
The Basic Elements
and Phasors

14.1 INTRODUCTION

The response of the basic R, L, and C elements to a sinusoidal voltage and current are exam-
ined in this chapter, with special note of how frequency affects the “opposing” characteristic
of each element. Phasor notation is then introduced to establish a method of analysis that per-
mits a direct correspondence with a number of the methods, theorems, and concepts introduced
in the dc chapters.

14.2 DERIVATIVE

To understand the response of the basic R, L, and C elements to a sinusoidal signal, you need
to examine the concept of the derivative in some detail. You do not have to become proficient
in the mathematical technique but simply understand the impact of a relationship defined by a
derivative.

Recall from Section 10.10 that the derivative dx/dt is defined as the rate of change of x with
respect to time. If x fails to change at a particular instant, dx � 0, and the derivative is zero.
For the sinusoidal waveform, dx/dt is zero only at the positive and negative peaks (vt � p/2
and 3

2p in Fig. 14.1), since x fails to change at these instants of time. The derivative dx/dt is ac-
tually the slope of the graph at any instant of time.

• Become familiar with the response of a resistor,

inductor, and capacitor to the application of a

sinusoidal voltage or current.

• Learn how to apply the phasor format to add and

subtract sinusoidal waveforms.

• Understand how to calculate the real power to

resistive elements and the reactive power to

inductive and capacitive elements.

• Become aware of the differences between the

frequency response of ideal and practical

elements.

• Become proficient in the use of a calculator or

Mathcad to work with complex numbers.
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FIG. 14.1

Defining those points in a sinusoidal waveform that have maximum and minimum derivatives.
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588 ⏐⏐⏐ THE BASIC ELEMENTS AND PHASORS �

A close examination of the sinusoidal waveform will also indicate that
the greatest change in x occurs at the instants vt � 0, p, and 2p. The de-
rivative is therefore a maximum at these points. At 0 and 2p, x increases
at its greatest rate, and the derivative is given a positive sign since x in-
creases with time. At p, dx/dt decreases at the same rate as it increases at
0 and 2p, but the derivative is given a negative sign since x decreases with
time. Since the rate of change at 0, p, and 2p is the same, the magnitude
of the derivative at these points is the same also. For various values of vt
between these maxima and minima, the derivative will exist and have
values from the minimum to the maximum inclusive. A plot of the deriv-
ative in Fig. 14.2 shows that

the derivative of a sine wave is a cosine wave.

Cosine wave

qt0 p
2

dx
dt  =  0

p 2p

dx
dt

dx
dt  =  0

max

max

3
2 

p

max

FIG. 14.2

Derivative of the sine wave of Fig. 14.1.
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FIG. 14.3

Effect of frequency on the peak value of the derivative.

The peak value of the cosine wave is directly related to the frequency
of the original waveform. The higher the frequency, the steeper the slope
at the horizontal axis and the greater the value of dx/dt, as shown in Fig.
14.3 for two different frequencies.

Note in Fig. 14.3 that even though both waveforms (x1 and x2) have the
same peak value, the sinusoidal function with the higher frequency pro-
duces the larger peak value for the derivative. In addition, note that
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the derivative of a sine wave has the same period and frequency as
the original sinusoidal waveform.

For the sinusoidal voltage

e(t) � Em sin (vt � u)

the derivative can be found directly by differentiation (calculus) to pro-
duce the following:

(14.1)

The mechanics of the differentiation process are not discussed or
investigated here; nor are they required to continue with the text. Note,
however, that the peak value of the derivative, 2pfEm , is a function of
the frequency of e(t), and the derivative of a sine wave is a cosine
wave.

14.3 RESPONSE OF BASIC R, L, AND C
ELEMENTS TO A SINUSOIDAL VOLTAGE 
OR CURRENT

Now that we are familiar with the characteristics of the derivative of a si-
nusoidal function, we can investigate the response of the basic elements
R, L, and C to a sinusoidal voltage or current.

Resistor

For power-line frequencies and frequencies up to a few hundred kilo-
hertz, resistance is, for all practical purposes, unaffected by the frequency
of the applied sinusoidal voltage or current. For this frequency region, the
resistor R in Fig. 14.4 can be treated as a constant, and Ohm’s law can be
applied as follows. For y� Vm sin vt,

where (14.2)

In addition, for a given i,

y� iR � (Im sin vt)R � ImR sin vt � Vm sin vt

where (14.3)

A plot of y and i in Fig. 14.5 reveals that

for a purely resistive element, the voltage across and the current
through the element are in phase, with their peak values related by
Ohm’s law.

Vm � ImR

Im �
Vm

R

i �
y

R
�

Vm sin vt

R
�

Vm

R
 sin vt � Im sin vt

d

dt
 e1t 2 � vEm cos1vt � u 2

           
� 2pf Em cos1vt � u 2

v
+

–

i

R

FIG. 14.4

Determining the sinusoidal response for a resistive
element.
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iR

vR

Vm
Im

FIG. 14.5

The voltage and current of a resistive element are 
in phase.
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590 ⏐⏐⏐ THE BASIC ELEMENTS AND PHASORS �

Inductor

For the series configuration in Fig. 14.6, the voltage yelement of the boxed-
in element opposes the source e and thereby reduces the magnitude of the
current i. The magnitude of the voltage across the element is determined
by the opposition of the element to the flow of charge, or current i. For a
resistive element, we have found that the opposition is its resistance and
that yelement and i are determined by yelement � iR.

We found in Chapter 11 that the voltage across an inductor is directly
related to the rate of change of current through the coil. Consequently, the
higher the frequency, the greater the rate of change of current through the
coil, and the greater the magnitude of the voltage. In addition, we found
in the same chapter that the inductance of a coil determines the rate of
change of the flux linking a coil for a particular change in current through
the coil. The higher the inductance, the greater the rate of change of the
flux linkages, and the greater the resulting voltage across the coil.

The inductive voltage, therefore, is directly related to the frequency
(or, more specifically, the angular velocity of the sinusoidal ac current
through the coil) and the inductance of the coil. For increasing values of
f and L in Fig. 14.7, the magnitude of yL increases as described above.

Using the similarities between Figs. 14.6 and 14.7, we find that in-
creasing levels of yL are directly related to increasing levels of opposition
in Fig. 14.6. Since yL increases with both v (� 2pf) and L, the opposi-
tion of an inductive element is as defined in Fig. 14.7.

We will now verify some of the preceding conclusions using a more
mathematical approach and then define a few important quantities to be
used in the sections and chapters to follow.

For the inductor in Fig. 14.8, we recall from Chapter 11 that

and, applying differentiation,

Therefore,

or yL � Vm sin(vt � 90°)

where Vm � vLIm

Note that the peak value of yL is directly related to v (� 2pf) and L as
predicted in the discussion above.

A plot of yL and iL in Fig. 14.9 reveals that

for an inductor, YL leads iL by 90°, or iL lags YL by 90°.

If a phase angle is included in the sinusoidal expression for iL , such as

iL � Im sin(vt � u)

then yL � vLIm sin(vt � u � 90°)

The opposition established by an inductor in a sinusoidal ac network
can now be found by applying Eq. (4.1):

Effect �
cause

opposition

yL � L 
diL

dt
� L1vIm cos vt 2 � vLIm cos vt

diL

dt
�

d

dt
1Im sin vt 2 � vIm cos vt

yL � L 
diL

dt

Opposition

e
i+–

+ –velement

FIG. 14.6

Defining the opposition of an element to the flow of
charge through the element.

e
+–

+ –
L

Opposition a
function of f and L

iL

vL

FIG. 14.7

Defining the parameters that determine the
opposition of an inductive element to the flow of

charge.

iL  =  Im sin qt

vL

+

–
L

FIG. 14.8

Investigating the sinusoidal response of an inductive
element.
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2

FIG. 14.9

For a pure inductor, the voltage across the coil leads
the current through the coil by 90°.
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which, for our purposes, can be written

Substituting values, we have

revealing that the opposition established by an inductor in an ac sinu-
soidal network is directly related to the product of the angular velocity
(v � 2pf) and the inductance, verifying our earlier conclusions.

The quantity vL, called the reactance (from the word reaction) of an
inductor, is symbolically represented by XL and is measured in ohms;
that is,

(ohms, �) (14.4)

In an Ohm’s law format, its magnitude can be determined from

(ohms, �) (14.5)

Inductive reactance is the opposition to the flow of current, which results
in the continual interchange of energy between the source and the magnetic
field of the inductor. In other words, inductive reactance, unlike resistance
(which dissipates energy in the form of heat), does not dissipate electrical
energy (ignoring the effects of the internal resistance of the inductor.)

Capacitor

Let us now return to the series configuration in Fig. 14.6 and insert the
capacitor as the element of interest. For the capacitor, however, we will
determine i for a particular voltage across the element. When this ap-
proach reaches its conclusion, we will know the relationship between the
voltage and current and can determine the opposing voltage (yelement) for
any sinusoidal current i.

Our investigation of the inductor revealed that the inductive voltage
across a coil opposes the instantaneous change in current through the
coil. For capacitive networks, the voltage across the capacitor is limited
by the rate at which charge can be deposited on, or released by, the plates
of the capacitor during the charging and discharging phases, respectively.
In other words, an instantaneous change in voltage across a capacitor is
opposed by the fact that there is an element of time required to deposit
charge on (or release charge from) the plates of a capacitor, and V � Q/C.

Since capacitance is a measure of the rate at which a capacitor will
store charge on its plates,

for a particular change in voltage across the capacitor, the greater the
value of capacitance, the greater the resulting capacitive current.

In addition, the fundamental equation relating the voltage across a ca-
pacitor to the current of a capacitor [i � C(dy/dt)] indicates that

for a particular capacitance, the greater the rate of change of voltage
across the capacitor, the greater the capacitive current.

XL �
Vm

Im

XL � vL

Opposition �
Vm

Im

�
vLIm

Im

� vL

Opposition �
cause

effect
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592 ⏐⏐⏐ THE BASIC ELEMENTS AND PHASORS �

Certainly, an increase in frequency corresponds to an increase in the rate
of change of voltage across the capacitor and to an increase in the current
of the capacitor.

The current of a capacitor is therefore directly related to the frequency
(or, again more specifically, the angular velocity) and the capacitance of
the capacitor. An increase in either quantity results in an increase in the
current of the capacitor. For the basic configuration in Fig. 14.10, how-
ever, we are interested in determining the opposition of the capacitor as
related to the resistance of a resistor and vL for the inductor. Since an in-
crease in current corresponds to a decrease in opposition, and iC is pro-
portional to v and C, the opposition of a capacitor is inversely related to
v (� 2p f) and C.

Opposition inversely
related to f and C

e iC+–

+ –vC

C

FIG. 14.10

Defining the parameters that determine the opposition of a capacitive element
to the flow of charge.

iC  =  ?

 vC  =  Vm sin qt
+

–
C

FIG. 14.11

Investigating the sinusoidal response of a capacitive
element.

qt0 p 2p

iC vC

Vm

Im

–
90°

C:  iC leads vC by 90°

3
2

p
p
2
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2

FIG. 14.12

The current of a purely capacitive element leads the
voltage across the element by 90°.

*A mnemonic phrase sometimes used to remember the phase relationship between the volt-
age and current of a coil and capacitor is “ELI the ICE man.” Note that the L (inductor) has
the E before the I (e leads i by 90°), and the C (capacitor) has the I before the E (i leads e
by 90°).

We will now verify, as we did for the inductor, some of the above con-
clusions using a more mathematical approach.

For the capacitor of Fig. 14.11, we recall from Chapter 11 that

and, applying differentiation,

Therefore,

or iC � Im sin(vt � 90°)

where Im � vCVm

Note that the peak value of iC is directly related to v (� 2pf) and C,
as predicted in the discussion above.

A plot of yC and iC in Fig. 14.12 reveals that

for a capacitor, iC leads YC by 90°, or YC lags iC by 90°.*

If a phase angle is included in the sinusoidal expression for yC, such
as

yC � Vm sin(vt � u)

then iC � vCVm sin(vt � u � 90°)

iC � C 
dyC

dt
� C1vVm cos vt 2 � vCVm cos vt

dyC

dt
�

d

dt
1Vm sin vt 2 � vVm cos vt

iC � C 
dyC

dt
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Applying

and substituting values, we obtain

which agrees with the results obtained above.
The quantity 1/vC, called the reactance of a capacitor, is symboli-

cally represented by XC and is measured in ohms; that is,

(ohms, �) (14.6)

In an Ohm’s law format, its magnitude can be determined from

(ohms, �) (14.7)

Capacitive reactance is the opposition to the flow of charge, which re-
sults in the continual interchange of energy between the source and the
electric field of the capacitor. Like the inductor, the capacitor does not dis-
sipate energy in any form (ignoring the effects of the leakage resistance).

In the circuits just considered, the current was given in the inductive cir-
cuit, and the voltage in the capacitive circuit. This was done to avoid the use
of integration in finding the unknown quantities. In the inductive circuit,

but (14.8)

In the capacitive circuit,

but (14.9)

Shortly, we shall consider a method of analyzing ac circuits that will per-
mit us to solve for an unknown quantity with sinusoidal input without
having to use direct integration or differentiation.

It is possible to determine whether a network with one or more ele-
ments is predominantly capacitive or inductive by noting the phase rela-
tionship between the input voltage and current.

If the source current leads the applied voltage, the network is
predominantly capacitive, and if the applied voltage leads the source
current, it is predominantly inductive.

Since we now have an equation for the reactance of an inductor or ca-
pacitor, we do not need to use derivatives or integration in the examples

yC �
1

C
 � iC dt

iC � C 
dyC

dt

iL �
1

L
 �yL dt

yL � L 
diL

dt

XC �
Vm

Im

XC �
1

vC

Opposition �
Vm

Im

�
Vm

vCVm

�
1

vC

Opposition �
cause

effect
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to be considered. Simply applying Ohm’s law, Im � Em /XL (or XC), and
keeping in mind the phase relationship between the voltage and current
for each element, will be sufficient to complete the examples.

EXAMPLE 14.1 The voltage across a resistor is indicated. Find the si-
nusoidal expression for the current if the resistor is 10 �. Sketch the
curves for y and i.

a. y� 100 sin 377t
b. y� 25 sin(377t � 60°)

Solutions:

a. Eq. (14.2):

(y and i are in phase), resulting in

i � 10 sin 377t

The curves are sketched in Fig. 14.13.

b. Eq. (14.2):

(y and i are in phase), resulting in

i � 2.5 sin(377t � 60°)

The curves are sketched in Fig. 14.14.

EXAMPLE 14.2 The current through a 5 � resistor is given. Find the si-
nusoidal expression for the voltage across the resistor for i � 40 sin(377t
� 30°).

Solution: Eq. (14.3): Vm � ImR � (40 A)(5 �) � 200 V

(y and i are in phase), resulting in

y� 200 sin(377t � 30°)

EXAMPLE 14.3 The current through a 0.1 H coil is provided. Find the
sinusoidal expression for the voltage across the coil. Sketch the y and
i curves.

a. i � 10 sin 377t
b. i � 7 sin(377t � 70°)

Solutions:

a. Eq. (14.4): XL � vL � (377 rad/s)(0.1 H) � 37.7 �
Eq. (14.5): Vm � ImXL � (10 A)(37.7 �) � 377 V

and we know that for a coil y leads i by 90°. Therefore,

y� 377 sin(377t � 90°)

Im �
Vm

R
�

25 V

10 �
� 2.5 A

Im �
Vm

R
�

100 V

10 �
� 10 A

�0 p 2piR

vR
Vm  =  100 V

Im  =  10 A

In phase

FIG. 14.13

Example 14.1(a).

– p2
�0

p

2pp
260°

3
2 

p

iR

vRVm  =  25 V

Im  =  2.5 A

In phase

FIG. 14.14

Example 14.1(b).
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b. XL remains at 37.7 �.

Vm � ImXL � (7 A)(37.7 �) � 263.9 V

and we know that for a coil y leads i by 90°. Therefore,

y� 263.9 sin(377t � 70° � 90°)

and

y� 263.9 sin(377t � 20°)

The curves are sketched in Fig. 14.16.

EXAMPLE 14.4 The voltage across a 0.5 H coil is provided below.
What is the sinusoidal expression for the current?

y� 100 sin 20t

Solution:

and we know the i lags y by 90°. Therefore,

i � 10 sin(20t � 90°)

EXAMPLE 14.5 The voltage across a 1 µF capacitor is provided be-
low. What is the sinusoidal expression for the current? Sketch the y and
i curves.

y� 30 sin 400t

Solution:

Eq. (14.6):

Eq. (14.7):

and we know that for a capacitor i leads y by 90°. Therefore,

i � 12 � 10�3 sin(400t � 90°)

Im �
Vm

XC

�
30 V

2500 �
� 0.0120 A � 12 mA

XC �
1

vC
�

1

1400 rad>s 2 11 � 10�6 F 2 �
106 �

400
� 2500 �

 Im �
Vm

XL

�
100 V

10 �
� 10 A

 XL � vL � 120 rad>s 2 10.5 H 2 � 10 �

�0 p 2p

90° iL

vL Vm  =  377 V

Im  =  10 Av leads i by 90°

3
2

p
p
2

– p
2

FIG. 14.15

Example 14.3(a).

�

0
p 2p

iL
vL

Vm  =  263.9 V

Im  =  7 A

90°

p
2

70°

v leads i by 90°.

3
2 

p20°

FIG. 14.16

Example 14.3(b).

The curves are sketched in Fig. 14.15.
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The curves are sketched in Fig. 14.17.

�0 p
90°

iC

vC

Vm  =  30 V

Im  =  12 mA

i leads v by 90°.

– 2
p

2
p 3

2 p 2p

FIG. 14.17

Example 14.5.

v ?
+

–

i

FIG. 14.18

Example 14.7.

EXAMPLE 14.6 The current through a 100 µF capacitor is given. Find
the sinusoidal expression for the voltage across the capacitor.

i � 40 sin(500t � 60°)

Solution:

and we know that for a capacitor, y lags i by 90°. Therefore,

y� 800 sin(500t � 60° � 90°)

and y� 800 sin(500t � 30°)

EXAMPLE 14.7 For the following pairs of voltages and currents, de-
termine whether the element involved is a capacitor, an inductor, or a re-
sistor. Determine the value of C, L, or R if sufficient data are provided
(Fig. 14.18):

a. y� 100 sin(vt � 40°)
i � 20 sin(vt � 40°)

b. y� 1000 sin(377t � 10°)
i � 5 sin(377t � 80°)

c. y� 500 sin(157t � 30°)
i � 1 sin(157t � 120°)

d. y� 50 cos(vt � 20°)
i � 5 sin(vt � 110°)

Solutions:

a. Since y and i are in phase, the element is a resistor, and

b. Since y leads i by 90°, the element is an inductor, and

so that XL � vL � 200 � or

XL �
Vm

Im

�
1000 V

5 A
� 200 �

R �
Vm

Im

�
100 V

20 A
� 5 �

VM � IMXC � 140 A 2 120 � 2 � 800 V

XC �
1

vC
�

1

1500 rad>s 2 1100 � 10�6 F 2 �
106 �

5 � 104 �
102 �

5
� 20 �
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c. Since i leads y by 90°, the element is a capacitor, and

so that or

d. y� 50 cos(vt � 20°) � 50 sin(vt � 20° � 90°)
� 50 sin(vt � 110°)

Since y and i are in phase, the element is a resistor, and

14.4 FREQUENCY RESPONSE 
OF THE BASIC ELEMENTS

Thus far, each description has been for a set frequency, resulting in a
fixed level of impedance for each of the basic elements. We must now in-
vestigate how a change in frequency affects the impedance level of the
basic elements. It is an important consideration because most signals
other than those provided by a power plant contain a variety of frequency
levels. The last section made it quite clear that the reactance of an induc-
tor or a capacitor is sensitive to the applied frequency. However, the ques-
tion is, How will these reactance levels change if we steadily increase the
frequency from a very low level to a much higher level?

Although we would like to think of every element as ideal, it is im-
portant to realize that every commercial element available today will not
respond in an ideal fashion for the full range of possible frequencies.
That is, each element is such that for a particular range of frequencies, it
performs in an essentially ideal manner. However, there is always a range
of frequencies in which the performance varies from the ideal. Fortu-
nately, the designer is aware of these limitations and will take them into
account in the design.

The discussion begins with a look at the response of the ideal elements—
a response that will be assumed for the remaining chapters of this text
and one that can be assumed for any initial investigation of a network.
This discussion is followed by a look at the factors that cause an ele-
ment to deviate from an ideal response as frequency levels become too
low or high.

Ideal Response

Resistor R For an ideal resistor, you can assume that frequency will
have absolutely no effect on the impedance level, as shown by the re-
sponse in Fig. 14.19. Note that at 5 kHz or 20 kHz, the resistance of the
resistor remains at 22 �; there is no change whatsoever. For the rest of

R �
Vm

Im

�
50 V

5 A
� 10 �

C �
1

v500 �
�

1

1157 rad/s 2 1500 � 2 � 12.74 MF

XC �
1

vC
� 500 �

XC �
Vm

Im

�
500 V

1 A
� 500 �

L �
200 �
v

�
200 �

377 rad/s
� 0.53 H

0 5 10 15 20 f (kHz)

R

22 �

FIG. 14.19

R versus f for the range of interest.
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the analyses in this text, the resistance level remains as the nameplate
value, no matter what frequency is applied.

Inductor L For the ideal inductor, the equation for the reactance can
be written as follows to isolate the frequency term in the equation. The
result is a constant times the frequency variable that changes as we move
down the horizontal axis of a plot:

XL � vL � 2pfL � (2pL)f � kf with k � 2pL

The resulting equation can be compared directly with the equation for a
straight line:

y � mx � b � kf � 0 � kf

where b � 0 and the slope is k or 2pL. XL is the y variable, and f is the
x variable, as shown in Fig. 14.20. Since the inductance determines the
slope of the curve, the higher the inductance, the steeper the straight-line
plot as shown in Fig. 14.20 for two levels of inductance.

In particular, note that at f � 0 Hz, the reactance of each plot is zero
ohms as determined by substituting f � 0 Hz into the basic equation for
the reactance of an inductor:

XL � 2pfL � 2p(0 Hz)L � 0 �

Since a reactance of zero ohms corresponds with the characteristics of a
short circuit, we can conclude that

at a frequency of 0 Hz, an inductor takes on the characteristics of a
short circuit, as shown in Fig. 14.21.

XL (k�)

0 5 10 15 20 f (kHz)

XL  =  0 � at f  =  0 Hz

Increasing L
L  =  20 mH

L  =  100 mH

1

2

3

4

5

FIG. 14.20

XL versus frequency.

f = very high frequenciesf = 0 HzL

FIG. 14.21

Effect of low and high frequencies on the circuit model of an inductor.

As shown in Fig. 14.21, as the frequency increases, the reactance in-
creases, until it reaches an extremely high level at very high frequencies.
The result is that

at very high frequencies, the characteristics of an inductor approach
those of an open circuit, as shown in Fig. 14.21.

The inductor, therefore, is capable of handling impedance levels that
cover the entire range, from zero ohms to infinite ohms, changing at a
steady rate determined by the inductance level. The higher the induc-
tance, the faster it approaches the open-circuit equivalent.

Capacitor C For the capacitor, the equation for the reactance

can be written as

(a constant)

which matches the basic format for a hyberbola:

yx � k

XC f �
1

2pC
� k

XC �
1

2pfC
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where XC is the y variable, f the x variable, and k a constant equal to
1/(2pC).

Hyberbolas have the shape appearing in Fig. 14.22 for two levels of
capacitance. Note that the higher the capacitance, the closer the curve ap-
proaches the vertical and horizontal axes at low and high frequencies.

At or near 0 Hz, the reactance of any capacitor is extremely high, as
determined by the basic equation for capacitance:

The result is that

at or near 0 Hz, the characteristics of a capacitor approach those of
an open circuit, as shown in Fig. 14.23.

XC �
1

2pfc
�

1

2p10 Hz 2C 1 ∞ �

XC (k�)

0 5 10 15 20 f (kHz)

Increasing C

1

2

3

4

5

C  =  0.01    F�

C  =  0.03    F�

FIG. 14.22

XC versus frequency.

f = very high frequenciesf = 0 Hz

C

FIG. 14.23

Effect of low and high frequencies on the circuit model of a capacitor.

As the frequency increases, the reactance approaches a value of zero
ohms. The result is that

at very high frequencies, a capacitor takes on the characteristics of a
short circuit, as shown in Fig. 14.23.

It is important to note in Fig. 14.22 that the reactance drops very rap-
idly as the frequency increases. It is not a gradual drop as encountered for
the rise in inductive reactance. In addition, the reactance sits at a fairly
low level for a broad range of frequencies. In general, therefore, recog-
nize that for capacitive elements, the change in reactance level can be dra-
matic with a relatively small change in frequency level.

Finally, recognize the following:

As frequency increases, the reactance of an inductive element
increases while that of a capacitor decreases, with one approaching
an open-circuit equivalent as the other approaches a short-circuit
equivalent.

Practical Response

Resistor R In the manufacturing process, every resistive element in-
herits some stray capacitance levels and lead inductances. For most ap-
plications, the levels are so low that their effects can be ignored.
However, as the frequency extends beyond a few megahertz, it may be
necessary to be aware of their effects. For instance, a number of car-
bon composition resistors have the frequency response appearing in
Fig. 14.24. The 100 � resistor is essentially stable up to about 300 MHz,
whereas the 100 k� resistor starts to drop off at about 15 MHz. In gen-
eral, therefore, this type of carbon composition resistor has the ideal char-
acteristics of Fig. 14.19 for frequencies up to about 15 MHz. For
frequencies of 100 Hz, 1 kHz, 150 kHz, and so on, the resistor can be con-
sidered ideal.
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Inductor L In reality, inductance can be affected by frequency, tem-
perature, and current. A true equivalent for an inductor appears in Fig.
14.25. The series resistance Rs represents the copper losses (resistance of
the many turns of thin copper wire); the eddy current losses (losses due
to small circular currents in the core when an ac voltage is applied); and
the hysteresis losses (losses due to core losses created by the rapidly re-
versing field in the core). The capacitance Cp is the stray capacitance that
exists between the windings of the inductor.

For most inductors, the construction is usually such that the larger the
inductance, the lower the frequency at which the parasitic elements be-
come important. That is, for inductors in the millihenry range (which is
very typical), frequencies approaching 100 kHz can have an effect on the
ideal characteristics of the element. For inductors in the microhenry
range, a frequency of 1 MHz may introduce negative effects. This is not
to suggest that the inductors lose their effect at these frequencies but rather
that they can no longer be considered ideal (purely inductive elements).

Fig. 14.26 is a plot of the magnitude of the impedance ZL of Fig. 14.25
versus frequency. Note that up to about 2 MHz, the impedance increases
almost linearly with frequency, clearly suggesting that the 100 µH induc-
tor is essentially ideal. However, above 2 MHz, all the factors contributing
to Rs start to increase, while the reactance due to the capacitive element Cp

ZL

Rs

Cp

L

FIG. 14.25

Practical equivalent for an inductor.

1MHz 2MHz 4MHz 6MHz 10MHz
f (log scale)

Due to Cp

10 �H

100 �H

Due to Cp

ZL (�)

�

�

ZL ≅ 2   fL�

ZL ≅ 2   fL�

FIG. 14.26

ZL versus frequency for the practical inductor equivalent of Fig. 14.25.

f (log scale)

R
(% of

nameplate
value)

1 MHz

100

90

60

80

70

50

40

30

20

10 MHz 100 MHz 1000 MHz

100 �

2 k�

10 k�

100 k�

Ideal response

FIG. 14.24

Typical resistance-versus-frequency curves for carbon composition resistors.
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is more pronounced. The dropping level of capacitive reactance begins to
have a shorting effect across the windings of the inductor and reduces the
overall inductive effect. Eventually, if the frequency continues to increase,
the capacitive effects overcome the inductive effects, and the element ac-
tually begins to behave in a capacitive fashion. Note the similarities of this
region with the curves in Fig. 14.22. Also, note that decreasing levels of
inductance (available with fewer turns and therefore lower levels of Cp) do
not demonstrate the degrading effect until higher frequencies are applied.

In general, therefore, the frequency of application for a coil becomes
important at increasing frequencies. Inductors lose their ideal character-
istics and, in fact, begin to act as capacitive elements with increasing
losses at very high frequencies.

Capacitor C The capacitor, like the inductor, is not ideal at higher fre-
quencies. In fact, a transition point can be defined where the characteris-
tics of the capacitor will actually be inductive. The complete equivalent
model for a capacitor is provided in Fig. 14.27. The resistance Rs , defined
by the resistivity of the dielectric (typically 1012 � 	 m or better) and the
case resistance, determines the level of leakage current to expect during
the discharge cycle. In other words, a charged capacitor can discharge
both through the case and through the dielectric at a rate determined by
the resistance of each path. Depending on the capacitor, the discharge time
can extend from a few seconds for some electrolytic capacitors to hours
(paper) or perhaps days (polystyrene). Inversely, therefore, electrolytics
obviously have much lower levels of Rs than paper or polystyrene.

The resistance Rp reflects the energy lost as the atoms continually re-
align themselves in the dielectric due to the applied alternating ac volt-
age. Molecular friction is present due to the motion of the atoms as they
respond to the alternating applied electric field. Interestingly enough,
however, the relative permittivity decreases with increasing frequencies
but eventually takes a complete turnaround and begins to increase at very
high frequencies. The inductance Ls includes the inductance of the ca-
pacitor leads and any inductive effects introduced by the design of the ca-
pacitor. Be aware that the inductance of the leads is about 0.05 µH per
centimeter or 0.2 µH for a capacitor with two 2 cm leads—a level that can
be important at high frequencies. As for the inductor, the capacitor be-
haves quite ideally for the low- and mid-frequency range, as shown by
the plot in Fig. 14.28 for a 0.01 µF metalized film capacitor with 2 cm

C

Rp (leakage)

Ls (leads)

Rs (dielectric loss)

FIG. 14.27

Practical equivalent for a capacitor.

Inductive characteristics
due to Ls

1 f (MHz–
log scale)

2 3 4 5 6 7 8 9 10 20

0.01 �F�

20

10

Z (�)

XC ≅ 1
2   fC�

FIG. 14.28

Impedance characteristics of a 0.01 µF metalized film capacitor versus
frequency.
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leads. As the frequency increases, however, and the reactance Xs becomes
larger, a frequency is eventually reached where the reactance of the coil
equals that of the capacitor (a resonant condition to be described in
Chapter 20). Any additional increase in frequency results in Xs being
greater than XC, and the element behaves like an inductor.

In general, therefore, the frequency of application is important for ca-
pacitive elements because when the frequency increases to a certain level,
the element takes on inductive characteristics. Also, the frequency of ap-
plication defines the type of capacitor (or inductor) that is applied: Elec-
trolytics are limited to frequencies to perhaps 10 kHz, while ceramic or
mica can handle frequencies higher than 10 MHz.

The expected temperature range of operation can have an important
impact on the type of capacitor chosen for a particular application. Elec-
trolytics, tantalum, and some high-k ceramic capacitors are very sensitive
to colder temperatures. In fact, most electrolytics lose 20% of their room-
temperature capacitance at 0°C (freezing). Higher temperatures (up to
100°C or 212°F) seem to have less impact in general than colder tem-
peratures, but high-k ceramics can lose up to 30% of their capacitance
level at 100°C compared to room temperature. With experience, you will
learn the type of capacitor to use for each application and only be con-
cerned when you encounter very high frequencies, extreme temperatures,
or very high currents or voltages.

EXAMPLE 14.8 At what frequency will the reactance of a 200 mH in-
ductor match the resistance level of a 5 k� resistor?

Solution: The resistance remains constant at 5 k� for the frequency
range of the inductor. Therefore,

R � 5000 � � XL � 2p fL � 2pLf

� 2p(200 × 10�3 H) f � 1.257f

and

EXAMPLE 14.9 At what frequency will an inductor of 5 mH have the
same reactance as a capacitor of 0.1 µF?

Solution:

and

�
1

2p25 � 10�10
�

1

12p 2 12.236 � 10�5 2 �
105 Hz

14.05
 � 7.12 kHz

f �
1

2p2LC
�

1

2p215 � 10�3 H 2 10.1 � 10�6 F 2

f 2 �
1

4p 2LC

2p fL �
1

2p fC

XL � XC

f �
5000 Hz

1.257
  � 3.98 kHz
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14.5 AVERAGE POWER AND POWER FACTOR

A common question is, How can a sinusoidal voltage or current deliver
power to a load if it seems to be delivering power during one part of its
cycle and taking it back during the negative part of the sinusoidal cycle?
The equal oscillations above and below the axis seem to suggest that over
one full cycle there is no net transfer of power or energy. However, as
mentioned in the last chapter, there is a net transfer of power over one full
cycle because power is delivered to the load at each instant of the applied
voltage or current (except when either is crossing the axis) no matter
what the direction is of the current or polarity of the voltage.

To demonstrate this, consider the relatively simple configuration in
Fig. 14.29 where an 8 V peak sinusoidal voltage is applied across a 2 �
resistor. When the voltage is at its positive peak, the power delivered at
that instant is 32 W as shown in the figure. At the midpoint of 4 V, the in-
stantaneous power delivered drops to 8 W; when the voltage crosses the
axis, it drops to 0 W. Note, however, that when the applied voltage is at
its negative peak, the current may reverse but, at that instant, 32 W is still
being delivered to the resistor.

R 2 �

iR

vR

+

–

0

8 V

–8 V

vR

�
2
� 3

2 � 2� �t

+

–

R 2 �

iR = 4 A

P = iR
2R

= 32 W P = 8 W

R 2 �

iR = 2 A+

–

4 V
8 V

8 V

iR = 4 A

P = 32 W

R 2 �

+

–

iR = 0 A

P = 0 W

R 2 �

+

–

0 V

FIG. 14.29

Demonstrating that power is delivered at every instant of a sinusoidal voltage waveform (except yR � 0 V).

In total, therefore,

even though the current through and the voltage across reverse
direction and polarity, respectively, power is delivered to the resistive
load at each instant of time.

If we plot the power delivered over a full cycle, the curve in Fig. 14.30
results. Note that the applied voltage and resulting current are in phase
and have twice the frequency of the power curve. For one full cycle of the
applied voltage having a period T, the power level peaks for each pulse
of the sinusoidal waveform.

The fact that the power curve is always above the horizontal axis
reveals that power is being delivered to the load at each instant of
time of the applied sinusoidal voltage.

Any portion of the power curve below the axis reveals that power is
being returned to the source. The average value of the power curve oc-
curs at a level equal to Vm Im /2 as shown in Fig. 14.30. This power level
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(Average)

VI

VI

t

T1

v

i0

PR

8 V

4 A

32

16

Power
returned to
source by

element

Power
delivered to
element by

source

P(W)

FIG. 14.30

Power versus time for a purely resistive load.

Load

+

–

i = Im sin (  t +   i)��

v = Vm sin (  t +   v)��

P

FIG. 14.31

Determining the power delivered in a sinusoidal 
ac network.

is called the average or real power level. It establishes a particular level
of power transfer for the full cycle, so that we do not have to determine
the level of power to apply to a quantity that varies in a sinusoidal nature.

If we substitute the equation for the peak value in terms of the rms
value as follows:

we find that the average or real power delivered to a resistor takes on the
following very convenient form:

(14.10)

Note that the power equation is exactly the same when applied to dc
networks as long as we work with rms values.

The above analysis was for a purely resistive load. If the sinusoidal
voltage is applied to a network with a combination of R, L, and C com-
ponents, the instantaneous equation for the power levels is more com-
plex. However, if we are careful in developing the general equation and
examine the results, we find some general conclusions that will be very
helpful in the analysis to follow.

In Fig. 14.31, a voltage with an initial phase angle is applied to a net-
work with any combination of elements that results in a current with the
indicated phase angle.

The power delivered at each instant of time is then defined by

p � yi � Vm sin(vt � uy)Im sin(vt � ui)

� VmIm sin(vt � uy) sin(vt � ui)

Using the trigonometric identity

the function sin(vt � uy) sin(vt � ui) becomes

sin A sin B �
cos1A � B 2 � cos1A � B 2

2

Pav � Vrms Irms

Pav �
VmIm 

2
�
122 Vrms 2 122 Irms 2

2
�

2 VrmsIrms

2
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0

p

v

i

Pav

  iθ

  vθ

   t�

Vm Im
2
     cos(  v  –    i)θ θ

Vm Im
2

FIG. 14.32

Defining the average power for a sinusoidal ac network.

so that Fixed value Time-varying (function of t)

A plot of y, i, and r on the same set of axes is shown in Fig. 14.32.
Note that the second factor in the preceding equation is a cosine wave

with an amplitude of VmIm /2 and with a frequency twice that of the volt-
age or current. The average value of this term is zero over one cycle, pro-
ducing no net transfer of energy in any one direction.

p � c VmIm

2
 cos1uy � ui 2 d � c VmIm

2
 cos12vt � uy � ui 2 d

�
cos1uv � ui 2 � cos12vt � uv � ui 2

2

�
cos 3 1vt � uv 2 � 1vt � ui 2 4 � cos 3 1vt � uv 2 � 1vt � ui 2 4

2

sin1vt � uv 2  sin1vt � ui 2

The first term in the preceding equation, however, has a constant mag-
nitude (no time dependence) and therefore provides some net transfer of
energy. This term is referred to as the average power or real power as
introduced earlier. The angle (uy � ui) is the phase angle between y and
i. Since cos(�
) � cos 
,

the magnitude of average power delivered is independent of whether
Y leads i or i leads Y.

Defining u as equal to ⏐uy� ui⏐, where ⏐ ⏐ indicates that only the mag-
nitude is important and the sign is immaterial, we have

(watts, W) (14.11)

where P is the average power in watts. This equation can also be written

or, since

Eq. (14.11) becomes

(14.12)P � VrmsIrms cos u

Veff �
Vm

22
    and    Ieff �

Im

22

P � a Vm

22
b a Im

22
b  cos u

P �
VmIm

2
 cos u

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭
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Let us now apply Eqs. (14.11) and (14.12) to the basic R, L, and C
elements.

Resistor

In a purely resistive circuit, since y and i are in phase, ⏐uy � ui⏐ � u �
0°, and cos u � cos 0° � 1, so that

(W) (14.13)

Or, since

then (W) (14.14)

Inductor

In a purely inductive circuit, since y leads i by 90°, ⏐uy � ui⏐ � u �
⏐�90°⏐ � 90°. Therefore,

The average power or power dissipated by the ideal inductor (no
associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since i leads y by 90°, ⏐uy � ui⏐ � u �
⏐�90°⏐ � 90°. Therefore,

The average power or power dissipated by the ideal capacitor (no
associated resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network
whose input current and voltage are the following:

i � 5 sin(vt � 40°)

y� 10 sin(vt � 40°)

Solution: Since y and i are in phase, the circuit appears to be purely re-
sistive at the input terminals. Therefore,

or

and

or P � I rms
2 R � 3 10.707 2 15 A 2 4 212 2 � 25 W

P �
V rms

2

R
�
3 10.707 2 110 V 2 4 2

2
� 25 W

R �
Vm

Im

�
10 V

5 A
� 2 �

P �
VmIm

2
�
110 V 2 15 A 2

2
� 25 W

P �
VmIm

2
 cos190° 2 �

VmIm

2
10 2 � 0 W

P �
VmIm

2
 cos 90° �

VmIm

2
10 2 � 0 W

P �
V rms

2

R
� Irms

2  R

Irms �
Vrms

R

P �
VmIm

2
� VrmsIrms
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For the following example, the circuit consists of a combination of re-
sistances and reactances producing phase angles between the input cur-
rent and voltage different from 0° or 90°.

EXAMPLE 14.11 Determine the average power delivered to networks
having the following input voltage and current:

a. y� 100 sin(vt � 40°)
i � 20 sin(vt � 70°)

b. y� 150 sin(vt � 70°)
i � 3 sin(vt � 50°)

Solutions:

a. Vm � 100, uy � 40°
Im � 20 A, ui � 70°
u � ⏐uy � ui⏐ � ⏐ 40° � 70°⏐ � ⏐�30°⏐ � 30°

and

b. Vm � 150 V, uy � �70°
Im � 3 A, ui � �50°
u � ⏐uy � ui⏐ � ⏐�70° � (�50°)⏐

� ⏐�70° � 50°⏐ � ⏐�20°⏐ � 20°
and

Power Factor

In the equation P � (VmIm /2)cos u, the factor that has significant control
over the delivered power level is the cos u. No matter how large the volt-
age or current, if cos u� 0, the power is zero; if cos u� 1, the power de-
livered is a maximum. Since it has such control, the expression was given
the name power factor and is defined by

(14.15)

For a purely resistive load such as the one shown in Fig. 14.33, the phase
angle between y and i is 0° and Fp � cos u� cos 0° � 1. The power de-
livered is a maximum of (VmIm/2) cos u� ((100 V)(5 A)/2)(1) � 250 W.

For a purely reactive load (inductive or capactitive) such as the one
shown in Fig. 14.34, the phase angle between y and i is 90° and Fp �
cos u� cos 90° � 0. The power delivered is then the minimum value of
zero watts, even though the current has the same peak value as that en-
countered in Fig. 14.33.

For situations where the load is a combination of resistive and reactive
elements, the power factor varies between 0 and 1. The more resistive the
total impedance, the closer the power factor is to 1; the more reactive the
total impedance, the closer the power factor is to 0.

Power factor � Fp � cos u

� 211.43 W

P �
VmIm

2
 cos u �

1150 V 2 13 A 2
2

 cos120° 2 � 1225 W 2 10.9397 2

� 866 W

P �
VmIm

2
 cos u �

1100 V 2 120 A 2
2

 cos130° 2 � 11000 W 2 10.866 2

Im = 5 A

R 20 �100 VEm

+

–

Fp = 1

Pmax = 250 W

FIG. 14.33

Purely resistive load with Fp � 1.

100 VEm

+

–

Fp = 0

P = 0 W

XL 20 �

Im = 5 A

FIG. 14.34

Purely inductive load with Fp � 0.
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i = 2 sin(   t + 40°)ω

Fp = ? Load

+

–

v = 50 sin(   t – 20°)ω

FIG. 14.35

Example 14.12(a).

+

–
v

i

v  =  120 sin(   t  +  80°)�
i  =  5 sin(   t  +  30°)�

FIG. 14.36

Example 14.12(b).

LOAD

Ieff = 5 A

Fp = ? Veff = 20 V

P = 100 W

+

–

FIG. 14.37

Example 14.12(c).

In terms of the average power and the terminal voltage and current,

(14.16)

The terms leading and lagging are often written in conjunction with
the power factor. They are defined by the current through the load. If the
current leads the voltage across a load, the load has a leading power fac-
tor. If the current lags the voltage across the load, the load has a lagging
power factor. In other words,

capacitive networks have leading power factors, and inductive
networks have lagging power factors.

The importance of the power factor to power distribution systems is
examined in Chapter 19. In fact, one section is devoted to power-factor
correction.

EXAMPLE 14.12 Determine the power factors of the following loads,
and indicate whether they are leading or lagging:

a. Fig. 14.35
b. Fig. 14.36
c. Fig. 14.37

Solutions:

a. Fp � cos u � cos ⏐ 40° � (�20°)⏐ � cos 60° � 0.5 leading
b. Fp � cos u ⏐80° � 30°⏐ � cos 50° � 0.64 lagging

c.

The load is resistive, and Fp is neither leading nor lagging.

14.6 COMPLEX NUMBERS

In our analysis of dc networks, we found it necessary to determine the al-
gebraic sum of voltages and currents. Since the same will also be true for
ac networks, the question arises, How do we determine the algebraic sum
of two or more voltages (or currents) that are varying sinusoidally? Al-
though one solution would be to find the algebraic sum on a point-to-
point basis (as shown in Section 14.12), this would be a long and tedious
process in which accuracy would be directly related to the scale used.

It is the purpose of this chapter to introduce a system of complex
numbers that, when related to the sinusoidal ac waveform, results in a
technique for finding the algebraic sum of sinusoidal waveforms that is
quick, direct, and accurate. In the following chapters, the technique is ex-
tended to permit the analysis of sinusoidal ac networks in a manner very
similar to that applied to dc networks. The methods and theorems as de-
scribed for dc networks can then be applied to sinusoidal ac networks
with little difficulty.

A complex number represents a point in a two-dimensional plane lo-
cated with reference to two distinct axes. This point can also determine a
radius vector drawn from the origin to the point. The horizontal axis is
called the real axis, while the vertical axis is called the imaginary axis.
Both are labeled in Fig. 14.38. Every number from zero to �∞ can be

Fp � cos u �
P

VeffIeff
�

100 W

120 V 2 15 A 2 �
100 W

100 W
� 1

Fp � cos u �
P

VrmsIrms

Imaginary axis ( j )

+

–

Real axis

–

+

FIG. 14.38

Defining the real and imaginary axes of a complex
plane.
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represented by some point along the real axis. Prior to the development
of this system of complex numbers, it was believed that any number not
on the real axis did not exist—hence the term imaginary for the vertical
axis.

In the complex plane, the horizontal or real axis represents all positive
numbers to the right of the imaginary axis and all negative numbers to the
left of the imaginary axis. All positive imaginary numbers are represented
above the real axis, and all negative imaginary numbers, below the real axis.
The symbol j (or sometimes i) is used to denote the imaginary component.

Two forms are used to represent a complex number: rectangular and
polar. Each can represent a point in the plane or a radius vector drawn
from the origin to that point.

14.7 RECTANGULAR FORM

The format for the rectangular form is

(14.17)

as shown in Fig. 14.39. The letter C was chosen from the word “com-
plex.” The boldface notation is for any number with magnitude and di-
rection. The italic is for magnitude only.

EXAMPLE 14.13 Sketch the following complex numbers in the com-
plex plane:

a. C � 3 � j4
b. C � 0 � j6
c. C � �10 � j20

Solutions:

a. See Fig. 14.40.
b. See Fig. 14.41.
c. See Fig. 14.42.

C � X � jY

C = X + jY

j

X

Y

–j

– +

FIG. 14.39

Defining the rectangular form.

1 +– 0 2 3

1
2
3
4

–j

j
C = 3 + j4

+3

+4

FIG. 14.40

Example 14.13(a).

–1 +–

–j

j

C = 0 – j6
–2
–3
–4
–5
–6

0

–6

FIG. 14.41

Example 14.13(b).

+–

–j

j

C = –10 – j20

0

–20

–10

–20

–10

FIG. 14.42

Example 14.13(c).

14.8 POLAR FORM

The format for the polar form is

(14.18)

with the letter Z chosen from the sequence X, Y, Z.

C � Z �u
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+–

–j

j

Z C

θ

FIG. 14.43

Defining the polar form.

+–

–j

j

θ

– C

C
�

�

FIG. 14.44

Demonstrating the effect of a negative sign on the
polar form.

+–

–j

j

C = 5 � 30°

+30°
5

FIG. 14.45

Example 14.14(a).

+–

–j

j

7
–120°

C = 7�–120°

FIG. 14.46

Example 14.14(b).

+–

–j

j

C = 4.2 � 240°

4.2

+240°

–120°

C = – 4.2 � 60° = 4.2 � 60° + 180°
= 4.2 � + 240°

FIG. 14.47

Example 14.14(c).

+–

–j

j

X

Y

C = Z �    = X + jYθ

θ

Z

FIG. 14.48

Conversion between forms.

Z indicates magnitude only and u is always measured counterclockwise
(CCW) from the positive real axis, as shown in Fig. 14.43. Angles meas-
ured in the clockwise direction from the positive real axis must have a
negative sign associated with them.

A negative sign in front of the polar form has the effect shown in
Fig. 14.44. Note that it results in a complex number directly opposite
the complex number with a positive sign.

(14.19)

EXAMPLE 14.14 Sketch the following complex numbers in the com-
plex plane:

a. C � 5 ∠30°
b. C � 7 ∠�120°
c. C � �4.2 ∠60°

Solutions:

a. See Fig. 14.45.
b. See Fig. 14.46.
c. See Fig. 14.47.

�C � �Z �u � Z �u � 180°

14.9 CONVERSION BETWEEN FORMS

The two forms are related by the following equations, as illustrated in
Fig. 14.48.

Rectangular to Polar

(14.20)

(14.21)u � tan�1 
Y

X

Z � 2X2 � Y2
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Polar to Rectangular

(14.22)

(14.23)

EXAMPLE 14.15 Convert the following from rectangular to polar form:

C � 3 � j4 (Fig. 14.49)

Solution:

and C � 5∠53.13°

EXAMPLE 14.16 Convert the following from polar to rectangular form:

C � 10 ∠45° (Fig. 14.50)

Solution:

X � 10 cos 45° � (10)(0.707) � 7.07

Y � 10 sin 45° � (10)(0.707) � 7.07

and C � 7.07 � j7.07

If the complex number should appear in the second, third, or fourth
quadrant, simply convert it in that quadrant, and carefully determine the
proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17 Convert the following from rectangular to polar form:

C � �6 � j3 (Fig. 14.51)

Solution:

and C � 6.71 ∠153.43°

EXAMPLE 14.18 Convert the following from polar to rectangular form:

C � 10 ∠230° (Fig. 14.52)

Solution:

X � Z cos b� 10 cos(230° � 180°) � 10 cos 50°

� (10)(0.6428) � 6.428

Y � Z sin b� 10 sin 50° � (10)(0.7660) � 7.660

and C � �6.43 � j7.66

 u � 180° � 26.57° � 153.43°

 b � tan�1 a 3

6
b � 26.57°

 Z � 216 2 2 � 13 2 2 � 245 � 6.71

u � tan�1 a 4

3
b � 53.13°

Z � 213 2 2 � 14 2 2 � 225 � 5

Y � Z sin u

X � Z cos u

+–

–j

j C = 3 + j4

Z

θ

+3

+4

FIG. 14.49

Example 14.15.

+–

–j

j

C  =  10 � 45°

45°
10

FIG. 14.50

Example 14.16.

–j

+

3
b

C  =  – 6  +  j3 j

–

v

Z

6

FIG. 14.51

Example 14.17.

j

+

Y

v  =  230°

C  =  10∠230°

–j

–

Z = 10

X

b

FIG. 14.52

Example 14.18.
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–j

j C = 2 + j3

2

3

–3

Complex conjugate of C
C = 2 – j3

+

FIG. 14.53

Defining the complex conjugate of a complex
number in rectangular form.

14.10 MATHEMATICAL OPERATIONS 
WITH COMPLEX NUMBERS

Complex numbers lend themselves readily to the basic mathematical op-
erations of addition, subtraction, multiplication, and division. A few ba-
sic rules and definitions must be understood before considering these
operations.

Let us first examine the symbol j associated with imaginary numbers.
By definition,

(14.24)

Thus, (14.25)

and j 3 � j 2j � �1j � �j

with j 4 � j 2j 2 � (�1)(�1) � �1

j 5 � j

and so on. Further,

and (14.26)

Complex Conjugate

The conjugate or complex conjugate of a complex number can be found
by simply changing the sign of the imaginary part in the rectangular form
or by using the negative of the angle of the polar form. For example, the
conjugate of

C � 2 � j3

is 2 � j3

as shown in Fig. 14.53. The conjugate of

C � 2 ∠30°

is 2 ∠�30°

as shown in Fig. 14.54.

Reciprocal

The reciprocal of a complex number is 1 divided by the complex num-
ber. For example, the reciprocal of

C � X � jY

is
1

X � jY

1

j
� �j

1

j
� 11 2 a 1

j
b � a j

j
b a 1

j
b �

j

j 2 �
j

�1

j 2 � �1

j � 2�1

–j

j

C

Complex conjugate of C

+

30°

–30°

2

2

FIG. 14.54

Defining the complex conjugate of a complex
number in polar form.

boy30444_ch14.qxd  3/24/06  2:20 PM  Page 612



MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS ⏐⏐⏐ 613
�

and of Z ∠u,

We are now prepared to consider the four basic operations of addition,
subtraction, multiplication, and division with complex numbers.

Addition

To add two or more complex numbers, add the real and imaginary parts
separately. For example, if

C1 � �X1 � jY1 and C2 � �X2 � jY2

then (14.27)

There is really no need to memorize the equation. Simply set one above
the other and consider the real and imaginary parts separately, as shown
in Example 14.19.

EXAMPLE 14.19

a. Add C1 � 2 � j4 and C2 � 3 � j1.
b. Add C1 � 3 � j6 and C2 � �6 � j3.

Solutions:

a. By Eq. (14.27),

C1 � C2 � (2 � 3) � j(4 � 1) � 5 � j5

Note Fig. 14.55. An alternative method is

b. By Eq. (14.27),

C1 � C2 � (3 � 6) � j(6 � 3) � �3 � j9

Note Fig. 14.56. An alternative method is

Subtraction

In subtraction, the real and imaginary parts are again considered sepa-
rately. For example, if

C1 � �X1 � jY1 and C 2 � �X2 � jY2

then

(14.28)C1 � C2 � 3�X1 � 1�X2 2 4 � j 3�Y1 � 1�Y2 2 4

   3 � j6

�6 � j3

   T�  T

�3 � j9

2 � j4

3 � j1

T�  T

5 � j5

C1 � C2 � 1�X1 � X2 2 � j1�Y1 � Y2 2

1

Z �u

–j

j

+

C1

C1 + C2

C2

6

4

2

0 2 4 6

FIG. 14.55

Example 14.19(a).

–j

j

+

C1

C1 + C2

C2

6

4

0 2 4 6–2–4–6–8

8

10

2

FIG. 14.56

Example 14.19(b).
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–j

j

+

C1

C1 – C2

C2

6

4

2

0
2 4 6–2–

–C2

FIG. 14.57

Example 14.20(a).

–j

j

+

C1

C1 – C2

C2

6

4

2

0 2 4 6–2–
–2

–4

–6

–4

–C2

FIG. 14.58

Example 14.20(b).

2

+–

–j

j

3 5

45°

FIG. 14.59

Example 14.21(a).

Again, there is no need to memorize the equation if the alternative
method of Example 14.20 is used.

EXAMPLE 14.20

a. Subtract C2 � 1 � j4 from C1 � 4 � j6.
b. Subtract C2 � �2 � j5 from C1 � �3 � j3.

Solutions:

a. By Eq. (14.28),

C1 � C2 � (4 � 1) � j(6 � 4) � 3 � j2

Note Fig. 14.57. An alternative method is

b. By Eq. (14.28),

C1 � C2 � [3 �(�2)] � j(3 � 5) � 5 � j2

Note Fig. 14.58. An alternative method is

Addition or subtraction cannot be performed in polar form unless the
complex numbers have the same angle u or unless they differ only by
multiples of 180°.

EXAMPLE 14.21

a. 2 ∠45° � 3 ∠45° � 5 ∠45°. Note Fig. 14.59.

b. 2 ∠0° � 4 ∠180° � 6 ∠0°. Note Fig. 14.60.

        3 � j3

�1�2 � j5 2
         T�  T

        5 � j2

� 4 � j6

�11 � j4 2
�T�  T

�3 � j2

+–

–j

j

6

2

–4 � 180°

4 � 180°

FIG. 14.60

Example 14.21(b).
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Multiplication

To multiply two complex numbers in rectangular form, multiply the real
and imaginary parts of one in turn by the real and imaginary parts of the
other. For example, if

C1 � X1 � jY1 and C2 � X2 � jY2

then

and (14.29)

In Example 14.22(b), we obtain a solution without resorting to mem-
orizing Eq. (14.29). Simply carry along the j factor when multiplying
each part of one vector with the real and imaginary parts of the other.

EXAMPLE 14.22

a. Find C1 	 C2 if

C1 � 2 � j3 and C2 � 5 � j10

b. Find C1 · C2 if

C1 � �2 � j3 and C2 � �4 � j6

Solutions:

a. Using the format above, we have

C1 	 C2 � [(2)(5) � (3)(10)] � j[(3)(5) � (2)(10)]
� �20 � j35

b. Without using the format, we obtain

and C1 	 C2 � �26 � 26 ∠180°

In polar form, the magnitudes are multiplied and the angles added al-
gebraically. For example, for

C1 � Z1 ∠u1 and C2 � Z2 ∠u2

we write

(14.30)

EXAMPLE 14.23

a. Find C1 	 C2 if

C1 � 5 ∠20° and C2 � 10 ∠30°

C1 	  C2 � Z1Z2 lu1 � u2

�2 � j3

�4 � j6      
�8 � j12

    � j12 � j 218   
�8 � j1�12 � 12 2 � 18

C1 	  C2 � 1X1X2 � Y1Y2 2 � j1Y1X2 � X1Y2 2

C1 	 C2:

 

  

  

  

 

X1 � jY1

 X2 � jY2 
X1X2 � jY1X2

                  � jX1Y2 � j 2Y1Y2 
X1X2 � j1Y1X2 � X1Y2 2 � Y1Y21�1 2
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b. Find C1 · C2 if

C1 � 2 ∠�40° and C2 � 7 ∠�120°

Solutions:

a.
b.

To multiply a complex number in rectangular form by a real number
requires that both the real part and the imaginary part be multiplied by
the real number. For example,

(10)(2 � j3) � 20 � j30

and 50 ∠0° (0 � j6) � j300 � 300 ∠90°

Division

To divide two complex numbers in rectangular form, multiply the nu-
merator and denominator by the conjugate of the denominator and the re-
sulting real and imaginary parts collected. That is, if

C1 � X1 � jY1 and C2 � X2 � jY2

then

and (14.31)

The equation does not have to be memorized if the steps above used to
obtain it are employed. That is, first multiply the numerator by the com-
plex conjugate of the denominator and separate the real and imaginary
terms. Then divide each term by the sum of each term of the denomina-
tor squared.

EXAMPLE 14.24

a. Find C1/C2 if C1 � 1 � j4 and C2� 4 � j5.
b. Find C1/C2 if C1 � �4 � j8 and C2 � �6 � j1.

Solutions:

a. By Eq. (14.31),

 �
24

41
�

j11

41
 � 0.59 � j0.27

 
C1

C2
�
11 2 14 2 � 14 2 15 2

42 � 52 � j 
14 2 14 2 � 11 2 15 2

42 � 52

C1

C2
�

X1X2 � Y1Y2

X 2
2 � Y 2

2 � j 

X2Y1 � X1Y2

X 2
2 � Y 2

2

�
1X1X2 � Y1Y2 2 � j1X2Y1 � X1Y2 2

X 2
2 � Y 2

2

C1

C2
�
1X1 � jY1 2 1X2 � jY2 2
1X2 � jY2 2 1X2 � jY2 2

� 14 � �80°
C1 	  C2 � 12 ��40° 2 17 ��120° 2 � 12 2 17 2  l�40° � 120°
C1 	  C2 � 15 �20° 2 110 �30° 2 � 15 2 110 2  l20° � 30° � 50 �50°
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b. Using an alternative method, we obtain

�4 � j 8
�6 � j 1

�24 � j 48
� j 4 � j 28

�24 � j 52 � 8 � �16 � j 52

�6 � j 1
�6 � j 1

36 � j 6
� j 6 � j 21

36 � 0 � 1 � 37

and

To divide a complex number in rectangular form by a real number,
both the real part and the imaginary part must be divided by the real num-
ber. For example,

and

In polar form, division is accomplished by dividing the magnitude of
the numerator by the magnitude of the denominator and subtracting the
angle of the denominator from that of the numerator. That is, for

C1 � Z1 ∠u1 and C2 � Z2 ∠u2

we write

(14.32)

EXAMPLE 14.25

a. Find C1/C2 if C1 � 15 ∠10° and C2 � 2 ∠7°.
b. Find C1/C2 if C1 � 8 ∠120° and C2 � 16 ∠�50°.

Solutions:

a.

b.

We obtain the reciprocal in the rectangular form by multiplying the nu-
merator and denominator by the complex conjugate of the denominator:

1

X � jY
� a 1

X � jY
b a X � jY

X � jY
b �

X � jY

X 2 � Y 2

C1

C2
�

8 �120°

16 ��50°
�

8

16
 l120° � 1�50° 2 � 0.5 �170°

C1

C2
�

15 �10°

2 �7°
�

15

2
 l10° � 7° � 7.5 �3°

C1

C2
�

Z1

Z2

lu1 � u2

6.8 � j 0

2
� 3.4 � j 0 � 3.4�0°

8 � j 10

2
� 4 � j 5

C1

C2
�

�16

37
�

j52

37
� �0.43 �j 1.41
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and (14.33)

In polar form, the reciprocal is

(14.34)

A concluding example using the four basic operations follows.

EXAMPLE 14.26 Perform the following operations, leaving the an-
swer in polar or rectangular form:

a.

b.

c.

d.

14.11 CALCULATOR AND COMPUTER METHODS
WITH COMPLEX NUMBERS

The process of converting from one form to another or working through
lengthy operations with complex numbers can be time-consuming and
often frustrating if one lost minus sign or decimal point invalidates the
solution. Fortunately, technologists of today have calculators and com-
puter methods that make the process measurably easier with higher de-
grees of reliability and accuracy.

Calculators

The TI-89 calculator in Fig. 14.61 is only one of numerous calculators
that can convert from one form to another and perform lengthy calcula-

� � 1.92 � j5.22
� 12.673 � 4.596 2 � j11.362 � 3.857 2

3 �27° � 6 ��40° � 12.673 � j1.362 2 � 14.596 � j3.857 2
� 2 l93.13° � 1�36.87° 2 � 2.0 �130°

�
14 �40° 2 15 �53.13° 2

10 ��36.87°
�

20 �93.13°

10 ��36.87°

12 �20° 2 213 � j4 2
8 � j6

�
12 �20° 2 12�20° 2 15 �53.13° 2

10 ��36.87°

� 35.35 l75° � 1�20° 2 � 35.35 �95°

150 �30° 2 15 � j5 2
10 ��20°

�
150 �30° 2 17.07 �45° 2

10 ��20°
�

353.5 �75°

10 ��20°

�
114 � j24

116
� 0.98 � j0.21

�
3 16 2 14 2� 19 2 110 2 4 � j 3 14 2 19 2 � 16 2 110 2 4

42 � 102

�
16 � j9 2 14 � j10 2
14 � j10 2 14 � j10 2

12 � j3 2 � 14 � j6 2
17 � j7 2 � 13 � j3 2 �

12 � 4 2 � j13 � 6 2
17 � 3 2 � j17 � 3 2

1

Z �u
�

1

Z
 ��u

1

X � jY
�

X

X 2 � Y 2 � j 
Y

X 2 � Y 2

FIG. 14.61

TI-89 scientific calculator.
(Courtesy of Texas Instruments, Inc.)
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tions with complex numbers in a concise, neat form. Not all of the details
of using a specific calculator are included here because each has its own
format and sequence of steps. However, the basic operations with the
TI-89 is included primarily to demonstrate the ease with which the con-
versions can be made and the format for more complex operations. If you
have a TI-86 calculator, Appendix B provides details for using that cal-
culator to perform these operations. 

There are different routes to perform the conversions and opera-
tions below, but these instructions give you one approach that is fairly
direct and straightforward. Since most operations are in the DEGREE
rather than RADIAN mode, the sequence in Fig. 14.62 shows how to
set the DEGREE mode for the operations to follow. A similar sequence
sets the RADIAN mode if required.

ENTERMODE ENTERAngle DEGREE

FIG. 14.62

Setting the DEGREE mode on the TI-89 calculator.

5 i3( 2ND MatrixMATH2ND)

ENTER ENTER 5.83E0 � 59.0E0PolarVector ops

+

FIG. 14.63

Converting 3 � j5 to the polar form using the TI-89 calculator.

Rectangular to Polar Conversion The sequence in Fig. 14.63 pro-
vides a detailed listing of the steps needed to convert from rectangular to
polar form. In the examples to follow, the scrolling steps are not listed to
simplify the sequence.

In the sequence in Fig. 14.63, an up scroll is chosen after Matrix be-
cause that is a more direct path to Vector ops. A down scroll generates the
same result, but it requires going through the whole listing. The sequence
seems quite long for such a simple conversion, but with practice you will
be able to perform the scrolling steps quite rapidly. Always be sure the
input data is entered correctly, such as including the i after the y compo-
nent. Any incorrect entry will result in an error listing.

Polar to Rectangular Conversion The sequence in Fig. 14.64 is a
detailed listing of the steps needed to convert from polar to rectangular
form. Note in the format that the brackets must surround the polar form.
Also, the degree sign must be included with the angle to perform the cal-
culation. The answer is displayed in the engineering notation selected.

Rect 3.00E0+4.00E0iENTER ENTER

5 2ND( ∠ 5 3 1 MATH2ND.

2ND MatrixENTER ) MATH Vector ops°Angle

FIG. 14.64

Converting 5∠53.1° to the rectangular form using the TI-89 calculator.

Mathematical Operations Mathematical operations are performed
in the natural order of operations, but you must remember to select the
format for the solution. For instance, if the sequence in Fig. 14.65 did not
include the polar designation, the answer would be in rectangular form
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1( ∠ 5 0 )0 ( 2 ∠ 2 0 )××° °

Polar ENTER 20.00E0 ∠∠ 70.00E0

FIG. 14.65

Performing the operation (10∠50°)(2∠20°).

°5( ∠ 5 3 1 ( 2) i2 )

Polar ENTER 14.14E0 ∠∠ 98.10E0

×× +.

ENTER

FIG. 14.66

Performing the operation (5∠53.1°)(2 � j2).

2( ∠ 2 0 (2° ) ^ 3 i4 )××

Polar ENTER( –8 i6 ) 2.00E0 ∠∠ 130.0E0ENTER÷÷
+

FIG. 14.67

Verifying the results of Example 14.26(c).

even though both quantities in the calculation are in polar form. In the rest
of the examples, the scrolling required to obtain mathematical functions
is not included to minimize the length of the sequence.

For the product of mixed complex numbers, the sequence of Fig.
14.66 results. Again, the polar form was selected for the solution.

Finally, Example 14.26(c) is entered as shown by the sequence in Fig.
14.67. Note that the results exactly match those obtained earlier.

Mathcad

The Mathcad format for complex numbers is now introduced in prepara-
tion for the chapters to follow. We continue to use j when we define a
complex number in rectangular form even though the Mathcad result al-
ways appears with the letter i. You can change this by going to the
Format menu, but for this presentation we decided to use the default op-
erators as much as possible.

When entering j to define the imaginary component of a complex
number, be sure to enter it as 1j, but do not put a multiplication operator
between the 1 and the j. Just type 1 and then j. In addition, place the j af-
ter the constant rather than before as in the text material.

When Mathcad operates on an angle, it assumes that the angle is in ra-
dians and not degrees. Further, all results appear in radians rather than
degrees.

The first operation to be developed is the conversion from rectangular
to polar form. In Fig. 14.68, the rectangular number 4 � j3 is being con-
verted to polar form using Mathcad. First define X and Y using the colon
operator. Next, write the equation for the magnitude of the polar form in
terms of the two variables just defined. The magnitude of the polar form
is then revealed by writing the variable again and using the equal sign. It
takes some practice, but be careful when writing the equation for Z; you
must pay particular attention to the location of the bracket before per-
forming the next operation. The resulting magnitude of 5 is as expected.

For the angle, the sequence View-Toolbars-Greek is first applied to
obtain the Greek toolbar appearing in Fig. 14.68. It can be moved to any
location by clicking on the blue at the top of the toolbar and dragging it
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180

�

� =  36.87

X := 4 Y := 3

Z :=    X2 +  Y2

Z =  5

� :=  atan
Y

X(      ) (          ).

1

2

(                    )

FIG. 14.68

Using Mathcad to convert from rectangular to polar form.

to the preferred location. Then select u from the toolbar as the variable to
be defined. Obtain the tan�1 u through the sequence Insert-f(x)-Insert
Function dialog box-trigonometric-atan-OK in which Y/X is inserted.
Then bring the controlling bracket to the outside of the entire expression,
and multiply by the ratio of 180/p with p selected from the Calculator
toolbar (available from the same sequence used to obtain the Greek tool-
bar). The multiplication by the last factor of the equation ensures that the
angle is in degrees. Selecting u again followed by an equal sign results in
the correct angle of 36.87° as shown in Fig. 14.68.

We now look at two forms for the polar form of a complex number.
The first is defined by the basic equations introduced in this chapter,
while the second uses a special format. For all the Mathcad analyses to
be provided in this text, the latter format is used. First define the magni-
tude of the polar form followed by the conversion of the angle of 60° to
radians by multiplying by the factor p/180 as shown in Fig. 14.69. In this
example, the resulting angular measure is p/3 radians. Next define the
rectangular format by a real part X � Z cos u and by an imaginary part
Y � Z sin u. Both the cos and the sin are obtained by the sequence Insert-
f(x)-trigonometric-cos(or sin)-OK. Note the multiplication by j which
was actually entered as 1j without the multiplication operator between
the 1 and the j. Entering C again followed by an equal sign results in the
correct conversion shown in Fig. 14.69.

The next format is based on the mathematical relationship that e ju �
cos u � j sin u. Both Z and u are as defined above, but now the complex
number is written as shown in Fig. 14.69 using the notation just intro-
duced. Note that both Z and u are part of this defining form. The ex is ob-
tained directly from the Calculator toolbar. Remember to enter the j as
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� :=  60.Z := 20

C :=  Z.cos(�)  +  Z.sin(�).i

�

180

�

180
� :=  60.

C =  10 +  17.321i

Z :=  20

C :=  Z.ei.�

C =  10 +  17.321i

FIG. 14.69

Using Mathcad to convert from polar to rectangular form.

C4 = 35.355 �4 :=
180

�
arg(C4). �4 = 95

C4 =  –3.081 + 35.22li

C4 :=
C1.C2

C3

�

180
�3 := –20.

�

180
�3 := 30. C1 := Z1.e i.�1

C2 := 5 + 5.i

C3 := Z3 e i.�3.e

Z1 := 50

Z3 := 10

FIG. 14.70

Using Mathcad to confirm the results of Example 14.26(b).
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1j without a multiplication sign between the 1 and the j. However, there is
a multiplication operator placed between the j and u. When entered again
followed by an equal sign, the rectangular form appears to match the above
results. As mentioned above, it is this latter format that will be used
throughout the text due to its cleaner form and more direct entering path.

The last example using Mathcad is a confirmation of the results of Ex-
ample 14.26(b) as shown in Fig. 14.70. First define the three complex
numbers as shown. Then enter the equation for the desired result using
C4, and the results are displayed. Note the relative simplicity of the equa-
tion for C4 now that all the other variables have been defined. As shown,
however, the immediate result is in the rectangular form. The components
of the polar form can be obtained using the �×� function from the
Calculator toolbar and the arg function from Insert-f(x)-Complex
Numbers-arg. There are many other examples in the chapters to follow
on the use of Mathcad with complex numbers.

14.12 PHASORS

As noted earlier in this chapter, the addition of sinusoidal voltages and
currents is frequently required in the analysis of ac circuits. One lengthy
but valid method of performing this operation is to place both sinusoidal
waveforms on the same set of axes and add algebraically the magnitudes
of each at every point along the abscissa, as shown for c � a � b in Fig.
14.71. This, however, can be a long and tedious process with limited ac-
curacy. A shorter method uses the rotating radius vector first appearing
in Fig. 13.16. This radius vector, having a constant magnitude (length)
with one end fixed at the origin, is called a phasor when applied to elec-
tric circuits. During its rotational development of the sine wave, the pha-
sor will, at the instant t � 0, have the positions shown in Fig. 14.72(a) for
each waveform in Fig. 14.72(b).

Note in Fig. 14.72(b) that y2 passes through the horizontal axis at t �
0 s, requiring that the radius vector in Fig. 14.72(a) be on the horizontal
axis to ensure a vertical projection of zero volts at t � 0 s. Its length in
Fig. 14.72(a) is equal to the peak value of the sinusoid as required by the
radius vector in Fig. 13.16. The other sinusoid has passed through 90° of
its rotation by the time t � 0 s is reached and therefore has its maximum

v

v1
a

b

0 t

v2

vT = v1 + v2c = a + b

FIG. 14.71

Adding two sinusoidal waveforms on a point-by-point basis.
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   t�

1 V

2 V

v
2.236 V

1 V

2.236 V2 V

(a) (b)

v1 = 2 sin (   t + 90°)�

vT = v1 + v2
     = 2.236 sin (   t + 63.43°)�

v2 = 1 sin    t�

  2 (0°)
(t = 0 s)
θ

  1 =
90°
θ

   T =
63.43°
θ  2 = 0°θ

  T = 63.43°θ  1 = 90°θ

FIG. 14.72

(a) The phasor representation of the sinusoidal waveforms of Fig. 14.72(b); (b) finding the sum of two sinusoidal waveforms of y1 and y2.

vertical projection as shown in Fig. 14.72(a). Since the vertical projection
is a maximum, the peak value of the sinusoid that it generates is also at-
tained at t � 0 s, as shown in Fig. 14.72(b). Note also that yT � y1 at t �
0 s since y2 � 0 V at this instant.

It can be shown [see Fig. 14.72(a)] using the vector algebra described
in Section 14.10 that

1 V ∠0° � 2 V ∠90° � 2.236 V ∠63.43°

In other words, if we convert y1 and y2 to the phasor form using

y� Vm sin(vt � u) ⇒ Vm ∠�u

and add them using complex number algebra, we can find the phasor
form for yT with very little difficulty. It can then be converted to the time
domain and plotted on the same set of axes, as shown in Fig. 14.72(b).
Fig. 14.72(a), showing the magnitudes and relative positions of the vari-
ous phasors, is called a phasor diagram. It is actually a “snapshot” of
the rotating radius vectors at t � 0 s.

In the future, therefore, if the addition of two sinusoids is required,
you should first convert them to the phasor domain and find the sum us-
ing complex algebra. You can then convert the result to the time domain.

The case of two sinusoidal functions having phase angles different
from 0° and 90° appears in Fig. 14.73. Note again that the vertical height
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of the functions in Fig. 14.73(b) at t � 0 s is determined by the rotational
positions of the radius vectors in Fig. 14.73(a).

Since the rms, rather than the peak, values are used almost exclusively
in the analysis of ac circuits, the phasor will now be redefined for the pur-
poses of practicality and uniformity as having a magnitude equal to the
rms value of the sine wave it represents. The angle associated with the
phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a sinu-
soidal voltage or current will be

V � V ∠u and I � I ∠u

where V and I are rms values and u is the phase angle. It should be pointed
out that in phasor notation, the sine wave is always the reference, and the
frequency is not represented.

Phasor algebra for sinusoidal quantities is applicable only for
waveforms having the same frequency.

The use of phasor notation in the analysis of ac networks was first in-
troduced by Professor Charles Proteus Steinmetz in 1897 (Fig. 14.74).

EXAMPLE 14.27 Convert the following from the time to the phasor
domain:

Time Domain Phasor Domain

a. 50 ∠0°
b. 69.6 sin(vt � 72°) (0.707)(69.6) ∠72° � 49.21 ∠72°
c. 45 cos vt (0.707)(45) ∠90° � 31.82 ∠90°

22150 2  sin vt

6 A 5 A

ImT

0°
(t = 0 s)

i

5 A

6 A

10.63 A

(a) (b)

iT = i1 + i2 = 10.63 sin(qt + 46.40°)

i1 = 5 sin(qt + 30°)

qt

i2 = 6 sin(qt + 60°)

v1 = 30°

vT

v2 = 60°

v2 = 60°

v1 = 30°

vT = 46.40°

FIG. 14.73

Adding two sinusoidal currents with phase angles other than 90°.
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+

–

+

–

+ –

ein

va

vb

FIG. 14.75

Example 14.31.

EXAMPLE 14.28 Write the sinusoidal expression for the following
phasors if the frequency is 60 Hz:

Phasor Domain Time Domain

a. I � 10 ∠30°
and i � 14.14 sin (377t � 30°)

b. V � 115 ∠�70°
and y� 162.6 sin (377t � 70°)

EXAMPLE 14.29 Find the input voltage of the circuit in Fig. 14.75 if

ya � 50 sin1377t � 30° 2
yb � 30 sin1377t � 60° 2 f  f � 60 Hz

y � 221115 2  sin1377t � 70° 2
i � 22110 2  sin12p60t � 30° 2

FIG. 14.74

Charles Proteus Steinmetz.
Courtesy of the Hall of History

Foundaton, Schenectady, New York

German-American (Breslau, Germany; Yonkers and
Schenectady, NY, USA)

(1865–1923)
Mathematician, Scientist, Engineer, Inventor,

Professor of Electrical Engineering and
Electrophysics, Union College

Department Head, General Electric Co.

Although the holder of some 200 patents and recog-
nized worldwide for his contributions to the study of
hysteresis losses and electrical transients. Charles Pro-
teus Steinmetz is best recognized for his contribution
to the study of ac networks. His “Symbolic Method of
Alternating-current Calculations” provided an ap-
proach to the analysis of ac networks that removed a
great deal of the confusion and frustration experienced
by engineers of that day as they made the transition
from dc to ac systems. His approach (from which the
phasor notation of this text is premised) permitted a di-
rect analysis of ac systems using many of the theorems
and methods of analysis developed for dc systems. In
1897 he authored the epic work Theory and Calcula-
tion of Alternating Current Phenomena, which be-
came the authoritative guide for practicing engineers.
Dr. Steinmetz was fondly referred to as “The Doctor”
at General Electric Company where he worked for
some 30 years in a number of important capacities. His
recognition as a “multigifted genius” is supported by
the fact that he maintained active friendships with such
individuals as Albert Einstein, Guglielmo Marconi (ra-
dio), and Thomas A. Edison, to name just a few. He
was President of the American Institute of Electrical
Engineers (AIEE) and the National Association of
Corporation Schools and actively supported his local
community (Schenectady) as president of the Board of
Education and the Commission on Parks and City
Planning.

Solution: Applying Kirchhoff’s voltage law, we have

ein � ya � yb

Converting from the time to the phasor domain yields

ya � 50 sin(377t � 30°) ⇒ Va � 35.35 V ∠30°

yb � 30 sin(377t � 60°) ⇒ Vb � 21.21 V ∠60°

Converting from polar to rectangular form for addition yields

Va � 35.35 V ∠30° � 30.61 V � j17.68 V

Vb � 21.21 V ∠60° � 10.61 V � j18.37 V

Then

Ein � Va � Vb � (30.61 V � j17.68 V) � (10.61 V � j18.37 V)

� 41.22 V � j36.05 V

Converting from rectangular to polar form, we have

Ein � 41.22 V � j36.05 V � 54.76 V ∠41.17˚

Converting from the phasor to the time domain, we obtain

and ein � 77.43 sin(377t � 41.17°)

Ein � 54.76 V �41.17° 1 ein � 22154.76 2  sin1377t � 41.17° 2
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ein  =  va  +  vb

60°

41.17°

30°

30 50

77.43

va

vb

0

– 2
p

2
p p 3

2 p
2p   tq

FIG. 14.76

Solution to Example 14.29.

A plot of the three waveforms is shown in Fig. 14.76. Note that at each
instant of time, the sum of the two waveforms does in fact add up to ein.
At t � 0 (vt � 0), ein is the sum of the two positive values, while at a value
of vt, almost midway between p/2 and p, the sum of the positive value
of ya and the negative value of yb results in ein � 0.

EXAMPLE 14.30 Determine the current i2 for the network in Fig. 14.77.

iT  =  120  �  10–3 sin (qt  +  60°)

i1  =  80  �  10–3 sin qt

i2  =  ?

FIG. 14.77

Example 14.30.

Solution: Applying Kirchhoff’s current law, we obtain

iT � i1 � i2 or i2 � iT � i1

Converting from the time to the phasor domain yields

iT � 120 × 10�3 sin(vt � 60°) ⇒ 84.84 mA ∠60°

i1 � 80 × 10�3 sin vt ⇒ 56.56 mA ∠0°

Converting from polar to rectangular form for subtraction yields

IT � 84.84 mA ∠60° � 42.42 mA � j73.47 mA

I1 � 56.56 mA ∠0° � 56.56 mA � j0
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Then

I2 � IT � I1

� (42.42 mA � j73.47 mA) � (56.56 mA � j0)

and I2 � �14.14 mA � j73.47 mA

Converting from rectangular to polar form, we have

I2 � 74.82 mA ∠100.89°

Converting from the phasor to the time domain, we have

and i2 � 105.8 × 10�3 sin(Vt � 100.89°)

A plot of the three waveforms appears in Fig. 14.78. The waveforms
clearly indicate that iT � i1 � i2.

i2 � 22174.82 � 10�3 2  sin1vt � 100.89° 2
I2 � 74.82 mA �100.89° 1

i2

60°100.89°

0°

80
105.8

120
i1

iT

i (mA)
i2  =  iT  –  i1

�– 2
�

2
� 3

2 � 2�

FIG. 14.78

Solution to Example 14.30.

14.13 COMPUTER ANALYSIS

PSpice

Capacitors and the ac Response The simplest of ac capacitive
circuits is now analyzed to introduce the process of setting up an ac
source and running an ac transient simulation. The ac source in Fig. 14.79
is obtained through Place part key-SOURCE-VSIN-OK. Change the
name or value of any parameter by double-clicking on the parameter on
the display or by double-clicking on the source symbol to get the
Property Editor dialog box. Within the dialog box, set the values ap-
pearing in Fig. 14.79, and under Display, select Name and Value. After

boy30444_ch14.qxd  3/24/06  2:22 PM  Page 628



COMPUTER ANALYSIS ⏐⏐⏐ 629
�

FIG. 14.79

Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.

you select Apply and exit the dialog box, the parameters appear as shown
in Fig. 14.79.

The simulation process is initiated by selecting the New Simulation
Profile. Under New Simulation, enter PSpice 14-1 for the Name fol-
lowed by Create. In the Simulation Settings dialog box, select Analysis
and choose Time Domain(Transient) under Analysis type. Set the Run
to time at 3 ms to permit a display of three cycles of the sinusoidal wave-
forms (T � 1/f � 1/1000 Hz � 1 ms). Leave the Start saving data after
at 0 s, and set the Maximum step size at 3 ms/1000 � 3 µs. Clicking OK
and then selecting the Run PSpice icon results in a plot having a hori-
zontal axis that extends from 0 to 3 ms.

Now you must tell the computer which waveforms you are interested
in. First, take a look at the applied ac source by selecting Trace-Add
Trace-V(Vs:�) followed by OK. The result is the sweeping ac voltage
in the bottom region of the screen in Fig. 14.80. Note that it has a peak
value of 5 V, and three cycles appear in the 3 ms time frame. The current
for the capacitor can be added by selecting Trace-Add Trace and choos-
ing I(C) followed by OK. The resulting waveform for I(C) appears at a 90°
phase shift from the applied voltage, with the current leading the voltage
(the current has already peaked as the voltage crosses the 0 V axis). Since
the peak value of each plot is in the same magnitude range, the 5 appear-
ing on the vertical scale can be used for both. A theoretical analysis results
in XC � 2.34 �, and the peak value of IC � E/XC � 5 V/2.34 � � 2.136 A,
as shown in Fig. 14.80.

For practice, let us obtain the curve for the power delivered to the ca-
pacitor over the same time period. First select Plot-Add Plot to Window-
Trace-Add Trace to obtain the Add Traces dialog box. Then choose
V(Vs:�), follow it with a * for multiplication, and finish by selecting
I(C). The result is the expression V(Vs:�)*I(C) of the power format:
p � vi. Click OK, and the power plot at the top of Fig. 14.80 appears.
Note that over the full three cycles, the area above the axis equals the area
below—there is no net transfer of power over the 3 ms period. Note also
that the power curve is sinusoidal (which is quite interesting) with a fre-
quency twice that of the applied signal. Using the cursor control, we can de-
termine that the maximum power (peak value of the sinusoidal waveform)
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is 5.34 W. The cursors, in fact, have been added to the lower curves to
show the peak value of the applied sinusoid and the resulting current.

After selecting the Toggle cursor icon, left-click to surround the
V(Vs:�) at the bottom of the plot with a dashed line to show that the cur-
sor is providing the levels of that quantity. When placed at 1⁄4 of the total
period of 250 µs (A1), the peak value is exactly 5 V as shown in the Probe
Cursor dialog box. Placing the cursor over the symbol next to I(C) at the
bottom of the plot and right-clicking assigns the right cursor to the current.
Placing it at exactly 1 ms (A2) results in a peak value of 2.136 A to match
the solution above. To further distinguish between the voltage and current
waveforms, the color and the width of the lines of the traces were changed.
Place the cursor right on the plot line and right-click. The Properties op-
tion appears. When Properties is selected, a Trace Properties dialog box
appears in which the yellow color can be selected and the width widened
to improve the visibility on the black background. Note that yellow was
chosen for Vs and green for I(C). Note also that the axis and the grid have
been changed to a more visible color using the same procedure.

Multisim

Since PSpice reviewed the response of a capacitive element to an ac volt-
age, Multisim repeats the analysis for an inductive element. The ac volt-
age source was derived from the Sources parts bin as described in
Chapter 13 with the values appearing in Fig. 14.81 set in the AC Voltage
dialog box. Since the transient response of Multisim is limited to a plot
of voltage versus time, a plot of the current of the circuit requires the ad-
dition of a resistor of 1 � in series with the inductive element. The mag-
nitude of the current through the resistor and, of course, the series
inductor is then determined by

FIG. 14.80

A plot of the voltage, current, and power for the capacitor in Fig. 14.79.
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FIG. 14.81

Using Multisim to review the response of an inductive element to a sinusoidal
ac signal.

revealing that the current has the same peak value as the voltage across
the resistor due to the division by 1. When viewed on the graph, it can
simply be considered a plot of the current. In actuality, all inductors re-
quire a series resistance, so the 1 � resistor serves an important dual pur-
pose. The 1 � resistance is also so small compared to the reactance of the
coil at the 1 kHz frequency that its effect on the total impedance or volt-
age across the coil can be ignored.

Once the circuit has been constructed, the sequence Simulate-
Analyses-Transient Analysis results in a Transient Analysis dialog
box in which the Start time is set at 0 s and the End time at 105 ms.
The 105 ms was set as the End time to give the network 100 ms to set-
tle down in its steady-state mode and 5 ms for five cycles in the output
display. The Minimum number of time points was set at 10,000 to en-
sure a good display for the rapidly changing waveforms.

Next the Output variables heading was chosen within the dialog box,
and nodes 1 and 2 were moved from the Variables in Circuit to Selected
variables for analysis using the Add option. Choosing Simulate results
in a waveform that extends from 0 s to 105 ms. Even though we plan to
save only the response that occurs after 100 ms, the computer is unaware
of our interest, and it plots the response for the entire period. This is cor-
rected by selecting the Properties keypad in the toolbar at the top of the
graph (it looks like a tag and pencil) to obtain the Graph Properties di-
alog box. Selecting Bottom Axis permits setting the Range from a
Minimum of 0.100s�100ms to a Maximum of 0.105s�105ms. Click
OK, and the time period of Fig. 14.81 is displayed. The grid structure is
added by selecting the Show/Hide Grid keypad, and the color associated
with each nodal voltage is displayed if we choose the Show/Hide Leg-
end key next to it.

0  iR 0 � `  yR

R
 ` � `  yR

1 �
 ` � 0  yR 0 � 0  iL 0
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The scale for the plot of iL can be improved by first going to Traces
and setting the Trace to the number 2 representing the voltage across the
1 � resistor. When 2 is selected, the Color displayed automatically
changes to blue. In the Y Range, select Right Axis followed by OK.
Then select the Right Axis heading, and enter Current(A) for the
Label, enable Axis, change the Pen Size to 1, and change the Range
from �500 mA to �500 mA. Finally, set the Total Ticks at 8 with
Minor Ticks at 2 to match the Left Axis, and leave the box with an OK.
The plot in Fig. 14.81 results. Take immediate note of the new axis on the
right and the Current(A) label. We can now see that the current has a
peak of about 160 mA. For more detail on the peak values, click on the
Show/Hide Cursors keypad on the top toolbar. A Transient Analysis di-
alog box appears with a 1 and a red line to indicate that it is working on
the full source voltage at node 1. To switch to the current curve (the blue
curve), bring the cursor to any point on the blue curve and left-click. A
blue line and the number 2 appear at the heading of the Transient Analy-
sis dialog box. Clicking on the 1 in the small inverted arrow at the top al-
lows you to drag the vertical red line to any horizontal point on the graph.
As shown in Fig. 14.81, when the cursor is set on 101.5 ms (x1), the peak
value of the current curve is 159.05 mA (y1). A second cursor appears in
blue with a number 2 in the inverted arrowhead that can also be moved
with a left click on the number 2 at the top of the line. If set at 101.75 ms
(x2), it has a minimum value of �5.18 mA (y2), the smallest value avail-
able for the calculated data points. Note that the difference between hor-
izontal time values dx � 252 µs � 0.25 ms which is 1⁄4 of the period of the
wave (at 1 ms).

PROBLEMS

SECTION 14.2 Derivative

1. Plot the following waveform versus time showing one clear,
complete cycle. Then determine the derivative of the wave-
form using Eq. (14.1), and sketch one complete cycle of the
derivative directly under the original waveform. Compare
the magnitude of the derivative at various points versus the
slope of the original sinusoidal function.

y� 1 sin 3.14t

2. Repeat Problem 1 for the following sinusoidal function, and
compare results. In particular, determine the frequency of
the waveforms of Problems 1 and 2, and compare the mag-
nitude of the derivative.

y� 1 sin 15.71t

3. What is the derivative of each of the following sinusoidal
expressions?
a. 10 sin 377t b. 0.6 sin(754t � 20°)
c. d. �200 sin(t � 180°)

SECTION 14.3 Response of Basic R, L, and C

Elements to a Sinusoidal Voltage or Current

4. The voltage across a 5 � resistor is as indicated. Find the si-
nusoidal expression for the current. In addition, sketch the y
and i sinusoidal waveforms on the same axis.
a. 150 sin 200t b. 30 sin(377t � 20°)
c. 40 cos(vt � 10°) d. �80 sin(vt � 40°)

22 20 sin1157t � 20° 2

5. The current through a 7 k� resistor is as indicated. Find the
sinusoidal expression for the voltage. In addition, sketch the
y and i sinusoidal waveforms on the same axis.
a. 0.1 sin 1000t
b. 2 × 10�3 sin(400t � 120°)
c. 6 × 10�6 cos(vt � 2°)
d. �0.004 cos(vt � 90°)

6. Determine the inductive reactance (in ohms) of a 2 H coil
for
a. dc
and for the following frequencies:
b. 10 Hz c. 60 Hz
d. 2000 Hz e. 100,000 Hz

7. Determine the inductance of a coil that has a reactance of
a. 20 � at f � 2 Hz.
b. 1000 � at f � 60 Hz.
c. 5280 � at f � 500 Hz.

8. Determine the frequency at which a 10 H inductance has the
following inductive reactances:
a. 100 � b. 3770 �
c. 15.7 k� d. 243 �

9. The current through a 20 � inductive reactance is given.
What is the sinusoidal expression for the voltage? Sketch the
y and i sinusoidal waveforms on the same axis.
a. i � 5 sin vt
b. i � 40 × 10�3 sin(vt � 60°)
c. i � �6 sin(vt � 30°)
d. i � 3 cos(vt � 10°)
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10. The current through a. 0.1 H coil is given. What is the sinu-
soidal expression for the voltage?
a. 10 sin 100t
b. 6 × 10�3 sin 377t
c. 5 × 10�6 sin(400t � 20°)
d. �4 cos(20t � 70°)

11. The voltage across a 50 � inductive reactance is given. What
is the sinusoidal expression for the current? Sketch the y and
i sinusoidal waveforms on the same set of axes.
a. 120 sin vt b. 30 sin(vt � 20°)
c. 40 cos(vt � 10°) d. �80 sin(377t � 40°)

12. The voltage across a 0.2 H coil is given. What is the sinu-
soidal expression for the current?
a. 1.5 sin 60t
b. 16 × 10�3 sin(10t � 2°)
c. �4.8 sin(0.05t � 50°)
d. 9 × 10�3 cos(377t � 360°)

13. Determine the capacitive reactance (in ohms) of a 5 µF ca-
pacitor for
a. dc
and for the following frequencies:
b. 60 Hz c. 120 Hz
d. 2 kHz e. 2 MHz

14. Determine the capacitance in microfarads if a capacitor has
a reactance of
a. 250 � at f � 60 Hz.
b. 55 � at f � 312 Hz.
c. 10 � at f � 25 Hz.

15. Determine the frequency at which a 50 µF capacitor has the
following capacitive reactances:
a. 100 � b. 684 �
c. 342 � d. 2000 �

16. The voltage across a 2.5 � capacitive reactance is given.
What is the sinusoidal expression for the current? Sketch the
y and i sinusoidal waveforms on the same set of axes.
a. 120 sin vt b. 0.4 sin(vt � 20°)
c. 8 cos(vt � 10°) d. �70 sin(vt � 40°)

17. The voltage across a 1 µF capacitor is given. What is the si-
nusoidal expression for the current?
a. 30 sin 200t b. 60 × 10�3 sin 377t
c. �120 sin(374t � 30°) d. 70 cos(800t � 20°)

18. The current through a 10 � capacitive reactance is given.
Write the sinusoidal expression for the voltage. Sketch the y
and i sinusoidal waveforms on the same set of axes.
a. i � 50 × 10�3 sin vt
b. i � 2 × 10�6 sin(vt � 60°)
c. i � �6 sin(vt � 30°)
d. i � 3 cos(vt � 10°)

19. The current through a 0.5 µF capacitor is given. What is the
sinusoidal expression for the voltage?
a. 0.20 sin 300t b. 8 × 10�3 sin 377t
c. 60 × 10�3 cos 754t d. 0.08 sin(1600t � 80°)

*20. For the following pairs of voltages and currents, indicate
whether the element involved is a capacitor, an inductor, or a
resistor, and the value of C, L or R if sufficient data are given:
a. y� 550 sin(377t � 50°)

i � 11 sin(377t � 40°)

b. y� 36 sin(754t � 80°)
i � 4 sin(754t � 170°)

c. y� 10.5 sin(vt � 13°)
i � 1.5 sin(vt � 13°)

*21. Repeat Problem 20 for the following pairs of voltages and
currents:
a. y� 2000 sin vt

i � 5 cos vt
b. y� 80 sin(157t � 150°)

i � 2 sin(157t � 60°)
c. y� 35 sin(vt � 20°)

i � 7 cos(vt � 110°)

SECTION 14.4 Frequency Response 

of the Basic Elements

22. Plot XL versus frequency for a 5 mH coil using a frequency
range of zero to 100 kHz on a linear scale.

23. Plot XC versus frequency for a 1 mF capacitor using a fre-
quency range of zero to 10 kHz on a linear scale.

24. At what frequency will the reactance of a 1 mF capacitor
equal the resistance of a 2 k� resistor?

25. The reactance of a coil equals the resistance of a 10 k� re-
sistor at a frequency of 5 kHz. Determine the inductance of
the coil.

26. Determine the frequency at which a 1 mF capacitor and a
10 mH inductor will have the same reactance.

27. Determine the capacitance required to establish a capacitive
reactance that will match that of a 2 mH coil at a frequency
of 50 kHz.

SECTION 14.5 Average Power and Power Factor

28. Find the average power loss in watts for each set in Prob-
lem 20.

29. Find the average power loss in watts for each set in Prob-
lem 21.

*30. Find the average power loss and power factor for each of the
circuits whose input current and voltage are as follows:
a. y� 60 sin(vt � 30°)

i � 15 sin(vt � 60°)
b. y� �50 sin(vt � 20°)

i � �2 sin(vt � 20°)
c. y� 50 sin(vt � 80°)

i � 3 cos(vt � 20°)
d. y� 75 sin(vt � 5°)

i � 0.08 sin(vt � 35°)

31. If the current through and voltage across an element are i �
8 sin(vt � 40°) and y� 48 sin(vt � 40°), respectively, com-
pute the power by I 2R, (VmIm /2) cos u, and VI cos u, and
compare answers.

32. A circuit dissipates 100 W (average power) at 150 V (effec-
tive input voltage) and 2 A (effective input current). What is
the power factor? Repeat if the power is 0 W; 300 W.

*33. The power factor of a circuit is 0.5 lagging. The power de-
livered in watts is 500. If the input voltage is 50 sin(vt �
10°), find the sinusoidal expression for the input current.
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—
2 120 sin (104t  +  60°)

C2 10 mFC1 2 mF

i1 i2

FIG. 14.85
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vs

+

–

L2 120 mHL1

i1 i2

is 60 mH

is  =  √
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FIG. 14.86

Problem 38.

34. In Fig. 14.82, e � 30 sin(377t � 20°).
a. What is the sinusoidal expression for the current?
b. Find the power loss in the circuit.
c. How long (in seconds) does it take the current to com-

plete six cycles?

*38. For the network in Fig. 14.86 and the applied source:
a. Determine the source voltage ys .
b. Find the currents i1 and i2.

35. In Fig. 14.83, e � 100 sin(314t � 60°).
a. Find the sinusoidal expression for i.
b. Find the value of the inductance L.
c. Find the average power loss by the inductor.

36. In Fig. 14.84, i � 30 × 10�3 sin(377t � 20°).
a. Find the sinusoidal expression for e.
b. Find the value of the capacitance C in microfarads.
c. Find the average power loss in the capacitor.

*37. For the network in Fig. 14.85 and the applied signal:
a. Determine i1 and i2.
b. Find is .

SECTION 14.9 Conversion between Forms

39. Convert the following from rectangular to polar form:
a. 4 � j3 b. 2 � j2
c. 6 � j16 d. 100 � j1000
e. 1000 � j400 f. 0.001 � j0.0065
g. 7.6 � j9 h. �8 � j4
i. �15 � j60 j. �78 � j65.3
k. �2400 � j3600 l. 5 × 10�3 � j25 × 10�3

40. Convert the following from polar to rectangular form:
a. 6 ∠30° b. 40 ∠80°
c. 7400 ∠70° d. 4 × 10�4 ∠8°
e. 0.04 ∠90° f. 0.0093 ∠42°
g. 65 ∠150° h. 1.2 ∠135°
i. 500 ∠200° j. 6320 ∠�35°
k. 7.52 ∠�125° l. 8 × 10 �3∠210°

41. Convert the following from rectangular to polar form:
a. 1 � j15 b. 60 � j5
c. 0.01 � j0.3 d. 100 � j200
e. �5.6 � j86 f. �2.7 � j38.6

42. Convert the following from polar to rectangular form:
a. 13 ∠5° b. 160 ∠87°
c. 7 × 10�6 ∠2° d. 8.7 ∠177°
e. 76 ∠�4° f. 396 ∠�265°
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SECTION 14.10 Mathematical Operations 

with Complex Numbers

Perform the following operations.

43. Addition and subtraction (express your answers in rectan-
gular form):
a. (4.2 � j6.8) � (7.6 � j0.2)
b. (142 � j 7) � (9.8 � j42) � (0.1 � j0.9)
c. (4 × 10�6 � j 76) � (7.2 × 10�7 � j5)
d. (9.8 � j6.2) � (4.6 � j4.6)
e. (167 � j243) � (�42.3 � j68)
f. (�36.0 � j78) � (�4 � j6) � (10.8 � j 72)
g. 6 ∠20° � 8 ∠80°
h. 42 ∠45° � 62 ∠60° � 70 ∠120°

44. Multiplication [express your answers in rectangular form
for parts (a) through (d), and in polar form for parts (e)
through (h)]:
a. (2 � j3)(6 � j8)
b. (7.8 � j1)(4 � j2)(7 � j6)
c. (0.002 � j0.006)(�4 � j8)
d. (400 � j200)(�0.01 � j0.5)(�1 � j3)
e. (2 ∠60°)(4 ∠�40°)
f. (6.9 ∠8°)(7.2 ∠�72°)
g. (0.002 ∠120°)(0.5 ∠200°)(40 ∠�80°)
h. (540 ∠�20°)(�5 ∠180°)(6.2 ∠0°)

45. Division (express your answer in polar form):
a. (42 ∠10°)/(7 ∠60°)
b. (0.006 ∠120°)/(30 ∠�60°)
c. (4360 ∠�20°)/(40 ∠�210°)
d. (650 ∠�80°)/(8.5 ∠360°)
e. (8 � j8)/(2 � j2)
f. (8 � j42)/(�6 � j4)
g. (0.05 � j0.25)/(8 � j60)
h. (�4.5 � j6)/(0.1 � j0.8)

*46. Perform the following operations (express your answers in
rectangular form):

a.

b.

c.

d.

e.

*47. a. Determine a solution for x and y if

(x � j4) � (3x � jy) � j7 � 16 ∠0°

b. Determine x if

(10 ∠20°)(x ∠�60°) � 30.64 � j25.72

c. Determine a solution for x and y if

(5x � j10)(2 � jy) � 90 � j70

a 1

10.02 �10° 2 2 b a
2

j
b 3 a 1

62 � j2900
b

10.4 �60° 2 21300 �40° 2
3 � j9

16 �20° 2 1120 ��40° 2 13 � j8 2
2 ��30°

8 �60°

12 �0° 2 � 1100 � j400 2

14 � j3 2 � 16 � j8 2
13 � j3 2 � 12 � j3 2

d. Determine u if

SECTION 14.12 Phasors

48. Express the following in phasor form:
a.
b.
c. 100 sin(vt � 90°)
d. 20 sin(377t � 0°)
e. 6 × 10�6 cos vt
f. 3.6 × 10�6 cos(754t � 20°)

49. Express the following phasor currents and voltages as sine
waves if the frequency is 60 Hz:
a. I � 40 A ∠20°
b. V � 120 V ∠10°
c. I � 8 × 10�3 A ∠120°
d. V � 5 V ∠90°
e. I � 1200 A ∠�50°

f.

50. For the system in Fig. 14.87, find the sinusoidal expression
for the unknown voltage ya if

ein � 60 sin(377t � 20°)
yb � 20 sin(377t � 20°)

V �
6000

22  
 V ��180°

22125 � 10�3 2  sin1157t � 40° 2
221160 2  sin1vt � 30° 2

80 �0°

20 �u
� 3.464 � j2

+

–

+ –va

vb

+

–
ein

FIG. 14.87

Problem 50.

is i1 i2

FIG. 14.88

Problem 51.

51. For the system in Fig. 14.88, find the sinusoidal expression
for the unknown current i1 if

is � 20 × 10�6 sin(vt � 60°)
i2 � 6 × 10�6 sin(vt � 30°)
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+ –va

vb

+

–
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– +vc

FIG. 14.89

Problem 52.

is i1 i3

i2

FIG. 14.90

Problem 53.

52. Find the sinusoidal expression for the applied voltage e for
the system in Fig. 14.89 if

ya � 60 sin(vt � 30°)
yb � 30 sin(vt � 60°)
yc � 40 sin(vt � 120°)

SECTION 14.13 Computer Analysis

PSpice or Multisim

54. Plot ic and yc versus time for the network in Fig. 14.79 for
two cycles if the frequency is 0.2 kHz.

53. Find the sinusoidal expression for the current is for the sys-
tem in Fig. 14.90 if

i1 � 6 × 10�3 sin(377t � 180°)
i2 � 8 × 10�3 sin(377t � 180°)
i3 � 2i2

55. Plot the magnitude and phase angle of the current iC versus
frequency (100 Hz to 100 kHz) for the network in Fig. 14.79.

56. Plot the total impedance of the configuration in Fig. 14.27
versus frequency (100 kHz to 100 MHz) for the following
parameter values: C � 0.1 mF, Ls � 0.2 mH, Rs � 2 M�,
and Rp � 100 M�. For what frequency range is the capac-
itor “capacitive”?

GLOSSARY

Average or real power The power delivered to and dissipated by
the load over a full cycle.

Complex conjugate A complex number defined by simply
changing the sign of an imaginary component of a complex
number in the rectangular form.

Complex number A number that represents a point in a two-
dimensional plane located with reference to two distinct axes.
It defines a vector drawn from the origin to that point.

Derivative The instantaneous rate of change of a function with
respect to time or another variable.

Leading and lagging power factors An indication of whether a
network is primarily capacitive or inductive in nature. Leading
power factors are associated with capacitive networks, and lag-
ging power factors with inductive networks.

Phasor A radius vector that has a constant magnitude at a fixed
angle from the positive real axis and that represents a sinu-
soidal voltage or current in the vector domain.

Phasor diagram A “snapshot” of the phasors that represent a
number of sinusoidal waveforms at t � 0.

Polar form A method of defining a point in a complex plane that
includes a single magnitude to represent the distance from the
origin, and an angle to reflect the counterclockwise distance
from the positive real axis.

Power factor (Fp) An indication of how reactive or resistive an
electrical system is. The higher the power factor, the greater
the resistive component.

Reactance The opposition of an inductor or a capacitor to the
flow of charge that results in the continual exchange of energy
between the circuit and magnetic field of an inductor or the
electric field of a capacitor.

Reciprocal A format defined by 1 divided by the complex number.
Rectangular form A method of defining a point in a complex

plane that includes the magnitude of the real component and
the magnitude of the imaginary component, the latter compo-
nent being defined by an associated letter j.
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