Structure and Interpretation of Computer Programs

Structure and
Interpretation
of Computer
Programs

Second Edition

Harold Abelson and
Gerald Jay Sussman
with Julie Sussman

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Structure and Interpretation
of Computer Programs

second edition

Harold Abelson and Gerald Jay Sussman
with Julie Sussman

foreword by Alan J. Perlis

The MIT Press
Cambridge, Massachusetts London, England

McGraw-Hill Book Company
New York St. Louis San Francisco Montreal Toronto

[Go to first, previous, next page; contents, index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Thisbook is one of a series of texts written by faculty of the Electrical Engineering and Computer
Science Department at the Massachusetts Institute of Technology. It was edited and produced by The
MIT Press under ajoint production-distribution arrangement with the McGraw-Hill Book Company.

Ordering Information:

North America
Text orders should be addressed to the McGraw-Hill Book Company.
All other orders should be addressed to The MIT Press,

Outside North America
All orders should be addressed to The MIT Press or its local distributor.

© 1996 by The Massachusetts Institute of Technology
Second edition

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was set by the authors using the LATEX typesetting system and was printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Abelson, Harold

Structure and interpretation of computer programs/ Harold Abelson
and Gerald Jay Sussman, with Julie Sussman. -- 2nd ed.

p. cm. -- (Electrical engineering and computer science
series)

Includes bibliographical references and index.

ISBN 0-262-01153-0 (MIT Press hardcover)

ISBN 0-262-51087-1 (MIT Press paperback)

ISBN 0-07-000484-6 (McGraw-Hill hardcover)

1. Electronic digital computers -- Programming. 2. LISP (Computer
program language) |. Sussman, Gerald Jay. Il. Sussman, Julie.
[11. Title. IV. Series: MIT electrical engineering and computer
science series.
QA76.6.A255 1996
005.13'3 -- dc20 96-17756

Fourth printing, 1999

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

This book is dedicated, in respect and admiration, to the spirit that lives in the computer.

1 think that it's extraordinarily important that we in computer science keep fun in computing. When it
started out, it was an awful lot of fun. Of course, the paying customers got shafted every now and then,
and after awhile we began to take their complaints seriously. We began to feel asif we really were
responsible for the successful, error-free perfect use of these machines. | don't think we are. | think we're
responsible for stretching them, setting them off in new directions, and keeping fun in the house. | hope
the field of computer science never loses its sense of fun. Above all, | hope we don't become
missionaries. Don't feel asif you're Bible salesmen. The world has too many of those already. What you
know about computing other people will learn. Don't feel asif the key to successful computing isonly in
your hands. What's in your hands, | think and hope, is intelligence: the ability to see the machine as more
than when you werefirst led up to it, that you can make it more."

Alan J. Perlis (April 1, 1922-February 7, 1990)

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents, index]

Contents

Foreword

Prefaceto the Second Edition

Prefaceto the First Edition

Acknowledgments

1 Building Abstractions with Procedures

1.1 The Elements of Programming
1.1.1 Expressions
1.1.2 Naming and the Environment
1.1.3 Evaluating Combinations
1.1.4 Compound Procedures
1.1.5 The Substitution Model for Procedure Application
1.1.6 Conditional Expressions and Predicates
1.1.7 Example: Square Roots by Newton's Method
1.1.8 Procedures as Black-Box Abstractions

1.2 Procedures and the Processes They Generate
1.2.1 Linear Recursion and lteration
1.2.2 Tree Recursion
1.2.3 Orders of Growth
1.2.4 Exponentiation
1.2.5 Greatest Common Divisors
1.2.6 Example: Testing for Primality

1.3 Formulating Abstractions with Higher-Order Procedures
1.3.1 Procedures as Arguments
1.3.2 Constructing Procedures Using Lanbda
1.3.3 Procedures as General Methods
1.3.4 Procedures as Returned Vaues

2 Building Abstractionswith Data
2.1 Introduction to Data Abstraction
2.1.1 Example: Arithmetic Operations for Rational Numbers
2.1.2 Abstraction Barriers

Structure and Interpretation of Computer Programs

2.1.3 What |s Meant by Data?

2.1.4 Extended Exercise: Interval Arithmetic
2.2 Hierarchical Data and the Closure Property

2.2.1 Representing Sequences

2.2.2 Hierarchical Structures

2.2.3 Sequences as Conventional Interfaces

2.2.4 Example: A Picture Language
2.3 Symbolic Data

2.3.1 Quotation

2.3.2 Example: Symbolic Differentiation

2.3.3 Example: Representing Sets

2.3.4 Example: Huffman Encoding Trees
2.4 Multiple Representations for Abstract Data

2.4.1 Representations for Complex Numbers

2.4.2 Tagged data

2.4.3 Data-Directed Programming and Additivity
2.5 Systems with Generic Operations

2.5.1 Generic Arithmetic Operations

2.5.2 Combining Data of Different Types

2.5.3 Example: Symbolic Algebra

3 Modularity, Objects, and State
3.1 Assignment and Local State
3.1.1 Locd State Variables
3.1.2 The Benefits of Introducing Assignment
3.1.3 The Costs of Introducing Assignment
3.2 The Environment Model of Evaluation
3.2.1 The Rulesfor Evauation
3.2.2 Applying Simple Procedures
3.2.3 Frames as the Repository of Local State
3.2.4 Internal Definitions
3.3 Modeling with Mutable Data
3.3.1 Mutable List Structure
3.3.2 Representing Queues
3.3.3 Representing Tables
3.3.4 A Simulator for Digital Circuits
3.3.5 Propagation of Constraints
3.4 Concurrency: Time Is of the Essence
3.4.1 The Nature of Timein Concurrent Systems
3.4.2 Mechanisms for Controlling Concurrency
3.5 Streams

Structure and Interpretation of Computer Programs

3.5.1 Streams Are Delayed Lists

3.5.2 Infinite Streams

3.5.3 Exploiting the Stream Paradigm

3.5.4 Streams and Delayed Evaluation

3.5.5 Modularity of Functional Programs and Modularity of Objects

4 Metalinguistic Abstraction
4.1 The Metacircular Evaluator
4.1.1 The Core of the Evaluator
4.1.2 Representing Expressions
4.1.3 Evaluator Data Structures
4.1.4 Running the Evaluator as a Program
4.1.5 Dataas Programs
4.1.6 Internal Definitions
4.1.7 Separating Syntactic Analysis from Execution
4.2 Variations on a Scheme -- Lazy Evaluation
4.2.1 Normal Order and Applicative Order
4.2.2 An Interpreter with Lazy Evaluation
4.2.3 StreeamsasLazy Lists
4.3 Variations on a Scheme -- Nondeterministic Computing
4.3.1 Amb and Search
4.3.2 Examples of Nondeterministic Programs
4.3.3 Implementing the Amb Evaluator
4.4 Logic Programming
4.4.1 Deductive Information Retrieval
4.4.2 How the Query System Works
4.4.3 |sLogic Programming Mathematical Logic?
4.4.4 Implementing the Query System

5 Computing with Register Machines

5.1 Designing Register Machines
5.1.1 A Language for Describing Register Machines
5.1.2 Abstraction in Machine Design
5.1.3 Subroutines
5.1.4 Using a Stack to Implement Recursion
5.1.5 Instruction Summary

5.2 A Register-Machine Simulator
5.2.1 The Machine Model
5.2.2 The Assembler
5.2.3 Generating Execution Procedures for Instructions
5.2.4 Monitoring Machine Performance

Structure and Interpretation of Computer Programs

5.3 Storage Allocation and Garbage Collection
5.3.1 Memory asVectors
5.3.2 Maintaining the lllusion of Infinite Memory
5.4 The Explicit-Control Evaluator
5.4.1 The Core of the Explicit-Control Evaluator
5.4.2 Sequence Evaluation and Tail Recursion
5.4.3 Conditionals, Assignments, and Definitions
5.4.4 Running the Evaluator
5.5 Compilation
5.5.1 Structure of the Compiler
5.5.2 Compiling Expressions
5.5.3 Compiling Combinations
5.5.4 Combining Instruction Sequences
5.5.5 An Example of Compiled Code
5.5.6 Lexical Addressing
5.5.7 Interfacing Compiled Code to the Evaluator

Refer ences

List of Exercises

I ndex

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Foreword

Educators, generals, dieticians, psychologists, and parents program. Armies, students, and some societies
are programmed. An assault on large problems employs a succession of programs, most of which spring
Into existence en route. These programs are rife with issues that appear to be particular to the problem at
hand. To appreciate programming as an intellectual activity in its own right you must turn to computer
programming; you must read and write computer programs -- many of them. It doesn't matter much what
the programs are about or what applications they serve. What does matter is how well they perform and
how smoothly they fit with other programsin the creation of still greater programs. The programmer
must seek both perfection of part and adequacy of collection. In this book the use of " program™ is
focused on the creation, execution, and study of programs written in adialect of Lisp for execution on a
digital computer. Using Lisp we restrict or limit not what we may program, but only the notation for our
program descriptions.

Our traffic with the subject matter of this book involves us with three foci of phenomena: the human
mind, collections of computer programs, and the computer. Every computer program is a model, hatched
in the mind, of areal or mental process. These processes, arising from human experience and thought,
are huge in number, intricate in detail, and at any time only partially understood. They are modeled to
our permanent satisfaction rarely by our computer programs. Thus even though our programs are
carefully handcrafted discrete collections of symbols, mosaics of interlocking functions, they continually
evolve: we change them as our perception of the model deepens, enlarges, generalizes until the model
ultimately attains a metastable place within still another model with which we struggle. The source of the
exhilaration associated with computer programming is the continual unfolding within the mind and on
the computer of mechanisms expressed as programs and the explosion of perception they generate. If art
interprets our dreams, the computer executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs must be correct, and what we wish to
say must be said accurately in every detail. Asin every other symbolic activity, we become convinced of
program truth through argument. Lisp itself can be assigned a semantics (another model, by the way),
and if aprogram's function can be specified, say, in the predicate calculus, the proof methods of logic can
be used to make an acceptable correctness argument. Unfortunately, as programs get large and
complicated, as they almost always do, the adequacy, consistency, and correctness of the specifications
themsel ves become open to doubt, so that complete formal arguments of correctness seldom accompany
large programs. Since large programs grow from small ones, it is crucial that we develop an arsenal of
standard program structures of whose correctness we have become sure -- we call them idioms -- and
learn to combine them into larger structures using organizational techniques of proven value. These
techniques are treated at length in this book, and understanding them is essential to participation in the
Promethean enterprise called programming. More than anything else, the uncovering and mastery of
powerful organizational techniques accelerates our ability to create large, significant programs.
Conversely, since writing large programs is very taxing, we are stimulated to invent new methods of

Structure and Interpretation of Computer Programs

reducing the mass of function and detail to be fitted into large programs.

Unlike programs, computers must obey the laws of physics. If they wish to perform rapidly -- afew
nanoseconds per state change -- they must transmit electrons only small distances (at most 1 1/2 feet). The
heat generated by the huge number of devices so concentrated in space hasto be removed. An exquisite
engineering art has been devel oped balancing between multiplicity of function and density of devices. In
any event, hardware always operates at alevel more primitive than that at which we care to program. The
processes that transform our Lisp programsto ~ machine” programs are themselves abstract models
which we program. Their study and creation give a great deal of insight into the organizational programs
associated with programming arbitrary models. Of course the computer itself can be so modeled. Think
of it: the behavior of the smallest physical switching element is modeled by quantum mechanics
described by differential equations whose detailed behavior is captured by numerical approximations
represented in computer programs executing on computers composed of . . . !

It is not merely a matter of tactical convenience to separately identify the three foci. Even though, as they
say, it'sall in the head, this logical separation induces an acceleration of symbolic traffic between these
foci whose richness, vitality, and potential is exceeded in human experience only by the evolution of life
itself. At best, relationships between the foci are metastable. The computers are never large enough or
fast enough. Each breakthrough in hardware technology leads to more massive programming enterprises,
new organizational principles, and an enrichment of abstract models. Every reader should ask himself
periodically ~ Toward what end, toward what end?" -- but do not ask it too often lest you pass up the fun
of programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a precise mathematical function such
as sorting or finding the maximum of a sequence of numbers, determining primality, or finding the
square root. We call such programs algorithms, and a great deal is known of their optimal behavior,
particularly with respect to the two important parameters of execution time and data storage
requirements. A programmer should acquire good algorithms and idioms. Even though some programs
resist precise specifications, it isthe responsibility of the programmer to estimate, and always to attempt
to improve, their performance.

Lispisasurvivor, having been in use for about a quarter of a century. Among the active programming
languages only Fortran has had alonger life. Both languages have supported the programming needs of
important areas of application, Fortran for scientific and engineering computation and Lisp for artificial
intelligence. These two areas continue to be important, and their programmers are so devoted to these
two languages that Lisp and Fortran may well continue in active use for at |east another quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from the original Lisp and differs from
the latter in several important ways, including static scoping for variable binding and permitting
functions to yield functions as values. In its semantic structure Scheme is as closely akin to Algol 60 as
to early Lisps. Algol 60, never to be an active language again, lives on in the genes of Scheme and
Pascal. It would be difficult to find two languages that are the communicating coin of two more different
cultures than those gathered around these two languages. Pascal is for building pyramids -- imposing,
breathtaking, static structures built by armies pushing heavy blocksinto place. Lisp isfor building
organisms -- imposing, breathtaking, dynamic structures built by squads fitting fluctuating myriads of
simpler organisms into place. The organizing principles used are the same in both cases, except for one
extraordinarily important difference: The discretionary exportable functionality entrusted to the

Structure and Interpretation of Computer Programs

individual Lisp programmer is more than an order of magnitude greater than that to be found within
Pascal enterprises. Lisp programs inflate libraries with functions whose utility transcends the application
that produced them. Thelist, Lisp's native data structure, is largely responsible for such growth of utility.
The ssimple structure and natural applicability of lists are reflected in functions that are amazingly
nonidiosyncratic. In Pascal the plethora of declarable data structures induces a specialization within
functions that inhibits and penalizes casual cooperation. It is better to have 100 functions operate on one
data structure than to have 10 functions operate on 10 data structures. As aresult the pyramid must stand
unchanged for a millennium; the organism must evolve or perish.

To illustrate this difference, compare the treatment of material and exercises within this book with that in
any first-course text using Pascal. Do not labor under the illusion that thisis atext digestible at MIT
only, peculiar to the breed found there. It is precisely what a serious book on programming Lisp must be,
no matter who the student is or where it is used.

Note that thisis atext about programming, unlike most Lisp books, which are used as a preparation for
work in artificial intelligence. After all, the critical programming concerns of software engineering and
artificial intelligence tend to coalesce as the systems under investigation become larger. This explains
why there is such growing interest in Lisp outside of artificial intelligence.

As one would expect from its goals, artificial intelligence research generates many significant
programming problems. In other programming cultures this spate of problems spawns new languages.
Indeed, in any very large programming task a useful organizing principleisto control and isolate traffic
within the task modules viathe invention of language. These languages tend to become less primitive as
one approaches the boundaries of the system where we humans interact most often. As aresult, such
systems contain complex language-processing functions replicated many times. Lisp has such asimple
syntax and semantics that parsing can be treated as an elementary task. Thus parsing technology plays
amost no role in Lisp programs, and the construction of language processorsis rarely an impediment to
the rate of growth and change of large Lisp systems. Finally, it isthis very simplicity of syntax and
semantics that is responsible for the burden and freedom borne by all Lisp programmers. No Lisp
program of any size beyond afew lines can be written without being saturated with discretionary
functions. Invent and fit; have fits and reinvent! We toast the Lisp programmer who pens his thoughts
within nests of parentheses.

Alan J. Perlis
New Haven, Connecticut

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Preface to the Second Edition

Isit possible that software is not like anything else, that it is
meant to be discarded: that the whole point isto always see it
as a soap bubble?

Alan J. Perlis

The material in this book has been the basis of MIT's entry-level computer science subject since 1980.
We had been teaching this material for four years when the first edition was published, and twelve more
years have elapsed until the appearance of this second edition. We are pleased that our work has been
widely adopted and incorporated into other texts. We have seen our students take the ideas and programs
in this book and build them in as the core of new computer systems and languages. In literal realization
of an ancient Talmudic pun, our students have become our builders. We are lucky to have such capable
students and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifications suggested by our own teaching
experience and the comments of colleagues at MIT and el sewhere. We have redesigned most of the
major programming systems in the book, including the generic-arithmetic system, the interpreters, the
register-machine ssimulator, and the compiler; and we have rewritten all the program examples to ensure
that any Scheme implementation conforming to the |IEEE Scheme standard (IEEE 1990) will be able to
run the code.

This edition emphasizes several new themes. The most important of these is the central role played by
different approaches to dealing with time in computational models: objects with state, concurrent
programming, functional programming, lazy evaluation, and nondeterministic programming. We have
included new sections on concurrency and nondeterminism, and we have tried to integrate this theme
throughout the book.

Thefirst edition of the book closely followed the syllabus of our MIT one-semester subject. With all the
new material in the second edition, it will not be possible to cover everything in a single semester, so the
instructor will have to pick and choose. In our own teaching, we sometimes skip the section on logic
programming (section 4.4), we have students use the register-machine simulator but we do not cover its
implementation (section 5.2), and we give only a cursory overview of the compiler (section 5.5). Even
S0, thisis still an intense course. Some instructors may wish to cover only the first three or four chapters,
leaving the other material for subsequent courses.

The World-Wide-Web sitewww m t press. m t. edu/ si cp provides support for users of this book.
Thisincludes programs from the book, sample programming assignments, supplementary materials, and
downloadable implementations of the Scheme dialect of Lisp.

[Go to first, previous, next page; contents, index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Preface to the First Edition

A computer islike aviolin. You can imagine anovice trying
first a phonograph and then aviolin. The latter, he says,
sounds terrible. That is the argument we have heard from our
humanists and most of our computer scientists. Computer
programs are good, they say, for particular purposes, but they
aren't flexible. Neither isaviolin, or atypewriter, until you
learn how to useit.

Marvin Minsky, ~"Why Programming Is a Good
Medium for Expressing Poorly-Understood and
Sloppily-Formulated |deas"

“"The Structure and Interpretation of Computer Programs” is the entry-level subject in computer science
at the Massachusetts Institute of Technology. It isrequired of all studentsat MIT who major in electrical
engineering or in computer science, as one-fourth of the " common core curriculum,” which also includes
two subjects on circuits and linear systems and a subject on the design of digital systems. We have been
involved in the development of this subject since 1978, and we have taught this material in its present
form since the fall of 1980 to between 600 and 700 students each year. Most of these students have had
little or no prior formal training in computation, although many have played with computers a bit and a
few have had extensive programming or hardware-design experience.

Our design of thisintroductory computer-science subject reflects two major concerns. First, we want to
establish the idea that a computer language is not just a way of getting a computer to perform operations
but rather that it is a novel formal medium for expressing ideas about methodology. Thus, programs must
be written for people to read, and only incidentally for machines to execute. Second, we believe that the
essential material to be addressed by a subject at thislevel is not the syntax of particular
programming-language constructs, nor clever algorithms for computing particular functions efficiently,
nor even the mathematical analysis of algorithms and the foundations of computing, but rather the
techniques used to control the intellectual complexity of large software systems.

Our goal isthat students who complete this subject should have a good feel for the elements of style and
the aesthetics of programming. They should have command of the major techniques for controlling
complexity in alarge system. They should be capable of reading a 50-page-long program, if it iswritten
in an exemplary style. They should know what not to read, and what they need not understand at any
moment. They should feel secure about modifying a program, retaining the spirit and style of the original
author.

These skills are by no means unique to computer programming. The techniques we teach and draw upon
are common to all of engineering design. We control complexity by building abstractions that hide

Structure and Interpretation of Computer Programs

details when appropriate. We control complexity by establishing conventional interfaces that enable us to
construct systems by combining standard, well-understood piecesin a "mix and match" way. We control
complexity by establishing new languages for describing a design, each of which emphasizes particular
aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that *~computer science” is not a science and
that its significance hasllittle to do with computers. The computer revolution is arevolution in the way
we think and in the way we express what we think. The essence of this change is the emergence of what
might best be called procedural epistemology -- the study of the structure of knowledge from an
imperative point of view, as opposed to the more declarative point of view taken by classical
mathematical subjects. Mathematics provides aframework for dealing precisely with notions of = what
is." Computation provides aframework for dealing precisely with notions of “"how to."

In teaching our material we use adialect of the programming language Lisp. We never formally teach the
language, because we don't have to. We just useit, and students pick it up in afew days. Thisis one great
advantage of Lisp-like languages: They have very few ways of forming compound expressions, and
almost no syntactic structure. All of the formal properties can be covered in an hour, like the rules of
chess. After a short time we forget about syntactic details of the language (because there are none) and
get on with the real issues -- figuring out what we want to compute, how we will decompose problems
into manageable parts, and how we will work on the parts. Another advantage of Lisp isthat it supports
(but does not enforce) more of the large-scale strategies for modular decomposition of programs than any
other language we know. We can make procedural and data abstractions, we can use higher-order
functions to capture common patterns of usage, we can model local state using assignment and data
mutation, we can link parts of a program with streams and delayed evaluation, and we can easily
implement embedded languages. All of thisis embedded in an interactive environment with excellent
support for incremental program design, construction, testing, and debugging. We thank all the
generations of Lisp wizards, starting with John McCarthy, who have fashioned a fine tool of
unprecedented power and el egance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the power and elegance of Lisp
and Algol. From Lisp we take the metalinguistic power that derives from the simple syntax, the uniform
representation of programs as data objects, and the garbage-collected heap-allocated data. From Algol we
take lexical scoping and block structure, which are gifts from the pioneers of programming-language
design who were on the Algol committee. We wish to cite John Reynolds and Peter Landin for their
insights into the relationship of Church's lambda calculus to the structure of programming languages. We
also recognize our debt to the mathematicians who scouted out this territory decades before computers
appeared on the scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen Kleene, and
Haskell Curry.

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Acknowledgments

We would like to thank the many people who have helped us develop this book and this curriculum.

Our subject isaclear intellectual descendant of ~"6.231," awonderful subject on programming linguistics
and the lambda calculus taught at MIT in the late 1960s by Jack Wozencraft and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized MIT's introductory curriculum in electrical
engineering and computer science to emphasize the principles of engineering design. He led usin starting
out on this enterprise and wrote the first set of subject notes from which this book evolved.

Much of the style and aesthetics of programming that we try to teach were developed in conjunction with
Guy Lewis Steele Jr., who collaborated with Gerald Jay Sussman in the initial development of the
Scheme language. In addition, David Turner, Peter Henderson, Dan Friedman, David Wise, and Will
Clinger have taught us many of the techniques of the functional programming community that appear in
this book.

Joel Moses taught us about structuring large systems. His experience with the Macsyma system for
symbolic computation provided the insight that one should avoid complexities of control and concentrate
on organizing the datato reflect the real structure of the world being modeled.

Marvin Minsky and Seymour Papert formed many of our attitudes about programming and its placein
our intellectual lives. To them we owe the understanding that computation provides a means of
expression for exploring ideas that would otherwise be too complex to deal with precisely. They
emphasize that a student's ability to write and modify programs provides a powerful medium in which
exploring becomes a natural activity.

We aso strongly agree with Alan Perlis that programming islots of fun and we had better be careful to
support the joy of programming. Part of thisjoy derives from observing great masters at work. We are
fortunate to have been apprentice programmers at the feet of Bill Gosper and Richard Greenblatt.

It isdifficult to identify all the people who have contributed to the development of our curriculum. We
thank al the lecturers, recitation instructors, and tutors who have worked with us over the past fifteen
years and put in many extra hours on our subject, especially Bill Siebert, Albert Meyer, Joe Stoy, Randy
Davis, Louis Braida, Eric Grimson, Rod Brooks, Lynn Stein, and Peter Szolovits. We would like to
specially acknowledge the outstanding teaching contributions of Franklyn Turbak, now at Wellesley; his
work in undergraduate instruction set a standard that we can all aspire to. We are grateful to Jerry Saltzer
and Jim Miller for helping us grapple with the mysteries of concurrency, and to Peter Szolovits and
David McAllester for their contributions to the exposition of nondeterministic evaluation in chapter 4.

Many people have put in significant effort presenting this material at other universities. Some of the
people we have worked closely with are Jacob Katzenelson at the Technion, Hardy Mayer at the

Structure and Interpretation of Computer Programs

University of Californiaat Irvine, Joe Stoy at Oxford, Elisha Sacks at Purdue, and Jan Komorowski at
the Norwegian University of Science and Technology. We are exceptionally proud of our colleagues who
have recelved maor teaching awards for their adaptations of this subject at other universities, including
Kenneth Yip at Yale, Brian Harvey at the University of California at Berkeley, and Dan Huttenlocher at
Cornell.

Al Moyé arranged for us to teach this material to engineers at Hewlett-Packard, and for the production of
videotapes of these lectures. We would like to thank the talented instructors -- in particular Jim Miller,
Bill Siebert, and Mike Eisenberg -- who have designed continuing education courses incorporating these
tapes and taught them at universities and industry all over the world.

Many educators in other countries have put in significant work translating the first edition. Michel
Briand, Pierre Chamard, and André Pic produced a French edition; Susanne Daniels-Herold produced a
German edition; and Fumio Motoyoshi produced a Japanese edition. We do not know who produced the
Chinese edition, but we consider it an honor to have been selected as the subject of an " unauthorized"
trangation.

It is hard to enumerate all the people who have made technical contributions to the development of the
Scheme systems we use for instructional purposes. In addition to Guy Steele, principal wizards have
included Chris Hanson, Joe Bowbeer, Jim Miller, Guillermo Rozas, and Stephen Adams. Others who
have put in significant time are Richard Stallman, Alan Bawden, Kent Pitman, Jon Taft, Neil Mayle,
John Lamping, Gwyn Osnos, Tracy Larrabee, George Carrette, Soma Chaudhuri, Bill Chiarchiaro,
Steven Kirsch, Leigh Klotz, Wayne Noss, Todd Cass, Patrick O'Donnell, Kevin Theobald, Daniel Weise,
Kenneth Sinclair, Anthony Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth Shyu.

Beyond the MIT implementation, we would like to thank the many people who worked on the IEEE

Scheme standard, including William Clinger and Jonathan Rees, who edited the R4RS, and Chris
Haynes, David Bartley, Chris Hanson, and Jim Miller, who prepared the |EEE standard.

Dan Friedman has been along-time leader of the Scheme community. The community's broader work
goes beyond issues of language design to encompass significant educational innovations, such asthe
high-school curriculum based on EdScheme by Schemer's Inc., and the wonderful books by Mike
Eisenberg and by Brian Harvey and Matthew Wright.

We appreciate the work of those who contributed to making this areal book, especialy Terry Ehling,
Larry Cohen, and Paul Bethge at the MIT Press. Ella Mazel found the wonderful cover image. For the
second edition we are particularly grateful to Bernard and Ella Mazel for help with the book design, and
to David Jones, TEX wizard extraordinaire. We also are indebted to those readers who made penetrating
comments on the new draft: Jacob Katzenelson, Hardy Mayer, Jm Miller, and especially Brian Harvey,
who did unto this book as Julie did unto his book Smply Scheme.

Finally, we would like to acknowledge the support of the organizations that have encouraged this work
over the years, including support from Hewlett-Packard, made possible by Ira Goldstein and Joel
Birnbaum, and support from DARPA, made possible by Bob Kahn.

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Chapter 1

Building Abstractions with Procedures

The acts of the mind, wherein it exertsits power over simple
Ideas, are chiefly these three: 1. Combining several simple
ideas into one compound one, and thus all complex ideas are
made. 2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so asto
take a view of them at once, without uniting them into one, by
which it gets all itsideas of relations. 3. Thethird is
separating them from all other ideas that accompany themin
their real existence: thisis called abstraction, and thus all its
general ideas are made.

John Locke, An Essay Concerning Human Under standing
(1690)

We are about to study the idea of a computational process. Computational processes are abstract beings
that inhabit computers. Asthey evolve, processes manipulate other abstract things called data. The
evolution of aprocessis directed by a pattern of rules called a program. People create programs to direct
processes. In effect, we conjure the spirits of the computer with our spells.

A computational processisindeed much like a sorcerer'sidea of a spirit. It cannot be seen or touched. It
IS not composed of matter at all. However, it isvery readl. It can perform intellectual work. It can answer
guestions. It can affect the world by disbursing money at a bank or by controlling arobot armin a
factory. The programs we use to conjure processes are like a sorcerer's spells. They are carefully
composed from symbolic expressions in arcane and esoteric programming languages that prescribe the
tasks we want our processes to perform.

A computational process, in a correctly working computer, executes programs precisely and accurately.
Thus, like the sorcerer's apprentice, novice programmers must learn to understand and to anticipate the
consequences of their conjuring. Even small errors (usually called bugs or glitches) in programs can have
complex and unanticipated consequences.

Fortunately, learning to program is considerably less dangerous than learning sorcery, because the spirits
we deal with are conveniently contained in a secure way. Real-world programming, however, requires
care, expertise, and wisdom. A small bug in a computer-aided design program, for example, can lead to
the catastrophic collapse of an airplane or a dam or the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that they can be reasonably sure that
the resulting processes will perform the tasks intended. They can visualize the behavior of their systems
in advance. They know how to structure programs so that unanticipated problems do not lead to
catastrophic consequences, and when problems do arise, they can debug their programs. Well-designed

Structure and Interpretation of Computer Programs

computational systems, like well-designed automobiles or nuclear reactors, are designed in a modular
manner, so that the parts can be constructed, replaced, and debugged separately.

Programming in Lisp

We need an appropriate language for describing processes, and we will use for this purpose the
programming language Lisp. Just as our everyday thoughts are usually expressed in our natural language
(such as English, French, or Japanese), and descriptions of quantitative phenomena are expressed with
mathematical notations, our procedural thoughts will be expressed in Lisp. Lisp wasinvented in the late
1950s as a formalism for reasoning about the use of certain kinds of logical expressions, called recursion
eguations, as amodel for computation. The language was conceived by John McCarthy and is based on
his paper ~"Recursive Functions of Symbolic Expressions and Their Computation by Machine"
(McCarthy 1960).

Despite itsinception as a mathematical formalism, Lisp isa practical programming language. A Lisp
interpreter is amachine that carries out processes described in the Lisp language. Thefirst Lisp
interpreter was implemented by McCarthy with the help of colleagues and studentsin the Artificial
Intelligence Group of the MIT Research Laboratory of Electronics and in the MIT Computation Center.2
Lisp, whose name is an acronym for LISt Processing, was designed to provide symbol-manipulating
capabilities for attacking programming problems such as the symbolic differentiation and integration of
algebraic expressions. It included for this purpose new data objects known as atoms and lists, which most
strikingly set it apart from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it evolved informally in an experimental
manner in response to users needs and to pragmatic implementation considerations. Lisp's informal
evolution has continued through the years, and the community of Lisp users has traditionally resisted
attempts to promulgate any "officia™ definition of the language. This evolution, together with the
flexibility and elegance of theinitial conception, has enabled Lisp, which is the second oldest language in
widespread use today (only Fortran is older), to continually adapt to encompass the most modern ideas
about program design. Thus, Lisp is by now afamily of dialects, which, while sharing most of the
original features, may differ from one another in significant ways. The dialect of Lisp used in thisbook is
called Scheme.2

Because of its experimental character and its emphasis on symbol manipulation, Lisp was at first very
inefficient for numerical computations, at least in comparison with Fortran. Over the years, however,
Lisp compilers have been developed that translate programs into machine code that can perform
numerical computations reasonably efficiently. And for special applications, Lisp has been used with
great effectiveness.2 Although Lisp has not yet overcome its old reputation as hopelessly inefficient, Lisp
Is now used in many applications where efficiency is not the central concern. For example, Lisp has
become a language of choice for operating-system shell languages and for extension languages for
editors and computer-aided design systems.

If Lisp is not a mainstream language, why are we using it as the framework for our discussion of
programming? Because the language possesses unique features that make it an excellent medium for
studying important programming constructs and data structures and for relating them to the linguistic
features that support them. The most significant of these features is the fact that Lisp descriptions of
processes, called procedures, can themselves be represented and manipulated as Lisp data. The

Structure and Interpretation of Computer Programs

Importance of thisis that there are powerful program-design techniques that rely on the ability to blur the
traditional distinction between "~“passive” dataand active" processes. As we shall discover, Lisp's
flexibility in handling procedures as data makes it one of the most convenient languages in existence for
exploring these techniques. The ability to represent procedures as data also makes Lisp an excellent
language for writing programs that must manipul ate other programs as data, such as the interpreters and
compilers that support computer languages. Above and beyond these considerations, programming in
Lispisgreat fun.

1 The Lisp 1 Programmer's Manual appeared in 1960, and the Lisp 1.5 Programmer's Manual (McCarthy
1965) was published in 1962. The early history of Lisp isdescribed in McCarthy 1978.

2 The two dialects in which most major Lisp programs of the 1970s were written are MacLisp (Moon
1978; Pitman 1983), developed at the MIT Project MAC, and Interlisp (Teitelman 1974), developed at
Bolt Beranek and Newman Inc. and the Xerox Palo Alto Research Center. Portable Standard Lisp (Hearn
1969; Griss 1981) was a Lisp dialect designed to be easily portable between different machines. MacLisp
spawned a number of subdialects, such as Franz Lisp, which was developed at the University of
Californiaat Berkeley, and Zetalisp (Moon 1981), which was based on a special-purpose processor
designed at the MIT Artificial Intelligence Laboratory to run Lisp very efficiently. The Lisp dialect used
in this book, called Scheme (Steele 1975), was invented in 1975 by Guy Lewis Steele Jr. and Gerald Jay
Sussman of the MIT Artificial Intelligence Laboratory and later reimplemented for instructional use at
MIT. Scheme became an | EEE standard in 1990 (IEEE 1990). The Common Lisp dialect (Steele 1982,
Steele 1990) was developed by the Lisp community to combine features from the earlier Lisp dialectsto
make an industrial standard for Lisp. Common Lisp became an ANSI standard in 1994 (ANSI 1994).

3 One such special application was a breakthrough computation of scientific importance -- an integration
of the motion of the Solar System that extended previous results by nearly two orders of magnitude, and
demonstrated that the dynamics of the Solar System is chaotic. This computation was made possible by
new integration algorithms, a special-purpose compiler, and a special -purpose computer all implemented
with the aid of software toolswritten in Lisp (Abelson et al. 1992; Sussman and Wisdom 1992).

[Go to first, previous, next page; contents, index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

1.1 The Elements of Programming

A powerful programming language is more than just a means for instructing a computer to perform tasks.
The language al so serves as a framework within which we organize our ideas about processes. Thus,
when we describe a language, we should pay particular attention to the means that the language provides
for combining simple ideas to form more complex ideas. Every powerful language has three mechanisms
for accomplishing this:

o primitive expressions, which represent the simplest entities the language is concerned with,
« means of combination, by which compound elements are built from simpler ones, and
« means of abstraction, by which compound el ements can be named and manipulated as units.

In programming, we deal with two kinds of elements. procedures and data. (Later we will discover that
they are really not so distinct.) Informally, datais " stuff” that we want to manipulate, and procedures are
descriptions of the rules for manipulating the data. Thus, any powerful programming language should be
able to describe primitive data and primitive procedures and should have methods for combining and
abstracting procedures and data.

In this chapter we will deal only with simple numerical data so that we can focus on the rules for building
procedures.4 In later chapters we will see that these same rules allow usto build procedures to manipulate
compound data as well.

1.1.1 EXpressions

One easy way to get started at programming is to examine some typical interactions with an interpreter
for the Scheme dialect of Lisp. Imagine that you are sitting at a computer terminal. Y ou type an
expression, and the interpreter responds by displaying the result of its evaluating that expression.

One kind of primitive expression you might type isanumber. (More precisely, the expression that you
type consists of the numerals that represent the number in base 10.) If you present Lisp with a number

486
the interpreter will respond by printing2
486

Expressions representing numbers may be combined with an expression representing a primitive
procedure (such as + or *) to form a compound expression that represents the application of the
procedure to those numbers. For example:

(+ 137 349)
486
(- 1000 334)
666

(* 5 99)

Structure and Interpretation of Computer Programs

495

(/ 10 5)
2

(+ 2.7 10)
12. 7

Expressions such as these, formed by delimiting alist of expressions within parentheses in order to
denote procedure application, are called combinations. The leftmost element in thelist is called the
operator, and the other elements are called operands. The value of a combination is obtained by applying
the procedure specified by the operator to the arguments that are the values of the operands.

The convention of placing the operator to the left of the operands is known as prefix notation, and it may
be somewhat confusing at first because it departs significantly from the customary mathematical
convention. Prefix notation has several advantages, however. One of them is that it can accommodate
procedures that may take an arbitrary number of arguments, as in the following examples:

(+ 21 35 12 7)
75

(* 25 4 12)
1200

No ambiguity can arise, because the operator is always the leftmost element and the entire combination is
delimited by the parentheses.

A second advantage of prefix notation isthat it extends in a straightforward way to alow combinations
to be nested, that is, to have combinations whose elements are themselves combinations:

(+ (* 35 (- 10 06))
19

Thereisno limit (in principle) to the depth of such nesting and to the overall complexity of the
expressions that the Lisp interpreter can evaluate. It is we humans who get confused by still relatively
simple expressions such as

(+ ("3 (+(*24) (+353))) (+(-107) 6))

which the interpreter would readily evaluate to be 57. We can help ourselves by writing such an
expression in the form

(+ (* 3
(+ (* 2 4)
(+ 35)))
(+ (- 10 7)
6))
following aformatting convention known as pretty-printing, in which each long combination is written

so that the operands are aligned vertically. The resulting indentations display clearly the structure of the
expression.t

Structure and Interpretation of Computer Programs

Even with complex expressions, the interpreter always operates in the same basic cycle: It reads an
expression from the terminal, evaluates the expression, and prints the result. This mode of operation is
often expressed by saying that the interpreter runs in aread-eval-print loop. Observe in particular that it
IS not necessary to explicitly instruct the interpreter to print the value of the expression.”

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides for using names to refer to
computational objects. We say that the name identifies a variable whose value is the object.

In the Scheme dialect of Lisp, we name things with def i ne. Typing
(define size 2)

causes the interpreter to associate the value 2 with the name si ze.8 Once the name si ze has been
associated with the number 2, we can refer to the value 2 by name:

si ze

2

(* 5 size)
10

Here are further examples of the use of def i ne:

(define pi 3.14159)

(define radius 10)

(* pi (* radius radius))

314. 159

(define circunference (* 2 pi radius))
ci rcunf erence

62. 8318

Def i ne isour language's ssimplest means of abstraction, for it allows us to use ssmple names to refer to
the results of compound operations, such asthe ci r cunf er ence computed above. In general,
computational objects may have very complex structures, and it would be extremely inconvenient to
have to remember and repeat their details each time we want to use them. Indeed, complex programs are
constructed by building, step by step, computational objects of increasing complexity. The interpreter
makes this step-by-step program construction particularly convenient because name-object associations
can be created incrementally in successive interactions. This feature encourages the incremental
development and testing of programs and is largely responsible for the fact that a Lisp program usually
consists of alarge number of relatively simple procedures.

It should be clear that the possibility of associating values with symbols and later retrieving them means
that the interpreter must maintain some sort of memory that keeps track of the name-object pairs. This
memory is called the environment (more precisely the global environment, since we will see later that a
computation may involve a number of different environments).2

Structure and Interpretation of Computer Programs

1.1.3 Evaluating Combinations

One of our goalsin this chapter isto isolate issues about thinking procedurally. As acasein point, let us
consider that, in evaluating combinations, the interpreter isitself following a procedure.

« To evaluate acombination, do the following:
1. Evaluate the subexpressions of the combination.

2. Apply the procedure that is the value of the leftmost subexpression (the operator) to the
arguments that are the values of the other subexpressions (the operands).

Even this simple rule illustrates some important points about processes in general. First, observe that the
first step dictates that in order to accomplish the evaluation process for a combination we must first
perform the evaluation process on each element of the combination. Thus, the evaluation rule isrecursive
in nature; that is, it includes, as one of its steps, the need to invoke the rule itself.10

Notice how succinctly the idea of recursion can be used to express what, in the case of a deeply nested
combination, would otherwise be viewed as arather complicated process. For example, evaluating

(* (+2(* 46))
(+ 357))

requires that the evaluation rule be applied to four different combinations. We can obtain a picture of this
process by representing the combination in the form of atree, as shown in figure 1.1. Each combination
Is represented by a node with branches corresponding to the operator and the operands of the
combination stemming from it. The terminal nodes (that is, nodes with no branches stemming from
them) represent either operators or numbers. Viewing evaluation in terms of the tree, we can imagine that
the values of the operands percolate upward, starting from the terminal nodes and then combining at
higher and higher levels. In general, we shall see that recursion is a very powerful technique for dealing
with hierarchical, treelike objects. In fact, the ""percolate values upward" form of the evaluation ruleis an
example of ageneral kind of process known as tree accumulation.

230

o6 15

Structure and Interpretation of Computer Programs

Figure 1.1: Tree representation, showing the value of each subcombination.

Next, observe that the repeated application of the first step brings us to the point where we need to
evaluate, not combinations, but primitive expressions such as numerals, built-in operators, or other
names. We take care of the primitive cases by stipulating that

« thevalues of numerals are the numbers that they name,

« thevalues of built-in operators are the machine instruction sequences that carry out the
corresponding operations, and

« thevalues of other names are the objects associated with those names in the environment.

We may regard the second rule as a special case of the third one by stipulating that symbols such as +
and * are aso included in the global environment, and are associated with the sequences of machine
instructions that are their ““values." The key point to notice is the role of the environment in determining
the meaning of the symbolsin expressions. In an interactive language such as Lisp, it is meaningless to
speak of the value of an expressionsuchas(+ x 1) without specifying any information about the
environment that would provide a meaning for the symbol x (or even for the symbol +). Aswe shall see
in chapter 3, the general notion of the environment as providing a context in which evaluation takes place
will play an important role in our understanding of program execution.

Notice that the evaluation rule given above does not handle definitions. For instance, evaluating
(define x 3) doesnot apply def i ne to two arguments, one of which is the value of the symbol x
and the other of which is 3, since the purpose of the def i ne is precisely to associate x with avalue.
(Thatis, (defi ne x 3) isnot acombination.)

Such exceptions to the general evaluation rule are called special forms. Def i ne isthe only example of a
special form that we have seen so far, but we will meet others shortly. Each special form hasits own
evaluation rule. The various kinds of expressions (each with its associated evaluation rule) constitute the
syntax of the programming language. In comparison with most other programming languages, Lisp hasa
very simple syntax; that is, the evaluation rule for expressions can be described by a simple general rule
together with specialized rules for a small number of special forms.11

1.1.4 Compound Procedures

We have identified in Lisp some of the elements that must appear in any powerful programming
language:

« Numbers and arithmetic operations are primitive data and procedures.

« Nesting of combinations provides a means of combining operations.

« Definitions that associate names with values provide alimited means of abstraction.

Now we will learn about procedure definitions, a much more powerful abstraction technique by which a
compound operation can be given a name and then referred to as a unit.

We begin by examining how to express the idea of ~“squaring.” We might say, = To square something,
multiply it by itself." Thisis expressed in our language as

(define (square x) (* x X))

Structure and Interpretation of Computer Programs
We can understand thisin the following way:
(define (square x) (* X X))
T T T I [I
To square sonething, nmultiply it by itself.

We have here a compound procedure, which has been given the name squar e. The procedure
represents the operation of multiplying something by itself. The thing to be multiplied is given aloca
name, X, which plays the same role that a pronoun plays in natural language. Evaluating the definition
creates this compound procedure and associates it with the name squar e .12

The general form of a procedure definitionis
(define (<name> <formal paraneters>) <body>)

The <name> is a symbol to be associated with the procedure definition in the environment.22 The
<formal parameters> are the names used within the body of the procedure to refer to the corresponding
arguments of the procedure. The <body> is an expression that will yield the value of the procedure
application when the formal parameters are replaced by the actual arguments to which the procedureis
applied.24 The <name> and the <formal parameters> are grouped within parentheses, just as they would
be in an actual call to the procedure being defined.

Having defined squar e, we can now use it:

(square 21)
441

(square (+ 2 5))
49

(square (square 3))
81

We can also use squar e as abuilding block in defining other procedures. For example, x2 + y2 can be
expressed as

(+ (square x) (square y))

We can easily define aprocedure sum of - squar es that, given any two numbers as arguments,
produces the sum of their squares:

(define (sumof-squares x Yy)
(+ (square x) (square y)))

(sum of -squares 3 4)
25

Now we can use sum of - squar es asabuilding block in constructing further procedures:
(define (f a)

Structure and Interpretation of Computer Programs

(sumof-squares (+ al) (* a 2)))

(f 5)
136

Compound procedures are used in exactly the same way as primitive procedures. Indeed, one could not
tell by looking at the definition of sum of - squar es given above whether squar e was built into the
interpreter, like + and * , or defined as a compound procedure.

1.1.5 The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound procedure, the interpreter follows much
the same process as for combinations whose operators name primitive procedures, which we described in
section 1.1.3. That is, the interpreter eval uates the elements of the combination and applies the procedure

(which isthe value of the operator of the combination) to the arguments (which are the values of the
operands of the combination).

We can assume that the mechanism for applying primitive procedures to arguments is built into the
interpreter. For compound procedures, the application processis as follows:

« To apply acompound procedure to arguments, evaluate the body of the procedure with each
formal parameter replaced by the corresponding argument.

To illustrate this process, let's evaluate the combination

(f 5)

wheref isthe procedure defined in section 1.1.4. We begin by retrieving the body of f :
(sumof-squares (+ a 1) (* a 2))

Then we replace the formal parameter a by the argument 5:

(sumof-squares (+ 5 1) (* 5 2))

Thus the problem reduces to the evaluation of a combination with two operands and an operator

sum of - squar es. Evaluating this combination involves three subproblems. We must evaluate the
operator to get the procedure to be applied, and we must evaluate the operands to get the arguments. Now
(+ 5 1) produces6and (* 5 2) produces 10, so we must apply the sum of - squar es procedure
to 6 and 10. These values are substituted for the formal parametersx andy in the body of

sum of - squar es, reducing the expression to

(+ (square 6) (square 10))

If we use the definition of squar e, thisreducesto
(+ (* 6 6) (* 10 10))

which reduces by multiplication to

(+ 36 100)

Structure and Interpretation of Computer Programs

and finally to
136

The process we have just described is called the substitution model for procedure application. It can be
taken as amodel that determines the ""meaning” of procedure application, insofar as the proceduresin
this chapter are concerned. However, there are two points that should be stressed:

« The purpose of the substitution isto help us think about procedure application, not to provide a
description of how the interpreter really works. Typical interpreters do not evaluate procedure
applications by manipulating the text of a procedure to substitute values for the formal parameters.
In practice, the ““substitution™ is accomplished by using alocal environment for the formal
parameters. We will discuss this more fully in chapters 3 and 4 when we examine the
implementation of an interpreter in detail.

« Over the course of this book, we will present a sequence of increasingly elaborate models of how
interpreters work, culminating with a complete implementation of an interpreter and compiler in
chapter 5. The substitution model is only the first of these models -- away to get started thinking
formally about the evaluation process. In general, when modeling phenomena in science and
engineering, we begin with smplified, incomplete models. As we examine things in greater detalil,
these simple model s become inadequate and must be replaced by more refined models. The
substitution model is no exception. In particular, when we address in chapter 3 the use of
procedures with ~“mutable data," we will see that the substitution model breaks down and must be
replaced by a more complicated model of procedure application.12

Applicative order versus normal order

According to the description of evaluation given in section 1.1.3, the interpreter first evaluates the

operator and operands and then applies the resulting procedure to the resulting arguments. Thisis not the
only way to perform evaluation. An aternative evaluation model would not eval uate the operands until
their values were needed. Instead it would first substitute operand expressions for parameters until it
obtained an expression involving only primitive operators, and would then perform the evaluation. If we
used this method, the evaluation of

(f 5)

would proceed according to the sequence of expansions
(sumof-squares (+ 5 1) (* 5 2))

(+ (square (+ 5 1)) (square (* 5 2)))

(+ (*(+51) (+51) (* (52 (*52))
followed by the reductions
(+ (* 6 6) (* 10 10))

(+ 36 100)

Structure and Interpretation of Computer Programs

136

This gives the same answer as our previous evaluation model, but the process is different. In particular,
theevauationsof (+ 5 1) and(* 5 2) are each performed twice here, corresponding to the
reduction of the expression

(* x x)
with x replaced respectively by (+ 5 1) and(* 5 2).

This dternative "“fully expand and then reduce" evaluation method is known as normal-order evaluation,
in contrast to the ~"evaluate the arguments and then apply" method that the interpreter actually uses,
which is called applicative-order evaluation. It can be shown that, for procedure applications that can be
modeled using substitution (including all the procedures in the first two chapters of this book) and that
yield legitimate values, normal-order and applicative-order evaluation produce the same value. (See
exercise 1.5 for an instance of an "illegitimate” value where normal-order and applicative-order

evaluation do not give the same result.)

Lisp uses applicative-order evaluation, partly because of the additional efficiency obtained from avoiding
multiple evaluations of expressions such asthoseillustrated with(+ 5 1) and(* 5 2) aboveand,
more significantly, because normal-order evaluation becomes much more complicated to deal with when
we leave the realm of procedures that can be modeled by substitution. On the other hand, normal -order
evaluation can be an extremely valuable tool, and we will investigate some of its implications in chapters
3and 4.16

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at this point is very limited, because
we have no way to make tests and to perform different operations depending on the result of atest. For
Instance, we cannot define a procedure that computes the absolute value of a number by testing whether
the number is positive, negative, or zero and taking different actions in the different cases according to
therule

r r==0
|I|= 0 fr=20
—r dr<10

This construct is called a case analysis, and there isa special form in Lisp for notating such a case
analysis. It iscalled cond (which stands for “"conditional"), and it is used as follows:

(define (abs x)
(cond ((> x 0) x)
((=x0) 0)
((<x0) (- x))))

The general form of a conditional expressionis

Structure and Interpretation of Computer Programs
(cond (<p;> <e;>)
(<pp> <ey>)

:(<pPn> <e€p>))

consisting of the symbol cond followed by parenthesized pairs of expressions (<p> <e>) called
clauses. Thefirst expression in each pair is a predicate -- that is, an expression whose value is interpreted
as either true or false.”

Conditional expressions are evaluated as follows. The predicate <p;> is evaluated first. If itsvalueis
false, then <p,> is evaluated. If <p,>'svalueisalso false, then <ps> is evaluated. This process continues

until a predicate is found whose value is true, in which case the interpreter returns the value of the
corresponding consequent expression <e> of the clause as the value of the conditional expression. If none
of the <p>'sisfound to be true, the value of the cond is undefined.

The word predicate is used for procedures that return true or false, aswell asfor expressions that
evaluate to true or false. The absolute-value procedure abs makes use of the primitive predicates >, <,
and =.18 These take two numbers as arguments and test whether the first number is, respectively, greater
than, less than, or equal to the second number, returning true or false accordingly.

Another way to write the absolute-value procedureis

(define (abs x)
(cond ((< x 0) (- x))
(else x)))

which could be expressed in English as " 'If x isless than zero return - x; otherwisereturn x." El se isa
special symbol that can be used in place of the <p> in the final clause of acond. This causesthecond
to return asits value the value of the corresponding <e> whenever all previous clauses have been
bypassed. In fact, any expression that always evaluates to a true value could be used as the <p> here.

Hereis yet another way to write the absolute-val ue procedure;
(define (abs x)
(if (< x 0)
(- x)
X))

Thisusesthe special form i f , arestricted type of conditional that can be used when there are precisely
two casesin the case analysis. The general form of ani f expressionis

(i f <predicate> <consequent> <alternative>)

Toevaluateani f expression, the interpreter starts by evaluating the <predicate> part of the expression.
If the <predicate> evaluates to atrue value, the interpreter then eval uates the <consequent> and returns
its value. Otherwise it evaluates the <alternative> and returnsits value.1

In addition to primitive predicates such as <, =, and >, there are logical composition operations, which
enable us to construct compound predicates. The three most frequently used are these:

Structure and Interpretation of Computer Programs

e (and <e> ... <ep>)

The interpreter evaluates the expressions <e> one at atime, in left-to-right order. If any <e>
evaluatesto false, the value of the and expression is false, and the rest of the <e>'s are not
evaluated. If all <e>'s evaluate to true values, the value of the and expression is the value of the
last one.

o (Or <e;> ... <ep>)

The interpreter evaluates the expressions <e> one at atime, in left-to-right order. If any <e>
evaluates to atrue value, that value is returned as the value of the or expression, and the rest of
the <e>'s are not evaluated. If al <e>'s evaluate to false, the value of the or expression isfalse.

e (Nnot <e>)

Thevalue of anot expression istrue when the expression <e> evaluates to false, and false
otherwise.

Notice that and and or are special forms, not procedures, because the subexpressions are not necessarily
al evaluated. Not isan ordinary procedure.

As an example of how these are used, the condition that a number x be in therange 5 < x < 10 may be
expressed as

(and (> x 5) (< x 10))

As another example, we can define a predicate to test whether one number is greater than or equal to
another as

(define (>= x y)
(or (> xvy) (=x1Y)))

or alternatively as

(define (>= x vy)
(not (< xy)))

Exercise 1.1. Below isasequence of expressions. What is the result printed by the interpreter in
response to each expression? Assume that the sequence is to be evaluated in the order in which it is
presented.

10

(+ 5 3 4

(- 91

(/ 6 2)

(+(*24) (- 46))

(define a 3)

(define b (+ a 1))

(+ab(* ab))

(= ab)

(if (and (> b a) (<b (* ab)))

Structure and Interpretation of Computer Programs

b
a)
(cond ((= a 4) 6)
((=b 4) (+67 a)
(el se 25))
(+ 2 (if (>b a b a))
(* (cond ((> a b) a)

((< ab) b
(else -1))
(+al))

Exercise 1.2. Trandate the following expression into prefix form

BbL+ (2 (23— (643)
A6 — (2 -7

Exercise 1.3. Define aprocedure that takes three numbers as arguments and returns the sum of the
squares of the two larger numbers.

Exercise 1.4. Observe that our model of evaluation allows for combinations whose operators are
compound expressions. Use this observation to describe the behavior of the following procedure:

(define (a-plus-abs-b a b)
((if (>b 0) +-) abh))

Exercise 1.5. Ben Bitdiddle has invented atest to determine whether the interpreter he isfaced with is
using applicative-order evaluation or normal-order evaluation. He defines the following two procedures:

(define (p) (p))

(define (test x vy)
(if (= x 0)
0
y))

Then he evaluates the expression

(test 0 (p))

What behavior will Ben observe with an interpreter that uses applicative-order evaluation? What
behavior will he observe with an interpreter that uses normal-order evaluation? Explain your answer.
(Assume that the evaluation rule for the special formi f isthe same whether the interpreter is using
normal or applicative order: The predicate expression is evaluated first, and the result determines
whether to evaluate the consequent or the alternative expression.)

Structure and Interpretation of Computer Programs

1.1.7 Example: Square Roots by Newton's Method

Procedures, as introduced above, are much like ordinary mathematical functions. They specify avalue
that is determined by one or more parameters. But there is an important difference between mathematical
functions and computer procedures. Procedures must be effective.

Asacasein point, consider the problem of computing square roots. We can define the square-root
function as

W = theysuchthaty:_?ﬂandy?=r

This describes a perfectly legitimate mathematical function. We could use it to recognize whether one
number is the square root of another, or to derive facts about square roots in general. On the other hand,
the definition does not describe a procedure. Indeed, it tells us aimost nothing about how to actually find
the square root of a given number. It will not help matters to rephrase this definition in pseudo-Lisp:

(define (sqrt x)
(the y (and (>=vy 0)
(= (square y) x))))

This only begs the question.

The contrast between function and procedure is areflection of the general distinction between describing
properties of things and describing how to do things, or, asit is sometimes referred to, the distinction
between declarative knowledge and imperative knowledge. In mathematics we are usually concerned
with declarative (what is) descriptions, whereas in computer science we are usually concerned with
imperative (how to) descriptions.2

How does one compute sgquare roots? The most common way is to use Newton's method of successive
approximations, which says that whenever we have aguessy for the value of the square root of a number
X, we can perform a simple manipulation to get a better guess (one closer to the actual square root) by
averaging y with x/y.21 For example, we can compute the square root of 2 as follows. Suppose our initial
guessis 1.

Guess Quotient Average

1 (2/11) =2 (2+1)/2)=15

15 (2/15)=1.3333 ((1.3333 + 1.5)/2) = 1.4167
1.4167 (2/1.4167) = 1.4118 ((1.4167 + 1.4118)/2) = 1.4142

14142. . .

Continuing this process, we obtain better and better approximations to the square root.

Now let's formalize the process in terms of procedures. We start with avalue for the radicand (the
number whose square root we are trying to compute) and a value for the guess. If the guessis good

Structure and Interpretation of Computer Programs

enough for our purposes, we are done; if not, we must repeat the process with an improved guess. We
write this basic strategy as a procedure:

(define (sqrt-iter guess Xx)
(1 f (good-enough? guess x)
guess
(sqrt-iter (inprove guess X)

X)))

A guessisimproved by averaging it with the quotient of the radicand and the old guess:

(define (inprove guess Xx)
(average guess (/ x guess)))

where

(define (average X V)
(/ (+xy) 2))

We aso have to say what we mean by "~"good enough.” The following will do for illustration, but it is not
really avery good test. (See exercise 1.7.) Theideaisto improve the answer until it is close enough so

that its square differs from the radicand by less than a predetermined tolerance (here 0.001):22

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

Finally, we need away to get started. For instance, we can always guess that the square root of any
number is 1:23

(define (sqrt x)
(sgrt-iter 1.0 x))

If we type these definitions to the interpreter, we can use sqr t just aswe can use any procedure:

(sqgrt 9)

3.00009155413138

(sgrt (+ 100 37))

11. 704699917758145

(sgqrt (+ (sqrt 2) (sart 3)))
1.7739279023207892

(square (sqrt 1000))

1000. 000369924366

Thesqgrt program also illustrates that the ssmple procedural language we have introduced so far is
sufficient for writing any purely numerical program that one could writein, say, C or Pascal. This might
seem surprising, since we have not included in our language any iterative (looping) constructs that direct
the computer to do something over and over again. Sqrt - i t er, on the other hand, demonstrates how
iteration can be accomplished using no special construct other than the ordinary ability to call a
procedure.24

Structure and Interpretation of Computer Programs

Exercise 1.6. AlyssaP. Hacker doesn't seewhy i f needsto be provided as a special form. " Why can't |
just defineit as an ordinary procedure in terms of cond?' she asks. Alyssa'sfriend EvaLu Ator claims
this can indeed be done, and she definesanew version of i f :

(define (newif predicate then-clause el se-cl ause)
(cond (predicate then-clause)
(el se el se-clause)))

Eva demonstrates the program for Alyssa:

(newif (=2 3) 0 5)
5

(newif (=1 1) 0 5)
0

Delighted, Alyssausesnew- i f to rewrite the square-root program:

(define (sqrt-iter guess Xx)
(newif (good-enough? guess x)
guess
(sqgrt-iter (inprove guess X)

X)))

What happens when Alyssa attempts to use this to compute square roots? Explain.

Exercise 1.7. Thegood- enough? test used in computing square roots will not be very effective for
finding the square roots of very small numbers. Also, in real computers, arithmetic operations are almost
always performed with limited precision. This makes our test inadequate for very large numbers. Explain
these statements, with examples showing how the test fails for small and large numbers. An alternative
strategy for implementing good- enough? isto watch how guess changes from one iteration to the
next and to stop when the change is avery small fraction of the guess. Design a square-root procedure
that uses this kind of end test. Does this work better for small and large numbers?

Exercise 1.8. Newton's method for cube rootsis based on the fact that if y is an approximation to the
cube root of x, then a better approximation is given by the value
iy 4 By

3

Use this formula to implement a cube-root procedure analogous to the square-root procedure. (In
section 1.3.4 we will see how to implement Newton's method in general as an abstraction of these

square-root and cube-root procedures.)

1.1.8 Procedures as Black-Box Abstractions

Sqrt isour first example of aprocess defined by a set of mutually defined procedures. Notice that the
definitionof sqrt-it er isrecursive that is, the procedure is defined in terms of itself. The idea of
being able to define a procedure in terms of itself may be disturbing; it may seem unclear how such a

Structure and Interpretation of Computer Programs

““circular” definition could make sense at all, much less specify a well-defined process to be carried out
by a computer. Thiswill be addressed more carefully in section 1.2. But first let's consider some other

important pointsillustrated by thesqrt example.

Observe that the problem of computing square roots breaks up naturally into a number of subproblems:
how to tell whether a guessis good enough, how to improve a guess, and so on. Each of thesetasksis
accomplished by a separate procedure. The entiresqr t program can be viewed as a cluster of
procedures (shown in figure 1.2) that mirrors the decomposition of the problem into subproblems.

ogrt

sgrt—iter

/N

good—encugh improve

/\

SqUAre abs AVECage

Figure 1.2: Procedural decomposition of thesqrt program.

The importance of this decomposition strategy is not simply that oneis dividing the program into parts.
After al, we could take any large program and divide it into parts -- the first ten lines, the next ten lines,
the next ten lines, and so on. Rather, it is crucial that each procedure accomplishes an identifiable task
that can be used as a module in defining other procedures. For example, when we define the

good- enough? procedurein terms of squar e, we are able to regard the squar e procedure as a
““black box." We are not at that moment concerned with how the procedure computes its result, only with
the fact that it computes the square. The details of how the square is computed can be suppressed, to be
considered at alater time. Indeed, asfar asthe good- enough? procedure is concerned, squar e isnot
quite a procedure but rather an abstraction of a procedure, a so-called procedural abstraction. At this
level of abstraction, any procedure that computes the square is equally good.

Thus, considering only the values they return, the following two procedures for squaring a number
should be indistinguishable. Each takes a numerical argument and produces the square of that number as
the value.2

(define (square x) (* x X))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x X))

Structure and Interpretation of Computer Programs

So a procedure definition should be able to suppress detail. The users of the procedure may not have
written the procedure themselves, but may have obtained it from another programmer as a black box. A
user should not need to know how the procedure isimplemented in order to use it.

Local names

One detail of a procedure's implementation that should not matter to the user of the procedureisthe
implementer's choice of names for the procedure's formal parameters. Thus, the following procedures
should not be distinguishable:

(define (square x) (* x X))

(define (square y) (* y vy))

This principle -- that the meaning of a procedure should be independent of the parameter names used by
Its author -- seems on the surface to be self-evident, but its consequences are profound. The simplest
conseguence is that the parameter names of a procedure must be local to the body of the procedure. For
example, we used squar e in the definition of good- enough? in our square-root procedure:

(define (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))

The intention of the author of good- enough? isto determineif the square of the first argument is
within agiven tolerance of the second argument. We see that the author of good- enough? used the
name guess to refer to the first argument and x to refer to the second argument. The argument of
squar e isguess. If the author of squar e used x (as above) to refer to that argument, we see that the
X ingood- enough? must be adifferent x than the onein squar e. Running the procedure squar e
must not affect the value of x that isused by good- enough?, because that value of x may be needed
by good- enough? after squar e is done computing.

If the parameters were not local to the bodies of their respective procedures, then the parameter x in
squar e could be confused with the parameter x in good- enough?, and the behavior of

good- enough? would depend upon which version of squar e we used. Thus, squar e would not be
the black box we desired.

A formal parameter of a procedure has avery special role in the procedure definition, in that it doesn't
matter what name the formal parameter has. Such aname is called a bound variable, and we say that the
procedure definition binds its formal parameters. The meaning of a procedure definition is unchanged if a
bound variable is consistently renamed throughout the definition.28 If avariable is not bound, we say that
itisfree. The set of expressions for which a binding defines aname is called the scope of that name. In a
procedure definition, the bound variables declared as the formal parameters of the procedure have the
body of the procedure as their scope.

In the definition of good- enough? above, guess and x are bound variablesbut <, - , abs, and
sqguar e arefree. The meaning of good- enough? should be independent of the names we choose for
guess and x so long asthey are distinct and different from <, - , abs, and squar e. (If we renamed
guess to abs we would have introduced a bug by capturing the variable abs. It would have changed
from free to bound.) The meaning of good- enough? is not independent of the names of itsfree

Structure and Interpretation of Computer Programs

variables, however. It surely depends upon the fact (external to this definition) that the symbol abs
names a procedure for computing the absolute value of a number. Good- enough? will compute a
different function if we substitute cos for abs inits definition.

Internal definitions and block structure

We have one kind of name isolation available to us so far: The formal parameters of a procedure are
local to the body of the procedure. The square-root program illustrates another way in which we would
like to control the use of names. The existing program consists of separate procedures:

(define (sqrt x)
(sqgrt-iter 1.0 x))
(define (sqrt-iter guess Xx)
(i f (good-enough? guess x)
guess
(sqgrt-iter (inprove guess X) X)))
(define (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess Xx)
(average guess (/ x guess)))

The problem with this program is that the only procedure that isimportant to usersof sqrt issqrt.
The other procedures (sqrt -iter, good- enough?,andi npr ove) only clutter up their minds.
They may not define any other procedure called good- enough? as part of another program to work
together with the square-root program, because sqr t needsit. The problem is especially severe in the
construction of large systems by many separate programmers. For example, in the construction of alarge
library of numerical procedures, many numerical functions are computed as successive approximations
and thus might have procedures named good- enough? and i npr ove asauxiliary procedures. We
would like to localize the subprocedures, hiding them insidesqrt sothat sqrt could coexist with other
successive approximations, each having its own private good- enough? procedure. To make this
possible, we allow a procedure to have internal definitions that are local to that procedure. For example,
in the square-root problem we can write

(define (sqrt x)
(define (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess Xx)
(average guess (/ x guess)))
(define (sqgrt-iter guess Xx)
(i f (good-enough? guess x)
guess
(sqrt-iter (inprove guess X) X)))
(sgrt-iter 1.0 x))

Such nesting of definitions, called block structure, is basically the right solution to the ssmplest
name-packaging problem. But there is a better idea lurking here. In addition to internalizing the
definitions of the auxiliary procedures, we can simplify them. Since x is bound in the definition of sqrt ,

Structure and Interpretation of Computer Programs

the procedures good- enough?,i nprove,andsqrt -it er, which are defined internally tosqr t ,
arein the scope of x. Thus, it is not necessary to pass x explicitly to each of these procedures. Instead,
we alow x to be afree variable in the internal definitions, as shown below. Then x getsits value from
the argument with which the enclosing proceduresqr t iscaled. Thisdisciplineiscalled lexical
scoping.2?

(define (sqrt x)
(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess)
(average guess (/ x guess)))
(define (sqrt-iter guess)
(i f (good-enough? guess)
guess
(sgrt-iter (inprove guess))))
(sqgrt-iter 1.0))

We will use block structure extensively to help us break up large programs into tractable pieces.28 The
idea of block structure originated with the programming language Algol 60. It appears in most advanced
programming languages and is an important tool for helping to organize the construction of large
programs.

4 The characterization of numbers as ~"simple data" is a barefaced bluff. In fact, the treatment of numbers
is one of the trickiest and most confusing aspects of any programming language. Some typical issues
involved are these: Some computer systems distinguish integers, such as 2, from real numbers, such as
2.71. Isthe real number 2.00 different from the integer 2?7 Are the arithmetic operations used for integers
the same as the operations used for real numbers? Does 6 divided by 2 produce 3, or 3.0? How large a
number can we represent? How many decimal places of accuracy can we represent? | s the range of
integers the same as the range of real numbers? Above and beyond these questions, of course, liesa
collection of issues concerning roundoff and truncation errors -- the entire science of numerical analysis.
Since our focusin thisbook is on large-scale program design rather than on numerical techniques, we are
going to ignore these problems. The numerical examplesin this chapter will exhibit the usual roundoff
behavior that one observes when using arithmetic operations that preserve alimited number of decimal
places of accuracy in noninteger operations.

5 Throughout this book, when we wish to emphasi ze the distinction between the input typed by the user
and the response printed by the interpreter, we will show the latter in slanted characters.

6 Lisp systemstypically provide features to aid the user in formatting expressions. Two especially useful
features are one that automatically indents to the proper pretty-print position whenever anew lineis
started and one that highlights the matching left parenthesis whenever aright parenthesisis typed.

7 Lisp obeys the convention that every expression has a value. This convention, together with the old
reputation of Lisp as an inefficient language, is the source of the quip by Alan Perlis (paraphrasing Oscar
Wilde) that “"Lisp programmers know the value of everything but the cost of nothing."

8 |n this book, we do not show the interpreter's response to evaluating definitions, since thisis highly

Structure and Interpretation of Computer Programs

Implementati on-dependent.

9 Chapter 3 will show that this notion of environment is crucial, both for understanding how the
interpreter works and for implementing interpreters.

10 |t may seem strange that the evaluation rule says, as part of the first step, that we should evaluate the
leftmost element of a combination, since at this point that can only be an operator such as + or *
representing a built-in primitive procedure such as addition or multiplication. We will see later that it is
useful to be able to work with combinations whose operators are themselves compound expressions.

11 Specia syntactic forms that are ssimply convenient alternative surface structures for things that can be
written in more uniform ways are sometimes called syntactic sugar, to use a phrase coined by Peter
Landin. In comparison with users of other languages, Lisp programmers, asarule, are less concerned
with matters of syntax. (By contrast, examine any Pascal manual and notice how much of it is devoted to
descriptions of syntax.) Thisdisdain for syntax is due partly to the flexibility of Lisp, which makesit
easy to change surface syntax, and partly to the observation that many " convenient” syntactic constructs,
which make the language less uniform, end up causing more trouble than they are worth when programs
become large and complex. In the words of Alan Perlis, *" Syntactic sugar causes cancer of the
semicolon."

12 Observe that there are two different operations being combined here: we are creating the procedure,
and we are giving it the name squar e. It is possible, indeed important, to be able to separate these two
notions -- to create procedures without naming them, and to give names to procedures that have already
been created. We will see how to do thisin section 1.3.2.

13 Throughout this book, we will describe the general syntax of expressions by using italic symbols
delimited by angle brackets -- e.g., <name> -- to denote the “"dots" in the expression to be filled in when
such an expression is actually used.

14 More generally, the body of the procedure can be a sequence of expressions. In this case, the
interpreter eval uates each expression in the sequence in turn and returns the value of the final expression
as the value of the procedure application.

15 Despite the ssimplicity of the substitution idea, it turns out to be surprisingly complicated to give a
rigorous mathematical definition of the substitution process. The problem arises from the possibility of
confusion between the names used for the formal parameters of a procedure and the (possibly identical)
names used in the expressions to which the procedure may be applied. Indeed, thereisalong history of
erroneous definitions of substitution in the literature of logic and programming semantics. See Stoy 1977
for a careful discussion of substitution.

16 |n chapter 3 we will introduce stream processing, which is away of handling apparently " infinite"
data structures by incorporating alimited form of normal-order evaluation. In section 4.2 we will modify

the Scheme interpreter to produce a normal-order variant of Scheme.

17 Interpreted as either true or false" means this: In Scheme, there are two distinguished values that are
denoted by the constants #t and #f . When the interpreter checks a predicate's value, it interprets #f as
false. Any other value istreated as true. (Thus, providing #t islogically unnecessary, but it is
convenient.) In this book we will use namest r ue and f al se, which are associated with the values #t
and #f respectively.

Structure and Interpretation of Computer Programs

18 Abs also usesthe ""minus" operator - , which, when used with asingle operand, asin (- x),
indicates negation.

19 A minor difference betweeni f and cond isthat the <e> part of each cond clause may be a sequence
of expressions. If the corresponding <p> isfound to be true, the expressions <e> are evaluated in
sequence and the value of the final expression in the sequence is returned as the value of thecond. Inan
| f expression, however, the <consequent> and <alter native> must be single expressions.

20 Declarative and imperative descriptions are intimately related, as indeed are mathematics and
computer science. For instance, to say that the answer produced by a programis " correct” isto make a
declarative statement about the program. There is alarge amount of research aimed at establishing
techniques for proving that programs are correct, and much of the technical difficulty of this subject has
to do with negotiating the transition between imperative statements (from which programs are
constructed) and declarative statements (which can be used to deduce things). In arelated vein, an
important current area in programming-language design is the exploration of so-called very high-level
languages, in which one actually programs in terms of declarative statements. The ideais to make
interpreters sophisticated enough so that, given ““what is" knowledge specified by the programmer, they
can generate "how to" knowledge automatically. This cannot be done in general, but there are important
areas where progress has been made. We shall revisit thisideain chapter 4.

21 This square-root algorithm is actually a special case of Newton's method, which is a general technique
for finding roots of equations. The square-root algorithm itself was developed by Heron of Alexandriain
the first century a.o. We will see how to express the general Newton's method as a Lisp procedurein
section 1.3.4.

22 \We will usually give predicates names ending with question marks, to help us remember that they are
predicates. Thisisjust astylistic convention. Asfar as the interpreter is concerned, the question mark is
just an ordinary character.

23 Observe that we express our initial guess as 1.0 rather than 1. This would not make any difference in
many Lisp implementations. MIT Scheme, however, distinguishes between exact integers and decimal
values, and dividing two integers produces a rational number rather than a decimal. For example,
dividing 10 by 6 yields 5/3, while dividing 10.0 by 6.0 yields 1.6666666666666667. (We will learn how
to implement arithmetic on rational numbersin section 2.1.1.) If we start with an initial guess of 1 in our
sguare-root program, and x is an exact integer, all subsequent values produced in the square-root
computation will be rational numbers rather than decimals. Mixed operations on rational numbers and
decimals always yield decimals, so starting with an initial guess of 1.0 forces all subsequent values to be
decimals.

24 Readers who are worried about the efficiency issues involved in using procedure calls to implement
iteration should note the remarks on "“tail recursion™ in section 1.2.1.

25 |t isnot even clear which of these procedures is a more efficient implementation. This depends upon
the hardware available. There are machines for which the “"obvious" implementation is the less efficient
one. Consider a machine that has extensive tables of logarithms and antilogarithms stored in avery
efficient manner.

Structure and Interpretation of Computer Programs

26 The concept of consistent renaming is actually subtle and difficult to define formally. Famous
logicians have made embarrassing errors here.

27 |_exical scoping dictates that free variables in a procedure are taken to refer to bindings made by
enclosing procedure definitions; that is, they are looked up in the environment in which the procedure
was defined. We will see how thisworksin detail in chapter 3 when we study environments and the
detailed behavior of the interpreter.

28 Embedded definitions must come first in a procedure body. The management is not responsible for the
conseguences of running programs that intertwine definition and use.

[Go to first, previous, next page; contents, index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

1.2 Procedures and the Processes They Generate

We have now considered the elements of programming: We have used primitive arithmetic operations,
we have combined these operations, and we have abstracted these composite operations by defining them
as compound procedures. But that is not enough to enable us to say that we know how to program. Our
situation is analogous to that of someone who has learned the rules for how the pieces move in chess but
knows nothing of typical openings, tactics, or strategy. Like the novice chess player, we don't yet know
the common patterns of usage in the domain. We lack the knowledge of which moves are worth making
(which procedures are worth defining). We lack the experience to predict the consequences of making a
move (executing a procedure).

The ahility to visualize the consequences of the actions under consideration is crucial to becoming an
expert programmer, just asit isin any synthetic, creative activity. In becoming an expert photographer,
for example, one must learn how to look at a scene and know how dark each region will appear on a print
for each possible choice of exposure and development conditions. Only then can one reason backward,
planning framing, lighting, exposure, and development to obtain the desired effects. So it iswith
programming, where we are planning the course of action to be taken by a process and where we control
the process by means of a program. To become experts, we must learn to visualize the processes
generated by various types of procedures. Only after we have developed such a skill can welearnto
reliably construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational process. It specifies how each stage of
the process is built upon the previous stage. We would like to be able to make statements about the
overall, or global, behavior of a process whose local evolution has been specified by a procedure. Thisis
very difficult to do in general, but we can at least try to describe some typical patterns of process
evolution.

In this section we will examine some common ~shapes" for processes generated by simple procedures.
We will also investigate the rates at which these processes consume the important computational
resources of time and space. The procedures we will consider are very simple. Their roleislike that
played by test patterns in photography: as overssmplified prototypical patterns, rather than practical
examplesin their own right.

1.2.1 Linear Recursion and lteration

Structure and Interpretation of Computer Programs
(factorial 6}
(" & (factorial 5))
[(i (facbtorial 433}

[(i (* 4 (factorial 3})))
[(i (v 4 (* 2 [(factorial Z2)})3)
(* £ (* 4 (* 2 (* 2 (factorial 133333}
£ £ (F 4 (% 2 (% 2 133433
4
4
3

i i £ (F 2 2333}
i i £ G631}
i i 24}
f* & 120}
TZ0

Figure 1.3: A linear recursive process for computing 6!.

Bh h Ch Ch Ch Ch Ch Ch Ch
n m o o o oo

We begin by considering the factorial function, defined by
l=n-(n-1)(n-2)...3.2.1

There are many ways to compute factorials. One way is to make use of the observation that n! isequal to
ntimes (n - 1)! for any positive integer n:

nl=n[n-1{nw-233.2.]]=n {(n-1)

Thus, we can compute n! by computing (n - 1)! and multiplying the result by n. If we add the stipulation
that 1! isequal to 1, this observation translates directly into a procedure:

(define (factorial n)
(if (=n1l)
1
(* n (factorial (- n 1)))))

We can use the substitution model of section 1.1.5 to watch this procedure in action computing 6!, as
shown in figure 1.3.

Now let's take a different perspective on computing factorials. We could describe a rule for computing n!
by specifying that we first multiply 1 by 2, then multiply the result by 3, then by 4, and so on until we
reach n. More formally, we maintain a running product, together with a counter that counts from 1 up to
n. We can describe the computation by saying that the counter and the product simultaneously change
from one step to the next according to the rule

product .— counter - product
counter .— counter + 1

and stipulating that n! isthe value of the product when the counter exceeds n.

Structure and Interpretation of Computer Programs

(factorial &)

ffact—iter 1 1 &)
ffact—iter 1 £ &)
ffact—iter 2 3 &)
ffact—iter 6 4 &)
ffact—iter &4 5 &)
ffact—iter 1E0 6 &)
ffact—iter TE0 7 &)

T20
Figure 1.4: A linear iterative process for computing 6!.

Once again, we can recast our description as a procedure for computing factorials:22

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)
(if (> counter nmax-count)
product
(fact-iter (* counter product)
(+ counter 1)
max-count)))

As before, we can use the substitution model to visualize the process of computing 6!, as shownin
figure 1.4.

Compare the two processes. From one point of view, they seem hardly different at all. Both compute the
same mathemeatical function on the same domain, and each requires a number of steps proportional to n
to compute n!. Indeed, both processes even carry out the same sequence of multiplications, obtaining the
same sequence of partial products. On the other hand, when we consider the " “shapes' of the two
processes, we find that they evolve quite differently.

Consider the first process. The substitution model reveals a shape of expansion followed by contraction,
indicated by the arrow in figure 1.3. The expansion occurs as the process builds up a chain of deferred
operations (in this case, a chain of multiplications). The contraction occurs as the operations are actually
performed. This type of process, characterized by a chain of deferred operations, is called arecursive
process. Carrying out this process requires that the interpreter keep track of the operations to be
performed later on. In the computation of n!, the length of the chain of deferred multiplications, and
hence the amount of information needed to keep track of it, grows linearly with n (is proportional to n),
just like the number of steps. Such aprocessis called alinear recursive process.

By contrast, the second process does not grow and shrink. At each step, al we need to keep track of, for
any n, are the current values of the variables pr oduct , count er , and max- count . We call thisan
iterative process. In general, an iterative process is one whose state can be summarized by a fixed
number of state variables, together with afixed rule that describes how the state variables should be
updated as the process moves from state to state and an (optional) end test that specifies conditions under

Structure and Interpretation of Computer Programs

which the process should terminate. In computing n!, the number of steps required grows linearly with n.
Such aprocessis called alinear iterative process.

The contrast between the two processes can be seen in another way. In the iterative case, the program
variables provide a complete description of the state of the process at any point. If we stopped the
computation between steps, all we would need to do to resume the computation is to supply the
interpreter with the values of the three program variables. Not so with the recursive process. In this case
there is some additional " hidden" information, maintained by the interpreter and not contained in the
program variables, which indicates ““where the processis' in negotiating the chain of deferred
operations. The longer the chain, the more information must be maintained.32

In contrasting iteration and recursion, we must be careful not to confuse the notion of a recursive process
with the notion of arecursive procedure. When we describe a procedure as recursive, we are referring to
the syntactic fact that the procedure definition refers (either directly or indirectly) to the procedure itself.
But when we describe a process as following a pattern that is, say, linearly recursive, we are speaking
about how the process evolves, not about the syntax of how a procedure iswritten. It may seem
disturbing that we refer to arecursive procedure such asf act - i t er asgenerating an iterative process.
However, the process redlly isiterative: Its state is captured completely by its three state variables, and
an interpreter need keep track of only three variablesin order to execute the process.

One reason that the distinction between process and procedure may be confusing is that most
implementations of common languages (including Ada, Pascal, and C) are designed in such away that
the interpretation of any recursive procedure consumes an amount of memory that grows with the
number of procedure calls, even when the process described is, in principle, iterative. As a consequence,
these languages can describe iterative processes only by resorting to specia-purpose " looping
constructs’ such asdo, r epeat ,unti |, for,andwhi | e. Theimplementation of Scheme we shall
consider in chapter 5 does not share this defect. It will execute an iterative process in constant space,
even if the iterative process is described by arecursive procedure. An implementation with this property
is called tail-recursive. With atail-recursive implementation, iteration can be expressed using the
ordinary procedure call mechanism, so that special iteration constructs are useful only as syntactic
sugar.3t

Exercise 1.9. Each of the following two procedures defines a method for adding two positive integersin
terms of the proceduresi nc, which incrementsits argument by 1, and dec, which decrementsiits
argument by 1.

(define (+ a b)
(if (= a0
b
(inc (+ (dec a) b))))

(define (+ a b)
(if (= a 0)
b
(+ (dec a) (inc b))))

Using the substitution model, illustrate the process generated by each procedurein evaluating (+ 4 5).
Are these processes iterative or recursive?

Structure and Interpretation of Computer Programs

Exercise 1.10. The following procedure computes a mathematical function called Ackermann's function.

(define (A x vy)

(cond ((=vy 0) 0)
((=x0) (* 2Yy))

=y 1) 2)

lse (A (- x 1)

(Ax (-y 1)))))

What are the values of the following expressions?

(A 1 10)
(A 2 4)

(A 3 3
Consider the following procedures, where A is the procedure defined above:

(define (f n) (A0 n))
(define (g n) (A1 n))
(define (h n) (A2 n))

(define (k n) (* 5 nn))

Give concise mathematical definitions for the functions computed by the proceduresf , g, and h for
positive integer values of n. For example, (k n) computes 5n2.

1.2.2 Tree Recursion

Another common pattern of computation is called tree recursion. As an example, consider computing the
sequence of Fibonacci numbers, in which each number is the sum of the preceding two:

0,1,1,2,3,5,8,13, 21,

1 1 1 1 1 1 1

In general, the Fibonacci numbers can be defined by the rule
0 dn=10

Fib(n)= ¢ 1 dn=1
Fib{m — 1) + Fib{n — 2} otherwise

We can immediately trandate this definition into a recursive procedure for computing Fibonacci
numbers:

(define (fib n)
(cond ((=n 0) 0)

Structure and Interpretation of Computer Programs

((=n 1) 1)
(el se (+ (fib (- n 1))

(fib (- n2))))))

fik 5

SN

Fib 4 fik =

/ N2

flb 3
flb 2 F:
/ \ fib 1 fib O 1

flb z fib 1 fib 1 £ib 0
fib 1! |fib 0 1 1 0
1 0

Figure 1.5: Thetree-recursive process generated in computing (fi b 5).

Consider the pattern of this computation. To compute (fi b 5) ,wecompute(fib 4) and(fib 3).
Tocompute(fib 4),wecompute(fib 3) and(fi b 2).Ingenerd, the evolved process|ooks
like atree, as shown in figure 1.5. Notice that the branches split into two at each level (except at the

bottom); this reflects the fact that the f i b procedure callsitself twice each timeit isinvoked.

This procedure isinstructive as a prototypical tree recursion, but it is aterrible way to compute Fibonacci
numbers because it does so much redundant computation. Notice in figure 1.5 that the entire computation

of (fib 3) --amost haf thework -- isduplicated. In fact, it is not hard to show that the number of
times the procedure will compute (fi b 1) or (fi b 0) (the number of leavesin the abovetree, in
general) isprecisely Fib(n + 1). To get an idea of how bad thisis, one can show that the value of Fib(n)

grows exponentially with n. More precisely (see exercise 1.13), Fib(n) isthe closest integer to " ',
where

= (1 ++5)/2 a1 6180
is the golden ratio, which satisfies the equation

= d+1

Structure and Interpretation of Computer Programs

Thus, the process uses a number of steps that grows exponentially with the input. On the other hand, the
space required grows only linearly with the input, because we need keep track only of which nodes are
above usin thetree at any point in the computation. In general, the number of steps required by a
tree-recursive process will be proportional to the number of nodes in the tree, while the space required
will be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci numbers. Theideaisto use a
pair of integersa and b, initialized to Fib(1) = 1 and Fib(0) = O, and to repeatedly apply the simultaneous
transformations

a +— a+b
L — =&

It is not hard to show that, after applying this transformation n times, a and b will be equal, respectively,
to Fib(n + 1) and Fib(n). Thus, we can compute Fibonacci numbers iteratively using the procedure

(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))

This second method for computing Fib(n) is alinear iteration. The difference in number of steps required
by the two methods -- one linear in n, one growing as fast as Fib(n) itself -- is enormous, even for small
inputs.

One should not conclude from this that tree-recursive processes are useless. When we consider processes
that operate on hierarchically structured data rather than numbers, we will find that tree recursionisa
natural and powerful tool.32 But even in numerical operations, tree-recursive processes can be useful in
helping us to understand and design programs. For instance, although the first f i b procedure is much
less efficient than the second one, it is more straightforward, being little more than atranglation into Lisp
of the definition of the Fibonacci sequence. To formulate the iterative algorithm required noticing that
the computation could be recast as an iteration with three state variables.

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci algorithm. In contrast, consider
the following problem: How many different ways can we make change of $ 1.00, given half-dollars,
guarters, dimes, nickels, and pennies? More generally, can we write a procedure to compute the number
of ways to change any given amount of money?

This problem has a simple solution as a recursive procedure. Suppose we think of the types of coins
available as arranged in some order. Then the following relation holds:

The number of ways to change amount a using n kinds of coins equals
« the number of ways to change amount a using all but the first kind of coin, plus

Structure and Interpretation of Computer Programs

« the number of ways to change amount a - d using all n kinds of coins, where d is the denomination
of thefirst kind of coin.

To see why thisistrue, observe that the ways to make change can be divided into two groups: those that
do not use any of thefirst kind of coin, and those that do. Therefore, the total number of ways to make
change for some amount is equal to the number of ways to make change for the amount without using
any of thefirst kind of coin, plus the number of ways to make change assuming that we do use the first
kind of coin. But the latter number is equal to the number of ways to make change for the amount that
remains after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing a given amount to the problem of changing
smaller amounts using fewer kinds of coins. Consider this reduction rule carefully, and convince yourself
that we can use it to describe an algorithm if we specify the following degenerate cases:33

. If aisexactly 0, we should count that as 1 way to make change.
« If aislessthan 0, we should count that as 0 ways to make change.
o If nisO, we should count that as 0 ways to make change.

We can easily trandlate this description into a recursive procedure:

(define (count-change anount)
(cc amount 5))
(define (cc anmpunt ki nds-of-coins)
(cond ((= anmount 0) 1)
((or (< anmpunt 0) (= kinds-of-coins 0)) 0)
(else (+ (cc anount
(- kinds-of-coins 1))
(cc (- anount
(first-denom nati on ki nds-of-coins))
ki nds-of-coins)))))
(define (first-denom nation ki nds-of -coi ns)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= ki nds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))

(Thefirst-denom nati on procedure takes as input the number of kinds of coins available and
returns the denomination of the first kind. Here we are thinking of the coins as arranged in order from
largest to smallest, but any order would do as well.) We can now answer our original question about
changing adollar:

(count - change 100)
292

Count - change generates a tree-recursive process with redundancies similar to those in our first
implementation of f i b. (It will take quite awhile for that 292 to be computed.) On the other hand, it is
not obvious how to design a better algorithm for computing the result, and we |leave this problem as a

Structure and Interpretation of Computer Programs

challenge. The observation that a tree-recursive process may be highly inefficient but often easy to
specify and understand has led people to propose that one could get the best of both worlds by designing
a smart compiler” that could transform tree-recursive procedures into more efficient procedures that
compute the same result.3

Exercise 1.11. A function f isdefined by the rule that f(n) = nif n<3 and f(n) =f(n - 1) + 2f(n - 2) + 3f(n
- 3) if n> 3. Write a procedure that computes f by means of arecursive process. Write a procedure that
computes f by means of an iterative process.

Exercise 1.12. Thefollowing pattern of numbersis called Pascal's triangle.

1
11
1 21
1331
1 +6 11

The numbers at the edge of thetriangle are all 1, and each number inside the triangle is the sum of the
two numbers above it.32 Write a procedure that computes elements of Pascal's triangle by means of a
recursive process.

Exercise 1.13. Prove that Fib(n) is the closest integer to $1/+/'5, where# = (1 + %/5)/2. Hint: Let¥ = (1 -
v 5)/2. Use induction and the definition of the Fibonacci numbers (see section 1.2.2) to prove that Fib(n)
= (#n - ¥n)/'5,

1.2.3 Orders of Growth

The previous examplesillustrate that processes can differ considerably in the rates at which they
consume computational resources. One convenient way to describe this difference is to use the notion of
order of growth to obtain a gross measure of the resources required by a process as the inputs become
larger.

Let n be a parameter that measures the size of the problem, and let R(n) be the amount of resources the
process requires for a problem of size n. In our previous examples we took n to be the number for which
agiven function is to be computed, but there are other possibilities. For instance, if our goal isto
compute an approximation to the square root of a number, we might take n to be the number of digits
accuracy required. For matrix multiplication we might take n to be the number of rows in the matrices. In
general there are a number of properties of the problem with respect to which it will be desirable to
analyze agiven process. Similarly, R(n) might measure the number of internal storage registers used, the
number of elementary machine operations performed, and so on. In computers that do only afixed
number of operations at atime, the time required will be proportional to the number of elementary
machine operations performed.

We say that R(n) has order of growth £(f(n)), written R(n) = &(f(n)) (pronounced ""theta of f(n)"), if there
are positive constants k; and k, independent of n such that

Structure and Interpretation of Computer Programs
ki fim) < Rin) < ks f(n)

for any sufficiently large value of n. (In other words, for large n, the value R(n) is sandwiched between
kqf(n) and kyf(n).)

For instance, with the linear recursive process for computing factorial described in section 1.2.1 the
number of steps grows proportionally to the input n. Thus, the steps required for this process grows as
2(n). We also saw that the space required grows as&£(n). For the iterative factorial, the number of stepsis
still €(n) but the space is&(1) -- that is, constant.38 The tree-recursive Fibonacci computation requires €
¢n) steps and space E(n), where ¢ is the golden ratio described in section 1.2.2.

Orders of growth provide only a crude description of the behavior of a process. For example, a process
requiring n? steps and a process requiring 1000n2 steps and a process requiring 3n2 + 10n + 17 steps all
have 8(n?) order of growth. On the other hand, order of growth provides a useful indication of how we
may expect the behavior of the process to change as we change the size of the problem. For a&i(n)
(linear) process, doubling the size will roughly double the amount of resources used. For an exponential
process, each increment in problem size will multiply the resource utilization by a constant factor. In the
remainder of section 1.2 we will examine two algorithms whose order of growth islogarithmic, so that
doubling the problem size increases the resource requirement by a constant amount.

Exercise 1.14. Draw thetreeillustrating the process generated by the count - change procedure of
section 1.2.2 in making change for 11 cents. What are the orders of growth of the space and number of

steps used by this process as the amount to be changed increases?

Exercise 1.15. The sine of an angle (specified in radians) can be computed by making use of the
approximation si n x == X if x issufficiently small, and the trigonometric identity

AN Y = 33111% — -l_-si'u.'gé

to reduce the size of the argument of si n. (For purposes of this exercise an angle is considered
“aufficiently small™ if its magnitude is not greater than 0.1 radians.) These ideas are incorporated in the
following procedures:

(define (cube x) (* x x X))
(define (p x) (- (* 3 x) (* 4 (cube x))))
(define (sine angle)
(if (not (> (abs angle) 0.1))
angl e
(p (sine (/ angle 3.0)))))

a. How many timesisthe procedure p applied when (si ne 12. 15) isevauated?

b. What isthe order of growth in space and number of steps (as afunction of a) used by the process
generated by the si ne procedure when (si ne a) isevaluated?

Structure and Interpretation of Computer Programs

1.2.4 Exponentiation

Consider the problem of computing the exponential of a given number. We would like a procedure that
takes as arguments a base b and a positive integer exponent n and computes b". One way to do thisisvia
the recursive definition

bn — b'bn_l
=1
which trandates readily into the procedure
(define (expt b n)
(if (=n0)
1
(* b (expt b (- n1)))))

Thisisalinear recursive process, which requires€(n) steps and £(n) space. Just as with factorial, we can
readily formulate an equivalent linear iteration:

(define (expt b n)
(expt-iter b n 1))

(define (expt-iter b counter product)
(if (= counter 0)
pr oduct
(expt-iter b
(- counter 1)
(* b product))))

This version requires £(n) steps and £(1) space.

We can compute exponentials in fewer steps by using successive squaring. For instance, rather than
computing b8 as

beibe (b b (b (b (B BN

we can compute it using three multiplications:

B = b b
b—l — b?'b?
bE — b.l,b.l

This method works fine for exponents that are powers of 2. We can also take advantage of successive
sguaring in computing exponentialsin general if we use therule

= [bb-ﬂ:l? it 12 13 even
Br=4. -l it 15 odd
We can express this method as a procedure:

Structure and Interpretation of Computer Programs

(define (fast-expt b n)
(cond ((=n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))

where the predicate to test whether an integer is even is defined in terms of the primitive procedure
r emai nder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by f ast - expt growslogarithmically with n in both space and number of steps.
To seethis, observe that computing b2" using f ast - expt requires only one more multiplication than
computing b". The size of the exponent we can compute therefore doubles (approximately) with every
new multiplication we are allowed. Thus, the number of multiplications required for an exponent of n
grows about as fast as the logarithm of n to the base 2. The process has&(I og n) growth.3?

The difference between &(I og n) growth and £(n) growth becomes striking as n becomes large. For
example, f ast - expt for n= 1000 requires only 14 multiplications.2 It is also possible to use the idea
of successive squaring to devise an iterative algorithm that computes exponentials with a logarithmic
number of steps (see exercise 1.16), although, asis often the case with iterative algorithms, thisis not

written down so straightforwardly as the recursive algorithm.32

Exercise 1.16. Design a procedure that evolves an iterative exponentiation process that uses successive
sguaring and uses alogarithmic number of steps, asdoesf ast - expt . (Hint: Using the observation that
(b"2)2 = (b2)V2, keep, along with the exponent n and the base b, an additional state variable a, and define
the state transformation in such away that the product a b" is unchanged from state to state. At the
beginning of the process a istaken to be 1, and the answer is given by the value of a at the end of the
process. In general, the technique of defining an invariant quantity that remains unchanged from state to
state is a powerful way to think about the design of iterative algorithms.)

Exercise 1.17. The exponentiation algorithms in this section are based on performing exponentiation by
means of repeated multiplication. In asimilar way, one can perform integer multiplication by means of
repeated addition. The following multiplication procedure (in which it is assumed that our language can
only add, not multiply) is analogous to the expt procedure:

(define (* a b)
(if (=b 0
0

(+a(*a(- bl)))))

This algorithm takes a number of stepsthat islinear in b. Now suppose we include, together with
addition, operations doubl e, which doubles an integer, and hal ve, which divides an (even) integer by
2. Using these, design a multiplication procedure analogousto f ast - expt that uses alogarithmic
number of steps.

Exercise 1.18. Using the results of exercises 1.16 and 1.17, devise a procedure that generates an iterative
process for multiplying two integersin terms of adding, doubling, and halving and uses a logarithmic

Structure and Interpretation of Computer Programs

number of steps.40

Exercise 1.19. Thereisaclever algorithm for computing the Fibonacci numbersin alogarithmic
number of steps. Recall the transformation of the state variablesaand binthefi b-i t er process of
section 1.2.2: a.— a+ band b.— a. Cal thistransformation T, and observe that applying T over and over
again n times, starting with 1 and O, produces the pair Fib(n + 1) and Fib(n). In other words, the
Fibonacci numbers are produced by applying T", the nth power of the transformation T, starting with the
pair (1,0). Now consider T to be the special case of p=0and q=1inafamily of transformations Ty,
where T transforms the pair (a,b) according to a .— bq + aq + ap and b .— bp + ag. Show that if we
apply such atransformation Ty, twice, the effect is the same as using a single transformation Ty of the
same form, and compute p' and g’ in terms of p and g. This gives us an explicit way to square these

transformations, and thus we can compute T" using successive squaring, asinthef ast - expt
procedure. Put this al together to complete the following procedure, which runsin alogarithmic number
of steps:4t

(define (fib n)
(fib-iter 1 0 01 n))
(define (fib-iter a b p q count)
(cond ((= count 0) b)
((even? count)

(fib-iter a
b
<??> ; conpute p'
<??> ; conpute ('

(/ count 2)))
(else (fib-iter (+ (* bq (*aq (* ap))
(+(* bp) (*raaq))
p
q
(- count 1)))))

1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integersa and b is defined to be the largest integer that
divides both a and b with no remainder. For example, the GCD of 16 and 28 is 4. In chapter 2, when we
investigate how to implement rational-number arithmetic, we will need to be able to compute GCDsin
order to reduce rational numbersto lowest terms. (To reduce a rational number to lowest terms, we must
divide both the numerator and the denominator by their GCD. For example, 16/28 reducesto 4/7.) One
way to find the GCD of two integersisto factor them and search for common factors, but thereisa
famous algorithm that is much more efficient.

The idea of the algorithm is based on the observation that, if r isthe remainder when a is divided by b,
then the common divisors of a and b are precisely the same as the common divisors of b and r. Thus, we
can use the equation

GCD(a,b) = GCD(b,7)

Structure and Interpretation of Computer Programs

to successively reduce the problem of computing a GCD to the problem of computing the GCD of
smaller and smaller pairs of integers. For example,

GCD(206,40) = GCD(40,6)
— GCD(6,4)
= GCD(4,2)
— GCD(2,0)

n

—_

reduces GCD(206,40) to GCD(2,0), whichis 2. It is possible to show that starting with any two positive
integers and performing repeated reductions will always eventually produce a pair where the second
number is 0. Then the GCD is the other number in the pair. This method for computing the GCD is
known as Euclid's Algorithm.42

It is easy to express Euclid's Algorithm as a procedure:

(define (gcd a b)
(if (=b 0
a

(gcd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the logarithm of the numbers
involved.

The fact that the number of steps required by Euclid's Algorithm has logarithmic growth bears an
interesting relation to the Fibonacci numbers:

Lamé's Theorem: If Euclid's Algorithm requires k steps to compute the GCD of some pair, then the
smaller number in the pair must be greater than or equal to the kth Fibonacci number .43

We can use this theorem to get an order-of-growth estimate for Euclid's Algorithm. Let n be the smaller

of the two inputs to the procedure. If the process takes k steps, then we must have n> Fib (K) == dkp's,
Therefore the number of steps k grows as the logarithm (to the base) of n. Hence, the order of growth is
2(l og n).

Exercise 1.20. The process that a procedure generates is of course dependent on the rules used by the
interpreter. As an example, consider the iterative gcd procedure given above. Suppose we were to
interpret this procedure using normal-order evaluation, as discussed in section 1.1.5. (The

normal-order-evaluation rule for i f isdescribed in exercise 1.5.) Using the substitution method (for

normal order), illustrate the process generated in evaluating (gcd 206 40) and indicate the
r emai nder operationsthat are actually performed. How many r emai nder operations are actually
performed in the normal-order evaluation of (gcd 206 40) ?In the applicative-order evaluation?

Structure and Interpretation of Computer Programs

1.2.6 Example: Testing for Primality

This section describes two methods for checking the primality of an integer n, one with order of growth

Ei(v’ n), and a "probabilistic" algorithm with order of growth &(1 og n). The exercises at the end of this
section suggest programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems concerning prime numbers, and
many people have worked on the problem of determining ways to test if numbers are prime. One way to
test if anumber is primeisto find the number's divisors. The following program finds the smallest
integral divisor (greater than 1) of a given number n. It does thisin a straightforward way, by testing n
for divisibility by successive integers starting with 2.

(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))

We can test whether a number is prime as follows: nisprimeif and only if nisits own smallest divisor.

(define (prine? n)
(= n (smallest-divisor n)))

Theendtest for f i nd- di vi sor isbased on the fact that if nisnot prime it must have adivisor less
than or equal to /.4 This means that the algorithm need only test divisors between 1 and vn.
Consequently, the number of steps required to identify n as prime will have order of growth El(ﬂ.f n).

The Fermat test

The&(l og n) primality test is based on aresult from number theory known as Fermat's Little Theorem.4

Fermat'sLittle Theorem: If nisaprime number and a is any positive integer less than n, then a raised
to the nth power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remainder when divided by
n. The remainder of a number a when divided by n is aso referred to as the remainder of a modulo n, or
simply asa modulo n.)

If nisnot prime, then, in general, most of the numbers a< n will not satisfy the above relation. This leads
to the following algorithm for testing primality: Given a number n, pick a random number a < n and
compute the remainder of a" modulo n. If the result is not equal to a, then nis certainly not prime. If itis
a, then chances are good that n is prime. Now pick another random number a and test it with the same

Structure and Interpretation of Computer Programs

method. If it aso satisfies the equation, then we can be even more confident that nis prime. By trying
more and more values of a, we can increase our confidence in the result. This agorithm is known as the
Fermat test.

To implement the Fermat test, we need a procedure that computes the exponential of a number modulo
another number:

(define (expnod base exp m
(cond ((= exp 0) 1)
((even? exp)
(remai nder (square (expnod base (/ exp 2) m)

n)

(el se

(remai nder (* base (expnod base (- exp 1) m)
m)))

Thisisvery similar tothef ast - expt procedure of section 1.2.4. It uses successive squaring, so that
the number of steps grows logarithmically with the exponent.46

The Fermat test is performed by choosing at random a number a between 1 and n - 1 inclusive and
checking whether the remainder modulo n of the nth power of aisequal to a. The random number ais
chosen using the procedure r andom which we assume isincluded as a primitive in Scheme. Random
returns a nonnegative integer less than its integer input. Hence, to obtain a random number between 1
andn - 1, we call randomwith an input of n- 1 and add 1 to the result:

(define (fermat-test n)
(define (try-it a)
(= (expnod a n n) a))
(try-it (+ 1 (random (- n 1)))))

The following procedure runs the test a given number of times, as specified by a parameter. Itsvalueis
true if the test succeeds every time, and false otherwise.

(define (fast-prinme? n tines)
(cond ((=tinmes 0) true)
((fermat-test n) (fast-prinme? n (- tinmes 1)))
(else false)))

Probabilistic methods

The Fermat test differsin character from most familiar algorithms, in which one computes an answer that
Is guaranteed to be correct. Here, the answer obtained is only probably correct. More precisely, if never
fails the Fermat test, we can be certain that nis not prime. But the fact that n passes the test, while an
extremely strong indication, is still not a guarantee that n is prime. What we would like to say is that for
any number n, if we perform the test enough times and find that n always passes the test, then the
probability of error in our primality test can be made as small as we like.

Unfortunately, this assertion is not quite correct. There do exist numbers that fool the Fermat test:

Structure and Interpretation of Computer Programs

numbers n that are not prime and yet have the property that a" is congruent to a modulo n for all integers
a < n. Such numbers are extremely rare, so the Fermat test is quite reliable in practice.4” There are
variations of the Fermat test that cannot be fooled. In these tests, as with the Fermat method, one tests the
primality of an integer n by choosing arandom integer a<n and checking some condition that depends
upon n and a. (See exercise 1.28 for an example of such atest.) On the other hand, in contrast to the
Fermat test, one can prove that, for any n, the condition does not hold for most of the integers a<n unless
nisprime. Thus, if n passes the test for some random choice of a, the chances are better than even that n
is prime. If n passes the test for two random choices of a, the chances are better than 3 out of 4 that nis
prime. By running the test with more and more randomly chosen values of a we can make the probability
of error as small aswelike.

The existence of tests for which one can prove that the chance of error becomes arbitrarily small has
sparked interest in algorithms of this type, which have come to be known as probabilistic algorithms.
Thereisagreat deal of research activity in this area, and probabilistic algorithms have been fruitfully
applied to many fields.48

Exercise1.21. Usethesmal | est - di vi sor procedure to find the smallest divisor of each of the
following numbers: 199, 1999, 19999.

Exercise 1.22. Most Lisp implementations include a primitive called r unt i ne that returns an integer
that specifies the amount of time the system has been running (measured, for example, in microseconds).
Thefollowing ti med- pri me-t est procedure, when called with an integer n, prints n and checksto
seeif nisprime. If nis prime, the procedure prints three asterisks followed by the amount of time used in
performing the test.

(define (timed-prine-test n)

(new i ne)

(di splay n)

(start-prine-test n (runtine)))
(define (start-prine-test n start-tine)

(if (prime? n)

(report-prime (- (runtinme) start-tine))))

(define (report-prine el apsed-tine)

(display " *** ")

(di splay el apsed-tine))

Using this procedure, write aprocedure sear ch-f or - pri nmes that checks the primality of
consecutive odd integersin a specified range. Use your procedure to find the three smallest primes larger
than 1000; larger than 10,000; larger than 100,000; larger than 1,000,000. Note the time needed to test

each prime. Since the testing algorithm has order of growth of Eﬁ(f n), you should expect that testing for
primes around 10,000 should take about V10 times as long as testing for primes around 1000. Do your

timing data bear this out? How well do the data for 100,000 and 1,000,000 support the vn prediction? |s
your result compatible with the notion that programs on your machine run in time proportional to the
number of steps required for the computation?

Exercise 1.23. Thesnal | est - di vi sor procedure shown at the start of this section does |ots of
needless testing: After it checksto seeif the number is divisible by 2 thereis no point in checking to see

Structure and Interpretation of Computer Programs

if itisdivisible by any larger even numbers. This suggests that the values used for t est - di vi sor
shouldnotbe 2, 3,4,5,6,. .., butrather 2,3,5,7,9,. ... Toimplement this change, define a
procedure next that returns 3 if itsinput is equal to 2 and otherwise returnsitsinput plus 2. Modify the
smal | est - di vi sor proceduretouse(next test-divisor) insteadof (+ test-divisor
1) . Withti med- pri nme-t est incorporating this modified version of smal | est - di vi sor, runthe
test for each of the 12 primesfound in exercise 1.22. Since this modification halves the number of test
steps, you should expect it to run about twice as fast. Is this expectation confirmed? If not, what is the
observed ratio of the speeds of the two algorithms, and how do you explain the fact that it is different
from 2?

Exercise 1.24. Modify thet i med- pri ne-t est procedure of exercise 1.22tousef ast - pri ne?
(the Fermat method), and test each of the 12 primes you found in that exercise. Since the Fermat test has
2(l og n) growth, how would you expect the time to test primes near 1,000,000 to compare with the time
needed to test primes near 10007 Do your data bear this out? Can you explain any discrepancy you find?

Exercise 1.25. AlyssaP. Hacker complains that we went to alot of extrawork in writing expnod.
After al, she says, since we already know how to compute exponentials, we could have smply written

(define (expnod base exp m
(remai nder (fast-expt base exp) m)

Is she correct? Would this procedure serve as well for our fast prime tester? Explain.

Exercise 1.26. Louis Reasoner is having great difficulty doing exercise 1.24. Hisf ast - pri ne? test

seemsto run more slowly than hispr i ne? test. Louis calls hisfriend Eva Lu Ator over to help. When
they examine Louis's code, they find that he has rewritten the expnod procedure to use an explicit
multiplication, rather than calling squar e:

(define (expnod base exp m
(cond ((= exp 0) 1)
((even? exp)
(remai nder (* (expnod base (/ exp 2) m
(expnod base (/ exp 2) m)

n)

(el se

(remai nder (* base (expnod base (- exp 1) m)
nm)))

| don't see what difference that could make," says Louis. | do." says Eva. "By writing the procedure
like that, you have transformed the (I og n) processinto a&(n) process." Explain.

Exercise 1.27. Demonstrate that the Carmichael numbers listed in footnote 47 really do fool the Fermat

test. That is, write a procedure that takes an integer n and tests whether a" is congruent to a modulo n for
every a<n, and try your procedure on the given Carmichael numbers.

Exercise 1.28. One variant of the Fermat test that cannot be fooled is called the Miller-Rabin test (Miller
1976; Rabin 1980). This starts from an alternate form of Fermat's Little Theorem, which statesthat if nis
aprime number and a is any positive integer less than n, then a raised to the (n - 1)st power is congruent

Structure and Interpretation of Computer Programs

to 1 modulo n. To test the primality of a number n by the Miller-Rabin test, we pick a random number
a<n and raise a to the (n - 1)st power modulo n using the expnod procedure. However, whenever we
perform the squaring step in ex pnod, we check to see if we have discovered a " nontrivial square root of
1 modulo n," that is, a number not equal to 1 or n - 1 whose square is equal to 1 modulo n. It is possible
to prove that if such anontrivia square root of 1 exists, then nisnot prime. It is also possible to prove
that if nisan odd number that is not prime, then, for at least half the numbers a<n, computing a™1 in this
way will reveal anontrivial square root of 1 modulo n. (Thisiswhy the Miller-Rabin test cannot be
fooled.) Modify the expnod procedure to signal if it discovers anontrivial square root of 1, and use this
to implement the Miller-Rabin test with a procedure analogousto f er mat - t est . Check your
procedure by testing various known primes and non-primes. Hint: One convenient way to make expnod
signal isto haveit return O.

29 |n areal program we would probably use the block structure introduced in the last section to hide the
definitionof f act -i ter:

(define (factorial n)
(define (iter product counter)
(if (> counter n)
pr oduct
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

We avoided doing this here so as to minimize the number of things to think about at once.

30 When we discuss the implementation of procedures on register machines in chapter 5, we will see that
any iterative process can berealized "in hardware" as a machine that has a fixed set of registers and no
auxiliary memory. In contrast, realizing arecursive process requires a machine that uses an auxiliary data
structure known as a stack.

31 Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail
recursion was provided by Carl Hewitt (1977), who explained it in terms of the *"message-passing”
model of computation that we shall discussin chapter 3. Inspired by this, Gerald Jay Sussman and Guy
Lewis Steele Jr. (see Steele 1975) constructed atail-recursive interpreter for Scheme. Steele later showed
how tail recursion is a consequence of the natural way to compile procedure calls (Steele 1977). The

| EEE standard for Scheme requires that Scheme implementations be tail-recursive.

32 An example of thiswas hinted at in section 1.1.3: The interpreter itself evaluates expressions using a
tree-recursive process.

33 For example, work through in detail how the reduction rule applies to the problem of making change
for 10 cents using pennies and nickels.

34 One approach to coping with redundant computations is to arrange matters so that we automatically
construct a table of values as they are computed. Each time we are asked to apply the procedure to some
argument, we first look to seeif the value is already stored in the table, in which case we avoid
performing the redundant computation. This strategy, known as tabulation or memoization, can be

Structure and Interpretation of Computer Programs

implemented in a straightforward way. Tabulation can sometimes be used to transform processes that
require an exponential number of steps (such as count - change) into processes whose space and time
requirements grow linearly with the input. See exercise 3.27.

35 The elements of Pascal's triangle are called the binomial coefficients, because the nth row consists of
the coefficients of the termsin the expansion of (x + y)". This pattern for computing the coefficients
appeared in Blaise Pascal's 1653 seminal work on probability theory, Traité du triangle arithmétique.
According to Knuth (1973), the same pattern appears in the Szu-yuen Yu-chien (" The Precious Mirror of
the Four Elements"), published by the Chinese mathematician Chu Shih-chieh in 1303, in the works of
the twelfth-century Persian poet and mathematician Omar Khayyam, and in the works of the

twel fth-century Hindu mathematician Bhéscara Achérya.

36 These statements mask a great deal of oversimplification. For instance, if we count process steps as
““machine operations” we are making the assumption that the number of machine operations needed to
perform, say, a multiplication isindependent of the size of the numbers to be multiplied, which isfalse if
the numbers are sufficiently large. Similar remarks hold for the estimates of space. Like the design and
description of a process, the analysis of a process can be carried out at various levels of abstraction.

37 More precisely, the number of multiplications required is equal to 1 less than the log base 2 of n plus
the number of onesin the binary representation of n. Thistotal is aways less than twice the log base 2 of
n. The arbitrary constants k; and k» in the definition of order notation imply that, for alogarithmic

process, the base to which logarithms are taken does not matter, so all such processes are described as
2(l og n).

38'Y ou may wonder why anyone would care about raising numbers to the 1000th power. See
section 1.2.6.

39 This iterative algorithm is ancient. It appears in the Chandah-sutra by Achérya Pingala, written before
200 s.c. See Knuth 1981, section 4.6.3, for afull discussion and analysis of this and other methods of
exponentiation.

40 This algorithm, which is sometimes known as the " Russian peasant method" of multiplication, is
ancient. Examples of its use are found in the Rhind Papyrus, one of the two oldest mathematical
documents in existence, written about 1700 e.c. (and copied from an even older document) by an
Egyptian scribe named A'h-mose.

41 This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij 1990.

42 Euclid's Algorithm is so called because it appears in Euclid's Elements (Book 7, ca. 300 s.c.).
According to Knuth (1973), it can be considered the oldest known nontrivial algorithm. The ancient
Egyptian method of multiplication (exercise 1.18) is surely older, but, as Knuth explains, Euclid's

algorithm is the oldest known to have been presented as a general algorithm, rather than as a set of
Ilustrative examples.

43 This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engineer known
chiefly for his contributions to mathematical physics. To prove the theorem, we consider pairs (a ,by),

where a> by, for which Euclid's Algorithm terminates in k steps. The proof is based on the claim that, if
(As1, b)) — (&, by) — (a1, by.1) arethree successive pairs in the reduction process, then we must

Structure and Interpretation of Computer Programs
have by.1> by + by_1. To verify the claim, consider that a reduction step is defined by applying the
transformation a_, = by, b1 = remainder of a, divided by b,. The second eguation means that a, = gby +
by.1 for some positive integer g. And since g must be at least 1 we have a = gby + by_; > b, + b_1. Butin
the previous reduction step we have by,1 = &. Therefore, by, = a> by + by_;. Thisverifiesthe claim.
Now we can prove the theorem by induction on k, the number of steps that the algorithm requires to
terminate. The result istrue for k = 1, since this merely requiresthat b be at least as large as Fib(1) = 1.
Now, assume that the result istrue for al integers less than or equal to k and establish the result for k + 1.
Let (841, Bs1) — (&4, by) — (a1, br.1) be successive pairsin the reduction process. By our induction
hypotheses, we have b,_,> Fib(k - 1) and b,> Fib(k). Thus, applying the claim we just proved together
with the definition of the Fibonacci numbers gives by,1 > by + b,_1> Fib(k) + Fib(k - 1) = Fib(k + 1),
which completes the proof of Lamé's Theorem.

4 |f disadivisor of n, then so isn/d. But d and n/d cannot both be greater than v,

4 Pierre de Fermat (1601-1665) is considered to be the founder of modern number theory. He obtained
many important number-theoretic results, but he usually announced just the results, without providing his
proofs. Fermat's Little Theorem was stated in aletter he wrote in 1640. The first published proof was
given by Euler in 1736 (and an earlier, identical proof was discovered in the unpublished manuscripts of
Leibniz). The most famous of Fermat's results -- known as Fermat's Last Theorem -- was jotted down in
1637 in his copy of the book Arithmetic (by the third-century Greek mathematician Diophantus) with the
remark "I have discovered atruly remarkable proof, but this margin istoo small to contain it." Finding a
proof of Fermat's Last Theorem became one of the most famous challenges in number theory. A
complete solution was finally given in 1995 by Andrew Wiles of Princeton University.

46 The reduction steps in the cases where the exponent e is greater than 1 are based on the fact that, for
any integersx, y, and m, we can find the remainder of x timesy modulo m by computing separately the
remainders of x modulo mand y modulo m, multiplying these, and then taking the remainder of the result
modulo m. For instance, in the case where e is even, we compute the remainder of b&2 modulo m, square
this, and take the remainder modulo m. This technique is useful because it means we can perform our
computation without ever having to deal with numbers much larger than m. (Compare exercise 1.25.)

47 Numbers that fool the Fermat test are called Carmichael numbers, and little is known about them other
than that they are extremely rare. There are 255 Carmichael numbers below 100,000,000. The smallest
few are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality of very large numbers chosen at
random, the chance of stumbling upon a value that fools the Fermat test is less than the chance that
cosmic radiation will cause the computer to make an error in carrying out a " correct” algorithm.
Considering an algorithm to be inadequate for the first reason but not for the second illustrates the
difference between mathematics and engineering.

48 One of the most striking applications of probabilistic prime testing has been to the field of
cryptography. Although it is now computationally infeasible to factor an arbitrary 200-digit number, the
primality of such a number can be checked in afew seconds with the Fermat test. This fact formsthe
basis of atechnique for constructing ~ unbreakable codes" suggested by Rivest, Shamir, and Adleman
(1977). The resulting RSA algorithm has become awidely used technique for enhancing the security of
el ectronic communications. Because of this and related developments, the study of prime numbers, once
considered the epitome of atopicin ~"pure" mathematics to be studied only for its own sake, now turns

Structure and Interpretation of Computer Programs

out to have important practical applicationsto cryptography, electronic funds transfer, and information
retrieval.

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

1.3 Formulating Abstractions with Higher-Order
Procedures

We have seen that procedures are, in effect, abstractions that describe compound operations on numbers
independent of the particular numbers. For example, when we

(define (cube x) (* x x X))

we are not talking about the cube of a particular number, but rather about a method for obtaining the cube
of any number. Of course we could get along without ever defining this procedure, by always writing
expressions such as

(* 33 3)
(* X X X)
(*vyvyy)

and never mentioning cube explicitly. Thiswould place us at a serious disadvantage, forcing us to work
aways at the level of the particular operations that happen to be primitives in the language
(multiplication, in this case) rather than in terms of higher-level operations. Our programs would be able
to compute cubes, but our language would lack the ability to express the concept of cubing. One of the
things we should demand from a powerful programming language is the ability to build abstractions by
assigning names to common patterns and then to work in terms of the abstractions directly. Procedures
provide this ability. Thisiswhy all but the most primitive programming languages include mechanisms
for defining procedures.

Y et even in numerical processing we will be severely limited in our ability to create abstractions if we
are restricted to procedures whose parameters must be numbers. Often the same programming pattern
will be used with a number of different procedures. To express such patterns as concepts, we will need to
construct procedures that can accept procedures as arguments or return procedures as values. Procedures
that manipulate procedures are called higher-order procedures. This section shows how higher-order
procedures can serve as powerful abstraction mechanisms, vastly increasing the expressive power of our
language.

1.3.1 Procedures as Arguments

Consider the following three procedures. The first computes the sum of the integers from a through b:

(define (sumintegers a b)
(if (> ab)
0
(+ a (sumintegers (+ a 1) b))))

The second computes the sum of the cubes of the integersin the given range:

(define (sumcubes a b)

Structure and Interpretation of Computer Programs

(if (> ab)
0
(+ (cube a) (sumcubes (+ a 1) b))))
The third computes the sum of a sequence of termsin the series
L + ! + L +
1-3 5.7 8.11

which converges to mr/8 (very slowly):4

(define (pi-suma b)
(if (> ab)
0
(+ (/ 1.0 (* a(+a2))) (pi-sum(+ a 4) b))))

These three procedures clearly share a common underlying pattern. They are for the most part identical,
differing only in the name of the procedure, the function of a used to compute the term to be added, and
the function that provides the next value of a. We could generate each of the procedures by filling in
slots in the same template:

(define (<nane> a b)
(if (> ab)
0
(+ (<ternp a)
(<nanme> (<next> a) b))))

The presence of such acommon pattern is strong evidence that there is a useful abstraction waiting to be
brought to the surface. Indeed, mathematicians long ago identified the abstraction of summation of a
series and invented ““sigma notation,” for example

b
S fn) = fl@) + o + F(B)
to express this concept. The power of sigma notation isthat it allows mathematicians to deal with the
concept of summation itself rather than only with particular sums -- for example, to formulate general
results about sums that are independent of the particular series being summed.

Similarly, as program designers, we would like our language to be powerful enough so that we can write
a procedure that expresses the concept of summation itself rather than only procedures that compute
particular sums. We can do so readily in our procedural language by taking the common template shown
above and transforming the “"dlots" into formal parameters:

(define (sumterma next b)
(if (> ab)
0
(+ (terma)
(sumterm (next a) next b))))

Notice that sumtakes as its arguments the lower and upper bounds a and b together with the procedures

Structure and Interpretation of Computer Programs

t er mand next . We can use sumjust as we would any procedure. For example, we can use it (along
with aprocedurei nc that increments its argument by 1) to definesum cubes:

(define (inc n) (+ n 1))
(define (sum cubes a b)
(sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1 to 10:

(sum cubes 1 10)
3025

With the aid of an identity procedure to compute the term, we can definesum i nt eger s interms of
sum

(define (identity x) Xx)

(define (sumintegers a b)
(sumidentity a inc b))

Then we can add up the integers from 1 to 10:

(sumintegers 1 10)
55

We can also define pi - sumin the same way:50

(define (pi-suma b)
(define (pi-termx)
(/ 1.0 (* x (+x 2))))
(define (pi-next x)
(+ x 4))
(sumpi-terma pi-next b))

Using these procedures, we can compute an approximation to r:

(* 8 (pi-sum 1 1000))
3. 139592655589783

Once we have sum we can use it as a building block in formulating further concepts. For instance, the
definite integral of afunction f between the limits a and b can be approximated numerically using the
formula

b i d d d
[F= lﬂu+TI)+f(a.+.:z:+TI)+f(a.+2d:+TI)+--- dr

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sumf (+ a (/ dx 2.0)) add-dx b)

Structure and Interpretation of Computer Programs

dx))
(integral cube 0 1 0.01)
. 24998750000000042
(integral cube 0 1 0.001)
. 249999875000001

(The exact value of theintegral of cube between 0O and 1is 1/4.)

Exercise 1.29. Simpson's Rule is a more accurate method of numerical integration than the method
illustrated above. Using Simpson's Rule, the integral of afunction f between a and b is approximated as

k
E[Hﬂ +ly 2 Ly 2y 2y Ly o

where h = (b - a)/n, for some even integer n, and y, = f(a + kh). (Increasing n increases the accuracy of
the approximation.) Define a procedure that takes as argumentsf, a, b, and n and returns the value of the

integral, computed using Simpson's Rule. Use your procedure to integrate cube between O and 1 (withn
=100 and n = 1000), and compare the results to those of thei nt egr al procedure shown above.

Exercise 1.30. The sumprocedure above generates alinear recursion. The procedure can be rewritten so
that the sum is performed iteratively. Show how to do this by filling in the missing expressionsin the
following definition:

(define (sumterma next b)
(define (iter a result)
(i f <?2?>
<??>
(iter <??7> <?7>)))
(iter <??7> <?7>))

Exercise 1.31.

a. The sumprocedureis only the ssmplest of avast number of similar abstractions that can be captured
as higher-order procedures.2! Write an analogous procedure called pr oduct that returns the product of
the values of afunction at points over agiven range. Show how to definef act ori al interms of
product . Also use pr oduct to compute approximations to = using the formul a2

T 2.1 L6 B8
1 3 3.55. 7.7

b. If your pr oduct procedure generates arecursive process, write one that generates an iterative
process. If it generates an iterative process, write one that generates a recursive process.

Exercise 1.32. a. Show that sumand pr oduct (exercise 1.31) are both specia cases of a still more

genera notion called accunul at e that combines a collection of terms, using some general
accumulation function:

(accunmul ate conbi ner null-value terma next b)

Accunul at e takes as arguments the same term and range specifications as sumand pr oduct ,
together with aconbi ner procedure (of two arguments) that specifies how the current termisto be

Structure and Interpretation of Computer Programs

combined with the accumulation of the preceding termsand anul | - val ue that specifies what base
value to use when the terms run out. Write accunul at e and show how sumand pr oduct can both
be defined assimple callsto accunul at e.

b. If your accumnul at e procedure generates a recursive process, write one that generates an iterative
process. If it generates an iterative process, write one that generates a recursive process.

Exercise 1.33. You can obtain an even more general version of accumnul at e (exercise 1.32) by

introducing the notion of afilter on the termsto be combined. That is, combine only those terms derived
from values in the range that satisfy a specified condition. Theresultingfi | t er ed- accunul at e
abstraction takes the same arguments as accumulate, together with an additional predicate of one
argument that specifiesthefilter. Writef i | t er ed- accunul at e as aprocedure. Show how to
expressthe following usingfi | t er ed- accunul at e:

a. the sum of the squares of the prime numbersin the interval a to b (assuming that you haveapri ne?
predicate already written)

b. the product of all the positive integers less than n that are relatively primeto n (i.e., al positive
integersi < nsuch that GCD(i,n) = 1).

1.3.2 Constructing Procedures Using Lanbda

Inusing sumasin section 1.3.1, it seems terribly awkward to have to define trivial procedures such as
pi -t er mand pi - next just so we can use them as arguments to our higher-order procedure. Rather
than define pi - next and pi -t er m it would be more convenient to have away to directly specify
“"the procedure that returns its input incremented by 4" and ~"the procedure that returns the reciprocal of
itsinput times itsinput plus 2." We can do this by introducing the special form | anmbda, which creates
procedures. Using | anbda we can describe what we want as

(lanmbda (x) (+ x 4))

and

(lambda (x) (/ 1.0 (* x (+ x 2))))

Then our pi - sumprocedure can be expressed without defining any auxiliary procedures as

(define (pi-suma b)
(sum (lambda (x) (/ 1.0 (* x (+ x 2))))
a
(lambda (x) (+ x 4))

b))

Againusing | anbda, we can writethei nt egr al procedure without having to define the auxiliary
procedure add- dx:

(define (integral f a b dx)
(* (sumf
(+ a (/ dx 2.0))

Structure and Interpretation of Computer Programs

(lanmbda (x) (+ x dx))
b)
dx))

In general, | anbda isused to create procedures in the same way asdef i ne, except that no nameis
specified for the procedure:

(I anbda (<formal - paranmet ers>) <body>)

The resulting procedure is just as much a procedure as one that is created using def i ne. The only
differenceisthat it has not been associated with any name in the environment. In fact,

(define (plusd4 x) (+ x 4))
isequivalent to
(define plus4 (lanmbda (x) (+ x 4)))
We canread al anbda expression as follows:
(1 anbda (x) (+ X 4))
T T r 1T 0
t he procedure of an argunent x that adds x and 4

Like any expression that has a procedure asitsvalue, al anbda expression can be used as the operator
In a combination such as

((lambda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a procedure name.s3

Using | et to create local variables

Another use of | anbda isin creating local variables. We often need local variablesin our procedures
other than those that have been bound as formal parameters. For example, suppose we wish to compute
the function

o) =1+ P+l - + (14 (1 — o)
which we could also express as

g = 14 ry

b =1-—y
flr,y) = ra®+ yb+ab

In writing a procedure to compute f, we would like to include as local variables not only x and y but also
the names of intermediate quantities like a and b. One way to accomplish thisisto use an auxiliary
procedure to bind the local variables:

(define (f x vy)

Structure and Interpretation of Computer Programs
(define (f-hel per a b)
(+ (* x (square a))

(* y b)
(* ab)))
(f-helper (+ 1 (* xvVy))

(- 1y)))

Of course, we could use al anbda expression to specify an anonymous procedure for binding our local
variables. The body of f then becomesasingle call to that procedure:

(define (f x vy)
((lanbda (a b)
(+ (* x (square a))
(* y b)
(* ab)))
(+1(* xvy))
(- 1y)))

This construct is so useful that there isaspecial form called | et to make its use more convenient. Using
| et , thef procedure could be written as

(define (f x vy)
(let ((a (+ 1 (* xy)))
(b (- 1y)))

(+ (* x (square a))
(* y b)
(* ab))))

The general form of al et expressionis

(let ((<var,> <exp;>)
(<var > <exp;>)

(<var > <expp>))
<body>)

which can be thought of as saying

let <var > have the value <exp,> and
<var,> have the value <exp,> and

<var,> have the value <exp,>
in <body>

Thefirst part of the| et expressionisalist of name-expression pairs. When the| et isevaluated, each
name is associated with the value of the corresponding expression. The body of thel et isevaluated
with these names bound as local variables. The way this happensisthat thel et expression isinterpreted
as an alternate syntax for

Structure and Interpretation of Computer Programs

((lanbda (<varq,> ...<var,>)
<body>)
<expi,>

<expy>)

No new mechanism isrequired in the interpreter in order to provide local variables. A | et expressionis
simply syntactic sugar for the underlying | antbda application.

We can see from this equivalence that the scope of avariable specified by al et expression is the body
of thel et . Thisimplies that:

« Let alowsoneto bind variables aslocally as possible to where they are to be used. For example,
if the value of x is 5, the value of the expression

(+ (et ((x 3))
(+x (* x 10)))

X)

is 38. Here, the x inthe body of thel et is 3, sothevalue of thel et expressionis33. On the
other hand, the x that is the second argument to the outermost + is still 5.

« Thevariables values are computed outside thel et . This matters when the expressions that
provide the values for the local variables depend upon variables having the same names as the
local variables themselves. For example, if the value of x is 2, the expression

(let ((x 3)
(y (+x 2)))
(* xvy))

will have the value 12 because, inside the body of thel et , x will be 3andy will be 4 (whichis
the outer x plus 2).

Sometimes we can use internal definitions to get the same effect aswith | et . For example, we could
have defined the procedure f above as

(define (f x vy)
(define a (+ 1 (* x vy)))
(define b (- 1vy))
(+ (* x (square a))
(* y b)
(* ab)))

We prefer, however, touse| et in situationslike this and to use internal def i ne only for internal
procedures.>

Exercise 1.34. Suppose we define the procedure

(define (f g)
(9 2))

Structure and Interpretation of Computer Programs

Then we have

(f square)
4

(f (lambda (z) (* z (+z 1))))
6

What happens if we (perversely) ask the interpreter to evaluate the combination (f) ? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in section 1.1.4 as a mechanism for abstracting patterns of
numerical operations so as to make them independent of the particular numbersinvolved. With
higher-order procedures, such asthei nt egr al procedure of section 1.3.1, we began to see amore
powerful kind of abstraction: procedures used to express general methods of computation, independent of
the particular functions involved. In this section we discuss two more elaborate examples -- general
methods for finding zeros and fixed points of functions -- and show how these methods can be expressed
directly as procedures.

Finding roots of equations by the half-interval method

The half-interval method is a simple but powerful technique for finding roots of an equation f(x) = 0,
where f is a continuous function. The ideaisthat, if we are given pointsa and b such that f(a) < 0 < f(b),
then f must have at least one zero between a and b. To locate a zero, let x be the average of a and b and
compute f(x). If f(xX) > O, then f must have a zero between a and x. If f(x) <0, then f must have a zero
between x and b. Continuing in thisway, we can identify smaller and smaller intervals on which f must
have a zero. When we reach a point where the interval is small enough, the process stops. Since the
interval of uncertainty isreduced by half at each step of the process, the number of steps required grows
as2(l og(L/T)), where L isthe length of the original interval and T isthe error tolerance (that is, the size
of the interval we will consider ““small enough"). Here is a procedure that implements this strategy:

(define (search f neg-poi nt pos-point)
(let ((mdpoint (average neg-point pos-point)))
(if (cl ose-enough? neg-poi nt pos-point)
m dpoi nt
(let ((test-value (f mdpoint)))
(cond ((positive? test-val ue)

(search f neg-point mdpoint))
((negative? test-val ue)
(search f m dpoi nt pos-point))
(else mdpoint))))))

We assume that we are initialy given the function f together with points at which its values are negative
and positive. We first compute the midpoint of the two given points. Next we check to seeif the given
interval is small enough, and if so we simply return the midpoint as our answer. Otherwise, we compute
as atest value the value of f at the midpoint. If the test value is positive, then we continue the process

Structure and Interpretation of Computer Programs

with anew interval running from the original negative point to the midpoint. If the test value is negative,
we continue with the interval from the midpoint to the positive point. Finally, there is the possibility that
the test valueis 0, in which case the midpoint isitself the root we are searching for.

To test whether the endpoints are " close enough” we can use a procedure similar to the one used in
section 1.1.7 for computing square roots: >

(define (cl ose-enough? x vy)
(< (abs (- x y)) 0.001))

Sear ch isawkward to use directly, because we can accidentally give it points at which f's values do not
have the required sign, in which case we get a wrong answer. Instead we will use sear ch viathe
following procedure, which checks to see which of the endpoints has a negative function value and
which has a positive value, and callsthe sear ch procedure accordingly. If the function has the same
sign on the two given points, the half-interval method cannot be used, in which case the procedure
signals an error.>

(define (half-interval-nmethod f a b)
(let ((a-value (f a))
(b-value (f b)))
(cond ((and (negative? a-value) (positive? b-value))
(search f a b))
((and (negative? b-value) (positive? a-val ue))
(search f b a))
(el se
(error "Values are not of opposite sign" a b)))))

The following example uses the half-interval method to approximate = as the root between 2 and 4 of
sinx=0:

(half-interval -nethod sin 2.0 4.0)
3.14111328125

Here is another example, using the half-interval method to search for aroot of the equation x3 - 2x- 3=0
between 1 and 2:

(half-interval -nethod (lanbda (x) (- (* x x x) (* 2 x) 3))
1.0
2.0)

1. 89306640625

Finding fixed points of functions

A number x is called afixed point of afunction f if x satisfies the equation f(x) = x. For some functions f
we can locate afixed point by beginning with an initial guess and applying f repeatedly,

Fe), SO, FUPCREE),

until the value does not change very much. Using this idea, we can devise aproceduref i xed- poi nt

Structure and Interpretation of Computer Programs

that takes as inputs a function and an initial guess and produces an approximation to a fixed point of the
function. We apply the function repeatedly until we find two successive values whose difference isless
than some prescribed tolerance:

(define tol erance 0.00001)
(define (fixed-point f first-guess)
(define (close-enough? vl v2)
(< (abs (- vl v2)) tolerance))
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next

(try next))))
(try first-guess))

For example, we can use this method to approximate the fixed point of the cosine function, starting with
1 asan initial approximation:s?

(fi xed-point cos 1.0)
. 7390822985224023

Similarly, we can find a solution to the equationy =si ny + cos v:

(fixed-point (lanbda (y) (+ (siny) (cos y)))
1.0)
1.2587315962971173

The fixed-point process is reminiscent of the process we used for finding square roots in section 1.1.7.
Both are based on the idea of repeatedly improving a guess until the result satisfies some criterion. In
fact, we can readily formulate the square-root computation as a fixed-point search. Computing the square
root of some number x requires finding ay such that y2 = x. Putting this equation into the equivalent form
y = xly, we recognize that we are looking for afixed point of the function® y — x/y, and we can therefore
try to compute sguare roots as

(define (sqrt x)
(fixed-point (lanbda (y) (/ x vy))
1.0))

Unfortunately, this fixed-point search does not converge. Consider an initial guessy;. The next guessis
Y, = xly; and the next guessis y; = x/y, = X/(x/y;) = y;. Thisresultsin an infinite loop in which the two
guesses y, and Y, repeat over and over, oscillating about the answer.

One way to control such oscillationsisto prevent the guesses from changing so much. Since the answer
Is always between our guess 'y and x/y, we can make a new guess that is not as far fromy as x/y by
averaging y with x/y, so that the next guess after y is (1/2)(y + x/y) instead of x/y. The process of making
such a sequence of guessesis simply the process of looking for afixed point of y— (1/2)(y + x/y):

(define (sqgrt x)
(fixed-point (lanbda (y) (average y (/ x vy)))

Structure and Interpretation of Computer Programs

1.0))

(Notethat y = (1/2)(y + x/ly) isasimple transformation of the equation y = x/y; to derive it, add y to both
sides of the equation and divide by 2.)

With this modification, the square-root procedure works. In fact, if we unravel the definitions, we can see
that the sequence of approximations to the square root generated here is precisely the same as the one
generated by our original square-root procedure of section 1.1.7. This approach of averaging successive

approximations to a solution, a technique we that we call average damping, often aids the convergence of
fixed-point searches.

Exercise 1.35. Show that the golden ratio @ (section 1.2.2) is afixed point of the transformation x — 1 +
1/x, and use this fact to compute ¢ by means of thef i xed- poi nt procedure.

Exercise 1.36. Modify f i xed- poi nt so that it prints the sequence of approximations it generates,
using thenewl i ne and di spl ay primitives shown in exercise 1.22. Then find a solution to x* = 1000

by finding afixed point of x — | 0g(1000)/I og(x). (Use Scheme's primitive | og procedure, which
computes natural logarithms.) Compare the number of steps this takes with and without average
damping. (Note that you cannot start f i xed- poi nt with aguess of 1, asthiswould cause division by

| og(1) =0.)
Exercise 1.37. a. Aninfinite continued fraction is an expression of the form

f=

oD+ -

Dyt ———
2t

As an example, one can show that the infinite continued fraction expansion with the N; and the D; all

equal to 1 produces 1/¢, where ¢ is the golden ratio (described in section 1.2.2). One way to approximate

an infinite continued fraction is to truncate the expansion after a given number of terms. Such a
truncation -- a so-called k-term finite continued fraction -- has the form

Suppose that n and d are procedures of one argument (the term index i) that return the N; and D; of the
terms of the continued fraction. Define a procedure cont - f r ac such that evaluating (cont -frac n
d k) computesthe value of the k-term finite continued fraction. Check your procedure by
approximating 1/% using

(cont-frac (lanmbda (i) 1.0)
(lanmbda (i) 1.0)
k)

Structure and Interpretation of Computer Programs

for successive values of k. How large must you make k in order to get an approximation that is accurate
to 4 decimal places?

b. If your cont - f r ac procedure generates arecursive process, write one that generates an iterative
process. If it generates an iterative process, write one that generates a recursive process.

Exercise 1.38. In 1737, the Swiss mathematician Leonhard Euler published a memoir De Fractionibus
Continuis, which included a continued fraction expansion for e - 2, where e is the base of the natural
logarithms. In thisfraction, the N; are al 1, and the D; are successively 1,2, 1,1,4,1,1,6,1,1,8,
Write a program that uses your cont - f r ac procedure from exercise 1.37 to approximate e, based on
Euler's expansion.

Exercise 1.39. A continued fraction representation of the tangent function was published in 1770 by the
German mathematician J.H. Lambert:

tanr = 3

5.

where x isin radians. Define aprocedure (t an- cf x k) that computes an approximation to the
tangent function based on Lambert's formula. K specifies the number of terms to compute, asin
exercise 1.37.

1.3.4 Procedures as Returned Values

The above examples demonstrate how the ability to pass procedures as arguments significantly enhances
the expressive power of our programming language. We can achieve even more expressive power by
creating procedures whose returned values are themselves procedures.

We can illustrate this idea by looking again at the fixed-point example described at the end of
section 1.3.3. We formulated a new version of the square-root procedure as a fixed-point search, starting

with the observation that +X is afixed-point of the function y — x/y. Then we used average damping to
make the approximations converge. Average damping is auseful general techniqueinitself. Namely,
given afunction f, we consider the function whose value at x is equal to the average of x and f(x).

We can express the idea of average damping by means of the following procedure:

(define (average-danp f)
(lanbda (x) (average x (f x))))

Aver age- danp isaprocedure that takes as its argument aproceduref and returnsasitsvalue a
procedure (produced by the | anbda) that, when applied to a number x, produces the average of x and
(f x).For example, applying aver age- danp to the squar e procedure produces a procedure whose
value at some number x is the average of x and x2. Applying this resulting procedure to 10 returns the
average of 10 and 100, or 55:3¢

((aver age-danp square) 10)

Structure and Interpretation of Computer Programs

55
Using aver age- danp, we can reformulate the square-root procedure as follows:

(define (sqrt x)
(fi xed-point (average-danp (lanbda (y) (/ x y)))
1.0))

Notice how this formulation makes explicit the three ideas in the method: fixed-point search, average
damping, and the function y — x/y. It isinstructive to compare this formulation of the square-root method
with the original version given in section 1.1.7. Bear in mind that these procedures express the same
process, and notice how much clearer the idea becomes when we express the process in terms of these
abstractions. In general, there are many ways to formulate a process as a procedure. Experienced
programmers know how to choose procedural formulations that are particularly perspicuous, and where
useful elements of the process are exposed as separate entities that can be reused in other applications. As
asimple example of reuse, notice that the cube root of x is afixed point of the function y — x/y2, so we
can immediately generalize our square-root procedure to one that extracts cube roots:8°

(define (cube-root x)
(fixed-point (average-danp (lanbda (y) (/ x (square y))))
1.0))

Newton's method

When we first introduced the square-root procedure, in section 1.1.7, we mentioned that thiswas a

special case of Newton's method. If x — g(X) is a differentiable function, then a solution of the equation
g(x) = O isafixed point of the function x — f(X) where

glr}
flrl=1r—
(z) Dg(r)
and Dg(x) isthe derivative of g evaluated at x. Newton's method is the use of the fixed-point method we
saw above to approximate a solution of the equation by finding afixed point of the function .61 For many
functions g and for sufficiently good initial guesses for x, Newton's method converges very rapidly to a
solution of g(x) = 0.62

In order to implement Newton's method as a procedure, we must first express the idea of derivative. Note
that ““derivative," like average damping, is something that transforms a function into another function.
For instance, the derivative of the function x — x3 is the function x — 3x2. In general, if g isafunction
and dx is a small number, then the derivative Dg of g isthe function whose value at any number x is
given (in the limit of small dx) by

(I + r.']r:l — [I}
Dy(r) = N <

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as the procedure

(define (deriv Q)
(I anmbda (x)

Structure and Interpretation of Computer Programs

(/ (- (g (+ x dx)) (g x))
dx)))

along with the definition
(define dx 0.00001)

Likeaver age- danp, deri v isaprocedure that takes a procedure as argument and returns a

procedure as value. For example, to approximate the derivative of x — x3 at 5 (whose exact valueis 75)
we can evaluate

(define (cube x) (* x x X))
((deriv cube) 5)
75.00014999664018

Withthe aid of der i v, we can express Newton's method as a fixed-point process:

(define (newton-transform g)
(1 anbda (x)
(- x (/ (g x) ((deriv g) x)))))
(define (newtons-nethod g guess)
(fi xed-point (newton-transform g) guess))

Thenewt on-t r ansf or mprocedure expresses the formula at the beginning of this section, and

newt ons- et hod isreadily defined in terms of this. It takes as arguments a procedure that computes
the function for which we want to find a zero, together with an initial guess. For instance, to find the
square root of x, we can use Newton's method to find a zero of the function y — y2 - x starting with an
initial guess of 1.3 This provides yet another form of the square-root procedure:

(define (sqrt x)
(newt ons-net hod (lanbda (y) (- (square y) X))
1.0))

Abstractions and first-class procedures

We've seen two way's to express the square-root computation as an instance of a more general method,
once as afixed-point search and once using Newton's method. Since Newton's method was itself
expressed as afixed-point process, we actually saw two ways to compute square roots as fixed points.
Each method begins with a function and finds a fixed point of some transformation of the function. We
can express this general ideaitself as a procedure:

(define (fixed-point-of-transformg transform guess)
(fixed-point (transformg) guess))

This very general procedure takes as its arguments a procedure g that computes some function, a
procedure that transforms g, and an initial guess. The returned result is afixed point of the transformed
function.

Using this abstraction, we can recast the first square-root computation from this section (where we look
for afixed point of the average-damped version of y — x/y) as an instance of this general method:

Structure and Interpretation of Computer Programs

(define (sqrt x)
(fixed-point-of-transform (lanbda (y) (/ x vy))
aver age- danp
1.0))

Similarly, we can express the second square-root computation from this section (an instance of Newton's
method that finds a fixed point of the Newton transform of y i y2 - X) as

(define (sqrt x)
(fixed-point-of-transform (lanmbda (y) (- (square y) X))
newt on-transform
1.0))

We began section 1.3 with the observation that compound procedures are a crucial abstraction

mechanism, because they permit usto express general methods of computing as explicit elementsin our
programming language. Now we've seen how higher-order procedures permit us to manipulate these
general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying abstractionsin our
programs and to build upon them and generalize them to create more powerful abstractions. Thisis not to
say that one should always write programs in the most abstract way possible; expert programmers know
how to choose the level of abstraction appropriate to their task. But it is important to be able to think in
terms of these abstractions, so that we can be ready to apply them in new contexts. The significance of
higher-order procedures is that they enable us to represent these abstractions explicitly as elementsin our
programming language, so that they can be handled just like other computational elements.

In general, programming languages impose restrictions on the ways in which computational elements can
be manipulated. Elements with the fewest restrictions are said to have first-class status. Some of the
“rights and privileges' of first-class elements are:%4

« They may be named by variables.

« They may be passed as arguments to procedures.

« They may be returned as the results of procedures.
« They may beincluded in data structures.s

Lisp, unlike other common programming languages, awards procedures full first-class status. This poses
challenges for efficient implementation, but the resulting gain in expressive power is enormous.&

Exercise 1.40. Define aprocedure cubi c that can be used together with the newt ons- net hod
procedure in expressions of the form

(newt ons-nethod (cubic a b ¢c) 1)
to approximate zeros of the cubic x3 + ax2 + bx + c.

Exercise 1.41. Define aprocedure doubl e that takes a procedure of one argument as argument and
returns a procedure that applies the original procedure twice. For example, if i nc isaprocedure that
adds 1 to its argument, then (doubl e i nc) should be a procedure that adds 2. What value is returned

Structure and Interpretation of Computer Programs
by
(((doubl e (doubl e double)) inc) 5)

Exercise 1.42. Let f and g be two one-argument functions. The composition f after g is defined to be the
function x — f(g(x)). Define a procedure conpose that implements composition. For example, if i nc is
a procedure that adds 1 to its argument,

((conpose square inc) 6)
49

Exercise 1.43. If fisanumerica function and n is a positive integer, then we can form the nth repeated
application of f, which is defined to be the function whose value at x isf(f(. . . (f(x)). . .)). For example,
iIf fisthe function x— x + 1, then the nth repeated application of f isthe function xi— x + n. If fisthe
operation of sguaring a number, then the nth repeated application of f isthe function that raisesits
argument to the 2nth power. Write a procedure that takes as inputs a procedure that computes f and a
positive integer n and returns the procedure that computes the nth repeated application of f. Y our
procedure should be able to be used as follows:

((repeated square 2) 5)
625

Hint: You may find it convenient to use conpose from exercise 1.42.

Exercise 1.44. Theidea of smoothing afunction is an important concept in signal processing. If fisa
function and dx is some small number, then the smoothed version of f is the function whose value at a
point x is the average of f(x - dx), f(x), and f(x + dx). Write a procedure snoot h that takes asinput a
procedure that computes f and returns a procedure that computes the smoothed f. It is sometimes valuable
to repeatedly smooth a function (that is, smooth the smoothed function, and so on) to obtained the n-fold
smoothed function. Show how to generate the n-fold smoothed function of any given function using
snoot h andr epeat ed from exercise 1.43.

Exercise 1.45. We saw in section 1.3.3 that attempting to compute square roots by naively finding a
fixed point of y— Xx/y does not converge, and that this can be fixed by average damping. The same
method works for finding cube roots as fixed points of the average-damped y — x/y2. Unfortunately, the
process does not work for fourth roots -- a single average damp is not enough to make a fixed-point
search for y — x/y3 converge. On the other hand, if we average damp twice (i.e., use the average damp of
the average damp of y — x/y3) the fixed-point search does converge. Do some experiments to determine
how many average damps are required to compute nth roots as a fixed-point search based upon repeated
average damping of y — x/y"1, Use thisto implement a simple procedure for computing nth roots using
fi xed- poi nt,aver age- danp, andther epeat ed procedure of exercise 1.43. Assume that any
arithmetic operations you need are available as primitives.

Exercise 1.46. Severa of the numerical methods described in this chapter are instances of an extremely
general computational strategy known as iterative improvement. Iterative improvement says that, to
compute something, we start with an initial guess for the answer, test if the guessis good enough, and
otherwise improve the guess and continue the process using the improved guess as the new guess. Write
aprocedurei t er ati ve-i npr ove that takes two procedures as arguments. a method for telling

Structure and Interpretation of Computer Programs

whether a guess is good enough and a method for improving aguess. | t er at i ve- i npr ove should
return as its value a procedure that takes a guess as argument and keeps improving the guess until itis
good enough. Rewritethesqrt procedure of section 1.1.7 and thef i xed- poi nt procedure of

section 1.3.3intermsof i t erati ve-i nprove.

49 This series, usually written in the equivalent form (=r/4) =1 - (1/3) + (1/5) - (1/7) + - - - ,isdueto
Leibniz. We'll see how to use this as the basis for some fancy numerical tricks in section 3.5.3.

50 Notice that we have used block structure (section 1.1.8) to embed the definitions of pi - next and

pi -t er mwithin pi - sum since these procedures are unlikely to be useful for any other purpose. We
will see how to get rid of them altogether in section 1.3.2.

51 The intent of exercises 1.31-1.33 is to demonstrate the expressive power that is attained by using an

appropriate abstraction to consolidate many seemingly disparate operations. However, though
accumulation and filtering are elegant ideas, our hands are somewhat tied in using them at this point
since we do not yet have data structures to provide suitable means of combination for these abstractions.
We will return to these ideas in section 2.2.3 when we show how to use sequences as interfaces for
combining filters and accumulators to build even more powerful abstractions. We will see there how
these methods really come into their own as a powerful and elegant approach to designing programs.

52 This formula was discovered by the seventeenth-century English mathematician John Wallis.

53 |t would be clearer and less intimidating to people learning Lisp if a name more obviousthan| anbda,
such asmake- pr ocedur e, were used. But the convention is firmly entrenched. The notation is
adopted from the A calculus, a mathematical formalism introduced by the mathematical logician Alonzo
Church (1941). Church developed the A calculus to provide arigorous foundation for studying the
notions of function and function application. The A calculus has become a basic tool for mathematical
investigations of the semantics of programming languages.

54 Understanding internal definitions well enough to be sure a program means what we intend it to mean
requires a more elaborate model of the evaluation process than we have presented in this chapter. The
subtleties do not arise with internal definitions of procedures, however. We will return to thisissuein
section 4.1.6, after we learn more about evaluation.

55 We have used 0.001 as arepresentative " small” number to indicate atolerance for the acceptable error
in a calculation. The appropriate tolerance for areal calculation depends upon the problem to be solved
and the limitations of the computer and the algorithm. Thisis often a very subtle consideration, requiring
help from a numerical analyst or some other kind of magician.

56 This can be accomplished using er r or , which takes as arguments a number of items that are printed
as error messages.

57 Try this during a boring lecture: Set your calculator to radians mode and then repeatedly pressthe cos
button until you obtain the fixed point.

58— (pronounced "maps to") is the mathematician's way of writing | anbda. y — x/y means
(lambda(y) (/ x y)),thatis, thefunction whosevaueaty isxly.

Structure and Interpretation of Computer Programs

59 Observe that this is a combination whose operator isitself acombination. Exercise 1.4 already

demonstrated the ability to form such combinations, but that was only atoy example. Here we begin to
see the real need for such combinations -- when applying a procedure that is obtained as the value
returned by a higher-order procedure.

60 See exercise 1.45 for afurther generalization.

61 Elementary calculus books usually describe Newton's method in terms of the sequence of
approximations X,+1 = X, - 9(X,)/Dg(X,,). Having language for talking about processes and using the idea
of fixed points simplifies the description of the method.

62 Newton's method does not always converge to an answer, but it can be shown that in favorable cases
each iteration doubles the number-of-digits accuracy of the approximation to the solution. In such cases,
Newton's method will converge much more rapidly than the half-interval method.

63 For finding square roots, Newton's method converges rapidly to the correct solution from any starting
point.

64 The notion of first-class status of programming-language elementsis due to the British computer
scientist Christopher Strachey (1916-1975).

65 We'll see examples of this after we introduce data structures in chapter 2.

66 The major implementation cost of first-class procedures is that allowing procedures to be returned as
values requires reserving storage for a procedure's free variables even while the procedure is not
executing. In the Scheme implementation we will study in section 4.1, these variables are stored in the

procedure's environment.

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

Chapter 2

Building Abstractions with Data

We now come to the decisive step of mathematical
abstraction: we forget about what the symbols stand for.

. .. [The mathematician] need not be idle; there are many
operations which he may carry out with these symbols,
without ever having to look at the things they stand for.

Hermann Weyl, The Mathematical Way of Thinking

We concentrated in chapter 1 on computational processes and on the role of proceduresin program
design. We saw how to use primitive data (numbers) and primitive operations (arithmetic operations),
how to combine procedures to form compound procedures through composition, conditionals, and the
use of parameters, and how to abstract procedures by using def i ne. We saw that a procedure can be
regarded as a pattern for the local evolution of a process, and we classified, reasoned about, and
performed simple algorithmic analyses of some common patterns for processes as embodied in
procedures. We also saw that higher-order procedures enhance the power of our language by enabling us
to manipulate, and thereby to reason in terms of, general methods of computation. Thisis much of the
essence of programming.

In this chapter we are going to look at more complex data. All the proceduresin chapter 1 operate on
simple numerical data, and simple data are not sufficient for many of the problems we wish to address
using computation. Programs are typically designed to model complex phenomena, and more often than
not one must construct computational objects that have several partsin order to model real-world
phenomenathat have several aspects. Thus, whereas our focus in chapter 1 was on building abstractions
by combining procedures to form compound procedures, we turn in this chapter to another key aspect of
any programming language: the means it provides for building abstractions by combining data objects to
form compound data.

Why do we want compound data in a programming language? For the same reasons that we want
compound procedures:. to e evate the conceptual level at which we can design our programs, to increase
the modularity of our designs, and to enhance the expressive power of our language. Just as the ability to
define procedures enables us to deal with processes at a higher conceptual level than that of the primitive
operations of the language, the ability to construct compound data objects enables us to deal with data at
a higher conceptual level than that of the primitive data objects of the language.

Consider the task of designing a system to perform arithmetic with rational numbers. We could imagine
an operation add- r at that takes two rational numbers and produces their sum. In terms of simple data,
arational number can be thought of as two integers. a numerator and a denominator. Thus, we could
design a program in which each rational number would be represented by two integers (a numerator and
adenominator) and where add- r at would be implemented by two procedures (one producing the

Structure and Interpretation of Computer Programs

numerator of the sum and one producing the denominator). But this would be awkward, because we
would then need to explicitly keep track of which numerators corresponded to which denominators. In a
system intended to perform many operations on many rational numbers, such bookkeeping details would
clutter the programs substantially, to say nothing of what they would do to our minds. It would be much
better if we could ""glue together" a numerator and denominator to form a pair -- a compound data object
-- that our programs could manipulate in away that would be consistent with regarding a rational number
as asingle conceptual unit.

The use of compound data also enables us to increase the modularity of our programs. If we can
manipulate rational numbers directly as objectsin their own right, then we can separate the part of our
program that deals with rational numbers per se from the details of how rational numbers may be
represented as pairs of integers. The genera technique of isolating the parts of a program that deal with
how data objects are represented from the parts of a program that deal with how data objects are used isa
powerful design methodology called data abstraction. We will see how data abstraction makes programs
much easier to design, maintain, and modify.

The use of compound data leads to areal increase in the expressive power of our programming language.
Consider the idea of forming a ""linear combination” ax + by. We might like to write a procedure that
would accept a, b, X, and y as arguments and return the value of ax + by. This presents no difficulty if the
arguments are to be numbers, because we can readily define the procedure

(define (linear-conbination a b x vy)

(+ (" ax) (* by)))

But suppose we are not concerned only with numbers. Suppose we would like to express, in procedural
terms, the idea that one can form linear combinations whenever addition and multiplication are defined --
for rational numbers, complex numbers, polynomials, or whatever. We could express this as a procedure
of the form

(define (linear-conbination a b x vy)
(add (mul a x) (mul b vy)))

where add and mul are not the primitive procedures + and * but rather more complex things that will
perform the appropriate operations for whatever kinds of datawe passin asthe argumentsa, b, x, andy.
The key point isthat the only thing | i near - conbi nat i on should need to know about a, b, x, andy
is that the procedures add and nul will perform the appropriate manipulations. From the perspective of
the procedurel i near - conbi nati on, itisirrelevant what a, b, x, andy are and even more
irrelevant how they might happen to be represented in terms of more primitive data. This same example
shows why it isimportant that our programming language provide the ability to manipulate compound
objects directly: Without this, there isno way for a procedure such asl i near - conbi nat i on to pass
its arguments along to add and mul without having to know their detailed structure.l We begin this
chapter by implementing the rational-number arithmetic system mentioned above. Thiswill form the
background for our discussion of compound data and data abstraction. As with compound procedures,
the main issue to be addressed is that of abstraction as a technique for coping with complexity, and we
will see how data abstraction enables us to erect suitable abstraction barriers between different parts of a
program.

We will see that the key to forming compound data is that a programming language should provide some

Structure and Interpretation of Computer Programs

kind of “"glue" so that data objects can be combined to form more complex data objects. There are many
possible kinds of glue. Indeed, we will discover how to form compound data using no special ~ data"
operations at all, only procedures. Thiswill further blur the distinction between “"procedure” and " data,"
which was already becoming tenuous toward the end of chapter 1. We will also explore some
conventional techniques for representing sequences and trees. One key ideain dealing with compound
dataisthe notion of closure -- that the glue we use for combining data objects should allow us to
combine not only primitive data objects, but compound data objects as well. Another key ideais that
compound data objects can serve as conventional interfaces for combining program modulesin
mix-and-match ways. We illustrate some of these ideas by presenting a simple graphics language that
exploits closure.

We will then augment the representational power of our language by introducing symbolic expressions --
data whose elementary parts can be arbitrary symbols rather than only numbers. We explore various
alternatives for representing sets of objects. We will find that, just as a given numerical function can be
computed by many different computational processes, there are many ways in which agiven data
structure can be represented in terms of simpler objects, and the choice of representation can have
significant impact on the time and space requirements of processes that manipulate the data. We will
investigate these ideas in the context of symbolic differentiation, the representation of sets, and the
encoding of information.

Next we will take up the problem of working with data that may be represented differently by different
parts of a program. This leads to the need to implement generic operations, which must handle many
different types of data. Maintaining modularity in the presence of generic operations requires more
powerful abstraction barriers than can be erected with simple data abstraction aone. In particular, we
introduce data-directed programming as a technique that allows individual data representations to be
designed in isolation and then combined additively (i.e., without modification). To illustrate the power of
this approach to system design, we close the chapter by applying what we have learned to the
implementation of a package for performing symbolic arithmetic on polynomials, in which the
coefficients of the polynomials can be integers, rational numbers, complex numbers, and even other
polynomials.

1 The ability to directly manipulate procedures provides an analogous increase in the expressive power of
a programming language. For example, in section 1.3.1 we introduced the sumprocedure, which takes a
proceduret er mas an argument and computes the sum of the values of t er mover some specified
interval. In order to define sum it is crucial that we be able to speak of a procedure such ast er mas an
entity inits own right, without regard for how t er mmight be expressed with more primitive operations.
Indeed, if we did not have the notion of “"a procedure,” it is doubtful that we would ever even think of the
possibility of defining an operation such assum Moreover, insofar as performing the summation is
concerned, the details of how t er mmay be constructed from more primitive operations are irrelevant.

[Go to first, previous, next page;, contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

2.1 Introduction to Data Abstraction

In section 1.1.8, we noted that a procedure used as an element in creating a more complex procedure
could be regarded not only as a collection of particular operations but also as a procedural abstraction.
That is, the details of how the procedure was implemented could be suppressed, and the particular
procedure itself could be replaced by any other procedure with the same overall behavior. In other words,
we could make an abstraction that would separate the way the procedure would be used from the details
of how the procedure would be implemented in terms of more primitive procedures. The analogous
notion for compound datais called data abstraction. Data abstraction is a methodology that enables usto
isolate how a compound data object is used from the details of how it is constructed from more primitive
data objects.

The basic idea of data abstraction isto structure the programs that are to use compound data objects so
that they operate on "abstract data.” That is, our programs should use datain such away asto make no
assumptions about the data that are not strictly necessary for performing the task at hand. At the same
time, a " concrete" data representation is defined independent of the programs that use the data. The
interface between these two parts of our system will be a set of procedures, called selectors and
constructors, that implement the abstract data in terms of the concrete representation. To illustrate this
technique, we will consider how to design a set of procedures for manipulating rational numbers.

2.1.1 Example: Arithmetic Operations for Rational Numbers

Suppose we want to do arithmetic with rational numbers. We want to be able to add, subtract, multiply,
and divide them and to test whether two rational numbers are equal.

L et us begin by assuming that we aready have away of constructing arational number from a numerator
and a denominator. We also assume that, given arational number, we have away of extracting (or
selecting) its numerator and its denominator. Let us further assume that the constructor and selectors are
available as procedures:

o (make-rat <n> <d>) returnstherationa number whose numerator isthe integer <n> and
whose denominator is the integer <d>.

e (numer <x>) returnsthe numerator of the rational number <x>.
o (denom <x>) returnsthe denominator of the rational number <x>.

We are using here a powerful strategy of synthesis: wishful thinking. We haven't yet said how a rational
number is represented, or how the procedures nuner , denom and nake- r at should be implemented.
Even so, if we did have these three procedures, we could then add, subtract, multiply, divide, and test
equality by using the following relations:

. e Rdy + nady

di dy d1ds

Structure and Interpretation of Computer Programs

iy e fydy — adg

di da dida

L I LY

dy dy dydy

4 d1 _m t'.']-'_:

’.l'.!.-'_."l.l"ri-'_: B d]_?'.!.-'_:

n_ d and coly o nids = nad)
d; ds

We can express these rules as procedures:

(define (add-rat x vy)
(make-rat (+ (* (nunmer x) (denomy))

(* (numer y) (denom x)))
(* (denom x) (denomy))))

(define (sub-rat x vy)
(make-rat (- (* (nuner x) (denomy))

(* (nunmer y) (denom x)))
(* (denom x) (denomy))))

(define (mul-rat x vy)
(make-rat (* (nunmer x) (numer y))

(* (denom x) (denomy))))

(define (div-rat x vy)
(make-rat (* (nuner x) (denomy))

(* (denom x) (numer y))))

(define (equal-rat? x vy)
(= (* (nunmer x) (denomy))
(* (numer y) (denomx))))

Now we have the operations on rational numbers defined in terms of the selector and constructor
procedures nuner , denom and make- r at . But we haven't yet defined these. What we need is some
way to glue together a numerator and a denominator to form arational number.

Pairs

To enable us to implement the concrete level of our data abstraction, our language provides a compound
structure called a pair, which can be constructed with the primitive procedure cons. This procedure
arguments and returns a compound data object that contains the two arguments as parts. Given
apair, we can extract the parts using the primitive procedures car and cdr .2 Thus, we can use cons,

takes two

car, and

cdr asfollows:

(define x (cons 1 2))

(car x)
1

Structure and Interpretation of Computer Programs

(cdr x)
2

Notice that a pair is a data object that can be given aname and manipulated, just like a primitive data
object. Moreover, cons can be used to form pairs whose elements are pairs, and so on:

(define x (cons 1 2))
(define y (cons 3 4))
(define z (cons x y))

(car (car 2z2))
1

(car (cdr 2z2))
3

In section 2.2 we will see how this ability to combine pairs means that pairs can be used as

general-purpose building blocks to create all sorts of complex data structures. The single compound-data
primitive pair, implemented by the procedurescons, car , and cdr , isthe only glue we need. Data
objects constructed from pairs are called list-structured data.

Representing rational numbers

Pairs offer anatural way to complete the rational-number system. Simply represent a rational number as
apair of two integers. a numerator and a denominator. Then make- r at , nuner , and denomare
readily implemented as follows:3

(define (nmake-rat n d) (cons n d))
(define (numer x) (car x))

(define (denom x) (cdr x))

Also, in order to display the results of our computations, we can print rational numbers by printing the
numerator, a slash, and the denominator:4

(define (print-rat x)
(new i ne)
(di splay (nunmer x))
(display "/")
(di splay (denom x)))

Now we can try our rational-number procedures:

(define one-half (make-rat 1 2))

Structure and Interpretation of Computer Programs

(print-rat one-half)
1/ 2

(define one-third (make-rat 1 3))
(print-rat (add-rat one-half one-third))
5/ 6

(print-rat (mul-rat one-half one-third))
1/ 6

(print-rat (add-rat one-third one-third))
6/9

Asthe final example shows, our rational-number implementation does not reduce rational numbers to
lowest terms. We can remedy this by changing make- r at . If we have agcd procedure like the onein
section 1.2.5 that produces the greatest common divisor of two integers, we can use gcd to reduce the

numerator and the denominator to lowest terms before constructing the pair:

(define (nmake-rat n d)

(let ((g (gcd n d)))
(cons (/ ng) (/ dg))))

Now we have

(print-rat (add-rat one-third one-third))
2/ 3

as desired. This modification was accomplished by changing the constructor make- r at without
changing any of the procedures (such asadd- r at and mul - r at) that implement the actual operations.

Exercise 2.1. Define abetter version of make- r at that handles both positive and negative arguments.
Make- r at should normalize the sign so that if the rational number is positive, both the numerator and
denominator are positive, and if the rational number is negative, only the numerator is negative.

2.1.2 Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us consider some of
the issues raised by the rational-number example. We defined the rational-number operations in terms of
aconstructor make- r at and selectorsnunmer and denom In general, the underlying idea of data
abstraction isto identify for each type of data object a basic set of operations in terms of which all
manipulations of data objects of that type will be expressed, and then to use only those operationsin
manipulating the data.

We can envision the structure of the rational-number system as shown in figure 2.1. The horizontal lines
represent abstraction barriersthat isolate different “"levels' of the system. At each level, the barrier
separates the programs (above) that use the data abstraction from the programs (below) that implement
the data abstraction. Programs that use rational numbers manipulate them solely in terms of the

Structure and Interpretation of Computer Programs

procedures supplied “for public use" by the rational-number package: add- r at , sub-rat , nul - rat
di v-rat,andequal - rat ?. These, in turn, are implemented solely in terms of the constructor and
selectorsmake- r at , nuner , and denom which themselves are implemented in terms of pairs. The
details of how pairs are implemented are irrelevant to the rest of the rational-number package so long as
pairs can be manipulated by the use of cons, car , and cdr . In effect, procedures at each level are the
interfaces that define the abstraction barriers and connect the different levels.

—| Progmms that use cational oumbers —

Rational numbers in problem domain

add—rat sub—rat ...

Ratiooal numbers as numecators and denominators

make—rat numer denom

Ratiopal numbers as pairs

cons car cde

However pai [s ae imp lemented

Figure 2.1: Data-abstraction barriersin the rational-number package.

This simple idea has many advantages. One advantage is that it makes programs much easier to maintain
and to modify. Any complex data structure can be represented in a variety of ways with the primitive
data structures provided by a programming language. Of course, the choice of representation influences
the programs that operate on it; thus, if the representation were to be changed at some later time, all such
programs might have to be modified accordingly. Thistask could be time-consuming and expensive in
the case of large programs unless the dependence on the representation were to be confined by design to
avery few program modules.

For example, an alternate way to address the problem of reducing rational numbers to lowest termsisto
perform the reduction whenever we access the parts of arational number, rather than when we construct
it. Thisleads to different constructor and selector procedures:

(define (nmake-rat n d)
(cons n d))
(define (nunmer x)

(let ((g (gcd (car x) (cdr x))))
(/ (car x) 9)))
(define (denom x)
(let ((g (gcd (car x) (cdr x))))
(/ (cdr x) 9)))

The difference between this implementation and the previous one lies in when we compute thegcd. If in
our typical use of rational numbers we access the numerators and denominators of the same rational

Structure and Interpretation of Computer Programs

numbers many times, it would be preferable to compute the gcd when the rational numbers are
constructed. If not, we may be better off waiting until access time to compute the gcd. In any case, when
we change from one representation to the other, the procedures add- r at , sub- r at , and so on do not
have to be modified at all.

Constraining the dependence on the representation to a few interface procedures helps us design
programs as well as modify them, because it allows us to maintain the flexibility to consider alternate
implementations. To continue with our simple example, suppose we are designing arational-number
package and we can't decide initially whether to perform the gcd at construction time or at selection
time. The data-abstraction methodology gives us away to defer that decision without losing the ability to
make progress on the rest of the system.

Exercise 2.2. Consider the problem of representing line segmentsin a plane. Each segment is
represented as a pair of points: a starting point and an ending point. Define a constructor

make- segnent and selectorsst art - segnent and end- segnent that define the representation of
segments in terms of points. Furthermore, a point can be represented as a pair of numbers: the x
coordinate and the y coordinate. Accordingly, specify a constructor make- poi nt and selectors

X- poi nt andy- poi nt that define this representation. Finally, using your selectors and constructors,
define a procedure m dpoi nt - segnent that takes aline segment as argument and returns its midpoint
(the point whose coordinates are the average of the coordinates of the endpoints). To try your procedures,
you'll need away to print points:

(define (print-point p)

(new i ne)

(display "(")

(di splay (x-point p))
(display ",")

(di splay (y-point p))
(display ")"))

Exercise 2.3. Implement arepresentation for rectanglesin aplane. (Hint: Y ou may want to make use of
exercise 2.2.) In terms of your constructors and selectors, create procedures that compute the perimeter
and the area of a given rectangle. Now implement a different representation for rectangles. Can you
design your system with suitable abstraction barriers, so that the same perimeter and area procedures will
work using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in section 2.1.1 by implementing the rational-number
operationsadd- r at , sub-r at , and so on in terms of three unspecified procedures: make-r at ,
nuner , and denom At that point, we could think of the operations as being defined in terms of data
objects -- numerators, denominators, and rational numbers -- whose behavior was specified by the latter
three procedures.

But exactly what is meant by data? It is not enough to say ~“whatever isimplemented by the given
selectors and constructors.” Clearly, not every arbitrary set of three procedures can serve as an
appropriate basis for the rational-number implementation. We need to guarantee that, if we construct a

Structure and Interpretation of Computer Programs

rational number x from a pair of integersn and d, then extracting the nuner and the denomof x and
dividing them should yield the same result as dividing n by d. In other words, make- r at , nuner , and
denommust satisfy the condition that, for any integer n and any non-zero integer d, if x is(make- r at
n d), then

|:IlL'I.IEIEI' I.'{j _ Il

(dennm :{} d

In fact, thisisthe only condition make- r at , nuner , and denommust fulfill in order to form a suitable
basis for arational-number representation. In general, we can think of data as defined by some collection
of selectors and constructors, together with specified conditions that these procedures must fulfill in
order to be avalid representation.>

This point of view can serve to define not only “"high-level" data objects, such as rational numbers, but
lower-level objects as well. Consider the notion of a pair, which we used in order to define our rational
numbers. We never actually said what a pair was, only that the language supplied procedurescons,
car,and cdr for operating on pairs. But the only thing we need to know about these three operationsis
that if we glue two objects together using cons we can retrieve the objectsusing car and cdr . That is,
the operations satisfy the condition that, for any objectsx andy, if zis(cons x y) then(car z) is
x and (cdr z) isy. Indeed, we mentioned that these three procedures are included as primitivesin our
language. However, any triple of procedures that satisfies the above condition can be used as the basis
for implementing pairs. This point isillustrated strikingly by the fact that we could implement cons,
car, and cdr without using any data structures at al but only using procedures. Here are the
definitions:

(define (cons x vy)
(define (dispatch m
(cond ((= mO) x)
((=m1l) vy)
(else (error "Argunment not O or 1 -- CONS' m)))
di spat ch)

(define (car z) (z 0))

(define (cdr z) (z 1))

This use of procedures corresponds to nothing like our intuitive notion of what data should be.
Nevertheless, all we need to do to show that thisisavalid way to represent pairsisto verify that these
procedures satisfy the condition given above.

The subtle point to notice is that the value returned by (cons x y) isaprocedure -- namely the
internally defined procedure di spat ch, which takes one argument and returns either x or y depending
on whether the argument is 0 or 1. Correspondingly, (car z) isdefined to apply z to 0. Hence, if z is
the procedure formed by (cons x YY), then z applied to O will yield x. Thus, we have shown that
(car (cons x y)) vyieldsx, asdesired. Smilarly, (cdr (cons x y)) appliesthe procedure
returned by (cons x y) to1, whichreturnsy. Therefore, this procedural implementation of pairsisa
valid implementation, and if we access pairs using only cons, car , and cdr we cannot distinguish this

Structure and Interpretation of Computer Programs

implementation from one that uses " "real" data structures.

The point of exhibiting the procedural representation of pairsis not that our language works this way
(Scheme, and Lisp systemsin general, implement pairs directly, for efficiency reasons) but that it could
work thisway. The procedural representation, although obscure, is a perfectly adequate way to represent
pairs, since it fulfills the only conditions that pairs need to fulfill. This example also demonstrates that
the ability to manipul ate procedures as objects automatically provides the ability to represent compound
data. This may seem a curiosity now, but procedural representations of data will play acentral role in our
programming repertoire. This style of programming is often called message passing, and we will be
using it as abasic tool in chapter 3 when we address the issues of modeling and simulation.

Exercise 2.4. Hereisan alternative procedural representation of pairs. For this representation, verify that
(car (cons x y)) yieldsx for any objectsx andy.

(define (cons x vy)
(lanmbda (m (mx y)))

(define (car z)
(z (lanbda (p) p)))

What is the corresponding definition of cdr ? (Hint: To verify that this works, make use of the
substitution model of section 1.1.5.)

Exercise 2.5. Show that we can represent pairs of nonnegative integers using only numbers and
arithmetic operations if we represent the pair a and b as the integer that is the product 22 3b. Give the
corresponding definitions of the procedurescons, car, and cdr .

Exercise 2.6. In case representing pairs as procedures wasn't mind-boggling enough, consider that, in a
language that can manipulate procedures, we can get by without numbers (at least insofar as nonnegative
integers are concerned) by implementing O and the operation of adding 1 as

(define zero (lanmbda (f) (lanbda (x) Xx)))

(define (add-1 n)
(lambda (f) (lambda (x) (f ((n f) x)))))

This representation is known as Church numerals, after its inventor, Alonzo Church, the logician who
invented the A calculus.

Defineone and t wo directly (not intermsof zer o and add- 1). (Hint: Use substitution to evaluate
(add-1 zero0)). Giveadirect definition of the addition procedure + (not in terms of repeated
application of add- 1).

2.1.4 Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineering problems. One feature she wants
to provide in her system is the ability to manipulate inexact quantities (such as measured parameters of
physical devices) with known precision, so that when computations are done with such approximate
guantities the results will be numbers of known precision.

Structure and Interpretation of Computer Programs

Electrical engineerswill be using Alyssa's system to compute electrical quantities. It is sometimes
necessary for them to compute the value of a parallel equivalent resistance R, of two resistors Ry and R,

using the formula

1
R = -
F 17k +1I.I'R-'_:

Resistance values are usually known only up to some tolerance guaranteed by the manufacturer of the
resistor. For example, if you buy aresistor labeled * 6.8 ohms with 10% tolerance" you can only be sure
that the resistor has a resistance between 6.8 - 0.68 = 6.12 and 6.8 + 0.68 = 7.48 ohms. Thus, if you have
a6.8-ohm 10% resistor in parallel with a4.7-ohm 5% resistor, the resistance of the combination can
range from about 2.58 ohms (if the two resistors are at the lower bounds) to about 2.97 ohms (if the two
resistors are at the upper bounds).

Alyssasideaistoimplement interval arithmetic" as a set of arithmetic operations for combining
“intervals' (objects that represent the range of possible values of an inexact quantity). The result of
adding, subtracting, multiplying, or dividing two intervalsisitself an interval, representing the range of
the resullt.

Alyssa postul ates the existence of an abstract object called an ““interval™ that has two endpoints: a lower
bound and an upper bound. She also presumes that, given the endpoints of an interval, she can construct
the interval using the data constructor make- i nt er val . Alyssafirst writes a procedure for adding two
intervals. She reasons that the minimum value the sum could be is the sum of the two lower bounds and
the maximum value it could be is the sum of the two upper bounds:

(define (add-interval x vy)
(make-interval (+ (lower-bound x) (| ower-bound y))
(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the minimum and the maximum of the
products of the bounds and using them as the bounds of the resulting interval. (M n and mex are
primitives that find the minimum or maximum of any number of arguments.)

(define (mul-interval x vy)
(let ((pl (* (lower-bound x) (lower-bound y)))
(p2 (* (lower-bound x) (upper-bound y)))
(p3 (* (upper-bound x) (lower-bound y)))
(p4 (* (upper-bound x) (upper-bound y)))

(make-interval (mn pl p2 p3 p4)
(max pl p2 p3 p4))))

To divide two intervals, Alyssa multiplies the first by the reciprocal of the second. Note that the bounds

of the reciprocal interval are the reciprocal of the upper bound and the reciprocal of the lower bound, in
that order.

)

(define (div-interval x vy)
(mul -interval x
(make-interval (/ 1.0 (upper-bound y))

Structure and Interpretation of Computer Programs

(/ 1.0 (l ower-bound y)))))

Exercise 2.7. Alyssa's program isincomplete because she has not specified the implementation of the
interval abstraction. Here is a definition of the interval constructor:

(define (make-interval a b) (cons a b))
Define selectors upper - bound and | ower - bound to compl ete the implementation.

Exercise 2.8. Using reasoning analogous to Alyssa's, describe how the difference of two intervals may
be computed. Define a corresponding subtraction procedure, called sub- i nt er val .

Exercise 2.9. Thewidth of aninterval is half of the difference between its upper and lower bounds. The
width is ameasure of the uncertainty of the number specified by the interval. For some arithmetic
operations the width of the result of combining two intervalsis afunction only of the widths of the
argument intervals, whereas for others the width of the combination is not afunction of the widths of the
argument intervals. Show that the width of the sum (or difference) of two intervalsis a function only of
the widths of the intervals being added (or subtracted). Give examplesto show that thisis not true for
multiplication or division.

Exercise 2.10. Ben Bitdiddle, an expert systems programmer, looks over Alyssa's shoulder and
comments that it is not clear what it meansto divide by an interval that spans zero. Modify Alyssa's code
to check for this condition and to signal an error if it occurs.

Exercise 2.11. In passing, Ben aso cryptically comments: ~ By testing the signs of the endpoints of the
intervals, it is possible to break nul - i nt er val into nine cases, only one of which requires more than
two multiplications." Rewrite this procedure using Ben's suggestion.

After debugging her program, Alyssa showsit to a potential user, who complains that her program solves
the wrong problem. He wants a program that can deal with numbers represented as a center value and an
additive tolerance; for example, he wants to work with intervals such as 3.5+ 0.15 rather than [3.35,
3.65]. Alyssareturns to her desk and fixes this problem by supplying an alternate constructor and
alternate selectors:

(define (nmake-center-width c w)
(make-interval (- cw) (+cw))
(define (center i)
(/ (+ (lower-bound i) (upper-bound i)) 2))
(define (width i)
(/ (- (upper-bound i) (lower-bound i)) 2))

Unfortunately, most of Alyssa's users are engineers. Real engineering situations usualy involve
measurements with only a small uncertainty, measured as the ratio of the width of the interval to the
midpoint of the interval. Engineers usually specify percentage tolerances on the parameters of devices, as
in the resistor specifications given earlier.

Exercise 2.12. Define aconstructor make- cent er - per cent that takes a center and a percentage
tolerance and produces the desired interval. Y ou must also define a selector per cent that produces the
percentage tolerance for agiven interval. The cent er selector isthe same as the one shown above.

Structure and Interpretation of Computer Programs

Exercise 2.13. Show that under the assumption of small percentage tolerances there isasimple formula
for the approximate percentage tolerance of the product of two intervalsin terms of the tolerances of the
factors. You may simplify the problem by assuming that all numbers are positive.

After considerable work, Alyssa P. Hacker delivers her finished system. Several years later, after she has
forgotten all about it, she gets afrenzied call from an irate user, Lem E. Tweakit. It seemsthat Lem has
noticed that the formulafor parallel resistors can be written in two algebraically equivalent ways.

iy R
Ry + K>

and

1

He has written the following two programs, each of which computes the parallel-resistors formula
differently:

(define (parl rl r2)

(div-interval (mul-interval rl r2)

(add-interval rl r2)))

(define (par2 rl r2)

(let ((one (make-interval 1 1)))

(div-interval one
(add-interval (div-interval one rl)
(div-interval one r2)))))

Lem complains that Alyssa's program gives different answers for the two ways of computing. Thisisa
serious complaint.

Exercise 2.14. Demonstrate that Lem isright. Investigate the behavior of the system on avariety of
arithmetic expressions. Make some intervals A and B, and use them in computing the expressions A/A
and A/B. You will get the most insight by using intervals whose width is a small percentage of the center
value. Examine the results of the computation in center-percent form (see exercise 2.12).

Exercise 2.15. EvaLu Ator, another user, has aso noticed the different intervals computed by different
but algebraically equivaent expressions. She says that aformulato compute with intervals using Alyssa's
system will produce tighter error bounds if it can be written in such aform that no variable that
represents an uncertain number is repeated. Thus, she says, par 2 isa " better" program for parallel
resistances than par 1. Is sheright? Why?

Exercise 2.16. Explain, in general, why equivalent algebraic expressions may lead to different answers.
Can you devise an interval -arithmetic package that does not have this shortcoming, or is thistask
Impossible? (Warning: This problem is very difficult.)

2 The name cons standsfor ““construct.” The namescar and cdr derive from the original
implementation of Lisp on the IBM 704. That machine had an addressing scheme that allowed one to

Structure and Interpretation of Computer Programs

reference the ““address" and ~"decrement” parts of a memory location. Car stands for ~ Contents of
Address part of Register" and cdr (pronounced " could-er") stands for * Contents of Decrement part of
Register."

3 Another way to define the selectors and constructor is

(define make-rat cons)
(define nuner car)
(define denom cdr)

Thefirst definition associates the name make- r at with the value of the expression cons, which isthe
primitive procedure that constructs pairs. Thus make- r at and cons are names for the same primitive
constructor.

Defining selectors and constructors in thisway is efficient: Instead of make- r at calling cons,
make-r at iscons, sothereisonly one procedure called, not two, when make- r at iscalled. On the
other hand, doing this defeats debugging aids that trace procedure calls or put breakpoints on procedure
calls: You may want to watch make- r at being called, but you certainly don't want to watch every call
tocons.

We have chosen not to use this style of definition in this book.

4D spl ay isthe Scheme primitive for printing data. The Scheme primitive newl i ne startsanew line
for printing. Neither of these procedures returns a useful value, sointhe usesof pri nt - r at below, we
show only what pri nt - r at prints, not what the interpreter prints as the value returned by
print-rat.

5 Surprisingly, thisideais very difficult to formulate rigorously. There are two approaches to giving such
aformulation. One, pioneered by C. A. R. Hoare (1972), is known as the method of abstract models. It
formalizes the " procedures plus conditions” specification as outlined in the rational-number example
above. Note that the condition on the rational -number representation was stated in terms of facts about
integers (equality and division). In general, abstract models define new kinds of data objects in terms of
previously defined types of data objects. Assertions about data objects can therefore be checked by
reducing them to assertions about previously defined data objects. Another approach, introduced by
Zillesat MIT, by Goguen, Thatcher, Wagner, and Wright at IBM (see Thatcher, Wagner, and Wright
1978), and by Guttag at Toronto (see Guttag 1977), is called algebraic specification. It regards the
““procedures” as elements of an abstract algebraic system whose behavior is specified by axioms that
correspond to our " conditions," and uses the techniques of abstract algebrato check assertions about data
objects. Both methods are surveyed in the paper by Liskov and Zilles (1975).

[Go to first, previous, next page;, contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

2.2 Hierarchical Data and the Closure Property

Aswe have seen, pairs provide a primitive ""glue" that we can use to construct compound data objects.
Figure 2.2 shows a standard way to visualize apair -- in this case, the pair formed by (cons 1 2).In
this representation, which is called box-and-pointer notation, each object is shown as a pointer to a box.
The box for a primitive object contains a representation of the object. For example, the box for a number
contains anumeral. The box for apair is actually adouble box, the left part containing (a pointer to) the
car of the pair and the right part containing the cdr .

We have already seen that cons can be used to combine not only numbers but pairs as well. (Y ou made
use of thisfact, or should have, in doing exercises 2.2 and 2.3.) As a consequence, pairs provide a

universal building block from which we can construct all sorts of data structures. Figure 2.3 shows two
ways to use pairs to combine the numbers 1, 2, 3, and 4.

—| 4| e

Figure 2.2: Box-and-pointer representation of (cons 1 2).

—_—| i L | T- —_—=| § 7 4
]
L 3 4 ¥
tle 11y
vy ¥ v
1 e 1 z =
{cons (cona 1 2} focons (cons 1
foonm 2 4)) (oconm £ F))
4}

Figure 2.3: Two waysto combine 1, 2, 3, and 4 using pairs.

The ability to create pairs whose elements are pairs is the essence of list structure's importance as a
representational tool. We refer to this ability as the closure property of cons. In general, an operation
for combining data objects satisfies the closure property if the results of combining things with that
operation can themselves be combined using the same operation.t Closure is the key to power in any
means of combination because it permits us to create hierarchical structures -- structures made up of
parts, which themselves are made up of parts, and so on.

From the outset of chapter 1, we've made essential use of closure in dealing with procedures, because all
but the very ssimplest programs rely on the fact that the elements of a combination can themselves be
combinations. In this section, we take up the consequences of closure for compound data. We describe
some conventional techniques for using pairs to represent sequences and trees, and we exhibit a graphics

Structure and Interpretation of Computer Programs

language that illustrates closure in avivid way.”

2.2.1 Representing Sequences

' t ' '
£ o4 4

1 z 3 4

Figure 2.4: The sequence 1, 2, 3, 4 represented as a chain of pairs.

One of the useful structures we can build with pairsis a sequence -- an ordered collection of data objects.
There are, of course, many ways to represent sequences in terms of pairs. One particularly
straightforward representation is illustrated in figure 2.4, where the sequence 1, 2, 3, 4 is represented as a
chain of pairs. Thecar of each pair is the corresponding item in the chain, and the cdr of the pair isthe
next pair in the chain. Thecdr of thefina pair signalsthe end of the sequence by pointing to a
distinguished value that is not a pair, represented in box-and-pointer diagrams as adiagonal line and in
programs as the value of the variable ni | . The entire sequence is constructed by nested cons
operations:

(cons 1
(cons 2
(cons 3
(cons 4 nil))))

Such a sequence of pairs, formed by nested conses, iscalled alist, and Scheme provides a primitive
called | i st to helpin constructing lists.8 The above sequence could be produced by (1ist 1 2 3
4) . In generd,

(list <a;> <a,> ... <a,>)
Isequivalent to
(cons <a;> (cons <a,> (cons ... (cons <a,> nil) ...)))

Lisp systems conventionally print lists by printing the sequence of elements, enclosed in parentheses.
Thus, the data object infigure 2.4 isprintedas(1 2 3 4):

(define one-through-four (list 1 2 3 4))

one-t hr ough- f our
(12 3 4)

Be careful not to confusethe expression(list 1 2 3 4) withthelist(1 2 3 4),whichisthe
result obtained when the expression is evaluated. Attempting to evaluate the expression (1 2 3 4)
will signal an error when the interpreter tries to apply the procedure 1 to arguments 2, 3, and 4.

We can think of car as selecting the first itemin thelist, and of cdr as selecting the sublist consisting

Structure and Interpretation of Computer Programs

of all but thefirst item. Nested applications of car and cdr can be used to extract the second, third, and
subsequent itemsin the list.? The constructor cons makes alist like the original one, but with an
additional item at the beginning.

(car one-through-four)

1

(cdr one-through-four)

(2 3 4)

(car (cdr one-through-four))
2

(cons 10 one-through-four)
(10 1 2 3 4)

(cons 5 one-through-four)
(512 3 4

Thevalue of ni | , used to terminate the chain of pairs, can be thought of as a sequence of no el ements,
the empty list. The word nil is a contraction of the Latin word nihil, which means " nothing."10

List operations

The use of pairs to represent sequences of elements as lists is accompanied by conventional
programming techniques for manipulating lists by successively ““cdr ing down" the lists. For example,
the procedurel i st - r ef takes asarguments alist and a number n and returns the nth item of thelist. It
Is customary to number the elements of the list beginning with 0. The method for computing | i st - r ef
Is the following:

e Forn=0,1ist-ref shouldreturnthecar of thelist.
o Otherwise, | i st -ref should returnthe (n- 1)st item of thecdr of thelist.

(define (list-ref itenms n)
(if (=n 0
(car itens)
(list-ref (cdr itens) (- n 1))))
(define squares (list 1 4 9 16 25))

(list-ref squares 3)
16

Often we cdr down thewholelist. To aid in this, Scheme includes a primitive predicate nul | ?, which
tests whether its argument is the empty list. The procedure | engt h, which returns the number of items
inalist, illustrates this typical pattern of use:

(define (length itens)
(if (null? itens)
0

Structure and Interpretation of Computer Programs

(+ 1 (length (cdr itens)))))
(define odds (list 1 3 5 7))

(1 engt h odds)
4

Thel engt h procedure implements a simple recursive plan. The reduction step is:
o Thel engt h of any listis1 plusthel engt h of thecdr of thelist.

Thisis applied successively until we reach the base case:
« Thel engt h of theempty list isO.

We could also compute | engt h inaniterative style:

(define (length itens)
(define (length-iter a count)
(if (null? a)
count
(length-iter (cdr a) (+ 1 count))))
(length-iter itens 0))

Another conventional programming techniqueisto " "cons up" an answer list while cdr ing down alist,
asin the procedure append, which takes two lists as arguments and combines their elements to make a
new list:

(append squar es odds)
(14916 251357

(append odds squares)
(1357149 16 25

Append isaso implemented using arecursive plan. Toappend listsl i st 1 and| i st 2, do the
following:

o Iflistlistheempty list, thentheresultisjustli st 2.
o Otherwise, append thecdr of i st1andl i st 2,andcons thecar of | i st 1 onto the result:

(define (append listl |ist2)
(if (null? listl)
list2
(cons (car listl) (append (cdr listl) list2))))

Exercise 2.17. Defineaprocedurel ast - pai r that returnsthe list that contains only the last element
of agiven (nonempty) list:

(last-pair (list 23 72 149 34))
(34)

Exercise 2.18. Defineaprocedurer ever se that takesalist as argument and returns alist of the same
elementsin reverse order:

Structure and Interpretation of Computer Programs

(reverse (list 1 4 9 16 25))
(25 16 9 4 1)

Exercise 2.19. Consider the change-counting program of section 1.2.2. It would be nice to be able to

easily change the currency used by the program, so that we could compute the number of ways to change
a British pound, for example. Asthe program is written, the knowledge of the currency is distributed
partly into the proceduref i r st - denom nat i on and partly into the procedure count - change
(which knows that there are five kinds of U.S. coins). It would be nicer to be able to supply alist of coins
to be used for making change.

We want to rewrite the procedure cc so that its second argument is alist of the values of the coins to use
rather than an integer specifying which coins to use. We could then have lists that defined each kind of
currency:

(define us-coins (list 50 25 10 5 1))
(define uk-coins (list 100 50 20 10 5 2 1 0.5))

We could then call cc asfollows:

(cc 100 us-coins)
292

To do thiswill require changing the program cc somewhat. It will still have the same form, but it will
access its second argument differently, as follows:

(define (cc anmpunt coi n-val ues)
(cond ((= anmount 0) 1)
((or (< anmpunt 0) (no-nore? coin-values)) 0)
(el se
(+ (cc anount
(except-first-denom nation coi n-val ues))
(cc (- anount
(first-denom nation coin-val ues))
coin-values)))))

Define the proceduresf i r st - denom nati on,except-first-denom nati on,and
no- nor e? in terms of primitive operations on list structures. Does the order of thelist coi n- val ues
affect the answer produced by cc? Why or why not?

Exercise 2.20. Theprocedures+, * ,and | i st take arbitrary numbers of arguments. One way to define
such proceduresisto use def i ne with dotted-tail notation. In a procedure definition, a parameter list
that has a dot before the last parameter name indicates that, when the procedureis called, the initial
parameters (if any) will have as values the initial arguments, as usual, but the final parameter's value will
be alist of any remaining arguments. For instance, given the definition

(define (f xy . z) <body>)

the procedure f can be called with two or more arguments. If we evaluate

Structure and Interpretation of Computer Programs

(f 12345 6)

then in the body of f , x will be 1,y will be 2, and z will bethelist (3 4 5 6) . Giventhe definition
(define (g . w) <body>)

the procedure g can be called with zero or more arguments. If we evaluate

(g12345 6)

then in the body of g, wwill bethelist(1 2 3 4 5 6) .1

Use this notation to write a procedure sane- pari t y that takes one or more integers and returns a list
of al the arguments that have the same even-odd parity as the first argument. For example,

(sanme-parity 1 2 345 6 7)
(1 357)

(sanme-parity 2 345 6 7)
(2 4 6)

Mapping over lists

One extremely useful operation isto apply some transformation to each element in alist and generate the
list of results. For instance, the following procedure scales each number in alist by a given factor:

(define (scale-list itens factor)
(if (null? itens)
ni |
(cons (* (car itens) factor)
(scale-list (cdr itens) factor))))
(scale-list (list 1 2 3 4 5) 10)
(10 20 30 40 50)

We can abstract this general idea and capture it as a common pattern expressed as a higher-order
procedure, just asin section 1.3. The higher-order procedure hereis called map. Map takes as arguments

a procedure of one argument and alist, and returns alist of the results produced by applying the
procedure to each element in the list:12

(define (map proc itens)

(if (null? itens)

ni
(cons (proc (car itens))
(map proc (cdr itens)))))
(map abs (list -10 2.5 -11.6 17))
(10 2.5 11.6 17)
(map (lanmbda (x) (* X X))
(list 1 2 3 4))

(1 4 9 16)

Structure and Interpretation of Computer Programs

Now we can give anew definition of scal e- | i st intermsof map:

(define (scale-list itens factor)
(map (lanmbda (x) (* x factor))
i tens))

Map isan important construct, not only because it captures a common pattern, but because it establishes
ahigher level of abstraction in dealing with lists. In the original definition of scal e-11i st , the
recursive structure of the program draws attention to the element-by-element processing of thelist.
Definingscal e- 1 i st intermsof map suppresses that level of detail and emphasizes that scaling
transforms alist of elementsto alist of results. The difference between the two definitionsis not that the
computer is performing adifferent process (it isn't) but that we think about the process differently. In
effect, map helps establish an abstraction barrier that isolates the implementation of procedures that
transform lists from the details of how the elements of the list are extracted and combined. Like the
barriers shown in figure 2.1, this abstraction gives us the flexibility to change the low-level details of
how sequences are implemented, while preserving the conceptual framework of operations that transform
sequences to sequences. Section 2.2.3 expands on this use of sequences as a framework for organizing

programs.

Exercise 2.21. The proceduresquar e- 1 i st takesalist of numbers as argument and returns alist of
the squares of those numbers.

(square-list (list 1 2 3 4))
(1 4 9 16)

Here are two different definitions of squar e- | i st . Complete both of them by filling in the missing
expressions:

(define (square-list itens)
(if (null? itens)
ni |
(cons <??> <?7>)))
(define (square-list itens)
(map <??7> <?7>))

Exercise 2.22. Louis Reasoner triesto rewritethefirst squar e- | i st procedure of exercise 2.21 so
that it evolves an iterative process:

(define (square-list itens)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons (square (car things))
answer))))
(iter itens nil))

Unfortunately, defining squar e- | i st thisway produces the answer list in the reverse order of the one

Structure and Interpretation of Computer Programs

desired. Why?
Louisthen triesto fix his bug by interchanging the argumentsto cons:

(define (square-list itens)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons answer
(square (car things))))))
(iter itens nil))

This doesn't work either. Explain.

Exercise 2.23. The proceduref or - each issimilar to map. It takes as arguments a procedure and a list
of elements. However, rather than forming alist of theresults, f or - each just applies the procedure to
each of the elements in turn, from left to right. The values returned by applying the procedure to the
elements are not used at all -- f or - each isused with procedures that perform an action, such as
printing. For example,

(for-each (lanbda (x) (newline) (display x))
(l'ist 57 321 88))

57

321

88

The value returned by the call to f or - each (not illustrated above) can be something arbitrary, such as
true. Give an implementation of f or - each.

2.2.2 Hierarchical Structures

The representation of sequencesin terms of lists generalizes naturally to represent sequences whose
elements may themselves be sequences. For example, we canregard theobject ((1 2) 3 4)
constructed by

(cons (list 1 2) (list 3 4))

asalist of three items, thefirst of whichisitself alist, (1 2) . Indeed, thisis suggested by the formin
which the result is printed by the interpreter. Figure 2.5 shows the representation of this structurein

terms of pairs.

Structure and Interpretation of Computer Programs

(3 43
L]
(el 23 2 43 _m
— == " = L
t1 2} !
—==| | T W // i 4
1 2

Figure 2.5: Structureformedby (cons (list 1 2) (list 3 4)).

Another way to think of sequences whose elements are sequencesis as trees. The elements of the
sequence are the branches of the tree, and elements that are themsel ves sequences are subtrees.
Figure 2.6 shows the structure in figure 2.5 viewed as atree.

[f1 =) 3 4)

(L 23

1 2
Figure2.6: Thelist structurein figure 2.5 viewed as atree.
Recursion is anatural tool for dealing with tree structures, since we can often reduce operations on trees
to operations on their branches, which reduce in turn to operations on the branches of the branches, and

so on, until we reach the leaves of the tree. As an example, compare thel engt h procedure of
section 2.2.1 with the count - | eaves procedure, which returns the total number of leaves of atree:

(define x (cons (list 1 2) (list 3 4)))
(length x)

3

(count - | eaves x)

4

(list x Xx)
(((12) 34) ((12) 34))

(length (Iist x x))
2

(count -l eaves (list x X))

Structure and Interpretation of Computer Programs

8

To implement count - | eaves, recall the recursive plan for computing | engt h:
« Lengthof alistx islplusl engt h of thecdr of x.
« Lengt h of theempty listisO.

Count - | eaves issimilar. The value for the empty list is the same:
o Count - | eaves of theempty listisO.

But in the reduction step, where we strip off the car of the list, we must take into account that the car
may itself be atree whose leaves we need to count. Thus, the appropriate reduction step is

o Count -| eaves of atreex iscount - | eaves of thecar of x pluscount - | eaves of the
cdr of x.

Finally, by taking car swe reach actual leaves, so we need another base case:
o Count -l eaves of alesf is 1.

To aid in writing recursive procedures on trees, Scheme provides the primitive predicate pai r ?, which
tests whether its argument is a pair. Here is the complete procedure:13

(define (count-|eaves x)
(cond ((null? x) 0)
((not (pair? x)) 1)
(else (+ (count-|eaves (car x))
(count -l eaves (cdr x))))))

Exercise 2.24. Suppose we evaluatetheexpression(list 1 (list 2 (list 3 4))).Givethe
result printed by the interpreter, the corresponding box-and-pointer structure, and the interpretation of
thisasatree (asin figure 2.6).

Exercise 2.25. Give combinations of car sand cdr sthat will pick 7 from each of the following lists:

(13(57)9)
(7))
(1 (2 (3 (4(5(67))))))

Exercise 2.26. Suppose we definex and y to be two lists:

(define x (list 1 2 3))
(definey (list 45 6))

What result is printed by the interpreter in response to evaluating each of the following expressions:
(append x vy)

(cons x vy)

Structure and Interpretation of Computer Programs
(list x vy)

Exercise 2.27. Modify your r ever se procedure of exercise 2.18 to produce adeep-r ever se

procedure that takes a list as argument and returns as its value the list with its elements reversed and with
all sublists deep-reversed as well. For example,

(define x (list (list 1 2) (list 3 4)))

X

((12) (34))

(reverse x)

((34) (12))
(deep-reverse x)
((43) (21))

Exercise 2.28. Writeaproceduref r i nge that takes as argument atree (represented as alist) and
returns alist whose elements are all the leaves of the tree arranged in left-to-right order. For example,

(define x (list (list 1 2) (list 3 4)))

(fringe x)
(1 2 3 4)

(fringe (list x x))
(12341234

Exercise 2.29. A binary mobile consists of two branches, aleft branch and aright branch. Each branch
iIsarod of acertain length, from which hangs either a weight or another binary mobile. We can represent
a binary mobile using compound data by constructing it from two branches (for example, using | i st):

(define (nmake-nobile left right)
(list left right))

A branch is constructed from al engt h (which must be a number) together with ast r uct ur e, which
may be either a number (representing a simple weight) or another mobile:

(define (make-branch | ength structure)
(list length structure))

a. Write the corresponding selectors| ef t - branch andri ght - br anch, which return the branches
of amobile, and br anch- | engt h and br anch- st r uct ur e, which return the components of a
branch.

b. Using your selectors, define aproceduret ot al - wei ght that returns the total weight of a mobile.

c. A mobileissaid to be balanced if the torque applied by its top-left branch is equal to that applied by
its top-right branch (that is, if the length of the left rod multiplied by the weight hanging from that rod is

Structure and Interpretation of Computer Programs

egual to the corresponding product for the right side) and if each of the submobiles hanging off its
branches is balanced. Design a predicate that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so that the constructors are

(define (nmake-nobile left right)
(cons left right))

(define (make-branch | ength structure)
(cons length structure))

How much do you need to change your programs to convert to the new representation?

Mapping over trees

Just as map is a powerful abstraction for dealing with sequences, map together with recursionisa
powerful abstraction for dealing with trees. For instance, thescal e- t r ee procedure, analogous to
scal e- i st of section 2.2.1, takes as arguments a numeric factor and a tree whose leaves are

numbers. It returns atree of the same shape, where each number is multiplied by the factor. The
recursive plan for scal e-t r ee issimilar to the onefor count - | eaves:

(define (scale-tree tree factor)
(cond ((null? tree) nil)
((not (pair? tree)) (* tree factor))
(el se (cons (scale-tree (car tree) factor)
(scale-tree (cdr tree) factor)))))
(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))
10)
(10 (20 (30 40) 50) (60 70))

Another way to implement scal e-t r ee isto regard the tree as a sequence of sub-trees and use map.
We map over the sequence, scaling each sub-treein turn, and return the list of results. In the base case,
where the treeis aleaf, we simply multiply by the factor:

(define (scale-tree tree factor)
(map (| anbda (sub-tree)
(if (pair? sub-tree)
(scal e-tree sub-tree factor)
(* sub-tree factor)))
tree))

Many tree operations can be implemented by similar combinations of sequence operations and recursion.

Exercise 2.30. Defineaproceduresquar e-t r ee analogousto thesquar e- 1| i st procedure of
exercise 2.21. That is, squar e- | i st should behave as follows:

(square-tree

(list 1
(list 2 (list 3 4) 5)
(list 6 7)))

Structure and Interpretation of Computer Programs

(1 (4 (9 16) 25) (36 49))

Definesquar e- t r ee both directly (i.e., without using any higher-order procedures) and also by using
map and recursion.

Exercise 2.31. Abstract your answer to exercise 2.30 to produce aproceduret r ee- map with the
property that squar e- t r ee could be defined as

(define (square-tree tree) (tree-map square tree))

Exercise 2.32. We can represent a set asalist of distinct elements, and we can represent the set of all
subsets of the set asalist of lists. For example, if thesetis(1 2 3), thenthe set of all subsetsis(()
(3) (2) (23) (1) (23 (12 (1 2 3)).Completethefollowing definition of a
procedure that generates the set of subsets of a set and give a clear explanation of why it works:

(define (subsets s)
(if (null? s)
(list nil)
(let ((rest (subsets (cdr s))))
(append rest (map <??>rest)))))

2.2.3 Sequences as Conventional Interfaces

In working with compound data, we've stressed how data abstraction permits us to design programs
without becoming enmeshed in the details of data representations, and how abstraction preserves for us
the flexibility to experiment with alternative representations. In this section, we introduce another
powerful design principle for working with data structures -- the use of conventional interfaces.

In section 1.3 we saw how program abstractions, implemented as higher-order procedures, can capture
common patterns in programs that deal with numerical data. Our ability to formulate anal ogous
operations for working with compound data depends crucialy on the style in which we manipulate our
data structures. Consider, for example, the following procedure, analogousto the count - | eaves
procedure of section 2.2.2, which takes a tree as argument and computes the sum of the squares of the

|leaves that are odd:

(define (sum odd-squares tree)
(cond ((null? tree) 0)
((not (pair? tree))
(if (odd? tree) (square tree) 0))
(el se (+ (sumodd-squares (car tree))
(sum odd-squares (cdr tree))))))

On the surface, this procedure is very different from the following one, which constructs alist of all the
even Fibonacci numbers Fib(k), where k is less than or equal to a given integer n:

(define (even-fibs n)
(define (next k)
(if (> k n)

Structure and Interpretation of Computer Programs
ni
(let ((f (fib k)))
(if (even? f)
(cons f (next (+ k 1)))

(next (+ k 1))))))
(next 0))

Despite the fact that these two procedures are structurally very different, a more abstract description of
the two computations reveals a great deal of similarity. Thefirst program

« enumerates the leaves of atree;

« filtersthem, selecting the odd ones;

 squares each of the selected ones; and

» accumulates the results using +, starting with O.

The second program
« enumerates the integersfrom 0 to n;
« computes the Fibonacci number for each integer;
« filtersthem, selecting the even ones; and
« accumulates the results using cons, starting with the empty list.

A signal-processing engineer would find it natural to conceptualize these processes in terms of signals
flowing through a cascade of stages, each of which implements part of the program plan, as shown in
figure 2.7. Insum odd- squar es, we begin with an enumerator, which generatesa ""signal”

consisting of the leaves of agiven tree. Thissignal is passed through afilter, which eliminates all but the
odd elements. The resulting signal isin turn passed through a map, which isa "transducer” that applies
the squar e procedure to each element. The output of the map is then fed to an accumulator, which
combines the elements using +, starting from an initial 0. The plan for even- f i bs isanalogous.

gounarata: filter: nap: accunulata:
—= ™ —™

tree leavas odd? Equars +, d

sounarata: nap: Iiltaer: accunulata:
™ , — ——=

intagere fib gvan’? conz, [J

Figure 2.7: Thesignal-flow plansfor the proceduressum odd- squar es (top) and even-fi bs
(bottom) reveal the commonality between the two programs.

Unfortunately, the two procedure definitions above fail to exhibit this signal-flow structure. For instance,
if we examinethesum odd- squar es procedure, we find that the enumeration is implemented partly
by thenul | ? and pai r ? tests and partly by the tree-recursive structure of the procedure. Similarly, the
accumulation is found partly in the tests and partly in the addition used in the recursion. In general, there
are no distinct parts of either procedure that correspond to the elements in the signal-flow description.
Our two procedures decompose the computations in a different way, spreading the enumeration over the

Structure and Interpretation of Computer Programs

program and mingling it with the map, the filter, and the accumulation. If we could organize our
programs to make the signal-flow structure manifest in the procedures we write, this would increase the
conceptual clarity of the resulting code.

Sequence Operations

The key to organizing programs so as to more clearly reflect the signal-flow structure isto concentrate on
the “signals’ that flow from one stage in the process to the next. If we represent these signals aslists,
then we can use list operations to implement the processing at each of the stages. For instance, we can
implement the mapping stages of the signal-flow diagrams using the map procedure from section 2.2.1:

(map square (list 1 2 3 45))
(1 49 16 25)

Filtering a sequence to select only those elements that satisfy a given predicate is accomplished by

(define (filter predicate sequence)
(cond ((null? sequence) nil)
((predicate (car sequence))
(cons (car seguence)
(filter predicate (cdr sequence))))
(else (filter predicate (cdr sequence)))))

For example,

(filter odd? (list 1 2 3 4 5))
(1 3 5)

Accumulations can be implemented by

(define (accunulate op initial sequence)
(if (null? sequence)
Initial
(op (car sequence)
(accunul ate op initial (cdr sequence)))))
(accumulate + 0 (list 1 2 3 4 5))

15

(accunmulate * 1 (list 1 2 3 4 5))

120

(accunul ate cons nil (list 1 2 3 4 5))
(123 405)

All that remains to implement signal-flow diagramsis to enumerate the sequence of elementsto be
processed. For even- f i bs, we need to generate the sequence of integersin a given range, which we
can do asfollows:

(define (enunerate-interval |ow high)
(if (> 1 ow high)
ni |

Structure and Interpretation of Computer Programs

(cons low (enunerate-interval (+ low 1) high))))
(enunerate-interval 2 7)
(234567)

To enumerate the leaves of atree, we can usel4

(define (enunerate-tree tree)
(cond ((null? tree) nil)
((not (pair? tree)) (list tree))
(el se (append (enunerate-tree (car tree))
(enunerate-tree (cdr tree))))))
(enunerate-tree (list 1 (list 2 (list 3 4)) 5))
(123 405)

Now we can reformulate sum odd- squar es and even-f i bs asin the signal-flow diagrams. For
sum odd- squar es, we enumerate the sequence of leaves of the tree, filter this to keep only the odd
numbers in the sequence, square each element, and sum the results:

(define (sum odd-squares tree)
(accunul ate +
0
(map square
(filter odd?
(enunerate-tree tree)))))

For even- f i bs, we enumerate the integers from 0 to n, generate the Fibonacci number for each of
these integers, filter the resulting sequence to keep only the even elements, and accumulate the results
into alist:

(define (even-fibs n)
(accunul ate cons
ni
(filter even?
(map fib
(enunerate-interval 0 n)))))

The value of expressing programs as sequence operations is that this helps us make program designs that
are modular, that is, designs that are constructed by combining relatively independent pieces. We can
encourage modular design by providing alibrary of standard components together with a conventional
interface for connecting the components in flexible ways.

Modular construction is a powerful strategy for controlling complexity in engineering design. In real
signal-processing applications, for example, designers regularly build systems by cascading elements
selected from standardized families of filters and transducers. Similarly, sequence operations provide a
library of standard program elements that we can mix and match. For instance, we can reuse pieces from
thesum odd- squar es and even- f i bs proceduresin aprogram that constructs alist of the squares
of thefirst n + 1 Fibonacci numbers:

(define (list-fib-squares n)

Structure and Interpretation of Computer Programs

(accunul at e cons
ni
(map square
(map fib
(enunerate-interval 0 n)))))
(list-fib-squares 10)
(001149 25 64 169 441 1156 3025)

We can rearrange the pieces and use them in computing the product of the odd integers in a sequence:

(define (product-of-squares-of-odd-el enents sequence)
(accunul ate *
1
(map square
(filter odd? sequence))))
(product - of - squar es- of -odd-el enents (list 1 2 3 4 5))
225

We can also formulate conventional data-processing applications in terms of sequence operations.
Suppose we have a sequence of personnel records and we want to find the salary of the highest-paid
programmer. Assume that we have a selector sal ar y that returns the salary of arecord, and a predicate
pr ogr anmer ? that testsif arecord isfor a programmer. Then we can write

(define (sal ary-of-hi ghest - pai d- programrer records)
(accumnul at e nmax
0
(map sal ary
(filter programmer? records))))

These examples give just a hint of the vast range of operations that can be expressed as sequence
operations.1>

Seguences, implemented here as lists, serve as a conventional interface that permits us to combine
processing modules. Additionally, when we uniformly represent structures as sequences, we have
localized the data-structure dependencies in our programs to a small number of sequence operations. By
changing these, we can experiment with alternative representations of sequences, while leaving the
overall design of our programsintact. We will exploit this capability in section 3.5, when we generalize

the sequence-processing paradigm to admit infinite sequences.

Exercise 2.33. Fill inthe missing expressions to complete the following definitions of some basic
list-mani pulation operations as accumul ations:

(define (map p seguence)

(accunul ate (lanbda (x y) <??>) nil seqguence))
(define (append seql seq2)

(accunul ate cons <?7?7> <?7?7>))
(define (length sequence)

(accunul ate <??> 0 sequence))

Structure and Interpretation of Computer Programs

Exercise 2.34. Evauating apolynomial in x at a given value of x can be formulated as an accumulation.
We evaluate the polynomial

B " Ay " 4 dagr 4o

using awell-known algorithm called Horner's rule, which structures the computation as
(- (BnE +Bnt)z+ o+ ag) £+ ag

In other words, we start with a,,, multiply by x, add a1, multiply by X, and so on, until we reach ay.16 Fill

in the following template to produce a procedure that evaluates a polynomial using Horner's rule.
Assume that the coefficients of the polynomial are arranged in a sequence, from ag through a,.

(define (horner-eval x coefficient-sequence)
(accunul ate (Il anbda (this-coeff higher-terns) <??>)
0
coefficient-sequence))

For example, to compute 1 + 3x + 5x3 + x° at x = 2 you would evaluate
(horner-eval 2 (list 1 3050 1))

Exercise 2.35. Redefinecount - | eaves from section 2.2.2 as an accumul ation:

(define (count-I|eaves t)
(accunul ate <??> <??> (map <??> <??7>)))

Exercise 2.36. The procedureaccunul at e- nissimilar toaccunul at e except that it takes asits
third argument a sequence of sequences, which are al assumed to have the same number of elements. It
applies the designated accumulation procedure to combine all the first elements of the sequences, all the
second elements of the sequences, and so on, and returns a sequence of the results. For instance, if s isa
sequence containing four sequences, ((1 2 3) (4 5 6) (7 8 9) (10 11 12)), thenthe
valueof (accunul ate-n + 0 s) should bethe sequence (22 26 30). Fill inthemissing
expressionsin the following definition of accunul at e- n:

(define (accunulate-n op init seqs)
(if (null? (car seqs))
ni |
(cons (accunulate op init <?7?>)
(accunul ate-n op init <??>))))

Exercise 2.37. Suppose we represent vectors v = (v;) as sequences of numbers, and matrices m = (m;) as
sequences of vectors (the rows of the matrix). For example, the matrix

123 4
4+ 5 6 G
B 7 & B

isrepresented asthesequence((1 2 3 4) (4 5 6 6) (6 7 8 9)).Withthisrepresentation,

Structure and Interpretation of Computer Programs

we can use sequence operations to concisely express the basic matrix and vector operations. These
operations (which are described in any book on matrix algebra) are the following:

(dot-product » w) returns the sum ~; v
(matrix-*-vector w u) retiurns the vechor £, where &, = ©; my;u;
(Datrix-*-matrix w #) returns the mabnx p, where p;; = Zp mangg

(tranzpoze M) retirns the mabrix n, where »; =m ;.
We can define the dot product as’

(define (dot-product v w)
(accunulate + O (map * v w)))

Fill in the missing expressionsin the following procedures for computing the other matrix operations.
(The procedure accunul at e- n isdefined in exercise 2.36.)

(define (matrix-*-vector myv)
(map <??> m)
(define (transpose mat)
(accunul ate-n <??> <??> mat))
(define (matrix-*-matri x mn)
(let ((cols (transpose n)))
(map <??>m))

Exercise 2.38. Theaccunul at e procedureisaso known asf ol d- ri ght , because it combines the
first element of the sequence with the result of combining all the elementsto theright. Thereisalso a
fol d-1eft,whichissimilartof ol d-ri ght, except that it combines elements working in the
opposite direction:

(define (fold-left op initial seguence)
(define (iter result rest)
(if (null? rest)
resul t
(iter (op result (car rest))
(cdr rest))))
(iter initial sequence))

What are the values of

(fold-right / 1 (list 1 2 3))
(fold-left / 1 (list 1 2 3))
(fold-right list nil (list 1 2 3))
(fold-left list nil (list 1 2 3))

Give a property that op should satisfy to guarantee that f ol d- ri ght andf ol d-1 ef t will produce

Structure and Interpretation of Computer Programs

the same values for any sequence.

Exercise 2.39. Complete the following definitions of r ever se (exercise 2.18) in terms of
fold-right andfol d-1eft fromexercise 2.38:

(define (reverse sequence)

(fold-right (lanbda (x y) <??>) nil sequence))
(define (reverse sequence)

(fold-left (lanmbda (x y) <??>) nil sequence))

Nested Mappings

We can extend the sequence paradigm to include many computations that are commonly expressed using
nested loops.18 Consider this problem: Given a positive integer n, find all ordered pairs of distinct
positive integersi and j, where 1< j<i<n, such that i +j is prime. For example, if nis 6, then the pairs
are the following:

i |2 314156 8
j (1213215
i+j[3 5577711

A natural way to organize this computation is to generate the sequence of all ordered pairs of positive
integers less than or equal to n, filter to select those pairs whose sum is prime, and then, for each pair (i,
]) that passes through the filter, produce the triple (i,j,i +).

Here is away to generate the sequence of pairs: For each integer i< n, enumerate the integers j<i, and for
each such i and j generate the pair (i,j). In terms of sequence operations, we map along the sequence
(enunerate-interval 1 n).Foreachiinthisseguence, we map aong the sequence
(enunerate-interval 1 (- i 1)).Foreachjinthislatter sequence, we generate the pair
(list i j).Thisgivesusasequence of pairsfor eachi. Combining all the sequencesfor all thei (by
accumulating with append) produces the required sequence of pairs.12

(accunul at e append
ni |
(map (lanmbda (i)
(map (lanmbda (j) (list i j))
(enunerate-interval 1 (- 1 1))))
(enunerate-interval 1 n)))

The combination of mapping and accumulating with append is so common in this sort of program that
we will isolate it as a separate procedure:

(define (flatmap proc seq)
(accunul ate append nil (map proc seq)))

Now filter this sequence of pairsto find those whose sum is prime. Thefilter predicate is called for each
element of the sequence; its argument isapair and it must extract the integers from the pair. Thus, the
predicate to apply to each element in the sequenceis

Structure and Interpretation of Computer Programs
(define (prime-sunf pair)
(prime? (+ (car pair) (cadr pair))))

Finally, generate the sequence of results by mapping over the filtered pairs using the following
procedure, which constructs a triple consisting of the two elements of the pair along with their sum:

(define (make-pair-sum pair)
(list (car pair) (cadr pair) (+ (car pair) (cadr pair))))

Combining all these steps yields the compl ete procedure:

(define (prinme-sumpairs n)
(map nake-pair-sum
(filter prime-sunf?

(flatmap
(lambda (i)
(map (lambda (j) (list i j))
(enunerate-interval 1 (- 1 1))))

(enunerate-interval 1 n)))))

Nested mappings are also useful for sequences other than those that enumerate intervals. Suppose we
wish to generate all the permutations of aset S that is, all the ways of ordering the items in the set. For
instance, the permutations of {1,2,3} are{1,2,3},{ 1,3,2},{2,1,3},{ 2,3,1},{ 3,1,2}, and { 3,2,1}. Here
isaplan for generating the permutations of S For each item xin S recursively generate the sequence of
permutations of S- x,22 and adjoin x to the front of each one. Thisyields, for each x in S the sequence of
permutations of Sthat begin with x. Combining these sequences for all x gives al the permutations of S2t

(define (pernutations s)
(if (null? s) ; enpty set?
(list nil) , seguence containing enpty set
(flatmap (| anmbda (x)
(map (lambda (p) (cons x p))
(pernutations (renove x s))))
s)))

Notice how this strategy reduces the problem of generating permutations of Sto the problem of
generating the permutations of sets with fewer elements than S. In the terminal case, we work our way
down to the empty list, which represents a set of no elements. For this, we generate (1 i st nil),
which is a sequence with one item, namely the set with no elements. Ther enove procedure used in

per mut at i ons returns al the items in a given sequence except for a given item. This can be expressed
asasimplefilter:

(define (renove item sequence)
(filter (lanmbda (x) (not (= x item))
sequence))

Exercise 2.40. Define aprocedureuni que- pai r s that, given an integer n, generates the sequence of
pairs (i,)) with 1< j<i< n.Useuni que- pai r s to simplify the definition of pri nme- sum pai rs
given above.

Structure and Interpretation of Computer Programs

Exercise 2.41. Write aprocedureto find all ordered triples of distinct positive integersi, j, and k less
than or equal to a given integer n that sum to a given integer s.

Exercise 2.42.

4

bl

il

Ml

Ml

M

Figure 2.8: A solution to the eight-queens puzzle.

The ““eight-queens puzzle" asks how to place eight queens on a chessboard so that no queen is in check
from any other (i.e., no two queens are in the same row, column, or diagonal). One possible solution is
shown in figure 2.8. One way to solve the puzzle isto work across the board, placing a queen in each

column. Once we have placed k - 1 queens, we must place the kth queen in a position where it does not
check any of the queens already on the board. We can formulate this approach recursively: Assume that
we have already generated the sequence of all possible waysto placek - 1 queensinthefirstk - 1
columns of the board. For each of these ways, generate an extended set of positions by placing aqueenin
each row of the kth column. Now filter these, keeping only the positions for which the queen in the kth
column is safe with respect to the other queens. This produces the sequence of all ways to place k queens
in the first k columns. By continuing this process, we will produce not only one solution, but all solutions
to the puzzle.

We implement this solution as a procedure queens, which returns a sequence of al solutions to the
problem of placing n queens on an nx n chessboard. Queens has an internal procedure queen- col s
that returns the sequence of all ways to place queensin the first k columns of the board.

(define (queens board-size)
(define (queen-cols k)

(if (= k 0)
(l'i st enpty-board)
(filter

(l anbda (positions) (safe? k positions))

Structure and Interpretation of Computer Programs

(fl atmap
(1 anbda (rest-of-queens)
(map (| ambda (new-row)
(adj oi n-position newrow k rest-of-queens))
(enunerate-interval 1 board-size)))
(queen-cols (- k 1))))))
(queen-col s board-si ze))

In this procedurer est - of - queens isaway to place k - 1 queensin thefirst k - 1 columns, and

new- r owis aproposed row in which to place the queen for the kth column. Complete the program by
implementing the representation for sets of board positions, including the procedure

adj oi n- posi ti on, which adjoins a new row-column position to a set of positions, and

enpt y- boar d, which represents an empty set of positions. Y ou must also write the procedure saf e?,
which determines for a set of positions, whether the queen in the kth column is safe with respect to the
others. (Note that we need only check whether the new queen is safe -- the other queens are already
guaranteed safe with respect to each other.)

Exercise 2.43. Louis Reasoner is having aterrible time doing exercise 2.42. Hisqueens procedure
seemsto work, but it runs extremely slowly. (Louis never does manage to wait long enough for it to
solve even the 6x 6 case.) When Louis asks Eva Lu Ator for help, she points out that he has interchanged
the order of the nested mappingsinthef | at map, writing it as

(fl atmap
(I anbda (new- row)
(map (Il anbda (rest-of-queens)
(adj oi n-position newrow k rest-of-queens))
(queen-cols (- k 1))))
(enunerate-interval 1 board-size))

Explain why this interchange makes the program run slowly. Estimate how long it will take Louis's
program to solve the eight-queens puzzle, assuming that the program in exercise 2.42 solves the puzzle in

timeT.

2.2.4 Example: A Picture Language

This section presents a simple language for drawing pictures that illustrates the power of data abstraction
and closure, and also exploits higher-order proceduresin an essential way. The language is designed to
make it easy to experiment with patterns such as the ones in figure 2.9, which are composed of repeated
elements that are shifted and scaled.22 In this language, the data objects being combined are represented
as procedures rather than as list structure. Just as cons, which satisfies the closure property, allowed us
to easily build arbitrarily complicated list structure, the operations in this language, which also satisfy the
closure property, allow usto easily build arbitrarily complicated patterns.

Structure and Interpretation of Computer Programs

Figure 2.9: Designs generated with the picture language.

The picture language

When we began our study of programming in section 1.1, we emphasi zed the importance of describing a

language by focusing on the language's primitives, its means of combination, and its means of
abstraction. We'll follow that framework here.

Part of the elegance of this picture language is that there is only one kind of element, called a painter. A
painter draws an image that is shifted and scaled to fit within a designated parallel ogram-shaped frame.
For example, there's a primitive painter we'll call wave that makes a crude line drawing, as shown in
figure 2.10. The actual shape of the drawing depends on the frame -- all four imagesin figure 2.10 are
produced by the samewav e painter, but with respect to four different frames. Painters can be more
elaborate than this: The primitive painter called r oger s paints a picture of MIT's founder, William
Barton Rogers, as shown in figure 2.11.22 The four images in figure 2.11 are drawn with respect to the

same four frames as the wave imagesin figure 2.10.

To combine images, we use various operations that construct new painters from given painters. For
example, thebesi de operation takes two painters and produces a new, compound painter that draws the
first painter'simage in the left half of the frame and the second painter's image in the right half of the
frame. Similarly, bel owtakes two painters and produces a compound painter that draws the first
painter's image bel ow the second painter's image. Some operations transform a single painter to produce
anew painter. For example, f | i p- vert takesapainter and produces a painter that draws itsimage
upside-down, and f | i p- hor i z produces a painter that draws the original painter'simage left-to-right
reversed.

Structure and Interpretation of Computer Programs

|
|
L ; ;
X I '
| 1‘. : . '.'.I. .-".I
| ; h A
L ' N I
R - i -
. " v
1™ ., .
. -~ . .
[y ~, ;
- |
| o 1 n : o
! 1 b ™ PR - v
| K"‘\. 1 -
~ X - 1
| | 1 . T
1 -
| , . . .
| ' s B
: e
' - P
| ! S
| ! o
'
1
I_ —_—_— —— - L — = A —_— —_ —_ —_ — =
o |
1 1
1 1 I
1 1
1 | I
1 1 |
I 1
1 ! :
—_
L .
' |
. Lo
i . —_—_—— e e e —— e — ———— —
FEE| . .| | N
3 L X
-__l' | -~ ‘0 1., :
1 [:
1 . | : ~. _.-'
| - e
I - 1 = .
1 ' ! | 1 \".H.
! I. 1 - | ' " ¥ [
- b -
I| I| ' . : .
1 . N
Py : FY
b | 1 a p3
PR .

Figure 2.10: Images produced by the wave painter, with respect to four different frames. The frames,
shown with dotted lines, are not part of the images.

Structure and Interpretation of Computer Programs

Figure 2.11: Images of William Barton Rogers, founder and first president of MIT, painted with respect
to the same four frames asin figure 2.10 (original image reprinted with the permission of the MIT
Museum).

Figure 2.12 shows the drawing of a painter called wave4 that is built up in two stages starting from
wave:

(define wave2 (beside wave (flip-vert wave)))
(define wave4 (bel ow wave2 wave?))

(N 5 | g - v & ’
(define wave2 (define wave4
(beside wave (flip-vert wave))) (bel ow wave2 wave2))

Figure 2.12: Creating acomplex figure, starting from the wave painter of figure 2.10.

In building up a complex image in this manner we are exploiting the fact that painters are closed under
the language's means of combination. The besi de or bel ow of two paintersisitself a painter;
therefore, we can use it as an element in making more complex painters. As with building up list

structure using cons, the closure of our data under the means of combination is crucial to the ability to
create complex structures while using only a few operations.

Once we can combine painters, we would like to be able to abstract typical patterns of combining
painters. We will implement the painter operations as Scheme procedures. This means that we don't need

Structure and Interpretation of Computer Programs

a special abstraction mechanism in the picture language: Since the means of combination are ordinary
Scheme procedures, we automatically have the capability to do anything with painter operations that we
can do with procedures. For example, we can abstract the pattern inwave4 as

(define (flipped-pairs painter)
(let ((painter2 (beside painter (flip-vert painter))))
(bel ow painter2 painter2)))

and definewav e4 as an instance of this pattern:
(define waved4 (flipped-pairs wave))

We can also define recursive operations. Here's one that makes painters split and branch towards the
right as shownin figures2.13 and 2.14:

(define (right-split painter n)

(if (=n0)
pai nt er
(let ((smaller (right-split painter (- n 1))))
(beside painter (below snaller smaller)))))
up— up—
right-zplit gplit [=plit cornAar-split
n—l n-1 n—-1 n—1
identity
right-=plit
. _ . n-L
Tight-=plit identity
"L right-split
n-L
right-split n corner-split n

Figure 2.13: Recursiveplansforri ght-split andcorner-split.

We can produce balanced patterns by branching upwards as well as towards the right (see exercise 2.44
and figures 2.13 and 2.14):

(define (corner-split painter n)
(if (=n0)
pai nt er
(let ((up (up-split painter (- n 1)))
(right (right-split painter (- n 1))))
(let ((top-left (beside up up))

(bottomright (belowright right))
(corner (corner-split painter (- n 1))))

Structure and Interpretation of Computer Programs

(besi de (bel ow painter top-Ileft)
(bel ow bottomright corner))))

-
- II
- o
-
b
=

Ny,
fiy_da tieg
O :
T - e
.&..5.:5..: - b
e R

(corner-split wave 4) (corner-split rogers 4)

Figure 2.14. Therecursive operationsri ght-split andcor ner-spl it appliedto the painters
wave andr oger s. Combining four cor ner - spl i t figures produces symmetricsquar e-|i m t
designs as shown in figure 2.9.

By placing four copiesof acor ner - spl i t appropriately, we obtain a pattern called
square-|i mt,whoseapplicationtowave andr oger s isshownin figure 2.9:

(define (square-limt painter n)
(let ((quarter (corner-split painter n)))
(let ((half (beside (flip-horiz quarter) quarter)))
(below (flip-vert half) half))))

Exercise 2.44. Definethe procedureup- spl it usedby corner-split.Itissimilarto
ri ght-split,exceptthat it switchestherolesof bel owand besi de.

Structure and Interpretation of Computer Programs

Higher-order operations

In addition to abstracting patterns of combining painters, we can work at a higher level, abstracting
patterns of combining painter operations. That is, we can view the painter operations as elements to
manipulate and can write means of combination for these elements -- procedures that take painter
operations as arguments and create new painter operations.

For example, f | i pped- pai rs andsquar e-1i m t each arrange four copies of apainter'simage in
asguare pattern; they differ only in how they orient the copies. One way to abstract this pattern of painter
combination is with the following procedure, which takes four one-argument painter operations and
produces a painter operation that transforms a given painter with those four operations and arranges the
resultsinasquare. Tl ,t r, bl , and br are the transformations to apply to the top left copy, the top right
copy, the bottom left copy, and the bottom right copy, respectively.

(define (square-of-four tl tr bl br)
(I anbda (pai nter)
(let ((top (beside (tl painter) (tr painter)))
(bottom (beside (bl painter) (br painter))))
(bel ow bottomtop))))

Thenfl i pped- pai r s can be defined in terms of squar e- of - f our asfollows:24

(define (flipped-pairs painter)
(let ((conmbined4 (square-of-four identity flip-vert
i dentity flip-vert)))
(conbi ne4 painter)))

andsquar e-| i mt can beexpressed as»

(define (square-limt painter n)
(let ((conmbined4 (square-of-four flip-horiz identity
rotatel80 flip-vert)))
(conbined4 (corner-split painter n))))

Exercise2.45. Right -spl it andup-spl it canbeexpressed asinstances of ageneral splitting
operation. Define aprocedure spl i t with the property that evaluating

(define right-split (split beside bel ow))
(define up-split (split bel ow besi de))

produces proceduresr i ght - spl it and up- spl i t with the same behaviors as the ones already
defined.

Frames

Before we can show how to implement painters and their means of combination, we must first consider
frames. A frame can be described by three vectors -- an origin vector and two edge vectors. The origin
vector specifies the offset of the frame's origin from some absolute origin in the plane, and the edge
vectors specify the offsets of the frame's corners from its origin. If the edges are perpendicular, the frame

Structure and Interpretation of Computer Programs

will be rectangular. Otherwise the frame will be a more general parallelogram.

Figure 2.15 shows aframe and its associated vectors. In accordance with data abstraction, we need not be
specific yet about how frames are represented, other than to say that there is a constructor

make- f r ane, which takes three vectors and produces a frame, and three corresponding selectors

ori gi n-frane,edgel-frane, andedge2-frame (seeexercise 2.47).

frane

cElgin (0,0} point

vecbtor .
on display scceen

Figure 2.15: A frameisdescribed by three vectors -- an origin and two edges.

We will use coordinates in the unit square (0< x,y< 1) to specify images. With each frame, we associate a
frame coordinate map, which will be used to shift and scale imagesto fit the frame. The map transforms
the unit square into the frame by mapping the vector v = (x,y) to the vector sum

Crigin(Frame) 4+ r - Edge; (Frame) + y - Edges{Frame)

For example, (0,0) is mapped to the origin of the frame, (1,1) to the vertex diagonally opposite the origin,
and (0.5,0.5) to the center of the frame. We can create a frame's coordinate map with the following
procedure: 26

(define (frane-coord-nmap frane)
(I anmbda (v)
(add- vect
(origin-frame frane)
(add-vect (scal e-vect (xcor-vect v)
(edgel-frane frane))
(scal e-vect (ycor-vect v)
(edge2-frane franme))))))

Observe that applying f r anme- coor d- map to aframe returns a procedure that, given avector, returns a
vector. If the argument vector isin the unit square, the result vector will be in the frame. For example,

((frame-coord-map a-frane) (make-vect 0 0))

returns the same vector as

Structure and Interpretation of Computer Programs

(origin-frame a-frane)

Exercise 2.46. A two-dimensional vector v running from the origin to a point can be represented as a
pair consisting of an x-coordinate and a y-coordinate. Implement a data abstraction for vectors by giving
aconstructor make- vect and corresponding selectorsxcor - vect andycor - vect . In terms of your
selectors and constructor, implement procedures add- vect , sub- vect ,and scal e- vect that
perform the operations vector addition, vector subtraction, and multiplying a vector by a scalar:

(r,) +(z2,32) = (f1+ 12,0+)
(r1,m) —(r2,42) = (r1 — 12,301 — ya)
g (I,y‘:l = [SI,SQ‘}
Exercise 2.47. Here are two possible constructors for frames:

(define (nmake-frame origin edgel edge2)
(list origin edgel edge2))

(define (nmake-frame origin edgel edge?2)
(cons origin (cons edgel edge2)))

For each constructor supply the appropriate selectors to produce an implementation for frames.
Painters

A painter is represented as a procedure that, given aframe as argument, draws a particular image shifted
and scaled to fit the frame. That isto say, if p isapainter andf isaframe, then we produce p'simage in
f by caling p withf asargument.

The details of how primitive painters are implemented depend on the particular characteristics of the
graphics system and the type of image to be drawn. For instance, suppose we have a procedure

dr aw- | i ne that draws aline on the screen between two specified points. Then we can create painters
for line drawings, such asthe wave painter in figure 2.10, from lists of line segments as follows:2?

(define (segnents->painter segnent-1list)
(I anbda (frane)

(for-each

(I anbda (segnent)
(draw- i ne
((frame-coord-map franme) (start-segnent segnent))
((frame-coord-map frane) (end-segnent segnent))))

segnent-list)))

The segments are given using coordinates with respect to the unit square. For each segment in the list, the
painter transforms the segment endpoints with the frame coordinate map and draws a line between the
transformed points.

Representing painters as procedures erects a powerful abstraction barrier in the picture language. We can
create and intermix all sorts of primitive painters, based on avariety of graphics capabilities. The details

Structure and Interpretation of Computer Programs

of their implementation do not matter. Any procedure can serve as a painter, provided that it takes a
frame as argument and draws something scaled to fit the frame.28

Exercise 2.48. A directed line segment in the plane can be represented as a pair of vectors -- the vector
running from the origin to the start-point of the segment, and the vector running from the origin to the
end-point of the segment. Use your vector representation from exercise 2.46 to define a representation

for segments with a constructor make- segnent and selectorsst art - segnent and
end- segnent .

Exercise 2.49. Usesegnent s- >pai nt er to define the following primitive painters:

a. The painter that draws the outline of the designated frame.

b. The painter that draws an "~ X" by connecting opposite corners of the frame.

c. The painter that draws a diamond shape by connecting the midpoints of the sides of the frame.

d. Thewave painter.

Transforming and combining painters

An operation on painters (such asf | i p-vert or besi de) works by creating a painter that invokes the
original painters with respect to frames derived from the argument frame. Thus, for example,
flip-vert doesn't haveto know how a painter worksin order to flip it -- it just has to know how to
turn aframe upside down: The flipped painter just uses the original painter, but in the inverted frame.

Painter operations are based on the proceduret r ansf or m pai nt er , which takes as arguments a
painter and information on how to transform a frame and produces a new painter. The transformed
painter, when called on a frame, transforms the frame and calls the original painter on the transformed
frame. Theargumentsto t r ansf or m pai nt er are points (represented as vectors) that specify the
corners of the new frame: When mapped into the frame, the first point specifies the new frame's origin
and the other two specify the ends of its edge vectors. Thus, arguments within the unit square specify a
frame contained within the original frame.

(define (transform painter painter origin cornerl corner?2)
(I anbda (frane)
(let ((m(franme-coord-map frane)))
(let ((neworigin (morigin)))

(pai nter

(make-franme neworigin
(sub-vect (m cornerl) neworigin)
(sub-vect (mcorner2) neworigin)))))))

Here's how to flip painter images vertically:

(define (flip-vert painter)
(transform pai nter painter
(make-vect 0.0 1.0) ; new origin
(make-vect 1.0 1.0) ; new end of edgel

Structure and Interpretation of Computer Programs

(make-vect 0.0 0.0))) ; new end of edge2

Usingt r ansf or m pai nt er , we can easily define new transformations. For example, we can define a
painter that shrinks its image to the upper-right quarter of the frame it is given:

(define (shrink-to-upper-right painter)
(transform pai nter painter
(make-vect 0.5 0.5)
(make-vect 1.0 0.5)
(make-vect 0.5 1.0)))

Other transformations rotate images counterclockwise by 90 degrees?

(define (rotate90 painter)
(transform pai nter painter
(make-vect 1.0 0.0)
(make-vect 1.0 1.0)
(make-vect 0.0 0.0)))

or squash images towards the center of the frame:30

(define (squash-inwards painter)
(transform pai nter painter
(make-vect 0.0 0.0)
(make-vect 0.65 0.35)
(make-vect 0.35 0.65)))

Frame transformation is also the key to defining means of combining two or more painters. The besi de
procedure, for example, takes two painters, transforms them to paint in the left and right halves of an
argument frame respectively, and produces a new, compound painter. When the compound painter is
given aframe, it callsthe first transformed painter to paint in the left half of the frame and calls the
second transformed painter to paint in the right half of the frame:

(define (beside painterl painter?2)
(let ((split-point (make-vect 0.5 0.0)))
(let ((paint-left
(transformpainter painterl
(make-vect 0.0 0.0)
split-point
(make-vect 0.0 1.0)))
(pai nt-right
(transform pai nter painter?2
split-point
(make-vect 1.0 0.0)
(make-vect 0.5 1.0))))
(I anbda (frane)
(paint-left frane)
(paint-right frame)))))

Structure and Interpretation of Computer Programs

Observe how the painter data abstraction, and in particular the representation of painters as procedures,
makes besi de easy to implement. The besi de procedure need not know anything about the details of
the component painters other than that each painter will draw something in its designated frame.

Exercise 2.50. Definethetransformationf | i p- hori z, which flips painters horizontally, and
transformations that rotate painters counterclockwise by 180 degrees and 270 degrees.

Exercise 2.51. Definethe bel owoperation for painters. Bel owtakes two painters as arguments. The
resulting painter, given aframe, draws with the first painter in the bottom of the frame and with the
second painter in the top. Define bel owin two different ways -- first by writing a procedure that is
analogous to the besi de procedure given above, and again in terms of besi de and suitable rotation
operations (from exercise 2.50).

Levels of language for robust design

The picture language exercises some of the critical ideas we've introduced about abstraction with
procedures and data. The fundamental data abstractions, painters, are implemented using procedural
representations, which enables the language to handle different basic drawing capabilitiesin a uniform
way. The means of combination satisfy the closure property, which permits us to easily build up complex
designs. Finaly, all thetools for abstracting procedures are available to us for abstracting means of
combination for painters.

We have also obtained a glimpse of another crucial idea about languages and program design. Thisisthe
approach of stratified design, the notion that a complex system should be structured as a sequence of
levels that are described using a sequence of languages. Each level is constructed by combining parts that
are regarded as primitive at that level, and the parts constructed at each level are used as primitives at the
next level. The language used at each level of a stratified design has primitives, means of combination,
and means of abstraction appropriate to that level of detail.

Stratified design pervades the engineering of complex systems. For example, in computer engineering,
resistors and transistors are combined (and described using alanguage of analog circuits) to produce
parts such as and-gates and or-gates, which form the primitives of alanguage for digital-circuit design.3t
These parts are combined to build processors, bus structures, and memory systems, which arein turn
combined to form computers, using languages appropriate to computer architecture. Computers are
combined to form distributed systems, using languages appropriate for describing network
Interconnections, and so on.

Asatiny example of stratification, our picture language uses primitive elements (primitive painters) that
are created using a language that specifies points and lines to provide the lists of line segments for
segnent s- >pai nt er, or the shading details for a painter liker oger s. The bulk of our description
of the picture language focused on combining these primitives, using geometric combiners such as

besi de and bel ow. We also worked at a higher level, regarding besi de and bel ow as primitives to
be manipulated in alanguage whose operations, such assquar e- of - f our , capture common patterns
of combining geometric combiners.

Stratified design helps make programs robust, that is, it makesit likely that small changesin a
specification will require correspondingly small changes in the program. For instance, suppose we
wanted to change the image based on wave shown in figure 2.9. We could work at the lowest level to

Structure and Interpretation of Computer Programs

change the detailed appearance of the wave element; we could work at the middie level to change the
way cor ner - spl i t replicatesthewave; we could work at the highest level to change how

squar e-| i m t arrangesthe four copies of the corner. In general, each level of a stratified design
provides adifferent vocabulary for expressing the characteristics of the system, and a different kind of
ability to changeit.

Exercise 2.52. Make changesto the square limit of wave shown in figure 2.9 by working at each of the
levels described above. In particular:

a. Add some segments to the primitive wave painter of exercise 2.49 (to add a smile, for example).

b. Change the pattern constructed by cor ner - spl i t (for example, by using only one copy of the
up-split andri ght-split imagesinstead of two).

c. Modify theversionof squar e- | i m t that usessquar e- of - f our so asto assemble the corners
in adifferent pattern. (For example, you might make the big Mr. Rogers ook outward from each corner
of the square.)

6 The use of the word " "closure" here comes from abstract algebra, where a set of elementsis said to be
closed under an operation if applying the operation to elements in the set produces an element that is
again an element of the set. The Lisp community also (unfortunately) uses the word " closure” to describe
atotally unrelated concept: A closure is an implementation technique for representing procedures with
free variables. We do not use the word "closure" in this second sense in this book.

7 The notion that a means of combination should satisfy closure is a straightforward idea. Unfortunately,
the data combiners provided in many popular programming languages do not satisfy closure, or make
closure cumbersome to exploit. In Fortran or Basic, one typically combines data elements by assembling
them into arrays -- but one cannot form arrays whose elements are themselves arrays. Pascal and C admit
structures whose elements are structures. However, this requires that the programmer manipul ate pointers
explicitly, and adhere to the restriction that each field of a structure can contain only elements of a
prespecified form. Unlike Lisp with its pairs, these |anguages have no built-in general-purpose glue that
makes it easy to manipulate compound data in a uniform way. Thislimitation lies behind Alan Perlis's
comment in hisforeword to this book: " In Pascal the plethora of declarable data structures induces a
specialization within functions that inhibits and penalizes casual cooperation. It is better to have 100
functions operate on one data structure than to have 10 functions operate on 10 data structures.”

8 In this book, we use list to mean a chain of pairs terminated by the end-of-list marker. In contrast, the
term list structure refers to any data structure made out of pairs, not just to lists.

9 Since nested applications of car and cdr are cumbersome to write, Lisp dialects provide abbreviations
for them -- for instance,

(cadr {argy) = (car (cdr {arg}))

The names of all such procedures start with ¢ and end with r . Each a between them standsfor acar
operation and each d for acdr operation, to be applied in the same order in which they appear in the
name. The namescar and cdr persist because simple combinations like cadr are pronounceable.

Structure and Interpretation of Computer Programs

10 |t's remarkable how much energy in the standardization of Lisp dialects has been dissipated in
arguments that are literally over nothing: Should ni | be an ordinary name? Should the value of ni | be
asymbol? Should it be alist? Should it be a pair? In Scheme, ni | isan ordinary name, which we usein
this section as a variable whose value is the end-of -list marker (just ast r ue isan ordinary variable that
has atrue value). Other dialects of Lisp, including Common Lisp, treat ni | asaspecial symbol. The
authors of this book, who have endured too many language standardization brawls, would like to avoid
the entire issue. Once we have introduced quotation in section 2.3, we will denote the empty listas' ()

and dispense with the variable ni | entirely.
11 Todefinef and g using | anbda we would write

(define f (lanbda (x y . z) <body>))
(define g (|l anbda w <body>))

12 Scheme standardly provides amap procedure that is more general than the one described here. This
more general map takes a procedure of n arguments, together with n lists, and applies the procedure to all
the first elements of the lists, all the second elements of the lists, and so on, returning alist of the results.
For example:

(map + (list 1 2 3) (list 40 50 60) (list 700 800 900))
(741 852 963)

(map (lanmbda (x y) (+ x (* 2y)))

(list 1 2 3)
(list 4 5 6))
(9 12 15)

13 The order of thefirst two clausesin the cond matters, since the empty list satisfiesnul | ? and alsois
not a pair.

14 Thisis, infact, precisely thef r i nge procedure from exercise 2.28. Here we've renamed it to
emphasize that it is part of afamily of general sequence-manipulation procedures.

15 Richard Waters (1979) developed a program that automatically analyzes traditional Fortran programs,
viewing them in terms of maps, filters, and accumulations. He found that fully 90 percent of the code in
the Fortran Scientific Subroutine Package fits neatly into this paradigm. One of the reasons for the
success of Lisp as aprogramming language is that lists provide a standard medium for expressing
ordered collections so that they can be manipulated using higher-order operations. The programming
language APL owes much of its power and appeal to asimilar choice. In APL all data are represented as
arrays, and there isa universal and convenient set of generic operators for al sorts of array operations.

16 According to Knuth (1981), this rule was formulated by W. G. Horner early in the nineteenth century,
but the method was actually used by Newton over ahundred years earlier. Horner's rule evaluates the
polynomial using fewer additions and multiplications than does the straightforward method of first
computing a, X", then adding a,,.;x"1, and so on. In fact, it is possible to prove that any algorithm for

evaluating arbitrary polynomials must use at least as many additions and multiplications as does Horner's
rule, and thus Horner's rule is an optimal algorithm for polynomial evaluation. This was proved (for the
number of additions) by A. M. Ostrowski in a 1954 paper that essentially founded the modern study of

Structure and Interpretation of Computer Programs

optimal algorithms. The anal ogous statement for multiplications was proved by V. Y. Pan in 1966. The
book by Borodin and Munro (1975) provides an overview of these and other results about optimal
algorithms.

17 This definition uses the extended version of map described in footnote 12.

18 This approach to nested mappings was shown to us by David Turner, whose languages KRC and
Miranda provide elegant formalisms for dealing with these constructs. The examples in this section (see
also exercise 2.42) are adapted from Turner 1981. In section 3.5.3, we'll see how this approach

generalizes to infinite sequences.

19 We're representing a pair here as alist of two elements rather than asa Lisp pair. Thus, the ““pair” (i,))
isrepresentedas(list i j),not(cons i j).

20 Theset S- xisthe set of al elements of S excluding x.

21 Semicolons in Scheme code are used to introduce comments. Everything from the semicolon to the end
of the lineisignored by the interpreter. In this book we don't use many comments; we try to make our
programs self-documenting by using descriptive names.

22 The picture language is based on the language Peter Henderson created to construct images like M.C.
Escher's " Square Limit" woodcut (see Henderson 1982). The woodcut incorporates a repeated scaled
pattern, similar to the arrangements drawn using thesquar e- | i m t procedure in this section.

23 William Barton Rogers (1804-1882) was the founder and first president of MIT. A geologist and
talented teacher, he taught at William and Mary College and at the University of Virginia. In 1859 he
moved to Boston, where he had more time for research, worked on a plan for establishing a polytechnic
institute," and served as Massachusetts's first State Inspector of Gas Meters.

When MIT was established in 1861, Rogers was elected itsfirst president. Rogers espoused an ideal of
“useful learning” that was different from the university education of the time, with its overemphasis on
the classics, which, as he wrote, ““stand in the way of the broader, higher and more practical instruction
and discipline of the natural and socia sciences." This education was likewise to be different from
narrow trade-school education. In Rogers's words:

The world-enforced distinction between the practical and the scientific worker is utterly
futile, and the whole experience of modern times has demonstrated its utter worthlessness.

Rogers served as president of MIT until 1870, when he resigned due to ill health. In 1878 the second
president of MIT, John Runkle, resigned under the pressure of afinancial crisis brought on by the Panic
of 1873 and strain of fighting off attempts by Harvard to take over MIT. Rogers returned to hold the
office of president until 1881.

Rogers collapsed and died while addressing MIT's graduating class at the commencement exercises of
1882. Runkle quoted Rogers's last words in amemorial address delivered that same year:

“As| stand here today and see what the Instituteis, . . . | call to mind the beginnings of
science. | remember one hundred and fifty years ago Stephen Hales published a pamphlet on
the subject of illuminating gas, in which he stated that his researches had demonstrated that
128 grains of bituminous coal -- "

Structure and Interpretation of Computer Programs

“"Bituminous coal," these were his last words on earth. Here he bent forward, as if
consulting some notes on the table before him, then slowly regaining an erect position,
threw up his hands, and was translated from the scene of his earthly labors and triumphsto
““the tomorrow of death,” where the mysteries of life are solved, and the disembodied spirit
finds unending satisfaction in contemplating the new and still unfathomable mysteries of the
infinite future.

In the words of Francis A. Walker (MIT's third president):

All hislife he had borne himself most faithfully and heroically, and he died as so good a
knight would surely have wished, in harness, at his post, and in the very part and act of
public duty.

24 Equivalently, we could write

(define flipped-pairs
(square-of -four identity flip-vert identity flip-vert))

25 Rot at €180 rotates a painter by 180 degrees (see exercise 2.50). Instead of r ot at €180 we could
say (conpose flip-vert flip-horiz),usngtheconpose procedurefrom exercise 1.42.

26 Fr ame- coor d- map uses the vector operations described in exercise 2.46 below, which we assume

have been implemented using some representation for vectors. Because of data abstraction, it doesn't
matter what this vector representation is, so long as the vector operations behave correctly.

2 Segnent s- >pai nt er usesthe representation for line segments described in exercise 2.48 below. It
also usesthef or - each procedure described in exercise 2.23.

28 For example, ther oger s painter of figure 2.11 was constructed from a gray-level image. For each

point in agiven frame, ther oger s painter determines the point in the image that is mapped to it under
the frame coordinate map, and shades it accordingly. By alowing different types of painters, we are
capitalizing on the abstract dataidea discussed in section 2.1.3, where we argued that a rational -number

representation could be anything at all that satisfies an appropriate condition. Here we're using the fact
that a painter can be implemented in any way at al, so long as it draws something in the designated
frame. Section 2.1.3 aso showed how pairs could be implemented as procedures. Painters are our second

example of a procedural representation for data.

29 Rot at e90 isapure rotation only for square frames, because it also stretches and shrinks the image to
fit into the rotated frame.

30 The diamond-shaped images in figures 2.10 and 2.11 were created with squash- i nwar ds applied
towave andr ogers.

31 Section 3.3.4 describes one such language.

[Go to first, previous, next page; contents; index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

2.3 Symbolic Data

All the compound data objects we have used so far were constructed ultimately from numbers. In this
section we extend the representational capability of our language by introducing the ability to work with
arbitrary symbols as data.

2.3.1 Quotation

If we can form compound data using symbols, we can have lists such as

(a bc d
(23 45 17)
((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can look just like the expressions of our language:

(* (+ 23 45) (+ x 9))

(define (fact n) (if (=n 1) 1 (* n (fact (- n 1)))))

In order to manipulate symbols we need a new element in our language: the ability to quote a data object.
Suppose we want to construct thelist (a b) . We can't accomplish thiswith (1 i st a b), becausethis
expression constructs alist of the values of a and b rather than the symbols themselves. Thisissueis

well known in the context of natural languages, where words and sentences may be regarded either as
semantic entities or as character strings (Syntactic entities). The common practice in natural languagesis
to use quotation marksto indicate that aword or a sentence isto be treated literally as a string of
characters. For instance, the first letter of “"John™ isclearly "~ J." If wetell somebody " "say your name
aloud," we expect to hear that person's name. However, if we tell somebody "“say "your name' aloud,” we
expect to hear the words ~"your name." Note that we are forced to nest quotation marks to describe what
somebody else might say.32

We can follow this same practice to identify lists and symbols that are to be treated as data objects rather
than as expressions to be evaluated. However, our format for quoting differs from that of natural
languages in that we place a quotation mark (traditionally, the single quote symbol *) only at the
beginning of the object to be quoted. We can get away with thisin Scheme syntax because we rely on
blanks and parentheses to delimit objects. Thus, the meaning of the single quote character is to quote the
next object.33

Now we can distinguish between symbols and their values:

(define a 1)
(define b 2)

(list a b)

Structure and Interpretation of Computer Programs

(1 2)
(list "a 'b)
(a b)
(list "a b)
(a 2)

Quotation also allows us to type in compound objects, using the conventional printed representation for
lists:34

(car '"(a b c))
a

(cdr "(a b c))
(b c)

In keeping with this, we can obtain the empty list by evaluating' () , and thus dispense with the variable
nil.

One additional primitive used in manipulating symbolsiseq?, which takes two symbols as arguments
and tests whether they are the same.3> Using eq?, we can implement a useful procedure called neny.
This takes two arguments, a symbol and alist. If the symbol is not contained inthe list (i.e., isnot eq? to
any itemin thelist), then meny returns false. Otherwise, it returns the sublist of the list beginning with
the first occurrence of the symbol:

(define (nmeng item x)
(cond ((null? x) fal se)
((eq? item (car x)) Xx)
(else (meng item (cdr x)))))

For example, the value of

(menmg ' appl e ' (pear banana prune))

is false, whereas the val ue of

(meng 'apple ' (x (apple sauce) y apple pear))
iIs(appl e pear).

Exercise 2.53. What would the interpreter print in response to evaluating each of the following
expressions?

(list "a'b 'c)

(list (list 'george))
(cdr " ((x1 x2) (yly2)))

(cadr " ((x1 x2) (yl y2)))

Structure and Interpretation of Computer Programs

(pair? (car '(a short list)))
(memg 'red '((red shoes) (blue socks)))

(memg 'red ' (red shoes bl ue socks))

Exercise 2.54. Two listsare said to be equal ? if they contain equal elements arranged in the same
order. For example,

(equal? "(this is alist) "(thisis alist))
Istrue, but
(equal? "(this is alist) "(this (is a) list))

isfalse. To be more precise, we can define equal ? recursively in terms of the basic eq? equality of
symbols by saying that a and b areequal ? if they are both symbols and the symbols are eq?, or if they
areboth listssuchthat (car a) isequal ?to(car b) and(cdr a) isequal ?to(cdr b).
Using thisidea, implement equal ? as a procedure.3¢

Exercise 2.55. EvalLu Ator typesto the interpreter the expression

(car abr acadabr a)

To her surprise, the interpreter prints back quot e. Explain.

2.3.2 Example: Symbolic Differentiation

Asanillustration of symbol manipulation and afurther illustration of data abstraction, consider the
design of a procedure that performs symbolic differentiation of algebraic expressions. We would like the
procedure to take as arguments an algebraic expression and a variable and to return the derivative of the
expression with respect to the variable. For example, if the arguments to the procedure are ax2 + bx + ¢
and x, the procedure should return 2ax + b. Symbolic differentiation is of special historical significance
in Lisp. It was one of the motivating examples behind the development of a computer language for
symbol manipulation. Furthermore, it marked the beginning of the line of research that led to the
development of powerful systems for symbolic mathematical work, which are currently being used by a
growing number of applied mathematicians and physicists.

In devel oping the symbolic-differentiation program, we will follow the same strategy of data abstraction
that we followed in developing the rational -number system of section 2.1.1. That is, we will first define a
differentiation algorithm that operates on abstract objects such as " "sums,” *"products,” and ~"variables'
without worrying about how these are to be represented. Only afterward will we address the
representation problem.

The differentiation program with abstract data

In order to keep things simple, we will consider a very ssmple symbolic-differentiation program that
handles expressions that are built up using only the operations of addition and muiltiplication with two
arguments. Differentiation of any such expression can be carried out by applying the following reduction
rules:

Structure and Interpretation of Computer Programs

? = N dcr r a constant or a variable difterent from r
T
dr
— =1
dr
dlu+ v _ d_u_l_ E
dr dr | dr
d[uu:] i du da
Tl = u()b (d_)

Observe that the latter two rules are recursive in nature. That is, to obtain the derivative of a sum we first
find the derivatives of the terms and add them. Each of the terms may in turn be an expression that needs
to be decomposed. Decomposing into smaller and smaller pieces will eventually produce piecesthat are
either constants or variables, whose derivatives will be either O or 1.

To embody these rules in a procedure we indulge in alittle wishful thinking, as we did in designing the
rational -number implementation. If we had a means for representing algebraic expressions, we should be
able to tell whether an expression is a sum, a product, a constant, or a variable. We should be able to
extract the parts of an expression. For a sum, for example we want to be able to extract the addend (first
term) and the augend (second term). We should aso be able to construct expressions from parts. Let us
assume that we already have procedures to implement the following selectors, constructors, and
predicates:

(vari abl e? e) Ise avariable?

(sane-vari abl e? vl v2) Arevl andv2 the same variable?
(sunf e) Ise asum?

(addend e) Addend of thesum e.

(augend e) Augend of thesum e.
(make-sum al a2) Construct the sum of al and aZ2.
(product? e) Ise aproduct?

(multiplier e) Multiplier of the product e.

(mul tiplicand e) Multiplicand of the product e.

(make- product nil nR) Construct the product of il and n2.

Using these, and the primitive predicate nunber ?, which identifies numbers, we can express the
differentiation rules as the following procedure:

(define (deriv exp var)
(cond ((nunber? exp) 0)
((variabl e? exp)
(if (sanme-variable? exp var) 1 0))
((sun®? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))

((product? exp)
(make- sum

Structure and Interpretation of Computer Programs

Thisder i v procedure incorporates the complete differentiation algorithm. Since it is expressed in terms
of abstract data, it will work no matter how we choose to represent algebraic expressions, aslong as we
design a proper set of selectors and constructors. Thisis the issue we must address next.

(make-product (nmultiplier exp)

(deriv (multiplicand exp) var))
(make- product (deriv (nmultiplier exp) var)
(mul tiplicand exp))))

(el se

(error "unknown expression type --

Representing algebraic expressions

We can imagine many ways to use list structure to represent algebraic expressions. For example, we
could use lists of symbols that mirror the usual algebraic notation, representing ax + b asthelist (a * x
+ b) . However, one especially straightforward choice is to use the same parenthesized prefix notation
that Lisp uses for combinations; that is, to representax+bas(+ (* a x) b).Thenour data

representation for the differentiation problem is as follows:

The variables are symbols. They are identified by the primitive predicate synbol ?:

(define (variable? x) (synbol? x))

Two variables are the same if the symbols representing them are eq?:

(define (sane-variable? vl v2)

(and (variable? vl1l) (variable? v2) (eq? vl v2)))

Sums and products are constructed as lists:

(define (nmake-sumal a2) (list '+ al a2))

(define (make-product mlL nR) (Ili st
A sumisalist whose first element is the symbol +:

(define (sunf x)
(and (pair? x) (eqg? (car x) '+4)))
The addend is the second item of the sum list:

(define (addend s) (cadr s))
The augend is the third item of the sum list:

(define (augend s) (caddr s))
A product isalist whose first element is the symbol *:

(define (product? x)
(and (pair? x) (eq? (car x) '*)))

The multiplier is the second item of the product list:

(define (multiplier p) (cadr p))

DERI V' exp))))

‘ol nR))

Structure and Interpretation of Computer Programs

o Themultiplicand isthe third item of the product list:
(define (multiplicand p) (caddr p))

Thus, we need only combine these with the algorithm as embodied by der i v in order to have aworking
symbolic-differentiation program. Let us look at some examples of its behavior:

(deriv '"(+ x 3) 'Xx)
(+ 1 0)
(deriv '(* xvy) '"Xx)
(+ (*x0) (*1y))
(deriv "(* (* xvy) (+x 3)) '"x)
(+((" xy) (+10))
(" (+ (*x0) (*1vy))

(+ x3)))
The program produces answers that are correct; however, they are unsimplified. It istrue that
M =r 041y
ir

but we would like the program to know that x -0=0,1 -y =y, and 0 + y = y. The answer for the second
example should have been simply y. Asthe third example shows, this becomes a serious issue when the
expressions are complex.

Our difficulty is much like the one we encountered with the rational-number implementation: we haven't
reduced answers to simplest form. To accomplish the rational-number reduction, we needed to change
only the constructors and the selectors of the implementation. We can adopt a similar strategy here. We
won't changederi v a al. Instead, we will change make- sumso that if both summands are numbers,
make- sumwill add them and return their sum. Also, if one of the summandsis 0, then make- sumwill
return the other summand.

(define (nmake-sum al a2)
(cond ((=nunber? al 0) a2)
((=nunber? a2 0) al)
((and (nunber? al) (nunber? a2)) (+ al a2))
(else (list "+ al a2))))

This uses the procedure =nunber ?, which checks whether an expression is equal to a given number:

(define (=nunber? exp nunm
(and (nunber? exp) (= exp num))

Similarly, we will change make- pr oduct to buildin the rules that O times anything is 0 and 1 times
anything isthe thing itself:

(define (nmake-product nil nR)
(cond ((or (=nunber? nml 0) (=nunber? n2 0)) 0)

((=nunmber? nmlL 1) nR)

((=nunber? n2 1) ml)

Structure and Interpretation of Computer Programs

((and (nunber? ml) (nunber? nR)) (* nl nR))
(else (list "* ml nR))))

Hereis how this version works on our three examples:

(deriv '(+ x 3) 'Xx)

1

(deriv '(* x y) 'X)

y

(deriv "(* (* xvy) (+x 3)) '"x)
(+ (" xy) (*y (+x3)))

Although thisis quite an improvement, the third example shows that thereis still along way to go before
we get a program that puts expressions into aform that we might agreeis ~"simplest.” The problem of
algebraic simplification is complex because, among other reasons, aform that may be ssmplest for one
purpose may not be for another.

Exercise 2.56. Show how to extend the basic differentiator to handle more kinds of expressions. For
instance, implement the differentiation rule

by adding anew clause to theder i v program and defining appropriate procedures

exponenti ati on?, base, exponent, and make- exponenti ati on. (You may use the symbol
** to denote exponentiation.) Build in the rules that anything raised to the power 0 is 1 and anything
raised to the power 1 isthe thing itself.

Exercise 2.57. Extend the differentiation program to handle sums and products of arbitrary numbers of
(two or more) terms. Then the last example above could be expressed as

(deriv "(* xy (+x 3)) '"x)

Try to do this by changing only the representation for sums and products, without changing theder i v
procedure at all. For example, the addend of a sum would be the first term, and the augend would be
the sum of the rest of the terms.

Exercise 2.58. Suppose we want to modify the differentiation program so that it works with ordinary
mathematical notation, in which + and * are infix rather than prefix operators. Since the differentiation
program is defined in terms of abstract data, we can modify it to work with different representations of
expressions solely by changing the predicates, selectors, and constructors that define the representation
of the algebraic expressions on which the differentiator is to operate.

a. Show how to do thisin order to differentiate algebraic expressions presented in infix form, such as (x
+ (3 * (x + (y + 2)))).Tosmplify the task, assume that + and * aways take two arguments
and that expressions are fully parenthesized.

b. The problem becomes substantially harder if we alow standard algebraic notation, suchas(x + 3
* (x +y + 2)),whichdrops unnecessary parentheses and assumes that multiplication is done
before addition. Can you design appropriate predicates, selectors, and constructors for this notation such

Structure and Interpretation of Computer Programs

that our derivative program still works?

2.3.3 Example: Representing Sets

In the previous examples we built representations for two kinds of compound data objects: rational
numbers and algebraic expressions. In one of these examples we had the choice of simplifying (reducing)
the expressions at either construction time or selection time, but other than that the choice of a
representation for these structures in terms of lists was straightforward. When we turn to the
representation of sets, the choice of arepresentation is not so obvious. Indeed, there are a number of
possible representations, and they differ significantly from one another in several ways.

Informally, aset is simply acollection of distinct objects. To give a more precise definition we can
employ the method of data abstraction. That is, we define “set” by specifying the operations that are to
be used on sets. Theseareuni on- set,i nt ersecti on-set, el enent - of - set ?, and

adj oi n-set . El enent - of - set ? isapredicate that determines whether agiven element isa
member of aset. Adj oi n- set takes an object and a set as arguments and returns a set that contains the
elements of the original set and also the adjoined element. Uni on- set computes the union of two sets,
which is the set containing each element that appearsin either argument. | nt er sect i on- set
computes the intersection of two sets, which is the set containing only elements that appear in both
arguments. From the viewpoint of data abstraction, we are free to design any representation that
implements these operations in away consistent with the interpretations given above.3?

Sets as unordered lists

One way to represent aset isas alist of its elements in which no element appears more than once. The
empty set is represented by the empty list. In this representation, el enment - of - set ? issimilar to the
procedure neny of section 2.3.1. It usesequal ? instead of eq? so that the set elements need not be

symbols:

(define (elenent-of-set? x set)
(cond ((null? set) false)
((equal ? x (car set)) true)
(el se (elenment-of-set? x (cdr set)))))

Using this, we can write adj oi n- set . If the object to be adjoined is already in the set, we just return
the set. Otherwise, we use cons to add the object to the list that represents the set:

(define (adjoin-set x set)
(if (elenment-of-set? x set)
set
(cons x set)))

Fori nt er secti on- set we can use arecursive strategy. If we know how to form the intersection of
set 2 andthecdr of set 1, weonly need to decide whether to includethe car of set 1 inthis. But
this depends on whether (car set 1) isalsoinset 2. Hereisthe resulting procedure:

(define (intersection-set setl set?2)
(cond ((or (null? setl) (null? set2)) '())

Structure and Interpretation of Computer Programs

((el ement-of-set? (car setl) set?2)
(cons (car setl)

(intersection-set (cdr setl) set2)))
(else (intersection-set (cdr setl) set2))))

In designing a representation, one of the issues we should be concerned with is efficiency. Consider the
number of steps required by our set operations. Since they all use el enent - of - set ?, the speed of
this operation has a major impact on the efficiency of the set implementation as awhole. Now, in order
to check whether an object is a member of a set, el enent - of - set ? may have to scan the entire set.
(In the worst case, the object turns out not to be in the set.) Hence, if the set has n elements,

el ement - of - set ? might take up to n steps. Thus, the number of steps required grows as&(n). The
number of steps required by adj oi n- set , which uses this operation, also grows as&(n). For

I nt er secti on-set, whichdoesan el enent - of - set ? check for each element of set 1, the
number of steps required grows as the product of the sizes of the setsinvolved, or &(n?) for two sets of
size n. The same will be true of uni on- set.

Exercise 2.59. Implement the uni on- set operation for the unordered-list representation of sets.

Exercise 2.60. We specified that a set would be represented as a list with no duplicates. Now suppose
we allow duplicates. For instance, the set {1,2,3} could be represented asthelist(2 3 2 1 3 2 2).
Design procedures el enent - of - set ?, adj oi n-set,uni on-set,andi nt ersecti on- set
that operate on this representation. How does the efficiency of each compare with the corresponding
procedure for the non-duplicate representation? Are there applications for which you would use this
representation in preference to the non-duplicate one?

Sets as ordered lists

One way to speed up our set operations is to change the representation so that the set elements are listed
in increasing order. To do this, we need some way to compare two objects so that we can say whichis
bigger. For example, we could compare symbols lexicographically, or we could agree on some method
for assigning a unique number to an object and then compare the elements by comparing the
corresponding numbers. To keep our discussion simple, we will consider only the case where the set
elements are numbers, so that we can compare elements using > and <. We will represent a set of
numbers by listing its elements in increasing order. Whereas our first representation above allowed usto
represent the set { 1,3,6,10} by listing the elementsin any order, our new representation allows only the
list(1 3 6 10).

One advantage of ordering showsup in el enent - of - set ?: In checking for the presence of an item,
we no longer have to scan the entire set. If we reach a set element that is larger than the item we are
looking for, then we know that the item is not in the set:

(define (el enent-of-set? x set)
(cond ((null? set) fal se)
((= x (car set)) true)
((< x (car set)) false)
(else (elenent-of-set? x (cdr set)))))

How many steps does this save? In the worst case, the item we are looking for may be the largest onein

Structure and Interpretation of Computer Programs

the set, so the number of stepsisthe same as for the unordered representation. On the other hand, if we
search for items of many different sizes we can expect that sometimes we will be able to stop searching
at a point near the beginning of the list and that other times we will still need to examine most of the list.
On the average we should expect to have to examine about half of the itemsin the set. Thus, the average
number of steps required will be about n/2. Thisis still £(n) growth, but it does save us, on the average, a
factor of 2 in number of steps over the previous implementation.

We obtain amore impressive speedup withi nt er sect i on- set . In the unordered representation this
operation required £(n?) steps, because we performed a complete scan of set 2 for each element of

set 1. But with the ordered representation, we can use a more clever method. Begin by comparing the
initial elements, x1 and x2, of the two sets. If x1 equals x2, then that gives an element of the
intersection, and the rest of the intersection is the intersection of the cdr s of the two sets. Suppose,
however, that X1 islessthan x2. Since x2 isthe smallest element in set 2, we can immediately
conclude that x 1 cannot appear anywherein set 2 and hence is not in the intersection. Hence, the
intersection is equal to the intersection of set 2 withthecdr of set 1. Similarly, if x2 islessthan x 1,
then the intersection is given by the intersection of set 1 withthecdr of set 2. Hereisthe procedure:

(define (intersection-set setl set?2)
(if (or (null? setl) (null? set?2))
()
(let ((x1 (car setl)) (x2 (car set2)))
(cond ((= x1 x2)
(cons x1
(intersection-set (cdr setl)
(cdr set2))))
((< x1 x2)
(intersection-set (cdr setl) set2))
((< x2 x1)
(intersection-set setl (cdr set2)))))))

To estimate the number of steps required by this process, observe that at each step we reduce the
Intersection problem to computing intersections of smaller sets -- removing the first element fromset 1
or set 2 or both. Thus, the number of steps required is at most the sum of the sizesof set 1 and set 2,
rather than the product of the sizes as with the unordered representation. Thisis&(n) growth rather than
E(n?) -- aconsiderable speedup, even for sets of moderate size.

Exercise 2.61. Give animplementation of adj oi n- set using the ordered representation. By analogy
with el enent - of - set ? show how to take advantage of the ordering to produce a procedure that
requires on the average about half as many steps as with the unordered representation.

Exercise 2.62. Give ag&(n) implementation of uni on- set for setsrepresented as ordered lists.

Sets as binary trees

We can do better than the ordered-list representation by arranging the set elementsin the form of atree.
Each node of the tree holds one element of the set, called the ““entry" at that node, and a link to each of
two other (possibly empty) nodes. The “left” link points to elements smaller than the one at the node,

Structure and Interpretation of Computer Programs

and the ““right” link to elements greater than the one at the node. Figure 2.16 shows some trees that

represent the set {1,3,5,7,9,11} . The same set may be represented by atree in a number of different ways.
The only thing we require for avalid representation is that all elements in the left subtree be smaller than
the node entry and that all elementsin the right subtree be larger.

]

3/\9
A

7

3/\9
A\

A
5/\9
\

11
Figure 2.16: Various binary treesthat represent theset { 1,3,5,7,9,11}.

The advantage of the tree representation is this. Suppose we want to check whether a number x is
contained in a set. We begin by comparing x with the entry in the top node. If x isless than this, we know
that we need only search the left subtree; if X is greater, we need only search the right subtree. Now, if the
treeis "balanced," each of these subtrees will be about half the size of the original. Thus, in one step we
have reduced the problem of searching atree of size n to searching atree of size n/2. Since the size of the
tree is halved at each step, we should expect that the number of steps needed to search atree of sizen
grows as&(l og n).38 For large sets, thiswill be a significant speedup over the previous representations.

We can represent trees by using lists. Each node will be alist of three items: the entry at the node, the left
subtree, and the right subtree. A left or aright subtree of the empty list will indicate that thereis no
subtree connected there. We can describe this representation by the following procedures:s?

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (nmake-tree entry left right)
(list entry left right))

Now we can writethe el enent - of - set ? procedure using the strategy described above:

(define (el enment-of-set? x set)
(cond ((null? set) false)
((=x (entry set)) true)
((< x (entry set))
(el ement-of-set? x (left-branch set)))
((> x (entry set))
(element-of-set? x (right-branch set)))))

Adjoining an item to a set isimplemented similarly and also requires£(l og n) steps. To adjoin an item

Structure and Interpretation of Computer Programs

X, we compare X with the node entry to determine whether x should be added to the right or to the left
branch, and having adjoined x to the appropriate branch we piece this newly constructed branch together
with the original entry and the other branch. If x isequal to the entry, we just return the node. If we are
asked to adjoin x to an empty tree, we generate atree that has x as the entry and empty right and left
branches. Here is the procedure:

(define (adjoin-set x set)
(cond ((null? set) (make-tree x "() '()))
((=x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((>x (entry set))
(make-tree (entry set)
(left-branch set)
(adj oin-set x (right-branch set))))))

The above claim that searching the tree can be performed in a logarithmic number of steps rests on the
assumption that the treeis " "balanced," i.e., that the left and the right subtree of every tree have
approximately the same number of elements, so that each subtree contains about half the elements of its
parent. But how can we be certain that the trees we construct will be balanced? Even if we start with a
balanced tree, adding elements with adj oi n- set may produce an unbalanced result. Since the position
of anewly adjoined element depends on how the element compares with the items already in the set, we
can expect that if we add elements ““randomly" the tree will tend to be balanced on the average. But this
IS not a guarantee. For example, if we start with an empty set and adjoin the numbers 1 through 7 in
sequence we end up with the highly unbalanced tree shown in figure 2.17. In thistree all the left subtrees
are empty, so it has no advantage over asimple ordered list. One way to solve this problem is to define
an operation that transforms an arbitrary tree into a balanced tree with the same elements. Then we can
perform this transformation after every few adj oi n- set operationsto keep our set in balance. There
are also other ways to solve this problem, most of which involve designing new data structures for which
searching and insertion both can be donein (1 og n) steps.40

Structure and Interpretation of Computer Programs

Figure 2.17: Unbalanced tree produced by adjoining 1 through 7 in sequence.
Exercise 2.63. Each of the following two procedures converts abinary treeto alist.

(define (tree->list-1 tree)
(if (null? tree)
()
(append (tree->list-1 (left-branch tree))
(cons (entry tree)
(tree->list-1 (right-branch tree))))))
(define (tree->list-2 tree)
(define (copy-to-list tree result-1list)
(if (null? tree)
result-1ist
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list (right-branch tree)
result-list)))))
(copy-to-list tree '()))

a. Do the two procedures produce the same result for every tree? If not, how do the results differ? What
lists do the two procedures produce for the treesin figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps required to convert a
balanced tree with n elementsto alist? If not, which one grows more slowly?

Exercise 2.64. Thefollowing procedurel i st - >t r ee converts an ordered list to a balanced binary
tree. The helper procedure parti al - t r ee takes as arguments an integer n and list of at least n
elements and constructs a balanced tree containing the first n elements of the list. The result returned by
partial -treeisapair (formed with cons) whosecar isthe constructed tree and whose cdr isthe
list of elements not included in the tree.

(define (list->tree el enents)
(car (partial-tree elenents (length elenents))))

(define (partial-tree elts n)
(if (=n0)
(cons '"() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
ri ght-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))

Structure and Interpretation of Computer Programs

(cons (make-tree this-entry left-tree right-tree)
remai ning-elts))))))))

a. Write ashort paragraph explaining as clearly asyou can how parti al - t r ee works. Draw the tree
produced by | i st ->treeforthelist(1 3 5 7 9 11).

b. What is the order of growth in the number of stepsrequired by | i st - >t r ee to convert alist of n
elements?

Exercise 2.65. Usethe results of exercises 2.63 and 2.64 to give £(n) implementations of uni on- set
andi ntersecti on-set for setsimplemented as (balanced) binary trees.41

Sets and information retrieval

We have examined options for using lists to represent sets and have seen how the choice of
representation for a data object can have a large impact on the performance of the programs that use the
data. Another reason for concentrating on sets is that the techniques discussed here appear again and
again in applications involving information retrieval.

Consider a data base containing a large number of individual records, such as the personnel filesfor a
company or the transactions in an accounting system. A typical data-management system spends alarge
amount of time accessing or modifying the data in the records and therefore requires an efficient method
for accessing records. Thisis done by identifying a part of each record to serve as an identifying key. A
key can be anything that uniquely identifies the record. For a personnel file, it might be an employee's ID
number. For an accounting system, it might be a transaction number. Whatever the key is, when we
define the record as a data structure we should include akey selector procedure that retrieves the key
associated with a given record.

Now we represent the data base as a set of records. To locate the record with a given key we use a
procedure | ookup, which takes as arguments a key and a data base and which returns the record that
has that key, or falseif there is no such record. Lookup isimplemented in amost the same way as

el enent - of - set ?. For example, if the set of recordsisimplemented as an unordered list, we could
use

(define (|l ookup given-key set-of-records)
(cond ((null? set-of-records) false)
((equal ? given-key (key (car set-of-records)))
(car set-of-records))
(el se (|l ookup given-key (cdr set-of-records)))))

Of course, there are better ways to represent large sets than as unordered lists. Information-retrieval
systems in which records have to be “randomly accessed" are typically implemented by a tree-based
method, such as the binary-tree representation discussed previously. In designing such a system the
methodology of data abstraction can be a great help. The designer can create an initial implementation
using asimple, straightforward representation such as unordered lists. Thiswill be unsuitable for the
eventual system, but it can be useful in providing a " "quick and dirty" data base with which to test the rest
of the system. Later on, the data representation can be modified to be more sophisticated. If the data base
Is accessed in terms of abstract selectors and constructors, this change in representation will not require

Structure and Interpretation of Computer Programs

any changes to the rest of the system.

Exercise 2.66. Implement thel ookup procedure for the case where the set of records is structured as a
binary tree, ordered by the numerical values of the keys.

2.3.4 Example: Huffman Encoding Trees

This section provides practice in the use of list structure and data abstraction to manipulate sets and trees.
The application is to methods for representing data as sequences of ones and zeros (bits). For example,
the ASCII standard code used to represent text in computers encodes each character as a sequence of
seven bits. Using seven bits allows us to distinguish 27, or 128, possible different characters. In general,
if we want to distinguish n different symbols, we will need to use| og, n bits per symbol. If al our

messages are made up of the eight symbols A, B, C, D, E, F, G, and H, we can choose a code with three
bits per character, for example

A 000 C 010 E 100G 110
B001DO011F 101 H 111

With this code, the message

BACADAEAFABBAAAGAH

is encoded as the string of 54 bits
001000010000011000100000101000001001000000000110000111

Codes such as ASCII and the A-through-H code above are known as fixed-length codes, because they
represent each symbol in the message with the same number of bits. It is sometimes advantageous to use
variable-length codes, in which different symbols may be represented by different numbers of bits. For
example, Morse code does not use the same number of dots and dashes for each letter of the alphabet. In
particular, E, the most frequent letter, is represented by a single dot. In general, if our messages are such
that some symbols appear very frequently and some very rarely, we can encode data more efficiently
(i.e., using fewer bits per message) if we assign shorter codes to the frequent symbols. Consider the
following alternative code for the letters A through H:

A0 C1010E 1100 G 1110
B 100D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string
100010100101101100011010100100000111001111

This string contains 42 bits, so it saves more than 20% in space in comparison with the fixed-length code
shown above.

One of the difficulties of using a variable-length code is knowing when you have reached the end of a
symbol in reading a sequence of zeros and ones. Morse code solves this problem by using a specia
separator code (in this case, a pause) after the sequence of dots and dashes for each letter. Another
solution isto design the code in such away that no complete code for any symbol is the beginning (or
prefix) of the code for another symbol. Such acode is called a prefix code. In the example above, A is

Structure and Interpretation of Computer Programs

encoded by 0 and B is encoded by 100, so no other symbol can have a code that begins with O or with
100.

In general, we can attain significant savings if we use variable-length prefix codes that take advantage of
the relative frequencies of the symbols in the messages to be encoded. One particular scheme for doing
thisis called the Huffman encoding method, after its discoverer, David Huffman. A Huffman code can
be represented as a binary tree whose leaves are the symbols that are encoded. At each non-leaf node of
the tree there is a set containing al the symbolsin the leaves that lie below the node. In addition, each
symbol at aleaf isassigned aweight (which isitsrelative frequency), and each non-leaf node contains a
weight that is the sum of all the weights of the leaves lying below it. The weights are not used in the
encoding or the decoding process. We will see below how they are used to help construct the tree.

(A BCDEF 3 H} 17

[BECDEF G H} 9

IB & D} 5

[EF @ H} 4

Figure 2.18: A Huffman encoding tree.

Figure 2.18 shows the Huffman tree for the A-through-H code given above. The weights at the leaves

indicate that the tree was designed for messages in which A appears with relative frequency 8, B with
relative frequency 3, and the other letters each with relative frequency 1.

Given a Huffman tree, we can find the encoding of any symbol by starting at the root and moving down
until we reach the leaf that holds the symbol. Each time we move down aleft branch we add a O to the
code, and each time we move down aright branch we add a 1. (We decide which branch to follow by
testing to see which branch either is the leaf node for the symbol or contains the symbol in its set.) For
example, starting from the root of the treein figure 2.18, we arrive at the leaf for D by following aright

branch, then aleft branch, then aright branch, then aright branch; hence, the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin at the root and use the successive zeros and
ones of the bit sequence to determine whether to move down the left or the right branch. Each time we
cometo aleaf, we have generated a new symbol in the message, at which point we start over from the
root of the tree to find the next symbol. For example, suppose we are given the tree above and the

Structure and Interpretation of Computer Programs

sequence 10001010. Starting at the root, we move down the right branch, (since the first bit of the string
is 1), then down the left branch (since the second bit is 0), then down the left branch (since the third bit is
also 0). Thisbrings usto the leaf for B, so the first symbol of the decoded message is B. Now we start
again at the root, and we make aleft move because the next bit in the string is 0. This brings us to the | eaf
for A. Then we start again at the root with the rest of the string 1010, so we move right, left, right, left
and reach C. Thus, the entire message is BAC.

Generating Huffman trees

Given an aphabet” of symbols and their relative frequencies, how do we construct the " best" code? (In
other words, which tree will encode messages with the fewest bits?) Huffman gave an algorithm for
doing this and showed that the resulting code is indeed the best variable-length code for messages where
the relative frequency of the symbols matches the frequencies with which the code was constructed. We
will not prove this optimality of Huffman codes here, but we will show how Huffman trees are
constructed.42

The algorithm for generating a Huffman tree is very ssimple. Theideaisto arrange the tree so that the
symbols with the lowest frequency appear farthest away from the root. Begin with the set of |eaf nodes,
containing symbols and their frequencies, as determined by the initial data from which the codeisto be
constructed. Now find two leaves with the lowest weights and merge them to produce a node that has
these two nodes as its left and right branches. The weight of the new node is the sum of the two weights.
Remove the two leaves from the original set and replace them by this new node. Now continue this
process. At each step, merge two nodes with the smallest weights, removing them from the set and
replacing them with a node that has these two as its |eft and right branches. The process stops when there
is only one node left, which isthe root of the entire tree. Here is how the Huffman tree of figure 2.18 was

generated:

Initial leaves{(A8)(B3)(C1)H (DL ((ED(FL (G H1IL}
Merge {(A8(B3)({CD} 2 (EL(F1)(GI)(HI}
Merge {(A8)(B3)({CD} 2 ({EF} 2)(G1)(HI}
Merge {(A8) (B3) ({CD} 2 {EF} 2) {GH} 2)}
Merge {(A8)(B3)({CD} 2 {EFGH;} 4)}

Merge {(A8)({BCD}5 {EFGH} 4)}

Merge {(A8) {BCDEFGH} 9)}

Fina merge {{ABCDEFGH} 17)}

The agorithm does not always specify a unigue tree, because there may not be unigue smallest-weight
nodes at each step. Also, the choice of the order in which the two nodes are merged (i.e., which will be
the right branch and which will be the left branch) is arbitrary.

Representing Huffman trees

In the exercises below we will work with a system that uses Huffman trees to encode and decode
messages and generates Huffman trees according to the algorithm outlined above. We will begin by
discussing how trees are represented.

Leaves of the tree are represented by alist consisting of the symbol | eaf , the symbol at the leaf, and the

Structure and Interpretation of Computer Programs

weight:

(define (nmake-1eaf synbol weight)
(list 'leaf synbol weight))
(define (leaf? object)
(eg? (car object) 'leaf))
(define (synbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))

A general tree will be alist of aleft branch, aright branch, a set of symbols, and aweight. The set of
symbols will be simply alist of the symbols, rather than some more sophisticated set representation.
When we make a tree by merging two nodes, we obtain the weight of the tree as the sum of the weights
of the nodes, and the set of symbols as the union of the sets of symbols for the nodes. Since our symbol
sets are represented as lists, we can form the union by using the append procedure we defined in
section 2.2.1:

(define (nmake-code-tree left right)
(list left
right
(append (synbols left) (synbols right))
(+ (weight left) (weight right))))

If we make atree in thisway, we have the following selectors:

(define (left-branch tree) (car tree))

(define (right-branch tree) (cadr tree))
(define (synbols tree)
(if (leaf? tree)
(list (synmbol -leaf tree))
(caddr tree)))
(define (weight tree)
(if (leaf? tree)
(wei ght-leaf tree)
(cadddr tree)))

The procedures synbol s and wei ght must do something sightly different depending on whether they
are called with aleaf or ageneral tree. These are ssmple examples of generic procedures (procedures that
can handle more than one kind of data), which we will have much more to say about in sections 2.4

and 2.5.

The decoding procedure

The following procedure implements the decoding algorithm. It takes as arguments a list of zeros and
ones, together with a Huffman tree.

(define (decode bits tree)
(define (decode-1 bits current-branch)

Structure and Interpretation of Computer Programs
(if (null? bits)
()
(let ((next-branch
(choose-branch (car bits) current-branch)))
(i1f (leaf? next-branch)
(cons (synbol -1 eaf next-branch)
(decode-1 (cdr bits) tree))
(decode-1 (cdr bits) next-branch)))))
(decode-1 bits tree))
(define (choose-branch bit branch)
(cond ((= bit 0) (left-branch branch))
((=bit 1) (right-branch branch))
(else (error "bad bit -- CHOOSE- BRANCH' bit))))

The procedure decode- 1 takes two arguments: the list of remaining bits and the current position in the
tree. It keeps moving " "down" the tree, choosing a left or aright branch according to whether the next bit
inthelistisazero or aone. (Thisis done with the procedure choose- br anch.) When it reaches a | eaf,
it returns the symbol at that leaf as the next symbol in the message by consing it onto the result of
decoding the rest of the message, starting at the root of the tree. Note the error check in the final clause of
choose- br anch, which complainsif the procedure finds something other than a zero or aone in the
Input data.

Sets of weighted elements

In our representation of trees, each non-leaf node contains a set of symbols, which we have represented
asasimplelist. However, the tree-generating algorithm discussed above requires that we also work with
sets of leaves and trees, successively merging the two smallest items. Since we will be required to
repeatedly find the smallest item in a set, it is convenient to use an ordered representation for this kind of
Set.

We will represent a set of leaves and trees as alist of elements, arranged in increasing order of weight.
Thefollowing adj oi n- set procedure for constructing setsis similar to the one described in
exercise 2.61; however, items are compared by their weights, and the element being added to the set is

never already init.

(define (adjoin-set x set)
(cond ((null? set) (list x))
((< (weight x) (weight (car set))) (cons x set))
(el se (cons (car set)
(adjoin-set x (cdr set))))))

The following procedure takes alist of symbol-frequency pairssuchas((A 4) (B 2) (C 1) (D
1)) and constructs an initial ordered set of leaves, ready to be merged according to the Huffman
algorithm:

(define (make-| eaf-set pairs)
(if (null? pairs)

Structure and Interpretation of Computer Programs

()
(let ((pair (car pairs)))
(adj oi n-set (make-|eaf (car pair) ; synbol
(cadr pair)) ; frequency
(make-l eaf-set (cdr pairs))))))

Exercise 2.67. Define an encoding tree and a sample message:

(define sanple-tree
(make-code-tree (nmake-leaf 'A 4)
(make-code-tree
(make-l eaf 'B 2)
(make-code-tree (nmake-leaf 'D 1)
(make-leaf "C 1)))))

(define sanple-nessage '(01 1 0010101110))
Usethe decode procedure to decode the message, and give the result.

Exercise 2.68. Theencode procedure takes as arguments a message and a tree and produces the list of
bits that gives the encoded message.

(define (encode nessage tree)
(if (null? nmessage)
()
(append (encode-synbol (car nessage) tree)
(encode (cdr nessage) tree))))

Encode- synbol isaprocedure, which you must write, that returns the list of bits that encodes a given
symbol according to agiven tree. You should design encode- synbol sothat it signalsan error if the
symbol isnot in the tree at all. Test your procedure by encoding the result you obtained in exercise 2.67

with the sample tree and seeing whether it is the same as the original sample message.

Exercise 2.69. The following procedure takes asits argument alist of symbol-frequency pairs (where no
symbol appearsin more than one pair) and generates a Huffman encoding tree according to the Huffman
algorithm.

(define (generate-huffnman-tree pairs)
(successi ve-nerge (nake-|eaf-set pairs)))

Make- | eaf - set isthe procedure given above that transforms the list of pairs into an ordered set of
leaves. Successi ve- nmer ge isthe procedure you must write, using make- code-tr ee to
successively merge the smallest-weight elements of the set until there is only one element left, which is
the desired Huffman tree. (This procedure is dlightly tricky, but not really complicated. If you find
yourself designing a complex procedure, then you are aimost certainly doing something wrong. Y ou can
take significant advantage of the fact that we are using an ordered set representation.)

Exercise 2.70. The following eight-symbol aphabet with associated relative frequencies was designed
to efficiently encode the lyrics of 1950s rock songs. (Note that the ~"symbols' of an "~ a phabet” need not

Structure and Interpretation of Computer Programs

beindividual letters.)

A 2NA 16
BOOM 1SHA 3
GET 2YIP 9
JOB 2WAH1

Usegener at e- huf f man- t r ee (exercise 2.69) to generate a corresponding Huffman tree, and use
encode (exercise 2.68) to encode the following message:

Get ajob

Shanananananananana

Get ajob

Shanananananananana

Wahyipyipyipyipyipyipyipyip yip

Sha boom

How many bits are required for the encoding? What is the smallest number of bits that would be needed
to encode this song if we used a fixed-length code for the eight-symbol alphabet?

Exercise 2.71. Suppose we have a Huffman tree for an alphabet of n symbols, and that the relative
frequencies of the symbolsare 1, 2, 4, . . ., 2™1, Sketch the tree for n=5; for n=10. In such atree (for
general n) how may bits are required to encode the most frequent symbol ? the least frequent symbol ?

Exercise 2.72. Consider the encoding procedure that you designed in exercise 2.68. What is the order of

growth in the number of steps needed to encode a symbol? Be sure to include the number of steps needed
to search the symbol list at each node encountered. To answer this question in general is difficult.
Consider the special case where the relative frequencies of the n symbols are as described in

exercise 2.71, and give the order of growth (as afunction of n) of the number of steps needed to encode

the most frequent and least frequent symbols in the al phabet.

32 Allowing quotation in alanguage wreaks havoc with the ability to reason about the language in simple
terms, because it destroys the notion that equals can be substituted for equals. For example, three is one
plus two, but the word ““three" is not the phrase ““one plus two." Quotation is powerful because it gives
us away to build expressions that manipulate other expressions (as we will see when we write an
interpreter in chapter 4). But allowing statements in a language that talk about other statements in that
language makes it very difficult to maintain any coherent principle of what " equals can be substituted for
equals' should mean. For example, if we know that the evening star is the morning star, then from the
statement " "the evening star is Venus' we can deduce " "the morning star is Venus." However, given that
““John knows that the evening star is Venus" we cannot infer that =" John knows that the morning star is
Venus."

33 The single quote is different from the double quote we have been using to enclose character strings to
be printed. Whereas the single quote can be used to denote lists or symbols, the double quote is used only

Structure and Interpretation of Computer Programs

with character strings. In this book, the only use for character stringsis as items to be printed.

34 Strictly, our use of the quotation mark violates the general rule that all compound expressions in our
language should be delimited by parentheses and look like lists. We can recover this consistency by
introducing a special form quot e, which serves the same purpose as the quotation mark. Thus, we
would type (quot e a) instead of ' a, andwewouldtype(quote (a b c)) insteadof' (a b
c) . Thisis precisely how the interpreter works. The quotation mark is just a single-character
abbreviation for wrapping the next complete expression with quot e to form (quot e

<expr essi on>) . Thisisimportant because it maintains the principle that any expression seen by the
interpreter can be manipulated as a data object. For instance, we could construct the expression (car
‘(a b c)),whichisthesameas(car (quote (a b c))),byevauating

(list "car (list "quote '(a b c))).

35 We can consider two symbolsto be ""the same" if they consist of the same characters in the same
order. Such a definition skirts a deep issue that we are not yet ready to address. the meaning of
““sameness' in a programming language. We will return to thisin chapter 3 (section 3.1.3).

36 |n practice, programmers use equal ? to compare lists that contain numbers as well as symbols.
Numbers are not considered to be symbols. The question of whether two numerically equal numbers (as
tested by =) are also eq? is highly implementation-dependent. A better definition of equal ? (such as
the one that comes as a primitive in Scheme) would also stipulate that if a and b are both numbers, then
a and b areequal ? if they are numerically equal.

37 1f we want to be more formal, we can specify "~ consistent with the interpretations given above" to
mean that the operations satisfy a collection of rules such as these:

o Forany set Sand any object x, (el enent - of -set? x (adj oin-set x S)) istrue
(informally: “"Adjoining an object to a set produces a set that contains the object”).

o Forany setsSand T and any object x, (el enent -of -set? x (union-set S T)) is
equalto(or (elenent-of-set? x S) (elenent-of-set? x T)) (informaly:
“Theelementsof (uni on S T) aretheelementsthat areinSorinT").

« For any object x, (el enent -of -set? x ' ()) isfase(informally: "No object isan element
of the empty set").
38 Halving the size of the problem at each step is the distinguishing characteristic of logarithmic growth,

as we saw with the fast-exponentiation algorithm of section 1.2.4 and the half-interval search method of
section 1.3.3.

39 We are representing sets in terms of trees, and trees in terms of lists -- in effect, a data abstraction built
upon a data abstraction. We can regard the proceduresent ry, | ef t - branch, ri ght - branch, and
make-t r ee asaway of isolating the abstraction of a ™ "binary tree" from the particular way we might
wish to represent such atreein terms of list structure.

40 Examples of such structures include B-trees and red-black trees. Thereisalarge literature on data
structures devoted to this problem. See Cormen, Leiserson, and Rivest 1990.

41 Exercises 2.63-2.65 are due to Paul Hilfinger.

42 See Hamming 1980 for a discussion of the mathematical properties of Huffman codes.

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents, index]

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

2.4 Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring systemsin such away that much of a
program can be specified independent of the choices involved in implementing the data objects that the
program manipulates. For example, we saw in section 2.1.1 how to separate the task of designing a
program that uses rational numbers from the task of implementing rational numbers in terms of the
computer language's primitive mechanisms for constructing compound data. The key idea was to erect an
abstraction barrier -- in this case, the selectors and constructors for rational numbers (make- r at ,

numner , denom -- that isolates the way rational numbers are used from their underlying representation
in terms of list structure. A similar abstraction barrier isolates the details of the procedures that perform
rational arithmetic (add-r at , sub-rat, mul -rat,anddi v-r at) fromthe higher-level"
procedures that use rational numbers. The resulting program has the structure shown in figure 2.1.

These data-abstraction barriers are powerful tools for controlling complexity. By isolating the underlying
representations of data objects, we can divide the task of designing alarge program into smaller task