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P r e f a c e

he two major goals of this book are to raise awareness of the impact
that algorithms can have on the efficiency of a program and to
develop the skills necessary to analyze any algorithms that are used in

programs. In looking at many commercial products today, it appears that some
software designers are unconcerned about space and time efficiency. If a pro-
gram takes too much space, they expect that the user will buy more memory.
If a program takes too long, they expect that the user will buy a faster com-
puter.

There are limits, however, on how fast computers can ever become because
there are limits on how fast electrons can travel down "wires," how fast light
can travel along fiber optic cables, and how fast the circuits that do the calcula-
tions can switch. There are other limits on computation that go beyond the
speed of the computer and are directly related to the complexity of the prob-
lems being solved. There are some problems for which the fastest algorithm
known will not complete execution in our lifetime. Since these are important
problems, algorithms are needed that provide approximate answers.

In the early 1980s, computer architecture severely limited the amount of
speed and space on a computer. Some computers of that time frequently lim-
ited programs and their data to 64K of memory, where today's personal com-
puters regularly come equipped with more than 1,000 times that amount.
Though today's software is much more complex than that in the 1980s and
today's computers are much more capable, these changes do not mean we
can ignore efficiency in our program design. Some project specifications will
include time and space limitations on the final software that may force pro-
grammers to look for places to save memory and increase speed. The com-

T
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pact size of personal digital assistants (PDAs) also limits the size and speed of
software.

Pedagogy

What I hear, I forget.
What I see, I remember.
What I do, I understand.

—Confucius

The material in this book is presented with the expectation that it can be read
independently or used as part of a course that incorporates an active and coop-
erative learning methodology. To accomplish this, the chapters are clear and
complete so as to be easy to understand and to encourage readers to prepare by
reading before group meetings. All chapters include study suggestions. Many
include additional data sets that the reader can use to hand-execute the algo-
rithms for increased understanding of them. The results of the algorithms
applied to this additional data are presented in Appendix C. Each section has a
number of exercises that include simple tracing of the algorithm to more com-
plex proof-based exercises. The reader should be able to work the exercises in
each chapter. They can, in connection with a course, be assigned as homework
or can be used as in-class assignments for students to work individually or in
small groups. An instructor's manual that provides background on how to teach
this material using active and cooperative learning as well as giving exercise
solutions is available. Chapters 2, 3, 5, 6, and 9 include programming exercises.
These programming projects encourage readers to implement and test the
algorithms from the chapter, and then compare actual algorithm results with
the theoretical analysis in the book.

Active learning is based on the premise that people learn better and retain
information longer when they are participants in the learning process. To
achieve that, students must be given the opportunity to do more that just listen
to the professor during class. This can best be accomplished in an analysis of
algorithms course by the professor giving a short introductory lecture on the
material, and then having students work problems while the instructor circu-
lates around the room answering questions that this application of the material
raises. 
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Cooperative work gives students an opportunity to answer simple questions
that others in their group have and allows the professor to deal with bigger
questions that have stumped an entire group. In this way, students have a
greater opportunity to ask questions and have their concerns addressed in a
timely manner. It is important that the professor observe group work to make
sure that group-wide misconceptions are not reinforced. An additional way for
the professor to identify and correct misunderstandings is to have groups regu-
larly submit exercise answers for comments or grading.

To support student preparation and learning, each chapter includes the pre-
requisites needed, and the goals or skills that students should have on comple-
tion, as well as suggestions for studying the material.

Algorithms

Since the analysis of algorithms is independent of the computer or program-
ming language used, algorithms are given in pseudo-code. These algorithms
are readily understandable by anyone who knows the concepts of conditional
statements (for example, IF and CASE/SWITCH), loops (for example, FOR
and WHILE), and recursion.

Course Use

One way that this material could be covered in a one-semester course is by
using the following approximate schedule:

Chapters 2, 4, and 5 are not likely to need a full week, which will provide time
for an introduction to the course, an explanation of the active and cooperative
learning pedagogy, and hour examinations. Depending on the background of
the students, Chapter 1 may be covered more quickly as well.

Chapter 1 2 weeks
Chapter 2 1 week
Chapter 3 2 weeks
Chapter 4 1 week
Chapter 5 1 week
Chapter 6 2 weeks
Chapter 7 2 weeks
Chapter 8 1 week
Chapter 9 2 weeks
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C H A P T E R 1
Analysis Basics

PREREQUISITES

Before beginning this chapter, you should be able to

• Read and create algorithms
• Read and create recursive algorithms
• Identify comparison and arithmetic operations
• Use basic algebra

GOALS

At the end of this chapter you should be able to

• Describe how to analyze an algorithm

• Explain how to choose the operations that are counted and why others are
not

• Explain how to do a best-case, worst-case, and average-case analysis

• Work with logarithms, probabilities, and summations

• Describe θ( f ), Ω( f  ), O( f ), growth rate, and algorithm order

• Use a decision tree to determine a lower bound on complexity

• Convert a simple recurrence relation into its closed form

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them.  Additionally, you should try to answer any
questions before reading on.  A hint or the answer to the question is in the sen-
tences following it.
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here are many algorithms that can solve a given problem.  They will
have different characteristics that will determine how efficiently each
will operate.  When we analyze an algorithm, we first have to show

that the algorithm does properly solve the problem because if it doesn’t, its effi-
ciency is not important.  Next, we look at how efficiently it solves the prob-
lem.  This chapter sets the groundwork for the analysis and comparison of
more complex algorithms. 

Analyzing an algorithm determines the amount of “time” that algorithm
takes to execute.  This is not really a number of seconds or any other clock
measurement but rather an approximation of the number of operations that an
algorithm performs.  The number of operations is related to the execution
time, so we will sometimes use the word time to describe an algorithm’s com-
putational complexity.  The actual number of seconds it takes an algorithm to
execute on a computer is not useful in our analysis because we are concerned
with the relative efficiency of algorithms that solve a particular problem.  You
should also see that the actual execution time is not a good measure of algo-
rithm efficiency because an algorithm does not get “better” just because we
move it to a faster computer or “worse” because we move it to a slower one.

The actual number of operations done for some specific size of input data
set is not very interesting nor does it tell us very much.  Instead, our analysis
will determine an equation that relates the number of operations that a partic-
ular algorithm does to the size of the input.  We can then compare two algo-
rithms by comparing the rate at which their equations grow.  The growth rate
is critical because there are instances where algorithm A may take fewer opera-
tions than algorithm B when the input size is small, but many more when the
input size gets large.

In a very general sense, algorithms can be classified as either repetitive or
recursive.  Repetitive algorithms have loops and conditional statements as their
basis, and so their analysis will entail determining the work done in the loop
and how many times the loop executes.  Recursive algorithms solve a large
problem by breaking it into pieces and then applying the algorithm to each of
the pieces.  These are sometimes called divide and conquer algorithms and
provide a great deal of power in solving problems.  The process of solving a
large problem by breaking it up into smaller pieces can produce an algorithm
that is small, straightforward, and simple to understand.  Analyzing a recursive

T
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algorithm will entail determining the amount of work done to produce the
smaller pieces and then putting their individual solutions together to get the
solution to the whole problem.  Combining this information with the number
of the smaller pieces and their sizes, we can produce a recurrence relation for
the algorithm.  This recurrence relation can then be converted into a closed
form that can be compared with other equations.

We begin this chapter by describing what analysis is and why we do it.  We
then look at what operations will be considered and what categories of analysis
we will do.  Because mathematics is critical to our analysis, the next few sec-
tions explore the important mathematical concepts and properties used to ana-
lyze iterative and recursive algorithms.

1.1 WHAT IS ANALYSIS?

The analysis of an algorithm provides background information that gives us a
general idea of how long an algorithm will take for a given problem set.  For
each algorithm considered, we will come up with an estimate of how long it
will take to solve a problem that has a set of N input values.  So, for example,
we might determine how many comparisons a sorting algorithm does to put a
list of N values into ascending order, or we might determine how many arith-
metic operations it takes to multiply two matrices of size N × N.

There are a number of algorithms that will solve a problem. Studying the
analysis of algorithms gives us the tools to choose between algorithms. For
example, consider the following two algorithms to find the largest of four
values:

largest = a

if b > largest then

largest = b       

end if          

if c > largest then

largest = c          

end if       

if d > largest then

largest = d       

end if          

return largest       
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if a > b then

if a > c then

if a > d then

return a

else

return d

end if

else

if c > d then

return c

else

return d

end if

end if

else

if b > c then

if b > d then

return b

else

return d

end if

else

if c > d then

return c

else

return d

end if

end if

end if

If you examine these two algorithms, you will see that each one will do
exactly three comparisons to find the answer.  Even though the first is easier
for us to read and understand, they are both of the same level of complexity for
a computer to execute.  In terms of time, these two algorithms are the same,
but in terms of space, the first needs more because of the temporary variable
called largest.  This extra space is not significant if we are comparing num-
bers or characters, but it may be with other types of data.  In many modern
programming languages, we can define comparison operators for large and
complex objects or records.  For those cases, the amount of space needed for
the temporary variable could be quite significant.  When we are interested in
the efficiency of algorithms, we will primarily be concerned with time issues,
but when space may be an issue, it will also be discussed.
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The purpose of determining these values is to then use them to compare
how efficiently two different algorithms solve a problem.  For this reason, we
will never compare a sorting algorithm with a matrix multiplication algorithm,
but rather we will compare two different sorting algorithms to each other.

The purpose of analysis of algorithms is not to give a formula that will tell
us exactly how many seconds or computer cycles a particular algorithm will
take.  This is not useful information because we would then need to talk about
the type of computer, whether it has one or many users at a time, what proces-
sor it has, how fast its clock is, whether it has a complex or reduced instruction
set processor chip, and how well the compiler optimizes the executable code.
All of those will have an impact on how fast a program for an algorithm will
run.  To talk about analysis in those terms would mean that by moving a pro-
gram to a faster computer, the algorithm would become better because it now
completes its job faster.  That’s not true, so, we do our analysis without regard
to any specific computer.

In the case of a small or simple routine it might be possible to count the
exact number of operations performed as a function of N.  Most of the time,
however, this will not be useful.  In fact, we will see in Section 1.4 that the dif-
ference between an algorithm that does N + 5 operations and one that does
N + 250 operations becomes meaningless as N gets very large.  As an introduc-
tion to analysis of algorithms, however, we will count the exact number of
operations for this first section.

Another reason we do not try to count every operation that is performed by
an algorithm is that we could fine-tune an algorithm extensively but not really
make much of a difference in its overall performance.  For instance, let’s say
that we have an algorithm that counts the number of different characters in a
file.  An algorithm for that might look like the following:

for all 256 characters do

assign zero to the counter

end for

while there are more characters in the file do

get the next character

increment the counter for this character by one

end while

When we look at this algorithm, we see that there are 256 passes for the initial-
ization loop.  If there are N characters in the input file, there are N passes for
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the second loop.  So the question becomes What do we count?  In a for loop,
we have the initialization of the loop variable and then for each pass of the
loop, a check that the loop variable is within the bounds, the execution of
the loop, and the increment of the loop variable.  This means that the initial-
ization loop does a set of 257 assignments (1 for the loop variable and 256 for
the counters), 256 increments of the loop variable, and 257 checks that this
variable is within the loop bounds (the extra one is when the loop stops).  For
the second loop, we will need to do a check of the condition N + 1 times (the
+ 1 is for the last check when the file is empty), and we will increment N
counters.  The total number of operations is

Increments N + 256
Assignments 257
Conditional checks N + 258

So, if we have 500 characters in the file, the algorithm will do a total of 1771
operations, of which 770 are associated with the initialization (43%).  Now
consider what happens as the value of N gets large.  If we have a file with
50,000 characters, the algorithm will do a total of 100,771 operations, of
which there are still only 770 associated with the initialization (less than 1% of
the total work).  The number of initialization operations has not changed, but
they become a much smaller percentage of the total as N increases.

Let’s look at this another way.  Computer organization information shows
that copying large blocks of data is as quick as an assignment.  We could initial-
ize the first 16 counters to zero and then copy this block 15 times to fill in the
rest of the counters.  This would mean a reduction in the initialization pass
down to 33 conditional checks, 33 assignments, and 31 increments.  This
reduces the initialization operations to 97 from 770, a saving of 87%.  When
we consider this relative to the work of processing the file of 50,000 characters,
we have saved less than 0.7% (100,098 vs. 100,771).  Notice we could save
even more time if we did all of these initializations without loops, because only
31 pure assignments would be needed, but this would only save an additional
0.07%.  It’s not worth the effort.

We see that the importance of the initialization is small relative to the overall
execution of this algorithm.  In analysis terms, the cost of the initialization
becomes meaningless as the number of input values increases.

The earliest work in analysis of algorithms determined the computability of
an algorithm on a Turing machine.  The analysis would count the number of
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times that the transition function needed to be applied to solve the problem.
An analysis of the space needs of an algorithm would count how many cells of
a Turing machine tape would be needed to solve the problem.  This sort of
analysis is a valid determination of the relative speed of two algorithms, but it is
also time consuming and difficult.  To do this sort of analysis, you would first
need to determine the process used by the transition functions of the Turing
machine that carries out the algorithm.  Then you would need to determine
how long it executes—a very tedious process.

An equally valid way to analyze an algorithm, and the one we will use, is to
consider the algorithm as it is written in a higher-level language.  This language
can be Pascal, C, C++, Java, or a general pseudocode.  The specifics don’t really
matter as long as the language can express the major control structures common
to algorithms.  This means that any language that has a looping mechanism, like
a for or while, and a selection mechanism, like an if, case, or switch, will
serve our needs.  Because we will be concerned with just one algorithm at a
time, we will rarely write more than a single function or code fragment, and so
the power of many of the languages mentioned will not even come into play.
For this reason, a generic pseudocode will be used in this book.

Some languages use short-circuit evaluation when determining the value of
a Boolean expression.  This means that in the expression A and B, the term B
will only be evaluated if A is true, because if A is false, the result will be false no
matter what B is.  Likewise, for A or B, B will not be evaluated if A is true.  As
we will see, counting a compound expression as one or two comparisons will
not be significant.  So, once we are past the basics in this chapter, we will not
worry about short-circuited evaluations.

■ 1.1.1 Input Classes

Input plays an important role in analyzing algorithms because it is the input
that determines what the path of execution through an algorithm will be.  For
example, if we are interested in finding the largest value in a list of N numbers,
we can use the following algorithm:

largest = list[1]

for i = 2 to N do

if (list[i] > largest) then

largest = list[i]

end if

end for
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We can see that if the list is in decreasing order, there will only be one
assignment done before the loop starts.  If the list is in increasing order, how-
ever, there will be N assignments (one before the loop starts and N � 1 inside
the loop).  Our analysis must consider more than one possible set of input,
because if we only look at one set of input, it may be the set that is solved the
fastest (or slowest).  This will give us a false impression of the algorithm.
Instead we consider all types of input sets.

When looking at the input, we will try to break up all the different input
sets into classes based on how the algorithm behaves on each set.  This helps to
reduce the number of possibilities that we will need to consider.  For example,
if we use our largest-element algorithm with a list of 10 distinct numbers,
there are 10!, or 3,628,800, different ways that those numbers could be
arranged.  We saw that if the largest is first, there is only one assignment done,
so we can take the 362,880 input sets that have the largest value first and put
them into one class.  If the largest value is second, the algorithm will do
exactly two assignments.  There are another 362,880 inputs sets with the largest
value second, and they can all be put into another class.  When looking at this
algorithm, we can see that there will be between one and N assignments.  We
would, therefore, create N different classes for the input sets based on the num-
ber of assignments done.  As you will see, we will not necessarily care about
listing or describing all of the input sets in each class, but we will need to know
how many classes there are and how much work is done for each.

The number of possible inputs can get very large as N increases.  For
instance, if we are interested in a list of 10 distinct numbers, there are
3,628,800 different orderings of these 10 numbers.  It would be impossible to
look at all of these different possibilities.  We instead break these possible lists
into classes based on what the algorithm is going to do.  For the above algo-
rithm, the breakdown could be based on where the largest value is stored and
would result in 10 different classes.  For a different algorithm, for example, one
that finds the largest and smallest values, our breakdown could be based on
where the largest and smallest are stored and would result in 90 different
classes.  Once we have identified the classes, we can look at how an algorithm
would behave on one input from each of the classes.  If the classes are properly
chosen, all input sets in the class will have the same number of operations, and
all of the classes are likely to have different results.
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■ 1.1.2 Space Complexity

Most of what we will be discussing is going to be how efficient various algo-
rithms are in terms of time, but some forms of analysis could be done based on
how much space an algorithm needs to complete its task.  This space complex-
ity analysis was critical in the early days of computing when storage space on a
computer (both internal and external) was limited.  When considering space
complexity, algorithms are divided into those that need extra space to do their
work and those that work in place.  It was not unusual for programmers to
choose an algorithm that was slower just because it worked in place, because
there was not enough extra memory for a faster algorithm.

Computer memory was at a premium, so another form of space analysis
would examine all of the data being stored to see if there were more efficient
ways to store it.  For example, suppose we are storing a real number that has only
one place of precision after the decimal point and ranges between �10 and +10.
If we store this as a real number, most computers will use between 4 and 8 bytes
of memory, but if we first multiply the value by 10, we can then store this as an
integer between �100 and +100.  This needs only 1 byte, a savings of 3 to 7
bytes.  A program that stores 1000 of these values can save 3000 to 7000 bytes.
When you consider that computers as recently as the early 1980s might have
only had 65,536 bytes of memory, these savings are significant.  It is this need to
save space on these computers along with the longevity of working computer
programs that lead to all of the Y2K bug problems.  When you have a program
that works with a lot of dates, you use half the space for the year by storing it as
99 instead of 1999.  Also, people writing programs in the 1980s and earlier never
really expected their programs to still be in use in 2000.

Looking at software that is on the market today, it is easy to see that space
analysis is not being done.  Programs, even simple ones, regularly quote space
needs in a number of megabytes.  Software companies seem to feel that making
their software space efficient is not a consideration because customers who
don’t have enough computer memory can just go out and buy another 32
megabytes (or more) of memory to run the program or a bigger hard disk to
store it.  This attitude drives computers into obsolescence long before they
really are obsolete.

A recent change to this is the popularity of personal digital assistants (PDAs).
These small handheld devices typically have between 2 and 8 megabytes for
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both their data and software.  In this case, developing small programs that store
data compactly is not only important, it is critical.

1.1.3

1. Write an algorithm in pseudocode to count the number of capital letters in
a file of text.  How many comparisons does it do?  What is the fewest num-
ber of increments it might do?  What is the largest number?  (Use N for the
number of characters in the file when writing your answer.)

2. There is a set of numbers stored in a file, but we don’t know how many it
contains.  Write an algorithm in pseudocode to calculate the average of the
numbers stored in this file.  What type of operations does your algorithm
do?  How many of each of these operations does your algorithm do?

3. Write an algorithm, without using compound conditional expressions, that
takes in three integers and determines if they are all distinct.  On average,
how many comparisons does your algorithm do?  Remember to examine all
input classes.

4. Write an algorithm that takes in three distinct integers and determines the
largest of the three.  What are the possible input classes that would have to
be considered when analyzing this algorithm?  Which one causes your algo-
rithm to do the most comparisons?  Which one causes the least?  (If there is
no difference between the most and least, rewrite the algorithm with simple
conditionals and without using temporary variables so that the best case gets
done faster than the worst case.)

5. Write an algorithm to find the second largest element in a list of N values.
How many comparisons does your algorithm do in the worst case?  (Later,
we will see an algorithm that will do this with about N comparisons.)

1.2 WHAT TO COUNT AND CONSIDER

Deciding what to count involves two steps.  The first is choosing the significant
operation or operations, and the second is deciding which of those operations
are integral to the algorithm and which are overhead or bookkeeping.

There are two classes of operations that are typically chosen for the signifi-
cant operation: comparison or arithmetic.  The comparison operators are all
considered equivalent and are counted in algorithms such as searching and

1.1.3 EXERCISES■
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sorting.  In these algorithms, the important task being done is the comparison
of two values to determine, when searching, if the value is the one we are
looking for or, when sorting, if the values are out of order.  Comparison oper-
ations include equal, not equal, less than, greater than, less than or equal, and
greater than or equal.

We will count arithmetic operators in two groups: additive and multiplica-
tive.  Additive operators (usually called additions for short) include addition,
subtraction, increment, and decrement.  Multiplicative operators (usually
called multiplications for short) include multiplication, division, and modulus.
These two groups are counted separately because multiplications are consid-
ered to take longer than additions.  In fact, some algorithms are viewed more
favorably if they reduce the number of multiplications even if that means a sim-
ilar increase in the number of additions.  In algorithms beyond the scope of
this book, logarithms and geometric functions that are used in algorithms
would be another group even more time consuming than multiplications
because those are frequently calculated by a computer through a power series.

A special case is integer multiplication or division by a power of 2.  This
operation can be reduced to a shift operation, which is considered as fast as an
addition.  There will, however, be very few cases when this will be significant,
because multiplication or division by 2 is commonly found in divide and con-
quer algorithms that frequently have comparison as their significant operation.

■ 1.2.1 Cases to Consider

Choosing what input to consider when analyzing an algorithm can have a sig-
nificant impact on how an algorithm will perform.  If the input list is already
sorted, some sorting algorithms will perform very well, but other sorting algo-
rithms may perform very poorly.  The opposite may be true if the list is ran-
domly arranged instead of sorted.  Because of this, we will not consider just
one input set when we analyze an algorithm.  In fact, we will actually look for
those input sets that allow an algorithm to perform the most quickly and the
most slowly.  We will also consider an overall average performance of the algo-
rithm as well.

Best Case

As its name indicates, the best case for an algorithm is the input that requires
the algorithm to take the shortest time.  This input is the combination of values
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that causes the algorithm to do the least amount of work.  If we are looking at
a searching algorithm, the best case would be if the value we are searching for
(commonly called the target or key) was the value stored in the first location
that the search algorithm would check.  This would then require only one
comparison no matter how complex the algorithm is.  Notice that for search-
ing through a list of values, no matter how large, the best case will result in a
constant time of 1.  Because the best case for an algorithm will usually be a
very small and frequently constant value, we will not do a best-case analysis
very frequently.

Worst Case

Worst case is an important analysis because it gives us an idea of the most time
an algorithm will ever take.  Worst-case analysis requires that we identify the
input values that cause an algorithm to do the most work.  For searching algo-
rithms, the worst case is one where the value is in the last place we check or is
not in the list.  This could involve comparing the key to each list value for a
total of N comparisons.  The worst case gives us an upper bound on how
slowly parts of our programs may work based on our algorithm choices.

Average Case

Average-case analysis is the toughest to do because there are a lot of details
involved.  The basic process begins by determining the number of different
groups into which all possible input sets can be divided.  The second step is to
determine the probability that the input will come from each of these groups.
The third step is to determine how long the algorithm will run for each of
these groups.  All of the input in each group should take the same amount of
time, and if they do not, the group must be split into two separate groups.
When all of this has been done, the average case time is given by the following
formula:

(1.1)

where n is the size of the input, m is the number of groups, pi is the probability
that the input will be from group i, and ti is the time that the algorithm takes
for input from group i.

In some cases, we will consider that each of the input groups has equal proba-
bilities.  In other words, if there are five input groups, the chance the input will
be in group 1 is the same as the chance for group 2, and so on.  This would mean

A n( ) pi * ti

i=1

m

∑=
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that for these five groups all probabilities would be 0.2.  We could calculate the
average case by the above formula, or we could note that the following simplified
formula is equivalent in the case where all groups are equally probable:

(1.2)

1.2.2

1. Write an algorithm that finds the middle, or median, value of three distinct
integers. The input for this algorithm falls into six groups; describe them.
What is the best case for your algorithm?  What is the worst case?  What is
the average case?  (If the best and worst cases are the same, rewrite your
algorithm with simple conditionals and without temporary variables so the
best case is better than the worst case.)

2. Write an algorithm that determines if four integers are distinct.  Depending
on your viewpoint, the input for this algorithm can be divided into classes
based on the structure of your algorithm or the structure of the problem.
Describe how one of these two class divisions would be set up.  Using your
classes, what is the best case for your algorithm?  What is the worst case?
What is the average case?  (If the best and worst cases are the same, rewrite
your algorithm with simple conditionals and without temporary variables so
the best case is better than the worst case.)

3. Write an algorithm that determines, given a list of numbers and the average
or mean of those numbers, if there are more numbers above the average
than below.  Describe the groups that the input would fall into for this algo-
rithm.  What is the best case for your algorithm?  What is the worst case?
What is the average case?  (If the best and worst cases are the same, rewrite
your algorithm so it stops as soon as it knows the answer, making the best
case better than the worst case.)

1.3 MATHEMATICAL BACKGROUND

There are a few mathematical concepts that will be used through out this
book.  The first of these are the floor and ceiling of a number.  We say that
the floor of X (written X) is the largest integer that is less than or equal to
X.  So, 2.5 would be 2 and �7.3 would be �8.  We say that the ceiling

A n( ) 1
m
---- ti

i 1=

m

∑=

1.2.2 EXERCISES■
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of X (written X ) is the smallest integer that is greater than or equal to X.
So, 2.5 would be 3 and �7.3 would be �7.  Because we will be using
just positive numbers, you can think of the floor as truncation and the ceiling
as rounding up.  For negative numbers, the effect is reversed.

The floor and ceiling will be used when we need to determine how many
times something is done, and the value depends on some fraction of the items
it is done to.  For example, if we compare a set of N values in pairs, where the
first value is compared to the second, the third to the fourth, and so on, the
number of comparisons will be N / 2.  If N is 10, we will do five com-
parisons of pairs and 10 / 2 = 5 = 5.  If N is 11, we will still do five
comparisons of pairs and 11 / 2 = 5.5 = 5.

The factorial of the number N, written N!, is the product of all of the num-
bers between 1 and N.  For example, 3! is 3 * 2 * 1, or 6, and 6! is 6 * 5 * 4 *
3 * 2 * 1, or 720.  You can see that the factorial gets large very quickly.  We will
look at this more closely in Section 1.4.

■ 1.3.1 Logarithms

Because logarithms will play an important role in our analysis, there are a few
properties that must be discussed.  The logarithm base y of a number x is the
power of y that will produce the number x.  So, the log10 45 is about 1.653
because 101.653 is 45.  The base of a logarithm can be any number, but we will
typically use either base 10 or base 2 in our analysis.  We will use log as short-
hand for log10 and lg as shorthand for log2.

Logarithms are a strictly increasing function.  This means that given two
numbers X and Y, if X > Y, logB X > logB Y for all bases B.  Logarithms are
one-to-one functions.  This means that if logB X = logB Y, X = Y.  Other
properties that are important for you to know are

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

logB1 0=

logBB 1=

logB X * Y( ) logBX logBY+=

logBXY Y * logBX=

logAX
logBX( )
logBA( )

-------------------=
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These properties can be combined to help simplify a function.  Equation 1.7 is
a good fact to know for base conversion.  Most calculators do log10 and natural
logs, but let’s say you need to know log42 75.  Equation 1.7 would help you
find the answer of 1.155.

■ 1.3.2 Binary Trees

A binary tree is a structure in which each node in the tree is said to have at
most two nodes as its children, and each node has exactly one parent node.
The top node in the tree is the only one without a parent node and is called
the root of the tree.  A binary tree that has N nodes has at least lg N + 1 lev-
els to the tree if the nodes are packed as tightly as possible.  For example, a full
binary tree with 15 nodes has one root, two nodes on the second level, four
nodes on the third level, eight nodes on the fourth level, and our equation
gives lg 15 + 1 = 3.9 + 1 = 4.  Notice, if we add one more node to this
tree, it has to start a new level and now lg 16 + 1 = 4 + 1 = 5.  The largest
binary tree that has N nodes will have N levels if each node has exactly one
child (in which case the tree is actually a list).

If we number the levels of the tree, considering the root to be on level 1,
there are 2K–1 nodes on level K.  A complete binary tree with J levels (num-
bered from 1 to J) is one where all of the leaves in the tree are on level J, and all
nodes on levels 1 to J � 1 have exactly two children.  A complete binary tree
with J levels has 2 J � 1 nodes.  This information will be useful in a number of
the analyses we will do.  To better understand these formulas, you might want
to draw some binary trees and compare your count of the nodes with the
results of these formulas.

■ 1.3.3 Probabilities

Because we will analyze algorithms relative to their input, we may at times
need to consider the likelihood of a certain set of input.  This means that we
will need to work with the probability that the input will meet some condi-
tion.  The probability that something will occur is given as a number in the
range of 0 to 1, where 0 means it will never occur and 1 means it will always
occur.  If we know that there are exactly 10 different possible inputs, we can
say that the probability of each of these is between 0 and 1 and that the total of
all of the individual probabilities is 1, because one of these must happen.  If
there is an equal chance that any of these can occur, each will have a probabil-
ity of 0.1 (one out of 10, or 1/10).
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For most of our analyses, we will first determine how many possible situa-
tions there are and then assume that all are equally likely.  If we determine that
there are N possible situations, this results in a probability of 1 / N for each of
these situations.

■ 1.3.4 Summations

We will be adding up sets of values as we analyze our algorithms.  Let’s say we
have an algorithm with a loop.  We notice that when the loop variable is 5, we
do 5 steps and when it is 20, we do 20 steps.  We determine in general that
when the loop variable is M, we do M steps.  Overall, the loop variable will
take on all values from 1 to N, so the total steps is the sum of the values from 1

through N.  To easily express this, we use the equation .  The expression

below the Σ represents the initial value for the summation variable, and the
value above the Σ represents the ending value.  You should see how this expres-
sion corresponds to the sum we are looking for.

Once we have expressed some solution in terms of this summation notation,
we will want to simplify this so that we can make comparisons with other for-

mulas.  Deciding whether  or  is greater would be difficult to

do by inspection, so we use the following set of standard summation formulas
to determine the actual values these summations represent.

, with C a constant expression not dependent on i (1.8)

(1.9)

(1.10)

(1.11)

(1.12)

i
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Equation 1.12 just shows that adding the numbers from N down to 0 is the
same as adding the numbers from 0 up to N.  In some cases, it will be easier to
solve equations if we can apply Equation 1.12.

(1.13)

(1.14)

(1.15)

Equation 1.15 is easy to remember if you consider pairing up the values.
Matching the first and last, second and second last, and so on gives you a set of
values that are all N + 1.  How many of these N + 1 totals do you get?  Well,
you get half of the number of values you started with before you paired them,
or N / 2.  So, the result is

(1.16)

(1.17)

Equation 1.17 is easy to remember if you consider binary numbers.  When
you add the powers of 2 from 0 to 10, this is the same as the binary number
11111111111.  If we add 1 to this number, we get 100000000000, which is
211.  But because we added 1 to it, it is 1 larger than the sum of the powers of
2 from 0 to 10, so the sum must be 211 � 1.  If we now substitute N for 10, we
get Equation 1.17.

, for some number A (1.18)

(1.19)

1
i=1

N

∑ N=

C
i=1

N
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i
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(1.20)

(1.21)

When we are trying to simplify a summation equation, we can apply Equa-
tions 1.8 through 1.12 to break down the equation into simpler parts and then
apply the rest to get an equation without summations.

1.3.5

1. Typical calculators have the ability to calculate natural logs (to the base e)
and logs base 10.  How would you use a calculator with just these capabili-
ties to calculate log27 59?

2. Assume that we have a fair five-sided die with the numbers 1 through 5 on
its sides.  What is the probability that each of the numbers 1 through 5 will
be rolled?  If we roll two of these dice, what is the range of possible totals of
the values showing on the two dice?  What is the chance that each of these
totals will be rolled?

3. Assume we have a fair eight-sided die with the numbers 1, 2, 3, 3, 4, 5, 5, 5
on its sides. What is the probability that each of the numbers 1 through 5
will be rolled?  If we roll two of these dice, what is the range of possible
totals of the values showing on the two dice?  What is the chance that each
of the numbers in this range will be rolled?

4. You are given four dice that have numbers on their faces according to the
following lists:

d1: 1, 2, 3, 9, 10, 11
d2: 0, 1, 7, 8, 8, 9
d3: 5, 5, 6, 6, 7, 7
d4: 3, 4, 4, 5, 11, 12

For each pair of dice, compute the probability that the first die will have a
higher value showing than the second will, and vice versa.  You can easily
show your results in a 4 � 4 matrix where the row represents one die and

1
i
--

i=1

N

∑ Nln=

lg i
i=1

N

∑ N lg N 1.5–≈

1.3.5 EXERCISES■
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the column represents another.  (Because we assume that you will toss two
different dice, the diagonal of this matrix should be left blank because it
represents matching a die against itself.)  These dice have an interesting
property—can you determine it?

5. There are five coins on the table.  You choose one at random and flip it.  For
each of the four cases below, what is the chance that the majority of coins
will be tails when you are done?

a. Two heads and three tails c. Four heads and one tail
b. Three heads and two tails d. One head and four tails

6. There are five coins on the table.  Each coin is flipped exactly once.  For
each of the four cases below, what is the chance that the majority of coins
will be tails when you are done?

a. Two heads and three tails c. Four heads and one tail
b. Three heads and two tails d. One head and four tails

7. For the following summations, give an equivalent equation without the
summation:

a.

b.

c.

d.

e.

f.

3i 7+( )
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∑
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2
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1.4 RATES OF GROWTH

In analysis of algorithms, it is not important to know exactly how many opera-
tions an algorithm does.  Of greater concern is the rate of increase in oper-
ations for an algorithm to solve a problem as the size of the problem increases.
This is referred to as the rate of growth of the algorithm.  What happens with
small sets of input data is not as interesting as what happens when the data set
gets large.

Because we are interested in general behavior, we just look at the overall
growth rate of algorithms, not at the details.  If we look closely at the graph in
Fig. 1.1, we will see some trends.  The function based on x2 increases slowly at
first, but as the problem size gets larger, it begins to grow at a rapid rate.  The
functions that are based on x both grow at a steady rate for the entire length of
the graph.  The function based on log x seems to not grow at all, but this is
because it is actually growing at a very slow rate.  The relative height of the
functions is also different when we have small values versus large ones.  Con-
sider the value of the functions when x is 2.  At that point, the function with
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the smallest value is x2 / 8 and the one with the largest value is x + 10.  We can
see, however, that as the value of x gets large, x2 / 8 becomes and stays the
function with the largest value.

Putting all of this together means that as we analyze algorithms, we will be
interested in which rate of growth class an algorithm falls into rather than try-
ing to find out exactly how many of each operation are done by the algorithm.
When we consider the relative “size” of a function, we will do so for large val-
ues of x, not small ones.

Some of the common classes of algorithms can be seen in the chart in Fig.
1.2.  In this chart, we show the value for these classes over a wide range of
input sizes.  You can see that when the input is small, there is not a significant
difference in the values, but once the input value gets large, there is a big dif-
ference.  This reinforces what we saw in the graph in Fig. 1.1.  Because of this,
we will always consider what happens when the size of the input is large,
because small input sets can hide rather dramatic differences.

The data in Figs. 1.1 and 1.2 illustrate a second point.  Because the faster-
growing functions increase at such a significant rate, they quickly dominate the
slower-growing functions.  This means that if we determine that an algorithm’s
complexity is a combination of two of these classes, we will frequently ignore
all but the fastest growing of these terms.  For example, if we analyze an algo-
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1267650600228230000000000000000.0

n2 n3 2n

■ FIGURE 1.2
Common algorithm

classes
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rithm and find that it does x3 � 30x comparisons, we will just refer to this
algorithm as growing at the rate of x3.  This is because even at an input size of
just 100 the difference between x3 and x3 � 30x is only 0.3%.  This idea is for-
malized in the next section.

■ 1.4.1 Classification of Growth

Because the rate of growth of an algorithm is important, and we have seen that
the rate of growth is dominated by the largest term in an equation, we will dis-
card the terms that grow more slowly.  When we strip all of these things away,
we are left with what we call the order of the function or related algorithm.  We
can then group algorithms together based on their order.  We group them in
three categories—those that grow at least as fast as some function, those that
grow at the same rate, and those that grow no faster.

Big Omega

We use Ω( f ), called big omega, to represent the class of functions that grow at
least as fast as the function f.  This means that for all values of n greater than
some threshold n0, all of the functions in Ω( f ) have values that are at least as
large as f.  You can view Ω( f ) as setting a lower bound on a function, because
all the functions in this class will grow as fast as f or even faster.  Formally, this
means that if g(x) ∈ Ω( f ), g(n) ≥ c f(n) for all n ≥ n0 (where c is a positive con-
stant).

Because we are interested in efficiency, Ω( f ) will not be of much interest to
us because Ω(n2), for example, includes all functions that grow faster than n2

including n3 and 2n.

Big Oh

At the other end of the spectrum, we have O( f ), called big oh, which repre-
sents the class of functions that grow no faster than f.  This means that for all
values of n greater than some threshold n0, all of the functions in O( f ) have
values that are no greater than f.  The class O( f ) has f as an upper bound, so
none of the functions in this class grow faster than f.  Formally this means that
if g(x) ∈ O( f ), g(n) ≤ c f(n) for all n ≥ n0 (where c is a positive constant).

This is the class that will be of the greatest interest to us.  Considering two
algorithms, we will want to know if the function categorizing the behavior of
the first is in big oh of the second.  If so, we know that the second algorithm
does no better than the first in solving the problem.



1 . 4 R A T E S  O F  G R O W T H 23

Big Theta

We use θ( f ), called big theta, to represent the class of functions that grow at the
same rate as the function f.  This means that for all values of n greater than
some threshold n0, all of the functions in θ( f ) have values that are about the
same as f.  Formally, this class of functions is defined as the place where big
omega and big oh overlap, so θ( f ) = Ω( f ) ∩ O( f ).

When we consider algorithms, we will be interested in finding algorithms
that might do better than the one we are considering.  So, finding one that is
in big theta (in other words, is of the same complexity) is not very interesting.
We will not refer to this class very often.

Finding Big Oh

We can find if a function is in O( f ), by using the formal description above or
by using the following alternative description:

(1.22)

This means that if the limit of g(n) / f(n) is some real number less than �, g is in
O( f ).  With some functions, it might not be obvious that this is the case.  We
can then take the derivative of f and g and apply this same limit.

Notation

Because θ( f ), Ω( f ), and O( f ) are sets, it is proper to say that a function g is an
element of these sets.  The analysis literature, however, accepts that a function g
is equal to these sets as being equivalent to being a member of the set.  So,
when you see g = O( f ), this really means that g ∈ O( f ).

1.4.2

1. List the following functions from highest to lowest order.  If any are of the
same order, circle them on your list.

6

g O f( )∈ if
g n( )
f n( )
----------

n ∞→
lim c, for some c R*∈=

1.4.2 EXERCISES■

2
n

lg lg n n
3

lg n+

lg n n n
2

5n
3

+– 2
n–1

n
2

n
3

n lg n

lg n( )2
n

n! n 3 2⁄( )n
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2. For each of the following pairs of functions f (n) and g(n), either
f (n)=O(g(n)) or g(n)=O( f (n)), but not both.  Determine which is the case.

a.

b.

c.

d.

e.

f.

g.

h.

1.5 DIVIDE AND CONQUER ALGORITHMS

As the introduction indicated, divide and conquer algorithms can provide a
small and powerful means to solve a problem; this section is not about how to
write such an algorithm but rather how to analyze one.  When we count com-
parisons that occur in loops, we only need to determine how many compari-
sons there are inside the loop and how many times the loop is executed.  This
is made more complex when a value of the outer loop influences the number
of passes of an inner loop.

When we look at divide and conquer algorithms, it is not clear how many
times a task will be done because it depends on the recursive calls and perhaps
on some preparatory and concluding work.  It is usually not obvious how
many times the function will be called recursively.  As an example of this, con-
sider the following generic divide and conquer algorithm:

DivideAndConquer( data, N, solution )

data     a set of input values

N        the number of values in the set

solution the solution to this problem

if (N ≤ SizeLimit) then
   DirectSolution( data, N, solution )

else

   DivideInput( data, N, smallerSets, smallerSizes, numberSmaller )

f n( ) n
2

n–( ) 2 g n( ),⁄ 6n= =

f n( ) n 2 n+ g n( ), n
2

= =

f n( ) n n nlog  g n( ),+ n n= =

f n( ) n
2

3n 4+ + g n( ), n
3

= =

f n( ) n nlog  g n( ), n n 2⁄= =

f n( ) n nlog+ g n( ), n= =

f n( ) 2 nlog( )2
g n( ), n 1+log= =

f n( ) 4n n n+log  g n( ), n
2

n–( ) 2⁄= =
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   for i = 1 to numberSmaller do

      DivideAndConquer(smallerSets[i], smallerSizes[i], smallSolution[i])

   end for

   CombineSolutions(smallSolution, numberSmaller, solution)

end if

This algorithm will first check to see if the problem size is small enough to
determine a solution by some simple nonrecursive algorithm (called Direct-
Solution above) and, if so, will do that.  If the problem is too large, it will
first call the routine DivideInput, which will partition the input in some
fashion into a number (numberSmaller) of smaller sets of input values.
These smaller sets may be all of the same size or they may have radically differ-
ent sizes.  The elements in the original input set will all be put into at least one
of the smaller sets, but values can be put in more than one.  Each of these
smaller sets will have fewer elements than the original input set.  The Divide-
AndConquer algorithm is then called recursively for each of these smaller
input sets, and the results from those calls are put together by the Combine-
Solutions function.

The factorial of a number can easily be calculated by a loop, but for the pur-
pose of this example, we consider a recursive version.  You can see that the fac-
torial of the number N is just the number N times the factorial of the number
N � 1.  This leads to the following algorithm:

Factorial( N ) 

N         is the number we want the factorial for

Factorial returns an integer

If (N = 1) then

   return 1

else

   smaller = N - 1

   answer = Factorial( smaller )

   return (N * answer)

end if

This algorithm is written in simple detailed steps so that we can match
things up with the standard algorithm above.  Even though earlier in this chap-
ter we discussed how multiplications are more complex than additions and are,
therefore, counted separately, to simplify this example we are going to count
them together.
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In matching up the two algorithms, we see that the size limit in this case is
1, and our direct solution is to return the answer of 1, which takes no mathe-
matical operations.  In all other cases, we use the else clause.  The first step in
the general algorithm is to “divide the input” into smaller sizes, and in the fac-
torial function that is the calculation of smaller, which takes one subtraction.
The next step in the general algorithm is to make the recursive calls with these
smaller problems, and in the factorial function there is one recursive call with a
problem size that is 1 smaller than the original.  The last step in the general
algorithm is to combine the solutions, and in the factorial function that is the
multiplication in the last return statement.

Recursive Algorithm Efficiency

How efficient is a recursive algorithm?  Would it make it any easier if you
knew that the direct solution is quadratic, the division of the input is logarith-
mic, and the combination of the solutions is linear,1 all with respect to the size
of the input, and that the input set is broken up into eight pieces all one-
quarter of the original?  This is probably not a problem for which you can
quickly find an answer or for that matter are even sure where to start.  It turns
out, however, that the process of analyzing any divide and conquer algorithm
is very straightforward if you can map the steps of your algorithm into the four
steps shown in the generic algorithm above: a direct solution, division of the
input, number of recursive calls, and combination of the solutions.  Once you
know how each piece relates to the others, and you know how complex each
piece is, you can use the following formula to determine the complexity of the
divide and conquer algorithm:

where DAC is the complexity of DivideAndConquer
DIR is the complexity of DirectSolution
DIV is the complexity of DivideInput
COM is the complexity of CombineSolutions

1 To say that an algorithm is linear is the same as saying its complexity is in O(N ). If it’s quadratic, it is in 
O(N2), and logarithmic is in O(lg N ).

DAC N( )
DIR N( ) for N SizeLimit≤

DIV N( ) DAC smallerSizes i[ ]( ) COM N( )+
i=1

numberSmaller

∑+ for N SizeLimit>






=
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Now that we have this generic formula, the answer to the question posed at
the start of the last paragraph is quite easy.  All we need to do is to plug in the
complexities for each piece given into the previous general equation.  This
gives the following result:

or a bit more simply, because all smaller sets are the same size,

This form of equation is called a recurrence relation because the value of
the function is based on itself.  We prefer to have our equations in a form that
is dependent only on N and not other function calls.  The process that is used
to remove the recursion in this equation will be covered in Section 1.6, which
covers recurrence relations.

Let’s return to our factorial example.  We identified all of the elements in
the factorial algorithm relative to the generic DivideAndConquer.  We now
use that identification to decide what values get put into the general equation
above.  For the Factorial function, we said that the direct solution does no
calculations, the input division and result combination steps do one calculation
each, and the recursive call works with a problem size that is one smaller than
the original.  This results in the following recurrence relation for the number
of calculations in the Factorial function:

■ 1.5.1 Tournament Method

The tournament method is based on recursion and can be used to solve a
number of different problems where information from a first pass through the
data can help to make later passes more efficient.  If we use it to find the largest
value, this method involves building a binary tree with all of the elements in

DAC N( )
N 2 for N SizeLimit≤

lg N DAC N 4⁄( ) N+
i=1

8

∑+ for N SizeLimit>









=

DAC N( ) N 2 for N SizeLimit≤
lg N 8 DAC N 4⁄( ) N+ + for N SizeLimit>




=

Calc N( ) 0 for N 1=

1 Calc N 1–( ) 1+ + for N 1>



=
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the leaves.  At each level, two elements are paired and the larger of the two gets
copied into the parent node.  This process continues until the root node is
reached.  Figure 1.3 shows a complete tournament tree for a given set of data.

In Exercise 5 of Section 1.1.3, it was mentioned that we would develop an
algorithm to find the second largest element in a list using about N compari-
sons.  The tournament method helps us do this.  Every comparison produces
one “winner” and one “loser.”  The losers are eliminated and only the winners
move up in the tree.  Each element, except for the largest, must “lose” one
comparison.  Therefore, building the tournament tree will take N � 1 com-
parisons.

The second largest element could only have lost to the largest element.  We
go down the tree and get the set of elements that lost to the largest one.  We
know that there can be at most lg N of these elements because of our tree
formulas in Section 1.3.2.  There will be lg N comparisons to find these ele-
ments in the tree and lg N � 1 comparisons to find the largest in this collec-
tion.  The entire process takes N + 2 lg N � 2 comparisons, which is O(N ).

The tournament method could also be used to sort a list of values.  In
Chapter 3, we will see a method called heapsort that is based on the tourna-
ment method.

■ 1.5.2 Lower Bounds

An algorithm is optimal when there is no algorithm that will work more
quickly.  How do we know when have we found an algorithm that is optimal
or when is an algorithm not optimal, but good enough?  To answer these ques-

8

6 8

6

4 6

3

3 2

8

8 7

5

1 5

■ FIGURE 1.3
Tournament tree
for a set of eight

values
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tions, we need to know the absolute smallest number of operations needed to
solve a particular problem.  This must be determined by looking at the prob-
lem itself and not any particular algorithm to solve it.  This lower bound tells us
the amount of work that is necessary to solve the problem and shows that any
algorithm that claims to be able to solve the problem more quickly must fail in
some cases.

We can again use a binary tree to help us analyze the process of sorting a list
of three numbers.  We can construct a binary tree for the sorting process by
labeling each internal node with the two elements of the list that would be
compared.   The ordering of the elements that would be necessary to move
from the root to that leaf would be in the leaves of the tree.  The tree for a list
of three elements is shown in Fig. 1.4.  Trees of this form are called decision
trees.

Each sort algorithm produces a different decision tree based on the elements
that it compares.  Within a decision tree, the longest path from the root to a

x1 ≤ x2

x1 ≤ x3x1 ≤ x3

x3, x1, x2x2 ≤ x3 x2 ≤ x3

x1, x3, x2x1, x2, x3

x2, x1, x3

x2, x3, x1 x3, x2, x1

■ FIGURE 1.4
The decision tree for

sorting a three-
element list
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leaf represents the worst case.  The best case is the shortest path.  The average
case is the total number of edges in the decision tree divided by the number of
leaves in the tree.  As simple as it would seem to be able to determine these
numbers by drawing decision trees and counting, think about what the deci-
sion tree would look like for a sort of 10 numbers.  As was said before, there
are 3,628,800 different ways these can be ordered.  A decision tree would need
at least 3,628,800 different leaves, because there may be more than one way to
get to the same order.  This tree would then need at least 22 levels.

So, how can decision trees be used to give us an idea of the bounds on an
algorithm?  We know that a correct sorting algorithm must properly order all
of the elements no matter what order in which they begin.  There must be at
least one leaf for every possible permutation of input values, which means that
there must be at least N ! leaves in the decision tree.  A truly efficient algorithm
would have each permutation appear only once.  How many levels does a tree
with N ! leaves have?  We have already seen that each new level of the tree will
have twice as many nodes as the previous level.  Because there are 2K–1 nodes
on level K, our decision tree will have L levels, where L is the smallest integer
with N ! ≤ 2L–1.  Applying algebraic transformations to this formula we get

Because we are trying to find out the smallest value for L, is there anyway to
simplify this equation further to get rid of the factorial?  Let’s see what we can
observe about the factorial of a number.  Consider the following:

By Equation 1.5, we get

By Equation 1.21, we get

lg N! L 1–≤

lg N! lg N * N 1–( ) * N 2–( ) * … *  1( )=

lg N * N 1–( ) * N 2–( ) * … * 1( ) lg N( ) lg N 1–( ) lg N 2–( ) … lg(1)+ + + +=

lg N( ) lg N 1–( ) lg N 2–( ) … lg 1( )+ + + + lg i
i=1

N

∑=

lg i
i=1

N

∑ N lg N 1.5–≈

lg N! N lg N≈
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This means that L, the minimum depth of the decision tree for sorting
problems, is of order O(N lg N ).  We now know that any sort that is of order
O(N lg N ) is the best we will be able to do, and it can be considered optimal.
We also know that any sort algorithm that runs faster than O(N lg N ) must not
work.

This analysis for the lower bound for a sorting algorithm assumed that it
does its work through the comparison of pairs of values from the list.  In
Chapter 3, we will see a sorting algorithm (radix sort) that will run in linear
time.  That algorithm doesn’t compare key values but rather separates them
into “buckets” to accomplish its work.

1.5.3

1. Fibonacci numbers can be calculated with the algorithm that follows.  What
is the recurrence relation for the number of “additions” done by this algo-
rithm? Be sure to clearly indicate in your answer what you think the direct
solution, division of the input, and combination of the solutions are.

int Fibonacci( N )

N the Nth Fibonacci number should be returned

if (N = 1) or (N = 2) then

   return 1

else

   return Fibonacci( N-1 ) + Fibonacci( N-2 )

end if

2. The greatest common divisor (GCD) of two integers M and N is the largest
integer that divides evenly into both M and N.  For example, the GCD of 9
and 15 is 3, and the GCD of 51 and 34 is 17.  The following algorithm will
calculate the greatest common divisor of two numbers:

GCD(M, N)

M, N are the two integers of interest

GCD  returns the integer greatest common divisor

if ( M < N ) then

   swap M and N

end if

if ( N = 0) then

   return M

else

   quotient = M / N    //NOTE: integer division

1.5.3 EXERCISES■
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   remainder = M mod N

   return GCD( N, remainder )

end if

Give the recurrence relation for the number of multiplications (in this case,
the division and mod) that are done in this function.

3. We have a problem that can be solved by a direct (nonrecursive) algorithm
that operates in N2 time.  We also have a recursive algorithm for this prob-
lem that takes N lg N operations to divide the input into two equal pieces
and lg N operations to combine the two solutions together.  Show whether
the direct or recursive version is more efficient.

4. Draw the tournament tree for the following values: 13, 1, 7, 3, 9, 5, 2, 11,
10, 8, 6, 4, 12.  What values would be looked at in stage 2 of finding the
second largest value in the list?

5. What is the lower bound on the number of comparisons needed to do a
search through a list with N elements? Think about what the decision tree
might look like for this problem in developing your answer.  (Hint: The
nodes would be labeled with the location where the key is found.)  If you
packed nodes into this tree as tightly as possible, what does that tell you
about the number of comparisons needed to search?

1.6 RECURRENCE RELATIONS

Recurrence relations can be directly derived from a recursive algorithm, but
they are in a form that does not allow us to quickly determine how efficient
the algorithm is.  To do that we need to convert the set of recursive equations
into what is called closed form by removing the recursive nature of the equa-
tions.  This is done by a series of repeated substitutions until we can see the
pattern that develops.  The easiest way to see this process is by a series of exam-
ples.

A recurrence relation can be expressed in two ways.  The first is used if there
are just a few simple cases for the formula:

T n( ) 2T n 2–( ) 15–=

T 2( ) 40=

T 1( ) 40=
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The second is used if the direct solution is applied for a larger number of cases:

These forms are equivalent.  We can convert from the second form to the first
by just listing those values for which we have the direct answer.  This means
that the second recurrence relation above could also be given as

Consider the following recurrence relation:

We will want to substitute an equivalent value for T(n � 2) back into the first
equation.  To do so, we replace every n in the first equation with n � 2, giving:

But now we can see when this substitution is done, we will still have T(n � 4)
to eliminate.  If you think ahead, you will realize that there will be a series of
these values that we will need.  As a first step, we create a set of these equations
for successively smaller values:

T n( ) 4 if n 4≤
4T n 2⁄( ) 1– otherwise




=

T n( ) 4T n 2⁄( ) 1–=

T 4( ) 4=

T 3( ) 4=

T 2( ) 4=

T 1( ) 4=

T n( ) 2T n 2–( ) 15–=

T 2( ) 40=

T 1( ) 40=

T n 2–( ) 2T n 2– 2–( ) 15–=

2T n 4–( ) 15–=

T n 2–( ) 2T n 4–( ) 15–=

T n 4–( ) 2T n 6–( ) 15–=

T n 6–( ) 2T n 8–( ) 15–=

T n 8–( ) 2T n 10–( ) 15–=

T n 10–( ) 2T n 12–( ) 15–=
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Now we begin to substitute back into the original equation.  We will be care-
ful not to simplify the resulting equation too much because that will make the
pattern more difficult to see.  Doing the substitution gives us

You are probably beginning to see a pattern develop here.  First, we notice
that each new term at the end of the equation is �15 multiplied by the next
higher power of 2.  Second, we notice that the coefficient of the recursive
call to T is going through a series of powers of 2.  Third, we notice that the
value that we are calling T with keeps going down by 2 each time.  Now, you
might wonder When does this process end?  If we look back at the original
equation, you will see that we have a fixed value for T(1) and T(2).  How
many times would we have to substitute back into this equation to get to
either of these values?  We can see that 2 = n � (n � 2) if n is even.  This
seems to indicate that we would substitute back into this equation [(n � 2) /
 2] � 1 times giving n / 2 � 1 terms based on �15 in the equation, and the
power of the coefficient of  T will be n / 2 � 1.  To see this, consider what
we would have if the value of n was 14.  In this case, the previous sentence

T n( ) 2T n 2–( ) 15– 2 2T n 4–( ) 15–( ) 15–= =

T n( ) 4T n 4–( ) 2 * 15– 15–=

T n( ) 4 2T n 6–( ) 15–( ) 2 * 15– 15–=

T n( ) 8T n 6–( ) 4 * 15– 2 * 15– 15–=

T n( ) 8 2T n 8–( ) 15–( ) 4 * 15– 2 * 15– 15–=

T n( ) 16T n 8–( ) 8 * 15– 4 * 15– 2 * 15– 15–=

T n( ) 16 2T n 10–( ) 15–( ) 8 * 15– 4 * 15– 2 * 15– 15–=

T n( ) 32T n 10–( ) 16 * 15– 8 * 15– 4 * 15– 2 * 15– 15–=

T n( ) 32 2T n 12–( ) 15–( ) 16 * 15– 8 * 15– 4 * 15– 2 * 15– 15–=

T n( ) 64T n 12–( ) 32 * 15– 16 * 15– 8 * 15– 4 * 15– 2 * 15– 15–=
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indicates that we would have substituted five times, would have six terms
based on �15, and would have 26 for the coefficient of T(2).  If you look
closely at the last equation and substitute 14 in for n, you will see that this is
exactly what we have.

What if n is an odd number?  Will these formulas still work?  Let’s consider
an n value of 13.  In the above equation, the only thing that would change is
that T would have a value of 1 instead of 2, but by our equations, n / 2 � 1 is
5 (not 6) when n is 13.  For odd n, we will use n / 2 instead of n / 2 � 1.  We
will have two cases in our answer.

Now, applying Equation 1.17, for an even value of n we get

and, if n is odd, we get

Consider another recurrence relation:

We will proceed in the same way as we did in the previous example.  We first
substitute in a set of values for n, only in this case, because n is being divided

T n( ) 2
n 2⁄( ) 1–

T 2( ) 15 2
i

if n is even 
i=0

n 2⁄( ) 1–

∑–= T n( ) 2
n 2⁄

T 1( ) 15 2
i

if n is odd
i=0

n 2⁄

∑–=

T n( ) 2
n 2⁄( ) 1–

 * 40 15 2
i

if n is even
i=0

n 2⁄( ) 1–

∑–= T n( ) 2
n 2⁄

 * 40 15 2
i

if n is odd
i=0

n 2⁄

∑–=

T n( ) 2 n 2⁄( ) 1–
 * 40 15 * 2n 2⁄ 1–( )–=

2n 2⁄
 * 20 2n 2⁄–  * 15 15+=

2n 2⁄ 20 15–( ) 15+=

2n 2⁄
 * 5 15+=

T n( ) 2n 2⁄
 * 40 15 * 2 n 2⁄( ) 1+ 1–( )–=

2n 2⁄
 * 40 2n 2⁄

 * – 30 + 15=

2n 2⁄ 40 30–( ) 15+=

2n 2⁄
 * 10 15+=

T n( ) 5 if n 4≤
4T n 2⁄( ) 1– otherwise




=
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by 2, each of the subsequent equations will have half the value.  This gives us
the equations

Now, we again substitute back into the original giving the following series of
equations:

We notice that the coefficient of �1 increases by a power of 4 each time we
substitute, and it is the case that the power of 2 that we divide n by is 1 greater
than the largest power of 4 for this coefficient.  Also, we notice that the coeffi-
cient of T is the same power of 4 as the power of 2 that we divide n by.  When

we have , its coefficient will be 4i and we will have terms from –(4i–1)

to –1.  Now, for what value of i can we stop the substitution?  Well, because we

T n 2⁄( ) 4T n 4⁄( ) 1–=

T n 4⁄( ) 4T n 8⁄( ) 1–=

T n 8⁄( ) 4T n 16⁄( ) 1–=

T n 16⁄( ) 4T n 32⁄( ) 1–=

T n 32⁄( ) 4T n 64⁄( ) 1–=

T n( ) 4T n 2⁄( ) 1– 4 4T n 4⁄( ) 1–( ) 1–= =

T n( ) 16T n 4⁄( ) 4 * 1– 1–=

T n( ) 16 4T n 8⁄( ) 1–( ) 4 * 1– 1–=

T n( ) 64T n 8⁄( ) 16 * 1– 4 * 1– 1–=

T n( ) 64 4T n 16⁄( ) 1–( ) 16 * 1– 4 * 1– 1–=

T n( ) 256T n 16⁄( ) 64 * 1– 16 * 1– 4 * 1– 1–=

T n( ) 256 4T n 32⁄( ) 1–( ) 64 * 1– 16 * 1– 4 * 1– 1–=

T n( ) 1024T n 32⁄( ) 256 * 1– 64 * 1– 16 * 1– 4 * 1– 1–=

T n( ) 1024 4T n 64⁄( ) 1–( ) 256 * 1– 64 * 1– 16 * 1– 4 * 1– 1–=

T n( ) 4096T n 64⁄( ) 1024 * 1– 256 * 1– 64 * 1– 16 * 1– 4 * 1– 1–=

T n 2i⁄( )
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have the direct case specified for n ≤ 4, we can stop when we get to

.  Putting this together we get

Using the value for the direct case, and Equation 1.18, we get

As you can see, the closed form of a recurrence relation may not be simple
or neat, however, it does eliminate the recursive “call” so that we can quickly
compare equations and determine their order.

1.6.1
Put the following recurrence relations into closed form.

1.

2.

3.

4.

T 4( ) T n 2lgn 2–⁄( )=

T n( ) 4lg n 2– T 4( ) 4i

i=0

lg n 3–

∑–=

T n( ) 4lg n 2–
 * 5

4lg n 2– 1–
4 1–

-----------------------–=

T n( ) 4lg n 2–
 * 5

4lg n 2– 1–
3

-----------------------–=

T n( ) 15 * 4
lg n 2– 4lg n 2–– 1+

3
--------------------------------------------------------=

T n( ) 4lg n 2– 15 1–( ) 1+
3

-------------------------------------------=

T n( ) 4lg n 2–
 * 14 1+
3

------------------------------------=

1.6.1 EXERCISES■

T n( ) 3T n 1–( ) 15–=

T 1( ) 8=



T n( ) T n 1–( ) n 1–+=

T 1( ) 3=



T n( ) 6T n 6⁄( ) 2n 3+ +=

T 1( ) 1=



for n a power of 6

T n( ) 4T n 3⁄( ) 2n 1–+=

T 1( ) 2=



for n a power of 3
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1.7 ANALYZING PROGRAMS

Let’s say that we have a large, complex program that takes longer to run than
we want.  How can we identify parts of this program that with fine-tuning
could improve the overall speed?

We could look at the program and find the subprograms (sometimes called
subroutines, procedures, or functions) that have many calculations or loops and
work on improving those.  After a lot of effort to do this, we might not see an
impact because the subprograms we worked on may not be used very much.

A better technique would be to first identify the subprograms that are used a
lot and then improve those.  One way to do this would be to create a set of
global counters, one for each subprogram.  They are initialized to zero at the
start of the program.  Every subprogram is then altered to increment one of
those counters as its new first statement.  Each time that subprogram is
entered, it will now increase its counter by 1, so at the end of the program, our
set of counters will tell us how many times each subprogram was called.  We
can now see which are called many times and which are called just a few.

Suppose we have a program where one simple subprogram is called 50,000
times and a bunch of complex subprograms are called just once each.  We
would have to reduce the complex subprograms by 50,000 operations to have
the same effect as reducing the simple subprogram by just one operation.  You
should see that finding a simple improvement in one subprogram is much eas-
ier than finding 50,000 in a group of subprograms.

The technique of using counters can be applied at the subprogram level as
well.  In this case, we create a set of global counters, one for each of the signif-
icant points we want to know about.  Suppose we wanted to know how many
times the then and else parts of an if statement are executed.  We could
create two counters and increment the first inside the then part and increment
the other inside the else part.  At the end of the program, these two counters
would tell us the information we are interested in.  Other significant points we
might want to test would be inside loops and just before conditional state-
ments.  More generally, we would place increment statements at any place
where control can be transferred.
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At the end of a program, these counters would tell us how many times each
of the blocks of code in a subprogram was executed.  We can then look at those
parts where the most work is done for improvements.

This process is important, and many computers and software development
systems have program profiling tools that will produce this information for you
automatically.
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C H A P T E R 2
Searching and

Selection
Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Read and create algorithms
• Use summations and probabilities presented in Chapter 1

GOALS

At the end of this chapter, you should be able to

• Explain the sequential search algorithm
• Explain the worst-case analysis of the sequential search algorithm
• Explain the average-case analysis of the sequential search algorithm
• Explain the binary search algorithm
• Explain the worst-case analysis of the binary search algorithm
• Explain the average-case analysis of the binary search algorithm
• Explain the selection algorithms and their analysis
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STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
be sure you understand them. For example, you should create a list of 5 to 8
elements and then use it to trace the sequential search and selection algorithms.
You should do the same thing with an ordered list of 7 and 15 elements and
binary search. Additionally, you should try to answer any questions before
reading on. A hint or the answer is in the sentences following the question.

he act of searching for a piece of information in a list is one of the
fundamental algorithms in computer science. In discussing searching,
we assume that there is a list that contains records of information,

which in practice is stored using an array in a program. The records, or items,
are assumed to be in adjacent locations in the list, with no gaps or blank
records in the middle. The list locations will be indexed from 1 to N, which
represents the number of records in the list. Each record can be separated into
fields, but we will only be interested in one of these fields, which we will call
the key. Lists will be either unsorted or sorted based on their key value.
Records are in a random order in an unsorted list and are in order by increas-
ing key value in a sorted list.

When a list is unsorted, we only have one search option and that is to
sequentially look through the list for the item we want. This is the simplest of
the searching algorithms. We will see that this algorithm is not very efficient
but will successfully search in any list.

When a list of elements is sorted, the options for searching are expanded to
include binary search. Binary search takes advantage of the ordered nature of
the list to eliminate more than one element of the list with each comparison.
This results in a more efficient search.

A problem related to searching for a particular value is the selection prob-
lem, where we are interested in finding the element that meets some criterion.
It might be that we are looking for the fifth largest value, seventh smallest
value, or the median value in the list. We will look at two techniques that can
be used to solve this problem.

T
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2.1 SEQUENTIAL SEARCH

In search algorithms, we are concerned with the process of looking through a
list to find a particular element, called the target. Although not required, we
usually consider the list to be unsorted when doing a sequential search, because
there are other algorithms that perform better on sorted lists. Search algo-
rithms are not just interested in whether the target is in the list but are usually
part of a larger process that needs the data associated with that key. For exam-
ple, the key value might be an employee number, a serial number, or other
unique identifier. When the proper key is found, the program might change
some of the data stored for that key or might simply output the record. In any
case, the important task for a search algorithm is to identify the location of the
key. For this reason, search algorithms return the index of where the record
with the key is located. If the target value is not found, it is typical for the algo-
rithm to return an index value that is outside the range of the list of elements.
For our purposes, we will assume that the elements of the list are located in
positions 1 to N in the list. This allows us to return a value of zero if the target
is not in the list. For the sake of simplicity, we will assume that the key values
are unique for all of the elements in the list.

Sequential search looks at elements, one at a time, from the first in the list
until a match for the target is found. It should be obvious that the further
down the list a particular key value is, the longer it will take to find that key
value. This is an important fact to remember when we begin to analyze
sequential search.

The complete algorithm for sequential search is

SequentialSearch( list, target, N )

list     the elements to be searched

target   the value being searched for

N    the number of elements in the list

for i = 1 to N do

if (target = list[i])

return i

end if

end for

return 0
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■ 2.1.1 Worst-Case Analysis

There are two worst cases for the sequential search algorithm. The first is if the
target matches the last element in the list. The second is if the target is not in
the list. For both of these cases, let’s look at how many comparisons are done.
We have said that all of the list keys will be unique, and so if the match is in the
last location, that means that all of the other locations are different from the
target. The algorithm will, therefore, compare the target with each of these
values until it finds the match in the last location. This will take N compari-
sons, where N is the number of elements in the list.

We will have to compare the target to all of the elements in the list to deter-
mine that the target is not there. If we skip any of the elements, we will not
know if the target is not present or is present in one of the locations we
skipped. This means that we need to do N comparisons to see that none of the
elements match the target.

In both cases, whether the target is in the last location or not in the list, this
algorithm takes N comparisons. You should see that this is the upper bound for
any search algorithm, because to do more than N comparisons would mean
that the algorithm compared at least one element with the target at least twice,
which is unnecessary work, so the algorithm could be improved.

There is a difference between the concept of an upper bound and a worst
case. The upper bound is a concept based on the problem to be solved, and the
worst case is based on the way a particular algorithm solves that problem. For
this algorithm, the worst case is also the upper bound for the problem. We will
see in Section 2.2 another search algorithm that has a worst case that is less
than this upper bound of N.

■ 2.1.2 Average-Case Analysis

There are two average-case analyses that can be done for a search algorithm.
The first assumes that the search is always successful and the other assumes that
the target will sometimes not be found.

If the target is in the list, there are N places where that target can be located.
It could be in the first, second, third, fourth, and so on, locations in the list. We
will assume that all of these possibilities are equally likely, giving a probability
of 1/N for each potential location.

Take a moment to answer the following questions before reading on:

• How many comparisons are done if the match is in the first location?
• What about the second location?
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• What about the third?
• What about the last or N th location?

If you looked at the algorithm carefully, you should have determined that the
answers to these questions are 1, 2, 3, and N, respectively. This means that for
each of our N cases, the number of comparisons is the same as the location
where the match occurs. This gives the following equation for this average
case:1

If we include the possibility that the target is not in the list, we will find that
there are now N + 1 possibilities. As we have seen, the case where the target is
not in the list will take N comparisons. If we assume that all N + 1 possibilities
are equally likely, we wind up with the following:

We see that including the possibility of the target not being in the list only
increases the average case by 1/2. When we consider this amount relative to
the size of the list, which could be very large, this 1/2 is not significant.

1 See Section 1.2.1 on average case if this first equation looks unfamiliar.
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2.1.3

1. Sequential search can also be used for a sorted list. Write an algorithm called
SortedSequentialSearch that will return the same results as the algo-
rithm above but will run more quickly because it can stop with a failure the
minute it finds that the target is smaller than the current list value. When
you write your algorithm, use the Compare(x, y) function defined as

The Compare function should be counted as one comparison and can best
be used in a switch. Do an analysis of the worst case, average case with the
target found, and average with the target not found. (Note: This last analysis
has many possibilities because of all of the additional early exits when the
target is smaller than the current value.)

2. What is the average complexity of sequential search if there is a 0.25 chance
that the target will not be found in the list and there is a 0.75 chance that
when the target is in the list, it will be found in the first half of the list?

2.2 BINARY SEARCH

If we compare the target with the element that is in the middle of a sorted list,
we have three possible results: the target matches, the target is less than the ele-
ment, or the target is greater than the element. In the first and best case, we are
done. In the other two cases, we learn that half of the list can be eliminated
from consideration.

When the target is less than the middle element, we know that if the target
is in this ordered list, it must be in the list before the middle element. When
the target is greater than the middle element, we know that if the target is in
this ordered list, it must be in the list after the middle element. These facts
allow this one comparison to eliminate one-half of the list from consideration.
As the process continues, we will eliminate from consideration one-half of

2.1.3 EXERCISES■

Compare x y,( )
1–

0

1

if x y<
if x y=

if x y>





=
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what is left of the list with each comparison. This results in the following
algorithm:2

BinarySearch( list, target, N )

list     the elements to be searched

target   the value being searched for

N        the number of elements in the list

start = 1

end = N

while start ≤ end do
middle = (start + end) / 2

select (Compare(list[middle], target)) from

case -1:start = middle + 1

case  0:return middle

case  1:end = middle - 1

end select

end while

return 0

In this algorithm, start gets reset to 1 larger than the middle when we know
that the target is larger than the element at the middle location. End gets reset
to 1 smaller than the middle when we know that the target is smaller than the
element at the middle location. These are shifted by 1 because we know by the
three-way comparison that the middle value is not equal and so can be elimi-
nated from consideration.

Does this loop always stop? If we find the target, the answer is obviously Yes,
because of the return. If we don’t find a match, each pass through the loop will
either increase the value of start or decrease the value of end. This means
that they will continue to get closer to each other. Eventually, they will
become equal to each other, and the loop will be done one more time, with
start = end = middle. After this pass (assuming that this is not the element
we are looking for), either start will be 1 greater than middle and end, or
end will be 1 less than middle and start. In both of these cases, the while

2 The function Compare(x,y) is defined in Exercise 1 of Section 2.1.3. As was men-
tioned in that exercise, this function will return �1, 0, or 1, depending on whether x
is less than, equal to, or greater than y, respectively. When analyzing an algorithm that 
uses Compare, it is counted as just one comparison.
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loop’s conditional will become false, and the loop will stop. Therefore, the loop
does always stop.

Does this algorithm return the correct answer? If we find the target, the
answer is obviously Yes because of the return. If the middle element doesn’t
match, each pass through the loop eliminates from consideration one-half of
the remaining elements because they are all either too large or too small. As
was discussed in the previous paragraph, we will eventually get down to just
one element that must be examined.3 If this is the key we are looking for, the
value of middle will be returned. If it is not the key we are looking for,
start will become greater than end or end will become less than start.
This means that if the target was in the list, it would be above or below the
middle value, respectively. But, based on the values of start and end, we
know that previous comparisons eliminated all of the other values, so the target
is not in the list. The loop will stop, and the function will indicate a failed
search by returning zero. So, the algorithm does return the correct answer.

Because of the halving nature of this algorithm, we will assume for our anal-
ysis that N = 2k � 1 for some value of k. If this is the case, how many elements
will be left for the second pass? What about the third pass? In general, you
should see that if on some pass of the loop we have 2 j � 1 elements under
consideration, there are 2 j�1 � 1 elements in the first half, 1 element in the
middle, and 2 j�1 � 1 in the second half. Therefore, the next pass will have
2 j�1 � 1 elements left (for 1 ≤ j ≤ k). This assumption will make the following
analysis easier to do, but this assumption is not necessary, as you will see in the
exercises.

■ 2.2.1 Worst-Case Analysis

In paragraph above, we showed that the power of 2 is decreased by one each
pass of the loop. It was also shown that the last pass of the loop occurs when
the list has a size of 1, which occurs when j is 1 (21 � 1 = 1). This means that
there are at most k passes when N = 2k � 1. Solving this equation tells us that
the worst case is k = lg(N + 1).

3 You should also see this from the process of repeatedly doing an integer division by 2. 
No matter what size list you start with, if you keep dividing by 2 (throwing away the
fractional portion), you will eventually wind up with a list of one element.
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Building a decision tree for the search process can also help with this analy-
sis. The nodes of the decision tree would have the element that is checked at
each pass. Those elements that would be checked if the target is less than the
current element would go into the left subtree and those checked when the
target is greater would go into the right subtree. If our list had just seven ele-
ments, the tree that would result is shown in Fig. 2.1. In general, we know that
this tree is relatively balanced because we always choose the middle of the var-
ious parts of the list. So, we can use formulas related to binary trees from Sec-
tion 1.3.2 to get the number of comparisons.

Because we chose N = 2k � 1, the resulting decision tree will be complete.
There will be k levels in the resulting tree, where k = lg(N + 1). Because we
do one comparison on each level, the most we do is lg(N + 1) comparisons.

■ 2.2.2 Average-Case Analysis

As with sequential search, we will consider two situations when doing an aver-
age-case analysis. In the first, the target will always be in the list, and in the sec-
ond, the target may not be in the list.

The first situation will have N possible locations for the target. We will con-
sider each of these to be equivalent and so will give each a probability of 1/N.
If we consider the binary tree that represents this search process, we will see
that one comparison is done to find the element that is in the root of the tree
on level 1. Two comparisons are done to find the elements that are in the nodes
on level 2, and three comparisons are done to find the elements that are in the
nodes on level 3. In general, i comparisons are done to find the elements that
are in the nodes on level i. Section 1.3.2 showed that for a binary tree there are
2i�1 nodes on level i, and when N = 2k � 1, there are k levels in the tree. This

list[4]

list[2] list[6]

list[7]list[5]list[3]list[1]

■ FIGURE 2.1
Decision tree for a

search of a list of
seven elements
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means that we can determine the total number of comparisons done for every
possible case by adding, for every level, the product of the number of nodes on
each level and the number of comparisons for that level. This gives an average
case of analysis of

We can use Equation 1.19 to simplify this equation to

Because N = 2k � 1, 2k = N + 1.

As N gets larger, k/N becomes zero, giving
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Now, let’s consider the second situation where we include the possibility
that the target is not in the list of elements. We still have N possibilities for the
target being in the list, but now we have to add in the N + 1 possibilities that
the target is not in the list. There are N + 1 of these possibilities because the
target can be smaller than the element in location 1, larger than the element in
location 1 but smaller than the one in location 2, larger than the element in
location 2 but smaller than the one in location 3, and so on, through the possi-
bility that the target is larger than the element in location N. In each of these
cases, it takes k comparisons to learn that the target is not in the list. There are
now 2 * N + 1 possibilities to include in our calculation. Putting all of this
together, we get

By a simiar series of substitutions as above, we get

This is just a little larger than the average case for when the key is known to be
in the list. So, if the list has 1,048,575 (220 � 1) elements, the first average case
is about 19 and the second is 19.5.
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2.2.3

1. Draw the decision tree for the binary search algorithm for a list of 12 ele-
ments. For the internal nodes of your decision tree, the node should be
labeled with the element checked, the left child should represent what hap-
pens if the target is less than the element checked, and the right child should
represent what happens if the target is greater than the element checked.

2. The analysis of binary search in this chapter assumed that the size was always
2k � 1 for some value of k. For this question, we will explore other possibil-
ities for the size:

a. What is the worst case when N ≠ 2k � 1?
b. What is the average case when N ≠ 2k � 1, assuming that the key is in

the list? Hint: Think about what this change in size means for the bottom
of the search tree.

c. What is the average case when N ≠ 2k � 1, if the key might not be in the
list? Hint: Think about what this change in size means for the bottom of
the search tree.

3. When the collection of data is large, there can still be a large number of
comparisons needed to do a binary search. For example, a telephone direc-
tory of a large city could easily take about 25 comparisons per search. To
improve this, multiway searching uses a general tree, which is a tree data
structure that can have more than two children. In multiway searching, we
store a few keys in each tree node, and the children represent the subtrees
containing (a) the entries smaller than all the keys, (b) the entries larger than
the first key but smaller than the rest, (c) the entries larger than the first two
keys but smaller than the rest, and so on. The following figure shows an
example of a general tree that can be used for multiway searching. In the
root of this tree we have the keys of 6 and 10, so if we are looking for a key
less than 6, we would take the left branch. If we are looking for a key
between 6 and 10, we would take the middle branch, and for a key larger
than 10, we would take the right branch.

2.2.3 EXERCISES■
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Write an algorithm to do a multiway search. For your answer, you can
assume that each node has two arrays called Keys[3] and Links[4] and
that you have a function called Compare(keyList, searchKey) that
returns a positive integer indicating the key that matches or a negative inte-
ger indicating the link to take. (For example, Compare([2, 6, 10], 6)
would return a value of 2 because the second key matches, and Com-
pare([2, 6, 10], 7) would return a value of –3 because 7 would be
found on the third link associated with the gap between the second and
third key value.) When you have finished your algorithm, do a worst- and
average-case analysis assuming that the tree is complete and each internal
node has four children. (You might want to draw a sample tree.) What
would be the impact on your two analyses if the tree was not complete or if
some internal nodes had less than four children?

2.3 SELECTION

There are situations where we are interested in finding an element in a list that
has a particular property, instead of a particular value. In other words, instead
of finding a record with a particular key value, we may be interested in the
record with the largest, smallest, or median value. More generally, we want to
find the K th largest value in the list.

One way to accomplish this would be to sort the list in decreasing order,
and then the K th largest value will be in position K. This is a lot more work
than we need to do, because we don’t really care about the values that are
smaller than the one we want. A related technique to this would be to find the
largest value and then move it to the last location in the list. If we again look
for the largest value in the list, ignoring the value we already found, we get the
second largest value, which can be moved to the second last location in the list.
If we continue this process, we will find the K th largest value on the K th pass.
This gives the algorithm

FindKthLargest( list, N, K )

list  the values to look through

N     the size of the list

K     the element to select

for i = 1 to K do

largest = list[1]

largestLocation = 1
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for j = 2 to N-(i-1) do

if list[j] > largest then

largest = list[j]

largestLocation = j

end if

end for

Swap( list[N-(i-1)], list[largestLocation] )

end for

return largest

What is the complexity of this process? On each pass, we initialize largest
to the first element of the list, and then we compare largest to every other
element. On the first pass, we do N � 1 comparisons. On the second pass, we
do N � 2 comparisons. On the K th pass, we do N � K comparisons. So, to
find the K th largest element, we will do

comparisons, which is O(K * N). You should also see that if K is greater than
N/2, it would be faster to look for the N � K th smallest value. This process
will be reasonably efficient for values of K that are close to either end of the
list, but there is a more efficient way to accomplish this process for values of K
in the middle of the list.

Because we only want the K th largest value, we don’t really need to know
the exact position for the values that are the largest through the K � 1st largest;
we only need to know that they are larger. If we choose an element of the list,
we can partition the list into two parts—those values that are greater than the
one chosen and those that are less than it. If we rearrange the list so that all of
the larger values are after the chosen value and all of the smaller ones are before
it, the chosen value will wind up in some position P in our list, meaning it is
the P th largest value. To do this partitioning, we will need to compare this value
with all of the others, doing N � 1 comparisons. If we are lucky and P = K,
we are done. If K is less than P, we want a larger value and will repeat this pro-
cess on the second partition. If K is greater than P, we want a smaller value and
will use the first partition, but we need to reduce K by the number of values
we have eliminated in the larger partition. This gives the following recursive
algorithm:

KthLargestRecursive( list, start, end, K )

list  the list of values

N i–
i=1

K

∑ N K
K K 1–( )*

2
----------------------------–*=
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start  the index of the first value to consider

end    the value of the last value to consider

K      the element of this list that we want.

if start < end then

   Partition( list, start, end, middle )

   if middle = K then

      return list[middle]

   else

      if K < middle then

         return KthLargestRecursive( list, middle+1, end, K )

      else

         return KthLargestRecursive( list, start, middle-1, K-middle )

      end if

   end if

end if

If we assume that on average the partition process will divide the list into two
roughly equal halves, we will do about N + N/2 + N/4 + N/8 + ... + 1 com-
parisons, which is about 2N comparisons. So, this process is linear and indepen-
dent of K. We will see the partitioning process in more detail when we discuss
quicksort in Chapter 3 and will do a more detailed analysis of it at that time.

2.3.1

1. Given five distinct values, the median would be the value in the third posi-
tion if they were sorted. We will see in Chapter 3 that sorting a list of five
elements would take seven comparisons. Prove that the median can be
found more efficiently, namely, with no more than six comparisons.

2. The algorithms in this section can also be used to find the median of a list
by looking for the N/2 largest element. Show that the worst case for this
choice will take O(N 2) time.

2.4 PROGRAMMING EXERCISE

1. Create a function based on sequential search and a program that will test it.
Use method 3 of Appendix C to generate a list of random numbers in the
range of 1 to N that you can use for your search, where N could be any
number between 100 and 1000. Your program should have a global counter,
which should be initialized to zero at the beginning of the program and

2.3.1 EXERCISES■
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should be incremented just before the key comparison in your sequential
search routine. Your main program should then call sequential search for
each number between 1 and N. After doing this, the total count of compar-
isons divided by N will be the average number of comparisons done by
sequential search.

2. Repeat Step 1 for binary search, using an ordered list.
3. Write a report that compares your output from parts 1 and 2 with the results

you would predict based on the analysis in this chapter.



C H A P T E R 3
Sorting Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Read and create iterative and recursive algorithms
• Use summations and probabilities presented in Chapter 1
• Solve recurrence relations
• Describe growth rates and order

GOALS

At the end of this chapter, you should be able to

• Explain insertion sort and its analysis
• Explain bubble sort and its analysis
• Explain shellsort and its analysis
• Explain radix sort and its analysis
• Trace the heapsort and FixHeap algorithms
• Explain the analysis of heapsort
• Explain merge sort and its analysis
• Explain quicksort and its analysis
• Explain external polyphase merge sort and its analysis

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
be sure you understand them. It will be especially helpful to trace insertion
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sort, bubble sort, shellsort, heapsort, merge sort, and quicksort using the lists
[6, 2, 4, 7, 1, 3, 8, 5] and [15, 4, 10, 8, 6, 9, 16, 1, 7, 3, 11, 14, 2, 5, 12, 13].
You should trace radix sort using three buckets for 1, 2, and 3, and the list
[1113, 2231, 3232, 1211, 3133, 2123, 2321, 1312, 3223, 2332, 1121, 3312].
Additionally, you should try to answer any questions before reading on. A hint
or the answer is in the sentences following the question.

n this chapter, we will consider another class of fundamental algorithms
from computing: sorting algorithms. Because of the significant time sav-
ings of binary search over sequential search, software designers will fre-

quently choose to keep information sorted so that searches can be done by
binary or other nonsequential methods.

As in Chapter 2, we will work with a list of records, which have a special
field called the key. All of our sort algorithms will sort the list into increasing
order based on this key value. We will use standard comparisons with these
keys with the full knowledge that when they are used, we might be comparing
integers, strings, or more complex key types. For the sake of simplicity, we will
assume that each of the values in the list is distinct, because the presence of
duplicates will not significantly change any of the analyses that we do in this
chapter. The reader should recognize that changing the comparison of keys
would result in a different ordering. For example, if the less than and greater
than comparisons are swapped, the list will be sorted in decreasing order.

The eight sorting algorithms discussed in this chapter are only a sampling of
the possible sorts, but they exhibit a wide range of behaviors. The first, inser-
tion sort, accomplishes sorting by inserting new elements into the correct
place in a list that is already sorted. Bubble sort compares pairs of elements,
swapping those that are out of order, until the list is sorted. Shellsort is a multi-
pass sort that breaks the list into sublists that are sorted, and on each successive
pass the number of sublists is decreased as their size is increased. Radix sort is a
multipass sort that separates the list into buckets, each pass using a different part
of the key. Heapsort builds a binary tree with list elements so that each node
has a value larger than its children. This places the largest element at the root so
that when it is removed and the heap is fixed, the next largest element moves
to the root. This is repeated until all of the elements are back in the now-sorted
list. Merge sort starts with two sorted lists and creates one sorted list by merg-

I
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ing these two. Quicksort is a recursive sort that picks a pivot element from the
list and then subdivides the list into two parts that contain the elements that are
smaller and larger than the pivot.

The last sort considered is different in that it works with lists that are so large
that they cannot be reasonably held in a computer’s memory all at once. This
external sort works with groups of records in sequential files and is designed to
limit the file accesses, which would be an operation much slower than a com-
parison. The reader should note that even with expanded memory in today’s
computers, holding all of a database’s records in memory at once may be possi-
ble but may incur delays due to virtual memory swapping. In this case, even
though writing to disk files is not part of the algorithm, the reliance on virtual
memory incurs the same cost because swaps are written to temporary disk files
by the operating system.

3.1 INSERTION SORT

The basic idea of insertion sort is that if you have a list that is sorted and need
to add a new element, the most efficient process is to put that new element
into the correct position instead of adding it anywhere and then resorting the
entire list. Insertion sort accomplishes its task by considering that the first ele-
ment of any list is always a sorted list of size 1. We can create a two-element
sorted list by correctly inserting the second element of the list into the one-
element list containing the first element. We can now insert the third element
of the list into the two-element sorted list. This process is repeated until all of
the elements have been put into the expanding sorted portion of the list.

The following algorithm carries out this process:

InsertionSort( list, N )

list  the elements to be put into order

N     the number of elements in the list

for i = 2 to N do

   newElement = list[ i ]

   location = i - 1

   while (location ≥ 1) and (list[ location ] > newElement) do
      // move any larger elements out of the way

      list[ location + 1] = list[ location ]

      location = location - 1
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   end while

   list[ location + 1 ] = newElement

end for

This algorithm copies the next value to be inserted into newElement. It then
makes space for this new element by moving all elements that are larger one
position over in the array. This is done by the while loop. The last copy of the
loop moved the element in position location + 1 to position location + 2.
This means that position location + 1 is available for the “new” element.

■ 3.1.1 Worst-Case Analysis

When we look at the inner while loop, we see that the most work this loop
will do is if the new element to be added is smaller than all of the elements
already in the sorted part of the list. In this situation, the loop will stop when
location becomes 0. So, the most work the entire algorithm will do is in the
case where every new element is added to the front of the list. For this to hap-
pen, the list must be in decreasing order when we start. This is a worst-case
input, but there are others.

Let’s look at how this input set will be handled. The first element to be
inserted is the one in the second location of the list. This is compared to one
other element at most. The second element inserted (that’s at location 3) will
be compared to the two previous elements, and the third element inserted will
be compared to the three previous elements. In general, the ith element
inserted will be compared to i previous elements. This process is repeated for N
� 1 elements. This means that the worst-case complexity for insertion sort is
given by

■ 3.1.2 Average-Case Analysis

Average-case analysis will be a two-step process. We first need to figure out the
average number of comparisons needed to move one element into place. We
can then determine the overall average number of operations by using the first
step result for all of the other elements.

We begin by determining on average how many comparisons it takes to
move the ith element into position. We said that adding the ith element to the
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sorted part of the list does at most i comparisons. It should be obvious that we
do at least one comparison even if the element stays in its current position.

How many positions is it possible to move the ith element into? Let’s look at
small cases and see if we can generalize from there. There are two possible posi-
tions for the first element to be added—either in location 1 or location 2.
There are three possible positions for the second element to be added—either
in locations 1, 2, or 3. It appears that there are i + 1 possible positions for the
ith element. We consider each of these equally likely.

How many comparisons does it take to get to each of these i + 1 possible
positions? Again we look at small cases and generalize from there. If we are
adding the fourth element, and it goes into location 5, the first comparison
will fail. If it goes into location 4, the first comparison will succeed, but the
second will fail. If it goes into location 3, the first and second comparisons will
succeed, but the third will fail. If it goes into location 2, the first, second, and
third comparisons will succeed, but the fourth will fail. If it goes into location
1, the first, second, third, and fourth comparisons will succeed, and there will
be no further comparisons because location will have become zero. This seems
to imply that for the ith element, it will do 1, 2, 3, . . ., i comparisons for loca-
tions i + 1, i, i � 1, . . ., 2, and it will do i comparisons for location 1. The
average number of comparisons to insert the ith element is given by the for-
mula

This is just the average amount of work to insert the i th element. This now
needs to be summed up for each of the 1 through N � 1 elements that gets
“added” to the list. The final average case result is given by the formula
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By two applications of Equation 1.11, we get

Notice that by using Equations 1.9 and 1.10, we have

By applications of Equations 1.15, 1.14, 1.20, and the last formula, we get

3.1.3

1. Show the results of each pass of InsertionSort applied to the list [7, 3, 9,
4, 2, 5, 6, 1, 8].

2. Show the results of each pass of InsertionSort applied to the list [3, 5, 2,
9, 8, 1, 6, 4, 7].

3. Section 3.1.1 showed that a list in decreasing order leads to the worst case.
This means that the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] would give the worst
case of 45 comparisons. Find one other list of these 10 elements that will
give the worst-case behavior. What more can you say generally about the
class of input that generates the worst case for this algorithm.

4. When you look closely at the InsertionSort algorithm, you will notice
that the insertion of a new element basically does a sequential search for the
new location. We saw in Chapter 2 that binary searches are much faster.
Consider a variation on insertion sort that does a binary search to find the
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correct position to insert this new element. You should notice that for
unique keys the standard binary search would always return a failure. So for
this problem, assume a revised binary search that returns the location at
which this key belongs.

a. What is the worst-case analysis of this new insertion sort?
b. What is the average-case analysis of this new insertion sort?

3.2 BUBBLE SORT

The second sort we will consider is bubble sort. The general idea is to allow
smaller values to move toward the top of the list while larger values move to
the bottom. There are a number of varieties of bubble sort. This section will
deal with one of these, and the others will be left as exercises.

The bubble sort algorithm makes a number of passes through the list of ele-
ments. On each pass it compares adjacent element values. If they are out of
order, they are swapped. We start each of the passes at the beginning of the list
and compare the elements in locations 1 and 2, then the elements in locations
2 and 3, then 3 and 4, and so on, swapping those that are out of order. On the
first pass, once the algorithm reaches the largest element, it will be swapped
with all of the remaining elements, moving it to the end of the list after the
first pass. The second pass, therefore, no longer needs to look at the last ele-
ment in the list. The second pass will move the second largest element down
the list until it is in the second to last location. The process continues with each
additional pass moving one more of the larger values down in the list. During
all of this, the smaller values are also moving toward the front of the list. If on
any pass there are no swaps, all of the elements are now in order and the algo-
rithm can stop. It should be noted that each pass has the potential of moving a
number of the elements closer to their final position, even though only the
largest element on that pass is guaranteed to wind up in its final location.

The following algorithm carries out this bubble sort version:

BubbleSort( list, N )

list  the elements to be put into order

N     the number of elements in the list

numberOfPairs = N

swappedElements = true
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while swappedElements do

   numberOfPairs = numberOfPairs - 1

   swappedElements = false

   for i = 1 to numberOfPairs do

      if list[ i ] > list[ i + 1 ] then

         Swap( list[i], list[i + 1] )

         swappedElements = true

      end if

   end for

end while

■ 3.2.1 Best-Case Analysis

We look quickly at the best case because the swappedElements flag might
give the wrong impression of how this algorithm functions. Consider what
will cause this algorithm to do the least amount of work. On the first pass, the
for loop must fully execute, and so this algorithm does at least N � 1 com-
parisons. There are two possibilities that should be considered: There is at least
one swap or there are no swaps. In the first case, the swap will cause
swappedElements to be set to true, which will cause the while loop to
execute a second time, which will do another N � 2 comparisons. In the sec-
ond case, because there are no swaps, swappedElements will still be false and
the algorithm will end.

So the best case is N � 1 comparisons, and this occurs when there are no
swaps on the first pass. This means that the input data associated with the best
case would be when the data values are already in order.

■ 3.2.2 Worst-Case Analysis

If the best case is when the input data starts in order, we might want to see if
having the input data in reverse order will lead us to the worst case. If the larg-
est value is first, it will be swapped with every other element down the list
until it is in the last position. At the start of the first pass, the second largest ele-
ment was in the second position, but you should see that the first comparison
on the first pass swapped it into the first position of the list. At the start of the
second pass, the second largest element is now in the first position, and it will
be swapped with every other element in the list until it is in the second to last
position. This gets repeated for every other element, and so the algorithm has
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to execute the for loop N � 1 times. This indicates that an input data set that
is in the reverse order does lead to the worst case.1

How many comparisons are done in this worst case? We have said that the
first pass will do N � 1 comparisons of adjacent values, and the second pass
will do N � 2 comparisons. Further examination will show that each succes-
sive pass reduces the number of comparisons by 1. This means that the worst
case is given by the formula

■ 3.2.3 Average-Case Analysis

We have already said that in the worst case, there would be N � 1 repetitions
of the inner for loop. For the average case, we will assume that it is equally
likely that on any of these passes there will be no swaps done. We need to
know how many comparisons are done in each of these possibilities. If we stop
after one pass, we have done N � 1 comparisons. If we stop after two passes,
we have done N � 1 + N � 2 comparisons. For now, let’s say that C(i ) will
calculate how many comparisons are done on the first i passes. Because the
algorithm stops when there are no swaps done, the average case is found by
looking at all of the places bubble sort can stop. This gives the equation

1 This case does the largest number of comparisons and swaps, but because we are only 
interested in counting the number of comparisons, there are other data sets that will 
lead us to this worst case. The reader should be able to show that any list of elements 
with the smallest element in the last position, for example, will also produce this worst-
case result. Can you find any others?
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where, again, C(i) is the number of comparisons done in the first i passes of the
for loop before we stop. So, how many comparisons is this? C(i ) is given by
the equation

Substituting this back into the first equation gives the following

Because N is a constant relative to i, by using Equations 1.11 and 1.14 we can
get

Again using Equation 1.11 and some basic algebra, we get

Now, we apply Equations 1.15 and 1.16 to get
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3.2.4

1. Show the results of each pass of BubbleSort applied to the list [7, 3, 9, 4,
2, 5, 6, 1, 8].

2. Show the results of each pass of BubbleSort applied to the list [3, 5, 2, 9,
8, 1, 6, 4, 7].

3. A different version of bubble sort keeps track of where the last exchange
occurred, and on the next pass, it will not go past this point. If the last
change was made in the swap of locations i and i + 1, the next pass will not
look at any elements past location i.

a. Write this new version of bubble sort.
b. Write a short paragraph that explains exactly why this new version of

bubble sort will work.
c. Does this new version of bubble sort change the worst-case analysis? Give

an analysis or justification for your answer.
d. This new version of bubble sort does change the average-case analysis.

Give a detailed explanation of what is involved in calculating this new
average-case analysis.

4. Another version of bubble sort alternates passes so that the odd passes are
like the original, but the even passes move from the bottom of the array to
the top. On the odd passes the larger elements move toward the bottom,
and on the even passes the smaller elements move toward the top.

a. Write this new version of bubble sort.
b. Write a short paragraph that explains exactly why this new version of

bubble sort will work.
c. Does this new version of bubble sort change the worst-case analysis? Give

an analysis or justification for your answer.
d. This new version of bubble sort does change the average-case analysis.

Give a detailed explanation of what is involved in calculating this new
average-case analysis.

5. A third version of bubble sort combines the ideas of Questions 1 and 2. This
bubble sort moves back and forth through the array but adjusts its upper and
lower range of the sort based on where the last changes were made.

a. Write this third version of bubble sort.

3.2.4 EXERCISES■
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b. Write a short paragraph that explains exactly why this third version of
bubble sort will work.

c. Does this third version of bubble sort change the worst-case analysis?
Give an analysis or justification for your answer.

d. This third version of bubble sort does change the average-case analysis.
Give a detailed explanation of what is involved in calculating this new
average-case analysis.

6. Develop a formal argument that proves that the largest element must be in
the correct place after the first pass of the BubbleSort loop.

7. Develop a formal argument that proves that if there are no swaps done on
any pass of BubbleSort, the list must now be in the correct order.

3.3 SHELLSORT

Shellsort was developed by Donald L. Shell. It is unusual in that it begins by
considering the full list of values as a set of interleaved sublists. On the first
pass, it may deal with sublists that are just pairs of elements. On the second
pass, it could deal with groups of four elements each. The process repeats,
increasing the number of elements per sublist and, therefore, decreasing the
number of sublists. Figure 3.1 shows the sublists that can be used in the process
of sorting a list of 16 elements.

In Fig. 3.1(a), we see that there are eight sublists of two values each, which
match up the first and ninth elements, the second and tenth elements, and so
on. In Fig. 3.1(b), we see that there are now four sublists of four values each.
The first sublist now has the elements in the first, fifth, ninth, and thirteenth
locations. The second sublist has the elements in the second, sixth, tenth, and
fourteenth locations. In Fig. 3.1(c), we see that there are two sublists, which
have the odd and even location elements in them. In the last pass, shown in
Fig. 3.1(d), we are back to one list.

The sorting of the sublists is done with just an insertion sort based on the
one in Section 3.1. This makes the algorithm

Shellsort( list, N )

list  the elements to be put into order

N     the number of elements in the list
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passes = lg N
while (passes ≥ 1) do
   increment = 2passes - 1

   for start = 1 to increment do

      InsertionSort( list, N, start, increment )

   end for

   passes = passes - 1

end while

The variable increment gives the spacing between the elements of the
sublist. (In Fig. 3.1, the increments used are 8, 4, 2, and 1.) In the algorithm,
we start with an increment that is 1 less than the largest power of 2 that is
smaller than the size of the list. So, if our list has 1000 elements, our first incre-
ment will be 511. The increment also indicates the number of sublists that we

16 7 10 1 13 11 14 12 153 8 4 2 6 5 9

14 1 11 16 10 12 13 154 2 5 3 8 7 6 9

(a) Pass 1

(b) Pass 2

(c) Pass 3

(d) Pass 4

5 4 2 1 6 7 3 8 14 11 9 12 16 13 10 15

2 1 3 4 5 7 6 8 9 11 10 12 14 13 16 15

■ FIGURE 3.1
The four passes of

a shellsort
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have. If our first sublist has the elements in locations 1 and 1 + increment,
the last sublist has to start in location increment. The last time the while
loop is executed, passes will have a value of 1, which will make increment 1
for the last InsertionSort.

The analysis of this algorithm depends on the analysis that we did of
InsertionSort. Before we begin the analysis of Shellsort, recall that in
Section 3.1, we saw that for a list with N elements the worst case for insertion
sort was  and the average case for insertion sort was .

■ 3.3.1 Algorithm Analysis

In this analysis, we will first determine the number of times we call the
InsertionSort function and the number of elements in the lists for those
calls. Let’s look at the specific case when the list size is 15. On the first pass,
increment is 7 and so we make seven calls with lists of size 2. On the second
pass, increment is 3, and so we make three calls with lists of size 5. On the
third pass and last pass, increment is 1, and so we make one call with a list of
size 15. From the above formulas, we see that for a list of size 2, Insertion-
Sort will do one comparison in the worst case. For a list of size 5, it will do
10 comparisons in the worst case. For a list of size 15, it will do 105 compari-
sons in the worst case. If we add all of this up together, we find that we get a
total of 142 comparisons (7 * 1 + 3 * 10 + 1 * 105). But is this a good esti-
mate?

If you look back at the analysis of Section 3.1.1, you will see that we said
the worst case for insertion sort occurs when each element to be added has to
be put at the front of the list. On the last pass of our Shellsort algorithm,
we know that this worst case cannot possibly occur because of the sorting that
occurred in the earlier passes. Maybe a different approach will help us figure
out how much work is left.

When analyzing sorting algorithms, we will sometimes consider the number
of inversions in a list. An inversion is a pair of elements in the list that are out of
order. For example, the list [3, 2, 4, 1] has four inversions, namely, (3, 2), (3,
1), (2, 1), and (4, 1). You should see that a list in reverse order has the worst
number of inversions possible: .

One way to look at the work a sorting algorithm does is to count the num-
ber inversions between the current permutation of the elements and a sorted

N 2 N–( ) 2⁄ N 2 4⁄

N 2 N–( ) 2⁄
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list. Each swap of elements will remove one or more of these inversions. For
example, when bubble sort does a comparison and finds two adjacent elements
out of order, it switches them, removing just one inversion. The same is true
for insertion sort because the movement of each larger element up one loca-
tion in the list is the removal of one inversion between it and the element we
are inserting. So, in bubble and insertion sort (O(N 2) sorts) each comparison
can result in the removal of exactly one inversion.

Because shellsort relies on insertion sort, it would seem that its analysis must
be the same, but when you consider that shellsort looks at sublists that are
interleaved with each other, one comparison can cause a swap that removes
more than just one inversion. On the first pass of Fig. 3.1, we compared 16
and 14, and because they were out of order they were swapped. By moving 16
from the first location to the ninth we removed 7 inversions of 16 with the val-
ues in locations 2 through 8 of the list. The analysis of shellsort gets compli-
cated because that same swap moved 14 from the ninth location to the first and
created seven new inversions, so that comparison didn’t help at all. If you look
at the swap of 7 and 4, you see the same thing. But overall, there are improve-
ments. On the first pass, we did eight comparisons and removed 36 inversions.
On the second pass, we did 16 comparisons and removed 20 inversions. On
the third pass, we did 19 comparisons and removed 24 inversions. And on the
last pass, we did 19 comparisons and removed the last 10 inversions. This is a
total of 62 comparisons. If we just considered the average cases for the inser-
tion sort calls that we did, you would still calculate 152 comparisons.

A complete analysis of the shellsort algorithm is very complex and beyond
the scope of this book. With the sequence of increment values that we chose, it
has been shown that shellsort in the worst case is O(N 3/2). A detailed analysis
of shellsort and the impact of the increment sequence discussed in the next
section are presented in the third volume of Donald Knuth’s The Art of Com-
puter Programming (Addison-Wesley, 1998).

■ 3.3.2 The Effect of the Increment

The choice of the increment sequence can have a major effect on the order of
shellsort, and attempts at finding an optimal increment sequence have not be
successful. A number of different options have been considered, and their
results are presented here.
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If there are just two passes, it has been shown that using an increment of
about  for the first pass and 1 for the second pass produces a sort of
O(N 5/3).

Another set of increments would be hj = (3 j � 1) / 2 for all h values less
than N. These values also satisfy the relationship hj+1 = 3hj + 1 and h1 = 1, so
once the largest value of h is identified, succeeding increments can be calcu-
lated by hj = (hj+1 – 1) / 3. Using this sequence of increments results in a sort of
O(N 3/2).

Another version will calculate all of the possible values of 2i3 j (for any inte-
gers i ≥ 0 and j ≥ 0) that are less than the size of the list and use those values in
decreasing order. For example, if N is 40, we would have the following
sequence of increments: 36 (2232), 32 (2530), 27 (2033), 24 (2331), 18 (2132), 16
(2430), 12 (2231), 9 (2032), 8 (2330), 6 (2131), 4 (2230), 3 (2031), 2 (2130), and 1
(2030). By using a sequence of values that follows this pattern, shellsort’s order
can be reduced to O(N(lg N)2). It should be noted that the large number of
passes introduces significant overhead, so this doesn’t become a practical
sequence unless the size of the list is very large.

Shellsort is unique in that its general algorithm stays the same, but the
choices of its parameters can have a dramatic effect on its order.

3.3.3

1. Show the results of each of the passes of Shellsort using the increments
of 7, 5, 3, and 1 with the initial list of values [16, 15, 14, 13, 12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1]. How many comparisons are done?

2. Show the results of each of the passes of Shellsort using the increments
of 8, 4, 2, and 1 with the initial list of values [16, 15, 14, 13, 12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1]. How many comparisons are done?

3. Show the results of each pass of Shellsort using increments of 5, 2, and 1
applied to the list [7, 3, 9, 4, 2, 5, 6, 1, 8]. How many comparisons are
done?

4. Show the results of each pass of Shellsort using increments of 5, 2, and 1
applied to the list [3, 5, 2, 9, 8, 1, 6, 4, 7]. How many comparisons are
done?

5. Write the new version of InsertionSort used in this section.
6. This section looked at sorting as the removal of inversions in a list. For a list

of N elements, what is the formula for the largest number of inversions that

1.72 * N3

3.3.3 EXERCISES■
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can be removed by the exchange of two nonadjacent elements? Give an
example for a list with 10 elements.

3.4 RADIX SORT

Radix sort uses key values to do the sort without actually comparing them to
each other. In this sort, we will create a set of “buckets” and will distribute the
entries into the buckets based on their key values. After collecting the values
and repeating this process for successive parts of the key, we can create a sorted
list. The distribution and collection has to be done very carefully for this to
work.

A process similar to this was used to sort cards manually. In some libraries,
before the days of computerized checkouts, when a book was taken out, a pic-
ture of it and a due date card was taken. The due date cards were numbered
and had a series of holes punched along one side. Some of these holes were cut
out to the side, creating notches along the edge that represented the number of
the card. As books were returned, the due date cards were removed and just
placed on a stack. A long needle was then placed through the first hole of the
stack of cards and it was lifted. The cards with a notch would stay on the table
and those without would remain on the needle. The two piles created were
recombined by placing the cards on the needle behind those with the notches.
The needle would then be moved to the next hole and the process repeated. As
long as the process was done to the holes in order and the arrangement of the
cards was never changed except for when the needle was raised, after process-
ing the final hole, the cards would be in numerical order.

This manual process would separate the cards by their least significant digit
at the beginning and by their most significant digit at the end. A computerized
version of this process to sort a set of numeric keys would use 10 buckets and
have the following algorithm:

RadixSort( list, N )

list  the elements to be put into order

N     the number of elements in the list

shift = 1 

for loop = 1 to keySize do

   for entry = 1 to N do
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      bucketNumber = (list[entry].key / shift) mod 10

      Append( bucket[bucketNumber], list[entry] )

   end for entry

   list = CombineBuckets()

   shift = shift * 10
end for loop

We’ll begin by reviewing this algorithm. The calculation of bucketNumber
will pull a single digit out of a key. The division by shift will cause the key
value to be moved to the right some number of digits, and then the mod will
eliminate all but the units digit of the resulting number. On the first pass with
a shift value of 1, the division will do nothing, and the mod result will return
just the units digit of the key. On the second pass, shift will now be 10, so
the integer division and then the mod will return just the tens digit. On each
succeeding pass, the next digit of the key will be used.

The CombineBuckets function will append the buckets back into one list
starting with bucket[0] through bucket[9]. This recombined list is the
starting point for the next pass. Because the buckets are recombined in order
and because the numbers are added to the end of each bucket list, the keys will
eventually be sorted. Figure 3.2 shows the three passes that would be done for
keys with three digits. To make this example simpler, all of the keys just use the
digits 0 through 3, so only four buckets are needed.

In looking at Fig. 3.2(c), you should see that if the buckets are again com-
bined in order, the list will now be sorted.

■ 3.4.1 Analysis

An analysis of radix sort requires that we consider issues beyond just number of
operations, because in this case they are significant. How this particular algo-
rithm is implemented has an impact on its overall efficiency. We consider both
the time and space efficiency of this algorithm.

Each key is looked at once for each digit (or letter if the keys are alphabetic)
of the longest key. So, if the longest key has M digits and there are N keys,
radix sort has order O(M * N). But if we look at these two values, the size of
the keys will be relatively small when compared to the number of keys. For
example, if we have six-digit keys, we could have a million different records.
Recalling the discussion of Section 1.4 on rates of growth, we see that the size
of the keys is not significant, and this algorithm is of linear complexity, O(N).



3 . 4 R A D I X  S O R T 75

■ FIGURE 3.2
The three passes

of a radix sort

Original list

(a) Pass 1, Units Digit

Pass 1 list

(b) Pass 2, Tens Digit

Pass 2 list

(c) Pass 3, Hundreds Digit

310 213 023 130 013 301 222 032 201 111 323 002 330 102 231 120

Bucket Number Contents
0 310 130 330 120
1 301 201 111 231
2 222 032 002 102
3 213 023 013 323

310 130 330 120 301 201 111 231 222 032 002 102 213 023 013 323

Bucket Number Contents
0 301 201 002 102
1 310 111 213 013
2 120 222 023 323
3 130 330 231 032

301 201 002 102 310 111 213 013 120 222 023 323 130 330 231 032

Bucket Number Contents
0 002 013 023 032
1 102 111 120 130
2 201 213 222 231
3 301 310 323 330
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This is very efficient, and so you might wonder why any of the other sorting
algorithms are even used.

The issue in this case becomes space efficiency. In sorts we’ve seen, we need
extra space for at most one additional record as we are swapping. In this case,
the space needs are more significant. If we use arrays for the buckets, these will
need to be extremely large arrays. In fact, they will need to be the size of the
original list, because we can’t assume that the keys will be uniformly distrib-
uted among the buckets as in Fig. 3.2. The chance that the keys will be distrib-
uted equally among the buckets is the same as the chance that they will all be
in the same bucket. Both can happen. Using arrays means that we will need
10N additional space if the keys are numeric, 26N additional space if the keys
are alphabetic, and even more if the keys are alphanumeric or if case matters in
alphabetic characters. If we use arrays, we also have the time to copy the
records to the buckets in the distribution step and from the buckets back into
the original list in the coalescing step. This means each record will be “moved”
2M times. If the records are large, this can take a substantial amount of time.

An alternative is to use a linked list structure for the records. Now, putting a
record into a bucket just requires changing a link, and coalescing the buckets
again just requires changing links. There is still significant space overhead,
because most implementations of linked lists will require 2 to 4 bytes per link,
making the total additional space needs 2N to 4N bytes.

3.4.2

1. Use the RadixSort algorithm to sort the list [1405, 975, 23, 9803, 4835,
2082, 7368, 573, 804, 746, 4703, 1421, 4273, 1208, 521, 2050]. Show the
buckets for each pass and the list after each bucket coalescing step.

2. Use the RadixSort algorithm to sort the list [117, 383, 4929, 144, 462,
1365, 9726, 241, 1498, 82, 1234, 8427, 237, 2349, 127, 462]. Show the
buckets for each pass and the list after each bucket coalescing step.

3. Another way of looking at radix sort is to consider the key as just a bit pat-
tern. So, if the keys are 4-byte integers, they are just considered as 32 bits,
and if the keys are strings of 15 alphanumeric characters (15 bytes), they are
just considered as 120 bits. These bit streams are then subdivided into pieces,
which determine the number of passes and the number of buckets. So, if we
have 120-bit keys, we might do 12 passes with 10-bit pieces, 10 passes with
12-bit pieces, or 5 passes with 24-bit pieces.

3.4.2 EXERCISES■
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a. If the key is a number in the range of 0 to 264, choose two options (one
smaller and one larger) for the number of bits that will be used on each
pass and indicate how many buckets and passes will be needed.

b. If the key is a string of 40 characters, choose two options (one smaller
and one larger) for the number of bits that will be used on each pass and
indicate how many buckets and passes will be needed.

c. Based on your answers to parts (a) and (b), can you give any general rec-
ommendations for how to make the choice of passes and key subdivi-
sions?

3.5 HEAPSORT

Heapsort is based on a special type of binary tree called a heap where for every
subtree the value at the root is larger than all the values in the two children.
There is no ordering relationship between the two children, so sometimes the
left child may be larger, and other times the right will be larger. A heap is con-
structed to be a complete tree where each level of the tree is filled before a new
level is started, and all node positions on a level are filled in order from left to
right.

The general idea of heapsort is to first construct a heap. The largest element
will then be at the root of the tree, because all smaller elements must be in the
children for this to be a heap. The root is then copied into the last location of
the list, and the heap is reconstructed without this largest element. The second
largest element will then be at the root, so we can remove it and reconstruct
the heap. This process is repeated until all of the elements have been moved
back to the list.

The general algorithm for this is

construct the heap

for i = 1 to N do

   copy the root to the list

   fix the heap

end for

There are a number of details that remain for this algorithm to be complete.
We must first determine what is involved in the process of constructing and
fixing the heap, because it will play a role in the efficiency of this algorithm.

We need to be concerned about how this algorithm will be implemented.
The overhead of actually creating a binary tree would be a problem as the size
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of the list grows. We can, however, use the space for the list itself and do this
sort without extra space. We can “build” the list into a heap if we notice that in
a heap each internal node has two children, except for perhaps one node
toward the bottom. If we consider the following mapping, we can use the list
to hold these values. For the node at location i, we will store its two children at
locations 2 * i and 2 * i + 1. Notice that this process produces distinct locations
for each node’s children. We know that node i is a leaf if 2 * i is greater than N,
and we know that node i has only one child if 2 * i is equal to N. Figure 3.3
shows a heap and its list version.

FixHeap

When we take the largest element out of the root and move it to the list, this
leaves the root vacant. We know that the larger of its two children needs to be
moved up, but then that child’s node becomes vacant, and so we look at its two
children, and so on. In this process, we need to maintain the heap as close to a
complete tree as possible. When we fix the heap, we will also pass in the right-
most node from the bottom level, to be inserted back into the heap. This will
remove nodes evenly from the bottom. If we don’t do this and all of the large
values are on one side of the heap, the heap will be unbalanced and the algo-
rithm’s efficiency will go down. This gives us the following algorithm:

FixHeap( list, root, key, bound )

list  the list/heap being sorted

root  the index of the root of the heap

8

11

6

43721

5 9

10

12

Locations 1 2 3 4 5 6 7 8 9 10 11 12

12 10 11 5 9 8 6 1 2 7 3 4■ FIGURE 3.3
A heap and its list

implementation



3 . 5 H E A P S O R T 79

key   the key value that needs to be reinserted in the heap

bound the upper limit (index) on the heap

vacant = root

while 2*vacant ≤ bound do
   largerChild = 2*vacant

   // find the larger of the two children

   if (largerChild < bound) and (list[largerChild+1] > list[largerChild]) then

      largerChild = largerChild + 1

   end if

   // does the key belong above this child?

   if key > list[ largerChild ] then

      // yes, stop looping

      break

   else

      // no, move the larger child up

      list[ vacant ] = list[ largerChild ]

      vacant = largerChild

   end if

end while

list[ vacant ] = key

When you look at this algorithm’s parameters, you might wonder why we
have chosen to pass in the root location. Because this routine is not recursive,
the root of the heap should always be location 1. You will see, however, that
this additional parameter will make it possible for us to use this function to
construct the heap from the bottom up. We pass in the size of the heap, because
as the elements get moved from the heap to the list, the heap shrinks.

Constructing the Heap

The way that we have chosen to implement the FixHeap function means that
we can use this in the initial construction of the heap. Any two values can be
treated as leaves of a vacant node. We do not need to do any work on the sec-
ond half of the list because they are all leaves. We just need to construct small
heaps from the leaves and then combine these until eventually all values are in
the heap. This is accomplished by the following loop:

for i = N/2 down to 1 do

   FixHeap( list, i, list[ i ], N )

end for
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Final Algorithm

Putting these pieces together, and adding the final details needed to move the
elements from the heap to the list, gives the algorithm

for i = N/2 down to 1 do

   FixHeap( list, i, list[ i ], N )

end for

for i = N down to 2 do

   max = list[ 1 ]

   FixHeap( list, 1, list[ i ], i-1 )

   list[ i ] = max

end for

■ 3.5.1 Worst-Case Analysis

We begin by analyzing FixHeap because the rest of the algorithm depends on
it. This algorithm will do, for each level of the heap, a comparison between the
two children and then the larger child and the key. This means that for a heap
of depth D, there will be no more than 2D comparisons. 2

In the heap construction stage, we first call FixHeap for each node on the
second level from the bottom, which means heaps of depth 1. Then it is called
for each node on the third level from the bottom, which means heaps of depth
2. On the last pass at the root level, the heap will have depth lg N. The only
thing we need to consider is how many nodes is FixHeap called for at each
pass. At the root level there is one node, and it has two children at the second
level. The next level down has at most four nodes, and the level after that has
eight. Putting all of this together gives the following formula:

2 The depth is 1 less than the level number. A heap with four levels will have a maxi-
mum depth of 3. The root is at depth 0, its children are at depth 1, their children are at 
depth 2, and so on.

WConstruction N( ) 2 D i–( )2i

i=0

D–1

∑=

WConstruction N( ) 2D 2i 2 i2i

i=0

D–1

∑–
i=0

D–1

∑=
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Using Equations 1.17 and 1.19, we get

We now substitute D = lg N, giving

So the heap construction phase is linear with respect to the number of ele-
ments in the list.

Now we consider the main loop of the algorithm. In this loop, we remove
one element from the heap and then call FixHeap. This gets repeated until
there is only one element left in the heap. On each pass the number of ele-
ments decreases by 1, but how does this change the depth of the heap? We have
already said that the entire heap has a depth of lg N, and so it is easy to see
that if there are K nodes left in the heap, it will have depth of lg K, and the
number of comparisons is twice this number. This means that the worst case
for the loop is

The problem we now have is that there is no standard form for this summation.
Let’s think about how this breaks down. When k is 1, lg k will be 0. When k is
2 and 3, lg k will be 1. When k is 4 through 7, lg k will be 2. When k is 8
through 15, lg k will be 3. We notice that in each of these cases, when the
result is j, there are 2j values that give that result. This will be true for all but the
last level of the heap if it is not complete. On that level, we see that there are N
� 2lg N elements.3 This means that our equation can be represented as:

3 Because there is a floor involved with the exponent of 2, 2lg N < N, except when N 
is an exact power of 2, and then these are equal.

WConstruction N( ) 2D 2D 1–( ) 2 D 2–( )2D 2+[ ]–=

WConstruction N( ) 2D+1D 2D– 2D+1D– 2D+2 4–+=

WConstruction N( ) 2D+2 2D– 4–=

WConstruction N( ) 4 2lg N
* 2 lg N– 4–=

WConstruction N( ) 4N 2 lg N– 4– O N( )= =

Wloop N( ) 2 lg k
k=1

N–1

∑ 2 lg k
k=1

N–1

∑= =

Wloop N( ) 2 k2k

k=1

d–1

∑
 
 
 

d N 2d–( )+ where d lg N= =
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Using Equation 1.19, we get

Now, substituting lg N for d, we get

Now, we have to add together the construction and loop stages to get our final
result. This gives the equation

■ 3.5.2 Average-Case Analysis

To get the average-case analysis for heapsort, we will take a different approach.
Let’s consider the best case, where the values are initially in the array in the
reverse order. You should be able to see that this is automatically a correct heap.
This means that each call to FixHeap in the construction phase will do only
two comparisons to show the values are properly ordered. So, because Fix-
Heap is called for about one-half of the elements and each call does two com-
parisons, the construction stage does about N comparisons, which is the same
order as in the worst case.

Notice that no matter what order the elements are in at the start, after the
construction stage we always have a heap. So, in every case, the for loop will
have to execute the same number of times as in the worst case, because to get
the sorted values we have to take each element out of the heap and then fix the
heap. So, in the best case, heapsort does about N + N lg N comparisons. This
means that the best case is O(N lg N).

For heapsort, the best and worst cases are both O(N lg N). This can only
mean that the average case must also be O(N lg N).

Wloop N( ) 2 d 2–( )2d 2 d N 2d–( )+ +[ ]=

Wloop N( ) d2d+1 2d+2– 4 2d N d2d+1–*+ +=

Wloop N( ) 2d N 2d+2–* 4+=

Wloop N( ) 2 lg N N 2 lg N 2+– 4+=

Wloop N( ) 2 lg N N 4 lg N– 4+ O N lg N( )= =

W N( ) Wconstruction N( ) Wloop N( )+=

W N( ) 4N 2lgN– 4– 2 lg N N 4 lg N– 4+ +=

W N( ) 4N 2 lg N N 3–( )+≈
W N( ) O N lg N( )=
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3.5.3

1. Given the list of elements, [23, 17, 21, 3, 42, 9, 13, 1, 2, 7, 35, 4], what
would be their order after the loop for the heap construction phase exe-
cutes?

2. Given the list of elements, [3, 9, 14, 12, 2, 17, 15, 8, 6, 18, 20, 1], what
would be their order after the loop for the heap construction phase exe-
cutes?

3. We could shorten the second for loop in our heapsort by changing the
ending condition to i ≥ 3. What, if anything, would need to be added after
this for loop to assure that the final list is sorted? Would this change reduce
the number of comparisons (give a detailed reason for your answer)?

4. Prove that a list in reverse order is a heap.

3.6 MERGE SORT

Merge sort is the first of our recursive sort algorithms. It is based on the idea
that merging two sorted lists can be done quickly. Because a list with just one
element is sorted, merge sort will break a list down into one-element pieces
and then sort as it merges those pieces back together. All of the work for this
algorithm, therefore, occurs in the merging of the two lists.

Merge sort can be written as a recursive algorithm that does its work on the
way up in the recursive process. In looking at the algorithm that follows, you
will notice that it breaks the list in half as long as first is less than last. When we
get to a point where first and last are equal, we have a list of one element,
which is inherently sorted. When we return from the two calls to MergeSort
that have lists of size 1, we then call MergeLists to put those together to cre-
ate a sorted list of size 2. At the next level up, we will have two lists of size 2
that get merged into one sorted list of size 4. This process continues until we
get to the top call, which merges the two sorted halves of the list back into one
sorted list. We see that MergeSort breaks a list in halves on the way down in
the recursive process and then puts the sorted halves together on the way back
up. The algorithm to accomplish this is

MergeSort( list, first, last )

list   the elements to be put into order

first  the index of the first element in the part of list to sort

3.5.3 EXERCISES■
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last   the index of the last element in the part of list to sort

if first < last then

   middle = ( first + last ) / 2

   MergeSort( list, first, middle )

   MergeSort( list, middle + 1, last )

   MergeLists( list, first, middle, middle + 1, last )

end if

It should be obvious that the work is all being done in the function Merge-
Lists. We now will develop MergeLists.

Consider lists A and B, both sorted in increasing order. This ordering means
that the smallest element of each list is in the first location, and the largest ele-
ment of each list is in the last location. To merge these together into one list,
we know that the smallest element overall must be either the first element of A
or the first element of B, and the largest element overall must be either the last
element of A or the last element of B. If we want to create a new list C that is
the sorted combination of A and B, we will begin by moving the smaller of
A[1] and B[1] into C[1]. But what gets moved into C[2]? If A[1] was smaller
than B[1], A[1] was moved into C[1], and the next element might be B[1]
unless A[2] is also smaller than B[1]. This is possible because all we really know
is that A[2] is larger than A[1] and smaller than A[3], but we don’t know how
the elements of A relate in size to the elements of B. It seems that the best way
to accomplish the merge would be to have two indices for A and B and incre-
ment the index for the list that has the smaller element. The general process
keeps comparing the smallest elements of what is left of lists A and B and
moves the smaller of these two into C. At some point, however, we will “run
out” of elements in either list A or B. The elements “left over” will be those in
one list that are greater than the last element of the other list. We need to make
sure that these elements are moved to the end of the result list.

Putting these ideas together into an algorithm gives us

MergeLists( list, start1, end1, start2, end2 )

list     the elements to be put into order

start1   beginning of “list” A

end1     end of “list” A

start2   beginning of “list” B

end2     end of “list” B

// assumes that the elements of A and B are contiguous in list

finalStart = start1
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finalEnd = end2

indexC = 1

while (start1 ≤ end1) and (start2 ≤ end2) do
   if list[start1] < list[start2] then

      result[indexC] = list[start1]

      start1 = start1 + 1

   else

      result[indexC] = list[start2]

      start2 = start2 + 1

   end if

   indexC = indexC + 1

end while

// move the part of the list that is left over

if (start1 ≤ end1) then
   for i = start1 to end1 do

      result[indexC] = list[i]

      indexC = indexC + 1

   end for

else

   for i = start2 to end2 do

      result[indexC] = list[i]

      indexC = indexC + 1

   end for

end if

// now put the result back into the list

indexC = 1

for i = finalStart to finalEnd do

   list[i] = result[indexC]

   indexC = indexC + 1

end for

■ 3.6.1 MergeLists Analysis

Because all of the element comparisons occur in MergeLists, we begin ana-
lyzing there. Let’s look at the case where all of the elements of list A are smaller
than the first element of list B. What will happen in MergeLists? We will
begin by comparing A[1] and B[1] and because A[1] is smaller we will move it
to C. We then compare A[2] with B[1] and move A[2] because it is smaller.
This process will continue comparing each element of A with B[1], because
they are all smaller. This means that the algorithm does NA comparisons, where
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NA is the number of elements in list A. Notice that if all of the elements of list
B are smaller than the first element of A, the resulting number of comparisons
would be NB, where NB is the number of elements in list B.

What if the first element of A is greater than the first element of B but all of
the elements of A are smaller than the second element of B? We would com-
pare A[1] and B[1] and move B[1] to C. We now find ourselves in the same
position we were in the last case, where we will compare every element of A
with B[2] as they are moved to the result. This time, however, we not only
have done NA comparisons of the elements of A with B[2], but we also did a
comparison of A[1] and B[1], so the total number of comparisons in this case is
NA + 1. If we consider other arrangements, we start to see that the case pre-
sented in the first paragraph of this subsection might be the best case, and it is.

We saw that if all the elements of list A were between B[1] and B[2], we did
more comparisons than if all of the elements of A were smaller than all of the
elements of B. Let’s see if taking this to the extreme gives the worst case. Con-
sider what happens if the elements of A and B are “interleaved” based on their
value. In other words, what happens if the value of A[1] is between B[1] and
B[2], the value of A[2] is between B[2] and B[3], the value of A[3] is between
B[3] and B[4], and so on. Notice that each comparison moves one element
from either A or B into list C. Based on the example ordering above, we move
an element of B, then one of A, then one of B, then one of A, until we have
moved all but the last element of A. Because the comparisons resulted in mov-
ing all but the last element of A, we will have done NA + NB � 1 comparisons
in this worst case.

■ 3.6.2 MergeSort Analysis

Now that we know the range of complexity of MergeLists, we can now
look at MergeSort. Based on the techniques of Section 1.5, we look at the
parts of the MergeSort algorithm. First, we notice that the function is called
recursively as long as first is less than last. This means that if they are equal
or if first is greater than last, there is no recursive call. If first is equal to
last, this represents a list of size 1. If first is greater than last, this repre-
sents a list of size 0. In both of these cases, the algorithm does nothing, so the
direct solution has zero comparisons.

The division of the list into two parts is done by the calculation of middle.
We see this calculation is done without any comparisons, so the division step is
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zero. Because middle is calculated to be exactly between first and last,
we see that we are breaking the list into two sublists, and each one is half the
size of the original. If the list has N elements, we create two sublists with N / 2
elements. Based on the analysis of MergeLists, this means that the combine
step will take N / 2 comparisons in the best case, and N / 2 + N / 2 � 1, or
N � 1, comparisons in the worst case. Putting all of this together gives the two
recurrence relations for the worst (W ) and best (B) cases.

We now apply the techniques of Section 1.6 to solve these recurrence rela-
tions. First, we solve the worst case:

Now we substitute:

We see that the coefficient of W increases at the same rate as the denominator
increases. Eventually, this term will become W(1), which has a value of zero, and
so this first term will eventually disappear. Notice that each substitution pro-
duced another addition of N and the subtraction of the next higher power of 2.
How many of these will be included? We see in the last equation that we have

W N( ) 2W N 2⁄( ) N 1–+=

W 0( ) W 1( ) 0= =

B N( ) 2B N 2⁄( ) N 2⁄+=

B 0( ) B 1( ) 0= =

W N 2⁄( ) 2W N 4⁄( ) N 2 1–⁄+=

W N 4⁄( ) 2W N 8⁄( ) N 4⁄ 1–+=

W N 8⁄( ) 2W N 16⁄( ) N 8⁄ 1–+=

W N 16⁄( ) 2W N 32⁄( ) N 16⁄ 1–+=

W N( ) 2W N 2⁄( ) N 1–+=

W N( ) 2 2W N 4⁄( ) N 2⁄ 1–+( ) N 1–+=

W N( ) 4W N 4⁄( ) N 2– N 1–+ +=

W N( ) 4 2W N 8⁄( ) N 4⁄ 1–+( ) N 2– N 1–+ +=

W N( ) 8W N 8⁄( ) N 4– N 2– N 1–+ + +=

W N( ) 8 2W N 16⁄( ) N 8⁄ 1–+( ) N 4– N 2– N 1–+ + +=

W N( ) 16W N 16⁄( ) N 8– N 4– N 2– N 1–+ + + +=

W N( ) 16 2W N 32⁄( ) N 16⁄ 1–+( ) N 8– N 4– N 2– N 1–+ + + +=

W N( ) 32W N 32⁄( ) N 16– N 8– N 4– N 2– N 1–+ + + + +=
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five N terms, the sum of the powers of 2 from 0 (1 = 20) through 4 (16 = 24) and
W(N / 32) = W(N / 25). This means that when we get to the point of having
W(N / 2lg N) = W(N / N), the closed form of this equation becomes

This means that W(N) = O(N lg N). When we look at W(N) and B(N), we see
the difference between the two is that N becomes N / 2. When we look at the
role that N played during our substitutions, the reader should see that B(N) �
(N lg N) / 2, so it is also the case that B(N) = O(N lg N).

This means that MergeSort is a very efficient sort, even in the worst case,
but the problem is that the MergeList function needs extra space to accom-
plish the merge.

3.6.3

1. Show the results of each pass of MergeSort applied to the list [7, 3, 9, 4, 2,
5, 6, 1, 8].

2. Show the results of each pass of MergeSort applied to the list [3, 5, 2, 9, 8,
1, 6, 4, 7].

3. In the discussion of MergeLists, it was mentioned that the best case is
when all of the values of list A are smaller than the values of list B. This,
however, doesn’t say anything about the operation of the entire algorithm
for any initial input of values. Exactly how many key comparisons will be
done by MergeSort on the list [1, 2, 3, 4, 5, 6, 7, 8]? In general, how
many comparisons are done for a list of N elements that is already in
increasing order? Show details of all work.

4. Exactly how many key comparisons will be done by MergeSort on the list
[8, 7, 6, 5, 4, 3, 2, 1]? In general, how many comparisons are done for a list
of N elements that is in decreasing order? Show details of all work.

5. Create an ordering of the numbers 1 through 8 that will cause MergeSort
to do the worst-case number of comparisons of 17. (Hint: Work backward
through the sorting process.)

W N( ) N W 1( )* N lg N 2i

i=0

lg N–1

∑–+=

W N( ) N lg N 2lg N 1–( )–=

W N( ) N lg N N– 1+=

3.6.3 EXERCISES■
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3.7 QUICKSORT

Quicksort is another recursive sorting algorithm. It picks an element from the
list and uses it to divide the list into two parts. The first part has all of the ele-
ments that are smaller than the one chosen, and the second part has all of the
elements that are larger. We saw this process when we looked at the selection
problem in Section 2.3. The Quicksort algorithm is different because it is
then applied recursively to both parts. This is an efficient sort on average, but
its worst case is the same as insertion and bubble sort.

Quicksort chooses an element of the list, called the pivot element, and then
rearranges the list so that all of the elements smaller than the pivot are moved
before it and all of the elements larger than the pivot are moved after it. The
elements in each of the two parts of the list are not put in order. If the pivot
element winds up in location i, all we know is that the elements in locations 1
through i � 1 are smaller than the pivot element and those in locations i + 1
through N are larger than the pivot. Quicksort is then called recursively for
these two parts. If Quicksort is called with a list containing one element, it
does nothing because a one-element list is sorted.

Because the determination of the pivot point and the movement of the ele-
ments into the proper section do all of the work, the main Quicksort algo-
rithm just needs to keep track of the bounds of these two sections. Further,
because splitting the list into two parts is where the keys are moved around, all
of the sorting work is done on the way down in the recursive process. Recall
that this is the opposite of merge sort, which does its work on the way back up
in the recursive process.

The algorithm for quicksort is

Quicksort( list, first, last )

list  the elements to be put into order

first the index of the first element in the part of list to sort

last  the index of the last element in the part of list to sort

if first < last then

   pivot = PivotList( list, first, last )

   Quicksort( list, first, pivot-1 )

   Quicksort( list, pivot+1, last )

end if
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Splitting the List

There are at least two versions of the PivotList function. The first is easy to
program and understand and is presented in this section. The other is more
complicated to write but is faster than this version. The second version will be
considered in the exercises.

The function PivotList will pick the first element of the list as its pivot
element and will set the pivot point as the first location of the list. It then
moves through the list comparing this pivot element to the rest of the ele-
ments. Whenever it finds an element that is smaller than the pivot element, it
will increment the pivot point and then swap this element into the new pivot
point location. After some of the elements are compared to the pivot inside the
loop, we will have four parts to the list. The first part is the pivot element in
the first location. The second part is from location first + 1 through the pivot
point and will be all of the elements we have looked at that are smaller than the
pivot element. The third part is from the location after the pivot point through
the loop index and will be all of the elements we have looked at that are larger
than the pivot element. The rest of the list will be values we have not yet
examined. This is shown in Fig. 3.4.

The algorithm for PivotList is as follows:

PivotList( list, first, last )

list  the elements to work with

first the index of the first element 

last  the index of the last element

PivotValue = list[ first ]

PivotPoint = first

for index = first + 1 to last do

   if list[ index ] < PivotValue then

pivot < pivot ≥ pivot unknown

Pivot
Point

IndexFirst Last

■ FIGURE 3.4
Relationship

between the
indices and

element values in
PivotList
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      PivotPoint = PivotPoint + 1

      Swap( list[ PivotPoint ], list[ index ] )

   end if

end for

// move pivot value into correct place

Swap( list[ first ], list[ PivotPoint ] )

return PivotPoint

■ 3.7.1 Worst-Case Analysis

When PivotList is called with a list of N elements, it does N � 1 compari-
sons as it compares the PivotValue with every other element in the list. Because
we have already said that quicksort is a divide and conquer algorithm, you
might assume that a best case would be when PivotList creates two parts
that are the same size and you would be correct. The worst case would then be
when the lists are of drastically different sizes. The largest difference in the size
of these two lists occurs if the PivotValue is smaller (or larger) than all of the
other values in the list. In that case, we wind up with one part that has no ele-
ments and the other that has N � 1 elements. If the same thing happens each
time we apply this process, we would only remove one element (the Pivot-
Value) from the list at each recursive call. This means we would do the num-
ber of comparisons given by the following formula:

What original ordering of elements would cause this behavior? If each pass
chooses the first element, that element must be the smallest (or largest). A list
that is already sorted is one arrangement that would cause this worst case
behavior! In all of the other sort algorithms we have considered, the worst and
average cases have been about the same, but as we are about to see, this is not
true for quicksort.

■ 3.7.2 Average-Case Analysis

You will recall that when we looked at shellsort, we considered the number of
inversions that each comparison removed in our analysis. At that time, we
pointed out that bubble sort and insertion sort didn’t do well on average
because they both removed only one inversion for each comparison.

W N( ) i 1–( )
i=2

N

∑ N N 1–( )
2

-----------------------= =
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So, how does quicksort do in removing inversions? Consider a list of N ele-
ments that the PivotList algorithm is working on. Let’s say that the Pivot-
Value is greater than all of the values in the list. This means that at the end of
the routine PivotPoint will be N, and so the PivotValue will be switched
from the first location to the last location. It is also possible that the element in
the last location is the smallest value in the list. So swapping these two values
will move the largest element from the first location to the last and will move
the smallest element from the last location to the first. If the largest element is
first, there are N � 1 inversions of it with the rest of the elements in the list,
and if the smallest element is last, there are N � 1 inversions of it with the rest
of the elements in the list. This one swap can remove 2N � 2 inversions from
the list. It is because of this possibility that quicksort has an average case that is
significantly different from its worst case.

Notice that PivotList is doing all of the work, and so we first look at this
algorithm to see what it does in the average case. We first notice that it is possi-
ble for each of the N locations in the list to be the location of the Pivot-
Value when PivotList is done. To get the average case, we have to look at
what happens for each of these possibilities and average the results. When look-
ing at the worst case, we noticed that for a list of N elements there are N � 1
comparisons done by PivotList in dividing the list. There is no work done
to put the lists back together. Lastly, notice that when PivotList returns a
value of P, we call Quicksort recursively with lists of P � 1 and N � P ele-
ments. Our average case analysis needs to look at all N possible values for P.
Putting this together gives the recurrence relation

If you look closely at the summation, you will notice that the first term is
used with values from 0 through N � 1, and the second term is used with val-
ues from N � 1 down to 0. This means that the summation adds up every
value of A from 0 to N � 1 twice. This gives us the following simplification:

A N( ) N 1–( ) 1
N
---- A i 1–( ) A N i–( )+[ ]

i=1

N

∑
 
 
 

+ for N 2≥=

A 1( ) A 0( ) 0= =

A N( ) N 1–( ) 1
N
---- 2 A i( )

i=0

N–1

∑
 
 
 

for N 2≥+=

A 1( ) A 0( ) 0= =
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This is a very complicated form of recurrence relation because it depends
on not just one smaller value of A, but rather on every smaller value for A.
There are two ways to go about solving this. The first is to come up with an
educated guess for the answer and to then prove that this answer does satisfy
the recurrence relation. The second way is to look at the equations for both
A(N ) and A(N � 1). Those two equations differ by only a few terms. We now
compute A(N ) * N and A(N � 1) * (N � 1) to get rid of the two fractions.
This gives

Now, we subtract the third equation above from the second and simplify to get

Adding A(N � 1) * (N � 1) to both sides, we get

This gives our final recurrence relation:

Solving this is not difficult but does require care because of all of the terms
on the right-hand side of the equation. If you work through all of the details,
you will see the final result is A(N) � 1.4 (N + 1) lg N. Quicksort is, therefore,
O(N lg N) on average.

A N( ) N* N 1–( )N 2 A i( )
i=0

N–1

∑+=

A N( ) N* N 1–( )N 2A N 1–( ) 2 A i( )
i=0

N–2

∑+ +=

A N 1–( ) N 1–( )* N 2–( ) N 1–( ) 2 A i( )
i=0

N–2

∑+=

A N( ) N A N 1–( )– N 1–( )* * 2A N 1–( ) N 1–( )N N 2–( ) N 1–( )–+=

A N( ) N A N 1–( )– N 1–( )* * 2A N 1–( ) N 2 N– N 2 3N– 2+( )–+=

A N( ) N A N 1–( )– N 1–( )* * 2A N 1–( ) 2N 2–+=

A N( ) N* 2A N 1–( ) A N 1–( )+ N 1–( )* 2N 2–+=

A N( ) N* A N 1–( ) 2 N 1–+( )* 2N 2–+=

A N( )
N 1+( ) A N 1–( )* 2N 2–+

N
-----------------------------------------------------------------------=

A 1( ) A 0( ) 0= =
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3.7.3

1. Trace the operation of Quicksort on the list [23, 17, 21, 3, 42, 9, 13, 1, 2,
7, 35, 4]. Show the list order and the stack of (first, last, pivot) values at the
start of every call. Count the number of comparisons and swaps that are done.

2. Trace the operation of Quicksort on the list [3, 9, 14, 12, 2, 17, 15, 8, 6,
18, 20, 1]. Show the list order and the stack of (first, last, pivot) values at the
start of every call. Count the number of comparisons and swaps that are done.

3. We showed that the Quicksort algorithm performs poorly when the list is
sorted because the pivot element is always smaller than all of the elements
left in the list. Just picking a different location of the list would have the
same problem because you could get “unlucky” and always pick the smallest
remaining value. A better alternative would be to consider three values
list[ first ], list[ last ], and list[ (first + last) / 2 ] and pick the median or mid-
dle value of these three. The comparisons to pick the middle element must
be included in the complexity analysis of the algorithm.

a. Do Question 1 using this alternative method for picking the pivot ele-
ment.

b. Do Question 2 using this alternative method for picking the pivot ele-
ment.

c. In general, how many comparisons are done in the worst case to sort a
list of N keys? (Note: You are now guaranteed to not have the smallest
value for the PivotValue, but the result can still be pretty bad.)

4. An alternative for the PivotList algorithm would be to have two indices
into the list. The first moves up from the bottom and the other moves down
from the top. The main loop of the algorithm will advance the lower index
until a value greater than the PivotValue is found, and the upper index is
moved until a value less than the PivotValue is found. Then these two are
swapped. This process repeats until the two indices cross. These inner loops
are very fast because the overhead of checking for the end of the list is elim-
inated, but the problem is that they will do an extra swap when the indices
pass each other. So, the algorithm does one extra swap to correct this. The
full algorithm is

PivotList( list, first, last )

list  the elements to work with

first the index of the first element 

last  the index of the last element

3.7.3 EXERCISES■
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PivotValue = list[ first ]

lower = first

upper = last+1

do

   do upper = upper - 1 until list[upper] ≤ PivotValue
   do lower = lower + 1 until list[lower] ≥ PivotValue
   Swap( list[ upper ], list[ lower ] )

until lower ≥ upper
// undo the extra exchange

Swap( list[ upper ], list[ lower ] )

// move pivot point into correct place

Swap( list[ first ], list[ upper ] )

return upper

(Note: This algorithm requires one extra list location at the end to hold a
special sentinel value that is larger than all of the valid key values.)

a. Do Question 1 using this alternative method for PivotList.
b. Do Question 2 using this alternative method for PivotList.
c. What operation is done significantly less frequently for this version of

PivotList?
d. How many key comparisons does the new PivotList do in the worst

case for a list of N elements? (Note: It is not N � 1.) How does this affect
the overall worst case for quicksort?

5. How many comparisons will Quicksort do on a list of N elements that all
have the same value?

6. What is the maximum number of times that Quicksort will move the
largest or smallest value?

3.8 EXTERNAL POLYPHASE MERGE SORT

In some cases, a list that needs to be sorted may be so large that it cannot be
held in memory at one time. You should note that even though our sorting
algorithms have only been concerned with placing keys in the correct order, it
is assumed that those keys are connected to entire records of information. You
should see that in many instances, the size of the full record will be signifi-
cantly larger than the size of the key. In some instances, the record size is so
significant that the process of swapping two records becomes so time consum-
ing that the efficiency of a sorting algorithm is both the number of compari-
sons and the number of swaps.
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It is also possible to be able to declare an array large enough to hold all of
the data but that the logical memory needs of the program are much greater
than the physical memory available in the computer. This places a reliance on
the computer to effectively implement virtual memory, but in even the best of
circumstances there may be a large amount of data that needs to be swapped
between physical memory and a disk drive. Even with an effective sorting
algorithm like Quicksort, the relationship between the bounds of a partition
and the blocks of logical memory that can be and are loaded may be such that
a large number of blocks will have to be swapped in and out of physical mem-
ory. This problem may not be seen until a program is implemented and runs so
slowly that computer-based analysis tools are needed to identify the problem.
Even in that case, the problem may not be found unless system profiling tools
are available that track virtual memory use.

Our analysis looked at comparison operations to determine what was an
efficient sort algorithm. But the amount of time that can be spent writing
information to and from the disk in the process of a virtual memory block
swap will be much more significant than any logical or arithmetic operation.
Because this is handled by the operating system, we have no real control over
when swaps may occur.

An alternative thought might be to use a direct access file on disk and con-
vert each array access into a seek operation to move to the correct location of
the file, followed by a read. This reduces the amount of logical memory needed
and so reduces the reliance on virtual memory. This still translates to a signifi-
cant amount of disk input and output, which is what is costly, whether done
by the program or the operating system.

All of this makes the sorting algorithms in the last seven sections impractical
when the data set gets extremely large. We will now look at an alternative that
will use four external sequential files and a merging process to accomplish a
sort.

We first identify how many records can reasonably be held in memory
when we account for the size of the executable code and the available memory.
We will declare an array of this size, call it S, that will be used for the two steps
of our sort process. In the first step, we will read in S records and use an appro-
priate internal sort to put these records in order. This set of now sorted records
will be written to file A. We read in a second set of S records, sort them, and
write them to file B. We continue this process, alternating where we write the
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sorted list between file A and file B. An algorithm to accomplish this first step
would be

CreateRuns( S )

S  is the size of the runs to be created

CurrentFile = A

while not at the end of the input file do

   read S records from the input file

   sort the S records

   write the records to file CurrentFile

   if CurrentFile = A then

      CurrentFile = B

   else

      CurrentFile = A

   end if

end while

Once we have processed the entire original file into sorted runs, we are now
ready to start the second step, which is to merge these runs. If you think about
the process, you will realize that both files A and B have some number of runs
of S records that are in order. But, as in merge sort, we can’t really say anything
about the relationship between the records that are in two separate runs.

Our merging process will be similar to the MergeLists function of Sec-
tion 3.6, however, in this case, instead of moving the records to a new array, we
will move them to a new file. So we begin by reading in half of the first runs
from files A and B. We can only read in half of each run because we have
already identified that we can only hold S records at a time, and we need
records from both files A and B. We now begin to merge them into a new file
C. If we run through the first half of records from either file, we will then read
in the second set of records for this run. When we have completed one of the
two runs, the rest of the other run is written to the file. Once the first runs of
files A and B have been merged, we then merge the second two runs, but this
time the output is written to file D. This process continues to merge runs and
write them alternately to files C and D. On the completion of this pass, you
should see that we now have runs of 2S records in files C and D. We repeat the
process again, but this time we read runs from C and D and write them to files
A and B, which will then have runs with 4S records. You should see that even-
tually we will have merged the runs into one list that is now sorted. An algo-
rithm to accomplish this second step would be
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PolyphaseMerge( S )

S  is the size of the initial runs

Size = S

Input1 = A

Input2 = B

CurrentOutput = C

while not done do

   while more runs this pass do

      Merge one run of length Size from file Input1 

         with one run of length Size from file Input2

         sending output to CurrentOutput

      if (CurrentOutput = A) then

         CurrentOutput = B

      elseif (CurrentOutput = B) then

         CurrentOutput = A

      elseif (CurrentOutput = C) then

         CurrentOutput = D

      elseif (CurrentOutput = D) then

         CurrentOutput = C

      end if

   end while

   Size = Size * 2
   if (Input1 = A) then

      Input1 = C

      Input2 = D

      CurrrentOutput = A

   else

      Input1 = A

      Input2 = B

      CurrentOutput = C

   end if

end while

Before we begin our analysis, we first look at what we have in terms of runs
and the number of passes this translates to. If we have N records in our original
file, and we can store S records at one time, this means that after CreateRuns
we must have R = N / S runs split between the two files. Each of the
PolyphaseMerge passes joins pairs of runs, so it must cut the number of runs
in half. After one pass there will be R / 2 runs, after two passes there will be
R / 4 runs, and, in general, after j passes there will be R / 2 j runs. Because
we stop when we get down to one run, this will be when R / 2D is equal to
1, which will be when D is lg R. This means we will do lg R passes of the
merge process.
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■ 3.8.1 Number of Comparisons in Run Construction

Because the algorithm used for the run construction phase is not specified, we
will assume that an O(N lg N ) sort is used. Because there are S elements in
each run, each one will take O(S lg S) to construct. There are R runs, giving
O(R * S * lg S) = O(N lg S) comparisons in total for the construction of all of
the runs. The run construction phase is O(N lg S).

■ 3.8.2 Number of Comparisons in Run Merge

In Section 3.6.1, we saw that MergeLists does A + B � 1 comparisons in
the worst case with two lists of A and B elements. In our case, we have R runs
of size S on the first pass that get merged, so there are R / 2 merges, each of
which will take at most 2S � 1 comparisons, or R / 2 * (2S � 1) = R * S �

R / 2 comparisons. On the second pass, we have R / 2 runs of size 2S, so there
are R / 4 merges, each of which will take at most 2(2S) � 1 comparisons,
or R / 4 * (4S � 1) = R * S � R / 4 comparisons. On the third pass, we have
R / 4 runs of size 4S, so there are R / 8 merges, each of which will take at most
2(4S ) � 1 comparisons, or R / 8 * (8S � 1) = R * S � R / 8 comparisons.

If we recall that there will be lg R merge passes, the total number of com-
parisons in the merge phase will be

In the second equation, you should note that if you add 1/2 + 1/4 + 1/8 +,
. . ., you will get a number that is less than 1, but it will get closer to 1 the
more terms that you have. To visualize this, imagine that you stand 1 foot away
from a wall, and you repeatedly keep moving closer to the wall by one-half
your current distance from the wall. Because you only move one-half the dis-
tance each step, you will never reach the wall, but you will keep getting closer
to it. In the same way, if you do the above addition, you are adding one-half
the distance between your current total and the number 1 each time. This
means that the sum will keep getting closer to 1, but never larger. This can also
be shown by the application of Equation 1.18 using A = 0.5 and an adjustment

R S R 2i⁄–*( )
i=1

lg R

∑ R S*( )
i=1

lg R

∑ R 2i⁄( )
i=1

lg R

∑–=

R S*( ) lg R R– 1 2i⁄
i=1

lg R

∑* *=

R S*( ) lg R R–*≈

N lg R R–=
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because the above summation begins at 1, where the summation in Equation
1.18 begins at 0.

The run merge phase is O(N lg R). This makes the entire algorithm

■ 3.8.3 Number of Block Reads

Reading large blocks of data is significantly faster than reading each of the
items in the block one after another. For this reason, a polyphase merge sort
will be most efficient if all data is read as larger blocks. We are still, however,
interested in how many blocks of data will be read in this sort.

In the run construction step, we will read one block of data for each run,
resulting in R block reads. Because we can only fit S records in memory, and we
need records from two runs for the merge step, we will read blocks of size S / 2
in the merge phase. Each pass of the merge step will have to read all of the data as
part of some run, meaning that there will be N / (S / 2) = 2R block reads.
Because there are lg R passes, there are 2R lg R block reads in the merge step.

In the entire algorithm, there are R + 2R lg R = O(R lg R) block reads.

3.8.4

1. What would be involved in rewriting the external polyphase merge sort
algorithm so that it only used three files instead of four? What impact would
this change have on the number of comparisons and block reads? (Hint: This
new version can’t alternate back and forth in the merge step.)

2. What would be involved in rewriting the external polyphase merge sort
algorithm so that it used six files instead of four and the merging of three
lists was done simultaneously? What impact would this change have on the
number of comparisons and block reads? Would there be any additional
change if we used eight files and merged four lists simultaneously?

3.9 ADDITIONAL EXERCISES

1. Selection sort will scan the list of values looking for the largest (or smallest)
key value. This value is swapped into the last (or first) location of the list.

O N lg S N lg R+( ) O N lg S lg R+( )*[ ]=

O N lg S R*( )*[ ] by Equation 1.5=

O N lg S N S⁄*( )*[ ]=

O N lg N( )=

3.8.4 EXERCISES■
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The process is repeated for a list one element smaller that doesn’t include
the element just put into the correct position. This is continued until the
entire list is sorted.

a. Write a formal algorithm that will accomplish this selection sort by look-
ing for the largest element on each pass.

b. Do a worst-case analysis of your algorithm from part (a).
c. Do an average-case analysis of your algorithm from part (a).

2. A counting sort can be used on a list that has no duplicate keys. In a count-
ing sort, you would compare the first key in the list with every other ele-
ment (including itself ), counting the number of values that are less than or
equal to this key. If we find that there are X keys that are less than or equal
to this key, it belongs in location X. We can repeat this for all of the other
keys, storing the values we get into a separate array that has the same num-
ber of elements as our list. When we have completed the counting, the extra
array has all of the locations where the elements need to be for the list to be
sorted, and it can be used to create the new sorted list.

a. Write a formal algorithm that will accomplish this counting sort.
b. Do a worst-case analysis of your algorithm from part (a).
c. Do an average-case analysis of your algorithm from part (a).

3. When a sorting algorithm is applied to a list of values, we are sometimes
interested in knowing what happens when there are duplicate entries in the
list. This is important in an application that sorts large records on a number
of different fields and doesn’t want the efforts of a previous sort lost. For
example, let’s say that records store a person’s first and last names in two sep-
arate fields. We could first sort the records based on the first name field and
then sort them again on the last name field. If the sort algorithm keeps
records with the same last name in the same order they were in after the first
sort, the entire list would be properly sorted by full name.

If for every case where list[i] = list[ j] (i < j), the sorting algorithm moves
list[i] into location i�, moves list[ j] into location j�, and i� < j�, the sorting
algorithm is called stable. In other words, if there are two records with the
same key, a sorting algorithm is stable when those keys stay in the same rela-
tive order in the list even though they may move.

Prove which of the following sorting algorithms are stable:

a. Insertion sort
b. Bubble sort
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c. Shellsort
d. Radix sort
e. Heapsort
f. Merge sort
g. Quicksort

3.10 PROGRAMMING EXERCISES

You can test the complexity of a sorting algorithm in the following way:

• Write a function or functions that will do the sorting algorithm.
• Put in two global counters called compareCount and swapCount. The

first should be incremented before every comparison of list values in every
routine. The second should be incremented whenever list elements are
exchanged or moved.

• Write a main program with a loop that generates a random list and then
sorts it. In each pass of this loop, you should keep track of the maximum,
minimum, and total values for both compareCount and swapCount. At
the end, you can report the overall maximum, minimum, and averages for
these two counters. The more times you perform this loop, the more accu-
rate your results will be.

• If you are trying to compare sort routines, you should run them on the same
list or lists. The easiest way to do this is to have a set of counters for each
sort, and then when you generate a random list, make a copy of the list to
pass into each sort. You would then run all of the sorts on the first list before
generating the next list.

1. Use the technique above with insertion sort and bubble sort. Even though
both are O(N2) sorts, does your test show any differences? How do your
results relate to the analysis done in this chapter? Try to explain any differ-
ences.

2. Use the technique above with heapsort, merge sort, and quicksort. Even
though all are O(N lg N) sorts on average, does your test show any differ-
ences? How do your results relate to the analysis done in this chapter? Try to
explain any differences.

3. Use the technique above with the version of bubble sort given in the chap-
ter and one or more of the versions described in the exercises in Section
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3.2.4. Does your test show any differences? How do your results relate to
the analysis done in this chapter and as part of the exercises? Try to explain
any differences.

4. Use the technique above with quicksort using the versions of PivotList
given in the chapter and in the exercises in Section 3.7.3. Does your test
show any differences? How do your results relate to the analysis done in this
chapter and as part of the exercises? Try to explain any differences.

5. Using the previous general technique, investigate the impact of the incre-
ment on shellsort. You should create a version of the ShellSort function
that has an additional parameter, which is just an array with the increment
values to use in decreasing order. You will need to alter this function so it
uses the values passed in instead of the increments that are calculated based
on the powers of 2. You should work with random lists of 250 elements and
make sure that each of the sets of increments discussed in Section 3.3 is used
with each list generated. How do your results relate to the analysis done in
Section 3.3? Try to explain any differences.

6. Some people find it easier to understand an algorithm if they can visualize it
in action. The numeric values in a list can be visualized by drawing a vertical
bar for each list element with the first element to the left and the last to the
right. The height of each bar is based on the value stored at that element.
For example, if we have a list with the values from 1 to 500, the location
where the 1 is stored would have a bar 1 unit high and the location where
the 500 is stored would have a bar 500 units high. A random list would have
the bars all mixed up, but a list sorted in increasing order would appear as a
triangle with the shortest bar to the left and the largest to the right.

The operation of a sorting algorithm can be seen if the list is displayed as
described above after each pass of the sorting algorithm. This allows the
viewer to watch as the elements are moved into their proper position by the
sort algorithm. Write a program (or programs) using randomly arranged lists
for the cases below. You should use lists of between 250 and 500 elements,
depending on capabilities of the computer(s) you are using. On fast com-
puters, you may need to put in a short delay so that the visualization does
not happen too quickly.

a. Insertion sort—displaying the list at the end of each pass of the outer
loop
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b. Bubble sort—displaying the list at the end of each pass of the outer loop
c. Shellsort—displaying the list after each call to the modified insertion sort
d. Heapsort—displaying the list after each call to FixHeap
e. Merge sort—displaying the list after each call to MergeLists
f. Quicksort—displaying the list after each call to PivotList



C H A P T E R4
Numeric

Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Do simple algebra
• Evaluate polynomials
• Describe growth rates and order

GOALS

At the end of this chapter, you should be able to

• Evaluate a polynomial by Horner's method
• Evaluate a polynomial by preprocessing its coefficients
• Explain the analysis of preprocessed coefficients
• Explain matrix multiplication
• Trace Winograd's matrix multiplication
• Explain the analysis of Winograd's matrix multiplication
• Use Strassen's matrix multiplication

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. In addition, you should trace Horner’s
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method and calculate the preprocessed coefficients for the polynomials x3 +
4x2 � 3x + 2 and x7 � 8x6 + 3x5 + 2x4 � 4x3 + 5x � 7. You should trace the
standard matrix multiplication algorithm, Winograd's matrix multiplication
algorithm, and Strassen's matrix multiplication with

You should trace the Gauss-Jordan method with the equations 3x1 + 9x2 + 6x3 =
21, 5x1 + 3x2 + 22x3 = 23, and 2x1 + 8x2 + 7x3 = 26. You should also try to
answer any questions before reading on. A hint or the answer is in the sen-
tences following the question.

athematical calculation forms the basis for a wide range of pro-
grams. Computer graphics and vision both require a large number
of calculations involving polynomials and matrices. Because these

are typically done for each location in an image, small improvements can have
a great impact. A typical image can be created with 1024 pixels per row and
1024 pixels per column. Improving the calculation for each of these locations
by even one multiplication would reduce the creation of this image by
1,048,576 multiplications overall. So, even though the techniques in this chap-
ter don't seem to show a dramatic improvement, the real savings come from
the number of times that these are used.

Some software will repeatedly evaluate complex polynomial equations. This
can be part of a monitoring task where input from an external device is the
value “plugged into” the equation, and the result tells if there is some condi-
tion that needs attention. Another application is trigonometric functions. What
most programmers do not realize is that standard trigonometric functions like
sine and cosine have power series expansions that take the form of polynomial
equations, and it is these equations that a computer will use when calculating
trigonometric function results. These calculations need to be fast, and so, we
begin by looking at methods for more rapidly calculating polynomials.

Matrix multiplication plays a role in a number of applications. Models of
physical objects for computer graphics and computer-aided design and manu-

1 4
5 8

and 6 7
3 2

M
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facturing can be moved and manipulated through matrix operations. Image
analysis will use matrices in convolution operations to improve the quality of
an image and to identify the bounds of objects in a picture. Fourier analysis
will describe complex wave patterns in terms of simpler sine waves through
matrix manipulation.

The common issue in all of these cases is that the matrix operations are
done frequently, and so faster matrix multiplication results in faster programs.
Object transformations use 4 � 4 matrices, convolutions can use square matri-
ces from 3 � 3 up to 11 � 11 or bigger, but they are used a very large number
of times. Convolutions, for example, will take a matrix and multiply it by blocks
of pixels in an image for every possible location. This means that for a 5 � 5
template used with a small image of 512 � 512 pixels (about one-quarter of a
typical computer screen), a convolution will multiply this matrix by 258,064
different locations (508 � 508). If the standard matrix multiplication algorithm
is used, this will result in 32,258,000 multiplications. A more efficient matrix
multiplication algorithm can save significant time in this application.

In this chapter we will investigate ways to make polynomial evaluation and
matrix multiplication more efficient. Because we are interested in how many
calculations are done, we will be counting additions and multiplications. When
we considered searching and sorting, we found equations that were based on
the size of the list. In analyzing numeric algorithms, we will base our equations
on the power of the highest order term in a polynomial equation, or the
dimensions of the matrices we are multiplying.

4.1 CALCULATING POLYNOMIALS

For our discussion of polynomial evaluation, we will use a generic polynomial
of the form

p(x) = anxn + an�1xn�1 + an�2xn�2 + . . . + a2x2 + a1x + a0 (4.1)

We will assume that the coefficient values of an through a0 are all known, con-
stant, and will be stored in an array. This means that our evaluation of a poly-
nomial has only the value of x as its input and will return the resulting
polynomial value as its output.
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The standard evaluation algorithm is very straightforward:

Evaluate( x )

x  the value to use for evaluation of the polynomial

result = a[0] + a[1]*x
xPower = x

for i = 2 to n do

   xPower = xPower * x
   result = result + a[i]*xPower
end for

return result

This algorithm is very clear and its analysis is obvious. The for loop has two
multiplications and is done N � 1 times. There is one multiplication done
before the loop, giving a total of 2N � 1 multiplications. There is one addition
done inside the loop and one done before it, giving N additions.

■ 4.1.1 Horner’s Method

Horner’s method gives a better way to do this evaluation without making the
process very complex. This method is based on recognizing that the polyno-
mial equation can be factored into the following form:

(4.2)

The reader should be able to easily see that this calculates the same value as
Equation 4.1. This can be expressed in algorithmic form as

HornersMethod( x )

x  the value to use for evaluation of the polynomial

result = a[n] 

for i = n - 1 down to 0 do

   result = result * x
   result = result + a[i]

end for

return result

We see that the loop is done N times and that there is one addition and one
multiplication done in the loop. This means that there are N multiplications
and N additions done by Horner’s method. This method saves almost half of
the multiplications done by the standard algorithm.

■ 4.1.2 Preprocessed Coefficients

It is possible to do even better than this by preprocessing the coefficients. The
basic idea here is that it is possible to express a polynomial as a factorization

p x( ) … anx an–1+( ) x an–2+*[ ] x … a2+ +*{ } x a1+*( ) x a0+*=
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into two polynomials of lesser degree. For example, if you want to calculate
x256, you could use a loop like the one in the function Evaluate at the start
of this section and do 255 multiplications. An alternative would be to set
result = x * x and then do the statement result = result * result
three times. We get the same answer with just four multiplications. After the
first, result will hold x4. After the second, it will hold x16, and after the third,
it will hold x256.

For preprocessed coefficients to work, we need our polynomial to be monic
(an = 1) and to have its largest degree equal to 1 less than a power of 2 (n = 2k

� 1 for some k = 1).1 If this is the case, we can factor the polynomial so that

p(x) = (xj + b) * q(x) + r(x) where j = 2k�1 (4.3)

There will be half as many terms in q(x) and r(x) as in p(x). To get the results
we want, we would evaluate q(x) and r(x) and then do one additional multipli-
cation and two additions. The interesting thing about this process is that if we
choose the value of b carefully, both q(x) and r(x) will be monic polynomials
with the proper degree for this process to be applied again. After all of this is
done, we will see that this process does save calculations.

Instead of looking at just generic polynomials, consider the following:

p(x) = x7 + 4x6 � 8x4 + 6x3 + 9x2 + 2x � 3

We first need to determine the value of (xj + b) for Equation 4.3. Looking at
p(x) we see that its largest degree is 7, which is 23 � 1, so that means k is 3.
This makes j =22 = 4. We choose a value of b so that both of the equations,
q(x) and r(x), are monic. To achieve that, we need to look at the coefficient of
the j � 1 term in the equation and make b = aj�1 � 1. For our above equation,
this means that b will have the value of a3 � 1, or 5. We now need to find the
values of q(x) and r(x) that satisfy the equation

x7 + 4x6 � 8x4 + 6x3 + 9x2 + 2x � 3 = (x4 + 5) * q(x) + r(x)

1 The savings of this method can be large enough that it is sometimes faster to add the 
terms necessary to be able to use this method and then subtract those values from the 
result returned. In other words, if we had an equation with degree 30, we would add 
x31, determine the factorization, and then subtract x31 from every answer. This would 
still save time over using another method for the calculation.
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If we divide p(x) by x4 + 5, we will get a quotient and remainder polynomials,
and those are the values of q(x) and r(x), respectively. So, we need to divide as
follows:

This gives the equation

But we can apply this process to each of the polynomials for q(x) and r(x):

The results of all of this would be

If we look at this polynomial, we will see that there is one multiplication to
calculate x2 and another to calculate x4 (done as x2 * x2). There are also three
additional multiplications done in the equation, for a total of five multiplica-
tions. There are 10 additions done in this equation as well. Comparing this to
the other methods, we get the table in Fig. 4.1. This doesn’t look like a great
saving, but this is just for a limited case. We can get a general equation for the
amount of work done by looking carefully at the process. We first notice that
we do only one multiplication and two additions in Equation 4.3. This gives
the following set of recurrence relations for the number of multiplications,
M(k), and the number of additions, A(k), where N = 2k � 1:

) x7 � 4x6 � 0x5 � 8x4 � 6x3 � 09x2 � 2x � 03

�x7 � 4x6 � 0x5 � 8x4 � 5x3 � 20x2 � 0x � 40

x3 � 11x2 � 2x � 37

x3 � 04x2 � 0x � 08

x4 � 5

p x( ) x4 5+( ) x3 4x2 0x 8+ + +( )* x3 11x2 2x 37–+–( )+=

x � 14

) )x3 � 4x2 � 0x � 18

�x3 � 4x2 � 0x � 14

x2 � 1

x � 12

x3 � 11x2 � 2x � 37
x � 11

�x3 � 11x2 � 2x � 11

x2 � 1

x � 26

p x( ) x4 5+( ) x2 1–( ) x 4+( ) x 12+( )+[ ]* x2 1+( ) x 11–( ) x 26–( )+[ ]+=

M 1( ) 0=

M k( ) 2M k 1–( ) 1 for k 1>+=

A 1( ) 0=

A k( ) 2A k 1–( ) 2 for k 1>+=
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Solving these equations we find that we will do approximately N / 2 multi-
plications and (3N � 1) / 2 additions. This doesn't, however, include the mul-
tiplications to get the sequence of values x2, x4, x8, . . ., x2k�1

, which takes an
additional k � 1 multiplications. Thus, there are about N / 2 + lg N total mul-
tiplications.

Figure 4.2 gives a comparison of the standard algorithm, Horner’s method,
and preprocessed coefficients. In comparing the last two, we see that we have
saved N / 2 � lg N multiplications but at a cost of (N � 1) / 2 additions. By
most standards, trading a multiplication for an addition will result in a time sav-
ings, so using preprocessed coefficients is more efficient.

4.1.3

1. Give the factorization of the equation x7 + 2x6 + 6x5 + 3x4 + 7x3 + 5x + 4
that results from

a. Horner’s method
b. Preprocessed coefficients

2. Give the factorization of the equation x7 + 6x6 + 4x4 � 2x3 + 3x2 � 7x + 5
that results from

a. Horner’s method
b. Preprocessed coefficients

■ FIGURE 4.1
Work done for a

polynomial of
degree 7

Method Multiplications Additions

Standard 13 7
Horner’s 7 7
Preprocessed coefficients 5 10

■ FIGURE 4.2
Work done for a

polynomial of
degree N

Method Multiplications Additions

Standard

Horner’s

Preprocessed coefficients

2N 1– N

N N

N
2
---- lg N+ 3N 1–

2
----------------

4.1.3 EXERCISES■
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4.2 MATRIX MULTIPLICATION

A matrix is a mathematical structure of numbers arranged in rows and columns
that is equivalent to a two-dimensional array. Two matrices can be added or
subtracted element by element if they are the same size. Two matrices can be
multiplied if the number of columns in the first is equal to the number of rows
in the second. The resulting matrix will have the same number of rows as the
first matrix and the same number of columns as the second. If we multiply a 3
� 4 matrix by a 4 � 7 matrix, we will get a 3 � 7 matrix as our answer.
Matrix multiplication is not commutative, so if two matrices, called A and B,
are square, we could calculate the products AB or BA, but those two resulting
matrices may not be equal. (Notice that because multiplication of numbers is
commutative, if A and B are numbers, AB will always equal BA.)

Two matrices are multiplied by taking each row of the first and multiplying
it, element by element, with each column of the second. The sum of each of
these products is taken and that becomes the value in the corresponding loca-
tion of the result. Figure 4.3 shows the result of multiplying two matrices.

If you look at Fig. 4.3, you will count 24 multiplications and 16 additions.
In general, the standard matrix multiplication algorithm will do a * b * c mul-
tiplications and a * (b � 1) * c additions for two matrices of sizes a � b and b �

c. This general algorithm for multiplying matrix G (size a � b) and matrix H
(size b � c) to get resulting matrix R (size a � c) is given by

for i = 1 to a do

   for j = 1 to c do

      Ri,j = 0

      for k = 1 to b

         Ri,j = Ri,j + Gi,k * Hk,j
      end for k

   end for j

end for i

It would seem that this is the minimum work that is required to successfully
multiply two matrices. But researchers could not prove that this amount of

■ FIGURE 4.3
Multiplication of a

2 � 3 matrix and a
3 � 4 matrix

a b c
d e f

A B C D
E F G H
I J K L

aA bE cI+ + aB bF cJ+ + aC bG cK+ + aD bH cL+ +

dA eE fI+ + dB eF fJ+ + dC eG fK+ + dD eH fL+ +
=
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work was absolutely necessary, and they eventually found algorithms that mul-
tiply matrices faster.

■ 4.2.1 Winograd’s Matrix Multiplication

If you look at each element of the result of a matrix multiplication, you will
see that it is nothing more than the dot product of the corresponding row and
column of the original matrices. We can also notice something more in that
this multiplication can be factored in a way that allows us to preprocess some of
the work.

Consider two of these vectors: V = (v1, v2, v3, v4) and W = (w1, w2, w3, w4).
Their dot product is given by

But this can be factored into the following:

The reader should be able to show that these two are the same. It would appear
that the second of these equations actually does more work because we can
count six multiplications verses four and ten additions verses three. What might
not be obvious is that the last few terms can be preprocessed and stored for
each row of the first matrix and for each column of the second. This means
that in practice we will only have to do the first two multiplications and five
additions along with an additional two additions to include the preprocessed
values.

The full Winograd’s matrix multiplication algorithm for multiplying G (size
a � b) and H (size b � c) to get result R (size a � c) is

d = b/2

// calculate rowFactors for G

for i = 1 to a do

   rowFactor[i] = Gi,1 * Gi,2
   for j = 2 to d do

      rowFactor[i] = rowFactor[i] + Gi,2j-1 * Gi,2j
   end for j

end for i

// calculate columnFactors for H

for i = 1 to c do

   columnFactor[i] = H1,i * H2,i

V W• v1 w1* v2+ w2* v3+ w3* v4+ w4*=

V W• v1 w2+( ) v2 w1+( )* v3 w4+( ) v4 w3+( )*
v1–

+
v2* v3– v4* w1– w2* w3– w4*

=
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   for j = 2 to d do

      columnFactor[i] = columnFactor[i] + H2j-1,i * H2j,i
   end for j

end for i

// calculate R

for i = 1 to a do

   for j = 1 to c do

      Ri,j = -rowFactor[i] - columnFactor[j]

      for k = 1 to d do

         Ri,j = Ri,j + (Gi,2k-1 + H2k,j)*(Gi,2k + H2k-1,j)
      end for k

   end for j

end for i

// add in terms for odd shared dimension

if (2 * (b / 2) ≠ b) then
   for i = 1 to a do

      for j = 1 to c do

         Ri,j = Ri,j + Gi,b * Hb,j
      end for j

   end for i

end if

Analysis of Winograd’s Algorithm

Let’s look at the case where the shared dimension (b) is even. We can count the
multiplications and additions as follows: 2

Multiplications Additions

Preprocessing of G a * d a * (d � 1)

Preprocessing of H c * d c * (d � 1)

Computing elements of R a * c * d a * c * (2d + d + 1)

Total

2 Under Additions and Computing elements of R, the 2d is from the two additions in 
the terms of the product, d is from the sum of the products, and the 1 is from the ini-
tialization of the result.

a b c a b b c*+*+* *
2

----------------------------------------------------
a b 2–( ) c b 2–( ) a c 3b 2+( )* *+ +

2
--------------------------------------------------------------------------------------
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■ 4.2.2 Strassen’s Matrix Multiplication

For Strassen’s algorithm, we will work with matrices that are square. In actual-
ity, Strassen’s algorithm is fast enough that expanding matrices to be square can
sometimes still result in enough improvement to offset the extra elements.

Strassen’s algorithm uses a set of seven formulas to multiply two 2 � 2
matrices. These formulas are quite unusual, and it is unfortunate that Strassen’s
original paper presenting this method gave no indication of how he arrived at
these formulas. What is notable is that these formulas and their use don’t rely
on the base elements being commutative under multiplication. This means that
each of the elements could be matrices and, therefore, this method can be
applied recursively. Strassen’s formulas are

The entries of R would then be calculated by

For two 2 � 2 matrices, we see that this algorithm does 7 multiplications
and 18 additions. This doesn't appear to be a saving because we trade 1 multi-
plication for 14 additions relative to the standard algorithms. A full analysis of
this would show that the number of multiplications done for two N � N
matrices would be approximately N 2.81 and the number of additions would be
about 6N 2.81 � 6N 2. For two 16 � 16 matrices, Strassen's algorithm would
save about 1677 multiplications at a cost of 9138 additions.

Putting together our three results gives the following chart (for ease of com-
parison, the results are all shown for two N � N matrices):

Multiplications Additions

Standard algorithm

Winograd’s algorithm

Strassen’s algorithm

x1 G1 1, G2 2,+( ) H1 1, H2 2,+( )*=

x2 G2 1, G2 2,+( ) H1 1,*=

x3 G1 1, H1 2, H2 2,–( )*=

x4 G2 2, H2 1, H1 1,–( )*=

x5 G1 1, G1 2,+( ) H2 2,*=

x6 G2 1, G1 1,–( ) H1 1, H1 2,+( )*=

x7 G1 2, G2 2,–( ) H2 1, H2 2,+( )*=

R1 1, x1 x4 x5– x7+ +=

R2 1, x2 x4+=

R1 2, x3 x5+=

R2 2, x1 x3 x2– x6+ +=

N3 N 3 N 2–

N 3 2N 2+
2

------------------------ 3N 3 4N 2 4N–+
2

------------------------------------------

N 2.81 6N 2.81 6N 2–
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Strassen’s algorithm is rarely used in actual practice because of the book-
keeping necessary to use it recursively. Its importance is that it was the first
algorithm for multiplying matrices that was faster than the O(N3) algorithms.
Improving the efficiency of matrix multiplication and perhaps identifying a
lower bound continues to be an active area of research.

4.2.3

1. How many multiplications and additions are done by Winograd’s algorithm
for an odd value of the shared dimension?

2. Show that Strassen’s algorithm works by using it to multiply the two matri-
ces

Compare the result with that of the standard algorithm. Show all work.

4.3 LINEAR EQUATIONS

A system of linear equations is a set of N equations with N unknown quanti-
ties. Typically these equations are written as

These equations can come from a number of sources, but typically the con-
stants (represented by the a coefficients) are some settings on equipment that
give the indicated results (represented by the b values in the equations). We are
interested in knowing what values of the unknowns (represented by the x val-
ues) will produce these results. Consider the following example:

4.2.3 EXERCISES■

1 9
7 3

and 5 2
4 11

a11x1 a12x2 a13x3
. . . a1NxN+ + + + b1=

a21x1 a22x2 a23x3
. . . a2NxN+ + + + b2=

�

aN1x1 aN2x2 aN3x3
. . . aNNxN+ + + + bN=

2x1 7x2 1x3 5x4+ + + 70=

1x1 5x2 3x3 2x4+ + + 45=

3x1 2x2 4x3 1x4+ + + 33=

8x1 1x2 5x3 3x4+ + + 56=
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One way to try to find the value for each x would be to do substitutions of
the equations. In other words, we could take the second equation and rewrite
it as x1 = 45 � 5x2 � 3x3 � 2x4 and then substitute this into the other three
equations in place of x1. This would give three equations with three
unknowns. We could then take one of the remaining three equations and do
the same for x2, which would give us two equations with two unknowns.
Doing this one more time with x3 would give one equation with one
unknown (x4). We would now know the value for x4 and could substitute this
back into one of the two equations in the previous step, which would allow us
to solve for the value of x3. Substituting x3 and x4 into one of the three equa-
tions we got after the first substitution would allow us to determine the value
of x2, and then using these three values in one of our original equations would
give us the value of x1.

This process works extremely well, but a lot of algebra is needed, and it
would be easy for a mistake to occur. As the number of equations and
unknowns increases, this algebra work can take quite a while to complete. This
process is not easily programmed as described, but it is the basis for the Gauss-
Jordan method, which will be described next.

■ 4.3.1 Gauss-Jordan Method

We could consider the system of linear equations as a matrix with N rows and
N + 1 columns. For the previous example, this would give the matrix

We can now do a series of operations based on the rows to reach the result.
When the first n rows and columns represent the identity matrix, the final col-
umn will have the x values that we want. This would look like the following:

2 7 1 5 70
1 5 3 2 45
3 2 4 1 33
8 1 5 3 56

1 0 0 0 x1

0 1 0 0 x2

0 0 1 0 x3

0 0 0 1 x4
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The basic plan is to divide the first row by the value in the first column and
then subtract multiples of this new first row from each of the other rows. In
our example, the second row would have the new first row subtracted from it,
the third row would have 3 times the new first row subtracted from it, and the
fourth row would have 8 times the new first row subtracted from it. You should
recognize that this would create the proper first column. This new matrix is

We now repeat this process for the second row. After we divide each of the
values in this row by the number in the second column (1.5), we use the values
in the second column of the other rows to determine how much this row is
multiplied by for each subtraction. The new matrix is now (values shown are
rounded)

We now repeat this process, using the third row to clear out the third col-
umn and the fourth row to clear out the fourth column. This gives the next
two matrices:

1 3.5 0.5 2.5 35
0 1.5 2.5 0.5– 10
0 8.5– 2.5 6.5– 72–

0 27– 1 17– 224–

1 0 5.33– 3.66 11.7
0 1 1.67 0.33– 6.67
0 0 16.7 9.3– 15.3–

0 0 46 26– 44–

1 0 0 0.68 6.76
0 1 0 0.6 8.2
0 0 1 0.56– 0.92–

0 0 0 0.24– 1.68–

1 0 0 0 2
0 1 0 0 4
0 0 1 0 3
0 0 0 1 7
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The final matrix gives us the x values of x1 = 2, x2 = 4, x3 = 3, and x4 = 7.
The problem with this process is that on a computer, we will get round-off
errors that may give inaccurate results. Round-off errors can multiply within a
computer program so that a minor round-off difference in one calculation will
cause the next to be more inaccurate than the last. In a large system of linear
equations, round-off errors can be rather significant. There are other algo-
rithms to solve or at least control these round-off errors, but the description of
those algorithms is more appropriate for a text on numerical analysis and will
not be discussed further.

A second concern with this process is what happens if two rows are just
multiples of each other. In that case, we will wind up with one row that is
entirely zero, and that will lead to a divide by zero error in our algorithm. This
problem is called singularity, and modifying this algorithm to handle singular-
ity is beyond the scope of this book.

4.3.2

1. Show the steps in the Gauss-Jordan algorithm for the following system of
linear equations:

2. Show the steps in the Gauss-Jordan algorithm for the following system of
linear equations:

3. From the description of Section 4.2.1, do an analysis of the Gauss-Jordan
method for solving a system of N linear equations with N unknowns. Your
analysis should determine the number of multiplications and the number of
additions that are done.

4.3.2 EXERCISES■

3x1 6x2 12x3 9x4+ + + 78=

2x1 3x2 5x3 7x4+ + + 48=

1x1 7x2 2x3 3x4+ + + 27=

4x1 9x2 1x3 2x4+ + + 45=

2x1 4x2 5x3+ + 23=

1x1 5x2 3x3+ + 16=

3x1 1x2 6x3+ + 25=
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C H A P T E R 5
Matching

Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Create finite automata
• Use character strings
• Use one- and two-dimensional arrays
• Describe growth rates and order

GOALS

At the end of this chapter, you should be able to

• Explain the substring matching problem
• Explain the straightforward algorithm and its analysis
• Explain the use of finite automata for string matching
• Construct and use a Knuth-Morris-Pratt automaton
• Construct and use slide and jump arrays for the Boyer-Moore algorithm
• Explain the method of approximate string matching

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. Using the string “abccbaabcabcbccabc” as the
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text, you should trace the straightforward algorithm and the Knuth-Morris-
Pratt algorithm using the pattern “abcabc” and trace the Boyer-Moore algo-
rithm using the pattern “abcbccabc.” You should also try to answer any ques-
tions before reading on. A hint or the answer is in the sentences following the
question.

ooking for a substring in a longer piece of text is an important utility in
text editors and word processors. This chapter begins with an examina-
tion of four ways this can be done. Presentation of matching techniques

will be done from the perspective of character strings. These techniques could,
however, be used to search for any string of bits or bytes in a binary file. Virus
checking is an example of a binary-based use that searches for the known pat-
tern of bytes that appear in a computer virus.

Word processing programs typically have spelling checkers that will not only
identify words that appear to be misspelled but also suggest possible correct
spellings for the word. One process for spell checkers is to produce a sorted list
of words in the document. This list is then compared to the words stored in
both the system dictionary and the user’s dictionary, and words that do not
appear are flagged as potentially incorrect. The process of identifying suggested
alternative spellings can involve approximate string matching.

The discussion of approximate string matches will be based on looking for a
substring in a given piece of text. This technique can, however, also be applied
to looking for approximate matches with a dictionary.

5.1 STRING MATCHING

Our problem is to find the first occurrence of a substring within a larger piece
of text. Finding later occurrences can use the same techniques by just changing
the starting point in the text. This problem is complex because the entire sub-
string has to match in order. In the standard algorithm, we begin by compar-
ing the first character of the text with the first character of the substring. If
they match, we move to the next character of each. This process continues
until the entire substring matches the text or the next characters do not match.

L
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In the first case we are done, but in the second, we move the starting point in
the text by one character and begin matching with the substring again. This
process can be seen in Fig. 5.1.

The following algorithm accomplishes this standard string match:

subLoc = 1 // current match point in substring

textLoc = 1 // current match point in text

textStart = 1     // location where this match attempt starts

while textLoc ≤ length(text) and subLoc ≤ length(substring) do
if text[ textLoc ] = substring[ subLoc ] then

textLoc = textLoc + 1

subLoc = subLoc + 1

else

// begin again but move the start by 1

textStart = textStart + 1

textLoc = textStart

subLoc = 1

end if

end while

■ FIGURE 5.1
Match of substring

“they” in text “there
they are.” The first

pass matches
three characters of

the substring, but
only the seventh

pass matches
completely. (There

are 13 character
comparisons done
to find the match.)

Text: there they are

Pass 1: they

Text: there they are

Pass 2:  they

Text: there they are

Pass 3:   they

Text: there they are

Pass 4:    they

Text: there they are

Pass 5:     they

Text: there they are

Pass 6:      they

Text: there they are

Pass 7:       they
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if (subLoc > length(substring))

return textStart // found a match

else

return 0      // indicates no match found

end if

It should be obvious that the important task is to compare characters, and
that is what we will count. In the worst case, each time we compare the sub-
string we match all of the characters but fail on the last one. How many times
could this happen?  It could happen once for each character in the text. If S is
the length of the substring and T is the length of the text, the worst case would
seem to take S * (T � S + 1) comparisons.1 We have to consider whether this
arrangement of characters is at all possible. Consider a substring of
“XX . . . XXY” and text of “XX . . . XXXXX,” where the substring is a set of
S � 1 Xs followed by one Y and the text is a set of T Xs. This set of characters
will cause this worst-case behavior. It should be noted that natural language is
not usually like this, and so it can be expected that if this algorithm is used
with actual words, it will perform much better. In fact, studies have shown that
this algorithm averages a little over T comparisons on a natural language text.2

The problem with the standard algorithm is that it can waste a lot of effort.
If we have matched the beginning part of the substring, we can use that infor-
mation to tell us how far to move in the text to start the next match. For
example, if we look at pass 1 in Fig. 5.1, we see that the mismatch occurred
with the fourth character of the substring. That means the first three matched.
When we examine the substring, we see that the third symbol doesn’t appear
anywhere else, so we could have skipped past the first three symbols and had
our second pass start with the fourth symbol of the text instead of the second.
The following techniques take advantage of this fact.

■ 5.1.1 Finite Automata

The area of theory of computation shows that finite automata are used to
decide whether a word is in a given language. A finite automaton (the singular

1  The T � S + 1 is because we can stop if there are fewer characters left in the text 
than there are in the substring.
2 Because of the limited number of characters and the uneven distribution of their 
occurrence (i.e.; in English, e occurs much more frequently than z or q), performance 
on natural language will always be better than our general measures.
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form of the word “automata”) is a simple machine that has a current state and a
transition function. The transition function examines the state and the next
character of input and then decides on a new state for the automaton. Some
states are labeled as accepting states, and if the automaton is in one of these
when it has finished the input, the input word is said to be accepted.

We can use finite automata to do string matching by having an automata set
up to match just one word, and when we get to the final state, we know we
have found the substring in the text. This technique is very efficient because a
finite automata functions by looking at each input symbol once. This means
that we can do the matching with a finite automaton in no more than T com-
parisons. The problem becomes developing an algorithm to construct a deter-
ministic finite automaton for any possible substring. This is not an easy task,
and although algorithms are available that can do this, they take a lot of time.
Because of this, finite automata are not a good general-purpose solution to
string matching.

■ 5.1.2 Knuth-Morris-Pratt Algorithm

When constructing a finite automaton to look for a substring in a piece of
text, it is easy to build the links that move us from the start state to the final
accepting state, because they are just labeled with the characters of the sub-
string (see Fig. 5.2).  The problem occurs when we begin to add additional
links for the other characters that don’t get us to the final state.

The Knuth-Morris-Pratt algorithm is based on finite automata but uses a
simpler method of handling the situation of when the characters don’t match.
In Knuth-Morris-Pratt, we label the states with the symbol that should match
at that point. We then only need two links from each state—one for a success-
ful match and the other for a failure. The success link will take us to the next
node in the chain, and the failure link will take us back to a previous node
based on the word pattern. A sample Knuth-Morris-Pratt automaton for the
substring “ababcb” is given in Fig. 5.3.

h e l l o■ FIGURE 5.2
The beginning of a

finite automaton
to look for the

substring “hello”
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Each success link of a Knuth-Morris-Pratt automaton causes the “fetch” of a
new character from the text. Failure links do not get a new character but reuse
the last character fetched. If we reach the final state, we know that we found the
substring. To assure that you understand how this process works, you should try
it with the text string “abababcbab” and the automaton in Fig. 5.3 to see how it
successfully finds the substring. The full algorithm for this process is

subLoc = 1    // current match point in substring

textLoc = 1   // current match point in text

while textLoc ≤ length(text) and subLoc ≤ length(substring) do
   if subLoc = 0 or text[ textLoc ] = substring[ subLoc ] then

      textLoc = textLoc + 1

      subLoc = subLoc + 1

   else   // no match so follow fail link

      subLoc = fail[ subLoc ]

   end if

end while

if (subLoc > length(substring)) then

   return textLoc - length(substring) + 1  // found a match

else

   return 0                                // no match

end if

Before we can analyze this process, we need to consider how these fail links
are determined. Notice that we do not need to do anything special for the suc-
cess links because they just move us to the next successive location. The failure
links, however, are calculated by looking at how the substring relates to itself.
For example, if we look at the substring “ababcb,” we see that if we fail when
matching the c, we shouldn’t back up all the way. If we got to character 5 of

ss s s s s s

f
f

f
f

f
f

a b b ba c
Get
next

character

■ FIGURE 5.3
A completed Knuth-

Morris-Pratt
automaton

for the substring
“ababcb”
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the substring, we know that the first four characters matched, and so the “ab”
that matched substring characters 3 and 4 should perhaps match substring
characters 1 and 2 for a successful search. The following algorithm determines
these relationships in the substring:

fail[ 1 ] = 0

for i = 2 to length(substring) do

   temp = fail[ i - 1 ]

   while (temp > 0) and (substring[ temp ] ≠ substring[ i - 1 ]) do
      temp = fail[ temp ]

   end while

   fail[ i ] = temp + 1

end for

Analysis of Knuth-Morris-Pratt

We first consider the failure link construction phase of the algorithm. If we
look at the while loop, we see that it will run until we find two substring
characters that match. On a cursory look at the process, you see that temp fol-
lows the fail links, and those are in decreasing order. This might lead you to
believe that, for the k th pass of the for loop, the while loop does as many as
k � 1 comparisons and this entire process takes about S2 / 2 comparisons. If
we look closer, we will find a better approximation of the number of compari-
sons. We notice the following facts:

1. There are at most S � 1 times that the ≠ character comparisons will be false.
2. The fail links are all smaller than their index (i.e., fail[ x ] < x for every x)

because they indicate where to back up to on a failed text character match.
3. Every time the ≠ comparison is true, temp is decreased because of fact 2.
4. On the first pass of the for loop, the while is not done because temp =

fail[1]=0.
5. The combination of the final statement of the for loop, the increment of i,

and then the first statement of the next pass of the for loop means that
temp is incremented by 1 each subsequent pass of the for loop.

6. Effectively by fact 5, because there are S � 2 “subsequent passes” of the for
loop, temp is incremented S � 2 times.

7. Because fail[1]=0, temp never becomes negative.

We now know that temp starts at a value of 0 (fact 4), and is incremented no
more than S � 2 times (fact 6). Because each time the characters don’t match
temp is decreased (fact 3) and temp never becomes negative (fact 7), there can
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be no more than S � 2 mismatched character comparisons. This means a total
of 2S � 3 matched (fact 1) and mismatched character comparisons. So, the
construction of the links is linear relative to the length of the substring.

Now we consider the matching algorithm. We notice that the while loop
has at most one character comparison per pass. On each pass, either textLoc
and subLoc are incremented or subLoc is decremented. Because textLoc
starts at 1 and never becomes greater than the length of the text, we know that
there are at most T increments of textLoc and subLoc. The index subLoc
also starts at 1, never becomes negative, and is never increased more than T
times, so it can be decreased at most T times. Putting all of this together tells us
that because there are at most T increments of textLoc and subLoc and T
decreases of subLoc, there are at most 2T comparisons of characters.

So, we see that the Knuth-Morris-Pratt algorithm in total does 2T + 2S � 3
character comparisons, which is of order O(T + S). This is an improvement
over the standard algorithm, which is of order O(T * S). Studies of these two
algorithms on natural language text have shown that they operate at roughly
the same level of complexity, although Knuth-Morris-Pratt is slightly better
because it doesn’t back up in the text.

■ 5.1.3 Boyer-Moore Algorithm

The Boyer-Moore algorithm is different from the previous two algorithms in
that it matches the pattern from the right instead of left end. By examining the
pattern we are looking for, we should be able to make better jumps through
the text when a mismatch has occurred.

For example, in Fig. 5.4 (the same match as Fig. 5.1), we first compare the y
with the r and find a mismatch. Because r doesn’t appear in the pattern at all,
we know the pattern can be moved to the right a full four characters (the size
of the pattern). We next compare the y with the h and find a mismatch. This

■ FIGURE 5.4
Match of substring

“they” in text “there
they are” (there are

six character
comparisons done

to find the match)

Text: there they are
Pass 1: they
Text: there they are
Pass 2:     they
Text: there they are
Pass 3:       they
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time because the h does appear in the pattern, we move the pattern only two
characters to the right so that the h characters line up. We then begin the
match from the right side and find a complete match for the pattern. In the
Boyer-Moore algorithm, we did 6 character comparisons verses 13 for the first
simple algorithm.

There is a problem with this one improvement. If you look at Fig. 5.5, you
see that we will match the k, n, and i, but the t of tinkle doesn’t match the h of
think. With just the above change, we would then slide the pattern to the right
one character so that the t characters line up. The problem is that because we
matched the “ink” part of the pattern, shifting just one character will cause a
quick mismatch that we could predict will occur.

The Boyer-Moore algorithm will process the pattern in two ways. In the
first, we will calculate a slide value that will tell us how much the pattern has to
be shifted to line up the mismatched text character with where it next appears
in the pattern. In the second, we will calculate a jump value that is based on
character sequences at the end of the pattern that also appear earlier. We first
look at the matching process that uses these values before we look at how to
calculate them.

The Match Algorithm

We have described generally how the slide and jump arrays will be used. In the
slide array, we have the amount that the pattern can be shifted in the text to
line up the mismatched character if possible. In the jump array, we have the
amount that the pattern can be shifted to line up previously matched characters
with another matching place in the pattern. There are two possibilities when
the pattern character and the text character don’t match. The slide array could
indicate a larger move than the jump array, or the jump array could indicate a
larger move than the slide array. (The possibility that they are the same is easiest
because they are both indicating the same shift.)  What do these two possibili-
ties tell us?  If the slide array is larger, it means that the mismatched character

■ FIGURE 5.5
A problem with

sliding

Text: the tinkle of a bell
Pattern:    think
Text: the tinkle of a bell
Pattern:     think



130 M A T C H I N G  A L G O R I T H M S

appears “closer” to the front than the repetition of the end characters of the
pattern. If the jump array is larger, it means that the end characters of the pat-
tern that matched appear closer to the front of the pattern than the mis-
matched character. In either of these two cases, we should use the larger shift,
because the smaller shift will definitely fail again because of what we know
from the other value. For example, if the slide array has a value of 4 and the
jump array has a value of 2, if we just move by two characters, we know this
will fail because the mismatched character is still not lined up. But if we move
by the four characters, the mismatched character will line up correctly in the
pattern, and there is a possibility that the end matching characters might match
in their new location as well.

Because we are just taking the larger of the two values, the algorithm is
rather simple:

textLoc = length(pattern)

patternLoc = length(pattern)

while (textLoc ≤ length(text)) and (patternLoc > 0) do
   if text[ textLoc ] = pattern[ patternLoc ] then

      textLoc = textLoc - 1

      patternLoc = patternLoc - 1

   else

      textLoc = textLoc + MAXIMUM(slide[text[textLoc]], jump[patternLoc])

      patternLoc = length(pattern)

   end if

end while

if patternLoc = 0 then

   return textLoc + 1    // found a match

else

   return 0

end if

The Slide Array

We now look at the operation of the slide array. In Fig. 5.6(a), we begin the
match with textLoc = 6 and patternLoc = 6. Because those two charac-
ters match, both textLoc and patternLoc are decremented. The next two
characters also match, so textLoc and patternLoc are both decremented
again and now have a value of 4. There is a mismatch in the next character. We
want to slide the pattern so that the b character of the text lines up with the b
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character of the pattern as shown in Fig. 5.6(b). Then we begin the matching
process from the right end again. To do this, we need to reset patternLoc to
be the size of the pattern, and textLoc has to be increased by 4, which is
what really moves the pattern.

To accomplish this method of movement, we therefore need to determine
how much to increase textLoc based on the character that didn’t match. We
will use an array called slide that is as large as the character set that can
appear in the text. We initialize each element of the slide array to the size of
the pattern, because any characters not in the pattern should move the pattern
that amount. We then update the values for each character that does appear. If
a character appears more than once, the slide value will move the pattern so
the alignment is with the last occurrence. Alignment with characters earlier in
the pattern would be done by the jump factor, which will be discussed next.
The algorithm to calculate the slide values is

for every ch in the character set do

   slide[ ch ] = length(pattern)

end for

for i = 1 to length(pattern) do

   slide[ pattern[i] ] = length(pattern) - i

end for

     textLoc

Text: baabacacbacb

Pattern: abacac

     patternLoc

(a)

         textLoc

Text: baabacacbacb

Pattern:   abacac

         patternLoc

(b)

↓

↓

↑

↑■ FIGURE 5.6
Deciding on a

slide value
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If you trace this algorithm with the pattern “datadata,” you will find that
slide[d] = 3, slide[a] = 0, and slide[t] = 1, and the slide value is 8
for all other characters.

The Jump Array

We will create a second array called jump (the same size as our pattern) that
will encode information about the pattern relative to itself. This new array will
be able to let us know, for example, that when the h and t in Fig. 5.5 don’t
match, we need to move the pattern completely past where we currently are.
This new array will also know if there are repetitions of the characters at the
end of the pattern that might be good alternates for a match. For example, let’s
say our pattern is “abcdbc” and in the matching process we were able to match
the last two characters of the pattern with the text. If we now fail on the third
to last character, our jump array will tell us how much to shift the pattern so
the next time the text characters that matched the “bc” in positions 5 and 6 of
the pattern are now lined up with the “bc” in positions 2 and 3 of the pattern.
So, the jump array tells us the smallest move necessary to line up characters we
have already matched with the next place they appear in the pattern.

Let’s say that we have a pattern where a mismatch of a character means that
the pattern has to be shifted all the way past where we started. In Fig. 5.7, we
show a piece of text and a pattern. The X symbols in the pattern could be any
character and are used to help illustrate the process.

If we need to move the pattern completely past where we started, we would
want the X symbols to line up with the text from f to j, meaning that the new
starting value for textLoc would be 10. If the mismatch occurs at the e char-
acter when textLoc is 5, we would need to add 5 to textLoc to reposition
the pattern. If this mismatch occurs at the d character (textLoc = 4), we
would need to add 6. With a mismatch at characters c, b, or a, we would need

■ FIGURE 5.7
Determining a

jump value

Text:     abcdefghijklmn
Pattern:  XXXXX
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to add 7, 8, or 9, respectively. Thinking about this in general shows the amount
we add for a mismatch on the last character of the pattern is the pattern length,
and a mismatch on the first character is twice the length minus 1. This is the
basis for the jump array initialization.

Now, we need to look at a pattern where there is some repetition of charac-
ter sequences that are at the end of the pattern. We need to look at how much
to increase textLoc to move the pattern the correct amount (ignoring the
possibilities handled by the slide array). To do that, imagine we are matching
the pattern with the pattern. Consider the pattern “abcdbc” again. If the last
character doesn’t match, we can just increase textLoc by 1 and start again. If
the last character matched but the second to last didn’t, we can see that because
both c characters are preceded by b characters, we need to move the pattern
completely past where we started. If the last two characters match, but the
third to last doesn’t, we increase textLoc by 5, which will line up the “bc”
that matches the last two pattern characters with the second and third pattern
characters.

The calculation of the jump array is handled by the following algorithm.
The first loop handles the initialization of the jump array. The second loop
updates the array based on end characters that are repeated earlier. The third
(and fourth) loop adjusts the maximum moves of the front (end) of the jump
array based on where the pattern repetitions were found. The complete algo-
rithm is

// initialize jump to the largest possible movement

for i = 1 to length(pattern) do

   jump[ i ] = 2 * length(pattern) - i

end for

// match the end of the pattern with characters earlier in the pattern

test = length(pattern)

target = length(pattern) + 1

while test > 0 do

   link[test] = target

   while target ≤ length(pattern) and pattern[test] ≠ pattern[target] do
      jump[target] = MINIMUM( jump[target], length(pattern)-test )

      target = link[target]

   end while
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   test = test - 1

   target = target - 1

end while

for i = 1 to target do

   jump[ i ] = MINIMUM( jump[ i ], length(pattern) + target - i )

end for

temp = link[ target ]

while target ≤ length(pattern) do
   while target ≤ temp do
      jump[target] = MINIMUM(jump[target], temp-target+length(pattern))

      target = target + 1

   end while

   temp = link[temp]

end while

Figure 5.8 shows the values of the jump and link arrays after each of the
loops for the pattern value “datadata.”

15 14 13 12 11 10 9 8

5 6 7 8 7 8 8 9

15 14 13 12 11 10 3 1

11 10 9 8 11 10 3 1

11 10 9 8 11 10 3 1

Second loop

First loop

Fourth loop

link

jump

jump

Third loop

jump

jump

■ FIGURE 5.8
Calculation of the

jump array for
“datadata”
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Analysis

In the following analysis, we will use P to represent the number of characters
in the pattern, T to represent the number of characters in the text, and A to
represent the number of characters in the alphabet.

The calculation of the slide array values does an assignment for each array
location and another for each character of the pattern.  This does O(A + P )
assignments.

The calculation of the jump array will at worst compare each character to all
of the ones that appear later in the pattern. From past experience, you should
quickly see that this does O(P 2) comparisons. Because there could be an assign-
ment to the jump array for each of these, there are also O(P 2) assignments.

The details of an analysis of the number of comparisons done by the match-
ing algorithm are beyond the scope of this book. Studies have shown that for
natural language text with patterns of six or more characters, the match algo-
rithm will compare a character of the pattern with about 40% of the characters
or less. As the length of the pattern increases, the percentage decreases to a
lower value of about 25% of the characters.

5.1.4

1. Calculate the fail links for the Knuth-Morris-Pratt algorithm for the patterns

a. ABABBC
b. ABCABC
c. CBCBBACA
d. BBABBCAC

2. In the text, we indicated that the worst case for the standard algorithm was a
substring consisting of a string of Xs with one Y at the end and a text con-
sisting of a string of Xs. If the substring has S characters (S � 1 Xs and 1 Y)
and the text has T characters, we saw that the standard algorithm would take
S *T character comparisons. What would the fail links look like for the sub-
string “XXXXY” and how many comparisons would be done to construct
them?  In general, what would the fail links look like for strings of this
form, and how many comparisons would be done to construct them?  How
many character comparisons would the Knuth-Morris-Pratt algorithm do
attempting to match the substring and text?  (Show all work used to get
your answer.)

5.1.4 EXERCISES■
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3. Calculate the slide array values for the Boyer-Moore algorithm for the pat-
terns below. For simplicity, you should assume an alphabet of {A, B, C, D, E}.

a. ABBCBB
b. ACBDCB
c. CABCDB
d. BACAACA

4. Calculate the jump array values for the Boyer-Moore algorithm for the pat-
terns

a. ABBCBB
b. ACBDCB
c. CABCDB
d. BACAACA

5.2 APPROXIMATE STRING MATCHING

It is typical to identify a set of common problems that might have caused mis-
matches between the substring and the text with which it is being matched.
Those differences are that the corresponding characters in the substring and
text are different, the substring has a character the text doesn’t have, or the text
has a character the substring doesn’t have. Typically, typing errors fall into one
of these three types, with a common error of transposed characters being
treated as two character differences of the first type.

We will typically look for a k-approximate match for the substring, where k
represents the maximum number of differences of the kind mentioned in the
previous paragraph. There are a number of possibilities that we will need to
keep track of. For example, what does it mean if the first character of the sub-
string and text do not match?  It could mean that there is a mismatch of char-
acters, there is a character missing from the substring, or a character is missing
from the text. If the characters do match, getting a better overall match of the
entire substring may still require that we consider the case of a character miss-
ing from the pattern or the text.

For example, consider the attempt to match the substring “ad” with the text
“read.” The first position has two possible 2-approximate matches. (The a is
changed to an r and the d is changed to an e, or there could be an “re” added
to the front of the string.)  There is also a 3-approximate match at the first
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position. (Add an r and change the “ad” to an “ea”.)  The second position has a
2-approximate match (change the “ad” to an “ea”) and a 1-approximate match
(add an e to the front).

Notice that there can be a lot of possibilities and they build very quickly. If
the first few characters matched, but then we hit a sequence that didn’t, we
might find a better match if we changed some characters or put some extra
characters into the substring, into the text, or into both. How can we consider
the possibilities and still do this with a reasonable algorithm and data structure?
If the algorithm has to test all possibilities, it will be too complex. Therefore,
we make the algorithm simple but have a larger data structure.

We will solve this problem by creating a matrix that we will call diffs to
hold the information that we have gathered so far. Each row of this matrix will
be associated with one of the characters in the substring, and each column
will be associated with one of the characters in the text. The values in the
matrix will give us an idea of how well the matching process is going at that
point. So, if the value in row 5 column 27 is a 4, in matching the first five
characters of the substring with the portion of the text ending at location 27,
we have found four differences.

The number of differences for any location will be based on the three possi-
ble values that are immediately above, to the left, and to the left and diagonally
up. If we use the value above, we are implying that the text is missing a charac-
ter of the substring. If we use the value to the left, we are implying that the
substring is missing a character of the text. Use of the diagonal value is related
to the match or mismatch of the characters. More specifically, for any value of
diffs[i, j ], we will look at the minimum of three values.3

1. diffs[i � 1, j � 1] if substringi = textj, otherwise diffs[i � 1, j � 1] + 1
2. diffs[i � 1, j ] + 1 (substringi is missing from the text)
3. diffs[i, j � 1] + 1 (textj is missing from the substring)

To get this process started, if we refer to any location above the matrix (in
other words, i = 0), that location will be considered to have a zero stored in it.
If we refer to any location to the left of the matrix (in other words, j = 0), that
location will be considered to have the corresponding value of i stored in it. A

3 Notice that diffs[i � 1, j � 1] represents the value diagonally up and to the left, 
diffs[i � 1, j] represents the value above, and diffs[i, j � 1] represents the value to the 
left.
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sample of this for the substring “trim” and the text “try the trumpet” is given
in Fig. 5.9.

If we look at the bottom row for the character y in the text, we see the
value 2, which represents the fact that to match “trim” so that it ends at the y
would require two differences of the kind discussed before. Those two differ-
ences would represent an m missing from the text after the y and the mismatch
of the y with the i or an i missing from the text before the y and the mismatch
of the y with the m. So, the bottom row gives us the best possible matches of
the substring ending at that point in the text. We see that the closest match of
“trim” in the text, with one difference, would end at the m in trumpet and
represents the mismatch of the i and u.

If this process were used in practice, we would specify not only the substring
and text but also the maximum number of differences for which we were
looking. The algorithm would fill in the matrix column by column until the
bottom value of a column was less than or equal to the number given. This
means that the algorithm does not need to store S *T integers for this matrix
(where S is the number of characters in the substring and T is the number of
characters in the text), but rather it just needs to store 2S integers for the col-
umn being calculated and for the previous column on which it depends.

This style of algorithm is classified as “dynamic programming,” which will
be discussed again in Chapter 9.

■ 5.2.1 Analysis

This process is easy to analyze because of the nature of the matrix. We see that
for each location in the matrix, we do one character comparison. This means
that in the worst case there will be S * T comparisons. Notice that even with
all of the possible differences that could occur, this process operates as effi-
ciently as the straightforward exact string match algorithm.
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■ FIGURE 5.9
The diffs matrix for

the substring “trim”
and the text “try
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5.2.2

1. Construct the approximate matches matrix for substring “their” and text
“hello there friends.”

2. Construct the approximate matches matrix for substring “where” and text
“were they here.”

3. When we looked for an exact match, we could determine the starting point
easily, because we knew the start had to be S characters from the end. With
approximate matching, finding the start of the match is not so easy because
of the possibility of characters missing from the substring, the text, or both.
Give a detailed description of what data structure and process you would
add to the algorithm described in this lesson to have that information avail-
able when a k-approximate match is found. (Hint:  One way to see if the
parenthesis in an expression match is to keep a counter as you scan the
expression, adding 1 to it on every open parenthesis, subtracting 1 from it
on every close parenthesis, and not changing it for other characters. Can
you do something similar to keep track of missing characters?)

5.3 PROGRAMMING EXERCISES

You can get a large block of text to use for these programming problems by
saving a term paper you wrote using a word processor in text-only format. To
be able to test special cases, put in a word that is not already there. Options for
this word might be a plant or flower, the name of a place, or a color name. Be
careful in your choice of words, because a short word may appear as part of
other words. For example, red is part of bothered. Using this technique, you
could put the word “banyan” someplace in the middle of the text and the word
“potato” at the end, and then search for those words.

1. Program up the Knuth-Morris-Pratt algorithm and count the number of
character comparisons done for a few different cases. Don’t forget to count
the comparisons done in the calculation of the failure links. Be sure to test
both long and short patterns. Your program should output the location in
the text (distance from the start) where the pattern was found and how
many comparisons were done. How do your results compare to the analysis
done in the text?

5.2.2 EXERCISES■
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2. Program up the Boyer-Moore algorithm and count the number of character
comparisons done for a few different cases. Don’t forget to count the com-
parisons done in the calculation of the slide and jump arrays. Be sure to test
both long and short patterns. Your program should output the location in
the text (distance from the start) where the pattern was found and how
many comparisons were done. How do your results compare to the analysis
done in the text?



C H A P T E R 6
Graph Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Describe a set and set membership
• Use two-dimensional arrays
• Use stack and queue data structures
• Use linked lists
• Describe growth rates and order

GOALS

At the end of this chapter, you should be able to

• Describe and define graph terms and concepts
• Create data structures for graphs
• Do breadth-first and depth-first traversals and searches
• Find the minimum spanning tree for a connected graph
• Find the shortest path between two nodes of a connected graph
• Find the biconnected components of a connected graph
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STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. You should do a breadth-first and depth-first
traversal starting at node A for the following graph:

You should trace the Dijkstra-Prim minimum spanning tree algorithm start-
ing at node A, Kruskal’s minimum spanning tree algorithm, and Dijkstra’s
shortest-path algorithm starting at node A for the following graph:

You should also try to answer any questions before reading on. A hint or the
answer is in the sentences following the question.

raphs are a formal description for a wide range of familiar situations.
The most common example is a road map, which shows the location
of intersections and the roads that run between them. In graph termi-

nology, the intersections are the nodes of the graph, and the roads are the
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edges. Sometimes our graphs are directed (like one-way streets) or weighted
with a travel cost associated with each edge (like toll roads). As we give more
details on the terminology and concepts in graphs, the similarity to road maps
will be even clearer.

After we have explored the mathematical concepts of graphs, we will look
at methods of storing them so that they can be used and manipulated by our
algorithms. We will see that there are alternatives for graph storage that vary in
the amount of overhead, which depends on the graph itself.

There are times when information needs to be distributed to a large number
of people or to the computers on a large network. We would like this informa-
tion to get to everywhere, but we also don’t want it going any place twice.
Some groups of people will accomplish this by setting up a “phone tree” where
each person has a small number of people to call to pass on news. If everyone
appears once in the tree and if the tree is not very deep, information will travel
to everyone very quickly. For graphs, this is a bit more complicated, because
there are typically many more connections between nodes than in a tree. We
will look at two graph traversal methods, depth-first and breadth-first, to
accomplish this.

A spanning tree is a connected subset of a graph that has no cycles and con-
tains all of the graph nodes and a subset of the edges. A minimum spanning
tree is a spanning tree where the sum of the weights for the edges included has
the smallest total possible. One use of a minimum spanning tree is in the con-
struction of a company intranet with routers to be placed at strategic points
throughout some geographic area. If we wish to minimize the cost of connect-
ing the routers, we could build a graph with each router as a node and the
weights on the edges set as the cost of connecting each pair of routers. The
minimum spanning tree of this graph will tell us which pairs of routers to con-
nect with wires so that our intranet is completely connected at the cheapest
cost.

A similar application is to find the shortest path between two nodes of a
graph. This has a practical application in planning a route for a car trip or send-
ing a message through a computer network.

An important consideration in large computer networks is reliability. We
would like the network to continue to function if one of the routers should
fail. In simple terms, this requires multiple paths between any two routers in
the network so that if something fails along one of the paths, there is still a way
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to get information through. The last section of this chapter looks at a bicon-
nected components algorithm. It will identify nodes in a graph that are on
every path from one part of the graph to another. These nodes are points in a
computer network, for example, where a failure could cause the network to
become disconnected.

6.1 GRAPH BACKGROUND AND TERMINOLOGY

Formally, a graph is an ordered pair, G = (V, E), of two sets representing the
nodes or vertices of the graph and the edges of the graph. An edge specifies
which nodes have a connection between them. When working with graphs,
we are frequently interested in how these edges can be put together to move
through the graph. For this reason, we will often talk of traveling an edge,
which means that we have changed our node of interest by following one of
the edges connected to it. In other words, if our graph has nodes A and B that
are connected by an edge, we will talk of “moving from A to B,” “traveling
from A to B,” or “traversing the edge from A to B” to represent the fact that
our focus has changed from node A to node B. For the ease of discussion, we
will just write the two node labels as shorthand for the edge that connects
them. So, AB would represent the edge between node A and node B, and we
will say that B is adjacent to A.

A graph can either be undirected or directed. An undirected graph, typically
just called a graph, has edges that can be traversed in either direction. In this
case, an edge is a set, which contains the labels of the nodes that are at the two
ends of the edge.1 A directed graph, also called a digraph, has edges that can
only be traversed in one direction. For a digraph, our set of edges will have
ordered pairs in which the first item is where the edge starts and the second is
where the edge ends.2 In our discussion, we will use the shorthand above for
our edges, with the context indicating if this is a directed edge or if you can
travel in either direction between the two nodes.

1 If a set representing an edge has just one element, that represents an edge that “loops,” 
or in other words, starts and ends at the same node.
2 In a digraph, an ordered pair that has the same label for both components represents 
an edge that starts and ends on the same node.
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After this section, we will specify graphs by drawing them instead of giving
these sets. In our drawings, we will use circles to represent the nodes of the
graph and lines connecting the circles to represent the edges. We will put the
node labels inside the circles. If we want to represent a directed graph, we will
use arrows to show the direction the edge can be traveled. Figure 6.1 shows the
drawing of a graph (Fig. 6.1(a)) and directed graph (Fig. 6.1(b)) with their for-
mal set definitions.

■ 6.1.1 Terminology

A complete graph is a graph with an edge between every pair of nodes. If there
are N nodes, there will be (N2 � N) / 2 edges in a complete graph without
loop edges. A complete digraph is a digraph with an edge allowing traversal
between every pair of nodes. Because the edges of a graph allow travel in two
directions, whereas a digraph’s edges allow travel in only one, a digraph with N
nodes will have twice as many edges, specifically N2 � N.

A subgraph (Vs, Es) of a graph or digraph (V, E) is one that has a subset of
the vertices (Vs ⊆V) and edges (Es ⊆ E) of the full graph.

A path between two nodes of a graph or digraph is a sequence of edges that
can be traveled consecutively. In other words, a path between node A and node
B would begin at node A and traverse a set of edges until node B was reached.
Formally, we say that a path from node vi to vj is the sequence of edges vivi+1,
vi+1vi+2, . . ., vj�1vj that are in the graph. We require that all of the nodes along
this path be unique. A path is said to have a length that represents the number
of edges that make up the path. The path AB, BC, CD, DE has length 4.
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■ FIGURE 6.1A
The graph G = ({1, 2, 3, 4, 5}, {{1, 2},

{1, 3}, {2, 3}, {2, 4}, {3, 5}, {4, 5}})

■ FIGURE 6.1B
The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),

(1, 3), (2, 1), (3, 2), (4, 3), (4, 5),
(5, 2), (5,4)})
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A weighted graph or digraph is one where each edge has a value, called the
weight, associated with it. In graph drawings, the weight will be written near
the edge. In formal definitions, the weight will be an extra component in the
set of an edge or the ordered “pair” (now a triplet). When working with
weighted graphs, we consider the weight to be the cost for traversing the edge.
A path through a weighted graph has a cost that is the sum of the weights of
each edge in the path. In a weighted graph, the shortest path between two
nodes is the path with the smallest cost, even if it doesn’t have the fewest edges.
For example, if path P1 has five edges with a total cost of 24, and path P2 has
three edges with a total cost of 36, path P1 will be considered the shorter path
because its cost is less.

A graph or digraph is called connected if there is at least one path between
every pair of nodes. A cycle is a path that begins and ends at the same node. An
acyclic graph or digraph is one that has no cycles. A graph that is connected
and acyclic is called an unrooted tree. An unrooted tree has the structure of a
tree except that no node has been specified as the root (but every node could
serve as the root).

6.1.2

1. Draw the following graph: G = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {1, 4}, {2, 5},
{2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}}).

2. Draw the following digraph: G = ({1, 2, 3, 4, 5}, {(1, 2), (1, 4), (1, 5),
(2, 3), (2, 4), (2, 5), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 5), (5, 2), (5, 3),
(5, 4)}).

3. Give the set description for the following graph:

6.1.2 EXERCISES■

1 2

5

6 3

4



6 . 2 D A T A  S T R U C T U R E  M E T H O D S  F O R  G R A P H S 147

4. Give the set description for the following digraph:

5. List all of the paths between node 1 and node 5 in the graph in question 3.
6. List all of the paths between node 1 and node 4 in the digraph in question 4.
7. List all of the cycles that start at node 3 in the graph in question 3.
8. List all of the cycles that start at node 7 in the digraph in question 4.

6.2 DATA STRUCTURE METHODS FOR GRAPHS

There are two ways that we can store the graph or digraph information: an
adjacency matrix or an adjacency list. In this section, there is no difference
between how these methods are used for graphs and digraphs. For this reason,
the term graph should be interpreted as meaning digraphs as well. As you will
see, these storage methods will also neutralize the differences between graphs
and digraphs, and so the algorithms that use these structures will not need to
differentiate between graphs and digraphs either.

An adjacency matrix gives us the ability to quickly access edge information,
but if the graph is far from being a complete graph, there will be many more
empty elements in the array than there are full elements. An adjacency list uses
space that is proportional to the number of edges in the graph, but the time to
access edge information may be greater.

There is no clear benefit to either of these methods. The choice between
these two will be closely linked to knowledge of the graphs that will be input
to the algorithm. In situations where the graph has many nodes, but they are
each connected to only a few other nodes, an adjacency list would be best
because it uses less space, and there will not be long edge lists to traverse. In sit-
uations were the graph has few nodes, an adjacency matrix would be best

7

1

6

543

2
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because it would not be very large, so even a sparse graph would not waste
many entries. In situations where the graph has many edges and begins to
approach a complete graph, an adjacency matrix would be best because there
would be few empty entries.

The following sections give the details on adjacency matrix and list methods.

■ 6.2.1 The Adjacency Matrix

An adjacency matrix, AdjMat, for a graph G = (V, E), with |V| = N, will be
stored as a two dimensional array of size N � N. Each location [i, j] of this
array will store a 0, except if there is an edge from node vi to node vj, the loca-
tion will store a 1. More formally,

The adjacency matrices for the graph and digraph in Fig. 6.1 are given in
Fig. 6.2. 

For weighted graphs and digraphs, the adjacency matrix entries would be ∞
if there is no edge and the weight for the edge in all other cases. The diagonal
elements would be 0, because there is no cost to travel from a node to itself.

AdjMat i j,[ ] 1 if vivj E∈
0 if vivj E∉




= for all i and j in the range 1 to N

1 2 3 4 5

1 0 1 1 0 0

2 1 0 1 1 0

3 1 1 0 0 1

4 0 1 0 0 1

5 0 0 1 1 0

1 2 3 4 5

1 0 1 1 0 0

2 1 0 0 0 0

3 0 1 0 0 0

4 0 0 1 0 1

5 0 1 0 1 0

■ FIGURE 6.2A
The adjacency matrix for the graph in Fig. 6.1(a)

■ FIGURE 6.2B
The adjacency matrix for the digraph in Fig. 6.1(b)
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■ 6.2.2 The Adjacency List

An adjacency list, AdjList, for a graph G = (V, E), with |V| = N, will be
stored as a one-dimensional array of size N, with each location being a pointer
to a linked list. There will be one list for each node, and that list will have one
entry for each adjacent node. Figure 6.3 shows the adjacency lists for the graph
and digraph in Fig. 6.1. 

For weighted graphs and digraphs, the adjacency list entries would have an
additional field to hold the weight for that edge.

6.2.3

1. Give the adjacency matrix for the graph in question 1 of Section 6.1.2.
2. Give the adjacency matrix for the digraph in question 2 of Section 6.1.2.
3. Give the adjacency matrix for the graph in question 3 of Section 6.1.2.
4. Give the adjacency matrix for the digraph in question 4 of Section 6.1.2.
5. Give the adjacency list for the graph in question 1 of Section 6.1.2.
6. Give the adjacency list for the digraph in question 2 of Section 6.1.2.
7. Give the adjacency list for the graph in question 3 of Section 6.1.2.
8. Give the adjacency list for the digraph in question 4 of Section 6.1.2.

2

1

1

2

3

1

2

3

4

5

3

3

2

5

4

4

5

2

1

2

3

2

1

2

3

4

5

3

5

4

■ FIGURE 6.3A
The adjacency list for the graph in Fig. 6.1(a)

■ FIGURE 6.3B
The adjacency list for the graph in

Fig. 6.1(b)

6.2.3 EXERCISES■
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6.3 DEPTH-FIRST AND BREADTH-FIRST 
TRAVERSAL ALGORITHMS

When we work with graphs, there may be times that we wish to do something
to each node in the graph exactly once. For example, there may be a piece of
information that needs to be distributed to all of the computers on a network.
We want this information to get to each computer, and we do not want to give
it to any computer twice. The same thing would be true if we were looking for
information instead of distributing it.

There are two techniques that we will examine that accomplish this tra-
versal. In depth-first, our traversal will go as far as possible down a path before
considering another, and in breadth-first, our traversal will go evenly in many
directions. We now look at these two methods in more detail. For these two
traversal methods, we choose one node in the graph as our starting point. In
our discussion, we use the phrase “visit the node” to represent the action that
needs to be done at each node. For example, if we are searching, visiting the
node would mean that we check it for the information we want. These meth-
ods work with both directed and undirected graphs without any changes. We
will illustrate them with undirected graphs.

Either of these traversal methods can also be used to determine if a graph is
connected. If we create a list of the nodes we visit during our traversal, this list
can be compared to the set of nodes in the graph. If they are the same, the
graph is connected. If they are not, there are some nodes that cannot be
reached from where we started, meaning that the graph is not connected.

■ 6.3.1 Depth-First Traversal

In depth-first traversal, we visit the starting node and then proceed to follow
links through the graph until we reach a dead end. In an undirected graph, a
node is a dead end if all of the nodes adjacent to it have already been visited. In
a directed graph, if a node has no outgoing edges, we also have a dead end.

When we reach a dead end, we back up along our path until we find an
unvisited adjacent node and then continue in that new direction. The process
will have completed when we back up to the starting node and all the nodes
adjacent to it have been visited. In illustrating this algorithm and all others in this
chapter, if presented with a choice of two nodes, we will choose the node with
the numerically or alphabetically smaller label. When this algorithm is imple-
mented, that choice will depend on how the edges of the graph are stored.
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Consider the graph in Fig. 6.4. If we begin the depth-first traversal at node
1, we then visit, in order, the nodes 2, 3, 4, 7, 5, and 6 before we reach a dead
end. We would then back up to node 7 to find that node 8 hasn’t been visited,
but that immediately leads to a dead end. We next back up to node 4 and find
that node 9 hasn’t been visited, but again we have an immediate dead end. We
then continue to back up until we reach the starting node, and because all
nodes adjacent to it have been visited, we are done.

The recursive algorithm for depth-first traversal is

DepthFirstTraversal(G, v)

G  is the graph

v  is the current node

Visit( v )

Mark( v )

for every edge vw in G do

   if w is not marked then

      DepthFirstTraversal(G, w)

   end if

end for

This recursive algorithm relies on the system stack of the computer to keep
track of where it has been in the graph so that it can properly back up when it
reaches dead ends. We could create a similar nonrecursive algorithm by using a
stack data structure and pushing and popping graph vertices ourselves.

■ 6.3.2 Breadth-First Traversal

In a breadth-first traversal, we visit the starting node and then on the first
pass visit all of the nodes directly connected to it. In the second pass, we visit
nodes that are two edges “away” from the starting node. With each new pass,
we visit nodes that are one more edge away. Because there might be cycles in

1 2

6 5

7 8 9

3

4■ FIGURE 6.4
A graph
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the graph, it is possible for a node to be on two paths of different lengths
from the starting node. Because we will visit that node for the first time
along the shortest path from the starting node, we will not need to consider
it again. We will, therefore, either need to keep a list of the nodes we have
visited or we will need to use a variable in the node to mark it as visited to
prevent multiple visits.

Consider again the graph in Fig. 6.4. If we begin our traversal at node 1, we
will visit nodes 2 and 8 on the first pass. On the second pass, we will visit
nodes 3 and 7. (Even though nodes 2 and 8 are also at the end of paths of
length 2, we will not return to them because they were visited in the first pass.)
On the third pass, we visit nodes 4 and 5, and on the last pass we visit nodes 6
and 9.

Where the depth-first traversal depended on a stack, our breadth-first tra-
versal is based on a queue. The algorithm for breadth-first traversal is

BreadthFirstTraversal(G, v)

G  is the graph

v  is the current node

Visit( v )

Mark( v )

Enqueue( v )

while the queue is not empty do

   Dequeue( x )

   for every edge xw in G do

      if w is not marked then

         Visit( w )

         Mark( w )

         Enqueue( w )

      end if

   end for

end while

This algorithm will add the root of the breadth-first traversal tree to the
queue but then immediately remove it. As it looks at the nodes that are adja-
cent to the root, they will be added to the end of the queue. Once all of the
nodes adjacent to the root have been visited, we will return to the queue and
get the first of those nodes. You should notice that because nodes are added to
the end of the queue, no node that is two edges away from the root will be
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considered again until all of the nodes one edge away have been taken off of
the queue and processed.

■ 6.3.3 Traversal Analysis

Our goal for these two traversal algorithms was to create a process that would
visit each node of a connected graph exactly once. We begin our analysis to see
if this has been accomplished. In breadth-first, we moved out from the starting
node. We followed all available edges, unless they led to a node we had already
visited. Does this cause any problem? Any nodes that could be reached from
that node will still be visited but just from a more direct route. Looking back at
Fig. 6.4, we see that we didn’t revisit node 8 after nodes 2 or 3. But anything
that we could reach from node 8 is already being visited because node 8 was
reached in an earlier pass. Looking at it another way, is it possible for there to
be a node in a connected graph that wasn’t visited? Because on each pass we
take one step from a node visited on the last pass, the only way for a node not
to be visited is for it to not be adjacent to a visited node of the graph. But that
would mean that the graph is not connected, which contradicts our statement
that the graph is connected, so all of the nodes must be visited.

A similar thing is true for a depth-first search. In this case, we travel deeply
into the graph until we reach a dead end. Do we then visit all of the remaining
nodes in the process of backtracking? Is it possible that we may have missed a
node in this process? Each time that we reach a dead end, we back up to the
first node that has an unvisited adjacent node. We move to that node and again
begin to travel deeply into the graph. A dead end again causes us to back up to
the first node with an unvisited adjacent node that we find. For a node in the
graph to not be visited at the end of this process means that it must not be
adjacent to any of the nodes visited in the graph. But again, this would mean
that the graph is not connected, which contradicts our statement that it is. All
of the nodes must be visited in this traversal as well.

What about the efficiency of this algorithm? Our assumption is that the
work done as we visit each node is the most complex part of this process. So,
the work done to check to see if an adjacent node has been visited and the work
to traverse the edges is not significant in this case. So the order of the algorithm
is the number of times a node is visited. Because we have said that these algo-
rithms visit each node exactly one time, for a graph with N nodes, the visit pro-
cess will be done N times. These traversals are, therefore, of order O(N).



154 G R A P H  A L G O R I T H M S

6.3.4

1. For the following graphs, give the order that the nodes will be first visited
when doing a breadth-first traversal starting at the node labeled with a 1.

2. For the graphs in question 1, give the order that the nodes will be first vis-
ited when doing a depth-first traversal starting at the node labeled with a 1.

3. Write a detailed algorithm for depth-first traversal using an adjacency
matrix that just prints the node label as the visit operation. You should trace
it using the graphs in this section to make sure you get the same answer.

4. Write a detailed algorithm for breadth-first traversal using an adjacency
matrix that just prints the node label as the visit operation. You should trace
it using the graphs in this section to make sure you get the same answer.

5. Write a detailed algorithm for depth-first traversal using an adjacency list
that just prints the node label as the visit operation. You should trace it using
the graphs in this section to make sure you get the same answer.

6. Write a detailed algorithm for breadth-first traversal using an adjacency list
that just prints the node label as the visit operation. You should trace it using
the graphs in this section to make sure you get the same answer.

7. Prove that each edge in a connected graph will be part of the depth-first tra-
versal tree or will be an edge pointing to a predecessor in the tree.

8. Prove that each edge in a connected graph will be part of the breadth-first
traversal tree or will be an edge pointing to a node in the tree that is neither
a predecessor or descendent.

6.3.4 EXERCISES■
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6.4 MINIMUM SPANNING TREE ALGORITHM

The minimum spanning tree (MST) of a weighted connected graph is a sub-
graph that contains all of the nodes of the original and a subset of the edges so
that the subgraph is connected and the total of the edge weights is the smallest
possible. If the original graph is not connected, the processes below can be
used on each of the separate components to produce a spanning tree for each
one.

There is a brute force way that the MST could be found for a connected
graph. Because the edges in the MST are a subset of the edges in the entire
graph, we could look at all of the possible subsets of the edge set until we find
the MST. You should see that this is a very time-consuming process. First, if
there are N edges, there would be 2N subsets. For each of these subsets, we
would need to first check that it spans all of the nodes and has no cycles. Then
we could calculate its total weights. We could speed up the process once we
find the first spanning tree. Any edge subset with a total weight that is greater
than that of our current best spanning tree can’t possibly be better, so there is
no need to check to see if it spans all of the nodes and is acyclic. Even with this
improvement, this brute force method would be of order O(2N).

■ 6.4.1 The Dijkstra-Prim Algorithm

The following algorithm to find the MST was developed by Edsger Dijkstra
and R. C. Prim in the late 1950s; they worked and published their results
independently.

To find the MST, we will use what is called a “greedy” algorithm. Greedy
algorithms work by looking at a subset of the larger problem and making the
best decision based on that information. In this case, we will, at each step of
the process, look at a collection of potential edges to add to the spanning tree
and pick the one with the smallest weight. By doing this repeatedly, we will
grow a spanning tree that has a minimum overall total.

To accomplish this process, we will consider the nodes of the graph to be in
one of three categories: in the tree, on the fringe of the tree, and not yet con-
sidered. We begin by picking one node of the graph and putting that into the
spanning tree. Because our result is an unrooted tree, the choice of an initial
node has no impact on our final result (unless there are multiple MSTs). We
then place all of the nodes that are connected to this initial one into the fringe
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category. We loop through the process of picking the smallest weighted edge
connecting a tree node with a fringe node, adding the new node to the tree,
and then updating the nodes in the fringe category. When all the nodes have
been added to the tree, we are done.

Our general algorithm for this process is as follows

select a starting node

build the initial fringe from nodes connected to the starting node

while there are nodes left do

   choose the edge to the fringe of the smallest weight

   add the associated node to the tree

   update the fringe by:

      adding nodes to the fringe connected to the new node

      updating the edges to the fringe so that they are the smallest

end while

Figure 6.5 gives an example of this algorithm in operation. We have arbi-
trarily chosen node A to begin the process. As we said, a different choice for
the starting node will not change the result, unless there is more than one
MST.

The original graph is shown in Fig. 6.5(a), and as was mentioned, we
choose to start the construction of the MST at node A. All of the nodes
directly connected to node A become the starting fringe set. We see that the
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■ FIGURE 6.5A
The original graph

■ FIGURE 6.5B
First node added. (Dashed
lines show edges to fringe

nodes.)
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edge with the smallest weight connects nodes A and B, so B is added to the
MST along with the edge AB.

When node B is added to the tree (Fig. 6.5(c)), we need to determine if
there are any nodes that need to be added to the fringe set, and we find that
nodes E and G must be added. Because the only tree node they are connected
to is node B, we add those edges to the ones we will consider next. At this
time, we also need to check to see if the edges from node A to nodes C, D, and
F are still the shortest or if there are better edges from node B to these three
nodes. In the original graph, there are no direct connections from node B to
nodes C and F, so those will not change. But the edge from node B to node D
has a smaller weight than the one from node A, and so the edge BD now
replaces the edge AD.

Of the five edges to fringe nodes, we see that BE has the smallest weight,
and so it and node E are added to the tree (Fig. 6.5(d)). The edge EG has a
smaller weight than the edge BG, so it is now used. Of the four current edges
to the fringe, we see that AC has the smallest weight and so it is added next.
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■ FIGURE 6.5C
Second node added.

Edges to nodes D, E, and
G updated. (Solid lines

show edges in the MST.)

■ FIGURE 6.5D
Third node added. Edge

to node G updated.
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The addition of node C and edge AC to the spanning tree (Fig. 6.5(e)) did
not cause any edges to be updated. We next choose the edge AF, so it and the
node F are added to the tree. We also update the links because the edge FD has
a smaller weight than BD and edge FG has a smaller weight than EG. In the
resulting fringe (Fig. 6.5(f )), we see that the edge FD is now the remaining
edge with the smallest weight, so it is added next.

We now just have one node that has not been added to the tree (Fig. 6.5(g)).
When it is added, the process is complete, and we have determined the MST
rooted at node A (Fig. 6.5(h)).
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■ FIGURE 6.5E
Node C added to the

tree

■ FIGURE 6.5F
Node F added to the tree and

edges to nodes D and G are
updated
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■ FIGURE 6.5G
Only one node is left in the

fringe

■ FIGURE 6.5H
The complete minimum spanning

tree rooted at node A
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■ 6.4.2 The Kruskal Algorithm

Where the Dijkstra-Prim algorithm began at a particular node and built the
minimum spanning tree outward, Kruskal’s algorithm concentrates instead on
the edges of the graph.

In this algorithm, we begin with an empty spanning tree and add edges in
order of increasing weight until all nodes are connected to the graph. If we run
out of edges before all of the nodes are connected, the original graph wasn’t
connected, and the result we have generated is the MSTs of each of the con-
nected components of the original graph.

We begin in Fig. 6.6(a) with the same graph that we used for the Dijkstra-
Prim algorithm. In this case, we first add the edge with the lowest weight,
which is the one between nodes D and F, giving the partial results in Fig.
6.6(b).

The edge with weight 2 is added next (Fig. 6.6(c)) between the nodes A and
B, and then the edge with weight three is added, giving us Fig. 6.6(d).

The edges with weights of 4 and 5 are next added to our result, as you can
see in Figs. 6.6(e) and 6.6(f). Only node G is still unconnected. The next edges
to consider are those with a weight of 6.

Of the four edges with a weight of 6, two are discarded because they would
form a cycle with edges already part of the MST. The edge between nodes C
and F would form a cycle that includes node A, and the edge between node B
and D would form a cycle that includes nodes A and F. The other two nodes
are both good alternatives, and depending on the one chosen, we get the MST
in either Fig. 6.6(g) or Fig. 6.6(h).
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■ FIGURE 6.6A
The original graph

■ FIGURE 6.6B
First edge added
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■ FIGURE 6.6C
Second edge added

■ FIGURE 6.6D
Third edge added
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■ FIGURE 6.6E
Fourth edge added

■ FIGURE 6.6F
Fifth edge added
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■ FIGURE 6.6G
A minimum spanning tree

■ FIGURE 6.6H
An alternative minimum spanning

tree
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The general algorithm that will accomplish this is (where E represents the
number of edges and N the number of vertices)

sort the edges in nondecreasing order by weight

initialize partition structure

edgeCount = 1

includedCount = 0

while edgeCount ≤ E and includedCount ≤ N-1 do
   parent1 = FindRoot( edge[edgeCount].start )

   parent2 = FindRoot( edge[edgeCount].end )

   if parent1 ≠ parent2 then
      add edge[edgeCount] to spanning tree

      includedCount = includedCount + 1

      Union( parent1, parent2 )

   end if

   edgeCount = edgeCount + 1

end while

Our main loop will continue until the edgeCount variable indicates that
we have looked at all of the edges or the includedCount indicates that we
have added enough edges to create the spanning tree. You should see that if we
have N nodes in the graph, a spanning tree would have one less edge than
nodes.

Inside the loop, we first find the parents of the two nodes that are connected
by the next edge we are considering. If those nodes are in partitions with dif-
ferent roots, adding an edge between them will not create a cycle, so this cur-
rent edge can be added to the MST and those two pieces can be joined so that
they now have the same root. The details of the FindRoot and Union rou-
tines will be given in Section 6.7.

The complexity of this algorithm will be the complexity of the sort algo-
rithm used because the while loop is linearly related to the number of edges.
This makes the complexity of Kruskal’s MST algorithm O(E lg E).
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6.4.3

1. Find the minimum spanning tree using the Dijkstra-Prim algorithm for the
following graphs starting at node A. Show all steps.

2. Find the minimum spanning tree using the Kruskal algorithm for the graphs
in question 1. Show all steps.

3. Do an analysis of the Dijkstra-Prim minimum spanning tree algorithm,
counting the number of times that an edge is considered for nodes added to
the fringe, for updating edges to the fringe nodes, or to pick the node to
move from the fringe to the minimum spanning tree.

4. Prove that if there is one edge with a weight smaller than all of the other
edges, that edge will be part of every minimum spanning tree.

5. Prove that if a connected graph has edge weights that are all distinct (in
other words, no two edges have the same weight), there is only one mini-
mum spanning tree.

6.4.3 EXERCISES■
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6. Prove whether it is always, never, or sometimes true that the order in which
the nodes are added to the MST by the Dijkstra–Prim algorithm is the same
as the order in which they are encountered in a breadth-first traversal.

7. Prove whether it is always, never, or sometimes true that the order in which
the nodes are added to the MST by the Dijkstra–Prim algorithm is the same
as the order in which they are encountered in a depth-first traversal.

6.5 SHORTEST-PATH ALGORITHM

The shortest-path algorithm will find for two nodes the series of edges
between them that will result in the smallest total weight.

It might seem that we could use the minimum spanning tree algorithm to
prune out some of the edges and then just look for the path between the nodes
in the spanning tree. Unfortunately, that will not always produce the shortest
path. Remember that the minimum spanning tree algorithm is trying to find
an overall total that is smallest, so it is going to look for the smallest weights
possible. For example, think of a graph that is “circular” in shape. In other
words, the first node is connected to the second, which is connected to the
third, and so on until the last node, which is connected to the first. This graph
is just a ring where each node is just connected to the two nodes on either side
of it. For example, Fig. 6.7(a) shows just such a graph with six nodes. Notice
that weights on all of the edges are 1, except for the edge from node A to node
B, which has a weight of 2. The minimum spanning tree algorithm will pick all
of the edges with weight 1, and drop the one edge of weight 2. But that means
that the path between node A and node B in the minimum spanning tree (Fig.
6.7(b)) must go through all of the other nodes for a path length of 5. This is
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■ FIGURE 6.7A
A ring graph

■ FIGURE 6.7B
Its minimum spanning tree
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clearly not the shortest path, because you can see in Fig. 6.7(a) that there is a
direct path between node A and node B that has length 2.

■ 6.5.1 Dijkstra’s Algorithm

The minimum spanning tree algorithm will not work to find the shortest path
because its greedy algorithm just considered the weight of one edge at each
pass. If we modify the algorithm so that it chooses the edge to the fringe that is
part of the shortest entire path from the starting node, we will get the result we
want. More specifically, our algorithm becomes

select a starting node

build the initial fringe from nodes connected to the starting node

while we are not at the destination node do

   choose the fringe node with the shortest path to the starting node

   add that node and its edge to the tree

   update the fringe by:

      adding nodes to the fringe connected to the new node

      for each node in the fringe do

         update its edge to the one connected to the tree on the shortest 

            path to the starting node

      end for

end while

Figure 6.8 shows an example execution of this algorithm. We begin with
the same graph that we used for the minimum spanning tree algorithm (repro-
duced here as Fig. 6.8(a)) and will look for the shortest path starting at node A
and ending at node G.
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■ FIGURE 6.8A
The original graph

■ FIGURE 6.8B
The shortest path is to

node B
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Beginning our path at node A gives us four possible edges to consider. Of
those four, the edge AB is the shortest.

Node B is added to our shortest path tree (Fig. 6.8(c)), and we now look at
updating the paths. Nodes E and G can now be reached, so they are added. We
also look at node D and compare its direct path from node A of length 7 with
the path that goes through node B, which is of length 8. Because the direct
path is shorter, there is no change to the edge for node D. In looking at the
options, we see that the path from node A to node C is of length 4 and is the
shortest. The edge BE is shorter, but we are now considering the entire path
from node A and so the length of the path to node E is actually 5.

Node C is added to the shortest path tree (Fig. 6.8(d)). In examining the
graph, we see that we can get to node F through node C, but that total path
length is 10, which is longer than the current path to node F and so there are
no changes.

Given the situation in Fig. 6.8(d), we could choose either the path from
node A to node F or the path from node A to node E that goes through node
B, because they are both of length 5. The one chosen during a program execu-
tion will depend on the way the data is stored. For our purposes, when
presented with a choice, we will select the node that is alphabetically smaller to
get Fig. 6.8(e). Because the addition of node E to the graph didn’t change any
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Path of length 4 to node

C is the shortest of the
options

■ FIGURE 6.8D
The path of length 5 to either node

E or node F is shortest
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of the other connections, we now choose node F to get Fig. 6.8(f ). You should
see that even though the selection of node F changed the edge for node D, if
we had selected node F first, we would have chosen node E second.

In Fig. 6.8(f ), it should be clear that the path to node D is shorter than the path
to node G. Choosing node D results in Fig. 6.8(g), and then node G is the last to
be added, giving the final shortest path tree in Fig. 6.8(h). The shortest path from
node A to node G has length of 10. If you look back at Fig. 6.5(h), you will see
another example of the minimum spanning tree not having the shortest path,
because that figure has the path from node A to node G at length 11.
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■ FIGURE 6.8E
The other path of length 5 to node F

is next

■ FIGURE 6.8F
The path of length 6 to node D is shorter

than the path to node G
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In the example in Fig. 6.8, we have the full shortest-path tree for node A
because our destination node was the last to be added. If we had reached node
G earlier, the algorithm would have stopped at that point. There are applica-
tions where we might be interested in the shortest path from one node to
every other node. For example, if we have a small computer network that has
relatively stable transmission rates between the nodes, we could calculate the
shortest path to every other node for each computer. Then when a message
needs to be sent, we would not need to do anything but access our predeter-
mined shortest-path table to find the quickest way to send the message.

6.5.2

1. Execute the shortest-path algorithm on the following graphs starting at
node A to create the entire shortest-path tree for each one. Count how
many edges you look at in the process (if you look at one edge more than
once, count it each time).

6.5.2 EXERCISES■
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2. Alter the algorithm in this section so that it efficiently determines the short-
est path from the start node to every node in the graph, instead of just to
one destination.

3. Do an analysis of the shortest-path algorithm, counting the number of times
that an edge is checked for nodes added to the fringe, for updating edges to
the fringe nodes, or to pick the node to move from the fringe to the mini-
mum spanning tree.

4. Prove that a breadth-first traversal produces a shortest-path tree for a graph
without weights.

5. Prove whether it is always, never, or sometimes true that the order in which
the nodes are added to the shortest-path tree is the same as the order in
which they are encountered in a breadth-first traversal.

6. Prove whether it is always, never, or sometimes true that the order in which
the nodes are added to the shortest-path tree is the same as the order in
which they are encountered in a depth-first traversal.

6.6 BICONNECTED COMPONENT ALGORITHM

A biconnected component of a graph is the set of three or more nodes for
which there are at least two paths between each node. A biconnected compo-
nent can also have just two nodes and one edge connecting them. A bicon-
nected component is a robust part of a graph because if one node and its edges
are removed from the graph, all of the other nodes in the biconnected compo-
nent can still reach any other. The graph in Fig. 6.9 shows a connected graph
that has three biconnected components. The first biconnected component has
the nodes labeled A, B, C, and D, the second has the nodes labeled D, E, F, G,
and H, and the third has the nodes H and I.

A C E

F

G

H IB D

■ FIGURE 6.9
A connected graph

with two
biconnected
components
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Determining the biconnected components of a network indicates how sta-
ble the network can be under degraded conditions. So, if all computers on a
network are part of the biconnected component of the related graph, we know
that the network will continue to function even if one of the computers is
down. In airline scheduling, the biconnected component of the graph for the
flight schedule indicates if passengers can be rerouted when an airport is closed
because of weather problems.

An articulation point in a connected graph is a node that, when it is
removed, causes the graph to no longer be connected. Articulation points of a
graph are nodes that are shared between two biconnected components. Nodes
D and H in Fig. 6.9 are articulation points. The identification of articulation
points and the determination of biconnected components are related.

We could identify the articulation points in a brute force manner by remov-
ing one node at a time and using one of our traversal methods to see if the
remaining nodes are still connected. If they are, the node we removed is not an
articulation point, but if they are not, it is an articulation point. This means
that we would have to do N traversals of a graph with N nodes. This process
would be O(N2). By keeping a little additional information while we are tra-
versing, we can identify the articulation points and the biconnected compo-
nents on one traversal. 

Think about paths in the graph in Fig. 6.9 that begin at node F.  You should
see that no matter what order the nodes are visited in, the paths from node F to
nodes A, B, and C must go through node D. This means that node D is an
articulation point and the subgraph containing nodes A, B, C, and D is a
biconnected component.

We base our algorithm on depth-first search. You will recall from Section
6.3.1 that we said a depth-first search will follow edges into a graph until a
dead end is reached where there are no unvisited nodes adjacent to the cur-
rent node. When we reach a dead end, we will back up, but now our algo-
rithm will return information about how high up in the depth-first search
tree we could have gone at the dead end. These back edges in the search tree
indicate a cycle back in the graph. All the nodes in a cycle must be part of
the same biconnected component. The back edge location indicates how far
we have to back up in our tree before worrying about finding an articulation
point.
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To accomplish this algorithm, we will keep a count of how many nodes of the
graph we have visited. Each node will be assigned an index number indicating
when is it visited. In other words, the first node visited will be numbered 1, the
second will be numbered 2, and so on. When we reach a dead end, we will look
at all of the adjacent nodes (except for the node we just came from) and will use
the smallest index number as our back index. If there is just one adjacent node
(the one we just came from), we will return the dead end node’s index as our
back index. When we return to a node that is not the root of the search tree, we
will compare the back index value that was returned. If that value is greater than
or equal to the current node’s index value, the subtree just visited (minus any
previously found biconnected components) is a biconnected component. Each
internal node of the depth-first search tree will return the smallest value from
among the indices of adjacent nodes and any back indices returned to it.

How would this process work in our graph of Fig. 6.9? If we begin at node
F, it would be assigned an index of 1. We move to node D (index 2), then
nodes B (index 3), A (index 4), and C (index 5). Node C is a dead end, and we
have back edges to nodes A, B, and D. The index on node D is smallest, so a
value of 2 would be returned to node A as the back index. At node A, because
the value of 2 is less than node A’s index, it is not an articulation point. The
value of 2 is the smallest so far, and it is also returned to node B. This continues
until we get back to node D, where we find that the back index returned is the
same as node D’s index, and so the nodes A, B, C, and D make up a bicon-
nected component. We return to the root of the search tree at node F and then
move off to node E (index 6), followed by node G (index 7), and node H
(index 8). We next traverse down to node I (index 9), and because it is a dead
end with no adjacent nodes other than H, we return its index as the back
index. When node H receives a value of 9 from node I, which is greater than
the index of node H, we find another biconnected component with nodes H
and I. Node H now considers the values of 1 (the back edge to F), 9 (returned
from node I), and 8 (node H’s index), returning the smallest of these to node G
and then to node E. This value is then returned by node E to the root node,
and because all nodes have been visited, those that remain (nodes D, E, F, G,
and H) comprise the final biconnected component. In Fig. 6.10 we see the
result of this process, and from this we can see that the articulation points in
the original graph are nodes D and H, which are the only nodes that appear in
two separate components.
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6.6.1

1. Determine the biconnected components of the following graphs:

2. Write an algorithm that determines the biconnected components of a graph
using an adjacency matrix.

3. Write an algorithm that determines the biconnected components of a graph
using an adjacency list.
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H IHB D D

■ FIGURE 6.10
The biconnected

components of the
graph in Fig. 6.9

6.6.1 EXERCISES■
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6.7 PARTITIONING SETS

A number of algorithms need to maintain a set of values as a collection of dis-
joint sets, with the ability to combine them. The inherent set capability of
modern programming languages could be used, but there is nothing in their
implementation that guarantees that disjoint sets will occur. Additionally, not
all programming languages have set capabilities. This section will look at a
method for implementing this set partitioning using arrays. We have seen a use
for this capability in our algorithm for Kruskal’s minimum spanning tree algo-
rithm.

We begin with an array called Parent, which has one location for each
element of the set we are working with. We initialize all of the elements to �1,
which represents that each is the root of a partition (the negative) and that the
partition has one element in it (the 1). As things progress, if some element is
the root of a partition with seven elements, its value in the array Parent will
be �7. As elements are added to a partition, their value in the array Parent
will be set to the root of the partition they are added to. For example, if ele-
ment 5 is added to the partition rooted by element 8, the fifth location of
Parent will have 8 stored in it, and the eight location will have its negative
value “increased” to indicate that there is one more value in the partition. The
elements of the Parent array will only have their immediate parent in the
partition as their value, because when two partitions are combined, only the
root entries of the array will be changed.

Consider the partitioning in Fig. 6.11. We see that there are three partitions
with roots of 5, 6, and 11. These array locations have negative values indicating
the number of elements in those partitions. Each of the other locations has the
value of the immediate parent. If we now joined together the partitions rooted
at 6 and 11, we would change Parent[11] to have the value 6, its new root,
and we would change Parent[6] to be �5, representing the fact that this
partition has five elements.

The algorithms to accomplish this partition structure follow.

InitializePartition( N )

N  the number of elements in the set

For i = 1 to N do

   Parent[i] = -1

end do



6 . 7 P A R T I T I O N I N G  S E T S 173

As was discussed, the initialize routine just sets each location of the Parent
array to �1 to indicate that each value is in its own partition and each partition
has a size of 1.

Union( i, j )

i, j the partitions to join together

totalElements = Parent[i] + Parent[j]

if Parent[i] ≥ Parent[j] then
   Parent[i] = j

   Parent[j] = totalElements

else

   Parent[j] = i

   Parent[i] = totalElements

end if

The Union function is responsible for combining two partitions into one. It
begins by calculating the total number of elements that will be in the resulting
combined partition. It then adds the smaller partition to the larger one.
Remember that the partition sizes are stored as negative numbers, so the then
clause adds the i partition to the larger j partition, and the else clause adds the
j partition to the larger i partition.
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11
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Index

Parent

1 2 3 4 5 6 7 8 9 10 11 12

5 8 5 11 –7 –3 1 6 1 3 –2 1

■ FIGURE 6.11
A partition of the

numbers from 1 to
12 and the

associated Parent
array
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FindRoot( s )

s  the element whose partition root we want

result = s

while Parent[result] > 0 do

   result = Parent[result]

end while

return result

The FindRoot routine begins at Parent[s], which has the location of
the parent of the element s. If this value is negative, it means that s is the root
of a partition, so the result of s is returned. If, however, s is not a root, we
update result to be the parent of s and check to see if that is the root of the
partition. We continue to work our way up this partition until we reach the
root. An efficiency improvement not included here would then follow this
path again and update all of the entries along it to point to the root directly.
This process takes a little more time, but future attempts to find the root for
those updated elements will be done faster.

6.8 PROGRAMMING EXERCISES

For these problems, you will be generating complete weighted graphs with N
nodes. This is easiest using an adjacency matrix because you just need to fill
every entry, except for those along the diagonal, which should be zero. You
will work with undirected graphs, so you need to make sure that AdjMat[i, j]
has the same value as AdjMat[ j, i].

These problems ask you to compare two spanning trees or paths. This will
be easier if you make sure that the edges involved are listed with the smaller
label first, which is possible because these problems work with undirected
graphs. Then you can sort the edges based on their nodes. If two minimum
spanning trees or paths are the same, their two sorted lists should match exactly.

1. Generate a complete weighted undirected graph with 50 nodes. Run the
Dijkstra–Prim minimum spanning tree algorithm starting at each of the
nodes, and determine how many different minimum spanning trees are
found. Do this process four times with a maximum random edge weight of
10, 25, 50, and 100. Write a report of your results with an explanation of
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what you have found. If you do this for multiple graphs for each maximum,
your results will be more reliable.

2. Generate a complete weighted undirected graph with 50 nodes. Run the
Kruskal minimum spanning tree algorithm. If faced with two edges of the
same weight, randomly choose between them. Generate 10 minimum span-
ning trees for each graph and see how many are unique. Because you make
choices randomly, if there are multiple minimum spanning trees based on
these choices, you should find them. Do this process four times with a max-
imum random edge weight of 10, 25, 50, and 100. Write a report of your
results with an explanation of what you have found. If you do this for mul-
tiple graphs for each maximum, your results will be more reliable.

3. Generate a complete weighted undirected graph with 50 nodes. For every
pair of nodes (A and B), check to see if the shortest path generated from A
to B is the same as the shortest path generated from B to A, and note how
many times they are different. Do this process four times with a maximum
random edge weight of 10, 25, 50, and 100. Write a report of your results
with an explanation of what you have found. If you do this for multiple
graphs for each maximum, your results will be more reliable.

4. Write a program that will generate a complete weighted undirected graph
and then use the Dijkstra–Prim and Kruskal minimum spanning tree algo-
rithms. You should put in counters to keep track of how many times each
algorithm looks at any edge. In other words, count every time the adjacency
matrix is accessed. Run this for graphs with 10, 25, 50, and 100 nodes, and
then write a report comparing the relative efficiencies of these two algo-
rithms. To get more accurate results, you should generate and test multiple
random graphs of each size.
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C H A P T E R 7
Parallel Algorithms

PREREQUISITES

Before beginning this chapter, you should be able to

• Read and create algorithms
• Analyze algorithms like those in Chapters 2 through 6

GOALS

At the end of this chapter, you should be able to

• Explain the PRAM models
• Recognize simple cases when parallelism can be used
• Write simple parallel algorithms

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. You might find it helpful to make drawings to
trace parallel algorithms with arrows to show how data is read and written in
the process. You should also try to answer any questions before reading on. A
hint or the answer is in the sentences following the question.
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eople have recognized for a long time that in most instances two people
can accomplish a task faster than one, and three people can accomplish
it even faster. The way that this has been implemented in practice has

varied. In offices, folders would be refiled faster if they were split among a
group of workers. Assembly lines speed up a process, because if one person
does the same task over and over, that person can do it more quickly because
he or she doesn’t need to take time to change tools. Bucket brigades were dis-
covered when people realized that more buckets of water could be moved if,
instead of having people running back and forth, they stood in a line and just
passed the buckets back and forth.

When we talk about parallel algorithms and programming, we see very sim-
ilar concepts. There are multitasking systems, where each processor does the
same task with different data. There are pipelined systems, where each proces-
sor does just one step of the task of decoding and executing a program instruc-
tion, passing the results onto another processor, which does the next step.
Dataflow systems set up a series of processors to carry out a task or calculation,
and then the input data is passed from processor to processor in the calculation
of the result.

This chapter is an introduction to the concept of parallel algorithms. Due to
the complex nature of parallel algorithms and programming, to cover these
ideas completely would at least double the size of this book. We begin with an
overview of some of the general concepts related to the structure of parallel
computer systems and then look at parallel algorithms for some of the prob-
lems we have considered in Chapters 2 through 6. The parallel algorithms pre-
sented will not always be the best parallel option but instead will give you an
idea of how the problem could be solved in a parallel manner. The amount of
detail that would be necessary to always present the most efficient parallel algo-
rithm is well beyond this text.

7.1 PARALLELISM INTRODUCTION

In this section, we will introduce the basic concepts involved in a study of par-
allelism. We will begin looking at a way to categorize processing by a com-
puter. We then will look at architectures that are used to implement these
categories. This section will conclude with an examination of some of the
principles that we will use in our analysis of parallel algorithms.

P
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■ 7.1.1 Computer System Categories

Computer systems can be divided into four main categories. To understand
these, you need to think of how a program runs in a slightly different way.
From the perspective of the main processor in a computer, the program arrives
in a stream of instructions that have to be decoded and then executed. The data
can also be seen as arriving in a stream. Our four categories are then based on
whether there is one or multiple streams of instructions and data.

Single Instruction Single Data

Single instruction single data (SISD) is the classic single processor model that
includes all early computers and many modern computers. In this case, there is
one processor that can carry out one program instruction at a time. This pro-
cessor can work with only one set of data at a time as well. These sequential
systems exhibit no parallelism, as will be seen in comparison with the other
three categories.

Single Instruction Multiple Data

In single instruction multiple data (SIMD) machines, there is some number of
processors all doing the exact same operation but on different data. SIMD
machines are sometimes referred to as vector processors because their opera-
tion is well suited to doing vector operations, where each processor gets a dif-
ferent element of the vector and after one instruction cycle, the entire vector
has been handled. For example, adding two vectors together requires that each
of the elements be added. The first element of the resulting vector is the sum of
the first elements of the two input vectors, and the second element of the
result is the sum of the second elements of the input vectors. In our SIMD
machine, the instruction given to each processor would be an add, and each
processor would be given one pair of values from the two input vectors. After
this one instruction cycle, the entire result would be available. Notice that if
the vector has N elements, a SISD machine would take N cycles doing one add
per cycle, where a SIMD machine with at least N processors can do the addi-
tion in one instruction cycle.

Multiple Instruction Single Data

The option of having different operations all applied to the same data may
seem strange, because there are not many programs where you need the
results of taking a single data value and squaring it, multiplying it by 2, sub-
tracting 10 from it, and so on. But if we begin to think of this process from a
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different perspective, we see that finding if a number is prime can be
improved with this type of machine. 1 If we have N processors, in one cycle
we can determine if a number between 1 and N 2 is prime with a multiple
instruction single data (MISD) machine, because if X is not prime, it will
have a factor that is less than or equal to . To find out if X ≤ N 2 is prime,
we have the first processor divide by 2, the second divide by 3, the third
divide by 4, and so on up to processor K � 1, which divides by K, where

 If any of these processors finds that it can divide evenly by the
number it is given, X is not prime. So in one operation, each of the proces-
sors does its division and we have the result. On a sequential machine, you
should see that a simple solution to this problem would take at least 
passes through a loop doing a division each time.

Multiple Instruction Multiple Data

Our final category is the most flexible of the options. In this case, we have mul-
tiple processors, each of which is capable of carrying out a different instruction.
We also have multiple data streams, so that each processor can work on inde-
pendent data sets. In practice, this means that a multiple instruction multiple
data (MIMD) system could be running different programs on each processor or
different parts of the same program or the vector operations we saw for the
SIMD configuration. This category includes most of the modern attempts at
parallelism, including clusters of computers and multiprocessor systems.

■ 7.1.2 Parallel Architectures

There are two main issues in the architecture of parallel computer systems:
How are memory and processors connected, and how do the processors com-
municate? These issues will be used when we discuss algorithms because some
parallel options are best suited to one or another of these configurations.

Loosely versus Tightly Coupled Machines

In a loosely coupled machine, each of the processors has its own memory, and
communication between processors occurs across “network” cables. This is the
architecture of computer clusters, where each element of the cluster is a com-

1 Recall that a prime number is one that is only evenly divisible by itself and the num-
ber 1. So, for example, 17 is a prime number because the only numbers between 1 and 
17 that divide it evenly are 1 and 17.

X

K X .=

X
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plete computer system that could function on its own. Parallelism is achieved
by the way that tasks are assigned to each of the computers in the cluster by a
central controlling computer.

In a tightly coupled machine, each of the processors shares a centralized
memory. Communication between the processors is done by one processor
writing information into memory and then one or more processors reading
that information back out. An example of this communication will be given in
Section 7.3.

Processor Communication

In a loosely coupled machine, we said that the processors communicate over
cables or wires. We now look at some of the possible configurations that are
possible for these processors and wires. At one extreme is a fully connected
network, where each processor has a connection to every other processor. At
the other extreme is a linear network, where the processors are laid out in a
line, and each processor is connected to the two immediately adjacent (except
for the two ends, which have only one adjacent processor). In a fully con-
nected network, information can flow quickly between processors, but at the
high cost for the extensive amount of wiring that is necessary. In a linear net-
work, information travels more slowly because it must be passed from proces-
sor to processor until it reaches its destination, and single point failure disrupts
the information flow. This is not surprising if you recall our discussion of
biconnected components in Chapter 6.

An alternative to a linear network that improves reliability is a ring network,
which is like a linear network, except that the first and last nodes in the line are
also connected. Information can now travel more quickly because it will only
need to be passed through at most one-half of the processors. Notice in Fig.
7.1 that a message from node 1 to node 5 would have to pass through three

1 2

1 2 3 4 5 6

5 4

6 3■ FIGURE 7.1
A fully connected

and a linear
network

configuration



182 P A R A L L E L  A L G O R I T H M S

intermediate nodes, whereas in the ring network of Fig. 7.2, that message
could now get there by passing through just node 6.

In a mesh network (see Fig. 7.3), the processors are laid out in a two-
dimensional grid, and connections are made to those nodes that are adjacent
either horizontally or vertically. Information now has even more ways to travel
through the network, and the network is more reliable, but this is achieved at
the cost of more complicated wiring.

There are other possible configurations that are not important to our discus-
sion. Those include a tree network, where the processors are connected like a
binary tree, and a hypercube, which is an expansion of a mesh network to
three or more dimensions.

■ 7.1.3 Principles for Parallelism Analysis

There are two new concepts that we encounter when dealing with the analysis
of a parallel algorithm: speed up and cost. The speed up of a parallel algorithm
is the factor by which it is faster than an equivalent optimal sequential algo-
rithm. For example, we saw that the optimal time for a sorting algorithm was
O(N lg N). If we have a parallel sorting algorithm that is of order O(N), we
have achieved a speed up of O(lg N).

1 2

5 4

6 3

■ FIGURE 7.2
A ring network

configuration
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9

6

3

■ FIGURE 7.3
A mesh network
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The second issue that we must consider is the cost of the parallel algorithm,
which we will define as the time of the algorithm multiplied by the number of
processors used. In our example, if the parallel sorting algorithm of O(N )
required that the number of processors be the same as the number of data val-
ues, the cost would be O(N2). This means that the parallel sorting algorithm
would be more expensive because the cost of a one-processor sequential sort-
ing algorithm is the same as its run time of O(N lg N ).

A related issue is the scalability of the problem. If our only option for a par-
allel sort requires that we have the same number of processors as input values,
we will find that this algorithm is not usable for a list of any significant size.
This would be a problem, because our sequential sort algorithm has no such
size restrictions. In general, we will be interested in parallel solutions where the
number of processors is significantly less than the potential size of the input
and where the algorithm can handle an increase in the size of the input with-
out an increase in the number of processors.

7.1.4

1. A problem you are working on needs the series of numbers that are the
summations of numbers from a set. More specifically, for the set {s1, s2, s3,
. . ., sN} you need the sums s1 + s2, s1 + s2 + s3, s1 + s2 + s3 + s4, . . ., s1 +
s2 + s3 + . . . + sN. Design a method that you could use to solve this prob-
lem using parallelism.

2. Another network configuration is a star network, where there is one central
processor, and every other processor is just connected to this central one.
Draw a picture of a star network that has seven processors. This section dis-
cussed some advantages and disadvantages of a linear network. Using that
discussion as the basis, what do you see as some of the advantages and disad-
vantages of a star network?

7.2 THE PRAM MODEL

In constructing parallel algorithms, we consider a set of four models of the actual
computer system on which our design will run. These models deal with the issue
of reading from and writing to memory, which can be a problem in parallel sys-
tems. For example, what if two of our processors want to write a value to the
same memory location at the same time—which one will succeed?

7.1.4 EXERCISES■
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If we consider that the general model for the algorithms presented in Chap-
ters 2 through 6 is a machine that can randomly access any location of mem-
ory, we can call that a random access machine (RAM). The base model that we
will use for this chapter is a parallel version of this machine called a parallel
random access machine (PRAM). Our PRAM will be a tightly coupled
machine with all of the processors sharing one block of memory. Each proces-
sor may have a small number of registers so that some data can be kept with the
processor, but in general we will assume that the data is kept in the shared
memory.

In addition to having a tightly coupled machine, we will also require that all
of our processors follow the same processing cycle of a read from memory,
doing an operation, and then writing a result back to memory. This means that
all of the processors will read at the same time, process at the same time, and
write at the same time. There are two times when we may have contention for
a memory location: when reading and when writing. By enforcing this three-
step cycle, we don’t need to worry about the additional problem of processor
X reading a value from memory, and while it is working with it, processor Y
changes the value in that memory location. We also don’t need to worry about
contention between a processor reading from a memory location while
another one is trying to write to that location.

We can handle the contention times by allowing access to be either concur-
rent or exclusive. In concurrent access, more than one processor can have
access to a memory location at one time. In exclusive access, only one proces-
sor can have access to a memory location and an attempt by more than one to
gain access is signaled as an error.

In the case of reading, concurrent access will not be a problem. We will,
however, look at some algorithms that can operate under exclusive read access.
If we are operating under an exclusive read, and more than one processor tries
to read from one memory location, an error will occur.

When we write, we also have the choice of exclusive or concurrent. If we
have exclusive write, only one processor will be allowed to write into one
location of memory, and an error will occur if more than one tries. With
exclusive write, two processors are, however, allowed to write to different
memory locations at the same time. With concurrent access, we have a more
involved situation because we must decide how the conflict will be resolved. In
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a priority model, each processor has an assigned priority and the highest prior-
ity processor attempting to write into a location will succeed. In a simple ver-
sion of this, the processor’s number is its priority, and the lower the number,
the higher the priority. For example, if processor 4 and processor 7 are both
trying to write to one location, processor 4 would succeed. In an arbitrary
model, one of the processors will succeed in writing to memory, but it is not
known which will succeed. In the common model, multiple writes are allowed
but only if all processors are attempting to write the same value. In the com-
bining model, the system will perform some sort of combination on all of the
values written. So, the system may sum the values, take their product, store
only the largest or smallest of the values, or perform a logical operation (and,
or, or exclusive or) on the values. Each of these options may be useful in vari-
ous circumstances.

We then have four combinations of these read and write options: Concur-
rent Read Concurrent Write (CRCW), Concurrent Read Exclusive Write
(CREW), Exclusive Read Concurrent Write (ERCW), and Exclusive Read
Exclusive Write (EREW).

7.2.1

1. Write an algorithm to compute the sum of N numbers using the CREW
PRAM model. How efficient is your algorithm in terms of both run time
and cost?

2. Write an algorithm to find the largest and second largest values in a set of
numbers using the CRCW PRAM model, being specific about your write
conflict resolution mechanism. How efficient is your algorithm in terms of
both run time and cost?

7.3 SIMPLE PARALLEL OPERATIONS

We now investigate two simple operations: broadcasting a data value to all pro-
cessors and finding the minimum or maximum value in a list. In the algorithms
in the rest of this chapter, we will use Pi to refer to the ith processor, p to refer
to the number of processors, N to refer to the number of input data items, and
Mj to refer to the jth memory location. Operations to be done in parallel will
be nested between Parallel Start and Parallel End keywords. If there

7.2.1 EXERCISES■
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is one set of operations that are to be done in parallel and on their completion
another set is to be performed, this will be expressed by placing these into two
separate parallel blocks.

■ 7.3.1 Broadcasting Data in a CREW PRAM Model

You will recall that in a CREW model we have the ability for more than one
processor to read from a single memory location at one time. This allows for a
very rapid transfer of the data value to the other processors:

P1 writes the data value into M1
Parallel Start

   for k = 2 to p do

      Pk reads the data value from M1
   end for

Parallel End

This broadcast operation takes two cycles. The first writes the data into
memory and the second has all of the processors read the value. This speed is
only possible because of the concurrent read capability. Now we consider how
the process must differ for a model with exclusive read.

■ 7.3.2 Broadcasting Data in an EREW PRAM Model

In an exclusive read model, only one processor can read the data that was writ-
ten by P1. If we were to just loop through the rest of the processors, we would
have a sequential algorithm and would lose all of the power that we added with
parallelism. If we use the read/process/write cycle of the second processor to
write the data value into a second memory location, on the next pass two
more processors can read the data value. If they then write the data value into
new locations, four processors can read on the next pass. This gives us the fol-
lowing algorithm:

P1 writes the data value into M1
procLoc = 1

for j = 1 to lg p do

   Parallel Start

      for k = procLoc + 1 to 2 * procLoc do
         Pk reads Mk-procLoc
         Pk writes to Mk
      end for k

   Parallel End

   procLoc = procLoc * 2
end for j
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This algorithm will first write the data value to location M1. On the first pass
of the outer loop, P2 will read the data value and write it to M2, and procLoc
becomes 2. The second pass has P3 and P4 read from locations M1 and M2 and
then write to locations M3 and M4, and procLoc becomes 4. The third pass has
P5 through P8 read from locations M1 through M4 and then write to locations
M5 through M8. You should see that (assuming p is a power of 2) on the second
to last pass, half of the processors will now have the data value and will have
written it to M1 through Mp/2, which allows the second half of the processors to
read in the data value. Because the read and write can be done in one instruc-
tion cycle as we defined it at the beginning of Section 7.2, the parallel block
does one instruction cycle, and the outer loop executes that block lg p times.
Therefore, this parallel broadcast algorithm does O(lg p) operations.

■ 7.3.3 Finding the Maximum Value in a List

For this and our other operations on lists, we assume that the list has been loaded
into memory locations M1 through MN. We assume that we have p = N / 2 pro-
cessors. (The case where p < N / 2 will be discussed after the algorithm.)

On the first pass, processor Pi will compare the values in locations M2i and
M2i+1 and will write the larger of the two into location Mi. On the second pass,
only half of the processors are needed to compare pairs of elements in memory
locations M1 through MN/2 and then write the larger of each pair into locations
M1 through MN/4. This gives the following algorithm:

count = N / 2

for i = 1 to (lg count) + 1 do

   Parallel Start

      for j = 1 to count do

         Pj reads M2j into X and M2j+1 into Y

         if X > Y

            Pj writes X into Mj
         else

            Pj writes Y into Mj
         end if

      end for j

   Parallel End

   count = count / 2

end for i

We see that each of the passes of this algorithm cuts in half the number of
values that have the potential for being the largest until eventually we are left
with just one value. This is very much like the tournament method used with a
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single processor. If we have p < N / 2, we can perform a “preprocessing” step
that reduces the number of values to 2 * p, and then this algorithm can con-
tinue as shown above.

You should see that there are lg N passes of this algorithm, putting the time
at O(lg N). You may recall that we talked about the cost of an algorithm in Sec-
tion 7.1.3. We said that the cost was the time multiplied by the number of pro-
cessors, so the cost for this algorithm is N / 2 * O(lg N), or more simply O(N
lg N). The simple sequential algorithm we considered in Chapter 1 took only
O(N), so this parallel version is more costly, although it does run much faster.

If parallel computing is really beneficial, there must be a faster alternative
method that will cost no more than the sequential version. If we look closely,
we see that the problem with the cost is the number of processors. We need to
consider how we can reduce this number. If we want the total cost at the opti-
mal level of O(N) and the run time of the parallel algorithm is O(lg N), it must
be the case that we can only use N / lg N processors. This also means that the
first pass must have each processor handle N / (N / lg N) values, which is lg N.
This results in the following alternative parallel algorithm:

Parallel Start

   for j = 1 to N/lg N do

      Pj finds the maximum of M1+(j-1)*lg N through Mj*lg N
         using the sequential algorithm

      Pj writes the maximum to Mj
   end for

Parallel End

count = (N / lg N) / 2
for i = 1 to (lg count) + 1 do

   Parallel Start

      for j = 1 to count do

         Pj reads M2j into X and M2j+1 into Y

         if X > Y

            Pj writes X into Mj
         else

            Pj writes Y into Mj
         end if

      end for j

   Parallel End

   count = count / 2

end for i
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In this version, we have a preprocessing step that has each processor do a
sequential algorithm on a list of lg N elements, which you will recall will take
O(lg N) operations. The next part of this algorithm is our original attempt
with the number of processors now reduced to (N / lg N) / 2 (but the prepro-
cessing step still requires N / lg N processors). So, the total cost of this algo-
rithm is

This last parallel version has the same cost as the sequential version, but it runs
in a fraction of the time.

7.3.4

1. The median of a set of numbers is the value for which half of the numbers
in the set are larger and half of the numbers are smaller. In other words, if
the numbers were sorted, the median value would be in the exact center of
this sorted list. Design a parallel algorithm to determine the median of a set
of numbers using the CREW PRAM model. How efficient is your algo-
rithm in terms of both run time and cost?

2. Design a parallel algorithm to determine the median of a set of numbers
using the CRCW PRAM model, being very specific about your write con-
flict resolution mechanism. (The median is described in question 1.) How
efficient is your algorithm in terms of both run time and cost?

7.4 PARALLEL SEARCHING

In investigating a parallel method for searching, we will begin with a naive
attempt with as many processors as elements of the list we are searching. Our
analysis will indicate to us how far away from optimal this solution’s cost is. We
will then attempt to reduce the costs by reducing the processors, like we did in
the case of finding the maximum value. We will assume that the list has no
duplicate elements.

Step Cost Time

Preprocessing (N / lg N) * O(lg N) = O(N) O(lg N)
Main Loop [(N / lg N) / 2] * O(lg N) = O(N) O(lg N)
Total O(N) O(lg N)

7.3.4 EXERCISES■
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If we have the same number of processors as elements in the list (p = N), we
can have each processor compare the target to one of the list items. If there is a
match, we can have the processor that found the match write its location to
some place special in memory. The following algorithm expects that the list
will be in locations M1 through MN, the target will be in location MN+1, and
the place where it is found will be written into location MN+2.

Parallel Start

   for j = 1 to N do

      Pj reads X from Mj and target from MN+1
      if X = target then

         write j to MN+2
      end if

   end for

Parallel End

Because we assume that the empty memory cells are all zero at the start of
the algorithm, if there is no match, MN+2 will have a value of zero indicating
that the search failed. If the search succeeded, the one processor that found the
match will write its location into MN+2.

This algorithm does one read/process/write cycle for each of the N proces-
sors, giving a run time of O(1) and a cost of O(N). You should recall from
Chapter 2 that our optimal sequential search was a binary search that had a cost
of O(lg N).

Our alternative search provides us with a scalable algorithm that can vary in
cost and speed based on the number of processors that we can make available
to it. This gives us a clear illustration of the scalability issue discussed in Section
7.1.3.

Using p ≤ N processors
Parallel Start

   for j = 1 to p do

      Pj performs a sequential binary search on M(j-1)*(N/p)+1 through Mj*(N/p)
         writing the location where X is found to MN+2
   end for

Parallel End

If we use one processor, notice that the range of memory cells considered is
from M1 through MN, which is the entire list. So, with one processor we have
a sequential binary search. We, therefore, have a cost of O(lg N) and a run time
of O(lg N). If we use N processors, we are back at the previous case where we
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had a cost of O(N) and a run time of O(1). At points in between, we will have
p lists that each have N / p elements. This gives a run time of O(lg(N / p)) and
a cost of O(p lg(N / p)). A special case to note is when p = lg N, which means
that lg(N / lg N) = lg N � lg(lg N) � lg N. This gives a run time of O(lg N),
and a cost of O[(lg N) * (lg N)] = O(lg2 N). Even though the run time is of
the same order as that of a sequential binary search, the parallel version will
have a smaller constant multiplier than that for the sequential version, so even
though it is not of a smaller order, it will run faster. The cost of O(lg2 N) is
higher than the optimal sequential cost of O(lg N), but not so much higher as
to be unreasonable.

7.4.1

1. The two searches discussed in this chapter implicitly assumed that each ele-
ment in the list was unique. If there are duplicate keys for the target, it is
typical for a search to return the location of the first matching key. Given
the restrictions of a CREW PRAM model, what changes would need to be
made to both searches if there could be duplicates in the list?

2. Give a parallel search algorithm for a list with duplicates using the CRCW
PRAM model. If there are duplicate keys for the target, it is typical for a
search to return the location of the first matching key. Make sure to specify
your write conflict resolution method. How efficient is your algorithm in
terms of both run time and cost?

7.5 PARALLEL SORTING

There are a number of ways to do a parallel sort. In this section, we will look at
two ways in detail and discuss in general other techniques that can be used that
are beyond the scope of this text.

■ 7.5.1 Linear Network Sort

We begin by considering a sorting method based on a linear network configu-
ration. If we have the same number of processors as we have data values, we
can sort by passing one data value into the network at each cycle. The first pro-
cessor will read this value, compare it to the current value it holds, and then
pass on the larger of these two values to the next processor. As this continues,

7.4.1 EXERCISES■
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each of the processors will keep the smaller value and then pass on the larger of
the values to the next processor in line. This is expressed more formally in the
following algorithm:

for j = 1 to N-1 do

   put next value into M1
   Parallel Start

      Pj reads Mj into Current

      for k = 1 to j-1 do

         Pk reads Mk into New

         if Current > New then

            Pk writes Current to Mk+1
            Current = New

         else

            Pk writes New to Mk+1
         end if

      end for k

   Parallel End

   put next value into M1
   Parallel Start

      for k = 1 to j do

         Pk reads Mk into New

         if Current > New then

            Pk writes Current to Mk+1
            Current = New

         else

            Pk writes New to Mk+1
         end if

      end for k

   Parallel End

end for j

Parallel Start

   for j = 1 to N-1 do

      Pj writes Current to Mj
   end for j

Parallel End

Before each parallel step, the next value of the list, if there is another, is
placed into the first memory location. At the very start, this value is just read
into the first processor. On succeeding steps, this first processor will then read
the next value into its New variable, compare it to the processor’s Current
value, and then write the larger of the two to the second memory location.
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The outer for loop has the two parallel blocks nested inside it because at each
pass of this loop, a new processor joins the sort, and the first block primes this
processor with the read of its first value, while the second loop involves it in
the comparing process. At the very end, the values are all written back into
memory.

Figure 7.4(a), (b), and (c) show this process in action for the input list of 15,
18, 13, 12, 17, 11, 19, 16, and 14. We see in Step A that the first value has been
put into memory and will be read into the first processor. In Step B, the sec-
ond value has been put into memory, it is compared with P1’s current value,
and the larger is written to M2. In Step C, the third value has been put into M1

so that it can be compared to P1’s current value, while P2 is reading its first
value out of M2. In Step D, both P1 and P2 can now do a comparison. If you
look at the “odd” steps, you will notice that in each one, a new processor is
about to read its first value. If you look at the “even” steps, you will notice that
all of the processors that are active are making comparisons.

A

15

P1 P2 P3 P4 P5 P6 P7 P8 P9

B

18

P1 P2 P3 P4 P5 P6 P7 P8 P9

C

13 18

P1 P2 P3 P4 P5 P6 P7 P8 P9

D

12

13

15

15

18

15

P1 P2 P3 P4 P5 P6 P7 P8 P9

■ FIGURE 7.4A
A linear parallel

network sort



194 P A R A L L E L  A L G O R I T H M S

You can see in Fig. 7.4 that this process takes 16 parallel steps to sort these
numbers and 1 step to write the results. In general, this process will take 2 *
(N � 1) + 1, or O(N), run time. Because there are N processors the cost of
this sort is O(N 2), which is the same as our slower sorts.

E

17 13

12 15

18

P1 P2 P3 P4 P5 P6 P7 P8 P9

F

11 17 15

P1 P2 P3 P4 P5 P6 P7 P8 P9

G

19 12 17 18

P1 P2 P3 P4 P5 P6 P7 P8 P9

H

16

11

11 13 15

12 13 18

12 15 18

19 13 17

P1 P2 P3 P4 P5 P6 P7 P8 P9

I

14

11 12 13 17

16 19 15 18

P1 P2 P3 P4 P5 P6 P7 P8 P9

J 11 12 13 15 18

14 16 19 17

P1 P2 P3 P4 P5 P6 P7 P8 P9

K 11 12 13 15 17

14 16 19 18

P1 P2 P3 P4 P5 P6 P7 P8 P9

■ FIGURE 7.4B
A linear parallel

network sort
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■ 7.5.2 Odd-Even Swap Sort

In previous sections, we were able to reduce costs by reducing the number of
processors. We can cut the number of processors needed in half with the fol-
lowing sorting method, which compares adjacent values and swaps them if
they are out of order.

for j = 1 to N/2 do

   Parallel Start

      for k = 1 to N/2 do

         Pk compares M2k-1 and M2k

L

14 16

11 12 13 15 17 18

19

P1 P2 P3 P4 P5 P6 P7 P8 P9

M

15 17 19

P1 P2 P3 P4 P5 P6 P7 P8 P9

N

16 18

P1 P2 P3 P4 P5 P6 P7 P8 P9

O 11

11 12 13 14 15 17 19

11 12 13 14 16 18

12 13 14 15 16 18

1917

P1 P2 P3 P4 P5 P6 P7 P8 P9

P 11 12 13 14 15 16 17 19

18

P1 P2 P3 P4 P5 P6 P7 P8 P9

Q

1211 13 14 15 16 17 18 19

P1 P2 P3 P4 P5 P6 P7 P8 P9

■ FIGURE 7.4C
A linear parallel

network sort
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         if they are out of order then

            swap them

         end if

      end for k

   Parallel End

   Parallel Start

      for k = 1 to N/2-1 do

         Pk compares M2k and M2k+1
         if they are out of order then

            swap them

         end if

      end for k

   Parallel End

end for j

On each pass, this algorithm will first compare M1 and M2, M3 and M4, . . .,
MN�1 and MN and then compare M2 and M3, M4 and M5, . . ., MN�2 and
MN�1, swapping those that are out of order. So, imagine that the smallest value
is in the last position. The first comparison will move it into the second to last
position, and then the second comparison will move it into the third to last
position. Each pass of the algorithm moved this element two positions closer to
where it should be. The fact that the algorithm loops N / 2 times will move
this element N � 1 positions forward and into the correct position.

Figure 7.5 shows this sorting process on our list of 15, 18, 13, 12, 17, 11,
19, 16, and 14. Each of the rows shows the result of either an odd (labeled with
O) or and even (labeled with E) pass through the list. 

Because the comparisons are done in parallel, each pass of the loop does two
comparisons, so the overall run time of this algorithm is O(N). The cost will
be N / 2 * O(N), which is smaller than our linear network attempt but is still
O(N2).

■ 7.5.3 Other Parallel Sorts

We can also sort a list of values that are unique by a counting method. If we
compare each value with the entire list and count how many numbers are less
than this value, we will get the number of list elements that must occur before
this one in the sorted list. We can then use this count plus 1 as the location in
the list for this value. If we use the CREW PRAM model, with one processor
for each data value, we can identify the location for each value in O(N) com-
parisons. Because we need N processors, the cost of this technique is O(N2).
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There are parallel merge techniques that are beyond the level of this text
that can merge two lists with an optimal cost of O(N) using no more than N /
lg N processors. If we divide the list into N / lg N pieces and then sort these
using an efficient sequential sort, like quicksort, we can use a parallel merge
technique to recombine the pieces into one list. We could also use a parallel
merge algorithm to construct a parallel version of merge sort.

7.5.4

1. Write a formal parallel algorithm for the counting sort as described in Sec-
tion 7.5.3. Analyze your algorithm for both its speed and its cost.

2. Write an algorithm for merge sort as described in Section 3.6, using the call
ParallelMergeLists(i, j, k, l) to represent the invocation of the
parallel merge that combines the sublist in locations Mi through Mj and the
sublist in locations Mk through Ml. Analyze your algorithm for both its speed
and its cost. You can assume that ParallelMergeLists takes lg N + 1
steps using N processors, where N is the number of elements in the resulting
list (N = j � i + l � k + 2).

12131815 17 11 19 16 14

13121815 11 17 16 19 14O1

11181215 13 16 17 14 19E1

18111512 13 16 14 17 19O2

13151112 18 14 16 17 19E2

15131211 14 18 16 17 19O3

14131211 15 16 18 17 19E3

14131211 15 16 17 18 19O4

14131211 15 16 17 18 19E4

■ FIGURE 7.5
The odd-even

parallel sort

7.5.4 EXERCISES■
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3. Write a formal parallel algorithm that will divide a list into N / lg N pieces
that are sorted using Quicksort and then merged. In your algorithm, use
the call Quicksort(M, j, k) to invoke Quicksort on the sublist in
locations Mj through Mk. You should also use the call to ParallelMerge-
Lists as described in question 2.

7.6 PARALLEL NUMERICAL ALGORITHMS

In this section, we will explore parallel algorithms to solve numerical prob-
lems. We will begin with two varieties of parallel matrix multiplication algo-
rithms and then we will look at the problem of finding the solution to a system
of linear equations.

■ 7.6.1 Matrix Multiplication on a Parallel Mesh

One method to achieve parallelism in matrix multiplication is to use a mesh
network related to the size of the matrices. To multiply an I � J matrix and a
J � K matrix, you would use an I � K mesh of processors, with a row of pro-
cessors for each row of the first matrix and a column of processors for each
column of the second matrix.

The numbers of the first matrix would be passed into the rows of the mesh
one per cycle. The first row would begin on the first cycle, the second row on
the second cycle, and so on. A similar process would be followed with the
numbers in the second matrix and the mesh columns, starting with the num-
bers in the first column. The delay in the later rows and columns is so that the
numbers that need to be multiplied by each processor arrive at the same time.
Each processor will then multiply the two numbers that arrive at it during each
cycle and add the result to its current total. At the end, each processor will hold
one value of the result. Figure 7.6(a) through (i) shows the steps to multiply

2 3 5
4 1 7

by
3 5 8 4
1 4 7 3
9 6 2 1



7 . 6 P A R A L L E L  N U M E R I C A L  A L G O R I T H M S 199

P11 P12 P13 P14

4 1 7

2 3 5

3

1

9

5

4

6

8

7

2

4

3

1

P21 P22 P23 P24
■ FIGURE 7.6A

The initial mesh
network setup

P11 P12 P13 P14

4 1 7

2 3

3

1

5

5 45

9

4

6

8

7

2

4

3

1

P21 P22 P23 P24

■ FIGURE 7.6B
The first two values
are multiplied by P11

and stored in its
register
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P11 P12 P13 P14

4 1

2

3

5

3 548

7 63

30

1

9

6

4

8

7

2

4

3

1

P21 P22 P23 P24

■ FIGURE 7.6C
P11 multiplies the
next two values

and adds the result
to its register and

P12 and P21 multiply
their first two

numbers

P11 P12 P13 P14

4

5

3 354

1 764 42

42

3

1 6

9

4

5 10

2

8

7

4

3

1

P21 P22 P23 P24
■ FIGURE 7.6D

P11, P12, and P21
handle their next

two numbers, and
P13 and P22 join the

process
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P11 P12 P13 P14

254

4 1 776 46 14

52

3 4 2

9

1 6

5

3 5 531

7 1

8

4

3

P21 P22 P23 P24

■ FIGURE 7.6E
P11 is now finished
and the result for

row 1 column 1 is in
its register; P12, P21,

P13, and P22 work
on their next two

values; and P14 and
P23 get started

P11 P12 P13 P14

54

4 7 7176 66 21

52

5 7 1

1 6

9

3 4 2

2 3 51447

8 3

4

P21 P22 P23 P24

■ FIGURE 7.6F
P12 and P21 are now

done, P24 gets its
first two numbers,

and P13, P22, P14,
and P23 work on
their next values
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P11 P12 P13 P14

54

1 10 7476 66 53

52

8 3

1 4 2

9 6

3 5 7 1

2 3 52247

4

P21 P22 P23 P24

■ FIGURE 7.6G
P13 and P22 are

now done, and P14,
P23, and P24 work

on their next values

P11 P12 P13 P14

54

4 26 1 776 66 53

52

4

1 4 7

29 6

3 5 8 3

1

2 3 52247

P21 P22 P23 P24

■ FIGURE 7.6H
P14 and P23 finish,
and P24 works on
its last two values

P11 P12 P13 P14

54

26 4 1 776 66 53

52

1 4 7

2 19 6

3 5 8 4

3

2 3 52247

P21 P22 P23 P24■ FIGURE 7.6I
The multiplication is

done and the
processors hold

the result of

54 52 47 22
76 66 53 26
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Analysis

This process took seven cycles to multiply a 2 � 3 matrix by a 3 � 4 matrix.
There is a general formula that we can develop to determine the number of
cycles that we need to complete this process. We first need to consider the pro-
cess involved. Counting how many cycles are necessary to get the last value in
the last row of the first matrix out of the mesh is one way to determine how
long this process takes. We could also do this analysis based on the columns
because for the process to finish, the last element of the final row of the first
matrix and the last element of the final column of the second matrix must
leave the mesh, which happens at the same time.

The rows of the first matrix shift by one column each cycle of the process. If
our first matrix has I rows and J columns (I � J), how many cycles will it take
before the last number of the first row is inside the mesh? Because each cycle
adds one number to the mesh and the first number enters the mesh on the first
cycle, it will take J � 1 more cycles for the last value in the first row to be in
the mesh. How many additional cycles will it take for this number to leave the
mesh when we are done with it? Because this number needs to be multiplied
by a value in each column of the second matrix ( J � K ), it will take K cycles
for this number to leave the matrix. Because we delay each of the successive
rows and columns, we need to consider what happens with the last row to see
what really goes on overall now that we understand how the first row works.

As was said, each row of the first matrix starts one cycle later than the row
above it. So, the second row starts on cycle 2, the third row starts on cycle 3,
and the last row starts on cycle I. We said that it takes J � 1 more cycles for the
last value in a row to enter the mesh and K cycles for it to leave the mesh. This
means that the entire process will, in general, take I + J + K � 1 cycles to
complete. The run time of our mesh matrix multiplication is O(N), where N
= maximum(I, J, K ). The number of processors we need is O(N2), and so the
cost of our parallel version is O(N3), which is the same as the standard matrix
multiplication algorithm. The real value of this mesh algorithm is that it has a
much shorter run time than any of the sequential matrix multiplication meth-
ods we considered in Chapter 4. Any algorithm that relies on a large number of
matrix multiplications can see a dramatic improvement by implementation on
a mesh network. For example, in the introduction to Chapter 4, we discussed a
convolution that multiplies a 5 � 5 matrix by every 5 � 5 patch of a 512 �
512 image. Using the standard sequential matrix multiplication algorithm, we
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would do 32,258,000 multiplications, each one in a separate processor cycle
for 32,258,000 cycles. Using a 5 � 5 processor mesh (25 processors), we
would do the same number of multiplications, but it would only take
3,612,896 cycles, almost a 90% time savings.

■ 7.6.2 Matrix Multiplication in a CRCW PRAM Model

Parallel matrix multiplication in a combining CRCW PRAM model that adds
concurrent writes to one memory location can be done in constant time with
sufficient processors. To multiply an I � J matrix A by a J � K matrix B will
require I * J * K processors. Each of these processors will be responsible for
exactly one of the O(N3) multiplications necessary to calculate the overall
result. This gives the following algorithm:

Parallel Start

   for x = 1 to I do

      for y = 1 to J do

         for z = 1 to K do

            Pxyz calculates Axy * Byz and stores it in Mxz
         end for z

      end for y

   end for x

Parallel End

Analysis

As was mentioned, each of the processors does one multiplication and then
stores its result in the proper memory location. This takes one cycle. There will
be J processors that write concurrently to each of the memory locations that
are part of the result. We indicated that this concurrent write model will com-
bine all concurrent writes by adding the values together, so the write process
handles the additions that are the other component of the standard sequential
matrix multiplication algorithm.

The run time of this algorithm is O(1), when using O(N3) processors where
N = maximum(I, J, K). This gives a total cost of O(N3), which is the same as
our standard sequential algorithm. The run time reduction is even more dra-
matic than with our mesh-based algorithm. Returning again to our convolu-
tion example, we see that with 125 processors, we can do the matrix
multiplication for one location in one processor cycle. This means that the
convolution with the entire image could be done in just 258,064 cycles, 125
times faster than the sequential version.
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■ 7.6.3 Solving Systems of Linear Equations with an 
SIMD Algorithm

In Section 4.3, we looked at a sequential algorithm to solve a system of N lin-
ear equations with N unknowns using the Gauss-Jordan method. For that
algorithm, we represented the linear equations as a matrix with N rows and N
+ 1 columns and got our solution by doing operations on rows and between
rows until we were left with an identity matrix in the first N rows and col-
umns. The values of the unknowns then appeared in the last column of this
matrix. We now present an SIMD algorithm for the CREW PRAM model to
accomplish the same thing. Our discussion below will use the notation of Mij

to represent the memory location for the coefficient of the jth unknown
(columN) in the ith equation (row).

Before presenting the parallel algorithm, let’s review the sequential algo-
rithm presented in Section 4.3. We said that the process would begin by divid-
ing the first row by the value in the first column of that row. So, if the first
value in the first row was 5, each value in that row would be divided by 5.
Next, the sequential algorithm would subtract from every other row the first
row multiplied by the first value of that other row. For example, if the second
row had a value of 12 in the first column, the second row would have the first
row times 12 subtracted from it.

The following CREW PRAM model algorithm requires N * (N + 1) pro-
cessors, each handling the update of just one element in our matrix. As with
our sequential algorithm for the Gauss-Jordan method, this parallel algorithm
does not handle problems with round-off error or matrix singularity.

for x = 1 to N do

   Parallel Start

      for y = x to N+1 do

         Pxy reads Mxx into factor and Mxy into value

         Pxy calculates value/factor and writes it to Mxy
      end for y

   Parallel End

   Parallel Start

      for y = x to N+1 do

         for z = 1 to N do

            if x ≠ z
               Pzy reads Mzy into current, Mzx into factor, 

                  and Mxy into value

               Pzy calculates current - factor * value and 
                  writes it to Mzy
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            end if

         end for z

      end for y

   Parallel End

end for x

In this algorithm, the outer loop steps through each of the unknowns. The
first parallel block will divide the current row by the appropriate element.
The second parallel block then subtracts the proper multiple of this row from
every other. In this second block, the outer loop handles the remaining col-
umns that still need adjustment and the inner loop does this for all of the
equations.

7.6.4

1. Trace the mesh network matrix multiplication as in Fig. 7.6 for the multi-
plication of the matrices

2. Trace the mesh network matrix multiplication as in Fig. 7.6 for the multi-
plication of the matrices

3. Trace the mesh network matrix multiplication as in Fig. 7.6 for the multi-
plication of the matrices

4. Do an analysis of the run time and cost of the parallel Gauss-Jordan method
for solving a system of linear equations. Your analysis should determine the
number of multiplication or division operations and the number of addition
or subtraction operations. How does this compare to the sequential algo-
rithm for the Gauss-Jordan method?

7.6.4 EXERCISES■

2 3
7 4

and 5 1
2 9

8 2
3 5

and 3 2
7 4

1 5
4 6
7 2

and 8 2 3
5 1 9
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7.7 PARALLEL GRAPH ALGORITHMS

To explore parallel graph algorithms, we will use the representation of graphs
in an adjacency matrix form. We will explore some fascinating relationships
between matrix operations on adjacency matrices and what this means about
the related graph.

■ 7.7.1 Shortest-Path Parallel Algorithm

We said that the values of the adjacency matrix for a weighted graph would be
defined as follows:

Figure 7.7 shows a weighted graph and its corresponding adjacency matrix.
The adjacency matrix shows the direct paths between nodes of the graph,
which could be seen as the shortest paths with lengths of just one edge.
Because we are interested in knowing the shortest paths through the graph
with any number of edges, perhaps we can build up from the adjacency matrix.
If we use A1 to represent the matrix showing the shortest paths with 1 or 0
edges (the original adjacency matrix), we can then use Aj to represent the
shortest paths with j or fewer edges. You should see that AN�1 would be the

AdjMat i j,[ ]
wij

0

∞





=

if vivj E∈
if i j=

if vivj E∉
for all i and j in the range 1 to N

C

F

I

B

E

H

A

D

G

2 1

1 2

4

4

5

3

3

7 0 7 ∞ ∞ ∞ ∞ ∞ ∞2

21∞ ∞ 04∞∞ ∞
0∞ ∞ 1∞∞ ∞∞ ∞

54 03 ∞∞
1 3 0 4∞ ∞

2 0 3 ∞∞ ∞ ∞ ∞ ∞
0 4 ∞ ∞∞ ∞∞ ∞ ∞

7 0 1 3 ∞ ∞∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞

05 2∞ ∞∞∞ ∞ ∞

■ FIGURE 7.7
A weighted graph
and its adjacency

matrix



208 P A R A L L E L  A L G O R I T H M S

matrix with the shortest paths through the entire graph because any path with
N or more edges must include a cycle, and so a path without the cycle would
have fewer than N edges.

We begin by thinking about how we might construct A2 from A1. The
shortest path with two edges between any nodes x and y will go through
exactly one of the other nodes. For example, the paths of length two between
nodes A and E go through either nodes B or D. If we look at the sum of the
weights of the edges AB and BE verses the sum of the weights of the edges AD
and DE, we see that the path through node D is shorter than the path through
node B. In general, if we looked at the sum of A* and *E, where * takes on the
value of every node from A through I (except A and E), the minimum of these
sums will be the shortest path with two edges. If we allow A and E to also be
included for the *, we would get the shortest path with two or fewer edges as
our result. This then gives the general form

Ai j
2 = minimumk ∈V (Aik

1 + Akj
1)

If we apply this to the adjacency matrix of Fig. 7.7, the result is shown in
Fig. 7.8.

We could construct A3 from A1 and A2 by noticing that the shortest path
with three edges or less would be a shortest path with two edges or less to
some node followed by a shortest path of length one edge or less from that
node to the destination, or vice versa. We could construct A4 either from A1

and A3 or from just A2. Because of this, we can get to our result more quickly
by just calculating A2,A4,A8, . . ., AN�, where N� is the power of 2 just greater

0 7 ∞ ∞ ∞ ∞2 5 10

21∞ 047 75∞
05∞ 1 3∞∞ ∞∞

54 4 0 7310 ∞
15 3 0 4 654∞

2 4 0 3 7∞∞ ∞ ∞
07 94 ∞ ∞∞ ∞∞

7 0 7 4 1 3 5 8∞

∞

0568 9 23∞∞

■ FIGURE 7.8
A2 for the weighted

graph of Fig. 7.7
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than the number of nodes minus 1. For the graph in Fig. 7.6, we would have
all of the shortest-weight paths when we calculated A8.

The parallel computation of the shortest path in a graph can be based on
this adjacency matrix manipulation. If we modify the matrix multiplication
algorithm so that addition is replaced by taking the minimum and multiplica-
tion is replaced by addition, the resulting algorithm will calculate the matri-
ces discussed above. Using this modified matrix multiplication algorithm
with A1 and A1 will produce A2 as its result, and “multiplying” A2 and A2

gives A4. Our parallel shortest-path algorithm becomes nothing more than
the parallel matrix multiplication algorithm, and, so, its analysis also applies
here.

■ 7.7.2 Minimum Spanning Tree Parallel Algorithm

You will recall that the Dijkstra-Prim minimum spanning tree (MST) algo-
rithm slowly builds the tree by adding the node connected to the current tree
by the edge with the smallest weight. The algorithm did this task from the per-
spective of the MST looking at those nodes that were connected to it and plac-
ing those in the “fringe.” With the power of multiple processors, we can instead
look at the tree from the perspective of all of the nodes and see which is closest
at each pass.

Our algorithm will be designed with p processors. Because p will be less
than the number of nodes in the graph, each processor will be responsible for
N / p nodes. We will choose one node to start the MST, and it will be the clos-
est tree node for all of the others, because it is the one and only tree node. On
each pass, each processor will examine each of its nodes and select the one that
is closest to a node in the tree. That information will be passed by each proces-
sor to a central processor, which will choose the one with the smallest distance
overall. This node will be added to the tree and will also be broadcast to the
processors so that they can update their nodes. This process will be repeated
N � 1 times as the other nodes are added to the tree.

In the following algorithm, Vj will represent the set of nodes that are the
responsibility of processor Pj, and vk will represent a single node of the graph.
We will use two arrays locally in each of the processors. The first will be
closest(v), which will hold the name of the MST node that this closest to
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node v, and distance(vi, vj), which gives the shortest distance between
nodes vi and vj. Formally, this algorithm for the CREW PRAM model is

v0 is labeled as the first tree node

Parallel Start

   for j = 1 to p do

      for each node in Vj do

         set closest to v0
      end for each

   end for j

Parallel End

for j = 1 to N-1 do

   Parallel Start

      for k = 1 to p do

         Pk finds the smallest distance among its nodes

         Pk reports distance(v, closest(v)), v, and closest(v)

            (where v ∈ Vk)
      end for k

   Parallel End

   Pcontrol finds the smallest reported distance and adds the 

      node vs and its edge to the MST

   Pcontrol broadcasts the new MST node to P1 through Pp
   Parallel Start

      for k = 1 to p do

         if vs ∈ Vk then
            Pk marks it as now in the tree

         end if

         Pk updates closest and distance based on vs being in 

            the tree for each of its nodes that are not yet in the tree

      end for k

   Parallel End

end for j

Analysis

The first loop is the initialization loop, and it will execute in N / p time, because
each processor has to initialize the data for the number of nodes that are its
responsibility. The first parallel block in the main for loop will do N / p � 1
comparisons each time, because sequentially finding the minimum or maximum
was shown in Chapter 1 to take this many comparisons. The next step is to find
the minimum distance of those reported by the p processors, which will take
another p � 1 comparisons. The broadcast step in a CREW model was shown to
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take two cycles. The last parallel block takes one comparison to see if the new
node is in the processors set and then N / p updates of closest and dis-
tance. In summary, the main processing loop has 2(N / p) + p + 1 instruc-
tions and is executed N � 1 times, giving (N � 1) * (2(N / p) + p + 1). This
works out to an O(N 2 / p) run time and a cost of p * O(N2 / p), or O(N2). As
we saw in the other cases, to achieve optimality, the number of processors
should be about N / lg N.

7.7.3

1. Give the weighted adjacency matrix for the following four graphs, and cal-
culate A2,A4, and A8.

7.7.3 EXERCISES■
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2. Formally rewrite the standard sequential matrix multiplication to calculate
the shortest path as described at the end of Section 7.7.1. Use the graph in
Fig. 7.7 to verify your algorithm.

3. Give the details of the analysis of the shortest-path algorithm that uses paral-
lel matrix multiplication. Your analysis should be based on the matrix multi-
plication taking an O(N) run time and a cost of O(N3). Your complete
answer will depend on your determination of how many times this will be
called and for what size of array.

4. Using three processors, trace the execution of the parallel minimum span-
ning tree algorithm on the graphs in question 1, starting at node A. Your
trace should show the nodes each processor is responsible for, as well as the
values that each processor returns for each pass. If you have also worked
problem 1 from Section 6.4.2, compare your answers from that sequential
algorithm and this parallel one.
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PREREQUISITES

Before beginning this chapter, you should be able to

• Write and explain an algorithm
• Describe growth rates and order

GOALS

At the end of this chapter, you should be able to

• Define class P, class NP, and NP-complete
• Explain the difference between decision and optimization problems
• Describe the classic NP problems and why they are important
• Describe what puts a problem into class NP
• Describe why P ⊆ NP
• Explain why “P = NP?” is still an open question
• Write an algorithm to check a potential solution to an NP problem

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. You should specifically trace through the
algorithms and input data presented to try to recreate the “results” given. You
should also try to answer any questions before reading on. A hint or the answer
is in the sentences following the question.



214 N O N D E T E R M I N I S T I C  A L G O R I T H M S

p to now, all of the algorithms we have considered have solved their
problems in a reasonable amount of time. These problems all have an
order that can be expressed by some polynomial equation. In some

cases, we have seen algorithms that had linear time, like sequential search,
where if the list size doubled, the amount of time the algorithm would take
also doubled. We have seen algorithms that had O(N2) time, like some of the
sort algorithms, where if the list size doubled, the amount of time the algo-
rithm would take would go up by a factor of 4. And we have seen algorithms
that had O(N3) time, like matrix multiplication, where if the size of the matrix
doubled, the amount of time the algorithm would take would go up by a fac-
tor of 8. Even though these increases can be significant, they are still relatively
controlled. The difference this makes can be seen in Figs. 1.1 and 1.2.

In this chapter, we will look at a set of problems that have run times that are
factorial O(N!) and exponential O(xN) (x ≥ 2). In other words, these are prob-
lems for which there is no known algorithm to solve the problem in a reason-
able amount of time. We will see that the only way to find a correct or optimal
solution will be to guess at the answer and check to see if it is correct.

Even though these problems take a long time to solve, we can’t just dismiss
them because they have important applications. These problems are needed to
decide on an efficient route for delivery trucks, to develop reasonable exam
schedules, and to schedule tasks so that as many deadlines are met as possible.
Because the problems are important but we don’t have a way to quickly get the
correct answer, we will look at approximations of the correct answer in the
next chapter.

This class of problems is called NP. We begin this chapter with an examina-
tion of the class NP. We then look at a set of classic problems that are in the
class NP. The next section looks at the elements of these problems that put
them into the class NP. We finish with a section that looks at the process of
testing our guess solutions.

8.1 WHAT IS NP?

The algorithms that we worked with in Chapters 1 through 7 have all had a
complexity that was expressible as a polynomial. In fact, all of the algorithms

U
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that we have considered had complexity in O(N3).1 In fact, the most time-
complex algorithm we examined was matrix multiplication. The bottom line,
however, is that we can get an exact solution to those problems within some
reasonable amount of time. This group of problems is said to be in the class P,
where P stands for polynomial time complexity. Problems for which there is a
polynomial time algorithm are called tractable.

There is another class of problems that are intractable, for which we cur-
rently have no algorithm that will solve the problems in any reasonable amount
of time. These problems are in the class NP, which stands for nondeterministic
polynomial time complexity. The meaning of the phrase “nondeterministic
polynomial time” will become clearer through the rest of this section. The
thing to note is that the only deterministic algorithms that are known to solve
these problems have a complexity that is of exponential or factorial order. For
some problems, the complexity is given by 2N, where N is the number of input
values. In this case, each time we add one additional input value, the amount of
time the algorithm needs to solve the problem would double. If it takes 1024
operations to solve the problem with an input of 10 elements, it would take
2048 operations to solve the problem with an input of 11 elements. This is a
significant increase in time for a small increase in the input.

The name nondeterministic polynomial for problems of the class NP comes
from a two-step process to solve them. In the first step, there is a nondetermin-
istic process that generates a possible solution to the problem. You can see this
as a random guess at the solution that will sometimes be good (the solution or
close to it) and at other times be bad (a far from optimal answer). The second
step will look at the output of the first step and determine if it is a true solu-
tion. Individually, we will see that both of these steps work in polynomial time.
The problem is that we don’t know how many times this process will need to
be repeated before a solution is generated. Even though the individual steps are
polynomial, we may need to call them an exponential or factorial number of
times.

One of the problems in the class NP is the traveling salesperson problem. In
this problem, we are given a set of cities and a “cost” to travel between each of

1 Remember that to say a function g(x) is in O( f(x)) means that g(x) grows no faster 
than f(x). So, x2 is in O(x3).
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these cities. The goal is to determine the order we should visit all of the cities
(once), returning to the starting city at the end, while minimizing the total
cost. This problem can be applied to the order streets should be visited to col-
lect garbage efficiently, deciding on the route a truck should take to make
deliveries in the shortest time possible, or choosing the routing of a packet so
that information is transmitted quickly between all nodes in a network. When
we have 8 cities, there are 40,320 possible orderings of the cities, and when
that number increases to 10 cities, there are now 3,628,800 possible orderings
of the cities. To find the most efficient route, we would have to examine all of
the possibilities. Let’s say that we have an algorithm that can calculate the cost
of traveling between a set of 15 cities in a given order. If this algorithm can do
100 of these calculations per second, it would still take over four centuries to look
at all of the possible orderings of those 15 cities to find the quickest possible
trip. Even if we had 400 computers work on this problem, it would still take
over a year, and there are only 15 cities. If we have 20 cities, it would take one
billion computers working in parallel about nine months to find the most effi-
cient route. Clearly, it is faster and cheaper to travel to all of them via any path
than to wait for the algorithm to find the shortest path.

Is it possible that we might be able to construct the shortest path without
looking at all of the possible paths? At this point, no one has been able to
devise a construction algorithm that doesn’t effectively just check all of the
potential paths. The situation where the number of cities is small could be
solved quickly, but one instance of the problem (with a restricted input) that
can be done quickly doesn’t mean that there is an algorithm that can do all
instances of the problem quickly. We are interested in the general solution to
this problem.

If you think about the traveling salesperson problem, you should see it’s
similarity to the graphs and graph algorithms that were discussed in Chapter
6. Each city can be represented by a node in the graph, the ability to travel
between two cities can be represented in the edges of the graph, and the cost
to travel between those cities can be the weight attached to the edge. From
this, you might be tempted to think that the shortest-path algorithm we dis-
cussed in Section 6.5 would also solve this problem, but it won’t. What are
the two requirements of the traveling salesperson problem that make it differ-
ent from the shortest-path problem? The first is that we must visit all of the
nodes and the shortest-path algorithm only tells us the quickest way to get
between two nodes. If you try to use multiple pieces that the shortest-path
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algorithm produces, you might find that the paths you put together take you
to a node more than once. The second difference is that we are expected to
return to the starting point in the traveling salesperson problem, whereas the
shortest-path algorithm has no such expectation.

Our brief discussion of the extremely large number of possible orderings of
the nodes should convince you that a deterministic algorithm that examines all
of the different orders of nodes would take an extremely long time to com-
plete. To show that this algorithm is in the class NP, we need to show how a
two-step process as described above would solve it. For the traveling salesper-
son problem, the first step would be to nondeterministically generate a list of
the cities. Because this process is nondeterministic, each time it is run, a differ-
ent order of the cities will be generated. Obviously this generation process can
be done in polynomial time, because we can keep a list of city names, generate
a random number, output the corresponding city name, and then remove that
name from the list to prevent it from appearing twice. This process would run
in order O(N) where N is the number of cities. The second step would be to
determine the cost of traveling to the cities in the order specified. To deter-
mine this, we would simply have to look at the cost for each successive pair of
cities in the list, which would have complexity O(N2) in the worst case.
Because both of these steps are of polynomial complexity, the traveling sales-
person problem is in the class NP. Notice that it is the potential number of
times that this would have to be done that makes this problem so time con-
suming.

At this point, you might notice that we could use this two-step process for
any of our previous algorithms. For example, we could have sorted a list by
outputting a random order of the original list and then checking to see if the
elements are in increasing order. Doesn’t this make sorting a member of the
class NP? Yes it does. The difference between a problem in class P and one just
in class NP is that, in the former case, we also have a deterministic algorithm
that runs in polynomial time, whereas in the later we don’t. We will discuss this
issue again in Section 8.3.

■ 8.1.1 Problem Reductions

One way that we can get a solution to a problem is through the concept of a
reduction. If we can reduce one problem to another, we could use an algo-
rithm for the second problem to get a solution and then transform this
answer into a solution for the first problem. If we can do the transformations
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in polynomial time and the second problem can be solved in polynomial
time, we know that our new problem also has a polynomial time solution.

Let’s look at an example of this that will make the process clearer. Our first
problem will be to return “yes” if any of a group of Boolean variables has a
value of true and return “no” if all are false. The second problem is to find the
largest value in a list of integers. You should be able to see a very clear and easy
solution for each of these problems, but for the sake of this example, let’s say
that we have a solution to the largest integer problem but not for the Boolean
variable problem. We can solve the Boolean variable problem by reducing it to
the largest-integer problem. We begin by taking an instance of the Boolean
variable problem and writing a conversion algorithm that will, for each Bool-
ean variable, assign the next list entry the value of 0 if the Boolean variable is
false, and a value of 1 if the Boolean variable is true. We now use our algorithm
to find the largest value in the list. You should see that the answer will be either
0 or 1 because of how we set up the list. We now convert this answer back into
a solution to the Boolean variable problem by returning yes if the largest value
is 1 and returning no if the largest value is 0.

In Chapter 1, we saw that finding the largest value in a list can be done in
linear time, and we see that our reduction can also be done in linear time;
therefore, the Boolean variable problem must also be solvable in linear time.

In the next section, we will use this technique to learn some thing about
NP problems. We will see, however, that the reductions of NP problems can be
much more involved that this.

■ 8.1.2 NP-Complete Problems

When discussing the class NP, we must remember that we might think these
problems take a long time to solve because we just haven’t found a faster algo-
rithm to solve them. If we thought about the traveling salesperson problem dif-
ferently, perhaps we could develop a deterministic algorithm that could solve it
in polynomial time. The same could be said about any of the problems that we
will consider in the next section.

The term NP-complete is used to describe the hardest of the problems in the
class NP. These problems are singled out because if at any point we find a
deterministic polynomial time algorithm for one of them, all of the problems
in NP must have deterministic polynomial time algorithms.
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We show that a problem is NP-complete by showing that every other prob-
lem in the class NP can be transformed into it. This is not as daunting of a task
as it sounds because we don’t have to do this for every NP problem. Instead, if
we have an NP problem A, we can show that it is NP-complete by reducing an
NP-complete problem B into it. Because B is NP-complete, every problem in
NP can be transformed into problem B. So, by reducing B to A, we effectively
show that all NP problems can be transformed into A by a two-step process
that first transforms them to B. Therefore, our NP problem A is now known to
be NP-complete.

In the last section we did a reduction of a polynomial time algorithm; now
we do one for an NP problem. We need a process that will modify all of the
components of one problem so that they become an equivalent component in
another problem. This transformation must preserve the information so that
every time the first problem gives a positive result so does the transformed
problem, and every time the first problem gives a negative result so does the
second problem.

In a graph, a Hamilton path is one that visits every node of the graph
exactly once. If the path returns to the starting node, it is called a Hamilton
circuit. A graph doesn’t need to be complete for it to have a Hamilton path or
circuit. We can reduce the Hamilton circuit problem to the traveling salesper-
son problem in the following way. Each node in the graph becomes a city. For
each edge in the graph, we assign the cost of traveling between the two equiv-
alent cities a value of 1. For each pair of nodes that have no edge connecting
them, we assign the cost of traveling between the two equivalent cities a value
of 2. This converts the graph into a set of cities. We now solve the related trav-
eling salesperson problem. If there is a Hamilton circuit in the graph, the trav-
eling salesperson problem will be able to find a solution traveling between
cities that just have costs of 1. If there is no Hamilton circuit, the solution the
traveling salesperson problem finds will travel between at least one pair of cities
with a cost of 2. If there are N nodes in the graph, there is a Hamilton circuit if
the traveling salesperson path is of length N, and there is no Hamilton circuit if
the path is of length greater than N.

In 1971, Cook showed that the CNF-satisfiability problem described in the
next section was NP-complete. A large number of additional problems have
been shown to be NP-complete by reducing the satisfiability problem, or
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another NP-complete problem, to them. A 1979 book by Garey and Johnson
lists hundreds of problems that have been shown to be NP-complete.

The power of the reduction process is that if any NP-complete problem can
be reduced to a class P problem, all of the NP problems must have polynomial
time solutions. So far, all attempts at reductions of this type have failed.

8.2 TYPICAL NP PROBLEMS

Each of the problems that we will discuss can be viewed as either an optimiza-
tion problem or a decision problem. Optimization problems look for a specific
result that is usually a minimum or maximum value. Decision problems look at
a limit and ask if there is a solution that has a value above (for maximization
problems) or below (for minimization problems) the limit provided. Optimiza-
tion problems will supply as their result an answer to the problem, whereas
decision problems will reply with just a yes or no answer.

In Section 8.1, we discussed the traveling salesperson problem. In that sec-
tion, we discussed the optimization version of this problem. This is a minimiza-
tion problem and so we were interested in finding the path that has the lowest
cost. This problem can also be presented as a decision problem. For the travel-
ing salesperson decision problem, we would ask if there is a path that has a cost
below some limit C. Obviously, decision problem answers will vary based on
the limit provided. In cases where the limit is very large (perhaps larger than
the total of all the costs), an answer of yes might be easy to provide. In cases
where the limit is very small (perhaps smaller than the costs to travel between
any two cities), an answer of no might be easy to provide. For most other pos-
sibilities, the time to determine an answer is very long and related to the time
needed to solve the optimization version. For this reason, we will talk about
the optimization and decision versions interchangeably and at different times
will use the one that is most appropriate for the discussion.

In the next few sections, a set of six additional NP problems will be
described in both their optimization and decision form.

■ 8.2.1 Graph Coloring

As was discussed in Chapter 6, a graph G = (V, E) is a set of vertices or nodes
(V ) and a set of edges (E) that connect pairs of nodes. For this problem, we
will only be concerned with undirected graphs. We can color a graph by
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associating with each node of the graph a different color, usually represented
by some integer. The complexity of the problem comes from the requirement
that for every edge of the graph, the nodes at the two ends must have different
colors. It should be obvious that if there are N nodes in the graph, we can
color the graph with N different colors, but can we do any better? As an opti-
mization problem, we ask what is the smallest number of colors that are
needed to color a given graph. As a decision problem, we ask if a graph can be
colored with C colors or less.

Graph coloring can have practical applications. If we assign every course
offered at a college to a node and add edges between every pair of nodes for
the courses each student is taking, we have a rather complex graph. Given that
most students take 5 courses, there would be 10 edges added for each student.
Let’s say that there are 500 different courses offered and about 3500 students.
That means the final graph would have 500 nodes and 35,000 edges. We can
now associate each exam week slot with a different color. If there are 20 slots,
we try to produce a coloring of the graph with 20 different colors. Assigning
different colors or exam slots to the nodes at the opposite ends of an edge
means that those two courses cannot have exams at the same time, and so the
student cannot have a conflict between these two exams.

Creating an exam schedule with no conflicts is the equivalent of the graph
coloring problem. But because graph coloring is an NP problem, it is not pos-
sible to produce a conflict-free exam schedule in any reasonable amount of
time. Additionally, exam scheduling typically tries to limit students to no more
than two exams in one day and to schedule multiple sections of a course at the
same time. This would place further limits on the color options at each node.
Obviously, because creating the “perfect” exam schedule is impossible, there
must be another technique used to get exam schedules that are as good as they
are. Approximation algorithms will be discussed in Chapter 9.

■ 8.2.2 Bin Packing

We have a number of bins each with a capacity of 1, and we have a set of
objects all with different sizes, s1, s2, . . ., sN between 0 and 1. The optimization
problem asks what is the fewest number of bins that would be needed to store
all of these objects, and the decision problem would ask if it is possible to store
all of the objects in B bins or less.

This problem can be related to storing information on disks or in frag-
mented computer memory banks, to shipping companies who would like to
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pack materials as efficiently as possible, and to the production of custom-
ordered pieces of some material that has to be cut from larger stock. For exam-
ple, if we have large sheets of metal and we have a bunch of orders for smaller
pieces of metal, we would obviously want to cut things as tightly as possible to
reduce waste and increase profits.

■ 8.2.3 Backpack Problem2

We have a set of objects that have different sizes, s1, s2, . . ., sN , and each of
these objects has a worth associated with it, w1, w2, . . ., wN . If we have a back-
pack of size K, the optimization problem determines the objects that we
should put in the backpack to maximize the total worth. As a decision prob-
lem, we would ask if there is a set of objects that will fit in the backpack and
have a total worth that is at least W.

This problem is related to investment strategies where the size of the objects
is the cost of various investments, the worths are the potential returns of those
investments, and the backpack size is the amount of capital available to invest.

■ 8.2.4 Subset Sum Problem

We have a set of objects that have different sizes, s1, s2, . . ., sN , and we have
some positive upper limit L. The optimization version determines the subset of
the objects that produces the largest sum of sizes that is no greater than L. The
decision version would ask if there is a subset of the objects that has a total size
of L. This is a simplified version of the backpack problem.

■ 8.2.5 CNF-Satisfiability Problem

Conjunctive normal form (CNF) is a series of Boolean expressions that are all
combined by the AND operator (∧). Each of the individual expressions is a
series of Boolean variables combined with the OR operator (∨). A sample
CNF expression is (where  represents “not x”)

The CNF-satisfiability problem only has a decision version that asks if there
is some combination of true and false values for the variables so that the entire
equation is true. Because there is no limit on the number of variables or the

2 The classic name for this problem is the Knapsack Problem.

x
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number of terms, the possible combination of trues and falses that would have
to be checked can get very large.

■ 8.2.6 Job Scheduling Problem

We have a set of jobs with the amount of time they need to complete, t1, t2, . . .,
tN , the deadline they need to be completed by, d1, d2, . . ., dN , and a penalty
incurred if the job is not completed by the deadline, p1, p2, . . ., pN. The optimi-
zation problem attempts to order the jobs so as to incur the smallest penalty. The
decision problem asks if there is a schedule that has a penalty less than P.

8.2.7

1. In Section 8.1, a two-step nondeterministic process was described for solv-
ing problems in the class NP. Give the process that could be used for the fol-
lowing problems. Your answer should describe the format of the output of
the nondeterministic step. This output should have all of the elements that
are part of the solution to the whole problem. For example, for the traveling
salesperson problem, this was a list of cities in the order of the visits. Then
your answer should describe a process that would be used to check to see if
this generated “solution” satisfies the problem.

a. Graph coloring problem
b. Bin packing problem
c. Backpack problem
d. Subset sum problem
e. CNF-satisfiability problem
f. Job scheduling problem

2. In Section 8.1, a process to transform one problem into another was dis-
cussed as a way to identify problems that are NP-complete. All of the prob-
lems in Section 8.1 and 8.2 are NP-complete, so any of these problems can
be transformed into any other problem. For the following sets of problems,
describe how you would transform the first into the second:

a. Backpack problem, bin packing
b. Bin packing, job scheduling
c. Job scheduling, subset sum
d. Subset sum, traveling salesperson
e. Traveling salesperson, job scheduling

8.2.7 EXERCISES■
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8.3 WHAT MAKES SOMETHING NP?

We have looked at a lot of problems that are in the class P and a handful that
are in the class NP. We described the class NP as those problems that are solv-
able in polynomial time by a nondeterministic algorithm. As was mentioned,
we could describe the process of sorting as follows:

1. Nondeterministically output the elements of a list.
2. Check to see if si < si+1 for i = 1 through N � 1.

This describes a two-step nondeterministic process. The first step takes no
comparisons and will be completed in N steps, each outputting one element.
The second step is also polynomial time because it only does N � 1 compari-
sons. This process fits our definition of the class NP, so it would seem that sort-
ing is in the class NP as well as the class P. Because we can do this with any
algorithm, all algorithms in the class P are also in the class NP. In the case of
problems just in class NP, there is, however, no known deterministic polyno-
mial time algorithms. This makes P a subset of NP, but at present there are
problems in NP that are not known to be in P.

The heart of this difference is really the large number of combinations that
we must necessarily examine for these NP problems. But it’s a little more com-
plex than just the number of combinations of input values. We can have a list of
30 distinct elements or a list of 30 distinct cities. In the both cases, there are 30!
combinations of these 30 elements or cities and only one of these can be cor-
rectly sorted or can be a shortest path. The difference is that we have polyno-
mial time algorithms that will create the correctly sorted list, some in as few as
150 comparisons. For bubble sort, the first pass through the list will at mini-
mum put the last element into the correct place in the list, eliminating with 29
comparisons at least 1 / 30 of the possible combinations. On the second pass,
28 comparisons will eliminate at least 1 / 29 of the combinations that are still
left. When we look at the process closer, we see that even more of the possibil-
ities might get eliminated, because each pass of the algorithm might not only
move the next largest element to the end of the list but also fix other elements
that are out of order.

The best we can do to find the shortest path is to examine all of the possible
paths to see which has the shortest length. We don’t have an algorithm that,
with a few operations, can successfully eliminate a significant number of the
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combinations from consideration.3 So instead, we need to look at all of them.
If we could examine the path length of 1,000,000,000 of the 30! combinations
in 1 second, this would still take more than 840 billion centuries to check all of
the paths. In Chapter 9, we will look at algorithms that will come up with
answers for these problems that approximate the optimal answer. We have no
way of knowing how good an approximation we produce because we don’t
know what the optimal value is. Instead, these algorithms can be run for as
much time as we have available, and the longer they run, the better the answer
they will produce. They may stumble on the optimal answer, but that is not
guaranteed.

So, the thing that puts problems in the class NP is that there are an
extremely large number of possibilities for the optimal answer, and we don’t
have an efficient deterministic algorithm to sift through them to find the cor-
rect one.

■ 8.3.1 Is P = NP?

After the discussion of the previous section, it might seem ridiculous to even
ask if the set of problems in the class P is the same as the set of problems in the
class NP. The discussion showing that there is both a polynomial and nondeter-
ministic polynomial time algorithm for sorting should demonstrate the basis
for the fact that P is a subset of NP. Our discussion of the difference between
sorting and shortest path might lead you to believe that we know that there are
problems in the class NP that are not in the class P. That, however, is not the
correct idea to take away from the last section. All we know at this point is that
we have not been able to find a deterministic polynomial time algorithm that
will solve any of the problems in the class NP. That doesn’t mean that there is
no such algorithm, and researchers are still working to resolve this point. It is
believed that there is no polynomial time solution for the class NP problems,
but how do you prove that a polynomial time algorithm doesn’t exist to solve a
problem? Our best option is to examine the problem and attempt to determine
the lower bound on the work that must be done. At this point, however, no

3 It might appear that we could try, for example, to eliminate a path between two cities 
that costs a lot. But that simple attempt might not work because it could make us take 
a couple of paths that are overall more expensive, so we would not really be better off. 
To check to see if eliminating an expensive edge will cause this to happen puts us back 
at a high-complexity algorithm.
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one has been able to prove that the smallest lower bound for these problems
must be larger than polynomial time. The question Is P = NP? is still open and
being studied by researchers around the world.

8.3.2

1. For each of the following problems, indicate which are in P and which are
in NP. For those you think are in P, give an outline of the algorithm to solve
them. For those you think are in NP, explain why you think they are not
solvable in polynomial time. (Hint: Think about an algorithm to solve these
problems, and then determine if it is polynomial.)

a. The Smarandache function, S(k), gives the smallest integer m, so that m!
can be evenly divided by k. For example, S(9) = 6 because 6! = 720 and
9 doesn’t divide any smaller factorial. Calculate the Smarandache func-
tion for any number.

b. You have to seat N children in the smallest number of rows in an audito-
rium. For each child, you have a list of who that child dislikes. Past expe-
rience shows that if a child is in the same row or any row behind a child
that he or she dislikes, he or she will throw things at the other child.
Given this list, determine the smallest number of rows needed for these
children, or determine that they can’t be seated.

c. Ackermann’s function is defined as

Calculate Ackermann’s function.
d. You are in front of a wall that stretches infinitely in both directions. You

know that there is a door in the wall, but it is dark, and you only have
only a dim flashlight that allows you to see no more than one step in
either direction. Find the door.

8.4 TESTING POSSIBLE SOLUTIONS

The description of the class NP stated that these problems had a solution that
included a nondeterministic first step that generated a potential solution and a
deterministic second step that checked that solution. Both of these steps oper-

8.3.2 EXERCISES■

A 0 y,( ) y 1+=

A x 1 0,+( ) A x 1,( )=
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ate in polynomial time. This section will look at algorithms that check pro-
posed solutions for the job scheduling and graph coloring problems.

■ 8.4.1 Job Scheduling

You will recall that the job scheduling problem gives a set of jobs that need to
be done. Each job has a time it takes to complete, a deadline by which it must
be completed, and a penalty if that job is not completed in time. Jobs are done
one at a time, and the deadlines are measured from the start of the first job. The
jobs are specified as a 4-tuple (n, t, d, p) where n is the job number, t is the
amount of time it will take, d is the deadline, and p is the penalty. For example,
a set of five jobs could be {(1, 3, 5, 2), (2, 5, 7, 4), (3, 1, 5, 3), (4, 6, 9, 1),
(5, 2, 7, 4)}.

The decision problem specifies some value P and wants to know if there is
an ordering of the jobs that can be done with penalty less than or equal to P.
The optimization problem wants to know the smallest penalty for any ordering
of the jobs. We will consider the decision problem, because calling the decision
problem with a series of values until it answers yes can solve the optimization
problem. In other words, we ask if there is an order with penalty 0 and if it
answers no, we try a penalty of 1. We keep increasing the penalty until we get
an answer of yes. The following algorithm will test one potential solution for
the decision version of the problem:

PenaltyLess( list, N, limit )

list  the ordering of the jobs

N     the number of jobs

limit the maximum penalty

currentTime = 0

currentPenalty = 0

currentJob = 1

while (currentJob ≤ N) and (currentPenalty ≤ limit) do
    currentTime = currentTime + list[currentJob].time

    if (list[currentJob].deadline < currentTime) then

        currentPenalty = currentPenalty + 

            list[currentJob].penalty

    end if

    currentJob = currentJob + 1

end while

if currentPenalty ≤ limit then
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    return yes

else

    return no

end if

The requirement of the class NP is that we are able to check the proposed
solution in polynomial time. You should see that this algorithm properly checks
the penalties for the list of jobs provided. If we analyze the time complexity of
this algorithm, we see that the while loop will do at most N passes if the
currentPenalty is never increased. If we count all of the work, there will
be 3N + 1 comparisons and at most 3N additions. This means that this algo-
rithm is in O(N), which is clearly polynomial and meets our requirements.

■ 8.4.2 Graph Coloring

The graph coloring problem attempts to determine how to assign colors (rep-
resented as integers) to the nodes of the graph so that no two nodes that are
connected by a single edge have the same color. You will recall that the deci-
sion version of this problem tries to determine if the graph can be colored in C
colors or less, whereas the optimization version tries to determine the smallest
number of colors needed.

Our nondeterministic step will produce a proposed solution that will be a
list of the nodes and the colors assigned to them. The nondeterministic step
will be responsible for deciding how many colors to use, so that’s not some-
thing we need to check. For the decision problem, the nondeterministic step
will try to assign at most C colors. For the optimization problem, it might start
with a large number of colors and keep decreasing it as long as a valid coloring
is still possible. Then when it determines that the graph can’t be colored with
X colors, it knows that X + 1 is the minimal number of colors required.

The following algorithm will check to see if the colors proposed are a valid
way to color the graph. This algorithm uses an adjacency list to hold the graph,
so that graph[j] represents the j th node of the graph, graph[j].edge-
Count represents the number of edges leaving node j, and graph[j].edge is
an array with the nodes that are adjacent to node j.

boolean

ValidColoring( graph, N, colors )

graph  the adjacency list

N      the number of nodes in the graph

colors the array of colors assigned to each node
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for j = 1 to N do

   for k = 1 to graph[j].edgeCount do

      if (colors[j] = colors[ graph[j].edge[k] ]) then

         return no

      end if

   end for k

end for j

return yes

You should see that this algorithm properly checks the colors for the graph
provided. It goes through each node and if that node is directly connected to
another node that has the same color, it stops and returns no. If all are different,
it returns yes. If we analyze the time complexity of this algorithm, we see that
the outer for loop will do N passes. The inner loop looks at each edge con-
nected to the current node. The overall process, therefore, does a comparison
for each node’s edges. This means that this algorithm is in O(edges), which is
clearly polynomial because the number of edges is less than N2. This, therefore,
meets our requirements.

8.4.3

1. Develop an algorithm to check a proposed decision solution for the follow-
ing problems:

a. Bin packing problem
b. Traveling salesperson problem
c. Backpack problem
d. Subset sum problem
e. CNF-satisfiability problem

8.4.3 EXERCISES■
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C H A P T E R 9
Other Algorithmic

Techniques

PREREQUISITES

Before beginning this chapter, you should be able to

• Write and explain an algorithm
• Describe the class NP
• Describe growth rates and order
• Use random number tables and generators (Appendices A and B)
• Write a recursive algorithm

GOALS

At the end of this chapter, you should be able to

• Explain the approximation algorithm concept
• Explain approximation algorithms for some class NP problems
• Explain the four types of probabilistic algorithms
• Use arrays to improve algorithm efficiency

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. You should specifically trace through the
algorithms and input data presented to try to recreate the results given. You
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should also try to answer any questions before reading on. A hint or the answer
is in the sentences following the question.

s was discussed in Chapter 8, problems in the class NP are important
to a number of applications, and so their solution is of interest.
Because these problems do not have polynomial time algorithms that

can produce an exact solution, we must consider alternative algorithms that
can only produce reasonably good answers. In some cases, these algorithms
will find the optimal answer, but that is luck and cannot be guaranteed. We will
explore a number of approximation algorithms for the problems we looked at
in Chapter 8.

The basic idea of probabilistic algorithms is that it is sometimes better to
guess than to figure out which option is correct. There are four classifications
of probabilistic algorithms—numerical, Monte Carlo, Las Vegas, and Sher-
wood—although some analysis texts will refer to all probabilistic algorithms as
“Monte Carlo.” The common theme throughout these categories is that prob-
abilistic algorithms will produce better results the longer that they are run.

This chapter ends with the application of dynamic programming algorithms
to improve the efficiency of recursive algorithms and to select an order to mul-
tiply a series of matrices to reduce the computational complexity.

9.1 GREEDY APPROXIMATION ALGORITHMS

In Chapter 6, we saw two greedy algorithms that identified the minimum
spanning tree of a graph and one that determined the shortest path between
two nodes of a graph. In this section, we look at a number of greedy algo-
rithms that approximate the optimal solution for problems in the class NP.

As we have discussed, the difficulty of finding an exact solution for problems
in the class NP is the number of combinations of the input values that must be
checked. For each collection of input values I, we can create a set of possible
solutions PSI. An optimal solution would be Soptimal ∈ PSI, such that Value
(Soptimal) ≤ Value(S�) for all S� ∈ PSI if the problem is a minimization problem

A
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and Value(Soptimal) ≥ Value(S�) for all S� ∈  PSI if the problem is a maximization
problem.

Approximation algorithms for class NP problems will not necessarily find an
optimal solution because they will only look at a portion of the set PSI or will
construct potential solutions from just a small subset of PSI. We can determine
how good an approximation algorithm is by looking at the solution that the
algorithm produces relative to this optimal value. In some cases, we can deter-
mine the optimal value even if we cannot find a solution that will produce that
value. The quality of an approximation algorithm is then given by the equation

In some cases, it will matter whether we are considering cases that have a
fixed number of input values or cases that all have the same optimal solution.
In other words, do we look at how good an approximation algorithm is for
cases of 10 input values or different-sized input cases that all have an optimal
solution of 50? These two views can result in two different quality ratings.

The following subsections look at a few of the approximation algorithms for
the problems we have discussed. The algorithms given are not the only possi-
bilities but rather give you a feel for the range of techniques. All of these
approximations are polynomial time algorithms.

■ 9.1.1 Traveling Salesperson Approximations

There is a whole set of algorithms for various problems (including those in the
class P) that are classified as greedy algorithms. These algorithms always look at
the current situation and make the best choice based on the information avail-
able. Recall that the minimum spanning tree and shortest-path algorithms are
examples of greedy algorithms.

It would seem that we could just apply the shortest-path algorithm to solve
this problem, but it’s not quite as easy as that. Dijkstra’s algorithm is actually
interested in the shortest path between two nodes but does not necessarily go
through every node in the graph. We can, however, use this general greedy

QA I( )

Value A I( )( )
Value Soptimal( )
--------------------------------- for minimization problems

Value Soptimal( )
Value A I( )( )

--------------------------------- for maximization problems








=
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technique to find an approximate algorithm. The cost of traveling between cit-
ies could be represented by an adjacency matrix like the one in Fig. 9.1. 1

Our algorithm will go through the set of edges, picking them in order of
increasing weight. It will not be concerned about forming the path, but
instead it will make sure that edges added to the path meet two criteria:

1. They do not form a cycle with the other edges chosen unless all the nodes
are in the cycle (in other words, we are done).

2. They are not the third edge connected to some node.

For the example in Fig. 9.1, we would first choose the edge (3,5) because it
has the smallest weight. We would then choose edge (5,6). The next edge to
consider would be (3,6), but it would be rejected because it forms the cycle [3,
5, 6, 3], which is not complete. Instead we would add the edges (4,7) and
(2,7). The next edge to consider is (1,5), but it would be rejected because it is
the third edge containing the node 5. We would then add the edge (1,6), and
after that (1,4). The last edge to be added would be (2,3). This would give us
the path of [1, 4, 7, 2, 3, 5, 6, 1] with a total length of 53. This is a good
approximation but is clearly not the optimal solution because there is at least
one path, [1, 4, 7, 2, 5, 3, 6, 1], which has a total length of 41.

1 This matrix is upper triangular because the cost of going from city i to city j is the 
same as going in the other direction. If we were to store all of these values, we would 
find the bottom half just a repetition of the top half. Using an upper triangular matrix 
makes it easier to trace this algorithm.

From To 2
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2

7

11
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17

9

1

2

3

4

5

6

■ FIGURE 9.1
The adjacency

matrix for a fully
connected

weighted graph
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■ 9.1.2 Bin Packing Approximations

One technique to approximate the bin packing problem is to use the first fit
strategy. This strategy will, for each item, look at the bins in order until one is
found that has enough space to hold the item. If we have a set of items with
sizes of (0.5, 0.7, 0.3, 0.9, 0.6, 0.8, 0.1, 0.4, 0.2, 0.5), how would the bins be
packed using this strategy? You should have found that the bins would be
packed so that bin 1 would have [0.5, 0.3, 0.1], bin 2 would have [0.7, 0.2],
bin 3 would have [0.9], bin 4 would have [0.6, 0.4], bin 5 would have [0.8],
and bin 6 would have [0.5]. You should see that this is not optimal because we
could have five bins with [0.9, 0.1], [0.8, 0.2], [0.7, 0.3], [0.6, 0.4], and [0.5,
0.5]. The algorithm for first fit would be

FirstFit( size, N, bin )

size  the list of item sizes

N     the number of items

bin   the location for each item

for i = 1 to N do

   binUsed[i] = 0

end do

for item = 1 to N do

   binLoc = 1

   while used[binLoc]+size[item] > 1 do

      binLoc = binLoc + 1

   end while

   bin[ item ] = binLoc

   used[ binLoc ] = used[ binLoc ] + size[ item ]

end for

Another version of this would be a decreasing first fit, where the items are
first sorted in decreasing order and then we begin the first fit process.2 The
reader should be able to show that this would give the optimal answer for the
previous set of items. This will not, however, always do better than regular first
fit. Consider the set of items (0.2, 0.6, 0.5, 0.2, 0.8, 0.3, 0.2). With the regular

2 This is really nonincreasing, because we do not require that the sizes of the objects be 
distinct. The analysis literature is split between whether to call this decreasing first fit or 
nonincreasing first fit.
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first fit, we will use the optimal three bins. If we sort first, we get the list (0.8,
0.6, 0.5, 0.3, 0.2, 0.2, 0.2, 0.2). When we do the first fit algorithm with this
new list, we get bins of [0.8, 0.2], [0.6, 0.3], [0.5, 0.2, 0.2], and [0.2], which is
1 more than optimal.

Analysis has shown that this decreasing first fit technique will require
approximately 50% more than the optimal number of bins. This means that if
some set of input requires 10 bins in the optimal case, this algorithm will pro-
duce a result that will likely need 15 bins. First fit without sorting has been
shown to need about 70% more than the optimal number of bins, or about 17
bins if optimal is 10 bins.

■ 9.1.3 Backpack Approximation

The backpack approximation algorithm is a simple greedy algorithm that is
based on the worth ratio of the items. We create a sorted list of the items based
on the ratio of the worth to the item size. We represent each item as a pair
[size, worth]. If we had the list of items of ([25, 50], [20, 80], [20, 50], [15, 45],
[30, 105], [35, 35], [20, 10], [10, 45]), they would have worth ratios of (2, 4,
2.5, 3, 3.5, 1, 0.5, 4.5). Sorting by the worth ratios would put our items in the
order ([10, 45], [20, 80], [30, 105], [15, 45], [20, 50], [25, 50], [35, 35],
[20, 10]). We now begin filling the backpack using the items in the order of
this list. If the next item will not fit, we skip it and continue down the list until
the backpack is full or we have passed through the entire list. So, if we have a
backpack of size 80, we would be able to put in the first four items for a total
size of 75 and a total worth of 275. This is not, however, optimal, because
using the first three items and the fifth item would give a total size of 80 and a
total worth of 280.

■ 9.1.4 Subset Sum Approximation

In the backpack problem, if you set the worth of each item to be the same as
its size, the resulting problem is the same as the subset sum problem. This
means that the greedy algorithm described there could also be used here. In
each case, the worth ratio would be 1, so the sorting method could put the
items in order of decreasing size.

There is an alternative algorithm for the subset sum approximation that has
some of the flavor of a greedy algorithm. In this alternative, we have an algo-
rithm that will be able to do better the longer it is run and will be optimal if,
for a set of N numbers, we can run it for all N + 1 passes. This is because each
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pass of this algorithm considers additional cases. The first pass begins with the
empty set and adds items in decreasing order until the limit is reached or all of
the items have been tried. The second pass begins with all of the possible sets of
one item from the list and adds more items from there. The third pass begins
with all of the possible sets of two items. The more time that is available, the
more passes that the algorithm can do. If there are 10 items in the input and 11
passes can be done, the optimal solution will be found. You should see that, for
10 items, on the first pass there is 1 empty set, on the second pass there are 10
sets of one element, and on the third pass there are 45 sets of two elements.
The sixth pass will be the worst with 252 sets of five elements. So, even though
this process might sound simple, it can still take a significant amount of time.
The algorithm for one pass of this process is

SubsetSum(sizes, N, limit, pass, result, sum)

sizes  the list of item sizes

N      the number of items in the list

limit  the maximum sum for the subset

pass   used to set the number of items in the starting set

result the items in the best subset found

sum  the sum of the items in result

sum = 0

for each subset T of {1,..,n} with pass items do

   tempSum = 0

   for i = 1 to N do

      if i ∈ T then
         tempSum = tempSum + sizes[i]

      end if

   end for

   if tempSum ≤ limit then
      for j = 1 to N do

         if j ∉ T and tempSum + sizes[j] ≤ limit then
            tempSum = tempSum + sizes[j]

            T = T ∪ {j}
         end if

      end for

   end if

   if sum < tempSum then

      sum = tempSum

      result = T

   end if

end for
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For example, with a set of items of sizes {27, 22, 14, 11, 7, 1} and an upper
limit on the size of the subset sum of 55, the process would have the series of
passes as given in the table in Fig. 9.2. We see that this algorithm has found an
optimal solution of 55 on the third pass.

■ 9.1.5 Graph Coloring Approximation

Graph coloring is an unusual problem because, as opposed to the previous
cases, it has been shown that getting an approximate coloring that is even close
to the optimal coloring is as complex as getting the optimal coloring. The best
of the approximation algorithms that run in polynomial time will use more
than twice as many colors as optimal. Research has also shown that if there was

Pass Item added SumSubsets of
size pass

0 27,22,1

27,22

27,11,1

27,14,1

27,14,1

22,1

27,1

1
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7
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50

53

53

49

50

50

50

1

11, 7, 1

14, 7, 1

14, 11, 1

14,1

14,1

22
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1

11,1

27,1

27,1

27,1

27,11

27,14
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22, 1

11, 1

7, 1
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■ FIGURE 9.2
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subset sum

approximation
algorithm
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a polynomial algorithm that could color any graph with no more than twice as
many colors as optimal, there would be a polynomial algorithm that could
color any graph optimally. This would mean that P = NP. There are some
restrictions that can be placed on the complexity of graphs that make it easier
for them to be colored. For example, if a graph is planar, in other words, when
drawn in one plane none of its edges cross, there are algorithms that can color
it within polynomial time.

A simple algorithm to color any graph with N nodes uses a sequential col-
oring method. An algorithm for this is

ColorGraph( G )

G  the graph to be colored

for i = 1 to N do

   c = 1

   while there is a node in G adjacent to nodei that is colored c do

      c = c + 1

   end while

   color nodei with c

end for

The degree of a graph is the largest number of edges leaving one node. This
coloring algorithm will use C colors where C is 1 greater than the degree of
the graph. It is possible to do better than this, but the algorithm is beyond the
scope of this book.

9.1.6

1. What path would the greedy traveling salesperson algorithm find if the city
matrix is

Is the path it finds optimal?
2. Another technique for bin packing is best fit, where each item is placed in

the bin so that the least amount of space is left over. New bins are started

9.1.6 EXERCISES■

From To 2 3 4 5 6 7
1 5 1 2 16 17 21
2 10 7 18 8 15
3 9 11 13 4
4 3 20 14
5 12 6
6 19
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only when an object will not fit in any of the current bins. Write an algo-
rithm for best fit. Show how best fit would have handled the two unsorted
examples in the text.

3. Another technique for bin packing is next fit, where we keep putting items
into a bin as long as they will fit. The first object that doesn’t fit in a bin
causes the algorithm to start a new bin. The algorithm never backs up to a
previous bin. Write an algorithm for next fit. Show how next fit would have
handled the two unsorted examples in the text.

4. Another technique for bin packing is worst fit, where each item is placed in
the bin so that the most amount of space is left. New bins are started only
when an object will not fit in any of the current bins. Write an algorithm
for worst fit. Show how worst fit would have handled the two unsorted
examples in the text.

5. What will be the best worth found by the backpack approximation algo-
rithm with a limit of 55 and the items ([5, 20], [10, 25], [15, 30], [20, 70],
[25, 75], [30, 15], [35, 35], [40, 60])? Is the result found optimal?

6. What will be the best result found by the subset sum approximation algo-
rithm if it was run for pass values of 0, 1, and 2 and for the set of values {29,
21, 16, 11, 3} with a limit of 52? Is this result optimal?

9.2 PROBABILISTIC ALGORITHMS

Probabilistic algorithms take a radically different approach from the determin-
istic algorithms that were explored in Chapters 1 through 7. In some applica-
tions, these probabilistic algorithms provide results that cannot be achieved
through deterministic means. The examples and applications presented here are
not meant to be exhaustive. They are intended to illustrate the range of possi-
bilities.

■ 9.2.1 Numerical Probabilistic Algorithms

Numerical probabilistic algorithms calculate an approximate result for some
mathematical problem. The longer these algorithms are given to generate a
result, the greater precision that result will have.
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Buffon’s Needle

Let’s say that you have a set of 355 sticks and the lengths of these sticks are
one-half the widths of the boards in a hardwood floor. If we dump these
sticks on the floor, how many will fall across the cracks between two boards?
The number will have to be between 0 and 355, but Georges Louis Leclerc
showed the average number to be almost exactly 113. Each stick has a 1 in �
chance of landing on a crack. This is because of the relationship of the rota-
tion of a stick to the spacing of the boards. If the stick falls perpendicular to
the cracks there is a one-half chance it will fall on a crack (the ratio of its
length to the width of the boards). But if it falls parallel to the crack, the
chance it will cross a crack is extremely small (the ratio of its width to the
width of the boards). So this technique could be used to calculate � by ran-
domly dropping sticks and counting how many fall across the cracks. The
ratio of the total number of sticks to the number that cross a crack gives an
approximation of �.

A similar technique can be used by simulating throwing darts at a board
that has a circle inscribed within a square (Fig. 9.3). We randomly choose
points in the square and count how many fall into the circle. If r is the radius
of the circle, the area of the circle is �r 2, and the area of the square is (2r)2, or
4r 2. The ratio of the area of the circle to the area of the square is � / 4. If our
numbers are truly random, the darts will be spread relatively evenly across
the square. If we randomly "throw" darts at the square, � can be estimated by
4 * c / s, where c is the number of darts that fall in the circle and s is the
number of darts thrown. The more darts we throw, the more accurate our
calculation of �.

This technique could also be used to approximate the area of any irregular
shape for which we can determine if a point (x, y) is inside or outside the

■ FIGURE 9.3
A circle inscribed

within a square
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shape. We would just generate random points in a surrounding square and
determine the ratio that fall inside the shape. The ratio of

  is the same as the ratio of 

Monte Carlo Integration3

You may recall that for a continuous function f, the area under the curve for f is
the integral of the function. For some functions, it is difficult or impossible to
determine this integral, but we can get it through our dart technique. For the
purposes of illustration, we will restrict ourselves to that portion of f bounded
by the x and y axes and the lines x = 1 and y = 1 (see Fig. 9.4). You should be
able to generalize this to any size bounding box.

We randomly throw darts at the square and count how many wind up
below the curve. The number below the curve divided by the number thrown
will give us an approximation of the area under the curve. As in past cases, the
more darts that are thrown, the more accurate the approximation. The follow-
ing algorithm achieves this:

Integrate ( f, dartCount )

f          is the function to be integrated

dartCount  is the number of darts to throw

3 It is unfortunate that this is the traditional name for this technique because it is unre-
lated to the Monte Carlo techniques to be discussed later.

darts inside the shape
total darts thrown

--------------------------------------------------

area of the shape
area of the square
-----------------------------------------

y = 1

x = 1

■ FIGURE 9.4
A function

bounded by the
x axis, the y axis,

and the lines x = 1
and y = 1
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hits = 0

for i=1 to dartCount do

   x = uniform(0, 1)

   y = uniform(0, 1)

   if y ≤ f(x) then
      hits = hits + 1

   end if

end for

return hits/dartCount

Probabilistic Counting

A classic problem is to bet that in a room of 25 randomly chosen people at least
two of them will have the same birthday. Although this would seem a foolish
bet, in reality the odds are greater than 56% that this will happen. In general,
there are N! / (N � k)! ways to choose k distinct objects from a set of N
objects if order matters. There are Nk different ways of choosing k objects if
repetitions are allowed. Putting all of this together means that the chance of
winning the bet is 1 � 365! / (340! * 36525). In reality, the chances are even
better because this equation does not account for the fact that births are not
uniformly distributed through the year. This number is not easy to calculate,
nor it is easy for us to figure out the reverse problem: Given a set of N ele-
ments, how many choices must you make before you will pick an element for
the second time? In other words, given 365 days in the year, how many differ-
ent people must you have for there to be a good chance that at least two people
have the same birthday. Because it's difficult to calculate, the following algo-
rithm will approximate the number:

ProbabilityCount( N )

k = 0

s = {}

a = uniform( 1, N )

repeat

   k = k + 1

   s = s ∪ {a}
   a = uniform( 1, N )

until a ∈ s
return k

The function will randomly generate numbers from 1 to N until it generates
a number for the second time. To get more accurate results, this function could
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be called a number of times, averaging the answers it returns. For our birthday
example (N = 365), this function would give us an answer of about 25.

■ 9.2.2 Monte Carlo Algorithms

Monte Carlo algorithms will always give an answer, but the probability that the
answer is correct increases the longer the algorithms run. These algorithms can
occasionally return an incorrect answer. Monte Carlo algorithms are called p-
correct when they return a correct answer with probability of p (1/2 < p < 1).
If there is more than one correct answer for a given input, a Monte Carlo algo-
rithm is called consistent if it returns the same correct answer each time.

There are two ways to improve the results of a Monte Carlo algorithm. The
first is to increase the amount of time it runs, and the second is to call it multi-
ple times. The second option can only be used if the Monte Carlo algorithm is
consistent. In this case, we would make several calls to it and choose the answer
that appears most frequently. An algorithm to do this would be something like
the following:

Monte3( x )

one = Monte(x)

two = Monte(x)

three = Monte(x)

if one  = two or one = three then

   return one

else

   return two

end if

In this algorithm, the first solution will be returned if it appears at least twice.
If, however, it doesn’t, we can just return the second answer because it either
matches the third answer, or all three are different and so it doesn’t matter.
Because Monte Carlo algorithms have a greater than 50% chance of returning
the correct answer, it is unlikely that all three will be different. The process in
Monte3 will improve a consistent 80% Monte Carlo algorithm to about 90%.

This is not always the best way to approach the problem of improving prob-
ability. Consider a Monte Carlo decision algorithm that is biased in that it is
100% correct if it returns the answer false, and it only makes mistakes if it
returns true. In other words, if the algorithm returns false, the answer is always
correct, but if it returns true, the answer may be true or false. This means that
any answer of false should be returned immediately, and repeated calls to the
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function would be looking for a series of repeated true answers to increase the
chance that true is really correct. The algorithm for this would be

MultipleMonte( x )

if not Monte( x ) then

   return false

end if

if not Monte( x ) then

   return false

end if

return Monte( x )

The only way for this algorithm to return true is if we get three true
answers in a row. In this situation, if the original Monte Carlo algorithm was
correct overall 55% of the time, calling this function improves its accuracy to
90%. This is also possible for "numeric" algorithms that will be biased toward
some number for the correct answer.

Majority Element

A problem to which this technique can be applied is finding if there is a major-
ity element in an array. An array has a majority element if there is one element
that is stored in more than half of the array locations. If solved by the most
obvious means, this process would take O(N2) comparisons because we would
have to potentially compare every element to every other element until we
found one that was in more than half of the array locations. Because there is a
known linear algorithm to solve this problem that is similar to the selection
algorithm discussed in Chapter 2, this version is merely another illustration of
the Monte Carlo technique.

A Monte Carlo algorithm for this process would be

Majority( list, N )

list  the list of elements

N     the number of elements

choice = uniform( 1, N )

count = 0

for i = 1 to N do

   if list[i] = list[choice] then

      count = count + 1

   end if

end for

return (count > n/2)
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This function randomly picks an element and checks to see if it appears in a
majority of locations. This algorithm is considered to be true-biased because if
the algorithm returns true, it means we found the majority element, so true is
absolutely correct. But if it returns false, it is possible we picked the wrong ele-
ment and that there still is a majority element. If there is a majority element,
the chance of picking a minority element is less than 50% and gets smaller the
more that the majority element appears. This still means that it is possible that
this algorithm might be correct only 50% of the time in some cases. If we call
Majority five times, the algorithm improves to 97% correct, and the com-
plexity would be just 5N, or O(N).

Monte Carlo Prime Testing

We can check to see if a number N is prime by using a Monte Carlo algo-
rithm. In this case, we generate a random number between 2 and  and see
if it divides evenly into N. If it does, N is not prime; if it doesn’t, we can’t be
sure. This algorithm is not very good because it will return false frequently. For
example, if we consider the number 60,329, which is the product of the three
prime numbers 23, 43, and 61, the algorithm will generate a random number
between 2 and 245, but only three numbers in this range will produce the cor-
rect answer. This has a 1.2% chance of being correct.

Although this simple algorithm will not do very well, there are other similar
techniques that are beyond the scope of this book that will solve this problem
with a higher probability of correct answers.

■ 9.2.3 Las Vegas Algorithms

Las Vegas algorithms will never return the wrong answer but sometimes will
return no answer at all. The longer these algorithms run, the higher their prob-
ability of success. The basic idea is that a Las Vegas algorithm will randomly
make decisions and then check to see if they have resulted in a successful
answer. A program that uses a Las Vegas algorithm would repeatedly call it until
the algorithm indicated success. If we say that success(x) and failure(x) are the
times necessary to calculate a successful or unsuccessful answer, respectively, for
input of size x, and we say that p(x) is the probability that the algorithm will be
successful, we get the following equation:

time(x) = p(x) * success(x) + (1 � p(x)) * (failure(x) + time(x))

N
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This equation is saying that if we succeed, the overall time is the time it
takes to get a success. But if we fail, it is the time for the failure plus another
call to the function. Solving this equation for time(x), we get

time(x) = p(x) * success(x) + (1 � p(x)) * failure(x) + (1 � p(x)) * time(x)

time(x) � (1 � p(x)) * time(x) = p(x) * success(x) + (1 � p(x)) * failure(x)

time(x) � time(x) + p(x) * time(x) = p(x) * success(x) + (1 � p(x)) * failure(x)

p(x) * time(x) = p(x) * success(x) + (1 � p(x)) * failure(x)

time(x) = success(x) + ((1 � p(x)) / p(x)) * failure(x)

This means that the time is dependent on the execution of success, failure, and
the probability of each. The interesting fact is that if the probability of success
(p(x)) is lowered, the overall time can still be reduced if failures are calculated
more quickly. So, we can improve efficiency by solving failures faster even if it
slightly lowers the chance of success.

How would this work in practice? Well, consider the eight queens problem,
which tries to place a set of eight queens on a chessboard so that they are not
attacking each other. 4 One possible solution for this problem is shown in Fig.
9.5. A recursive algorithm to solve this problem would place a queen in the
first column of the first row and then call itself to place a queen in the second
row. If at any point it can’t find a location for a queen on the current row, it
will back up and try a different location for the queen on the previous row.

There is a probabilistic alternative to this recursive algorithm. We could
place queens on the board so that each new queen gets placed randomly on
one of the spaces on the next row that is not attacked. The difference between
a Las Vegas and the standard recursive algorithm is that when the Las Vegas ver-
sion can’t place a queen on a row, it just gives up and signals a failure. The
recursive version backs up to try to fix things so as to force an answer. An algo-
rithm for Las Vegas eight queens would be

Queens( result )

result  holds the column positions of the queens for each row

returns 1 if this succeeded and 0 if it failed

4 In chess, the queen can attack any other piece that is in the same row, column, or 
along a diagonal.
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row = 1

repeat

   // at this point we have placed queens in rows 1...row - 1

   spotsPossible = 0

   for i = 1 to 8 do

      if location row, i is not attacked then

         spotsPossible = spotsPossible + 1

         if uniform(1, spotsPossible) = 1 then

            try = i

         end if

      end if

   end for

   if spotsPossible > 0 then

      result[row] = try

      row = row + 1

   end if

until spotsPossible = 0 or row = 9

return (spotsPossible > 0)

■ FIGURE 9.5
A solution to the

eight queens
problem
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Let’s look at what this algorithm is doing. The repeat loop will take us through
each of the eight rows on the board. For each of these rows, we look at each
column location, and if it isn’t attacked, we increment spotsPossible. The
next if statement looks a little strange, but watch what happens when we
move down the first row in which no spaces are attacked. For the first column,
uniform generates a number between 1 and 1, which must be 1, so try gets
set to the first column. For the second column, uniform generates a number
between 1 and 2, which has a 50% chance of being 1, so there is a 50% chance
that try will be changed to 2. For the third column, uniform generates a
number between 1 and 3, which has a 33% chance of being 1, so there is a
33% chance that try will be changed to 3. For the fourth column, uniform
generates a number between 1 and 4, which has a 25% chance of being 1, so
there is a 25% chance that try will be changed to 4. The end result is that each
of the free columns will have the chance of 1 / spotsPossible of being the
one tried on this pass. We do this again for the rest of the rows. This repeats
until either spotsPossible is zero because there are no unattacked locations
or rows is nine because we filled all of the rows. In the first case, this algo-
rithm stops and indicates failure. In the second case, we solved the eight
queens problem and return true.

A full statistical analysis discovers that the probability of success is about
0.1293, and the number of passes for a failure is about 6.971. Using the equa-
tion above, we find that this algorithm will take about 55 passes. If we looked
at an analysis of the recursive version of the eight queens problem, you would
see that it takes more than twice as many passes.

■ 9.2.4 Sherwood Algorithms

Sherwood algorithms always give an answer, and the answer is always correct.
These algorithms are applied to situations where the best, average, and worst
cases for a deterministic algorithm differ significantly. Sherwood algorithms
introduce randomness to help move the complexity of the deterministic algo-
rithm from the extremes of its worst and best cases.

An example of this would be the choice of the pivot element for quicksort.
In the analysis of that algorithm, we pointed out that the worst case would be
if the list was already sorted because each time we would pick the smallest ele-
ment for the pivot. If instead, we randomly picked the pivot element between
first and last, we would lessen the chance of the worst case occurring. We
would not eliminate that chance, because we could randomly pick the smallest
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element each time, but the chances of that happening are very small. The down
side of this is that if our list happened to have the median element of each of
the subdivided pieces in the first location of that piece (the best case), our ran-
domness would not be likely to choose that element. So, the chance of the
worst or best cases occurring are both diminished.

We could apply this technique to searching as well. With a binary search,
there are some locations that require a number of failures before we check
them. A Sherwood version of “binary” search would randomly pick a location
to check between start and end. Sometimes we would wind up with a part
that is smaller than what it would be in a true binary search and sometimes
with a part that is larger. For example, with a list of 400 elements, instead of
choosing the 200th element for our comparison, we perhaps choose the 100th
element. If what we are looking for is smaller than the 100th element, our
Sherwood version will discard 75% of the elements instead of 50% for the stan-
dard algorithm. But if what we are looking for is larger than the 100th ele-
ment, we would only discard 25% of the elements. Again, our Sherwood
algorithm will sometimes do better and sometimes worse.

The basic idea is that a Sherwood algorithm reduces the time of the worst
case and increases the time of the best case. Just like Robin Hood in Sherwood
Forest, this technique robs from the rich (the best case) and gives to the poor
(the worst case).

■ 9.2.5 Probabilistic Algorithm Comparison

Let's summarize the algorithms covered in this section. We saw that numerical
probabilistic algorithms will always supply an answer but that the longer the
algorithm runs, the more accurate the answer becomes. Monte Carlo algo-
rithms will always give an answer, but sometimes that answer will be wrong.
The longer that a Monte Carlo algorithm runs, the higher the probability the
answer will be correct. Multiple calls to a Monte Carlo algorithm can also
improve the results. Las Vegas algorithms never return a wrong answer but
might not return an answer if they are unable to find a correct one. Sherwood
techniques can be applied to any deterministic algorithm. They do not influ-
ence the correctness of the algorithm but rather reduce the chance of the
worst-case behavior. In doing so, however, they reduce the chance of the best-
case behavior as well.
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9.2.6

1. On a recent outing in the woods, you found a cave that had a map, a large
computer, and a magic button in the wall. The map indicates the location of
two islands that are each five days travel away from where you are now and
are also five days travel apart. (You can imagine that you and the two islands
are at the corners of an equilateral triangle.) A gnome appeared and told you
that when you press the button, a treasure consisting of 15 bars of pure gold
encrusted with diamonds, emeralds, rubies, and other priceless gems will
appear randomly on one of the two islands. The computer will begin to cal-
culate the location of the bars, but it will take four days to get the answer.
The computer is not portable and so you would have to wait four days for
its answer before you could start out. The problem is that there is a dragon
that takes one of these bars away every night to a place that is completely
inaccessible. The gnome has offered to tell you the correct location of the
gold bars in exchange for three of the bars. The gnome also tells you that
each time you return from your journey, you can press the button again, and
another treasure will randomly appear on one of the two islands.

Consider all of your possible choices and their potential return, and
decide what choice gives you the best possible return in the long run (in
other words, if you go treasure hunting a number of times). Your answer
should list all of the possibilities you have considered along with the amount
you would expect to get for each. You should assume that you will repeat
the treasure hunt at least 10 times. Because there is no limit on the number
of times you can go on the treasure hunt, you should not include the time
of your return to the cave in your analysis.

For problems 2 through 4, use the table of random numbers in Appendix A. For each
question, begin at the start of the table and work through until you reach either the
end of the problem or the end of the table. If you reach the end of the table, just con-
tinue from the first number of the table.

2. The function x3 can be integrated directly, and the result is 0.25 in the range
0 to 1. Use the function Integrate from Section 9.2 with 20 darts. Com-
pare the answers you get after 5, 10, 15, and 20 darts with the correct
answer of 0.25. (Show all work.)

3. Run the Monte Carlo prime testing process for the number 182 (2 * 7 *
13) and for 255 (3 * 5 * 17) showing the numbers chosen and the result

9.2.6 EXERCISES■
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returned. How many times do you have to call this function before you get
the correct answer? (Start at the beginning of the list of random numbers for
each case.)

4. Show the first three boards that the Queens algorithm would generate in its
attempt at solving the eight queens problem.

5. Modify PivotList so that it is a Sherwood-based algorithm.
6. Write the Sherwood search, based on binary search, that is described in

Section 9.2.4.

9.3 DYNAMIC PROGRAMMING

Richard Bellman first used the term dynamic programming to describe a type of
problem in which the most efficient solution depended on choices that may
change with time instead of being predetermined. The key value of his ideas
was the use of a polynomial time computation in place of an exponential time
one. There are two applications of dynamic programming algorithms that we
will now consider: a method to improve the calculation efficiency of some
recursive algorithms and a method to decide the order in which to multiply a
series of matrices to reduce the calculation time. Another dynamic program-
ming application was discussed in Chapter 5, namely, the approximate string
matching algorithm.

■ 9.3.1 Array-Based Methods

Array-based methods replace traditional recursive algorithms that may calculate
results multiple times. The classic example of a recursive function is the calcula-
tion of numbers in the Fibonacci sequence described in question 1 in Section
1.5.3. If you trace this calculation for the tenth Fibonacci number, you will see
that you need to calculate the ninth and eighth Fibonacci numbers and add
them together. The traditional method will wind up calculating the eighth
Fibonacci number as part of determining the ninth, but it then throws this
information away and calculates it again. The algorithm from Chapter 1 is
reproduced here:

Fibonacci( N )

N the Nth Fibonacci number should be returned
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if (N = 1) or (N = 2) then

   return 1

else

   return Fibonacci( N-1 ) + Fibonacci( N-2 )

end if

If we use this algorithm to find the sixth Fibonacci number, we would wind
up making the series of calls to this function represented in the tree in Fig. 9.6.
In examining this tree, you will see that Fibonacci(4) gets calculated twice
and Fibonacci(3) gets calculated three times. For even larger Fibonacci
numbers, these values could be calculated even more times. For the tenth
Fibonacci number, the third would be calculated 21 times. We could improve
the efficiency of this algorithm if, instead of calculating from the top down, we
calculated from the bottom up. An alternative algorithm follows that uses an
array of previous values:

Fibonacci2( N )

N  the Nth Fibonacci number should be returned

if (N = 1) or (N = 2) then

   return 1

else

   val[1] = 1

   val[2] = 1

   for i = 3 to N do

      val[i] = val[i-1] + val[i-2]

   end for

   return val[N]

end if

Fibonacci(6)

Fibonacci(5) Fibonacci(4)

Fibonacci(2)Fibonacci(3)

Fibonacci(1)Fibonacci(2)

Fibonacci(3)

Fibonacci(3) Fibonacci(2) Fibonacci(2) Fibonacci(1) Fibonacci(2) Fibonacci(1)

Fibonacci(4)

■ FIGURE 9.6
The calling

sequence for
Fibonacci(6)
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This example is not very complicated, and you should see that it would even
be possible to accomplish this with just two variables for the last two values
instead of an entire array.

A more involved example is the calculation of the binomial coefficient,
which tells us the number of different ways that we could pick k objects from a
set of N objects if the order we pick them doesn’t matter.5 The binomial coef-
ficient is given by the equation

This equation cannot be calculated directly, as we discussed in the last section,
because the factorial value gets very large very quickly. An alternative and
equivalent formula for the binomial coefficient is

You should easily be able to write a recursive algorithm from this equation,
but it will have the same recalculation problem that we saw with the Fibonacci
numbers. Instead, we can use this equation to begin calculating at the bottom
and moving up until we reach the answer we are looking for. This process will
be familiar to anyone who has written out the values in Pascal’s Triangle.

For our algorithm, we will need an array called BiCoeff with N + 1 rows
and k + 1 columns that we will number starting at zero. In this array, location
BiCoeff[i, j] stores the value of

We initialize locations BiCoeff[0, 0], BiCoeff[1, 0], and BiCoeff[1,
1] all to a value of 1, and then loop through values until we reach

5 The formula given in Section 9.2 under “Probabilistic Counting” is different because 
in that application the order mattered.
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BiCoeff[N, k]. The following algorithm gives the dynamic programming
solution to this problem:

for i = 0 to N do

   for j = 0 to minimum( i, k ) do

      if j = 1 or j = i then

         BiCoeff[ i, j ] = 1

      else

         BiCoeff[ i, j ] = BiCoeff[ i-1, j-1 ] + BiCoeff[ i-1, j ]

      end if

   end for j

end for i

Here the recursive algorithm would calculate

terms, and the dynamic programming version would only calculate O(N * k)
terms.

■ 9.3.2 Dynamic Matrix Multiplication

If you have a series of matrices, each having a different dimension, which need
to be multiplied together, the order in which the multiplication is done can
have a dramatic impact on how quickly this is accomplished. For example, if
we have four matrices that we will call M1, M2, M3, and M4, and they have sizes
of 20 � 5, 5 � 35, 35 � 4, and 4 � 25, respectively, there are five different
ways that they can be multiplied together that will take from 3100 to 24,500
multiplications. The full details are given in Fig. 9.7. This figure shows various
ways in which these can first be paired, then the ways in which three of the
matrices can be multiplied, and finally the ways that all four can be multiplied
together. The final column shows the number of multiplications necessary to
achieve the multiplication order of the first column. You should recall that to
multiply a matrix of size A � B by a matrix of size B � C will take A * B * C
multiplications.

The following algorithm will build an upper triangular matrix with the
minimum costs from Fig. 9.7. The size of matrix Mj is given as sj � sj+1. The
minimum cost will be in location cost1,N (in other words the upper right
location) at the completion of this algorithm. This algorithm will also calculate

2 N
k

* 1–
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a matrix called trace that is used by the next algorithm to actually determine
the order of the multiplication that will produce this minimum cost.

for i = 1 to N do

   costi,i = 0

end for

for i = 1 to N-1 do

   for j = 1 to N-i do

      loc = i + j

      tempCost = ∞
      for k = i to loc-1 do

         if tempCost > costi,k + costk+1,loc + si*sk*sloc then
            tempCost = costi,k + costk+1,loc + si*sk*sloc
            tempTrace = k

Multiplication Order Resulting Matrix Size Total Cost in Multiplications

M1
∗ M2

M2
∗ M3

M3
∗ M4

(M1
∗ M2) ∗ M3

((M1
∗ M2) ∗ M3) ∗ M4

(M1
∗ (M2

∗ M3)) ∗ M4

M1
∗ ((M2

∗ M3) ∗ M4)

(M1
∗ M2) ∗ (M3

∗ M4)

M1
∗ (M2

∗ (M3
∗ M4))

(M2
∗ M3) ∗ M4

M1
∗ (M2

∗ M3)

M2
∗ (M3

∗ M4)

20 × 35

20 × 25

20 × 25

20 × 25

20 × 25

20 × 25

20 × 4

20 × 4

35 × 25

5 × 25

5 × 25

5 × 4

3500

700

3500

3500 + 2800 = 6300

700 + 400 = 1100

700 + 500 = 1200

3500 + 4375 = 7875

6300 + 2000 = 8300

1100 + 2000 = 3100

1200 + 2500 = 3700

7875 + 2500 = 10,375

3500 + 3500 + 17,500 = 24,500

■ FIGURE 9.7
The amount of

work needed to
multiply four

matrices in
different orders
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         end if

      end for k

      costi,loc = tempCost

      tracei,loc = tempTrace

   end for j

end for i

Once the trace array has been calculated, the following recursive algo-
rithm will use it to determine the actual order for the multiplication. This
algorithm uses a global variable called position that is initialized to 1 and
will keep its value as it is being changed during the recursive calls.

GetOrder( first, last, order )

first the starting matrix location

last  the ending matrix location

order the order of matrix multiplication

if first < last then

   middle = tracefirst,last
   GetOrder( first, middle, order )

   GetOrder( middle, last, order )

   orderposition = middle

   position = position + 1

end if

If you use these two algorithms with the matrix sizes of the last example,
you will get a multiplication order of 2, 1, and 3, which represents doing the
second multiplication first, followed by the first multiplication, and finishing
with the third multiplication. This is the same result shown in Fig. 9.7.

9.3.3

1. Use the matrix multiplication algorithms in Section 9.3.2 to determine the
most efficient order to multiply the matrices in each of the four following
cases:

a. M1 is 3 � 5, M2 is 5 � 2, M3 is 2 � 1, and M4 is 1 � 10.
b. M1 is 2 � 7, M2 is 7 � 3, M3 is 3 � 6, and M4 is 6 � 10.
c. M1 is 10 � 3, M2 is 3 � 15, M3 is 15 � 12, M4 is 12 � 7, and M5 is 7 � 2.
d. M1 is 7 � 2, M2 is 2 � 4, M3 is 4 � 15, M4 is 15 � 20, and M5 is 20 � 5.

9.3.3 EXERCISES■
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9.4 PROGRAMMING EXERCISES

1. Write a program for the traveling salesperson approximation algorithm.
Run your program for a set of 10 cities by randomly placing distance values
between 1 and 45 into the adjacency matrix. Print out the adjacency matrix
and the path found. Check them to see if the result is optimal.

2. Write a program for the bin packing approximations. Your program should
implement the four methods mentioned in the text and exercises: first fit,
best fit, next fit, and worst fit. Generate a random set of objects and pass the
same set into each of the four methods to see how many bins each would
use. Write a report on your results. You should test these methods with the
number of objects being 50, 100, 200, and 500. To get more accurate
results, you should generate and test multiple sets of sizes for each of these
four cases.

3. Write a program to do Monte Carlo integration of the function x3 in the
range between 0 and 1. Because we know that the answer is 0.25, you
should write your program to test how many darts need to be thrown for
the answer to be within various levels of accuracy. You should run this to test
the number of darts needed to be within ±0.0001, ±0.000001, and
±0.00000001 of the correct answer.

4. Write a program to use random numbers to calculate the value of � as
described in the text. How many darts are needed for the fifth digit after the
decimal point to be correct? How many darts are needed for the seventh
and tenth digits after the decimal point to be correct?

5. Create a program that will sort a list using a standard Quicksort and a
Quicksort with a Sherwood-based PivotList. Generate a number of
random lists of 500 values and count the number of comparisons done by
each of these sorts. Report the maximum, minimum, and average number
of comparisons done. Write a report describing your findings. (Additional
details on how to do this are given in the programming exercises in Chapter
3.)

6. Write a Sherwood-based binary search. Create an ordered list with the
numbers from 1 to 10,000. Generate a series of values between 1 and
10,000 and pass them to both the standard and Sherwood binary searches.
Write a report comparing the maximum, minimum, and average number of
comparisons done by these two methods. The more values you test, the bet-
ter your results will be.



A p p e n d i xa
Random Number

Table

This table has random numbers between 0 and 1. If you need a random num-
ber between 0 and N, just multiply the value in the table by N. If you need a
number between “low” and “high,” multiply the value in the table by (high �
low) and then add low to this result.

0 0.21132 20 0.92500 40 0.28029

1 0.26215 21 0.46777 41 0.73297

2 0.79253 22 0.33873 42 0.00309

3 0.28952 23 0.30228 43 0.31992

4 0.93648 24 0.27223 44 0.76521

5 0.93726 25 0.57355 45 0.47253

6 0.35606 26 0.96965 46 0.84203

7 0.16043 27 0.14291 47 0.45840

8 0.40480 28 0.56575 48 0.64955

9 0.74225 29 0.94983 49 0.87323

10 0.70183 30 0.71092 50 0.74374

11 0.41904 31 0.13687 51 0.21248

12 0.75691 32 0.19618 52 0.47449

13 0.00524 33 0.17474 53 0.30492

14 0.59544 34 0.57817 54 0.16348

15 0.51846 35 0.98727 55 0.75307

16 0.38344 36 0.80415 56 0.40643

17 0.30438 37 0.07641 57 0.73857

18 0.05253 38 0.83702 58 0.25217

19 0.16183 39 0.64725 59 0.83369
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60 0.32764 100 0.47643 140 0.90770

61 0.62633 101 0.93607 141 0.27310

62 0.96292 102 0.48024 142 0.98280

63 0.34499 103 0.87140 143 0.10394

64 0.31622 104 0.56047 144 0.29839

65 0.48381 105 0.16733 145 0.17819

66 0.49887 106 0.35188 146 0.55171

67 0.42757 107 0.26331 147 0.74780

68 0.70032 108 0.00486 148 0.45567

69 0.07664 109 0.80191 149 0.76785

70 0.31314 110 0.81044 150 0.36943

71 0.47206 111 0.75385 151 0.88635

72 0.05804 112 0.82524 152 0.36378

73 0.42046 113 0.54294 153 0.76584

74 0.10886 114 0.49654 154 0.66698

75 0.11909 115 0.17114 155 0.02154

76 0.21753 116 0.28722

77 0.78087 117 0.34354

78 0.83914 118 0.30080

79 0.25929 119 0.59332

80 0.25690 120 0.90642

81 0.67351 121 0.40683

82 0.70712 122 0.36385

83 0.03327 123 0.34851

84 0.50427 124 0.44847

85 0.86400 125 0.18594

86 0.16592 126 0.07630

87 0.83168 127 0.01483

88 0.53778 128 0.92900

89 0.36797 129 0.38400

90 0.91867 130 0.07881

91 0.29512 131 0.42041

92 0.18555 132 0.61363

93 0.45103 133 0.95413

94 0.91849 134 0.26198

95 0.31422 135 0.64337

96 0.52570 136 0.01799

97 0.62883 137 0.09945

98 0.36850 138 0.76643

99 0.02961 139 0.01184
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Pseudorandom

Number
Generation

Random numbers are useful in a number of computer applications. Any algo-
rithmic process we may develop, however, will not produce truly random
numbers because each time we use that same process, we will get the same set
of numbers. This is not random but can be typically made to appear random by
using a different starting point each time the program is run. This starting point
will usually depend on the computer’s system clock, which adds randomness
based on when the program is started.

One benefit to this is that the program can be tested using a consistent start-
ing point. This will generate the same sequence of numbers, making it easier to
test the program. Once the program is believed to be error free, the change to
randomize these numbers can be added.

There are a few techniques that can be used, but we will only describe one
here. The mixed congruential method has a seed value that is updated each
time a new number is needed. The new seed value is the basis for the next
pseudorandom number. The function for this is as follows:

function RanNum() returns float

   seed = (seed * p + i) mod m
   return seed / m

end RanNum
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Because of the mod operation, the seed value will always be between zero and
m � 1. The division of the seed by m means that this process will always return
a number in the range 0 ≤ N < 1.

If the three constants of p, i, and m are relatively prime, meaning that they
have no factors in common, the resulting sequence will produce m different
values before it repeats. For example, if p is 25,173, i is 13,849, and m is
65,536, this function will generate a series of 65,536 different values before it
repeats. For testing purposes, the initial seed value can be set to zero, produc-
ing the same sequence each time. After testing, the initial seed value could be
set to the seconds or milliseconds portion of the system clock to give a more
random appearance to the sequence.

B.1 GENERATING NUMBERS IN A DIFFERENT RANGE

Frequently, an application of random numbers will need values in a range
different from that generated by RanNum( ). If we need a value in the range
Low ≤ N < High, the following equation will create them:

(High - Low) * RanNum( ) + Low

B.2 EXAMPLE APPLICATION

Suppose that we need a list of the numbers between 1 and N in a random
order. There are a few ways that we could create this list.

■ B.2.1 Method 1

If we initialize the list locations to zero, as we place values in the list, “empty”
locations will still be zero. In this first method, we will place the numbers from
1 to N into random places in the list. If the random location we choose is zero,
it is available for the next number. If not, we just generate another random
location. This gives the algorithm

for i = 1 to N do

   list[i] = 0

end for

for i = 1 to N do
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   repeat

      location =  N * RanNum() + 1 
   until list[location] = 0

   list[location] = i

end for

Even though the first bunch of values will be placed quickly, the problem
with this method is that as the list fills up, it will be harder and harder to find a
free location. This method, therefore, could take a long time to accomplish this
simple task.

■ B.2.2 Method 2

We saw in Method 1 that a problem occurred when the random location we
chose was “full.” In this alternative, if the location is full, we will just try suc-
cessive locations until we find one that is free. This gives the algorithm

for i = 1 to N do

   list[i] = 0

end for

for i = 1 to N do

   location =  N * RanNum() + 1 
   while list[location] ≠ 0 do
      location = (location mod N) + 1

   end while

   list[location] = i

end for

This method will work relatively quickly, but if we have a block of filled
locations, it is possible we may have a lot of values in relatively sequential order.
In other words, let’s say that in a list with 100 locations those from 1 to 25 are
filled first in some random order. There is now a 25% chance that our next
choice will be in the range of the first 25 locations, in which case, the value
will be stored in location 26. If it happens again, the next value will go into
location 27, then 28, and so on. This could happen anywhere in the list and has
the potential of creating a block of locations that have numbers that are
sequential or almost sequential.

■ B.2.3 Method 3

In this last method, we will use the random number we generate as a counter
for how many empty locations to skip in deciding on where to place the
next value. This eliminates the problem of Method 1 by placing a value for
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each random number generated. This reduces the chance of two locations
having sequential numbers, because that will only happen when the adjacent
location is free and the number generated mod the number of spaces still free
results in 1.

The algorithm to accomplish this is

for i = 1 to N do

   theList[i] = 0

end for

location = 1

freeCount = N

for i = 1 to N do

   skip = freeCount*RanNum() + 1
   while skip > 0 do

      location = (location mod N) + 1

      if theList[location] = 0 then

         skip = skip - 1

      end if

   end while

   theList[location] = i

   freeCount = freeCount - 1

end for

In this algorithm, we use how many cells are free, and generate a random
number up to that value. This is done so that we don’t have to loop though the
list more than one time. You should see that the while loop will always end,
because even in the last case, there will be at least one empty location.

B.3 SUMMARY

This appendix gives one technique that can be used in a program to gener-
ate pseudorandom numbers and then shows how that can be used to create a
random list of values. These methods could be used to create lists that can then
be searched or sorted to measure the complexity of various algorithms from
Chapters 2 and 3.
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Results of Chapter
Study Suggestions

This appendix gives the output that should be produced from a hand execution
of the algorithms in this book, when using the suggested input in each chapter.

Chapter 3

Insertion Sort

The Original List: 6 2 4 7 1 3 8 5
Pass 1: 2 6 4 7 1 3 8 5
Pass 2: 2 4 6 7 1 3 8 5
Pass 3: 2 4 6 7 1 3 8 5
Pass 4: 1 2 4 6 7 3 8 5
Pass 5: 1 2 3 4 6 7 8 5
Pass 6: 1 2 3 4 6 7 8 5
Pass 7: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
Pass 1: 4 15 10 8 6 9 16 1 7 3 11 14 2 5 12 13
Pass 2: 4 10 15 8 6 9 16 1 7 3 11 14 2 5 12 13
Pass 3: 4 8 10 15 6 9 16 1 7 3 11 14 2 5 12 13
Pass 4: 4 6 8 10 15 9 16 1 7 3 11 14 2 5 12 13
Pass 5: 4 6 8 9 10 15 16 1 7 3 11 14 2 5 12 13
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Bubble Sort

Pass 6: 4 6 8 9 10 15 16 1 7 3 11 14 2 5 12 13
Pass 7: 1 4 6 8 9 10 15 16 7 3 11 14 2 5 12 13
Pass 8: 1 4 6 7 8 9 10 15 16 3 11 14 2 5 12 13
Pass 9: 1 3 4 6 7 8 9 10 15 16 11 14 2 5 12 13

Pass 10: 1 3 4 6 7 8 9 10 11 15 16 14 2 5 12 13
Pass 11: 1 3 4 6 7 8 9 10 11 14 15 16 2 5 12 13
Pass 12: 1 2 3 4 6 7 8 9 10 11 14 15 16 5 12 13
Pass 13: 1 2 3 4 5 6 7 8 9 10 11 14 15 16 12 13
Pass 14: 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 13
Pass 15: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Original List: 6 2 4 7 1 3 8 5
Pass 1: 2 4 6 1 3 7 5 8
Pass 2: 2 4 1 3 6 5 7 8
Pass 3: 2 1 3 4 5 6 7 8
Pass 4: 1 2 3 4 5 6 7 8
Pass 5: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
Pass 1: 4 10 8 6 9 15 1 7 3 11 14 2 5 12 13 16
Pass 2: 4 8 6 9 10 1 7 3 11 14 2 5 12 13 15 16
Pass 3: 4 6 8 9 1 7 3 10 11 2 5 12 13 14 15 16
Pass 4: 4 6 8 1 7 3 9 10 2 5 11 12 13 14 15 16
Pass 5: 4 6 1 7 3 8 9 2 5 10 11 12 13 14 15 16
Pass 6: 4 1 6 3 7 8 2 5 9 10 11 12 13 14 15 16
Pass 7: 1 4 3 6 7 2 5 8 9 10 11 12 13 14 15 16
Pass 8: 1 3 4 6 2 5 7 8 9 10 11 12 13 14 15 16
Pass 9: 1 3 4 2 5 6 7 8 9 10 11 12 13 14 15 16

Pass 10: 1 3 2 4 5 6 7 8 9 10 11 12 13 14 15 16
Pass 11: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Pass 12: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Shellsort

Heapsort

The Original List: 6 2 4 7 1 3 8 5
After using increment of 7: 5 2 4 7 1 3 8 6
After using increment of 3: 5 1 3 7 2 4 8 6
After using increment of 1: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
After using 
increment of 15: 13 4 10 8 6 9 16 1 7 3 11 14 2 5 12 15
After using 
increment of 7: 1 4 3 8 6 2 5 12 7 10 11 14 9 16 13 15
After using 
increment of 3: 1 4 2 5 6 3 8 11 7 9 12 13 10 16 14 15
After using 
increment of 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Original List: 6 2 4 7 1 3 8 5
After heap construction: 8 7 6 5 1 3 4 2

Pass 1: 7 5 6 2 1 3 4 8
Pass 2: 6 5 4 2 1 3 7 8
Pass 3: 5 3 4 2 1 6 7 8
Pass 4: 4 3 1 2 5 6 7 8
Pass 5: 3 2 1 4 5 6 7 8
Pass 6: 2 1 3 4 5 6 7 8
Pass 7: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
After heap 
construction: 16 13 15 8 11 14 12 4 7 3 6 9 2 5 10 1

Pass 1: 15 13 14 8 11 9 12 4 7 3 6 1 2 5 10 16
Pass 2: 14 13 12 8 11 9 10 4 7 3 6 1 2 5 15 16
Pass 3: 13 11 12 8 6 9 10 4 7 3 5 1 2 14 15 16
Pass 4: 12 11 10 8 6 9 2 4 7 3 5 1 13 14 15 16
Pass 5: 11 8 10 7 6 9 2 4 1 3 5 12 13 14 15 16
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Merge Sort

Pass 6: 10 8 9 7 6 5 2 4 1 3 11 12 13 14 15 16
Pass 7: 9 8 5 7 6 3 2 4 1 10 11 12 13 14 15 16
Pass 8: 8 7 5 4 6 3 2 1 9 10 11 12 13 14 15 16
Pass 9: 7 6 5 4 1 3 2 8 9 10 11 12 13 14 15 16

Pass 10: 6 4 5 2 1 3 7 8 9 10 11 12 13 14 15 16
Pass 11: 5 4 3 2 1 6 7 8 9 10 11 12 13 14 15 16
Pass 12: 4 2 3 1 5 6 7 8 9 10 11 12 13 14 15 16
Pass 13: 3 2 1 4 5 6 7 8 9 10 11 12 13 14 15 16
Pass 14: 2 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Pass 15: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Original List: 6 2 4 7 1 3 8 5
After merging location 1 to location 2: 2 6 4 7 1 3 8 5
After merging location 3 to location 4: 2 6 4 7 1 3 8 5
After merging location 1 to location 4: 2 4 6 7 1 3 8 5
After merging location 5 to location 6: 2 4 6 7 1 3 8 5
After merging location 7 to location 8: 2 4 6 7 1 3 5 8
After merging location 5 to location 8: 2 4 6 7 1 3 5 8
After merging location 1 to location 8: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
After merging loca-
tion 1 to location 2: 4 15 10 8 6 9 16 1 7 3 11 14 2 5 12 13
After merging loca-
tion 3 to location 4: 4 15 8 10 6 9 16 1 7 3 11 14 2 5 12 13
After merging loca-
tion 1 to location 4: 4 8 10 15 6 9 16 1 7 3 11 14 2 5 12 13
After merging loca-
tion 5 to location 6: 4 8 10 15 6 9 16 1 7 3 11 14 2 5 12 13
After merging loca-
tion 7 to location 8: 4 8 10 15 6 9 1 16 7 3 11 14 2 5 12 13
After merging loca-
tion 5 to location 8: 4 8 10 15 1 6 9 16 7 3 11 14 2 5 12 13
After merging loca-
tion 1 to location 8: 1 4 6 8 9 10 15 16 7 3 11 14 2 5 12 13
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Quicksort

After merging loca-
tion 9 to location 10: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13

After merging loca-
tion 11 to location 12: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13
After merging loca-
tion 9 to location 12: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13

After merging loca-
tion 13 to location 14: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13
After merging loca-
tion 15 to location 16: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13
After merging loca-
tion 13 to location 16: 1 4 6 8 9 10 15 16 3 7 11 14 2 5 12 13
After merging loca-
tion 9 to location 16: 1 4 6 8 9 10 15 16 2 3 5 7 11 12 13 14
After merging loca-
tion 1 to location 16: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Original List: 6 2 4 7 1 3 8 5
Pivot location 6: 5 2 4 1 3 6 8 7
Pivot location 5: 3 2 4 1 5 6 8 7
Pivot location 3: 1 2 3 4 5 6 8 7
Pivot location 1: 1 2 3 4 5 6 8 7
Pivot location 8: 1 2 3 4 5 6 7 8

The Original List: 15 4 10 8 6 9 16 1 7 3 11 14 2 5 12 13
Pivot location 15: 13 4 10 8 6 9 1 7 3 11 14 2 5 12 15 16
Pivot location 13: 12 4 10 8 6 9 1 7 3 11 2 5 13 14 15 16
Pivot location 12: 5 4 10 8 6 9 1 7 3 11 2 12 13 14 15 16
Pivot location 5: 2 4 1 3 5 9 10 7 8 11 6 12 13 14 15 16
Pivot location 2: 1 2 4 3 5 9 10 7 8 11 6 12 13 14 15 16
Pivot location 4: 1 2 3 4 5 9 10 7 8 11 6 12 13 14 15 16
Pivot location 9: 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16
Pivot location 6: 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16
Pivot location 7: 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16

Pivot location 11: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



270 A P P E N D I X  C

Radix Sort

Chapter 4

Original Polynomial

x3 + 4x2 � 3x + 2

Horner’s Method

[(x + 4) * x � 3] * x + 2

Preprocessed Coefficients

Original Polynomial

x7 � 8x6 + 3x5 + 2x4 � 4x3 + 5x � 7

Horner’s Method

{[({[(x � 8) * x + 3] * x + 2} * x � 4) * x + 0] * x + 5} * x � 7

The Original:
List: 1113 2231 3232 1211 3133 2123 2321 1312 3223 2332 1121 3312

After pass 1: 2231 1211 2321 1121 3232 1312 2332 3312 1113 3133 2123 3223
After pass 2: 1211 1312 3312 1113 2321 1121 2123 3223 2231 3232 2332 3133
After pass 3: 1113 1121 2123 3133 1211 3223 2231 3232 1312 3312 2321 2332
After pass 4: 1113 1121 1211 1312 2123 2231 2321 2332 3133 3223 3232 3312

)
x � 24

x3 � 4x2 � 3x � 22

�x3 � 4x2 � 4x � 16

x � 18

x � 4

x2 4–( ) x 4+( )*[ ] x 18+( )+
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Preprocessed Coefficients

Standard Matrix Multiplication

Winograd’s Matrix Multiplication

Row factors: 4 40
Column factors: 18 14

Strassen’s Algorithm

x1 = (G1,1 + G2,2) * (H1,1 + H2,2) = (1 + 8) * (6 + 2) = 9 * 8 = 72
x2 = (G2,1 + G2,2) * H1,1 = (5 + 8) * 6 = 13 * 6 = 78
x3 = G1,1 * (H1,2 � H2,2) = 1 * (7 � 2) = 1 * 5 = 5
x4 = G2,2 * (H2,1 � H1,1) = 8 * (3 � 6) = 8 * �3 = �24
x5 = (G1,1 + G1,2) * H2,2 = (1 + 4) * 2 = 5 * 2 = 10
x6 = (G2,1 � G1,1) * (H1,1 + H1,2) = (5 � 1) * (6 + 7) = 4 * 13 = 52
x7 = (G1,2 � G2,2) * (H2,1 + H2,2) = (4 � 8) * (3 + 2) = �4 * 5 = �20

R1,1 = x1 + x4 � x5 + x7 = 72 + �24 � 10 + �20 = 18
R2,1 = x2 + x4 = 78 + �24 = 54
R1,2 = x3 + x5 = 5 + 10 = 15
R2,2 = x1 + x3 � x2 + x6 = 72 + 5 � 78 + 52 = 51

) x7 � 8x6 � 3x5 � 2x4 � 4x3 � 00x2 � 05x � 07

�x7 � 8x6 � 3x5 � 2x4 � 5x3 � 40x2 � 15x � 10

x3 � 40x2 � 20x � 03

x3 � 08x2 � 03x � 02
x4 � 5

x4 5–( ) x3 8x2– 3x 2+ +( )*[ ] x3 40x2– 20x 3+ +( )+

x � 08
) )x3 � 8x2 � 3x � 02

�x3 � 8x2 � 2x � 16

x2 � 2

x � 18

x3 � 40x2 � 20x � 003
x � 040

�x3 � 40x2 � 19x � 760

x2 � 19

x � 757

x4 5–( ) x2 2+( ) x 8–( )*[ ] x 18+( )+( )*[ ] x2 19+( ) x 40–( )*[ ] x 757+( )+{ }+

1 4
5 8

6 7
3 2

1 6 4 3*+* 1 7 4 2*+*
5 6 8 3*+* 5 7 8 2*+*

18 15
54 51

= =
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Gauss-Jordan Method

Chapter 5

Knuth-Morris-Pratt

The pattern is

abcabc

The fail array contains

0  1  1  1  2  3

3 9 6 21
5 3 22 23
2 5 7 26

1 3 2 7
5 3 22 23
2 5 7 26

1 3 2 7
0 12– 12 12–

0 2 3 12

1 3 2 7
0 1 1– 1
0 2 3 12

1 0 5 4
0 1 1– 1
0 0 5 10

1 0 5 4
0 1 1– 1
0 0 1 2

1 0 0 6–

0 1 0 3
0 0 1 2
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Boyer–Moore

The pattern is
abcbccabc

After the first loop the jump array contains

After the second loop the jump array contains

After the second loop the link array contains

After the third loop the jump array contains

After the fourth loop the jump array contains

Chapter 6

Depth-first traversal from node A

A, B, G, C, D, H, L, K, J, F, I, E

Breadth-first traversal from node A

A, B, E, F, G, I, C, L, D, H, K, J

Dijkstra-Prim minimum spanning tree trace

17 16 15 14 13 12 11 10 9

17 16 15 14 13 12 6 4 1

7 8 7 8 8 9 9 9 10

14 13 12 11 10 9 6 4 1

14 13 12 11 10 9 6 4 1

I

E

C

C

E

F

I

B

A

3

9

8

8

7

1

2

5

A

B
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F

G
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Kruskal’s minimum spanning tree trace
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Dijkstra’s shortest-path algorithm

2
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for quicksort, 92

swappedElements flag, 64
Swaps/swapping, 76, 95

in bubble sort, 63
in quicksort, 92
in shellsort, 71

Symbols
big oh, 22
big omega, 22
big theta, 23

T
Target, 43

and average-case analysis for binary search, 
51

for binary search, 46, 48
in worst-case analysis for sequential 

search, 44
Testing

solutions of class NP, 226-229
textLoc, 128, 130, 131, 133
then clause 

and set partitioning, 173
Tightly coupled machine, 181
Tournament method, 27-28, 187
Tournament tree

for set of eight values, 28
trace array, 256, 257
Trace/tracing

Dijkstra-Prim minimum spanning tree, 
273-275

Kruskal’s minimum spanning tree, 
275-276

parallel algorithms, 177
Tractable problems, 215
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Traveling salesperson 
approximations, 233-234
problem, 215-217

Traversal algorithms
breadth-first, 151-153
depth-first, 150-151

Traversal analysis, 153
Tree network, 182
Tree node

fringe node connected with, 156
Trigonometric functions, 106
Turing machine, 6, 7
Two-step nondeterministic process, 224
Typing errors, 136

U
Undirected graphs, 144, 220
Union function, 173
Unrooted tree, 146
Unsorted list, 42
Upper bound

worst case contrasted with, 44

V
Virtual memory, 96
Virtual memory swapping, 59
Virus checking, 122

W
Wave patterns, 107
Weighted connected graph

minimum spanning tree of, 155
Weighted graphs, 143, 146, 148

adjacency list entries for, 149
and adjacency matrix, 207
adjacency matrix for fully connected, 

234
while loop 

for insertion sort, 60
and Knuth-Morris-Pratt analysis, 127-128

Winograd’s algorithm
analysis of, 114

Winograd’s matrix multiplication, 106, 
113-114, 271

Worst-case analysis, 12
of binary search, 48-49
of bubble sort, 64-65
of heapsort, 80-82
of insertion sort, 60
of quicksort, 91
of sequential search, 44

Y
Y2K bug problems, 9


