysis of data
1. By hand:

a. Graph your data, using the vertical axis for distance fallen, d, in centimeters
and the horizontal axis for time, t, in seconds. What does your graph suggest
about the average rate of change of distance with respect to time?

b. Calculate the average rate of change for distance, d, with respect to time, t,
for three pairs of points from your data table:

average rate of change 5

Show your work. This average rate of change is called the average velocity of
the falling object between these two points. Do your calculations support
your answer in part (a)?

c. Jot down your observations from your graph and calculations in your
notebook. Staple your graph into your notebook.

2. With graphing calculators or computers:

a. Use technology to graph your data for the free fall experiment. Plot time, t,
on the horizontal axis and distance fallen, d, on the vertical axis.

b. Find a best-fit function for distance fallen versus time.

c. Use your spreadsheet or graphing calculator to calculate the average rate of
change in distance over each of the small time intervals. This average rate of
change is the average velocity over each of these time intervals.

d. Plot average velocity versus time, with time on the horizontal axis and
average velocity on the vertical axis.

e. Jot down your observations from your graphs and calculations in your
notebook. Be sure to specify the units for any numbers you recorded.

change in distance

change in time
5

�d

�t

t (sec) d (cm)

0/60 0
1/60 –
2/60 –
....... –
To last record –
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2. The essay “Watching Galileo’s Learning” examines
the learning process that Galileo went through to
come to some of the most remarkable conclusions in
the history of science. Write a summary of one of Galileo’s
conclusions about motion. Include in your summary the
process by which Galileo made this discovery and some aspect
of your own learning or understanding of Galileo’s discovery.

3. (Graphing program optional.) The equation d 5 490t2 1 50t
describes the relationship between distance fallen, d, in
centimeters, and time, t, in seconds, for a particular freely
falling object.

a. Interpret each of the coefficients and specify its units of
measurement.

b. Generate a table for a few values of t between 0 and
0.3 second.

c. Graph distance versus time by hand. Check your graph 
using a computer or graphing calculator if available.

Exercises 573

Conclusions

Summarize your conclusions from the experiment:

• Describe what you found out from your graph of distance vs. time and your calculations
for the average rate of change of distance with respect to time. Is the average rate of
change of distance with respect to time the same for each small time interval?

• What does your graph of the average velocity vs. time tell you about the average
velocity of the freely falling body? Is the average rate of change in velocity from one
interval to the next roughly constant?

• In light of the readings and class discussion, interpret your graphs for distance and
average velocity and interpret the coefficients in the equation you found for distance.

In his own version of this experiment, Galileo sought to answer the following questions:
How can we describe mathematically the distance an object falls over time?
Do freely falling objects fall at a constant speed?
If the velocity of a freely falling object is not constant, is it increasing at a constant rate?

Use your results to answer these questions.

Average Velocity (average rate
Distance of change for the previous 

Time (sec) Fallen (cm) 1/30 of a second)

0.0000 0.00 n.a.

0.0333 3.75

0.0667 8.67
0.1000 14.71
0.1333 21.77
0.1667 29.90

8.67 2 3.75
0.0667 2 0.0333 < 147 cm/sec

3.75 2 0.00
0.0333 2 0.0000 < 113 cm/sec

(A graphing program is optional for many exercises and required
for Exercise 30.)

1. Complete the accompanying table. What happens to the
average velocity of the object as it falls?

4. A freely falling body has an initial velocity of 125 cm/sec.
Assume that g 5 980 cm/sec2.

a. Write an equation that relates d, distance fallen in
centimeters, to t, time in seconds.

b. How far has the body fallen after 1 second? After 
3 seconds?

c. If the initial velocity were 75 cm/sec, how would your
equation in part (a) change?

5. (Graphing program optional.) The equation d 5 4.9t2 1 1.7t
describes the relationship between distance fallen, d, in
meters, and time, t, in seconds, for a particular freely falling
object.

a. Interpret each of the coefficients and specify its units of
measurement.

b. Generate a table for a few values of t between 0 and 
0.3 second.

c. Graph distance versus time by hand. Check your graph 
using a computer or graphing calculator if available.

d. Relate your answers to earlier results in this chapter.

6. In the equation of motion d 5 gt2 1 v0t, we specified that
distance was measured in centimeters, velocity in
centimeters per second, and time in seconds. Rewrite this as
an equation that shows only units of measure. Verify that
you get centimeters 5 centimeters.

7. The equation d 5 gt2 1 v0t could also be written using
distances measured in meters. Rewrite the equation
showing only units of measure and verify that you get
meters 5 meters.

8. The equation d 5 gt2 1 v0t could be written using distance
measured in feet. Rewrite the equation showing only units of
measure and verify that you get feet 5 feet.

1
2

1
2

1
2
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9. A freely falling object has an initial velocity of 50 cm /sec.

a. Write two motion equations, one relating distance and
time and the other relating velocity and time.

b. How far has the object fallen and what is its velocity after
1 second? After 2.5 seconds? Be sure to identify units in
your answers.

10. A freely falling object has an initial velocity of 20 ft/sec.

a. Write one equation relating distance fallen (in feet) and
time (in seconds) and a second equation relating velocity
(in feet per second) and time.

b. How many feet has the object fallen and what is its
velocity after 0.5 second? After 2 seconds?

11. (Graphing program optional.) A freely falling object has an
initial velocity of 12 ft /sec.

a. Construct an equation relating distance fallen and time.

b. Generate a table by hand for a few values of the distance
fallen between 0 and 5 seconds.

c. Graph distance vs. time by hand. Check your graph using
a computer or graphing calculator if available.

12. (Graphing program optional.) Use the information in
Exercise 11 to do the following:

a. Construct an equation relating velocity and time.

b. Generate a table by hand for a few values of velocity
between 0 and 5 seconds.

c. Graph velocity versus time by hand. If possible, check
your graph using a computer or graphing calculator.

13. If the equation d 5 4.9t2 1 11t represents the relationship
between distance and time for a freely falling body, in
what units is distance now being measured? How do you
know?

14. The distance that a freely falling object with no initial
velocity falls can be modeled by the quadratic function
d 5 16t2, where t is measured in seconds and d in feet.
There is a closely related function v 5 32 t that gives the
velocity, v, in feet per second at time t, for the same freely
falling body.

a. Fill in the missing values in the following table:

b. When t 5 3, describe the associated values of d and v and
what they tell you about the object at that time.

c. Sketch both functions, distance versus time and velocity
versus time, on two different graphs. Label the points
from part (b) on the curves.

d. You are standing on a bridge looking down at a river. How
could you use a pebble to estimate how far you are above
the water?

Time, Distance, Velocity,
t (sec) d (ft) v (ft/sec)

1
1.5
2

80
144

15. (This exercise requires a free fall data tape created using a
spark timer.)

a. Make a graph from your tape: Cut the tape with scissors
crosswise at each spark dot, so you have a set of strips of
paper that are the actual lengths of the distances fallen by
the object during each time interval. Arrange them evenly
spaced in increasing order, with the bottom of each strip
on a horizontal line. The end result should look like a
series of steps. You could paste or tape them down on a big
piece of paper or newspaper.

b. Use a straight edge to draw a line that passes through the
center of the top of each strip. Is the line a good fit? Each
separate strip represents the distance the object fell during
a fixed time interval, so we can think of the strips as
representing change in distance over time, or average
velocity. Interpret the graph of the line you have
constructed in terms of the free fall experiment.

16. In the Anthology Reading “Watching Galileo’s
Learning,” Cavicchi notes that Galileo generated a
sequence of odd integers from his study of falling
bodies. Show that in general the odd integers can be constructed
from the difference of the squares of successive integers, that is,
that the terms (n 1 1)2 2 n2 (where n 5 0, 1, 2, 3, . . .) generate
a sequence of all the positive odd integers.

17. The data from a free fall tape generate the following equation
relating distance fallen in centimeters and time in seconds:

d 5 485.7t2 1 7.6t

a. Give a physical interpretation of each of the coefficients
along with its appropriate units of measurement.

b. How far has the object fallen after 0.05 second? 0.10
second? 0.30 second?

18. What would the free fall equation d 5 490t 2 1 90t become if
d were measured in feet instead of centimeters?

19. In the equation d 5 4.9t2 1 500t, time is measured in seconds
and distance in meters. What does the number 500 represent?

20. In the height equation h 5 300 1 50t 2 4.9t 2, time is
measured in seconds and height in meters.

a. What does the number 300 represent?

b. What does the number 50 represent? What does the fact
that 50 is positive tell you?

21. (Graphing program optional.) The height of an object that
was projected vertically from the ground with initial velocity
of 200 m/sec is given by the equation h 5 200t 2 4.9t 2,
where t is in seconds.

a. Find the height of the object after 0.1, 2, and 10 seconds.

b. Sketch a graph of height vs. time.

c. Use the graph to determine the maximum height of the
projectile and the approximate number of seconds that the
object traveled before hitting the ground.

574 AN EXTENDED EXPLORATION: THE MATHEMATICS OF MOTION

One screen in “Q11: Freely Falling Objects”
in Quadratic Functions simulates this activity.

Kime07_Math on Mot_559-578.qxd  10/11/07  9:10 AM  Page 574



22. (Graphing program optional.) The height of an object that
was shot downward from a 200-meter platform with an
initial velocity of 50 m/sec is given by the equation
h 5 24.9t 2 2 50t 1 200, where t is in seconds and h is in
meters. Sketch the graph of height versus time. Use the graph
to determine the approximate number of seconds that the
object traveled before hitting the ground.

23. (Graphing program optional.) Let h 5 85 2 490t 2 be a
motion equation describing height, h, in centimeters and
time, t, in seconds.

a. Interpret each of the coefficients and specify its units of
measurement.

b. What is the initial velocity?

c. Generate a table for a few values of t between 0 and 0.3
second.

d. Graph height versus time by hand. Check your graph
using a computer or graphing calculator if possible.

24. (Graphing program optional.) Let h 5 85 1 20t 2 490t2 be a
motion equation describing height, h, in centimeters and
time, t, in seconds.

a. Interpret each of the coefficients and specify its units of
measurement.

b. Generate a table for a few values of t between 0 and 0.3
second.

c. Graph height versus time by hand. Check your graph
using a computer or graphing calculator if possible.

25. At t 5 0, a ball is thrown upward at a velocity of 10 ft/sec
from the top of a building 50 feet high. The ball’s height is
measured in feet above the ground.

a. Is the initial velocity positive or negative? Why?

b. Write the motion equation that describes height, h, at
time, t.

26. The concepts of velocity and acceleration are useful in the
study of human childhood development. The accompanying
figure shows (a) a standard growth curve of weight over
time, (b) the rate of change of weight over time (the growth
rate or velocity), and (c) the rate of change of the growth
rate over time (or acceleration). Describe in your own
words what each of the graphs shows about a child’s
growth.

where g is the acceleration due to gravity and the units for
velocity are centimeters per second.

a. What value for g should be used in the equation?

b. Generate a table of values for t and v, letting t range from
0 to 4 seconds.

c. Graph velocity vs. time by hand and interpret your graph.

d. What was the initial condition? Was the object dropped or
thrown? Explain your reasoning.

28. A certain baseball is at height h 5 4 1 64t 2 16t2 feet at time
t in seconds. Compute the average velocity over each of the
following time intervals and indicate for which intervals the
baseball is rising and for which it is falling. In which interval
was the average velocity the greatest?

a. t 5 0 to t 5 0.5 e. t 5 2 to t 5 3

b. t 5 0 to t 5 0.1 f. t 5 1 to t 5 3

c. t 5 0 to t 5 1 g. t 5 4 to t 5 4.01

d. t 5 1 to t 5 2

29. At t 5 0, an object is in free fall 150 cm above the ground,
falling at a rate of 25 cm/sec. Its height, h, is measured in
centimeters above the ground.

a. Is its velocity positive or negative? Why?

b. Construct an equation that describes its height, h, at time t.

c. What is the average velocity from t 5 0 to t 5 ? How does
it compare with the initial velocity?

30. (Graphing program required.) The force of acceleration on
other planets. We have seen that the function d 5 gt2 1 v0 t
(where g is the acceleration due to Earth’s gravity and v0 is
the object’s initial velocity) is a mathematical model for the
relationship between time and distance fallen by freely falling
bodies near Earth’s surface. This relationship also holds for
freely falling bodies near the surfaces of other planets. We
just replace g, the acceleration of Earth’s gravitational field,
with the acceleration for the planet under consideration. The
following table gives the acceleration due to gravity for
planets in our solar system:

a. Choose units of measurement (meters or feet) and three of
the planets (other than Earth). For each of these planets,
find an equation for the relationship between the distance
an object falls and time. Construct a table as shown at the
top of the next page. Assume for the moment that the
initial velocity of the freely falling object is 0.

Acceleration Due to Gravity

m/sec2 ft/sec2

Mercury 3.7 12.1
Venus 8.9 29.1
Earth 9.8 32.1
Mars 3.7 12.1
Jupiter 24.8 81.3
Saturn 10.4 34.1
Uranus 8.5 27.9
Neptune 11.6 38.1

Note: Pluto is no longer considered a planet.
Source: The Astronomical Almanac, U.S. Naval
Observatory, 1981.

1
2

1
2
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Source: Adapted from B. Bogin, “The Evolution of Human Childhood,”
BioScience, Vol. 40, p. 16.

27. The relationship between the velocity of a freely falling
object and time is given by 
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b. Using a graphing program, plot the three functions, with
time on the horizontal axis and distance on the vertical
axis. What domain makes sense for your models? Why?

c. On which of your planets will an object fall the farthest in
a given time? On which will it fall the least distance in a
given time?

d. Examine the graphs and think about the similarities that
they share. Describe their general shape. What happens to
d as the value for t increases?

e. Think about the differences among the three curves.
What effect does the coefficient of the t2 term have on
the shape of the graph; that is, when the coefficient gets
larger (or smaller), how is the shape of the curve
affected? Which graph shows d increasing the fastest
compared with t?

31. Suppose an object is moving with constant acceleration, a,
and its motion is initially observed at a moment when its
velocity is v0. We set time, t, equal to 0, at this point when
velocity equals v0. Then its velocity t seconds after the
initial observation is V(t) 5 at 1 v0. (Note that the product
of acceleration and time is velocity.) Now suppose we want
to find its average velocity between time 0 and time t. The
average velocity can be measured in two ways. First, we can
find the average of the initial and final velocities by
calculating a numerical average or mean; that is, we add the
two velocities and divide by 2. So, between time 0 and
time t,

average velocity 5 (1)

We can also find the average velocity by dividing the change
in distance by the change in time. Thus, between time 0 and
time t,

average velocity 5 (2)

If we substitute the expression for average velocity (from
time 0 to time t) given by Equation (1) into Equation (2), we
get

(3)

We know that V(t) 5 at 1 v0. Substitute this expression for
V(t) in Equation (3) and solve for d. Interpret your results.

32. In 1974 in Anaheim, California, Nolan Ryan threw a
baseball at just over 100 mph. If he had thrown the ball
straight upward at this speed, it would have risen to a height
of over 335 feet and taken just over 9 seconds to fall back to

d

t
5

v0 1 Vstd
2

�distance

�time
5

d 2 0

t 2 0
5

d

t

v0 1 Vstd
2

Function Relating Distance Units for
Name of Planet and Time (sec) Distance

Earth. Choose another planet and see what would have
happened if he had been able to throw a baseball straight up
at 100 mph on that planet. In your computations, use the
table for the acceleration due to gravity on other planets
from Exercise 30.

33. An object that is moving horizontally along the ground is
observed to have (an initial) velocity of 60 cm/sec and to be
accelerating at a constant rate of 10 cm/sec2.

a. Determine its velocity after 5 seconds, after 60 seconds,
and after t seconds.

b. Find the average velocity for the object between 0 and 
5 seconds.

34. (Requires results from Exercise 33.) Find the distance
traveled by the object described in the previous exercise after
5 seconds by using two different methods.

a. Use the formula distance 5 rate time. For the rate, use
the average velocity found in Exercise 33(b). For time, use
5 seconds.

b. Write an equation of motion d 5 at2 1 v0 t using
a 5 10 cm/sec2 and v0 5 60 cm/sec and evaluate when 
t 5 5. Does your answer agree with part (a)?

35. An object is observed to have an initial velocity of 
200 m/sec and to be accelerating at 60 m/sec2.

a. Write an equation for its velocity after t seconds.

b. Write an equation for the distance traveled after t seconds.

36. You may have noticed that when a basketball player or dancer
jumps straight up in the air, in the middle of a blurred
impression of vertical movement, the jumper appears to
“hang” for an instant at the top of the jump.

a. If a player jumps 3 feet straight up, generate equations that
describe his height above ground and velocity during his
jump. What initial upward velocity must the player have
to achieve a 3-foot-high jump?

b. How long does the total jump take from takeoff to landing?
What is the player’s downward velocity at landing?

c. How much vertical distance is traveled in the first third of
the total time that the jump takes? In the middle third? In
the last third?

d. Now explain in words why it is that the jumper appears
suspended in space at the top of the jump.

37. Old Faithful, the most famous geyser at Yellowstone
National Park, regularly shoots up a jet of water 120 feet
high.

a. At what speed must the stream of water be traveling out of
the ground to go that high?

b. How long does it take to reach its maximum height?

38. A vehicle trip is composed of the following parts:

i. Accelerate from 0 to 30 mph in 1 minute.

ii. Travel at 30 mph for 12 minutes.

iii. Accelerate from 30 to 50 mph in minute.

iv. Travel at 50 mph for 6 minutes.

v. Decelerate from 50 to 0 mph in minute.1
2

1
2

1
2

?
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a. Sketch a graph of speed versus time for the trip. 

b. What are the average velocities for parts (i), (iii), and (v)
of the trip?

c. How much distance is covered in each part of the trip, and
what is the total trip distance?

39. In general, for straight motion of a vehicle with constant
acceleration, a, the velocity, v, at any time, t, is the original 
velocity, v0, plus acceleration multiplied by time: v 5 v0 1 at.
The distance traveled in time t is d 5 v0t 1 at 2.

a. A criminal going at speed vc passes a police car and
immediately accelerates with constant acceleration ac. If
the police car has constant acceleration ap . ac , starting
from 0 mph, how long will it take to pass the criminal?
Give t in terms of vc, ap, and ac.

b. At what time are the police and the criminal traveling at
the same speed? If they are traveling at the same speed,
does it mean the police have caught up with the criminal?
Explain.

1
2
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