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Preface

This book provides an introduction to statistical pattern recognition theory and techniques.
Most of the material presented is concerned with discrimination and classification and
has been drawn from a wide range of literature including that of engineering, statistics,
computer science and the social sciences. The book is an attempt to provide a concise
volume containing descriptions of many of the most useful of today’s pattern process-
ing techniques, including many of the recent advances in nonparametric approaches to
discrimination developed in the statistics literature and elsewhere. The techniques are
illustrated with examples of real-world applications studies. Pointers are also provided
to the diverse literature base where further details on applications, comparative studies
and theoretical developments may be obtained.

Statistical pattern recognition is a very active area of research. Many advances over
recent years have been due to the increased computational power available, enabling
some techniques to have much wider applicability. Most of the chapters in this book have
concluding sections that describe, albeit briefly, the wide range of practical applications
that have been addressed and further developments of theoretical techniques.

Thus, the book is aimed at practitioners in the ‘field’ of pattern recognition (if such
a multidisciplinary collection of techniques can be termed a field) as well as researchers
in the area. Also, some of this material has been presented as part of a graduate course
on information technology. A prerequisite is a knowledge of basic probability theory
and linear algebra, together with basic knowledge of mathematical methods (the use
of Lagrange multipliers to solve problems with equality and inequality constraints, for
example). Some basic material is presented as appendices. The exercises at the ends of
the chapters vary from ‘open book’ questions to more lengthy computer projects.

Chapter 1 provides an introduction to statistical pattern recognition, defining some ter-
minology, introducing supervised and unsupervised classification. Two related approaches
to supervised classification are presented: one based on the estimation of probability
density functions and a second based on the construction of discriminant functions. The
chapter concludes with an outline of the pattern recognition cycle, putting the remaining
chapters of the book into context. Chapters 2 and 3 pursue the density function approach
to discrimination, with Chapter 2 addressing parametric approaches to density estimation
and Chapter 3 developing classifiers based on nonparametric schemes.

Chapters 4–7 develop discriminant function approaches to supervised classification.
Chapter 4 focuses on linear discriminant functions; much of the methodology of this
chapter (including optimisation, regularisation and support vector machines) is used in
some of the nonlinear methods. Chapter 5 explores kernel-based methods, in particular,
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the radial basis function network and the support vector machine, techniques for discrimi-
nation and regression that have received widespread study in recent years. Related nonlin-
ear models (projection-based methods) are described in Chapter 6. Chapter 7 considers a
decision-tree approach to discrimination, describing the classification and regression tree
(CART) methodology and multivariate adaptive regression splines (MARS).

Chapter 8 considers performance: measuring the performance of a classifier and im-
proving the performance by classifier combination.

The techniques of Chapters 9 and 10 may be described as methods of exploratory
data analysis or preprocessing (and as such would usually be carried out prior to the
supervised classification techniques of Chapters 2–7, although they could, on occasion,
be post-processors of supervised techniques). Chapter 9 addresses feature selection and
feature extraction – the procedures for obtaining a reduced set of variables characterising
the original data. Such procedures are often an integral part of classifier design and it is
somewhat artificial to partition the pattern recognition problem into separate processes
of feature extraction and classification. However, feature extraction may provide insights
into the data structure and the type of classifier to employ; thus, it is of interest in its
own right. Chapter 10 considers unsupervised classification or clustering – the process of
grouping individuals in a population to discover the presence of structure; its engineering
application is to vector quantisation for image and speech coding.

Finally, Chapter 11 addresses some important diverse topics including model selec-
tion. Appendices largely cover background material and material appropriate if this book
is used as a text for a ‘conversion course’: measures of dissimilarity, estimation, linear
algebra, data analysis and basic probability.

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

In preparing the second edition of this book I have been helped by many people.
I am grateful to colleagues and friends who have made comments on various parts of
the manuscript. In particular, I would like to thank Mark Briers, Keith Copsey, Stephen
Luttrell, John O’Loghlen and Kevin Weekes (with particular thanks to Keith for examples
in Chapter 2); Wiley for help in the final production of the manuscript; and especially
Rosemary for her support and patience.



Notation

Some of the more commonly used notation is given below. I have used some notational
conveniences. For example, I have tended to use the same symbol for a variable as well
as a measurement on that variable. The meaning should be obvious from the context.
Also, I denote the density function of x as p.x/ and y as p.y/, even though the functions
differ. A vector is denoted by a lower-case quantity in bold face, and a matrix by upper
case.

p number of variables
C number of classes
n number of measurements
ni number of measurements in class i
!i label for class i
X1; : : : ; X p p random variables
x1; : : : ; x p measurements on variables X1; : : : ; X p

x D .x1; : : : ; x p/
T measurement vector

X D [x1; : : : ; xn]T n ð p data matrix

X D

2
64

x11 : : : x1p
:::

: : :
:::

xn1 : : : xnp

3
75

P.x/ D prob.X1 � x1; : : : ; X p � x p/

p.x/ D @P=@x
p.!i / prior probability of class i
µ D R

x p.x/dx population mean
µi D

R
x p.x/dx mean of class i; i D 1; : : : ;C

m D .1=n/
Pn

rD1 xr sample mean
mi D .1=ni /

Pn
rD1 zirxr sample mean of class i ; i D 1; : : : ;C

zir D 1 if xr 2 !i ; 0 otherwise
ni D number of patterns in !i D

Pn
rD1 zir

O� D 1
n

Pn
rD1.xr �m/.xr �m/T sample covariance matrix

(maximum likelihood estimate)
n=.n � 1/ O� sample covariance matrix

(unbiased estimate)



xviii NOTATION

O�i D .1=ni /
Pn

jD1 zi j .x j �mi /.x j �mi /
T sample covariance matrix of class i

(maximum likelihood estimate)
Si D ni

ni�1
O�i sample covariance matrix of class i

(unbiased estimate)
SW D

PC
iD1

ni
n
O�i pooled within-class sample

covariance matrix
S D n

n�C SW pooled within-class sample
covariance matrix (unbiased estimate)

SB D
PC

iD1
ni
n .mi �m/.mi �m/T sample between-class matrix

SB C SW D O�
jjAjj2 DPi j A2

i j
N .m;�/ normal distribution, mean; m

covariance matrix �

E[Y jX ] expectation of Y given X
I.�/ =1 if � = true else 0

Notation for specific probability density functions is given in Appendix E.



1

Introduction to statistical pattern
recognition

Overview

Statistical pattern recognition is a term used to cover all stages of an investigation
from problem formulation and data collection through to discrimination and clas-
sification, assessment of results and interpretation. Some of the basic terminology
is introduced and two complementary approaches to discrimination described.

1.1 Statistical pattern recognition

1.1.1 Introduction

This book describes basic pattern recognition procedures, together with practical appli-
cations of the techniques on real-world problems. A strong emphasis is placed on the
statistical theory of discrimination, but clustering also receives some attention. Thus,
the subject matter of this book can be summed up in a single word: ‘classification’,
both supervised (using class information to design a classifier – i.e. discrimination) and
unsupervised (allocating to groups without class information – i.e. clustering).

Pattern recognition as a field of study developed significantly in the 1960s. It was
very much an interdisciplinary subject, covering developments in the areas of statis-
tics, engineering, artificial intelligence, computer science, psychology and physiology,
among others. Some people entered the field with a real problem to solve. The large
numbers of applications, ranging from the classical ones such as automatic character
recognition and medical diagnosis to the more recent ones in data mining (such as credit
scoring, consumer sales analysis and credit card transaction analysis), have attracted con-
siderable research effort, with many methods developed and advances made. Other re-
searchers were motivated by the development of machines with ‘brain-like’ performance,
that in some way could emulate human performance. There were many over-optimistic
and unrealistic claims made, and to some extent there exist strong parallels with the
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2 Introduction to statistical pattern recognition

growth of research on knowledge-based systems in the 1970s and neural networks in
the 1980s.

Nevertheless, within these areas significant progress has been made, particularly where
the domain overlaps with probability and statistics, and within recent years there have
been many exciting new developments, both in methodology and applications. These
build on the solid foundations of earlier research and take advantage of increased compu-
tational resources readily available nowadays. These developments include, for example,
kernel-based methods and Bayesian computational methods.

The topics in this book could easily have been described under the term machine
learning that describes the study of machines that can adapt to their environment and learn
from example. The emphasis in machine learning is perhaps more on computationally
intensive methods and less on a statistical approach, but there is strong overlap between
the research areas of statistical pattern recognition and machine learning.

1.1.2 The basic model

Since many of the techniques we shall describe have been developed over a range of
diverse disciplines, there is naturally a variety of sometimes contradictory terminology.
We shall use the term ‘pattern’ to denote the p-dimensional data vector x D .x1; : : : ; x p/

T

of measurements (T denotes vector transpose), whose components xi are measurements of
the features of an object. Thus the features are the variables specified by the investigator
and thought to be important for classification. In discrimination, we assume that there
exist C groups or classes, denoted !1; : : : ; !C , and associated with each pattern x is a
categorical variable z that denotes the class or group membership; that is, if z D i , then
the pattern belongs to !i , i 2 f1; : : : ;Cg.

Examples of patterns are measurements of an acoustic waveform in a speech recogni-
tion problem; measurements on a patient made in order to identify a disease (diagnosis);
measurements on patients in order to predict the likely outcome (prognosis); measure-
ments on weather variables (for forecasting or prediction); and a digitised image for
character recognition. Therefore, we see that the term ‘pattern’, in its technical meaning,
does not necessarily refer to structure within images.

The main topic in this book may be described by a number of terms such as pattern
classifier design or discrimination or allocation rule design. By this we mean specifying
the parameters of a pattern classifier, represented schematically in Figure 1.1, so that it
yields the optimal (in some sense) response for a given pattern. This response is usually
an estimate of the class to which the pattern belongs. We assume that we have a set of
patterns of known class f.xi ; zi /; i D 1; : : : ; ng (the training or design set) that we use
to design the classifier (to set up its internal parameters). Once this has been done, we
may estimate class membership for an unknown pattern x.

The form derived for the pattern classifier depends on a number of different factors. It
depends on the distribution of the training data, and the assumptions made concerning its
distribution. Another important factor is the misclassification cost – the cost of making
an incorrect decision. In many applications misclassification costs are hard to quantify,
being combinations of several contributions such as monetary costs, time and other more
subjective costs. For example, in a medical diagnosis problem, each treatment has dif-
ferent costs associated with it. These relate to the expense of different types of drugs,
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sensor
representation

pattern

feature selector
/extractor

feature
pattern

classifier �
decision

Figure 1.1 Pattern classifier

the suffering the patient is subjected to by each course of action and the risk of further
complications.

Figure 1.1 grossly oversimplifies the pattern classification procedure. Data may un-
dergo several separate transformation stages before a final outcome is reached. These
transformations (sometimes termed preprocessing, feature selection or feature extraction)
operate on the data in a way that usually reduces its dimension (reduces the number
of features), removing redundant or irrelevant information, and transforms it to a form
more appropriate for subsequent classification. The term intrinsic dimensionality refers
to the minimum number of variables required to capture the structure within the data.
In the speech recognition example mentioned above, a preprocessing stage may be to
transform the waveform to a frequency representation. This may be processed further
to find formants (peaks in the spectrum). This is a feature extraction process (taking a
possible nonlinear combination of the original variables to form new variables). Feature
selection is the process of selecting a subset of a given set of variables.

Terminology varies between authors. Sometimes the term ‘representation pattern’ is
used for the vector of measurements made on a sensor (for example, optical imager, radar)
with the term ‘feature pattern’ being reserved for the small set of variables obtained by
transformation (by a feature selection or feature extraction process) of the original vector
of measurements. In some problems, measurements may be made directly on the feature
vector itself. In these situations there is no automatic feature selection stage, with the
feature selection being performed by the investigator who ‘knows’ (through experience,
knowledge of previous studies and the problem domain) those variables that are important
for classification. In many cases, however, it will be necessary to perform one or more
transformations of the measured data.

In some pattern classifiers, each of the above stages may be present and identifiable
as separate operations, while in others they may not be. Also, in some classifiers, the
preliminary stages will tend to be problem-specific, as in the speech example. In this book,
we consider feature selection and extraction transformations that are not application-
specific. That is not to say all will be suitable for any given application, however, but
application-specific preprocessing must be left to the investigator.

1.2 Stages in a pattern recognition problem

A pattern recognition investigation may consist of several stages, enumerated below.
Further details are given in Appendix D. Not all stages may be present; some may be
merged together so that the distinction between two operations may not be clear, even if
both are carried out; also, there may be some application-specific data processing that may
not be regarded as one of the stages listed. However, the points below are fairly typical.
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1. Formulation of the problem: gaining a clear understanding of the aims of the investi-
gation and planning the remaining stages.

2. Data collection: making measurements on appropriate variables and recording details
of the data collection procedure (ground truth).

3. Initial examination of the data: checking the data, calculating summary statistics and
producing plots in order to get a feel for the structure.

4. Feature selection or feature extraction: selecting variables from the measured set that
are appropriate for the task. These new variables may be obtained by a linear or
nonlinear transformation of the original set (feature extraction). To some extent, the
division of feature extraction and classification is artificial.

5. Unsupervised pattern classification or clustering. This may be viewed as exploratory
data analysis and it may provide a successful conclusion to a study. On the other hand,
it may be a means of preprocessing the data for a supervised classification procedure.

6. Apply discrimination or regression procedures as appropriate. The classifier is de-
signed using a training set of exemplar patterns.

7. Assessment of results. This may involve applying the trained classifier to an indepen-
dent test set of labelled patterns.

8. Interpretation.

The above is necessarily an iterative process: the analysis of the results may pose
further hypotheses that require further data collection. Also, the cycle may be terminated
at different stages: the questions posed may be answered by an initial examination of
the data or it may be discovered that the data cannot answer the initial question and the
problem must be reformulated.

The emphasis of this book is on techniques for performing steps 4, 5 and 6.

1.3 Issues

The main topic that we address in this book concerns classifier design: given a training
set of patterns of known class, we seek to design a classifier that is optimal for the
expected operating conditions (the test conditions).

There are a number of very important points to make about the sentence above,
straightforward as it seems. The first is that we are given a finite design set. If the
classifier is too complex (there are too many free parameters) it may model noise in the
design set. This is an example of over-fitting. If the classifier is not complex enough,
then it may fail to capture structure in the data. An example of this is the fitting of a set
of data points by a polynomial curve. If the degree of the polynomial is too high, then,
although the curve may pass through or close to the data points, thus achieving a low
fitting error, the fitting curve is very variable and models every fluctuation in the data
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(due to noise). If the degree of the polynomial is too low, the fitting error is large and
the underlying variability of the curve is not modelled.

Thus, achieving optimal performance on the design set (in terms of minimising some
error criterion perhaps) is not required: it may be possible, in a classification problem,
to achieve 100% classification accuracy on the design set but the generalisation perfor-
mance – the expected performance on data representative of the true operating conditions
(equivalently, the performance on an infinite test set of which the design set is a sam-
ple) – is poorer than could be achieved by careful design. Choosing the ‘right’ model is
an exercise in model selection.

In practice we usually do not know what is structure and what is noise in the data.
Also, training a classifier (the procedure of determining its parameters) should not be
considered as a separate issue from model selection, but it often is.

A second point about the design of optimal classifiers concerns the word ‘optimal’.
There are several ways of measuring classifier performance, the most common being
error rate, although this has severe limitations. Other measures, based on the closeness
of the estimates of the probabilities of class membership to the true probabilities, may
be more appropriate in many cases. However, many classifier design methods usually
optimise alternative criteria since the desired ones are difficult to optimise directly. For
example, a classifier may be trained by optimising a squared error measure and assessed
using error rate.

Finally, we assume that the training data are representative of the test conditions. If
this is not so, perhaps because the test conditions may be subject to noise not present
in the training data, or there are changes in the population from which the data are
drawn (population drift), then these differences must be taken into account in classifier
design.

1.4 Supervised versus unsupervised

There are two main divisions of classification: supervised classification (or discrimina-
tion) and unsupervised classification (sometimes in the statistics literature simply referred
to as classification or clustering).

In supervised classification we have a set of data samples (each consisting of mea-
surements on a set of variables) with associated labels, the class types. These are used
as exemplars in the classifier design.

Why do we wish to design an automatic means of classifying future data? Cannot
the same method that was used to label the design set be used on the test data? In
some cases this may be possible. However, even if it were possible, in practice we
may wish to develop an automatic method to reduce labour-intensive procedures. In
other cases, it may not be possible for a human to be part of the classification process.
An example of the former is in industrial inspection. A classifier can be trained using
images of components on a production line, each image labelled carefully by an operator.
However, in the practical application we would wish to save a human operator from the
tedious job, and hopefully make it more reliable. An example of the latter reason for
performing a classification automatically is in radar target recognition of objects. For
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vehicle recognition, the data may be gathered by positioning vehicles on a turntable and
making measurements from all aspect angles. In the practical application, a human may
not be able to recognise an object reliably from its radar image, or the process may be
carried out remotely.

In unsupervised classification, the data are not labelled and we seek to find groups in
the data and the features that distinguish one group from another. Clustering techniques,
described further in Chapter 10, can also be used as part of a supervised classification
scheme by defining prototypes. A clustering scheme may be applied to the data for each
class separately and representative samples for each group within the class (the group
means, for example) used as the prototypes for that class.

1.5 Approaches to statistical pattern recognition

The problem we are addressing in this book is primarily one of pattern classifica-
tion. Given a set of measurements obtained through observation and represented as
a pattern vector x, we wish to assign the pattern to one of C possible classes !i ,
i D 1; : : : ;C . A decision rule partitions the measurement space into C regions �i ,
i D 1; : : : ;C . If an observation vector is in �i then it is assumed to belong to class
!i . Each region may be multiply connected – that is, it may be made up of several
disjoint regions. The boundaries between the regions �i are the decision boundaries or
decision surfaces. Generally, it is in regions close to these boundaries that the high-
est proportion of misclassifications occurs. In such situations, we may reject the pat-
tern or withhold a decision until further information is available so that a classification
may be made later. This option is known as the reject option and therefore we have
C C 1 outcomes of a decision rule (the reject option being denoted by !0) in a C-class
problem.

In this section we introduce two approaches to discrimination that will be explored
further in later chapters. The first assumes a knowledge of the underlying class-conditional
probability density functions (the probability density function of the feature vectors for
a given class). Of course, in many applications these will usually be unknown and must
be estimated from a set of correctly classified samples termed the design or training
set. Chapters 2 and 3 describe techniques for estimating the probability density functions
explicitly.

The second approach introduced in this section develops decision rules that use the
data to estimate the decision boundaries directly, without explicit calculation of the
probability density functions. This approach is developed in Chapters 4, 5 and 6 where
specific techniques are described.

1.5.1 Elementary decision theory

Here we introduce an approach to discrimination based on knowledge of the probability
density functions of each class. Familiarity with basic probability theory is assumed.
Some basic definitions are given in Appendix E.
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Bayes decision rule for minimum error

Consider C classes, !1; : : : ; !C , with a priori probabilities (the probabilities of each class
occurring) p.!1/; : : : ; p.!C/, assumed known. If we wish to minimise the probability
of making an error and we have no information regarding an object other than the class
probability distribution then we would assign an object to class ! j if

p.! j / > p.!k/ k D 1; : : : ;C ; k 6D j

This classifies all objects as belonging to one class. For classes with equal probabilities,
patterns are assigned arbitrarily between those classes.

However, we do have an observation vector or measurement vector x and we wish
to assign x to one of the C classes. A decision rule based on probabilities is to assign
x to class ! j if the probability of class ! j given the observation x, p.! j jx/, is greatest
over all classes !1; : : : ; !C . That is, assign x to class ! j if

p.! j jx/ > p.!k jx/ k D 1; : : : ;C ; k 6D j (1.1)

This decision rule partitions the measurement space into C regions �1; : : : ; �C such that
if x 2 � j then x belongs to class ! j .

The a posteriori probabilities p.! j jx/ may be expressed in terms of the a priori
probabilities and the class-conditional density functions p.xj!i / using Bayes’ theorem
(see Appendix E) as

p.!i jx/ D p.xj!i /p.!i /

p.x/

and so the decision rule (1.1) may be written: assign x to ! j if

p.xj! j /p.! j / > p.xj!k/p.!k/ k D 1; : : : ;C ; k 6D j (1.2)

This is known as Bayes’ rule for minimum error.
For two classes, the decision rule (1.2) may be written

lr .x/ D p.xj!1/

p.xj!2/
>

p.!2/

p.!1/
implies x 2 class !1

The function lr .x/ is the likelihood ratio. Figures 1.2 and 1.3 give a simple illustration for
a two-class discrimination problem. Class !1 is normally distributed with zero mean and
unit variance, p.xj!1/ D N .xj0; 1/ (see Appendix E). Class !2 is a normal mixture (a
weighted sum of normal densities) p.xj!2/ D 0:6N .xj1; 1/C0:4N .xj�1; 2/. Figure 1.2
plots p.xj!i /p.!i /; i D 1; 2, where the priors are taken to be p.!1/ D 0:5, p.!2/ D 0:5.
Figure 1.3 plots the likelihood ratio lr .x/ and the threshold p.!2/=p.!1/. We see from
this figure that the decision rule (1.2) leads to a disjoint region for class !2.

The fact that the decision rule (1.2) minimises the error may be seen as follows. The
probability of making an error, p.error/, may be expressed as

p.error/ D
CX

iD1

p.errorj!i /p.!i / (1.3)
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where p.errorj!i / is the probability of misclassifying patterns from class !i . This is
given by

p.errorj!i / D
Z

C[�i ]
p.xj!i / dx (1.4)

the integral of the class-conditional density function over C[�i ], the region of measure-
ment space outside �i (C is the complement operator), i.e.

PC
jD1; j 6Di � j . Therefore, we
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may write the probability of misclassifying a pattern as

p.error/ D
CX

iD1

Z

C[�i ]
p.xj!i /p.!i / dx

D
CX

iD1

p.!i /

�
1�

Z

�i

p.xj!i / dx

�

D 1�
CX

iD1

p.!i /

Z

�i

p.xj!i / dx (1.5)

from which we see that minimising the probability of making an error is equivalent to
maximising

CX
iD1

p.!i /

Z

�i

p.xj!i / dx (1.6)

the probability of correct classification. Therefore, we wish to choose the regions �i so
that the integral given in (1.6) is a maximum. This is achieved by selecting �i to be
the region for which p.!i /p.xj!i / is the largest over all classes and the probability of
correct classification, c, is

c D
Z

max
i

p.!i /p.xj!i / dx (1.7)

where the integral is over the whole of the measurement space, and the Bayes error is

eB D 1�
Z

max
i

p.!i /p.xj!i / dx (1.8)

This is illustrated in Figures 1.4 and 1.5. Figure 1.4 plots the two distributions
p.xj!i /; i D 1; 2 (both normal with unit variance and means š0:5), and Figure 1.5
plots the functions p.xj!i /p.!i / where p.!1/ D 0:3, p.!2/ D 0:7. The Bayes deci-
sion boundary is marked with a vertical line at xB . The areas of the hatched regions in
Figure 1.4 represent the probability of error: by equation (1.4), the area of the horizontal
hatching is the probability of classifying a pattern from class 1 as a pattern from class
2 and the area of the vertical hatching the probability of classifying a pattern from class
2 as class 1. The sum of these two areas, weighted by the priors (equation (1.5)), is the
probability of making an error.

Bayes decision rule for minimum error – reject option
As we have stated above, an error or misrecognition occurs when the classifier assigns
a pattern to one class when it actually belongs to another. In this section we consider
the reject option. Usually it is the uncertain classifications which mainly contribute to
the error rate. Therefore, rejecting a pattern (withholding a decision) may lead to a
reduction in the error rate. This rejected pattern may be discarded, or set aside until
further information allows a decision to be made. Although the option to reject may
alleviate or remove the problem of a high misrecognition rate, some otherwise correct
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Figure 1.5 Bayes decision boundary for two normally distributed classes with unequal priors

classifications are also converted into rejects. Here we consider the trade-offs between
error rate and reject rate.

Firstly, we partition the sample space into two complementary regions: R, a reject
region, and A, an acceptance or classification region. These are defined by

R D
n
xj1� max

i
p.!i jx/ > t/

o

A D
n
xj1� max

i
p.!i jx/ 
 t/

o
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where t is a threshold. This is illustrated in Figure 1.6 using the same distributions as
those in Figures 1.4 and 1.5. The smaller the value of the threshold t , the larger is the
reject region R. However, if t is chosen such that

1� t <
1

C

or equivalently,

t >
C � 1

C

where C is the number of classes, then the reject region is empty. This is because the
minimum value which maxi p.!i jx/ can attain is 1=C (since 1 D PC

iD1 p.!i jx/ 

C maxi p.!i jx/), when all classes are equally likely. Therefore, for the reject option to
be activated, we must have t 
 .C � 1/=C .

Thus, if a pattern x lies in the region A, we classify it according to the Bayes rule
for minimum error (equation (1.2)). However, if x lies in the region R, we reject x.

The probability of correct classification, c.t/, is a function of the threshold, t , and is
given by equation (1.7), where now the integral is over the acceptance region, A, only

c.t/ D
Z

A
max

i

ð
p.!i /p.xj!i /

Ł
dx

and the unconditional probability of rejecting a measurement x, r , also a function of the
threshold t , is

r.t/ D
Z

R
p.x/ dx (1.9)
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Therefore, the error rate, e (the probability of accepting a point for classification and
incorrectly classifying it), is

e.t/ D
Z

A
.1� max

i
p.!i jx//p.x/ dx

D 1� c.t/� r.t/

Thus, the error rate and reject rate are inversely related. Chow (1970) derives a simple
functional relationship between e.t/ and r.t/ which we quote here without proof. Know-
ing r.t/ over the complete range of t allows e.t/ to be calculated using the relationship

e.t/ D �
Z t

0
s dr.s/ (1.10)

The above result allows the error rate to be evaluated from the reject function for the
Bayes optimum classifier. The reject function can be calculated using unlabelled data
and a practical application is to problems where labelling of gathered data is costly.

Bayes decision rule for minimum risk
In the previous section, the decision rule selected the class for which the a posteriori
probability, p.! j jx/, was the greatest. This minimised the probability of making an
error. We now consider a somewhat different rule that minimises an expected loss or
risk. This is a very important concept since in many applications the costs associated
with misclassification depend upon the true class of the pattern and the class to which
it is assigned. For example, in a medical diagnosis problem in which a patient has back
pain, it is far worse to classify a patient with severe spinal abnormality as healthy (or
having mild back ache) than the other way round.

We make this concept more formal by introducing a loss that is a measure of the cost
of making the decision that a pattern belongs to class !i when the true class is ! j . We
define a loss matrix � with components

½ j i D cost of assigning a pattern x to !i when x 2 ! j

In practice, it may be very difficult to assign costs. In some situations, ½ may be measured
in monetary units that are quantifiable. However, in many situations, costs are a combi-
nation of several different factors measured in different units – money, time, quality of
life. As a consequence, they may be the subjective opinion of an expert. The conditional
risk of assigning a pattern x to class !i is defined as

li .x/ D
CX

jD1

½ j i p.! j jx/

The average risk over region �i is

r i D
Z

�i

li .x/p.x/ dx

D
Z

�i

CX
jD1

½ j i p.! j jx/p.x/ dx
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and the overall expected cost or risk is

r D
CX

iD1

r i D
CX

iD1

Z

�i

CX
jD1

½ j i p.! j jx/p.x/ dx (1.11)

The above expression for the risk will be minimised if the regions �i are chosen such
that if

CX
jD1

½ j i p.! j jx/p.x/ 

CX

jD1

½ jk p.! j jx/p.x/ k D 1; : : : ;C (1.12)

then x 2 �i . This is the Bayes decision rule for minimum risk, with Bayes risk, rŁ,
given by

rŁ D
Z

x
min

iD1;:::;C

CX
jD1

½ j i p.! j jx/p.x/ dx

One special case of the loss matrix � is the equal cost loss matrix for which

½i j D
²

1 i 6D j
0 i D j

Substituting into (1.12) gives the decision rule: assign x to class !i if

CX
jD1

p.! j jx/p.x/� p.!i jx/p.x/ 

CX

jD1

p.! j jx/p.x/� p.!k jx/p.x/ k D 1; : : : ;C

that is,
p.xj!i /p.!i / ½ p.xj!k/p.!k/ k D 1; : : : ;C

implies that x 2 class !i ; this is the Bayes rule for minimum error.

Bayes decision rule for minimum risk – reject option
As with the Bayes rule for minimum error, we may also introduce a reject option, by
which the reject region, R, is defined by

R D
n
x

þþþ min
i

li .x/ > t
o

where t is a threshold. The decision is to accept a pattern x and assign it to class !i if

li .x/ D min
j

l j .x/ 
 t

and to reject x if
li .x/ D min

j
l j .x/ > t
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This decision is equivalent to defining a reject region �0 with a constant conditional risk

l0.x/ D t

so that the Bayes decision rule is: assign x to class !i if

li .x/ 
 l j .x/ j D 0; 1; : : : ;C

with Bayes risk

rŁ D
Z

R
tp.x/ dx C

Z

A
min

iD1;:::;C

CX
jD1

½ j i p.! j jx/p.x/ dx (1.13)

Neyman–Pearson decision rule
An alternative to the Bayes decision rules for a two-class problem is the Neyman–Pearson
test. In a two-class problem there are two possible types of error that may be made in
the decision process. We may classify a pattern of class !1 as belonging to class !2 or
a pattern from class !2 as belonging to class !1. Let the probability of these two errors
be ž1 and ž2 respectively, so that

ž1 D
Z

�2

p.xj!1/ dx D error probability of Type I

and

ž2 D
Z

�1

p.xj!2/ dx D error probability of Type II

The Neyman–Pearson decision rule is to minimise the error ž1 subject to ž2 being equal
to a constant, ž0, say.

If class !1 is termed the positive class and class !2 the negative class, then ž1
is referred to as the false negative rate, the proportion of positive samples incorrectly
assigned to the negative class; ž2 is the false positive rate, the proportion of negative
samples classed as positive.

An example of the use of the Neyman–Pearson decision rule is in radar detection
where the problem is to detect a signal in the presence of noise. There are two types of
error that may occur; one is to mistake noise for a signal present. This is called a false
alarm. The second type of error occurs when a signal is actually present but the decision
is made that only noise is present. This is a missed detection. If !1 denotes the signal
class and !2 denotes the noise then ž2 is the probability of false alarm and ž1 is the
probability of missed detection. In many radar applications, a threshold is set to give a
fixed probability of false alarm and therefore the Neyman–Pearson decision rule is the
one usually used.

We seek the minimum of

r D
Z

�2

p.xj!1/ dx C ¼
²Z

�1

p.xj!2/ dx � ž0

¦
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where ¼ is a Lagrange multiplier1 and ž0 is the specified false alarm rate. The equation
may be written

r D .1� ¼ž0/C
Z

�1

f¼p.xj!2/ dx � p.xj!1/ dxg

This will be minimised if we choose �1 such that the integrand is negative, i.e.

if ¼p.xj!2/� p.xj!1/ < 0; then x 2 �1

or, in terms of the likelihood ratio,

if
p.xj!1/

p.xj!2/
> ¼; then x 2 �1 (1.14)

Thus the decision rule depends only on the within-class distributions and ignores the
a priori probabilities.

The threshold ¼ is chosen so that

Z

�1

p.xj!2/ dx D ž0;

the specified false alarm rate. However, in general ¼ cannot be determined analytically
and requires numerical calculation.

Often, the performance of the decision rule is summarised in a receiver operating
characteristic (ROC) curve, which plots the true positive against the false positive (that
is, the probability of detection (1� ž1 D

R
�1

p.xj!1/ dx) against the probability of false
alarm (ž2 D

R
�1

p.xj!2/ dx)) as the threshold ¼ is varied. This is illustrated in Figure 1.7
for the univariate case of two normally distributed classes of unit variance and means
separated by a distance, d. All the ROC curves pass through the .0; 0/ and .1; 1/ points
and as the separation increases the curve moves into the top left corner. Ideally, we would
like 100% detection for a 0% false alarm rate; the closer a curve is to this the better.

For the two-class case, the minimum risk decision (see equation (1.12)) defines the
decision rules on the basis of the likelihood ratio (½i i D 0):

if
p.xj!1/

p.xj!2/
>
½21 p.!2/

½12 p.!1/
; then x 2 �1 (1.15)

The threshold defined by the right-hand side will correspond to a particular point on the
ROC curve that depends on the misclassification costs and the prior probabilities.

In practice, precise values for the misclassification costs will be unavailable and we
shall need to assess the performance over a range of expected costs. The use of the
ROC curve as a tool for comparing and assessing classifier performance is discussed in
Chapter 8.

1The method of Lagrange’s undetermined multipliers can be found in most textbooks on mathematical
methods, for example Wylie and Barrett (1995).
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Figure 1.7 Receiver operating characteristic for two univariate normal distributions of unit vari-
ance and separation d; 1 � ž1 D

R
�1

p.x j!1/ dx is the true positive (the probability of detection)
and ž2 D

R
�1

p.x j!2/ dx is the false positive (the probability of false alarm)

Minimax criterion
The Bayes decision rules rely on a knowledge of both the within-class distributions and
the prior class probabilities. However, situations may arise where the relative frequencies
of new objects to be classified are unknown. In this situation a minimax procedure may
be employed. The name minimax is used to refer to procedures for which either the
maximum expected loss or the maximum of the error probability is a minimum. We shall
limit our discussion below to the two-class problem and the minimum error probability
procedure.

Consider the Bayes rule for minimum error. The decision regions �1 and �2 are
defined by

p.xj!1/p.!1/ > p.xj!2/p.!2/ implies x 2 �1 (1.16)

and the Bayes minimum error, eB , is

eB D p.!2/

Z

�1

p.xj!2/ dx C p.!1/

Z

�2

p.xj!1/ dx (1.17)

where p.!2/ D 1� p.!1/.
For fixed decision regions �1 and �2, eB is a linear function of p.!1/ (we denote

this function QeB) attaining its maximum on the region [0; 1] either at p.!1/ D 0 or
p.!1/ D 1. However, since the regions �1 and �2 are also dependent on p.!1/ through
the Bayes decision criterion (1.16), the dependency of eB on p.!1/ is more complex,
and not necessarily monotonic.

If �1 and �2 are fixed (determined according to (1.16) for some specified p.!i /),
the error given by (1.17) will only be the Bayes minimum error for a particular value
of p.!1/, say pŁ1 (see Figure 1.8). For other values of p.!1/, the error given by (1.17)
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must be greater than the minimum error. Therefore, the optimum curve touches the line
at a tangent at pŁ1 and is concave down at that point.

The minimax procedure aims to choose the partition �1, �2, or equivalently the
value of p.!1/ so that the maximum error (on a test set in which the values of p.!i /

are unknown) is minimised. For example, in the figure, if the partition were chosen to
correspond to the value pŁ1 of p.!1/, then the maximum error which could occur would
be a value of b if p.!1/ were actually equal to unity. The minimax procedure aims to
minimise this maximum value, i.e. minimise

maxf QeB.0/; QeB.1/g

or minimise

max

²Z

�2

p.xj!1/ dx;

Z

�1

p.xj!2/ dx

¦

This is a minimum when

Z

�2

p.xj!1/ dx D
Z

�1

p.xj!2/ dx (1.18)

which is when a D b in Figure 1.8 and the line QeB.p.!1// is horizontal and touches the
Bayes minimum error curve at its peak value.

Therefore, we choose the regions �1 and �2 so that the probabilities of the two types
of error are the same. The minimax solution may be criticised as being over-pessimistic
since it is a Bayes solution with respect to the least favourable prior distribution. The

0.0

Bayes minimum error, eB

a

b

p(w1) 1.0p1
*

error, eB, for fixed
decision regions

~

Figure 1.8 Minimax illustration
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strategy may also be applied to minimising the maximum risk. In this case, the risk is
Z

�1

[½11 p.!1jx/C ½21 p.!2jx/]p.x/ dx C
Z

�2

[½12 p.!1jx/C ½22 p.!2jx/]p.x/ dx

D p.!1/

�
½11 C .½12 � ½11/

Z

�2

p.xj!1/ dx

½

C p.!2/

�
½22 C .½21 � ½22/

Z

�1

p.xj!2/ dx

½

and the boundary must therefore satisfy

½11 � ½22 C .½12 � ½11/

Z

�2

p.xj!1/ dx � .½21 � ½22/

Z

�1

p.xj!2/ dx D 0

For ½11 D ½22 and ½21 D ½12, this reduces to condition (1.18).

Discussion
In this section we have introduced a decision-theoretic approach to classifying patterns.
This divides up the measurement space into decision regions and we have looked at
various strategies for obtaining the decision boundaries. The optimum rule in the sense
of minimising the error is the Bayes decision rule for minimum error. Introducing the
costs of making incorrect decisions leads to the Bayes rule for minimum risk. The theory
developed assumes that the a priori distributions and the class-conditional distributions
are known. In a real-world task, this is unlikely to be so. Therefore approximations must
be made based on the data available. We consider techniques for estimating distribu-
tions in Chapters 2 and 3. Two alternatives to the Bayesian decision rule have also been
described, namely the Neyman–Pearson decision rule (commonly used in signal process-
ing applications) and the minimax rule. Both require knowledge of the class-conditional
probability density functions. The receiver operating characteristic curve characterises
the performance of a rule over a range of thresholds of the likelihood ratio.

We have seen that the error rate plays an important part in decision-making and
classifier performance assessment. Consequently, estimation of error rates is a problem
of great interest in statistical pattern recognition. For given fixed decision regions, we
may calculate the probability of error using (1.5). If these decision regions are chosen
according to the Bayes decision rule (1.2), then the error is the Bayes error rate or
optimal error rate. However, regardless of how the decision regions are chosen, the error
rate may be regarded as a measure of a given decision rule’s performance.

The Bayes error rate (1.5) requires complete knowledge of the class-conditional den-
sity functions. In a particular situation, these may not be known and a classifier may
be designed on the basis of a training set of samples. Given this training set, we may
choose to form estimates of the distributions (using some of the techniques discussed
in Chapters 2 and 3) and thus, with these estimates, use the Bayes decision rule and
estimate the error according to (1.5).

However, even with accurate estimates of the distributions, evaluation of the error
requires an integral over a multidimensional space and may prove a formidable task.
An alternative approach is to obtain bounds on the optimal error rate or distribution-free
estimates. Further discussion of methods of error rate estimation is given in Chapter 8.
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1.5.2 Discriminant functions

In the previous subsection, classification was achieved by applying the Bayesian decision
rule. This requires knowledge of the class-conditional density functions, p.xj!i / (such
as normal distributions whose parameters are estimated from the data – see Chapter 2),
or nonparametric density estimation methods (such as kernel density estimation – see
Chapter 3). Here, instead of making assumptions about p.xj!i /, we make assumptions
about the forms of the discriminant functions.

A discriminant function is a function of the pattern x that leads to a classification rule.
For example, in a two-class problem, a discriminant function h.x/ is a function for which

h.x/ > k ) x 2 !1

< k ) x 2 !2
(1.19)

for constant k. In the case of equality (h.x/ D k), the pattern x may be assigned arbitrarily
to one of the two classes. An optimal discriminant function for the two-class case is

h.x/ D p.xj!1/

p.xj!2/

with k D p.!2/=p.!1/. Discriminant functions are not unique. If f is a monotonic
function then

g.x/ D f .h.x// > k0 ) x 2 !1

g.x/ D f .h.x// < k0 ) x 2 !2

where k0 D f .k/ leads to the same decision as (1.19).
In the C-group case we define C discriminant functions gi .x/ such that

gi .x/ > g j .x/) x 2 !i j D 1; : : : ;C ; j 6D i

That is, a pattern is assigned to the class with the largest discriminant. Of course, for
two classes, a single discriminant function

h.x/ D g1.x/� g2.x/

with k D 0 reduces to the two-class case given by (1.19).
Again, we may define an optimal discriminant function as

gi .x/ D p.xj!i /p.!i /

leading to the Bayes decision rule, but as we showed for the two-class case, there are
other discriminant functions that lead to the same decision.

The essential difference between the approach of the previous subsection and the
discriminant function approach described here is that the form of the discriminant function
is specified and is not imposed by the underlying distribution. The choice of discriminant
function may depend on prior knowledge about the patterns to be classified or may be a
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particular functional form whose parameters are adjusted by a training procedure. Many
different forms of discriminant function have been considered in the literature, varying
in complexity from the linear discriminant function (in which g is a linear combination
of the xi ) to multiparameter nonlinear functions such as the multilayer perceptron.

Discrimination may also be viewed as a problem in regression (see Section 1.6) in
which the dependent variable, y, is a class indicator and the regressors are the pattern
vectors. Many discriminant function models lead to estimates of E[yjx], which is the
aim of regression analysis (though in regression y is not necessarily a class indicator).
Thus, many of the techniques we shall discuss for optimising discriminant functions
apply equally well to regression problems. Indeed, as we find with feature extraction in
Chapter 9 and also clustering in Chapter 10, similar techniques have been developed
under different names in the pattern recognition and statistics literature.

Linear discriminant functions
First of all, let us consider the family of discriminant functions that are linear combina-
tions of the components of x D .x1; : : : ; x p/

T ,

g.x/ D wT x Cw0 D
pX

iD1

wi xi Cw0 (1.20)

This is a linear discriminant function, a complete specification of which is achieved
by prescribing the weight vector w and threshold weight w0. Equation (1.20) is the
equation of a hyperplane with unit normal in the direction of w and a perpendicular
distance jw0j=jwj from the origin. The value of the discriminant function for a pattern x

is a measure of the perpendicular distance from the hyperplane (see Figure 1.9).
A linear discriminant function can arise through assumptions of normal distributions

for the class densities, with equal covariance matrices (see Chapter 2). Alternatively,

origin hyperplane, g = 0g < 0

g > 0

g(x)

Figure 1.9 Geometry of linear discriminant function given by equation (1.20)
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without making distributional assumptions, we may require the form of the discriminant
function to be linear and determine its parameters (see Chapter 4).

A pattern classifier employing linear discriminant functions is termed a linear machine
(Nilsson, 1965), an important special case of which is the minimum-distance classifier
or nearest-neighbour rule. Suppose we are given a set of prototype points p1; : : : ;pC ,
one for each of the C classes !1; : : : ; !C . The minimum-distance classifier assigns a
pattern x to the class !i associated with the nearest point pi . For each point, the squared
Euclidean distance is

jx � pi j2 D xT x � 2xT pi C pT
i pi

and minimum-distance classification is achieved by comparing the expressions xT pi �
1
2pT

i pi and selecting the largest value. Thus, the linear discriminant function is

gi .x/ D wT
i x Cwi0

where
wi D pi

wi0 D � 1
2 jpi j2

Therefore, the minimum-distance classifier is a linear machine. If the prototype points,
pi , are the class means, then we have the nearest class mean classifier. Decision re-
gions for a minimum-distance classifier are illustrated in Figure 1.10. Each boundary is
the perpendicular bisector of the lines joining the prototype points of regions that are
contiguous. Also, note from the figure that the decision regions are convex (that is, two
arbitrary points lying in the region can be joined by a straight line that lies entirely within
the region). In fact, decision regions of a linear machine are always convex. Thus, the
two class problems, illustrated in Figure 1.11, although separable, cannot be separated by
a linear machine. Two generalisations that overcome this difficulty are piecewise linear
discriminant functions and generalised linear discriminant functions.

Piecewise linear discriminant functions
This is a generalisation of the minimum-distance classifier to the situation in which
there is more than one prototype per class. Suppose there are ni prototypes in class !i ,
p1

i ; : : : ;p
ni
i ; i D 1; : : : ;C . We define the discriminant function for class !i to be

gi .x/ D max
jD1;:::;ni

g j
i .x/

where g j
i is a subsidiary discriminant function, which is linear and is given by

g j
i .x/ D xT p

j
i � 1

2p
j
i

T
p

j
i j D 1; : : : ; ni ; i D 1; : : : ;C

A pattern x is assigned to the class for which gi .x/ is largest; that is, to the class of
the nearest prototype vector. This partitions the space into

PC
iD1 ni regions known as
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Figure 1.10 Decision regions for a minimum-distance classifier
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Figure 1.11 Groups not separable by a linear discriminant

the Dirichlet tessellation of the space. When each pattern in the training set is taken as
a prototype vector, then we have the nearest-neighbour decision rule of Chapter 3. This
discriminant function generates a piecewise linear decision boundary (see Figure 1.12).

Rather than using the complete design set as prototypes, we may use a subset.
Methods of reducing the number of prototype vectors (edit and condense) are described
in Chapter 3, along with the nearest-neighbour algorithm. Clustering schemes may also
be employed.

Generalised linear discriminant function

A generalised linear discriminant function, also termed a phi machine (Nilsson, 1965),
is a discriminant function of the form

g.x/ D wT φ C w0

where φ D .�1.x/; : : : ;φD.x//
T is a vector function of x. If D D p, the number of

variables, and �i .x/ D xi , then we have a linear discriminant function.

The discriminant function is linear in the functions �i , not in the original measure-
ments xi . As an example, consider the two-class problem of Figure 1.13. A linear dis-
criminant function will not separate the classes, even though they are separable. However,
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Figure 1.12 Dirichlet tessellation (comprising nearest-neighbour regions for a set of prototypes)
and the decision boundary (thick lines) for two classes
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Figure 1.13 Nonlinear transformation of variables may permit linear discrimination

if we make the transformation

�1.x/ D x2
1

�2.x/ D x2

then the classes can be separated in the �-space by a straight line. Similarly, disjoint
classes can be transformed into a �-space in which a linear discriminant function could
separate the classes (provided that they are separable in the original space).

The problem, therefore, is simple. Make a good choice for the functions �i .x/, then
use a linear discriminant function to separate the classes. But, how do we choose �i ?
Specific examples are shown in Table 1.1.

Clearly there is a problem in that as the number of functions that are used as a basis
set increases, so does the number of parameters that must be determined using the limited
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Table 1.1 Discriminant functions, �

Discriminant Mathematical form, �i .x/
function

linear �i .x/ D xi , i D 1; : : : ; p

quadratic �i .x/ D xl1
k1

xl2
k2

, i D 1; : : : ; .p C 1/.p C 2/=2� 1

l1; l2 D 0 or 1; k1; k2 D 1; : : : ; p l1, l2 not both zero

¹th-order polynomial �i .x/ D xl1
k1
: : : xl¹

k¹
, i D 1; : : : ;

 
p C ¹
¹

!
� 1

l1; : : : ; l¹ D 0 or 1; k1; : : : ; k¹ D 1; : : : ; p

li not all zero

radial basis function �i .x/ D �.jx � vi j/ for centre vi and function �

multilayer perceptron �i .x/ D f .xT viCvi0/ for direction vi and offset vi0.
f is the logistic function, f .z/ D 1=.1C exp.�z//

training set. A complete quadratic discriminant function requires D D .pC 1/.pC 2/=2
terms and so for C classes there are C.pC 1/.pC 2/=2 parameters to estimate. We may
need to apply a constraint or ‘regularise’ the model to ensure that there is no over-fitting.

An alternative to having a set of different functions is to have a set of functions of
the same parametric form, but which differ in the values of the parameters they take,

�i .x/ D �.x; vi /

where vi is a set of parameters. Different models arise depending on the way the variable
x and the parameters v are combined. If

�.x; v/ D �.jx � vj/

that is, � is a function only of the magnitude of the difference between the pattern x and
the weight vector v, then the resulting discriminant function is known as a radial basis
function . On the other hand, if � is a function of the scalar product of the two vectors

�.x; v/ D �.xT v C v0/

then the discriminant function is known as a multilayer perceptron. It is also a model
known as projection pursuit. Both the radial basis function and the multilayer perceptron
models can be used in regression.

In these latter examples, the discriminant function is no longer linear in the parameters.
Specific forms for � for radial basis functions and for the multilayer perceptron models
will be given in Chapters 5 and 6.

Summary
In a multiclass problem, a pattern x is assigned to the class for which the discriminant
function is the largest. A linear discriminant function divides the feature space by a
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hyperplane whose orientation is determined by the weight vector w and distance from the
origin by the weight threshold w0. The decision regions produced by linear discriminant
functions are convex.

A piecewise linear discriminant function permits non-convex and disjoint decision
regions. Special cases are the nearest-neighbour and nearest class mean classifier.

A generalised linear discriminant function, with fixed functions �i , is linear in its
parameters. It permits non-convex and multiply connected decision regions (for suitable
choices of �i ). Radial basis functions and multilayer perceptrons can be regarded as
generalised linear discriminant functions with flexible functions �i whose parameters
must be determined or specified using the training set.

The Bayes decision rule is optimal (in the sense of minimising classification error)
and with sufficient flexibility in our discriminant functions we ought to be able to achieve
optimal performance in principle. However, we are limited by a finite number of training
samples and also, once we start to consider parametric forms for the �i , we lose the
simplicity and ease of computation of the linear functions.

1.6 Multiple regression

Many of the techniques and procedures described within this book are also relevant to
problems in regression, the process of investigating the relationship between a depen-
dent (or response) variable Y and independent (or predictor) variables X1; : : : ; X p; a
regression function expresses the expected value of Y in terms of X1; : : : ; X p and model
parameters. Regression is an important part of statistical pattern recognition and, although
the emphasis of the book is on discrimination, practical illustrations are sometimes given
on problems of a regression nature.

The discrimination problem itself is one in which we are attempting to predict the
values of one variable (the class variable) given measurements made on a set of indepen-
dent variables (the pattern vector, x). In this case, the response variable is categorical.
Posing the discrimination problem as one in regression is discussed in Chapter 4.

Regression analysis is concerned with predicting the mean value of the response
variable given measurements on the predictor variables and assumes a model of the form

E[yjx]
4D
Z

yp.yjx/ dy D f .x; θ/

where f is a (possibly nonlinear) function of the measurements x and θ , a set of param-
eters of f . For example,

f .x; θ/ D �0 C θT x

where θ D .�1; : : : ; �p/
T , is a model that is linear in the parameters and the variables.

The model
f .x; θ/ D �0 C θT φ.x/

where θ D .�1; : : : ; �D/
T and φ D .�1.x/; : : : ; �D.x//

T is a vector of nonlinear func-
tions of x, is linear in the parameters but nonlinear in the variables. Linear regression
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Figure 1.14 Population regression line (solid line) with representation of spread of conditional
distribution (dotted lines) for normally distributed error terms, with variance depending on x

refers to a regression model that is linear in the parameters, but not necessarily in the
variables.

Figure 1.14 shows a regression summary for some hypothetical data. For each value
of x , there is a population of y values that varies with x . The solid line connecting the
conditional means, E[yjx], is the regression line. The dotted lines either side represent
the spread of the conditional distribution (š1 standard deviation from the mean).

It is assumed that the difference (commonly referred to as an error or residual), ži ,
between the measurement on the response variable and its predicted value conditional
on the measurements on the predictors,

ži D yi � E[yjxi ]

is an unobservable random variable. A normal model for the errors (see Appendix E) is
often assumed,

p.ž/ D 1p
2³¦

exp

�
�1

2

ž2

¦ 2

�

That is,

p.yi jxi ; θ/ D 1p
2³¦

exp

�
� 1

2¦ 2
.yi � f .xi ; θ//2

�

Given a set of data f.yi ; xi /; i D 1; : : : ; ng, the maximum likelihood estimate of
the model parameters (the value of the parameters for which the data are ‘most likely’,
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discussed further in Appendix B), θ , is that for which

p.f.yi ; xi /gjθ/

is a maximum. Assuming independent samples, this amounts to determining the value of
θ for which the commonly used least squares error,

nX
iD1

.yi � f .xi ; θ//2 (1.21)

is a minimum (see the exercises at the end of the chapter).
For the linear model, procedures for estimating the parameters are described in

Chapter 4.

1.7 Outline of book

The aim in writing this volume is to provide a comprehensive account of statistical pattern
recognition techniques with emphasis on methods and algorithms for discrimination and
classification. In recent years there have been many developments in multivariate analysis
techniques, particularly in nonparametric methods for discrimination and classification.
These are described in this book as extensions to the basic methodology developed over
the years.

This chapter has presented some basic approaches to statistical pattern recognition.
Supplementary material on probability theory and data analysis can be found in the
appendices.

A road map to the book is given in Figure 1.15, which describes the basic pattern
recognition cycle. The numbers in the figure refer to chapters and appendices of this
book.

Chapters 2 and 3 describe basic approaches to supervised classification via Bayes’
rule and estimation of the class-conditional densities. Chapter 2 considers normal-based
models. Chapter 3 addresses nonparametric approaches to density estimation.

Chapters 4–7 take a discriminant function approach to supervised classification.
Chapter 4 describes algorithms for linear discriminant functions. Chapter 5 considers
kernel-based approaches for constructing nonlinear discriminant functions, namely radial
basis functions and support vector machine methods. Chapter 6 describes alternative,
projection-based methods, including the multilayer perceptron neural network. Chapter 7
describes tree-based approaches.

Chapter 8 addresses the important topic of performance assessment: how good is
your designed classifier and how well does it compare with competing techniques? Can
improvement be achieved with an ensemble of classifiers?

Chapters 9 and 10 consider techniques that may form part of an exploratory data
analysis. Chapter 9 describes methods of feature selection and extraction, both linear and
nonlinear. Chapter 10 addresses unsupervised classification or clustering.

Finally, Chapter 11 covers additional topics on pattern recognition including model
selection.
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Figure 1.15 The pattern recognition cycle; numbers in parentheses refer to chapters and appen-
dices of this book

1.8 Notes and references

There was a growth of interest in techniques for automatic pattern recognition in the 1960s.
Many books appeared in the early 1970s, some of which are still very relevant today and
have been revised and reissued. More recently, there has been another flurry of books on
pattern recognition, particularly incorporating developments in neural network methods.

A very good introduction is provided by the book of Hand (1981a). Perhaps a lit-
tle out of date now, it provides nevertheless a very readable account of techniques for
discrimination and classification written from a statistical point of view and is to be
recommended. Two of the main textbooks on statistical pattern recognition are those by
Fukunaga (1990) and Devijver and Kittler (1982). Written perhaps with an engineering
emphasis, Fukunaga’s book provides a comprehensive account of the most important
aspects of pattern recognition, with many examples, computer projects and problems.
Devijver and Kittler’s book covers the nearest-neighbour decision rule and feature selec-
tion and extraction in some detail, though not at the neglect of other important areas of
statistical pattern recognition. It contains detailed mathematical accounts of techniques
and algorithms, treating some areas in depth.
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Another important textbook is that by Duda et al. (2001). Recently revised, this
presents a thorough account of the main topics in pattern recognition, covering many
recent developments. Other books that are an important source of reference material
are those by Young and Calvert (1974), Tou and Gonzales (1974) and Chen (1973).
Also, good accounts are given by Andrews (1972), a more mathematical treatment, and
Therrien (1989), an undergraduate text.

Recently, there have been several books that describe the developments in pattern
recognition that have taken place over the last decade, particularly the ‘neural network’
aspects, relating these to the more traditional methods. A comprehensive treatment of
neural networks is provided by Haykin (1994). Bishop (1995) provides an excellent
introduction to neural network methods from a statistical pattern recognition perspective.
Ripley’s (1996) account provides a thorough description of pattern recognition from
within a statistical framework. It includes neural network methods, approaches developed
in the field of machine learning, recent advances in statistical techniques as well as
development of more traditional pattern recognition methods and gives valuable insights
into many techniques gained from practical experience. Hastie et al. (2001) provide
a thorough description of modern techniques in pattern recognition. Other books that
deserve a mention are those by Schalkoff (1992) and Pao (1989).

Hand (1997) gives a short introduction to pattern recognition techniques and the
central ideas in discrimination and places emphasis on the comparison and assessment
of classifiers.

A more specialised treatment of discriminant analysis and pattern recognition is the
book by McLachlan (1992a). This is a very good book. It is not an introductory textbook,
but provides a thorough account of recent advances and sophisticated developments
in discriminant analysis. Written from a statistical perspective, the book is a valuable
guide to theoretical and practical work on statistical pattern recognition and is to be
recommended for researchers in the field.

Comparative treatments of pattern recognition techniques (statistical, neural and ma-
chine learning methods) are provided in the volume edited by Michie et al. (1994) who
report on the outcome of the Statlog project. Technical descriptions of the methods are
given, together with the results of applying those techniques to a wide range of prob-
lems. This volume provides the most extensive comparative study available. More than
20 different classification procedures were considered for about 20 data sets.

The book by Watanabe (1985), unlike the books above, is not an account of statis-
tical methods of discrimination, though some are included. Rather, it considers a wider
perspective of human cognition and learning. There are many other books in this latter
area. Indeed, in the early days of pattern recognition, many of the meetings and confer-
ences covered the humanistic and biological side of pattern recognition in addition to the
mechanical aspects. Although these non-mechanical aspects are beyond the scope of this
book, the monograph by Watanabe provides one unifying treatment that we recommend
for background reading.

There are many other books on pattern recognition. Some of those treating more
specific parts (such as clustering) are cited in the appropriate chapter of this book. In
addition, most textbooks on multivariate analysis devote some attention to discrimination
and classification. These provide a valuable source of reference and are cited elsewhere
in the book.
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The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

In some of the exercises, it will be necessary to generate samples from a multivariate
density with mean µ and covariance matrix 	. Many computer packages offer routines
for this. However, it is a simple matter to generate samples from a normal distribution
with unit variance and zero mean (for example, Press et al., 1992). Given a vector Y i

of such samples, then the vector U�1=2Y i C µ has the required distribution, where U

is the matrix of eigenvectors of the covariance matrix and �1=2 is the diagonal matrix
whose diagonal elements are the square roots of the corresponding eigenvalues (see
Appendix C).

1. Consider two multivariate normally distributed classes,

p.xj!i / D 1

.2³/p=2j	i j1=2 exp

²
�1

2
.x � µi /

T 	�1
i .x � µi /

¦

with means µ1 and µ2 and equal covariance matrices, 	1 D 	2 D 	. Show that
the logarithm of the likelihood ratio is linear in the feature vector x. What is the
equation of the decision boundary?

2. Determine the equation of the decision boundary for the more general case of 	1 D
Þ	2, for scalar Þ (normally distributed classes as in Exercise 1). In particular, for
two univariate distributions, N .0; 1/ and N .1; 1=4/, show that one of the decision
regions is bounded and determine its extent.

3. For the distributions in Exercise 1, determine the equation of the minimum risk
decision boundary for the loss matrix

� D
�

0 2
1 0

�

4. Consider two multivariate normally distributed classes (!2 with mean .�1; 0/T and
!1 with mean .1; 0/T , and identity covariance matrix). For a given threshold ¼

(see equation (1.14)) on the likelihood ratio, determine the regions �1 and �2 in a
Neyman–Pearson rule.

5. Consider three bivariate normal distributions, !1, !2, !3 with identity covariance
matrices and means .�2; 0/T , .0; 0/T and .0; 2/T . Show that the decision boundaries
are piecewise linear. Now define a class A as the mixture of !1 and !3,

pA.x/ D 0:5p.xj!1/C 0:5p.xj!3/

and class B as bivariate normal with identity covariance matrix and mean .a; b/T ,
for some a, b. What is the equation of the Bayes decision boundary? Under what
conditions is it piecewise linear?
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6. Consider two uniform distributions with equal priors

p.x j!1/ D
²

1 when 0 
 x 
 1
0 otherwise

p.x j!2/ D
(

1
2 when 1

2 
 x 
 5
2

0 otherwise

Show that the reject function is given by

r.t/ D
(

3
8 when 0 
 t 
 1

3

0 when 1
3 < t 
 1

Hence calculate the error rate by integrating (1.10).

7. Reject option. Consider two classes, each normally distributed with means x D 1
and x D �1 and unit variances; p.!1/ D p.!2/ D 0:5. Generate a test set and use it
(without using class labels) to estimate the reject rate as a function of the threshold
t . Hence, estimate the error rate for no rejection. Compare with the estimate based
on a labelled version of the test set. Comment on the use of this procedure when the
true distributions are unknown and the densities have to be estimated.

8. The area of a sphere of radius r in p dimensions, Sp, is

Sp D 2³
p
2 r p�1

0.p=2/

where 0 is the gamma function (0.1=2/ D ³1=2, 0.1/ D 1, 0.xC1/ D x0.x/). Show
that the probability of a sample, x, drawn from a zero-mean normal distribution with
covariance matrix ¦ 2I (I is the identity matrix) and having jxj 
 R is

Z R

0
Sp.r/

1

.2³¦ 2/p=2
exp

�
� r2

2¦ 2

�
dr

Evaluate this numerically for R D 2¦ and for p D 1; : : : ; 10. What do the results
tell you about the distribution of normal samples in high-dimensional spaces?

9. In a two-class problem, let the cost of misclassifying a class !1 pattern be C1 and
the cost of misclassifying a class !2 pattern be C2. Show that the point on the ROC
curve that minimises the risk has gradient

C2 p.!2/

C1 p.!1/

10. Show that under the assumption of normally distributed residuals, the maximum
likelihood solution for the parameters of a linear model is equivalent to minimising
the sum-square error (1.21).
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Density estimation – parametric

Overview

A discrimination rule may be constructed through explicit estimation of the class-
conditional density functions and the use of Bayes’ rule. One approach is to assume
a simple parametric model for the density functions and to estimate the parameters
of the model using an available training set.

2.1 Introduction

In Chapter 1 we considered the basic theory of pattern classification. All the information
regarding the density functions p.xj!i / was assumed known. In practice, this knowledge
is often not or only partially available. Therefore, the next question that we must address
is the estimation of the density functions themselves. If we can assume some paramet-
ric form for the distribution, perhaps from theoretical considerations, then the problem
reduces to one of estimating a finite number of parameters. In this chapter, special con-
sideration is given to the normal distribution which leads to algorithms for the Gaussian
classifier.

We described in Chapter 1 how the minimum error decision is based on the probability
of class membership p.!i jx/, which may be written

p.!i jx/ D p.!i /
p.xj!i /

p.x/

Assuming that the prior probability p.!i / is known, then in order to make a decision we
need to estimate the class-conditional density p.xj!i / (the probability density function
p.x/ is independent of !i and therefore is not required in the decision-making process).
The estimation of the density is based on a sample of observations Di D fxi

1; : : : ; x
i
ni
g

(xi
j 2 R

p) from class !i . In this chapter and the following one we consider two basic
approaches to density estimation: the parametric and nonparametric approaches. In the
parametric approach, we assume that the class-conditional density for class !i is of a
known form but has an unknown parameter, or set of parameters, �i , and we write this
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as p.xj�i /. In the estimative approach we use an estimate of the parameter �i , based on
the samples Di in the density. Thus we take

p.xj!i / D p.xj O�i /

where O�i D O�i .Di / is an estimate of the parameter �i based on the sample. A different
data sample, Di , would give rise to a different estimate O�i , but the estimative approach
does not take into account this sampling variability.

In the predictive or Bayesian approach, we write

p.xj!i / D
Z

p.xj�i /p.�i jDi / d�i

where p.�i jDi / can be regarded as a weighting function based on the data set Di ,
or as a full Bayesian posterior density function for �i based on a prior p.�i / and the
data (Aitchison et al., 1977). Thus, we admit that we do not know the true value of
�i and instead of taking a single estimate, we take a weighted sum of the densities
p.xj�i /, weighted by the distribution p.�i jDi /. This approach may be regarded as making
allowance for the sampling variability of the estimate of �i .

The alternative nonparametric approach to density estimation that we consider in this
book does not assume a functional form for the density and is discussed in Chapter 3.

2.2 Normal-based models

2.2.1 Linear and quadratic discriminant functions

Perhaps the most widely used classifier is that based on the normal distribution
(Appendix E),

p.xj!i / D 1

.2³/
p
2 j�i j 12

exp

²
�1

2
.x � µi /

T��1
i .x � µi /

¦

Classification is achieved by assigning a pattern to a class for which the posterior prob-
ability, p.!i jx/, is the greatest, or equivalently log.p.!i jx//. Using Bayes’ rule and the
normal assumption for the conditional densities above, we have

log.p.!i jx// D log.p.xj!i //C log.p.!i //� log.p.x//

D �1

2
.x � µi /

T��1
i .x � µi /�

1

2
log.j�i j/

� p

2
log.2³/C log.p.!i //� log.p.x//

Since p.x/ is independent of class, the discriminant rule is: assign x to !i if gi > g j ,
for all j 6D i , where

gi .x/ D log.p.!i //� 1
2 log.j�i j/� 1

2 .x � µi /
T��1

i .x � µi / (2.1)
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Classifying a pattern x on the basis of the values of gi .x/; i D 1; : : : ;C , gives the
normal-based quadratic discriminant function (McLachlan, 1992a).

In the estimative approach, the quantities µi and �i in the above are replaced by
estimates based on a training set. Consider a set of samples, fx1; : : : ; xng, x j 2 R

p,
and a normal distribution characterised by θ D .µ;�/. Then the likelihood function,
L.x1; : : : ; xnjθ/, is

L.x1; : : : ; xnjθ/ D
nY

iD1

1

.2³/
p
2 j�j 12

exp

²
�1

2
.xi � µ/T��1.xi � µ/

¦

Differentiating log.L/ with respect to θ gives the equations1

@ log.L/

@µ
D 1

2

nX
iD1

��1.xi � µ/C 1

2

nX
iD1

.��1/T .xi � µ/

and
@ log.L/

@�
D �n

2
��1 C 1

2

nX
iD1

.xi � µ/.xi � µ/T��1��1

where we have used the result that

@jAj
@A
D [adj.A/]T D jAj.A�1/T

Equating the above two equations to zero gives the maximum likelihood estimate of the
mean as

m D 1

n

nX
iD1

xi

the sample mean vector, and the covariance matrix estimate as

O� D 1

n

nX
iD1

.xi �m/.xi �m/T

the sample covariance matrix.
Substituting the estimates of the means and the covariance matrices (termed the ‘plug-

in estimates’) of each class into (2.1) gives the Gaussian classifier or quadratic discrim-
ination rule: assign x to !i if gi > g j , for all j 6D i , where

gi .x/ D log.p.!i //� 1
2 log.j O�i j/� 1

2 .x �mi /
T O��1

i .x �mi / (2.2)

If the training data have been gathered by sampling from the classes, then a plug-in
estimate for the prior probability, p.!i /, is ni=

P
j n j , where ni is the number of patterns

in class !i .

1Differentiation with respect to a p-dimensional vector means differentiating with respect to each component
of the vector. This gives a set of p equations which may be expressed as a vector equation (see Appendix C).
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In the above, we may apply the discrimination rule to all members of the design set
and the separate test set, if available. Problems will occur in the Gaussian classifier if
any of the matrices O�i is singular. There are several alternatives commonly employed.
One is simply to use diagonal covariance matrices; that is, set all off-diagonal terms
of O�i to zero. Another approach is to project the data onto a space in which O�i is
nonsingular, perhaps using a principal components analysis (see Chapter 9), and then
to use the Gaussian classifier in the reduced dimension space. Such an approach is
assessed by Schott (1993) and linear transformations for reducing dimensionality are
discussed in Chapter 9. A further alternative is to assume that the class covariance
matrices �1; : : : ;�C are all the same, in which case the discriminant function (2.1)
simplifies and the discriminant rule becomes: assign x to !i if gi > g j , for all j 6D i ,
where gi is the linear discriminant

gi .x/ D log.p.!i //� 1
2m

T
i S
�1
W mi C xTS�1

W mi (2.3)

in which SW is the common group covariance matrix. This is the normal-based lin-
ear discriminant function. The maximum likelihood estimate is the pooled within-group
sample covariance matrix

SW D
CX

iD1

ni

n
O�i

The unbiased estimate is given by

n

n � C
SW

A special case of (2.3) occurs when the matrix SW is taken to be the identity and the
class priors p.!i / are equal. This is the nearest class mean classifier: assign x to class
!i if

�2xTm j CmT
j m j > �2xTmi CmT

i mi for all i 6D j

For the special case of two classes, the rule (2.3) may be written: assign x to class !1 if

wTx C w0 > 0 (2.4)

else assign x to class !2, where in the above

w D S�1
W .m1 �m2/

w0 D � log

�
p.!2/

p.!1/

�
� 1

2
.m1 Cm2/

Tw
(2.5)

In problems where the data are from multivariate normal distributions with different
covariance matrices, there may be insufficient data to obtain good estimates of class
covariance matrices. Sampling variability may mean that it is better to assume equal co-
variance matrices (leading to the linear discriminant rule) rather than different covariance
matrices. However, there are several intermediate covariance matrix structures (Flury,
1987) that may be considered without making the restrictive assumption of equality of
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covariance matrices. These include diagonal, but different, covariance matrices; com-
mon principal components; and proportional covariance matrices models. These models
have been considered in the context of multivariate mixtures (see Section 2.3) and are
discussed further in Chapter 9.

The linear discriminant rule (2.3) is quite robust to departures from the equal co-
variance matrix assumptions (Wahl and Kronmal, 1977; O’Neill, 1992), and may give
better performance than the optimum quadratic discriminant rule for normally distributed
classes when the true covariance matrices are unknown and the sample sizes are small.
However, it is better to use the quadratic rule if the sample size is sufficient. The linear
discriminant function can be greatly affected by non-normality and, if possible, variables
should be transformed to approximate normality before applying the rule. Nonlinear
transformations of data are discussed in Chapter 9.

2.2.2 Regularised discriminant analysis

Regularised discriminant analysis (RDA) was proposed by Friedman (1989) for small-
sample, high-dimensional data sets as a means of overcoming the degradation in perfor-
mance of the quadratic discriminant rule. Two parameters are involved: ½, a complexity
parameter providing an intermediate between a linear and a quadratic discriminant rule;
and  , a shrinkage parameter for covariance matrix updates.

Specifically, O�i is replaced by a linear combination, �½i , of the sample covariance
matrix O�i and the pooled covariance matrix SW ,

�½i D
.1� ½/Si C ½S
.1� ½/ni C ½n

(2.6)

where 0 
 ½ 
 1 and
Si D ni O�i ; S D nSW

At the extremes of ½ D 0 and ½ D 1 we have covariance matrix estimates that lead to
the quadratic discriminant rule and the linear discriminant rule respectively:

�½i D
² O�i ½ D 0
SW ½ D 1

The second parameter  is used to regularise the sample class covariance matrix further
beyond that provided by (2.6),

�
½;

i D .1�  /�½i C  ci .½/I p (2.7)

where I p is the p ð p identity matrix and

ci .½/ D Trf�½i g=p;

the average eigenvalue of �½i .

The matrix �
½;

i is then used as the plug-in estimate of the covariance matrix in the
normal-based discriminant rule: assign x to !i if gi > g j ; for all j 6D i , where

gi .x/ D � 1
2 .x �mi /

T [�½;i ]�1.x �mi /� 1
2 log.j�½;i j/C log.p.!i //
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Friedman’s RDA approach involves choosing the values of ½ and  to minimise a
cross-validated estimate of future misclassification cost (that is, a robust estimate of the
error rate using a procedure called cross-validation – see Chapter 8). The strategy is to
evaluate the misclassification risk on a grid of points (0 
 ½;  
 1) and to choose the
optimal values of ½ and  to be those grid point values with smallest estimated risk.

Robust estimates of the covariance matrices (see Chapter 11) may also be incorporated

in the analysis. Instead of using �½i in (2.7), Friedman proposes Q�½i , given by

Q�½i D
.1� ½/ QSi C ½ QS

W ½
i

where

QSi D
nX

jD1

zi jw j .x j � Qmi /.x j � Qmi /
T

QS D
CX

kD1

QSk

Qmi D
nX

jD1

zi jw jx j=Wi

Wi D
nX

jD1

zi jw j

W D
CX

iD1

Wi

W ½
i D .1� ½/Wi C ½W

in which the w j (0 
 w j 
 1) are weights associated with each observation and zi j D 1

if x j 2 class !i and 0 otherwise. For w j D 1 for all j , Q�½i D �½i .
In order to reduce the computation cost, a strategy that updates a covariance matrix

when one observation is removed from a data set is employed.
Friedman (1989) assesses the effectiveness of RDA on simulated and real data sets.

He finds that model selection based on the cross-validation procedure performs well,
and that fairly accurate classification can be achieved with RDA for a small ratio of
the number of observations (n) to the number of variables (p). He finds that RDA has
the potential for dramatically increasing the power of discriminant analysis when sample
sizes are small and the number of variables is large.

In conclusion, RDA can improve classification performance when the covariance
matrices are not close to being equal and/or the sample size is too small for quadratic
discriminant analysis to be viable.

2.2.3 Example application study

The problem The purpose of this study is to investigate the feasibility of predicting
the degree of recovery of patients entering hospital with severe head injury using data
collected shortly after injury (Titterington et al., 1981).
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Summary Titterington et al. (1981) report the results of several classifiers, each de-
signed using different training sets. In this example, results of the application of a
quadratic discriminant rule (2.2) are presented.

The data The data set comprises measurements on patients entering hospital with a
head injury involving a minimum degree of brain damage. Measurements are made on
six categorical variables: Age, grouped into decades 0–9, 10–19, : : : , 60–69, 70C; EMV
score, relating to eye, motor and verbal responses to stimulation, grouped into seven
categories; MRP, a summary of the motor responses in all four limbs, graded 1 (nil) to 7
(normal); Change, the change in neurological function over the first 24 hours, graded 1
(deteriorating) to 3 (improving); Eye Indicant, a summary of eye movement scores,
graded 1 (bad) to 3 (good); Pupils, the reaction of pupils to light, graded 1 (non-
reacting) or 2 (reacting). There are 500 patients in the training and test sets, distributed
over three classes related to the predicted outcome (dead or vegetative; severe disability;
and moderate disability or good recovery). The number of patterns in each of the three
classes for the training and the test sets are: training – 259, 52, 189; test – 250, 48, 202.
Thus there is an uneven class distribution. Also, there are many missing values. These
have been substituted by class means on training and population means on test. Further
details of the data are given by Titterington et al. (1981).

The model The data in each class are modelled using a normal distribution leading to
the discriminant rule (2.2).

Training procedure Training consists of estimating the quantities fmi ; O�i , p.!i /, i D
1; : : : ;Cg, the sample mean, sample covariance matrix and prior class probability for
each class from the data. The prior class probability is taken to be p.!i / D ni=n. Once
O�i has been estimated, a numerical procedure must be used to calculate the inverse, O��1

i ,
and the determinant, j�i j. Once calculated, these quantities are substituted into equation
(2.2) to give C functions, gi .x/.

For each pattern, x, in the training and test set, gi .x/ is calculated and x assigned to
the class for which the corresponding discriminant function, gi .x/, is the largest.

Results Results on training and test sets for a Gaussian classifier (quadratic rule) are
given in Table 2.1 as misclassification matrices or confusion matrices (see also Exer-
cise 2). Note that class 2 is nearly always classified incorrectly as class 1 or class 3.

Table 2.1 Left: confusion matrix for training data; right: results for the test data

True class

1 2 3

Predicted 1 209 22 15

class 2 0 1 1

3 50 29 173

True class

1 2 3

Predicted 1 188 19 29

class 2 3 1 2

3 59 28 171
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2.2.4 Further developments

There have also been several investigations of the robustness of the linear and quadratic
discriminant rules to certain types of non-normality (for example, Lachenbruch et al.,
1973; Chingánda and Subrahmaniam, 1979; Ashikaga and Chang, 1981; Balakrishnan
and Subrahmaniam, 1985).

Robustness of the discrimination rule to outliers is discussed by Todorov et al. (1994);
see Krusińska (1988) for a review and also Chapter 11.

Aeberhard et al. (1994) report an extensive simulation study on eight statistical clas-
sification methods applied to problems when the number of observations is less than
the number of variables. They found that out of the techniques considered, RDA was
the most powerful, being outperformed by linear discriminant analysis only when the
class covariance matrices were identical and for a large training set size. Reducing the
dimensionality by feature extraction methods generally led to poorer results. However,
Schott (1993) finds that dimension reduction prior to quadratic discriminant analysis can
substantially reduce misclassification rates for small sample sizes. It also decreases the
sample sizes necessary for quadratic discriminant analysis to be preferred over linear dis-
criminant analysis. Alternative approaches to the problem of discriminant analysis with
singular covariance matrices are described by Krzanowski et al. (1995).

Further simulations have been carried out by Rayens and Greene (1991) who com-
pare RDA with an approach based on an empirical Bayes framework for addressing the
problem of unstable covariance matrices (see also Greene and Rayens, 1989). Aeberhard
et al. (1993) propose a modified model selection procedure for RDA and Celeux and
Mkhadri (1992) present a method of regularised discriminant analysis for discrete data.
Expressions for the shrinkage parameter are proposed by Loh (1995) and Mkhadri (1995).

An alternative regularised Gaussian discriminant analysis approach is proposed by
Bensmail and Celeux (1996). Termed eigenvalue decomposition discriminant analysis,
it is based on the reparametrisation of the covariance matrix of a class in terms of its
eigenvalue decomposition. Fourteen different models are assessed, and results compare
favourably with RDA. Raudys (2000) considers a similar development.

Hastie et al. (1995) cast the discrimination problem as one of regression using optimal
scaling and use a penalised regression procedure (regularising the within-class covariance
matrix). In situations where there are many highly correlated variables, their procedure
offers promising results.

Extensions of linear and quadratic discriminant analysis to data sets where the patterns
are curves or functions are developed by James and Hastie (2001).

2.2.5 Summary

Linear and quadratic discriminants (or equivalently, Gaussian classifiers) are widely used
methods of supervised classification and are supported by many statistical packages. Prob-
lems occur when the covariance matrices are close to singular and when class boundaries
are nonlinear. The former can be overcome by regularisation. This can be achieved by
imposing structure on the covariance matrices, pooling/combining covariance matrices
or adding a penalty term to the within-class scatter. Friedman (1989) proposes a scheme
that includes a combination of matrices and the addition of a penalty term.
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2.3 Normal mixture models

Finite mixture models have received wide application, being used to model distributions
where the measurements arise from separate groups, but individual membership is un-
known. As methods of density estimation, mixture models are more flexible than the
simple normal-based models of Section 2.2, providing improved discrimination in some
circumstances. Applications of mixture models include (see Section 2.5) textile flaw de-
tection (where the data comprise measurements from a background ‘noise’ and a flaw),
waveform classification (where the signal may comprise a sample from a waveform or
noise) and target classification (in which the radar target density is approximated by a
sum of simple component densities).

There are several issues associated with mixture models that are of interest. The most
important for density estimation concerns the estimation of the model parameters. We
may also be interested in how many components are present and whether there are any
‘natural’ groupings in the data that may be identified. This is the problem of clustering
(or unsupervised classification) that we return to in Chapter 10.

2.3.1 Maximum likelihood estimation via EM

A finite mixture model is a distribution of the form

p.x/ D
gX

jD1

³ j p.x; θ j /

where g is the number of mixture components, ³ j ½ 0 are the mixing proportions
(
Pg

jD1 ³ j D 1) and p.x; θ j /; j D 1; : : : ; g, are the component density functions which
depend on a parameter vector θ j . There are three sets of parameters to estimate: the
values of ³ j , the components of θ j and the value of g. The component densities may be
of different parametric forms and are specified using knowledge of the data generation
process, if available. In the normal mixture model, p.x; θ j / is the multivariate normal
distribution, with θ j D fµ j ;� j g.

Given a set of n observations (x1; : : : ; xn/, the likelihood function is

L.
/ D
nY

iD1

gX
jD1

³ j p.xi jθ j / (2.8)

where 
 denotes the set of parameters f³1; : : : ; ³g; θ1; : : : ; θ gg and we now denote the
dependence of the component densities on their parameters as p.xjθ j /. In general, it is
not possible to solve @L=@
 D 0 explicitly for the parameters of the model and iterative
schemes must be employed. One approach for maximising the likelihood L.
/ is to
use a general class of iterative procedures known as EM (expectation – maximisation)
algorithms, introduced in the context of missing data estimation by Dempster et al.
(1977), though it had appeared in many forms previously.

The basic procedure is as follows. We suppose that we have a set of ‘incomplete’ data
vectors fxg and we wish to maximise the likelihood L.
/ D p.fxgj
/. Let fyg denote a
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typical ‘complete’ version of fxg, that is, each vector xi is augmented by the ‘missing’
values so that yT

i D .xT
i ; z

T
i /. There may be many possible vectors yi in which we can

embed xi , though there may be a natural choice for some problems. In the finite mixture
case, zi is a class indicator vector zi D .z1i ; : : : ; zgi /

T , where z ji D 1 if xi belongs to
the j th component and zero otherwise.

General EM procedure
Let the likelihood of fyg be g.fygj
/ whose form we know explicitly so that the likeli-
hood p.fxgj
/ is obtained from g.fygj
/ by integrating over all possible fyg in which
the set fxg is embedded:

L.
/ D p.fxgj
/ D
Z nY

iD1

g.xi ; zj
/ dz

The EM procedure generates a sequence of estimates of 
, f
.m/g, from an initial
estimate 
.0/ and consists of two steps:

1. E-step: Evaluate Q.
;
.m//
4D E[log.g.fygj
//jfxg;
.m/], that is,

Q.
;
.m// D
Z X

i

log.g.xi ; zi j
//p.fzgjfxg;
.m// dz1 : : : dzn

the expectation of the complete data log-likelihood, conditional on the observed data,
fxg, and the current value of the parameters, 
.m/.

2. M-step: Find 
 D 
.mC1/ that maximises Q.
;
.m//. Often the solution for the
M-step may be obtained in closed form.

The likelihoods of interest satisfy

Lf
.mC1/g ½ Lf
.m/g

so they are monotonically increasing (see the exercises).
An illustration of the EM iterative scheme is shown in Figure 2.1. It is one of a class

of iterative majorisation schemes (de Leeuw 1977; de Leeuw and Heiser 1977, 1980) that
find a local maximum of a function f .
/ by defining an auxiliary function, Q.
;
.m//,
that touches the function f at the point .
.m/; f .
.m/// and lies everywhere else below it
(strictly, iterative majorisation refers to a procedure for finding the minimum of a function
by iteratively defining a majorising function). The auxiliary function is maximised and
the position of the maximum, 
.mC1/, gives a value of the original function f that is
greater than at the previous iteration. This process is repeated, with a new auxiliary
function being defined that touches the curve at .
.mC1/; f .
.mC1///, and continues
until convergence. The shape as well as the position of the auxiliary function will also
change as the iteration proceeds. In the case of the EM algorithm, Q.
;
.m// differs
from the log-likelihood at 
 by H.
;
.m// (see Dempster et al., 1977, for details):

log.L.
// D Q.
;
.m//� H.
;
.m//



Normal mixture models 43

Q(   ,     (m+1)) + hm+1

Q(   ,     (m)) + hm

(m+1)(m) (m+2)

log(L(   ))

Figure 2.1 EM illustration: successive maximisation of the function Q.
;
.m// leads to in-
creases in the log-likelihood

where
H.
;
.m// D E[log.g.fygj
/=p.fxgj
//jfxg;
.m/]

D
Z X

i

log.p.zi jfxg;
//p.zi jfxg;
.m// dz1 : : : dzn
(2.9)

and in Figure 2.1, hm D �H.
.m/;
.m//.

EM algorithm for mixtures
Let us now consider the application of the EM algorithm to mixture distributions. For
fully labelled data, we define the complete data vector y to be the observation augmented
by a class label; that is, yT D .xT ; zT /, where z is an indicator vector of length g
with a 1 in the kth position if x is in category k and zeros elsewhere. The likelihood
of y is

g.yj
/ D p.xjz;
/p.zj
/
D p.xjθ k/³k

which may be written as

g.yj
/ D
gY

jD1

ð
p.xjθ j /³ j

Łz j

since z j is zero except for j D k. The likelihood of x is

p.xj
/ D
X

all possible z values
g.yj
/

D
gX

jD1

³ j p.xjθ j /
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which is a mixture distribution. Thus, we may interpret mixture data as incomplete data
where the missing values are the class labels.

For n observations we have

g.y1; : : : ; ynj
/ D
nY

iD1

gY
jD1

[p.xi jθ j /³ j ]
z ji

with

log.g.y1; : : : ; ynj
// D
nX

iD1

zT
i l C

nX
iD1

zT
i ui .θ/

where the vector l has j th component log.³ j /, ui has j th component log.p.xi jθ j // and
zi has components z ji ; j D 1; : : : ; g, where z ji are the indicator variables taking value
one if pattern xi is in group j , and zero otherwise. The likelihood of .x1; : : : ; xn/ is
L0.
/, as follows. given by (2.8). The steps in the basic iteration are

1. E-step: Form

Q.
;
.m// D
nX

iD1

wT
i l C

nX
iD1

wT
i ui .θ/

where
wi D E.zi jxi ;


.m//

with j th component, the probability that xi belongs to group j given the current
estimates 
.m/, given by

wi j D
³
.m/
j p.xi jθ .m/j /

P
k ³

.m/
k p.xi jθ .m/k /

(2.10)

2. M-step: This consists of maximising Q with respect to 
. Consider the parameters ³i ,
θ i in turn. Maximising Q with respect to ³i (subject to the constraint that

Pg
jD1 ³ j D

1) leads to the equation

nX
iD1

wi j
1

³ j
� ½ D 0

obtained by differentiating Q � ½.Pg
jD1 ³ j � 1/ with respect to ³ j , where ½ is a

Lagrange multiplier. The constraint
P
³ j D 1 gives ½ D Pg

jD1

Pn
iD1wi j D n and

we have the estimate of ³ j as

O³ j D 1

n

nX
iD1

wi j (2.11)

For normal mixtures, θ i D .µi ;�i / and we consider the mean and covariance matrix
re-estimation separately. Differentiating Q with respect to µ j and equating to zero
gives

nX
iD1

wi j .xi � µ j / D 0
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which gives the re-estimation for µ j as

Oµ j D
Pn

iD1wi jxiPn
iD1wi j

D 1

n O³ j

nX
iD1

wi jxi (2.12)

Differentiating Q with respect to � j and equating to zero gives

O� j D
Pn

iD1wi j .xi � Oµ j /.xi � Oµ j /
T

Pn
iD1wi j

D 1

n O³ j

nX
iD1

wi j .xi � Oµ j /.xi � Oµ j /
T

(2.13)

Thus, the EM algorithm for normal mixtures alternates between the E-step of estimat-
ing the wi (equation (2.10)) and the M-step of calculating O³ j , Oµ j and O� j . j D 1; : : : ; g/
given the values of wi (equations (2.11), (2.12) and (2.13)). These estimates become the
estimates at stage mC1 and are substituted into the right-hand side of (2.10) for the next
stage of the iteration. The process iterates until convergence of the likelihood.

Discussion
The EM procedure is very easy to implement, but the convergence rate can be poor de-
pending on the data distribution and the initial estimates for the parameters. Optimisation
procedures, in addition to the EM algorithm, include Newton–Raphson iterative schemes
(Hasselblad, 1966) and simulated annealing (Ingrassia, 1992).

One of the main problems with likelihood optimisation is that there is a multitude of
‘useless’ global maxima (Titterington et al., 1985). For example, if the mean of one of
the groups is taken as one of the sample points, then the likelihood tends to infinity as
the variance of the component centred on that sample point tends to zero. Similarly, if
sample points are close together, then there will be high local maxima of the likelihood
function and it appears that the maximum likelihood procedure fails for this class of
mixture models. However, provided that we do not allow the variances to tend to zero,
perhaps by imposing an equality constraint on the covariance matrices, then the maxi-
mum likelihood method is still viable (Everitt and Hand, 1981). Equality of covariance
matrices may be a rather restrictive assumption in many applications. Convergence to
parameter values associated with singularities is more likely to occur with small sample
sizes and when components are not well separated.

2.3.2 Mixture models for discrimination

If we wish to use the normal mixture model in a discrimination problem, one approach
is to obtain the parameters 
1; : : :
C for each of the classes in turn. Then, given
a set of patterns xi ; i D 1; : : : ; n, that we wish to classify, we calculate L.xi ; j
 j /,
i D 1; : : : ; n; j D 1; : : : ;C , the likelihood of the observation given each of the models,
and combine this with the class priors to obtain a probability of class membership.
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Hastie and Tibshirani (1996) consider the use of mixture models for discrimination,
allowing each group within a class to have its own mean vector, but the covariance
matrix is common across all mixture components and across all classes. This is one way
of restricting the number of parameters to be estimated.

If we let ³ jr be the mixing probabilities for the r th subgroup within class ! j ; j D
1; : : : ;C ,

PR j

rD1 ³ jr D 1, where class ! j has R j subgroups; µ jr be the mean of the r th
subgroup within class ! j ; and � be the common covariance matrix; then the re-estimation
equations are (Hastie and Tibshirani, 1996)

wi jr D ³ jr p.xi jθ jr /PR j

kD1 ³ jk p.xi jθ jk/
(2.14)

where p.xi jθ jr / is the density of the r th subgroup of class ! j evaluated at xi (θ jr

denotes the parameters µ jr and �) and

O³ jr /
X
giD j

wi jr ;

R jX
rD1

O³ jr D 1

Oµ jr D
P

giD j wi jrxiP
giD j wi jr

O� D 1

n

CX
jD1

X
giD j

R jX
rD1

wi jr .xi � Oµ jr /.xi � Oµ jr /
T

(2.15)

P
giD j denoting the sum over observations xi where xi belongs to class ! j .
Other constraints on the covariance matrix structure may be considered. Within the

context of clustering using normal mixtures, Celeux and Govaert (1995) propose a
parametrisation of the covariance matrix that covers several different conditions, ranging
from equal spherical clusters (covariance matrices equal and proportional to the iden-
tity matrix) to different covariance matrices for each cluster. Such an approach can be
developed for discrimination.

2.3.3 How many components?

Several authors have considered the problem of testing for the number of components, g,
of a normal mixture. This is not a trivial problem and depends on many factors including
shape of clusters, separation, relative sizes, sample size and dimension of data. Wolfe
(1971) proposes a modified likelihood ratio test in which the null hypothesis g D g0 is
tested against the alternative hypothesis that g D g1. The quantity

�2

n

�
n � 1� p � g1

2

�
log.½/

where ½ is the likelihood ratio, is tested as a chi-square with the degrees of freedom, d,
being twice the difference in the number of parameters in the two hypotheses (Everitt,
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et al., 2001), excluding mixing proportions. For components of a normal mixture with
arbitrary covariance matrices,

d D 2.g1 � g0/
p.p C 3/

2

and with common covariance matrices (the case that was studied by Wolfe, 1971), d D
2.g1 � g0/p.

This test has been investigated by Everitt (1981) and Anderson (1985). For the com-
mon covariance structure, Everitt finds that, for testing g D 1 against g D 2 in a two-
component mixture, the test is appropriate if the number of observations is at least ten
times the number of variables. McLachlan and Basford (1988) recommend that Wolfe’s
modified likelihood ratio test be used as a guide to structure rather than rigidly interpreted.

In a discrimination context, we may monitor performance on a separate test set (see
Chapter 11) and choose the model that gives best performance on this test set. Note that
the test set is part of the training procedure (more properly termed a validation set) and
error rates quoted using these data will be optimistically biased.

2.3.4 Example application study

The problem The practical application concerns the automatic recognition of ships
using high-resolution radar measurements of the radar cross-section of targets (Webb,
2000).

Summary This is a straightforward mixture model approach to discrimination, with
maximum likelihood estimates of the parameters obtained via the EM algorithm. The
mixture component distributions are taken to be gamma distributions.

The data The data consist of radar range profiles (RRPs) of ships of seven class types.
An RRP describes the magnitude of the radar reflections of the ship as a function of
distance from the radar. The profiles are sampled at 3 m spacing and each RRP comprises
130 measurements. RRPs are recorded from all aspects of a ship as the ship turns through
360 degrees. There are 19 data files and each data file comprises between 1700 and 8800
training patterns. The data files are divided into train and test sets. Several classes have
more than one rotation available for training and testing.

The model The density of each class is modelled using a mixture model. Thus, we have

p.x/ D
gX

iD1

³i p.xjθ i / (2.16)

where θ i represents the set of parameters of mixture component i . An independence
model is assumed for each mixture component, p.xjθ i /, therefore

p.xjθ i / D
130Y
jD1

p.x j jθ i j /
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and the univariate factor, p.x j jθ i j /, is modelled as a gamma distribution2 with parameters
θ i j D .mi j ; ¼i j /,

p.x j jθ i j / D mi j

.mi j � 1/!¼i j

�
mi j x j

¼i j

�mi j�1

exp

�
�mi j x j

¼i j

�

where mi j is the order parameter for variable x j of mixture component i and ¼i j is the
mean. Thus for each mixture component, there are two parameters associated with each
dimension. We denote by θ i the set fθ i j ; j D 1; : : : ; 130g, the parameters of component i .
The gamma distribution is chosen from physical considerations – it has special cases of
Rayleigh scattering and a non-fluctuating target. Also, empirical measurements have been
found to be gamma-distributed.

Training procedure Given a set of n observations (in a given class), the likelihood
function is

L.
/ D
nY

iD1

gX
jD1

³ j p.xi jθ j /

where 
 represents all the parameters of the model, 
 D fθ j ; ³ j ; j D 1; : : : ; gg.
An EM approach to maximum likelihood is taken. If fθ .m/k ; ³

.m/
k g denotes the estimate

of the parameters of the kth component at the mth stage of the iteration, then the E-step
estimates wi j , the probability that xi belongs to group j given the current estimates of
the parameters (2.10),

wi j D
³
.m/
j p.xi jθ .m/j /

P
k ³

.m/
k p.xi jθ .m/k /

(2.17)

The M-step leads to the estimate of the mixture weights, ³ j , as in (2.11),

O³ j D 1

n

nX
iD1

wi j (2.18)

The equation for the mean is given by (2.12),

Oµ j D
Pn

iD1wi jxiPn
iD1wi j

D 1

n O³ j

nX
iD1

wi jxi (2.19)

but the equation for the gamma order parameters, mi j , cannot be solved in closed form,

¹.m jk/ D �
Pn

iD1wik log.xi j=¼ jk/Pn
iD1wik

where ¹.m/ D log.m/�  .m/ and  .m/ is the digamma function.
Thus, for the gamma mixture problem, an EM approach may be taken, but a numerical

root-finding routine must be used within the EM loop for the gamma distribution order
parameters.

2There are several parametrisations of a gamma distribution. We present the one used in the study.
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The number of mixture components per class was varied between 5 and 110 and
the model for each ship determined by minimising a penalised likelihood criterion (the
likelihood penalised by a complexity term – see Chapter 11). This resulted in between 50
and 100 mixture components per ship. The density function for each class was constructed
using (2.16). The class priors were taken to be equal. The model was then applied to a
separate test set and the error rate estimated.

2.3.5 Further developments

Jamshidian and Jennrich (1993) propose an approach for accelerating the EM algorithm
based on a generalised conjugate gradients numerical optimisation scheme (see also
Jamshidian and Jennrich, 1997). Other competing numerical schemes for normal mixtures
are described by Everitt and Hand (1981) and Titterington et al. (1985). Lindsay and
Basak (1993) describe a method of moments approach to multivariate normal mixtures
that may be used to initialise an EM algorithm.

Further extensions to the EM algorithm are given by Meng and Rubin (1992, 1993).
The SEM (supplemented EM) algorithm is a procedure for computing the asymptotic
variance-covariance matrix. The ECM (expectation/conditional maximisation) algorithm
is a procedure for implementing the M-step when a closed-form solution is not available,
replacing each M-step by a sequence of conditional maximisation steps. An alternative
gradient algorithm for approximating the M-step is presented by Lange (1995) and the
algorithm is further generalised to the ECME (ECM either) algorithm by Liu and Rubin
(1994).

Developments for data containing groups of observations with longer than normal tails
are described by Peel and McLachlan (2000), who develop a mixture of t distributions
model, with parameters determined using the ECM algorithm.

Approaches for choosing the number of components of a normal mixture include
that of Bozdogan (1993), who has compared several information-theoretic criteria on
simulated data consisting of overlapping and non-overlapping clusters of different shape
and compactness. Celeux and Soromenho (1996) propose an entropy criterion, evaluated
as a by-product of the EM algorithm, and compare its performance with several other
criteria.

2.3.6 Summary

Modelling using normal mixtures is a simple way of developing the normal model to
nonlinear discriminant functions. Even if we assume a common covariance matrix for
mixture components, the decision boundary is not linear. The EM algorithm provides
an appealing scheme for parameter estimation, and there have been various extensions
accelerating the technique. A mixture model may also be used to partition a given data
set by modelling the data set using a mixture and assigning data samples to the group for
which the probability of membership is the greatest. The use of mixture models in this
context is discussed further in Chapter 10. Bayesian approaches to mixture modelling
have also received attention and are considered in Section 2.4.3 in a discrimination
context and in Chapter 10 for clustering.
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2.4 Bayesian estimates

2.4.1 Bayesian learning methods

Here we seek to estimate some quantity such as the density at x

p.xjD/

where D D fx1; : : : ; xng is the set of training patterns characterising the distribution. The
dependence of the density at x on D is through the parameters of the model assumed for
the density. If we assume a particular model, p.xjθ/, then the Bayesian approach does
not base the density estimate on a single estimate of the parameters, θ , of the probability
density function p.xjθ/, but admits that we do not know the true value of θ and we write

p.xjD/ D
Z

p.xjθ/p.θ jD/ dθ (2.20)

where by Bayes’ theorem the posterior density of θ may be expressed as

p.θ jD/ D p.Djθ/p.θ/R
p.Djθ/p.θ/ dθ

(2.21)

Bayes’ theorem allows us to combine any prior, p.θ/, with any likelihood, p.Djθ/,
to give the posterior. However, it is convenient for particular likelihood functions to
take special forms of the prior that lead to simple, or at least tractable, solutions for
the posterior. For a given model, p.xjθ/, the family of prior distributions for which the
posterior density, p.θ jD/, is of the same functional form is called conjugate with respect
to p.xjθ/. Some of the more common forms of conjugate priors are given by Bernardo
and Smith (1994).

The posterior density may also be calculated in a recursive manner. If the measure-
ments, xi , are given successively, we may write (2.21) as

p.θ jx1; : : : ; xn/ D p.xnjθ/p.θ jx1; : : : ; xn�1/R
p.xnjθ/p.θ jx1; : : : ; xn�1/ dθ

(2.22)

for x1; : : : ; xn conditionally independent. This expresses the posterior distribution of
θ given n measurements in terms of the posterior distribution given n � 1 measure-
ments. Starting with p.θ/, we may perform the operation (2.22) n times to obtain the
posterior.

For situations when there is no conjugate prior distribution, or the denominator in
(2.21) cannot be evaluated analytically, we must resort to numerical methods, discussed
in the following section.

To illustrate the Bayesian learning approach we shall consider the problem of esti-
mating the mean of a univariate normal distribution with known variance, and quote
the result for the multivariate normal distribution with unknown mean and covariance
matrix. Further details on estimating the parameters of normal models are given in the
books by Fukunaga (1990) and Fu (1968).
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Example 1 Estimating the mean of a normal distribution with known variance, ¦ 2.
Let the model for the density be normal with mean ¼ and variance ¦ 2, denoted p.x j¼/

(¦ 2 known),

p.x j¼/ D 1p
2³¦

exp

�
� 1

2¦ 2
.x � ¼/2

�

Assume a prior density for the mean ¼ that is also normal with mean ¼0 and variance ¦ 2
0 ,

p.¼/ D 1p
2³¦0

exp

(
�1

2

�
¼� ¼0

¦0

�2
)

Now,

p.x1; : : : ; xnj¼/p.¼/

D p.¼/
nY

iD1

p.xi j¼/

D 1p
2³¦0

exp

(
�1

2

�
¼� ¼0

¦0

�2
)

nY
iD1

"
1p

2³¦
exp

(
�1

2

�
xi � ¼
¦

�2
)#

This may be written in the form

p.x1; : : : ; xnj¼/p.¼/ D 1

¦ n¦0

1

.2³/.nC1/=2
exp

(
�1

2

�
¼� ¼n

¦n

�2
)

exp

�
�kn

2

�

where
1

¦ 2
n
D 1

¦ 2
0

C n

¦ 2

¼n D ¦ 2
n

 
¼0

¦ 2
0

C
P

xi

¦ 2

!

kn D
¼2

0

¦ 2
0

� ¼
2
n

¦ 2
n
C
P

x2
i

¦ 2

Substituting into equation (2.21) gives the posterior distribution as

p.¼jx1; : : : ; xn/ D 1p
2³¦n

exp

(
�1

2

�
¼� ¼n

¦n

�2
)

(2.23)

which is normal with mean ¼n and variance ¦ 2
n .

As n ! 1, ¼n ! the sample mean, m D Pi xi=n, and the variance of ¼, namely
¦ 2

n , tends to zero as 1=n. Thus, as more samples are used to obtain the distribution
(2.23), the contribution of the initial guesses ¦0 and ¼0 becomes smaller. This is illus-
trated in Figure 2.2. Samples, xi , from a normal distribution with unit mean and unit
variance are generated. A normal model is assumed with mean ¼ and unit variance.
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0.0 1.0

n = 5

n = 15

n = 25

n = 1

prior

m

p(m |x1, . . . , xn)

Figure 2.2 Bayesian learning of the mean of a normal distribution of known variance

Figure 2.2 plots the posterior distribution of the mean, ¼, given different numbers of
samples (using (2.23)) for a prior distribution of the mean that is normal with ¼0 D 0
and ¦ 2

0 D 1. As the number of samples increases, the posterior distribution narrows about
the true mean.

Finally, substituting the density into (2.20) gives the conditional distribution

p.x jx1; : : : ; xn/ D 1

.¦ 2 C ¦ 2
n /

1=2
p

2³
exp

²
�1

2

.x � ¼n/
2

¦ 2 C ¦ 2
n

¦

which is normal with mean ¼n and variance ¦ 2 C ¦ 2
n . �

Example 2 Estimating the mean and the covariance matrix of a multivariate normal
distribution.

In this example, we consider the multivariate problem in which the mean and the
covariance matrix of a normal distribution are unknown. Let the model for the data be
normal with mean µ and covariance matrix �:

p.xjµ;�/ D 1

.2³/p=2j�j 12
exp

²
�1

2
.x � µ/T��1.x � µ/

¦

We wish to estimate the distribution of µ and � given measurements x1; : : : ; xn .
When the mean µ and the covariance matrix � of a normal distribution are to be

estimated, an appropriate choice of prior density is the Gauss–Wishart, or normal –
Wishart, probability density function in which the mean is normally distributed with
mean µ0 and covariance matrix K�1=½, and K (the inverse of the covariance matrix
�) is distributed according to a Wishart distribution (see Appendix E for a definition of
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some of the commonly used distributions) with parameters Þ and β:

p.µ;K/ D Np.µjµ0; ½K/Wip.KjÞ;β/

D j½Kj
1=2

.2³/p=2
exp

²
�1

2
½.µ� µ0/

TK.µ� µ0/

¦

ð c.p; Þ/jβjÞjK j.Þ�.pC1/=2/ exp f�Tr.βK/g

(2.24)

where

c.p; Þ/ D
"
³ p.p�1/=4

pY
iD1

0

�
2Þ C 1� i

2

�#�1

The term ½ expresses the confidence in µ0 as the initial value of the mean and Þ

(2Þ > p � 1) the initial confidence in the covariance matrix. It can be shown that the
posterior distribution

p.µ;Kjx1; : : : ; xn/ D p.x1; : : : ; xn jµ;K/p.µ;K/R
p.x1; : : : ; xnjµ;K/p.µ;�/ dµ dK

is also Gauss–Wishart with the parameters µ0, β, ½ and Þ replaced by (Fu, 1968)

½n D ½C n

Þn D Þ C n=2

µn D .½µ0 C nm/=.½C n/

2βn D 2β C .n � 1/S C n½

n C ½.µ0 � µ/.µ0 � µ/T

(2.25)

where

S D 1

n � 1

nX
iD1

.xi �m/.xi �m/T

and m is the sample mean. That is,

p.µ;Kjx1; : : : ; xn/ D Np.µjµn; ½nK/Wip.KjÞn;βn/ (2.26)

The conditional distribution of µ given K is normal. Marginalising (integrating with
respect to µ) gives the posterior for K as Wip.KjÞn;βn/. The posterior for µ (integrating
with respect to K) is

p.µjx1; : : : ; xn/ D Stp.µjµn; ½n.Þn � .p � 1/=2/β�1
n ; 2.Þn � .p � 1/=2//

which is the p-dimensional generalisation of the univariate Student distribution (see
Appendix E for a definition). Finally, we may substitute into (2.20) to obtain the density
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for the case of the normal distribution with unknown mean and covariance matrix,

p.xjx1; : : : ; xn/ D Stp.xjµn; .½n C 1/�1½n.Þn � .p � 1/=2/β�1
n ; 2.Þn � .p � 1/=2//

(2.27)

which is also a Student distribution. �
The parameters Þn; ½n;µn and βn may be calculated for each class and the conditional

density (2.27) may be used as a basis for discrimination: assign x to class !i for which
gi > g j ; j D 1; : : : ;C; j 6D i , where

gi D p.xjx1; : : : ; xni 2 !i /p.!i / (2.28)

Unknown priors
In equation (2.28), p.!i / represents the prior probabilities for class !i . It may happen
that the prior class probabilities, p.!i /, are unknown. In this case, we may treat them as
parameters of the model that may be updated using the data. We write

p.!i jx;D/ D
Z

p.!i ;π; jx;D/ dπ

/
Z

p.xj!i ;π;D/p.!i ;π jD/ dπ

/
Z

p.xj!i ;D/p.!i ;π jD/ dπ

(2.29)

where we use π D .³1; : : : ; ³C / to represent the prior class probabilities.
The term p.!i ;π jD/ may be written

p.!i ;π jD/ D p.π jD/p.!i jπ ;D/
D p.π jD/³i

(2.30)

The aspects of the measurements that influence the distribution of the class probabil-
ities, π , are the numbers of patterns in each class, ni ; i D 1; : : : ;C . A suitable prior for
³i D p.!i / is a Dirichlet prior (see Appendix E), with parameters a0 D .a01; : : : ; a0C /,

p.³1; : : : ; ³C/ D k
CY

jD1

³
a0 j�1
j

where k D 0.
P

i a0i /=
Q

i 0.a0i / (0 is the gamma function) and ³C D 1 �PC�1
iD1 ³i .

This is written π ¾ DiC .π ja0/ for π D .³1; : : : ; ³C/
T . Assuming that the distribution

of the data (the ni ) given the priors is multinomial,

p.Djπ/ D n!QC
lD1 nl !

CY
lD1

³
nl
l

then the posterior
p.π jD/ / p.Djπ/p.π/ (2.31)
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is also distributed as DiC .π ja/, where a D a0C n and n D .n1; : : : ; nC /
T , the vector of

numbers of patterns in each class.
Substituting the Dirichlet distribution for p.π jD/ into equation (2.30), and then

p.!i ;π jD/ from (2.30) into equation (2.29), gives

p.!i jx;D/ / p.xj!i ;D/
Z
³i DiC .π ja/ dπ (2.32)

which replaces ³i in (2.28) by its expected value, ai=
P

j a j . Thus, the posterior proba-
bility of class membership now becomes

p.!i jx;D/ D .ni C a0i /p.xj!i /P
i .ni C a0i /p.xj!i /

(2.33)

This treatment has assumed that the ³i s are unknown but can be estimated from the
training data as well as prior information. Whether the training data can be used depends
on the sampling scheme used to gather the data. There are various modifications to (2.33)
depending on the assumed knowledge concerning the ³i (see Geisser, 1964).

Summary
The Bayesian approach described above involves two stages. The first stage is concerned
with learning about the parameters of the distribution, θ , through the recursive calculation
of the posterior density p.θ jx1; : : : ; xn/ for a specified prior

p.θ jx1; : : : ; xn/ / p.xnjθ/p.θ jx1; : : : ; xn�1/

For a suitable prior and choice of class-conditional densities, the posterior distribution
for θ is of the same form as the prior. The second stage is the integration over θ to obtain
the conditional density p.xjx1; : : : ; xn/ which may be viewed as making allowance for
the variability in the estimate due to sampling. Although it is relatively straightforward
to perform the integrations for the normal case that has been considered here, it may
be necessary to perform two multivariate numerical integrations for more complicated
probability density functions. This is the case for the normal mixture model for which
there exist no reproducing (conjugate) densities.

2.4.2 Markov chain Monte Carlo

Introduction
In the previous section we developed the Bayesian approach to density estimation and
illustrated it using two normal distribution examples, for which the integral in the denom-
inator of (2.21) may be evaluated analytically for suitable choices of prior distribution.
We now consider some of the computational machinery for practical implementation of
Bayesian methods to problems for which the normalising integral cannot be evaluated
analytically and numerical integration over possibly high-dimensional spaces is infeasi-
ble. The following section will illustrate these ideas on an application to a discrimination
problem.
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Let D denote the observed data. In a classification problem, D comprises the training
set of patterns and their class labels f.xi ; zi /; i D 1; : : : ; ng, where xi are the patterns and
zi are the class labels, together with fxt

i ; i D 1; : : : ; nt g, a set of patterns for which the
class labels are assumed unknown. Let θ denote the model parameters and the ‘missing
data’. In a classification problem, the missing data are the class labels of the patterns
of unknown class and the model parameters would be, for example, the means and
covariance matrices for normally distributed classes.

The posterior distribution of θ conditional on the observed data, D, may be written,
using Bayes’ theorem, as the normalised product of the likelihood, p.Djθ/, and the prior
distribution, p.θ/:

p.θ jD/ D p.Djθ/p.θ/R
p.Djθ/p.θ/ dθ

(2.34)

This posterior distribution tells us all that we need to know about θ and can be used
to calculate summary statistics. The posterior expectation of a function h.θ/ is

E[h.θ/jD] D
R

h.θ/p.Djθ/p.θ/ dθR
p.Djθ/p.θ/ dθ

(2.35)

However, the integrals in equations (2.34) and (2.35) have led to practical difficulties
for the implementation of Bayesian methods. The normalising constant in (2.34) is often
unknown because analytic evaluation of the integral can only be performed for simple
models.

A group of methods known as Markov chain Monte Carlo (MCMC) has proven to
be effective at generating samples asymptotically from the posterior distribution (without
knowing the normalising constant) from which inference about model parameters may
be made by forming sample averages. MCMC methodology may be used to analyse
complex problems, no longer requiring users to force the problem into an oversimplified
framework for which analytic treatment is possible.

The Gibbs sampler

We begin with a description of the Gibbs sampler, one of the most popular MCMC
methods, and discuss some of the issues that must be addressed for practical implemen-
tation. Both the Gibbs sampler and a more general algorithm, the Metropolis–Hastings
algorithm, have formed the basis for many variants.

Let f .θ/ denote the posterior distribution from which we wish to draw samples; θ is
a p-dimensional parameter vector, .�1; : : : ; �p/

T . We may not know f exactly, but we
know a function g.θ/, where f .θ/ D g.θ/=

R
g.θ/ dθ .

Let θ .i/ be the set of parameters with the i th parameter removed; that is, θ .i/ D
f�1; : : : ; �i�1, �iC1; : : : ; �pg. We assume that we are able to draw samples from the
one-dimensional conditional distributions, f .�i jθ .i//, derived from the normalisation of
g.�i jθ .i//, the function g regarded as a function of �i alone, all other parameters being
fixed.

Gibbs sampling is a simple algorithm that consists of drawing samples from these
distributions in a cyclical way as follows.
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Figure 2.3 Gibbs sampler illustration

Gibbs sampling
To generate a sequence from f .�1; : : : ; �p/, choose an arbitrary starting value for θ; θ0 D
.�0

1 ; : : : ; �
0
p/

T from the support of the prior/posterior distribution. At stage t of the iter-
ation,

ž draw a sample, � tC1
1 from f .�1j� t

2; : : : ; �
t
p/;

ž draw a sample, � tC1
2 from f .�2j� tC1

1 ; � t
3; : : : ; �

t
p/;

ž and continue through the variables, finally drawing a sample, � tC1
p from f .�pj� tC1

1 ; : : : ;

� tC1
p�1/;

After a large number of iterations, the vectors θ t behave like a random draw from the
joint density f .θ/ (Bernardo and Smith, 1994).

Figure 2.3 illustrates the Gibbs sampler for a bivariate distribution. The �1 and �2
components are updated alternately, producing moves in the horizontal and vertical di-
rections.

In the Gibbs sampling algorithm, the distribution of θ t given all previous values
θ0; θ1; : : : ; θ t�1 depends only on θ t�1. This is the Markov property and the sequence
generated is termed a Markov chain.

For the distribution of θ t to converge to a stationary distribution (a distribution that
does not depend on θ0 or t), the chain must be aperiodic, irreducible and positive
recurrent. A Markov chain is aperiodic if it does not oscillate between different subsets
in a regular periodic way. Recurrence is the property that all sets of θ values will be
reached infinitely often at least from almost all starting points.

It is irreducible if it can reach all possible θ values from any starting point. Figure 2.4
illustrates a distribution that is uniform on .[0; 1]ð [0; 1]/

S
.[1; 2]ð [1; 2]/, the union of
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Figure 2.4 Illustration of a reducible Gibbs sampler

two non-overlapping unit squares. Consider the Gibbs sampler that uses the coordinate
directions as sampling directions. For a point �1 2 [0; 1], the conditional distribution
of �2 given �1 is uniform over [0; 1]. Similarly for a point �2 2 [0; 1], the conditional
distribution of �1 given �2 is uniform over [0; 1]. We can see that if the starting point for
�1 is in [0; 1], then the Gibbs sampler will generate a point �2, also in [0; 1]. The next
step of the algorithm will generate a value for �1, also in [0; 1], and so on. Therefore,
successive values of θ t will be uniformly distributed on the square .[0; 1]ð [0; 1]/. The
square .[1; 2]ð [1; 2]/ will not be visited. Conversely, a starting point in .[1; 2]ð [1; 2]/
will yield a limiting distribution uniform on .[1; 2]ð[1; 2]/. Thus the limiting distribution
depends on the starting value and therefore is not irreducible.

By designing a transition kernel K.θ ; θ 0/ (the probability of moving from θ to θ 0)
that satisfies detailed balance (time-reversibility)

f .θ/K.θ; θ 0/ D f .θ 0/K.θ 0; θ/

for all pairs of states .θ ; θ 0/ in the support of f , then the stationary distribution is the
target distribution of interest, f .θ/.

Summarisation
After a sufficiently large number of iterations (referred to as the burn-in period), the
samples fθ t g will be dependent samples from the posterior distribution f .θ/. These sam-
ples may be used to obtain estimators of expectations using ergodic averages. Evaluation
of the expectation of a function, h, of interest is achieved by the approximation

E[h.θ/] ³ 1

N � M

NX
tDMC1

h.θ t / (2.36)

where N is the number of iterations of the Gibbs sampler and M is the number of
iterations in the burn-in period.
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Other summaries include plots of the marginal densities using some of the general
nonparametric methods of density estimation, such as kernel methods (discussed in detail
in Chapter 3). The kernel density estimate of �i given samples f� t

i ; t D MC1; : : : ; N g is

p.�i / D 1

N � M

NX
tDMC1

K .�i ; �
t
i / (2.37)

where the kernel K .�; �Ł/ is a density centred at �Ł. Choices for kernels and their widths
are discussed in Chapter 3.

An alternative estimator, due to Gelfand and Smith (1990) and termed the Rao-
Blackwellised estimator, makes use of the conditional densities f .�i jθ t

.i//,

p.�i / D 1

N � M

NX
tDMC1

f .�i jθ t
.i// (2.38)

This estimates the tails of the distribution better than more general methods of density
estimation (O’Hagan, 1994).

The Rao-Blackwellised estimator of E[h.�i /] is then

E[h.�i /] ³ 1

N � M

NX
tDMC1

E[h.�i /jθ t
.i/] (2.39)

The difference between (2.39) and (2.36) is that (2.39) requires an analytic expression
for the conditional expectation so that it may be evaluated at each step of the iteration.
For reasonably long runs, the improvement in using (2.39) over (2.36) is small.

If θ are the parameters of a density and we require p.xjD/, we may estimate this by
approximating the integral in (2.20) using a Monte Carlo integration:

p.xjD/ D 1

N � M

NX
tDMC1

p.xjθ t /

Convergence
In an implementation of Gibbs sampling, there are a number of practical considerations
to be addressed. These include the length of the burn-in period, M ; the length of the
sequence, N ; and the spacing between samples taken from the final sequence of iter-
ations (the final sequence may be subsampled in an attempt to produce approximately
independent samples and to reduce the amount of storage required).

The length of the chain should be long enough for it to ‘forget’ its starting value
and such that all regions of the parameter space have been traversed by the chain. The
limiting distribution should not depend on its starting value, θ0, but the length of the
sequence will depend on the correlation between the variables. Correlation between the
�i s will tend to slow convergence. It can be difficult to know when a sequence has
converged as the Gibbs sampler can spend long periods in a relatively small region, thus
giving the impression of convergence.

The most commonly used method for determining the burn-in period is by visually
inspecting plots of the output values, θ t , and making a subjective judgement. More formal
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tools, convergence diagnostics, exist and we refer to Raftery and Lewis (1996) Gelman
(1996) and Mengersen et al. (1999) for further details of the most popular methods.
However, convergence diagnostics do not tell when a chain has converged, but tell when
it has not converged – sometimes.

There are various approaches for reducing correlation (and hence speeding up con-
vergence) including reparametrisation and grouping variables.

Reparametrisation transforms the set θ using a linear transformation to a new set φ
with zero correlation between the variables. The linear transformation is calculated using
an estimate of the covariance matrix based on a short initial sequence (in pattern recog-
nition, the process of deriving a set of uncorrelated variables that is a linear combination
of the original variables is principal components analysis, which we shall describe in
Chapter 9). The Gibbs sampler then proceeds using the variables φ, provided that it is
straightforward to sample from the new conditionals f .�i jφ.i//. The process may be
repeated until the correlation in the final sequence is small, hopefully leading to more
rapid convergence.

Grouping variables means that at each step of the iteration a sample from a multivari-
ate distribution f .θ i jθ .i// is generated, where θ i is a subvector of θ and θ .i/ is the set
of remaining variables. Provided correlations between variables are caused primarily by
correlations between elements of the subvectors, with low correlations between subvec-
tors, we can hope for more rapid convergence. A method for sampling from f .θ i jθ .i//
(which may be complex) is required.

Starting point

The starting point is any point you do not mind having in the sequence. Preliminary
runs, started where the last one ended, will give you some feel for suitable starting
values. There is some argument to say that since the starting point is a legitimate point
from the sequence (although perhaps in the tail of the distribution), it would be visited
anyway by the Markov chain, at some stage; hence there is no need for burn-in. However,
using a burn-in period and removing initial samples will make estimators approximately
unbiased.

Parallel runs

Instead of running one chain until convergence, it is possible to run multiple chains
(with different starting values) as an approach to monitoring convergence, although more
formal methods exist (Roberts, 1996; Raftery and Lewis, 1996), as well as to obtain-
ing independent observations from f .θ/. This is a somewhat controversial issue since
independent samples are not required in many cases, and certainly not for ergodic av-
eraging (equation (2.37)). Comparing several chains may help in identifying conver-
gence. For example, are estimates of quantities of interest consistent between runs? In
such cases, it is desirable to choose different starting values, θ0, for each run, widely
dispersed.

In practice, you will probably do several runs if computational resources permit, either
to compare related probability models or to gain information about a chosen model such
as burn-in length. Then, you would perform a long run in order to obtain samples for
computing statistics.
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Sampling from conditional distributions

The Gibbs sampler requires ways of sampling from the conditional distributions f .θ i jθ .i//
and it is essential that sampling from these distributions is computationally efficient. If
f .θ i jθ .i// is a standard distribution, then it is likely that algorithms exist for drawing
samples from it. For algorithms for sampling from some of the more common distribu-
tions, see, for example, Devroye (1986) and Ripley (1987).

As an example, consider the univariate equivalent of the distribution given by
equation (2.26):

p.¼; 1=¦ 2/ D N1.¼j¼n; ½n=¦
2/Ga.1=¦ 2jÞn; þn/

/ 1

¦
exp

²
�½C n

2¦ 2
.¼� ¼n/

2
¦�

1

¦ 2

�Þn�1

exp

²
�þn

¦ 2

¦

Given ¦ 2, ¼ is normally distributed with mean ¼n (the prior updated by the data
samples – see (2.25)) and variance ¦ 2=.½ C n/; given the mean, 1=¦ 2 has a gamma
distribution (see Appendix E) Ga.1=¦ 2jÞn C 1

2 ; þn C ½n.¼ � ¼n/
2=2//, with marginal

(integrating over ¼) Ga.1=¦ 2jÞn; þn/. The mean of ¦ 2 is þn=.Þn � 1/, Þn > 1, and
variance þ2

n=[.Þn � 1/2.Þn � 2/], Þn > 2.
The data, xi , comprise 20 points from a normal distribution with zero mean and unit

variance. The priors are ¼ ¾ N1.¼0; ½=¦
2/; 1=¦ 2 ¾ Ga.Þ; þ/. The parameters of the

prior distribution of ¼ and ¦ 2 are taken to be ½ D 1; ¼0 D 1; Þ D 1=2; þ D 2. For
this example, the true posteriors of ¼ and ¦ 2 may be calculated; ¼ has a t distribution
and the inverse of ¦ 2 has a gamma distribution. The mean and the variance of the true
posteriors of ¼ and ¦ 2 are given in Table 2.2.

A Gibbs sampling approach is taken for generating samples from the joint posterior
density of ¼ and ¦ 2. The steps are to initialise ¦ 2 (in this example, a sample is taken
from the prior distribution) and then sample ¼; then for a given ¼, sample ¦ 2, and so
on, although this is not necessarily the best approach for a diffuse prior.

Figure 2.5 shows the first 1000 samples in a sequence of ¼ and ¦ 2 samples. Taking
the first 500 samples as burn-in, and using the remainder to calculate summary statistics,

Table 2.2 Summary statistics for ¼ and ¦ 2. The true
values are calculated from the known marginal poste-
rior densities. The short-run values are calculated from
a Gibbs sampler run of 1000 samples less a burn-in of
500 samples. The long-run values are calculated after a
run of 100 000 samples, less a burn-in of 500 samples

True Short run Long run

mean ¼ �0.10029 �0.10274 �0.10042

var ¼ 0.05796 0.05738 0.05781

mean ¦ 2 1.217 1.236 1.2166

var ¦ 2 0.17428 0.20090 0.17260
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Figure 2.5 One thousand iterations from Gibbs sampler for a normal-inverse gamma posterior
density; left: samples of ¼; right: samples of ¦ 2

gives values for the mean and variance of ¼ and ¦ 2 that are close to the true values
(calculated analytically); see Table 2.2. A longer sequence gives values closer to the truth.

Rejection sampling
If the conditional distribution is not recognised to be of a standard form for which ef-
ficient sampling exists, then other sampling schemes must be employed. Let f .θ/ D
g.θ/=

R
g.θ/ dθ be the density from which we wish to sample. Rejection sampling

uses a density s.θ/ from which we can conveniently sample (cheaply) and requires
that g.θ/=s.θ/ is bounded. Let an upper bound of g.θ/=s.θ/ be A.

The rejection sampling algorithm is as follows.

Rejection sampling algorithm
Repeat

ž sample a point θ from the known distribution s.θ/;

ž sample y from the uniform distribution on [0; 1];

ž if Ay 
 g.θ/=s.θ/ then accept θ ;

until one θ is accepted.

Depending on the choice of s, many samples could be rejected before one is accepted.
If s is close to the shape of g.θ/, so that g.θ/=s.θ/ ¾ A for all θ , then the acceptance
condition is almost always accepted.

The distribution of the samples, θ , generated is f .θ/.

Ratio of uniforms
Let D denote the region in R

2 such that

D D f.u; v/; 0 
 u 

p

g.v=u/g;

then sampling a point uniformly from D and taking � D v=u gives a sample from the
density proportional to g.�/, namely g.�/=

R
g.�/ d� .



Bayesian estimates 63

0

D

R

v

v+

v−

u+ u

Figure 2.6 Envelope rectangle, R, for the region D defined by D D f.u; v/; 0 
 u 
 pg.v=u/g

A sample from D could be drawn by a simple application of rejection sampling:
sample uniformly from the rectangle, R, bounding D (see Figure 2.6) and if .u; v/ is in
D then accept.

Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is a widely used technique for sampling from distri-
butions for which the conditional densities cannot be computed or are of a form from
which it is difficult to sample. It uses a proposal distribution, from which sampling is
easy, and accepts a sample with a probability that depends on the proposal distribution
and the (unnormalised) density from which we wish to sample.

Let θ t be the current sample. In the Metropolis–Hastings algorithm, a proposal distri-
bution, which may depend on θ t , is specified. We denote this q.θ jθ t /. The Metropolis–
Hastings algorithm is as follows.

Metropolis–Hastings algorithm

ž Sample a point θ from the proposal distribution q.θ jθ t /.

ž Sample y from the uniform distribution on [0; 1].

ž If

y 
 min

�
1;

g.θ/q.θ t jθ/
g.θ t /q.θ jθ t /

�

then accept θ and set θ tC1 D θ , else reject θ and set θ tC1 D θ t .

It produces a different Markov chain than Gibbs sampling, but with the same limiting
distribution, g.θ/=

R
g.θ/ dθ .
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The proposal distribution can take any sensible form and the stationary distribution
will still be g.θ/=

R
g.θ/ dθ . For example, q.XjY / may be a multivariate normal distri-

bution with mean Y and fixed covariance matrix, �. However, the scale of � will need
to be chosen carefully. If it is too small, then there will be a high acceptance rate, but
poor mixing; that is, the chain may not move rapidly throughout the support of the target
distribution and will have to be run for longer than necessary to obtain good estimates
from equation (2.36). If the scale of � is too large, then there will be a poor acceptance
rate, and so the chain may stay at the same value for some time, again leading to poor
mixing.

For symmetric proposal distributions, q.XjY / D q.Y jX/, the acceptance probability
reduces to

min

�
1;

g.θ/

g.θ t /

�

and, in particular, for q.XjY / D q.jX � Y j/, so that q is a function of the difference
between X and Y only, the algorithm is the random-walk Metropolis algorithm.

Single-component Metropolis–Hastings
The Metropolis–Hastings algorithm given above updates all components of the parameter
vector, θ , in one step. An alternative approach is to update a single component at a time.

Single-component Metropolis–Hastings algorithm
At stage t of the iteration, do the following.

ž Draw a sample, Y from the proposal distribution q.� j� t
1; : : : ; �

t
p/.

– Accept the sample with probability

Þ D min

 
1;

g.Y j� t
2; : : : ; �

t
p/q.�

t
1jY; � t

2; : : : ; �
t
p/

g.� t
1j� t

2; : : : ; �
t
p/q.Y j� t

1; �
t
2; : : : ; �

t
p/

!

– If Y is accepted, then � tC1
1 D Y , else � tC1

1 D � t
1.

ž Continue through the variables as in the Gibbs sampler, finally drawing a sample, Y ,
from the proposal distribution q.� j� tC1

1 ; : : : ; � tC1
p�1; �

t
p/.

– Accept the sample with probability

Þ D min

 
1;

g.Y j� tC1
1 ; : : : ; � tC1

p�1/q.�
t
pj� tC1

1 ; : : : ; � tC1
p�1; Y /

g.� t
pj� tC1

1 ; : : : ; � tC1
p�1/q.Y j� tC1

1 ; : : : ; � tC1
p�1; �

t
p/

!

– If Y is accepted, then � tC1
p D Y , else � tC1

p D � t
p.

In this single-component update case, for proposal distributions that are the condi-
tionals of the multivariate distribution that we wish to sample,

q.�i jθ .i// D f .�i jθ .i//
then the sample is always accepted and the algorithm is identical to Gibbs sampling.
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Choice of proposal distribution in Metropolis–Hastings
If the distribution that we wish to approximate, f , is unimodal, and is not heavy-tailed
(loosely, heavy-tailed means that it tends to zero more slowly than the exponential, but
also the term is used to describe distributions with infinite variance), then an appropriate
choice for the proposal distribution might be normal, with parameters chosen to be a
best fit of log.q/ to log.g/ ( f D g=

R
g). For more complex distributions, the proposal

could be a multivariate normal, or mixtures of multivariate normal, but for distributions
with heavy tails, Student t distributions (see Appendix E) might be used. For compu-
tational efficiency, q should be chosen so that it can be easily sampled and evaluated.
Often a random-walk algorithm is used (symmetric proposal distribution), and can give
good results.

Data augmentation
Introducing auxiliary variables can often lead to more simple and efficient MCMC sam-
pling methods, with improved mixing. If we require samples from a posterior p.θ jD/,
then the basic idea is to notice that it may be easier to sample from p.θ ;φjD/, where
φ is a set of auxiliary variables. In some applications, the choice of φ may be obvious,
in others some experience is necessary to recognise suitable choices. The distribution
p.θ jD/ is then simply a marginal of the augmented distribution, p.θ;φjD/, and the
method of sampling is termed the data augmentation method. Statistics concerning the
distribution of p.θ jD/ can be obtained by using the θ components of the samples of the
augmented parameter vector .θ ;φ/ and ignoring the φ components.

One type of problem where data augmentation is used is that involving missing data.
Suppose that we have a data set D and some ‘missing values’, φ. In a classification
problem, where there are some unlabelled data available for training the classifier, φ
represents the class labels of these data. Alternatively, there may be incomplete pattern
vectors; that is, for some patterns, measurements on some of the variables may be absent.

The posterior distribution of parameters θ is given by

p.θ jD/ /
Z

p.D;φjθ/ dφ p.θ/

However, it may be difficult to marginalise the joint density p.D;φjθ/ and it is simpler
to obtain samples of the augmented vector .θ ;φ/. In this case,

p.θ jD;φ/ is the posterior based on the complete data, which is easy to sample,
either directly or by use of MCMC methods (for example, Metropolis–
Hastings);

p.φjθ ;D/ is the sampling distribution for the missing data; again, typically easy
to sample.

Examples of missing data problems are given in Section 2.4.3.

Example
In this example, we seek to model a time series as a sum of k sinusoids of unknown
amplitude, frequency and phase . ; !; �/. The approach and example are based on work
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by Andrieu and Doucet (1999). We assume a model of the form

y D h.x ; ξ/C ž D
kX

jD1

 j cos.! j x C � j /C ž; (2.40)

where ž ¾ N .0; ¦ 2/ and ξ D f. j ; ! j ; � j /; j D 1; : : : ; kg; thus

p.yjx ; θ/ D 1p
2³¦ 2

expf�.y � h.x ; ξ//2=.2¦ 2/g

where the parameters of the density are θ D .ξ ; ¦ 2/. The training data, D D fyi ; i D
1; : : : ; ng, comprise n measurements of y at regular intervals, xi D i , for i D 0; 1; : : : ,
n � 1. Assuming independent noise samples, we have

p.Djθ/ /
nY

iD1

1

¦
expf�.yi � h.xi ; ξ//

2=.2¦ 2/g

What we would like now is information about the parameters given the data set and
the model for predicting y given a new sample xn . Information about the parameters θ
requires specification of a prior distribution, p.θ/. Then using Bayes’ theorem, we have

p.θ jD/ / p.Djθ/P.θ/

For predicting a new sample, we take

p.yjxn/ ³
NX

tDMC1

p.yjxn ; θ t /

where M is the burn-in period; N is the length of the sequence; θ t are the parameters at
stage t .

It is convenient to reparametrise the model as

yi D
kX

jD1

fg j cos.! j xi /C h j sin.! j xi /g C ži ;

where g j D  j cos.� j / and h j D � j sin.� j / represent the new amplitudes of the
problem, which lie in the range .�1;1/. This may be written as

y D Da C ε;

where yT D .y1; : : : ; yn/; aT D .g1; h1; : : : ; gk; hk/ is the 2k-dimensional vector of
amplitudes, and D is an n ð 2k matrix, defined by:

Di; j D
²

cos.! j xi / j odd
sin.! j xi / j even

Data Data are generated according to the model (2.40), with k D 3, n D 64, f! j g D
2³.0:2; 0:2 C 1=n; 0:2 C 2=n/, f j g D .

p
20;
p

2³;
p

20/, ¦ D 2:239 and f� j g D
.0; ³=4; ³=3/; the time series is shown in Figure 2.7.
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Figure 2.7 Data for sinusoids estimation problem (left); underlying model (solid line) with re-
construction, based on the 200th set of MCMC samples (dashed line, right)

Prior The prior distribution for the random variables, .!; ¦ 2; a/, is written as

p.!; ¦ 2; a/ D p.!/p.¦ 2/p.aj!; ¦ 2/;

where ! D f! j g. Specifically,

p.!/ D 1

³ k
I[! 2 [0; ³ ]k]

aj!; ¦ 2 ¾ N2k.0; .¦
2�/�1/; where ��1 D Ž�2DTD

¦ 2 ¾ Ig.¹0=2; 0=2/

for parameters, Ž2; ¹0 and 0. Values of Ž2 D 50, ¹0 D 0:01 and 0 D 0:01 have been
used in the illustrated example.

Posterior The posterior distribution can be rearranged to:

p.a; !; ¦ 2jD/ / 1

¦
2
�

nC¹0
2 CkC1

Ð exp

��.0 C yTPy/

2¦ 2

½
I[! 2 [0; ³ ]k]

ð j�j�1=2 exp

"
�.a �m/TM�1.a �m/

2¦ 2

# (2.41)

where
M�1 D DTD C��1; m DMDT y; and P D I n �DMDT

The amplitude, a, and variance, ¦ 2, can be integrated out analytically, giving:

p.!jD/ / .0 C yTPy/�
nC¹0

2

This cannot be dealt with analytically so samples are drawn, by sampling from the
conditional distributions of the individual components, ! j , using Metropolis–Hastings
sampling, which uses

p.! j j!. j/;D/ / p.!jD/
where !. j/ is the set of variables with the j th one omitted.
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Figure 2.8 Proposal distribution

Proposal At each update choose randomly between two possible proposal distributions.
The first, chosen with probability 0.2, is given by:

q j .!
0
j j!/ /

n�1X
lD0

pl I

�
l³

n
< !0j <

.l C 1/³

n

½
;

where pl is the squared modulus of the Fourier transform of the data (see Figure 2.8)
at frequency l³=n (this proposal aims to prevent the Markov chain getting stuck with
one solution for ! j ). The second is the normally distributed random walk, N .0; ³=.2n//
(ensuring irreducibility of the Markov chain).

Results Having drawn samples for !, the amplitudes can be sampled using

aj!; ¦ 2;D ¾ N .m; ¦ 2M/

which comes directly from (2.41). The noise variance can also be sampled using

¦ 2j!;D ¾ Ig

�
n C ¹0

2
;
0 C yTPy

2

�

which comes from (2.41) after analytical integration of a.
The algorithm is initialised with a sample from the prior for !. Convergence for the

illustrated example was very quick, with a burn-in of less than 100 iterations required.
Figure 2.9 gives plots of samples of the noise, ¦ (true value, 2.239), and frequencies,
! j . Figure 2.7 shows the reconstruction of the data using 200th set of MCMC samples.

Summary
MCMC methods can provide effective approaches to inference problems in situations
where analytic evaluation of posterior probabilities is not feasible. Their main strength
is in their flexibility. They enable Bayesian approaches to be adapted to real-world
problems without having to make unnecessarily restrictive assumptions regarding prior
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Figure 2.9 Ten thousand iterations from MCMC sampler; left: samples of the noise; right: samples
of the frequencies

distributions which may make the mathematics tractable. Originating in the statisti-
cal physics literature, the development in Bayesian statistics has been driven by the
difficulty in performing numerical integration. The main disadvantage concerns uncer-
tainty over convergence, and hence over the accuracy of estimates computed from the
samples.

In many respects, the implementation of these methods is still something of an art,
with several trial runs being performed in order to explore models and parameter values.
Techniques are required for reducing the amount of computation per iteration. Run times
can be long, caused by poor mixing.

The main features of the MCMC method are as follows.

1. It performs iterative sampling from a proposal distribution. The samples may be uni-
variate, multivariate or a subvector of the parameter vector. A special case is Gibbs
sampling when samples from conditional probability density functions are made.

2. The samples provide a summary of the posterior probability distribution. They may
be used to calculate summary statistics either by averaging functions of the sam-
ples (equation (2.36)) or by averaging conditional expectations (Rao-Blackwellisation,
equation (2.39)).

3. Correlated variables lead to longer convergence.

4. The parameters of the method are N , the sequence length; M , the burn-in period;
q.:j:/, the proposal distribution; and s, the subsampling factor.

5. In practice, you would run several chains to estimate parameter values and then one
long chain to calculate statistics.

6. Subsampling of the final chain may be performed to reduce the amount of storage
required to represent the distribution.

7. Sampling from standard distributions is readily performed using algorithms in
the books by Devroye (1986) and Ripley (1987), for example. For non-standard
distributions, the rejection methods and ratio-of-uniforms methods may be used as
well as Metropolis–Hastings, but there are other possibilities (Gilks et al., 1996).
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2.4.3 Bayesian approaches to discrimination

In this section we apply the Bayesian learning methods of Section 2.4.1 to the discrimi-
nation problem, making use of analytic solutions where we can, but using the numerical
techniques of the previous section where that is not possible.

Let D denote the data set used to train the classifier. In the first instance, let it comprise
a set of labelled patterns f.xi ; zi /; i D 1; : : : ; ng, where zi D j implies that the pattern
xi is in class ! j . Given pattern x from an unknown class, we would like to predict its
class membership; that is, we require

p.z D j jD; x/ j D 1; : : : ;C

where z is the class indicator variable corresponding to x. The Bayes decision rule for
minimum error is to assign x to the class for which p.z D j jD; x/ is the greatest. The
above may be written (compare with equation (2.32))

p.z D j jD; x/ / p.xjD; z D j/p.z D j jD/ (2.42)

where the constant of proportionality does not depend on class. The first term, p.xjD; z D
j/, is the probability density of class ! j evaluated at x. If we assume a model for the
density, with parameters � j , then by (2.20) this may be written

p.xjD; z D j/ D
Z

p.xj� j /p.� j jD; z D j/ d� j

For certain special cases of the density model, p.xj� j /, we may evaluate this analyti-
cally. For example, as we have seen in Section 2.4.1, a normal model with parameters
µ and � with Gauss–Wishart priors leads to a posterior distribution of the parame-
ters that is also Gauss–Wishart and a multivariate Student t distribution for the density
p.xjD; z D j/.

If we are unable to obtain an analytic solution, then a numerical approach will be
required. For example, if we use one of the MCMC methods of the previous section to
draw samples from the posterior density of the parameters, p.� j jD; z D j/, we may
approximate p.xjD; z D j/ by

p.xjD; z D j/ ³ 1

N � M

NX
tDMC1

p.xj�t
j / (2.43)

where �t
j are samples generated from the MCMC process and M and N are the burn-in

period and run length, respectively.
The second term in (2.42) is the probability of class ! j given the data set, D. Thus,

it is the prior probability updated by the data. We saw in Section 2.4.1 that if we assume
Dirichlet priors for ³i , the prior probability of class !i , that is,

p.π/ D DiC .π ja0/
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then

p.z D j jD/ D E[³ j jD] D a0 j C n jPC
jD1.a0 j C n j /

(2.44)

Unlabelled training data
The case of classifier design using a normal model when the training data comprise both
labelled and unlabelled patterns is considered by Lavine and West (1992). It provides
an example of the Gibbs sampling methods that uses some of the analytic results of
Section 2.4.1. We summarise the approach here.

Let the data set D D f.xi ; zi /; i D 1; : : : ; n; xu
i ; i D 1; : : : ; nug, where xu

i are
the unlabelled patterns. Let µ D fµi ; i D 1; : : : ;Cg and � D f�i ; i D 1; : : : ;Cg
be the set of class means and covariance matrices and π the class priors. Denote by
zu D fzu

i ; i D 1; : : : ; nug, the set of unknown class labels.
The parameters of the model are � D fµ;�;π; zug. Taking a Gibbs sampling ap-

proach, we successively draw samples from three conditional distributions.

1. Sample from p.µ;�jπ ; zu;D/. This density may be written

p.µ;�jπ ; zu;D/ D
CY

iD1

p.µi ;�i jzu;D/;

the product of C independent Gauss–Wishart distributions given by (2.26).

2. Sample from p.π jµ;�; zu;D/. This is Dirichlet DiC .π ja/, a D a0 C n, independent
of µ and �, with n D .n1; : : : ; nC /, where n j is the number of patterns in class ! j

as determined by D and zu .

3. Sample from p.zu jµ;�;π;D/. Since the samples zu
i are conditionally independent,

we require samples from

p.zu
i D j jµ;�;π;D/ / ³ j p.xi jµ j ;� j ; zu

i D j/ (2.45)

the product of the prior and the normal density of class ! j at xi . The constant of
proportionality is chosen so that the sum over classes is unity. Sampling a value for
zu

i is then trivial.

The Gibbs sampling procedure produces a set of samples fµt ;�t ;π t ; .zu/t ; t D
1; : : : ; N g, which may be used to classify the unlabelled patterns and future observa-
tions. To classify the unlabelled patterns in the training set, we use

p.zu
i D j jD/ D 1

N � M

NX
tDMC1

p.zu
i D j jµt

j ;�
t
j ; ³

t
j ;D/

where the terms in the summation are, by (2.45), products of the prior and class-
conditional density (normalised), evaluated for each set of parameters in the Markov
chain. To classify a new pattern x, we require p.z D j jx;D/, given by

p.z D j jx;D/ / p.z D j jD/p.xjD; z D j/ (2.46)
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where the first term in the product, p.z D j jD/, is

p.z D j jD/ D E[³ j jD] D 1

N � M

NX
tDMC1

E[³ j jD; .zu/t ] (2.47)

The expectation in the summation can be evaluated using (2.44). The second term can
be written, by (2.43), as

p.xjD; z D j/ ³ 1

N � M

NX
tDMC1

p.xjD; .zu/t ; z D j/

the sum of Student t distributions.

Illustration

The illustration given here is based on that of Lavine and West (1992). Two-dimensional
data from three classes are generated from equally weighted non-normal distributions.
Defining matrices

C1 D
�

5 1
3 5

�
C2 D

�
0 1
1 5

�
C3 D

�
5 0
3 1

�

then an observation from class !i is generated according to

x j D Ci

�
w j

1�w j

�
C ε j

where w j is uniform over [0; 1] and ε j is normally distributed with zero mean and
diagonal covariance matrix, I=2.

The labelled training data are shown in Figure 2.10.
Using a normal model, with diagonal covariance matrix, for the density of each class,

an MCMC approach using Gibbs sampling is taken. The training set consists of 1200
labelled and 300 unlabelled patterns. The priors for the mean and variances are normal
and inverse gamma, respectively. The parameter values are initialised as samples from
the prior. Figure 2.11 shows components of the mean and covariance matrix that are
produced from the chain. The package WinBugs (Lunn et al., 2000) has been used to
complete the MCMC sampling.

2.4.4 Example application study

The problem This application concerns the classification of mobile ground targets
from inverse synthetic aperture radar (ISAR) images (Copsey and Webb, 2001).

Summary This study follows the approach above, with the addition that the class-
conditional densities are themselves mixtures.
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Figure 2.10 Three-class, two-dimensional training data
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Figure 2.11 MCMC samples of µ and �. Top left: ¼1 component of class 1; top right: ¼2
component of class 2; bottom left: 61,1 component of class 1; bottom right: 62,2 component of
class 2

The data The data comprise ISAR images of three types of vehicle, gathered over a
complete rotation of the vehicle on a turntable. An ISAR image is an image generated
by processing the signals received by the radar. One axis corresponds to range (distance
from the radar); the second axis corresponds to cross-range. The training data consist
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of approximately equal numbers of images (about 2000) per class, collected over single
complete rotations at a constant depression angle. The test data comprise six sets of
approximately 400 ISAR images collected from single rotations of six vehicles. The
images are 38 pixels in range by 26 pixels in cross-range.

The model The probability density function of the data is written as

p.x/ D
CX

jD1

³ j p.x j j/

where ³ D .³1; : : : ; ³C/ is the set of prior class probabilities and p.x j j/ is the class-
conditional probability density of class j , which is also modelled as a mixture, with the
j th class having R j mixture components (termed subclasses)

p.x j j/ D
R jX

rD1

½ j;r p.x j j; r/

where ½ j D .½ j;1; : : : ; ½ j;R j / represents the prior subclass probabilities within class
j ; that is, ½ j;r is the mixing probability for the r th subclass of the j th class, satisfyingPR j

rD1 ½ j;r D 1. The probability density of the data for the subclass r of class j , p.x j j; r/,
is taken to be normal with mean ¼ j;r and covariance matrix 6 j;r . Let ¼ D f¼ j;r g; 6 D
f6 j;r g.

Training procedure A Gibbs sampling approach is taken. The random variable set,
f³; ½; ¼;6g is augmented by allocation variables fz; Zg such that .zi D j; Zi D r/
implies that observation xi is modelled as being drawn from subclass r of class j ; zi is
known for labelled training data; Zi is always unknown.

Let D denote the measurements and known allocations; zu , the set of unknown class
labels; Z D .Z1; : : : ; Zn/ the subclass allocation labels. The stages in the Gibbs sampling
iterations are as follows.

1. Sample from p.¼;6j³; ½; zu; Z ;D/.

2. Sample from p.³; ½j¼;6; zu; Z ;D/.

3. Sample from p.zu; Z j¼;6; ³; ½;D/.
Future observations, x are classified by evaluating p.z D j jxD/,

p.z D j jx;D/ D p.z D j jD/p.xjD; z D j/

where the first term in the product, p.z D j jD/, is evaluated using equation (2.47) and
the second term is approximated as

p.xjD; z D j/ ³ 1

N � M

NX
tDMC1

p.xjD; Zt ; .zu/t ; z D j/
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where p.xjD; Zt ; .zu/t ; z D j/ is written as a mixture

p.xjD; Zt ; .zu/t ; z D j/ D
R jX

rD1

p.xjD; Zt ; .zu/t ; z D j; Z D r/

ð p.Z D r jD; Zt ; .zu/t ; z D j/

in which p.Z D r jD; Zt ; .zu/t ; z D j/ D E[½ j;r jD; .zu/t ; Zt ] and p.xjD; Zt ; .zu/t ; z D
j; Z D r/ is the predictive density for a data point drawn from subclass r of class j ,
the parameters being determined using the MCMC algorithm outputs. This predictive
distribution is also shown to be a product of Student t distributions.

A fixed model order is adopted (R j D 12 for all classes); the data are preprocessed to
produce 35 values (on the principal components); the burn-in period is 10 000 iterations;
1000 samples are drawn to calculate statistics; the decorrelation gap is 10 iterations.

2.4.5 Further developments

There are many developments of the basic methodology presented in this section, par-
ticularly with respect to computational implementation of the Bayesian approach. These
include strategies for improving MCMC; monitoring convergence; and adaptive MCMC
methods. A good starting point is the book by Gilks et al (1996).

Developments of the MCMC methodology to problems when observations arrive
sequentially and one is interested in performing inference on-line are described by Doucet
et al. (2001).

A Bayesian methodology for univariate normal mixtures that jointly models the num-
ber of components and the mixture component parameters is presented by Richardson
and Green (1997).

2.4.6 Summary

A Bayesian approach to density estimation can only be treated analytically for simple
distributions. For problems in which the normalising integral in the denominator of the
expression for a posterior density cannot be evaluated analytically, Bayesian computa-
tional methods must be employed.

Monte Carlo methods, including the Gibbs sampler, can be applied routinely, al-
lowing efficient practical application of Bayesian methods, at least for some problems.
Approaches to discrimination can make use of unlabelled test samples to refine models.
The procedure described in Section 2.4.3 implements an iterative procedure to classify
test data. Although the procedure is attractive in that it uses the test data to refine knowl-
edge about the parameters, its iterative nature may prevent its application in problems
with real-time requirements.

2.5 Application studies

The application of the normal-based linear and quadratic discriminant rules covers a wide
range of problems. These include the areas of:
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ž Medical research. Aitchison et al. (1977) compare predictive and estimative approaches
to discrimination. Harkins et al. (1994) use a quadratic rule for the classification of
red cell disorders. Hand (1992) reviews statistical methodology in medical research,
including discriminant analysis (see also Jain and Jain, 1994). Stevenson (1993) dis-
cusses the role of discriminant analysis in psychiatric research.

ž Machine vision. Magee et al. (1993) use a Gaussian classifier to discriminate bottles
based on five features derived from images of the bottle tops.

ž Target recognition. Kreithen et al. (1993) develop a target and clutter discrimination
algorithm based on multivariate normal assumptions for the class distributions.

ž Spectroscopic data. Krzanowski et al. (1995) consider ways of estimating linear dis-
criminant functions when covariance matrices are singular and analyse data consisting
of infrared reflectance measurements.

ž Radar. Haykin et al. (1991) evaluate a Gaussian classifier on a clutter classification
problem. Lee et al. (1994) develop a classifier for polarimetric synthetic aperture radar
imagery based on the Wishart distribution.

ž As part of a study by Aeberhard et al. (1994), regularised discriminant analysis was
one of eight discrimination techniques (including linear and quadratic discriminant
analysis) applied to nine real data sets. An example is the wine data set – the results
of a chemical analysis of wines from the same region of Italy, but derived from
different varieties of grape. The feature vectors were 13-dimensional, and the training
set was small, comprising only 59, 71 and 48 samples in each of three classes. Since
there is no separate test set, a leave-one-out procedure (see Chapter 8) was used to
estimate error rate. On all the real data sets, RDA performed best overall.

Comparative studies of normal-based models with other discriminant methods can be
found in the papers by Curram and Mingers (1994); Bedworth et al. (1989) on a speech
recognition problem; and Aeberhard et al. (1994).

Applications of mixture models include:

ž Plant breeding. Jansen and Den Nijs (1993) use a mixture of normals to model the
distribution of pollen grain size.

ž Image processing. Luttrell (1994) uses a partitioned mixture distribution for low-level
image processing operations.

ž Speech recognition. Rabiner et al. (1985), and Juang and Rabiner (1985) describe a
hidden Markov model approach to isolated digit recognition in which the probability
density function associated with each state of the Markov process is a normal mixture
model.

ž Handwritten character recognition. Revow et al. (1996) use a development of con-
ventional mixture models (in which the means are constrained to lie on a spline)
for handwritten digit recognition. Hastie and Tibshirani (1996) apply their mixture
discriminant analysis approach to the classification of handwritten 3s, 5s and 8s.

ž Motif discovery in biopolymers. Bailey and Elkan (1995) use a two-component mix-
ture model to identify motifs (a pattern common to a set of nucleic or amino acid
subsequences which share some biological property of interest) in a set of unaligned
genetic or protein sequences.
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ž Face detection and tracking. In a study of face recognition (McKenna et al., 1998),
data characterising each subject’s face (20- and 40-dimensional feature vectors) are
modelled as a Gaussian mixture, with component parameters estimated using the EM
procedure. Classification is performed by using these density estimates in Bayes’ rule.

A compilation of examples of applications of Bayesian methodology is given in the
book by French and Smith (1997). This includes applications in clinical medicine, flood
damage analysis, nuclear plant reliability and asset management.

2.6 Summary and discussion

The approaches developed in this chapter towards discrimination have been based on
estimation of the class-conditional density functions using parametric and semiparametric
techniques. It is certainly true that we cannot design a classifier that performs better than
the Bayes discriminant rule. No matter how sophisticated a classifier is, or how appealing
it may be in terms of reflecting a model of human decision processes, it cannot achieve
a lower error rate than the Bayes classifier. Therefore a natural step is to estimate the
components of the Bayes rule from the data, namely the class-conditional probability
density functions and the class priors.

In Section 2.2, we gave a short introduction to discrimination based on normal models.
The models are easy to use and have been widely applied in discrimination problems.
In Section 2.3 we introduced the normal mixture model and the EM algorithm. We will
return to this in Chapter 10 when we shall consider such models for clustering. Section 2.4
considered Bayesian approaches to discrimination (which take into account parameter
variability due to sampling), and Bayesian computational procedures that produce samples
from the posterior distributions of interest were described. Such techniques remove the
mathematical nicety of conjugate prior distributions in a Bayesian analysis, allowing
models to be tailored to the beliefs and needs of the user.

2.7 Recommendations

An approach based on density estimation is not without its dangers of course. If incorrect
assumptions are made about the form of the distribution in the parametric approach (and
in many cases we will not have a physical model of the data generation process to use)
or data points are sparse leading to poor estimates, then we cannot hope to achieve
optimal performance. However, the linear and quadratic rules are widely used, simple to
implement and have been used with success in many applications. Therefore, it is worth
applying such techniques to provide at least a baseline performance on which to build.
It may prove to be sufficient.

2.8 Notes and references

A comparison of the predictive and estimative approaches is found in the articles by
Aitchison et al. (1977) and Moran and Murphy (1979). McLachlan (1992a) gives a
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very thorough account of normal-based discriminant rules and is an excellent source of
reference material. Simple procedures for correcting the bias of the discriminant rule
are also given. Mkhadri et al. (1997) provide a review of regularisation in discriminant
analysis.

Mixture distributions, and in particular the normal mixture model, are discussed in
a number of texts. The book by Everitt and Hand (1981) provides a good introduction,
and a more detailed treatment is given by Titterington et al. (1985) (see also McLachlan
and Basford, 1988). A thorough treatment, with recent methodological and computational
developments, applications and software description is presented by McLachlan and Peel
(2000). Lavine and West (1992) discuss Bayesian approaches to normal mixture models
for discrimination and classification, with posterior probabilities obtained using an iter-
ative resampling technique (see also West, 1992). Several approaches for determining
the number of components of a normal mixture have been proposed and are discussed
further in the context of clustering in Chapter 10. A review of mixture densities and the
EM algorithm is given by Redner and Walker (1984). A thorough description of the EM
algorithm and its extensions is provided in the book by McLachlan and Krishnan (1996).
See also the review by Meng and van Dyk (1997), where the emphasis is on strategies
for faster convergence. Software for the fitting of mixture models is publicly available.

Bayesian learning is discussed in many of the standard pattern recognition texts includ-
ing Fu (1968), Fukunaga (1990), Young and Calvert (1974) and Hand (1981a). Geisser
(1964) presents methods for Bayesian learning of means and covariance matrices un-
der various assumptions on the parameters. Bayesian methods for discrimination are
described by Lavine and West (1992) and West (1992).

A more detailed treatment of Bayesian inference, with descriptions of computational
procedures, is given by O’Hagan (1994) and Bernardo and Smith (1994).

Gelfand (2000) gives a review of the Gibbs sampler and its origins (see also Casella
and George, 1992). Monte Carlo techniques for obtaining characteristics of posterior
distributions are also reviewed by Tierney (1994).

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

1. In the example application study of Section 2.2.3, is it appropriate to use a Gaussian
classifier for the head injury data? Justify your answer.

2. Suppose that B D A C uuT , where A is a nonsingular (p ð p) matrix and u is
a vector. Show that B�1 D A�1 � kA�1uuTA�1, where k D 1=.1 C uTA�1u/.
(Krzanowski and Marriott, 1996)

3. Show that the estimate of the covariance matrix given by

O� D 1

n � 1

nX
iD1

.xi �m/.xi �m/T

where m is the sample mean, is unbiased.
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4. Suppose that the p-element x is normally distributed N .µ;�i / in population i (i D
1; 2), where �i D ¦ 2

i [.1 � ²i /I C ²i 11T ] and 1 denotes the p-vector all of whose
elements are 1. Show that the optimal (i.e. Bayes) discriminant function is given,
apart from an additive constant, by

� 1
2 .c11 � c12/Q1 C 1

2 .c21 � c22/Q2

where Q1 D xxT , Q2 D .1Tx/2, c1i D [¦ 2
i C .1 � ²i /]�1 and c2i D ²i [¦ 2

i .1 �
²i /f1C .p � 1/²i g]�1. (Krzanowski and Marriott, 1996)

5. Verify that the simple one-pass algorithm

(a) Initialise S D 0, m D 0.

(b) For r D 1 to n do

i. dr D xr �m
ii. S D S C

�
1� 1

r

�
drd

T
r

iii. m D mC dr

r

results in m as the sample mean and S as n times the sample covariance matrix.

6. Derive the EM update equations (2.14) and (2.15).

7. Consider a gamma distribution of the form

p.x j¼;m/ D m

0.m/¼

�
mx

¼

�m�1

exp

�
�mx

¼

�

for mean ¼ and order parameter m. Derive the EM update equations for the ³i , ¼i

and mi for the gamma mixture

p.x/ D
gX

iD1

³i p.x j¼i ;mi /

8. Given that the log-likelihood in the EM procedure is given by

log.L.
// D Q.
;
.m//� H.
;
.m//

where H is given by (2.9), and using the result that log.x/ 
 x � 1, show that

H.
.mC1/;
.m//� H.
.m/;
.m// 
 0

where 
.mC1/ is chosen to maximise Q.
;
.m//. Hence, show that the log-
likelihood is increased: log.L.
.mC1/// ½ log.L.
.m///.
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9. Generate three data sets (train, validation and test sets) for the three-class, 21-variable,
waveform data (Breiman et al., 1984):

xi D uh1.i/C .1� u/h2.i/C ži (class 1)
xi D uh1.i/C .1� u/h3.i/C ži (class 2)
xi D uh2.i/C .1� u/h3.i/C ži (class 3)

where i D 1; : : : ; 21; u is uniformly distributed on [0; 1]; ži are normally distributed
with zero mean and unit variance; and the hi are shifted triangular waveforms:
h1.i/ D max.6 � ji � 11j; 0/, h2.i/ D h1.i � 4/, h3.i/ D h1.i C 4/. Assume equal
class priors. Construct a three-component mixture model for each class using a com-
mon covariance matrix across components and classes (Section 2.3.2). Investigate
starting values for the means and covariance matrix and choose a model based on
the validation set error rate. For this model, evaluate the classification error on the
test set.

Compare the results with a linear discriminant classifier and a quadratic discriminant
classifier constructed using the training set and evaluated on the test set.

10. For the distribution illustrated by Figure 2.4, show that a suitable linear transforma-
tion of the coordinate system, to new variables �1 and �2, will lead to an irreducible
chain.

11. For a transformation of variables from .X1; : : : ; X p/ to .Y1; : : : ; Yp/, given by

Y D g.X/

where g D .g1; g2; : : : ; gp/
T , the density functions of X and Y are related by

pY .y/ D pX .x/

jJ j
where jJ j is the absolute value of the Jacobian determinant

J .x1; : : : ; x p/ D

þþþþþþþþþþþ

@g1

@x1
: : :

@g1

@x p
:::

: : :
:::

@gp

@x1
: : :

@gp

@x p

þþþþþþþþþþþ

Let D denote the region in R
2

D D f.u; v/; 0 
 u 

p

g.v=u/g

Show that if .u; v/ is uniformly distributed over the region D, then the change of
variables .U; V /! .U; X D V=U / gives

p.u; x/ D ku 0 < u <
p

g.x/

where k is a constant. Determine the value of k, and then by marginalising with
respect to u show that

p.x/ D g.x/R
g.x/ dx
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Density estimation – nonparametric

Overview

Nonparametric methods of density estimation can provide class-conditional density
estimates for use in Bayes’ rule. Three main methods are introduced: a histogram
approach with generalisation to include Bayesian networks; k-nearest-neighbour
methods and variants; and kernel methods of density estimation.

3.1 Introduction

Many of the classification methods discussed in this book require knowledge of the
class-conditional probability density functions. Given these functions, we can apply the
likelihood ratio test (see Chapter 1) and decide the class to which a pattern x can be
assigned. In some cases we may be able to make simplifying assumptions regarding the
form of the density function; for example, that it is normal or a normal mixture (see
Chapter 2). In these cases we are left with the problem of estimating the parameters that
describe the densities from available data samples.

In many cases, however, we cannot assume that the density is characterised by a
set of parameters and we must resort to nonparametric methods of density estimation;
that is, there is no formal structure for the density prescribed. There are many methods
that have been used for statistical density estimation and in the following paragraphs
we shall consider four of them, namely the histogram approach, k-nearest-neighbour,
expansion by basis functions and kernel-based methods. First, we shall consider some
basic properties of density estimators.

Unbiasedness

If X1; : : : ;Xn are independent and identically distributed p-dimensional random vari-
ables with continuous density p.x/,

p.x/ ½ 0
Z

R p
p.x/ dx D 1 (3.1)
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the problem is to estimate p.x/ given measurements on these variables. If the estimator
Op.x/ also satisfies (3.1), then it is not unbiased (Rosenblatt, 1956). That is, if we impose
the condition that our estimator is itself a density (in that it satisfies (3.1)), it is biased:

E[ Op.x/] 6D p.x/

where E[ Op.x/] D R Op.xjx1 : : :xn/p.x1/ : : : p.xn/ dx1 : : : dxn , the expectation over the
random variables X1; : : : ;Xn . Although estimators can be derived that are asymptotically
unbiased, E[ Op.x/] ! p.x/ as n ! 1, in practice we are limited by the number of
samples that we have.

Consistency
There are other measures of discrepancy between the density and its estimate. The mean
squared error (MSE) is defined by

MSEx . Op/ D E[. Op.x/� p.x//2]

where the subscript x is used to denote that MSE is a function of x. The above equation
may be written

MSEx . Op/ D var. Op.x//C fbias. Op.x//g2

If MSEx ! 0 for all x 2 R
p, then Op is a pointwise consistent estimator of p in

the quadratic mean. A global measure of accuracy is given by the integrated squared
error (ISE)

ISE D
Z

[ Op.x/� p.x/]2 dx

and by the mean integrated squared error (MISE)

MISE D E

�Z
[ Op.x/� p.x/]2 dx

½

which represents an average over all possible data sets. Since the order of the expectation
and the integral may be reversed, the MISE is equivalent to the integral of the MSE, that
is the sum of the integrated squared bias and the integrated variance.

Density estimates
Although one might naı̈vely expect that density estimates have to satisfy the property
(3.1), this need not be the case. We shall want them to be pointwise consistent, so that
we can get arbitrarily close to the true density given enough samples. Consideration has
been given to density estimates that may be negative in parts in order to improve the
convergence properties. Also, as we shall see in a later section, the integral constraint
may be relaxed. The k-nearest-neighbour density estimate has an infinite integral.

3.2 Histogram method

The histogram method is perhaps the oldest method of density estimation. It is the
classical method by which a probability density is constructed from a set of samples.
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Figure 3.1 Histogram

In one dimension, the real line is partitioned into a number of equal-sized cells (see
Figure 3.1) and the estimate of the density at a point x is taken to be

Op.x/ D n jPN
j n j dx

where n j is the number of samples in the cell of width dx that straddles the point x , N
is the number of cells and dx is the size of the cell. This generalises to

Op.x/ D n jP
j n j dV

for a multidimensional observation space, where dV is the volume of bin j .
Although this is a very simple concept and easy to implement, and it has the advant-

age of not needing to retain the sample points, there are several problems with the basic
histogram approach. First of all, it is seldom practical in high-dimensional spaces. In one
dimension, there are N cells; in two dimensions, there are N 2 cells (assuming that each
variable is partitioned into N cells). For data samples x 2 R

p (p-dimensional vector
x) there are N p cells. This exponential growth in the number of cells means that in
high dimensions a very large amount of data is required to estimate the density. For
example, where the data samples are six-dimensional, then dividing each variable range
into 10 cells (a not unreasonable figure) gives a million cells. In order to prevent the
estimate being zero over a large region, many observations will be required. A second
problem with the histogram approach is that the density estimate is discontinuous and
falls abruptly to zero at the boundaries of the region. We shall now consider some of the
proposed approaches for overcoming these difficulties.

3.2.1 Data-adaptive histograms

One approach to the problem of constructing approximations to probability density func-
tions from a limited number of samples using p-dimensional histograms is to allow the
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�

x

Figure 3.2 Variable cell size histogram

histogram descriptors – location, shape and size – to adapt to the data. This is illustrated
in Figure 3.2.

An early approach was by Sebestyen and Edie (1966) who described a sequential
method to multivariate density estimation using cells that are hyperellipsoidal in shape.

3.2.2 Independence assumption

Another approach for reducing the number of cells in high-dimensional problems is
to make some simplifying assumptions regarding the form of the probability density
function. We may assume that the variables are independent so that p.x/ may be written
in the form

p.x/ D
pY

iD1

p.xi /

where p.xi / are the individual (one-dimensional) densities of the components of x.
Various names have been used to describe such a model including naı̈ve Bayes, idiot’s
Bayes and independence Bayes. A histogram approach may be used for each density
individually, giving pN cells (assuming an equal number of cells, N , per variable),
rather than N p. A particular implementation of the independence model is (Titterington
et al., 1981)

p.x/ ¾
(

pY
rD1

n.xr /C 1
Cr

N .r/C 1

)B

(3.2)

where
xr is the r th component of x;
n.xr / is the number of samples with value xr on variable r ;
N .r/ is the number of observations on variable r (this may vary due to

missing data);
Cr is the number of cells in variable r ;
B is an ‘association factor’ representing the ‘proportion of non-redundant

information’ in the variables.
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Note that the above expression takes account of missing data (which may be a problem
in some categorical data problems). It has a non-constant number of cells per variable.

3.2.3 Lancaster models

Lancaster models are a means of representing the joint distribution in terms of the
marginal distributions, assuming all interactions higher than a certain order vanish. For
example, if we assume that all interactions higher than order s D 1 vanish, then a
Lancaster model is equivalent to the independence assumption. If we take s D 2, then
the probability density function is expressed in terms of the marginals p.xi / and the joint
distributions p.xi ; x j /; i 6D j , as (Zentgraf, 1975)

p.x/ D
( X

i; j;i< j

p.xi ; x j /

p.xi /p.x j /
�
�


p
2

�
� 1

½)
pindep.x/

where pindep.x/ is the density function obtained by the independence assumption,

pindep.x/ D
pY

kD1

p.xk/

Lancaster models permit a range of models from the independence assumption to the full
multinomial, but do have the disadvantage that some of the probability density estimates
may be negative. Titterington et al. (1981) take the two-dimensional marginal estimates as

p.xi ; x j / D n.xi ; x j /C 1=.Ci C j /

N .i; j/C 1

where the definitions of n.xi ; x j / and N .i; j/ are analogous to the definitions of n.xi /

and N .i/ given above for the independence model, and

p.xi / D



n.xi /C 1=Ci

N .i/C 1

�B

Titterington et al. adopt the independence model whenever the estimate of the joint
distribution is negative.

3.2.4 Maximum weight dependence trees

Lancaster models are one way to capture dependencies between variables without making
the sometimes unrealistic assumption of total independence, yet having a model that does
not require an unrealistic amount of storage or number of observations. Chow and Liu
(1968) propose a tree-dependent model in which the probability distribution p.x/ is
modelled as a tree-dependent distribution pt .x/ that can be written as the product of
p � 1 pairwise conditional probability distributions

pt .x/ D
pY

iD1

p.xi jx j .i// (3.3)
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Figure 3.3 Tree representations

where x j .i/ is the variable designated as the parent of xi , with the root x1 chosen arbitrarily
and characterised by the prior probability p.x1jx0/ D p.x1/. For example, the density

pt .x/ D p.x1/p.x2jx1/p.x3jx2/p.x4jx2/p.x5jx4/p.x6jx4/p.x7jx4/p.x8jx7/ (3.4)

has the tree depicted in Figure 3.3a, with root x1. An alternative tree representation is
Figure 3.3b, with root x4, since (3.4) may be written using Bayes’ theorem as

pt .x/ D p.x4/p.x1jx2/p.x3jx2/p.x2jx4/p.x5jx4/p.x6jx4/p.x7jx4/p.x8jx7/

Indeed, any node may be taken as the root node. If each variable can take N values,
then the density (3.3) has N .N � 1/ parameters for each of the conditional densities and
N � 1 parameters for the prior probability, giving a total of N .N � 1/.p � 1/C N � 1
parameters to estimate.

The approach of Chow and Liu (1968) is to seek the tree-dependent distribution,
pt .x/, that best approximates the distribution p.x/. They use the Kullback–Leibler cross-
entropy measure as the measure of closeness in approximating p.x/ by pt .x/,

D.p; pt / D
Z

p.x/ log



p.x/

pt .x/

�
dx

or, for discrete variables,

D D
X
x

p.x/ log



p.x/

pt .x/

�

where the sum is over all values that the variable x can take, and they seek the tree-
dependent distribution p− .x/ such that D.p.x/; p− .x// � D.p.x/; pt .x// over all t in
the set of possible first-order dependence trees. Using the mutual information between
variables

I .Xi ; X j / D
X
xi ;x j

p.xi ; x j / log



p.xi ; x j /

p.xi /p.x j /

�
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to assign weights to every branch of the dependence tree, Chow and Liu (1968) show
(see the exercises) that the tree-dependent distribution pt .x/ that best approximates p.x/
is the one with maximum weight defined by

W D
pX

iD1

I .Xi ; X j .i//

This is termed a maximum weight dependence tree (MWDT) or a maximum weight span-
ning tree. The steps in the algorithm to find a MWDT are as follows.

1. Compute the branch weights for all p.p � 1/=2 variable pairs and order them in
decreasing magnitude.

2. Assign the branches corresponding to the two largest branches to the tree.

3. Consider the next largest value and add the corresponding branch to the tree if it does
not form a cycle, otherwise discard it.

4. Repeat this procedure until p � 1 branches have been selected.

5. The probability distribution may be computed by selecting an arbitrary root node and
computing (3.3).

Applying the above procedure to the six-dimensional head injury data of Titterington
et al. (1981) produces (for class 1) the tree illustrated in Figure 3.4. The labels for the
variables are described in Section 2.2.3 (x1 – Age; x2 – EMV; x3 – MRP; x4 – Change;
x5 – Eye Indicant; x6 – Pupils). To determine the tree-dependent distribution,
select a root node (say node 1) and write the density using the figure as

pt .x/ D p.x1/p.x2jx1/p.x3jx2/p.x5jx2/p.x4jx3/p.x6jx5/

The first stage in applying MWDTs to a classification problem is to apply the algorithm
to the data set for each class individually to give C trees.

There are several features that make MWDTs attractive. The algorithm requires only
second-order distributions but, unlike the second-order Lancaster model, it need store

x1

x2

x5

x3

x4

x6

�
��

�
��

�
��

�
��

�
��

Figure 3.4 MWDT applied to head injury patient data (class 1)
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only p�1 of these. The tree is computed in O.p2/ steps (though additional computation
is required in order to obtain the mutual information) and if p.x/ is indeed tree-dependent
then the approximation pt .x/ is a consistent estimate in the sense that

max
x
jpt .n/

n .x/� p.x/j ! 0 with probability 1 as n!1

where pt .n/
n is the tree-dependent distribution estimated from n independent samples of

the distribution p.x/.

3.2.5 Bayesian networks

In Section 3.2.4 a development of the naı̈ve Bayes model (which assumes independence
between variables) was described. This was the MWDT model, which allows pairwise
dependence between variables and is a compromise between approaches that specify
all relationships between variables and the rather restrictive independence assumption.
Bayesian networks also provide an intermediate model between these two extremes and
have the tree-based models as a special case.

We introduce Bayesian networks by considering a graphical representation of a mul-
tivariate density. The chain rule allows a joint density, p.x1; : : : ; x p/, to be expressed in
the form

p.x1; : : : ; x p/ D p.x pjx1; : : : ; x p�1/p.x p�1jx1; : : : ; x p�2/ : : : p.x2jx1/p.x1/

We may depict such a representation of the density graphically. This is illustrated in
Figure 3.5 for p D 6 variables. Each node in the graph represents a variable and the
directed links denote the dependencies of a given variable. The parents of a given variable
are those variables with directed links towards it. For example, the parents of x5 are
x1; x2; x3 and x4. The root node is the node without parents (the node corresponding to
variable x1). The probability density that such a figure depicts is the product of conditional
densities

p.x1; : : : ; x p/ D
pY

iD1

p.xi jπ i / (3.5)

where π i is the set of parents of xi (cf. equation (3.3)). If π i is empty, p.xi jπ i / is set
to p.xi /.
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Figure 3.5 Graphical representation of the multivariate density p.x1; : : : ; x6/
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Figure 3.6 Graphical representations of the multivariate density p.x1; : : : ; x6/ D p.x6jx4; x5/

p.x5jx3/p.x4jx1; x3/p.x3/p.x2jx1/p.x1/

Figure 3.5 is the graphical part of the Bayesian network and equation (3.5) is the
density associated with the graphical representation. However, there is little to be gained
in representing a full multivariate density p.x1; : : : ; x6/ as a product using the chain
rule with the corresponding graph (Figure 3.5), unless we can make some simplifying
assumptions concerning the dependence of variables. For example, suppose

p.x6jx1; : : : ; x5/ D p.x6jx4; x5/

that is, x6 is independent of x1; x2; x3 given x4; x5; also

p.x5jx1; : : : ; x4/ D p.x5jx3/

p.x4jx1; x2; x3/ D p.x4jx1; x3/

p.x3jx1; x2/ D p.x3/

Then the multivariate density may be expressed as the product

p.x1; : : : ; x6/ D p.x6jx4; x5/p.x5jx3/p.x4jx1; x3/p.x3/p.x2jx1/p.x1/ (3.6)

This is depicted graphically in Figure 3.6; the left-hand graph is obtained by removing
links in Figure 3.5 and the right-hand graph is an equivalent graph to make the ‘parentage’
more apparent. This figure, with the general probability interpretation (3.5), gives (3.6).
Note that there are two root nodes.

Definition
A graph is a pair .V; E/, where V is a set of vertices and E a set of edges (connections
between vertices).
A directed graph is a graph in which all edges are directed: the edges are ordered pairs;
if .Þ; þ/ 2 E , for vertices Þ and þ, then .þ; Þ/ =2 E .
A directed acyclic graph (DAG) is one in which there are no cycles: there is no path
Þ1 ! Þ2 ! Ð Ð Ð ! Þ1, for any vertex Þ1.
A Bayesian network is a DAG where the vertices correspond to variables and associated
with a variable X with parents Y1; : : : ; Yp is a conditional probability density function,
p.X jY1; : : : ; Yp/.
The Bayesian network, together with the conditional densities, specifies a joint probability
density function by (3.5).
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The graphical representation of Bayesian networks is convenient for visualising depen-
dencies. The factorisation of a multivariate density into a product of densities defined on
perhaps only a few variables allows better nonparametric density estimates. For example,
the product (3.6) requires densities defined on at most three variables.

Classification

As with the MWDT, we may construct a different Bayesian network to model the
probability density function of each class p.xj!i / separately. These densities may be
substituted into Bayes’ rule to obtain estimates of the posterior probabilities of class
membership. Alternatively, we may construct a Bayesian network to model the joint
density p.x; !/, where ! is a class label. Again, we may evaluate this for each of the
classes and use Bayes’ rule to obtain p.!jx/. Separate networks for each class allow
a more flexible model. Such a set of networks has been termed a Bayesian multinet
(Friedman et al., 1997).

Specifying the network

Specifying the structure of a Bayesian network consists of two parts: specifying the
network topology and estimating the parameters of the conditional probability density
functions. The topology may be specified by someone with an expert knowledge of the
problem domain and who is able to make some statements about dependencies of vari-
ables. Hence, an alternative name for Bayesian networks is probabilistic expert systems:
an expert system because the network encodes expert knowledge of a problem in its
structure and probabilistic because the dependencies between variables are probabilistic.
Acquiring expert knowledge can be a lengthy process. An alternative approach is to learn
the graph from data if they are available, perhaps in a similar manner to the MWDT
algorithm. In some applications, sufficient data may not be available.

In learning structure from data, the aim is to find the Bayesian network that best
characterises the dependencies in the data. There are many approaches. Buntine (1996)
reviews the literature on learning networks. Ideally, we would want to combine expert
knowledge where available and statistical data. Heckerman et al. (1995; see also Cooper
and Herskovits, 1992) discuss Bayesian approaches to network learning.

The probability density functions are usually specified as a conditional probability
table, with continuous variables discretised, perhaps as part of the structure learning
process. For density estimation, it is not essential to discretise the variables and some
nonparametric density estimate, perhaps based on product kernels (see Section 3.5), could
be used.

Discussion

Bayesian networks provide a graphical representation of the variables in a problem and the
relationship between them. This representation needs to be specified or learned from data.
This structure, together with the conditional density functions, allows the multivariate
density function to be specified through the product rule (3.5). In a classification problem,
a density may be estimated for each class and Bayes’ rule used to obtain the posterior
probabilities of class membership.

Bayesian networks have been used to model many complex problems, other than ones
in classification, with the structure being used to calculate the conditional density of a
variable given measurements made on some (or all) of the remaining variables. Such a
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situation may arise when measurements are made sequentially and we wish to update
our belief that a variable takes a particular value as measurements arrive. For example,
suppose we model the joint density p.y; x1; : : : ; x p/ as a Bayesian network, and we are
interested in the quantity p.yje/, where e comprises measurements made on a subset of
the variables, x1; : : : ; x p. Then, using Bayes’ theorem, we may write

p.yje/ D
R

p.y; e; Qe/ d QeRR
p.y; e; Qe/ d Qe dy

where Qe is the set of variables x1; : : : ; x p not instantiated. Efficient algorithms that make
use of the graphical structure have been developed for computing p.yje/ in the case of
discrete variables (Lauritzen and Spiegelhalter, 1988).

3.2.6 Example application study

The problem Prediction of the occurrence of rainfall using daily observations of me-
teorological data (Liu et al., 2001).

Summary The study used the naı̈ve Bayes (that is, independence assumption) classifier
with marginal densities estimated through a histogram approach.

The data The data comprise daily observations from May to October for the years
1984–1992 from Hong Kong Observatory. There are mixed continuous and categori-
cal data including wind direction and speed, daily mean atmospheric pressure, five-day
mean pressure, temperature, rainfall and so on. There are 38 basic input variables and
three classes of rainfall. There is some data preprocessing to handle missing values and
standardisation of variables.

The model The model is a naı̈ve Bayes classifier, with priors calculated from the data
and class-conditional densities estimated using histograms.

Training procedure Although training for a histogram-based naı̈ve Bayes classifier
is minimal in general, the degree of discretisation must be specified (here, a class-
dependent method was used). Also, some variable selection (see Chapter 9) was carried
out. Another difference from the standard histogram approach is that the density estimates
were updated using past tested data. Thus, the size of the training set is variable; it
increases as we apply the method to test patterns.

Results For this application, this simple approach worked well and performed better
that other methods also assessed.

3.2.7 Further developments

The MWDT tree-dependence approximation can also be derived by minimising an upper
bound on the Bayes error rate under certain circumstances (Wong and Poon, 1989).
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Computational improvements in the procedure have been proposed by Valiveti and
Oommen (1992, 1993), who suggest a chi-square metric in place of the expected mutual
information measure.

A further development is to impose a common tree structure across all classes. The
mutual information between variables is then written as

I .Xi ; X j / D
X

xi ;x j ;!

p.xi ; x j ; !/log



p.xi ; x j j!/

p.xi j!/p.x j j!/
�

It is termed a tree-augmented naı̈ve Bayesian network by Friedman et al. (1997), who
provide a thorough evaluation of the model on 23 data sets from the UCI repository
(Murphy and Aha, 1995) and two artificial data sets. Continuous attributes are discretised
and patterns with missing values omitted from the analysis. Performance is measured in
terms of classification accuracy with the holdout method used to estimate error rates. See
Chapter 8 for performance assessment and Chapter 11 for a discussion of the missing
data problem. The model was compared to one in which separate trees were constructed
for each class and the naı̈ve Bayes model. Both tree models performed well in practice.

One of the disadvantages of histogram procedures for continuous data that we noted in
the introduction to this section was that the density is discontinuous at cell boundaries.
Procedures based on splines have been proposed for overcoming this difficulty. More
recent developments in the use of splines for density estimation are described by Gu and
Qiu (1993).

3.2.8 Summary

In the development of the basic histogram approach described in this section, we have
concentrated on methods for reducing the number of cells for high-dimensional data. The
approaches described assume that the data are categorical with integer-labelled categories,
though the categories themselves may or may not be ordered. The simplest models are
the independence models, and on the head injury data of Titterington et al. (1981) they
gave consistently good performance over a range of values for B, the association factor
(0.8 to 1.0). The independence assumption results in a very severe factorisation of the
probability density function – clearly one that is unrealistic for many practical problems.
Yet, as discussed by Hand and Yu (2001), it is a model that has had a long and successful
history (see also Domingos and Pazzani, 1997). Practical studies, particularly in medical
areas, have shown it to perform surprisingly well. Hand (1992) provides some reasons
why this may be so: its intrinsic simplicity means low variance in its estimates; although
its probability density estimates are biased, this may not matter in supervised classification
so long as Op.!1jx/ > Op.!2jx/ when p.!1jx/ > p.!2jx/; in many cases, variables have
undergone a selection process to reduce dependencies.

More complex interactions between variables may be represented using Lancaster
models and MWDTs. Introduced by Chow and Liu (1968), MWDTs provide an efficient
means of representing probability density functions using only second-order statistics.

Dependence trees are a special case of Bayesian networks which model a multivariate
density as a product of conditional densities defined on a smaller number of variables.
These networks may be specified by an expert, or learned from data.
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3.3 k-nearest-neighbour method

The k-nearest-neighbour method is a simple method of density estimation. The probability
that a point x 0 falls within a volume V centred at a point x is given by

� D
Z

V .x/
p.x/ dx

where the integral is over the volume V . For a small volume

� ¾ p.x/V (3.7)

The probability, � , may be approximated by the proportion of samples falling within V .
If k is the number of samples, out of a total of n, falling within V (k is a function of
x) then

� ¾ k

n
(3.8)

Equations (3.7) and (3.8) combine to give an approximation for the density,

Op.x/ D k

nV
(3.9)

The k-nearest-neighbour approach is to fix the probability k=n (or, equivalently, for a
given number of samples n, to fix k) and to determine the volume V which contains k
samples centred on the point x. For example, if xk is the kth nearest-neighbour point to
x, then V may be taken to be a sphere, centred at x, of radius jjx � xk jj (the volume
of a sphere of radius r in n dimensions is 2rn³

n
2 =n0.n=2/, where 0.x/ is the gamma

function). The ratio of the probability to this volume gives the density estimate. This is
in contrast to the basic histogram approach which is to fix the cell size and to determine
the number of points lying within it.

One of the parameters to choose is the value of k. If it is too large, then the estimate
will be smoothed and fine detail averaged out. If it is too small, then the probability
density estimate is likely to be spiky. This is illustrated in Figures 3.7 (peaks truncated)
and 3.8, where 13 samples are plotted on the x-axis, and the k-nearest-neighbour density
estimate shown for k D 1 and 2. One thing to note about the density estimate is that
it is not in fact a density. The integral under the curve is infinite. This is because for
large enough jxj, the estimate varies as 1=jxj. However, it can be shown that the density
estimator is asymptotically unbiased and consistent if

lim
n!1 k.n/ D 1

lim
n!1

k.n/

n
D 0

3.3.1 k-nearest-neighbour decision rule

Having obtained an expression for a density estimate, we can now use this in a decision
rule. Suppose that in the first k samples there are km in class !m (so that

PC
mD1 km D k).
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Figure 3.7 Nearest-neighbour density estimates for k D 1
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Figure 3.8 Nearest-neighbour density estimates for k D 2

Let the total number of samples in class !m be nm (so that
PC

mD1 nm D n). Then we
may estimate the class-conditional density, p.xj!m/, as

Op.xj!m/ D km

nm V
(3.10)

and the prior probability, p.!m/, as

Op.!m/ D nm

n

Then the decision rule is to assign x to !m if

Op.!m jx/ ½ Op.!i jx/ for all i
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or, using Bayes’ theorem,

km

nm V

nm

n
½ ki

ni V

ni

n
for all i

that is, assign x to !m if

km ½ ki for all i

Thus, the decision rule is to assign x to the class that receives the largest vote amongst
the k nearest neighbours. There are several ways of breaking ties. Ties may be broken
arbitrarily. Alternatively, x may be assigned to the class, out of the classes with tying
values of ki , that has nearest mean vector to x (with the mean vector calculated over the
ki samples). Another method is to assign x to the most compact class – that is, to the
one for which the distance to the ki th member is the smallest. This does not require any
extra computation. Dudani (1976) proposes a distance-weighted rule in which weights
are assigned to the k nearest neighbours, with closest neighbours being weighted more
heavily. A pattern is assigned to that class for which the weights of the representatives
among the k neighbours sum to the greatest value.

3.3.2 Properties of the nearest-neighbour rule

The asymptotic misclassification rate of the nearest-neighbour rule, e, satisfies the con-
dition (Cover and Hart, 1967)

eŁ � e � eŁ



2� CeŁ

C � 1

�

where eŁ is the Bayes probability of error and C is the number of classes. Thus in the
large-sample limit, the nearest-neighbour error rate is bounded above by twice the Bayes
error rate. The inequality may be inverted to give

C � 1

C
�
r

C � 1

C

r
C � 1

C
� e � eŁ � e

The leftmost quantity is a lower bound on the Bayes error rate. Therefore, any classifier
must have an error rate greater than this value.

3.3.3 Algorithms

Identifying the nearest neighbour of a given observation vector from among a set of
training vectors is conceptually straightforward with n distance calculations to be per-
formed. However, as the number n in the training set becomes large, this computational
overhead may become excessive.

Many algorithms for reducing the nearest-neighbour search time involve the signif-
icant computational overhead of preprocessing the prototype data set in order to form
a distance matrix (see Dasarathy, 1991, for a summary). There is also the overhead of
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storing n.n � 1/=2 distances. There are many approaches to this problem. The linear
approximating and eliminating search algorithm (LAESA), a development of the AESA
algorithm of Vidal (1986, 1994), has a preprocessing stage that computes a number of
base prototypes that are in some sense maximally separated from among the set of train-
ing vectors (Micó et al., 1994). Although it does not guarantee an optimal solution (in
the sense that the sum of all pairwise distances between members of the set of base
prototypes is a maximum), it can be achieved in linear preprocessing time. However,
the LAESA algorithm requires the storage of an array of size n by nb, the number of
base prototypes. This will place an upper bound on the permitted number of base proto-
types. Figure 3.9 illustrates a set of 21 training samples in two dimensions and four base
prototypes chosen by the base prototype algorithm of Micó et al. (1994). The algorithm
begins by first selecting a base prototype, b1, arbitrarily from the set of prototypes and
the distance to every member of the remaining prototypes is calculated and stored in
an array A. The second base prototype, b2, is the prototype that is furthest from b1.
The distance of this prototype to every remaining prototype is calculated and the array
A incremented. Thus, A represents the accumulated distances of non-base prototypes to
base prototypes. The third base prototype is the one for which the accumulated distance
is the greatest. This process of selecting a base prototype, calculating distances and accu-
mulating the distances continues until the required number of base prototypes has been
selected.

The LAESA searching algorithm uses the set of base prototypes and the interpoint
distances between these vectors and those in the training set as follows. The algorithm
uses the metric properties of the data space. Let x be the test sample (whose nearest
neighbour from the set of prototypes we seek), n be its current nearest neighbour at a
distance dxn , and q be a base prototype whose distance to x has been computed at an
earlier stage of the algorithm (see Figure 3.10). The condition for a prototype p to be
rejected as a nearest-neighbour candidate is

dxp ½ dxn
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Figure 3.9 Selection of base prototypes (Š) from the data set (C)
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Figure 3.10 Nearest-neighbour selection using LAESA

This requires the calculation of the distance dxp . However, a lower bound on the distance
dxp is given by

dxp ½ jdpq � dxq j
and if this lower bound (which does not require any additional distance calculation)
exceeds the current nearest-neighbour distance then clearly we may reject p. We may go
further by stating

dxp ½ G.p/
4D max

q
jdpq � dxq j (3.11)

where the maximum is over all base prototypes considered so far in the iteration process,
and therefore if G.p/ ½ dxn , we may reject p without computing dxp.

Given x, the algorithm selects a base prototype as an initial candidate s for a nearest
neighbour and removes this from the set of prototypes. It then searches through the
remaining set and rejects all samples from the set of prototypes whose lower bound on
the distance to x exceeds the distance jx� sj. At the initial stage, the lower bound (3.11)
is based on the selected base prototype, s, only. A record of this lower bound is stored
in an array. Out of the remaining prototypes, the EC1 version of the algorithm selects
as the next candidate s for the nearest neighbour the base prototype for which this lower
bound is a minimum (assuming the base prototypes have not been eliminated, otherwise
a non-base prototype sample is chosen).

The candidate vector s need not necessarily be nearer than the previous choice, though
if it is the nearest neighbour is updated. The data set is searched through again, rejecting
vectors that are greater than the lower bound (which is updated if s is a base prototype).
This process is repeated and is summarised in the five following steps.

1. Distance computing – calculate the distance of x to the candidate s for a nearest
neighbour.

2. Update the prototype nearest to x if necessary.

3. Update the lower bounds, G.p/, if s is a base prototype.

4. Eliminate the prototypes with lower bounds greater than dxs .

5. Approximating – select the candidates for the next nearest neighbour.

Further details are given by Micó et al. (1994). Figure 3.11 gives an illustration of the
LAESA procedure (using the EC1 condition). The test sample x is at the origin .0; 0/
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Figure 3.11 Nearest-neighbour selection using LAESA; s1 and s2 are the first two candidates
for nearest neighbour

and the first two choices for s are shown. The remaining samples are those left after two
passes through the data set (two distance calculations).

There are two factors governing the choice of the number of base prototypes, nb.
One is the amount of storage available. An array of size n ð nb must be stored. This
could become prohibitive if n and nb are large. At the other extreme, too small a value
of nb will result in a large number of distance calculations if n is large. We suggest that
you choose a value as large as possible without placing constraints on memory since the
number of distance calculations decreases monotonically (approximately) with nb for the
EC1 model of Micó et al. (1994) given above.

3.3.4 Editing techniques

One of the disadvantages of the k-nearest-neighbour rule is that it requires the storage
of all n data samples. If n is large, then this may mean an excessive amount of storage.
However, a major disadvantage may be the computation time for obtaining the k nearest
neighbours. There have been several studies concerned with reducing the number of class
prototypes with the joint aims of increasing computational efficiency and increasing the
generalisation error rate.

We shall consider algorithms for two procedures for reducing the number of pro-
totypes. The first of these belongs to the family of editing techniques. These tech-
niques process the design set with the aim of removing prototypes that contribute to
the misclassification rate. This is illustrated in Figure 3.12 for a two-class problem.
Figure 3.12 plots samples from two overlapping distributions, together with the Bayes
decision boundary. Each region, to the left and right of the boundary, contains proto-
types that are misclassified by a Bayes classifier. Removing these to form Figure 3.13
gives two homogeneous sets of prototypes with a nearest-neighbour decision bound-
ary that approximates the Bayes decision boundary. The second technique that we
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Figure 3.12 Editing illustration – samples and decision boundary
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Figure 3.13 Editing illustration – edited data set

consider is that of condensing. This aims to reduce the number of prototypes per class
without changing the nearest-neighbour approximation to the Bayes decision boundary
substantially.

The basic editing procedure is as follows. Given a design set R (of known classifi-
cation), together with a classification rule �, let S be the set of samples misclassified by
the classification rule �. Remove these from the design set to form R D R� S and repeat
the procedure until a stopping criterion is met. Thus, we end up with a set of samples
correctly classified by the rule.

One implementation of applying this scheme to the k-nearest-neighbour rule is as
follows.

1. Make a random partition of the data set, R, into N groups R1; : : : ; RN .

2. Classify the samples in the set Ri using the k-nearest-neighbour rule with the union of
the ‘next’ M sets R.iC1/modN[Ð Ð Ð[ R.iCM�1/modN as the design set, for i D 1; : : : ; N
where 1 � M � N � 1. Let S be the set of misclassified samples.

3. Remove all misclassified samples from the data set to form a new data set, R D R�S.

4. If the last I iterations have resulted in no samples being removed from the design set,
then terminate the algorithm, otherwise go back to step 1.
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If M D 1, then we have a modified holdout method of error estimation, and taking
k D 1 gives the multiedit algorithm of Devijver and Kittler (1982). Taking M D N � 1
(so that all remaining sets are used) gives an N -fold cross-validation error estimate. If N
is equal to the number of samples in the design set (and M D N � 1), then we have the
leave-one-out error estimate which is Wilson’s method of editing (Wilson, 1972). Note
that after the first iteration, the number of design samples has reduced and the number of
partitions cannot exceed the number of samples. For small data sets, an editing procedure
using a cross-validation method of error estimation is preferred to multiedit (Ferri and
Vidal, 1992a; see also Ferri et al., 1999).

The editing algorithm above creates homogeneous sets of clusters of samples. The
basic idea behind condensing is to remove those samples deeply embedded within each
cluster that do not contribute significantly to the nearest-neighbour approximation to the
Bayes decision region. The procedure that we describe is due to Hart (1968). We begin
with two areas of store, labelled A and B. One sample is placed in A and the remaining
samples in B. Each sample point in B is classified using the nearest-neighbour rule
with the contents of A (initially a single vector) as prototypes. If a sample is classified
correctly, it is returned to B, otherwise it is added to A. The procedure terminates when
a complete pass through the set B fails to transfer any points.

The final contents of A constitute the condensed subset to be used with the nearest-
neighbour rule.

The result of a condensing procedure is shown in Figure 3.14. There can be consid-
erable reduction in the number of training samples.

Ferri and Vidal (1992b) apply both editing and condensing techniques to image data
gathered for a robotic harvesting application. The problem consists of detecting the lo-
cation of pieces of fruit within a scene. The data comprise six images, captured into
arrays of 128 ð 128 pixels; two are used for training, four for test. From the training
images, a training set of 1513 10-dimensional feature vectors (obtained from RGB val-
ues at a pixel location and its neighbours) spanning three classes (fruit, leaves, sky) is
constructed.

The editing algorithm is run with a value of N (the number of partitions of the
data set) chosen randomly from f3; 4; 5g at each iteration of the editing process. Results
are reported for values of I (the number of iterations in the editing procedure with no
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Figure 3.14 Condensing illustration: the solid line represents the Bayes decision boundary; the
dotted line is the approximation based on condensing
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Table 3.1 Results for multiedit and condensing for image segmentation (after Ferri and Vidal,
1992b)

Original I D 6 I D 10

Multiedit Condense Multiedit Condense

Size 1513 1145 22 1139 28
Average errors over
four test images

18.26 10.55 10.10 10.58 8.95

samples removed from the design set) of 6 and 10. Results for I D 6 are summarised in
Table 3.1.

Condensing reduces the size of the data set considerably. Editing reduces the error
rate, with a further smaller reduction after condensing.

3.3.5 Choice of distance metric

The most commonly used metric in measuring the distance of a new sample from a
prototype is Euclidean distance. Therefore, since all variables are treated equally, the
input variables must be scaled to ensure that the k-nearest-neighbour rule is independent
of measurement units. The generalisation of this is

d.x;n/ D
n
.x � n/T A.x � n/

o 1
2

(3.12)

for a matrix A. Choices for A have been discussed by Fukunaga and Flick (1984). Tode-
schini (1989) assesses six global metrics on ten data sets after four ways of standardising
the data. Another development of the Euclidean rule is proposed by van der Heiden and
Groen (1997),

dp.x;n/ D
n
.x.p/ � n.p//T .x.p/ � n.p//

o 1
2

where x.p/ is a transformation of the vector x defined for each element, xi , of the
vector x by

x .p/i D
(
.x p

i � 1/=p if 0 < p � 1

log.xi / if p D 0

In experiments on radar range profiles of aircraft, van der Heiden and Groen (1997)
evaluate the classification error as a function of p.

Friedman (1994) considers basic extensions to the k-nearest-neighbour method and
presents a hybrid between a k-nearest-neighbour rule and a recursive partitioning method
(see Chapter 7) in which the metric depends on position in the data space. In some classi-
fication problems (those in which there is unequal influence of the input variables on the
classification performance), this can offer improved performance. Myles and Hand (1990)
assess local metrics where the distance between x and n depends on local estimates of
the posterior probability.

In the discriminant adaptive nearest-neighbour approach (Hastie and Tibshirani, 1996),
a local metric is defined in which, loosely, the nearest-neighbour region is parallel to the
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Figure 3.15 Discriminant adaptive nearest-neighbour illustration

decision boundary. It is in the region of the decision boundary where most misclassifi-
cations occur. As an illustration, consider the edited data set of Figure 3.13 shown in
Figure 3.15. The nearest neighbour to the point x is that labelled 1, and x is classified
as Š. However, if we measure in a coordinate system orthogonal to the decision bound-
ary, then the distance between two points is the difference between their distances from
the decision boundary, and the point labelled 2 is the nearest neighbour. In this case,
x is classified as C. The procedure of Hastie and Tibshirani uses a local definition of
the matrix A (based on local estimates of the within- and between-class scatter matri-
ces – see Section 9.1 for definitions, for example). This procedure can offer substantial
improvements in some problems.

3.3.6 Example application study

The problem To develop credit scoring techniques for assessing the creditworthiness
of consumer loan applicants (Henley and Hand, 1996).

Summary The approach developed is based on a k-nearest-neighbour method, with an
adjusted version of the Euclidean distance metric that attempts to incorporate knowledge
of class separation contained in the data.

The data The data comprised measurements on 16 variables (resulting from a vari-
able selection procedure), usually nominal or ordinal, for a set of credit applicants,
split into training and test sets of sizes 15 054 and 4132 respectively. The data were
preprocessed into a ratio form, so that the j th value on the i th feature or variable is
replaced by log.pi j=qi j /, where pi j is the proportion of those classified good in at-
tribute j of variable i and qi j is the proportion characterised as bad in attribute j of
variable i .

The model A k-nearest-neighbour classifier is used. The quadratic metric (3.12) is
used, where the positive definite symmetric matrix, A, is given by

A D .I C DwwT /



k-nearest-neighbour method 103

Here D is a distance parameter and w is in the direction of the equiprobability contours of
p.gjx/, the posterior probability of class g; that is, w is a vector parallel to the decision
boundary. This is similar to the discriminant adaptive nearest-neighbour classifier of
Section 3.3.5.

Training procedure The value of D was chosen to minimise the bad risk rate, the
proportion of bad risk applicants accepted for a prespecified proportion accepted, based
on the design set. The value of k was also based on the design set. The performance
assessment criterion used in this study is not the usual one of error rate used in most
studies involving k-nearest-neighbour classifiers. In this investigation, the proportion to
be accepted is prespecified and the aim is to minimise the number of bad-risk applicants
accepted.

Results The main conclusion of the study was that the k-nearest-neighbour approach
was fairly insensitive to the choice of parameters and it is a practical classification rule
for credit scoring.

3.3.7 Further developments

There are many varieties of the k-nearest-neighbour method. The probability density
estimator on which the k-nearest-neighbour decision rule is based has been studied by
Buturović (1993), who proposes modifications to (3.10) for reducing the bias and the
variance of the estimator.

There are other preprocessing schemes to reduce nearest-neighbour search time.
Approximation–elimination algorithms for fast nearest-neighbour search are given by
Vidal (1994) and reviewed and compared by Ramasubramanian and Paliwal (2000).
Fukunaga and Narendra (1975) structure the design set as a tree. This avoids the com-
putation of some of the distances. Jiang and Zhang (1993) use an efficient branch and
bound technique. Increased speed of finding neighbours is usually bought at increased
preprocessing or storage (for example, Djouadi and Bouktache, 1997). Dasarathy (1994a)
proposes an algorithm for reducing the number of prototypes in nearest-neighbour clas-
sification using a scheme based on the concept of an optimal subset selection. This
‘minimal consistent set’ is derived using an iterative procedure, and on the data sets
tested gives improved performance over condensed nearest-neighbour. The approach by
Friedman et al. (1977) for finding nearest neighbours using a k–d tree algorithm does not
rely on the triangle inequality (as the LAESA algorithm does). It can be applied to data
with a wide variety of dissimilarity measures. The expected number of samples examined
is independent of the number of prototypes. A review of the literature on computational
procedures is given by Dasarathy (1991).

Hamamoto et al. (1997) propose generating bootstrap samples by linearly combin-
ing local training samples. This increases the design set, rather than reducing it, but
gives improved performance over conventional k-nearest-neighbour, particularly in high
dimensions.

There are theoretical bounds on the Bayes error rate for the k-nearest-neighbour
method. We have given those for the nearest-neighbour rule. For small samples, the true
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error rate may be very different from the Bayes error rate. The effects on the error rates of
k-nearest-neighbour rules of finite sample size have been investigated by Fukunaga and
Hummels (1987a, 1987b) who demonstrate that the bias in the nearest-neighbour error
decreases slowly with sample size, particularly when the dimensionality of the data is
high. This indicates that increasing the sample size is not an effective means of reducing
bias when dimensionality is high. However, a means of compensating for the bias is
to obtain an expression for the rate of convergence of the error rate and to predict the
asymptotic limit by evaluating the error rate on training sets of different sample size.
This has been explored further by Psaltis et al. (1994) who characterise the error rate as
an asymptotic series expansion. Leave-one-out procedures for error rate estimation are
presented by Fukunaga and Hummels (1987b, 1989), who find that sensitivity of error
rate to the choice of k (in a two-class problem) can be reduced by appropriate selection
of a threshold for the likelihood function.

3.3.8 Summary

Nearest-neighbour methods have received considerable attention over the years. The
simplicity of the approach has made it very popular with researchers. A comprehensive
review is given by Dasarathy (1991), and many of the important contributions to the
literature are included in the same volume. It is perhaps conceptually the simplest of the
classification rules that we present, and the decision rule has been summed up as ‘judge
a person by the company he keeps’ (Dasarathy, 1991). The approach requires a set of
labelled templates that are used to classify a set of test patterns. The simple-minded
implementation of the k-nearest-neighbour rule (calculating the distance of a test pattern
from every member of the training set and retaining the class of the k nearest patterns for
a decision) is likely to be computationally expensive for a large data set, but for many
applications it may well prove acceptable. If you get the answer in minutes, rather than
seconds, you may probably not be too worried. The LAESA algorithm trades off storage
requirements against computation. LAESA relies on the selection of base prototypes and
computes distances of the stored prototypes from these base prototypes.

Additional means of reducing the search time for classifying a pattern using a nearest-
neighbour method (and increasing generalisation) are given by the editing and condensing
procedures. Both reduce the number of prototypes; editing with the purpose of increasing
generalisation performance and condensing with the aim of reducing the number of
prototypes without significant degradation of the performance. Experimental studies have
been performed by Hand and Batchelor (1978).

Improvements may be obtained through the use of alternative metrics, either local met-
rics that use local measures of within-class and between-class distance or non-Euclidean
distance.

One question that we have not addressed is the choice of k. The larger the value
of k, the more robust is the procedure. Yet k must be much smaller than the minimum
of ni , the number of samples in class i , otherwise the neighbourhood is no longer the
local neighbourhood of the sample (Dasarathy, 1991). In a limited study, Enas and Choi
(1986) give a rule k ³ N 2=8 or k ³ N 3=8, where N is the population size. The approach
described by Dasarathy is to use a cross-validation procedure to classify each sample
in the design set using the remaining samples for various values of k and to determine



Expansion by basis functions 105

overall performance. Take the optimum value of k as the one giving the smallest error
rate, though the lower the value of k the better from a computational point of view. Keep
this value fixed in subsequent editing and condensing procedures if used.

3.4 Expansion by basis functions

The method of density estimation based on an orthogonal expansion by basis functions
was first introduced by C̆encov (1962). The basic approach is to approximate a density
function, p.x/, by a weighted sum of orthogonal basis functions. We suppose that the
density admits the expansion

p.x/ D
1X

iD1

ai�i .x/ (3.13)

where the f�i g form a complete orthonormal set of functions satisfying
Z

k.x/�i .x/� j .x/ dx D ½iŽi j (3.14)

for a kernel or weighting function k.x/, and Ži j D 1 if i D j and zero otherwise. Thus,
multiplying (3.13) by k.x/�i .x/ and integrating gives

½i ai D
Z

k.x/p.x/�i .x/ dx

Given fx1; x2; : : : ; xng, a set of independently and identically distributed samples from
p.x/, then the ai can be estimated in an unbiased manner by

½i Oai D 1

n

nX
jD1

k.x j /�i .x j /

The orthogonal series estimator based on the sample fx1; x2; : : : ; xng of p.x/ is then
given by

Opn.x/ D
sX

iD1

1

n½i

nX
jD1

k.x j /�i .x j /�i .x/ (3.15)

where s is the number of terms retained in the expansion. The coefficients Oai may be
computed sequentially from

½i Oai .r C 1/ D r

r C 1
½i Oai .r/C 1

r C 1
k.xrC1/�i .xrC1/

where Oai .rC1/ is the value obtained using rC1 data samples. This means that, given an
extra sample point, it is a simple matter to update the coefficients. Also, a large number
of data vectors could be used to calculate the coefficients without storing the data in
memory.

A further advantage of the series estimator method is that the final estimate is easy
to store. It is not in the form of a complicated analytic function, but a set of coefficients.
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But what are the disadvantages? First of all, the method is limited to low-dimensional
data spaces. Although, in principle, the method may be extended to estimate multivariate
probability density functions in a straightforward manner, the number of coefficients in
the series increases exponentially with dimensionality. It is not an easy matter to calculate
the coefficients. Another disadvantage is that the density estimate is not necessarily a
density (as in the nearest-neighbour method described earlier in this chapter). This may
or may not be a problem, depending on the application. Also, the density estimate is not
necessarily non-negative.

Many different functions have been used as basis functions. These include Fourier
and trigonometric functions on [0; 1], and Legendre polynomials on [�1; 1]; and those
with unbounded support such as Laguerre polynomials on [0;1] and Hermite functions
on the real line. If we have no prior knowledge as to the form of p.x/, then the basis
functions are chosen for their simplicity of implementation. The most popular orthogonal
series estimator for densities with unbounded support is the Hermite series estimator. The
normalised Hermite functions are given by

�k.x/ D exp.�x2=2/

.2kk!³
1
2 /

1
2

Hk.x/

where Hk.x/ is the kth Hermite polynomial

Hk.x/ D .�1/k exp.x2/
dk

dxk
exp.�x2/

The performance and the smoothness of the density estimator depends on the number
of terms used in the expansion. Too few terms leads to over-smoothed densities. Different
stopping rules (rules for choosing the number of terms, s, in expansion (3.15)) have been
proposed and are briefly reviewed by Izenman (1991). Kronmal and Tarter (1962) propose
a stopping rule based on minimising a mean integrated squared error. Termination occurs
when the test

Oa2
j >

2

n C 1
Ob2

j

fails, where

Ob2
j D

1

n

nX
kD1

�2
j .xk/

or, alternatively, when t or more successive terms fail the test. Practical and theoretical
difficulties are encountered with this test, particularly with sharply peaked or multimodal
densities, and it could happen that an infinite number of terms pass the test. Alternative
procedures for overcoming these difficulties have been proposed (Diggle and Hall, 1986;
Hart, 1985).

3.5 Kernel methods

One of the problems with the histogram approach, as discussed earlier in the chapter, is
that for a fixed cell dimension, the number of cells increases exponentially with dimension
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of the data vectors. This problem can be overcome somewhat by having a variable cell
size. The k-nearest-neighbour method (in its simplest form) overcomes the problem by
estimating the density using a cell in which the number of design samples is fixed and
finds the cell volume that contains the nearest k. The kernel method (also known as the
Parzen method of density estimation, after Parzen, 1962) fixes the cell volume and finds
the number of samples within the cell and uses this to estimate the density.

Let us consider a one-dimensional example and let fx1; : : : ; xng be the set of obser-
vations or data samples that we shall use to estimate the density. We may easily write
down an estimate of the cumulative distribution function as

OP.x/ D number of observations � x

n

The density function, p.x/, is the derivative of the distribution, but the distribution is
discontinuous (at observation values – see Figure 3.16) and its derivative results in a set
of spikes at the sample points, xi , and a value zero elsewhere. However, we may define
an estimate of the density as

Op.x/ D
OP.x C h/� OP.x � h/

2h

where h is a positive number. This is the proportion of observations falling within the
interval .x � h; x C h/ divided by 2h. This may be written as

Op.x/ D 1

hn

nX
iD1

K



x � xi

h

�
(3.16)

where

K .z/ D
²

0 jzj > 1
1
2 jzj � 1

(3.17)
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Figure 3.16 Cumulative distribution
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Figure 3.17 Probability density estimate with top hat kernel, h D 0.2

since for sample points, xi , within h of x , the summation gives a value of half the number
of observations within the interval. Thus each point within the interval contributes equally
to the summation. Figure 3.17 gives an estimate of the density using equations (3.16)
and (3.17) for the data used to form the cumulative distribution in Figure 3.16.

Figure 3.17 shows us that the density estimate is itself discontinuous. This arises from
the fact that points within a distance h of x contribute a value 1

2hn to the density and
points further away a value of zero. It is this jump from 1

2hn to zero that gives rise to the
discontinuities. We can remove this, and generalise the estimator, by using a smoother
weighting function than that given by (3.17). For example, we could have a weighting
function K1.z/ (also with the property that the integral over the real line is unity) that
decreases as jzj increases. Figure 3.18 plots the density estimate for a weighting given by

K1.z/ D 1p
2³

exp

²
� z2

2

¦

and a value of h of 0:2. This gives a smoother density estimate. Of course, it does
not mean that this estimate is necessarily more ‘correct’ than that of Figure 3.17, but
we might suppose that the underlying density is a smooth function and want a smooth
estimate.

The above derivation, together with the three figures, provides a motivation for the
kernel method of density estimation, which we formulate as follows. Given a set of
observations fx1; : : : ; xng, an estimate of a density function, in one dimension, is taken
to be

Op.x/ D 1

nh

nX
iD1

K



x � xi

h

�
(3.18)

where K .z/ is termed the kernel function and h is the spread or smoothing parameter
(sometimes termed the bandwidth). Examples of popular univariate kernel functions are
given in Table 3.2.
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Figure 3.18 Probability density figure with Gaussian kernel and h D 0.2

Table 3.2 Commonly used kernel functions for univariate data

Kernel function Analytic form, K .x/

Rectangular 1
2 for jx j < 1; 0 otherwise

Triangular 1� jx j for jx j < 1; 0 otherwise

Biweight 15
16 .1� x2/2 for jx j < 1; 0 otherwise

Normal 1p
2³

exp.�x2=2/

Bartlett–Epanechnikov 3
4 .1� x2=5/=

p
5 for jx j < p5; 0 otherwise

Multivariate kernels (p variables) are usually radially symmetric univariate densi-
ties such as the Gaussian kernel K .x/ D .2³/�p=2 exp.�xT x=2/ and the Bartlett–
Epanechnikov kernel K .x/ D .1� xT x/.p C 2/=.2cp/ for jxj < 1 (0 otherwise) where
cp D ³ p=2= 0..p=2/C 1/ is the volume of the p-dimensional unit sphere.

If we impose the conditions that the kernel K .z/ ½ 0 and
R

K .z/dz D 1, then
the density estimate Op.x/ given by (3.18) also satisfies the necessary conditions for a
probability density function, p.x/ ½ 0 and

R
p.x/ dx D 1.

The theorem due to Rosenblatt (1956) implies that for positive kernels the density
estimate will be biased for any finite sample size (see Section 3.1). That is, the estimate
of the density averaged over an ensemble of data sets is a biased estimate of the true
probability density function. In order to obtain an unbiased estimate, we would be required
to relax the condition of positivity of the kernels. Thus the estimate of the density function
would not necessarily be a density function itself since it may have negative values. To
some people, that would not matter. After all, why should the properties of the estimate be
the same as the true density? On the other hand, there are some who could not live with
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an estimate of a probability that had negative values, and so would readily accept a bias.
They would also point out that asymptotically the estimate is unbiased (it is unbiased
as the number of samples used in the estimate tends to infinity) and asymptotically
consistent if certain conditions on the smoothing parameter and the kernel hold. These
conditions on the kernel are

Z
jK .z/j dz <1
Z

K .z/dz D 1

sup
z
jK .z/j <1 K .z/ is finite everywhere

lim
z!1 jzK .z/j D 0

and the conditions on the smoothing parameter are

lim
n!1 h.n/ D 0 for an asymptotic unbiased estimate

lim
n!1 nh.n/ D 1 for an asymptotic consistent estimate

The effect of changing the smoothing parameter is shown in Figure 3.19. For a large
value of h, the density is smoothed and detail is obscured. As h becomes smaller, the
density estimate shows more structure and becomes spiky as h approaches zero.

The extension to multivariate data is straightforward, with the multivariate kernel
density estimate defined as

Op.x/ D 1

nh p

nX
iD1

K



1

h
.x � xi /

�
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Figure 3.19 Probability density with different levels of smoothing (h D 0.2 and h D 0.5)
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where K .x/ is a multivariate kernel defined for p-dimensional x
Z

R p
K .x/ dx D 1

and h is the window width. One form of the probability density function estimate com-
monly used is a sum of product kernels (note that this does not imply independence of
the variables)

Op.x/ D 1

n

1

h1 : : : h p

nX
iD1

pY
jD1

K j



[x � xi ] j

h j

�

where there is a different smoothing parameter associated with each variable. The K j

can take any of the univariate forms in Table 3.2. Usually, the K j are taken to be the
same form.

More generally, we may take

Op.x/ D Op.x;H / D 1

n

nX
iD1

jH j�1=2 K .H�1=2.x � xi //

where K is a p-variate spherically symmetric density function and H is a symmetric
positive definite matrix. In a classification context, H is commonly taken to be h2

k
O�k

for class !k , where hk is a scaling for class !k and O�k is the sample covariance matrix.
Various approximations to the covariance are evaluated by Hamamoto et al. (1996) in
situations where the sample size is small and the dimensionality is high.

3.5.1 Choice of smoothing parameter

One of the problems with this ‘nonparametric’ method is the choice of the smoothing
parameter, h. If h is too small, the density estimator is a collection of n sharp peaks,
positioned at the sample points. If h is too large, the density estimate is smoothed and
structure in the probability density estimate is lost. The optimal choice of h depends
on several factors. Firstly, it depends on the data: the number of data points and their
distribution. It also depends on the choice of the kernel function and on the optimality
criterion used for its estimation. The maximum likelihood estimation of h that maximises
the likelihood

p.x1; : : : ; xnjh/
is given by h D 0 – an estimate that consists of a spike at each data point and zero
elsewhere. Therefore, some other technique must be used for estimating h. There are
many possible methods. Surveys are given in the articles by Jones et al. (1996) and
Marron (1988).

1. Find the average distance between samples and their kth nearest neighbour and use
this for h. A value of k D 10 has been suggested (Hand, 1981a).

2. Find the value of h that minimises the mean integrated squared error between the
density and its approximation. For a radially symmetric normal kernel, Silverman
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(1986) suggests

h D ¦



4

p C 2

� 1
pC4

n�
1

pC4 (3.19)

where a choice for ¦ is

¦ 2 D 1

p

pX
iD1

sii

and sii are the diagonal elements of a sample covariance matrix, possibly a robust
estimate (see Chapter 11). The above estimate will work well if the data come from
a population that is normally distributed, but may over-smooth the density if the
population is multimodal. A slightly smaller value may be appropriate. You could try
several values and assess the misclassification rate.

3. There are more sophisticated ways of choosing kernel widths based on least squares
cross-validation and likelihood cross-validation. In likelihood cross-validation the
value of h is chosen to maximise (Duin, 1976)

nY
iD1

Opi .xi /

where Opi .xi / is the density estimate based on n� 1 samples (all samples but the i th).
However, a major problem with this method is its reported poor performance in the
heavy-tailed case.

4. Many bandwidth estimators have been considered for the univariate case. The basic
idea behind the ‘plug-in’ estimate is to plug an estimate for the unknown curvature,

S
4D R

.pii /2 dx (the integral of the square of the second derivative of the density),
into the expression for h that minimises the asymptotic mean integrated squared error,

h D
h c

d2Sn

i1=5

where c D R K 2.t/dt and d D R t2K .t/dt . Jones and Sheather (1991) propose a kernel
estimate for the curvature, but this, in turn, requires an estimate of the bandwidth,
which will be different from that used to estimate the density. Cao et al. (1994), in
simulations, use

S D n�2g�5
X
i; j

K iv



xi � x j

g

�

where K iv is the fourth derivative of K and the smoothing parameter g is given by

g D



2K iv.0/

d

�1=7

OT�1=7n�1=7

in which OT is a parametric estimator of
R

piii .t/2 dt . Development of the ‘plug-in’
ideas to bandwidth selectors for multivariate data has been considered by Wand and
Jones (1994).
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Cao et al. (1994) perform comparative studies on a range of smoothing methods for
univariate densities. Although there is no uniformly best estimator, they find that the
plug-in estimator of Sheather and Jones (1991) shows satisfactory performance over a
range of problems.

The previous discussion has assumed that h is a fixed value over the whole of the
space of data samples. The ‘optimal’ value of h may in fact be location-dependent, giving
a large value in regions where the data samples are sparse and a small value where the
data samples are densely packed. There are two main approaches: (i) h D h.x/; that is,
h depends on the location of the sample in the data space. Such approaches are often
based on nearest-neighbour ideas. (ii) h D h.xi /; that is, h is fixed for each kernel and
depends on the local density. These are termed variable kernel methods.

One particular choice for h is (Breiman et al., 1977)

h j D Þkd jk

where Þk is a constant multiplier and d jk is the distance from x j to its kth nearest
neighbour in the training/design set. However, we still have the problem of parameter
estimation – namely that of estimating Þk and k.

Breiman et al. (1977) find that good fits can be obtained over a wide range of k
provided Þk satisfies

þk
4D Þkdk

2

¦.dk/
D constant

where dk is the mean of the kth nearest-neighbour distances ( 1
n

Pn
jD1 d jk) and ¦.dk/ is

their standard deviation. In their simulations, this constant was 3–4 times larger than the
best value of h obtained for the fixed kernel estimator.

Other approaches that have a different bandwidth for the kernel associated with each
data point employ a ‘pilot’ density estimate to set the bandwidth. Abramson (1982) has
proposed a bandwidth inversely proportional to the square root of the density, hp�1=2.x/,
which may lead to O.h4/ bias under certain conditions on the density (see Terrell and
Scott, 1992; Hall et al. 1995). Although a pilot estimate of p.z/ is required, the method
is insensitive to the fine detail of the pilot (Silverman, 1986).

3.5.2 Choice of kernel

Another choice which we have to make in the form of our density estimate is the kernel
function. In practice, the most widely used kernel is the normal form

K
� x

h

�
D 1

h
p

2³
exp

²
� x2

2h2

¦

with product kernels being used for multivariate density estimation. Alternatively, radially
symmetric unimodal probability density functions such as the multivariate normal density
function are used. There is evidence that the form is relatively unimportant, though the
product form may not be ideal for the multivariate case. There are some arguments in
favour of kernels that are not themselves densities and admit negative values (Silverman,
1986).
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3.5.3 Example application study

The problem The practical problem addressed relates to one in the oil industry: to
predict the type of subsurface (for example, sand, shale, coal – the lithofacies class) from
physical properties such as electron density, velocity of sound and electrical resistivity
obtained from a logging instrument lowered into a well.

Summary In some practical problems, the probability density function of data may
vary with time – termed population drift (Hand, 1997). Thus, the test conditions differ
from those used to define the training data. Kraaijveld (1996) addresses the problem of
classification when the training data are only approximately representative of the test
conditions using a kernel approach to discriminant analysis.

The data Twelve standard data sets were generated from data gathered from two fields
and 18 different well sites. The data sets comprised different-sized feature sets (4 to 24
features) and 2, 3 and 4 classes.

The model A Gaussian kernel is used, with the width estimated by maximising a
modified likelihood function (solved using a numerical root-finding procedure and giving
a width, s1). An approximation, based on the assumption that the density at a point is
determined by the nearest kernel only, is given by

s2 D
vuut 1

pn

nX
iD1

jxŁi � xi j2

for a p-dimensional data set fxi ; i D 1; : : : ; ng, where xŁi is the nearest sample to xi .
A robust estimate is also derived using a test data set, again using a modified likelihood

criterion, to give s3. The nearest-neighbour approximation is

s4 D
vuut 1

pnt

ntX
iD1

jxŁi � xt
i j2

where the test set is fx t
i ; i D 1; : : : ; nt g. This provides a modification to the kernel width

using the test set distribution (but not the test set labels). Thus, the test set is used as
part of the training procedure.

Training procedure Twelve experiments were defined by using different combina-
tions of data sets as train and test and five classifiers assessed (kernels with bandwidth
estimators s1 to s4 and nearest neighbour).

Results The robust methods led to an increase in performance (measured in terms of
error rate) in all but one of the 12 experiments. The nearest-neighbour approximation to
the bandwidth tended to underestimate the bandwidth by about 20%.
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3.5.4 Further developments

There have been several papers comparing the variable kernel approach with the fixed
kernel method. Breiman et al. (1977) find superior performance compared to the fixed
kernel approach. It seems that a variable kernel method is potentially advantageous when
the underlying density is heavily skewed or long-tailed (Remme et al., 1980; Bowman,
1985). Terrell and Scott (1992) report good performance of the Breiman et al. model
for small to moderate sample sizes, but performance deteriorates as sample size grows
compared to the fixed kernel approach.

Further investigations into variable kernel approaches include those of Krzyzak (1983)
(who examines classification rules) and Terrell and Scott (1992). Terrell and Scott con-
clude that it is ‘surprisingly difficult to do significantly better than the original fixed
kernel scheme’. An alternative to the variable bandwidth kernel is the variable location
kernel (Jones, et al., 1994), in which the location of the kernel is perturbed to reduce bias.

For multivariate data, procedures for approximating the kernel density using a reduced
number of kernels are described by Fukunaga and Hayes (1989a) and Babich and Camps
(1996). Fukunaga and Hayes select a set from the given data set by minimising an entropy
expression. Babich and Camps use an agglomerative clustering procedure to find a set
of prototypes and weight the kernels appropriately (cf. mixture modelling). Jeon and
Landgrebe (1994) use a clustering procedure, together with a branch and bound method,
to eliminate data samples from the density calculation.

There are several approaches to density estimation that combine parametric and
nonparametric approaches (semiparametric density estimators). Hjort and Glad (1995)
describe an approach that multiplies an initial parametric start with a nonparametric
kernel-type estimate for the necessary correction factor. Hjort and Jones (1996) find the
best local parametric approximation to a density p.x; θ/, where the parameter values, θ ,
depend on x .

The kernel methods described in this chapter apply to real-valued continuous quanti-
ties. We have not considered issues such as dealing with missing data (see Titterington
and Mill, 1983; Pawlak, 1993) or kernel methods for discrete data (see McLachlan,
1992a, for a summary of kernel methods for other data types).

3.5.5 Summary

Kernel methods, both for multivariate density estimation and regression, have been ex-
tensively studied. The idea behind kernel density estimation is very simple – put a ‘bump’
function over each data point and then add them up to form a density. One of the dis-
advantages of the kernel approach is the high computational requirements for large data
sets – there is a kernel at every data point that contributes to the density at a given
point, x . Computation can be excessive and for large data sets it may be appropriate
to use kernels other than the normal density in an effort to reduce computation. Also,
since kernels are localised, only a small proportion will contribute to the density at a
given point. Some preprocessing of the data will enable non-contributing kernels to be
identified and omitted from a density calculation. For univariate density estimates, based
on the normal kernel, Silverman (1982) proposes an efficient algorithm for computation
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based on the fact that the density estimate is a convolution of the data with the kernel
and the Fourier transform is used to perform the convolution (see also Silverman, 1986;
Jones and Lotwick, 1984). Speed improvements can be obtained in a similar manner to
those used for k-nearest-neighbour methods – by reducing the number of prototypes (as
in the edit and condense procedures).

The k-nearest-neighbour methods may also be viewed as kernel approaches to density
estimation in which the kernel has uniform density in the sphere centred at a point x

and of radius equal to the distance to the kth nearest neighbour. The attractiveness of k-
nearest-neighbour methods is that the kernel width varies according to the local density,
but is discontinuous. The work of Breiman et al. described earlier in this chapter is an
attempt to combine the best features of k-nearest-neighbour methods with the fixed kernel
approaches.

There may be difficulties in applying the kernel method in high dimensions. Regions
of high density may contain few samples, even for moderate sample sizes. For example,
in the 10-dimensional unit multivariate normal distribution (Silverman, 1986), 99% of
the mass of the distribution is at points at a distance greater than 1.6, whereas in one
dimension, 90% of the distribution lies between š1:6. Thus, reliable estimates of the
density can only be made for extremely large samples in high dimensions. As an indica-
tion of the sample sizes required to obtain density estimates, Silverman considers again
the special case of a unit multivariate normal distribution, and a kernel density estimate
with normal kernels where the window width is chosen to minimise the mean squared
error at the origin. In order that the relative mean squared error, E[. Op.0/� p.0//2=p2.0/],
is less than 0.1, a small number of samples is required in one and two dimensions (see
Table 3.3).

However, for 10 dimensions, over 800 000 samples are necessary. Thus, in order to
obtain accurate density estimates in high dimensions, an enormous sample size is needed.
Further, these results are likely to be optimistic and more samples would be required to
estimate the density at other points in the distribution to the same accuracy.

Kernel methods are motivated by the asymptotic results and as such are only re-
ally relevant to low-dimensional spaces due to sample size considerations. However,
as far as discrimination is concerned, we may not necessarily be interested in accurate
estimates of the densities themselves, but rather the Bayes decision region for which
approximate estimates of the densities may suffice. In practice, kernel methods do work
well on multivariate data, in the sense that error rates similar to other classifiers can be
achieved.

3.6 Application studies

The nonparametric methods of density estimation described in this chapter have been
applied to a wide range of problems. Applications of Bayesian networks include the
following.

ž Drug safety. Cowell et al. (1991) develop a Bayesian network for analysing a specific
adverse drug reaction problem (drug-induced pseudomembranous colitis). The algo-
rithm of Lauritzen and Spiegelhalter (1988) was used for manipulating the probability
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Table 3.3 Required sample size as a function of
dimension for a relative mean squared error at the
origin of less than 0.1 when estimating a standard
multivariate normal density using normal kernels
with width chosen so that the mean squared error
at the origin is minimised (Silverman, 1986)

Dimensionality Required sample size

1 4

2 19

3 67

4 223

5 768

6 2 790

7 10 700

8 43 700

9 187 000

10 842 000

density functions in Bayesian networks; see also Spiegelhalter et al. (1991) for a clear
account of the application of probabilistic expert systems.

ž Endoscope navigation. In a study on the use of computer vision techniques for auto-
matic guidance and advice in colon endoscopy, Kwoh and Gillies (1996) construct a
Bayesian network (using subjective knowledge from an expert) and compare perfor-
mance with a maximum weight dependence tree learned from data. The latter gave
better performance.

ž Geographic information processing. Stassopoulou et al. (1996) compare Bayesian net-
works and neural networks (see Chapters 5 and 6) in a study to combine remote
sensing and other data for assessing the risk of desertification of burned forest areas
in the Mediterranean region. A Bayesian network is constructed using information
provided by experts. An equivalent neural network is trained and its parameters used
to set the conditional probability tables in the Bayesian network.

ž Image segmentation. Williams and Feng (1998) use a tree-structured network, in con-
junction with a neural network, as part of an image labelling scheme. The conditional
probability tables are estimated from training data using a maximum likelihood pro-
cedure based on the EM algorithm (see Chapter 2).

A comparative study on 25 data sets of the naı̈ve Bayes classifier and a tree-structured
classifier is performed by Friedman et al. (1997). The tree-structured classifiers outper-
form the naı̈ve Bayes while maintaining simplicity.
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Examples of applications of k-nearest-neighbour methods include the following.

ž Target classification. Chen and Walton (1986) apply nearest-neighbour methods to ship
and aircraft classification using radar cross-section measurements. Drake et al. (1994)
compare several methods, including k-nearest-neighbour, to multispectral imagery.

ž Handwritten character recognition. There have been many studies in which nearest-
neighbour methods have been applied to handwritten characters. Smith et al. (1994)
use three distance metrics for a k-nearest-neighbour application to handwritten digits.
Yan (1994) uses nearest-neighbour with a multilayer perceptron to refine prototypes.

ž Credit scoring. Von Stein and Ziegler (1984) compare several discriminant analysis
methods, including nearest-neighbour, to the problem of credit assessment for com-
mercial borrowers.

ž Nuclear reactors. In a small data set study, Dubuisson and Lavison (1980) use both
k-nearest-neighbour and kernel density estimators to discriminate between two classes
of power signals in the monitoring of a high-flux isotope reactor.

ž Astronomy. Murtagh (1994) uses linear methods and k-nearest-neighbour to classify
stellar objects using a variety of feature sets (up to 48 variables).

Example applications of kernel methods are as follows.

ž Philatelic mixtures. Izenman and Sommer (1988) use nonparametric density estimates
(and finite mixture models) to model postage stamp paper thicknesses.

ž Chest pain. Scott et al. (1978) use a quartic kernel to estimate the density of plasma
lipids in two groups (diseased and normal). The aim of the investigation was to as-
certain the dependence of the risk of coronary artery disease on the joint variation of
plasma lipid concentrations.

ž Fruit fly classification. Sutton and Steck (1994) use Epanechnikov kernels in a two-
class fruit fly discrimination problem.

ž Forecasting abundance. Rice (1993) uses kernel methods based on Cauchy distributions
in a study of abundance of fish.

ž Astronomy. Studies involving kernel methods in astronomy include those of (i) De
Jager et al. (1986) who compare histogram and kernel approaches to estimate a light
curve, which is characteristic of periodic sources of gamma rays; (ii) Merritt and
Tremblay (1994) who estimate surface and space density profiles of a spherical stellar
system; and (iii) Vio et al. (1994) who consider the application of kernel methods to
several problems in astronomy – bimodality, rectification and intrinsic shape determi-
nation of galaxies.

ž Lithofacies recognition from wireline logs. Kraaijveld (1996) considers the problem of
subsurface classification from well measurements. In particular, he develops the kernel
classification method to the case where the test data differ from the training data by
noise.

A comparative study of different kernel methods applied to multivariate data is re-
ported by Breiman et al. (1977) and Bowman (1985). Hwang et al. (1994a) compare
kernel density estimators with projection pursuit density estimation which interprets
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multidimensional density through several one-dimensional projections (see Chapter 6).
Jones and Signorini (1997) perform a comparison of ‘improved’ univariate kernel density
estimators; see also Cao et al. (1994) and Titterington (1980) for a comparison of kernels
for categorical data.

The Statlog project (Michie et al., 1994) provides a thorough comparison of a wide
range of classification methods, including k-nearest-neighbour and kernel discriminant
analysis (algorithm ALLOC80). ALLOC80 has a slightly lower error rate than k-nearest-
neighbour (for the special case of k D 1 at any rate), but had longer training and test
times. More recent comparisons include Liu and White (1995).

3.7 Summary and discussion

The approaches to discrimination developed in this chapter have been based on estimation
of the class-conditional density functions using nonparametric techniques. It is certainly
true that we cannot design a classifier that performs better than the Bayes discriminant
rule. No matter how sophisticated a classifier is, or how appealing it may be in terms of
reflecting a model of human decision processes, it cannot outperform the Bayes classifier
for any proper performance criterion; in particular, it cannot achieve a lower error rate.
Therefore a natural step is to estimate the components of the Bayes rule from the data,
namely the class-conditional probability density functions and the class priors. We shall
see in later chapters that we do not need to model the density explicitly to get good
estimates of the posterior probabilities of class membership.

We have described four nonparametric methods of density estimation: the histogram
approach and developments to reduce the number of parameters (naı̈ve Bayes, tree-
structured density estimators and Bayesian networks); the k-nearest-neighbour method
leading to the k-nearest-neighbour classifier; series methods; and finally, kernel meth-
ods of density estimation. With advances in computing in recent years, these methods
have now become viable and nonparametric methods of density estimation have had an
impact on nonparametric approaches to discrimination and classification. Of the meth-
ods described, for discrete data the developments of the histogram – the independence
model, the Lancaster models and maximum weight dependence trees – are easy to im-
plement. Learning algorithms for Bayesian networks can be computationally demanding.
For continuous data, the kernel method is probably the most popular, with normal kernels
with the same window width for each dimension. However, it is reported by Terrell and
Scott (1992) that nearest-neighbour methods are superior to fixed kernel approaches to
density estimation beyond four dimensions. The kernel method has also been applied to
discrete data.

In conclusion, an approach based on density estimation is not without its dangers
of course. If incorrect assumptions are made about the form of the distribution in the
parametric approach (and in many cases we will not have a physical model of the
data generation process to use) or data points are sparse leading to poor kernel density
estimates in the nonparametric approach, then we cannot hope to achieve good density
estimates. However, the performance of a classifier, in terms of error rate, may not
deteriorate too dramatically. Thus, it is a strategy worth trying.
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3.8 Recommendations

1. Nearest-neighbour methods are easy to implement and are recommended as a starting
point for a nonparametric approach. In the Statlog project (Michie et al., 1994), the
k-nearest-neighbour method came out best on the image data sets (top in four and
runner-up in two of the six image data sets) and did very well on the whole.

2. For large data sets, some form of data reduction in the form of condensing/editing is
advised.

3. As density estimators, kernel methods are not appropriate for high-dimensional data,
but if smooth estimates of the density are required they are to be preferred over k-
nearest-neighbour. Even poor estimates of the density may still give good classification
performance.

4. For multivariate data sets, it is worth trying a simple independence model as a base-
line. It is simple to implement, handles missing values easily and can give good
performance.

5. Domain-specific and expert knowledge should be used where available. Bayesian net-
works are an attractive scheme for encoding such knowledge.

3.9 Notes and references

There is a large literature on nonparametric methods of density estimation. A good start-
ing point is the book by Silverman (1986), placing emphasis on the practical aspects of
density estimation. The book by Scott (1992) provides a blend of theory and applications,
placing some emphasis on the visualisation of multivariate density estimates. The article
by Izenman (1991) is to be recommended, covering some of the more recent develop-
ments in addition to providing an introduction to nonparametric density estimation. Other
texts are Devroye and Györfi (1985) and Nadaraya (1989). The book by Wand and Jones
(1995) presents a thorough treatment of kernel smoothing.

The literature on kernel methods for regression and density estimation is vast. A
treatment of kernel density estimation can be found in most textbooks on density es-
timation. Silverman (1986) gives a particularly lucid account and the book by Hand
(1982) provides a very good introduction and considers the use of kernel methods for
discriminant analysis. Other treatments, more detailed than that presented here, may
be found in the books by Scott (1992), McLachlan (1992a) and Nadaraya (1989).
A thorough treatment of kernel smoothing is given in the book by Wand and Jones
(1995).

Good introductions to Bayesian networks are provided by Jensen (1996), Pearl (1988)
and Neapolitan (1990) and the article by Heckerman (1999).

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.
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Exercises

Data set 1: Generate p-dimensional multivariate data (500 samples in train and test sets,
equal priors) for two classes: for !1, x ¾ N .µ1;�1/ and for !2, x ¾ 0:5N .µ2;�1/ C
0:5N .µ3;�3/ where µ1 D .0; : : : ; 0/T , µ2 D .2; : : : ; 2/T , µ3 D .�2; : : : ;�2/T and
�1 D �2 D �3 D I , the identity matrix.
Data set 2: Generate data from p-dimensional multivariate data (500 samples in train
and test sets, equal priors) for three normally distributed classes with µ1 D .0; : : : ; 0/T ,
µ2 D .2; : : : ; 2/T , µ3 D .�2; : : : ;�2/T and �1 D �2 D �3 D I , the identity matrix.

1. For three variables, X1; X2 and X3 taking one of two values, 1 or 2, denote by Pi j
ab

the probability that Xi D a and X j D b. Specifying the density as

P12
12 D P13

11 D P23
11 D P23

12 D P12
22 D P13

21 D P23
21 D P23

22 D 1
4

P12
11 D P13

12 D 7
16 ; P12

21 D P13
22 D 1

16

show that the Lancaster density estimate of the probability p.X1 D 2; X2 D 1,
X3 D 2) is negative (D �1=64).

2. For a tree-dependent distribution (equation (3.3)):

pt .x/ D
pY

iD1

p.xi jx j .i//

and noting that p.x/ log.p.x// does not depend on the tree structure, show that
minimising the Kullback–Leibler distance

D D
X
x

p.x/ log



p.x/

pt .x/

�

is equivalent to finding the tree that minimises

pX
iD1

X
xi ;x j .i/

p.xi ; x j .i// log



p.xi ; x j .i//

p.xi /p.x j .i//

�

3. Verify that the Bartlett–Epanechnikov kernel satisfies the properties
Z

K .t/ dt D 1
Z

t K .t/ dt D 0
Z

t2K .t/ dt D k2 6D 0

4. Compare and contrast the k-nearest-neighbour classifier with the Gaussian classi-
fier. What assumptions do the models make? Also, consider such issues as training
requirements, computation time, and storage and performance in high dimensions.
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5. Consider a sample of n observations .x1; : : : ; xn/ from a density p. An estimate
Op is calculated using a kernel density estimate with Gaussian kernels for various
bandwidths h. How would you expect the number of relative maxima of Op to vary
as h increases? Suppose that the xi ’s are drawn from the Cauchy density p.x/ D
³=.1C x2/. Show that the variance of X is infinite. Does this mean that the variance
of the Gaussian kernel density estimate Op is infinite?

6. Consider the multivariate kernel density estimate (x 2 R
p),

Op.x/ D 1

nh p

nX
iD1

K



1

h
.x � xi /

�

Show that the k-nearest-neighbour density estimate given by (3.9) is a special case
of the above for suitable choice of K and h (which varies with position, x).

7. Implement a k-nearest-neighbour classifier using data set 1 and investigate its per-
formance as a function of dimensionality p D 1; 3; 5; 10 and k. Comment on the
results.

8. For the data of data set 1, implement a Gaussian kernel classifier. Construct a separate
validation set to obtain a value of the kernel bandwidth (initialise at the value given
by (3.19) and vary from this). Describe the results.

9. Implement a base prototype selection algorithm to select nb base prototypes using
data set 2. Implement the LAESA procedure and plot the number of distance calcu-
lations in classifying the test data as a function of the number of base prototypes,
nb, for p D 2; 4; 6; 8 and 10.

10. Using data set 2, implement a nearest-neighbour classifier with edit and condensing.
Calculate the nearest-neighbour error rate, the error rate after editing, and the error
rate after editing and condensing.

11. Again, for the three-class data above, investigate procedures for choosing k in the
k-nearest-neighbour method.

12. Consider nearest-neighbour with edit and condense. Suggest ways of reducing the
final number of prototypes by careful initialisation of the condensing algorithm. Plan
a procedure to test your hypotheses. Implement it and describe your results.
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Linear discriminant analysis

Overview

Discriminant functions that are linear in the features are constructed, resulting in
(piecewise) linear decision boundaries. Different optimisation schemes give rise
to different methods including the perceptron, Fisher’s linear discriminant func-
tion and support vector machines. The relationship between these methods is dis-
cussed.

4.1 Introduction

This chapter deals with the problem of finding the weights of a linear discriminant
function. Techniques for performing this task have sometimes been referred to as learning
algorithms, and we retain some of the terminology here even though the methods are
ones of optimisation or training rather than learning. A linear discriminant function has
already appeared in Chapter 2. In that chapter, it arose as a result of a normal distribution
assumption for the class densities in which the class covariance matrices were equal. In
this chapter, we make no distributional assumptions, but start from the assumption that
the decision boundaries are linear. The algorithms have been extensively treated in the
literature, but they are included here as an introduction to the nonlinear models discussed
in the following chapter, since a stepping stone to the nonlinear models is the generalised
linear model in which the discriminant functions are linear combinations of nonlinear
functions.

The treatment is divided into two parts: the binary classification problem and the
multiclass problem. Although the two-class problem is clearly a special case of the
multiclass situation (and in fact all the algorithms in the multiclass section can be applied
to two classes), the two-class case is of sufficient interest in its own right to warrant a
special treatment. It has received a considerable amount of attention and many different
algorithms have been proposed.

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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4.2 Two-class algorithms

4.2.1 General ideas

In Chapter 1 we introduced the discriminant function approach to supervised classifica-
tion; here we briefly restate that approach for linear discriminant functions.

Suppose we have a set of training patterns x1; : : : ; xn , each of which is assigned to
one of two classes, !1 or !2. Using this design set, we seek a weight vector w and a
threshold w0 such that

wTx Cw0

²
> 0
< 0

) x 2
²
!1
!2

or

vT z

²
> 0
< 0

) x 2
²
!1
!2

where z D .1; x1; : : : ; x p/
T is the augmented pattern vector and v is a .p C 1/-

dimensional vector .w0; w1; : : : ; wp/
T . In what follows, z could also be .1; 	1.x/; : : : ;

	D.x//
T , with v a .D C 1/-dimensional vector of weights, where f	i ; i D 1; : : : ; Dg is

a set of D functions of the original variables. Thus, we may apply these algorithms in a
transformed feature space.

A sample in class !2 is classified correctly if vT z < 0. If we were to redefine all
samples in class !2 in the design set by their negative values and denote these redefined
samples by y, then we seek a value for v which satisfies

vT y > 0 for all yi corresponding to xi in the design set

[yT
i D .1; xT

i /; xi 2 !1; yT
i D .�1;�xT

i /; xi 2 !2]
(4.1)

Ideally, we would like a solution for v that makes vT y positive for as many samples
in the design set as possible. This minimises the misclassification error on the design
set. If vT yi > 0 for all members of the design set then the data are said to be linearly
separable.

However, it is difficult to minimise the number of misclassifications. Usually some
other criterion is employed. The sections that follow introduce a range of criteria adopted
for discrimination between two classes. Some are suitable if the classes are separable,
others for overlapping classes. Some lead to algorithms that are deterministic, others can
be implemented using stochastic algorithms.

4.2.2 Perceptron criterion

Perhaps the simplest criterion to minimise is the perceptron criterion function

JP .v/ D
X
yi2Y

.�vT yi /

where Y D fyi jvT yi < 0g (the set of misclassified samples). JP is proportional to the
sum of the distances of the misclassified samples to the decision boundary.
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Error-correction procedure
Since the criterion function JP is continuous, we can use a gradient-based procedure,
such as the method of steepest descent (Press et al., 1992), to determine its minimum:

@ JP

@v
D
X
yi2Y

.�yi /

which is the sum of the misclassified patterns, and the method of steepest descent gives
a movement along the negative of the gradient with update rule

vkC1 D vk C ²k

X
yi2Y

yi (4.2)

where ²k is a scale parameter that determines the step size. If the sample sets are sep-
arable, then this procedure is guaranteed to converge to a solution that separates the
sets. Algorithms of the type (4.2) are sometimes referred to as many-pattern adapta-
tion or batch update since all given pattern samples are used in the update of v. The
corresponding single-pattern adaptation scheme is

vkC1 D vk C ²kyi (4.3)

where yi is a training sample that has been misclassified by vk . This procedure cycles
through the training set, modifying the weight vector whenever a sample is misclassified.
There are several types of error-correction procedure of the form of (4.3). The fixed
increment rule takes ²k D ², a constant, and is the simplest algorithm for solving
systems of linear inequalities.

The error-correction procedure is illustrated geometrically in weight space in
Figures 4.1 and 4.2. In Figure 4.1, the plane is partitioned by the line vT yk D 0.
Since the current estimate of the weight vector vk has vkyk < 0, the weight vector is
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Figure 4.1 Perceptron training
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C
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vT y1 D 0

�
C

v0

1

2

3

4

5

Solution Region

Figure 4.2 Perceptron training

updated by (for ² D 1) adding on the pattern vector yk . This moves the weight vector
towards and possibly into the region vT yk > 0. In Figure 4.2, the lines vT yk D 0 are
plotted for four separate training patterns. If the classes are separable, the solution for v
must lie in the shaded region (the solution region for which vT yk > 0 for all patterns
yk). A solution path is also shown starting from an initial estimate v0. By presenting
the patterns y1; y2; y3; y4 cyclically, a solution for v is obtained in five steps: the first
change to v0 occurs when y2 is presented (v0 is already on the positive side of vT y1 D 0,
so presenting y1 does not update v). The second step adds on y3; the third y2 (y4 and
y1 are not used because v is on the positive side of both hyperplanes vT y4 D 0 and
vT y1 D 0); the final two stages are the addition of y3, then y1. Thus, from the sequence

y1; Oy2; Oy3; y4; y1; Oy2; Oy3; y4; Oy1

only those vectors with a caret are used. Note that it is possible for an adjustment to undo
a correction previously made. In this example, although the iteration started on the right
(positive) side of vT y1 D 0, successive iterations of v gave an estimate with vT y1 < 0
(at stages 3 and 4). Eventually a solution with JP .v/ D 0 will be obtained for separable
patterns.

Variants
There are many variants on the fixed increment rule given in the previous section. We
consider just a few of them here.

(1) Absolute correction rule Choose the value of ² so that the value of vT
kC1yi is

positive. Thus
² > jvT

k yi j=jyi j2

where yi is the misclassified pattern presented at the kth step. This means that the iteration
corrects for each misclassified pattern as it is presented. For example, ² may be taken to
be the smallest integer greater than jvT

k yi j=jyi j2.
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(2) Fractional correction rule This sets ² to be a function of the distance to the
hyperplane vT yi D 0, i.e.

² D ½jvT
k yi j=jyi j2

where ½ is the fraction of the distance to the hyperplane vT yi D 0, traversed in going from
vk to vkC1. If ½ > 1, then pattern yi will be classified correctly after the adjustment to v.

(3) Introduction of a margin, b A margin, b > 0, is introduced (see Figure 4.3) and
the weight vector is updated whenever vT yi � b. Thus, the solution vector v must lie at
a distance greater than b=jyi j from each hyperplane vT yi D 0. The training procedures
given above are still guaranteed to produce a solution when the classes are separable.
One of the reasons often given for the introduction of a threshold is to aid generalisation.
Without the threshold, some of the points in the data space may lie close to the separating
boundary. Viewed in data space, all points xi lie at a distance greater than b=jwj from
the separating hyperplane. Clearly, the solution is not unique and in Section 4.2.5 we
address the problem of seeking a ‘maximal margin’ classifier.

(4) Variable increment ² One of the problems with the above procedures is that,
although they will converge if the classes are separable, the solution for v will oscillate if
the classes overlap. The error-correction procedure also converges (for linearly separable
classes) if ²k satisfies the following conditions

²k ½ 0
1X

kD1

²k D 1
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Figure 4.3 Solution region for a margin
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and

lim
m!1

Pm
kD1 ²

2
k�Pm

kD1 ²k
Ð2 D 0

In many problems, we do not know a priori whether the samples are separable or not. If
they are separable, then we would like a procedure that yields a solution that separates
the classes. On the other hand, if they are not separable then a method with ²k ! 0
will decrease the effects of misclassified samples as the iteration proceeds. One possible
choice is ²k D 1=k.

(5) Relaxation algorithm The relaxation or Agmon–Mays algorithm minimises the
criterion

Jr D 1

2

X
yi2Y

.vT yi � b/2=jyi j2

where Y is fyi jyT
i v � bg. Thus not only do the misclassified samples contribute to Jr ,

but so also do those correctly classified samples lying closer than b=jvj to the boundary
vT y D 0. The basic algorithm is

vkC1 D vk C ²k

X
yi2Yk

b � vT
k yi

jyi j2
yi

where Yk is fyi jyT
i vk � bg. This has a single-pattern scheme

vkC1 D vk C ²k
b � vT

k yi

jyi j2
yi

where vT
k yi � b (that is, the patterns yi that cause the vector v to be corrected). This is

the same as the fractional correction rule with a margin.

4.2.3 Fisher’s criterion

The approach adopted by Fisher was to find a linear combination of the variables that
separates the two classes as much as possible. That is, we seek the direction along which
the two classes are best separated in some sense. The criterion proposed by Fisher is
the ratio of between-class to within-class variances. Formally, we seek a direction w

such that

JF D
þþwT .m1 �m2/

þþ2
wTSWw

(4.4)

is a maximum, where m1 and m2 are the group means and SW is the pooled within-class
sample covariance matrix, in its bias-corrected form given by

1

n � 2

�
n1 O�1 C n2 O�2

�
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where O�1 and O�2 are the maximum likelihood estimates of the covariance matrices of
classes !1 and !2 respectively and there are ni samples in class !i (n1 C n C 2 D n).
Maximising the above criterion gives a solution for the direction w. The threshold weight
w0 is determined by an allocation rule. The solution for w that maximises JF can be
obtained by differentiating JF with respect to w and equating to zero. This yields

wT .m1 �m2/

wTSWw

²
2.m1 �m2/C

	
wT .m1 �m2/

wTSWw



SWw

¦
D 0

Since we are interested in the direction of w (and noting that wT .m1 �m2/=w
TSWw is

a scalar), we must have
w / S�1

W .m1 �m2/ (4.5)

We may take equality without loss of generality. The solution for w is a special case of
the more general feature extraction criteria described in Chapter 9 that result in trans-
formations that maximise a ratio of between-class to within-class variance. Therefore, it
should be noted that Fisher’s criterion does not provide us with an allocation rule, merely
a mapping to a reduced dimension (actually one dimension in the two-class situation)
in which discrimination is in some sense easiest. If we wish to determine an allocation
rule, we must specify a threshold, w0, so that we may assign x to class !1 if

wTx C w0 > 0

In Chapter 2 we have seen that if the data were normally distributed with equal
covariance matrices, then the optimal decision rule is linear: assign x to !1 if wTxCw0 >

0 where (equations (2.4) and (2.5))

w D S�1
W .m1 �m2/

w0 D �1

2
.m1 Cm2/

TS�1
W .m1 �m2/� log

	
p.!2/

p.!1/




Thus, the direction onto which x is projected is the same as that obtained through
maximisation of (4.4) and given by (4.5). This suggests that if we take w D S�1

W .m1�m2/

(unit constant of proportionality giving equality in (4.5)), then we may choose a threshold
to be given by w0 above, although we note that it is optimal for normally distributed
classes.

Note, however, that the discriminant direction (4.5) has been derived without any
assumptions of normality. We have used normal assumptions to set a threshold for dis-
crimination. In non-normal situations, a different threshold may be more appropriate.
Nevertheless, we may still use the above rule in the more general non-normal case,
giving: assign x to !1 if

²
x � 1

2
.m1 Cm2/

¦T

w > log

	
p.!2/

p.!1/



(4.6)

but it will not necessarily be optimal. Note that the above rule is not guaranteed to give
a separable solution even if the two groups are separable.
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4.2.4 Least mean squared error procedures

The perceptron and related criteria in Section 4.2.2 are all defined in terms of misclassified
samples. In this section, all the data samples are used and we attempt to find a solution
vector for which the equality constraints

vT yi D ti

are satisfied for positive constants ti . (Recall that the vectors yi are defined by yT
i D

.1; xT
i / for xi 2 !1 and yT

i D .�1;�xT
i / for xi 2 !2, or the .DC1/-dimensional vectors

.1;φT
i / and .�1;�φT

i / for transformations φ of the data φi D φ.xi /). In general, it will
not be possible to satisfy these constraints exactly and we seek a solution for v that
minimises a cost function of the difference between vT yi and ti . The particular cost
function we shall consider is the mean squared error.

Solution
Let Y be the n ð .p C 1/ matrix of sample vectors, with the i th row yi , and t D
.t1; : : : ; tn/T . Then the sum-squared error criterion is

JS D jjYv � t jj2 (4.7)

The solution for v minimising JS is (see Appendix C)

v D Y †t

where Y † is the pseudo-inverse of Y . If Y TY is nonsingular, then another form is

v D .Y TY /�1Y T t (4.8)

For the given solution for v, the approximation to t is

Ot D Yv

D Y .Y TY /�1Y T t

A measure of how well the linear approximation fits the data is provided by the absolute
error in the approximation, or error sum of squares, which is

jjOt � t jj2 D jjfY .Y TY /�1Y T � I gt jj2

and we define the normalised error as

ž D
 
jjOt � t jj2
jjt � t jj2

! 1
2

where t D t1, in which

t D 1

n

nX
iD1

ti
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is the mean of the values ti and 1 is a vector of 1s. The denominator, jjt � t jj2, is the
total sum of squares or total variation.

Thus, a normalised error close to zero represents a good fit to the data and a nor-
malised error close to one means that the model predicts the data in the mean and
represents a poor fit. The normalised error can be expressed in terms of the multiple
coefficient of determination, R2, used in ordinary least squares regression as (Dillon and
Goldstein, 1984)

R2 D 1� ž2

Relationship to Fisher’s linear discriminant
We have still not said anything about the choice of the ti . In this section we consider a
specific choice which we write

ti D
²

t1 for all xi 2 !1
t2 for all xi 2 !2

Order the rows of Y so that the first n1 samples correspond to class !1 and the remaining
n2 samples correspond to class !2. Write the matrix Y as

Y D
�

u1 X1
�u2 �X2

½
(4.9)

where ui .i D 1; 2/ is a vector of ni 1s and there are ni samples in class !i .i D 1; 2/.
The matrix Xi has ni rows containing the training set patterns and p columns. Then
(4.8) may be written

Y TYv D Y T t

and on substitution for Y from (4.9) and v as .w0;w/
T this may be rearranged to give

�
n n1m

T
1 C n2m

T
2

n1m1 C n2m2 XT
1 X1 CXT

2 X2

½ �
w0
w

½
D
�

n1t1 � n2t2
t1n1m1 � t2n2m2

½

where mi is the mean of the rows of Xi . The top row of the matrix gives a solution for
w0 in terms of w as

w0 D �1

n
.n1m

T
1 C n2m

T
2 /w C

n1

n
t1 � n2

n
t2 (4.10)

and the second row gives

.n1m1 C n2m2/w0 C .XT
1 X1 CXT

2 X2/w D t1m1n1 � t2m2n2

Substituting for w0 from (4.10) and rearranging gives
n

nSW C n1n2

n
.m1 �m2/.m1 �m2/

T
o
w D .m1 �m2/

n1n2

n
.t1 C t2/ (4.11)

where SW is the estimate of the assumed common covariance matrix, written in terms
of mi and Xi , i D 1; 2, as

SW D 1

n

n
XT

1 X1 CXT
2 X2 � n1m1m

T
1 � n2m2m

T
2

o
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Whatever the solution for w, the term

n1n2

n
.m1 �m2/.m1 �m2/

Tw

in (4.11) is in the direction of m1 �m2. Thus, (4.11) may be written

nSWw D Þ.m1 �m2/

for some constant of proportionality, Þ, with solution

w D Þ

n
S�1

W .m1 �m2/

the same solution obtained for Fisher’s linear discriminant (4.5). Thus, provided that the
value of ti is the same for all members of the same class, we recover Fisher’s linear
discriminant. We require that t1 C t2 6D 0 to prevent a trivial solution for w.

In the spirit of this approach, discrimination may be performed according to whether
w0 C wTx is closer in the least squares sense to t1 than �w0 � wT x is to t2. That is,
assign x to !1 if jjt1 � .w0 C wTx/jj2 < jjt2 C .w0 C wT x/jj2. Substituting for w0 and
w, this simplifies to (assuming Þ.t1 C t2/ > 0): assign x to !1 if

�
S�1

W .m1 �m2/
�T
.x �m/ >

t1 C t2
2

n2 � n1

Þ
(4.12)

where m is the sample mean, .n1m1 C n2m2/=n. The threshold on the right-hand side
of the inequality above is independent of t1 and t2 – see the exercises at the end of the
chapter.

Of course, other discrimination rules may be used, particularly in view of the fact
that the least squares solution gives Fisher’s linear discriminant, which we know is the
optimal discriminant for two normally distributed classes with equal covariance matrices.
Compare the one above with (4.6) that incorporates the numbers in each class in a
different way.

Optimal discriminant
Another important property of the measured squared error solution is that it approaches
the minimum mean squared error approximation to the Bayes discriminant function, g.x/,
given by

g.x/ D p.!1jx/� p.!2jx/

in the limit as the number of samples tends to infinity.
In order to understand what this statement means, consider JS given by (4.7) where

ti D 1 for all yi , so that

JS D
X
x2!1

.w0 C wTx � 1/2 C
X
x2!2

.w0 C wTx C 1/2 (4.13)

where we have assumed linear dependence of the yi on the xi . Figure 4.4 illustrates the
minimisation process taking place. For illustration, five samples are drawn from each of
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Figure 4.4 Optimality of least mean squared error rule – illustration of equation (4.13)

two univariate normal distributions of unit variance and means 0.0 and 2.0 and plotted
on the x-axis of Figure 4.4, Š for class !1 and ž for class !2. Minimising JS means that
the sum of the squares of the distances from the straight line in Figure 4.4 to either C1
for class !1 or �1 for class !2 is minimised. Also plotted in Figure 4.4 is the optimal
Bayes discriminant, g.x/, for the two normal distributions.

As the number of samples, n, becomes large, the expression JS=n tends to

JS

n
D p.!1/

Z
.w0 C wT x � 1/2 p.xj!1/ dx C p.!2/

Z
.w0 C wTx C 1/2 p.xj!2/ dx

Expanding and simplifying, this gives

JS

n
D
Z
.w0 C wT x/2 p.x/ dx C 1� 2

Z
.w0 C wTx/g.x/p.x/ dx

D
Z
.w0 C wT x � g.x//2 p.x/ dx C 1�

Z
g2.x/ dx

Since only the first integral in the above expression depends on w0 and w, we have
the result that minimising (4.13) is equivalent, as the number of samples becomes large,
to minimising

Z
.w0 C wT x � g.x//2 p.x/ dx (4.14)

which is the minimum squared error approximation to the Bayes discriminant function.
This is illustrated in Figure 4.5. The expression (4.14) above is the squared difference
between the optimal Bayes discriminant and the straight line, integrated over the distri-
bution, p.x/.

Note that if we were to choose a suitable basis 	1; : : : ; 	D, transform the feature
vector x to .	1.x/; : : : ; 	D.x//

T and then construct the linear discriminant function, we
might get a closer approximation to the optimal discriminant, and the decision boundary
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Figure 4.5 Least mean squared error approximation to the Bayes discriminant rule – illustration
of equation (4.14)

would not necessarily be a straight line (or plane) in the original space of the variables,
x. Also, although asymptotically the solution gives the best approximation (in the least
squares sense) to the Bayes discriminant function, it is influenced by regions of high
density rather than samples close to the decision boundary. Although Bayesian heuristics
motivate the use of a linear discriminant trained by least squares, it can give poor decision
boundaries in some circumstances (Hastie et al., 1994).

4.2.5 Support vector machines

As we stated in the introduction to this section, algorithms for linear discriminant func-
tions may be applied to the original variables or in a transformed feature space defined
by nonlinear transformations of the original variables. Support vector machines are no
exception. They implement a very simple idea – they map pattern vectors to a high-
dimensional feature space where a ‘best’ separating hyperplane (the maximal margin
hyperplane) is constructed (see Figure 4.6).
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Figure 4.6 Two linearly separable sets of data with separating hyperplane. The separating hyper-
plane on the right (the thick line) leaves the closest points at maximum distance. The thin lines on
the right identify the margin
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In this section we introduce the basic ideas behind the support vector model and in
Chapter 5 we develop the model further in the context of neural network classifiers. Much
of the work on support vector classifiers relates to the binary classification problem,
with the multiclass classifier constructed by combining several binary classifiers (see
Section 4.3.7).

Linearly separable data
Consider the binary classification task in which we have a set of training patterns fxi ; i D
1; : : : ; ng assigned to one of two classes, !1 and !2, with corresponding labels yi D š1.
Denote the linear discriminant function

g.x/ D wTx Cw0

with decision rule

wT x C w0

²
> 0
< 0

) x 2
²
!1 with corresponding numeric value yi D C1
!2 with corresponding numeric value yi D �1

Thus, all training points are correctly classified if

yi .w
T xi Cw0/ > 0 for all i

This is an alternative way of writing (4.1).
Figure 4.6a shows two separable sets of points with a separating hyperplane, A.

Clearly, there are many possible separating hyperplanes. The maximal margin classifier
determines the hyperplane for which the margin – the distance to two parallel hyperplanes
on each side of the hyperplane A that separates the data – is the largest (Figure 4.6b).
The assumption is that the larger the margin, the better the generalisation error of the
linear classifier defined by the separating hyperplane.

In Section 4.2.2, we saw that a variant of the perceptron rule was to introduce a
margin, b > 0, and seek a solution so that

yi .w
Txi Cw0/ ½ b (4.15)

The perceptron algorithm yields a solution for which all points xi are at a distance
greater than b=jwj from the separating hyperplane. A scaling of b, w0 and w leaves
this distance unaltered and the condition (4.15) still satisfied. Therefore, without loss
of generality, a value b D 1 may be taken, defining what are termed the canonical
hyperplanes, H1 : wT x Cw0 D C1 and H2 : wT x C w0 D �1, and we have

wTxi C w0 ½ C1 for yi D C1
wTxi C w0 � �1 for yi D �1

(4.16)

The distance between each of these two hyperplanes and the separating hyperplane,
g.x/ D 0, is 1=jwj and is termed the margin. Figure 4.7 shows the separating hyperplane
and the canonical hyperplanes for two separable data sets. The points that lie on the
canonical hyperplanes are called support vectors (circled in Figure 4.7).



136 Linear discriminant analysis

�

�

origin
hyperplane, g.x/ D wT x C w0 D 0g < 0

g > 0

�
�
�
�
��

w

�
�
��

�
�

��

jw0jjwj

H1 : wT x C w0 D C1

H2 : wT x C w0 D �1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Š

Š

Š

Š
Š

Š
Š

Š

Š

Š
�

�

�ž

ž

ž
ž

žž
ž

ž
ž

Figure 4.7 H1 and H2 are the canonical hyperplanes. The margin is the perpendicular distance
between the separating hyperplane (g.x/ D 0) and a hyperplane through the closest points (marked
by a ring around the data points). These are termed the support vectors

Therefore, maximising the margin means that we seek a solution that minimises jwj
subject to the constraints

C1 : yi .w
Txi Cw0/ ½ 1 i D 1; : : : ; n (4.17)

A standard approach to optimisation problems with equality and inequality constraints is
the Lagrange formalism (Fletcher, 1988) which leads to the primal form of the objective
function, L p, given by1

L p D 1

2
wTw �

nX
iD1

Þi .yi .w
T xi C w0/� 1/ (4.18)

where fÞi ; i D 1; : : : ; n; Þi ½ 0g are the Lagrange multipliers. The primal parameters
are w and w0 and the number of parameters is p C 1, where p is the dimensionality of
the feature space.

The solution to the problem of minimising wTw subject to constraints (4.17) is
equivalent to determining the saddlepoint of the function L p, at which L p is minimised
with respect to w and w0 and maximised with respect to the Þi . Differentiating L p with

1For inequality constraints of the form ci ½ 0, the constraints equations are multiplied by positive Lagrange
multipliers and subtracted from the objective function.
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respect to w and w0 and equating to zero yields

nX
iD1

Þi yi D 0

w D
nX

iD1

Þi yixi

(4.19)

Substituting into (4.18) gives the dual form of the Lagrangian

L D D
nX

iD1

Þi � 1

2

nX
iD1

nX
jD1

ÞiÞ j yi y jx
T
i x j (4.20)

which is maximised with respect to the Þi subject to

Þi ½ 0
nX

iD1

Þi yi D 0 (4.21)

The importance of the dual form is that it expresses the optimisation criterion as in-
ner products of patterns, xi . This is a key concept and has important consequences for
nonlinear support vector machines discussed in Chapter 5. The dual variables are the
Lagrange multipliers, Þi , and so the number of parameters is n, the number of pat-
terns.

Karush–Kuhn–Tucker conditions
In the above, we have reformulated the primal problem in an alternative dual form
which is often easier to solve numerically. The Kuhn–Tucker conditions provide nec-
essary and sufficient conditions to be satisfied when minimising an objective function
subject to inequality and equality constraints. In the primal form of the objective function,
these are

@L p

@w
D w �

nX
iD1

Þi yixi D 0

@L p

@w0
D �

nX
iD1

Þi yi D 0

yi .x
T
i w Cw0/� 1 ½ 0

Þi ½ 0

Þi .yi .x
T
i w Cw0/� 1/ D 0

(4.22)

In particular, the condition Þi .yi .x
T
i w C w0/ � 1/ D 0 (known as the Karush–Kuhn–

Tucker complementarity condition–product of the Lagrange multiplier and the inequality
constraint) implies that for active constraints (the solution satisfies yi .x

T
i wCw0/�1/ D

0) then Þi ½ 0; otherwise, for inactive constraints Þi D 0. For active constraints,



138 Linear discriminant analysis

the Lagrange multiplier represents the sensitivity of the optimal value of L p to the
particular constraint (Cristianini and Shawe-Taylor, 2000). These data points with non-
zero Lagrange multiplier lie on the canonical hyperplanes. These are termed the support
vectors and are the most informative points in the data set. If any of the other pat-
terns (with Þi D 0) were to be moved around (provided that they do not cross one of
the outer–canonical–hyperplanes), they would not affect the solution for the separating
hyperplane.

Classification
Recasting the constrained optimisation problem in its dual form enables numerical
quadratic programming solvers to be employed. Once the Lagrange multipliers, Þi , have
been obtained, the value of w0 may be found from

Þi .yi .x
T
i w Cw0/� 1/ D 0

using any of the support vectors (patterns for which Þi 6D 0), or an average over all
support vectors

nsvw0 C wT
X

i2SV
xi D

X
i2SV

yi (4.23)

where nsv is the number of support vectors and the summations are over the set of
support vectors, SV . The solution for w used in the above is given by (4.19):

w D
X

i2SV
Þi yixi (4.24)

since Þi D 0 for other patterns. Thus, the support vectors define the separating hyperplane.
A new pattern, x, is classified according to the sign of

wT x Cw0

Substituting for w and w0 gives the linear discriminant: assign x to !1 if

X
i2SV

Þi yix
T
i x �

1

nsv

X
i2SV

X
j2SV

Þi yix
T
i x j C 1

nsv

X
i2SV

yi > 0

Linearly non-separable data
In many real-world practical problems there will be no linear boundary separating the
classes and the problem of searching for an optimal separating hyperplane is meaningless.
Even if we were to use sophisticated feature vectors, φ.x/, to transform the data to a
high-dimensional feature space in which classes are linearly separable, this would lead
to an over-fitting of the data and hence poor generalisation ability. We shall return to
nonlinear support vector machines in Chapter 5.

However, we can extend the above ideas to handle non-separable data by relaxing
the constraints (4.16). We do this by introducing ‘slack’ variables ¾i ; i D 1; : : : ; n, into
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the constraints to give
wTxi Cw0 ½ C1� ¾i for yi D C1
wTxi Cw0 � �1C ¾i for yi D �1
¾i ½ 0 i D 1; : : : ; n

(4.25)

For a point to be misclassified by the separating hyperplane, we must have ¾i > 1 (see
Figure 4.8).

A convenient way to incorporate the additional cost due to non-separability is to
introduce an extra cost term to the cost function by replacing wTw=2 by wTw=2CC

P
i ¾i

where C is a ‘regularisation’ parameter. The term C
P

i ¾i can be thought of as measuring
some amount of misclassification – the lower the value of C , the smaller the penalty for
‘outliers’ and a ‘softer’ margin. Other penalty terms are possible, for example, C

P
i ¾

2
i

(see Vapnik, 1998).
Thus, we minimise

1

2
wTw C C

X
i

¾i (4.26)

subject to the constraints (4.25). The primal form of the Lagrangian (4.18) now becomes

L p D 1

2
wTw C C

X
i

¾i �
nX

iD1

Þi .yi .w
Txi Cw0/� 1C ¾i /�

nX
iD1

ri¾i (4.27)

where Þi ½ 0 and ri ½ 0 are Lagrange multipliers; ri are introduced to ensure positi-
vity of ¾i .

i

origin
g < 0

g > 0

0

H1 : 0 = + − 1T x +

H1 : 0 = + 1T x +

T x +g(x) = 0 = 0

Figure 4.8 Linear separating hyperplane for non-separable data
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Differentiating with respect to w and w0 still results in (4.19)

nX
iD1

Þi yi D 0

w D
nX

iD1

Þi yixi

(4.28)

and differentiating with respect to ¾i yields

C � Þi � ri D 0 (4.29)

Substituting the results (4.28) above into the primal form (4.27) and using (4.29) gives
the dual form of the Lagrangian

L D D
nX

iD1

Þi � 1

2

nX
iD1

nX
jD1

ÞiÞ j yi y jx
T
i x j (4.30)

which is the same form as the maximal margin classifier (4.20). This is maximised with
respect to the Þi subject to

nX
iD1

Þi yi D 0

0 � Þi � C

The latter condition follows from (4.29) and ri ½ 0. Thus, the only change to the
maximisation problem is the upper bound on the Þi .

The Karush–Kuhn–Tucker complementarity conditions are

Þi .yi .x
T
i w C w0/� 1C ¾i / D 0

ri¾i D .C � Þi /¾i D 0

Patterns for which Þi > 0 are termed the support vectors. Those satisfying 0 < Þi < C
must have ¾i D 0 – that is, they lie on one of the canonical hyperplanes at a distance
of 1=jwj from the separating hyperplane (these support vectors are sometimes termed
margin vectors). Non-zero slack variables can only occur when Þi D C . In this case,
the points xi are misclassified if ¾i > 1. If ¾i < 1, they are classified correctly, but lie
closer to the separating hyperplane than 1=jwj. As in the separable case, the value of w0
is determined using the first condition above and any support vector or by summing over
samples for which 0 < Þi < C (for which ¾i D 0) (equation (4.23)) and w is given by
(4.24). This gives

w0 D 1

NfSV

8<
:
X

i2fSV
yi �

X

i2SV; j2fSV
Þi yix

T
i x j

9=
; (4.31)

where SV is the set of support vectors with associated values of Þi satisfying 0 < Þi � C
and fSV is the set of NfSV support vectors satisfying 0 < Þi < C (those at the target
distance of 1=jwj from the separating hyperplane).
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Figure 4.9 Linearly separable data (left) and non-separable data (right, C D 20)

Figure 4.9 shows the optimal separating hyperplane for linearly separable and non-
separable data. The support vectors (Þi > 0) are circled. All points that are not support
vectors lie outside the margin strip (Þi D 0; ¾i D 0). In the right-hand figure, one of the
support vectors (from class C) is incorrectly classified (¾i > 1).

The only free parameter is the regularisation parameter, C . A value may be chosen
by varying C through a range of values and monitoring the performance of the classifier
on a separate validation set, or by using cross-validation (see Chapter 11).

4.2.6 Example application study

The problem Classification of land cover using remote sensing satellite imagery
(Brown et al., 2000).

Summary A conventional classification technique developed in the remote sens-
ing community (linear spectral mixture models) is compared, both theoretically and
practically, to support vector machines. Under certain circumstances the methods are
equivalent.

The data The data comprise measurements of two classes of land cover: developed and
other (including slate, tarmac, concrete) and undeveloped and vegetation (including sand,
water, soil, grass, shrubs, etc.). The measurements are Landsat images of the suburbs of
Leicester, UK, in two frequency bands. Each image is 33ð33 pixels in size and a pattern
is a two-dimensional pair of measurements of corresponding pixels in each of the two
bands. Training and test sets were constructed, the training set consisting of ‘pure’ pixels
(those that relate to a region for which there is a single class).

The model A support vector machine model was adopted. Linear separable and linear
non-separable support vector machines were trained (by maximising (4.18) and (4.27))
using patterns selected from the training set.



142 Linear discriminant analysis

Training procedure The value of the regularisation parameter, C , was chosen to min-
imise a sum-squared error criterion evaluated on the test set.

4.2.7 Further developments

The main developments of the two-class linear algorithms are as follows.

1. Multiclass algorithms. These are discussed in the following section.

2. Nonlinear methods. Many classification methods that produce nonlinear decision
boundaries are essentially linear models: they are linear combinations of nonlinear
functions of the variables. Radial basis function networks are one example. Thus
the machinery developed in this chapter is important. This is examined further in
Chapter 5.

3. Regularisation – introducing a parameter that controls the sensitivity of the technique
to small changes in the data or training procedure and improves generalisation. This
includes combining multiple versions of the same classifier, trained under different
conditions (see Chapter 8 and Skurichina, 2001).

4.2.8 Summary

In this section we have considered a range of techniques for performing linear discrim-
ination in the two-class case. These are summarised in Table 4.1. They fall broadly
into two groups: those techniques that minimise a criterion based on misclassified sam-
ples and those that use all samples, correctly classified or not. The former group in-
cludes the perceptron, relaxation and support vector machine algorithms. The latter group
includes Fisher’s criterion and criteria based on a least squares error measure, including
the pseudo-inverse method.

Table 4.1 Summary of linear techniques

Procedure name Criterion Algorithm

Perceptron JP .v/ D
X
yi2Y

.�vT yi / vkC1 D vk C ²k

X
yi2Y

yi

Relaxation Jr D 1

2

X
yi2Y

.vT yi � b/2

jyi j2
vkC1 D vk C ²k

b � vT
k yi

jyi j2
yi

Fisher JF D jw
T .m1 �m2/j2
wTSWw

w / S�1
W .m1 �m2/

Least mean squared
error–pseudo-inverse

JS D jjYv � t jj2 Ov D Y †t

Support vector machine wTw C C
P

i ¾i

subject to constraints (4.25)
quadratic programming
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A perceptron is a trainable threshold logic unit. During training, weights are adjusted
to minimise a specific criterion. For two separable classes, the basic error-correction
procedure converges to a solution in which the classes are separated by a linear deci-
sion boundary. If the classes are not separable, the training procedure must be modified
to ensure convergence. More complex decision surfaces can be implemented by using
combinations and layers of perceptrons (Minsky and Papert, 1988; Nilsson, 1965). This
we shall discuss further in Chapter 6.

Some of the techniques will find a solution that separates two classes if they are
separable, others do not. A further dichotomy is between the algorithms that converge
for non-separable classes and those that do not.

The least mean squared error design criterion is widely used in pattern recognition. It
can be readily implemented in many of the standard computer programs for regression
and we have shown how the discrimination problem may be viewed as an exercise in
regression. The linear discriminant obtained by the procedure is optimal in the sense
of providing a minimum mean squared error approximation to the Bayes discriminant
function. The analysis of this section applies also to generalised linear discriminant
functions (the variables x are replaced by φ.x/). Therefore, choosing a suitable basis for
the 	 j .x/ is important since a good set will lead to a good approximation to the Bayes
discriminant function.

One problem with the least mean squared error procedure is that it is sensitive to
outliers and does not necessarily produce a separable solution, even when the classes are
separable by a linear discriminant. Modifications of the least mean square rule to ensure a
solution for separable sets have been proposed (the Ho–Kashyap procedure which adjusts
both the weight vector, v, and the target vector, t), but the optimal approximation to the
Bayes discriminant function when the sets overlap is no longer achieved.

The least mean squared error criterion does possess some attractive theoretical prop-
erties that we can now quote without proof. Let E1 denote the nearest-neighbour error
rate, Emse the least mean squared error rate and let v be the minimum error solution.
Then (Devijver and Kittler, 1982)

JS.v/=n

1� JS.v/=n
½ Emse

JS.v/=n ½ 2E1 ½ 2EŁ

JS.v/=n D 2E1 ) Emse D EŁ

(4.32)

where EŁ is the optimal Bayes error rate.
The first condition gives an upper bound on the error rate (and may easily be computed

from the values of JS.v/ delivered by the algorithm above). It seems sensible that if we
have two possible sets of discriminant functions, 	i and ¹i , then if J	S < J ¹S , then the
set 	 should be preferred since it gives a smaller upper bound for the error rate, Emse.
Of course, this is not sufficient but gives us a reasonable guideline.

The second two conditions show that the value of the criterion function JS=n is
bounded below by twice the nearest-neighbour error rate E1, and JS=n D 2E1 if the
linear discriminant function has the same sign as the Bayes discriminant function (crosses
the x-axis at the same points).

Support vector machines have been receiving increasing research interest in recent
years. They provide an optimally separating hyperplane in the sense that the margin
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between two groups is maximised. Development of this idea to the nonlinear classifier,
discussed in Chapter 5, had led to classifiers with remarkable good generalisation ability.

4.3 Multiclass algorithms

4.3.1 General ideas

There are several ways of extending two-class procedures to the multiclass case.

One-against-all
For C classes, construct C binary classifiers. The kth classifier is trained to discriminate
patterns in class !k from those in the remaining classes. Thus, determine the weight
vector, wk , and the threshold, wk

0, such that

.wk/Tx Cwk
0

²
> 0
< 0

) x 2
²

!k

!1; : : : ; !k�1; !kC1; : : : ; !C

Ideally, for a given pattern x, the quantity gk.x/ D .wk/T xCwk
0 will be positive for one

value of k and negative for the remainder, giving a clear indication of class. However,
this procedure may results in a pattern x belonging to more than one class, or belonging
to none.

If there is more than one class for which the quantity gk.x/ is positive, x may be
assigned to the class for which ..wk/Tx C wk

0/=jwk j (the distance to the hyperplane) is
the largest. If all values of gk.x/ are negative, then assign x to the class with smallest
value of j..wk/Tx C wk

0/j=jwk j.

One-against-one
Construct C.C � 1/ classifiers. Each classifier discriminates between two classes. A
pattern x is assigned using each classifier in turn and a majority vote taken. This can
lead to ambiguity, with no clear decision for some patterns.

Discriminant functions
A third approach is, for C classes, to define C linear discriminant functions g1.x/; : : : ;

gC .x/ and assign x to class !i if

gi .x/ D max
j

g j .x/

that is, x is assigned to the class whose discriminant function is the largest value at x. If

gi .x/ D max
j

g j .x/, p.!i jx/ D max
j

p.! j jx/
then the decision boundaries obtained will be optimal in the sense of the Bayes minimum
error.

The structure of this section follows that of Section 4.2, covering error-correction
procedures, generalisations of Fisher’s discriminant, minimum squared error procedures
and support vector machines.
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4.3.2 Error-correction procedure

A generalisation of the two-class error-correction procedure for C > 2 classes is to define
C linear discriminants

gi .x/ D vT
i z

where z is the augmented data vector, zT D .1; xT /. The generalised error-correction
procedure is used to train the classifier. Arbitrary initial values are assigned to the vi

and each pattern in the training set is considered one at a time. If a pattern belonging to
class !i is presented and the maximum value of the discriminant functions is for the j th
discriminant function (i.e. a pattern in class !i is classified as class ! j ) then the weight
vectors vi and v j are modified according to

v0i D vi C cz

v0j D v j � cz

where c is a positive correction increment. That is, the value of the i th discriminant
function is increased for pattern z and the value of the j th discriminant is decreased.
This procedure will converge in a finite number of steps if the classes are separable (see
Nilsson, 1965). Convergence may require the data set to be cycled through several times
(as in the two-class case).

Choosing c according to

c D .v j � vi /
T z

jzj2

will ensure that after adjustment of the weight vectors, z will be correctly classified.

4.3.3 Fisher’s criterion – linear discriminant analysis

The term linear discriminant analysis (LDA), although generically referring to techniques
that produce discriminant functions that are linear in the input variables (and thus applying
to the perceptron and all of the techniques of this chapter), is also used in a specific sense
to refer to the technique of this subsection in which a transformation is sought that, in
some sense, maximises between-class separability and minimises within-class variability.
The characteristics of the method are:

1. A transformation is produced to a space of dimension at most C � 1, where C is the
number of classes.

2. The transformation is distribution-free – for example, no assumption is made regarding
normality of the data.

3. The axes of the transformed coordinate system can be ordered in terms of ‘importance
for discrimination’. Those most important can be used to obtain a graphical represen-
tation of the data by plotting the data in this coordinate system (usually two or three
dimensions).
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4. Discrimination may be performed in this reduced-dimensional space using any con-
venient classifier. Often improved performance is achieved over the application of
the rule in the original data space. If a nearest class mean type rule is employed, the
decision boundaries are linear (and equal to those obtained by a Gaussian classifier
under the assumption of equal covariance matrices for the classes).

5. Linear discriminant analysis may be used as a post-processor for more complex,
nonlinear classifiers.

There are several ways of generalising the criterion JF (4.4) to the multiclass case.
Optimisation of these criteria yields transformations that reduce to Fisher’s linear dis-
criminant in the two-class case and that, in some sense, maximise the between-class
scatter and minimise the within-class scatter. We present one approach here.

We consider the criterion

JF .a/ D aTSBa

aTSWa
(4.33)

where the sample-based estimates of SB and SW are given by

SB D
CX

iD1

ni

n
.mi �m/.mi �m/T

and

SW D
CX

iD1

ni

n
O�i

where mi and O�i ; i D 1; : : : ;C , are the sample means and covariance matrices of each
class (with ni samples) and m is the sample mean. We seek a set of feature vectors ai that
maximise (4.33) subject to the normalisation constraint aT

i SWa j D Ži j (class-centralised
vectors in the transformed space are uncorrelated). This leads to the generalised sym-
metric eigenvector equation (Press et al., 1992)

SBA D SWA� (4.34)

where A is the matrix whose columns are the ai and � is the diagonal matrix of
eigenvalues. If S�1

W exists, this may be written

S�1
W SBA D A� (4.35)

The eigenvectors corresponding to the largest of the eigenvalues are used for feature
extraction. The rank of SB is at most C�1; therefore the projection will be onto a space
of dimension at most C�1. The solution for A satisfying (4.34) satisfying the constraint
also diagonalises the between-class covariance matrix, ATSBA D �, the diagonal matrix
of eigenvalues.

When the matrix SW is not ill-conditioned with respect to inversion, the eigenvectors
of the generalised symmetric eigenvector equation can be determined by solving the
equivalent equation

S�1
W SBa D ½a (4.36)



Multiclass algorithms 147

though note that the matrix S�1
W SB is not symmetric. However, the system may be

reduced to a symmetric eigenvector problem using the Cholesky decomposition (Press
et al., 1992) of SW , which allows SW to be written as the product SW D LLT , for a
lower triangular matrix L. Then (4.36) is equivalent to

L�1SB.L
�1/T y D ½y

where y D LT a. Efficient routines based on the QR algorithm (Stewart, 1973; Press
et al., 1992) may be used to solve the above eigenvector equation.

If SW is close to singular, then S�1
W SB cannot be computed accurately. One approach

is to use the QZ (Stewart, 1973) algorithm, which reduces SB and SW to upper triangular
form (with diagonal elements bi and wi respectively) and the eigenvalues are given by
the ratios ½i D bi=wi . If SW is singular, the system will have ‘infinite’ eigenvalues, and
the ratio cannot be formed. These ‘infinite’ eigenvalues correspond to eigenvectors in
the null space of SW . L.-F. Chen et al. (2000) propose using these eigenvectors, ordered
according to bi , for the LDA feature space.

There are other approaches. Instead of solving (4.34) or (4.35), we may determine A

by solving two symmetric eigenvector equations successively. The solution is given by

A D U r�
� 1

2
r V ¹ (4.37)

where U r D [u1; : : : ;ur ] are the eigenvectors of SW with non-zero eigenvalues
½1; : : : ; ½r ; �r D diag.½1; : : : ; ½r / and V ¹ is the matrix of eigenvectors of S0B D
�
� 1

2
r UT

r SBU r�
� 1

2
r and satisfies (4.34). (This is the Karhunen–Loève transformation pro-

posed by Kittler and Young, 1973; see Chapter 9.)
Cheng et al. (1992) describe several methods for determining optimal discriminant

transformations when SW is ill-conditioned. These include:

1. The pseudo-inverse method. Replace S�1
W by the pseudo-inverse, S

†
W (Tian et al.,

1988).

2. The perturbation method. Stabilise the matrix SW by adding a small perturbation
matrix, � (Hong and Yang, 1991). This amounts to replacing the singular values of
SW , ½r , by a small fixed positive value, Ž, if ½r < Ž.

3. The rank decomposition method. This is a two-stage process, similar to the one given
above (4.37), with successive eigendecompositions of the total scatter matrix and
between-class scatter matrix.

Discrimination
As in the two-class case, the transformation in itself does not provide us with a discrim-
ination rule. The transformation is independent of the distributions of the classes and is
defined in terms of matrices SB and SW . However, if we were to assume that the data
were normally distributed, with equal covariance matrices (equal to the within-class co-
variance matrix, SW ) in each class and means mi , then the discrimination rule is: assign
x to class !i if gi ½ g j for all j 6D i; j D 1; : : : ;C , where

gi D log.p.!i //� 1
2 .x �mi /

TS�1
W .x �mi /
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or, neglecting the quadratic terms in x,

gi D log.p.!i //� 1
2m

T
i S
�1
W mi C xTS�1

W mi (4.38)

the normal-based linear discriminant function (see Chapter 2). If A is the linear dis-
criminant transformation, then S�1

W may be written (see the exercises at the end of the
chapter)

S�1
W D AAT CA?AT

?

where AT
?m j D 0 for all j . Using the above expression for S�1

W in (4.38) gives a
discriminant function

gi D log.p.!i //� .y.x/� yi /
T .y.x/� yi / (4.39)

and ignoring terms that are constant across classes, discrimination is based on

gi D log.p.!i //� 1
2y

T
i yi C yT .x/yi

a nearest class mean classifier in the transformed space, where yi D ATmi and
y.x/ D ATx.

This is simply the Gaussian classifier of Chapter 2 applied in the transformed space.

4.3.4 Least mean squared error procedures

Introduction
As in Section 4.2.4, we seek a linear transformation of the data x (or the transformed data
φ.x/) that we can use to make a decision and which is obtained by minimising a squared
error measure. Specifically, let the data be denoted by the nð p matrix X D [x1j : : : jxn]T

and consider the minimisation of the quantity

E D jjWXT C w01T � T T jj2

D
nX

iD1

.Wxi C w0 � t i /
T .Wxi C w0 � t i /

(4.40)

where W is a Cð p matrix of weights, w0 is a C-dimensional vector of biases and 1 is a
vector with each component equal to unity. The nðC matrix of constants T , sometimes
termed the target matrix, is defined so that the i th row is

t i D λ j D

0
B@
½ j1
:::

½ jC

1
CA for xi in class ! j

that is, t i has the same value for all patterns in the same class. Minimising (4.40) with
respect to w0 gives

w0 D t �Wm (4.41)
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where

t D 1

n

CX
jD1

n jλ j

is the mean ‘target’ vector and

m D 1

n

nX
iD1

xi

the mean data vector. Substituting for w0 from (4.41) into (4.40) allows us to express
the error, E , as

E D jjW OXT � OT T jj2 (4.42)

where OX and OT are defined as
OX 4D X � 1mT

OT 4D T � 1tT

(data and target matrices with zero mean rows); 1 is an n-dimensional vector of 1s. The
minimum (Frobenius) norm solution for W that minimises E is

W D OT T
. OXT

/† (4.43)

where . OXT
/† is the Moore–Penrose pseudo-inverse of OXT

(X† D .XTX/�1XT if the
inverse exists; see Appendix C), with matrix of fitted values

QT D OX OX† OT C 1tT (4.44)

Thus, we can obtain a solution for the weights in terms of the data and the ‘target
matrix’ T , as yet unspecified.

Properties
Before we consider particular forms for T , let us note one or two properties of the least
mean squared error approximation. The large sample limit of (4.40) is

E=n �! E1 D
CX

jD1

p.! j /E[jjWx C w0 � λ j jj2] j (4.45)

where p.! j / is the prior probability (the limit of n j=n) and the expectation, E[:] j , is
with respect to the conditional distribution of x on class ! j , i.e. for any function z of x

E[z.x/] j D
Z

z.x/p.xj! j / dx

The solution for W and w0 that minimises (4.45) also minimises (Devijver, 1973; Wee,
1968; see also the exercises at the end of the chapter)

E 0 D E[jjWx C w0 � ρ.x/jj2] (4.46)
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where the expectation is with respect to the unconditional distribution p.x/ of x and
ρ.x/ is defined as

ρ.x/ D
CX

jD1

λ j p.! j jx/ (4.47)

Thus, ρ.x/ may be viewed as a ‘conditional target’ vector; it is the expected target vector
given a pattern x, with the property that

E[ρ.x/] D
Z

ρ.x/p.x/dx D
CX

jD1

p.! j /λ j

the mean target vector. From (4.45) and (4.46), the discriminant vector that minimises
E1 has minimum variance from the discriminant vector ρ.

Choice of targets
The particular interpretation of ρ depends on the choice we make for the target vectors
for each class, λ j . If we interpret the prototype target matrix as

½ j i D loss in deciding !i when the true class is ! j (4.48)

then ρ.x/ is the conditional risk vector (Devijver, 1973), where the conditional risk is the
expected loss in making a decision, with the i th component of ρ.x/ being the conditional
risk of deciding in favour of !i . The Bayes decision rule for minimum conditional risk is

assign x to !i if ²i .x/ � ² j .x/; j D 1; : : : ;C

From (4.45) and (4.46), the discriminant rule that minimises the mean squared error E
has minimum variance from the optimum Bayes discriminant function ρ as the number
of samples tends to infinity.

For a coding scheme in which

½i j D
²

1 i D j
0 otherwise

(4.49)

the vector ρ.x/ is equal to p.x/, the vector of posterior probabilities. The Bayes dis-
criminant rule for minimum error is

assign x to !i if ²i .x/ ½ ² j .x/; j D 1; : : : ;C

The change in the direction of the inequality results from the fact that the terms ½i j are
viewed as gains. For this coding scheme, the least mean squared error solution for W and
w0 gives a vector discriminant function that asymptotically has minimum variance from
the vector of a posteriori probabilities, shown for the two-class case in Section 4.2.4.

Figure 4.10 illustrates the least mean square procedure on some one-dimensional data.
Data for three classes are positioned on the x-axis and the linear discriminant functions
obtained by a least squares procedure are shown. These discriminant functions divide
the data space into three regions, according to which linear discriminant function is the
largest.
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Figure 4.10 Linear discriminant functions

Decision rule
The above asymptotic results suggest that we use the same decision rules to assign a
pattern x to a class assuming that the linear transformation WxCw0 had produced ρ.x/.
For example, with the coding scheme (4.49) for � that gives ρ.x/ D p.x/, we would
assign x to the class corresponding to the largest component of the discriminant function
Wx C w0. Alternatively, in the spirit of the least squares approach, assign x to !i if

jWx C w0 � λi j2 < jWx C w0 � λ j j2 for all j 6D i (4.50)

which leads to the linear discrimination rule: assign x to class !i if

dT
i x C d0i > dT

j x C d0 j 8 j 6D i

where
d i D λT

i W

d0i D �jλi j2=2C wT
0 λi

For λi given by (4.49), this decision rule is identical to the one that treats the linear
discriminant function Wx C w0 as p.x/, but it is not so in general (Lowe and Webb,
1991).

We add a word of caution here. The result given above is an asymptotic result only.
Even if we had a very large number of samples and a flexible set of basis functions 	.x/
(replacing the measurements x), then we do not necessarily achieve the Bayes optimal
discriminant function. Our approximation may indeed become closer in the least squares
sense, but this is weighted in favour of higher-density regions, not necessarily at class
boundaries. In Section 4.3.5 we consider minimum-distance rules in the transformed
space further.

A final result, which we shall quote without proof, is that for the 1-from-C coding
scheme (4.49), the values of the vector Wx C w0 do indeed sum to unity (Lowe and
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Webb, 1991). That is, if we denote the linear discriminant vector z as

z D Wx C w0

where W and w0 have been determined using the mean squared error procedure
(equations (4.41) and (4.43)) with the columns of � D [λ1; : : : ; λC ] being the columns
of the identity matrix, then

CX
iD1

zi D 1

that is, the sum of the discriminant function values is unity. This does not mean
that the components of z can necessarily be treated as probabilities since some may be
negative.

4.3.5 Optimal scaling

Recall that for a C-class problem, the discriminant function approach constructs C dis-
criminant functions gi .x/ with decision rule: assign x to class !i if

gi .x/ > g j .x/ for all j 6D i

For a linear discriminant function,

gi .x/ D wT
i x Cwi0

and, for a least squares approach, we minimise an error of the form (4.40) with respect
to the weight vectors and the offsets. This was illustrated in Figure 4.10 for three classes.
Three linear discriminant functions are calculated for the data positioned on the x-axis.
These linear discriminant functions can be used to partition the data space into three
regions, according to which discriminant function is the largest.

An alternative to the zero–one coding for the response variable is to consider an
approach where a single linear regression is determined, with different target values for
each class, !i . For example, in Figure 4.11, the target for class Š is �1, the target for
class ž is 0, and the target for class Ž is taken to be +1. The linear regression g.x/ is
shown. A pattern x 0 may be assigned to the class whose label is closest to g.x 0/. Thus,
for � 1

2 < g.x/ < 1
2 ; x 2 class ž.

In practice, we want an automatic means of assigning values to class labels and, of
course, the values �1, 0, C1 used above may not be the best ones to choose, in terms
of minimising a least squares criterion.

Therefore we seek to minimise the squared error with respect to the class indicator
values and the weight vectors wi . Define a set of scorings or scalings for the C classes
by the vector θ 2 R

C . Generally we can find K < C independent solutions for θ ,
namely θ1; : : : ; θ K , for which the squared error is minimised. Let � be the C ð K
matrix [θ1; : : : ; θ K ] and �Ł D T� be the n ð K matrix of transformed values of the
classes for each pattern, where we take the n ð C matrix, T , to be the class indicator
matrix with Ti j D 1 if xi 2 class ! j and 0 otherwise. Without loss of generality we shall



Multiclass algorithms 153

�1.5

�1

�0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

Š Š Š Š Š Š Šž ž žž žžž ž ž žŽ Ž Ž Ž Ž

Figure 4.11 LDA regression for targets �1 and C1

assume that the data have zero mean and X is the n ð p data matrix with i th row xT
i .

Therefore, we seek to minimise the squared error

E D jj�Ł �XW T jj2 (4.51)

with respect to the scores � and the K ð p weight matrix W . Compare the above with
the standard least squares criterion (4.42). Note that an offset term 1wT

0 has not been
included. The results of this section carry through with a slight modification with the
inclusion of an offset.

The solution for W minimising E is given by

W T D X†�Ł (4.52)

where X† is the pseudo-inverse of X, with error, on substituting for W , of

E D Trf.T�/T .I �XX†/T�g (4.53)

Minimising with respect to � subject to the constraint �TD p� D I K (where I K is the
K ðK identity matrix and D p D diag.n1=n; : : : ; nC=n/), using the method of Lagrange
multipliers, leads to the columns of � satisfying the general symmetric eigenvector
equation

1

n
T T .XX†/T θ D ½D pθ (4.54)

Let the eigenvalues corresponding to solutions θ1; : : : ; θK be ½1; : : : ; ½K , in decreasing
order. The matrix product .XX†/T in the above is the matrix of fitted values, QT , in
a regression of T on X (see Section 4.3.4). Thus, the matrix on the left-hand side of
(4.54) is simply the product of the targets and fitted values T T QT . This result is used in
developments of this procedure to nonlinear discriminant analysis. The contribution to
the average squared error of the lth scaling, θ l , is given by

e2
l D 1� ½l
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Relationship to the linear discriminant analysis solution
The between-class covariance matrix (assuming mean-centred data) is

SB D
CX

iD1

ni

n
mim

T
i D

1

n2
XTT

 
T TT

n

!�1

T TX

and using the solution (4.52) for W , we may show that the between-class covariance
matrix in the transformed space is

WSBW
T D diag.½2

1; : : : ; ½
2
K /; (4.55)

a diagonal matrix. Similarly, we may show that the transformed within-class covariance
matrix is given by

WSWW T D D½.1�½/
4D diag.½1.1� ½1/; : : : ; ½K .1� ½K // (4.56)

Thus, the optimal scaling solution for W diagonalises both the between-class and within-
class covariance matrices. In particular, the linear discriminant analysis transformation
that transforms the within-class covariance matrix to the identity matrix and diagonalises
the between-class covariance matrix is given by

W L D A D D
1
2
½.1�½/W (4.57)

Discrimination
The optimal scaling solution may be used in discrimination in the same way as the linear
discriminant solution in Section 4.3.3. Using the relationship between the linear discrim-
inant solution and the optimal scaling solution (4.57), together with the LDA rule (4.39),
discrimination is based on the rule: assign x to class !i if gi > g j for all j 6D i , where

gi D log.p.!i //� 1
2 .yi � yO S.x//

TD�1
½.1�½/.yi � yO S.x// (4.58)

where yi is the transformation of the mean of the i th class and yO S.x/ D Wx. An
alternative form uses the solutions for the scalings and the transformed vector yO S.x/ to
give a discriminant function (Breiman and Ihaka, 1984; Hastie et al., 1995)

gi D log.p.!i //� 1
2 .θ

i � yO S.x//
TD�1

1�½.θ
i � yO S.x//� jjθ i jj2 (4.59)

where θ i is the vector of scalings on class !i (the i th column of �T ). Equivalently,

gi D log.p.!i //� 1
2 .θ

i � yO S.x//
TD�1

e2 .θ
i � yO S.x//� jjθ i jj2 (4.60)

where De2 is the diagonal matrix of contributions to the average squared error by the K
solutions, diag.e2

1; : : : ; e2
K /.

The main conclusion of this analysis is that a regression approach based on scalings
and a linear transformation leads to a discriminant rule identical to that obtained from
LDA. The discriminant function depends upon the optimal scalings, which in turn are
eigensolutions of a matrix obtained from the fitted values in a linear regression and the
targets. The advantage of this approach is that it provides a basis for developing nonlinear
discriminant functions.
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4.3.6 Regularisation

If the matrix XTX is close to singular, an alternative to the pseudo-inverse approach
is to use a regularised estimator. The error, E (4.42), is modified by the addition of a
regularisation term to give

E D jjW OXT � OT T jj2 C ÞjjW jj2

where Þ is a regularisation parameter or ridge parameter. The solution for W that
minimises E is

W D OT T OX. OX OXT C ÞI p/
�1

We still have to choose the ridge parameter, Þ, which may be different for each
output dimension (corresponding to class in a discrimination problem). There are several
possible choices (see Brown, 1993). The procedure of Golub et al. (1979) is to use a
cross-validation estimate. The estimate OÞ of Þ is the value that minimises

jj.I �A.Þ//Ot jj2
[Tr.I �A.Þ//]2

where
A.Þ/ D OX.XTX C ÞI/�1 OXT

and Ot is one of the columns of OT , i.e. measurements on one of the output variables, that
is being predicted.

4.3.7 Multiclass support vector machines

Support vector machines can be applied in multiclass problems either by using the binary
classifier in a one-against-all or one-against-one situation, or by constructing C linear
discriminant functions simultaneously (Vapnik, 1998).

Consider the linear discriminant functions

gk.x/ D .wk/T x C wk
0 k D 1; : : : ;C

We seek a solution for f.wk; wk
0/; k D 1; : : : ;Cg such that the decision rule: assign x to

class !i if
gi .x/ D max

j
g j .x/

separates the training data without error. That is, there are solutions for f.wk; wk
0/;

k D 1; : : : ;Cg such that, for all k D 1; : : : ;C ,

.wk/Tx C wk
0 � ..w j /T x C w j

0/ ½ 1

for all x 2 !k and for all j 6D k. This means that every pair of classes is separable. If a
solution is possible, we seek a solution for which

CX
kD1

.wk/Twk
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is minimal. If the training data cannot be separated, slack variables are introduced and
we minimise

L D
CX

kD1

.wk/Twk C C
nX

iD1

¾i

subject to the constraints

.wk/Txi Cwk
0 � ..w j /Txi Cw j

0 / ½ 1� ¾i

for all xi (where xi 2 !k), and for all j 6D k. The procedure for minimising the quantity
L subject to inequality constraints is the same as that developed in the two-class case.

4.3.8 Example application study

The problem Face recognition using LDA (L.-F. Chen et al., 2000).

Summary A technique, based on LDA, that is appropriate for the small-sample problem
(when the within-class matrix, SW , is singular), is assessed in terms of error rate and
computational requirements.

The data The data comprise 10 different facial images of 128 people (classes). The
raw images are 155ð 175 pixels. These images are reduced to 60ð 60 and, after further
processing and alignment, further dimension reduction, based on k-means clustering (see
Chapter 10), to 32, 64, 128 and 256 values is performed.

The model The classifier is simple. The basic method is to project the data to a lower
dimension and perform classification using a nearest-neighbour rule.

Training procedure The projection to the lower dimension is determined using the
training data. Problems occur with the standard LDA approach when the p ð p within-
class scatter matrix, SW , is singular (of rank s < p). In this case, let Q D [qsC1; : : : ; q p]
be the p ð .p � s/ matrix of eigenvectors of SW with zero eigenvalue; that is,

those that map into the null space of SW . The eigenvectors of QSB , defined by QSB
4D

QQTSB.QQT /T , are used to form the most discriminant set for LDA.

Results Recognition rates were calculated using a leave-one-out cross-validation strat-
egy. Limited results on small sample size data sets show good performance compared to
previously published techniques.

4.3.9 Further developments

The standard generalisation of Fisher’s linear discriminant to the multiclass situation
chooses as the columns of the feature extraction matrix A, those vectors ai that maximise

aT
i SBai

aT
i SWai

(4.61)
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subject to the orthogonality constraint

aT
i SWa j D Ži j

i.e. the within-class covariance matrix in the transformed space is the identity matrix. For
the two-class case (C D 2), only one discriminant vector is calculated. This is Fisher’s
linear discriminant.

An alternative approach, proposed by Foley and Sammon (1975) for the two-class
case, and generalised to the multiclass case by Okada and Tomita (1985), is to seek the
vector ai that maximises (4.61) subject to the constraints

aia j D Ži j

The first vector, a1, is Fisher’s linear discriminant. The second vector, a2, maximises
(4.61) subject to being orthogonal to a1 (a2a1 D 0), and so on. A direct analytic solution
for the problem is given by Duchene and Leclercq (1988), and involves determining an
eigenvector of a non-symmetric matrix. Okada and Tomita (1985) propose an iterative
procedure for determining the eigenvectors. The transformation derived is not limited by
the number of classes.

A development of this approach that uses error probability to select the vectors ai is
described by Hamamoto et al. (1991), and a comparison with the Fisher criterion on the
basis of the discriminant score J is given by Hamamoto et al. (1993).

Another extension of LDA is to a transformation that is not limited by the number
of classes. The set of discriminant vectors is augmented by an orthogonal set that max-
imises the projected variance. Thus the linear discriminant transformation is composed
of two parts: a set of vectors determined, say, by the usual multiclass approach and a set
orthogonal to the first set for which the projected variance is maximised. This combines
linear discriminant analysis with a principal components analysis (Duchene and Leclercq,
1988).

There have been many developments of Fisher’s linear discriminant both in the two-
class case (for example, Aladjem, 1991) and in the multiclass situation (for example,
Aladjem and Dinstein, 1992; Liu et al. 1993). The aims have been either to determine
transformations that aid in exploratory data analysis or interactive pattern recognition or
that may be used prior to a linear or quadratic discriminant rule (Schott, 1993). Several
methods have been proposed for a small number of samples (Cheng et al., 1992; Hong
and Yang, 1991; Tian et al., 1988) when the matrix SW may be singular. These are
compared by Liu et al. (1992).

A development of the least mean squared error approach which weights the error
in favour of patterns near the class boundary has been proposed by Al-Alaoui (1977).
Al-Alaoui describes a procedure, starting with the generalised inverse solution, that pro-
gressively replicates misclassified samples in the training set. The linear discriminant
is iteratively updated and the procedure is shown to converge for the two-class separa-
ble case. Repeating the misclassified samples in the data set is equivalent to increasing
the cost of misclassification of the misclassified samples or, alternatively, weighting the
distribution of the training data in favour of samples near the class boundaries (see the
description of boosting in Chapter 8).

The major developments of support vector machines presented in this chapter are to
nonlinear models, to be discussed in Chapter 5.
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4.3.10 Summary

In Chapter 2, we developed a multiclass linear discriminant rule based on normality
assumptions for the class-conditional densities (with common covariance matrices). In
this section, we have presented a different approach. We have started with the requirement
of a linear discriminant rule, and sought ways of determining the weight vectors for each
class. Several approaches have been considered, including perceptron schemes, Fisher’s
discriminant rule, least mean square procedures and support vector machines.

The least mean squared error approach has the following properties:

1. Asymptotically, the procedure produces discriminant functions that provide a mini-
mum squared error approximation to the Bayes discriminant function.

2. By optimising with respect to a set of scores for each class, in addition to the trans-
formation weights, a solution related to the linear discriminant transformation can
be obtained and can be more accurate than a straight least squares solution (Hastie
et al., 1994).

3. For a ‘1-from-C’ target coding (Ti j D 0 if xi 2 ! j and 0 otherwise), and minimising
a squared error, the discriminant functions values sum to unity for any pattern x.

One of the problems of the least mean squared error approach is that it places emphasis
on regions of high density, which are not necessarily at class boundaries.

In many practical studies, when a linear discriminant rule is used, it is often the
normal-based linear discriminant rule of Chapter 2. However, the least mean square rule,
with binary-coded target vectors, is important since it forms a part of some nonlinear
regression models. Also, there is a natural development of support vector machines to
classification problems with nonlinear decision boundaries.

4.4 Logistic discrimination

In the previous sections, discrimination is performed using values of a linear function of
the data sample x (or the transformed data samples φ.x/). We continue this theme here.
We shall introduce logistic discrimination for the two-group case first, and then consider
the multigroup situation.

4.4.1 Two-group case

The basic assumption is that the difference between the logarithms of the class-conditional
density functions is linear in the variables x:

log

	
p.xj!1/

p.xj!2/



D þ0 C βT x (4.62)

This model is an exact description in a wide variety of situations including (Anderson,
1982):
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1. when the class-conditional densities are multivariate normal with equal covariance
matrices;

2. multivariate discrete distributions following a loglinear model with equal interaction
terms between groups;

3. when situations 1 and 2 are combined: both continuous and categorical variables
describe each sample.

Hence, the assumption is satisfied by many families of distributions and has been found
to be applicable to a wide range of real data sets that depart from normality.

It is a simple matter to show from (4.62) that the assumption is equivalent to

p.!2jx/ D 1

1C exp.þ 00 C βT x/

p.!1jx/ D
exp.þ 00 C βTx/

1C exp.þ 00 C βT x/

(4.63)

where þ 00 D þ0 C log.p.!1/=p.!2//.
Discrimination between two classes depends on the ratio p.!1jx/=p.!2jx/,

assign x to

²
!1
!2

if
p.!1jx/
p.!2jx/

²
>

<
1

and substituting the expressions (4.63), we see that the decision about discrimination is
determined solely by the linear function þ 00 C þTx and is given by

assign x to

²
!1
!2

if þ 00 C þTx

²
>

<
0

This is an identical rule to that given in Section 4.2 on linear discrimination, and we gave
several procedures for estimating the parameters. The only difference here is that we are
assuming a specific model for the ratio of the class-conditional densities that leads to this
discrimination rule, rather than specifying the rule a priori. Another difference is that we
may use the models for the densities (4.63) to obtain maximum likelihood estimates for
the parameters.

4.4.2 Maximum likelihood estimation

The parameters of the logistic discrimination model may be estimated using a maximum
likelihood approach (Anderson, 1982; Day and Kerridge, 1967). An iterative nonlinear
optimisation scheme may be employed using the likelihood function and its derivatives.

The estimation procedure depends on the sampling scheme used to generate the la-
belled training data (Anderson, 1982; McLachlan, 1992a), and three common sampling
designs are considered by Anderson. These are: (i) sampling from the mixture distribu-
tion; (ii) sampling conditional on x in which x is fixed and one or more samples are
taken (which may belong to !1 or !2); and (iii) separate sampling for each class in
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which the conditional distributions, p.xj!i /; i D 1; 2; are sampled. Maximum likelihood
estimates of β are independent of the sampling scheme, though one of the sampling
designs considered (separate sampling from each group) derives estimates for þ0 rather
than þ 00 (which is the term required for discrimination). We assume in our derivation
below a mixture sampling scheme, which arises when a random sample is drawn from
a mixture of the groups. Each of the sampling schemes above is discussed in detail by
McLachlan (1992a).

The likelihood of the observations is

L D
n1Y

rD1

p.x1r j!1/

n2Y
rD1

p.x2r j!2/ r D 1; : : : ; ns ; s D 1; 2:

where xsr .s D 1; 2; r D 1; : : : ; ns/ are the observations in class !s . This may be
rewritten as

L D
n1Y

rD1

p.!1jx1r /
p.x1r /

p.!1/

n2Y
rD1

p.!2jx2r /
p.x2r /

p.!2/

D 1

p.!1/n1 p.!2/n2

Y
all x

p.x/
n1Y

rD1

p.!1jx1r /

n2Y
rD1

p.!2jx2r /

The factor
1

p.!1/n1 p.!2/n2

Y
all x

p.x/

is independent of the parameters of the model – the assumption in Anderson (1982) and
Day and Kerridge (1967) is that we are free to choose p.x/; the only assumption we have
made is on the log-likelihood ratio. Therefore, maximising the likelihood L is equivalent
to maximising

L 0 D
n1Y

rD1

p.!1jx1r /

n2Y
rD1

p.!2jx2r /

or

log.L 0/ D
n1X

rD1

log.p.!1jx1r //C
n2X

rD1

log.p.!2jx2r //

and using the functional forms (4.63)

log.L 0/ D
n1X

rD1

.þ 00 C βT x1r /�
X
all x

logf1C exp.þ 00 C βTx/g

The gradient of log.L 0/ with respect to the parameters þ j is

@logL 0

@þ 00
D n1 �

X
all x

p.!1jx/

@logL 0

@þ j
D

n1X
rD1

.x1r / j �
X
all x

p.!1jx/x j ; j D 1; : : : ; p
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Having written down an expression for the likelihood and its derivative, we may now
use a nonlinear optimisation procedure to obtain a set of parameter values for which the
function log.L 0/ attains a local maximum. First of all, we need to specify initial starting
values for the parameters. Anderson recommends taking zero as a starting value for all
pC1 parameters, þ 00; þ1; : : : ; þp. Except in two special cases (see below), the likelihood
has a unique maximum attained for finite β (Albert and Lesaffre, 1986; Anderson, 1982).
Hence, the starting point is in fact immaterial.

If the two classes are separable, then there are non-unique maxima at infinity. At each
stage of the optimisation procedure, it is easy to check whether þ 00CβTx gives complete
separation. If it does, then the algorithm may be terminated. The second situation when
L does not have a unique maximum at a finite value of β occurs with discrete data when
the proportions for one of the variables are zero for one of the values. In this case, the
maximum value of L is at infinity. Anderson (1974) suggests a procedure for overcoming
this difficulty, based on the assumption that the variable is conditionally independent of
the remaining variables in each group.

4.4.3 Multiclass logistic discrimination

In the multiclass discrimination problem, the basic assumption is that, for C classes,

log

	
p.xj!s/

p.xj!C /



D þs0 C βT

s x; s D 1; : : : ;C � 1

that is, the log-likelihood ratio is linear for any pair of likelihoods. Again, we may show
that the posterior probabilities are of the form

p.!s jx/ D
exp.þ 0s0 C βT

s x/

1CPC�1
sD1 exp.þ 0s0 C βT

s x/
; s D 1; : : : ;C � 1

p.!C jx/ D 1

1CPC�1
sD1 exp.þ 0s0 C βT

s x/

where þ 0s0 D þs0 C log.p.!s/=p.!C //. Also, the decision rule about discrimination
depends solely on the linear functions þ 0s0C βT

j x and the rule is: assign x to class ! j if

maxfþ 0s0 C βT
s xg D þ 0j0 C βT

j x > 0; s D 1; : : : ;C � 1

otherwise assign x to class !C .
The likelihood of the observations is given by

L D
CY

iD1

niY
rD1

p.xir j!i / (4.64)

using the notation given previously. As in the two-class case, maximising L is equivalent
to maximising

log.L 0/ D
CX

sD1

nsX
rD1

log.p.!s jxsr // (4.65)
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with derivatives
@log.L 0/
@þ 0j0

D n j �
X
all x

p.! j jx/

@log.L 0/
@.þ j /l

D
n jX

rD1

.x jr /l �
X
all x

p.! j jx/xl

Again, for separable classes, the maximum of the likelihood is achieved at a point at
infinity in the parameter space, but the algorithm may be terminated when complete
separation occurs. Also, zero marginal sample proportions cause maxima at infinity and
the procedure of Anderson may be employed.

4.4.4 Example application study

The problem To predict in the early stages of pregnancy the feeding method (bottle or
breast) a woman would use after giving birth (Cox and Pearce, 1997).

Summary A ‘robust’ two-group logistic discriminant rule was developed and compared
with the ordinary logistic discriminant. Both methods gave similar (good) performance.

The data Data were collected on 1200 pregnant women from two district general hos-
pitals. Eight variables were identified as being important to the feeding method: presence
of children under 16 years of age in the household, housing tenure, lessons at school on
feeding babies, feeding intention, frequency of seeing own mother, feeding advice from
relatives, how the woman was fed, previous experience of breast feeding.

Some patterns were excluded from the analysis for various reasons: incomplete in-
formation, miscarriage, termination, refusal and delivery elsewhere. This left 937 cases
for parameter estimation.

The model Two models were assessed: the two-group ordinary logistic discrimination
model (4.62) and a robust logistic discrimination model, designed to reduce the effect of
outliers on the discriminant rule,

p.xj!1/

p.xj!2/
D c1 C c2 exp[þ0 C βTx]

1C exp[þ0 C βT x]

where c1 and c2 are fixed positive constants.

Training procedure The prior probabilities p.!1/ and p.!2/ are estimated from the
data and c1 and c2 specified. This is required for the robust model, although it can be
incorporated with þ0 in the standard model (see Section 4.4.1). Two sets of experiments
were performed, both determining maximum likelihood estimates for the parameters:
training on the full 937 cases and testing on the same data; training on 424 cases from
one hospital and testing on 513 cases from the second hospital.

Results Both model gave similar performance, classifying around 85% cases correctly.
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4.4.5 Further developments

Further developments of the basic logistic discriminant model have been to robust pro-
cedures (Cox and Ferry, 1991; Cox and Pearce, 1997) and to more general models.
Several other discrimination methods are based on models of discriminant functions that
are nonlinear functions of linear projections. These include the multilayer perceptron and
projection pursuit discrimination (Chapter 6), in which the linear projection and the form
of the nonlinear function are simultaneously determined.

4.4.6 Summary

Logistic discrimination makes assumptions about the log-likelihood ratios of one popu-
lation relative to a reference population. As with the methods discussed in the previous
sections, discrimination is made by considering a set of values formed from linear trans-
formations of the explanatory variables. These linear transformations are determined by a
maximum likelihood procedure. It is a technique which lies between the linear techniques
of Chapters 1 and 4 and the nonlinear methods of Chapters 5 and 6 in that it requires a
nonlinear optimisation scheme to estimate the parameters (and the posterior probabilities
are nonlinear functions of the explanatory variables), but discrimination is made using a
linear transformation.

One of the advantages of the maximum likelihood approach is that asymptotic results
regarding the properties of the estimators may readily be derived. Logistic discrimination
has further advantages, as itemised by Anderson (1982):

1. It is appropriate for both continuous and discrete-valued variables.

2. It is easy to use.

3. It is applicable over a wide range of distributions.

4. It has a relatively small number of parameters (unlike some of the nonlinear models
discussed in Chapters 5 and 6).

4.5 Application studies

There have been several studies comparing logistic discrimination with linear discrimi-
nant analysis (for example, Bull and Donner, 1987; Press and Wilson, 1978). Logistic
discrimination has been found to work well in practice, particularly for data that depart
significantly from normality – something that occurs often in practice. The Statlog project
(Michie et al., 1994) compared a range of classification methods on various data sets. It
reports that there is little practical difference between linear and logistic discrimination.
Both methods were in the top five algorithms.

There are many applications of support vector machines, primarily concerned with the
nonlinear variant, to be reported in Chapter 5. However, in a communications example,
support vector machines have been used successfully to implement a decision feedback
equaliser (to combat distortion and interference), giving superior performance to the
conventional minimum mean squared error approach (S. Chen et al., 2000).
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4.6 Summary and discussion

The discriminant functions discussed in the previous section are all linear in the compo-
nents of x or the transformed variables 	i .x/ (generalised linear discriminant functions).
We have described several approaches for determining the parameters of the model (error-
correction schemes, least squares optimisation, logistic model), but we have regarded the
initial transformation, φ, as being prescribed. Some possible choices for the functions
	i .x/ were given in Chapter 1 and there are many other parametric and nonparametric
forms that may be used, as we shall see in later chapters. But how should we choose
the functions 	i ? A good choice for the 	i will lead to better classification performance
for a subsequent linear classifier than simply applying a linear classifier to the variables
xi . On the other hand, if we were to use a complex nonlinear classifier after the initial
transformation of the variables, then the choice for the 	i may not be too critical. Any
inadequacies in a poor choice may be compensated for by the subsequent classification
process. However, in general, if we have knowledge about which variables or transfor-
mations are useful for discrimination, then we should use it, rather than hope that our
classifier will ‘learn’ the important relationships.

If we could choose the 	i so that the conditional risk vector ρ.x/ (4.47) has compo-
nents ²i .x/ of the form

²i .x/ D
DX

jD1

ai j	 j .x/C ai0

for weights ai j , then a resulting linear classifier would be asymptotically optimum (De-
vijver, 1973). Unfortunately, this does not give us a prescription for the 	i .x/. Many
sets of basis functions have been proposed, and the more basis functions we use in our
classifier, the better we might expect our classifier to perform. This is not necessarily
the case, since increasing the dimension of the vector φ, by the inclusion of more basis
functions, leads to more parameters to estimate in the subsequent classification stage.
Although error rate on the training set may in fact decrease, the true error rate may
increase as generalisation performance deteriorates.

For polynomial basis functions, the number of terms increases rapidly with the order
of the polynomial, restricting such an approach to polynomials of low order. However,
an important recent development is that of support vector machines, replacing the need
to calculate D-dimensional feature vectors φ.x/ with the evaluation of a kernel K .x; y/
at points x and y in the training set.

In the following chapter, we turn to discriminant functions that are linear combinations
of nonlinear functions φ (i.e. generalised linear discriminant functions). The radial basis
function network defines the nonlinear function explicitly. It is usually of a prescribed
form with parameters set as part of the optimisation process. They are usually determined
through a separate procedure and the linear parameters are obtained using the procedures
of this chapter. The support vector machine defines the nonlinear function implicitly,
through the specification of a kernel function.
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4.7 Recommendations

1. Linear schemes provide a baseline from which more sophisticated methods may be
judged. They are easy to implement and should be considered before more complex
methods.

2. The error-correction scheme, or a support vector machine, can be used to test for sep-
arability. This might be important for high-dimensional data sets where classes may
be separable due to the finite training set size. A classifier that achieves linear sepa-
rability on a training set does not necessarily mean good generalisation performance,
but it may indicate insufficient data to characterise distributions.

3. A regression on binary variables provides a least squares approach to the Bayes
optimal discriminant. However, there is evidence to show that optimal scaling (linear
discriminant analysis in the space of fitted values) provides a better classifier. The
latter method (equivalent to the multiclass extension of Fisher’s linear discriminant)
is recommended.

4.8 Notes and references

The theory of algorithms for linear discrimination is well developed. The books by
Nilsson (1965) and Duda et al. (2001) provide descriptions of the most commonly used
algorithms (see also Ho and Agrawala, 1968; Kashyap, 1970). A more recent treatment
of the perceptron can be found in the book by Minsky and Papert (1988).

Logistic discrimination is described in the survey article by Anderson (1982) and the
book by McLachlan (1992a).

The development of optimal scaling and the relationship to linear discriminant analysis
is described by Breiman and Ihaka (1984); the results in this chapter follow more closely
the approach of Hastie et al. (1994).

Support vector machines were introduced by Vapnik and co-workers. The book by
Vapnik (1998) provides a very good description with historical perspective. Cristianini
and Shawe-Taylor (2000) present an introduction to support vector machines aimed at
students and practitioners. Burges (1998) provides a very good tutorial on support vector
machines for pattern recognition.

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

1. Linear programming or linear optimisation techniques are procedures for maximising
linear functions subject to equality and inequality constraints. Specifically, we find
the vector x such that

z D aT
0 x
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is minimised subject to the constraints

xi ½ 0 i D 1; : : : ; n (4.66)

and the additional constraints

aT
i x� bi i D 1; : : : ;m1

aT
j x½ b j ½ 0 j D m1 C 1; : : : ;m1 C m2

aT
k xD bk ½ 0 k D m1 C m2 C 1; : : : ;m1 C m2 C m3

for given m1;m2 and m3.

Consider optimising the perceptron criterion function as a problem in linear pro-
gramming. The perceptron criterion function, with a positive margin vector b, is
given by

JP D
X
yi2Y

.bi � vT yi /

where now yi are the vectors satisfying vT yi � bi . A margin is introduced to
prevent the trivial solution v D 0. This can be reformulated as a linear programming
problem as follows. We introduce the artificial variables ai and consider the problem
of minimising

Z D
nX

iD1

ai

subject to
ai ½ 0

ai ½ bi � vT yi

Show that minimising Z with respect to a and v will minimise the perceptron
criterion.

2. Standard linear programming (see Exercise 1) requires all variables to be positive and
the minimum of JP will lead to a solution for v that may have negative components.
Convert the .p C 1/-dimensional vector v to a 2.p C 1/-dimensional vector

	
vC
v�



where vC is the vector v with negative components set to zero, and v� is the vector
v with positive components set to zero and negative components multiplied by �1.
For example, the vector .1;�2;�3; 4; 5/T is written as .1; 0; 0; 4; 5; 0; 2; 3; 0; 0/T .

State the error-correction procedure as an exercise in linear programming.

3. Evaluate the constant of proportionality, Þ, in (4.12), and hence show that the offset
on the right-hand side of (4.12) does not depend on the choice for t1 and t2 and is
given by

p2 � p1

2

	
1C p1 p2d2

p1 p2
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where pi D ni=n and d2 is given by

d2 D .m1 �m2/
TS�1

W .m1 �m2/
T

the Mahalanobis distance between two normal distributions of equal covariance ma-
trices (see Appendix A). Compare this with the optimal value for normal distribu-
tions, given by (4.6).

4. Show that the maximisation of
TrfS�1

W SBg

in the transformed space leads to the same feature space as the linear discriminant
solution.

5. Show that the criterion

J4 D TrfATSBAg
TrfATSWAg

is invariant to an orthogonal transformation of the matrix A.

6. Consider the squared error,

CX
jD1

p.! j /E[jjWx C w0 � λ j jj2] j

where E[:] j is with respect to the conditional distribution of x on class ! j . By
writing

E[jjWx C w0 � λ j jj2] j D E[jj.Wx C w0 � ρ.x//C .ρ.x/� λ j /jj2] j

and expanding, show that the linear discriminant rule also minimises

E 0 D E[jjWx C w0 � ρ.x/jj2]

where the expectation is with respect to the unconditional distribution p.x/ of x and
ρ.x/ is defined as

ρ.x/ D
CX

jD1

λ j p.! j jx/

7. Show that if A is the linear discriminant transformation (transforming the within-
class covariance matrix to the identity and diagonalising the between-class covariance
matrix), then the inverse of the within-class covariance matrix may be written

S�1
W D AAT CA?AT

?

where AT
?m j D 0 for all j .

8. Why is the normalisation criterion �TD p� D I K a convenient mathematical choice
in optimal scaling? If an offset term 1Tw0 is introduced in (4.51), what would be
the appropriate normalisation constraint?
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9. Using the definition of m j ,

m j D 1

n j
[XTT ] j

the solution for W (4.52) and the eigenvector equation (4.54), show that

yT
j D
�1
½.1�½/y j D .θ j /TD�1

1�½θ
j � jθ j j2

where θ j are the scorings on class ! j . Hence derive the discriminant function (4.60)
from (4.59).

10. Verify that the optimal scaling solution for W diagonalises the within- and between-
class covariance matrices (equations (4.55) and (4.56)).

11. Show that the outputs of a linear discriminant function, trained using a least squares
approach with 0–1 targets, sum to unity.

12. For normally distributed classes with equal covariance matrix, Fisher’s linear dis-
criminant, with a suitable choice of threshold, provides an optimal discriminant in
the sense of obtaining the Bayes decision boundary. Is the converse true? That is,
if Fisher’s discriminant is identical to the Bayes decision boundary, are the classes
normally distributed? Justify your answer.

13. Generate data from three bivariate normal distributions, with means .�4;�4/, .0; 0/,
.4; 4/ and identity covariance matrices; 300 samples in train and test sets; equal pri-
ors. Train a least squares classifier (Section 4.3.4) and a linear discriminant function
(Section 4.3.3) classifier. For each classifier, obtain the classification error and plot
the data and the decision boundaries. What do you conclude from the results?

14. Derive the dual form of the Lagrangian for support vector machines applied to the
multiclass case.
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Nonlinear discriminant
analysis – kernel methods

Overview

Developed primarily in the neural networks and machine learning literature, the
radial basis function (RBF) network and the support vector machine (SVM) are
flexible models for nonlinear discriminant analysis that give good performance on
a wide range of problems. RBFs are sums of radially symmetric functions; SVMs
define the basis functions implicitly through the specification of a kernel.

5.1 Introduction

In the previous chapter, classification of an object is achieved by a linear transformation
whose parameters were determined as the result of some optimisation procedure. The
linear transformation may be applied to the observed data, or some prescribed features
of that data. Various optimisation schemes for the parameters were considered, including
simple error-correction schemes (as in the case of the perceptron) and least squares error
minimisation; in the logistic discrimination model, the parameters were obtained through
a maximum likelihood approach using a nonlinear optimisation procedure.

In this chapter and the following one, we generalise the discriminant model still
further by assuming parametric forms for the discriminant functions �. Specifically, we
assume a discriminant function of the form

g j .x/ D
mX

iD1

w j i�i .x; µi /C w j0; j D 1; : : : ;C (5.1)

where there are m ‘basis’ functions, �i , each of which has nm parameters µi D f¼ik; k D
1; : : : ; nmg (the number of parameters may differ between the �i , but here we shall assume
an equal number), and use the discriminant rule:

assign x to class !i if gi .x/ D max
j

g j .x/

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.
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that is, x is assigned to the class whose discriminant function is the largest. In (5.1) the
parameters of the model are the values w j i and ¼ik and the number of basis functions, m.

Equation (5.1) is exactly of the form of a generalised linear discriminant function, but
we allow some flexibility in the nonlinear functions �i . There are several special cases
of (5.1); these include

�i .x; µi / � .x/i linear discriminant function m D p, dimension of x.
�i .x; µi / � �i .x/ generalised linear discriminant function with fixed

transformation; it can take any of the forms in Chapter 1,
for example.

Equation (5.1) may be written
g.x/ D Wφ.x/C w0 (5.2)

where W is the Cðm matrix with .i; j/th component wi j , φ.x/ is the m-dimensional vec-
tor with i th component �i .x;µi / and w0 is the vector .w10; : : : ; wC0/

T . Equation (5.2)
may be regarded as providing a transformation of a data sample x 2 R

p to R
C through

an intermediate space R
m defined by the nonlinear functions �i . This is a model of the

feed-forward type. As we shall discuss later, models of this form have been widely used
for functional approximation and (as with the linear and logistic models), they are not
confined to problems in discrimination.

There are two problems to solve with the model (5.2). The first is to determine the
complexity of the model or the model order. How many functions �i do we use (what
is the value of m)? How complex should each function be (how many parameters do we
allow)? The answers to these questions are data-dependent. There is an interplay between
model order, training set size and the dimensionality of the data. Unfortunately there is
no simple equation relating the three quantities – it is very much dependent on the data
distribution. The problem of model order selection is non-trivial and is very much an
active area of current research (see Chapter 11). The second problem is to determine the
remaining parameters of the model (W and the ¼i ), for a given model order. This is
simpler and will involve some nonlinear optimisation procedure for minimising a cost
function. We shall discuss several of the most commonly used forms.

In this chapter we introduce models that have been developed primarily in the neural
network and machine learning literatures. The types of neural network model that we
consider in this chapter are of the feed-forward type, and there is a very strong overlap
between these models and those developed in the statistical literature, particularly kernel
discrimination, logistic regression and projection pursuit (discussed in the next chapter).
The radial basis function network and the multilayer perceptron (the latter also described
in the next chapter) may be thought of as a natural progression of the generalised linear
discriminant models described in the previous chapter.

Therefore, for the purpose of this chapter and the next, we consider neural network
models to provide models of discriminant functions that are linear combinations of simple
basis functions, usually of the same parametric form. The parameters of the basis func-
tions, as well as the linear weights, are determined by a training procedure. Other models
that we have described in earlier chapters could be termed neural network models (for
example, linear discriminant analysis). Also, the development of classification and regres-
sion models in the neural network literature is no longer confined to such simple models.
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The issues in neural network development are the common ones of pattern recognition:
model specification, training and model selection for good generalisation performance.
Section 5.2 discusses optimisation criteria for models of the form (5.2) above. Sections 5.3
and 5.4 then introduce two popular models, namely the radial basis function network and
the support vector machine.

5.2 Optimisation criteria

All the optimisation criteria assume that we have a set of data samples f.xi ; t i /; i D
1; : : : ; ng that we use to ‘train’ the model. In a regression problem, the xi are measure-
ments on the regressors and t i are measurements on the dependent or response variables.
In a classification problem, t i are the class labels. In both cases, we wish to obtain an
estimate of t given x, a measurement. In the neural network literature, t i are referred to
as targets, the desired response of the model for measurements or inputs, xi ; the actual
responses of the model, g.xi /, are referred to as outputs.

5.2.1 Least squares error measure

As in the linear case, we seek to minimise a squared error measure,

E D
nX

iD1

jt i 	 g.xi /j2

D jj 	 T T CW	T C w01T jj2
(5.3)

with respect to the parameters wi j and ¼ jk , where T D [t1; : : : ; tn]T is an n ð C
target matrix whose i th row is the target for input xi ; 	 D [φ.x1/; : : : ;φ.xn/]T is
an n ð m matrix whose i th row is the set of basis function values evaluated at xi ;
jjAjj2 D TrfAAT g DPi j A2

i j ; and 1 is a n ð 1 vector of 1s.

Properties
1. In a classification problem in which the target for pattern x p 2 ! j is the vector of
losses λ j with components ½ j i defined by the loss in deciding !i when the true class is
! j , the solution for g that minimises (5.3) has minimum variance from the conditional
risk vector, ρ. In particular, for the 1-from-C coding (½ j i D 1 for i D j ; ½ j i D 0 for
i 6D j), the vector g is a minimum square approximation to the vector of a posteriori
probabilities asymptotically (see Chapter 4). This does not mean that the approximation g

possesses the properties of the true a posteriori probability distribution (that its elements
are positive and sum to unity) but it is an approximation to it (and the one with minimum
variance from it).

2. There are two sets of parameters to determine – the linear weights W and the
parameters of the nonlinear functions �, namely f¼g. For a given set of values of f¼g,
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the solution for W with minimum norm that minimises (5.3) is

W D OT T
. O	T

/† (5.4)

where † denotes the pseudo-inverse of a matrix (see Appendix C). The matrices OT and
O	 are zero-mean matrices ( OT T

1 D 0; O	T
1 D 0) defined as

OT 4D T 	 1t
T

O	 4D 		 1φ
T

where

t D 1

n

nX
iD1

t i D 1

n
T T 1

φ D 1

n

nX
iD1

φ.xi / D 1

n
	T 1

are the mean values of the targets and the basis function outputs respectively. The solution
for w0 is

w0 D t 	Wφ

Therefore, we may solve for the weights W using a linear method such as a singular value
decomposition. However, we must use a nonlinear optimisation scheme to determine the
parameters f¼g.

3. In a classification problem, in which we have the 1-from-C coding for the class
labels (that is, if xi 2 ! j then we have the target t i D .0; 0; : : : ; 0; 1; 0; : : : ; 0/T , where
the 1 is in the j th position), then using the pseudo-inverse solution (5.4) for the final
layer weights gives the property that the components of g sum to unity for any data
sample x, i.e. X

i

gi D 1

where
g D OT T

. O	T
/†	T C w0 (5.5)

The values of g are not constrained to be positive. One way to ensure positivity is to
transform the values gi by replacing gi by exp.	gi /=

P
j exp.	g j /. This forms the basis

of the generalised logistic model (sometimes called softmax).

4. If the parameters fW ;w0g are chosen to minimise the least squares error, then it may
be shown that the parameters f¼g that minimise the least mean squared error maximise
the feature extraction criterion (Lowe and Webb, 1991)

TrfSBS
†
T g (5.6)
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where SB and ST are defined as

SB
4D 1

n2
O	T OT OT T O	

ST
4D 1

n
O	T O	

The matrices ST and SB have the interpretation of being the total and between-class
covariance matrices of the patterns xi in the space spanned by the outputs of the non-
linear transformations, �i . Precise interpretations depend on the specific target coding
schemes. Thus, the optimal method of solution of such a classifier is to find a nonlinear
transformation into the space spanned by the nonlinear functions �i such that the patterns
in different classes are somehow maximally separated (this information is contained in
the between-class covariance matrix), while still maintaining an overall total normalisa-
tion (through the total covariance matrix). The form of the criterion (5.6) is independent
of the transformation from the data space to the space of hidden unit outputs; i.e., it is not
dependent on the form of the nonlinear functions �, but is a property of the least mean
square solution for the final layer. The expression (5.6) is also related to optimisation
criteria used in clustering (see Chapter 10).

Incorporating priors and costs
A more general form of (5.3) is a weighted error function

E D
nX

iD1

di jt i 	 g.xi /j2

D jj.	T T CW	T C w01T /Djj2
(5.7)

where the i th pattern is weighted by the real factor di , and D is diagonal with Di i D
p

di .
Three different codings for the target matrix T and the weighting matrix D are described.

1. Cost-weighted target coding In a classification problem, with C classes, choose a
uniform weighting for each pattern in the training set (dk D 1; k D 1; : : : ; n) and employ
a target coding scheme which, for a pattern in class ! j , takes as the target vector the
vector of losses λ j , whose i th component is the cost of assigning to class !i a pattern
that belongs to class ! j . The optimal discriminant vector is

ρ.x/ D
CX

jD1

λ j p.! j jx/

which is the Bayes conditional risk vector (see Chapter 4).
If we make a decision by assigning a pattern to the class for which the classifier

outputs are closest to the targets (minimum distance rule) we have: assign x to class
!i if

λT
i λi 	 2oT λi � λT

j λ j 	 2oT λ j ; j D 1; : : : ;C

where o is the output vector (4.50). Generally, this is not the same as the rule in which
x is assigned to the class corresponding to the smallest value of o (treating o as an
approximation to ρ and making a minimum-cost decision).
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2. Prior-weighted patterns In this case, each pattern in the training set is weighted
according to the a priori probabilities of class membership and the number in that class as

di D Pk

nk=n
for pattern i in class !k

where Pk is the assumed known class probability (derived from knowledge regarding the
relative expected class importance, or frequency of occurrence in operation) and nk is
the number of patterns in class !k in the training set.

The weighting above would be used in situations where the expected test conditions
differ from the conditions described by the training data by the expected proportions in
the classes. This may be a result of population drift (see Chapter 1), or when there are
limited data available for training. The above weighting has been used by Munro et al.
(1996) for learning low-probability events in order to reduce the size of the training set.

3. Cluster-weighted patterns The computation time for many neural network training
schemes increases with the training set size. Clustering (see Chapter 10) is one means
of finding a reduced set of prototypes that characterises the training data set. There are
many ways in which clustering may be used to preprocess the data – it could be applied
to classes separately, or to the whole training set. For example, when applied to each
class separately, the patterns for that class are replaced by the cluster means, with di for
the new patterns set proportional to the number in the cluster. When applied to the whole
data set, if a cluster contains all members of the same class, those patterns are replaced
in the data set by the cluster mean and di is set to the number of patterns in the cluster.
If a cluster contains members of different classes, all patterns are retained.

Regularisation
Too many parameters in a model may lead to over-fitting of the data by the model and
poor generalisation performance (see Chapter 1). One means of smoothing the model fit
is to penalise the sum-squared error. Thus, we modify the squared error measure (5.3)
and minimise

E D
nX

iD1

jt i 	 g.xi /j2 C Þ
Z

F.g.x// dx (5.8)

where Þ is a regularisation parameter and F is a function of the complexity of the
model. For example, in a univariate curve-fitting problem, a popular choice for F.g/ is
@2g=@x2, the second derivative of the fitting function g. In this case, the solution for g

that minimises (5.8) is a cubic spline (Green and Silverman, 1994).
In the neural network literature, a penalising term of the form

Þ
X

i

Qw2
i

is often used, where the summation is over all adjustable network parameters, Qw (see
Sections 5.3 and 6.2). This procedure is termed weight decay.
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For the generalised linear model (5.2) we have seen that the penalised error is taken
to be (see Chapter 4)

E D jj 	 OT T CW O	T jj2 C ÞjjW jj2 (5.9)

expressed in terms of the zero-mean matrices OT and O	; and Þ is termed the ridge
parameter (see Chapter 4). The solution for W that minimises E is

W D OT T O	. O	T O	C ÞIm/
	1

This procedure has been used to regularise radial basis function networks (see
Section 5.3).

5.2.2 Maximum likelihood

An alternative approach to the least squared error measure is to assume a parametric form
for the class distributions and to use a maximum likelihood procedure. In the multiclass
case, the basic assumption for the generalised logistic discrimination is

log

�
p.xj!s/

p.xj!C /

�
D þs0 C βT

s φ.x/; s D 1; : : : ;C 	 1 (5.10)

where φ.x/ is a nonlinear function of the variables x, with parameters f¼g; that is, the
log-likelihood ratio is a linear combination of the nonlinear functions, �. The posterior
probabilities are of the form (see Chapter 4)

p.!s jx/ D
exp.þ 0s0 C βT

s φ.x//

1CPC	1
jD1 exp.þ 0j0 C βT

j φ.x//
; s D 1; : : : ;C 	 1

p.!C jx/ D 1

1CPC	1
jD1 exp.þ 0j0 C βT

j φ.x//

(5.11)

where þ 0s0 D þs0 C log.p.!s/=p.!C //. Discrimination depends solely on the C 	 1
functions þ 0s0 C βT

s �.x/ .s D 1; : : : ;C 	 1/ with the decision:

assign x to class ! j if max
sD1;:::;C	1

þ 0s0 C βT
s φ.x/ D þ 0j0 C βT

j φ.x/ > 0

else assign x to class !C .
For a data set fx1; : : : ; xng, the likelihood of the observations is given by:

L D
CY

iD1

Y
xr2!i

p.xr j!i / (5.12)



176 Nonlinear discriminant analysis – kernel methods

where xr is the r th pattern of class !i . The parameters of the model (in this case,
the þ terms and f¼g, the set of parameters on which � depends) may be determined
using a maximum likelihood procedure (as in logistic discrimination; see Chapter 4).
Equation (5.12) may be written

L D
 

1QC
iD1[p.!i /]ni

! Y
all x

p.x/

!
CY

iD1

Y
xr2!i

p.!i jxr /

and assuming that the factor
 

1QC
iD1[p.!i /]ni

! Y
all x

p.x/ (5.13)

is independent of the model parameters (the assumption that we are making is on the
log-likelihood ratio – we are free to choose p.x/; see Chapter 4), then maximising L is
equivalent to maximising L 0 given by

L 0 D
CY

iD1

Y
xr2!i

p.!i jxr / (5.14)

Maximisation of the likelihood is achieved through the use of some form of numerical
optimisation scheme, such as conjugate gradient methods or quasi-Newton procedures
(see Press et al., 1992).

The parameters of the generalised logistic model may also be found using a least
squared error procedure by minimising

nX
iD1

j.t i 	 p.! j .i/jxi //j2 (5.15)

where t i D .0; 0; : : : ; 0; 1; 0; : : : ; 0/T (the 1 being in the j th position) for xi 2 ! j and p

is the model for the vector of a posteriori probabilities given by (5.11). We know from
Section 5.2.1 that p is asymptotically a minimum variance approximation to the Bayes
discriminant function.

5.2.3 Entropy

Another optimisation criterion used for classification problems is the relative or cross-
entropy. If q.!jx/ is the true posterior distribution and p.!jx/ is the approximation
produced by a model, then the entropy measure to be minimised is

G D
CX

iD1

E



q.!i jx/log

�
q.!i jx/
p.!i jx/

�½
(5.16)

where the expectation is with respect to the unconditional distribution of x. If the training
data are representative of this distribution, then we may approximate the expectation
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integral in (5.16) by a finite sum over the training set,

G D
CX

iD1

X
xr2!i

log

�
q.!i jxr /

p.!i jxr /

�
(5.17)

and minimising (5.17) is equivalent to maximising (cf. (5.12))

OG D
CY

iD1

Y
xr2!i

p.!i jxr /

(compare with (5.14); see the exercises at the end of the chapter). If our approximation
for p is of the form (5.11), for example, then we have the generalised logistic discrimi-
nation model. Thus, minimising the cross-entropy is equivalent to maximum likelihood
estimation.

5.3 Radial basis functions

5.3.1 Introduction

Radial basis functions (RBFs) were originally proposed in the functional interpolation
literature (see the review by Powell, 1987; Lowe, 1995a) and first used for discrimination
by Broomhead and Lowe (1988). However, RBFs have been around in one form or
another for a very long time. They are very closely related to kernel methods for density
estimation and regression developed in the statistics literature (see Chapter 3) and to
normal mixture models (Chapter 2).

The RBF may be described mathematically as a linear combination of radially sym-
metric nonlinear basis functions. The RBF provides a transformation of a pattern x 2 R

p

to an n0-dimensional output space according to1

g j .x/ D
mX

iD1

w j i�i .jx 	 µi j/C w j0; j D 1; : : : ; n0 (5.18)

The parameters w j i are often referred to as the weights; w j0 is the bias and the vectors
µi are the centres. The model (5.18) is very similar to the kernel density model described
in Chapter 3 in which n0 D 1, w10 D 0, and the number of centres m is taken to be
equal to the number of data samples n, with µi D xi (a centre at each data sample);
w j i D 1=n and � is one of the kernels given in Chapter 3, sometimes referred to as the
activation function in the neural network literature.

In the case of exact interpolation, a basis function is also positioned at each data point
(m D n). Suppose we seek a mapping g from R

p to R (taking n0 D 1) through the points
.xi ; ti / which satisfies the condition that g.xi / D ti ; that is, under the assumed model
(5.18) (and ignoring the bias), we seek a solution for w D .w1; : : : ; wn/

T that satisfies

t D 	w

1Here we use n0 to denote the dimensionality of the output space. In a classification problem, we usually
have n0 D C , the number of classes.
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Figure 5.1 Discriminant functions constructed using a radial basis function network of normal
kernels

where t D .t1; : : : ; tn/T and 	 is the nðn matrix with .i; j/th element �.jxi 	x j j/, for
a nonlinear function �. For a large class of functions Micchelli (1986) has shown that
the inverse of 	 exists and the solution for w is given by

w D 		1t

Exact interpolation is not a good thing to do in general. It leads to poor generalisation
performance in many pattern recognition problems (see Chapter 1). The fitting function
can be highly oscillatory. Therefore, we usually take m < n.

An often-cited advantage of the RBF model is its simplicity. Once the forms of the
nonlinearity have been specified and the centres determined, we have a linear model
whose parameters can be easily obtained by a least squares procedure, or indeed any
appropriate optimisation procedure such as those described in Chapter 4 or Section 5.2.

For supervised classification, the RBF is used to construct a discriminant function
for each class. Figure 5.1 illustrates a one-dimensional example. Data drawn from two
univariate normal distributions of unit variance and means of 0.0 and 2.0 are plotted.
Normal kernels are positioned over centres selected from these data. The weights w j i

are determined using a least squares procedure and the discriminant functions gž and gŠ
plotted. Thus, a linear combination of ‘blob’-shaped functions is used to produce two
functions that can be used as the basis for discrimination.

5.3.2 Motivation

The RBF model may be motivated from several perspectives. We present the first two
in a discrimination context and then one from a regression perspective.

Kernel discriminant analysis
Consider the multivariate kernel density estimate (see Chapter 3)

p.x/ D 1

nh p

nX
iD1

K

�
1

h
.x 	 xi /

�
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where K .x/ is defined for p-dimensional x satisfying
R
R p K .x/ dx D 1. Suppose we

have a set of samples xi .i D 1; : : : ; n/ with n j samples in class ! j . j D 1; : : : ;C/.
If we construct a density estimate for each class then the posterior probability of class
membership can be written

p.! j jx/ D p.! j /

p.x/

1

n j h p

nX
iD1

z ji K

�
1

h
.x 	 xi /

�
(5.19)

where p.! j / is the prior probability of class ! j and z ji D 1 if xi 2 class ! j , 0 otherwise.
Thus, discrimination is based on a model of the form

nX
iD1

w j i�i .x 	 xi / (5.20)

where �i .x 	 xi / D K ..x 	 xi /=h/ and

w j i D p.! j /

n j
z ji (5.21)

(We neglect the term p.x/h p in the denominator of (5.19) since it is independent of j .)
Equation (5.20) is of the form of an RBF with a centre at each data point and weights
determined by class priors (equation (5.21)).

Mixture models
In discriminant analysis by Gaussian mixtures (Chapter 2), the class-conditional density
for class ! j is expressed as

p.xj! j / D
R jX

rD1

³ jr p.xj� jr /

where class ! j has R j subgroups, ³ jr are the mixing proportions (
PR j

rD1 ³ jr D 1) and
p.xj� jr / is the density of the r th subgroup of class ! j evaluated at x; (� jr denote
the subgroup parameters: for normal mixtures, the mean and covariance matrix). The
posterior probabilities of class membership are

p.! j jx/ D p.! j /

p.x/

R jX
rD1

³ jr p.xj� jr /

where p.! j / is the prior probability of class ! j .
For normal mixture components, p.xj� jr /, with means µ jr ; j D 1; : : : ;C ; r D

1; : : : ; R j and common diagonal covariance matrices, ¦ 2I , we have discriminant func-
tions of the form (5.18) with – basis functions, where m DPC

jD1 R j , weights set by the
mixing proportions and class priors, and basis functions centred at the µ jr .

Regularisation
Suppose that we have a data set f.xi ; ti /; i D 1; : : : ; ng where xi 2 R

d , and we seek a
smooth surface g,

ti D g.xi /C error



180 Nonlinear discriminant analysis – kernel methods

One such approach is to minimise the penalised sum of squares

S D
nX

iD1

.ti 	 g.xi //
2 C Þ J .g/

where Þ is a regularisation or roughness (Green and Silverman, 1994) parameter and
J .g/ is a penalty term that measures how ‘rough’ the fitted surface is and has the effect
of penalising ‘wiggly’ surfaces (see Chapter 4 and Section 5.2.1).

A popular choice for J is one based on mth derivatives. Taking J as

J .g/ D
Z

R d

X m!

¹1! : : : ¹d !

�
@m g

@x¹1
1 : : : @x¹d

d

�2

dx1 : : : dxd

where the summation is over all non-negative integers ¹1; ¹2; : : : ; ¹d such that ¹1 C
¹2 C Ð Ð Ð C ¹d D m, results in a penalty invariant under translations and rotations of the
coordinate system (Green and Silverman, 1994).

Defining �md.r/ by

�md.r/ D
²
�r2m	d log.r/ if d is even
�r2m	d if d is odd

and the constant of proportionality, � , by

� D

8>><
>>:

.	1/mC1Cd=221	2m³	d=2 1

.m 	 1/!

1

.m 	 d=2/!
if d is even

0.d=2	 m/2	2m³	d=2 1

.m 	 1/!
if d is odd

then (under certain conditions on the points xi and m) the function g minimising J .g/
is a natural thin-plate spline. This is a function of the form

g.x/ D
nX

iD1

bi�md.jx 	 xi j/C
MX

jD1

a j� j .x/

where

M D
�

m C d 	 1
d

�

and f� j ; j D 1; : : : ;Mg is a set of linearly independent polynomials spanning the M-
dimensional space of polynomials in R

d of degree less than m. The coefficients fa j ; j D
1; : : : ;Mg, fbi ; i D 1; : : : ; ng satisfy certain constraints (see Green and Silverman, 1994,
for further details). Thus, the minimising function contains radially symmetric terms, �,
and polynomials.

An alternative derivation based on a different form for the penalty terms leading to
Gaussian RBFs is provided by Bishop (1995).
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5.3.3 Specifying the model

The basic RBF model is of the form

g j .x/ D
mX

iD1

w j i�

� jx 	 µi j
h

�
Cw j0; j D 1; : : : ; n0

that is, all the basis functions are of the same functional form (�i D �) and a scaling
parameter h has been introduced. In this model, there are five quantities to prescribe or
to determine from the data:

the number of basis functions, m;
the form of the basis function, �;
the smoothing parameter, h;
the positions of the centres, µi ;
the weights, w j i , and bias, w j0.

There are three main stages in constructing an RBF model:

1. Specify the nonlinear functions, �. To a large extent, this is independent of the data
and the problem (though the parameters of these functions are not).

2. Determine the number and positions of the centres, and the kernel widths.

3. Determine the weights of the RBF. These values are data-dependent.

Stages 2 and 3 above are not necessarily carried out independently. Let us consider each
in turn.

Specifying the functional form
The ideal choice of basis function is a matter for debate. However, although certain
types of problem may be matched inappropriately to certain forms of nonlinearity, the
actual form of the nonlinearity is relatively unimportant (as in kernel density estimation)
compared to the number and the positions of the centres. Typical forms of nonlinearity are
given in Table 5.1. Note that some RBF nonlinearities produce smooth approximations,
in that the fitting function and its derivatives are continuous. Others (for example, zlog.z/
and exp.	z/) have discontinuous gradients.

The two most popular forms are the thin-plate spline, �.z/ D z2log.z/, and the normal
or Gaussian form, �.z/ D exp.	z2/. Each of these functions may be motivated from
different perspectives (see Section 5.3.2): the normal form from a kernel regression and
kernel density estimation point of view and the thin-plate spline from curve fitting (Lowe,
1995a). Indeed, each may be shown to be optimal under certain conditions: in fitting data
in which there is normally distributed noise on the inputs, the normal form is the optimal
basis function in a least squares sense (Webb, 1994); in fitting a surface through a set
of points and using a roughness penalty, the natural thin-plate spline is the solution
(Duchon, 1976; Meinguet, 1979).
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Table 5.1 Radial basis function nonlinearities

Nonlinearity Mathematical form

�.z/, z D jx 	 µj=h

Gaussian exp.	z2/

Exponential exp.	z/

Quadratic z2 C ÞzC þ
Inverse quadratic 1=[1C z2]

Thin-plate spline zÞ log.z/

Trigonometric sin.z/

These functions are very different: one is compact and positive, the second diverges
at infinity and is negative over a region. However, in practice, this difference is to some
extent superficial since, for training purposes, the function � need only be defined in the
feature space over the range [smin; smax], where

smax D max
i; j
jxi 	 µ j j

smin D min
i; j
jxi 	 µ j j

and therefore � may be redefined over this region as O�.s/ given by

O� 	 �.s=h/	 �min

�max 	 �min

where �max and �min are the maximum and minimum values of � over [0; smax] (taking
smin D 0) respectively (0 � O� � 1) and s D jx 	 µ j j is the distance in the feature
space. Scaling of � may simply be compensated for by adjustment of weights fw j i ; i D
1; : : : ;mg and bias w j0, j D 1; : : : ; n0. The fitting function is unaltered.

Figure 5.2 illustrates the normalised form for the normal nonlinearity for several
values of the smoothing parameter, h. For the Gaussian basis function, we see that there
is little change in the normalised form for h=smax greater than about 2. As h !1, the
normalised form for the nonlinearity tends to the quadratic

O�1.s/ 4D 1	 s2

s2
max

(5.22)

Thus, asymptotically, the normalised basis function is independent of h.
For large h=smax (greater than about 2), changes in the value of h may be compensated

for by adjustments of the weights, w j i , and the radial basis function is a quadratic
function of the input variables. For smaller values of h, the normalised function tends to
the Gaussian form, thus allowing small-scale variation in the fitting function.

In some cases, particularly for the Gaussian kernel, it is important to choose an
‘appropriate’ value for the smoothing parameters in order to fit the structure in the data.
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Figure 5.2 Normalised Gaussian basis functions, O�.s/, for h=smax D 0.2, 0.5, 1.0, 2.0 and the
limiting quadratic

This is a compromise between the one extreme of fitting noise in the data and the other of
being unable to model the structure. As in kernel density estimation, it is more important
to choose appropriate values for the smoothing parameters than the functional form.
See Chapter 3 for a discussion on the choice of smoothing parameter in kernel density
estimation. There is some limited empirical evidence to suggest that thin-plate splines fit
data better in high-dimensional settings (Lowe, 1995b).

Centres and weights
The values of centres and weights may be found by minimising a suitable criterion (for
example, least squares) using a nonlinear optimisation scheme. However, it is more usual
to position the centres first, and then to calculate the weights using one of the optimisa-
tion schemes appropriate for linear models. Of course, this means that the optimisation
criterion will not be at an extremum with respect to the positions of the centres, but in
practice this does not matter.

Positioning of the centres can have a major effect on the performance of an RBF
for discrimination and interpolation. In an interpolation problem, more centres should be
positioned in regions of high curvature. In a discrimination problem, more centres should
be positioned near class boundaries. There are several schemes commonly employed.

1. Select from data set–random selection Select randomly from the data set. We
would expect there to be more centres in regions where the density is greater. A con-
sequence of this is that sparse regions may not be ‘covered’ by the RBF unless the
smoothing parameter is adjusted. Random selection is an approach that is commonly
used. An advantage is that it is fast. A disadvantage is the failure to take into account
the fitting function, or the class labels in a supervised classification problem; that is,
it is an unsupervised placement scheme and may not provide the best solution for a
mapping problem.
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2. Clustering approach The values for the centres obtained by the previous approach
could be used as seeds for a k-means clustering algorithm, thus giving centres for RBFs
as cluster centres. The k-means algorithm seeks to partition the data into k groups or
clusters so that the within-group sum of squares is minimised; that is, it seeks the cluster
centres fµ j ; j D 1; : : : ; kg that minimise

kX
jD1

S j

where the within-group sum of squares for group j is

S j D
nX

iD1

z ji jxi 	 µ j j2

in which z ji D 1 if xi is in group j (of size n j D
Pn

iD1 z ji ) and zero otherwise; µ j is
the mean of group j ,

µ j D
1

n j

nX
iD1

z jixi

Algorithms for computing the cluster centres µ j using k-means are described in
Chapter 10.

Alternatively, any other clustering approach could be used: either pattern based, or
dissimilarity matrix based by first forming a dissimilarity matrix (see Chapter 10).

3. Normal mixture model If we are using normal nonlinearities, then it seems sensible
to use as centres (and indeed widths) the parameters resulting from a normal mixture
model of the underlying distribution p.x/ (see Chapter 2). We model the distribution as
a mixture of normal models

p.x/ D
gX

jD1

³ j p.xjµ j ; h/

where

p.xjµ j ; h/ D 1

.2³/p=2h p
exp

²
	 1

2h2
.x 	 µ j /

T .x 	 µ j /

¦

The values of h, ³ j and µ j may be determined using the EM algorithm to maximise the
likelihood (see Chapter 2). The weights ³ j are ignored and the resulting normal basis
functions, defined by h and µi , are used in the RBF model.

4. k -nearest-neighbour initialisation The approaches described above use the input
data only to define the centres. Class labels, or the values of the dependent variables in
a regression problem, are not used. Thus, unlabelled data from the same distribution as
the training data may be used in the centre initialisation process. We now consider some
supervised techniques. In Chapter 3 we found that in the k-nearest-neighbour classifier
not all data samples are required to define the decision boundary. We may use an editing
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procedure to remove those prototypes that contribute to the error (with the hope of
improving the generalisation performance) and a condensing procedure to reduce the
number of samples needed to define the decision boundary. The prototypes remaining
after editing and condensing may be retained as centres for an RBF classifier.

5. Orthogonal least squares The choice of RBF centres can be viewed as a problem
in variable selection (see Chapter 9). Chen et al. (1991; see also Chen et al., 1992)
consider the complete set of data samples to be candidates for centres and construct a
set of centres incrementally. Suppose that we have a set of k 	 1 centres, positioned
over k 	 1 different data points. At the kth stage, the centre selected from the remaining
n 	 .k 	 1/ data samples that reduces the prediction error the most is added to the set
of centres. The number of centres is chosen as that for which an information criterion is
minimised.

A naı̈ve implementation of this method would solve for the network weights and
evaluate equation (5.4) n 	 .k 	 1/ times at the kth stage. Chen et al. (1991) propose
a scheme that reduces the computation based on an orthogonal least squares algorithm.
We seek a solution for the m ð n0 matrix W that minimises2

jj OT 	 O	W T jj2

The matrix O	 is decomposed as O	 D V A, where A is an mðm upper triangular matrix

A D

2
6666664

1 Þ12 Þ23 : : : Þ1m

0 1 Þ23 : : : Þ2m

0 0
: : :

: : :
:::

:::
: : :

:::

0 : : : 0 1

3
7777775

and V is an n ð m matrix D [v1; : : : ; vn]T and vT
i v j D 0 if i 6D j . The error E is then

given by
E D jj OT 	 V Gjj2

where G D AW T . Using the minimum norm solution for G that minimises E , we may
write (see the exercises)

E D Trf OT T OT g 	 TrfGT V T V Gg

D Trf OT T OT g 	
mX

jD1

jv j j2
 

n0X
iD1

g2
j i

!
(5.23)

The error reduction due to vk is defined as

errk
4D jvk j2

 
n0X

iD1

g2
ki

!

2We work with the zero-mean matrices OT and O	.
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where Gki D gki . Chen et al. (1991) propose an efficient algorithm for computing this
error when an additional centre is introduced and terminate the algorithm using a criterion
that balances the fitting error against complexity: specifically, the selection procedure is
terminated when

n log.¦ 2
e /C k�

is a minimum, where � is assigned a value 4 and ¦ 2
e is the variance of the residuals for

k centres. �

Having obtained centres, we now need to specify the smoothing parameters. These
depend on the particular form we adopt for the nonlinearity. If it is normal, then the
normal mixture approach will lead to values for the widths of the distributions naturally.
The other approaches will necessitate a separate estimation procedure. Again, there are
several heuristics which were discussed in Chapter 3 on kernel density estimation. Al-
though they are suboptimal, they are fast to calculate. An alternative is to choose the
smoothing parameter that minimises a cross-validation estimate of the sum-squared error.

We have not addressed the question of how to choose the number of centres (except
as part of the orthogonal least squares centre selection procedure). This is very similar
to many of the problems of model complexity discussed elsewhere in this book (see
Chapter 11); for example, how many clusters are best, how many components in a
normal mixture, how we determine intrinsic dimensionality, etc. It is not easy to answer.
The number depends on several factors, including the amount and distribution of the
data, the dimension and the form adopted for the nonlinearity. It is probably better to
have many centres with limited complexity (single smoothing parameter) than an RBF
with few centres and a complex form for the nonlinearity. There are several approaches
to determining the number of centres. These include:

1. Using cross-validation. The cross-validation error (minimised over the smoothing pa-
rameter) is plotted as a function of the number of centres. The number of centres is
chosen as that above which there is no appreciable decrease, or an increase in the
cross-validation error (as used by Orr, 1995, in forward selection of centres).

2. Monitoring the performance on a separate test set. This is similar to the cross-
validation procedure above, except that the error is evaluated on a separate test set.

3. Using an information complexity criterion. The sum-squared error is augmented by
an additional term that penalises complexity (see for example, Chen et al., 1991).

4. If we are using a normal mixture model to set the positions and widths of centres, we
may use one of the methods for estimating the number of components in a normal
mixture (see Chapter 2).

The final stage of determining the RBF is the calculation of the weights, either by
optimising the squared error measure (5.3), the regularised error or the likelihood (5.12).
Section 5.2 has described these procedures in some detail.

Most of the stages in the optimisation of an RBF use techniques described elsewhere
in this book (for example, clustering/prototype selection, kernel methods, least squares
or maximum likelihood optimisation). In many ways, a radial basis function is not new;
all its constituent parts are widely used tools of pattern recognition. In Section 5.3.5 we
put them together to derive a discrimination model based on normal nonlinearities.
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5.3.4 Radial basis function properties

One of the properties of an RBF that has motivated its use in a wide range of applications
both in functional approximation and in discrimination is that it is a universal approx-
imator: it is possible (given certain conditions on the kernel function) to construct an
RBF that approximates a given (integrable, bounded and continuous) function arbitrarily
accurately (Park and Sandberg, 1993; Chen and Chen, 1995). This may require a very
large number of centres. In most, if not all, practical applications the mapping we wish
to approximate is defined by a finite set of data samples providing class-labelled data
or, in an approximation problem, data samples and associated function values, and im-
plemented in finite-precision arithmetic. Clearly, this limits the complexity of the model.
We refer to Chapter 11 for a discussion of model order selection.

5.3.5 Simple radial basis function

We have now set up the machinery for implementing a simple RBF. The stages in a
simple implementation are as follows.

1. Specify the functional form for the nonlinearity.

2. Prescribe the number of centres, m.

3. Determine the positions of the centres (for example, random selection or the k-means
algorithm).

4. Determine the smoothing parameters (for example, simple heuristic or cross-
validation).

5. Map the data to the space spanned by the outputs of the nonlinear functions; i.e. for
a given data set xi ; i D 1; : : : ; n, form the vectors φi D φ.xi /; i D 1; : : : ; n.

6. Solve for the weights and the biases using (e.g.) least squares or maximum likelihood.

7. Calculate the final output on the train and test sets; classify the data if required.

The above is a simple prescription for an RBF network that uses unsupervised tech-
niques for centre placement and width selection (and therefore is suboptimal). One of
the often-quoted advantages of the RBF network is its simplicity – there is no non-
linear optimisation scheme required, in contrast to the multilayer perceptron classifier
discussed in the following section. However, many of the sophisticated techniques for
centre placement and width determination are more involved and increase the compu-
tational complexity of the model substantially. Nevertheless, the simple RBF can give
acceptable performance for many applications.

5.3.6 Example application study

The problem The problem of source position estimation using measurements made
on a radar focal-plane array using RBFs was treated by Webb and Garner (1999). This
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particular approach was motivated by a requirement for a compact integrated (hardware)
implementation of a bearing estimator in a sensor focal plane (a solution was required that
could readily be implemented in silicon on the same substrate as the focal-plane array).

Summary The problem is one of prediction rather than discrimination: given a set
of training samples f.xi ; �i /I i D 1; : : : ; ng, where xi is a vector of measurements on
the independent variables (array calibration measurements in this problem) and �i is the
response variable (position), a predictor, f , was sought such that given a new measure-
ment z, then f .z/ is a good estimate of the position of the source that gave rise to the
measurement z. However, the problem differs from a standard regression problem in
that there is noise on the measurement vector z, and this is similar to errors-in-variables
models in statistics. Therefore, we seek a predictor that is robust to noise on the inputs.

The data The training data comprised detector outputs of an array of 12 detectors,
positioned in the focal plane of a lens. Measurements were made on the detectors as
the lens scanned across a microwave point source (thus providing measurements of the
point-spread function of the lens. There were 3721 training samples measured at a signal-
to-noise ratio (SNR) of about 45 dB. The test data were recorded for the source at specific
positions over a range of lower SNR.

The model The model adopted is a standard RBF network with a Gaussian kernel
with centres defined in the 12-dimensional space. The approach adopted to model pa-
rameter estimation was a standard least squares one. The problem may be regarded as
one example from a wider class in discrimination and regression in which the expected
operating conditions (the test conditions) differ from the training conditions in a known
way. For example, in a discrimination problem, the class priors may differ consider-
ably from the values estimated from the training data. In a least squares approach, this
may be compensated for by modifying the sum-squared error criterion appropriately (see
Section 5.2.1). Also, allowance for expected population drift may be made by modifying
the error criterion. In the source position estimation problem, the training conditions are
considered ‘noiseless’ (obtained through a calibration procedure) and the test conditions
differ in that there is noise (of known variance) on the data. Again, this can be taken
into account by modifying the sum-squared error criterion.

Training procedure An RBF predictor was designed with centres chosen using a k-
means procedure. A ridge regression type solution was obtained for the weights (see
Section 5.2.1 on regularisation), with the ridge parameter inversely proportional to an
SNR term. Thus, there is no need to perform any search procedure to determine the
ridge parameter. It can be set by measuring the SNR of the radar system. The theoretical
development was validated by experimental results on a 12-element microwave focal-
plane array in which two angle coordinates were estimated.

Results It was shown that it was possible to compensate for noisy test conditions by
using a regularisation solution for the parameters, with regularisation parameter propor-
tional to the inverse of the SNR.
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5.3.7 Further developments

There have been many developments of the basic RBF model in the areas of RBF design,
learning algorithms and Bayesian treatments.

Developments of the k-means approach to take account of the class labels of the data
samples are described by Musavi et al. (1992), in which clusters contain samples from
the same class, and Karayiannis and Wi (1997), in which a localised class-conditional
variance is minimised as part of a network growing process.

Chang and Lippmann (1993) propose a supervised approach for allocating RBF cen-
tres near class boundaries. An alternative approach that chooses centres for a classification
task in a supervised way based on the ideas of support vectors is described by Schölkopf
et al. (1997) (see Chapter 4 and Section 5.4). In support vector learning of RBF net-
works with Gaussian basis functions, the separating surface obtained by a support vector
machine (SVM) approach (that is, the decision boundary) is a linear combination of
Gaussian functions centred at selected training points (the support vectors). The number
and location of centres is automatically determined. In a comparative study reviewing
several approaches to RBF training, Schwenker et al. (2001) find that the SVM learning
approach is often superior on a classification task to the standard two-stage learning of
RBFs (selecting or adapting the centres followed by calculating the weights).

The orthogonal least squares forward selection procedure has been developed to use a
regularised error criterion by Chen et al. (1996) and Orr (1995), who uses a generalised
cross-validation criterion as a stopping condition.

In the basic approach, all patterns are used at once in the calculation for the weights
(‘batch learning’). On-line learning methods have been developed (for example, Marinaro
and Scarpetta, 2000). These enable the weights of the network to be updated sequentially
according to the error computed on the last selected new example. This allows for possible
temporal changes in the task being learned.

A Bayesian treatment that considers the number of basis functions and weights to
be unknown has been developed by Holmes and Mallick (1998). A joint probability
density function is defined over model dimension and model parameters. Using Markov
chain Monte Carlo methods, inference is made by integrating over the model dimension
and parameters.

5.3.8 Summary

Radial basis functions are simple to construct, easy to train and find a solution for the
weights rapidly. They provide a very flexible model and give very good performance
over a wide range of problems, both for discrimination and for functional approximation.
The RBF model uses many of the standard pattern recognition building blocks (clustering
and least squares optimisation, for example). There are many variants of the model (due
to the choice of centre selection procedure, form of the nonlinear functions, procedure
for determining the weights, and model selection method). This can make it difficult to
draw meaningful conclusions about RBF performance over a range of studies on different
applications, since the form of an RBF may vary from study to study.

The disadvantages of RBFs also apply to many, if not all, of the discrimination
models covered in this book. That is, care must be taken not to construct a classifier
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that models noise in the data, or models the training set too well, which may give poor
generalisation performance. Choosing a model of the appropriate complexity is very
important, as we emphasise repeatedly in this book. Regularising the solution for the
weights can improve generalisation performance. Model selection requirements add to
the computational requirements of the model, and thus the often-claimed simplicity of
RBF networks is perhaps overstated. Yet it should be said that a simple scheme can give
good performance which, not unusually, exceeds that of many of the more ‘traditional’
statistical classifiers.

5.4 Nonlinear support vector machines

In Chapter 4 we introduced the support vector machine as a tool for finding the optimal
separating hyperplane for linearly separable data and considered developments of the
approach for situations when the data are not linearly separable. As we remarked in that
chapter, the support vector algorithm may be applied in a transformed feature space,
φ.x/, for some nonlinear function φ. Indeed, this is the principle behind many methods
of pattern classification: transform the input features nonlinearly to a space in which
linear methods may be applied (see also Chapter 1). We discuss this approach further in
the context of SVMs.

For the binary classification problem, we seek a discriminant function of the form

g.x/ D wT φ.x/Cw0

with decision rule

wT φ.x/Cw0

²
> 0
< 0

) x 2
²
!1 with corresponding numeric value yi D C1
!2 with corresponding numeric value yi D 	1

The SVM procedure determines the maximum margin solution through the maximisation
of a Lagrangian. The dual form of the Lagrangian (equation (4.30)) becomes

L D D
nX

iD1

Þi 	 1

2

nX
iD1

nX
jD1

ÞiÞ j yi y jφ
T .xi /φ.x j / (5.24)

where yi D š1; i D 1; : : : ; n, are class indicator values and Þi ; i D 1; : : : ; n, are
Lagrange multipliers satisfying

0 � Þi � C

nX
iD1

Þi yi D 0
(5.25)

for a ‘regularisation’ parameter, C . Maximising (5.24) subject to the constraints (5.25)
leads to support vectors identified by non-zero values of Þi .

The solution for w (see Chapter 4) is

w D
X

i2SV
Þi yiφ.xi /
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and classification of a new data sample x is performed according to the sign of

g.x/ D
X

i2SV
Þi yiφ

T .xi /φ.x/Cw0 (5.26)

where

w0 D 1

NfSV

8
<
:
X

i2fSV
yi 	

X

i2SV; j2fSV
Þi yiφ

T .xi /φ.x j /

9
=
; (5.27)

in which SV is the set of support vectors with associated values of Þi satisfying 0 <
Þi � C and fSV is the set of NfSV support vectors satisfying 0 < Þi < C (those at the
target distance of 1=jwj from the separating hyperplane).

Optimisation of L D (5.24) and the subsequent classification of a sample ((5.26) and
(5.27)) relies only on scalar products between transformed feature vectors, which can be
replaced by a kernel function

K .x; y/ D φT .x/φ.y/

Thus, we can avoid computing the transformation φ.x/ explicitly and replace the scalar
product with K .x; y/ instead. The discriminant function (5.26) becomes

g.x/ D
X

i2SV
Þi yi K .xi ; x/Cw0 (5.28)

The advantage of the kernel representation is that we need only use K as the training
algorithm and even do not need to know φ explicitly, provided that the kernel can be
written as an inner product. In some cases (for example, the exponential kernel), the
feature space is infinite-dimensional and so it is more efficient to use a kernel.

5.4.1 Types of kernel

There are many types of kernel that may be used in an SVM. Table 5.2 lists some
commonly used forms. Acceptable kernels must be expressible as an inner product in
a feature space, which means that they must satisfy Mercer’s condition (Courant and
Hilbert, 1959; Vapnik, 1998): a kernel K .x; y/; x; y 2 R

p, is an inner product in some
feature space, or K .x; y/ D φT .x/φ.y/, if and only if K .x; y/ D K .y; x/ and

Z
K .x; z/ f .x/ f .z/ dx dz ½ 0

Table 5.2 Support vector machine kernels

Nonlinearity Mathematical form

K .x; y/

Polynomial .1C xT y/d

Gaussian exp.	jx 	 yj2=¦ 2/

Sigmoid tanh.kxT y 	 Ž/



192 Nonlinear discriminant analysis – kernel methods

for all functions f satisfying Z
f 2.x/ dx <1

That is, K .x; y/ may be expanded as

K .x; y/ D
1X
jD1

½ j O� j .x/ O� j .y/

where ½ j and � j .x/ are the eigenvalues and eigenfunctions satisfying

Z
K .x; y/� j .x/ dx D ½ j� j .x/

and O� j is normalised so that
R O�2

j .x/ dx D 1.

As an example, consider the kernel K .x; y/ D .1C xT y/d for d D 2 and x; y 2 R
2.

This may be expanded as

.1C x1 y1 C x2 y2/
2 D 1C 2x1 y1 C 2x2 y2 C 2x1x2 y1 y2 C x2

1 y2
1 C x2

2 y2
2

D φT .x/φ.y/

where φ.x/ D .1;p2x1;
p

2x2;
p

2x1x2; x2
1 ; x2

2/.

5.4.2 Model selection

The degrees of freedom of the SVM model are the choice of kernel, the parameters of
the kernel and the choice of the regularisation parameter, C , which penalises the training
errors. For most types of kernel, it is generally possible to find values for the kernel
parameters for which the classes are separable. However, this is not a sensible strategy
and leads to over-fitting of the training data and poor generalisation to unseen data.

The simplest approach to model selection is to reserve a validation set that is used
to monitor performance as the model parameters are varied. More expensive alternatives
that make better use of the data are data resampling methods such as cross-validation
and bootstrapping (see Chapter 11).

5.4.3 Support vector machines for regression

Support vector machines may also be used for problems in regression. Suppose that we
have a data set f.xi ; yi /; i D 1; : : : ; ng of measurements xi on the independent variables
and yi on the response variables. Instead of the constraints (4.25) we have

.wT xi Cw0/	 yi � ž C ¾i i D 1; : : : ; n
yi 	 .wT xi Cw0/ � ž C O¾i i D 1; : : : ; n
¾i ; O¾ ½ 0 i D 1; : : : ; n

(5.29)
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This allows a deviation between the target values yi and the function f ,

f .x/ D wT x Cw0

Two slack variables are introduced: one (¾ ) for exceeding the target value by more
than ž and O¾ for being more than ž below the target value (see Figure 5.3). As in the
classification case, a loss function is minimised subject to the constraints (5.29). For a
linear ž-insensitive loss, we minimise

1

2
wT w C C

nX
iD1

.¾i C O¾i /

The primal form of the Lagrangian is

L p D 1

2
wT w C C

nX
iD1

.¾i C O¾i /	
nX

iD1

Þi .¾i C ž 	 .wT xi C w0 	 yi //	
nX

iD1

ri¾i

	
nX

iD1

OÞi . O¾i C ž 	 .yi 	 wT xi 	 w0//	
nX

iD1

Ori O¾i

(5.30)

where Þi ; OÞi ½ 0 and ri ; Ori ½ 0 are Lagrange multipliers. Differentiating with respect to
w, w0, ¾i and O¾i gives

w C
nX

iD1

.Þi 	 OÞi /xi D 0

nX
iD1

.Þi 	 OÞi / D 0

C 	 Þi 	 ri D 0

C 	 OÞi 	 Ori D 0

(5.31)

Substituting for w into (5.30) and using the relations above gives the dual form

L D D
nX

iD1

. OÞi 	 Þi /yi 	 ž
nX

iD1

. OÞi C Þi /	 1

2

nX
iD1

nX
jD1

. OÞi 	 Þi /. OÞ j 	 Þ j /x
T
i x j (5.32)
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Figure 5.3 Linear (left) and nonlinear (right) SVM regression. The variables ¾ and O¾ measure
the cost of lying outside the ‘ž-insensitive band’ around the regression function



194 Nonlinear discriminant analysis – kernel methods

This is maximised subject to
nX

iD1

.Þi 	 OÞi / D 0

0 � Þi ; OÞi � C

(5.33)

which follows from (5.31) and ri ; Ori ½ 0. The Karush–Kuhn–Tucker complementarity
conditions are

Þi .¾i C ž 	 .wT xi Cw0 	 yi // D 0

OÞi .¾i C ž 	 .yi 	 wT xi 	w0// D 0

ri¾i D .Þi 	 C/¾i D 0

Ori O¾i D . OÞi 	 C/ O¾i D 0

(5.34)

These imply Þi OÞi D 0 and ¾i O¾i D 0. Those patterns xi with Þi > 0 or OÞi > 0 are support
vectors. If 0 < Þi < C or 0 < OÞi < C then .xi ; yi / lies on the boundary of the tube
surrounding the regression function at distance ž. If Þi D C or OÞi D C , then the point
lies outside the tube.

The solution for f .x/ is then

f .x/ D
nX

iD1

. OÞi 	 Þi /x
T
i x C w0 (5.35)

using the expression for w in (5.31). The parameter w0 is chosen so that

f .xi /	 yi D ž for any i with 0 < Þi < C

or f .xi /	 yi D 	ž for any i with 0 < OÞi < C

by the Karush–Kuhn–Tucker complementarity conditions above.

Nonlinear regression
The above may also be generalised to a nonlinear regression function in a similar manner
to the way in which the linear discriminant function, introduced in Chapter 4, was
generalised to the nonlinear discriminant function. If the nonlinear function is given by

f .x/ D wT φ.x/Cw0

then equation (5.32) is replaced by

L D D
nX

iD1

. OÞi 	 Þi /yi 	 ž
nX

iD1

. OÞi C Þi /	 1

2

nX
iD1

nX
jD1

. OÞi 	 Þi /. OÞ j 	 Þ j /K .xi ; x j /

(5.36)
where K .x; y/ is a kernel satisfying Mercer’s conditions. This is maximised subject to
the constraints (5.33).

The solution for f .x/ is then (compare with (5.35))

f .x/ D
nX

iD1

. OÞi 	 Þi /K .x; xi /C w0
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The parameter w0 is chosen so that

f .xi /	 yi D ž for any i with 0 < Þi < C

or f .xi /	 yi D 	ž for any i with 0 < OÞi < C

by the Karush–Kuhn–Tucker complementarity conditions (5.34).

Implementation

There are many freely available and commercial software packages for solving quadratic
programming optimisation problems, often based on standard numerical methods of non-
linear optimisation that iteratively hill-climb to find the maximum of the objective func-
tion. For very large data sets, however, they become impractical. Traditional quadratic
programming algorithms require that the kernel be computed and stored in memory
and can involve expensive matrix operations. There are many developments to handle
large data sets. Decomposition methods (see Table 5.3) apply the standard optimisation
package to a fixed subset of the data and revise the subset in the light of applying the
classification/regression model learned to the training data not in the subset.

A special development of the decomposition algorithm is the sequential minimal
optimisation algorithm, which optimises a subset of two points at a time, for which the
optimisation admits an analytic solution. Pseudocode for the algorithm can be found in
Cristianini and Shawe-Taylor (2000).

5.4.4 Example application study

The problem To predict protein secondary structure as a step towards the goal of
predicting three-dimensional protein structures directly from protein sequences (Hua and
Sun, 2001).

Table 5.3 The decomposition algorithm

1. Set b, the size of the subset (b < n, the total number of patterns). Set
Þi D 0 for all patterns.

2. Choose b patterns from the training data set to form a subset B.

3. Solve the quadratic programming problem defined by the subset B
using a standard routine.

4. Apply the model to all patterns in the training set.

5. If there are any patterns that do not satisfy the Karush–Kuhn–Tucker
conditions, replace any patterns in B and the corresponding Þi with
these patterns and their Þi values.

6. If not converged, go to step 3.
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Summary As a result of the genome and other sequencing projects, the number of
protein sequences is growing rapidly. However, this is much greater than the increasing
number of known protein structures. The aim of this study is to classify the secondary
structure (as helix (H), sheets (E), or coil (C)) based on sequence features. An SVM was
compared with an algorithm based on a multilayer perceptron (see Chapter 6).

The data Two data sets were used to develop and test the algorithms. One is a data
set of 126 protein chains. The second has 513 protein chains.

The model A standard SVM model was adopted, with a spherically symmetric Gaus-
sian kernel (Table 5.2), with ¦ 2 D 10:0 and a regularisation parameter C D 1:5.

Training procedure Classifiers were constructed for different window lengths, l: the
number of amino acids in the sequence. Each amino acid is encoded as a 21-dimensional
binary vector corresponding to the 20 types of amino acid and the C or N terminus. Thus
the pattern vector is of dimension 21l. Three binary SVM classifiers were constructed:
H versus (E, C); E versus (H, C); and C versus (H, E). These were combined in two
main ways. The first method assigned a test pattern to the class with the largest positive
distance to the optimal separating hyperplane. In the second, the binary classifiers were
combined in a tree structure. A sevenfold cross-validation scheme was used to obtain
results.

Results The performance of the SVM method matched or was significantly better than
the neural network method.

5.4.5 Further developments

There are many developments of the basic SVM model for discrimination and regression
presented in this chapter. Multiclass SVMs may be developed along the lines discussed
in Chapter 4, whether by combining binary classifiers in a one-against-one or a one-
against-all method, or by solving a single multiclass optimisation problem (the ‘all-
together’ method). In an assessment of these methods, Hsu and Lin (2002) find that the
all-together method yields fewer support vectors, but one-against-all is more suitable for
practical use.

Incorporation of priors and costs into the SVM model (to allow for test conditions
that differ from training conditions, as often happens in practice) is addressed by Lin
et al. (2002).

The basic regression model has been extended to take account of different ž-insensitive
loss functions and ridge regression solutions (Vapnik, 1998; Cristianini and Shawe-Taylor,
2000). The ¹-support vector algorithm (Schölkopf et al., 2000) introduces a parameter
to control the number of support vectors and errors. The support vector method has also
been applied to density estimation (Vapnik, 1998).

The relationship of the support vector method to other methods of classification is
discussed by Guyon and Stork (1999) and Schölkopf et al. (1997).
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5.4.6 Summary

Support vector machines comprise a class of algorithms that represent the decision
boundary in a pattern recognition problem typically in terms of a small subset of the
training samples. This generalises to problems in regression through the ž-insensitive
loss function that does not penalise errors below ž > 0.

The loss function that is minimised comprises two terms, a term wT w that char-
acterises model complexity and a second term that measures training error. A single
parameter, C , controls the trade-off between these two terms. The optimisation prob-
lem can be recast as a quadratic programming problem for both the classification and
regression cases.

Several approaches for solving the multiclass classification problem have been pro-
posed: combining binary classifiers and a one-step multiclass SVM approach.

SVMs have been applied to a wide range of applications, and demonstrated to be
valuable for real-world problems. The generalisation performance often either matches
or is significantly better that competing methods.

Once the kernel is fixed, SVMs have only one free parameter – the regularisation pa-
rameter that controls the balance between model complexity and training error. However,
there are often parameters of the kernel that must be set and a poor choice can lead to poor
generalisation. The choice of best kernel for a given problem is not resolved and special
kernels have been derived for particular problems, for example document classification.

5.5 Application studies

There have been very many application studies involving neural networks (including the
radial basis function network and the multilayer perceptron described in the next chapter).
Examples are given here and in Chapter 6. Some review articles in specific application
domains include the following:

ž Face processing. Valentin et al. (1994) review connectionist models of face recognition
(see also Samal and Iyengar, 1992).

ž Speech recognition. Morgan and Bourlard (1995) review the use of artificial neural
networks in automatic speech recognition, and describe hybrid hidden Markov models
and artificial neural network models.

ž Image compression. A summary of the use of neural network models as signal pro-
cessing tools for image compression is provided by Dony and Haykin (1995).

ž Fault diagnosis. Sorsa et al. (1991) consider several neural architectures, including the
multilayer perceptron, for process fault diagnosis.

ž Chemical science. Sumpter et al. (1994).

ž Target recognition. Reviews of neural networks for automatic target recognition are
provided by Roth (1990) and Rogers et al. (1995).

ž Financial engineering. Refenes et al. (1997); Burrell and Folarin (1997).
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There have been many special issues of journals focusing on different aspects of neu-
ral networks, including everyday applications (Dillon et al., 1997), industrial electronics
(Chow, 1993), general applications (Lowe, 1994), signal processing (Constantinides et al.,
1997; Unbehauen and Luo, 1998), target recognition, image processing (Chellappa et al.,
1998), machine vision (Dracopoulos and Rosin, 1998) and oceanic engineering (Simpson,
1992).

Other application domains include remote sensing, medical image analysis and char-
acter recognition. See also Chapter 6.

There have been many comparative studies assessing the performance of neural net-
works in terms of speed of training, memory requirements, and classification performance
(or prediction error in regression problems), comparing the results with statistical classi-
fiers. Probably the most comprehensive comparative study is that provided by the Statlog
project (Michie et al., 1994). A neural network method (an RBF) gave best performance
on only one out of 22 data sets, but provided close to best performance in nearly all
cases. Other comparative studies include, for example, assessments on character recogni-
tion (Logar et al., 1994), fingerprint classification (Blue et al., 1994) and remote sensing
(Serpico et al., 1996).

There is an increasing amount of application and comparative studies involving sup-
port vector machines. These include:

ž Financial time series prediction. Cao and Tay (2001) investigate the feasibility of
using SVMs in financial forecasting (see also van Gestel et al., 2001). An SVM with
Gaussian kernel is applied to multivariate data (five or eight variables) relating to the
closing price of the S&P Daily Index in the Chicago Mercantile Exchange.

ž Drug design. This is an application in structure-activity relationship analysis, a tech-
nique used to reduce the search for new drugs. Combinatorial chemistry enables the
synthesis of millions of new molecular compounds at a time. Statistical techniques that
direct the search for new drugs are required to provide an alternative to testing every
molecular combination. Burbidge et al. (2001) compare SVMs with an RBF network
and a classification tree (see Chapter 7). The training time for the classification tree
was much smaller than for the other methods, but significantly better performance
(measured in terms of error rate) was obtained with the SVM.

ž Cancer diagnosis. There have been several applications of SVMs to disease diagnosis.
Furey et al. (2000) address the problem of tissue sample labelling using measurements
from DNA microarray experiments. The data sets comprise measurements on ovarian
tissue; human tumour and normal colon tissues; and bone marrow and blood samples
from patients with leukaemia. Similar performance to a linear perceptron was achieved.
Further cancer studies are reported by Guyon et al. (2002) and Ramaswamy et al.
(2001).

ž Radar image analysis. Zhao et al. (2000) compare three classifiers, including an SVM,
on an automatic target recognition task using synthetic aperture radar data. Experi-
mental results show that the SVM and a multilayer perceptron (see Chapter 6) gave
similar performance, but superior to nearest-neighbour.

ž Text analysis. De Vel et al. (2001) use SVMs to analyse e-mail messages. In the
growing field of computer forensics, of particular interest to investigators is the misuse
of e-mail for the distribution of messages and documents that may be unsolicited,
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inappropriate, unauthorised or offensive. The objectives of this study are to classify
e-mails as belonging to a particular author.

5.6 Summary and discussion

In this chapter we have developed the basic linear discriminant model to one in which
the model is essentially linear, but the decision boundaries are nonlinear. The radial basis
function model is implemented in a straightforward manner and, in its simplest form, it
requires little more than a matrix pseudo-inverse operation to determine the weights of
the network. This hides the fact that optimum selection of the numbers and positions of
centres is a more complicated process. Nevertheless, simple rules of thumb can result in
acceptable values giving good performance.

Strongly related to kernel discriminant analysis and kernel regression, it possesses
many of the asymptotic properties of those methods. Under appropriate conditions, the
model provides a least squares approximation to the posterior probabilities of class mem-
bership. This enables changes in priors and costs to be readily incorporated into a trained
model, without need for retraining.

The support vector machine defines the basis functions implicitly through the def-
inition of a kernel function in the data space and has been found to give very good
performance on many problems. There are few parameters to set: the kernel parameters
and the regularisation parameter. These can be varied to give optimum performance on
a validation set. The SVM focuses on the decision boundary and the standard model is
not suitable for the non-standard situation where the operating conditions differ from the
training conditions due to drifts in values for costs and priors. An SVM implementa-
tion of the RBF will automatically determine the number of centres, their positions and
weights as part of the optimisation process (Vapnik, 1998).

5.7 Recommendations

The nonlinear discriminant methods described in this chapter are easy to implement and
there are many sources of software for applying them to a data set. Before applying
these techniques you should consider the reasons for doing so. Do you believe that
the decision boundary is nonlinear? Is the performance provided by linear techniques
below that desired or believed to be achievable? Moving to neural network techniques
or support vector machines may be one way to achieve improved performance. This is
not guaranteed. If the classes are not separable, a more complex model will not make
them so. It may be necessary to make measurements on additional variables.

It is recommended that:

1. a simple pattern recognition technique (k-nearest-neighbour, linear discriminant anal-
ysis) is implemented as a baseline before considering neural network methods;

2. a simple RBF (unsupervised selection of centres, weights optimised using a squared
error criterion) is tried to get a feel for whether nonlinear methods provide some gain
for your problem;



200 Nonlinear discriminant analysis – kernel methods

3. a regularised solution for the weights of an RBF is used;

4. for a model that provides approximations to the posterior probabilities that enable
changes of priors and costs to be incorporated into a trained model, an RBF is used;

5. knowledge of the data generation process is used, including noise on the data, for
network design or data preprocessing;

6. for classification problems in high-dimensional spaces where training data are rep-
resentative of test conditions and misclassification rate is an acceptable measure of
classifier performance, support vector machines are implemented.

5.8 Notes and references

There are many developments of the techniques described in this chapter, in addition to
other neural network methods. A description of these is beyond the scope of this book,
but the use of neural techniques in pattern recognition and the relationship to statistical
and structural pattern recognition can be found in the book by Schalkoff (1992).

A comprehensive account of feed-forward neural networks for pattern recognition is
given in the book by Bishop (1995). Relationships to other statistical methods and other
insights are described by Ripley (1996). Tarassenko (1998) provides a basic introduc-
tion to neural network methods (including radial basis functions, multilayer perceptrons,
recurrent networks and unsupervised networks) with an emphasis on applications.

A good summary of Bayesian perspectives is given in the book by Ripley (1996); see
also Bishop (1995); MacKay (1995); Buntine and Weigend (1991); Thodberg (1996).

Although many of the features of support vector machines can be found in the litera-
ture of the 1960s (large margin classifiers, optimisation techniques and sparseness, slack
variables), the basic support vector machine for non-separable data was not introduced
until 1995 (Cortes and Vapnik, 1995). The book by Vapnik (1998) provides an excellent
description of SVMs. A very good self-contained introduction is provided by Cristianini
and Shawe-Taylor (2000). The tutorial by Burges (1998) is an excellent concise account.
A comprehensive treatment of this rapidly developing field is provided in the recent book
by Schölkopf and Smola (2001). The decomposition algorithm was suggested by Osuna
et al. (1997) and the sequential minimal optimisation algorithm proposed by Platt (1998).

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

Data set 1: 500 samples in training, validation and test sets; p-dimensional; 3 classes;
class !1 ¾ N .µ1;�1/; class !2 ¾ 0:5N .µ2;�2/ C 0:5N .µ3;�3/; class !3 ¾
0:2N .µ4;�4/ C 0:8N .µ5;�5/; µ1 D .	2; 2; : : : ; 2/T , µ2 D .	4;	4; : : : ;	4/T ,
µ3 D .4; 4; : : : ; 4/T , µ4 D .0; 0; : : : ; 0/T , µ5 D .	4; 4; : : : ; 4/T and �i as the identity
matrix; equal class priors.
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Data set 2: Generate time series data according to the iterative scheme

utC1 D
4
�

1	 12

2

�
ut 	 .2C ¼1.1	 u2

t //ut	1

2	 ¼1.1	 u2
t /

initialised with u	1 D u0 D 2. Plot the generated time series. Construct training and test
sets of 500 patterns .xi ; t i / where xi D .ui ; uiC1/

T and t i D uiC2. Thus the problem
is one of time series prediction: predict the next sample in the series given the previous
two samples. Take ¼ D 4, 1 D ³=50.

1. Compare a radial basis function classifier with a k-nearest-neighbour classifier. Take
into account the type of classifier, computational requirements on training and test
operations and the properties of the classifiers.

2. Compare and contrast a radial basis function classifier and a classifier based on kernel
density estimation.

3. Implement a simple radial basis function classifier: m Gaussian basis functions of
width h and centres selected randomly from the data. Using data from data set
1, evaluate performance as a function of dimensionality, p, and number of basis
functions, where h is chosen based on the validation set.

4. Show that by appropriate adjustment of weights and biases in an RBF that the
nonlinear function � can be normalised to lie between 0 and 1 for a finite data set,
without changing the fitting function. Verify for a Gaussian basis function that �
may be defined as (5.22) for large h.

5. For data set 2, train an RBF for an exp.	z2/ and a z2log.z/ nonlinearity for varying
numbers of centres. Once trained, use the RBF in a generative mode: initialise
ut	1; ut (as a sample from the training set), predict utC1; then predict utC2 from ut

and utC1 using the RBF. Continue for 500 samples. Plot the generated time series.
Investigate the sensitivity of the final generated time series to starting values, number
of basis functions and the form of the nonlinearity.

6. Consider the optimisation criterion (5.7)

E D jj.	T T CW	T C w01T /Djj2

By solving for w0, show that this may be written

E D jj.	 OT T CW O	T
/Djj2

where OT and O	 are zero-mean matrices. By minimising with respect to W and substi-
tuting into the expression for E , show that minimising E is equivalent to maximising
Tr.SBS

†
T /, where

ST D1

n
O	T

D2 O	

SB D 1

n2
O	T

D2 OT OT T
D2 O	
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7. For D equal to the identity matrix in the above and a target coding scheme

.t i /k D
²

ak xi 2 !k

0 otherwise

determine the value of ak for which SB is the conventional between-class covariance
matrix of the hidden output patterns.

8. Show that maximising L 0 given by (5.14) is equivalent to maximising (5.12) under
the assumption that (5.13) does not depend on the model parameters.

9. Given a normal mixture model for each of C classes (see Chapter 2) with a common
covariance matrix across classes, together with class priors p.!i /; i D 1; : : : ;C , con-
struct an RBF network whose outputs are proportional to the posterior probabilities
of class membership. Write down the forms for the centres and weights.

10. Given
E D jj OT 	 V Gjj2

in the orthogonal least squares training model, using the minimum norm solution for
V and the properties of the pseudo-inverse (Appendix C) show that

E D Trf OT T OT g 	 TrfGT V T V Gg

11. Implement a support vector machine classifier and assess performance using data
set 1. Use a Gaussian kernel and choose a kernel width and regularisation parameter
using a validation set. Investigate performance as a function of dimensionality, p.

12. Let K1 and K2 be kernels defined on R
P ð R

p. Show that the following are also
kernels:

K .x; z/ D K1.x; z/C K2.x; z/

K .x; z/ D aK1.x; z/ where a is a positive real number
K .x; z/ D f .x/ f .z/ where f .:/ is a real-valued function on x

13. For the quadratic ž-insensitive loss, the primal form of the Lagrangian is written

L p D wT w C C
nX

iD1

.¾2
i C O¾2

i /

and is minimised subject to the constraints (5.29). Derive the dual form of the
Lagrangian and state the constraints on the Lagrange multipliers.

14. Show that a support vector machine with a spherically symmetric kernel function
satisfying Mercer’s conditions implements an RBF classifier with numbers of centres
and positions chosen automatically by the SVM algorithm.
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Nonlinear discriminant
analysis – projection methods

Overview

Nonlinear discriminant functions are constructed as sums of basis functions. These
are nonlinear functions of linear projections of the data. Optimisation of an objective
function is with respect to the projection directions and the basis function properties.

6.1 Introduction

In this chapter, further methods of nonlinear discrimination are explored. What makes
these methods different from those in Chapter 5? Certainly, the approaches are closely re-
lated – discriminant functions are constructed through the linear combination of nonlinear
basis functions and are generally of the form

g.x/ D
mX

iD1

wi�i .x;µi / (6.1)

for weights wi and parameters µi of the nonlinear functions �i . For radial basis functions,
the µi represent the centres. In the support vector machine, the nonlinear functions are
not defined explicitly, but implicitly through the specification of a kernel defined in the
data space.

In this chapter, the discriminant functions are again of the form (6.1), where the
combination of x and the parameter vector µ is a scalar product, that is �i .x;µi / D
�i .x

T µi /. Two models are described. In the first, the form of the function � is prescribed
and the optimisation procedure determines the parameters wi j and µi simultaneously.
In the second, the form of � is learned, in addition to the projection directions µi , and
optimisation proceeds sequentially.

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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6.2 The multilayer perceptron

6.2.1 Introduction

The multilayer perceptron (MLP) is yet another tool in the pattern recognition toolbox,
and one that has enjoyed considerable use in recent years. It was presented by Rumelhart
et al. (1986) as a potential answer to the problems associated with the perceptron, and
since that time it has been extensively employed in many pattern recognition tasks. In
order to introduce some terminology, let us consider a simple model. We shall then
consider some generalisations. The basic MLP produces a transformation of a pattern
x 2 R

p to an n0-dimensional space according to

g j .x/ D
mX

iD1

w j i�i .α
T
i x C Þi0/Cw j0; j D 1; : : : ; n0 (6.2)

The functions �i are fixed nonlinearities, usually identical and taken to be of the logistic
form representing historically the mean firing rate of a neuron as a function of the input
current,

�i .z/ D �.z/ D 1

1C exp.�z/
(6.3)

Thus, the transformation consists of projecting the data onto each of m directions de-
scribed by the vectors αi ; then transforming the projected data (offset by a bias Þi0)
by the nonlinear functions �i .z/; and finally, forming a linear combination using the
weights w j i .

The MLP is often presented in diagrammatic form (see Figure 6.1). The input nodes
accept the data vector or pattern. There are weights associated with the links between the
input nodes and the hidden nodes that accept the weighted combination z D αT

i xCÞi0 and
perform the nonlinear transformation �.z/. The output nodes take a linear combination
of the outputs of the hidden nodes and deliver these as outputs. In principle, there may
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Figure 6.1 Multilayer perceptron
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be many hidden layers, each one performing a transformation of a scalar product of
the outputs of the previous layer and the vector of weights linking the previous layer
to a given node. Also, there may be nonlinearities associated with the output nodes
that, instead of producing a linear combination of weights wi j and hidden unit outputs,
perform nonlinear transformations of this value.

The emphasis of the treatment of MLPs in this section is on MLPs with a single
hidden layer. Further, it is assumed either that the ‘outputs’ are a linear combination
of the functions �i or at least that, in a discrimination problem, discrimination may be
performed by taking a linear combination of the functions �i (a logistic discrimination
model is of this type). There is some justification for using a single hidden layer model
in that it has been shown that an MLP with a single hidden layer can approximate an
arbitrary (continuous bounded integrable) function arbitrarily accurately (Hornik, 1993;
see Section 6.2.4). Also, practical experience has shown that very good results can be
achieved with a single hidden layer on many problems. There may be practical reasons
for considering more than one hidden layer, and it is conceptually straightforward to
extend the analysis presented here to do so.

The MLP is a nonlinear model: the output is a nonlinear function of its parame-
ters and the inputs, and a nonlinear optimisation scheme must be employed to min-
imise the selected optimisation criterion. Therefore, all that can be hoped for is a local
extremum of the criterion function that is being optimised. This may give satisfactory
performance, but several solutions may have to be sought before an acceptable one
is found.

6.2.2 Specifying the multilayer perceptron structure

To specify the network structure we must prescribe the number of hidden layers, the
number of nonlinear functions within each layer and the form of the nonlinear functions.
Most of the MLP networks to be found in the literature consist of layers of logistic
processing units (6.3), with each unit connected to every unit in the previous layer (fully
layer connected) and no connections between units in non-adjacent layers.

It should be noted, however, that many examples exist of MLP networks that are
not fully layer connected. There has been some success with networks in which each
processing unit is connected to only a small subset of the units in the previous layer.
The units chosen are often part of a neighbourhood, especially if the input is some
kind of image. In even more complex implementations the weights connected to units
that examine similar neighbourhoods at different locations may be forced to be identical
(shared weights). Such advanced MLP networks, although of great practical importance,
are not universally applicable and are not considered further here.

6.2.3 Determining the multilayer perceptron weights

There are two stages to optimisation. The first is the initialisation of the parameter values;
the second is the implementation of a nonlinear optimisation scheme.
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Weight initialisation

There are several schemes for initialising the weights. The weights of the MLP are often
started at small random values. In addition, some work has been carried out to investigate
the benefits of starting the weights at values obtained from simple heuristics.

1. Random initialisation For random initialisation, the weights are initialised with
values drawn from a uniform distribution over [�1;1], where 1 depends on the scale
of the values taken by the data. If all the variables are equally important and the sample
variance is ¦ 2, then 1 D 1=.p¦/ is a reasonable choice (p variables). Hush et al. (1992)
assess several weight initialisation schemes and support initialisation to small random
values.

2. Pattern classifier initialisation An alternative approach is to initialise the MLP to
perform as a nearest class mean or nearest-neighbour classifier (Bedworth, 1988). As we
saw in Chapter 3, for the nearest-neighbour classifier the decision surface is piecewise
linear and is composed of segments of the perpendicular bisectors of the prototype
vectors with dissimilar class labels. This decision surface can be implemented in an
MLP with one hidden layer of scalar-product logistic processing units. If the decision
regions are convex (as for a class mean classifier), then the structure of the network is
particularly simple. There have been other studies that use various pattern recognition
schemes for initialisation. For example, Weymaere and Martens (1994) propose a network
initialisation procedure that is based on k-means clustering (see Chapter 10) and nearest-
neighbour classification. Brent (1991) uses decision trees (see Chapter 7) for initialisation.
Of course, given good starting values, training time is reduced, albeit at the expense of
increased initialisation times.

3. Independence model initialisation An approach that initialises an MLP to deliver
class-conditional probabilities under the assumption of independence of variables is des-
cribed in Lowe and Webb (1990). This really only applies to categorical variables in
which the data can be represented as binary patterns.

Optimisation

Many different optimisation criteria and many nonlinear optimisation schemes have been
considered for the MLP. It would not be an exaggeration to say that out of all the
classification techniques considered in this book, the MLP is the one which has been
explored more than any other in recent years, particularly in the engineering literature,
sometimes by researchers who do not have a real application, but whose imagination has
been stimulated by the ‘neural network’ aspect of the MLP. It would be impossible to
offer anything but a brief introduction to optimisation schemes for the MLP.

Most optimisation schemes involve the evaluation of a function and its derivatives
with respect to a set of parameters. Here, the parameters are the multilayer perceptron
weights and the function is a chosen error criterion. We shall consider two error criteria
discussed earlier: one based on least squares minimisation and the other on a logistic
discrimination model.
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Least squares error minimisation The error to be minimised is the average squared
distance between the approximation given by the model and the ‘desired’ value:

E D
nX

iD1

jt i � g.xi /j2 (6.4)

where g.xi / is the vector of ‘outputs’ and t i is the desired pattern (sometimes termed
the target) for data sample xi . In a regression problem, t i are the dependent variables;
in a discrimination problem, t i D .ti1; : : : ; tiC/T are the class labels usually coded as

ti j D
²

1 if xi is in class ! j

0 otherwise

Modifications of the error criterion to take into account the effect of priors and alternative
target codings to incorporate costs of misclassification are described in Section 5.2.1.

Most of the nonlinear optimisation schemes used for the MLP require the error and
its derivative to be evaluated for a given set of weight values.

The derivative of the error with respect to a weight v (which at the moment can
represent either a weight Þ, between inputs and hidden units, or a weight w, between
the hidden units and the outputs – see Figure 6.1) can be expressed as1

@E

@v
D �2

nX
iD1

n0X
lD1

.t i � g.xi //l
@gl.xi /

@v
(6.5)

The derivative of gl with respect to v, for v one of the weights w, v D w jk say, is

@gl

@w jk
D
²
Žl j k D 0
Žl j�k.α

T
k xi C Þk0/ k 6D 0

(6.6)

and for the weights Þ, v D Þ jk ,

@gl

@Þ jk
D

8><
>:
wl j

@� j
@z k D 0

wl j
@� j
@z .xi /k k 6D 0

(6.7)

where @�i=@z is the derivative of � with respect to its argument, given by

@�

@z
D �.z/.1� �.z//

for the logistic form (6.3) and evaluated at z D αT
j xi C Þ j0. Equations (6.5), (6.6) and

(6.7) can be combined to give expressions for the derivatives of the squared error with
respect to the weights w and Þ.

1Again, we use n0 to denote the output dimensionality; in a classification problem, n0 D C , the number of
classes.
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Figure 6.2 Notation used for back-propagation

Back-propagation In the above example, we explicitly calculated the derivatives for a
single hidden layer network. Here we consider a more general treatment. Back-
propagation is the term given to efficient calculation of the derivative of an error function
in multilayer networks. We write the error, E , as

E D
nX

kD1

Ek

where Ek is the contribution to the error from pattern k. For example,

Ek D jtk � g.xk/j2

in (6.4). We refer to Figure 6.2 for general notation: let the weights between layer o� 1
and layer o be wo

ji (the weight connecting the i th node of layer o� 1 to the j th node of
layer o); let ao

j be the inputs to the nonlinearity at layer o and zo
j be the outputs of the

nonlinearity, so that

ao
j D

no�1X
iD1

wo
ji z

o�1
i

zo�1
j D �.ao�1

j /

(6.8)

where no�1 is the number of nodes at layer o � 1 and � is the (assumed common)
nonlinearity associated with a node.2 These quantities are calculated during the process
termed forward propagation: namely the calculation of the error, E , from its constituent
parts, Ek .

Let layer o be the final layer of the network. The term Ek is a function of the inputs
to the final layer,

Ek D Ek.ao
1 ; : : : ; ao

no
/

2Strictly, the terms ao
j and zo�1

j should be subscripted by k since they depend on the kth pattern.
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For example, with a network with linear output units and using a squared error criterion

Ek D
noX
jD1

..tk/ j � ao
j /

2

where .tk/ j is the j th component of the kth target vector.
The derivatives of the error E are simply the sums of the derivatives of Ek , the

contribution to the error by the kth pattern. The derivatives of Ek with respect to the
final layer of weights, wo

ji , are given by

@Ek

@wo
ji
D @Ek

@ao
j

@ao
j

@wo
ji
D Žo

j zo�1
i (6.9)

where we use the convenient shorthand notation Žo
j to denote @Ek=@ao

j , the derivative
with respect to the input of a particular node in the network.

The derivatives of Ek with respect to the weights wo�1
j i are given by

@Ek

@wo�1
j i

D @Ek

@ao�1
j

@ao�1
j

@wo�1
j i

D Žo�1
j zo�2

i (6.10)

where we have again used the notation Žo�1
j for @Ek=@ao�1

j . This may be expanded
using the chain rule for differentiation as

Žo�1
j D

noX
lD1

@Ek

@ao
l

@ao
l

@ao�1
j

D
noX

lD1

Žo
l
@ao

l

@ao�1
j

and using the relationships (6.8), we have

@ao
l

@ao�1
j

D wo
l j�
0.ao�1

j /

giving the back-propagation formula

Žo�1
j D �0.ao�1

j /
X

l

Žo
l w

o
l j (6.11)

The above result allows the derivatives of Ek with respect to the inputs to a particular
node to be expressed in terms of derivatives with respect to the inputs to nodes higher up
the network, that is, nodes in layers closer to the output layer. Once calculated, these are
combined with node outputs in equations of the form (6.9) and (6.10) to give derivatives
with respect to the weights.

Equation (6.11) requires the derivatives with respect to the nonlinearities � to be
specified. For � given by (6.3),

�0.a/ D �.a/.1� �.a// (6.12)
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The derivative calculation also requires the initialisation of Žo
j , the derivative of the

kth component of the error with respect to ao
j . For the sum-squared error criterion, this is

Žo
j D �2..tk/ j � ao

j / (6.13)

Each layer in the network, up to the output layer, may have biases: the terms Þi0
and w j0 in the single hidden layer model of (6.2). A bias node has �.:/ � 1 and in the
general back-propagation scheme, and at a given layer (say o � 1),

@ao�1
j

@wo�1
j0

D 1

The above scheme is applied recursively to each layer to calculate derivatives. The
term back-propagation networks is often used to describe multilayer perceptrons employ-
ing such a calculation, though strictly back-propagation refers to the method of derivative
calculation, rather than the type of network.

Logistic classification We now consider an alternative error criterion based on the gen-
eralised logistic model. The basic assumption for the generalised logistic discrimination
for an MLP model is

log

�
p.xj! j /

p.xj!C /

�
D

mX
iD1

w j i�i .ai /C w j0; j D 1; : : : ;C � 1

where �i is the i th nonlinearity (logistic function) and ai represents the input to the i th
nonlinearity. The terms ai may be linear combinations of the outputs of a previous layer
in a layered network system and depend on the parameters of a network. The posterior
probabilities are given by (5.11)

p.! j jx/ D
exp

	Pm
iD1w j i�i .ai /Cw0j0

�

1CPC�1
sD1 exp

�Pm
iD1wsi�i .ai /Cw0s0

Ð ; j D 1; : : : ;C � 1

p.!C jx/ D 1

1CPC�1
sD1 exp

�Pm
iD1wsi�i .ai /Cw0s0

Ð
(6.14)

where w0j0 D w j0 C log.p.! j /=p.!C //.
Discrimination is based on the generalised linear model

g j .x/ D
mX

iD1

w j i�i .ai /Cw0j0; j D 1; : : : ;C � 1

with decision rule:

assign x to class ! j if max
sD1;:::;C�1

mX
iD1

wsi�i .ai /Cw0s0 D
mX

iD1

w j i�i .ai /C w0j0 > 0

else assign x to class C .
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In terms of the MLP model (Figure 6.2), equation (6.14) can be thought of as a
final normalising layer in which w j i are the final layer weights and the set of C in-
puts to the final layer (terms of the form

P
i w j i�i C w j0; j D 1; : : : ;C) is offset by

prior terms log.p.! j /=p.!C // and normalised through (6.14) to give outputs p.! j jx/;
j D 1; : : : ;C .

Estimates of the parameters of the model may be achieved by maximising the log-
likelihood, under a mixture sampling scheme given by (see Section 5.2.2)

CX
kD1

X
xi2!k

log.p.!k jxi //

where the posterior probability estimates are of the form (6.14), or equivalently by
minimising

�
nX

iD1

CX
kD1

.t i /k log.p.!k jxi //

where t i is a target vector for xi : a vector of zeros, except that there is a 1 in the position
corresponding to the class of xi . The above criterion is of the form

P
i Ei , where

Ei D �
CX

kD1

.t i /k log.p.!k jxi // (6.15)

For the back-propagation algorithm, we require Žo
j , j D 1; : : : ;C � 1. This is given by

Žo
j D

@Ei

@ao
j
D �.t i / j C p.! j jxi /; (6.16)

the difference between the j th component of the target vector and the j th output for
pattern i (compare with (6.13); see the exercises).

Now that we can evaluate the error and its derivatives, we can, in principle, use one
of many nonlinear optimisation schemes available (Press et al., 1992). We have found
that the conjugate gradients algorithm with the Polak–Ribière update scheme works
well on many practical problems. For problems with a small number of parameters
(less than about 250), the Broyden–Fletcher–Goldfarb–Shanno optimisation scheme is
recommended (Webb et al., 1988; Webb and Lowe, 1988). Storage of the inverse Hessian
matrix (n p ð n p, where n p is the number of parameters) limits its use in practice for
large networks. For further details of optimisation algorithms see, for example, van der
Smagt (1994) and Karayiannis and Venetsanopolous (1993).

Most algorithms for determining the weights of an MLP do not necessarily make
direct use of the fact that the discriminant function is linear in the final layer of weights
w and they solve for all the weights using a nonlinear optimisation scheme. Another
approach is to alternate between solving for the weights w (using a linear pseudo-inverse
method) and adjusting the parameters of the nonlinear functions �, namely Þ. This is
akin to the alternating least squares approach in projection pursuit and is equivalent to
regarding the final layer weights as a function of the parameters Þ (Webb and Lowe,
1988; see also Stäger and Agarwal, 1997).
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Stopping criterion The most common stopping criterion used in the nonlinear opti-
misation schemes is to terminate the algorithm when the relative change in the error is
less than a specified amount (or the maximum number of allowed iterations has been
exceeded).

An alternative that has been employed for classification problems is to cease training
when the classification error (either on the training set or preferably a separate validation
set) stops decreasing (see Chapter 11 for model selection). Another strategy is based on
growing and pruning in which a network larger than necessary is trained and parts that
are not needed are removed. See Reed (1993) for a survey of pruning algorithms.

Training strategies There are several training strategies that may be used to minimise
the error. The one that we have described above uses the complete set of patterns to
calculate the error and its derivatives with respect to the weights, w. These may then
be used in a nonlinear optimisation scheme to find the values for which the error is a
minimum.

A different approach that has been commonly used is to update the parameters using
the gradients @En=@w. That is, calculate the contribution to the derivative of the error
due to each pattern and use that in the optimisation algorithm. In practice, although the
total error will decrease, it will not converge to a minimum, but tend to fluctuate around
the local minimum. A stochastic update scheme that also uses a single pattern at a time
will converge to a minimum, by ensuring that the influence of each gradient calculation
decreases appropriately with iteration number.

Finally, incremental training is a heuristic technique for speeding up the overall learn-
ing time of neural networks whilst simultaneously improving the final classification per-
formance. The method is simple: first the network is partially trained on a subset of the
training data (there is no need to train to completion) and then the resulting network is
further tuned using the entire training database. The motivation is that the subset training
will perform a coarse search of weight space to find a region that ‘solves’ the initial
problem. The hope is that this region will be a useful place to start for training on the
full data set. The technique is often used with a small subset used for initial training and
progressing through larger and larger training databases as the performance increases.
The number of patterns used in each subset will vary according to the task although one
should ensure that sufficient patterns representative of the data distribution are present to
prevent the network over-fitting the subset data. Thus, in a discrimination problem, there
should be samples from all classes in the initial training subset.

6.2.4 Properties

If we are free to choose the weights and nonlinear functions, then a single-layer MLP
can approximate any continuous function to any degree of accuracy if and only if the
nonlinear function is not a polynomial (Leshno et al., 1993). Since such networks are
simulated on a computer, the nonlinear function of the hidden nodes must be expressed
as a finite polynomial. Thus, they are not capable of universal approximation (Wray and
Green, 1995). However, for most practical purposes, the lack of a universal approximation
property is irrelevant.
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Classification properties of MLPs are addressed by Faragó and Lugosi (1993). Let
LŁ be the Bayes error rate (see Chapter 8); let gkn be an MLP with one hidden layer of
k nodes (with step function nonlinearities) trained on n samples to minimise the number
of errors on the training data (with error probability L.gkn/); then, provided k is chosen
so that

k !1
k log.n/

n ! 0

as n!1, then
lim

n!1 L.gkn/ D LŁ

with probability 1. Thus, the classification error approaches the Bayes error as the number
of training samples becomes large, provided k is chosen to satisfy the conditions above.
However, although this result is attractive, the problem of choosing the parameters of
gkn to give minimum errors on a training set is computationally difficult.

6.2.5 Example application study

The problem The classification of radar clutter in a target recognition problem
(Blacknell and White, 1994).

Summary A prerequisite for target detection in synthetic aperture radar imagery is the
ability to classify background clutter in an optimal manner. Radar clutter is the unwanted
return from the background (fields, woods, buildings), although in remote sensing land-
use applications, the natural vegetation forms the wanted return.

The aim of the study is to investigate how well neural networks can approximate
an optimum (Bayesian) classification. What form of preprocessing should be performed
prior to network training? How should the network be constructed?

The data In terms of synthetic aperture radar imagery, a correlated K distribution pro-
vides a reasonable description of natural clutter textures arising from fields and woods.
However, an analytical expression for correlated multivariate K distributions is not avail-
able. Therefore, the approach taken in this work is to develop methodology on simulated
uncorrelated K -distributed data, before application to correlated data.

The form of the multivariate, uncorrelated K distribution is (x D .x1; : : : ; x p/
T )

p.xj¼; ¹/ D
pY

iD1

2

xi0.¹/

�
¹xi

¼

�.¹C1/=2

K¹�1

(
2

s�
¹xi

¼

�)

where ¼ is the mean, ¹ is the order parameter and K¹�1 is the modified Bessel function
of order ¹ � 1. Data for two 256 ð 256 images were generated, each image with the
same mean value but different order parameters. From each image 16-dimensional pattern
vectors were extracted. These comprised measurements on 4 ð 4 non-overlapping win-
dows. (A second experiment used 2ð 1 windows.) Several discriminant functions were
constructed, including an optimum Bayesian scheme, and evaluated on this two-class
problem.
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The model The neural network scheme was developed comprising an MLP with 100
hidden nodes, and a squared error objective function was used.

Training procedure Some simple preprocessing of the data (taking logarithms) was
implemented to reduce network training times. Weights were optimised using gradient
descent. The MLP error rate was 18.5% on the two-pixel data and 23.5% on the 16-pixel
data (different order parameters), compared with optimum values of 16.9% and 20.9%.

Further improvements in MLP performance (reducing the two-pixel error rate to
17.0%) were reported through the use of a simple factorisation scheme. Separate MLPs
were designed for different regions of the data space, these regions being defined by the
original MLP classification.

Results
Preliminary results on correlated data showed that classifier combination (see Chapter 8)
can improve performance.

Thus, careful network design and using knowledge of the data distribution to pre-
process the data can lead to significant improvements in performance over the naı̈ve
implementation of an MLP.

6.2.6 Further developments

One important development is the application of Bayesian inference techniques to the
fitting of neural network models, which has been shown to lead to practical benefits on
real problems. In the predictive approach (Ripley, 1996), the posterior distribution of the
observed target value (t) given an input vector (x) and the data set (D), p.t jx;D/, is
obtained by integrating over the posterior distribution of network weights, w,

p.t jx;D/ D
Z

p.t jx;w/p.wjD/dw (6.17)

where p.wjD/ is the posterior distribution for w and p.t jx;w/ is the distribution of
outputs for the given model, w, and input, x. For a data set D D f.xi ; t i /; i D 1; : : : ; ng
of measurement vectors xi with associated targets t i , the posterior of the weights w may
be written

p.wjD/ D p.w;D/
p.D/ D

1

p.D/

nY
iD1

p.t i jxi ;w/p.xi jw/p.w/

assuming independent samples. Further, if we assume that p.xi jw/ does not depend on
w, then

p.wjD/ /
nY

iD1

p.t i jxi ;w/p.w/

The maximum a posteriori (MAP) estimate of w is that for which p.wjD/ is a maximum.
Assuming a prior distribution,

p.w/ / exp
	
�Þ

2
jjwjj2

�



The multilayer perceptron 215

for parameter Þ, and a zero-mean Gaussian noise mode so that

p.t jx;w/ / exp

�
�þ

2
jt � g.xIw/j2

�

for the diagonal covariance matrix .1=þ/I and network output g.x; w/, then

p.wjD/ / exp

 
�þ

2

X
i

jt i � g.xi ; w/j2 � Þ
2
jjwjj2

!

and the MAP estimate is that for which

S.w/
4D
X

i

jt i � g.xi ; w/j2 C Þ
þ
jjwjj2 (6.18)

is a minimum. This is the regularised solution (equation (5.9)) derived as a solution for
the MAP estimate for the parameters w.

Equation (6.18) is not a simple function of w and may have many local minima
(many local peaks of the posterior density), and the integral in (6.17) is computationally
difficult to evaluate. Bishop (1995) approximates S.w/ using a Taylor expansion around
its minimum value, wMAP (although, as we have noted, there may be many local minima),

S.w/ D S.wMAP/C 1
2 .w � wMAP/

T A.w � wMAP/

where A is the Hessian matrix

Ai j D @

@wi

@

@w j
S.w/

þþþþ
wDwMAP

to give

p.wjD/ / exp

²
�þ

2
.w � wMAP/

T A.w � wMAP/

¦

Also, expanding g.x; w/ around wMAP (assuming for simplicity a scalar quantity),

g.x; w/ D g.x; wMAP/C .w � wMAP/
T h

where h is the gradient vector, evaluated at wMAP, gives

p.t jx;D/ /
Z

exp

²
�þ

2
[t � g.x; wMAP/�1wT h]2 � þ

2
1wT A1w

¦
dw (6.19)

where 1w D .w � wMAP/. This may be evaluated to give (Bishop, 1995)

p.t jx;D/ D 1

.2³¦ 2
t /

1
2

exp

²
� 1

2¦ 2
t
.t � g.x; wMAP//

2
¦

(6.20)

where the variance ¦ 2
t is given by

¦ 2
t D

1

þ
.1C hT A�1h/ (6.21)

Equation (6.20) describes the distribution of output values for a given input value, x,
and given the data set, with the expression above providing error bars on the estimate.
Further discussion of the Bayesian approach is given by Bishop (1993) and Ripley (1996).
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6.2.7 Summary

The multilayer perceptron is a model that, in its simplest form, can be regarded as a
generalised linear discriminant function in which the nonlinear functions � are flexible
and adapt to the data. This is the way that we have chosen to introduce it in this chapter as
it forms a natural progression from linear discriminant analysis, through generalised linear
discriminant functions with fixed nonlinearities to the MLP. It is related to the projection
pursuit model described in the next section in that data are projected onto different
axes, but unlike the projection pursuit model the nonlinear function does not adapt;
it is usually a fixed logistic nonlinearity. The parameters of the model are determined
through a nonlinear optimisation scheme, which is one of the drawbacks of the model.
Computation time may be excessive.

There have been many assessments of gradient-based optimisation algorithms, vari-
ants and alternatives. Webb et al. (1988; see also Webb and Lowe, 1988) compared
various gradient-based schemes on several problems. They found that the Levenberg–
Marquardt optimisation scheme gave best overall performance for networks with a small
number of parameters, but favoured conjugate gradient methods for networks with a
large number of parameters. Further comparative studies include those of Karayiannis
and Venetsanopolous (1993), van der Smagt (1994) and Stäger and Agarwal (1997). The
addition of extra terms to the error involving derivatives of the error with respect to
the input has been considered by Drucker and Le Cun (1992) as a means of improving
generalisation (see also Bishop, 1993; Webb, 1994). The latter approach of Webb was
motivated from an error-in-variables perspective (noise on the inputs). The addition of
noise to the inputs as a means of improving generalisation has also been assessed by
Holmström and Koistinen (1992) and Matsuoka (1992).

The MLP is a very flexible model, giving good performance on a wide range of
problems in discrimination and regression. We have presented only a very basic model.
There are many variants, some adapted to particular types of problem such as time series
(for example, time-delay neural networks). Growing and pruning algorithms for MLP
construction have also been considered in the literature, as well as the introduction of
regularisation in the optimisation criteria in order to prevent over-fitting of the data. The
implementation in hardware for some applications has also received attention. There are
several commercial products available for MLP design and implementation.

6.3 Projection pursuit

6.3.1 Introduction

Projection pursuit is a term used to describe a technique for finding ‘interesting’ projec-
tions of data. It has been used for exploratory data analysis, density estimation and in
multiple regression problems (Friedman and Tukey, 1974; Friedman and Stuetzle, 1981;
Friedman et al., 1984; Friedman, 1987; Huber, 1985; Jones and Sibson, 1987). It would
therefore be at home in several of the chapters of this book.

One of the advantages of projection pursuit is that it is appropriate for sparse data sets
in high-dimensional spaces. That is, in situations in which the sample size is too small
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to make kernel density estimates reliable. A disadvantage is that ‘projection pursuit will
uncover not only true but also spurious structure’ (Huber, 1985).

The basic approach in projection pursuit regression is to model the regression surface
as a sum of nonlinear functions of linear combinations of the variables

y D
mX

jD1

� j .β
T
j x/ (6.22)

where the parameters β j ; j D 1; : : : ;m, and the function � j are determined from the
data and y is the response variable. This is very similar to the multilayer perceptron
model described in Section 6.2 where the � j are usually fixed as logistic functions.

Determination of the parameters β j is achieved by optimising a figure of merit or
criterion of fit, I .β/, in an iterative fashion. The steps in the optimisation procedure are
as follows (Friedman and Stuetzle, 1981; Jones and Sibson, 1987).

1. Initialise m D 1; initialise residuals ri D yi
4D y.xi /.

2. Initialise β and project the independent variable x onto one dimension zi D βT xi .

3. Calculate a smooth representation �þ.z/ of the current residuals (univariate nonpara-
metric regression of current residuals on zs).

4. Calculate the figure of merit; for example, the fraction of unexplained variance for
the linear combination β,

I .β/ D 1�
nX

iD1

.ri � �þ.βT xi //
2
� nX

iD1

r2
i

5. Find the vector βm that maximises I .β/ and the corresponding �þm .β
T
mxi /.

6. Recalculate the figure of merit. Terminate if the figure of merit is less than a speci-
fied threshold (or the relative change in the figure of merit is less than a threshold)
otherwise set m D m C 1, update the residuals

ri D ri � �þm .β
T
mxi /

and go to step 2.

Step 3 requires a smoothing procedure to be implemented. There are many procedures
for smoothing, including running means, kernel smoothers, median filters and regression
splines (see also Hastie and Tibshirani, 1990). Green and Silverman (1994) describe
efficient algorithms based on smoothing splines. Step 5 requires a search to find the
minimum of the figure of merit. Jones and Sibson use an entropy projection index, with
density calculated using a kernel density estimate. A steepest descent gradient method is
used to determine β. Alternatively, procedures that do not require gradient information
may be employed, for example a multidimensional simplex method (Press et al., 1992).

This procedure builds up a sequence of coefficient vectors βi . The projection pur-
suit procedure can also be implemented with readjustment of the previously determined
coefficient vectors (termed back-fitting by Friedman and Stuetzle, 1981).
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6.3.2 Projection pursuit for discrimination

The use of projection pursuit for discrimination has not been widely studied in the
pattern recognition literature, but it is a straightforward development of the regression
model given above.

We seek a set of functions φ j and a set of directions β j such that

nX
iD1

þþþþþt i �
mX

jD1

φ j .β
T
j xi /

þþþþþ
2

(6.23)

is minimised, where t i D .ti1; : : : ; tiC/T are the class indicators (ti j D 1 for xi 2
! j , ti j D 0 otherwise) and we have taken m terms in the additive model (Hastie and
Tibshirani, 1990). We know that the solution of (6.23) gives asymptotically a minimum
variance approximation to the Bayes optimal discriminant function. Thus the function

g.x/ D
mX

jD1

φ j .β
T
j x/

is our discriminant function.
In (6.23), there is a set of C nonlinear functions (the elements of the C-dimensional

vector φ j ) to estimate for each projection direction β j , j D 1; : : : ;m. An alternative
approach is to use common basis functions for each class and write φ j D γ j� j , for a
vector γ j D .� j1; : : : ; � jC /

T ; that is, for a given component j , the form of the nonlinear
functions is the same for each response variable, but it has different weights � jk; k D
1; : : : ;C . Bias terms are also introduced and we minimise I defined by

I
4D

nX
iD1

þþþþþt i � γ 0 �
mX

jD1

γ j� j .β
T
j xi /

þþþþþ
2

with respect to γ 0; γ j , the projection directions β j . j D 1; : : : ;m/ and the functions � j .
The basic strategy is to proceed incrementally, beginning with m D 1 and increasing

the number of basis functions one at a time until I is less than some threshold. An
alternating least squares procedure is adopted: alternately minimising with respect to βm
and �m for fixed γ j ; j D 0; : : : ;m (and fixed β j , � j ; j D 1; : : : ;m � 1 – determined
on previous iterations), and then minimising with respect to γ j . j D 0; : : : ;m/ for fixed
β j , � j ; j D 1; : : : ;m. Specifically:

1. Set m D 1. γ 0 D 1
n

Pn
iD1 t i .

2. At the mth stage, set

r i D t i � γ 0 �
m�1X
jD1

γ j� j .β
T
j xi /

and initialise �m and γ m .
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3. Find the direction Oβm that minimises

I D
nX

iD1

jr i � γ m�m.β
T
mxi /j2 (6.24)

Set βm D Oβm . Estimate O�m by smoothing .βT
mxi ; γ

T
mr i=jγ m j2/. Set �m D O�m and

repeat this step several times.

4. Find the Oγ m that minimises (6.24). Set γ m D Oγ m .

5. Repeat steps 3 and 4 until the loss function is minimised with respect to γ 0; γ j
β j ; . j D 1; : : : ;m/ and the functions � j . If I is not less than some prespecified
threshold, then set m D m C 1 and go to step 2.

Hwang et al. (1994b) discuss smoothers for determining �m in step 3 and implement a
parametric smoother based on Hermite polynomials:

H0.z/ D 1
H1.z/ D 2z
Hr .z/ D 2.zHr�1.z/� .r � 1/Hr�2.z//

The projection directions, β j , are determined through the use of a Newton–Raphson
method (Press et al., 1992) for solving systems of nonlinear equations, which in this case
is

@ I

@β j
D 0

6.3.3 Example application study

The problem Data reduction of large volumes of hyperspectral imagery for remote
sensing applications (Ifarraguerri and Chang, 2000).

Summary Hyperspectral imaging sensors are capable of generating large volumes of
data and it is necessary to exploit techniques for reducing this volume while simulta-
neously preserving as much information as possible. A projection pursuit is applied to
hyperspectral digital imagery and significant reduction demonstrated.

The data The data comprise measurements made using the hyperspectral digital im-
agery collection equipment (HYDICE), an imaging spectrometer operating in the visible
to short-wave infrared wavebands. There are 224 spectral bands; 256 ð 256 images of
scenes including vehicles, trees, roads and other features were collected. Each pixel
spectrum (224 elements) is a pattern vector.

The model A projection pursuit model is adopted with a projection index that is based
on the information divergence of the projection’s estimated probability distributions from
the Gaussian distribution.
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Training procedure Each pattern vector is considered as a candidate projection vec-
tor. The data are projected onto each candidate vector in turn and the projection index
calculated. The pattern vector with the largest value of the projection index is selected
as the first projection direction. The data are then projected onto the space orthogonal
to this and the process repeated: the second projection direction is chosen from among
the set of projected patterns. The process is repeated and the result is a set of orthogonal
projection vectors.

The projection index is a measure of the difference of the distribution of projected
values (normalised to zero mean, unit variance) from a standard normal distribution.

Results Most of the information was compressed into seven projections, with the
components tending to correspond to different types of objects. For example, the first
captured information relating to two objects in the scene, the second to roads and
some of the vehicles and the third and fourth mainly to shadows and trees
respectively.

6.3.4 Further developments

One of the main developments of projection pursuit has been in the area of neural
network models and, in particular, the link with the multilayer perceptron model. In
a comparative study on simulated data, Hwang et al. (1994a) report similar accuracy
and similar computation times, but projection pursuit requires fewer functions. Zhao and
Atkeson (1996) use a radial basis function smoother for the nonlinear functions, and solve
for the weights as part of the optimisation process (see also Kwok and Yeung, 1996).

6.3.5 Summary

Projection pursuit may produce projections of the data that reveal structure that is not
apparent by using the coordinates axes or simple projections such as principal components
(see Chapter 9). As a classifier, there are obvious links to the multilayer perceptron of
Section 6.2 and radial basis function models discussed in Chapter 5. If we take the vector
of nonlinear functions of projections, φ j , in (6.23) as

φ j .y/ D λ j f .βT
j x/ (6.25)

for weights λ j and a fixed nonlinear function f (a logistic function), then our discriminant
model is identical to the MLP discussed in Section 6.2.

The optimisation procedures of the two models differ in that in the MLP all the
projection directions are determined simultaneously as part of the optimisation procedure.
In projection pursuit, they are usually calculated sequentially.

A major difference between the MLP and projection pursuit is one of application.
Within recent years, the MLP has been extensively assessed and applied to a diversity
of real-world applications. This is not true of projection pursuit.
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6.4 Application studies

The term ‘neural networks’ is used to describe models that are combinations of many
simple processing units – for example, the radial basis function is a linear combination
of kernel basis functions and the multilayer perceptron is a weighted combination of
logistic units – but the boundary between what does and what does not constitute a
neural network is rather vague. In many respects, the distinction is irrelevant, but it still
persists, largely through historical reasons relating to the application domain, with neural
network methods tending to be developed more in the engineering and computer science
literature.

Applications of multilayer perceptrons are widespread and many of the studies listed
at the end of the previous chapter will include an assessment of an MLP model. Zhang
(2000) surveys the area of classification from a neural network perspective. Further
special issues of journals have been devoted to applications in process engineering
(Fernández de Cañete and Bulsari, 2000), human–computer interaction (Yasdi, 2000),
financial engineering (Abu-Mostafa et al., 2001) and data mining and knowledge discov-
ery (Bengio et al., 2000). This latter area is one that is currently receiving considerable
attention. Over the last decade there has been a huge increase in the amount of infor-
mation available from the internet, business and other sources. One of the challenges in
the area of data mining and knowledge discovery is to develop models that can handle
large data sets, with a large number of variables (high-dimensional). Many standard data
analysis techniques may not scale suitably.

Applications of MLPs, trained using a Bayesian approach, to image analysis are given
by Vivarelli and Williams (2001) and Lampinen and Vehtari (2001).

Applications of projection pursuit include the following:

ž Facial image recognition and document image analysis. Arimura and Hagita (1994)
use projection pursuit to design screening filters for feature extraction in an image
recognition application.

ž Target detection. Chiang et al. (2001) use projection pursuit in a target detection
application using data from hyperspectral imagery.

6.5 Summary and discussion

Two basic models have been considered, namely the multilayer perceptron and the pro-
jection pursuit model. Both models take a sum of univariate nonlinear functions � of
linear projections of the data, x, onto a weight vector α, and use this for discrimination
(in a classification problem). In the MLP, the nonlinear functions are of a prescribed
form (usually logistic) and a weighted sum is formed. Optimisation of the objective
function is performed with respect to the projection directions and the weights in the
sum. Projection pursuit may be used in an unsupervised form, to obtain low-dimensional
representations of the data, and also for regression and classification purposes. In the pro-
jection pursuit model, optimisation is performed with respect to the form of the nonlinear
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function and the projection directions and usually proceeds sequentially, finding the best
projection direction first, then the second best, and so on. Backfitting allows readjustment
of solutions. Both models have very strong links to other techniques for discrimination
and regression. Consequently, algorithms to implement these models rely heavily on the
techniques presented elsewhere in this book. Procedures for initialisation, optimisation of
parameters, classification and performance estimation are common to other algorithms.

There have been many links between neural networks, such as the MLP, and estab-
lished statistical techniques. The basic idea behind neural network methods in the com-
bination of simple nonlinear processing in a hierarchical manner, together with efficient
algorithms for their optimisation. In this chapter we have confined our attention primar-
ily to single hidden layer networks, where the links to statistical techniques are more
apparent. However, more complex networks can be built for specific tasks. Also, neural
networks are not confined to the feed-forward types for supervised pattern classification
or regression as presented here. Networks with feedback from one layer to the previous
layer, and unsupervised networks have been developed for a range of applications (see
Chapter 10 for an introduction to self-organising networks). Views of neural networks
from statistical perspectives, and relationships to other pattern classification approaches,
are provided by Barron and Barron (1988), Ripley (1994, 1996), Cheng and Titterington
(1994) and Holmström et al. (1997).

6.6 Recommendations

1. Before assessing a nonlinear technique, obtain results on some standard linear tech-
niques (Chapter 4) and simple classifiers (for example, Gaussian classifier, Chapter 2;
nearest-neighbour, Chapter 3) for comparison.

2. Standardise the data (zero mean, unit variance) before training an MLP.

3. Take care in model selection so that over-training does not result – either use some
form of regularisation in the training procedure or a separate validation set to determine
model order.

4. Train the multilayer perceptron using a batch training method unless the data set is
very large (in this case, divide the data set into subsets, randomly selected from the
original data set).

5. Standardise the data before projection pursuit – zero mean, unit variance.

6. Run the projection pursuit algorithm several times to obtain suitable projection
directions.

7. If a small number of projections is required (perhaps for visualisation purposes), pro-
jection pursuit is preferred since it gives similar performance to a multilayer perceptron
with fewer projections.
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6.7 Notes and references

Bishop (1995) provides a through account of feed-forward neural networks. An engi-
neering perspective is provided by Haykin (1994). Tarassenko (1998) provides a basic
introduction to neural network methods with an emphasis on applications.

Projection pursuit was originally proposed by Kruskal (1972) and developed by Fried-
man and Tukey (1974). Projection pursuit has been proposed in a regression context
(Friedman and Stuetzle, 1981), density estimation (Friedman et al., 1984) and exploratory
data analysis (Friedman, 1987). Reviews are provided by Huber (1985) and Jones and
Sibson (1987).

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

1. Discuss the differences and similarities between a multilayer perceptron and a radial
basis function classifier with reference to network structure, geometric interpretation,
initialisation of parameters and algorithms for parameter optimisation.

2. For the logistic form of the nonlinearity in an MLP,

�.z/ D 1

1C exp.�z/
show that

@�

@z
D �.z/.1� �.z//

3. Consider an MLP with a final normalising layer (‘softmax’). How would you initialise
the MLP to give a nearest class mean classifier?

4. Describe two ways of estimating the posterior probabilities of class membership
without modelling the class densities explicitly and using Bayes’ theorem; state the
assumptions and conditions of validity.

5. Logistic classification. Given (6.15) and (6.14), derive the expression for the
derivative,

ŽEi

Ža0
j

D �.t i / j C .oi / j

where oi is the output for input pattern xi . Show that for the squared error defined as

E D 1

2

nX
iD1

jt i � g.xi /j2

an identical result is obtained.
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6. Write down a training strategy for a multilayer perceptron using the back-fitting
procedure of projection pursuit. What are the potential advantages and disadvantages
of such a training scheme compared with the conventional nonlinear optimisation
scheme usually employed?

7. How could a multilayer perceptron be used as part of projection pursuit learning?

8. What are the main similarities and differences between a multilayer perceptron and
a projection pursuit model? Take account of model structure, computational com-
plexity, training strategy and optimisation procedures.

9. Using the results that for a nonsingular matrix A and vector u,

.AC uuT /�1 D A�1 �A�1uuT A�1=.1C uT A�1u/

derive the result (6.20) from (6.19) with ¦ 2
t given by (6.21). What is the expression

for the matrix A if an RBF model is used?

10. Consider a radial basis function network with a data-adaptive kernel (one that adapts
to minimise the criterion optimised by training an RBF); that is, we are allowed
to adjust the shape of the kernel to minimise the squared error, for example. Under
what conditions will the radial basis function model approximate a projection pursuit
model?
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Tree-based methods

Overview

Classification or decision trees are capable of modelling complex nonlinear decision
boundaries. An overly large tree is constructed and then pruned to minimise a
cost–complexity criterion. The resulting tree is easily interpretable and can provide
insight into the data structure. A procedure that can be regarded as a generalisation
to provide continuous regression functions is described.

7.1 Introduction

Many discrimination methods are based on an expansion into sums of basis functions.
The radial basis function uses a weighted sum of univariate functions of radial distances;
the multilayer perceptron uses a weighted sum of sigmoidal functions of linear projec-
tions; projection pursuit uses a sum of smoothed functions of univariate regressions of
projections. In this chapter, we consider two methods that construct the basis functions
by recursively partitioning the data space. The classification and regression tree (CART)
model uses an expansion into indicator functions of multidimensional rectangles. The
multivariate adaptive regression spline (MARS) model is based on an expansion into
sums of products of univariate linear spline functions.

7.2 Classification trees

7.2.1 Introduction

A classification tree or a decision tree is an example of a multistage decision pro-
cess. Instead of using the complete set of features jointly to make a decision, different
subsets of features are used at different levels of the tree. Let us illustrate with an

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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x1 < 2

x4 < 1 x5 < 5

x6 < 2

yes

noyes noyes

noyes

Figure 7.1 Classification tree

example. Figure 7.1 gives a classification tree solution to the head injury data problem1

of Chapter 3. Associated with each internal node of the tree (denoted by a circle) are
a variable and a threshold. Associated with each leaf or terminal node (denoted by a
square) is a class label. The top node is the root of the tree. Now suppose we wish to
classify the pattern x D .5; 4; 6; 2; 2; 3/. Beginning at the root, we compare the value of
x6 with the threshold 2. Since the threshold is exceeded, we proceed to the right child.
We then compare the value of the variable x5 with the threshold 5. This is not exceeded,
so we proceed to the left child. The decision at this node leads us to the terminal node
with classification label !3. Thus, we assign the pattern x to class !3.

The classification tree of Figure 7.1 is a conceptually simple approximation to a
complex procedure that breaks up the decision into a series of simpler decisions at each
node. The number of decisions required to classify a pattern depends on the pattern.
Figure 7.1 is an example of a binary decision tree. More generally, the outcome of a
decision could be one of m ½ 2 possible categories. However, we restrict our treatment
in this chapter to binary trees.

Binary trees successfully partition the feature space into two parts. In the example
above, the partitions are hyperplanes parallel to the coordinate axes. Figure 7.2 illustrates
this in two dimensions for a two-class problem and Figure 7.3 shows the corresponding
binary tree. The tree gives 100% classification performance on the design set. The tree
is not unique for the given partition. Other trees also giving 100% performance are
possible.

The decisions at each node need not be thresholds on a single variable (giving hyper-
planes parallel to coordinate axes as decision boundaries), but could involve a linear or
nonlinear combination of variables. In fact, the data in Figure 7.2 are linearly separable

1Variables x1; : : : ; x6 are age, EMV score, MRP, change, eye indicant and pupils and classes
!1, !2 and !3 dead/vegetative, severely disabled and moderate or good recovery.



Classification trees 227

�

�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

x2 D mx1 C c

b1

b2

b3

x2

a1 a2 x1

Š

Š

Š

Š

Š

Š

Š

Š

Š

Š

ŠŠ

Š

Š Š Š

Š

Š

Š Š

ž ž

ž

ž ž

ž

ž

ž

ž ž

ž

ž

ž

ž

ž

Figure 7.2 Boundaries on a two-class, two-dimension problem

yes no

yes no yes no

yes no

yes

x2 < b1x2 < b3

x1 < a2 x1 > a1

x2 > b2

no

Figure 7.3 Binary decision tree for the two-class, two-dimension data of Figure 7.2

and the decision rule: assign x to class Š if x2 � mx1 � c > 0 classifies all samples
correctly.

Classification trees have been used on a wide range of problems. Their advantages
are that they can be compactly stored; they efficiently classify new samples and have
demonstrated good generalisation performance on a wide variety of problems. Possible
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disadvantages are the difficulty in designing an optimal tree, leading perhaps to large
trees with poor error rates on certain problems, particularly if the separating boundary is
complicated and a binary decision tree with decision boundaries parallel to the coordinate
axes is used. Also, most approaches are non-adaptive – they use a fixed training set, and
additional data may require redesign of the tree.

There are several heuristic methods for construction of decision-tree classifiers; see
Safavian and Landgrebe (1991) for a survey of decision-tree classifier methodology.
They are usually constructed top-down, beginning at the root node (a classification tree
is usually drawn with its root at the top and its leaves at the bottom) and successively
partitioning the feature space. The construction involves three steps:

1. Selecting a splitting rule for each internal node. This means determining the features,
together with a threshold, that will be used to partition the data set at each node.

2. Determining which nodes are terminal nodes. This means that, for each node, we
must decide whether to continue splitting or to make the node a terminal node and
assign to it a class label. If we continue splitting until every terminal node has pure
class membership (all samples in the design set that arrive at that node belong to the
same class) then we are likely to end up with a large tree that over-fits the data and
gives a poor error rate on an unseen test set. Alternatively, relatively impure terminal
nodes (nodes for which the corresponding subset of the design set has mixed class
membership) lead to small trees that may under-fit the data. Several stopping rules
have been proposed in the literature, but the approach suggested by Breiman et al.
(1984) is successively to grow and selectively prune the tree, using cross-validation
to choose the subtree with the lowest estimated misclassification rate.

3. Assigning class labels to terminal nodes. This is relatively straightforward and labels
can be assigned by minimising the estimated misclassification rate.

We shall now consider each of these stages in turn. The approach we present is based
on the CART2 description of Breiman et al. (1984).

7.2.2 Classifier tree construction

We begin by introducing some notation. A tree is defined to be a set T of positive
integers together with two functions l.:/ and r.:/ from T to T [ f0g. Each member of T
corresponds to a node in the tree. Figure 7.4 shows a tree and the corresponding values
of l.t/ and r.t/ (denoting the left and right nodes):

1. For each t 2 T , either l.t/ D 0 and r.t/ D 0 (a terminal node) or l.t/ > 0 and
r.t/ > 0 (a non-terminal node).

2. Apart from the root node (the smallest integer, t D 1 in Figure 7.4) there is a unique
parent s 2 T of each node; that is, for t 6D 1, there is an s such that either t D l.s/
or t D r.s/.

2CART is a registered trademark of California Statistical Software, Inc.
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Figure 7.4 Classification tree and the values of l.t/ and r.t/

A subtree is a non-empty subset T1 of T together with two functions l1 and r1 such that

l1.t/ D
²

l.t/ if l.t/ 2 T1
0 otherwise

r1.t/ D
²

r.t/ if r.t/ 2 T1
0 otherwise

(7.1)

and provided that T1; l1.:/ and r1.:/ form a tree. For example, the set f3; 6; 7; 10; 11g
together with (7.1) forms a subtree, but the sets f2; 4; 5; 3; 6; 7g and f1; 2; 4; 3; 6; 7g do
not; in the former case because there is no parent for both 2 and 3 and in the latter case
because l1.2/ > 0 and r1.2/ D 0. A pruned subtree T1 of T is a subtree of T that has
the same root. This is denoted by T1 � T . Thus, example (b) in Figure 7.5 is a pruned
subtree, but example (a) is not (though it is a subtree).

Let QT denote the set of terminal nodes (the set f5; 8; 9; 10; 11; 13; 14; 15g in Figure 7.4).
Let fu.t/; t 2 QT g be a partition of the data space R

p (that is, u.t/ is a subspace of
R

p associated with a terminal node such that u.t/ \ u.s/ D Þ for t 6D s; t; s 2 QT ;
and [t2 QT u.t/ D R

p). Let ! j .t/ 2 f!1; : : : ; !Cg denote one of the class labels. Then a
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Figure 7.5 Possible subtrees of the tree in Figure 7.4; (a) is not a pruned subtree; (b) is a pruned
subtree
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classification tree consists of the tree T together with the class labels f! j .t/; t 2 QT g and
the partition fu.t/; t 2 QT g. All we are saying here is that associated with each terminal
node is a region of the data space that we label as belonging to a particular class. There is
also a subspace of R p, u.t/, associated with each non-terminal node, being the union of
the subspaces of the terminal nodes that are its descendants.

A classification tree is constructed using a labelled data set, L D f.xi ; yi /; i D
1; : : : ; ng where xi are the data samples and yi the corresponding class labels. If we let
N .t/ denote the number of samples of L for which xi 2 u.t/ and N j .t/ be the number
of samples for which xi 2 u.t/ and yi D ! j (

P
j N j .t/ D N .t/), then we may define

p.t/ D N .t/

n
(7.2)

an estimate of p.x 2 u.t// based on L;

p.! j jt/ D N j .t/

N .t/
(7.3)

an estimate of p.y D ! j jx 2 u.t// based on L; and

pL D p.tL/

p.t/
pR D p.tR/

p.t/

where tL D l.t/; tR D r.t/, as estimates of p.x 2 u.tL /jx 2 u.t// and p.x 2 u.tR/jx 2
u.t// based on L respectively.

We may assign a label to each node, t , according to the proportions of samples from
each class in u.t/: assign label ! j to node t if

p.! j jt/ D max
i

p.!i jt/

We have now covered most of the terminology that we shall use. It is not diffi-
cult to understand, but it may be a bit much to take in all at once. Figure 7.6 and
Table 7.1 illustrate some of these concepts using the data of Figure 7.2 and the tree of
Figure 7.3.
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11 10
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Figure 7.6 Classification tree and decision regions. A description of the nodes is given in Table 7.1
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Table 7.1 Tree table – class !1 D Š; class !2 D ž

t node l.t/ r.t/ N .t/ N1.t/ N2.t/ p.t/ p.1jt/ p.2jt/ pL pR

1 x2 > b2 2 3 35 20 15 1 20
35

15
35

22
35

13
35

2 x1 < a2 4 5 22 17 5 22
35

17
22

5
22

15
22

7
22

3 x1 > a1 6 7 13 4 9 13
35

4
13

9
13

9
13

4
13

4 Š 0 0 15 15 0 15
35 1 0

5 x2 > b3 9 8 7 2 5 7
35

2
7

5
7

5
7

2
7

6 ž 0 0 9 0 9 9
35 0 1

7 x2 < b1 11 10 4 3 1 4
35

3
4

1
4

3
4

1
4

8 ž 0 0 5 0 5 5
35 0 1

9 Š 0 0 2 2 0 2
35 1 0

10 Š 0 0 3 3 0 3
35 1 0

11 ž 0 0 1 0 1 1
35 0 1

Splitting rules

A splitting rule is a prescription for deciding which variable, or combination of variables,
should be used at a node to divide the samples into subgroups, and for deciding what the
threshold on that variable should be. A split consists of a condition on the coordinates
of a vector x 2 R

p. For example, we may define a split sp to be

sp D fx 2 R
p; x4 � 8:2g

a threshold on an individual feature, or

sp D fx 2 R
p; x2 C x7 � 2:0g

a threshold on a linear combination of features. Nonlinear functions have also been
considered (Gelfand and Delp, 1991). Thus, at each non-terminal node, suppose x 2 u.t/.
Then if x 2 sp, the next step in the tree is to l.t/, the left branch, otherwise r.t/.

The question we now have to address is how to split the data that lie in the subspace
u.t/ at node t . Following Breiman et al. (1984), we define the node impurity function,
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I.t/, to be
I.t/ D �.p.!1jt/; : : : ; p.!C jt//

where � is a function defined on all C-tuples .q1; : : : ; qC / satisfying q j ½ 0 andP
j q j D 1. It has the following properties:

1. � is a maximum only when q j D 1=C for all j .

2. It is a minimum when q j D 1, qi D 0; i 6D j , for all j .

3. It is a symmetric function of q1; : : : ; qC .

One measure of the goodness of a split is the change in the impurity function. A split
that maximises the decrease in the node impurity function when moving from one group
to two

1I.sp; t/
4D I.t/� .I.tL /pL C I.tR/pR/

over all splits sp is one choice. Several different forms for I.t/ have been used. One
suggestion is the Gini criterion

I.t/ D
X
i 6D j

p.!i jt/p.! j jt/

This is easily computed for a given split.
Different splits on the data at node t may now be evaluated using the above criterion,

but what strategy do we use to search through the space of possible splits? First of all,
we must confine our attention to splits of a given form. We shall choose the possible
splits to consist of thresholds on individual variables

sp D fx; xk � − g
where k D 1; : : : ; p and − ranges over the real numbers. Clearly, we must restrict the
number of splits we examine and so, for each variable xk , − is allowed to take one of
a finite number of values within the range of possible values. Thus, we are dividing
each variable into a number of categories, though this should be kept reasonably small
to prevent excessive computation and need not be larger than the number of samples at
each node.

There are many other approaches to splitting. Some are given in the survey by Safavian
and Landgrebe (1991). The approach described above assumes ordinal variables. For a
categorical variable with N unordered outcomes, partitioning on that variable means
considering 2N partitions. By exhaustive search, it is possible to find the optimal one,
but this could result in excessive computation time if N is large. Techniques for nominal
variables can be found in Breiman et al. (1984) and Chou (1991).

So now we can grow our tree by successively splitting nodes, but how do we stop?
We could continue until each terminal node contained one observation only. This would
lead to a very large tree, for a large data set, that would over-fit the data. We could im-
plement a stopping rule: we do not split the node if the change in the impurity function
is less than a prespecified threshold. Alternatively, we may grow a tree with termi-
nal nodes that would have pure (or nearly pure) class membership and then prune it.
This can lead to better performance than a stopping rule. We now discuss one pruning
algorithm.
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Pruning algorithm

We now consider one algorithm for pruning trees that will be required in the following
subsection on classifier tree construction. The pruning algorithm is general in that it
applies to trees that are not necessarily classification but regression trees. But first some
more notation.

Let R.t/ be real numbers associated with each node t of a given tree T . If t is
a terminal node, i.e. t 2 QT , then R.t/ could represent the proportion of misclassified
samples – the number of samples in u.t/ that do not belong to the class associated with
the terminal node, defined to be M.t/, divided by the total number of data points, n

R.t/ D M.t/

n
t 2 QT

Let RÞ.t/ D R.t/C Þ for a real number Þ. Set3

R.T / D
X

t2 QT
R.t/

RÞ.T / D
X

t2 QT
RÞ.t/ D R.T /C Þj QT j

In a classification problem, R.T / is the estimated misclassification rate; j QT j denotes the
cardinality of the set QT ; RÞ.T / is the estimated complexity–misclassification rate of a
classification tree; and Þ is a constant that can be thought of as the cost of complexity
per terminal node. If Þ is small, then there is a small penalty for having a large number
of nodes. As Þ increases, the minimising subtree (the subtree T 0 � T that minimises
RÞ.T 0/) has fewer terminal nodes.

We shall describe the CART pruning algorithm (Breiman et al., 1984) by means of
an example, using the tree of Figure 7.7. Let the quantity R.t/ be given by

R.t/ D r.t/p.t/

where r.t/ is the resubstitution estimate of the probability of misclassification (see
Chapter 8) given that a case falls into node t ,

r.t/ D 1� max
! j

p.! j jt/

and p.t/ and p.! j jt/ are given by (7.2) and (7.3). Thus, if t is taken to be a terminal
node, R.t/ is the contribution of that node to the total error.

Let Tt be the subtree with root t . If RÞ.Tt / < RÞ.t/, then the contribution to the cost
of complexity of the subtree is less than that for the node t . This occurs for small Þ. As
Þ increases, equality is achieved when

Þ D R.t/� R.Tt /

Nd.t/� 1

3The argument of R may be a tree or a node; capital letters denote a tree.
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Figure 7.7 Pruning example – original tree

where Nd.t/ is the number of terminal nodes in Tt , i.e. Nd.t/ D j QTt j and termination of
the tree at t is preferred. Therefore, we finally define

g.t/ D R.t/� R.Tt /

Nd.t/� 1
(7.4)

as a measure of the strength of the link from node t .
In Figure 7.7, each terminal node has been labelled with a single number R.t/, the

amount by which that node contributes to the error rate. Each non-terminal node has
been labelled by two numbers. The number to the left of the node is the value of R.t/,
the contribution to the error rate if that node were a terminal node. The number to the
right is g.t/, calculated using (7.4). Thus, the value of g.t/ for node t D 2, say, is
0:03 D [0:2� .0:01C 0:01C 0:03C 0:02C 0:01/]=4.

The first stage of the algorithm searches for the node with the smallest value of g.t/.
This is node 12, with a value of 0.0075. This is now made a terminal node and the value
of g.t/ recalculated for all its ancestors. This is shown in Figure 7.8. The values of the
nodes in the subtree beginning at node 2 are unaltered. The process is now repeated.
The new tree is searched to find the node with the smallest value of g.t/. In this case,
there are two nodes, 6 and 9, each with a value of 0.01. Both are made terminal nodes
and again the values of g.t/ for the ancestors recalculated. Figure 7.9 gives the new tree
(T 3). Node 4 now becomes the terminal node. This continues until all we are left with is
the root node. Thus, the pruning algorithm generates a succession of trees. We denote the
tree at the kth stage by T k . Table 7.2 gives the value of the error rate for each successive
tree, together with the number of terminal nodes in each tree and the value of g.t/ at
each stage (denoted by Þk) that is used in the pruning to generate tree T k . The tree T k

has all internal nodes with a value of g.t/ > Þk .
The results of the pruning algorithm are summarised in Figure 7.10. This figure shows

the original tree together with the values g6.t/ for the internal nodes, where gk is defined
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Figure 7.8 Pruning example – pruning at node 12
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Figure 7.9 Pruning example – pruning at nodes 6 and 9

Table 7.2 Tree results

k Þk j QT k j R.T k/

1 0 11 0.185
2 0.0075 9 0.2
3 0.01 6 0.22
4 0.02 5 0.25
5 0.045 3 0.34
6 0.05 2 0.39
7 0.11 1 0.5

recursively (0 � k � K � 1; K D the number of pruning stages):

gk D
²

g.t/ t 2 T k � QT k (t an internal node of T k)
gk�1.t/ otherwise

The values of g6.t/ together with the tree T 1 are a useful means of summarising the
pruning process. The smallest value is 0.0075 and shows that in going from T 1 to T 2
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Figure 7.10 Pruning example – summary of pruning process

nodes 16, 17, 20 and 21 are removed. The smallest value of the pruned tree is 0.01 and
therefore in going from T 2 to T 3 nodes 12, 13, 14, 15, 18 and 19 are removed; from T 3 to
T 4 nodes 8 and 9 are removed; from T 4 to T 5 nodes 4, 5, 10 and 11; from T 5 to T 6 nodes
6 and 7; and finally, nodes 2 and 3 are removed to obtain T 7 the tree with a single node.

An explicit algorithm for the above process is given by Breiman et al. (1984).

Classification tree construction methods
Having considered approaches to growing and pruning classification trees and estimating
their error rate, we are now in a position to present methods for tree construction using
these features.

CART independent training and test set method The stages in the CART independent
training and test set method are as follows. Assume that we are given a training set Lr

and a test set (or, more correctly, a validation set) Ls of data samples. These are generated
by partitioning the design set approximately into two groups.

The CART independent training and test set method is as follows.

1. Use the set Lr to generate a tree T by splitting all the nodes until all the terminal
nodes are ‘pure’ – all samples at each terminal node belong to the same class. It may
not be possible to achieve this with overlapping distributions, therefore an alternative
is to stop when the number in each terminal node is less than a given threshold or the
split of a node t results in a left son tL or a right son tR with min.N .tL/; N .tR// D 0.

2. Use the CART pruning algorithm to generate a nested sequence of subtrees T k using
the set Ls .

3. Select the smallest subtree for which R.T k/ is a minimum.

CART cross-validation method For the cross-validation method, the training set L is
divided into V subsets L1; : : : ;LV , with approximately equal numbers in each class.



Classification trees 237

Let Lv D L � Lv; v D 1; : : : ; V . We shall denote by T .Þ/ the pruned subtree with all
internal nodes having a value of g.t/ > Þ. Thus, T .Þ/ is equal to T k , the pruned subtree
at the kth stage, where k is chosen so that Þk � Þ � ÞkC1 (ÞKC1 D 1).

The CART cross-validation method is as follows.

1. Use the set L to generate a tree T by splitting all the nodes until all the terminal
nodes are ‘pure’ – all samples at each terminal node belong to the same class. It may
not be possible to achieve this with overlapping distributions, therefore an alternative
is to stop when the number in each terminal node is less than a given threshold or the
split of a node t results in a left son tL or a right son tR with min.N .tL/; N .tR// D 0.
(This is step 1 of the CART independent training and test set method above.)

2. Using the CART pruning algorithm, generate a nested sequence of pruned subtrees
T D T 0 ½ T 1 ½ Ð Ð Ð ½ T K D root.T /.

3. Use Lv to generate a tree Tv and assign class labels to the terminal nodes, for v D
1; : : : ; V .

4. Using the CART pruning algorithm, generate a nested sequence of pruned subtrees
of Tv .

5. Calculate Rcv.T k/ (the cross-validation estimate of the misclassification rate) given by

Rcv.T k/ D 1

V

VX
vD1

Rv.Tv.
p
ÞkÞkC1//

where Rv is the estimate of the misclassification rate based on the set Lv for the
pruned subtree Tv.

p
ÞkÞkC1/.

6. Select the smallest T Ł 2 fT 0; : : : ; T K g such that

Rcv.T Ł/ D min
k

Rcv.T k/

7. Estimate the misclassification rate by

OR.T Ł/ D Rcv.T Ł/

The procedure presented in this section implements one of many approaches to re-
cursive tree design which use a growing and pruning approach and that have emerged as
reliable techniques for determining right-sized trees. The CART approach is appropriate
for data sets of continuous or discrete variables with ordinal or nominal significance,
including data sets of mixed variable types.

7.2.3 Other issues

Missing data
The procedure given above contains no mechanism for handling missing data. The CART
algorithm deals with this problem through the use of surrogate splits. If the best split of
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a node is ∫ on the variable xm say, then the split ∫Ł that predicts ∫ most accurately, on
a variable x j other than xm , is termed the best surrogate for ∫ . Similarly, a second best
surrogate on a variable other than xm and x j can be found, and so on.

A tree is constructed in the usual manner, but at each node t , the best split ∫ on
a variable xm is found by considering only those samples for which a value for xm

is available. Objects are assigned to the groups corresponding to tL and tR according
to the value on xm . If this is missing for a given test pattern, the split is made using
the best surrogate for ∫ (that is, the split is made on a different variable). If this value
is also missing, the second best surrogate is used, and so on until the sample is split.
Alternatively, we may use procedures that have been developed for use by conventional
classifiers for dealing with missing data (see Chapter 11).

Priors and costs
The definitions (7.2) and (7.3) assume that the prior probabilities for each class, denoted
by ³.i/, are equal to N j=n. If the distribution on the design set is not proportional to the
expected occurrence of the classes, then the resubstitution estimates of the probabilities
that a sample falls into node t , p.t/, and that it is in class ! j given that it falls into node
t , p. j jt/, are defined as

p.t/ D
CX

jD1

³. j/
N j .t/

N j

p. j jt/ D ³. j/N j .t/=N jPC
jD1 ³. j/N j .t/=N j

(7.5)

In the absence of costs (or assuming an equal cost loss matrix – see Chapter 1), the
misclassification rate is given by

R.T / D
X

i j

q.i j j/³. j/ (7.6)

where q.i j j/ is the proportion of samples of class ! j defined as class !i by the tree.
If ½ j i is the cost of assigning an object of class ! j to !i , then the misclassification
cost is

R.T / D
X

i j

½ j i q.i j j/³. j/

This may be written in the same form as (7.6), with redefined priors, provided that ½ j i

is independent of i ; thus, ½ j i D ½ j and the priors are redefined as

³ 0. j/ D ½ j³. j/P
j ½ j³. j/

In general, if there is an asymmetric cost matrix with non-constant costs of misclassifi-
cation for each class, then the costs cannot be incorporated into modified priors.
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7.2.4 Example application study

The problem Identification of emitter type based on measurements of electronic char-
acteristics (Brown et al., 1993). This is important in military applications (to distinguish
friend from foe) and civil applications such as communication spectrum management
and air space management.

Summary A classification tree was compared with a multilayer perceptron on the task
of identifying the emitter type given measurements made on a received waveform. Both
methods produced comparable error rates.

The data The class distributions are typically multimodal since a given emitter can
change its electronic signature by changing its settings. The data consisted of simulated
measurements on three variables only (frequency, pulse repetition interval and pulse
duration) of four radars, each of which had five operational settings.

The model A decision tree was constructed using the CART algorithm (Section 7.2.2).

Training procedure CART was trained employing the Gini criterion for impurity. The
three features were also augmented by three additional features, being the sums of pairs
of the original features. Thus some decision boundaries were not necessarily parallel to
coordinate boundaries. This improved performance.

Results The performance of CART and the multilayer perceptron were similar, in terms
of error rate, and the training time for the classification tree was considerably less than
the MLP. Also, the classification tree had the advantage that it was easy to interpret,
clearly identifying regions of feature space associated with each radar type.

7.2.5 Further developments

The splitting rules described have considered only a single variable. Some data sets may
be naturally separated by hyperplanes that are not parallel to the coordinate axes, and
Chapter 4 concentrated on means for finding linear discriminants. The basic CART algo-
rithm attempts to approximate these surfaces by multidimensional rectangular regions,
and this can result in very large trees. Extensions to this procedure that allow splits not
orthogonal to axes are described by Loh and Vanichsetakul (1988) and Wu and Zhang
(1991) (and indeed can be found in the CART book of Breiman et al., 1984). Sankar and
Mammone (1991) use a neural network to recursively partition the data space and allow
general hyperplane partitions. Pruning of this neural tree classifier is also addressed (see
also Sethi and Yoo, 1994, for multifeature splits methods using perceptron learning).

Speed-ups to the CART procedure are discussed by Mola and Siciliano (1997). Also,
non-binary splits of the data may be considered (Loh and Vanichsetakul, 1988; Sturt,
1981; and in the vector quantisation context, Gersho and Gray, 1992).
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There are many growing and pruning strategies. Quinlan (1987) describes and assesses
four pruning approaches, the motivation behind the work being to simplify decision trees
in order to use the knowledge in expert systems. The use of information-theoretic criteria
in tree construction has been considered by several authors. Quinlan and Rivest (1989)
describe an approach based on the minimum description length principle and Goodman
and Smyth (1990) present a top-down mutual information algorithm for tree design. A
comparative study of pruning methods for decision trees is provided by Esposito et al.
(1997) (see also comments by Kay, 1997; Mingers, 1989). Averaging, as an alternative
to pruning, is discussed by Oliver and Hand (1996).

Tree-based methods for vector quantisation are described by Gersho and Gray (1992).
A tree-structured approach reduces the search time in the encoding process. Pruning the
tree results in a variable-rate vector quantiser and the CART pruning algorithm may
be used. Other approaches for growing a variable-length tree (in the vector quantisa-
tion context) without first growing a complete tree are described by Riskin and Gray
(1991). Crawford (1989) describes some extensions to CART that improve upon the
cross-validation estimate of the error rate and allow for incremental learning – updating
an existing tree in the light of new data.

One of the problems with nominal variables with a large number of categories is
that there may be many possible partitions to consider. Chou (1991) presents a cluster-
ing approach to finding a locally optimum partition without exhaustive search. Buntine
(1992) develops a Bayesian statistics approach to tree construction that uses Bayesian
techniques for node splitting, pruning and averaging of multiple trees (also assessed as
part of the Statlog project). A Bayesian CART algorithm is described by Denison et al.
(1998a).

7.2.6 Summary

One of the main attractions of CART is its simplicity: it performs binary splits on
single variables in a recursive manner. Classifying a sample may require only a few
simple tests. Yet despite its simplicity, it is able to give performance superior to many
traditional methods on complex nonlinear data sets of many variables. Of course there are
possible generalisations of the model to multiway splitting on linear (or even nonlinear)
combinations of variables, but there is no strong evidence that these will lead to improved
performance. In fact, the contrary has been reported by Breiman and Friedman (1988).
Also, univariate splitting has the advantage that the models can be interpreted more easily.
Lack of interpretability by many, if not most, of the other methods of discrimination
described in this book can be a serious shortcoming in many applications.

Another advantage of CART is that it is a procedure that has been extensively eval-
uated and tested, both by the workers who developed it and numerous researchers who
have implemented the software. In addition, the tree-structured approach may be used for
regression using the same impurity function (for example, a least squares error measure)
to grow the tree as to prune it.

A possible disadvantage of CART is that training can be time-consuming. An alter-
native is to use a parametric approach with the inherent underlying assumptions. The use
of nonparametric methods in discrimination, regression and density estimation has been
increasing with the continuing development of computing power, and, as Breiman and
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Friedman point out, ‘the cost for computation is decreasing roughly by a factor of two
every year, whereas the price paid for incorrect assumptions is remaining the same’. It
really depends on the problem. In most applications it is the cost of data collection that
far exceeds any other cost and the nonparametric approach is appealing because it does
not make the (often gross) assumptions regarding the underlying population distributions
that other discrimination methods do.

7.3 Multivariate adaptive regression splines

7.3.1 Introduction

The multivariate adaptive regression spline (MARS) (Friedman, 1991) approach may
be considered as a continuous generalisation of the regression tree methodology treated
separately in Section 7.2, and the presentation here follows Friedman’s approach.

Suppose that we have a data set of n measurements on p variables, fxi ; i D 1; : : : ; ng,
xi 2 R

p, and corresponding measurements on the response variable fyi ; i D 1; : : : ; ng.
We shall assume that the data have been generated by a model

yi D f .x/C ž

where ž denotes a residual term. Our aim is to construct an approximation, Of , to the
function f .

7.3.2 Recursive partitioning model

The recursive partitioning model takes the form

Of .x/ D
MX

mD1

am Bm.x/

The basis functions Bm are

Bm.x/ D I fx 2 uim g

where I is an indicator function with value unity if the argument is true and zero other-
wise. We have used the notation that fui ; i D 1; : : : ;Mg is a partition of the data space
R

p (that is, ui is a subspace of R p such that ui \ u j D Þ for i 6D j , and [i ui D R
p).

The set fam;m D 1; : : : ;Mg are the coefficients in the expansion whose values are de-
termined (often) by a least squares minimisation procedure for fitting the approximation
to the data. In a classification problem, a regression for each class may be performed
(using binary variables with value 1 for xi 2 class ! j , and zero otherwise) giving C
functions Of j , on which discrimination is based.

The basis functions are produced by a recursive partitioning algorithm (Friedman,
1991) and can be represented as a product of step functions. Consider the partition
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Figure 7.11 Classification tree and decision regions; the decision nodes (circular) are charac-
terised as follows: node 1, x2 > b2; node 2, x1 < a2; node 5, x2 > b3; node 3, x1 > a1; node 7,
x2 < b1. The square nodes correspond to regions in the feature space

produced by the tree given in Figure 7.11 . The first partition is on the variable x2 and
divides the plane into two regions, giving basis functions

H [.x2 � b2/] and H [�.x2 � b2/]

where

H.x/ D
²

1 x ½ 0
0 otherwise

The region x2 < b2 is partitioned again, on variable x1 with threshold a1, giving the
basis functions

H [�.x2 � b2/]H [C.x1 � a1/] and H [�.x2 � b2/]H [�.x1 � a1/]

The final basis functions for the tree comprise the products

H [�.x2 � b2/]H [�.x1 � a1/]H [C.x2 � b1/]
H [�.x2 � b2/]H [�.x1 � a1/]H [�.x2 � b1/]
H [�.x2 � b2/]H [C.x1 � a1/]
H [C.x2 � b2/]H [�.x1 � a2/]
H [C.x2 � b2/]H [C.x1 � a2/]H [C.x2 � b3/]
H [C.x2 � b2/]H [C.x1 � a2/]H [�.x2 � b3/]

Thus, each basis function is a product of step functions, H .
In general, the basis functions of the recursive partitioning algorithm have the form

Bm.x/ D
KmY
kD1

H [skm.xv.k;m/ � tkm/] (7.7)

where the skm take the values š1 and Km is the number of splits that give rise to Bm.x/;
xv.k;m/ is the variable split and the tkm are the thresholds on the variables.

The MARS procedure is a generalisation of this recursive partitioning procedure in
the following ways.
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Continuity

The recursive partitioning model described above is discontinuous at region boundaries.
This is due to the use of the step function H . The MARS procedure replaces these
step functions by spline functions. The two-sided truncated power basis functions for
qth-order splines are

bšq .x � t/ D [š.x � t/]q
C

where [:]C denotes that the positive part of the argument is considered. The basis functions
bCq .x/ are illustrated in Figure 7.12. The step function, H , is the special case of q D 0.
The MARS algorithm employs q D 1. This leads to a continuous function approximation,
but discontinuous first derivatives.

The basis functions now take the form

Bq
m.x/ D

KmY
kD1

[skm.xv.k;m/ � tkm/]
q
C (7.8)

where the tkm are referred to as the knot locations.

Retention of parent functions

The basic recursive partitioning algorithm replaces an existing parent basis function by
its product with a step function and the reflected step function. The number of basis
functions therefore increases by one on each split. The MARS procedure retains the
parent basis function. Thus the number of basis functions increases by two at each
split. This provides a much more flexible model that is capable of modelling classes
of functions that have no strong interaction effects, or strong interactions involving at
most a few of the variables, as well as higher-order interactions. A consequence of the
retention of the parent functions is that the regions corresponding to the basis functions
may overlap.
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Figure 7.12 Spline functions, bCq .x/, for q D 0; 1; 2
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Multiple splits
The basic recursive partitioning algorithm allows multiple splits on a single variable:
as part of the modelling procedure, a given variable may be selected repeatedly and
partitioned. Thus basis functions comprise products of repeated splits on a given variable
(the basis functions for the tree in Figure 7.11 contain repeated splits). In the continuous
generalisation, this leads to functional dependencies of higher order than q on individual
variables. To take advantage of the properties of tensor product spline basis functions,
whose factors involve a different variable, MARS restricts the basis functions to products
involving single splits on a given variable. By reselecting the same parent for splitting (on
the same variable), the MARS procedure is able to retain the flexibility of the repeated
split model (it trades depth of tree for breadth of tree).

The second stage in the MARS strategy is a pruning procedure; basis functions are
deleted one at a time – the basis function being removed being that which improves
the fit the most (or degrades it the least). A separate validation set could be chosen to
estimate the goodness of fit of the model. The lack-of-fit criterion proposed for the MARS
algorithms is a modified form of the generalised cross-validation criterion of Craven and
Wahba (1979). In a discrimination problem, a model could be chosen that minimises
error rate on the validation set.

In applying MARS to discrimination problems, one approach is to use the usual binary
coding for the response function, f j ; j D 1; : : : ;C , with f j .x/ D 1 if x is in class ! j and
zero otherwise. Each class may have a separate MARS model; the more parsimonious
model of having common basis functions for all classes will reduce the computation. The
weights ai in the MARS algorithms are replaced by vectors ai , determined to minimise
a generalised cross-validation measure.

7.3.3 Example application study

The problem To understand the relationship between sea floor topography, ocean cir-
culation and variations in the sea ice concentration in Antarctic regions (De Veaux et al.,
1993).

Summary The occurrence of polynyas, large areas of open water within an otherwise
continuous cover of sea ice, is of interest to oceanographers. In particular, the Weddell
Polynya was active for three years and is the subject of this investigation. A nonparametric
regression model was used to quantify the effect of sea floor topography on sea ice surface
characteristics.

The data Data were gathered from one ocean region (the Maud Rise). Ice concentration
maps were derived from scanning multichannel microwave radiometer data. Bathymetry
data were derived, primarily, from soundings taken from ships at approximately a 5 km
interval along the ship tracks and at a vertical resolution of 1 m.

The model Five predictor variables were considered (bathymetry, its meridional and
zonal derivatives and their derivatives). The MARS model was used with the interaction
level restricted to two, resulting in 10 additional potential variables.
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Training procedure The MARS procedure selected three two-variable interactions.
Retaining only a few low-order interactions allowed the results of fitting the final model
to be interpreted. This is important for other applications.

Results The results strongly support the hypothesis that there is a link between sea ice
concentration and sea floor topography. In particular, the sea ice concentration can be
predicted to some degree by the ocean depth and its first and second derivatives in both
meridional and zonal directions.

7.3.4 Further developments

A development of the basic model to include procedures for mixed ordinal and cate-
gorical variables is provided by Friedman (1993). POLYMARS (Stone et al., 1997) is a
development to handle a categorical response variable, with application to classification
problems.

Time series versions of MARS have been developed for forecasting applications (De
Gooijer et al., 1998). A Bayesian approach to MARS fitting, which averages over possible
models (with a consequent loss of interpretability of the final model), is described by
Denison et al. (1998b).

7.3.5 Summary

MARS is a method for modelling high-dimensional data in which the basis functions are
a product of spline functions. MARS searches over threshold positions on the variables,
or knots, across all variables and interactions. Once it has done this, it uses a least squares
regression to provide estimates of the coefficients of the model.

MARS can be used to model data comprising measurements on variables of different
type. The optimal model is achieved by growing a large model and then pruning the
model by removing basis functions until a lack-of-fit criterion is minimised.

7.4 Application studies

Applications of decision-tree methodology are varied and include the following.

ž Predicting stroke in patient rehabilitation outcome. Falconer et al. (1994) develop a
classification tree model (CART) to predict rehabilitation outcomes for stroke pati-
ents. The data comprised measurements on 51 ordinal variables on 225 patients. A
classification tree was used to identify those variables most informative for predict-
ing favourable and unfavourable outcomes. The resulting tree used only 4 of the 51
variables measured on admission to a university-affiliated rehabilitation institute, im-
proving the ability to predict rehabilitation outcomes, and correctly classifying 88%
of the sample.
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ž Gait events. In a study into the classification of phases of the gait cycle (as part
of the development of a control system for functional electrical stimulation of the
lower limbs), Kirkwood et al. (1989) develop a decision-tree approach that enable
redundant combinations of variables to be identified. Efficient rules are derived with
high performance accuracy.

ž Credit card applications. Carter and Catlett (1987) use Quinlan’s (1986) ID3 algorithm
to assess credit card applications.

ž Thyroid diseases. In a study of the use of a decision tree to synthesise medical knowl-
edge, Quinlan (1986) employs C4, a descendant of ID3 that implements a pruning
algorithm, to generate a set of high-performance rules. The data consist of input from
a referring doctor (patient’s age, sex and 11 true–false indicators), a clinical laboratory
(up to six assay results) and a diagnostician. Thus, variables are of mixed type, with
missing values and some misclassified samples. The pruning algorithm leads to an
improved simplicity and intelligibility of derived rules.

Other applications have been in the areas of telecommunications, marketing and in-
dustrial applications.

There have been several comparisons with neural networks and other discrimination
methods:

ž Digit recognition. Brown et al. (1993) compare a classification tree with a multilayer
perceptron on a digit recognition (extracted from licence plate images) problem, with
application to highway monitoring and tolling. All features were binary and the classi-
fication tree performance was poorer than the MLP, but performance improved when
features that were a combination of the original variables were included.

ž Various data sets. Curram and Mingers (1994) compare a multilayer perceptron with
a decision tree on several data sets. The decision tree was susceptible to noisy data,
but had the advantage of providing insight. Shavlik et al. (1991) compared ID3 with a
multilayer perceptron on four data sets, finding that the MLP handled noisy data and
missing features slightly better than ID3, but took considerably longer to train.

Other comparative studies include speaker-independent vowel classification and load
forecasting (Atlas et al., 1989), finding the MLP superior to a classification tree; disk
drive manufacture quality control and the prediction of chronic problems in large-scale
communication networks (Apté et al., 1994).

The MARS methodology has been applied to problems in classification and regression
including the following.

ž Economic time series. Sephton (1994) uses MARS to model three economic time
series: annual US output, capital and labour inputs; interest rates and exchange rates
using a generalised cross-validation score for model selection.

ž Telecommunications. Duffy et al. (1994) compare neural networks with CART and
MARS on two telecommunications problems: modelling switch processor memory, a
regression problem; and characterising traffic data (speech and modem data at three
different baud rates), a four-class discrimination problem.
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ž Particle detection. In a comparative study of four methods of discrimination, Holm-
ström and Sain (1997) compare MARS with a quadratic classifier, a neural network
and kernel discriminant analysis on a problem to detect a weak signal against a domi-
nant background. Each event (in the two-class problem) was described by 14 variables
and the training set comprised 5000 events. MARS appeared to give best performance.

7.5 Summary and discussion

Recursive partitioning methods have a long history and have been developed in many
different fields of endeavour. Complex decision regions can be approximated by the
union of simpler decision regions. A major step in this research was the development of
CART, a simple nonparametric method of partitioning data. The approach described in
this chapter for constructing a classification tree is based on that work.

There have been many comparative studies with neural networks, especially multilayer
perceptrons. Both approaches are capable of modelling complex data. The MLP is usually
longer to train and does not provide the insight of a tree, but has often shown better
performance on the data sets used for the evaluation (which may favour an MLP anyway).
Further work is required.

The multivariate adaptive regression spline approach is a recursive partitioning method
that utilises products of spline functions as the basis functions. Like CART, it is also
well suited to model mixed variable (discrete and continuous) data.

7.6 Recommendations

Although it cannot be said that classification trees perform substantially better than other
methods (and, for a given problem, there may be a parametric method that will work
better – but you do not know which one to choose), their simplicity and consistently
good performance on a wide range of data sets have led to their widespread use in many
disciplines. It is recommended that you try them for yourselves.

Specifically, classification tree approaches are recommended:

1. for complex data sets in which you believe decision boundaries are nonlinear and
decision regions can be approximated by the sum of simpler regions;

2. for problems where it is important to gain an insight into the data structure and the
classification rule, when the explanatory power of trees may lead to results that are
easier to communicate than other techniques;

3. for problems with data consisting of measurements on variables of mixed type (con-
tinuous, ordinal, nominal);

4. where ease of implementation is required;

5. where speed of classification performance is important – the classifier performs simple
tests on (single) variables.
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MARS is simple to use and is recommended for high-dimensional regression prob-
lems, for problems involving variables of mixed type and for problems where some
degree of interpretability of the final solution is required.

7.7 Notes and references

There is a very large literature on classification trees in the areas of pattern recognition,
artificial intelligence, statistics and the engineering sciences, but by no means exclusively
within these disciplines. Many developments have taken place by researchers working
independently and there are many extensions of the approach described in this chapter
as well as many alternatives. A survey is provided by Safavian and Landgrebe (1991);
see also Feng and Michie (1994). Several tree-based approaches were assessed as part
of the Statlog project (Michie et al., 1994) including CART, which proved to be one of
the better ones because it incorporates costs into the decision.

MARS was introduced by Friedman (1991). Software for CART, other decision-tree
software and MARS is publicly available.

The website www.statistical-pattern-recognition.net contains refer-
ences and links to further information on techniques and applications.

Exercises

1. In Figure 7.6, if regions u.4/ and u.6/ correspond to class !1 and u.8/; u.9/, u.10/ and
u.11/ to class !2, construct a multilayer perceptron with the same decision boundaries.

2. A standard classification tree produces binary splits on a single variable at each node.
For a two-class problem, using the results of Chapter 4, describe how to construct a
tree that splits on a linear combination of variables at a given node.

3. The predictability index (relative decrease in the proportion of incorrect predictions
for split s on node t) is written (using the notation of this chapter)

−.!js/ D
PC

jD1 p2.! j jtL/pL C
PC

jD1 p2.! j jtR/pR �
PC

jD1 p2.! j jt/
1�PC

jD1 p2.! j jt/

Show that the decrease in impurity when passing from one group to two subgroups
for the Gini criterion can be written

1I.s; t/ D
CX

jD1

p2.! j jtL/pL C
CX

jD1

p2.! j jtR/pR �
CX

jD1

p2.! j jt/

and hence that maximising the predictability also maximises the decrease in impurity.

4. Consider the two-class problem with bivariate distributions characterised by x1 and
x2 which can take three values. The training data are given by the following tables:
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class !1

x1
1 2 3

1 3 0 0
x2 2 1 6 0

3 4 1 2

class !2

x1
1 2 3

1 0 1 4
x2 2 0 5 7

3 1 0 1

where, for example, there are four training samples in class !1 with x1 D 1 and
x2 D 3. Using the Gini criterion, determine the split (variable and value) for the root
node of a tree.

5. Construct a classification tree using data set 1 from the exercises in Chapter 5. Initially
allow 10 splits per variable. Monitor the performance on the validation set as the
tree is grown. Prune using the validation set to monitor performance. Investigate the
performance of the approach for p D 2; 5 and 10. Describe the results and compare
with a linear discriminant analysis.

6. Show that MARS can be recast in the form

a0 C
X

i

fi .xi /C
X

i j

fi j .xi ; x j /C
X
i jk

fi jk.xi ; x j ; xk/C Ð Ð Ð

7. Write the basis functions for the regions in Figure 7.11 as sums of products of splits
on the variables x1 and x2, with at most one split on a given variable in the product.
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Performance

Overview

Classifier performance assessment is an important aspect of the pattern recognition
cycle. How good is the designed classifier and how well does it compare with
competing techniques? Can improvements in performance be achieved with an
ensemble of classifiers?

8.1 Introduction

The pattern recognition cycle (see Chapter 1) begins with the collection of data and
initial data analysis followed, perhaps, by preprocessing of the data and then the design
of the classification rule. Chapters 2 to 7 described approaches to classification rule
design, beginning with density estimation methods and leading on to techniques that
construct a discrimination rule directly. In this chapter we address two different aspects
of performance: performance assessment and performance improvement.

Performance assessment, discussed in Section 8.2, should really be a part of classifier
design and not an aspect that is considered separately, as it often is. A sophisticated
design stage is often followed by a much less sophisticated evaluation stage, perhaps
resulting in an inferior rule. The criterion used to design a classifier is often different
from that used to assess it. For example, in constructing a discriminant rule, we may
choose the parameters of the rule to optimise a squared error measure, yet assess the rule
using a different measure of performance, such as error rate.

A related aspect of performance is that of comparing the performance of several
classifiers trained on the same data set. For a practical application, we may implement
several classifiers and want to choose the best, measured in terms of error rate or perhaps
computational efficiency. In Section 8.3, comparing classifier performance is addressed.

Instead of choosing the best classifier from a set of classifiers, we ask the question, in
Section 8.4, whether we can get improved performance by combining the outputs of sev-
eral classifiers. This has been an area of growing research in recent years and is related to
developments in the data fusion literature where, in particular, the problem of decision fu-
sion (combining decisions from multiple target detectors) has been addressed extensively.

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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8.2 Performance assessment

Three aspects of the performance of a classification rule are addressed. The first is the
discriminability of a rule (how well it classifies unseen data) and we focus on one
particular method, namely the error rate. The second is the reliability of a rule. This is a
measure of how well it estimates the posterior probabilities of class membership. Finally,
the use of the receiver operating characteristic (ROC) as an indicator of performance
for two-class rules is considered.

8.2.1 Discriminability

There are many measures of discriminability (Hand, 1997), the most common being
the misclassification rate or the error rate of a classification rule. Generally, it is very
difficult to obtain an analytic expression for the error rate and therefore it must be
estimated from the available data. There is a vast literature on error rate estimation, but
the error rate suffers from the disadvantage that it is only a single measure of performance,
treating all correct classifications equally and all misclassifications with equal weight also
(corresponding to a zero–one loss function – see Chapter 1). In addition to computing
the error rate, we may also compute a confusion or misclassification matrix. The .i; j/th
element of this matrix is the number of patterns of class ! j that are classified as class !i

by the rule. This is useful in identifying how the error rate is decomposed. A complete
review of the literature on error rate estimation deserves a volume in itself, and is
certainly beyond the scope of this book. Here, we limit ourselves to a discussion of the
more popular types of error rate estimator.

Firstly, let us introduce some notation. Let the training data be denoted by Y D
fyi ; i D 1; : : : ; ng, the pattern yi consisting of two parts, yT

i D .xT
i ; z

T
i /, where fxi ; i D

1; : : : ; ng are the measurements and fzi ; i D 1; : : : ; ng are the corresponding class labels,
now coded as a vector, .zi / j D 1 if xi 2 class ! j and zero otherwise. Let !.zi / be the
corresponding categorical class label. Let the decision rule designed using the training
data be �.x; Y / (that is, � is the class to which x is assigned by the classifier designed
using Y ) and let Q.!.z/; �.x; Y // be the loss function

Q.!.z/; �.x; Y // D
²

0 if !.z/ D �.x; Y / (correct classification)
1 otherwise

Apparent error rate The apparent error rate, eA, or resubstitution rate is obtained
by using the design set to estimate the error rate,

eA D 1

n

nX
iD1

Q.!.zi /; �.xi ; Y //

It can be severely optimistically biased, particularly for complex classifiers and a small
data set when there is a danger of over-fitting the data – that is, the classifier models
the noise on the data rather than its structure. Increasing the number of training samples
reduces this bias.
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True error rate The true error rate (or actual error rate or conditional error rate), eT ,
of a classifier is the expected probability of misclassifying a randomly selected pattern.
It is the error rate on an infinitely large test set drawn from the same distribution as the
training data.

Expected error rate The expected error rate, eE , is the expected value of the true
error rate over training sets of a given size, eE D E[eT ].

Bayes error rate The Bayes error rate or optimal error rate, eB , is the theoretical
minimum of the true error rate, the value of the true error rate if the classifier produced
the true posterior probabilities of group membership, p.!i jx/; i D 1; : : : ;C .

Holdout estimate
The holdout method splits the data into two mutually exclusive sets, sometimes referred
to as the training and test sets. The classifier is designed using the training set and
performance evaluated on the independent test set. The method makes inefficient use of
the data (using only part of it to train the classifier) and gives a pessimistically biased
error estimate (Devijver and Kittler, 1982). However, it is possible to obtain confidence
limits on the true error rate given a set of n independent test samples, drawn from the
same distribution as the training data. If the true error rate is eT , and k of the samples
are misclassified, then k is binomially distributed

p.kjeT ; n/ D Bi.kjeT ; n/
4D
�

n
k

�
ek

T .1� eT /
n�k (8.1)

The above expression gives the probability that k samples out of n of an independent
test set are misclassified given that the true error rate is eT . Using Bayes’ theorem, we
may write the conditional density of the true error rate, given the number of samples
misclassified, as

p.eT jk; n/ D p.kjeT ; n/p.eT ; n/R
p.kjeT ; n/p.eT ; n/deT

Assuming p.eT ; n/ does not vary with eT and p.kjeT ; n/ is the binomial distribution,
we have a beta distribution for eT ,

p.eT jk; n/ D Be.eT jk C 1; n � k C 1/
4D ek

T .1� eT /
n�k

R
ek

T .1� eT /n�kdeT

where Be.x jÞ; þ/ D [0.ÞCþ/=.0.Þ/0.þ//]xÞ�1.1�x/þ�1. The above posterior density
provides a complete account of what can be learned given the test error. However, it may
be summarised in several ways, one of which is to give an upper and lower bound (a
percentage point) on the true error. For a given value of Þ (for example, 0.05), there are
many intervals in which eT lies with probability 1�Þ. These are called .1�Þ/ credible
regions, or Bayesian confidence intervals (O’Hagan, 1994). Among these intervals, the
highest posterior density (HPD) credible region is the one with the additional property
that every point within it has a higher probability than any point outside. It is also the
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Figure 8.1 HPD credible region limits as a function of test error (number misclassified on test/size
of test set) for several values of n, the number of test samples, and Þ D 0.05 (i.e. the 95% credible
region limits). From top to bottom, the limit lines correspond to n D 3, 10, 20, 50, 100, 100, 50,
20, 10, 3

shortest .1� Þ/ credible region. It is the interval EÞ

EÞ D feT : p.eT jk; n/ ½ cg
where c is chosen such that Z

EÞ
p.eT jk; n/deT D 1� Þ (8.2)

For multimodal densities, EÞ may be discontinuous. However, for the beta distribution,
EÞ is a single region with lower and upper bounds ž1.Þ/ and ž2.Þ/ (both functions of k
and n) satisfying

0 
 ž1.Þ/ < ž2.Þ/ 
 1

Turkkan and Pham-Gia (1993) provide a general-purpose Fortran subroutine for com-
puting the HPD intervals of a given density function. Figure 8.1 displays the Bayesian
confidence intervals as a function of test error for several values of n, the number of
samples in the test set, and a value for Þ of 0.05, i.e. the bounds of the 95% credible re-
gion. For example, for 4 out of 20 test samples incorrectly classified, the .1�Þ/ credible
region (for Þ D 0:05) is [0:069; 0:399]. Figure 8.2 plots the maximum length of the 95%
HPD credible region (over the test error) as a function of the number of test samples.
For example, we can see from the figure that, to be sure of having a HPD interval of
less than 0.1, we must have more than 350 test samples.

Cross-validation
Cross-validation (also known as the U -method , the leave-one-out estimate or the deleted
estimate) calculates the error by using n � 1 samples in the design set and testing on
the remaining sample. This is repeated for all n subsets of size n � 1. For large n,
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Figure 8.2 Maximum length of the 95% HPD credible region as a function of the number of test
samples

it is computationally expensive, requiring the design of n classifiers. However, it is
approximately unbiased, although at the expense of an increase in the variance of the
estimator. Denoting by Y j the training set with observation x j deleted, then the cross-
validation error is

ecv D 1

n

nX
jD1

Q.!.z j /; �.x j ;Y j //

One of the disadvantages of the cross-validation approach is that it may involve a
considerable amount of computation. However, for discriminant rules based on mul-
tivariate normal assumptions, the additional computation can be considerably reduced
through the application of the Sherman–Morisson formula (Fukunaga and Kessell, 1971;
McLachlan, 1992a):

.AC uuT /�1 D A�1 � A�1uuT A�1

1C uT A�1u
(8.3)

for matrix A and vector u.
The rotation method or ¹-fold cross-validation partitions the training set into ¹ subsets,

training on ¹ � 1 and testing on the remaining set. This procedure is repeated as each
subset is withheld in turn. If ¹ D n we have the standard cross-validation, and if ¹ D 2
we have a variant of the holdout method in which the training set and test set are also
interchanged. This method is a compromise between the holdout method and cross-
validation, giving reduced bias compared to the holdout procedure, but less computation
compared to cross-validation.

The jackknife
The jackknife is a procedure for reducing the bias of the apparent error rate. As an
estimator of the true error rate, the apparent error rate bias is of order n�1, for n samples.
The jackknife estimate reduces the bias to the second order.
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Let tn denote a sample statistic based on n observations x1; : : : ; xn . We assume for
large m that the expectation for sample size m takes the form

E[tm] D � C a1.�/

m
C a2.�/

m2
CO.m�3/ (8.4)

where � is the asymptotic value of the expectation and a1 and a2 do not depend on m.
Let t . j/

n denote the statistic based on observations excluding x j . Finally, write t .:/n for the

average of the t . j/
n over j D 1; : : : ; n,

t .:/n D
1

n

nX
jD1

t . j/
n

Then,

E[t .:/n ] D 1

n

nX
jD1

�
� C a1.�/

n � 1
CO.n�2/

�

D � C a1.�/

n � 1
CO.n�2/

(8.5)

From (8.4) and (8.5), we may find a linear combination that has bias of order n�2,

tJ D ntn � .n � 1/t .:/n

tJ is termed the jackknifed estimate corresponding to tn .
Applying this to error rate estimation, the jackknife version of the apparent error rate,

e0
J , is given by

e0
J D neA � .n � 1/e.:/A

D eA C .n � 1/.eA � e.:/A /

where eA is the apparent error rate; e.:/A is given by

e.:/A D
1

n

nX
jD1

e. j/
A

where e. j/
A is the apparent error rate when object j has been removed from the

observations,

e. j/
A D

1

n � 1

nX
kD1;k 6D j

Q.!.zk/; �.xk ; Y j //

As an estimator of the expected error rate, the bias of e0
J is of order n�2. However, as

an estimator of the true error rate, the bias is still of order n�1 (McLachlan, 1992a). To
reduce the bias of e0

J as an estimator of the true error rate to second order, we use

eJ D eA C .n � 1/. QeA � e.:/A / (8.6)

where QeA is given by

QeA D 1

n2

nX
jD1

nX
kD1

Q.!.zk/; �.xk ; Y j //
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The jackknife is closely related to the cross-validation method and both methods
delete one observation successively to form bias-corrected estimates of the error rate. A
difference is that in cross-validation, the contribution to the estimate is from the deleted
sample only, classified using the classifier trained on the remaining set. In the jackknife,
the error rate estimate is calculated from all samples, classified using the classifiers trained
with each reduced sample set.

Bootstrap techniques
The term ‘bootstrap’ refers to a class of procedures that sample the observed distribution,
with replacement, to generate sets of observations that may be used to correct for bias.
Introduced by Efron (1979), it has received considerable attention in the literature during
the past decade or so. It provides nonparametric estimates of the bias and variance of
an estimator and, as a method of error rate estimation, it has proved superior to many
other techniques. Although computationally intensive, it is a very attractive technique,
and there have been many developments of the basic approach, largely by Efron himself;
see Efron and Tibshirani (1986) and Hinkley (1988) for a survey of bootstrap methods.

The bootstrap procedure for estimating the bias correction of the apparent error rate
is implemented as follows. Let the data be denoted by Y D f.xT

i ; z
T
i /

T ; i D 1; : : : ; ng.
Let OF be the empirical distribution. Under joint or mixture sampling it is the distribution
with mass 1=n at each data point xi ; i D 1; : : : ; n. Under separate sampling, OFi is the
distribution with mass 1=ni at point xi in class !i (ni patterns in class !i ).

1. Generate a new set of data (the bootstrap sample) Y b D f. QxT
i ; QzT

i /
T ; i D 1; : : : ; ng

according to the empirical distribution.

2. Design the classifier using Y b.

3. Calculate the apparent error rate for this sample and denote it by QeA.

4. Calculate the actual error rate for this classifier (regarding the set Y as the entire
population) and denote it by Qec.

5. Compute wb D QeA � Qec.

6. Repeat steps 1–5 B times.

7. The bootstrap bias of the apparent error rate is

Wboot D E[ QeA � Qec]

where the expectation is with respect to the sampling mechanism that generates the
sets Y b, that is,

Wboot D 1

B

BX
bD1

wb

8. The bias-corrected version of the apparent error rate is given by

e.B/A D eA �Wboot

At step 1, under mixture sampling, n independent samples are generated from the
distribution OF ; some of these may be repeated in forming the set QY and it may happen
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that one or more classes are not represented in the bootstrap sample. Under separate
sampling, ni are generated using OFi ; i D 1; : : : ;C . Thus, all classes are represented in
the bootstrap sample in the same proportions as the original data.

The number of bootstrap samples, B, used to estimate Wboot may be limited by
computational considerations, but for error rate estimation it can be taken to be of the
order of 25–100 (Efron, 1983, 1990; Efron and Tibshirani, 1986).

There are many variants of the basic approach described above (Efron, 1983; McLach-
lan, 1992a). These include the double bootstrap, the randomised bootstrap and the 0.632
estimator (Efron, 1983). The double bootstrap corrects for the bias of the ordinary boot-
strap using a bootstrap to estimate the bias. The randomised bootstrap (for C D 2 classes)
draws samples of size n from a data set of size 2n, Y 2n D f.xT

i ; z
T
i /

T ; .xT
i ; z

T
i /

T ; i D
1; : : : ; ng, where zi is the opposite class to zi . Thus, the original data set is replicated
with opposite class labels. The probability of choosing xi is still 1=n (for mixture sam-
pling), but the sample is taken as .xT

i ; z
T
i /

T or .xT
i ; z

T
i /

T with probabilities ³i and 1�³i

respectively. Efron takes ³i equal to 0.9 for all i . This estimate was found to give a lower
mean squared error over the ordinary bootstrap estimator.

The 0.632 estimator is a linear combination of the apparent error rate and another
bootstrap error estimator, e0,

e0:632 D 0:368eA C 0:632e0

where e0 is an estimator that counts the number of training patterns misclassified that do
not appear in the bootstrap sample. The number of misclassified samples is summed over
all bootstrap samples and divided by the total number of patterns not in the bootstrap
sample. If Ab is the set of patterns in Y , but not in bootstrap sample Y b, then

e0 D
PB

bD1
P

x2Ab
Q.!.z/; �.x;Y b//

PB
bD1 jAbj

where jAbj is the cardinality of the set Ab. This estimator gave best performance in
Efron’s (1983) experiments.

The bootstrap may also be used for parametric distributions in which samples are
generated according to the parametric form adopted, with the parameters replaced by
their estimates. The procedure is not limited to estimates of the bias in the apparent error
rate and has been applied to other measures of statistical accuracy, though bootstrap
calculations for confidence limits require more bootstrap replications, typically 1000–
2000 (Efron, 1990). More efficient computational methods aimed at reducing the number
of bootstrap replications compared to the straightforward Monte Carlo approach above
have been proposed by Davison et al. (1986) and Efron (1990). Application to classifiers
such as neural networks and classification trees produces difficulties, however, due to
multiple local optima of the error surface.

8.2.2 Reliability

The reliability (termed imprecision by Hand, 1997) of a discriminant rule is a measure
of how well the posterior probabilities of group membership are estimated by the rule.
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Figure 8.3 Good discriminability, poor reliability (following Hand, 1994a)

Thus, we are not simply interested in the class !i for which p.! j jx/ is the greatest,
but the value of p.! j jx/ itself. Of course, we may not easily be able to estimate the
reliability for two reasons. The first is that we do not know the true posterior probabilities.
Secondly, some discriminant rules do not produce estimates of the posterior probabilities
explicitly.

Figure 8.3 illustrates a rule with good discriminability but poor reliability for a two-
class problem with equal priors. An object, x, is assigned to class !2 if p.!2jx/ >
p.!1jx/, or p.!2jx/ > 0:5. The estimated posterior probabilities Op.!i jx/ lead to good
discriminability in the sense that the decision boundary is the same as a discrimi-
nant rule using the true posterior probabilities (i.e. Op.!2jx/ D 0:5 at the same point
as p.!2jx/ D 0:5). However, the true and estimated posterior probabilities
differ.

Why should we want good reliability? Is not good discriminability sufficient? In
some cases, a rule with good discriminability may be all that is required. We may be
satisfied with a rule that achieves the Bayes optimal error rate. On the other hand, if
we wish to make a decision based on costs, or we are using the results of the clas-
sifier in a further stage of analysis, then good reliability is important. Hand (1997)
proposes a measure of imprecision obtained by comparing an empirical sample statis-
tic with an estimate of the same statistic computed using the classification function
Op.!i jx/,

R D
CX

jD1

1

n

nX
iD1

ý
� j .xi /[z ji � Op.! j jxi /]

	

where z ji D 1 if xi 2 class ! j , 0 otherwise, and � j is a function that determines the
test statistic (for example, � j .xi / D .1� Op.! j jxi //

2).
Obtaining interval estimates for the posterior probabilities of class membership is an-

other means of assessing the reliability of a rule and is discussed by McLachlan (1992a),
both for the multivariate normal class-conditional distribution and in the case of arbitrary
class-conditional probability density functions using a bootstrap procedure.



260 Performance

8.2.3 ROC curves for two-class rules

Introduction
The receiver operating characteristic (ROC) curve was introduced in Chapter 1, in the
context of the Neyman–Pearson decision rule, as a means of characterising the perfor-
mance of a two-class discrimination rule and provides a good means of visualising a
classifier’s performance in order to select a suitable decision threshold. The ROC curve
is a plot of the true positive rate on the vertical axis against the false positive rate on
the horizontal axis. In the terminology of signal detection theory, it is a plot of the
probability of detection against the probability of false alarm, as the detection threshold
is varied. Epidemiology has its own terminology: the ROC curve plots the sensitivity
against 1� Se, where Se is the specificity.

In practice, the optimal ROC curve (the ROC curve obtained from the true class-
conditional densities, p.xj!i /) is unknown, like error rate. It must be estimated using a
trained classifier and an independent test set of patterns with known classes, although, in
common with error rate estimation, a training set reuse method such as cross-validation or
bootstrap methods may be used. Different classifiers will produce different ROC curves
characterising performance of the classifiers.

Often however, we may want a single number as a performance indicator of a classi-
fier, rather than a curve, so that we can compare the performance of competing classifier
schemes.

In Chapter 1 it was shown that the minimum risk decision rule is defined on the basis
of the likelihood ratio (see equation (1.15)); Assuming that there is no loss with correct
classification, x is assigned to class !1 if

p.xj!1/

p.xj!2/
>
½21 p.!2/

½12 p.!1/
; (8.7)

where ½ j i is the cost of assigning a pattern x to !i when x 2 ! j , or alternatively

p.!1jx/ > ½21

½12 C ½21
(8.8)

and thus corresponds to a single point on the ROC curve determined by the relative costs
and prior probabilities. The loss is given by (equation (1.11))

L D ½21 p.!2/ž2 C ½12 p.!1/ž1 (8.9)

where p.!i / are the class priors and ži is the probability of misclassifying a class !i

object. The ROC curve plots 1� ž1 against ž2.
In the ROC curve plane (that is, the (1� ž1, ž2) plane), lines of constant loss (termed

iso-performance lines by Provost and Fawcett, 2001) are straight lines at gradients of
½21 p.!2/=½12 p.!1/ (see Figure 8.4), with loss increasing from top left to bottom right in
the figure. Legitimate values for the loss are those for which the loss contours intercept
the ROC curve (that is, a possible threshold on the likelihood ratio exists). The solution
with minimum loss is that for which the loss contour is tangential with the ROC curve–
the point where the ROC curve has gradient ½21 p.!2/=½12 p.!1/. There are no other loss
contours that intercept the ROC curve with lower loss.

For different values of the relative costs and priors, the loss contours are at different
gradients, in general, and the minimum loss occurs at a different point on the ROC curve.
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Figure 8.4 ROC curve with selected loss contours (straight lines) superimposed

Practical considerations
In many cases, the misclassification costs, ½12 and ½21, are unknown and it unreasonable
to assume equality (leading to the Bayes rule for minimum error). An alternative strategy

is to compare the overall distribution of Op.x/ 4D p.!1jx/ for samples from each of the
classes !1 and !2. We would expect that the values of p.!1jx/ are greater for samples
x from class !1 than for samples x from class !2. Generally, the larger the difference
between the two distributions, the better the classifier. A measure of the separation of
these two distributions is the area under the ROC curve (AUC). This provides a single
numeric value, based on the ROC curve, that ignores the costs, ½i j . Thus, in contrast to
the error rate, which assumes equal misclassification costs, it assumes nothing whatever
is known about misclassification costs and thus is not influenced by factors that relate to
the application of the rule. Both of these assumptions are unrealistic in practice since,
usually, something will be known about likely values of the relative cost ½12=½21. Also,
the advantage of the AUC as a measure of performance (namely, that it is independent
of the threshold applied to the likelihood ratio) can be a disadvantage when comparing
rules. If two ROC curves cross each other, then in general one will be superior for some
values of the threshold and the other superior for other values of the threshold. AUC
fails to take this into account.

Interpretation
Let Op.x/ D p.!1jx/, the estimated probability that an object x belongs to class !1. Let
f . Op/ D f . Op.x/j!1/ be the probability density function for Op values for patterns in class
!1, and g. Op/ D g. Op.x/j!2/ be the probability density function for Op values for patterns
in class !2. If F. Op/ and G. Op/ are the cumulative distribution functions, then the ROC
curve is a plot of 1� F. Op/ against 1�G. Op/ (see the exercise at the end of the chapter).
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The area under the curve is given by
Z
.1� F.u//dG.u/ D 1�

Z
F.u/g.u/ du (8.10)

or alternatively
Z

G.u/d F.u/ D
Z

G.u/ f .u/ du (8.11)

For an arbitrary point Op.x/ D t 2 [0; 1], the probability that a randomly chosen
pattern x from class !2 will have a Op.x/ value smaller than t is G.t/. If t is chosen from
the density f , then the probability that a randomly chosen class !2 pattern has a smaller
value than a randomly chosen class !1 pattern is

R
G.u/ f .u/ du. This is the same as the

definition (8.11) for the area under the ROC curve.
A good classification rule (a rule for which the estimated values of p.!1jx/ are very

different for x from each of the two classes) lies in the upper left triangle. The closer
that it gets to the upper corner the better.

A classification rule that is no better than chance produces an ROC curve that follows
the diagonal from the bottom left to the top right.

Calculating the area under the ROC curve
The area under the ROC curve is easily calculated by applying the classification rule
to a test set. For a classifier that produces estimates of p.!1jx/ directly, we can obtain
values f f1; : : : ; fn1 ; fi D p.!1jxi /; xi 2 !1g and fg1; : : : ; gn2 ; gi D p.!1jxi /; xi 2 !2g
and use these to obtain a measure of how well separated are the distributions of Op.x/
for class !1 and class !2 patterns as follows (Hand and Till, 2001).

Rank the estimates f f1; : : : ; fn1; g1; : : : ; gn2g in increasing order and let the rank of
the i th pattern from class !1 be ri . Then there are ri � i class !2 patterns with estimated
value of Op.x/ less than that of the i th pattern of class !1. If we sum over class !1 test
points, then we see that the number of pairs of points, one from class !1 and one from
class !2, with Op.x/ smaller for class !2 than for class !1 is

n1X
iD1

.ri � i/ D
n1X

iD1

ri �
n1X

iD1

i D S0 � 1

2
n1.n1 C 1/

where S0 is the sum of the ranks of the class !1 test patterns. Since there are n1n2
pairs, the estimate of the probability that a randomly chosen class !2 pattern has a lower
estimated probability of belonging to class !1 than a randomly chosen class !1 pattern is

OA D 1

n1n2

²
S0 � 1

2
n1.n1 C 1/

¦

This is equivalent to the area under the ROC curve and provides an estimate that has
been obtained using the rankings alone and has not used threshold values to calculate it.

The standard deviation of the statistic OA is (Hand and Till, 2001)
s
O�.1� O�/C .n1 � 1/.Q0 � O�2/C .n2 � 1/.Q1 � O�2/

n1n2
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where

O� D S0

n1n2

Q0 D 1

6
.2n1 C 2n2 C 1/.n1 C n2/� Q1

Q1 D
n1X
jD1

.r j � 1/2

An alternative approach, considered by Bradley (1997), is to construct an estimate
of the ROC curve directly for specific classifiers by varying a threshold and then to use
an integration rule (for example, the trapezium rule) to obtain an estimate of the area
beneath the curve.

8.2.4 Example application study

The problem This study (Bradley, 1997) comprises an assessment of AUC as a perfor-
mance measure on six pattern recognition algorithms applied to data sets characterising
medical diagnostic problems.

Summary The study estimates AUC through an integration of the ROC curve and its
standard deviation is calculated using cross-validation.

The data There are six data sets comprising measurements on two classes:

1. Cervical cancer. Six features, 117 patterns; classes are normal and abnormal cervical
cell nuclei.

2. Post-operative bleeding. Four features, 113 patterns (after removal of incomplete pat-
terns); classes are normal blood loss and excessive bleeding.

3. Breast cancer. Nine features, 683 patterns; classes are benign and malignant.

4. Diabetes. Eight features, 768 patterns; classes are negative and positive test for dia-
betes.

5. Heart disease 1. Fourteen features, 297 patterns; classes are heart disease present and
heart disease absent.

6. Heart disease 2. Eleven features, 261 patterns; classes are heart disease present and
heart disease absent.

Incomplete patterns (patterns for which measurements on some features are missing)
were removed from the data sets.

The models Six classifiers were trained on each data set:

1. quadratic discriminant function (Chapter 2);

2. k-nearest-neighbour (Chapter 3);
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3. classification tree (Chapter 7);

4. multiscale classifier method (a development of classification trees);

5. perceptron (Chapter 4);

6. multilayer perceptron (Chapter 6).

The models were trained and classification performance monitored as a threshold was
varied in order to estimate the ROC curves. For example, for the k-nearest-neighbour clas-
sifier, the five nearest neighbours in the training set to a test sample are calculated. If the
number of neighbours belonging to class !1 is greater than L , where L D [0; 1; 2; 3; 4; 5],
then the test sample is assigned to class !1, otherwise it is assigned to the second class.
This gives six points on the ROC curve.

For the multilayer perceptron, a network with a single output is trained and during
testing, it is thresholded at values of [0; 0:1; 0:2; : : : ; 1:0] to simulate different misclas-
sification costs.

Training procedure A tenfold cross-validation scheme was used, with 90% of the
samples used for training and 10% used in the test set, selected randomly. Thus, for each
classifier on each data set, there are ten sets of results.

The ROC curve was calculated as a decision threshold was varied for each of the test
set partitions and the area under the curve calculated using trapezoidal integration. The
AUC for the rule is taken to be the average of the ten AUC values obtained from the
ten partitions of the data set.

8.2.5 Further developments

The aspect of classifier performance that has received most attention in the literature is
the subject of error rate estimation. Hand (1997) develops a much broader framework
for the assessment of classification rules, defining four concepts.

Inaccuracy This is a measure of how (in)effective is a classification rule in assigning
an object to the correct class. One example is error rate; another is the Brier or quadratic
score, often used as an optimisation criterion for neural networks, defined as

1

n

nX
iD1

CX
jD1

ý
Ž.! j jxi /� Op.! j jxi /

	2

where Op.! j jxi / is the estimated probability that pattern xi belongs to class ! j , and
Ž.! j jxi / D 1 if xi is a member of class ! j and zero otherwise.

Imprecision Equivalent to reliability defined in Section 8.2.2, this is a measure of the
difference between the estimated probabilities of class membership, Op.! j jx/, and the
(unknown) true probabilities, p.! j jx/.
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Inseparability This measure is evaluated using the true probabilities of belonging to
a class, and so it does not depend on a classifier. It measures the similarity of the true
probabilities of class membership at a point x, averaged over x. If the probabilities at a
point x are similar, then the classes are not separable.

Resemblance It measures the variation between the true probabilities, conditioned on
the estimated ones. Does the predicted classification separate the true classes well? A
low value of resemblance is to be hoped for.

In this section we have been unable to do full justice to the elegance of the bootstrap
method, and we have simply presented the basic bootstrap approach for the bias correction
of the apparent error rate, with some extensions. Further developments may be found
in Efron (1983, 1990), Efron and Tibshirani (1986) and McLachlan (1992a). Further
work on the AUC measure includes that of Hand and Till (2001) who develop it to
the multiclass classification problem (see also Hajian-Tilaki et al., 1997a, 1997b) and
Adams and Hand (1999) who take account of some imprecisely known information on
the relative misclassification costs (see also Section 8.3.3).

Provost and Fawcett (2001) propose an approach that uses the convex hull of ROC
curves of different classifiers. Classifiers with ROC curves below the convex hull are
never optimal (under any conditions on costs or priors) and can be ignored. Classifiers
on the convex hull can be combined to produce a better classifier. This idea has been
widely used in data fusion and is discussed in Sections 8.3.3 and 8.4.4.

8.2.6 Summary

In this section, we have given a rather brief treatment of classification rule performance
assessment, covering three measures: discriminability, reliability (or imprecision) and
the use of the ROC curve. In particular, we have given emphasis to the error rate of
a classifier and schemes for reducing the bias of the apparent error rate, namely cross-
validation, the jackknife and the bootstrap methods. These have the advantage over the
holdout method in that they do not require a separate test set. Therefore, all the data may
be used in classifier design.

The error rate estimators described in this chapter are all nonparametric estimators in
that they do not assume a specific form for the probability density functions. Parametric
forms of error rate estimators, for example based on a normal distribution model for
the class-conditional densities, can also be derived. However, although parametric rules
may be fairly robust to departures from the true model, parametric estimates of error
rates may not be (Konishi and Honda, 1990). Hence our concentration in this chapter
on nonparametric forms. For a further discussion of parametric error rate estimators we
refer the reader to the book by McLachlan (1992a).

There are many other measures of discriminability, and limiting ourselves to a single
measure, the error rate, may hide important information as to the behaviour of a rule.
The error rate treats all misclassifications equally: misclassifying an object from class 0
as class 1 has the same severity as misclassifying an object from class 1 as class 0. Costs
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of misclassification may be very important in some applications but are rarely known
precisely.

The reliability, or imprecision, of a rule tells us how well we can trust the rule – how
close the estimated posterior densities are to the true posterior densities. Finally, the area
under the ROC curve is a measure that summarises classifier performance over a range
of relative costs.

8.3 Comparing classifier performance

8.3.1 Which technique is best?

Are neural network methods better than ‘traditional’ techniques? Is the classifier that you
develop better than those previously published in the literature? There have been many
comparative studies of classifiers and we have referenced these in previous chapters.
Perhaps the most comprehensive study is the Statlog project (Michie et al., 1994) which
provides a study of more than 20 different classification procedures applied to about 20
data sets. Yet comparisons are not easy. Classifier performance varies with the data set,
sample size, dimensionality of the data, and skill of the analyst. There are some important
issues to be resolved, as outlined by Duin (1996):

1. An application domain must be defined. Although this is usually achieved by specify-
ing a collection of data sets, these may not be representative of the problem domain
that you wish to consider. Although a particular classifier may perform consistently
badly on these data sets, it may be particularly suited to the one you have.

2. The skill of the analyst needs to be considered (and removed if possible). Whereas
some techniques are fairly well defined (nearest-neighbour with a given metric), others
require tuning. Can the results of classifications, using different techniques, on a
given data set performed by separate analysts be sensibly compared? If one technique
performs better than others, is it due to the superiority of the technique on that data
set or the skill of the implementer in obtaining the best out of a favourite method? In
fact, some classifiers are valuable because they have many free parameters and allow
a trained analyst to incorporate knowledge into the training procedure. Others are
valuable because they are largely automatic and do not require user input. The Statlog
project was an attempt at developing automatic classification schemes, encouraging
minimal tuning.

Related to the second issue above is that the main contribution to the final performance
is the initial problem formulation (abstracting the problem to be solved from the customer,
selecting variables and so on), again determined by the skill of the analyst. The classifier
may only produce second-order improvements to performance.

In addition, what is the basis on which we make a comparison–error rate, reliability,
speed of implementation, speed of testing, etc.?

There is no such thing as a best classifier, but there are several ways in which
comparisons may be performed (Duin, 1996):
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1. A comparison of experts. A collection of problems is sent to experts who may use
whichever technique they feel is appropriate.

2. A comparison of toolsets by nonexperts. Here a collection of toolsets is provided to
nonexperts for evaluation on several data sets.

3. A comparison of automatic classifiers (classifiers that require no tuning). This is
performed by a single researcher on a benchmark set of problems. Although the
results will be largely independent of the expert, they will probably be inferior to
those obtained if the expert were allowed to choose the classifier.

8.3.2 Statistical tests

Bounds on the error rate are insufficient when comparing classifiers. Usually the test sets
are not independent – they are common across all classifiers. There are several tests for
determining whether one classification rule outperforms another on a particular dataset.

The question of measuring the accuracy of a classification rule using an independent
training and test set was discussed in Section 8.2. This can be achieved by constructing
a confidence interval or HPD region. Here we address the question: given two classifiers
and sufficient data for a separate test set, which classifier will be more accurate on new
test set examples?

Dietterich (1998) assesses five statistical tests, comparing them experimentally to
determine the probability of incorrectly detecting a difference between classifier perfor-
mance when no difference exists (Type I error).

Suppose that we have two classifiers, A and B. Let

n00 D number of samples misclassified by both A and B

n01 D number of samples misclassified by A but not by B

n10 D number of samples misclassified by B but not by A

n11 D number of samples misclassified by neither A nor B

Compute the z statistic

z D jn01 � n10j � 1p
n10 C n01

The quantity z2 is distributed approximately as �2 with one degree of freedom. The null
hypothesis (that the classifiers have the same error) can be rejected (with probability
of incorrect rejection of 0.05) if jzj > 1:96. This is known as McNemar’s test or the
Gillick test.

8.3.3 Comparing rules when misclassification costs
are uncertain

Introduction
Error rate or misclassification rate, discussed in Section 8.2, is often used as a criterion
for comparing several classifiers. It requires no choice of costs, making the assumption
that misclassification costs are all equal.
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An alternative measure of performance is the area under the ROC curve (see also
Section 8.2). This is a measure of the separability of the two distributions f . Op/, the
probability distribution of Op D p.!1jx/ for patterns x in class !1, and g. Op/, the prob-
ability distribution of Op for patterns x in class !2. It has the advantage that it does not
depend on the relative costs of misclassification.

There are difficulties with the assumptions behind both of these performance measures.
In many, if not most, practical applications the assumption of equal costs is unrealistic.
Also the minimum loss solution, which requires the specification of costs, is not sensi-
ble since rarely are costs and priors known precisely. In many real-world environments,
misclassification costs and class priors are likely to change over time as the environment
may change between design and test. Consequently, the point on the ROC curve corre-
sponding to the minimum loss solution (where the threshold on the likelihood ratio is
½21 p.!2/=½12 p.!1/ – equation (8.7)) changes. On the other hand, usually something is
known about the relative costs and it is therefore inappropriate to summarise over all
possible values.

ROC curves
Comparing classifiers on the basis of AUC is difficult when the ROC curves cross. Only
in the case of one classifier dominating another will the AUC be a valid criterion for
comparing different classifiers. If two ROC curves cross, then one curve will be superior
for some values of the cost ratio and the other classifier will be superior for different
values of the cost ratio. Two approaches for handling this situation are presented here.

LC index In this approach for comparing two classifiers A and B, the costs of mis-
classification, ½12 and ½21, are rescaled so that ½12C½21 D 1 and the loss (8.9) calculated
as a function of ½21 for each classifier. A function, L.½21/, is defined to take the value
C1 in regions of the [0; 1] interval for which classifier A is superior (it has a lower
loss value than classifier B) and �1 in regions for which classifier B is superior. The
confidence in any value of ½21 is the probability density function D.½21/, defined later,
and the LC index is defined as

Z 1

0
D.½/L.½/d½

which ranges over š1, taking positive values when classifier A is more likely to lead
to a smaller loss value than classifier B, and negative values when classifier B is more
likely to lead to a smaller loss value than classifier A. A value of C1 means that A is
certain to be a superior classifier since it is superior for all feasible values of ½21.

How do we decide on the set of feasible values of ½21? That is, what form do we
choose for the distribution D.½21/? One proposal is to specify an interval [a; b] for the
cost ratio, ½12=½21, and a most likely value, m, and use this to define a unit-area triangle
with base [a; b] and apex at m. This is because, it is argued (Adams and Hand, 1999),
that experts find it convenient to specify a cost ratio ½12=½21 and an interval for the ratio.

The ROC convex hull method In this method a hybrid classification system is con-
structed from the set of available classifiers. For any value of the cost ratio, the combined
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Figure 8.5 ROC convex hull method illustration

classifier will perform at least as well as the best classifier. The combined classifier is
constructed to have an ROC curve that is the convex hull of the component classifiers.

Figure 8.5 illustrates the ROC convex hull method. For some values of costs and
priors, the slope of the iso-performance lines is such that the optimal classifier (the point
on the ROC curve lying to the top left) is classifier B. Line þ is the iso-performance
line with lowest loss that intercepts the ROC curve of classifier B. For much shallower
gradients of the iso-performance lines (corresponding to different values of the priors
or costs), the optimal classifier is classifier A. Here, line Þ is the lowest value iso-
performance line (for a given value of priors and costs) that intercepts the ROC curve
of classifier A. Classifier C is not optimal for any value of priors or costs. The points
on the convex hull of the ROC curves define optimal classifiers for particular values
of priors and costs. Provost and Fawcett (2001) present an algorithm for generating the
ROC convex hull.

In practice, we need to store the range of threshold values (½21 p.!2/=½12 p.!1/) for
which a particular classifier is optimal. Thus, the range of the threshold is partitioned
into regions, each of which is assigned a classifier, the one that is optimal for that range
of thresholds.

8.3.4 Example application study

The problem This study (Adams and Hand, 1999) develops an approach for comparing
the performance of two classifiers when misclassification costs are uncertain, but not
completely unknown. It is concerned with classifying customers according to their likely
response to a promotional scheme.
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Summary The LC index above is evaluated to compare a neural network classifier
(Chapter 6) with quadratic discriminant analysis (Chapter 2).

The data The data comprise 8000 records (patterns) of measurements on 25 variables,
mainly describing earlier credit card transaction behaviour. The classes are denoted class
!1 and class !2, with class !2 thought likely to return a profit. The priors are set as
p.!1/ D 0:87; p.!2/ D 0:13.

The model The multilayer perceptron had 25 input nodes and 13 hidden nodes, trained
using ‘weight decay’ to avoid over-fitting, with the penalty term chosen by cross-
validation.

Training procedure The LC index and AUC were computed. In order to obtain suit-
able values for the ratio of costs, banking experts were consulted and a model developed
for the two types of misclassification based on factors such as cost of manufacture and
distribution of marketing material, cost due to irritation caused by receiving junk mail
and loss of potential profit by failing to mail a potential member of class !2.

An interval of possible values for the overall cost ratio ½12=½21 was derived as [0.065,
0.15], with the most probable value at 0.095.

Results The AUC values for the neural network classifier and quadratic discriminant
analysis were 0.7102 and 0.7244 respectively, suggesting that the quadratic discriminant
is slightly preferable. The LC index was calculated to be �0:4, also suggesting that
quadratic discriminant analysis is to be preferred.

8.3.5 Further developments

Adams and Hand (2000) present some guidelines for better methodology for comparing
classifiers. They identify five common deficiencies in the practice of classifier perfor-
mance assessment:

1. Assuming equal costs. In many practical applications, the two types of misclassifica-
tion are not equal.

2. Integrating over costs. The AUC summarises performance over the entire range of
costs. It is more likely that something will be known about costs and that a narrower
range would be more appropriate.

3. Crossing ROC curves. The AUC measure is only appropriate if one ROC curve
dominates over the entire range. If the ROC curves cross, then different classifiers
will dominate for different ranges of the misclassification costs.

4. Fixing costs. It is improbable that exact costs can be given in many applications.

5. Variability. Error rate and the AUC measure are sample-based estimates. Standard
errors should be given when reporting results.
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8.3.6 Summary

There are several ways in which performance may be compared. It is important to use
an assessment criterion appropriate to the real problem under investigation. Misclassifi-
cation costs should be taken into account since they can influence the choice of method.
Assuming equal misclassification costs is very rarely appropriate. Usually something can
be said about costs, even if they are not known precisely.

8.4 Combining classifiers

8.4.1 Introduction

The approach to classifier design commonly taken is to identify a candidate set of plausi-
ble models, to train the classifiers using a training set of labelled patterns and to adopt the
classifier that gives the best generalisation performance, estimated using an independent
test set assumed representative of the true operating conditions. This results in a single
‘best’ classifier that may then be applied throughout the feature space. Earlier in this
chapter we addressed the question of how we measure classifier performance to select a
‘best’ classifier.

We now consider the potential of combining classifiers for data sets with complex
decision boundaries. It may happen that, out of our set of classifiers, no single classifier
is clearly best (using some suitable performance measure, such as error rate). However,
the set of misclassified samples may differ from one classifier to another. Thus, the
classifiers may give complementary information and combination could prove useful.
A simple example is illustrated in Figure 8.6. Two linear classifiers, Cl1 and Cl2, are
defined on a univariate data space. Classifier Cl1 predicts class ž for data points to the
left of B and class Š for points to the right of B. Classifier Cl2 predicts class ž for
points to the right of A and class Š for points to the left. Neither classifier obtains 100%
performance on the data set. However, 100% performance is achieved by combining
them with the rule: assign x to ž if Cl1 and Cl2 predict ž else assign x to Š.
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Figure 8.6 Two linear discriminants defined on a univariate data space
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The idea of combining classifiers is not a new one, but one that has received increasing
attention in recent years. Early work on multiclass discrimination developed techniques
for combining the results of two-class discrimination rules (Devijver and Kittler, 1982).
Also, recursive partitioning methods (for example, CART; see Chapter 7) lead to the
idea of defining different rules for different parts of a feature space. The terms ‘dynamic
classifier selection’ (Woods et al., 1997) and ‘classifier choice system’ (Hand et al., 2001)
have been used for classifier systems that attempt to predict the best classifier for a given
region of feature space. The term ‘classifier fusion’ or ‘multiple classifier system’ usually
refers to the combination of predictions from multiple classifiers to yield a single class
prediction.

8.4.2 Motivation

There are several ways of characterising multiple classifier systems, as indeed there are
with basic component classifiers. We define three broad categories as follows.

C1. Different feature spaces
This describes the combination of a set of classifiers, each designed on different feature
spaces (perhaps using data from different sensors). For example, in a person verification
application, several classifier systems may be designed for use with different sensor
data (for example, retina scan, facial image, handwritten signature) and we wish to
combine the outputs of each system to improve performance. Figure 8.7 illustrates this
situation. A set of L sensors (S1; S2; : : : ; SL ) provides measurements, x1; x2; : : : ; xL , on
an object. Associated with each sensor is a classifier (Cl1;Cl2; : : : ;ClL ) providing, in
this case, estimates of the posterior probabilities of class membership, p.cjxi / for sensor

S1 Cl1
x1

S2 Cl2
x2

SL ClL
xL

p(c|x1)

p(c|x1, . . . , xL)
p(c|x2)

p(c|xL)

Com

Figure 8.7 Classifier fusion architecture C1–component classifiers defined on different feature
spaces
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Si . The combination rule (denoted Com in the figure), which is itself a classifier defined
on a feature space of posterior probabilities, combines these posterior probabilities to
provide an estimate of p.cjx1; : : : ; xL/. Thus, the individual classifiers can be thought
of as performing a particular form of feature extraction prior to classification by the
combiner.

The question usually addressed with this architecture is: given the component clas-
sifiers, what is the best combination rule? This is closely related to dynamic clas-
sifier selection and to architectures developed in the data fusion literature (see
Section 8.4.4).

C2. Common feature space
In this case, we have a set of classifiers, Cl1; : : : ;ClL , each defined on the same feature
space and the combiner attempts to obtain a ‘better’ classifier through combination (see
Figure 8.8). The classifiers can differ from each other in several ways.

1. The classifiers may be of different type, belonging to the set of favourite classifiers
of a user: for example, nearest-neighbour, neural network, decision tree and linear
discriminant.

2. They may be of similar type (for example, all linear discriminant functions or all
neural network models) but trained using different training sets (or subsets of a larger
training set), perhaps gathered at different times or with different noise realisations
added to the input.

3. The classifiers may be of similar type, but with different random initialisation of
the classifier parameters (for example, the weights in a neural network of a given
architecture) in an optimisation procedure.

In contrast with category C1, a question that we might ask here is: given the combi-
nation rule, what is the best set of component classifiers? Equivalently, in case 2 above,
for example, how do we train our neural network models to give the best performance
on combination?

The issue of accuracy and diversity of component classifiers (Hansen and Salamon,
1990) is important for this multiple classifier architecture. Each component classifier is

ClL

Cl2S Com

Cl1

pL(c|x)

p2(c|x)

p1(c|x)

p(c|x)

x

x

x

Figure 8.8 Classifier fusion architecture C2–component classifiers defined on a common feature
space of measurements x made by sensor S
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said to be accurate if it has an error rate lower than that obtained by random guessing
on new patterns. Two classifiers are diverse if they make different errors in predicting
the class of a pattern, x. To see why both accuracy and diversity are important, consider
an ensemble of three classifiers h1.x/; h2.x/ and h3.x/, each predicting a class label
as output. If all classifiers produce identical outputs, then there will be no improvement
gained by combining the outputs: when h1 is incorrect, h2 and h3 will also be incorrect.
However, if the classifier outputs are uncorrelated, then when h1 is incorrect, h2 and
h3 may be correct and, if so, a majority vote will give the correct prediction. More
specifically, consider L classifiers h1; : : : ; hL , each with an error rate of p < 1

2 . For the
majority vote to be incorrect, we require that L=2 or more classifiers be incorrect. The
probability that R classifiers are incorrect is

L!

R!.L � R/!
pR.1� p/L�R

The probability that the majority vote is incorrect is therefore less than1

LX
RDb.LC1/=2c

L!

R!.L � R/!
pR.1� p/L�R

the area under the binomial distribution where at least L=2 are incorrect(b:c denotes the
integer part). For example, with L D 11 classifiers, each with an error rate p D 0:25, the
probability of six or more classifiers being incorrect is 0.034, which is much less than
the individual error rate.

If the error rates of the individual classifiers exceed 0.5, then the error rate of the ma-
jority vote will increase, depending on the number of classes and the degree of correlation
between the classifier outputs.

In both cases C1 and C2, each classifier is performing a particular form of feature
extraction for inputs to the combiner classifier. If this combiner classifier is not fixed
(that is, it is allowed to adapt to the forms of the input), then the general problem
is one in which we seek the best forms of feature extractor matched to a combiner
(see Figure 8.9). There is no longer a requirement that the outputs of the classifiers
Cl1; : : : ;ClL are estimates of posterior probabilities (are positive and sum to unity over
classes). Indeed, these may not be the best features. Thus the component classifiers are
not classifiers at all and the procedure is essentially the same as many described elsewhere
in this book – neural networks, projection pursuit, and so on. In this sense, there is no
need for research on classifier combination methods since they impose an unnecessary
restriction on the forms of the features input to the combiner.

C3. Repeated measurements
The final category of combination systems arise due to different classification of an object
through repeated measurements. This may occur when we have a classifier designed on a
feature space giving an estimate of the posterior probabilities of class membership, but in
practice several (correlated) measurements may be made on the object (see Figure 8.10).

1For more than two classes, the majority vote could still produce a correct prediction even if more than
L=2 classifiers are incorrect.
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S Cl2

Cl1

ClL

x1

x2

xL

x

x

x

Com p(c|x)

Figure 8.9 Classifier fusion architecture C2–component classifiers defined on a common feature
space with L component classifiers delivering features xi

S Cl
x1

S Cl Com p(c |x1, . . . , xT)
x2

S Cl
xT

p(c |xT)

p(c |x2)

p(c |x1)

Figure 8.10 Classifier fusion architecture C3 repeated measurements on a common feature space.
Sensor S produces a sequence of measurements xi; i D 1; : : : ; T, which are input to classifier Cl

An example is that of recognition of aircraft from visual or infrared data. A probability
density function of feature vectors may be constructed using a training data set. In the
practical application, successive measurements are available from the sensor. How can
we combine these predictions? This is sometimes described as multiple observation fusion
or temporal fusion.

8.4.3 Characteristics of a combination scheme

Combination schemes may themselves be classified according to several characteristics,
including their structure, input data type, form of component classifiers and training
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requirements. In this section, we summarise some of the main features of a combiner. We
assume that there are measurements from C classes and there are L component classifiers.

Level
Combination may occur at different levels of component classifier output.

L1. Data level Raw sensor measurements are passed to a combiner that produces
an estimate of the posterior probabilities of class membership. This simply amounts to
defining a classifier on the augmented feature space comprising measurements on all
sensor variables. That is, for sensors producing measurements x; y and z, a classifier is
defined on the feature vector .x; y; z/. In the data fusion literature (see Section 8.4.4)
this is referred to as a centralised system: all the information collected at distributed
sensors is passed to a central processing unit that makes a final decision. A consequence
of this procedure is that the combiner must be constructed using data of a high dimen-
sionality. Consequently, it is usual to perform some feature selection or extraction prior
to combination.

L2. Feature level Each constituent classifier (we shall use the term ‘classifier’ even
though the output may not be an estimate of the posterior probabilities of class mem-
bership or a prediction of class) performs some local preprocessing, perhaps to reduce
dimensionality. This could be important in some data fusion applications where the
communication bandwidth between constituent classifiers and combiner is an important
consideration. In data fusion, this is termed a decentralised system. The features derived
by the constituent classifier for input (transmission) to the combiner can take several
forms, including the following.

1. A reduced-dimensional representation, perhaps derived using principal components
analysis.

2. An estimate of the posterior probabilities of class membership. Thus, each constituent
processor is itself a classifier. This is a very specific form of preprocessing that may
not be optimum, but it may be imposed by application constraints.

3. A coding of the constituent classifier’s input. For an input, x, the output of the
constituent classifier is the index, y, in a codebook of vectors corresponding to the
codeword, z, which is nearest to x. At the combiner, the code index y is decoded to
produce an approximation to x (namely, z). This is then used, together with approx-
imations of the other constituent classifier inputs, to produce a classification. Such a
procedure is important if there are bandwidth constraints on the links between con-
stituent classifier and combiner. Procedures for vector quantisation (see Chapter 10)
are relevant to this process.

L3. Decision level Each constituent classifier produces a unique class label. The
combiner classifier is then defined on an L-dimensional space of categorical variables,
each taking one of C values. Techniques for classifier construction on discrete variables
(for example, histograms and generalisations – maximum weight dependence trees and
Bayesian networks – see Chapter 3) are appropriate.
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Degree of training
R1. Fixed classifiers In some cases, we may wish to use a fixed combination rule. This
may occur if the training data used to design the constituent classifiers are unavailable,
or different training sets have been used.

R2. Trainable classifiers Alternatively, the combination rule is adjusted based on
knowledge of the training data used to define the constituent classifiers. This knowledge
can take different forms:

1. Probability density functions. The joint probability density function of constituent clas-
sifier outputs is assumed known for each class through knowledge of the distribution
of the inputs and the form of the classifiers. For example, in the two-class target
detection problem, under the assumption of independent local decisions at each of
the constituent classifiers, an optimal detection rule for the combiner can be derived,
expressed in terms of the probability of false alarm and the probability of missed
detection at each sensor (Chair and Varshney, 1986).

2. Correlations. Some knowledge concerning the correlations between constituent clas-
sifier outputs is assumed. Again, in the target detection problem under correlated
local decisions (correlated outputs of constituent classifiers), Kam et al. (1992) ex-
pand the probability density function using the Bahadur–Lazarsfeld polynomials to
rewrite the optimal combiner rule in terms of conditional correlation coefficients (see
Section 8.4.4).

3. Training data available. It is assumed that the outputs of each of the individual
constituent classifiers are known for a given input of known class. Thus, we have
a set of labelled samples that may be used to train the combiner classifier.

Form of component classifiers
F1. Common form Classifiers may all be of the same form. For example, they all
may be neural networks (multilayer perceptrons) of a given architecture, all linear dis-
criminants or all decision trees. The particular form may be chosen for several reasons:
interpretability (it is easy to interpret the classification process in terms of simple rules
defined on the input space); implementability (the constituent classifiers are easy to imple-
ment and do not require excessive computation); adaptability (the constituent classifiers
are flexible and it is easy to implement diverse classifiers whose combination leads to a
lower error rate than any of the individuals).

F2. Dissimilar form The constituent classifiers may be a collection of neural networks,
decision trees, nearest-neighbour methods and so on, the set perhaps arising through the
analysis of a wide range of classifiers on different training sets. Thus, the classifiers
have not necessarily been chosen so that their combination leads to the best improve-
ment.

Structure
The structure of a multiple classifier system is often dictated by a practical application.
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T1. Parallel The results from the constituent classifiers are passed to the combiner
together before a decision is made by the combiner.

T2. Serial Each constituent classifier is invoked sequentially, with the results of one
classifier being used by the next one in the sequence, perhaps to set a prior on the classes.

T3. Hierarchical The classifiers are combined in a hierarchy, with the outputs of one
constituent classifier feeding as inputs to a parent node, in a similar manner to decision-
tree classifiers (see Chapter 7). Thus the partition into a single combiner with several
constituent classifiers is less apparent, with each classifier (apart from the leaf and root
nodes) taking the output of a classifier as input and passing its own output as input to
another classifier.

Optimisation

Different parts of the combining scheme may be optimised separately or simultaneously,
depending on the motivating problem.

O1. Combiner Optimise the combiner alone. Thus, given a set of constituent classi-
fiers, we determine the combining rule to give the greatest performance improvement.

O2. Constituent classifiers Optimise the constituent classifiers. For a fixed combiner
rule, and the number and type of constituent classifiers, the parameters of these classifiers
are determined to maximise performance.

O3. Combiner and constituent classifiers Optimise both the combiner rule and the
parameters of the constituent classifiers. In this case, the constituent classifiers may not
be classifiers in the strict sense, performing some form of feature extraction. Practical
constraints such as limitations on the bandwidth between the constituent classifiers and
the combiner may need to be considered.

O4. No optimisation We are provided with a fixed set of classifiers and use a standard
combiner rule that requires no training (see Section 8.4.5).

8.4.4 Data fusion

Much of the work on multiple classifier systems reported in the pattern recognition,
statistics and machine learning literature has strong parallels, and indeed overlaps sub-
stantially, with research on data fusion systems carried out largely within the engineering
community (Dasarathy, 1994b; Varshney, 1997; Waltz and Llinas, 1990). In common
with the research on classifier combination, different architectures may be considered
(for example, serial or parallel) and different assumptions made concerning the joint
distribution of classifier outputs, but the final architecture adopted and the constraints
under which it is optimised are usually motivated by real problems. One application of
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special interest is that of distributed detection: detecting the presence of a target using a
distributed array of sensors. In this section we review some of the work in this area.

Architectures
Figures 8.11 and 8.12 illustrate the two main architectures for a decentralised distributed
detection system – the serial and parallel configurations. We assume that there are L
sensors. The observations at each sensor are denoted by yi and the decision at each
sensor by ui ; i D 1; : : : ; L , where

ui D
²

1 if ‘target present’ declared
0 if ‘target absent’ declared

and the final decision is denoted by u0. Each sensor can be considered as a binary
classifier and the problem is termed as one in decision fusion. This may be thought a
very restrictive model, but it is one that may arise in some practical situations.

The main drawback with the serial network structure (Figure 8.11) is that it has a
serious reliability problem. This problem arises because if there is a link failure between
the .i�1/th sensor and the i th sensor then all the information used to make the previous
decisions would be lost, resulting in the i th sensor becoming effectively the first sensor
in the decision process.

The parallel system has been widely considered and is shown in Figure 8.12. Each
sensor receives a local observation yi , i D 1; : : : ; L , and produces a local decision
ui which is sent to the fusion centre. At the fusion centre all the local decisions ui ,
i D 1; : : : ; L , are combined to obtain a global decision u0. The parallel architecture is

S1
. . . .

y1

u1
S2

y2

u2 uL −1
SL

yL

u0

Figure 8.11 Sensors arranged in a serial configuration

SL

S2

S1

yL

y2

y1

uL−1

u2

u0

u1

fusion centre

Figure 8.12 Sensors arranged in a parallel configuration
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far more robust to link failure. A link failure between the i th sensor and the fusion centre
does not seriously jeopardize the overall global decision, since it is only the decision of
the i th sensor that is lost. The parallel distributed system has been considered under the
assumptions of both correlated and independent local decisions, and methods have been
proposed for solving for the optimal solution in both these cases.

The parallel decision system has also been extended to allow the local decisions to
be passed to intermediate fusion centres, each processing all the L local decisions before
passing their decisions on to another layer of intermediate fusion centres (Li and Sethi,
1993; Gini, 1997). After K such layers these intermediate fusion centre decisions are
passed to the fusion centre and a global decision u0 is made. This corresponds to the
hierarchical model in multiple classifier systems (see Section 8.4.3).

The parallel architecture has also been used to handle repeated observations. One
approach has been to use a memory term that corresponds to the decision made by
the fusion centre using the last set of local decisions (Kam et al., 1999). The memory
term is used in conjunction with the next set of local decisions to make the next global
decision. This memory term therefore allows the fusion centre to take into consideration
the decision made on the last set of observations.

Bayesian approaches
We formulate the Bayes rule for minimum risk for the parallel configuration. Let class
!2 be ‘target absent’ and class !1 be ‘target present’. Then the Bayes rule for minimum
risk is given by equation (1.12): declare a target present (class !1) if

½11 p.!1ju/p.u/C ½21 p.!2ju/p.u/ 
 ½12 p.!1ju/p.u/C ½22 p.!2ju/p.u/

that is,

.½21 � ½22/p.uj!2/p.!2/ 
 .½12 � ½11/p.uj!1/p.!1/ (8.12)

where u D .u1; u2; : : : ; uL/
T is the vector of local decisions; p.uj!i /; i D 1; 2, are

the class-conditional probability density functions; p.!i /; i D 1; 2, are the class priors
and ½ j i are the costs of assigning a pattern u to !i when u 2 ! j . In order to evaluate
the fusion rule (8.12), we require knowledge of the class-conditional densities and the
costs. Several special cases have been considered. By taking the equal cost loss matrix
(see Chapter 1), and assuming independence between local decisions, the fused decision
(based on the evaluation of p.!i ju/) can be expressed in terms of the probability of false
alarm and the probability of missed detection at each sensor (see the exercises at the end
of the chapter).

The problem of how to tackle the likelihood ratios when the local decisions are cor-
related has been addressed by Kam et al. (1992) who showed that by using the Bahadur–
Lazarsfeld polynomials to form an expansion of the probability density functions, it is
possible to rewrite the optimal data fusion rule in terms of the conditional correlation
coefficients.

The Bahadur–Lazarsfeld expansion expresses the density p.x/ as

p.x/ D
LY

jD1

.p
x j
j .1� p j /

1�x j /ð
"

1C
X
i< j

�i j zi z j C
X

i< j<k

�i jk zi z j zk C : : :
#
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where the � s are the correlation coefficients of the corresponding variables

�i j D E[zi z j ]

�i jk D E[zi z j zk]

�i j :::L D E[zi z j : : : zL ]

and

pi D P.xi D 1/; 1� pi D P.xi D 0/

so that
E[xi ] D 1ð pi C 0ð .1� pi / D pi

var[xi ] D pi .1� pi /

and

zi D xi � pip
var.xi /

Substituting each of the conditional densities in equation (8.12) by its Bahadur–Lazarsfeld
expansion replaces the unknown densities by unknown correlation coefficients (see the
exercises). However, this may simplify considerably under assumptions about the form
of the individual detectors (see Kam et al., 1992).

Neyman–Pearson formulation
In the Neyman–Pearson formulation, we seek a threshold on the likelihood ratio so
that a specified false alarm rate is achieved (see Section 1.5.1). Since the data space is
discrete (for an L-dimensional vector, u, there are 2L possible states) the decision rule
of Chapter 1 is modified to become:

if
p.uj!1/

p.uj!2/

8
<
:
> t then decide u0 D 1 (target present declared)
D t then decide u0 D 1 with probability ž
< t then decide u0 D 0 (target absent declared)

(8.13)

where ž and t are chosen to achieve the desired false alarm rate.
As an example, consider the case of two sensors, S1 and S2, operating with proba-

bilities of false alarm pfa1 and pfa2 respectively, and probabilities of detection pd1 and
pd2. Table 8.1 gives the probability density functions for p.uj!1/ and p.uj!2/ assuming
independence.

There are four values for the likelihood ratio, p.uj!1/=p.uj!2/, corresponding to
u D .0; 0/; .0; 1/; .1; 0/; .1; 1/. For p f a1 D 0:2, p f a2 D 0:4, pd1 D 0:6 and pd2 D 0:7,
these values are 0.25, 0.875, 1.5 and 5.25. Figure 8.13 gives the ROC curve for the
combiner, combined using rule (8.13). This is a piecewise linear curve, with four linear
segments, each corresponding to one of the values of the likelihood ratio. For example,
if we set t D 0:875 (one of the values of the likelihood ratio), then u0 D 1 is decided
if u D .1; 0/ and u D .1; 1/, and also for u D .0; 1/ with probability ž. This gives a
probability of detection and a probability of false alarm of (using Table 8.1)

pd D pd1 pd2 C .1� pd2/pd1 C ž.1� pd1/pd2 D 0:6C 0:28ž

pfa D pfa1 pfa2 C .1� pfa2/ pfa1 C ž.1� pfa1/ pfa2 D 0:2C 0:32ž

a linear variation (as ž is varied) of .pfa; pd/ values between (0.2, 0.6) and (0.52, 0.88).
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Table 8.1 Probability density functions for p.uj!1/ (top) and p.uj!2/

(bottom)

Sensor S1

u D 0 u D 1

Sensor S2 u D 0 .1� pd1/.1� pd2/ .1� pd2/pd1

u D 1 .1� pd1/pd2 pd1 pd2

Sensor S1

u D 0 u D 1

Sensor S2 u D 0 .1� p f a1/.1� p f a2/ .1� p f a2/p f a1

u D 1 .1� p f a1/p f a2 p f a1 p f a2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pd

pfapfa1

pd1pd2

pd1

pd1
+ pd2(1 − pd1)

pfa1pfa2 pfa1 + pfa2(1 − pfa1)

Figure 8.13 ROC curve for two sensors, assuming independence

It may be possible to achieve a better probability of detection of the combiner, for
a given probability of false alarm, by operating the individual sensors at different local
thresholds. For L sensors, this is an L-dimensional search problem and requires knowl-
edge of the ROC of each sensor (Viswanathan and Varshney, 1997)

Approaches to the distributed detection problem using the Neyman–Pearson formula-
tion have been proposed for correlated decisions. One approach is to expand the likelihood
ratio using the Bahadur–Lazarsfeld polynomials, in a similar manner to the Bayesian for-
mulation above. The Neyman–Pearson fusion rule can then be expressed as a function
of the correlation coefficients.

If the independence assumption is not valid, and it is not possible to estimate the
likelihood ratio through other means, then it may still be possible to achieve better
performance than individual sensors through a ‘random choice’ fusion system. Consider
two sensors S1 and S2, with ROC curves shown in Figure 8.14. For probabilities of false
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Figure 8.14 ROC curves for sensors S1 and S2 and points on the convex hull

alarm greater than pfaB we operate sensor S2, and for probabilities of false alarm less
than pfaA we operate sensor S1. If, for probabilities of false alarm between pfaA and
pfaB , we operate sensor S1 with probability of false alarm pfaA and sensor S2 at the pfaB

point on its ROC curve, and randomly select sensor S1 with probability ž and sensor S2
with probability 1 � ž, then the probability of false alarm of the random choice fusion
system is žpfaA C .1 � ž/ pfaB and the probability of detection is žpdA C .1 � ž/pdB .
Thus, the best performance is achieved on the convex hull of the two ROC curves.

This differs from the example in Figure 8.13, where the combined output of both
sensors is used, rather than basing a decision on a single sensor output.

Trainable rules
One of the difficulties with the Bayesian and the Neyman–Pearson formulations for a set
of distributed sensors is that both methods require some knowledge of the probability
density of sensor outputs. Often this information is not available and the densities must
be estimated using a training set.

This is simply a problem of classifier design where the classifiers are defined on a
feature space comprising the outputs of separate sensors (local decisions). Many of the
techniques described elsewhere in this book, suitably adapted for binary variables, may
be employed.

Fixed rules
There are a few ‘fixed’ rules for decision fusion that do not model the joint density of
sensor predictions.

AND Class !1 (target present) is declared if all sensors predict class !1, otherwise
class !2 is declared.
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OR Class !1 (target present) is declared if at least one of the sensors predicts class
!1, otherwise class !2 is declared.

Majority vote Class !1 (target present) is declared if a majority of the sensors predicts
class !1, otherwise class !2 is declared.

k-out-of-N Class !1 (target present) is declared if at least k of the sensors predict
class !1, otherwise class !2 is declared. All of the previous three rules are special cases
of this rule.

It is difficult to draw general conclusions about the performance of these rules. For
low false alarm rates, there is some evidence to show that the OR rule is inferior to the
AND and majority-vote rules in a problem of signal detection in correlated noise. For
similar local sensors, the optimal rule is the k-out-of-N decision rule, with k calculated
from the prior probabilities and the sensor probability of false alarm and probability of
detection.

8.4.5 Classifier combination methods

The characterising features of multiple classifier systems have been described in
Section 8.4.3, and a practical motivating problem for the fusion of decisions from dis-
tributed sensors summarised in Section 8.4.4. We turn now to the methods of classifier
fusion, many of which are multiclass generalisations of the binary classifiers employed
for decision fusion.

We begin with the Bayesian decision rule and, following Kittler et al. (1998), make
certain assumptions to derive combination schemes that are routinely used. Various de-
velopments of these methods are described.

We assume that we have an object Z that we wish to classify and that we have L
classifiers with inputs x1; : : : ; xL (as in Figure 8.7). The Bayes rule for minimum error
(1.1) assigns Z to class ! j if

p.! j jx1; : : : ; xL / > p.!k jx1; : : : ; xL/ k D 1; : : : ;C ; k 6D j (8.14)

or, equivalently (1.2), assigns Z to class ! j if

p.x1; : : : ; xL j! j /p.! j / > p.x1; : : : ; xL j!k/p.!k/ k D 1; : : : ;C ; k 6D j (8.15)

This requires knowledge of the class-conditional joint probability densities p.x1; : : : ;

xL j! j /; j D 1; : : : ; L , which is assumed to be unavailable.

Product rule
If we assume conditional independence (x1; : : : ; xL are conditionally independent given
class), then the decision rule (8.15) becomes: assign Z to class ! j if

LY
iD1

.p.xi j! j //p.! j / >

LY
iD1

.p.xi j!k//p.!k/ k D 1; : : : ;C ; k 6D j (8.16)
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or, in terms of the posterior probabilities of the individual classifiers: assign Z to
class ! j if

[p.! j /]
�.L�1/

LY
iD1

p.! j jxi / > [p.!k/]
�.L�1/

LY
iD1

p.!k jxi / k D 1; : : : ;C ; k 6D j

(8.17)

This is the product rule and for equal priors simplifies to: assign Z to class ! j if

LY
iD1

p.! j jxi / >

LY
iD1

p.!k jxi / k D 1; : : : ;C ; k 6D j (8.18)

Both forms (8.17) and (8.18) have been used in studies. The independence assumption
may seem rather severe, but it is one that has been successfully used in many practical
problems (Hand and Yu, 2001). The rule requires the individual classifier posterior prob-
abilities, p.! j jx/; j D 1; : : : ;C , to be calculated, and they are usually estimated from
training data. The main problem with this method is that the product rule is sensitive to
errors in the posterior probability estimates, and deteriorates more rapidly than the sum
rule (see below) as the estimation errors increase. If one of the classifiers reports that the
probability of a sample belonging to a particular class is zero, then the product rule will
give a zero probability also, even if the remaining classifiers report that this is the most
probable class.

The product rule would tend to be applied where each classifier receives input from
different sensors.

Sum rule
Let us make the (rather strong) assumption that

p.!k jxi / D p.!k/.1C Žki / (8.19)

where Žki − 1, that is, the posterior probabilities p.!k jxi / used in the product rule (8.17)
do not deviate substantially from the class priors p.!k/. Then substituting for p.!k jxi /

in the product rule (8.17), neglecting second-order and higher terms in Žki , and using
(8.19) again leads to the sum rule (see the exercises at the end of the chapter): assign Z
to class ! j if

.1� L/p.! j /C
LX

iD1

p.! j jxi / > .1� L/p.!k/C
LX

iD1

p.!k jxi / k D 1; : : : ;C ; k 6D j

(8.20)

This is the sum rule and for equal priors it simplifies to: assign Z to class ! j if

LX
iD1

p.! j jxi / >

LX
iD1

p.!k jxi / k D 1; : : : ;C ; k 6D j (8.21)

The assumption used to derive the sum rule approximation to the product rule, namely that
the posterior probabilities are similar to the priors, will be unrealistic in many practical
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applications. However, it is a rule that is relatively insensitive to errors in the estimation
of the joint densities and would be applied to classifiers used for a common input pattern
(Figure 8.8).

In order to implement the above rule, each classifier must produce estimates of the
posterior probabilities of class membership. In a comparison of the sum and product
rules, Tax et al. (2000) concluded that the sum rule is more robust to errors in the
estimated posterior probabilities (see also Kittler et al., 1998). The averaging process
reduces any effects of overtraining of the individual classifiers and may be thought of as
a regularisation process.

It is also possible to apply a weighting to the sum rule to give: assign Z to class ! j if
LX

iD1

wi p.! j jxi / >

LX
iD1

wi p.!k jxi / k D 1; : : : ;C ; k 6D j (8.22)

where wi ; i D 1; : : : ; L , are weights for the classifiers. A key question here is the choice
of weights. These may be estimated using a training set to minimise the error rate of the
combined classifier. In this case, the same weighting is applied throughout the data space.
An alternative is to allow the weights to vary with the location of a given pattern in the
data space. An extreme example of this is dynamic classifier selection where one weight
is assigned the value unity and the remaining weights are zero. For a given pattern,
dynamic feature selection attempts to select the best classifier. Thus, the feature space is
partitioned into regions with a different classifier for each region.

Dynamic classifier selection has been addressed by Woods et al. (1997) who use
local regions defined in terms of k-nearest-neighbour regions to select the most accurate
classifier (based on the percentage of training samples correctly classified in the region);
see also Huang and Suen (1995).

Min, max and median combiners
The max combiner may be derived by approximating the posterior probabilities in (8.20)
by an upper bound, Lmaxi p.!k jxi /, to give the decision rule: assign Z to class ! j if

.1� L/p.! j /C L max
i

p.! j jxi / > .1� L/p.!k/C L max
i

p.!k jxi / k D 1; : : : ;C ;

k 6D j
(8.23)

This is the max combiner and for equal priors simplifies to

max
i

p.! j jxi / > max
i

p.!k jxi / k D 1; : : : ;CI k 6D j (8.24)

We can also approximate the product in (8.17) by an upper bound, mini p.!k jxi /, to
give the decision rule: assign Z to class ! j if

[p.! j /]
�.L�1/ min

i
p.! j jxi / > [p.!k/]

�.L�1/ min
i

p.!k jxi / k D 1; : : : ;C ; k 6D j

(8.25)

This is the min combiner and for equal priors simplifies to: assign Z to class ! j if

min
i

p.! j jxi / > min
i

p.!k jxi / k D 1; : : : ;C ; k 6D j (8.26)
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Finally, the median combiner is derived by noting that the sum rule calculates the
mean of the classifier outputs and that a robust estimate of the mean is the median. Thus,
under equal priors, the median combiner is: assign Z to class ! j if

med
i

p.! j jxi / > med
i

p.!k jxi / k D 1; : : : ;C ; k 6D j (8.27)

The min, max and median combiners are all easy to implement and require no training.

Majority vote
Among all the classifier combination methods described in this section, the majority
vote is one of the easiest to implement. It is applied to classifiers that produce unique
class labels as outputs (level L3) and requires no training. It may be considered as
an application of the sum rule to classifier outputs where the posterior probabilities,
p.!k jxi /, have been ‘hardened’ (Kittler et al., 1998); that is, p.!k jxi / is replaced by the
binary-valued function, 1ki , where

1ki D
(

1 if p.!k jxi / D max
j

p.! j jxi /

0 otherwise

which produces decisions at the classifier outputs rather than posterior probabilities. A
decision is made to classify a pattern to the class most often predicted by the constituent
classifiers. In the event of a tie, a decision can be made according to the largest prior
class probability (among the tying classes).

An extension to the method is the weighted majority voting technique in which clas-
sifiers are assigned unequal weights based on their performance. The weights for each
classifier may be independent of predicted class, or they may vary across class depend-
ing on the performance of the classifier on each class. A key question is the choice
of weights. The weighted majority vote combiner requires the results of the individual
classifiers on a training set as training data for the allocation of the weights.

For weights that vary between classifiers but are independent of class, there are
L � 1 parameters to estimate for L classifiers (we assume that the weights may be
normalised to sum to unity). These may be determined by specifying some suitable
objective function and an appropriate optimisation procedure. One approach is to define
the objective function

F D Re � þE

where Re is the recognition rate and E is the error rate of the combiner (they do not
sum to unity as the individual classifiers may reject patterns – see Chapter 1); þ is a
user-specified parameter that measures the relative importance of recognition and error
rates and is problem-dependent (Lam and Suen, 1995). Rejection may be treated as an
extra class by the component classifiers and thus the combiner will reject a pattern if the
weighted majority of the classifiers also predicts a rejection. In a study of combination
schemes applied to a problem in optical character recognition, Lam and Suen (1995)
used a genetic optimisation scheme (a scheme that adjusts the weights using a learning
method loosely motivated by an analogy to biological evolution) to maximise F and
concluded that simple majority voting (all weights equal) gave the easiest and most
reliable classification.
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Borda count
The Borda count is a quantity defined on the ranked outputs of each classifier. If we
define Bi . j/ as the number of classes ranked below class ! j by classifier i , then the
Borda count for class ! j is B j defined as

B j D
LX

iD1

Bi . j/

the sum of the number of classes ranked below ! j by each classifier. A pattern is assigned
to the class with the highest Borda count. This combiner requires no training, with the
final decision being based on an average ranking of the classes.

Combiners trained on class predictions
The combiners described so far require no training, at least in their basic forms. General
conclusions are that the sum rule and median rule can be expected to give better perfor-
mance than other fixed combiners. We now turn to combiners that require some degree
of training, and initially we consider combiners acting on discrete variables. Thus, the
constituent classifiers deliver class labels and the combiner uses these class predictions
to make an improved estimate of class (type L combination) – at least, that is what
we hope.

‘Bayesian combiner’ This combiner simply uses the product rule with estimates of the
posterior probabilities derived from the classifier predictions of each constituent classifier,
together with a summary of their performance on a labelled training set.

Specifically, the Bayesian combination rule of Lam and Suen (1995) approximates
the posterior probabilities by an estimate based on the results of a training procedure.
Let D.i/ denote the C ð C confusion matrix (see Chapter 1) for the i th classifier based
on the results of a classification of a training set by classifier i . The . j; k/th entry, d.i/jk ,
is the number of patterns with true class !k that are assigned to ! j by classifier i . The
total number of patterns in class !k is

nk D
CX

lD1

d.i/lk

for any i . The number of patterns assigned to class !l is

CX
kD1

d.i/lk

The conditional probability that a sample x assigned to class !l by classifier i actually
belongs to !k is estimated as

p(!k jclassifier i predicts !l )D
d.i/lkPC

kD1 d.i/lk
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Thus, for a given pattern, the posterior probability depends only on the predicted class:
two distinct patterns xi and x j , having the same predicted class, are estimated as having
the same posterior probability. Substituting into the product rule (8.18), equal priors
assumed, gives the decision rule: assign the pattern to class ! j if

LY
iD1

d.i/li jPC
kD1 d.i/li k

>

LY
iD1

d.i/li mPC
kD1 d.i/li k

m D 1; : : : ;C ; m 6D j

where !li is the predicted class of pattern xi .

Density estimation in classifier output space An alternative approach is to regard
the L class predictions from the constituent classifiers for an input, x, as inputs to a
classifier, the combiner, defined on an L-dimensional discrete-valued feature space (see
Figure 8.15). Suppose that we have N training patterns .xi ; i D 1; : : : ; N / with associated
class labels .yi ; i D 1; : : : ; N /; then the training data for the combiner comprises N L-
dimensional vectors .zi ; i D 1; : : : ; N / with associated class labels .yi ; i D 1; : : : ; N /.
Each component of zi is a discrete-valued variable taking 1 of C possible values corres-
ponding to the class label from the component classifier (1 of C C 1 if a reject option is
included in the constituent classifiers).

The combiner is trained using the training set f.zi ; yi /; i D 1; : : : ; N g and an unknown
pattern x classified by first applying each constituent classifier to obtain a vector of
predictions z, which is then input to the combiner.

The most obvious approach to constructing the combiner is to estimate class-
conditional probabilities, p.zj!i /; i D 1; : : : ;C , and to classify z to class ! j if

p.zj! j /p.! j / > p.zj!k/p.!k/ k D 1; : : : ;C ; k 6D j

with the priors, p.! j /, estimated from the training set (or perhaps using domain knowl-
edge) and the densities, p.zj! j / estimated using a suitable nonparametric density esti-
mation method appropriate for categorical variables.

Perhaps the simplest method is the histogram. This is the approach adopted by Huang
and Suen (1995) and termed the behaviour-knowledge space method, and also investi-
gated by Mojirsheibani (1999). However, this has the disadvantage of having to estimate

S Cl2

Cl1

ClL

w(L)

w(2)

w(1)

x

x

x

Com p(c|x)

Figure 8.15 Classifier fusion architecture C2–component classifiers defined on a common feature
space
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and store high-order distributions which may be computationally expensive. The multidi-
mensional histogram has C L cells, which may be large, making reliable density estimation
difficult in the absence of a large training data set. In Chapter 3 we described several
ways around this difficulty:

1. Independence. Approximate the multivariate density as the product of the univariate
estimates.

2. Lancaster models. Approximate the density using marginal distributions.

3. Maximum weight dependence trees. Approximate the density with a product of pair-
wise conditional densities.

4. Bayesian networks. Approximate the density with a product of more complex condi-
tional densities.

Other approaches, based on constructing discriminant functions directly, rather than
estimating the class-conditional densities and using Bayes’ rule, are possible.

Stacked generalisation
Stacked generalisation, or simply stacking, constructs a generaliser using training data
that consist of the ‘guesses’ of the component generalisers which are taught with different
parts of the training set and try to predict the remainder, and whose output is an estimate
of the correct class. Thus, in some ways it is similar to the models of the previous
section – the combiner is a classifier (generaliser) defined on the outputs of the constituent
classifiers – -but the training data used to construct the combiner comprise the prediction
on held-out samples of the training set.

The basic idea is that the output of the constituent classifiers, termed level 1 data,
L1 (level 0, L0, is the input level), has information that can be used to construct good
combinations of the classifiers. We suppose that we have a set of constituent classifiers,
f j ; j D 1; : : : ; L , and we seek a procedure for combining them. The level 1 data are
constructed as follows.

1. Divide the L0 data (the training data, f.xi ; yi /; i D 1; : : : ; ng) into V partitions.

2. For each partition, v D 1; : : : ; V , do the following.

(a) Repeat the procedure for constructing the constituent classifiers using a subset of
the data: train the constituent classifier j ( j D 1; : : : ; L) on all the training data
apart from partition v to give a classifier denoted, f �vj .

(b) Test each classifier, f �vj , on all patterns in partition v.

This gives a data set of L predictions on each pattern in the training set. Together with
the labels fyi ; i D 1; : : : ; ng, these comprise the training data for the combiner.

We must now construct a combiner for the outputs of the constituent classifiers.
If the constituent classifiers produce class labels, then the training data for the com-
biner comprise L-dimensional measurements on categorical variables. Several methods
are available to us, including those based on histogram estimates of the multivariate
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density, and variants, mentioned at the end of the previous section; for example, tree-
based approaches and neural network methods. Merz (1999) compares an independence
model and a multilayer perceptron model for the combiner with an approach based on a
multivariate analysis method (correspondence analysis). For the multilayer perceptron,
when the i th value of the variable occurs, each categorical variable is represented as C
binary-valued inputs, with all inputs assigned the value of zero apart from the i th, which
is assigned a value of one.

Mixture of experts

The adaptive mixture of local experts model (Jacobs et al., 1991; Jordan and Jacobs,
1994) is a learning procedure that trains several component classifiers (the ‘experts’) and
a combiner (the ‘gating function’) to achieve improved performance in certain problems.
The experts each produce an output vector, oi .i D 1; : : : ; L/, for a given input vector,
x, and the gating network provides linear combination coefficients for the experts. The
gating function may be regarded as assigning a probability to each of the experts, based
on the current input (see Figure 8.16). The emphasis of the training procedure is to find
the optimal gating function and, for a given gating function, to train each expert to give
maximal performance.

In the basic approach, the output of the i th expert, oi .x/, is a generalised linear
function of the input, x,

oi .x/ D f .wT
i x/

where wi is a weight vector associated with the i th expert and f .:/ is a fixed continuous
nonlinear function. The gating network is also a generalised linear function, g, of its
input, with i th component

gi .x/ D g.x; vi / D
exp.vT

i x/PL
kD1 exp.vT

i x/

for weight vectors vi ; i D 1; : : : ; L . These outputs of the gating network are used to
weight the outputs of the experts to give the overall output, o.x/, of the mixture of

combiner

expert 1

expert Lx

gating network

o(x)

g1gL

oL

o1

Figure 8.16 Mixture of experts architecture
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experts architectures as

o.x/ D
LX

kD1

gk.x/ok.x/ (8.28)

The above algorithm is very similar to (8.22) that giving rise to the weighted sum rule in
that the model produces a linear combination of component classifiers. The key difference
is that in the mixture of experts model, the combination model (the gating network) is
trained simultaneously with the constituent classifiers (the experts). In many combination
models, the basic models are trained first and then the combiner tuned to these trained
models. A further difference is that the linear combination depends on the input pattern,
x. An interpretation is that the gating network provides a ‘soft’ partitioning of the input
space, with experts providing local predictions (Jordan and Jacobs, 1994).

The mixture of experts model (8.28) is also similar to the multilayer perceptron2

(Chapter 6) in that the output is a linear combination of nonlinear functions of projections
of the data. The difference is that in (8.28) the linear combination depends on the input.

A probabilistic interpretation of the model is provided by Jordan and Jacobs (1994).
We assume that we have an input variable x and a response variable y that depends prob-
abilistically on x. The mixing proportions, gi .x/, are interpreted as multinomial proba-
bilities associated with the process that maps x to an output y. For a given x, an output
y is generated by selecting an expert according to the values of gk.x/; k D 1; : : : ; L , say
expert i , and then generating y according to a probability density p.yjx;wi /, where wi

denotes the set of parameters associated with expert i . Therefore, the total probability of
generating y from x is the mixture of probabilities of generating y from each component
density, where the mixing proportions are the multinomial probabilities gk.x/, i.e.

p.yjx;�/ D
LX

kD1

gk.x/p.yjx;wk/ (8.29)

where � is the set of all parameters, including both expert and gating network parameters.
The generating density p.yjx;wk/, can be taken to be one of several popular forms;

for a problem in regression, a normal distribution with identical covariance matrices ¦ 2I

is often assumed,

p.yjx;wk/ ¾ exp

²
� 1

¦ 2
.y � ok.x//

T .y � ok.x//

¦

For binary classification, the Bernoulli distribution is generally assumed (single output,
ok ; univariate binary response variable y D 0; 1)

p.yjx;wk/ D oy
k .1� ok/

1�y

and for multiclass problems, the multinomial distribution (L binary variables yi ; i D
1; : : : ; L , summing to unity)

p.yjx;wk/ ¾
LY

iD1

.oi
k/

yi

2The basic MLP, with single hidden layer and linear output layer. Further development of the mixture of
experts model for hierarchical models is discussed by Jordan and Jacobs (1994).
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Optimisation of the model (8.29) may be achieved via a maximum likelihood ap-
proach. Given a training set f.xi ; yi /; i D 1; : : : ; ng (in the classification case, yi would
be a C-dimensional vector coding the class – for class ! j , all entries are zero apart from
the j th, which is one), we seek a solution for � for which the log-likelihood

X
t

log

"
LX

kD1

gk.xt /p.yt jxt ;wk/

#

is a maximum. Jordan and Jacobs (1994) propose an approach based on the EM algorithm
(see Chapter 2) for adjusting the parameters wk and vk . At stage s of the iteration, the
expectation and maximisation procedures are as follows:

1. E-step. Compute the probabilities

h.t/i D
g.xt ; v

.s/
i /p.yt jxt ;w

.s/
i /

PL
kD1 g.xt ; v

.s/
k /p.y t jxt ;w

.s/
k /

for t D 1; : : : ; n; i D 1; : : : ; L .

2. M-step. For the parameters of the experts solve the maximisation problem

w
.sC1/
i D arg max

wi

nX
tD1

h.t/i log[p.y t jxt ;wi /]

and for the parameters of the gating network

V .sC1/ D arg max
V

nX
tD1

LX
kD1

h.t/k log[g.xt ; vk/]

where V is the set of all vi .
Procedures for solving these maximisation problems are discussed by Chen et al.

(1999), who propose a Newton–Raphson method, but other ‘quasi-Newton’ methods
may be used (see Press et al., 1992).

Bagging
Bagging and boosting (see the following section) are procedures for combining differ-
ent classifiers generated using the same training set. Bagging or bootstrap aggregating
(Breiman, 1996) produces replicates of the training set and trains a classifier on each
replicate. Each classifier is applied to a test pattern x which is classified on a majority-
vote basis, ties being resolved arbitrarily. Table 8.2 shows the algorithm. A bootstrap
sample is generated by sampling n times from the training set with replacement. This
provides a new training set, Y b, of size n. B bootstrap data sets, Y b; b D 1; : : : ; B, are
generated and a classifier designed for each data set. The final classifier is that whose
output is the class most often predicted by the subclassifiers.

A vital aspect of the bagging technique is that the procedure for producing the classi-
fier is unstable. For a given bootstrap sample, a pattern in the training set has a probability
of 1� .1�1=n/n of being selected at least once in the n times that patterns are randomly



294 Performance

Table 8.2 The bagging algorithm

Assume that we have a training set .xi ; zi /; i D 1; : : : ; n, of patterns xi and labels zi .

1. For b D 1; : : : ; B, do the following.

(a) Generate a bootstrap sample of size n by sampling with replacement from the
training set; some patterns will be replicated, others will be omitted.

(b) Design a classifier, �b.x/.

2. Classify a test pattern x by recording the class predicted by �b.x/, b D 1; : : : ; B,
and assigning x to the class most represented.

selected from the training set. For large n, this is approximately 1� 1=e D 0:63, which
means that each bootstrap sample contains only about 63% unique patterns from the
training set. This causes different classifiers to be built. If the change in the classifiers is
large (that is, small changes in a data set lead to large changes in the predictions), then
the procedure is said to be unstable. Bagging of an unstable classifier should result in a
better classifier and a lower error rate. However, averaging of a bad classifier can result
in a poorer classifier. If the classifier is stable – that is, changes in the training data set
lead to small changes in the classifier – then bagging will lead to little improvement.

The bagging procedure is particularly useful in classification problems using neural
networks (Chapter 6) and classification trees (Chapter 7) since these are all unstable
processes. For trees, a negative feature is that there is no longer the simple interpretation
as there is with a single tree. Nearest-neighbour classifiers are stable and bagging offers
little, if any, improvement.

In studies on linear classifiers, Skurichina (2001) reports that bagging may improve
the performance on classifiers constructed on critical training sample sizes, but when the
classifier is stable, bagging is usually useless. Also, for very large sample sizes, classifiers
constructed on bootstrap replicates are similar and combination offers no benefit.

The procedure, as presented in Table 8.2, applies to classifiers whose outputs are class
predictions. For classifier methods that produce estimates of the posterior probabilities,
Op.! j jx/, two approaches are possible. One is to make a decision for the class based on the
maximum value of Op.! j jx/ and then to use the voting procedure. Alternatively, the pos-
terior probabilities can be averaged over all bootstrap replications, obtaining OpB.! j jx/,
and then a decision based on the maximum value of OpB.! j jx/ is made. Breiman (1996)
reports a virtually identical misclassification rate for the two approaches in a series of
experiments on 11 data sets. However, bagged estimates of the posterior probabilities
are likely to be more accurate than single estimates.

Boosting
Boosting is a procedure for combining or ‘boosting’ the performance of weak classifiers
(classifiers whose parameter estimates are usually inaccurate and give poor performance)
in order to achieve a better classifier. It differs from bagging in that it is a deterministic
procedure and generates training sets and classifiers sequentially, based on the results of
the previous iteration. In contrast, bagging generates the training sets randomly and can
generate the classifiers in parallel.
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Proposed by Freund and Schapire (1996), boosting assigns a weight to each pattern
in the training set, reflecting its importance, and constructs a classifier using the training
set and the set of weights. Thus, it requires a classifier that can handle weights on the
training samples. Some classifiers may be unable to support weighted patterns. In this
case, a subset of the training examples can be sampled according to the distribution
of the weights and these examples used to train the classifier in the next stage of the
iteration.

The basic boosting procedure is AdaBoost (Adaptive Boosting; Freund and Schapire,
1996). Table 8.3 presents the basic AdaBoost algorithm for the binary classification
problem. Initially, all samples are assigned a weight wi D 1=n. At each stage of the
algorithm, a classifier �t .x/ is constructed using the weights wi (as though they reflect
the probability of occurrence of the sample). The weight of misclassified patterns is
increased and the weight of correctly classified patterns is decreased. The effect of this is
that the higher-weight patterns influence the learning classifier more, and thus cause the
classifier to focus more on the misclassifications, i.e. those patterns that are nearest the
decision boundaries. There is a similarity with support vector machines in this respect
(Chapters 4 and 5). The error et is calculated, corresponding to the sum of the weights of
the misclassified samples. These get boosted by a factor .1� et /=et , increasing the total
weight on the misclassified samples (provided that et < 1=2). This process is repeated
and a set of classifiers is generated. The classifiers are combined using a linear weighting
whose coefficients are calculated as part of the training procedure.

There are several ways in which the AdaBoost algorithm has been generalised. One
generalisation is for the classifiers to deliver a measure of confidence in the prediction.
For example, in the two-class case, instead of the output beingš1 corresponding to one of
the two classes, the output is a number in the range [�1;C1]. The sign of the output is the

Table 8.3 The AdaBoost algorithm

1. Initialise the weights wi D 1=n; i D 1; : : : ; n.
2. For t D 1; : : : ; T ,

(a) construct a classifier �t .x/ from the training data with weights wi ; i D
1; : : : ; n;

(b) calculate et as the sum of the weights wi corresponding to misclassified
patterns;

(c) if et > 0:5 or et D 0 then terminate the procedure, otherwise set wi D
wi .1� et /=et for the misclassified patterns and renormalise the weights so
that they sum to unity.

3. For a two-class classifier, in which �t .x/ D 1 implies x 2 !1 and �t .x/ D �1
implies x 2 !2, form a weighted sum of the classifiers, �t ,

O� D
TX

tD1

log

�
1� et

et

�
�t .x/

and assign x to !1 if O� > 0.
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Table 8.4 The AdaBoost.MH algorithm converts the C-class problem into a two-class problem
operating on the original training data with an additional ‘feature’

1. Initialise the weights wi j D 1=.nC/; i D 1; : : : ; n; j D 1; : : : ;C .
2. For t D 1; : : : ; T ,

(a) construct a ‘confidence-rated’ classifier �t .x; l/ from the training data with
weights wi j ; i D 1; : : : ; n; j D 1; : : : ;C ;

(b) calculate

rt D
nX

iD1

CX
lD1

wil yil�t .xi ; l/

and

Þt D 1

2
log

�
1C rt

1� rt

�

(c) Set wi j D wi j exp.�Þt yi j�t .xi ; j// and renormalise the weights so that they
sum to unity.

3. Set

O�.x; l/ D
TX

tD1

Þt�t .x; l/

and assign x to ! j if
O�.x; j/ ½ O�.x; k/ k D 1; : : : ;C ; k 6D j

predicted class label (�1 or C1) and the magnitude represents the degree of confidence:
close to zero is interpreted as low confidence and close to unity as high confidence.

For the multiclass generalisation, Table 8.4 presents the AdaBoost.MH algorithm
(Schapire and Singer, 1999). The basic idea is to expand the training set (of size n) to a
training set of size n ð C pairs,

..xi ; 1/; yi1/; ..xi ; 2/; yi2/; : : : ; ..xi ;C/; yiC/; i D 1; : : : ; n

Thus, each training pattern is replicated C times and augmented with each of the class
labels. The new labels for a pattern .x; l/ take the values

yil D
²C1 if xi 2 class !l

�1 if xi =2 class !l

A classifier, �t .x; l/, is trained and the final classifier, O�.x; l/, is a weighted sum
of the classifiers constructed at each stage of the iteration, with decision: assign x to
class j if

O�.x; j/ ½ O�.x; k/ k D 1; : : : ;C ; k 6D j

Note that the classifier �t .x; l/ is defined on a data space of possible mixed variable
type: real continuous variables x and categorical variable l. Care will be needed in
classifier design (see Chapter 11).
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In the study of linear classifiers by Skurichina (2001), it is reported that boosting
is only useful for large sample sizes, when applied to classifiers that perform poorly.
The performance of boosting depends on many factors, including training set size,
choice of classifier, the way in which the classifier weights are incorporated and the
data distribution.

8.4.6 Example application study

The problem This study (Sharkey et al., 2000) addresses a problem in condition mon-
itoring and fault detection – the early detection of faults in a mechanical system by
continuous monitoring of sensor data.

Summary A neural network approach is developed and ensembles of networks, based
on majority vote, assessed. A multinet system that selects the appropriate ensemble is
evaluated.

The data The data source was a four-stroke, two-cylinder air-cooled diesel engine. The
recorded data comprised a digitised signal representing cylinder pressure as a function
of crank angle position. Data corresponding to normal operating conditions (N) and two
fault conditions – leaky exhaust valve (E) and leaky fuel injector (F) – were acquired,
each at 15 load levels ranging from no load to full load. Eighty samples representing
the entire cycle were acquired for each operating condition and load (giving 1200 D
80 ð 15 data samples for each condition, 3600 in total). Each sample comprised 7200
measurements (two cycles, sampled at intervals of 0.1 degrees). However, only the 200
in the neighbourhood of combustion were used (sometimes subsampled to 100 or 50
samples) to form the pattern vectors input to the classifiers.

The data were partitioned into a validation set (600 patterns), a test set (600 patterns),
with 1200–2400 of the remainder used for training. The patterns were standardised in
two ways: dividing the input pattern by its maximum value; and subtracting the mean of
the pattern vector elements and dividing by the standard deviation.

The model The basic classifier was a multilayer perceptron with a single hidden layer
comprising a logistic sigmoid nonlinearity and an output layer equal to the number of
classes (either two or three, depending on the experiment).

Training procedure For each of four class groupings (NEF, NE, EF and NF), three
networks were trained corresponding to different subsamplings of the training vector or
different subsets of the training data. The results for the individual networks and for an
ensemble based on error rate were recorded. The ensemble classifier was based on a
majority vote.

A multinet system was also developed. Here, a pattern was first presented to the three-
class (NEF) network and if the largest two network outputs were, say, classes N and E,
then the pattern was presented to the NE network to make the final adjudication. Thus,
this is a form of dynamic classifier selection in which a classifier is selected depending
on the input pattern.
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Results The ensemble classifier gave better results than the individual classifiers. The
multinet system performance was superior to a single three-class network, indicating that
partitioning a multiclass classification problem into a set of binary classification problems
can lead to improved performance.

8.4.7 Further developments

Many of the methods of classifier combination, even the basic non-trainable methods,
are active subjects of research and assessment. For example, further properties of fixed
rules (sum, voting, ranking) are presented by Kittler and Alkoot (2001) and Saranli and
Demirekler (2001).

Development of stacking to density estimation is reported by Smyth and Wolpert
(1999). Further applications of stacking neural network models are given by Sridhar
et al. (1999).

The basic mixture of experts model has been extended to a tree architecture by Jordan
and Jacobs (1994). Termed ‘hierarchical mixture of experts’, non-overlapping sets of
expert networks are combined using gating networks. Outputs of these gating networks
are themselves grouped using a further gating network.

Boosting is classed by Breiman (1998) as an ‘adaptive resampling and combining’ or
arcing algorithm. Definitions for the bias and variance of a classifier, C , are introduced
and it is shown that

eE D eB C bias.C/C var.C/

where eE and eB are the expected and Bayes error rates respectively (see Section 8.2.1).
Unstable classifiers can have low bias and high variance on a large range of data sets.
Combining multiple versions can reduce variance significantly.

8.4.8 Summary

In this section, we have reviewed the characteristics of combination schemes, presented
a motivating application (distributed sensor detection) and described the properties of
some of the more popular methods of classifier combination. Combining the results of
several classifiers can give improved performance over a single classifier. To some degree,
research in this area has the flavour of a cottage industry, with many ad hoc techniques
proposed and assessed. Motivation for some of the methodology is often very weak.
On the other hand, some work is motivated by real-world practical applications such
as the distributed detection problem and person verification using different identification
systems. Often, in applications such as these, the constituent classifier is fixed and an
optimal combination is sought. There is no universal best combiner, but simple methods
such as the sum, product and median rules can work well.

Of more interest are procedures that simultaneously construct the component classi-
fiers and the combination rule. Unstable classification methods (classification methods
for which small perturbations in their training set or construction procedure may result
in large changes in the predictor; for example, decision trees) can have their accuracy
improved by combining multiple versions of the classifier. Bagging and boosting fall into
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this category. Bagging perturbs the training set repeatedly and combines by simple vot-
ing; boosting reweights misclassified samples and classifiers are combined by weighted
voting. Unstable classifiers such as trees can have a high variance that is reduced by
bagging and boosting. However, boosting may increase the variance of a stable classifier
and be counter-productive.

8.5 Application studies

One of the main motivating applications for research on multiple classifier systems has
been the detection and tracking of targets using a large number of different types of
sensors. Much of the methodology developed applies to highly idealised scenarios, often
failing to take into account practical considerations such as asynchronous measurements,
data rates and bandwidth constraints on the communication channels between the sen-
sors and the fusion centre. Nevertheless, methodology developed within the data fusion
literature is relevant to other practical problems. Example applications include:

ž Biomedical data fusion. Various applications include coronary care monitoring and ul-
trasound image segmentation for the detection of the oesophagus (Dawant and Garbay,
1999).

ž Airborne target identification (Raju and Sarma, 1991).

Examples of the use of classifier fusion techniques described in this chapter include
the following:

ž Biometrics. Chatzis et al. (1999) combine the outputs of five methods for person
verification, based on image and voice features, in a decision fusion application. Kittler
et al. (1997) assess a multiple observation fusion (Figure 8.10) approach to person
verification. In a writer verification application, Zois and Anastassopoulos (2001) use
the Bahadur–Lazarsfeld expansion to model correlated decisions. Prabhakar and Jain
(2002) use kernel-based density estimates (Chapter 3) to model the distributions of the
component classifier outputs, each assumed to provide a measure of confidence in one
of two classes, in a fingerprint verification application.

ž Chemical process modelling. Sridhar et al. (1996) develop a methodology for stacking
neural networks in plant-process modelling applications.

ž Remote sensing. In a classification of land cover from remotely sensed data using
decision trees, Friedl et al. (1999) assess a boosting procedure (see also Chan et al.,
2001). In a similar application, Giacinto et al. (2000) assess combination methods
applied to five neural and statistical classifiers.

8.6 Summary and discussion

The most common measure of classifier performance assessment is misclassification
rate or error rate. We have reviewed the different types of error rate and described
procedures for error rate estimation. Other performance measures are reliability – how
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good is our classifier at estimating the true posterior probabilities – and the area under
the receiver operating characteristic curve, AUC. Misclassification rate makes the rather
strong assumption that misclassification costs are equal. In most practical applications,
this is unrealistic. The AUC is a measure averaged over all relative costs, and it might
be argued that this is equally inappropriate since usually something will be known about
relative costs. The LC index was introduced as one attempt to make use of domain
knowledge in performance assessment.

Combining the results of several classifiers, rather than selecting the best, may offer
improved performance. There may be practical motivating problems for this – such as
those in distributed data fusion – and many rules and techniques have been proposed and
assessed. These procedures differ in several respects: they may be applied at different
levels of processing (raw ‘sensor’ data, feature level, decision level); they may be train-
able or fixed; the component classifiers may be similar (for example, all decision trees)
or of different forms, developed independently; the structure may be serial or parallel;
finally, the combiner may be optimised alone, or jointly with the component classifiers.

There is no universal best combination rule, but the choice of rule will depend on the
data set and the training set size.

8.7 Recommendations

1. Use error rate with care. Are the assumptions of equal misclassification costs appro-
priate for your problem?

2. If you are combining prescribed classifiers, defined on the same inputs, the sum rule
is a good start.

3. For classifiers defined on separate features, the product rule is a simple one to be-
gin with.

4. Boosting and bagging are recommended to improve performance of unstable
classifiers.

8.8 Notes and references

The subject of error rate estimation has received considerable attention. The literature up
to 1973 is surveyed in the extensive bibliography of Toussaint (1974), and more recent
advances by Hand (1986) and McLachlan (1987). The holdout method was considered by
Highleyman (1962). The leave-one-out method for error estimation is usually attributed
to Lachenbruch and Mickey (1968) and cross-validation in a wider context to Stone
(1974).

The number of samples required to achieve good error rate estimates is discussed
with application to a character recognition task by Guyon et al. (1998).

Quenouille (1949) proposed the method of sample splitting for overcoming bias, later
termed the jackknife. The bootstrap procedure as a method of error rate estimation has
been widely applied following the pioneering work of Efron (1979, 1982, 1983). Reviews
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of bootstrap methods are provided by Efron and Tibshirani (1986) and Hinkley (1988).
There are several studies comparing the performance of the different bootstrap estimators
(Efron, 1983; Fukunaga and Hayes, 1989b; Chernick et al., 1985; Konishi and Honda,
1990). Davison and Hall (1992) compare the bias and variability of the bootstrap with
cross-validation. They find that cross-validation gives estimators with higher variance
but lower bias than the bootstrap. The main differences between the estimators are when
there is large class overlap, when the bias of the bootstrap is an order of magnitude
greater than that of cross-validation.

The 0.632 bootstrap for error rate estimation is investigated by Fitzmaurice et al.
(1991) and the number of samples required for the double bootstrap by Booth and Hall
(1994). The bootstrap has been used to compute other measures of statistical accuracy.
The monograph by Hall (1992) provides a theoretical treatment of the bootstrap with
some emphasis on curve estimation (including parametric and nonparametric regression
and density estimation).

Reliability of posterior probabilities of group membership is discussed in the book
by McLachlan (1992a). Hand (1997) also considers other measures of performance as-
sessment.

The use of the ROC curves in pattern recognition for performance assessment and
comparison is described by Bradley (1997), Hand and Till (2001), Adams and Hand
(1999) and Provost and Fawcett (2001).

There is a large literature on combining classifiers. A good starting point is the
statistical pattern recognition review by Jain et al. (2000). Kittler et al. (1998) describe
a common theoretical framework for some of the fixed combination rules.

Within the defence and aerospace domain, data fusion has received considerable
attention, particularly the detection and tracking of targets using multiple distributed
sources (Dasarathy, 1994b; Varshney, 1997; Waltz and Llinas, 1990), with benefits in
robust operational performance, reduced ambiguity, improved detection and improved
system reliability (Harris et al., 1997). Combining neural network models is reviewed by
Sharkey (1999).

Stacking originated with Wolpert (1992) and the mixture of experts model with Jacobs
et al. (1991; see also Jordan and Jacobs, 1994)

Bagging is presented by Breiman (1996). Comprehensive experiments on bagging
and boosting for linear classifiers are described by Skurichina (2001). The first provable
polynomial-time boosting algorithm was presented by Schapire (1990). The AdaBoost
algorithm was introduced by Freund and Schapire (1996, 1999). Improvements to the
basic algorithm are given by Schapire and Singer (1999). Empirical comparisons of
bagging and boosting are given by Bauer and Kohavi (1999).

A statistical view of boosting is provided by Friedman et al. (1998).
The website www.statistical-pattern-recognition.net contains refer-

ences and pointers to other websites for further information on techniques.

Exercises

1. Two hundred labelled samples are used to train two classifiers. In the first classifier,
the data set is divided into training and test sets of 100 samples each and the classifier
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designed using the training set. The performance on the test set is 80% correct. In
the second classifier, the data set is divided into a training set of 190 samples and a
test set of 10 samples. The performance on the test set is 90%.

Is the second classifier ‘better’ than the first? Justify your answer.

2. Verify the Sherman–Morisson formula (8.3). Describe how it may be used to estimate
the error rate of a Gaussian classifier using cross-validation.

3. The ROC curve is a plot of 1� ž1, the ‘true positive’, against ž2, the ‘false positive’
as the threshold on (see equation (8.8))

p.!1jx/
is varied, where

ž1 D
Z

�2

p.xj!1/ dx

ž2 D
Z

�1

p.xj!2/ dx

and �1 is the domain where p.!1jx/ lies above the threshold.

Show, by conditioning on p.!1jx/, that the true positive and false positive (for a
threshold ¼) may be written respectively as

1� ž1 D
Z 1

¼

dc
Z

p.!1jx/Dc
p.xj!1/ dx

and

ž2 D
Z 1

¼

dc
Z

p.!1jx/Dc
p.xj!2/ dx

The term
R

p.!1jx/Dc p.xj!1/ dx is the density of p.!1jx/ values at c for class !1.
Hence show that the ROC curve is defined as the cumulative density of Op D p.!1jx/
for class !1 patterns plotted against the cumulative density for class !2 patterns.

4. Generate training data consisting of 25 samples from each of two bivariate normal
distributions (means .�d=2; 0/ and .d=2; 0/ and identity covariance matrix). Com-
pute the apparent error rate and a bias-corrected version using the bootstrap. Plot
both error rates, together with an error rate computed on a test set (of appropriate
size) as a function of separation, d. Describe the results.

5. What is the significance of the condition et > 0:5 in step 2 of the boosting algorithm
in Section 8.4.4?

6. Design an experiment to evaluate the boosting procedure. Consider which classifier
to use and data sets that may be used for assessment. How would weighted samples
be incorporated into the classifier design? How will you estimate generalisation
performance? Implement the experiment and describe the results.

7. Repeat Exercise 6, but assess the bagging procedure as a means of improving clas-
sifier performance.
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8. Using expression (8.19) for the posterior probabilities, express the product rule in
terms of the priors and Žki . Assuming Žki − 1, show that the decision rule may
be expressed (under certain assumptions) in terms of sums of the Žki . State your
assumptions. Finally, derive (8.20) using (8.19).

9. Given measurements u D .u1; : : : ; uL/ made by L detectors with probability of
false alarm pfai and probability of detection pdi ; .i D 1; : : : ; L/, show (assuming
independence and equal cost loss matrix)

log

�
p.!1ju/
p.!2ju/

�
D log

�
p.!1/

p.!2/

�
C
X
SC

log

�
pdi

pfai

�
C
X
S�

log

�
1� pdi

1� pfai

�

where SC is the set of all detectors such that ui D C1 (target present declared – class
!1) and S� is the set of all detectors such that ui D 0 (target absent declared – class
!2).

Therefore, express the data fusion rule as

u0 D
²

1 if a0 C aT u > 0
0 otherwise

(see equation (8.12)) and determine a0; a.

10. Write a computer program to produce the ROC curve for the L-sensor fusion problem
(L sensors with probability of false alarm pfai and probability of detection pdi ; i D
1; : : : ; L/, using the decision rule (8.13).

11. Using the Bahadur–Lazarsfeld expansion, derive the Bayesian decision rule in terms
of the conditional correlation coefficients,

� i
i j :::L D Ei [zi z j : : : zL ] D

Z
zi z j : : : zL p.uj!i /du

for i D 1; 2.
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Feature selection and extraction

Overview

Optimal and suboptimal search techniques for feature selection (selecting a subset
of the original variables for classifier design) are considered. Feature extraction
seeks a transformation (linear or nonlinear) of the original variables to a smaller
set. The most widely used technique is principal components analysis.

9.1 Introduction

This chapter is concerned with representing data in a reduced number of dimensions.
Reasons for doing this may be easier subsequent analysis, improved classification
performance through a more stable representation, removal of redundant or irrelevant
information or an attempt to discover underlying structure by obtaining a graphical repre-
sentation. Techniques for representing data in a reduced dimension are termed ordination
methods or geometrical methods in the multivariate analysis literature. They include such
methods as principal components analysis and multidimensional scaling. In the pattern
recognition literature they are termed feature selection and feature extraction methods
and include linear discriminant analysis and methods based on the Karhunen–Loève ex-
pansion. Some of the methods are similar, if not identical, in certain circumstances and
will be discussed in detail in the appropriate section of this chapter. Here, we approach
the topic initially from a pattern recognition perspective and give a brief description of
the terms feature selection and feature extraction.

Given a set of measurements, dimensionality reduction can be achieved in essentially
two different ways. The first is to identify those variables that do not contribute to the
classification task. In a discrimination problem, we would neglect those variables that
do not contribute to class separability. Thus, the task is to seek d features out of the
available p measurements (the number of features d must also be determined). This
is termed feature selection in the measurement space or simply feature selection (see
Figure 9.1a). There are situations other than for discrimination purposes in which it is
desirable to select a subset from a larger number of features or variables. Miller (1990)
discusses subset selection in the context of regression.

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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Figure 9.1 Dimensionality reduction by (a) feature selection and (b) feature extraction

The second approach is to find a transformation from the p measurements to a lower-
dimensional feature space. This is termed feature selection in the transformed space or
feature extraction (see Figure 9.1b). This transformation may be a linear or nonlinear
combination of the original variables and may be supervised or unsupervised. In the
supervised case, the task is to find the transformation for which a particular criterion of
class separability is maximised.

Both of these approaches require the optimisation of some criterion function, J . For
feature selection, the optimisation is over the set of all possible subsets of size d, Xd , of
the p possible measurements, x1; : : : ; x p. Thus we seek the subset QXd for which

J . QXd/ D max
X2Xd

J .X/

In feature extraction, the optimisation is performed over all possible transformations
of the variables. The class of transformation is usually specified (for example, a linear
transformation of the variable set) and we seek the transformation, QA, for which

J . QA/ D max
A2A

J .A.x//

where A is the set of allowable transformations. The feature vector is then y D QA.x/.
The above description is very much a simplification of dimensionality reduction tech-

niques. The criterion function J is usually based on some measure of distance or dis-
similarity between distributions, which in turn may require distances between objects
to be defined. Distance measures, which are also important in some clustering schemes
described in Chapter 10, are discussed in Appendix A.

We conclude this introductory section with a summary of notation. We shall denote
the population covariance matrix by � and the covariance matrix of class !i by �i . We
shall denote the maximum likelihood estimates of � and �i by O� and O�i ,

O�i D 1

ni

nX
jD1

zi j .x j �mi /.x j �mi /
T

O� D 1

n

nX
jD1

.x j �m/.x j �m/T
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where

zi j D
²

1 if x j 2 !i

0 otherwise

and ni D
Pn

jD1 zi j ; mi is the sample mean of class !i given by

mi D 1

ni

nX
jD1

zi jx j

and m the sample mean

m D
CX

iD1

ni

n
mi

The unbiased estimate of the covariance matrix is n O�=.n � 1/. We shall denote by SW

the within-class scatter matrix (or pooled within-class sample covariance matrix),

SW D
CX

iD1

ni

n
O�i

with unbiased estimate S D nSW =.n�C/. Finally, we denote by SB the sample between-
class covariance matrix

SB D
CX

iD1

ni

n
.mi �m/.mi �m/T

and note that SW C SB D O�.

9.2 Feature selection

The problem Given a set of measurements on p variables, what is the best subset
of size d? Thus, we are not considering a transformation of the measurements, merely
selecting those d variables that contribute most to discrimination.

The solution Evaluate the optimality criterion for all possible combinations of d vari-
ables selected from p and select that combination for which this criterion is a maximum.

If it were quite so straightforward as this, then this section would not be so long as
it is. The difficulty arises because the number of possible subsets is

nd D p!

.p � d/!d!

which can be very large even for moderate values of p and d. For example, selecting
the best 10 features out of 25 means that 3 268 760 feature sets must be considered, and
evaluating the optimality criterion, J , for every feature set in an acceptable time may not
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be feasible. Therefore, we must consider ways of searching through the space of possible
variable sets that reduce the amount of computation.

One reason for reducing the number of variables to measure is to eliminate redun-
dancy. There is no need to waste effort (time and cost) making measurements on un-
necessary variables. Also, reducing the number of variables may lead to a lower error
rate since, as the number of variables increases, the complexity of the classifier, defined
in terms of the number of parameters of the classifier to estimate, also increases. Given
a finite design set, increasing the number of parameters of the classifier can lead to
poor generalisation performance, even if the model is ‘correct’, that is, it is the model
used to generate the data. The often-quoted example of this is the problem of discrim-
inating between two classes of normally distributed data. The discrimination surface
is quadratic, but the linear discriminant may give better performance on data sets of
limited size.

There are two basic strategies for feature subset selection:

1. Optimal methods: these include exhaustive search methods which are feasible for
only very small problems; accelerated search (we shall consider the branch and bound
algorithm); and Monte Carlo methods (such as simulated annealing and genetic al-
gorithms; Michalewicz, 1994) which can lead to a globally optimal solution, but are
computationally expensive.

2. Suboptimal methods: the optimality of the above strategies is traded for computational
efficiency.

The strategy adopted is independent of the optimality criterion, though the computa-
tional requirements do depend on the optimality criterion.

9.2.1 Feature selection criteria

In order to choose a good feature set, we require a means of measuring the ability of
a feature set to discriminate accurately between two or more classes. This is achieved
by defining a class separability measure that is optimised with respect to the possible
subsets. We can choose the feature set in essentially two ways.

1. We can design a classifier on the reduced feature set and choose the feature sets for
which the classifier performs well on a separate test/validation set. In this approach,
the feature set is chosen to match the classifier. A different feature set may result with
a different choice of classifier.

2. The second approach is to estimate the overlap between the distributions from which
the data are drawn and favour those feature sets for which this overlap is minimal
(that is, maximise separability). This is independent of the final classifier employed
and it has the advantage that it is often fairly cheap to implement, but it has the
disadvantage that the assumptions made in determining the overlap are often crude
and may result in a poor estimate of the discriminability.
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Error rate
A minimum expected classification error rate is often the main aim in classifier de-
sign. Error rate (or misclassification rate) is simply the proportion of samples incor-
rectly classified. Optimistic estimates of a classifier’s performance will result if the
data used to design the classifier are naı̈vely used to estimate the error rate. Such an
estimate is termed the apparent error rate. Estimation should be based on a separate
test set, but if data are limited in number, we may wish to use all available data in
classifier design. Procedures such as the jackknife and the bootstrap have been devel-
oped to reduce the bias of the apparent error rate. Error rate estimates are discussed in
Chapter 8.

Probabilistic distance
Probabilistic distance measures the distance between two distributions, p.xj!1/ and
p.xj!2/, and can be used in feature selection. For example, the divergence is given by

JD.!1; !2/ D
Z

[p.xj!1/� p.xj!2/] log

²
p.xj!1/

p.xj!2/

¦
dx

A review of measures is given in Appendix A. All of the measures given in that appendix
can be shown to give a bound on the error probability and have the property that they
are maximised when classes are disjoint. In practice, it is not the tightness of the bound
that is important but the computational requirements. Many of the commonly used dis-
tance measures, including those in Appendix A, simplify for normal distributions. The
divergence becomes

JD D 1
2 .µ2 � µ1/

T .��1
1 C ��1

2 /.µ2 � µ1/C Trf��1
1 �2 C ��1

1 �2 � 2I g

for normal distributions with means µ1 and µ2 and covariance matrices �1 and �2.
In a multiclass problem, the pairwise distance measures must be adapted. We may

take as our cost function, J , the maximum overlap over all pairwise measures,

J D max
i; j .i 6D j/

J .!i ; ! j /

or the average of the pairwise measures,

J D
X
i< j

J .!i ; ! j /p.!i /p.! j /

Recursive calculation of separability measures
The search algorithms described later in this chapter, both optimal and suboptimal, con-
struct the feature sets at the i th stage of the algorithm from that at the .i � 1/th stage by
the addition or subtraction of a small number of features from the current optimal set.
For the parametric forms of the probabilistic distance criteria, the value of the criterion
function at stage i can be evaluated by updating its value already calculated for stage
i � 1 instead of computing the criterion functions from their definitions. This can result
in substantial computational savings.
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All the parametric measures given in Appendix A, namely the Chernoff, Bhattacharyya,
divergence, Patrick–Fischer and Mahalanobis distances, are functions of three basic
building blocks of the form

xT S�1x; TrfT S�1g; jSj (9.1)

where S and T are positive definite symmetric matrices and x is a vector of parameters.
Thus, to calculate the criteria recursively, we only need to consider each of the building
blocks. For a k ð k positive definite matrix S, let QS be the matrix with the kth element
of the feature vector removed. Then S may be written

S D
� QS y

yT skk

½

Assuming that QS�1
is known, then S�1 may be written as

S�1 D

2
664
QS�1 C 1

d
QS�1

yyT QS�1 � 1

d
QS�1

y

� 1

d
yT QS�1 1

d

3
775 (9.2)

where d D skk � yT QS�1
y. Alternatively, if we know S�1, which may be written as

S�1 D
�

A c

cT b

½

then we may calculate QS�1
as

QS�1 D A� 1

b
ccT

Thus, we can compute the inverse of a matrix if we know the inverse before a feature is
added to or deleted from the feature set.

In some cases it may not be necessary to calculate the inverse QS�1
from S�1. Consider

the quadratic form xT S�1x, where x is a k-dimensional vector and Qx denotes the vector
with the kth value removed. This can be expressed in terms of the quadratic form before
the kth feature is removed as

QxT QS�1 Qx D xT S�1x � 1

b
[.cT : b/x]2

where [cT : b] is the row of S�1 corresponding to the feature that is removed. Thus,

the calculation of QS�1
can be deferred until it is confirmed that this feature is to be

permanently removed from the candidate feature set.
The second term to consider in (9.1) is TrfT S�1g. We may use the relationship

Trf QT QS�1g D TrfT S�1g � 1

b
.cT : b/T

�
c

b

�
(9.3)

Finally, the determinants satisfy

jSj D .skk � yT QSy/j QSj
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Criteria based on scatter matrices
The probabilistic distance measures require knowledge, or estimation, of a multivariate
probability density function followed by numerical integration, except in the case of a
parametric density function. This is clearly computationally very expensive. Other mea-
sures have been developed based on the between-class and within-class scatter matrices.
Those given in this chapter are discussed in more detail by Devijver and Kittler (1982).

We define a measure of the separation between two data sets, !1 and !2, as

Jas D 1

n1n2

n1X
iD1

n2X
jD1

d.xi ; y j /

for xi 2 !1, y j 2 !2 and d.x; y/ a measure of distance between samples x and y. This
is the average separation. Defining the average distance between classes as

J D 1

2

CX
iD1

p.!i /

CX
jD1

p.! j /Jas.!i ; ! j /

where p.!i / is the prior probability of class !i (estimated as pi D ni=n), the measure
J may be written, using a Euclidean distance squared for d.x; y/,

J D J1 D TrfSW C SBg D Trf O�g

The criterion J1 is not very satisfactory as a feature selection criterion: it is simply
the total variance, which does not depend on class information.

Our aim is to find a set of variables for which the within-class spread is small and
the between-class spread is large in some sense. Several criteria have been proposed for
achieving this. One popular measure is

J2 D TrfS�1
W SBg (9.4)

Another is the ratio of the determinants

J3 D j
O�j
jSW j (9.5)

the ratio of the total scatter to the within-class scatter. A further measure used is

J4 D TrfSBg
TrfSW g (9.6)

As with the probabilistic distance measures, each of these distance measures may be
calculated recursively.

9.2.2 Search algorithms for feature selection

The problem of feature selection is to choose the ‘best’ possible subset of size d from a
set of p features. In this section we consider strategies for doing that – both optimal and



312 Feature selection and extraction

suboptimal. The basic approach is to build up a set of d features incrementally, starting
with the empty set (a ‘bottom-up’ method) or to start with the full set of measurements
and remove redundant features successively (a ‘top-down’ approach).

If Xk represents a set of k features or variables then, in a bottom-up approach, the
best set at a given iteration, QXk , is the set for which the feature (extraction) selection
criterion has its maximum value

J . QXk/ D max
X2Xk

J .X/

The set Xk of all sets of features at a given step is determined from the set at the previous
iteration. This means that the set of measurements at one stage of an iterative procedure
is used as a starting point to find the set at the next stage. This does not imply that the
sets are necessarily nested ( QXk ² QXkC1), though they may be.

Branch and bound procedure
This is an optimal search procedure that does not involve exhaustive search. It is a top-
down procedure, beginning with the set of p variables and constructing a tree by deleting
variables successively. It relies on one very important property of the feature selection
criterion, namely that for two subsets of the variables, X and Y ,

X ² Y ) J .X/ < J .Y / (9.7)

That is, evaluating the feature selection criterion on a subset of variables of a given set
yields a smaller value of the feature selection criterion. This is termed the monotonicity
property.

We shall describe the method by way of example. Let us assume that we wish to find
the best three variables out of a set of five. A tree is constructed whose nodes represent
all possible subsets of cardinality 3, 4 and 5 of the total set as follows. Level 0 in the
tree contains a single node representing the total set. Level 1 contains subsets of the
total set with one variable removed, and level 2 contains subsets of the total set with
two variables removed. The numbers to the right of each node in the tree represent a
subset of variables. The number to the left represents the variable that has been removed
from the subset of the parent node in order to arrive at a subset for the child node. Level
2 contains all possible subsets of five variables of size three. Note that the tree is not
symmetrical. This is because removing variables 4 then 5 from the original set (to give
the subset (123)) has the same result as removing variable 5 then variable 4. Therefore, in
order for the subsets not to be replicated, we have only allowed variables to be removed
in increasing order. This removes unnecessary repetitions in the calculation.

Now we have obtained our tree structure, how are we going to use it? The tree is
searched from the least dense part to the part with the most branches (right to left in
Figure 9.2). Figure 9.3 gives a tree structure with values of the criterion J printed at
the nodes. Starting at the rightmost set (the set (123) with a value of J D 77:2), the
search backtracks to the nearest branching node and proceeds down the rightmost branch
evaluating J .f1; 2; 4; 5g/, then J .f1; 2; 4g/ which gives a lower value than the current
maximum value of J , JŁ, and so is discarded. The set J .f1; 2; 5g/ is next evaluated and
retained as the current best value (largest on a subset of three variables), JŁ D 80:1.
J .f1; 3; 4; 5g/ is evaluated next, and since this is less than the current best, the search of
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Figure 9.2 Tree figure for branch and bound method
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Figure 9.3 Tree figure for branch and bound method with feature selection criterion value at
each node

the section of the tree originating from this node is not performed. This is because we
know from the monotonicity property that all subsets of this set will yield a lower value
of the criterion function. The algorithm then backtracks to the nearest branching node and
proceeds down the next rightmost branch (in this case, the final branch). J .f2; 3; 4; 5g/
is evaluated, and again since this is lower than the current best value on a subset of three
variables, the remaining part of the tree is not evaluated.

Thus, although not all subsets of size 3 are evaluated, the algorithm is optimal since
we know by condition (9.7) that those not evaluated will yield a lower value of J .

From the specific example above, we can see a more general strategy: start at the
top level and proceed down the rightmost branch, evaluating the cost function J at each
node. If the value of J is less than the current threshold then abandon the search down
that particular branch and backtrack to the previous branching node. Continue the search
down the next rightmost branch. If, on the search of any branch the bottom level is
reached (as is bound to happen on the initial branch), then if the value of J for this level
is larger than the current threshold, the threshold is updated and backtracking begins.
Note from Figure 9.2 (and you can verify that this is true in general), that the candidates
for removal at level i , given that variable ni�1 has been removed at the previous level, are

ni�1 C 1; : : : ; i C m

where m is the size of the final subset.
Note that if the criterion function is evaluated for the successor of a given node, i.e.

for a node which is one level below and connected by a single link to a given node, then
during the branch and bound procedure it will be evaluated for all ‘brothers and sisters’
of that node – i.e. for all other direct successors of the given node. Now since a node
with a low value of J is more likely to be discarded than a node with a high value of
J , it is sensible to order these sibling nodes so that those that have lower values have
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more branches. This is the case in Figure 9.3 where the nodes at level 2 are ordered so
that those yielding a smaller value of J have the larger number of branches. Since all
the sibling feature sets will be evaluated anyway, this results in no extra computation.
This scheme is due to Narendra and Fukunaga (1977).

The feature selection criterion most commonly used in the literature for feature se-
lection both in regression (Miller, 1990) and in classification (Narendra and Fukunaga,
1977) is the quadratic form

xT
k S�1

k xk

where xk is a k-dimensional vector and Sk is a k ð k positive definite matrix when k
features are used. For example, in a two-class problem, the Mahalanobis distance (see
Appendix A) between two groups with means µi .i D 1; 2/ and covariance matrices
�i .i D 1; 2/

J D .µ1 � µ2/
T
�

�1 C�2

2

��1

.µ1 � µ2/ (9.8)

satisfies (9.7). In a multiclass problem, we may take the sum over all pairs of classes.
This will also satisfy (9.7) since each component of the sum does. There are many other
feature selection criteria satisfying the monotonicity criterion, including probabilistic
distance measures (for example, Bhattacharyya distance, divergence (Fukunaga, 1990))
and measures based on the scatter matrices (for example, J2 (9.4), but not J3 (9.5) or
J4 (9.6)).

9.2.3 Suboptimal search algorithms

There are many problems where suboptimal methods must be used. The branch and bound
algorithm may not be computationally feasible (the growth in the number of possibilities
that must be examined is still an exponential function of the number of variables) or
may not be appropriate if the monotonicity property (9.7) does not hold. Suboptimal
algorithms, although not capable of examining every feature combination, will assess a
set of potentially useful feature combinations. We consider several techniques, varying
in complexity.

Best individual N
The simplest method, and perhaps the one giving the poorest performance, for choosing
the best N features is to assign a discrimination power estimate to each of the features
in the original set, X , individually. Thus, the features are ordered so that

J .x1/ ½ J .x2/ ½ Ð Ð Ð ½ J .x p/

and we select as our best set of N features the N features with the best individual scores:

fxi ji � N g

In some cases this method can produce reasonable feature sets, especially if the features
in the original set are uncorrelated, since the method ignores multivariate relationships.



Feature selection 315

However, if the features of the original set are highly correlated, the chosen feature set
will be suboptimal as some of the features will be adding little discriminatory power.
There are cases when the N best features are not the best N features even when the
variables are independent (Hand, 1981a).

Sequential forward selection
Sequential forward selection (SFS, or the method of set addition) is a bottom-up search
procedure that adds new features to a feature set one at a time until the final feature set
is reached. Suppose we have a set of d1 features, Xd1 . For each of the features ¾ j not
yet selected (i.e. in X � Xd1 ) the criterion function J j D J .Xd1 C ¾ j / is evaluated. The
feature that yields the maximum value of J j is chosen as the one that is added to the
set Xd1 . Thus, at each stage, the variable is chosen that, when added to the current set,
maximises the selection criterion. The feature set is initialised to the null set. When the
best improvement makes the feature set worse, or when the maximum allowable number
of features is reached, the algorithm terminates. The main disadvantage of the method is
that it does not include a mechanism for deleting features from the feature set once they
have been added should further additions render them unnecessary.

Generalised sequential forward selection
Instead of adding a single feature at a time to a set of measurements, in the generalised
sequential forward selection (GSFS) algorithm r features are added as follows. Suppose
we have a set of d1 measurements, Xd1 . All possible sets of size r are generated from
the remaining n � d1 features – this gives

�
n � d1

r

�

sets. For each set of r features, Yr , the cost function is evaluated for Xd1CYr and the set
that maximises the cost function is used to increment the feature set. This is more costly
than SFS, but has the advantage that at each stage it is possible to take into account to
some degree the statistical relationship between the available measurements.

Sequential backward selection
Sequential backward selection (SBS), or sequential backward elimination, is the top-
down analogy to SFS. Variables are deleted one at a time until d measurements remain.
Starting with the complete set, the variable ¾ j is chosen for which J .X � ¾ j / is the
largest (i.e. ¾ j decreases J the least). The new set is fX � ¾ j g. This process is repeated
until a set of the required cardinality remains. The procedure has the disadvantage over
SFS that it is computationally more demanding since the criterion function J is evaluated
over larger sets of variables.

Generalised sequential backward selection
If you have read the previous sections, you will not be surprised to learn that generalised
sequential backward selection (GSBS) decreases the current set of variables by several
variables at a time.
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Plus l – take away r selection
This is a procedure that allows some backtracking in the feature selection process. If
l > r , it is a bottom-up procedure. l features are added to the current set using SFS and
then the worst r features are removed using SBS. This algorithm removes the problem
of nesting since the set of features obtained at a given stage is not necessarily a subset of
the features at the next stage of the procedure. If l < r then the procedure is top-down,
starting with the complete set of features, removing r , then adding l successively until
the required number is achieved.

Generalised plus l – take away r selection
The generalised version of the l–r algorithm uses the GSFS and the GSBS algorithms
at each stage rather than the SFS and SBS procedures. Kittler (1978a) generalises the
procedure further by allowing the integers l and r to be composed of several components
li ; i D 1; : : : ; nl , and r j ; j D 1; : : : ; nr (where nl and nr are the number of components),
satisfying

0 � li � l 0 � r j � r
nlX

iD1

li D l
nrX

jD1

r j D r

In this generalisation, instead of applying the generalised sequential forward selection
in one step of l variables (denoted GSFS(l)), the feature set is incremented in nl steps
by adding li features .i D 1; : : : ; nl/ at each increment; i.e. apply GSFS(li ) successively
for i D 1; : : : ; nl . This reduces the computational complexity. Similarly, GSBS(r) is
replaced by applying GSBS(r j ), j D 1; : : : ; nr , successively. The algorithm is referred
to as the .Zl ; Zr / algorithm, where Zl and Zr denote the sequence of integers li and l j ,

Zl D .l1; l2; : : : ; lnl /

Zr D .r1; r2; : : : ; rnr /

The suboptimal search algorithms discussed in this subsection and the exhaustive
search strategy may be considered as special cases of the .Zl ; Zr / algorithm (Devijver
and Kittler, 1982).

Floating search methods
Floating search methods, sequential forward floating selection (SFFS) and sequential
backward floating selection (SBFS), may be regarded as a development of the l–r al-
gorithm above in which the values of l and r are allowed to ‘float’ – that is, they may
change at different stages of the selection procedure.

Suppose that at stage k we have a set of subsets X1; : : : ; Xk of sizes 1 to k respectively.
Let the corresponding values of the feature selection criteria be J1 to Jk , where Ji D
J .Xi /, for the feature selection criterion, J .:/. Let the total set of features be X . At the
kth stage of the SFFS procedure, do the following.

1. Select the feature x j from Y � Xk that increases the value of J the greatest and add
it to the current set, XkC1 D Xk C x j .
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2. Find the feature, xr , in the current set, XkC1, that reduces the value of J the least; if
this feature is the same as x j then set JkC1 D J .XkC1/; increment k; go to step 1;
otherwise remove it from the set to form X 0k D XkC1 � xr .

3. Continue removing features from the set X 0k to form reduced sets X 0k�1 while
J .X 0k�1/ > Jk�1; k D k � 1; or k D 2; then continue with step 1.

The algorithm is initialised by setting k D 0 and X0 D Þ (the empty set) and using
the SFS method until a set of size 2 is obtained.

9.2.4 Example application study

The problem Classification of land use using synthetic aperture radar images (Zongker
and Jain, 1996).

Summary As part of an evaluation of feature selection algorithms on several data
sets (real and simulated), classification performance using features produced by the SFS
algorithm is compared with that using the SFFS algorithm.

The data The data comprised synthetic aperture radar images (approximately 22 000
pixels). A total of 18 features were computed from four different texture models: local
statistics (five features), grey level co-occurrence matrices (six features), fractal features
(two features) and a log-normal random field model (five features). One of the goals is to
see how measures from different models may be utilised to provide better performance.

The model The best performance was assessed in terms of recognition rate of a 3-
nearest-neighbour classifier.

Training procedure The data were divided into independent train and test sets and the
performance of the classifier evaluated as a function of the number of features produced
by the SFS and SFFS algorithms.

Results The recognition rate is not a monotonic function of the number of features.
The best performance was achieved by SFFS using an 11-feature subset.

9.2.5 Further developments

There are other approaches to feature selection. Chang (1973) considers a dynamic pro-
gramming approach. Monte Carlo methods based on simulated annealing and genetic
algorithms (see, for example, Mitchell, 1997) are described by Siedlecki and Sklansky
(1988), Brill et al. (1992) and Chang and Lippmann (1991).

Developments of the floating search methods to adaptive floating search algorithms
that determine the number of additions or deletions dynamically as the algorithm proceeds
are proposed by Somol et al. (1999). Other approaches include node pruning in neural
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networks and methods based on modelling the class densities as finite mixtures of a
special type (Pudil et al., 1995).

9.2.6 Summary

Feature selection is the process of selecting from the original features (or variables)
those features that are important for classification. A feature selection criterion, J , is
defined on subsets of the features and we seek that combination of features for which J
is maximised.

In this section we have described some statistical pattern recognition approaches to
feature selection, both optimal and suboptimal techniques for maximising J . Some of
the techniques are dependent on a specific classifier through error rate. This may provide
computational problems if the classifier is complex. Different feature sets may be obtained
for different classifiers.

Generally there is a trade-off between algorithms that are computationally feasible,
but not optimal, and those that are optimal or close to optimal but are computationally
complex even for moderate feature set sizes. Studies of the floating methods suggest that
these offer close to optimal performance at an acceptable cost.

9.3 Linear feature extraction

Feature extraction is the transformation of the original data (using all variables) to a data
set with a reduced number of variables.

In the problem of feature selection covered in the previous section, the aim is to
select those variables that contain the most discriminatory information. Alternatively, we
may wish to limit the number of measurements we make, perhaps on grounds of cost,
or we may want to remove redundant or irrelevant information to obtain a less complex
classifier.

In feature extraction, all available variables are used and the data are transformed
(using a linear or nonlinear transformation) to a reduced dimension space. Thus, the aim
is to replace the original variables by a smaller set of underlying variables. There are
several reasons for performing feature extraction:

1. to reduce the bandwidth of the input data (with the resulting improvements in speed
and reductions in data requirements);

2. to provide a relevant set of features for a classifier, resulting in improved performance,
particularly from simple classifiers;

3. to reduce redundancy;

4. to recover new meaningful underlying variables or features that describe the data,
leading to greater understanding of the data generation process;



Linear feature extraction 319

5. to produce a low-dimensional representation (ideally in two dimensions) with mini-
mum loss of information so that the data may easily be viewed and relationships and
structure in the data identified.

The techniques covered in this section are to be found in the literature on a diverse
range of topics. Many are techniques of exploratory data analysis described in textbooks
on multivariate analysis. Sometimes referred to as geometric methods or methods of
ordination, they make no assumption about the existence of groups or clusters in the data.
They have found application in a wide range of subjects including ecology, agricultural
science, biology and psychology. Geometric methods are sometimes further categorised
as being variable-directed when they are primarily concerned with relationships between
variables, or individual-directed when they are primarily concerned with relationships
between individuals.

In the pattern recognition literature, the data transformation techniques are termed
feature selection in the transformed space or feature extraction and they be supervised
(make use of class label information) or unsupervised. They may be based on the
optimisation of a class separability measure, such as those described in the previous
section.

9.3.1 Principal components analysis

Introduction
Principal components analysis originated in work by Pearson (1901). It is the purpose of
principal components analysis to derive new variables (in decreasing order of importance)
that are linear combinations of the original variables and are uncorrelated. Geometrically,
principal components analysis can be thought of as a rotation of the axes of the original
coordinate system to a new set of orthogonal axes that are ordered in terms of the amount
of variation of the original data they account for.

One of the reasons for performing a principal components analysis is to find a smaller
group of underlying variables that describe the data. In order to do this, we hope that
the first few components will account for most of the variation in the original data.
A representation in fewer dimensions may aid the user for the reasons given in the
introduction to this chapter. Even if we are able to characterise the data by a few variables,
it does not follow that we will be able to assign an interpretation to these new variables.

Principal components analysis is a variable-directed technique. It makes no assump-
tions about the existence or otherwise of groupings within the data and so is described
as an unsupervised feature extraction technique.

So far, our discussion has been purely descriptive. We have introduced many terms
without proper definition. There are several ways in which principal components anal-
ysis can be described mathematically, but let us leave aside the mathematics for the
time being and continue with a geometrical derivation. We must necessarily confine our
illustrations to two dimensions, but nevertheless we shall be able to define most of the
attendant terminology and consider some of the problems of a principal components
analysis.

In Figure 9.4 are plotted a dozen objects, with the x and y values for each point in
the figure representing measurements on each of the two variables. They could represent
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Figure 9.4 Principal components line of best fit

the height and weight of a group of individuals, for example, in which case one variable
would be measured in metres or centimetres or inches and the other variable in grams
or pounds. So the units of measurement may differ.

The problem we want to solve is: what is the best straight line through this set of
points? Before we can answer, we must clarify what we mean by ‘best’. If we consider
the variable x to be an input variable and y a dependent variable so that we wish to
calculate the expected value of y given x , E[yjx], then the best (in a least squares sense)
regression line of y on x

y D mx C c

is the line for which the sum of the squared distances of points from the line is a
minimum, and the distance of a point from the line is the vertical distance.

If y were the regressor and x the dependent variable, then the linear regression line
is the line for which the sum of squares of horizontal distances of points from the line
is a minimum. Of course, this gives a different solution. (A good illustration of the two
linear regressions on a bivariate distribution is given in Stuart and Ord, 1991.)

So we have two lines of best fit, and a point to note is that changing the scale of the
variables does not alter the predicted values. If the scale of x is compressed or expanded,
the slope of the line changes but the predicted value of y does not alter. Principal
components analysis produces a single best line and the constraint that it satisfies is that
the sum of the squares of the perpendicular distances from the sample points to the line
is a minimum (see Figure 9.4). A standardisation procedure that is often carried out (and
almost certainly if the variables are measured in different units) is to make the variance
of each variable unity. Thus the data are transformed to new axes, centred at the centroid
of the data sample and in coordinates defined in terms of units of standard deviation.
The principal components line of best fit is not invariant to changes of scale.

The variable defined by the line of best fit is the first principal component. The
second principal component is the variable defined by the line that is orthogonal with
the first and so it is uniquely defined in our two-dimensional example. In a problem with
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higher-dimensional data, it is the variable defined by the vector orthogonal to the line of
best fit of the first principal component that, together with the line of best fit, defines a
plane of best fit, i.e. the plane for which the sum of squares of perpendicular distances
of points from the plane is a minimum. Successive principal components are defined in
a similar way.

Another way of looking at principal components (which we shall derive more formally
in Section 9.3.1) is in terms of the variance of the data. If we were to project the
data in Figure 9.4 onto the first principal axis (that is, the vector defining the first
principal component), then the variation in the direction of the first principal component
is proportional to the sum of the squares of the distances from the second principal
axis (the constant of proportionality depending on the number of samples, 1=.n � 1/).
Similarly, the variance along the second principal axis is proportional to the sum of the
squares of the perpendicular distances from the first principal axis. Now, since the total
sum of squares is a constant, minimising the sum of squared distances from a given line
is the same as maximising the sum of squares from its perpendicular or, by the above,
maximising the variance in the direction of the line. This is another way of deriving
principal components: find the direction that accounts for as much of the variance as
possible (the direction along which the variance is a maximum); the second principal
component is defined by the direction orthogonal to the first for which the variance is a
maximum, and so on. The variances are the principal values.

Principal components analysis produces an orthogonal coordinate system in which
the axes are ordered in terms of the amount of variance in the original data for which
the corresponding principal components account. If the first few principal components
account for most of the variation, then these may be used to describe the data, thus
leading to a reduced-dimension representation. We might also like to know if the new
components can be interpreted as something meaningful in terms of the original variables.
This wish is not often granted, and in practice the new components will be difficult to
interpret.

Derivation of principal components
There are at least three ways in which we can approach the problem of deriving a
set of principal components. Let x1; : : : ; x p be our set of original variables and let
¾i ; i D 1; : : : ; p, be linear combinations of these variables

¾i D
pX

jD1

ai j x j

or
ξ D AT x

where ξ and x are vectors of random variables and A is the matrix of coefficients. Then
we can proceed as follows:

1. We may seek the orthogonal transformation A yielding new variables ¾ j that have
stationary values of their variance. This approach, due to Hotelling (1933), is the one
that we choose to present in more detail below.
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2. We may seek the orthogonal transformation that gives uncorrelated variables ¾ j .

3. We may consider the problem geometrically and find the line for which the sum
of squares of perpendicular distances is a minimum, then the plane of best fit and
so on. We used this geometric approach in our two-dimensional illustration above
(Pearson, 1901).

Consider the first variable ¾1:

¾1 D
pX

jD1

a1 j x j

We choose a1 D .a11; a12; : : : ; a1p/
T to maximise the variance of ¾1, subject to the

constraint aT
1 a1 D ja1j2 D 1. The variance of ¾1 is

var.¾1/ D E[¾2
1 ]� E[¾1]2

D E[aT
1 xxT a1]� E[aT

1 x]E[xT a1]

D aT
1 .E[xxT ]� E[x]E[xT ]/a1

D aT
1 �a1

where � is the covariance matrix of x and E[:] denotes expectation. Finding the sta-
tionary value of aT

1 �a1 subject to the constraint aT
1 a1 D 1 is equivalent to finding the

unconditional stationary value of

f .a1/ D aT
1 �a1 � ¹aT

1 a1

where ¹ is a Lagrange multiplier. (The method of Lagrange multipliers can be found
in most textbooks on mathematical methods; for example, Wylie and Barrett, 1995.)
Differentiating with respect to each of the components of a1 in turn and equating to
zero gives

�a1 � ¹a1 D 0

For a non-trivial solution for a1 (that is, a solution other than the null vector), a1 must
be an eigenvector of � with ¹ an eigenvalue. Now � has p eigenvalues ½1; : : : ; ½p, not
all necessarily distinct and not all non-zero, but they can be ordered so that ½1 ½ ½2 ½
Ð Ð Ð ½ ½p ½ 0. We must chose one of these for the value of ¹. Now, since the variance
of ξ1 is

aT
1 �a1 D ¹aT

1 a1

D ¹

and we wish to maximise this variance, then we choose ¹ to be the largest eigenvalue
½1, and a1 is the corresponding eigenvector. This eigenvector will not be unique if the
value of ¹ is a repeated root of the characteristic equation

j� � ¹I j D 0

The variable ¾1 is the first principal component and has the largest variance of any linear
function of the original variables x1; : : : ; x p.
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The second principal component, ¾2 D aT
2 x, is obtained by choosing the coefficients

a2i ; i D 1; : : : ; p, so that the variance of ¾2 is maximised subject to the constraint
ja2j D 1 and that ¾2 is uncorrelated with the first principal component ¾1. This second
constraint implies

E[¾2¾1]� E[¾2]E[¾1] D 0

or
aT

2 �a1 D 0 (9.9)

and since a1 is an eigenvector of �, this is equivalent to aT
2 a1 D 0, i.e. a2 is orthogonal

to a1.
Using the method of Lagrange’s undetermined multipliers again, we seek the uncon-

strained maximisation of
aT

2 �a2 � ¼aT
2 a2 � aT

2 a1

Differentiating with respect to the components of a2 and equating to zero gives

2�a2 � 2¼a2 � a1 D 0 (9.10)

Multiplying by aT
1 gives

2a1�a2 �  D 0

since aT
1 a2 D 0. Also, by (9.9), aT

2 �a1 D aT
1 �a2 D 0, therefore  D 0. Equation (9.10)

becomes

�a2 D ¼a2

Thus, a2 is also an eigenvector of �, orthogonal to a1. Since we are seeking to maximise
the variance, it must be the eigenvector corresponding to the largest of the remaining
eigenvalues, that is, the second largest eigenvalue overall.

We may continue this argument, with the kth principal component ¾k D aT
k x, where

ak is the eigenvector corresponding to the kth largest eigenvalue of � and with variance
equal to the kth largest eigenvalue.

If some eigenvalues are equal, the solution for the eigenvectors is not unique, but it
is always possible to find an orthonormal set of eigenvectors for a real symmetric matrix
with non-negative eigenvalues.

In matrix notation,

ξ D AT x (9.11)

A D [a1; : : : ; a p], the matrix whose columns are the eigenvectors of �.
So now we know how to determine the principal components – by performing an

eigenvector decomposition of the symmetric positive definite matrix �, and using the
eigenvectors as coefficients in the linear combination of the original variables. But how
do we determine a reduced-dimension representation of some given data? Let us consider
the variance.

The sum of the variances of the principal components is given by

pX
iD1

var.¾i / D
pX

iD1

½i
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the sum of the eigenvalues of the covariance matrix �, equal to the total variance of the
original variables. We can then say that the first k principal components account for

kX
iD1

½i

. pX
iD1

½i

of the total variance.
We can now consider a mapping to a reduced dimension by specifying that the new

components must account for at least a fraction d of the total variance. The value of d
would be specified by the user. We then choose k so that

kX
iD1

½i ½ d
pX

iD1

½i ½
k�1X
iD1

½i

and transform the data to
ξ k D AT

k x

where ξ k D .¾1; : : : ; ¾k/
T and Ak D [a1; : : : ; ak] is a pð k matrix. Choosing a value of

d between 70% and 90% preserves most of the information in x (Jolliffe, 1986). Jackson
(1991) advises against the use of this procedure: it is difficult to choose an appropriate
value for d – it is very much problem-specific.

An alternative approach is to examine the eigenvalue spectrum and see if there is
a point where the values fall sharply before levelling off at small values (the ‘scree’
test). We retain those principal components corresponding to the eigenvalues before the
cut-off point or ‘elbow’ (see Figure 9.5). However, on occasion the eigenvalues drift
downwards with no obvious cutting point and the first few eigenvalues account for only
a small proportion of the variance.

It is very difficult to determine the ‘right’ number of components and most tests are
for limited special cases and assume multivariate normality. Jackson (1991) describes a
range of procedures and reports the results of several comparative studies.
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Figure 9.5 Eigenvalue spectrum
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Remarks

Sampling The derivation of principal components above has assumed that the covari-
ance matrix � is known. In most practical problems, we shall have an estimate of the
sample covariance matrix from a set of sample vectors. We can use the sample covariance
matrix to calculate principal components and take these as estimates of the eigenvectors
of the covariance matrix �. Note also, as far as deriving a reduced-dimension repre-
sentation is concerned, the process is distribution-free – a mathematical method with no
underlying statistical model. Therefore, unless we are prepared to assume some model
for the data, it is difficult to obtain results on how good the estimates of the principal
components are.

Standardisation The principal components are dependent on the scales used to mea-
sure the original variables. Even if the units used to measure the variables are the same,
if one of the variables has a range of values that greatly exceeds the others, then we
expect the first principal component to lie in the direction of this axis. If the units of
each variable differ (for example, height, weight), then the principal components will
depend on whether the height is measured in feet, inches or centimetres, etc. This does
not occur in regression (which is independent of scale) but it does in principal compo-
nents analysis in which we are minimising a perpendicular distance from a point to a
line, plane, etc. and right angles do not transform to right angles under changes of scale.
The practical solution to this problem is to standardise the data so that the variables have
equal range. A common form of standardisation is to transform the data to have zero
mean and unit variance, so that we find the principal components from the correlation
matrix. This gives equal importance to the original variables. We recommend that all
data are standardised to zero mean and unit variance. Other forms of standardisation are
possible; for example, the data may be transformed logarithmically before a principal
components analysis – Baxter (1995) compares several approaches.

Mean correction Equation (9.11) relates the principal components ξ to the observed
random vector x. In general, ξ will not have zero mean. In order for the principal
components to have zero mean, they should be defined as

ξ D AT .x � µ/ (9.12)

for mean µ. In practice µ is the sample mean, m.

Approximation of data samples We have seen that in order to represent data in a
reduced dimension, we retain only the first few principal components (the number is
usually determined by the data). Thus, a data vector x is projected onto the first r (say)
eigenvectors of the sample covariance matrix, giving

ξ r D AT
r .x � µ/ (9.13)

where Ar D [a1; : : : ; ar ] is the pð r matrix whose columns are the first r eigenvectors
of the sample covariance matrix and ξ r is used to denote the measurements on variables
¾1; : : : ; ¾r (the first r principal components).
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In representing a data point as a point in a reduced dimension, there is usually an error
involved and it is of interest to know what the point ξ r corresponds to in the original
space.

The variable ξ is related to x by equation (9.12) (AT D A�1), giving

x D Aξ C µ

If ξ D .ξ r ; 0/T , a vector with its first r components equal to ξ r and the remaining ones
equal to zero, then the point corresponding to ξ r , namely xr , is

xr D A

�
ξ r

0

�
C µ

D Ar ξ r C µ

and by (9.13),
xr D ArA

T
r .x � µ/C µ

The transformation ArA
T
r is of rank r and maps the original data distribution to a

distribution that lies in an r-dimensional subspace (or on a manifold of dimension r)
in R

p. The vector xr is the position the point x maps down to, given in the original
coordinate system (the projection of x onto the space defined by the first r principal
components); see Figure 9.6.

Singular value decomposition In Appendix C, the result is given that the right sin-
gular vectors of a matrix Z are the eigenvectors of ZT Z. The sample covariance matrix
(unbiased estimate) can be written in such a form

1

n � 1

nX
iD1

.xi �m/.xi �m/T D 1

n � 1
QXT QX

�������������

�
�
�
�
�
��

žx

xr

¾1¾2

¼1 x1 xr1

¼2

x2

xr2

�
�
�

Figure 9.6 Reconstruction from projections: x is approximated by x r using the first principal
component
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where QX D X � 1mT , X is the n ð p data matrix, m is the sample mean and 1 is an
n-dimensional vector of ones. Therefore, if we define

Z D 1p
n � 1

QX D 1p
n � 1

.X � 1mT /

then the right singular vectors of Z are the eigenvectors of the covariance matrix and the
singular values are standard deviations of the principal components. Furthermore, setting

Z D 1p
n � 1

QXD�1 D 1p
n � 1

.X � 1mT /D�1

where D is a p ð p diagonal matrix with Di i equal to the square root of the variance
of the original variables, then the right singular vectors of Z are the eigenvectors of the
correlation matrix. Thus, given a data matrix, it is not necessary to form the sample
covariance matrix in order to determine the principal components.

If the singular value decomposition of X� 1mT is USV T , where U D [u1; : : : ;up],
S D diag.¦1; : : : ; ¦p/ and V D [v1; : : : ; v p], then the n ð r matrix Zr defined by

Zr D U r�rV
T
r C 1mT

where U r D [u1; : : : ;ur ], Sr D diag.¦1; : : : ; ¦r / and V r D [v1; : : : ; vr ], is the projection
of the original data points onto the hyperplane spanned by the first r principal components
and passing through the mean.

Selection of components There have been many methods proposed for the selection
of components in a principal components analysis. There is no single best method as the
strategy to adopt will depend on the objectives of the analysis: the set of components
that gives a good fit to the data (in a predictive analysis) will differ from that which pro-
vides good discrimination (predictive analysis). Ferré (1995) and Jackson (1993) provide
comparative studies. Jackson finds the broken stick method one of the most promising,
and simple to implement. Observed eigenvectors are considered interpretable if their
eigenvalues exceed a threshold based on random data: the kth eigenvector is retained if
its eigenvalue ½k exceeds

Pp
iDk.1= i/. Prakash and Murty (1995) consider a genetic al-

gorithm approach to the selection of components for discrimination. However, probably
the most common approach is the percentage of variance method, retaining eigenval-
ues that account for approximately 90% of the variance. Another rule of thumb is to
retain those eigenvectors with eigenvalues greater than the average (greater than unity
for a correlation matrix). For a descriptive analysis, Ferré recommends a rule of thumb
method. However, if we do use another approach then we must ask ourselves why we
are performing a principal components analysis in the first place. There is no guarantee
that a subset of the variables derived will be better for discrimination than a subset of
the original variables.

Interpretation The first few principal components are the most important ones, but it
may be very difficult to ascribe meaning to the components. One way this may be done
is to consider the eigenvector corresponding to a particular component and select those
variables for which the coefficients in the eigenvector are relatively large in magnitude.
Then a purely subjective analysis takes place in which the user tries to see what these
variables have in common.
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An alternative approach is to use an algorithm for orthogonal rotation of axes such as
the varimax algorithm (Kaiser, 1958, 1959). This rotates the given set of principal axes so
that the variation of the squared loadings for a given component is large. This is achieved
by making the loadings large on some variables and small on others, though unfortunately
it does not necessarily lead to more easily interpretable principal components. Jackson
(1991) considers techniques for the interpretation of principal components, including
rotation methods.

Discussion
Principal components analysis is often the first stage in a data analysis and is often
used to reduce the dimensionality of the data while retaining as much as possible of the
variation present in the original dataset.

Principal components analysis takes no account of groups within the data (i.e. it is
unsupervised). Although separate groups may emerge as a result of projecting data to
a reduced dimension, this is not always the case and dimension reduction may obscure
the existence of separate groups. Figure 9.7 illustrates a data set in two dimensions with
two separate groups and the principal component directions. Projection onto the first
eigenvector will remove group isolation, while projection onto the second retains group
separation. Therefore, although dimension reduction may be necessary, the space spanned
by the vectors associated with the first few principal components will not necessarily be
the best for discrimination.

Summary
The stages in performing a principal components analysis are:

1. form the sample covariance matrix or standardise the data by forming the correlation
matrix;

2. perform an eigendecomposition of the correlation matrix.
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Figure 9.7 Two-group data and the principal axes
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Alternatively:

1. standardise the data matrix;

2. perform a singular value decomposition of the standardised data matrix.

For a reduced-dimension representation of the data, project the data onto the first m
eigenvectors, where, for example, m is chosen using a criterion based on the proportion
of variance accounted for.

9.3.2 Karhunen–Loève transformation

A separate section on the Karhunen–Loève transformation, in addition to that on prin-
cipal components analysis, may seem superfluous at first sight. After all, the Karhunen–
Loève transformation is, in one of its most basic forms, identical to principal compo-
nents analysis. It is included here because there are variants of the method, occurring in
the pattern recognition literature under the general heading of Karhunen–Loève expan-
sion, that incorporate class information in a way in which principal components analysis
does not.

The Karhunen–Loève expansion was originally developed for representing a non-
periodic random process as a series of orthogonal functions with uncorrelated coefficients.
If x.t/ is a random process on [0; T ], then x.t/ may be expanded as

x.t/ D
1X

nD1

xn�n.t/ (9.14)

where the xn are random variables and the basis functions � are deterministic functions
of time satisfying

Z T

0
�n.t/�

Ł
m.t/ D Žmn

where �Łm is the complex conjugate of �m . Define a correlation function

R.t; s/ D E[x.t/xŁ.s/]

D E

"X
n

X
m

xn xŁm�n.t/�
Ł
m.s/

#

D
X

n

X
m

�n.t/�
Ł
m.s/E[xn xŁm]

If the coefficients are uncorrelated (E[xn xŁm] D ¦ 2
n Žmn) then

R.t; s/ D
X

n

¦ 2
n �n.t/�

Ł
n .s/

and multiplying by �n.s/ and integrating gives
Z

R.t; s/�n.s/ds D ¦ 2
n �n.t/
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Thus, the functions �n are the eigenfunctions of the integral equation, with kernel R.t; s/
and eigenvalues ¦ 2

n . We shall not develop the continuous Karhunen–Loève expansion here
but proceed straight away to the discrete case.

If the functions are uniformly sampled, with p samples, then (9.14) becomes

x D
1X

nD1

xnφn (9.15)

and the integral equation becomes
Rφk D ¦ 2

k φk

where R is now the p ð p matrix with .i; j/th element Ri j D E[xi xŁj ]. The above
equation has only p distinct solutions for φ and so the summation in (9.15) must be
truncated to p. The eigenvectors of R are termed the Karhunen–Loève coordinate axes
(Devijver and Kittler, 1982).

Apart from the fact that we have assumed zero mean for the random variable x,
this derivation is identical to that for principal components. Other ways of deriving the
Karhunen–Loève coordinate axes are given in the literature, but these correspond to other
views of principal components analysis, and so the end result is the same.

So where does the Karhunen–Loève transformation differ from principal coordinates
analysis in a way which warrants its inclusion in this book? Strictly it does not, except
that in the pattern recognition literature various methods for linearly transforming data to
a reduced-dimension space defined by eigenvectors of a matrix of second-order statisti-
cal moments have been proposed under the umbrella term ‘Karhunen–Loève expansion’.
These methods could equally be referred to using the term ‘generalised principal com-
ponents’ or something similar.

The properties of the Karhunen–Loève expansion are identical to those of the prin-
cipal components analysis. It produces a set of mutually uncorrelated components, and
dimensionality reduction can be achieved by selecting those components with the largest
variances. There are many variants of the basic method that incorporate class information
or that use different criteria for selecting features.

KL1: SELFIC – Self-featuring information-compression
In this procedure, class labels are not used and the Karhunen–Loève feature transforma-
tion matrix is A D [a1; : : : ; a p], where a j are the eigenvectors of the sample covariance
matrix, O�, associated with the largest eigenvalues (Watanabe, 1985),

O�ai D ½iai

and ½1 ½ Ð Ð Ð ½ ½p.
This is identical to principal components analysis and is appropriate when class labels

are unavailable (unsupervised learning).

KL2: Within-class information
If class information is available for the data, then second-order statistical moments can
be calculated in a number of different ways. This leads to different Karhunen–Loève
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coordinate systems. Chien and Fu (1967) propose using the average within-class covari-
ance matrix, SW , as the basis of the transformation. The feature transformation matrix,
A, is again the matrix of eigenvectors of SW associated with the largest eigenvalues.

KL3: Discrimination information contained in the means
Again, the feature space is constructed from eigenvectors of the averaged within-class
covariance matrix, but discriminatory information contained in the class means is used to
select the subset of features that will be used in further classification studies (Devijver and
Kittler, 1982). For each feature (with eigenvector a j of SW and corresponding eigenvalue
½ j ) the quantity

J j D
aT

j SBa j

½ j

where SB is the between-class scatter matrix, is evaluated and the coordinate axes ar-
ranged in descending order of J j .

KL4: Discrimination information contained in the variances
Another means of ordering the feature vectors (eigenvectors a j of SW ) is to use the
discriminatory information contained in class variances (Kittler and Young, 1973). There
are situations where class mean information is not sufficient to separate the classes
and the measure given here uses the dispersion of class-conditional variances. The
variance of feature j in the i th class weighted by the prior probability of class !i is
given by

½i j D p.!i /a
T
j
O�ia j

where O�i is the sample covariance matrix of class !i , and, defining ½ j D
PC

iD1 ½i j , then
a discriminatory measure based on the logarithmic entropy function is

Hj D �
CX

iD1

½i j

½ j
log

�
½i j

½ j

�

The axes giving low entropy values are selected for discrimination.
A further measure that uses the variances is

J j D
CY

iD1

½i j

½ j

Both of the above measures reach their maximum when the factors ½i j=½ j are identical,
in which case there is no discriminatory information.

KL5: Compression of discriminatory information contained in class means
In the method KL3, the Karhunen–Loève coordinate axes are determined by the eigen-
vectors of the averaged within-class covariance matrix and the features that are used
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to represent these data in a reduced-dimension space are determined by ordering the
eigenvectors in terms of descending J j . The quantity J j is a measure used to rep-
resent the discriminatory information contained in the class means. This discrimina-
tory information could be spread over all Karhunen–Loève axes and it is difficult to
choose an optimum dimension for the transformed feature space from the values of
J j alone.

The approach considered here (Kittler and Young, 1973) recognises the fact that
in a C-class problem, the class means lie in a space of dimension at most C � 1,
and seeks to find a transformation to a space of at most C � 1 giving uncorrelated
features.

This is performed in two stages. First of all, a transformation is found that transforms
the data to a space in which the averaged within-class covariance matrix is diagonal.
This means that the features in the transformed space are uncorrelated, but also any
further orthonormal transformation will still produce uncorrelated features for which the
class-centralised vectors are decorrelated.

If SW is the average within-class covariance matrix in the original data space, then
the transformation that decorrelates the class-centralised vectors is Y D UT X, where U

is the matrix of eigenvectors of SW and the average within-class covariance matrix in
the transformed space is

S0W D UT SW U D �

where � D diag.½1; : : : ; ½n/ is the matrix of variances of the transformed features (eigen-
values of SW ). If the rank of SW is less than p (equal to r , say), then the first stage
of dimension reduction is to transform to the r-dimensional space by the transformation
UT

r X, U r D [u1; : : : ;ur ], so that

S 0W D UT
r SW U r D �r

where �r D diag.½1; : : : ; ½r /. If we wish the within-class covariance matrix to be invari-
ant to further orthogonal transformations, then it should be the identity matrix. This can

be achieved by the transformation Y D �
� 1

2
r UT

r X so that

S 0W D �
� 1

2
r UT

r SW Ur�
� 1

2
r D I

This is the first stage of dimension reduction, and is illustrated in Figure 9.8. It transforms
the data so that the average within-class covariance matrix in the new space is the identity
matrix. In the new space the between-class covariance matrix, S 0B , is given by

S0B D �
� 1

2
r UT

r SBUr�
� 1

2
r

where SB is the between-class covariance matrix in the data space. The second stage
of the transformation is to compress the class mean information; i.e. find the orthogo-
nal transformation that transforms the class mean vectors to a reduced dimension. This
transformation, V , is determined by the eigenvectors of S 0B

S0BV D V Q�
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x1

x2

y1

y2

Figure 9.8 Illustration of the first stage of dimension reduction for four groups represented by

contours xT O��1
i x D constant

where Q� D diag.Q½1; : : : ; Q½r / is the matrix of eigenvalues of S 0B . There are at most
C � 1 non-zero eigenvalues and so the final transformation is Z D V T

¹ Y , where V ¹ D
[v1; : : : ; v¹] and ¹ is the rank of S0B . The optimal feature extractor is therefore

Z D AT X

where the p ð ¹ linear transformation A is given by

AT D V T
¹ �
� 1

2
r U T

r

In this transformed space
S00W D V T

¹ S0W V ¹ D V T
¹ V ¹ D I

S 00B D V T
¹ S0BV ¹ D Q�¹

where Q�¹ D diag.Q½1; : : : ; Q½¹/. Thus, the transformation makes the average within-class
covariance matrix equal to the identity and the between-class covariance matrix equal to
a diagonal matrix (see Figure 9.9). Usually, all C� 1 features are selected, but these can
be ordered according to the magnitude of Q½i and those with largest eigenvalues selected.
The linear transformation can be found by performing two eigenvector decompositions,
first of SW and then of S 0B , but an alternative approach based on a QR factorisation can
be used (Crownover, 1991).

This two-stage process gives a geometric interpretation of linear discriminant analysis,
described in Chapter 4. The feature vectors (columns of the matrix A) can be shown to

��

z1

z2

Figure 9.9 Second stage of dimension reduction: orthogonal rotation and projection to diagonalise
the between-class covariance matrix
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be eigenvectors of the generalised symmetric eigenvector equation (Devijver and Kittler,
1982)

SBa D ½SW a

The first stage of the transformation is simply a rotation of the coordinate axes fol-
lowed by a scaling (assuming that SW is full rank). The second stage comprises a
projection of the data onto the hyperplane defined by the class means in this transformed
space (of dimension at most C � 1), followed by a rotation of the axes. If we are to
use all C � 1 coordinates subsequently in a classifier, then this final rotation is irrelevant
since any classifier that we construct should be independent of an orthogonal rotation of
the axes. Any set of orthogonal axes within the space spanned by the eigenvectors of
S0B with nonzero eigenvalues could be used. We could simply orthogonalise the vectors
m01 �m0; : : : ;m0C�1 �m0, where m0i is the mean of class !i in the space defined by the
first transformation and m0 is the overall mean. However, if we wish to obtain a reduced-
dimension display of the data, then it is necessary to perform an eigendecomposition of
S0B to obtain a set of coordinate axes that can be ordered using the values of Q½i , the
eigenvalues of S0B .

Example
Figures 9.10 and 9.11 give two-dimensional projections for simulated oil pipeline data.
This synthetic data set models non-intrusive measurements on a pipeline transporting a
mixture of oil, water and gas. The flow in the pipe takes one out of three possible config-
urations: horizontally stratified, nested annular or homogeneous mixture flow. The data
lie in a 12-dimensional measurement space. Figure 9.11 shows that the Karhunen–Loève
transformation, KL5, separates the three classes into (approximately) three spherical clus-
ters. The principal components projection (Figure 9.10) does not separate the classes, but
retains some of the structure (for example, class 3 – denoted � – comprises several
subgroups).

Discussion
All of the above methods have certain features in common. All produce a linear trans-
formation to a reduced-dimension space. The transformations are determined using an
eigenvector decomposition of a matrix of second-order statistical moments and produce
features or components in the new space that are uncorrelated. The features in the new
space can be ordered using a measure of discriminability (in the case of labelled data)
or approximation error. These methods are summarised in Table 9.1.

We could add to this list the method of common principal components that also
determines a coordinate system using matrices of second-order statistical moments. A
reduced-dimension representation of the data could be achieved by ordering the principal
components using a measure like Hj or J j in Table 9.1.

The final method (KL5), derived from a geometric argument, produces a transforma-
tion that is identical to the linear discriminant transformation (see Chapter 4), obtained
by maximising a discriminability criterion. It makes no distributional assumptions, but a
nearest class mean type rule will be optimal if normal distributions are assumed for the
classes.
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Figure 9.10 Projection onto the first two principal components for the oil pipeline data
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Figure 9.11 Projection onto the two linear discriminant directions for the oil pipeline data

9.3.3 Factor analysis

Factor analysis is a multivariate analysis technique that aims to represent a set of variables
in terms of a smaller underlying set of variables called factors. Its origin dates back a
full the century to work by Charles Spearman, who was concerned with understanding
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Table 9.1 Summary of linear transformation methods of feature
extraction

Method Eigenvector Ordering function
decomposition matrix

KL1 (PCA) O� ½ j

KL2 SW ½ j

KL3 SW aT
j SBa j=½ j

KL4 – (a) SW Hj D �
CX

iD1

½i j

½ j
log

�
½i j

½ j

�

KL4 – (b) SW Jj D aT
j SBa j=½ j

KL5 SW , SB ½ j

intelligence, and the technique was developed for analysing the scores of individuals on a
number of aptitude tests. Factor analysis has been developed mainly by psychologists and
most applications have been in the areas of psychology and the social sciences though
others include medicine, geography and meteorology.

Factor analysis is perhaps the most controversial of the multivariate methods and
many of the drawbacks to the approach are given by Chatfield and Collins (1980) who
recommend that it should not be used in most practical situations. One criticism has been
of the subjectivity involved in interpreting the results of a factor analysis and that one of
the reasons for the popularity of the method is that ‘it allows the experimenter to impose
his preconceived ideas on the data’ (Reyment et al., 1984, Chapter 10). It has also been
suggested that factor analysis produces a useful result only in cases where a principal
component analysis would have yielded the same result. Whether factor analysis is worth
the time to understand it and to carry it out (Hills, 1977) is something for you to judge,
but it is a technique which has a considerable amount of support among statisticians.

Given these objections (and there are many more – we shall list some of the drawbacks
later on), why do we include a section on factor analysis? Can we not be accused of
supporting the myth that factor analysis is actually of some use? Certainly we can; there
may be other tools that are more reliable than factor analysis and give the same results.
Nevertheless, factor analysis may be appropriate for some particular problems. Another
reason for including a short section on factor analysis is to highlight the differences from
principal components analysis.

Factor analysis, like principal components analysis, is a variable-directed technique
and has sometimes been confused with principal components analysis. Even though
both techniques often yield solutions that are very similar, factor analysis differs from
principal components analysis in several important respects. The main one is that, whilst
principal components analysis is concerned with determining new variables that account
of the maximum variance of the observed variables, in factor analysis the factors are
chosen to account for the correlations between variables, rather than the variance. Another
difference is that in principal components, the new variables (the principal components)
are expressed as a linear function of the observed variables, whilst in factor analysis the
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observed variables are expressed as a linear combination of the unobserved underlying
variables or factors. Further differences and similarities will be made clear in the analysis
of the following sections.

The factor analysis model
Suppose that we have p variables x1; : : : ; x p. The factor analysis model (Harman, 1976)
assumes that each variable consists of two parts: a common part and a unique part. Specif-
ically, we assume that there are m underlying (or latent) variables or factors ¾1; : : : ; ¾m ,
so that

xi � ¼i D
mX

kD1

½ik¾k C ži i D 1; : : : ; p (9.16)

where µ is the mean of the vector .x1; : : : ; x p/
T . Without loss of generality, we shall

take µ to be zero. The variables ¾k are sometimes termed the common factors since they
contribute to all observed variables xi , and ži are the unique or specific factors, describing
the residual variation specific to the variable xi . The weights ½ik are the factor loadings.
Equation (9.16) is usually written as x D �ξ C ε.

In addition, the basic model makes the following assumptions

1. The specific factors, ži , are uncorrelated with each other and with the common factors,
¾k ; that is, E[εεT ] D � D diag. 1; : : : ;  p/ and E[εξ T ] D 0.

2. The common factors have zero mean and unit variance. We may make the unit variance
assumption since the columns of the p ðm matrix �, with .i; k/th element ½ik , may
be scaled arbitrarily.

With these assumptions we model the data covariance matrix � as

� D ���T C�

If, further, we assume that the common factors themselves are independent of one another,
then � D I and

� D ��T C� (9.17)

Equation (9.17) expresses the covariance matrix of the observed variables as the sum of
two terms: a diagonal matrix � and a matrix ��T that accounts for the covariance in
the observed variables. In practice, we use the sample covariance matrix or the sample
correlation matrix R in place of �. However, a factorisation of the form (9.17) does not
necessarily exist, and even if it does it will not be unique. If T is an m ðm orthogonal
matrix, then

.�T /.�T /T D ��T

Thus, if � is a solution for the factor loadings, then so is �T , and even though these
matrices are different, they can still generate the same covariance structure. Hence, it is
always possible to rotate the solution to an alternative ‘better’ solution. The matrix ��T

also contributes to the variance of the observed variables,

var.xi / D
mX

kD1

½2
ik C var.ži /
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with the contribution to the variance of the variable xi due to the factor loadings being
termed the common variance or communality and var.ži / the unique variance of xi .

In addition to the parameters of � and � that must be obtained, the number of factors
is not usually known in advance, though the experimenter may wish to find the smallest
value of m for which the model fits the data. In practice, this is usually done by increasing
m sequentially until a sufficient fit is obtained.

The main theme of this chapter is that of data reduction. In principal components
analysis we may project a data vector onto the first few eigenvectors of the data covariance
matrix to give the component scores (equation (9.13))

ξ r D AT
r .x � µ/

In factor analysis, the situation is different. The basic equation expresses the observed
variables x in terms of the underlying variables ξ

x D �ξ C ε

For m < p, it is not possible to invert this to express ξ in terms of x and hence calculate
factor scores. There are methods for estimating factor scores for a given individual
measurement x, and these will be considered later in this section. However, this is yet
one more difficulty which makes factor analysis less straightforward to use than principal
components analysis.

We summarise the basic factor analysis approach in the following steps:

1. Given a set of observations, calculate the sample covariance matrix and perform a
factor analysis for a specified value of m, the number of factors.

2. Carry out a hypothesis test to see if the data fit the model (Dillon and Goldstein,
1984). If they do not, return to step 1.

3. Rotate the factors to give as maximum loading on as few factors as possible for each
variable.

4. (This step may be omitted if inappropriate.) Group variables under each factor and
interpret the factors.

5. Estimate the factor scores, giving a representation of the data in a reduced dimension.

Techniques for performing each of these steps will be discussed in subsequent sections.
We conclude this section with a summary in Table 9.2 of the main differences between
principal components analysis and factor analysis.

Factor solutions
In this section, we present two of the available methods of factor extraction. There are
other methods available, and a summary of the properties of these different techniques
may be found in texts on multivariate analysis (for example, Dillon and Goldstein, 1984).
In general, these different methods will give different solutions that depend on various
properties of the data, including data sample size, the number of observation variables
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Table 9.2 Comparison between factor analysis and principal components analysis

Principal components analysis Factor analysis

orthogonal set of vectors not orthogonal

can easily determine component scores factor scores must be estimated

components are unique factors are not unique

variable-directed variable-directed

no underlying statistical model model for covariance or correlation matrix

explains variance structure covariance structure

pointless if observed variables are
uncorrelated

pointless if observed variables are
uncorrelated

scale-dependent maximum likelihood estimation overcomes
scaling problem

nested solutions not nested solutions

and the magnitude of their communalities. However, for a large number of observations
and variables, these methods tend to give similar results, though at the other extreme it
is not so clear which is the ‘best’ method.

The principal factor method chooses the first factor to account for the largest possible
amount of the total communality. The second factor is chosen to account for as much
as possible of the remaining total communality, and so on. This is equivalent to finding
the eigenvalues and eigenvectors of the reduced correlation matrix, RŁ, defined as the
correlation matrix R with diagonal elements replaced by the communalities. This is the
matrix to factor:

RŁ D R �� D ���

This of course assumes that we know the communalities. There are several methods
for estimating the communalities. One is to estimate the communality of the i th vari-
able by the squared multiple correlation of the variable Xi with the remaining p � 1
variables.

Once the communalities have been estimated we may perform an eigenanalysis of
RŁ and determine �. This may then be used (for a predetermined number of fac-
tors) to estimate new communalities and a new RŁ calculated. The procedure iter-
ates until convergence of communality estimates. However, there is no guarantee that
the procedure will converge. Also, it could lead to negative estimates of the specific
variances.

The principal factor method, like principal components analysis, makes no assump-
tion as to the underlying distribution of the data. The maximum likelihood method as-
sumes a multivariate normal distribution with covariance matrix �. The sample co-
variance matrix S is Wishart-distributed and the log-likelihood function we seek to
maximise is

log.L/ D C � n

2
flog j�j C Tr.��1S/g
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where C is a constant independent of �. This is equivalent to minimising

M D Tr.��1S/� log j��1j
with respect to the parameters (�;� and �) of � D ���C�.

We shall not discuss the details of the method. These may be found in (Lawley and
Maxwell, 1971; Jöreskog, 1977). However, we do note two advantages of the maximum
likelihood method of estimation over the principal factor method. The first is that the
maximum likelihood method enables statistical tests of significance for the number of
factors to be carried out. The second advantage is that the estimates of the factor loadings
are scale-invariant. Therefore we do not have the problem of having to standardise the
variables as we did in principal components analysis. For example, the factor loadings
yielded by an analysis of the sample correlation matrix differ from those of the sample
covariance matrix of the data by a factor 1=

p
sii .

Rotation of factors
We showed earlier that the model is invariant to an orthogonal transformation of the
factors. That is, we may replace the matrix of factor loadings, �, by �T , where T is
a m ð m orthogonal matrix, without changing the approximation of the model to the
covariance matrix. This presents us with a degree of flexibility that allows us to rotate
factors and may help in their interpretation.

The main aim of rotation techniques is to rotate the factors so that the variables have
high loadings on a small number of factors and very small loadings on the remaining
factors. There are two basic approaches to factor rotation: orthogonal rotation in which the
transformed factors are still independent (so that the factor axes are perpendicular after
rotation), and oblique rotation in which the factors are allowed to become correlated (and
the factor axes are not necessarily orthogonal after rotation). An example of the former
type is the varimax rotation (Kaiser, 1958, 1959). There are various methods for oblique
rotation, including promax and oblimin (Nie et al., 1975).

Estimating the factor scores
In principal components analysis, the principal components are obtained by a linear
transformation of the original variables. This linear transformation is determined by the
eigenvectors of the covariance matrix or the correlation matrix. Hence it is straightforward
to obtain a reduced-dimension representation of an observation. It is also possible to
‘invert’ the process and obtain an approximation to the original variables given a subset of
the principal components. In factor analysis, the original variables are described in terms
of the factors (see Figure 9.12) plus an error term. Therefore, to obtain the factor scores
this process must be reversed. There are several methods for obtaining the factor scores
(Jackson, 1991). One is based on multiple regression analysis (Dillon and Goldstein,
1984). We suppose that the factor scores are a linear combination, denoted by the matrix
A, of the vector of observations, x D .x1; : : : ; x p/

T ,

ξ D AT x

Post-multiplying by xT , taking expectations and noting that E[xxT ] D R, E[ξxT ] D �T

gives
�T D AT R or AT D �T R�1
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Figure 9.12 Factor analysis and principal components analysis models: PC – principal component
variables; CF – common factors

so that an estimate of the factor scores, Oξ is

Oξ D �R�1x

In practice, the matrix R would be replaced by its sample-based estimate.

How many factors?
So far, we have discussed techniques for estimating the factor loadings and factor scores,
but we have not answered the very important question as to how many factors to choose.
For the principal factor method, a simple criterion is to choose the number of factors to
be equal to the number of eigenvalues of the reduced correlation matrix that are greater
than unity.

With the maximum likelihood solution, a more formal procedure may be applied. The
null hypothesis is that all the population variance has been extracted by the postulated
number of factors. The test statistic is (Everitt and Dunn, 1991)

�
log
j�j
jSj C TrfS��1g � p

��
n � 1� 1

6
.2p C 5/� 2

3
m

�

which is asymptotically distributed as �2 with ..p�m/2� p�m/=2 degrees of freedom.
If, at a specified probability level, the value of �2 is significant, then we conclude that
more factors are needed to account for the correlations in the observed variables.

Discussion
Factor analysis is a very widely used multivariate technique that attempts to discover the
relationships between a set of observed variables by expressing those variables in terms
of a set of underlying, unobservable variables or factors. As we have presented it, it is
an exploratory data analysis technique, though another form that we shall not describe
is confirmatory factor analysis. This is used when the experimenter wishes to see if the
data fit a particular model.

Factor analysis is a much criticised method and some of the objections to its use are:

1. It is complicated. It has been suggested that in many of the situations when fac-
tor analysis gives reasonable results, it is only because it is simulating a principal
components analysis, which would be simpler to perform.
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2. It requires a large number if assumptions. Even the concept of underlying, unobserv-
able variables may be questionable in many applications.

3. There is no unique solution. There are many methods of obtaining the factor load-
ings. Once these have been obtained, the factors may be rotated, giving yet different
solutions and a different interpretation. This is where factor analysis has been heavily
criticised as the experimenter can be accused of rotating the factors until the factors
that are sought are arrived at.

4. As a method of dimension reduction it has the disadvantage that the factor scores are
not easily obtained. Unlike in principal components analysis where the component
scores may be obtained as a linear function of the observed variable values, the basic
factor analysis equation cannot be inverted.

5. The number of factors is unknown and a test must be carried out to see if the assumed
model is ‘correct’. Also, because of the arbitrary rotation of the factors, the solution
for the factors (as determined by the loadings) for an m-factor model is not a subset
of the solution for the factors for an (m C 1)-factor model (i.e. the solutions are not
nested).

The main point to make is that the model should not be taken too seriously. We
would recommend that in most practical situations it is better to use another multivariate
analysis technique. For data reduction, leading to subsequent analysis, we recommend that
if you require an unsupervised linear technique then you should use principal components
analysis. It is much simpler and will do just as well.

Principal components analysis and factor analysis are not the same procedures al-
though there has been some confusion between the two types of analysis, and this is not
helped by some statistical software packages (a description of these packages is given
by Jackson, 1991). Sometimes the terms ‘factor analysis’ and ‘principal components
analysis’ are used synonymously.

9.3.4 Example application study

The problem Monitoring changes in land use for planners and government officials (Li
and Yeh, 1998).

Summary The application of remote sensing to inventory land resources and to evaluate
the impacts of urban developments is addressed. Remote sensing is considered as a fast
and efficient means of assessing such developments when detailed ‘ground truth’ data are
unavailable. The aim is to determine the type, amount and location of land use change.

The data The data consist of satellite images, measured in five wavebands, from two
images of the same region measured five years apart. A 10-dimensional feature vector
is constructed (consisting of pixel measurements in the five wavebands over the two
images) and data gathered over the whole region.

The model A standard principal components analysis is performed.
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Training procedure Each variable is standardised to zero mean and unit variance and
a principal components analysis performed. The first few principal components account
for 97% of the variance. The data are projected onto the subspace characterised by
the principal components, and subregions (identified from a compressed PCA image)
labelled manually according to land use change (16 classes of land use, determined by
field data).

9.3.5 Further developments

There are various generalisations of the basic linear approaches to feature extraction
described in this section. Principal components analysis is still an interesting and active
area of research. Common principal components analysis (Flury, 1988), is a generalisation
of principal components analysis to the multigroup situation. The common principal
components model assumes that the covariance matrices of each group or class, �i , can
be written

�i D β�iβ
T

where �i D diag.½i1; : : : ; ½i p/, the diagonal matrix of eigenvalues of the i th group.
Thus, the eigenvectors β are common between groups, but the �i are different.

There have been several developments to nonlinear principal components analysis,
each taking a particular feature of the linear methods and generalising it. The work
described by Gifi (1990) applies primarily to categorical data. Other extensions are those
of principal curves (Hastie and Stuetzle, 1989; Tibshirani, 1992), and nonlinear principal
components based on radial basis functions (Webb, 1996) and kernel functions (Schölkopf
et al., 1999).

Approaches to principal components analysis have been developed for data that may
be considered as curves (Ramsay and Dalzell, 1991; Rice and Silverman, 1991; Silver-
man, 1995). Principal components analysis for categorical data and functions is discussed
by Jackson (1991), who also describes robust procedures.

Independent components analysis (Comon, 1994; Hyvärinen and Oja, 2000) aims
to find a linear representation of non-Gaussian data so that the components are statis-
tically independent (or as independent as possible). A linear latent variable model is
assumed

x D As

where x are the observations, A is a mixing matrix and s is the vector of latent vari-
ables. Given T realisations of x, the problem is to estimate the mixing matrix A and
the corresponding realisations of s, under the assumption that the components, si , are
statistically independent. This technique has found widespread application to problems
in signal analysis (medical, financial), data compression, image processing and telecom-
munications.

Further developments of the linear factor model include models that are nonlinear
functions of the latent variables, but still linear in the weights or factor loadings (Etezadi-
Amoli and McDonald, 1983). A neural network approach, termed generative topographic
mappings, has been developed by Bishop et al. (1998).
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9.3.6 Summary

All the procedures described in this section construct linear transformations based on
matrices of first- and second-order statistics:

1. principal components analysis – an unsupervised method based on a correlation or
covariance matrix;

2. Karhunen–Loève transformation – an umbrella term to cover transformations based
on within- and between-class covariance matrices;

3. factor analysis – models observed variables as a linear combination of underlying or
latent variables.

Algorithms for their implementation are readily available.

9.4 Multidimensional scaling

Multidimensional scaling is a term that is applied to a class of techniques that analyses
a matrix of distances or dissimilarities (the proximity matrix) in order to produce a rep-
resentation of the data points in a reduced-dimension space (termed the representation
space).

All of the methods of data reduction presented in this chapter so far have analysed
the n ð p data matrix X or the sample covariance or correlation matrix. Thus multidi-
mensional scaling differs in the form of the data matrix on which it operates. Of course,
given a data matrix, we could construct a dissimilarity matrix (provided we define a suit-
able measure of dissimilarity between objects) and then proceed with an analysis using
multidimensional scaling techniques. However, data often arise already in the form of
dissimilarities and so there is no recourse to the other techniques. Also, in the methods
previously discussed, the data-reducing transformation derived has, in each case, been a
linear transformation. We shall see that some forms of multidimensional scaling permit
a nonlinear data-reducing transformation (if indeed we do have access to data samples
rather than proximities).

There are many types of multidimensional scaling, but all address the same basic
problem: given an n ð n matrix of dissimilarities and a distance measure (usually Eu-
clidean), find a configuration of n points x1; : : : ; xn in R

e so that the distance between
a pair of points is close in some sense to the dissimilarity. All methods must find the
coordinates of the points and the dimension of the space, e. Two basic types of mul-
tidimensional scaling (MDS) are metric and non-metric MDS. Metric MDS assumes
that the data are quantitative and metric MDS procedures assume a functional relation-
ship between the interpoint distances and the given dissimilarities. Non-metric MDS
assumes that the data are qualitative, having perhaps ordinal significance, and non-metric
MDS procedures produce configurations that attempt to maintain the rank order of the
dissimilarities.

Metric MDS appears to have been introduced into the pattern recognition literature by
Sammon (1969). It has been developed to incorporate class information and has also been
used to provide nonlinear transformations for dimension reduction for feature extraction.
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We begin our discussion with a description of one form of metric MDS, namely
classical scaling.

9.4.1 Classical scaling

Given a set of n points in p-dimensional space, x1; : : : ; xn , it is straightforward to cal-
culate the Euclidean distance between each pair of points. Classical scaling (or principal
coordinates analysis) is concerned with the converse problem: given a matrix of dis-
tances, which we assume are Euclidean, how can we determine the coordinates of a set
of points in a dimension e (also to be determined from the analysis)? This is achieved
via a decomposition of the n ð n matrix T , the between-individual sums of squares and
products matrix

T D XXT (9.18)

where X D [x1; : : : ; xn]T is the n ð p matrix of coordinates. The distance between two
individuals i and j is

d2
i j D Tii C Tj j � 2Ti j (9.19)

where

Ti j D
pX

kD1

xik x jk

If we impose the constraint that the centroid of the points xi ; i D 1; : : : ; p, is at the
origin, then (9.19) may be inverted to express the elements of the matrix T in terms of
the dissimilarity matrix, giving

Ti j D � 1
2 [d2

i j � d2
i: � d2

: j C d2
::] (9.20)

where

d2
i: D

1

n

nX
jD1

d2
i j ; d2

: j D
1

n

nX
iD1

d2
i j ; d2

:: D
1

n2

nX
iD1

nX
jD1

d2
i j

Equation (9.20) allows us to construct T from a given n ð n dissimilarity matrix D

(assuming that the dissimilarities are Euclidean distances). All we need to do now is to
factorise the matrix T to make it of the form (9.18). Since it is a real symmetric matrix,
T can be written in the form (see Appendix C)

T D U�UT

where the columns of U are the eigenvectors of T and � is a diagonal matrix of
eigenvalues, ½1; : : : ; ½n . Therefore we take

X D U�
1
2

as our matrix of coordinates. If the matrix of dissimilarities is indeed a matrix of Euclidean
distances between points in R

p, then the eigenvalues may be ordered

½1 ½ Ð Ð Ð ½ ½n D 0; ½pC1 D Ð Ð Ð D 0
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If we are seeking a representation in a reduced dimension then we would use only those
eigenvectors associated with the largest eigenvalues. Methods for choosing the number
of eigenvalues were discussed in relation to principal components analysis. Briefly, we
choose the number r so that

r�1X
iD1

½i < k
nX

iD1

½i <

rX
iD1

½i

for some prespecified threshold, k (0 < k < 1); alternatively, we use the ‘scree test’.
Then we take

X D [u1; : : : ;ur ]diag.½
1
2
1 : : : ½

1
2
r / D U r�

1
2
r

as the n ð r matrix of coordinates, where �r is the r ð r diagonal matrix with diagonal
elements ½i ; i D 1; : : : ; r .

If the dissimilarities are not Euclidean distances, then T is not necessarily positive
semidefinite and there may be negative eigenvalues. Again we may choose the eigenvec-
tors associated with the largest eigenvalues. If the negative eigenvalues are small then
this may still lead to a useful representation of the data. In general, the smallest of the set
of largest eigenvalues retained should be larger than the magnitude of the most negative
eigenvalue. If there is a large number of negative eigenvalues, or some are large in mag-
nitude, then classical scaling may be inappropriate. However, classical scaling appears
to be robust to departures from Euclidean distance.

If we were to start with a set of data (rather than a matrix of dissimilarities) and seek
a reduced-dimension representation of it using the classical scaling approach (by first
forming a dissimilarity matrix and carrying out the procedure above), then the reduced-
dimension representation is exactly the same as carrying out a principal components
analysis and calculating the component scores (provided we have chosen Euclidean dis-
tance as our measure of dissimilarity). Thus, there is no point in carrying out classical
scaling and a principal components analysis on a data set.

9.4.2 Metric multidimensional scaling

Classical scaling is one particular form of metric multidimensional scaling in which
an objective function measuring the discrepancy between the given dissimilarities, Ži j ,
and the derived distances in R

e, di j , is optimised. The derived distances depend on the
coordinates of the samples that we wish to find. There are many forms that the objective
function may take. For example, minimisation of the objective functionX

1� j<i�n

.Ž2
i j � d2

i j /

yields a projection onto the first e principal components if Ži j are exactly Euclidean
distances. There are other measures of divergence between the sets fŽi j g and fdi j g and the
major MDS programs are not consistent in the criterion optimised (Dillon and Goldstein,
1984). One particular measure is

S D
X

i j

ai j .Ži j � di j /
2 (9.21)
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for weighting factors ai j . Taking

ai j D
 X

i j

d2
i j

!�1

gives
p

S as similar to Kruskal’s stress (Kruskal, 1964a, 1964b), defined in the following
section. There are other forms for the ai j (Sammon, 1969; Koontz and Fukunaga, 1972;
de Leeuw and Heiser, 1977; Niemann and Weiss, 1979). The stress is invariant under
rigid transformations of the derived configuration (translations, rotations and reflections)
and also under uniform stretching and shrinking.

A more general form of (9.21) is

S D
X

i j

ai j .�.Ži j /� di j /
2 (9.22)

where � is a member of a predefined class of functions; for example, the class of all
linear functions, giving

S D
X

i j

ai j .a C bŽi j � di j /
2 (9.23)

for parameters a and b. In general, there is no analytic solution for the coordinates of the
points in the representation space. Minimisation of (9.22) can proceed by an alternating
least squares approach (see Gifi, 1990, for further applications of the alternating least
squares principle); that is, by alternating minimisation over � and the coordinates. In
the linear regression example (9.23), we would minimise with respect to a and b, for a
given initial set of coordinates (and hence the derived distances di j ). Then, keeping a
and b fixed, minimise with respect to the coordinates of the data points. This process is
repeated until convergence.

The expression (9.22) may be normalised by a function − 2.�;X/, that is a function
of both the coordinates and the function �. Choices for − 2 are discussed by de Leeuw
and Heiser (1977).

In psychology, in particular, the measures of dissimilarity that arise have ordinal
significance at best: their numerical values have little meaning and we are interested
only in their order. We can say that one stimulus is larger than another, without being
able to attach a numerical value to it. In this case, a choice for the function � above
is one that belongs to the class of monotone functions. This is the basis of non-metric
multidimensional scaling or ordinal scaling.

9.4.3 Ordinal scaling

Ordinal scaling or non-metric multidimensional scaling is a method of finding a config-
uration of points for which the rank ordering of the interpoint distance is close to the
ranking of the values of the given dissimilarities.

In contrast to classical scaling, there is no analytic solution for the configuration
of points in ordinal scaling. Further, the procedure is iterative and requires an initial
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configuration for the points to be specified. Several initial configurations may be tried
before an acceptable final solution is achieved.

The desired requirement that the ordering of the distances in the derived configuration
is the same as that of the given dissimilarities is of course equivalent to saying that
the distances are a monotonic function of the dissimilarities. Figure 9.13 gives a plot of
distances di j (obtained from a classical scaling analysis) against dissimilarities Ži j for the
British town data given in Table 9.3. The numbers in the table are the distances in miles
between 10 towns in Britain along routes recommended by the RAC. The relationship
is clearly not monotonic, though, on the whole, the larger the dissimilarity the larger the
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Figure 9.13 Distances v dissimilarities for the British town data

Table 9.3 Dissimilarities between 10 towns in the British Isles (measured as distances in miles
along recommended routes)

London 0

Birmingham 111 0

Cambridge 55 101 0

Edinburgh 372 290 330 0

Hull 171 123 124 225 0

Lincoln 133 85 86 254 39 0

Manchester 184 81 155 213 96 84 0

Norwich 112 161 62 360 144 106 185 0

Scarborough 214 163 167 194 43 81 105 187 0

Southampton 77 128 130 418 223 185 208 190 266 0

Ldn B’ham Cmbg Edin Hull Lin M/c Nwch Scar S’ton
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distance. In ordinal scaling, the coordinates of the points in the representation space are
adjusted so as to minimise a cost function that is a measure of the degree of deviation
from monotonicity of the relationship between di j and Ži j . It may not be possible to
obtain a final solution that is perfectly monotonic but the final ordering on the di j should
be ‘as close as possible’ to that of the Ži j .

To find a configuration that satisfies the monotonicity requirement, we must first of all
specify a definition of monotonicity. Two possible definitions are the primary monotone
condition

Žrs < Ži j ) Odrs � Odi j

and the secondary monotone condition

Žrs � Ži j ) Odrs � Odi j

where Odrs is the point on the fitting line (see Figure 9.14) corresponding to Žrs . The
Odrs are termed the disparities or the pseudo-distances. The difference between these
two conditions is the way in which ties between the Žs are treated. In the secondary
monotone condition, if Žrs D Ži j then Odrs D Odi j , whereas in the primary condition there
is no constraint on Odrs and Odi j if Žrs D Ži j : Odrs and Odi j are allowed to differ (which would
give rise to vertical lines in Figure 9.14). The secondary condition is usually regarded as
too restrictive, often leading to convergence problems.

Given the above definition, we can define a goodness of fit as

Sq D
X
i< j

.di j � Odi j /
2

and minimising gives the primary (or secondary) least squares monotone regression line.
(In fact, it is not a line, only being defined at points Ži j .)

An example of a least squares monotone regression is given in Figure 9.14. The least
squares condition ensures that the sum of squares of vertical displacements from the line
is a minimum. Practically, this means that for sections of the data where d is actually
a monotonic function of Ž the line passes through the points. If there is a decrease, the
value taken is the mean of a set of samples.

The quantity Sq is a measure of the deviation from monotonicity, but it is not invariant
to uniform dilation of the geometric configuration. This can be removed by normalisation
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Figure 9.14 Least squares monotone regression line



350 Feature selection and extraction

and the normalised stress, given by

S D
vuut
P

i< j .di j � Odi j /2P
i< j d2

i j

(9.24)

used as the measure of fit. (In some texts the square root factor is omitted in the
definition.)

Since S is a differentiable function of the desired coordinates, we use a nonlinear
optimisation scheme (see, for example, Press et al., 1992) which requires an initial
configuration of data points to be specified. In practice, it has been found that some
of the more sophisticated methods do not work so well as steepest descents (Chatfield
and Collins, 1980).

The initial configuration of data points could be chosen randomly, or as the result of
a principal coordinates analysis. Of course, there is no guarantee of finding the global
minimum of S and the algorithm may get trapped in poor local minima. Several initial
configurations may be considered before an acceptable value of the minimum stress is
achieved.

In the algorithm, a value of the dimension of the representation space, e, is required.
This is unknown in general and several values may be tried before a ‘low’ value of the
stress is obtained. The minimum stress depends on n (the dimension of the dissimilarity
matrix) and e and it is not possible to apply tests of significance to see if the ‘true’
dimension has been found (this may not exist). As with principal components analysis,
we may plot the stress as a function of dimension and see if there is a change in the
slope (elbow in the graph). If we do this, we may find that the stress does not decrease as
the dimension increases, because of the problem of finding poor local minima. However,
it should always decrease and can be made to do so by initialising the solution for
dimension e by that obtained in dimension e � 1 (extra coordinates of zero are added).

The summations in the expression for the stress are over all pairwise distances. If the
dissimilarity matrix is asymmetric we may include both the pairs .i; j/ and . j; i/ in the
summation. Alternatively, we may carry out ordinal scaling on the symmetric matrix of
dissimilarities with

ŽŁrs D ŽŁsr D 1
2 .Žrs C Žsr /

Missing values in Ži j can be accommodated by removing the corresponding indices from
the summation (9.24) in estimating the stress.

9.4.4 Algorithms

Most MDS programs use standard gradient methods. There is some evidence that sophis-
ticated nonlinear optimisation schemes do not work so well (Chatfield and Collins, 1980).
Siedlecki et al. (1988) report that steepest descents outperformed conjugate gradients on
a metric MDS optimisation problem, but better performance was given by the coordinate
descent procedure of Niemann and Weiss (1979).

One approach to minimising the objective function, S, is to use the principle of
majorisation (de Leeuw and Heiser, 1977; Heiser, 1991, 1994) as part of the alternating



Multidimensional scaling 351

S

��t�tC1�tC2

W .�tC1; �/

W .�t ; �/

Figure 9.15 Illustration of iterative majorisation principle: minimisation of S.�/ is achieved
through successive minimisations of the majorisation functions, W

least squares process. Given the current values of the coordinates, say �t , an upper bound,
W .�t ; �/, for the criterion function is defined. It is usually a quadratic form with a single
minimum as a function of the coordinates � . It has the property that W .�t ; �/ is equal to
the value of the objective function at �t and greater than it everywhere else. Minimising
W .�t ; �/ with respect to � yields a value �tC1 at which the objective function is lower. A
new majorising function W .�tC1; �/ is defined and the process repeated (see Figure 9.15).
This generates a sequence of estimates f�t g for which the objective function decreases
and converges to a local minimum.

All algorithms start with an initial configuration and converge to a local minimum.
It has been reported that the secondary definition of monotonicity is more likely to get
trapped in poor local minima than the primary definition (Gordon, 1999). We recommend
that you repeat your experiments for several starting configurations.

9.4.5 Multidimensional scaling for feature extraction

There are several obstacles in applying multidimensional scaling to the pattern recognition
problem of feature extraction that we are addressing in this chapter. The first is that usu-
ally we are not presented with an nðn matrix of dissimilarities, but with an nð p matrix
of observations. Although in itself this is not a problem since we can form a dissimilarity
matrix using some suitable measure (e.g. Euclidean distance), the number of patterns n
can be very large (in some cases thousands). The storage of an nðn matrix may present
a problem. Further, the number of adjustable parameters is n0 D e ð n, where e is the
dimension of the derived coordinates. This may prohibit the use of some nonlinear opti-
misation methods, particularly those of the quasi-Newton type which either calculate, or
iteratively build up, an approximation to the inverse Hessian matrix of size n0ðn0 D e2n2.

Even if these problems can be overcome, multidimensional scaling does not readily
define a transformation that, given a new data sample x 2 R

p, produces a result y 2 R
e.

Further calculation is required.
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One approach to this problem is to regard the transformed coordinates y as a nonlinear
parametrised function of the data variables

y D f .x; �/

for parameters � . In this case,

di j D jf .xi ; �/� f .x j ; �/j
Ži j D jxi � x j j

and we may minimise the criterion function, for example (9.21), with respect to the pa-
rameters, � , of f rather than with respect to the coordinates of the data points in the
transformed space. This is termed multidimensional scaling by transformation. Thus the
number of parameters can be substantially reduced. Once the iteration has converged,
the function f can be used to calculate the coordinates in R

e for any new data sample
x. One approach is to model f as a radial basis function network and determine the net-
work weights using iterative majorisation, a scheme that optimises the objective function
without gradient calculation (Webb, 1995).

A modification to the distance term, Ž, is to augment it with a supervised quantity
giving a distance

.1� Þ/Ži j C Þsi j (9.25)

where 0 < Þ < 1 and si j is a separation between objects using labels associated with
the data. For example, si j may represent a class separability term: how separable are
the classes to which patterns xi and x j belong? A difficulty is the specification of the
parameter Þ.

9.4.6 Example application study

The problem An exploratory data analysis to investigate relationships between research
assessment ratings of UK higher education institutions (Lowe and Tipping, 1996).

Summary Several methods of feature extraction, both linear and nonlinear, were ap-
plied to high-dimensional data records from the 1992 UK Research Assessment Exercise
and projections onto two dimensions produced.

The data Institutions supply information on research activities within different subjects
in the form of quantitative indicators of their research activity, such as the number of
active researchers, postgraduate students, values of grants and numbers of publications.
Together with some qualitative data (for example, publications), this forms part of the
data input to committees which provide a research rating, on a scale from 1 to 5. There
are over 4000 records for all subjects, but the analysis concentrated on three subjects:
physics, chemistry and biological sciences.

Preprocessing included the removal of redundant and repeated variables, accumulating
indicators that were given for a number of years and standardisation of variables. The
training set consisted of 217 patterns, each with 80 variables.
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The model Several models were assessed. These included a principal components anal-
ysis, a multidimensional scaling (Sammon mapping) and an MDS by transformation
modelled as a radial basis function network.

Training procedure For the multidimensional scaling by transformation, the dissimi-
larity was augmented with a subjective quantity as in (9.25) where si j is a separation
between objects based on the subjective research rating.

Since the objective function is no longer quadratic, an analytic matrix inversion rou-
tine cannot be used for the weights of the radial basis function. A conjugate gradients
nonlinear function minimisation routine was used to minimise of the stress criterion.

9.4.7 Further developments

Within the pattern recognition literature, there have been several attempts to use multi-
dimensional scaling techniques for feature extraction both for exploratory data analysis
and classification purposes (Sammon, 1969 – see comments by Kruskal, 1971; Koontz
and Fukunaga, 1972; Cox and Ferry, 1993).

Approaches that model the nonlinear dimension-reducing transformation as a radial
basis function network are described by Webb (1995) and Lowe and Tipping (1996). Mao
and Jain (1995) model the transformation as a multilayer perceptron. A comparative study
of neural network feature extraction methods has been done by Lerner et al. (1999).

9.4.8 Summary

Multidimensional scaling is a name given to a range of techniques that analyse dissimi-
larity matrices and produce coordinates of points in a ‘low’ dimension. Three approaches
to multidimensional scaling have been presented:

Classical scaling This assumes that the dissimilarity matrix is Euclidean, though it has
been shown to be robust if there are small departures from this condition. An eigen-
vector decomposition of the dissimilarity matrix is performed and the resulting set of
coordinates is identical to the principal components analysis scores (to within an or-
thogonal transformation) if indeed the dissimilarity matrix is a matrix of Euclidean
distances. Therefore there is nothing to be gained over a principal components anal-
ysis in using this technique as a method of feature extraction, given an n ð p data
matrix X.

Metric scaling This method regards the coordinates of the points in the derived space as
parameters of a stress function that is minimised. This method allows nonlinear reductions
in dimensionality. The procedure assumes a functional relationship between the interpoint
distances and the given dissimilarities.

Non-metric scaling As with metric scaling, a criterion function (stress) is minimised but
the procedure assumes that the data are qualitative, having perhaps ordinal significance
at best.
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9.5 Application studies

Examples of application studies using feature selection methods include:

ž Remote sensing. Bruzzone et al. (1995) extend the pairwise Jeffreys–Matusita distance
(otherwise known as the Patrick–Fischer distance – see Appendix A) to the multiclass
situation and use it as a feature selection criterion in a remote sensing application. The
data consist of measurements of six channels in the visible and infrared spectrum on
five agricultural classes.
ž Hand-printed character recognition. Zongker and Jain (1996) apply the SFFS algorithm

to direction features for the 26 lower-case characters.
ž Speech. Novovic̆ová et al. (1996) apply a feature selection method based on modelling

the class densities by finite mixture distributions to a two-class speech recognition
problem. The data comprised 15-dimensional feature vectors (containing five segments
of three features derived by low-order linear prediction analysis). The approach was
compared with a method using SFFS and a Gaussian classifier. For this data set, there
was no advantage in mixture modelling.
ž Image analysis. Pudil et al. (1994c) use an approach to feature selection based on

mixture modelling for the classification of granite textures. The features comprise a
26-dimensional vector (eight texture features and 18 colour features). In this case, the
data are modelled well by mixtures (in contrast to the speech example above).

Feature extraction application studies include:

ž Electroencephalogram (EEG). Jobert et al. (1994) use principal components analysis
to produce a two-dimensional representation of spectral data (sleep EEG) to view
time-dependent variation.
ž Positron emission tomography (PET). Pedersen et al. (1994) use principal components

analysis for data visualisation purposes on dynamic PET images to enhance clinically
interesting information.
ž Remote sensing. Eklundh and Singh (1993) compare principal components analysis

using correlation and covariance matrices in the analysis of satellite remote sensing
data. The correlation matrix gives improvement to the signal-to-noise ratio.

ž Calibration of near-infrared spectra.

ž Structure–activity relationships. Darwish et al. (1994) apply principal components anal-
ysis (14 variables, nine compounds) in a study to investigate the inhibitory effect of
benzine derivatives.

ž Target classification. Liu et al. (1994) use principal components analysis for feature
extraction in a classification study of materials design.

ž Face recognition. Principal components analysis has been used in several studies on
face recognition to produce ‘eigenfaces’. The weights that characterise the expansion of
a given facial image in terms of these eigenfaces are features used for face recognition
and classification (see the review by Chellappa et al., 1995).

ž Speech. Pinkowski (1997) uses principal components analysis for feature extraction
on a speaker-dependent data set consisting of spectrograms of 80 sounds representing
20 speaker-dependent words containing English semivowels.
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Applications of MDS and Sammon mappings include:

ž Medical. Ratcliffe et al. (1995) use multidimensional scaling to recover three-
dimensional localisation of sonomicrometry transducer elements glued to excised and
living ovine hearts. The inter-element distances were measured by the sonomicrometry
elements by sequentially activating a single array element followed by eight receiver
elements (thus giving inter-transducer distances).

ž Bacterial classification. Bonde (1976) uses non-metric multidimensional scaling to
produce two and three-dimensional plots of groups of organisms (using a steepest
descent optimisation scheme).

ž Chemical vapour analysis. For a potential application of an ‘artificial nose’ (an array of
14 chemical sensors) to atmosphere pollution monitoring, cosmetics, food and defence
applications, Lowe (1993) considers a multidimensional scaling approach to feature
extraction, where the dissimilarity matrix is determined by class (concentration of the
substance).

9.6 Summary and discussion

In this chapter we have considered a variety of techniques for mapping data to a reduced
dimension. As you may imagine, there are many more that we have not covered, and we
have tried to point to the literature where some of these may be found. A comprehensive
account of data transformation techniques requires a volume in itself and in this chapter
we have only been able to consider some of the more popular multivariate methods. In
common with the following chapter, many of the techniques are used as part of data
preprocessing in an exploratory data analysis.

The techniques vary in their complexity – both from mathematical ease of understand-
ing and numerical ease of implementation points of view. Most methods produce linear
transformations, but non-metric multidimensional scaling is nonlinear. Some use class
information, others are unsupervised, although there are both variants of the Karhunen–
Loève transformation. Some techniques, although producing a linear transformation, re-
quire the use of a nonlinear optimisation procedure to find the parameters. Others are
based on eigenvector decomposition routines, perhaps performed iteratively.

To some extent, the separation of the classifier design into two processes of feature
extraction and classification is artificial, but there are many reasons, some of which were
enumerated at the beginning of this chapter, why dimension reduction may be advisable.
Within the pattern recognition literature, many methods for nonlinear dimension reduction
and exploratory data analysis have been proposed.

9.7 Recommendations

If explanation is required of the variables that are used in a classifier, then a feature
selection process, as opposed to a feature extraction process, is recommended for di-
mension reduction. For feature selection, the probabilistic criteria for estimating class
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separability are complicated, involving estimation of probability density functions and
their numerical integration. Even the simple error rate measure is not easy to evaluate
for nonparametric density functions. Therefore, we recommend use of the following.

1. The parametric form of the probabilistic distance measures assumes normal distribu-
tions. These have the advantage for feature selection that the value of the criterion
for a given set of features may be used in the evaluation of the criterion when an
additional feature is included. This reduces the amount of computation in some of the
feature set search algorithms.

2. The interclass distance measures, J1 to J4 (Section 9.2.1).

3. Error rate estimation using a specified classifier.

4. Floating search methods.

Which algorithms should you employ for feature extraction? Whatever your problem,
always start with the simplest approach, which for feature extraction is, in our view, a
principal components analysis of your data. This will tell you whether your data lie on
a linear subspace in the space spanned by the variables and a projection onto the first
two principal components, and displaying your data may reveal some interesting and
unexpected structure.

It is recommended to apply principal components analysis to standardised data for
feature extraction, and to consider it particularly when dimensionality is high. Use a
simple heuristic to determine the number of principal components to use, in the first
instance. For class-labelled data, use linear discriminant analysis for a reduced-dimension
representation.

If you believe there to be nonlinear structure in the data, then techniques based on
multidimensional scaling (for example, multidimensional scaling by transformation) are
straightforward to implement. Try several starting conditions for the parameters.

9.8 Notes and references

A good description of feature selection techniques for discrimination may be found in the
book by Devijver and Kittler (1982). The papers by Kittler (1975b, 1978b) and Siedlecki
and Sklansky (1988) also provide reviews of feature selection and extraction methods.
Chapter 6 of Hand’s (1981a) book on variable selection also discusses several of the
methods described in this chapter.

The branch and bound method has been used in many areas of statistics (Hand,
1981b). It was originally proposed for feature subset selection by Narendra and Fuku-
naga (1977) and receives a comprehensive treatment by Devijver and Kittler (1982) and
Fukunaga (1990). Hamamoto et al. (1990) evaluate the branch and bound algorithm using
a recognition rate measure that does not satisfy the monotonicity condition. Krusińska
(1988) describes a semioptimal branch and bound algorithm for feature selection in mixed
variable discrimination.

Stepwise procedures have been considered by many authors: Whitney (1971) for the
sequential forward selection algorithm; Michael and Lin (1973) for the basis of the l–r
algorithm; Stearns (1976) for the l–r algorithm.
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Floating search methods were introduced by Pudil et al. (1994b; see also Pudil
et al., 1994a, for their assessment with non-monotonic criterion functions and Kudo
and Sklansky, 2000, for a comparative study). Error-rate-based procedures are described
by McLachlan (1992a). Ganeshanandam and Krzanowski (1989) also use error rate as
the selection criterion. Within the context of regression, the book by Miller (1990) gives
very good accounts of variable selection.

Many of the standard feature extraction techniques may be found in most textbooks on
multivariate analysis. Descriptions (with minimal mathematics) may be found in Reyment
et al. (1984, Chapter 3) and Clifford and Stephenson (1975, Chapter 13).

Thorough treatments of principal components analysis are given in the books by
Jolliffe (1986) and Jackson (1991), the latter providing a practical approach and giving
many worked examples and illustrations. Common principal components and related
methods are described in the book by Flury (1988).

Descriptions of factor analysis appear in many textbooks on multivariate analysis
(for example, Dillon and Goldstein, 1984; Kendall, 1975). Jackson (1991) draws out the
similarities to and the differences from principal components analysis. There are several
specialist books on factor analysis, including those by Harman (1976), and Lawley and
Maxwell (1971).

Multidimensional scaling is described in textbooks on multivariate analysis (for
example, Chatfield and Collins, 1980; Dillon and Goldstein, 1984) and more detailed
treatments are given in the books by Schiffman et al. (1981) and Jackson (1991). Cox
and Cox (1994) provide an advanced treatment, with details of some of the specialised
procedures. An extensive treatment of non-metric MDS can be found in the collection
of articles edited by Lingoes et al. (1979). There are many computer programs available
for performing scaling. The features of some of these are given by Dillon and Goldstein
(1984) and Jackson (1991).

Many of the techniques described in this chapter are available in standard statisti-
cal software packages. There is some specialised software for multidimensional scaling
publicly available.

The website www.statistical-pattern-recognition.net contains refer-
ences and pointers to websites for further information on techniques.

Exercises

Numerical routines for matrix operations, including eigendecomposition, can be found
in many numerical packages. Press et al. (1992) give descriptions of algorithms.

1. Consider the divergence (see Appendix A),

JD D
Z
.p.xj!1/� p.xj!2// log

�
p.xj!1/

p.xj!2/

�
dx

where x D .x1; : : : ; x p/
T . Show that under conditions of independence, JD may be

expressed as

JD D
pX

jD1

J j .x j /
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2. (Chatfield and Collins, 1980.) Suppose the p-variate random variable x has covari-
ance matrix � with eigenvalues f½i g and orthonormal eigenvectors fai g. Show that
the identity matrix is given by

I D a1a
T
1 C Ð Ð Ð C a pa

T
p

and that
� D ½1a1a

T
1 C Ð Ð Ð C ½pa pa

T
p

The latter result is called the spectral decomposition of �.

3. Given a set of n measurements on p variables, describe the stages in performing a
principal components analysis for dimension reduction.

4. Let X1 and X2 be two random variables with covariance matrix

� D
�

9
p

6p
6 4

½

Obtain the principal components. What is the percentage of total variance explained
by each component?

5. Athletics records for 55 countries comprise measurements made on eight running
events. These are each country’s record times for (1) 100 m (s); (2) 200 m (s); (3)
400 m (s); 800 m (min); (5) 1500 m (min); (6) 5000 m (min); (7) 10 000 m (min);
(8) marathon (min).

Describe how a principal components analysis may be used to obtain a two-dimen-
sional representation of the data.

The results of a principal components analysis are shown in the table (Everitt and
Dunn, 1991). Interpret the first two principal components.

PC1ð ½1 PC2ð ½2

100 m 0.82 0.50
200 m 0.86 0.41
400 m 0.92 0.21
800 m 0.87 0.15
1500 m 0.94 �0:16
5000 m 0.93 �0:30
10 000 m 0.94 �0:31
Marathon 0.87 �0:42

Eigenvalue 6.41 0.89

What is the percentage of the total variance explained by the first principal compo-
nent? State any assumptions you make.
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6. (Chatfield and Collins, 1980.) Four measurements are made on each of a random
sample of 500 animals. The first three variables were different linear dimensions,
measured in centimetres, while the fourth variable was the weight of the animal
measured in grams. The sample covariance matrix was calculated and its four eigen-
values were found to be 14.1, 4.3, 1.2 and 0.4. The eigenvectors corresponding to
the first and second eigenvalues were:

uT
1 D [0:39; 0:42; 0:44; 0:69]

uT
2 D [0:40; 0:39; 0:42;�0:72]

Comment on the use of the sample covariance matrix for the principal components
analysis for these data. What is the percentage of variance in the original data ac-
counted for by the first two principal components? Describe the results.

Suppose the data were stored by recording the eigenvalues and eigenvectors together
with the 500 values of the first and second principal components and the mean values
for the original variables. Show how to reconstruct the original covariance matrix
and an approximation to the original data.

7. Given that

S D
� QS y

yT skk

½

and assuming that QS�1
is known, verify that S�1 is given by (9.2). Conversely, with

S given by the above and assuming that S�1 is known,

S�1 D
�

A c

cT b

½

show that the inverse of QS (the inverse of S after the removal of a feature) can be
written as

QS�1 D A� 1

b
cT c

8. For a given symmetric matrix S of known inverse (of the above form) and symmetric
matrix T , verify (9.3), where QT is the submatrix of T after the removal of a feature.
Hence, show that the feature extraction criterion Tr.S�1

W SB/, where SW and SB

are the within- and between-class covariance matrices, satisfies the monotonicity
property.

9. How could you use floating search methods for radial basis function centre selection?
What are the possible advantages and disadvantages of such methods compared with
random selection or k-means, for example?

10. Suppose we take classification rate using a nearest class mean classifier as our feature
selection criterion. Show by considering the two distributions,

p.xj!1/ D
²

1 0 � x1 � 1; 0 � x2 � 1
0 otherwise

p.xj!2/ D
²

1 1 � x1 � 2;�0:5 � x2 � 0:5
0 otherwise
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where x D .x1; x2/
T , that classification rate does not satisfy the monotonicity

property.

11. Derive the relationship (9.20) expressing the elements of the sum of squares and
products matrix in terms of the elements of the dissimilarity matrix from (9.19) and
the definition of Ti j and zero-mean data.

12. Given n p-dimensional measurements (in the n ð p data matrix X, zero mean,
p < n) show that a low-dimensional representation in r < p dimensions obtained by
constructing the sums of squares and products matrix, T D XXT , and performing a
principal coordinates analysis, results in the same projection as principal components
(to within an orthogonal transformation).

13. For two classes normally distributed, N .µ1;�/ and N .µ2;�/ with common covari-
ance matrix, �, show that the divergence

JD.!1; !2/ D
Z

[p.xj!1/� p.xj!2/] log

²
p.xj!1/

p.xj!2/

¦
dx

is given by
.µ2 � µ1/

T ��1.µ2 � µ1/

the Mahalanobis distance

14. Describe how multidimensional scaling solutions that optimise stress can always be
constructed that result in a decrease of stress with dimension of the representation
space.
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Clustering

Overview

Clustering methods are used for data exploration and to provide prototypes for
use in supervised classifiers. Methods that operate both on dissimilarity matrices
and measurements on individuals are described, each implicitly imposing its own
structure on the data. Mixtures explicitly model the data structure.

10.1 Introduction

Cluster analysis is the grouping of individuals in a population in order to discover struc-
ture in the data. In some sense, we would like the individuals within a group to be close
or similar to one another, but dissimilar from individuals in other groups.

Clustering is fundamentally a collection of methods of data exploration. One often uses
a method to see if natural groupings are present in the data. If groupings do emerge, these
may be named and their properties summarised. For example, if the clusters are compact,
then it may be sufficient for some purposes to reduce the information on the original
data set to information about a small number of groups, in some cases representing a
group of individuals by a single sample. The results of a cluster analysis may produce
identifiable structure that can be used to generate hypotheses (to be tested on a separate
data set) to account for the observed data.

It is difficult to give a universal definition of the term ‘cluster’. All of the methods
described in this chapter can produce a partition of the data set – a division of the
data set into mutually non-overlapping groups. However, different methods will often
yield different groupings since each implicitly imposes a structure on the data. Also, the
techniques will produce groupings even when there is no ‘natural’ grouping in the data.
The term ‘dissection’ is used when the data consist of a single homogeneous population
that one wishes to partition. Clustering techniques may be used to obtain dissections, but
the user must be aware that a structure is being imposed on the data that may not be
present. This does not matter in some applications.

Before attempting a classification, it is important to understand the problem you are
wishing to address. Different classifications, with consequently different interpretations,

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.

ISBNs: 0-470-84513-9 (HB); 0-470-84514-7 (PB)
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can be imposed on a sample and the choice of variables is very important. For example,
there are different ways in which books may be grouped on your bookshelf – by subject
matter or by size – and different classifications will result from the use of different
variables. Each classification may be important in different circumstances, depending on
the problem under consideration. Once you understand your problem and data, you must
choose your method carefully. An inappropriate match of method to data can give results
that are misleading.

Related to clustering is clumping, which allows an object to belong to more than one
group. An example often cited is the classification of words according to their meaning:
some words have several meanings and can belong to several groups. However, in this
chapter we concentrate on clustering methods.

There is a vast literature on clustering. Some of the more useful texts are given at
the end of this chapter. There is a wide range of application areas, sometimes with
conflicting terminology. This has led to methods being rediscovered in different fields of
study. Much of the early work was in the fields of biology and zoology, but clustering
methods have also been applied in the fields of psychology, archaeology, linguistics and
signal processing. This literature is not without its critics. The paper by Cormack (1971)
is worth reading. His remark that ‘the real need of the user is to be forced to sit and
think’ is perhaps even more relevant today. The user often does not want to do so, and
is often satisfied with a ‘black box’ approach to the analysis. However, the first thing to
do when wishing to apply a technique is to understand the significance of the data and
to understand what a particular technique does.

Five topics are discussed in this chapter:

1. hierarchical methods, which derive a clustering from a given dissimilarity matrix;

2. quick partitions, methods for obtaining a partition as an initialisation to more elaborate
approaches;

3. mixture models, which express the probability density function as a sum of component
densities;

4. sum-of-squares methods, which minimise a sum-of-squares error criterion, including
k-means, fuzzy k-means, vector quantisation and stochastic vector quantisation;

5. cluster validity, addressing the problem of model selection.

10.2 Hierarchical methods

Hierarchical clustering procedures are the most commonly used method of summarising
data structure. A hierarchical tree is a nested set of partitions represented by a tree
diagram or dendrogram (see Figure 10.1). Sectioning a tree at a particular level produces
a partition into g disjoint groups. If two groups are chosen from different partitions (the
results of partitioning at different levels) then either the groups are disjoint or one group
wholly contains the other. An example of a hierarchical classification is the classification
of the animal kingdom. Each species belongs to a series of nested clusters of increasing
size with a decreasing number of common characteristics. In producing a tree diagram
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Figure 10.1 Dendrogram

like that in Figure 10.1, it is necessary to order the points so that branches do not cross.
This ordering is somewhat arbitrary, but does not alter the structure of the tree, only
its appearance. There is a numerical value associated with each position up the tree
where branches join. This is a measure of the distance or dissimilarity between two
merged clusters. There are many different measures of distances between clusters (some
of these are given in Appendix A) and these give rise to different hierarchical structures,
as we shall see in later sections of this chapter. Sectioning a tree partitions the data
into a number of clusters of comparable homogeneity (as measured by the clustering
criterion).

There are several different algorithms for finding a hierarchical tree. An agglomerative
algorithm begins with n subclusters, each containing a single data point, and at each stage
merges the two most similar groups to form a new cluster, thus reducing the number
of clusters by one. The algorithm proceeds until all the data fall within a single cluster.
A divisive algorithm operates by successively splitting groups, beginning with a single
group and continuing until there are n groups, each of a single individual. Generally,
divisive algorithms are computationally inefficient (except where most of the variables
are binary attribute variables).

From the tree diagram a new set of distances between individuals may be defined,
with the distance between individual i and individual j being the distance between the
two groups that contain them, when these two groups are amalgamated (i.e. the distance
level of the lowest link joining them). Thus, the procedure for finding a tree diagram
may be viewed as a transformation of the original set of dissimilarities di j to a new set
Odi j , where the Odi j satisfy the ultrametric inequality

Odi j � max. Odik; Od jk/ for all objects i; j; k

This means that the distances between three groups can be used to define a triangle that
is either equilateral or isosceles (either the three distances are the same or two are equal
and the third smaller – see Figure 10.1, for example). A transformation D : d ! Od
is termed an ultrametric transformation. All of the methods in this section produce a
clustering from a given dissimilarity matrix.

It is appropriate to introduce here the concept of a minimum spanning tree. A minimum
spanning tree is not a hierarchical tree, but a tree spanning a set of points such that every
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Figure 10.2 Minimum spanning tree

two vertices are connected and there are no closed loops. Associated with each link in
the tree is a value or distance, and the minimum spanning tree is the tree such that the
sum of all the distances is a minimum. Figure 10.2 shows the minimum spanning tree
for the two-dimensional data used to generate the dendrogram of Figure 10.1, where
the distance between individuals is taken to be the Euclidean distance. The minimum
spanning tree has been used as the basis of a single-link algorithm. Single-link clusters
at level h are obtained by deleting from the minimum spanning tree all edges greater
than h in length. The minimum spanning tree should also be useful in the identification
of clusters, outliers and influential points (points whose removal can alter the derived
clustering appreciably).

10.2.1 Single-link method

The single-link method is one of the oldest methods of cluster analysis. It is defined
as follows. Two objects a and b belong to the same single-link cluster at level d if
there exists a chain of intermediate objects i1; : : : ; im�1 linking them such that all the
distances

dik ;ikC1 � d for k D 0; : : : ;m � 1

where i0 D a and im D b. The single-link groups for the data of Figure 10.1 for a
threshold of d D 2:0, 3.0 and 5.0 are f.1; 2/; .5; 6/; .3/; .4/g, f.1; 2; 3/; .5; 6/; .4/g and
f.1; 2; 3; 5; 6/; .4/g.

We shall illustrate the method by example with an agglomerative algorithm in which,
at each stage of the algorithm, the closest two groups are fused to form a new group,
where the distance between two groups, A and B, is the distance between their closest
members, i.e.

dAB D min
i2A; j2B

di j (10.1)
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Consider the dissimilarity matrix for each pair of objects in a set comprising six
individuals:

1 2 3 4 5 6
1 0 4 13 24 12 8
2 0 10 22 11 10
3 0 7 3 9
4 0 6 18
5 0 8:5
6 0

The closest two groups (which contain a single object each at this stage) are those
containing the individuals 3 and 5. These are fused to form a new group f3; 5g and
the distances between this new group and the remaining groups calculated according to
(10.1) so that d1;.3;5/ D minfd13; d15g D 12, d2;.3;5/ D minfd23; d25g D 10, d4;.3;5/ D 6,
d6;.3;5/ D 8:5, giving the new dissimilarity matrix

1 2 .3; 5/ 4 6
1 0 4 12 24 8
2 0 10 22 10

.3; 5/ 0 6 8:5
4 0 18
6 0

The closest two groups now are those containing objects 1 and 2; therefore these are
fused to form a new group .1; 2/. We now have four clusters .1; 2/; .3; 5/; 4 and 6. The
distance between the new group and the other three clusters is calculated: d.1;2/.3;5/ D
minfd13; d23; d15; d25g D 10, d.1;2/4 D minfd14; d24g D 22 d.1;2/6 D minfd16; d26g D 8.
The new dissimilarity matrix is

.1; 2/ .3; 5/ 4 6
.1; 2/ 0 10 22 8
.3; 5/ 0 6 8:5

4 0 18
6 0

The closest two groups are now those containing 4 and .3; 5/. These are fused to form
.3; 4; 5/ and a new dissimilarity matrix calculated. This is given below with the result
of fusing the next two groups. The single-link dendrogram is given in Figure 10.3.

.1; 2/ .3; 4; 5/ 6
.1; 2/ 0 10 8

.3; 4; 5/ 0 8:5
6 0

.1; 2; 6/ .3; 4; 5/
.1; 2; 6/ 0 8:5
.3; 4; 5/ 0
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Figure 10.3 Single-link dendrogram
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Figure 10.4 Illustration of chaining with the single-link method

The above agglomerative algorithm for a single-link method illustrates the fact that
it takes only a single link to join two distinct groups and that the distance between
two groups is the distance of their closest neighbours. Hence the alternative name of
nearest-neighbour method. A consequence of this joining together by a single link is that
some groups can become elongated, with some distant points, having little in common,
being grouped together because there is a chain of intermediate objects. This draw-
back of chaining is illustrated in Figures 10.4 and 10.5. Figure 10.4 shows a distri-
bution of data samples. Figure 10.5 shows the single-link three-group solution for the
data in Figure 10.4. These groups do not correspond to those suggested by the data in
Figure 10.4.

There are many algorithms for finding a single-link tree. Some are agglomerative,
like the procedure described above, some are divisive; some are based on an ultrametric
transformation and others generate the single-link tree via the minimum spanning tree
(see Rohlf, 1982 for a review of algorithms). The algorithms vary in their computational
efficiency, storage requirements and ease of implementation. Sibson’s (1973) algorithm
uses the property that only local changes in the reduced dissimilarity result when two
clusters are merged, and it has been extended to the complete-link method discussed
in the following section. It has computational requirements O.n2/, for n objects. More
time-efficient algorithms are possible if knowledge of the metric properties of the space
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Figure 10.5 Single-link three-group solution for the data of Figure 10.4

in which the data lie is taken into account. In such circumstances, it is not necessary to
compute all dissimilarity coefficients. Also, preprocessing the data to facilitate searches
for nearest neighbours can reduce computational complexity.

10.2.2 Complete-link method

In the complete-link or furthest-neighbour method the distance between two groups A
and B is the distance between the two furthest points, one taken from each group:

dAB D max
i2A; j2B

di j

In the example used to illustrate the single-link method, the second stage dissimilarity
matrix (after merging the closest groups 3 and 5 using the complete-link rule above)
becomes

1 2 .3; 5/ 4 6
1 0 4 13 24 8
2 0 11 22 10

.3; 5/ 0 7 9
4 0 18
6 0

The final complete-link dendrogram is shown in Figure 10.6. At each stage, the closest
groups are merged of course. The difference between this method and the single-link
method is the measure of distance between groups. The groups found by sectioning the
complete-link dendrogram at level h have the property that di j < h for all members in
the group. The method concentrates on the internal cohesion of groups, in contrast to the
single-link method, which seeks isolated groups. Sectioning a single-link dendrogram at
a level h gives groups with the property that they are separated from each other by at
least a ‘distance’ h.

Defays (1977) provides an algorithm for the complete-link method using the same
representation as Sibson. It should be noted that the algorithm is sensitive to the ordering
of the data, and consequently has several solutions. Thus it provides only an approximate
complete-link clustering.
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Figure 10.6 Complete-link dendrogram

10.2.3 Sum-of-squares method

The sum-of-squares method is appropriate for the clustering of points in Euclidean space.
The aim is to minimise the total within-group sum of squares. Ward’s hierarchical clus-
tering method (Ward, 1963) uses an agglomerative algorithm to produce a set of hi-
erarchically nested partitions that can be represented by a dendrogram. However, the
optimal sum-of-squares partitions for different numbers of groups are not necessarily
hierarchically nested. Thus the algorithm is suboptimal.

At each stage of the algorithm, the two groups that produce the smallest increase in
the total within-group sum of squares are amalgamated. The dissimilarity between two
groups is defined to be the increase in the total sum of squares that would result if they
were amalgamated. The updating formula for the dissimilarity matrix is

diC j;k D nk C ni

nk C ni C n j
dik C nk C n j

nk C ni C n j
d jk � nk

nk C ni C n j
di j

where diC j;k is the distance between the amalgamated groups i C j and the group k and
ni is the number of objects in group i . Initially, each group contains a single object and
the element of the dissimilarity matrix, di j , is the squared Euclidean distance between
the i th and the j th object.

10.2.4 General agglomerative algorithm

Many agglomerative algorithms for producing hierarchical trees can be expressed as a
special case of a single algorithm. The algorithms differ in the way that the dissimilarity
matrix is updated. The Lance–Williams recurrence formula expresses the dissimilarity
between a cluster k and the cluster formed by joining i and j as

diC j;k D ai dik C a j d jk C bdi j C cjdik � d jk j
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Table 10.1 Special cases of the general agglomerative
algorithm

ai b c

Single link 1
2 0 � 1

2

Complete link 1
2 0 1

2

Centroid ni
niCn j

� ni n j

.niCn j /
2 0

Median 1
2 � 1

4 0

Group average link ni
niCn j

0 0

Ward’s method niCnk
niCn jCnk

� nk
niCn jCnk

0

where ai ; b and c are parameters that, if chosen appropriately, will give an agglomerative
algorithm for implementing some of the more commonly used methods (see Table 10.1).

Centroid distance This defines the distance between two clusters to be the distance
between the cluster means or centroids.

Median distance When a small cluster is joined to a larger one, the centroid of the
result will be close to the centroid of the larger cluster. For some problems this may be a
disadvantage. This measure attempts to overcome this by defining the distance between
two clusters to be the distance between the medians of the clusters.

Group average link In the group average method, the distance between two clusters
is defined to be the average of the dissimilarities between all pairs of individuals, one
from each group:

dAB D 1

ni n j

X
i2A; j2B

di j

10.2.5 Properties of a hierarchical classification

What desirable properties should a hierarchical clustering method possess? It is difficult
to write down a set of properties on which everyone will agree. What might be a set
of common-sense properties to one person may be the extreme position of another.
Jardine and Sibson (1971) suggest a set of six mathematical conditions that an ultrametric
transformation should satisfy; for example, that the results of the method should not
depend on the labelling of the data. They show that the single-link method is the only
one to satisfy all their conditions and recommend this method of clustering. However,
this method has its drawbacks (as do all methods), which has led people to question the
plausibility of the set of conditions proposed by Jardine and Sibson. We shall not list
the conditions here but refer to Jardine and Sibson (1971) and Williams et al. (1971) for
further discussion.
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10.2.6 Example application study

The problem Weather classification for the study of long-term trends in climate change
research (Huth et al., 1993).

The data Daily weather data in winter months (December–February) at Prague-
Clementinum were recorded. The data came from two 14-year periods, 1951–1964 and
1965–1978, each consisting of 1263 days. Daily weather was characterised by eight
variables – daily mean temperature, temperature amplitude (daily maximum minus mini-
mum), relative humidity, wind speed, zonal and meridional wind components, cloudiness
and temperature tendency (the difference between the mean temperature of the day and
its predecessor).

These were transformed to five variables through a principal components analysis
of the correlation matrix. The five variables accounted for 83% of the total variance in
the data.

The model The average-link method was used. At the beginning, each day is an indi-
vidual cluster. The clusters merge according to the average-link algorithm (Section 10.2.4)
until, at the final stage, a single cluster, containing all days, is formed. In the authors’
opinion, too many clusters, and one large cluster, are undesirable. Also, it was expected
that the number of clusters should correspond roughly with the number of synoptic types
of weather for the region (about 30 types).

Training procedure The data were clustered to find groups containing days with the
weather as ‘uniform as possible’. The average-link procedure terminated when the dif-
ference between the properties of merging clusters exceeded a predefined criterion.

Results Removing clusters of sizes less than five days resulted in 28 clusters for
1965–1978 and 29 clusters for 1951–1964 (similar to the number of synoptic types for
the region).

10.2.7 Summary

The concept of having a hierarchy of nested clusters was developed primarily in the
biological field and may be inappropriate to model the structure in some data. Each
hierarchical method imposes its own structure on the data. The single-link method seeks
isolated clusters, but is generally not favoured, even though it is the only one satisfying
the conditions proposed by Jardine and Sibson. It is subject to the chaining effect, which
can result in long straggly groups. This may be useful in some circumstances if the
clusters you seek are not homogeneous, but it can mean that distinct groups are not
resolved because of intermediate points present between the groups. The group average,
complete link and Ward’s method tend to concentrate on internal cohesion, producing
homogeneous, compact (often spherical) groups.
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The centroid and median methods may lead to inversions (a reduction in the dissim-
ilarity between an object and a cluster when the cluster increases in size) which make
the dendrogram difficult to interpret. Also, ties in the dissimilarities may lead to multiple
solutions (non-uniqueness) of which the user should be aware (Morgan and Ray, 1995).

Hierarchical agglomerative methods are one of the most common clustering tech-
niques employed. Divisive algorithms are less popular, but efficient algorithms have been
proposed, based on recursive partitioning of the cluster with largest diameter (Guénoche
et al., 1991).

10.3 Quick partitions

Many of the techniques described subsequently in this chapter are implemented by algo-
rithms that require an initial partition of the data. The normal mixture methods require
initial estimates of means and covariance matrices. These could be sample-based esti-
mates derived from an initial partition. The k-means algorithm also requires an initial set
of means. Hierarchical vector quantisation (see Section 10.5.3) requires initial estimates
of the code vectors, and similarly the topographic mappings require initialisation of the
weight vectors. In the context of discrimination, radial basis functions, introduced in
Chapter 5, require initial estimates for ‘centres’. These could be derived using the quick
partition methods of this section or be the result of a more principled clustering approach
(which in turn may need to be initialised).

Let us suppose that we have a set of n data samples and we wish to find an initial
partition into k groups, or to find k seed vectors. We can always find a seed vector,
given a group of objects, by taking the group mean. Also, we can partition a set, given
k vectors, using a nearest-neighbour assignment rule. There are many heuristic partition
methods. We shall consider a few of them.

1. Random k selection We wish to have k different vectors, so we select one randomly
from the whole data set, another from the remaining n�1 samples in the data set, and so
on. In a supervised classification problem, these vectors should ideally be spread across
all classes.

2. Variable division Choose a single variable. This may be selected from one of the
measured variables or be a linear combination of variables; for example, the first principal
component. Divide it into k equal intervals that span the range of the variable. The data
are partitioned according to which bin they fall in and k seed vectors are found from the
means of each group.

3. Leader algorithm The leader cluster algorithm (Hartigan, 1975; Späth, 1980) par-
titions a data set such that for each group there is a leader object and all other objects
within the group are within a distance T of the leading example. Figure 10.7 illustrates
a partition in two dimensions. The first data point, A, is taken as the centre of the first
group. Successive data points are examined. If they fall inside the circle centred at A of
radius T then they are assigned to group 1. The first data sample examined to fall outside
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Figure 10.7 Leader clustering

the circle, say at B, is taken as the leader of the second group. Further data points are
examined to see if they fall within the first two clusters. The first one to fall outside, say
at C , is taken as the centre of the third cluster and so on.

Points to note about the algorithm:

1. All cluster centres are at least a distance T from each other.

2. It is fast, requiring only one pass through the data set.

3. It can be applied to a given dissimilarity matrix.

4. It is dependent on the ordering of the data set. The first point is always a cluster
leader. Also, initial clusters tend to be larger than later ones.

5. The distance T is specified, not the number of clusters.

10.4 Mixture models

10.4.1 Model description

In the mixture method of clustering, each different group in the population is assumed to
be described by a different probability distribution. These different probability distribu-
tions may belong to the same family but differ in the values they take for the parameters
of the distribution. Alternatively, mixtures may comprise sums of different component
densities (for modelling different effects such as a signal and noise). The population is
described by a finite mixture distribution of the form

p.x/ D
gX

iD1

³i p.x; θ i /

where the ³i are the mixing proportions (
Pg

iD1 ³i D 1) and p.x; θ i / is a p-dimensional
probability function depending on a parameter vector θ i . There are three sets of param-
eters to estimate: the values of ³i , the components of the vectors θ i and the value of g,
the number of groups in the population.



Mixture models 373

Many forms of mixture distributions have been considered and there are many meth-
ods for estimating their parameters. An example of a mixture distribution for continuous
variables is the mixture of normal distributions

p.x/ D
gX

iD1

³i p.x; �i ;µi /

where µi and �i are the means and covariance matrices of a multivariate normal
distribution

p.x; �i ;µi / D
1

.2³/
p
2 j�i j 12

exp

²
�1

2
.x � µi /

T ��1
i .x � µi /

¦

and a mixture for binary variables is

p.x/ D
gX

iD1

³i p.x; θ i /

where

p.x; θ j / D
pY

lD1

�
xl
jl .1� � jl/

1�xl

is the multivariate Bernoulli density. The value of � jl is the probability that variable l in
the j th group is unity.

Maximum likelihood procedures for estimating the parameters of normal mixture
distributions were given in Chapter 2. Other examples of continuous and discrete mixture
distributions, and methods of parameter estimation, can be found in Everitt and Hand
(1981) and Titterington et al. (1985). Also, in some applications, variables are often of
a mixed type – both continuous and discrete.

The usual approach to clustering using finite mixture distributions is first of all to
specify the form of the component distributions, p.x; θ i /. Then the number of clusters,
g, is prescribed. The parameters of the model are now estimated and the objects are
grouped on the basis of their estimated posterior probabilities of group membership; that
is, the object x is assigned to group i if

³i p.x; θ i / ½ ³ j p.x; θ j / for all j 6D i ; j D 1; : : : ; g

Clustering using a normal mixture model may be achieved by using the EM algorithm
described in Chapter 2, to which we refer for further details.

The main difficulty with the method of mixtures concerns the number of components,
g (see Chapter 2). This is the question of model selection we return to many times in this
book. Many algorithms require g to be specified before the remaining parameters can be
estimated. Several test statistics have been put forward. Many apply to special cases such
as assessing the question as to whether or not the data come from a single component
distribution or a two-component mixture. However, others have been proposed based
on likelihood ratio tests (Everitt and Hand, 1981, Chapter 5; Titterington et al., 1985,
Chapter 5).

Another problem with a mixture model approach is that there may be many local
minima of the likelihood function and several initial configurations may have to be tried
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before a satisfactory clustering is produced. In any case, it is worthwhile trying several
initialisations, since agreement between the resulting classifications lends more weight
to the chosen solution. Celeux and Govaert (1992) describe approaches for developing
the basic EM algorithm to overcome the problem of local optima.

There are several forms of the normal mixture model that trade off the number of
components against the complexity of each component. For example, we may require that,
instead of arbitrary covariance matrices, the covariance matrices are proportional to one
another or have common principal components. This reduces the number of parameters
per mixture component (Celeux and Govaert, 1995).

10.4.2 Example application study

The problem Flaw detection in textile (denim) fabric before final assembly of the gar-
ment (Campbell et al., 1997).

Summary The approach detects a linear pattern in preprocessed images via model-
based clustering. It employs an approximate Bayes factor which provides a criterion for
assessing the evidence for the presence of a defect.

The data Two-dimensional point pattern data are generated by thresholding and clean-
ing, using mathematical morphology, images of fabric. Two fabric images are used, each
about 500ð 500 pixels in size.

The model A two-component mixture model was used to model the data gathered from
images of fabric: a Poisson noise component to model the background and a (possibly
highly elliptical) Gaussian cluster to model the anomaly.

Training procedure The model parameters were determined by maximising the likeli-
hood using the EM algorithm (see Chapter 2). Taking A to be the area of the data region,
the Bayesian information criterion (BIC) was calculated:

BIC D 2 log.L/C 2n log.A/� 6 log.n/

where n is the number of samples and L is the value of the likelihood at its maximum.
A value of BIC greater than 6 indicates ‘strong evidence’ for a defect.

Results were presented for some representative examples, and contrasted with a Hough
transform.

10.5 Sum-of-squares methods

Sum-of-squares methods find a partition of the data that maximises a predefined clustering
criterion based on the within-class and between-class scatter matrices. The methods differ
in the choice of clustering criterion optimised and the optimisation procedure adopted.
However, the problem all methods seek to solve is given a set of n data samples, to
partition the data into g clusters so that the clustering criterion is optimised.

Most methods are suboptimal. Computational requirements prohibit optimal schemes,
even for moderate values of n. Therefore we require methods that, although producing a
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suboptimal partition, give a value of the clustering criterion that is not much greater than
the optimal one. First of all, let us consider the various criteria that have been proposed.

10.5.1 Clustering criteria

Let the n data samples be x1; : : : ; xn . The sample covariance matrix, O�, is given by

O� D 1

n

nX
iD1

.xi �m/.xi �m/T

where m D 1
n

Pn
iD1 xi , the sample mean. Let there be g clusters. The within-class scatter

matrix or pooled within-group scatter matrix is

SW D 1

n

gX
jD1

nX
iD1

z ji .xi �m j /.xi �m j /
T ;

the sum of the sums of squares and cross-products (scatter) matrices over the g groups,
where z ji D 1 if xi 2 group j , 0 otherwise, m j D 1

n j

Pn
iD1 z jixi is the mean of cluster

j and n j D
Pn

iD1 z ji , the number in cluster j . The between-class scatter matrix is

SB D O� � SW D
gX

jD1

n j

n
.m j �m/.m j �m/T

and describes the scatter of the cluster means about the total mean.
The most popular optimisation criteria are based on univariate functions of the above

matrices and are similar to the criteria given in Chapter 9 on feature selection and extrac-
tion. The two areas of clustering and feature selection are very much related. In clustering
we are seeking clusters that are internally cohesive but isolated from other clusters. We
do not know the number of clusters. In feature selection or extraction, we have labelled
data from a known number of groups or classes and we seek a transformation that makes
the classes distinct. Therefore one that transforms the data into isolated clusters will
achieve this.

1. Minimisation of Tr.SW/

The trace of SW is the sum of the diagonal elements

Tr.SW / D 1

n

gX
jD1

nX
iD1

z ji jxi �m j j2

D 1

n

gX
jD1

S j

where S j D
Pn

iD1 z ji jxi � m j j2, the within-group sum of squares for group j . Thus,
the minimisation of Tr.SW / is equivalent to minimising the total within-group sum of
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Figure 10.8 Example of effects of scaling in clustering

squares about the g centroids. Clustering methods that minimise this quantity are some-
times referred to as sum-of-squares or minimum-variance methods. They tend to produce
clusters that are hyperellipsoidal in shape. The criterion is not invariant to the scale
of the axes and usually some form of standardisation of the data must be performed
prior to application of the method. Alternatively, criteria that are not invariant to linear
transformations of the data may be employed.

2. Minimisation of jSWj=j O�j
This criterion is invariant to nonsingular linear transformations of the data. For a given
data set, it is equivalent to finding the partition of the data that minimises jSW j (the
matrix O� is independent of the partition).

3. Maximisation of Tr.S-1
WSB/

This is a generalisation of the sum-of-squares method in that the clusters are no longer
hyperspherical, but hyperellipsoidal. It is equivalent to minimising the sum of squares
under the Mahalanobis metric. It is also invariant to nonsingular transformations of the
data.

4. Minimisation of Tr. O�-1
SW/

This is identical to minimising the sum of squares for data that have been normalised to
make the total scatter matrix equal to the identity.

Note that the two examples in Figure 10.8 would be clustered differently by the
sum-of-squares method (criterion 1 above). However, since they only differ from each
other by a linear transformation, they must both be local optima of a criterion invariant
to linear transformations. Thus, it is not necessarily an advantage to use a method that
is invariant to linear transformations of the data since structure may be lost. The final
solution will depend very much on the initial assignment of points to clusters.

10.5.2 Clustering algorithms

The problem we are addressing is one in combinatorial optimisation. We seek a non-trivial
partition of n objects into g groups for which the chosen criterion is optimised. However,
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to find the optimum partition requires the examination of every possible partition. The
number of non-trivial partitions of n objects into g groups is

1

g!

gX
iD1

.�1/g�i
�

g
i

�
in

with the final term in the summation being most significant if n × g. This increases
rapidly with the number of objects. For example, there are 259� 1 ³ 6ð 1017 partitions
of 60 objects into two groups. This makes exhaustive enumeration of all possible sub-
sets infeasible. In fact, even the branch and bound procedure described in Chapter 9 is
impractical for moderate values of n. Therefore, suboptimal solutions must be derived.

We now describe some of the more popular approaches. Many of the procedures
require initial partitions of the data, from which group means may be calculated, or
initial estimates of group means (from which an initial partition may be deduced using
a nearest class mean rule). These were discussed in Section 10.3.

k-means

The aim of the k-means (which also goes by the names of the c-means or iterative
relocation or basic ISODATA) algorithm is to partition the data into k clusters so that the
within-group sum of squares (criterion 1 of Section 10.5.1) is minimised. The simplest
form of the k-means algorithm is based on alternating two procedures. The first is one
of assignment of objects to groups. An object is usually assigned to the group to whose
mean it is closest in the Euclidean sense. The second procedure is the calculation of new
group means based on the assignments. The process terminates when no movement of an
object to another group will reduce the within-group sum of squares. Let us illustrate with
a very simple example. Consider the two-dimensional data shown in Figure 10.9. Let us
set k D 2 and choose two vectors from the data set as initial cluster mean vectors. Those
selected are points 5 and 6. We now cycle through the data set and allocate individuals
to groups A and B represented by the initial vectors 5 and 6 respectively. Individuals 1,
2, 3, 4 and 5 are allocated to A and individual 6 to B. New means are calculated and
the within-group sum of squares is evaluated, giving 6.4. The results of this iteration are
summarised in Table 10.2. The process is now repeated, using the new mean vectors as
the reference vectors. This time, individuals 1, 2, 3, and 4 are allocated to group A and

�1 0 1 2 3 4 5
�1

0

1

Š Š Š

Š Š Š

1 2 3

4 5 6

Figure 10.9 Data to illustrate the k-means procedure
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Table 10.2 Summary of k-means iterations

Step Group A Group B Tr.W /

Membership Mean Membership Mean

1. 1, 2, 3, 4, 5 (1.6, 0.4) 6 (4.0, 1.0) 6.4

2. 1, 2, 3, 4 (1.25, 0.25) 5, 6 (3.5, 1.0) 4.0

3. 1, 2, 3, 4 (1.25, 0.25) 5, 6 (3.5, 1.0) 4.0

�1 0 1 2 3 4 5
�1

0

1

Š ž Š

Š ž Š

1 2

3 4

Figure 10.10 Data to illustrate the k-means local optimum

5 and 6 to group B. The within-group sum of squares has now decreased to 4.0. A third
iteration produces no change in the within-group sum of squares.

The iterative procedure of allocating objects to groups on a nearest group mean
basis, followed by recalculation of group means, gives the version of the k-means called
HMEANS by Späth (1980). It is also termed Forgy’s method or the basic ISODATA
method.

There are two main problems with HMEANS. It may lead to empty groups and it
may lead to a partition for which the sum-squared error could be reduced by moving an
individual from one group to another. Thus the partition of the data by HMEANS is not
necessarily one for which the within-group sum of squares is a minimum (see Selim and
Ismail, 1984a, for a treatment of the convergence of this algorithm). For example, in
Figure 10.10 four data points and two groups are illustrated. The means are at positions
(1.0, 0.0) and (3.0, 1.0), with a sum-squared error of 4.0. Repeated iterations of the
algorithm HMEANS will not alter that allocation. However, if we allocate object 2 to
the group containing objects 3 and 4, the means are now at (0.0, 0.0) and (8/3, 2/3), and
the sum-squared error is reduced to 10/3. This suggests an iterative procedure that cycles
through the data points and allocates each to a group for which the within-group sum of
squares is reduced the most. Allocation takes place on a sample-by-sample basis, rather
than after a pass through the entire data set. An individual xi (in group l) is assigned to
group r if

nl

nl � 1
d2

il >
nr

nr C 1
d2

ir
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where dil is the distance to the lth centroid and nl is the number in group l. The
greatest decrease in the sum-squared error is achieved by choosing the group for which
nr d2

ir=.nr C 1/ is a minimum. This is the basis of the k-means algorithm.
There are many variants of the k-means algorithm to improve efficiency of the algo-

rithm in terms of computing time and of achieving smaller error. Some algorithms allow
new clusters to be created and existing ones deleted during the iterations. Others may
move an object to another cluster on the basis of the best improvement in the objective
function. Alternatively, the first encountered improvement during the pass through the
data set could be used.

Nonlinear optimisation

The within-groups sum-of-squares criterion may be written in the form

Tr.SW / D 1

n

nX
iD1

gX
kD1

zki

pX
jD1

.xi j � mkj /
2 (10.2)

where xi j is the j th coordinate of the i th point (i D 1; : : : ; n; j D 1; : : : ; p), mkj is the
j th coordinate of the mean of the kth group and zki D 1 if the i th point belongs to the
kth group and 0 otherwise. The mean quantities mkj may be written as

mkj D
Pn

iD1 zki xi jPn
iD1 zki

(10.3)

for zki as defined above. To obtain an optimal partition, we must find the values of zki

(either 0 or 1) for which (10.2) is a minimum.
The approach of Gordon and Henderson (1977) is to regard the g ð n matrix Z

with .i; j/th element zi j as consisting of real-valued quantities (as opposed to binary
quantities) with the property

gX
kD1

zki D 1 and zki ½ 0 .i D 1; : : : ; n; k D 1; : : : ; g/ (10.4)

Minimisation of (10.2) with respect to zki .i D 1; : : : ; n; k D 1; : : : ; g/, subject to the
constraints above, yields a final solution for Z with elements that are all 0 or 1. Therefore
we can obtain a partition by minimising (10.2) subject to the constraints (10.4) and
assigning objects to groups on the basis of the values zik . Thus, mkj is not equal to a
group mean until the iteration has converged.

The problem can be transformed to one of unconstrained optimisation by writing
z ji as

z ji D exp.¹ j i /Pg
kD1 exp.¹ki /

. j D 1; : : : ; g; i D 1; : : : ; n/

that is, we regard TrfSW g as a nonlinear function of parameters ¹ki ; i D 1; : : : ; n;
k D 1; : : : ; g, and seek a minimum of TrfSW .¹/g. Other forms of transformation to
unconstrained optimisation are possible. However, for the particular form given above,
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the gradient of TrfSW .¹/g with respect to ¹ab has the simple form

@TrfSW .¹/g
@¹ab

D 1

n

gX
kD1

zkb.Žka � zab/jxb �mk j2 (10.5)

where Žka D 0; k 6D a, and 1 otherwise. There are many nonlinear optimisation schemes
that can be used. The parameters ¹i j must be given initial values. Gordon and Henderson
(1977) suggest choosing an initial set of random values z ji uniformly distributed in the
range [1; 1 C a] and scaled so that their sum is unity. A value of about 2 is suggested
for the parameter a. Then ¹ j i is given by ¹ j i D log.z ji /.

Fuzzy k-means
The partitioning methods described so far in this chapter have the property that each
object belongs to one group only, though the mixture model can be regarded as providing
degrees of cluster membership. Indeed, the early work on fuzzy clustering was closely
related to multivariate mixture models. The basic idea of the fuzzy clustering method is
that patterns are allowed to belong to all clusters with different degrees of membership.
The first generalisation of the k-means algorithm was presented by Dunn (1974). The
fuzzy k-means (or fuzzy c-means) algorithm attempts to find a solution for parameters
y ji (i D 1; : : : ; n; j D 1; : : : ; g) for which

Jr D
nX

iD1

gX
jD1

yr
ji jxi �m j j2 (10.6)

is minimised subject to the constraints

gX
jD1

y ji D 1 1 � i � n

y ji ½ 0 i D 1; : : : ; n; j D 1; : : : ; g

The parameter y ji represents the degree of association or membership function of the
i th pattern or object with the j th group. In (10.6), r is a scalar termed the weighting
exponent which controls the ‘fuzziness’ of the resulting clusters (r ½ 1) and m j is the
‘centroid’ of the j th group

m j D
Pn

iD1 yr
jixiPn

iD1 yr
ji

(10.7)

A value of r D 1 gives the same problem as the nonlinear optimisation scheme presented
earlier. In that case, we know that a minimum of (10.6) gives values for the y ji that are
either 0 or 1.

The basic algorithm is iterative and can be stated as follows (Bezdek, 1981).

1. Select r (1 < r < 1); initialise the membership function values y ji ; i D 1; : : : ; n;
j D 1; : : : ; g.

2. Compute the cluster centres m j ; j D 1; : : : ; g, according to (10.7).
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3. Compute the distances di j , i D 1; : : : ; n; j D 1; : : : ; g, where di j D jxi �m j j.
4. Compute the membership function: if dil D 0 for some l, yli D 1, and y ji D 0, for

all j 6D l; otherwise

y ji D 1

Pg
kD1

�
di j
dik

	 2
r�1

5. If not converged, go to step 2.

As r ! 1, this algorithm tends to the basic k-means algorithm. Improvements to this basic
algorithm, resulting in faster convergence, are described by Kamel and Selim (1994).

Several stopping rules have been proposed (Ismail, 1988). One is to terminate the
algorithm when the relative change in the centroid values becomes small; that is, termi-
nate when

Dz
4D
(

gX
jD1

jm j .k/�m j .k � 1/j2
) 1

2

< ž

where m j .k/ is the value of the j th centroid on the kth iteration and ž is a user-specified
threshold. Alternative stopping rules are based on changes in the membership function
values, y ji , or the cost function, Jr . Another condition based on the local optimality of
the cost function is given by Selim and Ismail (1986). It is proposed to stop when

max
1�i�n

Þi < ž

where
Þi D max

1� j�g
yr�1

j i jxi �m j j2 � min
1� j�g

yr�1
j i jxi �m j j2

since at a local minimum, Þi D 0; i D 1; : : : ; n.

Complete search
Complete search of the space of partitions of n objects into g groups is impractical
for all but very small data sets. The branch and bound method (described in a feature
subset selection context in Chapter 9) is one approach for finding the partition that
results in the minimum value of the clustering criterion, without exhaustive enumeration.
Nevertheless, it may still be impractical. Koontz et al. (1975) have developed an approach
that extends the range of problems to which branch and bound can be applied. The
criterion they seek to minimise is TrfSW g. Their approach is to divide the data set into
2m independent sets. The branch and bound method is applied to each set separately and
then sets are combined in pairs (to give 2m�1 sets) and the branch and bound method
applied to each of these combined sets, using the results obtained from the branch and
bound application to the constituent parts. This is continued until the branch and bound
procedure is applied to the entire set. This hierarchical approach results in a considerable
saving in computer time.

Other approaches based on global optimisation algorithms such as simulated annealing
have also been proposed. Simulated annealing is a stochastic relaxation technique in
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which a randomly selected perturbation to the current configuration is accepted or rejected
probabilistically. Selim and Al-Sultan (1991) apply the method to the minimisation of
TrfSW g. Generally the method is slow, but it can lead to effective solutions.

10.5.3 Vector quantisation

Vector quantisation (VQ) is not a method of producing clusters or partitions of a data
set but rather an application of many of the clustering algorithms already presented.
Indeed, many clustering techniques have been rediscovered in the vector quantisation
literature. On the other hand, there are some important algorithms in the VQ literature
that are not found in the standard texts on clustering. This section is included in the
section on optimisation methods since in VQ a distortion measure (often, but by no
means exclusively, based on the Euclidean distance) is optimised during training. A
comprehensive and very readable account of the fundamentals of VQ is given by Gersho
and Gray (1992).

VQ is the encoding of a p-dimensional vector x as one from a codebook of g vectors,
z1; : : : ; zg , termed the code vectors or the codewords. The purpose of VQ is primarily to
perform data compression. A vector quantiser consists of two components: an encoder
and a decoder (see Figure 10.11).

The encoder maps an input vector, x, to a scalar variable, y, taking discrete values
1; : : : ; g. After transmission of the index, y, the inverse operation of reproducing an
approximation x0 to the original vector takes place. This is termed decoding and is a
mapping from the index set I D f1; : : : ; gg to the codebook C D fz1; : : : ; zgg. Codebook
design is the problem of determining the codebook entries given a set of training samples.
From a clustering point of view, we may regard the problem of codebook design as one
of clustering the data and then choosing a representative vector for each cluster. These
vectors could be cluster means, for example, and they form the entries in the codebook.
They are indexed by integer values. Then the code vector for a given input vector x

is the representative vector, say z, of the cluster to which x belongs. Membership of a
cluster may be determined on a nearest-to-cluster-mean basis. The distortion or error in
approximation is then d.x; z/, the distance between x and z (see Figure 10.12).

The problem in VQ is to find a set of codebook vectors that characterise a data set.
This is achieved by choosing the set of vectors for which a distortion measure between
an input vector, x, and its quantised vector, x0, is minimised. Many distortion measures
have been proposed, the most common being based on the squared error measure giving
average distortion, D2,

D2 D
Z

p.x/ d.x; x0/ dx

D
Z

p.x/jjx 0.y.x//� xjj2 dx

(10.8)

code, y
reconstruction

x′
decoder

x′(y)
original
vector x

encoder
y(x)

Figure 10.11 The encoding–decoding operation in vector quantisation
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Figure 10.12 VQ distortion for two code vectors. The reconstruction of x after encoding and
decoding is z 2, the nearest code vector. The distortion is d.x ; z 2/

Table 10.3 Some distortion measures used in vector
quantisation

Type of norm d.x; x0/

L2, Euclidean jx0 � xj
L¹

ýPp
iD1 jx0 � xj¹� 1

¹

Minkowski max
1�i�p

jx 0i � xi j

Quadratic (for positive definite .x0 � x/T B.x 0 � x/

symmetric B/

where p.x/ is the probability density function over samples x used to train the vector
quantiser and jj:jj denotes the norm of a vector. Other distortion measures are given in
Table 10.3.

For a finite number of training samples, x1; : : : ; xn , we may write the distortion as

D D
gX

jD1

X
xi2S j

d.xi ; z j /

where S j is the set of training vectors for which y.x/ D j , i.e. those that map onto the
j th code vector, z j . For a given set of code vectors z j , the partition that minimises the
average distortion is constructed by mapping each xi to the z j for which d.xi ; z j / is a
minimum over all z j – i.e. choosing the minimum distortion or nearest-neighbour code
vector. Alternatively, for a given partition the code vector of a set S j , z j , is defined to
be the vector for which

X
xi2S j

d.u; xi /

is a minimum with respect to u. This vector is called the centroid (for the squared error
measure it is the mean of the vectors xi ).
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This suggests an iterative algorithm for a vector quantiser:

1. Initialise the code vectors.

2. Given a set of code vectors, determine the minimum distortion partition.

3. Find the optimal set of code vectors for a given partition.

4. If the algorithm has not converged, then go to step 2.

This is clearly a variant of the k-means algorithms given earlier. It is identical to
the basic k-means algorithm provided that the distortion measure used is the squared
error distortion since all the training vectors are considered at each iteration rather than
making an adjustment of code vectors by considering each in turn. This is known as the
generalised Lloyd algorithm in the VQ literature (Gersho and Gray, 1992) or the LBG
algorithm in the data compression literature. One of the main differences between the
LBG algorithm and some of the k-means implementations is the method of initialisation
of the centroid vectors. The LBG algorithm (Linde et al., 1980) given below starts
with a one-level quantiser (a single cluster) and, after obtaining a solution for the code
vector z, ‘splits’ the vector z into two close vectors that are used as seed vectors for
a two-level quantiser. This is run until convergence and a solution is obtained for the
two-level quantiser. Then these two codewords are split to give four seed vectors for a
four-level quantiser. The process is repeated so that finally quantisers of 1; 2; 4; : : : ; N
levels are obtained (see Figure 10.13).

1. Initialise a code vector z1 to be the group mean; initialise ε.

2. Given a set of m code vectors, ‘split’ each vector zi to form 2m vectors, zi C ε and
zi � ε. Set m D 2m; relabel the code vectors as x 0i ; i D 1; : : : ;m.

3. Given the set of code vectors, determine the minimum distortion partition.

4. Find the optimal set of code vectors for a given partition.
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Figure 10.13 LBG algorithm illustration: z denotes the group centroid; z 1 and z 2 denote the
code vectors for a two-level quantiser
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5. Repeat steps 3 and 4 until convergence.

6. If m 6D N , the desired number of levels, go to step 2.

Although it appears that all we have achieved with the introduction of VQ in this
chapter is yet another version of the k-means algorithm, the VQ framework allows us to
introduce two important concepts: that of tree-structured codebook search that reduces
the search complexity in VQ; and that of topographic mappings in which a topology is
imposed on the code vectors.

Tree-structured vector quantisation
Tree-structured vector quantisation is a way of structuring the codebook in order to
reduce the amount of computation required in the encoding operation. It is a special
case of the classification trees or decision trees discussed in a discrimination context in
Chapter 7. Here we shall consider fixed-rate coding, in which there are the same number
of bits used to represent each code vector. Variable-rate coding, which allows pruning
of the tree, will not be addressed. Pruning methods for classification trees are described
in Chapter 7, and in the VQ context by Gersho and Gray (1992).

We shall begin our description of tree-structured VQ with a simple binary tree
example. The first stage in the design procedure is to run the k-means algorithm on
the entire data set to partition the set into two parts. This leads to two code vectors
(the means of each cluster) (see Figure 10.14). Each group is considered in turn and the
k-means algorithm applied to each group, partitioning each group into two parts again.
This second stage then produces four code vectors and four associated clusters. The mth
stage produces 2m code vectors. The total number of code vectors produced in an m-stage
design algorithm is

Pm
iD1 2i D 2mC1� 2. This process produces a hierarchical clustering

in which two clusters are disjoint or one wholly contains the other.
Encoding of a given vector, x, proceeds by starting at the root of the tree (labelled A0

in Figure 10.15) and comparing x with each of the two level 1 code vectors, identifying
the nearest. We then proceed along the branch to A1 and compare the vector x with the
two code vectors at this level which were generated from members of the training in
this group. Thus there are m comparisons in an m-stage encoder. This compares with 2m

0

1

1,0 1,1

0,1

0,0

1

0

* x

− cluster centres
after one stage

− cluster centres
after two stages

Figure 10.14 Tree-structured vector quantisation
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Figure 10.15 Tree-structured vector quantisation tree

code vectors at the final level. Tree-structured VQ may not be optimal in the sense that
the nearest neighbour of the final level code vectors is not necessarily found (the final
partition in Figure 10.14 does not consist of nearest-neighbour regions). However, the
code has the property that it is a progressively closer approximation as it is generated
and the method can lead to a considerable saving in encoding time.

Self-organising feature maps

Self-organising feature maps are a special kind of vector quantisation in which there
is an ordering or topology imposed on the code vectors. The aim of self-organisation
is to represent high-dimensional data as a low-dimensional array of numbers (usually a
one- or two-dimensional array) that captures the structure in the original data. Distinct
clusters of data points in the data space will map to distinct clusters of code vectors in
the array, although the converse is not necessarily true: separated clusters in the array do
not necessarily imply separated clusters of data points in the original data. In some ways,
self-organising feature maps may be regarded as a method of exploratory data analysis
in keeping with those described in Chapter 9. The basic algorithm has the k-means
algorithm as a special case.

Figures 10.16 and 10.17 illustrate the results of the algorithm applied to data in two
dimensions.

ž In Figure 10.16, 50 data samples are distributed in three groups in two dimensions
and we have used a self-organisation process to obtain a set of nine ordered cluster
centres in one dimension. By a set of ordered cluster centres we mean that centre zi

is close in some sense to zi�1 and ziC1. In the k-means algorithm, the order that the
centres are stored in the computer is quite arbitrary and depends on the initialisation
of the procedure.

ž In Figure 10.17, the data (not shown) comprise 500 samples drawn from a uniform
distribution over a square ([�1 � x; y � 1]) and do not lie on (or close to) a
one-dimensional manifold in the two-dimensional space. Again, we have imposed a
one-dimensional topology on the cluster centres, which are joined by straight lines. In
this case, we have obtained a space-filling curve.
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Figure 10.17 Topographic mapping for data uniformly distributed over a square. Thirty-three
centres are determined and again adjacent cluster centres in the stored array are joined

In each of the above illustrations, a transformation to a reduced dimension is achieved
using a topographic mapping in which there is an ordering on the cluster centres. Each
point in the data space is mapped to the ordered index of its nearest cluster centre.
The mapping is nonlinear, and for purposes of illustration we considered mappings to
one dimension only. If the data do lie on a reduced-dimension manifold within a high-
dimensional space, then it is possible for topographic mappings to capture the structure in
the data and present it in a form that may aid interpretation. In a supervised classification
problem, it is possible to label each cluster centre with a class label according to the
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majority of the objects for which that cluster centre is the nearest. Of course we can do
this even if there were no ordering on the cluster centres, but the ordering does allow
the relationships between classes (according to decision boundaries) to be viewed easily.

The algorithm for determining the cluster centres may take many forms. The basic
approach is to cycle through the data set and adjust the cluster centres in the neigh-
bourhood (suitably defined) of each data point. The algorithm is often presented as a
function of time, where time refers to the number of presentations of a data sample. One
algorithm is as follows.

1. Decide on the topology of the cluster centres (code vectors). Initialise Þ, the neigh-
bourhood and the cluster centres z1; : : : ; zN .

2. Repeat until convergence:

(a) Select a data sample x (one of the training samples) and find the closest centre:
let d jŁ D min j .d j /, where

d j D jx � z j j j D 1; : : : ; N

(b) Update the code vectors in the neighbourhood, N jŁ of code vector z jŁ

z.t C 1/ D z.t/C Þ.t/.x.t/� z.t// for all centres z 2 N jŁ

where Þ is a learning rate that decreases with iteration number, t (0 � Þ � 1).

(c) Decrease the neighbourhood and the learning parameter, Þ.

In order to apply the algorithm an initial set of weight vectors, the learning rate Þ.t/ and
the change with t of the neighbourhoods must be chosen.

Definition of topology The choice of topology of the cluster centres requires some
prior knowledge of the data structure. For example, if you suspect circular topology in
your data, then the topology of your cluster centres should reflect this. Alternatively, if
you wish to map your data onto a two-dimensional surface, then a regular lattice structure
for the code vectors may be sufficient.

Learning rate The learning rate, Þ, is a slowly decreasing function of t . It is suggested
by Kohonen (1989) that it could be a linear function of t , stopping when Þ reaches 0, but
there are no hard and fast rules for choosing Þ.t/. It could be linear, inversely proportional
to t or exponential. Haykin (1994) describes two phases: the ordering phase, of about
1000 iterations, when Þ starts close to unity and decreases, but remains above 0.1; and the
convergence phase, when Þ decreases further and is maintained at a small value – 0.01
or less – for typically thousands of iterations.

Initialisation of code vectors Code vectors zi are initialised to m C εi , where m is
the sample mean and εi is a vector of small random values.
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Decreasing the neighbourhood The topological neighbourhood N j of a code vector
z j is itself a function of t and decreases as the number of iterations proceeds. Initially
the neighbourhood may cover most of the code vectors (z j�r ; : : : ; z j�1; z jC1; : : : ; z jCr

for large r), but towards the end of the iterations it covers the nearest (topological)
neighbours z j�1 and z jC1 only. Finally it shrinks to zero. The problem is how to initialise
the neighbourhood and how to reduce it as a function of t . During the ordering phase,
the neighbourhood is decreased to cover only a few neighbours.

An alternative approach proposed by Luttrell (1989) is to fix the neighbourhood size
and to start off with a few code vectors. The algorithm is run until convergence, and
then the number of vectors is increased by adding vectors intermediate to those already
calculated. The process is repeated and continued until a mapping of the desired size
has been grown. Although the neighbourhood size is fixed, it starts off by covering a
large area (since there are few centres) and the physical extent is reduced as the mapping
grows. Specifically, given a data sample x, if the nearest neighbour is zŁ, then all code
vectors z in the neighbourhood of zŁ are updated according to

z! z C ³.z; zŁ/.x � z/ (10.9)

where ³ .> 0/ is a function that depends on the position of z in the neighbourhood of
zŁ. For example, with a one-dimensional topology, we may take

³.z; zŁ/ D
²

0:1 for z D zŁ
0:01 for z a topographic neighbour of zŁ

The Luttrell algorithm for a one-dimensional topographic mapping is as follows.

1. Initialise two code vectors, z1 and z2; set m D 2. Define the neighbourhood function,
³ ; set the number of updates per code vector, u.

2. Repeat until the distortion is small enough or the maximum number of code vectors
is reached:

(a) For j D 1 to m ð u do

ž Sample from the data set x1; : : : ; xn , say x.

ž Determine the nearest-neighbour code vector, say zŁ.
ž Update the code vectors according to: z! zC ³.z; zŁ/.x � z/.

(b) Define 2m � 1 new code vectors: for j D m � 1 down to 1 do

ž z2 jC1 D z jC1

ž z2 j D z j C z jC1

2
(c) Set m D 2m � 1.

Topographic mappings have received widespread use as a means of exploratory data
analysis (for example, Kraaijveld et al., 1992; Roberts and Tarassenko, 1992) They have
also been misused and applied when the ordering of the resulting cluster centres is
irrelevant in any subsequent data analysis and a simple k-means approach could have
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been adopted. An assessment of the method and its relationship to other methods of
multivariate analysis is provided by Murtagh and Hernández-Pajares (1995). Luttrell
(1989) has derived an approximation to the basic learning algorithm from a VQ approach
assuming a minimum distortion (Euclidean) and a robustness to noise on the codes. This
puts the approach on a firmer mathematical footing. Also, the requirement for ordered
cluster centres is demonstrated for a hierarchical vector quantiser.

Learning vector quantisation
Vector quantisation or clustering (in the sense of partitioning a data set, not seeking
meaningful groupings of objects) is often performed as a preprocessor for supervised
classification. There are several ways in which vector quantisers or self-organising maps
have been used with labelled training data. In the radar target classification example
of Luttrell (1995), each class is modelled separately using a self-organising map. This
was chosen to feed in prior knowledge that the underlying manifold was a circle. Test
data are classified by comparing each pattern with the prototype patterns in each of the
self-organising maps (codebook entries) and classifying on a nearest-neighbour rule basis.

An alternative approach that uses vector quantisers in a supervised way is to model
the whole of the training data with a single vector quantiser (rather than each class
separately). Each training pattern is assigned to the nearest code vector, which is then
labelled with the class of the majority of the patterns assigned to it. A test pattern is then
classified using a nearest-neighbour rule using the labelled codebook entries.

Learning vector quantisation is a supervised generalisation of vector quantisation that
takes account of class labels in the training process. The basic algorithm is given below.

1. Initialise cluster centres (or code vectors), z1; : : : ; zN , and labels of cluster centres,
!1; : : : ; !N .

2. Select a sample x from the training data set with associated class !x and find the
closest centre: let d jŁ D min j .d j /, where

d j D jx � z j j j D 1; : : : ; N

with corresponding centre z jŁ and class ! jŁ .

3. If !x D ! jŁ then update the nearest vector, z jŁ , according to

z jŁ.t C 1/ D z jŁ.t/C Þ.t/.x.t/� z jŁ.t//

where 0 < Þt < 1 and decreases with t , starting at about 0.1.

4. If !x 6D ! jŁ then update the nearest vector, z jŁ , according to

z jŁ.t C 1/ D z jŁ.t/� Þ.t/.x.t/� z jŁ.t//

5. Go to 1 and repeat until several passes have been made through the data set.

Correct classification of a pattern in the data set leads to a refinement of the code-
word in the direction of the pattern. Incorrect classification leads to a movement of the
codeword away from the training pattern.
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Stochastic vector quantisation
In the approach to vector quantisation described in the previous section, a codebook is
used to encode each input vector x as a code index y which is then decoded to produce
an approximation, x0.y/, to the original input vector. Determining the codebook vectors
that characterise a data set is achieved by optimising an objective function, the most
common being based on the squared error measure (equation (10.8))

D2 D
Z

p.x/jjx 0.y.x//� xjj2 dx

Optimisation is achieved through an iterative process using a k-means algorithm or
variants (e.g. the LBG algorithm). Encoding is the deterministic process of finding the
nearest entry in the codebook.

Stochastic vector quantisation (SVQ, Luttrell, 1997, 1999a) is a generalisation of the
standard approach in which an input vector x is encoded as a vector of code indices y

(rather than as a single code index) that are stochastically sampled from a probability
distribution p.yjx/ that depends on the input vector x. The decoding operation that
produces a reconstruction, x0, is also probabilistic, with x0 being a sample drawn from
p.xjy/ given by

p.xjy/ D p.yjx/p.x/R
p.yjz/p.z/ dz

(10.10)

One of the key factors motivating the development of the SVQ approach is that of
scalability to high dimensions. A problem with standard VQ is that the codebook grows
exponentially in size as the dimensionality of the input vector is increased, assuming
that the contribution to the reconstruction error from each dimension is held constant.
This means that such vector quantisers are not appropriate for encoding extremely high-
dimensional input vectors, such as images. An advantage of using the stochastic ap-
proach is that it automates the process of splitting high-dimensional input vectors into
low-dimensional blocks before encoding them, because minimising the mean Euclidean
reconstruction error can encourage different stochastically sampled code indices to be-
come associated with different input subspaces.

SVQ provides a unifying framework for many of the methods of the previous subsec-
tions, with standard VQ (k-means), fuzzy k-means and topographic mappings emerging
as special cases.

We denote the number of groups (i.e. the number of codebook entries) by g and
let r be the number of samples in the code index vector, y (i.e. y D .y1; : : : ; yr /).
The objective function is taken to be the mean Euclidean reconstruction error measure
defined by

D D
Z

dx p.x/
gX

y1D1

gX
y2D1

Ð Ð Ð
gX

yrD1

p.yjx/
Z

dx0 p.x0jy/jx � x 0.y/j2 (10.11)

Integrating over x0 yields

D D 2
Z

dx p.x/
gX

y1D1

gX
y2D1

Ð Ð Ð
gX

yrD1

p.yjx/jx � x0.y/j2 (10.12)
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where the reconstruction vector is defined as

x0 D
Z

dx p.xjy/x

D

Z
dx p.yjx/p.x/x
Z

dzp.yjz/p.z/

(10.13)

using (10.10). Equations (10.12) and (10.13) are simply the integral analogues of (10.2)
and (10.3) where the role of zki is taken by p.yk jxi /, yk being the kth state of y (there
are gr states). Unconstrained minimisation of (10.12) with respect to p.yjx/ gives values
for p.yk jxi / that are either 0 or 1.

A key step in the SVQ approach is to constrain the minimisation of (10.12) in such
a way as to encourage the formation of code schemes in which each component of the
code vector codes a different subspace of the input vector x – an essential requirement
for scalability to high dimensions. Luttrell (1999a) imposes two constraints on p.yjx/
and x0.y/, namely

p.yjx/ D
rY

iD1

p.yi jx/

x0.y/ D 1

r

rX
iD1

x0.yi /

(10.14)

The first constraint states that each component yi is an independent sample drawn from
the codebook using p.yi jx/; the second states that x0.y/ is assumed to be a superposition
of r contributions x 0.yi / (i D 1; : : : ; r). These constraints encourage the formation of
coding schemes in which independent subspaces are separately coded (Luttrell, 1999a)
and allow (10.12) to be bounded above by the sum of two terms D1 C D2 where

D1 D 2

r

Z
dx

gX
yD1

p.yjx/jx � x0.y/j2

D2 D 2.r � 1/

r

Z
dx p.x/

þþþþþx �
gX

yD1

p.yjx/x0.y/
þþþþþ
2

(10.15)

The term D1 is a stochastic version of the standard VQ term (see (10.8)) and dominates for
small values of r . D2 is a nonlinear principal components type term, which describes the
integrated squared error between x and a fitting surface modelled as a linear combination
(specified by x0.y/) of nonlinear basis functions (p.yjx/). Compare this with the lines
and planes of closest fit definition of principal components analysis in Chapter 9.

The expression D1 C D2 must now be minimised with respect to x0.y/ and p.yjx/.
The parameters r (the number of samples drawn from the codebook using p.yjx/) and
g (the size of the codebook) are model order parameters whose values determine the
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nature of the optimum solution. All that remains now is to specify a suitable form for
p.yjx/. It can be shown (Luttrell, 1999b) that the optimal form of p.yjx/ is piecewise
linear in x for regions of the data space that contain a non-vanishing probability density.
A convenient approximation is

p.yjx/ D Q.yjx/Pg
y0D1 Q.y0jx/

where Q.yjx/ is taken to be of the form

Q.yjx/ D 1

1C exp.�wT .y/x � b.y//

Thus, D1 C D2 is minimised with respect to fw.y/; b.y/; y D 1; : : : ; gg, the parameters
of p.yjx/ and fx0.y/; y D 1; : : : ; gg using some suitable nonlinear optimisation scheme.

Illustration Four-dimensional data, x, are generated to lie on a torus: x D .x1; x2/,
where x1 D .cos.�1/; sin.�1// and x2 D .cos.�2/; sin.�2//, for �1 and �2 uniformly dis-
tributed over [1; 2³ ]. An SVQ is trained using g D 8 codebook entries (8 ‘clusters’) and
for two values of r , the number of samples in the code index vector. Figure 10.18 shows
a density plot of p.yjx/ for each value of the code index, y, and for r D 5 in the .�1; �2/

space (of course, in practice, the underlying variables describing the data are unavailable
to us). This type of coding, termed joint encoding, has produced approximately circular
receptive fields in the space on which the data lie.

Figure 10.19 shows a density plot of p.yjx/ for r D 50 in the .�1; �2/ space. This
type of coding, termed factorial encoding, has produced receptive fields that respond to
independent directions. Factorial coding is the key to scalability in high dimensions.

Posterior Probabilities on a Toroidal Manifold  joint encoder.
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Figure 10.18 Joint encoding
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Posterior Probabilities on a Toroidal Manifold factorial encoder.
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Figure 10.19 Factorial encoding

10.5.4 Example application study

The problem A study of the influence of early diagenesis (the conversion, by com-
paction or chemical reaction, of sediment into rock) on the natural remanent magneti-
sation in sediments from the Calabrian ridge in the central Mediterranean (Dekkers
et al., 1994).

Summary A fuzzy k-means algorithm (Section 10.5.2) was applied to measured data
and the clusters plotted in two dimensions using a nonlinear mapping (multidimensional
scaling–Chapter 9). The approach appeared to be useful, linking rock parameters to the
geochemical environment.

The data Palaeomagnetic samples were taken from a 37 m long piston core from
the Calabrian ridge in the central Mediterranean. In total, 337 samples, taken at 10 cm
intervals (corresponding to an average resolution of approximately 3000 years), were
analysed and measurements made on six variables (two magnetic variables and four
chemical variables).

The model A fuzzy k-means clustering approach was adopted. Also, a two-dimensio-
nal projection of the six-dimensional data was derived using a nonlinear mapping based
on multidimensional scaling.

Training procedure Simple histograms of the data were produced. These revealed
approximately log-normal distributions. Therefore, before applying either the clustering or
mapping procedures, the data were logarithmically transformed. Models were developed
with an increasing number of clusters, and attempts were made to interpret these in a
chemical and magnetic context. Clearly, in problems like these, domain knowledge is
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important, but care must be taken that the results are not biased by the investigator’s
prejudices.

Results General trends appeared to be best expressed with an eight-cluster model.
Models with six or less clusters did not have sufficiently homogeneous clusters. These
clusters could be divided into two main categories, one expressing mainly lithological
features and the other expressing mainly diagenesis.

10.5.5 Further developments

Procedures for reducing the computational load of the k-means algorithm are discussed
by Venkateswarlu and Raju (1992). Further developments of k-means procedures to other
metric spaces (with l1 and l1 norms) are described by Bobrowski and Bezdek (1991).
Juan and Vidal (1994) propose a fast k-means algorithm (based on the approximating
and eliminating search algorithm, AESA) for the case when data arise in the form of
a dissimilarity. That is, the data cannot be represented in a suitable vector space (with-
out performing a multidimensional scaling procedure), though the dissimilarity between
points is available. Termed the k-centroids procedure, it determines the ‘most centred
sample’ as a centroid of a cluster.

There have been many developments of the basic fuzzy clustering approach and many
algorithms have been proposed. Sequential approaches are described by de Mántaras and
Aguilar-Martı́n (1985). In ‘semi fuzzy’ or ‘soft’ clustering (Ismail, 1988; Selim and Is-
mail, 1984b) patterns are considered to belong to some, though not necessarily all, clus-
ters. In thresholded fuzzy clustering (Kamel and Selim, 1991) membership values below
a threshold are set to zero, with the remaining being normalised, and an approach that per-
forms a fuzzy classification with prior assumptions on the number of clusters is reported
by Gath and Geva (1989). Developments of the fuzzy clustering approach to data arising
in the form of dissimilarity matrices are described by Hathaway and Bezdek (1994).

Developments of the stochastic vector quantiser approach include developments to
hierarchical schemes (folded Markov chains) for encoding data (Luttrell, 2002).

10.5.6 Summary

The techniques described in this section minimise a squared error objective function. The
k-means procedure is a special case of all of the techniques. It is widely used in pattern
recognition, forming the basis for many supervised classification techniques. It produces
a ‘crisp’ coding of the data in that a pattern belongs to one cluster only.

Fuzzy k-means is a development that allows a pattern to belong to more than one
cluster. This is controlled by a membership function. The clusters resulting from a fuzzy
k-means approach are softly overlapping, in general, with the degree of overlap controlled
by a user-specified parameter. The learning procedure determines the partition.

The vector quantisation approaches are application-driven. The aim is to produce a
crisp coding, and algorithms such as tree-structured vector quantisation are motivated by
the need for fast coding. Self-organising feature maps produce an ordered coding.
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Stochastic vector quantisation is a procedure that learns both the codebook entries and
the membership function. Different codings may result, depending on a user-specified
parameter. Of particular interest is the factorial encoding that scales linearly with the
intrinsic dimensionality of the data.

10.6 Cluster validity

10.6.1 Introduction

Cluster validity is an issue fraught with difficulties and rarely straightforward. A clus-
tering algorithm will partition a data set of objects even if there are no natural clusters
within the data. Different clustering methods may produce different classifications. How
do we know whether the structure is a property of the data set and not imposed by the
particular method that we have chosen? In some applications of clustering techniques we
may not be concerned with groupings in the data set. For example, in vector quantisation
we may be concerned with the average distortion in reconstructing the original data or
in the performance of any subsequent analysis technique. This may be measured by the
error rate in a discrimination problem or diagnostic performance in image reconstruction
(see the examples in the following section). In these situations, clustering is simply a
means of obtaining a partition, not of discovering structure in the data.

Yet, if we are concerned with discovering groupings within a data set, how do we
validate the clustering? A simple approach is to view the clustering in a low-dimensional
representation of the data. Linear and nonlinear projection methods have been discussed
in Chapter 9. Alternatively, we may perform several analyses using different clustering
methods and compare the resulting classifications to see whether the derived structure is
an artefact of a particular method. More formal procedures may also be applied and we
discuss some approaches in this section.

There are several related issues in cluster validity. The first concerns the goodness of
fit of the derived classification to the given data: how well does the clustering reflect the
true data structure? What appropriate measures of distortion or internal criterion measures
should be used? A second issue concerns the determination of the ‘correct’ number of
groups within the data. This is related to the first problem since it often requires the
calculation of distortion measures. Finally, we address the issue of identifying genuine
clusters in a classification based on work by Gordon (1996a).

There are three main classes of null model for the complete absence of structure in a
data set (Gordon 1994b, 1996a).

1. Poisson model (Bock, 1985). Objects are represented as points uniformly distributed
in some region A of the p-dimensional data space. The main problem with this model
is the specification of A. Standard definitions include the unit hypercube and the
hypersphere.

2. Unimodal model (Bock, 1985). The variables have a unimodal distribution. The dif-
ficulty here is the specification of this density function. Standard definitions include
the spherical multivariate normal.
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3. Random dissimilarity matrix (Ling, 1973). This is based on data arising in the form
of dissimilarities. The elements of the (lower triangle of the) dissimilarity matrix are
ranked in random order, all orderings being regarded as equally likely. One of the
problems with this is that if objects i and j are close (di j is small), you would expect
dik and d jk to have similar ranks for each object k.

The Poisson model and the unimodal model were used as part of the study described
in Section 10.6.4.

10.6.2 Distortion measures

In assessing particular hierarchical schemes we must consider how well the structure
in the original data can be described by a dendrogram. However, since the structure
in the data is not known (this is precisely what we are trying to determine) and since
each clustering is simply a method of exploratory data analysis that imposes its own
structure on the data, this is a difficult question to address. One approach is to examine
various measures of distortion. Many measures have been proposed (see, for example,
Cormack, 1971, for a summary). They are based on differences between the dissimilarity
matrix d and the matrix of ultrametric dissimilarity coefficients dŁ, where dŁi j is the
distance between the groups containing i and j when the groups are amalgamated. Jardine
and Sibson (1971) propose several goodness-of-fit criteria. One scale-free measure of
classifiability is defined by

11 D
P

i< j jdi j � dŁi j jP
i< j di j

Small values of 11 are indicative that the data are amenable to the classification method
that produced dŁ.

There are many other measures of distortion, both for hierarchical and nonhierarchical
schemes. Milligan (1981) performed an extensive Monte Carlo study of 30 internal
criterion measures applied to the results of hierarchical clusterings, although the results
may also apply to non-hierarchical methods.

10.6.3 Choosing the number of clusters

The problem of deciding how many clusters are present in the data is one common to
all clustering methods. There are numerous techniques for cluster validity reported in the
literature. Many methods are very subjective and can be unreliable, with some criteria
indicating clusters present when analysing unstructured data. Many methods have been
proposed for determining the number of groups. When applied to hierarchical schemes,
these are sometimes referred to as stopping rules. Many intuitive schemes have been
proposed for hierarchical methods; for example, we may examine the plot of fusion level
against the number of groups, g (see Figure 10.20), and look for a flattening of the curve
showing that little improvement in the description of the data structure is to be gained
above a particular value of g. Defining Þ j ; j D 0; : : : ; n � 1, to be the fusion level
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Figure 10.20 Fusion level against the number of clusters

corresponding to the stage with n � j clusters, Mojena (1977) proposes a stopping rule
that selects the number of groups as g such that Þn�g is the lowest value of Þ for which

Þn�g > Þ C ksÞ

where Þ and sÞ are the mean and the unbiased standard deviation of the fusion levels Þ;
k is a constant, suggested by Mojena to be in the range 2.75–3.5.

Milligan and Cooper (1985) examine 30 procedures applied to classifications of data
sets containing 2, 3, 4, or 5 distinct non-overlapping clusters by four hierarchical schemes.
They find that Mojena’s rule performs poorly with only two groups present in the data
and the best performance is for 3, 4 or 5 groups with a value of k of 1.25. One of the
better criteria that Milligan and Cooper (1985) assess is that of Calinski and Harabasz
(1974). The number of groups is taken to be the value of g that corresponds to the
maximum of C , given by

C D Tr.SB/

Tr.SW /

�
n � g

g � 1

�

This is evaluated further by Atlas and Overall (1994) who compare it with a split-sample
replication rule of Overall and Magee (1992). This gave improved performance over the
Calinski and Harabasz criterion.

Dubes (1987) also reports the results of a Monte Carlo study on the effectiveness of
two internal criterion measures in determining the number of clusters. Jain and Moreau
(1987) propose a method to estimate the number of clusters in a data set using the
bootstrap technique. A clustering criterion based on the within- and between-group scatter
matrices (developing a criterion of Davies and Bouldin, 1979) is proposed and the k-
means and three hierarchical algorithms are assessed. The basic method of determining
the number of clusters using a bootstrap approach can be used with any cluster method.

Several authors have considered the problem of testing for the number of components
of a normal mixture (see Chapter 2). This is not a trivial problem and depends on
many factors, including shape of clusters, separation, relative sizes, sample size and
dimension of data. Wolfe (1971) proposes a modified likelihood ratio test in which the
null hypothesis g D g0 is tested against the alternative hypothesis g D g1. The quantity

�2

n

�
n � 1� p � g1

2

	
log.½/

where ½ is the likelihood ratio, is tested as chi-square with degrees of freedom being
twice the difference in the number of parameters in the two hypotheses (Everitt et al.,
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2001), excluding mixing proportions. For components of a normal mixture with arbitrary
covariance matrices, the number of parameters, n p, is

n p D 2.g1 � g0/
p.p C 3/

2

and with common covariance matrices (the case studied by Wolfe, 1971), n p D 2.g1 �
g0/p. McLachlan and Basford (1988) recommend that Wolfe’s modified likelihood ratio
test be used as a guide to structure rather than rigidly interpreted. Ismail (1988) reports
the results of cluster validity studies within the context of soft clustering and lists nine
validity functionals that provide useful tools in determining cluster structure (see also
Pal and Bezdek 1995).

It is not reasonable to expect a single statistic to be suitable for all problems in
cluster validity. Many different factors are involved and since clustering is essentially a
method of exploratory data analysis, we should not put too much emphasis on the results
of a single classification, but perform several clusterings using different algorithms and
measures of fit.

10.6.4 Identifying genuine clusters

We wish to identify whether a cluster C (of size c) defined by

C D fi : di j < dik for all j 2 C; k =2 Cg

is a valid cluster. We describe here the procedure of Gordon (1994a) who develops an
approach to cluster validation based on a U statistic:

Ui jkl D
8<
:

0 if di j < dkl
1
2 if di j D dkl

1 if di j > dkl

and
U D

X
.i; j/2W

X
.k;l/2B

Ui jkl

for subsets W and B of ordered pairs .i; j/ 2 W and .k; l/ 2 B. W is taken to be those
pairs where objects i and j both belong to the cluster C and B comprises pairs where
one element belongs to C and the other does not.

The basic algorithm is defined as follows:

1. Evaluate U for the cluster C; denote it by UŁ.

2. Generate a random nð p pattern matrix and cluster it using the same algorithm used
to produce C.

3. Calculate U .k/ for each cluster of size k D 2; : : : ; n�1 (arising through the partition-
ing of a dendrogram, for example). If there is more than one of a given size, select
one of that size randomly.
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4. Repeat steps 2 and 3 until there are m � 1 values of U .k/ for each value of k.

5. If UŁ is less than the j th smallest value of U .k/, the null hypothesis of randomness
is rejected at the 100. j=m/% level of significance.

Note that the values of U .k/ are independent of the data set.
Gordon takes m D 100 and evaluates the above approach under both the Poisson and

unimodal (spherical multivariate normal) models. The clusterings using Ward’s method
are assessed on four data sets. Results for the approach are encouraging. Further refine-
ments could include the use of other test statistics and developments of the null models.

10.7 Application studies

Applications of hierarchical methods of cluster analysis include the following:

ž Flight monitoring. Eddy et al. (1996) consider single-link clustering of large data sets
(more than 40 000 observations) of high-dimensional data relating to aircraft flights
over the United States.

ž Clinical data. D’Andrea et al. (1994) apply the nearest centroid method to data relating
to adult children of alcoholics.

ž In a comparative study of seven methods of hierarchical cluster analysis on 20 data
sets, Morgan and Ray (1995) examine the extent of inversions in dendrograms and
non-uniqueness. They conclude that inversions are expected to be encountered and
recommend against the use of the median and centroid methods. Also, non-uniqueness
is a real possibility for many data sets.

The k-means clustering approach is widely used as a preprocessor for supervised
classification to reduce the number of prototypes:

ž Coal petrography. In a study to classify the different constituents (macerals) of coal
(Mukherjee et al., 1994), the k-means algorithm was applied to training images (train-
ing vectors consist of RGB level values) to determine four clusters of known types
(vitrinite, inertinite, exinite and background). These clusters are labelled and test im-
ages are classified using the labelled training vectors.

ž Crop classification. Conway et al. (1991) use a k-means algorithm to segment synthetic
aperture radar images as part of a study into crop classification. k-means is used to
identify sets of image regions that share similar attributes prior to labelling. Data were
gathered from a field of five known crop types and could be clearly separated into
two clusters – one containing the broad-leaved crops and the other the narrow-leaved
crops.

k-means is also used for image and speech coding applications (see below).
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Examples of fuzzy k-means applications are as follows:

ž Medical diagnosis. Li et al. (1993) use a fuzzy k-means algorithm for image segmen-
tation in a study on automatic classification and tissue labelling of two-dimensional
magnetic resonance images of the human brain.

ž Acoustic quality control. Meier et al. (1994) describe the application of fuzzy k-means
to cluster six-dimensional feature vectors as part of a quality control system for ceramic
tiles. The signals are derived by hitting the tiles and digitising and filtering the recorded
signal. The resulting classes are interpreted as good or bad tiles.

ž Water quality. Mukherjee et al. (1995) compared fuzzy k-means with two alternative
approaches to image segmentation in a study to identify and count bacterial colonies
from images.

See also the survey on fuzzy clustering by Yang (1993) for further references to appli-
cations of fuzzy k-means.

One example of a Bayesian approach to mixture modelling is worthy of note (other
applications of mixture models are given in Chapter 2). Dellaportas (1998) considers the
application of mixture modelling to the classification of neolithic ground stone tools. A
Bayesian methodology is adopted and developed in three main ways to apply to data (147
measurements on four variables) consisting of variables of mixed type – continuous and
categorical. Missing values and measurement errors (errors in variables) in the continuous
variables are also treated. Gibbs sampling is used to generate samples from the posterior
densities of interest and classification to one of two classes is based on the mean of the
indicator variable, zi . After a ‘burn-in’ of 4000 iterations, 4000 further samples were
used as the basis for posterior inference.

There are several examples of self-organising feature map applications:

ž Engineering applications. Kohonen et al. (1996) review the self-organising map algo-
rithm and describe several engineering applications, including fault detection, process
analysis and monitoring, computer vision, speech recognition, robotic control and in
the area of telecommunications.

ž Human protein analysis. Ferrán et al. (1994) use a self-organising map to cluster
protein sequences into families. Using 1758 human protein sequences, they cluster
using two-dimensional maps of various sizes and label the nodes in the grid using
proteins belonging to known sequences.

ž Radar target classification. Stewart et al. (1994) develop a self-organising map and a
learning vector quantisation approach to radar target classification using turntable data
of four target types. The data consist of 33-dimensional feature vectors (33 range gates)
and 36 000 patterns per target were used. Performance as a function of the number of
cluster centres is reported, with the performance of learning vector quantisation better
than that of a simplistic nearest-neighbour algorithm.

ž Fingerprint classification. Halici and Ongun (1996), in a study on automatic finger-
print classification, use a self-organising map, and one modified by preprocessing the
feature vectors by combining them with ‘certainty’ vectors that encode uncertainties
in the fingerprint images. Results show an improvement on previous studies using a
multilayer perceptron on a database of size 2000.
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Sum-of-squares methods have been applied to language disorders. Powell et al. (1979)
use a normal mixture approach and a sum-of-squares method in a study of 86 aphasic
cases referred to a speech therapy unit. Four groups are found, which are labelled as
severe, high–moderate, low–moderate and mild aphasia.

Vector quantisation has been widely applied as a preprocessor in many studies:

ž Speech recognition. Zhang et al. (1994) assess three different vector quantisers (in-
cluding the LBG algorithm and an algorithm based on normal mixture modelling) as
preprocessors for a hidden Markov model based recogniser in a small speech recog-
nition problem. They found that the normal mixture model gave the best performance
of the subsequent classifier. See also Bergh et al. (1985).

ž Medical diagnosis. Cosman et al. (1993) assess the quality of tree-structured vector
quantisation images by the diagnostic performance of radiologists in a study on lung
tumour and lymphadenopathy identification. Initial results suggest that a 12 bits per
pixel (bpp) computerised tomography chest scan image can be compressed to between
1 bpp and 2 bpp with no significant change in diagnostic accuracy: subjective quality
seems to degrade sooner than diagnostic accuracy falls off.

ž Speaker recognition. Recent advances in speaker recognition are reviewed by Furui
(1997). Vector quantisation methods are used to compress the training data and produce
codebooks of representative feature vectors characterising speaker-specific features. A
codebook is generated for each speaker by clustering training feature vectors. At the
speaker recognition stage, an input utterance is quantised using the codebook of each
speaker and recognition performed by assigning the utterance to the speaker whose
codebook produces minimum distortion. A tutorial on vector quantisation for speech
coding is given by Makhoul et al. (1985).

10.8 Summary and discussion

In this chapter we have covered a wide range of techniques for partitioning a data set.
This has included approaches based on cluster analysis methods and vector quantisation
methods. Although both approaches have much in common – they both produce a dis-
section of a given data set – there are differences. In cluster analysis, we tend to look
for ‘natural’ groupings in the data that may be labelled in terms of the subject matter
of the data. In contrast, the vector quantisation methods are developed to optimise some
appropriate criterion from communication theory. One area of common ground we have
discussed in this chapter is that of optimisation methods with specific implementations
in terms of the k-means algorithm in cluster analysis and the LBG algorithm in vector
quantisation.

As far as cluster analysis or classification is concerned, there is no single best tech-
nique. Different clustering methods can yield different results and some methods will
fail to detect obvious clusters. The reason for this is that each method implicitly forces
a structure on the given data. For example, the sum-of-squares methods will tend to
produce hyperspherical clusters. Also, the fact that there is a wide range of available
methods partly stems from the lack of a single definition of the word ‘cluster’. There
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is no universal agreement as to what constitutes a cluster and so a single definition is
insufficient.

A further difficulty with cluster analysis is in deciding the number of clusters present.
This is a trade-off between parsimony and some measure of increase in within-cluster
homogeneity. This problem is partly due to the difficulty in deciding what a cluster
actually is and partly because clustering algorithms tend to produce clusters even when
applied to random data.

Both of the above difficulties may be overcome to some degree by considering sev-
eral possible classifications or comparing classifications on each half of a data set (for
example, McIntyre and Blashfield, 1980; Breckenridge, 1989). The interpretation of these
is more important than a rigid inference of the number of groups. But which methods
should we employ? There are advantages and disadvantages of all the approaches we
have described. The optimisation methods tend to require a large amount of computer
time (and consequently may be infeasible for large data sets, though this is becoming
less critical these days). Of the hierarchical methods, the single link is preferred by many
users. It is the only one to satisfy the Jardine–Sibson conditions, yet with noisy data it
can join separate clusters (chaining effect). It is also invariant under monotone transfor-
mations of the dissimilarity measure. Ward’s method is also popular. The centroid and
median methods should be avoided since inversions may make the resulting classification
difficult to interpret.

There are several aspects of cluster analysis that we have mentioned only briefly in
this chapter and we must refer the reader to the literature on cluster analysis for further
details. An important problem is the choice of technique for mixed mode data. Everitt
and Merette (1990) (see also Everitt, 1988) propose a finite mixture model approach for
clustering mixed mode data, but computational considerations may mean that it is not
practically viable when the data sets contain a large number of categorical variables.

Clumping methods (or methods of overlapping classification in which an object can
belong to more than one group) have not been considered explicitly, though the mem-
bership function in the fuzzy clustering approach may be regarded as allowing an object
partial membership of several groups in some sense. An algorithm for generating over-
lapping clusters is given by Cole and Wishart (1970).

The techniques described in this chapter all apply to the clustering of objects. How-
ever, there may be some situations where clustering of variables, or simultaneous clus-
tering of objects and variables, is required. In clustering of variables, we seek subsets of
variables that are so highly correlated that each can be replaced by any one of the subset,
or perhaps a (linear or nonlinear) combination of the members. Many of the techniques
described in this chapter can be applied to the clustering of variables, and therefore we
require a measure of similarity or dissimilarity between variables. Of course, techniques
for feature extraction (for example, principal components analysis) perform this process.

Another point to reiterate about cluster analysis is that it is essentially an exploratory
method of multivariate data analysis providing a description of the measurements. Once
a solution or interpretation has been obtained then the investigator must re-examine and
assess the data set. This may allow further hypotheses (perhaps concerning the variables
used in the study, the measures of dissimilarity and the choice of technique) to be
generated. These may be tested on a new sample of individuals.

Both cluster analysis and vector quantisation are means of reducing a large amount of
data to a form in which it is either easier to describe or represent in a machine. Clustering
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of data may be performed prior to supervised classification. For example, the number
of stored prototypes in a k-nearest-neighbour classifier may be reduced by a clustering
procedure. The new prototypes are the cluster means, and the class of the new prototype
is decided on a majority basis of the members of the cluster. A development of this
approach that adjusts the decision surface by modifying the prototypes is learning vector
quantisation (Kohonen, 1989).

Self-organising maps may be viewed as a form of constrained classification: clustering
in which there is some form of constraint on the solution. In this particular case, the
constraint is an ordering on the cluster centres. Other forms of constraint may be that
objects within a cluster are required to comprise a spatially contiguous set of objects (for
example, in some texture segmentation applications). This is an example of contiguity-
constrained clustering (Gordon, 1999; Murtagh, 1992; see also Murtagh, 1995, for an
application to the outputs of the self-organising map). Other forms of constraint may be
on the topology of the dendrogram or the size or composition of the classes. We refer to
Gordon (1996b) for a review.

Gordon (1994b, 1996a) provides reviews of approaches to cluster validation; see also
Bock (1989) and Jain and Dubes (1988).

10.9 Recommendations

It has been said that ‘automatic classification is rapidly replacing factor analysis and
principal component analysis as a “heffalump” trap for the innocent scientist’ (Jardine,
1971). Certainly, there is a large number of techniques to choose from and the availability
of computer packages means that analyses can be readily performed. Nevertheless, there
are some general guidelines to follow when carrying out a classification.

1. Detect and remove outliers. Many clustering techniques are sensitive to the presence
of outliers. Therefore, some of the techniques discussed in Chapter 11 should be used
to detect and possibly remove these outliers.

2. Plot the data in two dimensions if possible in order to understand structure in the
data. It might be helpful to use the first two principal components.

3. Carry out any preprocessing of the data. This may include a reduction in the number
of variables or standardisation of the variables to zero mean and unit variance.

4. If the data are not in the form of a dissimilarity matrix then a dissimilarity measure
must be chosen (for some techniques) and a dissimilarity matrix formed.

5. Choose an appropriate technique. Optimisation techniques are more computationally
expensive. Of the hierarchical methods, some studies favour the use of the average-link
method, but the single-link method gives solutions that are invariant to a monotone
transformation measure. It is the only one to satisfy all the conditions laid down by
Jardine and Sibson (1971) and is their preferred method. We advise against the use
of the centroid and median methods since inversions are likely to arise.

6. Evaluate the method. Assess the results of the clustering method you have employed.
How do the clusters differ? We recommend that you split the data set into two parts and
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compare the results of a classification on each subset. Similar results would suggest
that useful structure has been found. Also, use several methods and compare results.
With many of the methods some parameters must be specified and it is worthwhile
carrying out a classification over a range of parameter values to assess stability.

7. In using vector quantisation as a preprocessor for a supervised classification problem,
model each class separately rather than the whole data set, and label the resulting
codewords.

8. If you require some representative prototypes, we recommend using the k-means
algorithm.

Finally, we reiterate that cluster analysis is usually the first stage in an analysis and
unquestioning acceptance of the results of a classification is extremely unwise.

10.10 Notes and references

There is a vast literature on cluster analysis. A very good starting point is the book by
Everitt et al. (2001). Now in its fourth edition, this book is a mainly non-mathematical
account of the most common clustering techniques, together with their advantages and
disadvantages. The practical advice is supported by several empirical investigations. An-
other good introduction to methods and assessments of classification is the book by
Gordon (1999). McLachlan and Basford (1988) discuss the mixture model approach to
clustering in some detail.

Of the review papers, that by Cormack (1971) is worth reading and provides a good
summary of the methods and problems of cluster analysis. The article by Diday and Simon
(1976) gives a more mathematical treatment of the methods, together with descriptive
algorithms for their implementation.

Several books have an orientation towards biological and ecological matters. Jardine
and Sibson (1971) give a mathematical treatment. The book by Sneath and Sokal (1973)
is a comprehensive account of cluster analysis and the biological problems to which it can
be applied. The book by Cliffrd and Stephenson (1975) is a non-mathematical general
introduction to the ideas and principles of numerical classification and data analysis,
though it does not cover many of the approaches described in this chapter, concentrating
on hierarchical classificatory procedures. The book by Jain and Dubes (1988) has a
pattern recognition emphasis. McLachlan (1992b) reviews cluster analysis in medical
research.

A more specialist book is that of Zupan (1982). This monograph is concerned with
the problem of implementing hierarchical techniques on large data sets.

The literature on fuzzy techniques in cluster analysis is reviewed by Bezdek and Pal
(1992). This book contains a collection of some of the important papers on fuzzy mod-
els for pattern recognition, including cluster analysis and supervised classifier design,
together with fairly extensive bibliographies. A survey of fuzzy clustering and its ap-
plications is provided by Yang (1993). An interesting probabilistic perspective of fuzzy
methods is provided by Laviolette et al. (1995).
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Tutorials and surveys of self-organising maps are given by Kohonen (1990, 1997),
Kohonen et al. (1996) and Ritter et al. (1992).

There are various books on techniques for implementing methods, which give algo-
rithms in the form of Fortran code or pseudo-code. The books by Anderberg (1973),
Hartigan (1975), Späth (1980) and Jambu and Lebeaux (1983) all provide a description
of a clustering algorithm, Fortran source code and a supporting mathematical treatment,
sometimes with case studies. The book by Murtagh (1985) covers more recent develop-
ments and is also concerned with implementation on parallel machines.

There are many software packages publicly available for cluster analysis. The website
www.statistical-pattern-recognition.net contains references and point-
ers to websites for further information on techniques.

Exercises

Data set 1: Generate n D 500 samples .xi ; yi /; i D 1; : : : ; n, according to

xi D i

n
³ C nx

yi D sin

�
i

n
³

�
C ny

where nx and ny are normally distributed with mean 0.0 and variance 0.01.
Data set 2: Generate n samples from a multivariate normal (p variables) of diagonal
covariance matrix ¦ 2I , ¦ 2 D 1, and zero mean. Take n D 40, p D 2.
Data set 3: This consist of data comprising two classes: class !1 is distributed as
0:5N ..0; 0/; I/ C 0:5N ..2; 2/; I/ and class !2 ¾ N ..2; 0/; I/ (generate 500 samples
for training and test sets, p.!1/ D p.!2/ D 0:5).

1. Is the square of the Euclidean distance a metric? Does it matter for any clustering
algorithm?

2. Observations on six variables are made for seven groups of canines and given in
Table 10.4 (Krzanowski and Marriott, 1994; Manly, 1986). Construct a dissimilarity
matrix using Euclidean distance after standardising each variable to unit variance.
Carry out a single-link cluster analysis.

3. Compare the single-link method of clustering with k-means, discussing computa-
tional requirements, storage, and applicability of the methods.

4. A mixture of two normals divided by a normal density having the same mean and
variance as the mixed density is always bimodal. Prove this for the univariate case.

5. Implement a k-means algorithm and test it on two-dimensional normally distributed
data (data set 2 with n D 500). Also, use the algorithm within a tree-structured vector
quantiser and compare the two methods.
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Table 10.4 Data on mean mandible measurements (from Manly,
1986)

Group x1 x2 x3 x4 x5 x6

Modern Thai dog 9.7 21.0 19.4 7.7 32.0 36.5

Golden jackal 8.1 16.7 18.3 7.0 30.3 32.9

Chinese wolf 13.5 27.3 26.8 10.6 41.9 48.1

Indian wolf 11.5 24.3 24.5 9.3 40.0 44.6

Cuon 10.7 23.5 21.4 8.5 28.8 37.6

Dingo 9.6 22.6 21.1 8.3 34.4 43.1

Prehistoric dog 10.3 22.1 19.1 8.1 32.3 35.0

6. Using data set 1, code the data using the Luttrell algorithm (plot positions of centres
for various numbers of code vectors). Compute the average distortion as a function
of the number of code vectors. How would you modify the algorithm for data having
circular topology?

7. Using data set 1, construct a tree-structured vector quantiser, partitioning the clusters
with the largest sum-squared error at each stage. Compute the average distortion.

8. Using data set 2, cluster the data using Ward’s method and Euclidean distance.
Using Gordon’s approach for identifying genuine clusters (unimodal null model),
how many clusters are valid at the 5% level of significance?

9. Implement a learning vector quantisation algorithm on data set 3. Plot performance
as a function of the number of cluster centres. What would be the advantages and
disadvantages of using the resulting cluster centres as centres in a radial basis function
network?

10. Show that the single-link dendrogram is invariant to a nonlinear monotone transfor-
mation of the dissimilarities.

11. For a distance between two clusters A and B of objects given by dAB D jmA�mB j2,
where mA is the mean of the objects in cluster A, show that the formula expressing
the distance between a cluster k and a cluster formed by joining i and j is

diC j;k D ni

ni C n j
dik C n j

ni C n j
d jk � ni n j

.ni C n j /2
di j

where there are ni objects in group i . This is the update rule for the centroid method.
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Additional topics

Overview

Two main issues in classifier design are addressed. The first concerns model
selection–choosing the appropriate type and complexity of classifier. The second
concerns problems with data–mixed variables, outliers, missing values and unreli-
able labelling.

11.1 Model selection

In many areas of pattern recognition we are faced with the problem of model selection;
that is, how complex should we allow our model to be, measured perhaps in terms of the
number of free parameters to estimate? The optimum complexity of the model depends
on the quantity and the quality of the training data. If we choose a model that is too
complex, then we may be able to model the training data very well (and also any noise
in the training data), but it is likely to have poor generalisation performance on unseen
data, drawn from the same distribution as the training set was drawn from (thus the
model over-fits the data). If the model is not complex enough, then it may fail to model
structure in the data adequately. Model selection is inherently a part of the process of
determining optimum model parameters. In this case, the complexity of the model is a
parameter to determine. As a consequence, many model selection procedures are based
on optimising a criterion that penalises a goodness-of-fit measure by a model-complexity
measure.

The problem of model selection arises with many of the techniques described in this
book. Some examples are:

1. How many components in a mixture model should be chosen to model the data
adequately?

2. How is the optimum tree structure found in a decision-tree approach to discrimina-
tion? This is an example in determining an appropriate number of basis functions in
an expansion, where the basis functions in this case are hyperrectangles, with sides
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parallel to the coordinate axes. Other examples include the number of projections in
projection pursuit and the number of hinges in the hinging hyperplane model.

3. How many hidden units do we take in a multilayer perceptron, or centres in a radial
basis function network?

4. How many clusters describe the data set?

In this section, we give some general procedures that have been widely used for model
selection. A comprehensive review of model selection methods, particularly in the context
of time series analysis though with much wider applicability, is given by Glendinning
(1993). Anders and Korn (1999) examine model selection procedures in the context of
neural networks, comparing five strategies in a simulation study.

11.1.1 Separate training and test sets

In the separate training and test set approach, both training and test sets are used for
model selection. A test set used in this way is often termed the validation set. The
training set is used to optimise a goodness-of-fit criterion and the performance recorded
on the validation set. As the complexity of the model is increased, it is expected that
performance on the training set will improve (as measured in terms of the goodness-of-fit
criterion), while the performance on the validation set will begin to deteriorate beyond a
certain model complexity.

This is one approach (though not the preferred approach) used for the classification
and regression tree training models (Breiman et al., 1984). A large tree is grown to over-
fit the data, and pruned back until the performance on a separate validation set fails to
improve. A similar approach may be taken for neural network models.

The separate training and validation set procedure may also be used as part of the op-
timisation process for a model of a given complexity, particularly when the optimisation
process is carried out iteratively, as in a nonlinear optimisation scheme. The values of
the parameters of the model are chosen, not as the ones that minimise the given criterion
on the training set, but those for which the validation set performance is minimum. Thus,
as training proceeds, the performance on the validation set is monitored (by evaluating
the goodness-of-fit criterion using the validation data) and training is terminated when
the validation set performance begins to deteriorate.

Note that in this case the validation set is not an independent test set that may be
used for error rate estimation. It is part of the training data. A third data set is required
for an independent estimate of the error rate.

11.1.2 Cross-validation

Cross-validation as a method of error rate estimation was described in Section 8.2. It is
a simple idea. The data set of size n samples is partitioned into two parts. The model
parameters are estimated using one set (by minimising some optimisation criterion) and
the goodness-of-fit criterion evaluated on the second set. The usual version of cross-
validation is the simple leave-one-out method in which the second set consists of a
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single sample. The cross-validation estimate of the goodness-of-fit criterion, CV, is then
the average over all possible training sets of size n � 1.

As a means of determining an appropriate model, the cross-validation error, CV, is
calculated for each member of the family of candidate models, fMk; k D 1; : : : ; K g, and
the model M Ok chosen, where

Ok D argmin CV.k/

Cross-validation tends to over-fit when selecting a correct model; that is, it chooses
an over-complex model for the data set. There is some evidence that multifold cross-
validation, when d > 1 samples are deleted from the training set, does better than simple
leave-one-out cross-validation for model selection purposes (Zhang, 1993). The use of
cross-validation to select a classification method is discussed further by Schaffer (1993).

11.1.3 The Bayesian viewpoint

In the Bayesian approach, prior knowledge about models, Mk , and parameters, θ k , is
incorporated into the model selection process. Given a data set X, the distribution of the
models may be written using Bayes’ theorem as

p.Mk jX/ / p.XjMk/p.Mk/

D p.Mk/

Z
p.XjMk; θk/p.θ k jMk/dθ k

and we are therefore required to specify a prior distribution p.Mk ; θk/. If a single model
is required, we may choose M Ok , where

Ok D argmax p.Mk jX/
However, in a Bayesian approach, all models are considered. Over-complex models are
penalised since they predict the data poorly. Yet, there are difficulties in specifying priors
and several methods have been suggested that use data-dependent ‘priors’ (Glendinning,
1993). Nevertheless, there are good applications of the Bayesian approach in pattern
recognition.

11.1.4 Akaike’s information criterion

Akaike, in a series of papers including Akaike (1973, 1974, 1977, 1981, 1985), used ideas
from information theory to suggest a model selection criterion. A good introduction to
the general principles is given by Bozdogan (1987; see also Sclove, 1987).

Suppose that we have a family of candidate models fMk ; k D 1; : : : ; K g, with the
kth model depending on a parameter vector θk D .�k;1; : : : ; �k;ž.k//

T , where ž.k/ is
the number of free parameters of model k. Then the information criterion proposed by
Akaike (AIC) is given by

AIC.k/ D �2 log[L. Oθk/]C 2ž.k/ (11.1)



412 Additional topics

where Oθ k is the maximum likelihood estimate of θ k , L[:] is the likelihood function, and
the model Mk is chosen as that model, M Ok , where

Ok D argmin AIC.k/

Equation (11.1) represents the unbiased estimate of minus twice the expected log-
likelihood,

�2E[log.p.Xnjθ k//]

where Xn is the set of observations fx1; : : : ; xng, characterised by p.xjθ/.
There are a number of difficulties in applying (11.1) in practice. The main problem is

that the correction for the bias of the log-likelihood, ž.k/, is only valid asymptotically.
Various other corrections have been proposed that have the same asymptotic performance,
but different finite-sample performance.

11.2 Learning with unreliable classification

All of the supervised classification procedures that we have considered in this book have
assumed that we have a training set of independent pairs of observations and corre-
sponding labels. Further, we have assumed that the ‘teacher’ who provides the labels is
perfect; that is, the teacher never makes mistakes and classifies each object with certainty.
Thus, the problem that we have addressed is as follows. Given a random variable pair
.X; Y /, denote the observation x and the class label y. Given a set of measurements
S D f.x1; y1/; : : : ; .xn; yn/g, design a classifier to estimate y given x and S.

There are situations in which we do not know the class labels with certainty. This can
arise in a number of different ways. Firstly, we may have errors in the labels. Thus the
training set comprises S 0 D f.x1; z1/; : : : ; .xn; zn/g, where zi are the erroneous labels.
The problem now is to estimate y given x and S 0, the misclassified design set. Misclassi-
fication may or may not depend on the feature vector x (termed non-random and random
misclassification respectively). Much of the early work in this area assumed patterns that
were randomly mislabelled (Lachenbruch, 1966; Chitteneni, 1980, 1981; Michalek and
Tripathi, 1980), but it is logical that if the teacher is allowed to be imperfect then it
will be more likely that those patterns that are difficult to classify will be mislabelled.
Grayson (1987) considers non-random misclassification.

Lugosi (1992) investigates the error rate of two nonparametric classifiers (nearest-
neighbour and an L1 estimator of the posterior probabilities). Three types of dependence
of z on x and y are considered:

1. Discrete memoryless channel. The teacher is communicating with a student over a
noisy channel so that the true values yi are transmitted, but the training labels zi are
received as the output of the channel. The channel is determined by the transition
probabilities

a ji D P.Z D i jY D j/

2. Misprints in the training sequence. Here, the labels zi can take some arbitrary value
with probability p.
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3. The ‘consequently lying’ teacher. The training set value z is the result of a decision
z D h.x/; h : R p ! f0; 1g (a two-class problem is considered).

This latter model may apply in the medical domain, for example, when a physician
makes a diagnosis that may be incorrect. However, in such circumstances it is those
patterns that are difficult to recognise that are more likely to be mislabelled. It would
be better for the ‘teacher’ (the physician in this case) to be allowed to be an imperfect
recogniser, indicating the reliability of a decision rather than choosing one class with
certainty. This is another way in which we do not know the class labels with certainty
and is the problem addressed by Aitchison and Begg (1976). In many areas it is difficult
to classify with certainty, and removing uncertain data may give misleading results. Is
it far better to have a classifier that can allow some expression of doubt to be given for
the class.

11.3 Missing data

Many classification techniques assume that we have a set of observations with measure-
ments made on each of p variables. However, missing values are common. For example,
questionnaires may be returned incomplete; in an archaeological study, it may not be
possible to make a complete set of measurements on an artefact because of missing
parts; in a medical problem, a complete set of measurements may not be made on a pa-
tient, perhaps owing to forgetfulness by the physician or being prevented by the medical
condition of the patient.

How missing data are handled depends on a number of factors: how much is missing;
why data are missing; whether the missing values can be recovered; whether values are
missing in both the design and test set. There are several approaches to this problem.

1. We may omit all incomplete vectors from our analysis. This may be acceptable in
some circumstances, but not if there are many observations with missing values. For
example, in the head injury study of Titterington et al. (1981) referred to in Chapter 3,
206 out of the 500 training patterns and 199 out of the 500 test patterns have at least
one observation missing. Neglecting an observation because perhaps one out of 100
variables has not been measured means that we are throwing away potentially useful
information for classifier design. Also, in an incomplete observation, it may be that the
variables that have been measured are the important ones for classification anyway.

2. We may use all the available information. The way that we would do this depends
on the analysis that we are performing. In estimating means and covariances, we
would use only those observations for which measurements have been made on the
relevant variables. Thus, the estimates would be made on different numbers of samples.
This can give poor results and may lead to covariance matrices that are not positive
definite. Other approaches must be used to estimate principal components when data
are missing (Jackson, 1991). In clustering, we would use a similarity measure that takes
missing values into account. In density estimation using an independence assumption,
the marginal density estimates will be based on different numbers of samples.
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3. We may substitute for the missing values and proceed with our analysis as if we had
a complete data set.

There are many approaches to missing value estimation, varying in sophistication and
computational complexity. The simplest and perhaps the crudest method is to substitute
mean values of the corresponding components. This has been used in many studies. In a
supervised classification problem, class means may be substituted for the missing values
in the training set and the sample mean for the missing values in the test set since in this
case we do not know the class. In a clustering problem, we would estimate the missing
values of the group of objects to which the object belongs.

A thorough treatment of missing data in statistical analysis is given by Little and
Rubin (1987). A review in the context of regression is given by Little (1992) and a
discussion in the classification context by Liu et al. (1997).

11.4 Outlier detection and robust procedures

We now consider the problem of detecting outliers in multivariate data. This is one of
the aims of robust statistics. Outliers are observations that are not consistent with the
rest of the data. They may be genuine observations (termed discordant observations by
Beckman and Cook, 1983) that are surprising to the investigator. Perhaps they may be
the most valuable, indicating certain structure in the data that shows deviations from
normality. Alternatively, outliers may be contaminants, errors caused by copying and
transferring the data. In this situation, it may be possible to examine the original data
source and correct for any transcription errors.

In both of the above cases, it is important to detect the outliers and to treat them
appropriately. Many of the techniques we have discussed in this book are sensitive to
outlying values. If the observations are atypical on a single variable, it may be possible
to apply univariate methods to the variable. Outliers in multivariate observations can
be difficult to detect, particularly when there are several outliers present. A classical
procedure is to compute the Mahalanobis distance for each sample xi .i D 1; : : : ; n/

Di D
n
.xi �m/T O��1

.xi �m/
o 1

2

where m is the sample mean and O� the sample covariance matrix. Outliers may be iden-
tified as those samples yielding large values of the Mahalanobis distance. This approach
suffers from two problems in practice:

1. Masking. Multiple outliers in a cluster will distort m and O�, attracting m and inflating
O� in their direction, thus giving lower values for the Mahalanobis distance.

2. Swamping. This refers to the effect that a cluster of outliers may have on some obser-
vations that are consistent with the majority. The cluster could cause the covariance
matrix to be distorted so that high values of D are found for observations that are not
outliers.
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One way of overcoming these problems is to use robust estimates for the mean and
covariance matrices. Different estimators have different breakdown points, the fraction
of outliers that they can tolerate. Rousseeuw (1985) has proposed a minimum volume
ellipsoid (MVE) estimator that has a high breakdown point of approximately 50%. It can
be computationally expensive, but approximate algorithms have been proposed.

Outlier detection and robust procedures have represented an important area of re-
search, investigated extensively in the statistical literature. Chapter 1 of Hampel et al.
(1986) gives a good introduction to and background on robust procedures. Robust esti-
mates of mean and covariance matrices are reviewed by Rocke and Woodruff (1997);
further procedures for the detection of outliers in the presence of appreciable masking are
given by Atkinson and Mulira (1993). Krusińska (1988) reviews robust methods within
the context of discrimination.

11.5 Mixed continuous and discrete variables

In many areas of pattern recognition involving multivariate data, the variables may be of
mixed type, comprising perhaps continuous, ordered categorical, unordered categorical
and binary variables. If the discrete variable is ordered, and it is important to retain this
information, then the simplest approach is to treat the variable as continuous and to use a
technique developed for multivariate continuous data. Alternatively, a categorical variable
with k states can be coded as k � 1 dummy binary variables. All take the value zero
except the j th if the observed categorical variable is in the j th state, j D 1; : : : ; k�1. All
are zero if the variable is in the kth state. This allows some of the techniques developed
for mixtures of binary and continuous variables to be used (with some modifications,
since not all combinations of binary variables are observable).

The above approaches attempt to distort the data to fit the model. Alternatively, we
may apply existing methods to mixed variable data with little or no modification. These
include:

1. nearest-neighbour methods (Chapter 3) with a suitable choice of metric;

2. independence models where each univariate density estimate is chosen to be appro-
priate for the particular variable (Chapter 3);

3. kernel methods using product kernels, where the choice of kernel depends on the
variable type (Chapter 3);

4. dependence tree models and Bayesian networks, where the conditional densities are
modelled appropriately (for example, using product kernels) (Chapter 3);

5. recursive partitioning methods such as CART and MARS (Chapter 7).

The location model, introduced by Olkin and Tate (1961), was developed specifically
with mixed variables in mind and applied to discriminant analysis by Chang and Afifi
(1974). Consider the problem of classifying a vector v which may be partitioned into two
parts, v D .zT ; yT /T , where z is a vector of r binary variables and y is a vector of p
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continuous variables. The random vector z gives rise to 2r different cells. We may order
the cells such that, given a measurement z, the cell number of z, cell.z/, is given by

cell.z/ D 1C
rX

iD1

zi 2
i�1

The location model assumes a multivariate normal distribution for y, whose mean de-
pends on the state of z and the class from which v is drawn. It also assumes that the
covariance matrix is the same for both classes and for all states. Thus, given a measure-
ment .z; y/ such that m D cell.z/, the probability density for class !i (i D 1; 2) is

p.yjz/ D 1
.2³/p=2

þþ�þþ exp

²
�1

2
.y �mm

i /
T ��1.y �mm

i /

¦

Thus, the means of the distribution depend on z and the class. Then, if the probability
of observing z in cell m for class !i is pim , then v may be assigned to !1 if

.mm
1 �mm

2 /
T ��1

�
y � 1

2 .m
m
1 Cmm

2 /
	
½ log.p2m=p1m/

The maximum likelihood estimates for the parameters pim , mm
i and � are

Opim D nim

n

Omm
i D

nX
jD1

vim j
1

nim
y j

� D 1

n

2X
iD1

kX
mD1

nX
jD1

vim j .y j �mm
i /.y j �mm

i /
T

where vim j D 1 if y j is in cell m of class !i , 0 otherwise; and nim is the number of
observations in cell m of class !i equal to

P
j ¹im j .

If the sample size n is very large relative to the number of cells, then these naı̈ve
estimates may be sufficient. However, in practice there will be too many parameters to
estimate. Some of the cells may not be populated, giving poor estimates for Opim . There
have been several developments of the basic approach. For a review, see Krzanowski
(1993).

11.6 Structural risk minimisation and the
Vapnik–Chervonenkis dimension

11.6.1 Bounds on the expected risk

There are general bounds in statistical learning theory (Vapnik, 1998) that govern the
relationship between the capacity of a learning system and its performance and thus can
provide some guidance in the design of such systems.
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We assume that we have a training set of independently and identically distributed
samples f.xi ; yi /; i D 1; : : : ; ng drawn from a distribution p.x; y/. We wish to learn
a mapping x ! y and we have a set of possible functions (classifiers) indexed by
parameters α, namely f .x; α/. A particular choice for α results in a particular classifier
or trained machine. We would like to choose α to minimise the classification error. If
yi takes the value C1 for patterns in class !1 and �1 for patterns in class !2, then the
expected value of the test error (the true error–see Chapter 8) is

R.α/ D 1

2

Z
jy � f .x; α/j p.x; y/ dx dy

This is sometimes termed the expected risk (note that differs from the definition of risk
in Chapter 1). This is not known in general, but we may estimate it based on a training
set, to give the empirical risk,

RK .α/ D 1

2n

nX
iD1

jyi � f .xi ; α/j

For any value of , 0 �  � 1, the following bound of statistical learning theory holds
(Vapnik, 1998)

R.α/ � RK C
r

h.log.2n=h/C 1/� log.=4/

n
(11.2)

with probability 1�, where h is a non-negative integer called the Vapnik–Chervonenkis
(VC) dimension. The first term on the right-hand side of the inequality above depends
on the particular function f chosen by the training procedure. The second term, the VC
confidence, depends on the class of functions.

11.6.2 The Vapnik–Chervonenkis dimension

The VC dimension is a property of the set of functions f .x; α/. If a given set of m
points can be labelled in all possible 2m ways using the functions f .x; α/, then the set
of points is said to be shattered by the set of functions; that is, for any labelling of the
set of points, there is a function f .x; α/ that correctly classifies the patterns.

The VC dimension of a set of functions is defined as the maximum number of training
points that can be shattered. Note that if the VC dimension is m, then there is at least
one set of m points that can be shattered, but not necessarily every set of m points can
be shattered. For example, if f .x; α/ is the set of all lines in the plane, then every set of
two points can be shattered, and most sets of three (see Figure 11.1), but no sets of four
points can be shattered by a linear model. Thus the VC dimension is 3. More generally,
the VC dimension of a set of hyperplanes in r-dimensional Euclidean space is r C 1.

Inequality (11.2) shows that the risk may be controlled through a balance of optimising
a fit to the data and the capacity of functions used in learning. In practice, we would
consider sets of models, f , with each set of a fixed VC dimension. For each set, minimise
the empirical risk and choose the model over all sets for which the sum of the empirical
risk and VC confidence is a minimum. However, the inequality (11.2) is only a guide.
There may be models with equal empirical risk but with different VC dimensions. The
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Figure 11.1 Shattering three points in two dimensions

one with higher VC dimension does not necessarily have poorer performance. A k-
nearest-neighbour classifier has zero empirical risk (any labelling of a set of points will
be correctly classified) and infinite VC dimension.



A

Measures of dissimilarity

A.1 Measures of dissimilarity

Patterns or objects analysed using the techniques described in this book are usually
represented by a vector of measurements. Many of the techniques require some measure
of dissimilarity or distance between two pattern vectors, although sometimes data can
arise directly in the form of a dissimilarity matrix.

A particular class of dissimilarity functions called dissimilarity coefficients are re-
quired to satisfy the following conditions. If drs is the dissimilarity of object s from
object r , then

drs ½ 0 for every r; s
drr D 0 for every r
drs D dsr for every r; s

The symmetry condition is not always satisfied by some dissimilarity functions. If the
dissimilarity between two places in a city centre is the distance travelled by road between
them, then because of one-way systems the distance may be longer in one direction than
the other. Measures of dissimilarity can be transformed to similarity measures using
various transformations, for example, si j D 1=.1 C di j / or si j D c � di j for some
constant c, where si j is the similarity between object i and object j .

If, in addition to the three conditions above, the dissimilarity measure satisfies the
triangle inequality

drt C dts ½ drs for every r; s; t (A.1)

then the dissimilarity measure is a metric and the term distance is usually used.

A.1.1 Numeric variables

Many dissimilarity measures have been proposed for numeric variables. Table A.1 gives
some of the more common measures. The choice of a particular metric depends on
the application. Computational considerations aside, for feature selection and extraction
purposes you would choose the metric that gives the best performance (perhaps in terms
of classification error on a validation set).

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
Copyright  2002 John Wiley & Sons, Ltd.
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Table A.1 Dissimilarity measures for numeric variables (between x and y)

Dissimilarity measure Mathematical form

Euclidean distance de D
(

pX
iD1

.xi � yi /
2

) 1
2

City-block distance dcb D
pX

iD1

jxi � yi j

Chebyshev distance dch D max
i
jxi � yi j

Minkowski distance of order m dM D
(

pX
iD1

.xi � yi /
m

) 1
m

Quadratic distance dq D
pX

iD1

pX
jD1

.xi � yi /Qi j .x j � y j /,

Q positive definite

Canberra distance dca D
pX

iD1

jxi � yi j
xi C yi

Nonlinear distance dn D
(

H de > D

0 de � D

Angular separation

Pp
iD1 xi yiðPp

iD1 x2
i

Pp
iD1 y2

i

Ł1=2

Euclidean distance

de D
vuut

pX
iD1

.xi � yi /2

The contours of equal Euclidean distance from a point are hyperspheres (circles in two
dimensions). It has the (perhaps undesirable) property of giving greater emphasis to larger
differences on a single variable.

Although we may wish to use a dissimilarity measure that is a metric, some of the
methods do not require the metric condition (A.1) above. Therefore in some cases a
monotonic function of the Euclidean metric, which will still be a dissimilarity coefficient
but not necessarily a metric, will suffice. For example, squared Euclidean distance is a
dissimilarity coefficient but not a metric.

City-block distance

dcb D
pX

iD1

jxi � yi j
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Also known as the Manhattan or box-car or absolute value distance, this metric uses
a distance calculation which would be suitable for finding the distances between points
in a city consisting of a grid of intersecting thoroughfares (hence the names used). The
contours of equal distance from a point for the city-block metric are diamonds in two
dimensions. The city-block metric is a little cheaper to compute than the Euclidean
distance so it may be used if the speed of a particular application is important.

Chebyshev distance
dch D max

i
jxi � yi j

The Chebyshev or maximum value distance is often used in cases where the execution
speed is so critical that the time involved in calculating the Euclidean distance is un-
acceptable. The Chebyshev distance, like the city-block distance, examines the absolute
magnitude of the elementwise differences in the pair of vectors. The contour lines of
equal Chebyshev distance from a point are squares in two dimensions. Figure A.1 plots
the contours of equal distance in R

2 for the Euclidean, city-block and Chebyshev metrics.
If the user needs an approximation to Euclidean distance but with a cheaper computa-

tional load then the first line of approach is to use either the Chebyshev or the city-block
metrics. A better approximation can be gained by using a combination of these two
distances:

d D max. 2
3 dcb; dch/

In two dimensions the contours of equal distance form octagons.

Minkowski distance The Minkowski distance is a more general form of the Euclidean
and city-block distances. The Minkowski distance of order m is

dM D
 

pX
iD1

jxi � yi jm
!1=m

dch

de

dcb

Figure A.1 Contours of equal distance
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The Minkowski distance of the first order is the same as the city-block metric and the
Minkowski distance of the second order is the Euclidean distance. The contours of equal
distance for such metrics form squared-off circles which gradually obtain more abrupt
vertices as m increases. The choice of an appropriate value for m depends on the amount
of emphasis you would like to give to the larger differences: larger values of m give
progressively more emphasis to the larger differences jxi � yi j, and as m tends to infinity
the metric tends to the Chebyshev distance (and square contours).

Quadratic distance
d2

q D .x � y/T Q.x � y/

A choice for Q is the inverse of the within-group covariance matrix. This is sometimes
referred to as the Mahalanobis distance, because of the similarity to the distance measure
between two distributions (see below).

Canberra metric

dca D
pX

iD1

jxi � yi j
xi C yi

The Canberra metric is a sum of a series of fractions and is suitable for variables taking
non-negative values. If both xi and yi are zero the ratio of the difference to the sum is
taken to be zero. If only one value is zero, the term is unity, independent of the other
value. Thus, 0 and 1 are equally dissimilar to a pair of elements 0 and 106. Sometimes
values of 0 are replaced by small positive numbers (smaller than the recorded values of
that variable).

Nonlinear distance

dN D
²

0 if de.x; y/ < D
H if de.x; y/ ½ D

where D is a threshold and H is a constant. Kittler (1975a) shows that an appropriate
choice for H and D for feature selection is that they should satisfy

H D 0.p=2/

D p2
p
³ p

and that D satisfies the unbiasedness and consistency conditions of the Parzen estimator,
namely D pn ! 1 and D ! 0 as n ! 1, where n is the number of samples in the
data set.

Angular separation
pX

iD1

xi yi

"
pX

iD1

x2
i

pX
iD1

y2
i

#
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The angular separation is a similarity rather than a dissimilarity measure that measures
the angle between the unit vectors in the direction of the two pattern vectors of interest.
This is appropriate when data are collected for which only the relative magnitudes are
important.

The choice of a particular proximity measure depends on the application and may
depend on several factors, including distribution of data and computational considerations.
It is not possible to make recommendations, and studies in this area have been largely
empirical, but the method you choose should be the one that you believe will capture
the essential differences between objects.

A.1.2 Nominal and ordinal variables

Nominal and ordinal variables are usually represented as a set of binary variables. For
example, a nominal variable with s states is represented as s binary variables. If it is in
the mth state, then each of the s binary variables has value 0 except the mth, which has
the value unity. The dissimilarity between two objects can be obtained by summing the
contributions from the individual variables.

For ordinal variables, the contribution to the dissimilarity between two objects from
a single variable does not simply depend on whether or not the values are identical. If
the contribution for one variable in state m and one in state l (m < l) is Žml , then we
require

Žml ½ Žms for s < l
Žml ½ Žsl for s > m

that is, Žml is monotonic down each row and across each column of the half-matrix of
distances between states (Ž14 > Ž13 > Ž12 etc.; Ž14 > Ž24 > Ž34). The values chosen for
Žml depend very much on the problem. For example, we may have a variable describing
fruits of a plant that can take the values short, long or very long. We would want the
dissimilarity between a plant with very long fruit and one with short fruit to be greater
than that between one with long fruit and one with short fruit (all other attributes having
equal values). A numeric coding of 1, 2, 3 would achieve this, but so would 1, 10, 100.

A.1.3 Binary variables

Various dissimilarity measures have been proposed for binary variables. For vectors of
binary variables x and y these may be expressed in terms of quantities a; b; c, and
d where

a is equal to the number of occurrences of xi D 1 and yi D 1
b is equal to the number of occurrences of xi D 0 and yi D 1
c is equal to the number of occurrences of xi D 1 and yi D 0
d is equal to the number of occurrences of xi D 0 and yi D 0

This is summarised in Table A.2. Note that aCbCcCd D p, the total number of variables
(attributes). It is customary to define a similarity measure rather than a dissimilarity
measure. Table A.3 summarises some of the more commonly-used similarity measures
for binary data.
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Table A.2 Co-occurrence
table for binary variables

xi

1 0

yi 1 a b

0 c d

Table A.3 Similarity measures for binary data

Similarity measure Mathematical form

Simple matching coefficient dsm D aCd
aCbCcCd

Russell and Rao drr D a
aCbCcCd

Jaccard d j D a
aCbCc

Czekanowski dCz D 2a
2aCbCc

Simple matching coefficient The simple matching coefficient is the proportion of
variables for which two variables have the same value. The dissatisfaction with this
measure has been with the term d representing conjoint absences. The fact that two sites
in an ecological survey both lack something should not make them more similar. The
dissimilarity measure defined by dxy D 1� sxy D .bC c/=p is proportional to the square
of the Euclidean distance, bCc, which is the Hamming distance in communication theory.

Russell and Rao This does not involve the term d in the numerator and is appropriate
in certain circumstances. The quantity 1� sxy is not a dissimilarity coefficient since the
dissimilarity between an object and itself is not necessarily zero.

Jaccard This does not involve the quantity d at all and is used extensively by ecolo-
gists. The term dxy D 1� sxy is a metric dissimilarity coefficient.

Czekanowski This is similar to the Jaccard measure except that coincidences carry
double weight.

Many other coefficients have been proposed that handle the conjoint absences in
various ways (Clifford and Stephenson, 1975; Diday and Simon, 1976).

A.1.4 Summary

We have listed some of the measures of proximity which can be found in the pat-
tern processing and classification literature. A general similarity coefficient between two
objects x and y encompassing variables of mixed type has been proposed by Gower
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(1971). Of course, there is no such thing as a best measure. Some will be more appropriate
for certain tasks than others. Therefore, we cannot make recommendations. However, the
user should consider the following points when making a choice: (1) simplicity and ease
of understanding; (2) ease of implementation; (3) speed requirements; (4) knowledge
of data.

A.2 Distances between distributions

All of the distance measures described so far have been defined between two patterns or
objects. We now turn to measures of distances between groups of objects or distributions.
These measures are used to determine the discriminatory power of a feature set, discussed
in Chapter 9. Many measures have been proposed in the pattern recognition literature,
and we introduce two basic types here. The first uses prototype vectors for each class
together with the distance metrics of the previous section. The second uses knowledge
of the class-conditional probability density functions. Many methods of this type are of
academic interest only. Their practical application is rather limited since they involve
numerical integration and estimation of the probability density functions from samples.
They do simplify if the density functions belong to a family of parametric functions such
as the exponential family, which includes the normal distribution. The use of both of
these approaches for feature selection is described in Chapter 9.

A.2.1 Methods based on prototype vectors

There are many measures of inter-group dissimilarities based on prototype vectors. In
the context of clustering, these give rise to different hierarchical schemes, which are
discussed in Chapter 10. Here we introduce the average separation, defined to be the
average distance between all pairs of points, with one point in each pair coming from
each distribution. That is, for n1 points in !1 (xi ; i D 1; : : : ; n1) and n2 points in !2
(yi ; i D 1; : : : ; n2),

Jas.!1; !2/ D 1

n1n2

n1X
iD1

n2X
jD1

d.xi ; y j /

where d is a distance between xi and y j .

A.2.2 Methods based on probabilistic distance

These measures use the complete information about the structure of the classes provided
by the conditional densities. The distance measure, J , satisfies the following conditions:

1. J D 0 if the probability density functions are identical, p.x j!1/ D p.x j!2/;

2. J ½ 0;
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3. J attains its maximum when the classes are disjoint, i.e. when p.x j!1/ D 0 and
p.x j!2/ 6D 0.

Many measures satisfying these conditions have been proposed (Chen, 1976; Devijver
and Kittler, 1982). As an introduction, consider two overlapping distributions with con-
ditional densities p.xj!1/ and p.xj!2/. The classification error, e (see Chapter 8), is
given by

e D 1

2

²
1�

Z
jp.!1jx/� p.!2jx/jp.x/ dx

¦

The integral in the equation above,

JK D
Z
jp.!1jx/� p.!2jx/jp.x/ dx

is called the Kolmogorov variational distance and has the important property that it is
directly related to the classification error. Other measures cannot be expressed in terms
of the classification error, but can be used to provide bounds on the error. Three of these
are given in Table A.4. A more complete list can be found in the books by Chen (1976)
and Devijver and Kittler (1982).

One of the main disadvantages of the probabilistic dependence criteria is that they
require an estimate of a probability density function and its numerical integration. This
restricts their usefulness in many practical situations. However, under certain assumptions
regarding the form of the distributions, the expressions can be evaluated analytically.

First of all, we shall consider a specific parametric form for the distributions, namely
normally distributed with means µ1 and µ2 and covariance matrices �1 and �2. Under
these assumptions, the distance measures can be written down as follows.

Table A.4 Probabilistic distance measures

Dissimilarity measure Mathematical form

Average separation 1
nanb

naX
iD1

nbX
jD1

d.xi ; y j /; xi 2 !AI y j 2 !BI

d any distance metric

Chernoff Jc D �log
Z

ps.xj!1/p
1�s.xj!2/ dx

Bhattacharyya JB D �log
Z
.p.xj!1/p.xj!2//

1
2 dx

Divergence JD D
Z

[p.xj!1/� p.xj!2/]log

�
p.xj!1/

p.xj!2/

�
dx

Patrick–Fischer JP D
²Z

[p.xj!1/p1 � p.xj!2/p2]2 dx

¦ 1
2
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Chernoff

Jc D 1

2
s.1� s/.µ2 � µ1/

T [�s]�1.µ2 � µ1/C
1

2
log

� j�s j
j�1j1�s j�2js

�

where �s D .1 � s/�1 C s�2 and s 2 [0; 1]. For s D 0:5, we have the Bhattacharyya
distance.

Bhattacharyya

JB D 1

4
.µ2 � µ1/

T [�1 C�2]�1 .µ2 � µ1/C
1

2
log

0
@ j�1 C �2j

2.j�1jj�2j/
1
2

1
A

Divergence

JD D 1
2 .µ2 � µ1/

T .��1
1 C ��1

2 /.µ2 � µ1/C Trf��1
1 �2 C ��1

1 �2 � 2I g

Patrick–Fischer

JP D.2³/�p=2
�
j2�1j�

1
2 C j2�2j�

1
2

�2j�1 C �2j�
1
2 exp

²
�1

2
.µ2 � µ1/

T .�1 C�2/
�1.µ2 � µ1/

¦½

Finally, if the covariance matrices are equal, �1 D �2 D �, the Bhattacharyya and
divergence distances simplify to

JM D JD D 8JB D .µ2 � µ1/
T ��1.µ2 � µ1/

which is the Mahalanobis distance.
Of course, the means and covariance matrices are not known in practice and must be

estimated from the available training data.
The above parametric forms are useful both in feature selection and extraction. In

feature selection, the set of features at the kth stage of an algorithm is constructed from
the set of features at the (k� 1)th stage by the addition or subtraction of a small number
of features. The value of the feature selection criterion at stage k C 1 may be computed
from that at stage k rather than evaluating the above expressions directly. This saves on
computation. Recursive calculation of separability measures is discussed in Chapter 9.

Probabilistic distance measures can also be extended to the multigroup case by eval-
uating all pairwise distances between classes,

J D
CX

iD1

CX
jD1

pi p j Ji j

where Ji j is the chosen distance measure evaluated for class !i and class ! j .
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A.2.3 Probabilistic dependence

The probabilistic distance measures are based on discrimination between a pair of classes,
using the class-conditional densities to describe each class. Probabilistic dependence
measures are multiclass feature selection criteria that measure the distance between the
class-conditional density and the mixture probability density function (see Figure A.2). If
p.xj!i / and p.x/ are identical then we gain no information about class by observing x,
and the ‘distance’ between the two distributions is zero. Thus, x and !i are independent.
If the distance between p.xj!i / and p.x/ is large, then the observation x is dependent on
!i . The greater the distance, the greater the dependence of x on the class !i . Table A.5

0.4
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0.3

0.25

p(x |w1)

p(x)

0.2

0.15

0.1

0.05

0
−4 −3 −2 −1 0

x

1 2 3 4

Figure A.2 Probabilistic dependence

Table A.5 Probabilistic dependence measures

Dissimilarity measure Mathematical form

Chernoff Jc D
CX

iD1

pi

²
�log

Z
ps.xj!i /p

1�s.x/ dx

¦

Bhattacharyya JB D
CX

iD1

pi

²
�log

Z
.p.xj!i /p.x//

1
2 dx

¦

Joshi JD D
CX

iD1

pi

Z
[p.xj!i /� p.x/]log

�
p.xj!i /

p.x/

�
dx

Patrick–Fischer JP D
CX

iD1

pi

²Z
[p.xj!i /� p.x/]2 dx

¦ 1
2
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gives the probabilistic dependence measures corresponding to the probabilistic distance
measures in Table A.4. In practice, application of probabilistic dependence measures is
limited because, even for normally distributed classes, the expressions given in Table A.5
cannot be evaluated analytically since the mixture distribution p.x/ is not normal.

A.3 Discussion

This appendix has reviewed some of the distance and dissimilarity measures used in
Chapter 9 on feature selection and extraction and Chapter 10 on clustering. Of course
the list is not exhaustive and those that are presented may not be the best for your
problem. We cannot make rigid recommendations as to which ones you should use
since the choice is highly problem-specific. However, it may be advantageous from a
computational point of view to use one that simplifies for normal distributions even if
your data are not normally distributed.

The book by Gordon (1999) provides a good introduction to classification methods.
The chapter on dissimilarity measures also highlights difficulties encountered in practice
with real data sets. There are many other books and papers on clustering which list
other measures of dissimilarity: for example, Diday and Simon (1976), Cormack (1971)
and Clifford and Stephenson (1975), which is written primarily for biologists but the
issues treated occur in many areas of scientific endeavour. The papers by Kittler (1975b,
1986) provide very good introductions to feature selection and list some of the more
commonly used distance measures. Others may be found in Chen (1976). A good account
of probabilistic distance and dependence measures can be found in the book by Devijver
and Kittler (1982).
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Parameter estimation

B.1 Parameter estimation

B.1.1 Properties of estimators

Perhaps before we begin to discuss some of the desirable properties of estimators, we
ought to define what an estimator is. For example, in a measurement experiment we may
assume that the observations are normally distributed but with unknown mean, ¼, and
variance, ¦ 2. The problem then is to estimate the values of these two parameters from
the set of observations. Therefore, an estimator O� of � is defined as any function of the
sample values which is calculated to be close in some sense to the true value of the
unknown parameter � . This is a problem in point estimation, by which is meant deriving
a single-valued function of a set of observations to represent the unknown parameter (or
a function of the unknown parameters), without explicitly stating the precision of the
estimate. The estimation of the confidence interval (the limits within which we expect
the parameter to lie) is an exercise in interval estimation. For a detailed treatment of
estimation we refer to Stuart and Ord (1991).

Unbiased estimate The estimator O� of the parameter � is unbiased if the expectation
over the sampling distribution is equal to � , i.e.

E[ O� ]
4D
Z
O� p.x1; : : : ; xn/ dx1 : : : dxn D �

where O� is a function of the sample vectors x1; : : : ; xn drawn from the distribution
p.x1; : : : ; xn/. We might always want estimators to be approximately unbiased, but
there is no reason why we should insist on exact unbiasedness.

Consistent estimate An estimator O� of a parameter � is consistent if it converges in
probability (or converges stochastically) to � as the number of observations, n ! 1.
That is, for all Ž; ž > 0

p.jj O� � � jj < ž/ > 1� Ž for n > n0

or
lim

n!1 p.jj O� � � jj > ž/ D 0

Statistical Pattern Recognition, Second Edition. Andrew R. Webb
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Efficient estimate The efficiency, �, of one estimator O�2 relative to another O�1 is defined
as the ratio of the variance of the estimators

� D E[jj O�1 � � jj2]

E[jj O�2 � � jj2]

O�1 is an efficient estimator if it has the smallest variance (in large samples) compared to
all other estimators, i.e. � � 1 for all O�2.

Sufficient estimate A statistic O�1 D O�1.x1; : : : ; xn/ is termed a sufficient statistic if,
for any other statistic O�2,

p.� j O�1; O�2/ D p.� j O�1/ (B.1)

that is, all the relevant information for the estimation of � is contained in O�1 and the addi-
tional knowledge of O�2 makes no contribution. An equivalent condition for a distribution
to possess a sufficient statistic is the factorability of the likelihood function (Stuart and
Ord, 1991; Young and Calvert, 1974):

p.x1; : : : ; xnj�/ D g. O� j�/h.x1; : : : ; xn/ (B.2)

where h is a function of x1; : : : ; xn and is essentially p.x1; : : : ; xnj O�/ and does not de-
pend on � , and g is a function of the statistic O� and � . Equation (B.2) is also the condition
for reproducing densities (Spragins, 1976; Young and Calvert, 1974) or conjugate priors
(Lindgren, 1976): a probability density of � , p.�/, is a reproducing density with respect
to the conditional density p.x1; : : : ; xnj�/ if the posterior density p.� jx1; : : : ; xn/ and
the prior density p.�/ are of the same functional form. The family is called closed un-
der sampling or conjugate with respect to p.x1; : : : ; xnj�/. Conditional densities that
admit sufficient statistics of fixed dimension for any sample size (and hence reproducing
densities) include the normal, binomial and Poisson density functions (Spragins, 1976).

Example 1 The sample mean xn D 1
n

Pn
iD1 xi is an unbiased estimator of the popula-

tion mean, ¼, since

E[xn] D E

"
1

n

nX
iD1

xi

#
D 1

n

nX
iD1

E[xi ] D ¼

but the sample variance

E

"
1

n

nX
iD1

.xi � xn/
2

#
D E

2
41

n

nX
iD1

 
xi � 1

n

nX
jD1

x j

!2
3
5

D 1

n
E

"
n � 1

n

nX
jD1

x2
j �

1

n

X
j

X
k;k 6D j

x j xk

#

D n � 1

n
¦ 2



Parameter estimation 433

is not an unbiased estimator of the variance ¦ 2. Therefore, the unbiased estimator

s D 1

n � 1

nX
iD1

.xi � xn/
2

is usually preferred. �

Example 2 The sample mean is a consistent estimator of the mean of a normal popu-
lation. The sample mean is normally distributed as

p.xn/ D
� n

2³

 1
2

exp

�
�1

2
n.xn � �/2

�

with mean � (the mean of the population with unit variance) and variance 1=n. That is,

.xn��/n 1
2 is normally distributed with zero mean and unit variance. Thus, the probability

that j.xn��/n 1
2 j � žn

1
2 (i.e. j.xn��/nj � žn) is the value of the normal integral between

the limits šžn
1
2 . By choosing n sufficiently large, this can always be larger than 1� �

for any given �. �

B.1.2 Maximum likelihood

The likelihood function is the joint density of a set of samples x1; : : : ; xn from a distri-
bution p.xi j�/, i.e.

L.�/ D p.x1; : : : ; xnj�/

regarded as a function of the parameters, � , rather than the data samples. The method
of maximum likelihood is a general method of point estimation in which the estimate of
the parameter � is taken to be that value for which L.�/ is a maximum. That is, we are
choosing the value of � which is ‘most likely to give rise to the observed data’. Thus,
we seek a solution to the equation

@L

@�
D 0

or, equivalently,
@ log.L/

@�
D 0

since any monotonic function of the likelihood, L , will also be a minimum at the same
value of � as the function L . Under very general conditions (Stuart and Ord, 1991,
Chapter 18), the maximum likelihood estimator is consistent, asymptotically normal and
asymptotically efficient. The estimator is not, in general, unbiased though it will be
asymptotically unbiased if it is consistent and if the asymptotic distribution has finite
mean. However, for an unbiased estimator, O� , of a parameter � , the lower bound on the
variance is given by the Cramér–Rao bound

E[. O� � �/2] D 1

¦ 2
n
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where

¦ 2
n D E

"�
@

@�
log[p.x1; : : : ; xnj�/]

�2
#

is called the Fisher information in the sample. It follows from the definition of the
efficient estimator that any unbiased estimator that satisfies this bound is efficient.

B.1.3 Problems with maximum likelihood

The main difficulty with maximum likelihood parameter estimation is obtaining a solution
of the equations

@L

@θ
D 0

for a vector of parameters, θ . Unlike in the normal case, these are not always tractable and
iterative techniques must be employed. These may be a nonlinear optimisation scheme
using gradient information such as conjugate gradient methods or quasi-Newton meth-
ods or, for certain parametric forms of the likelihood function, expectation–maximisation
(EM) methods may be employed. The problem with the former approach is that maximi-
sation of the likelihood function is not simply an exercise in unconstrained optimisation.
That is, the quantities being estimated are often required to satisfy some (inequality)
constraint. For example, in estimating the covariance matrix of a normal distribution, the
elements of the matrix are constrained so that they satisfy the requirements of a covari-
ance matrix (positive definiteness, symmetry). The latter methods have been shown to
converge for particular likelihood functions.

Maximum likelihood is the most extensively used statistical estimation technique. It
may be regarded as an approximation to the Bayesian approach, described below, in which
the prior probability, p.�/, is assumed uniform, and is arguably more appealing since
it has no subjective or uncertain element represented by p.�/. However, the Bayesian
approach is in more agreement with the foundations of probability theory. A detailed
treatment of maximum likelihood estimation may be found in Stuart and Ord (1991).

B.1.4 Bayesian estimates

The maximum likelihood method is a method of point estimation of an unknown param-
eter � . It may be considered to be an approximation to the Bayesian method described in
this section and is used when one has no prior knowledge concerning the distribution of � .

Given a set of observations x1; : : : ; xn , the probability of obtaining fxi g under the
assumption that the probability density is p.xj�/ is

p.x1; : : : ; xnj�/ D
nY

iD1

p.xi j�/

if the xi are independent. By Bayes’ theorem, we may write the distribution of the
parameter � as

p.� jx1; : : : ; xn/ D p.x1; : : : ; xnj�/p.�/R
p.x1; : : : ; xnj�/p.�/ d�
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where p.�/ is the prior probability density of � . The quantity above is the probability
density of the parameter, given the data samples and is termed the posterior density.
Given this quantity, how can we choose a single estimate for the parameter (assuming
that we wish to)? There are obviously many ways in which the distribution could be
used to generate a single value. For example, we could take the median or the mean as
estimates for the parameter. Alternatively, we could select that value of � for which the
distribution is a maximum:

O� D arg max
�

p.� jx1; : : : ; xn/ (B.3)

the value of � which occurs with greatest probability. This is termed the maximum a
posteriori (MAP) estimate or the Bayesian estimate.

One of the problems with this estimate is that it assumes knowledge of p.�/, the prior
probability of � . Several reasons may be invoked for neglecting this term. For example,
p.�/ may be assumed to be uniform (though why should p.�/ be uniform on a scale of
� rather than, say, a scale of �2?). Nevertheless, if it can be neglected, then the value of
� which maximises p.� jx1; : : : ; xn/ is equal to the value of � which maximises

p.x1; : : : ; xn j�/
This is the maximum likelihood estimate described earlier.

More generally, the Bayes estimate is that value of the parameter that minimises the
Bayes risk or average risk, R, defined by

R D E[C.�; O�/]

D
Z

C.�; O�/p.x1; : : : ; xn; �/ dx1 : : : dxn d�
(B.4)

where C.�; O�/ is a loss function which depends on the true value � of a parameter and
its estimate, O� .

Two particular forms for C.�; O�/ are the quadratic and the uniform loss functions.
The Bayes estimate for the quadratic loss function (minimum mean square estimate)

C.�; O�/ D jj� � O� jj2

is the conditional expectation (expected error of the a posteriori density) (Young and
Calvert, 1974)

O� D E� jx1;:::;xn [� ] D
Z
�p.� jx1; : : : ; xn/ d� (B.5)

This is also true for cost functions that are symmetric functions of � and convex, and if
the posterior density is symmetric about its mean. Choosing a uniform loss function

C.�; O�/ D
²

0 j� � O� j � Ž
1 j� � O� j > Ž

leads to the maximum a posteriori estimate derived above as Ž! 0.
Minimising the Bayes risk (B.4) yields a single estimate for � and if we are only

interested in obtaining a single estimate for � , then the Bayes estimate is one we might
consider.
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Linear algebra

C.1 Basic properties and definitions

Throughout this book, we assume that the reader is familiar with standard operations
on vectors and matrices. This appendix is included as a reference for terminology and
notation used elsewhere in the book. All of the properties of matrices that we give are
stated without proof. Proofs may be found in any good book on elementary linear algebra
(see Section C.2). We also provide information on sources for software for some of the
standard matrix operations.

Given an n ðm matrix, A, we denote the element of the i th row and j th column by
ai j . The transpose of A is denoted AT , and we note that

.AB/T D BT AT

The square matrix A is symmetric if ai j D a ji for all i; j . Symmetric matrices occur
frequently in this book.

The trace of a square matrix A, denoted TrfAg, is the sum of its diagonal elements,

TrfAg D
nX

iD1

aii

and satisfies TrfABg D TrfBAg provided that AB is a square matrix, though neither A

nor B need be square.
The determinant of a matrix A, written jAj, is the sum

jAj D
nX

jD1

ai j Ai j for i D 1; : : : ; n

where the cofactor, Ai j , is the determinant of the matrix formed by deleting the i th row
and the j th column of A, multiplied by .�1/iC j . The matrix of cofactors, C (ci j D Ai j ),
is called the adjoint of A. If A and B are square matrices of the same order, then
jABj D jAjjBj

The inverse of a matrix A is that unique matrix A�1 with elements such that

A�1A D AA�1 D I
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where I is the identity matrix. If the inverse exists, the matrix is said to be nonsingular.
If the inverse does not exist, the matrix is singular and jAj D 0. We shall frequently
use the properties .AT /�1 D .A�1/T , .AB/�1 D B�1A�1 and if A is symmetric,
then so is A�1.

A set of k vectors (of equal dimension) are linearly dependent if there exists a set of
scalars c1; : : : ; ck , not all zero, such that

c1x1 C Ð Ð Ð C ckxk D 0

If it is impossible to find such a set c1; : : : ; ck then the vectors x1; : : : ; xk are said to
be linearly independent. The rank of a matrix is the maximum number of linearly inde-
pendent rows (or equivalently, the maximum number of linearly independent columns).
An n ð n matrix is of full rank if the rank is equal to n. In this case, the determi-
nant is non-zero, i.e. the inverse exists. For a rectangular matrix A of order m ð n,
rank.A/ 	 min.m; n/ and

rank.A/ D rank.AT / D rank.AT A/ D rank.AAT /

and the rank is unchanged by pre- or post-multiplication of A by a nonsingular matrix.
A square matrix is orthogonal if

AAT D AT A D I ;

that is, the rows and the columns of A are orthonormal (xT y D 0 and xT x D 1, yT y D 1
for two different columns x and y). An orthogonal matrix represents a linear transfor-
mation that preserves distances and angles, consisting of a rotation and/or reflection. It
is clear from the above definition that an orthogonal matrix is nonsingular and the in-
verse of an orthogonal matrix is its transpose: A�1 D AT . Also the determinant of an
orthogonal matrix is š1 (�1 indicates a reflection, C1 is a pure rotation).

A square matrix A is positive definite if the quadratic form xT Ax > 0 for all x 6D 0.
The matrix is positive semidefinite if xT Ax ½ 0 for all x 6D 0. Positive definite matrices
are of full rank.

The eigenvalues (or characteristic roots) of a p ð p matrix A are solutions of the
characteristic equation

jA� ½I j D 0

which is a pth-order polynomial in ½. Thus, there are p solutions, which we denote
½1; : : : ; ½p. They are not necessarily distinct and may be real or complex. Associated
with each eigenvalue ½i is an eigenvector ui with the property

Aui D ½iui

These are not unique, since any scalar multiple of ui also satisfies the above equation.
Therefore, the eigenvectors are usually normalised so that uT

i ui D 1.
In this book we use the following properties of eigenvalues and eigenvectors:

1. The product of the eigenvalues is equal to the determinant, i.e.
Qp

iD1 ½i D jAj. Thus,
it follows that if the eigenvalues are all non-zero, then the inverse of A exists.
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2. The sum of the eigenvalues is equal to the trace of the matrix,
Pp

iD1 ½i D TrfAg.
3. If A is a real symmetric matrix, the eigenvalues and eigenvectors are all real.

4. If A is positive definite, the eigenvalues are all greater than zero.

5. If A is positive semidefinite of rank m, then there will be m non-zero eigenvalues
and p � m eigenvalues with the value zero.

6. Every real symmetric matrix has a set of orthonormal characteristic vectors. Thus,
the matrix U , whose columns are the eigenvectors of a real symmetric matrix (U D
[u1; : : : ;up]), is orthogonal, UT U D UUT D I and U T AU D 	 where 	 D
diag.½1; : : : ; ½p/, the diagonal matrix with diagonal elements the eigenvalues ½i . Al-
ternatively, we may write

A D U	UT D
pX

iD1

½iuiu
T
i

If A is positive definite then A�1 D U	�1UT , where 	�1 D diag.1=½1; : : : ; 1=½p/.

The general symmetric eigenvector equation,

Au D ½Bu

where A and B are real symmetric matrices, arises in linear discriminant analysis (de-
scribed in Chapter 4) and other areas of pattern recognition. If B is positive definite, then
the equation above has p eigenvectors, .u1; : : : ;up/, that are orthonormal with respect
to B, that is

uT
i Bu j D

²
0 i 6D j
1 i D j

and consequently

uT
i Au j D

²
0 i 6D j
½ j i D j

These may be written
U T BU D I UT AU D 	

where U D [u1; : : : ;up] and 	 D diag.½1; : : : ; ½p/.
Many problems in this book involve the minimisation of a squared error measure.

The general linear least squares problem may be solved using the singular value decom-
position of a matrix. An m ð n matrix A may be written in the form

A D U
V T D
rX

iD1

¦iuiv
T
i

where r is the rank of A; U is an mðr matrix with columns u1; : : : ;ur , the left singular
vectors and U T U D I r , the r ð r identity matrix; V is an n ð r matrix with columns
v1; : : : ; vr , the right singular vectors and V T V D I r also; 
 D diag.¦1; : : : ; ¦r /, the
diagonal matrix of singular values ¦i ; i D 1; : : : ; r .
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The singular values of A are the square roots of the non-zero eigenvalues of AAT

or AT A. The pseudo-inverse or generalised inverse is the n ð m matrix A†

A† D V 
�1UT D
rX

iD1

1

¦i
viu

T
i (C.1)

and the solution for x that minimises the squared error

jjAx � bjj2

is given by
x D A†b

If the rank of A is less than n, then there is not a unique solution for x and singular
value decomposition delivers the solution with minimum norm.

The pseudo-inverse has the following properties:

AA†A D A

A†AA† D A†

.AA†/T D AA†

.A†A/T D A†A

Finally, in this section, we introduce some results about derivatives. We shall denote
the partial derivative operator by

@

@x
D
�
@

@x1
; : : : ;

@

@x p

�T

Thus, the derivative of the scalar function f of the vector x is the vector

@ f

@x
D
�
@ f

@x1
; : : : ;

@ f

@x p

�T

Similarly, the derivative of a scalar function of a matrix is denoted by the matrix
@ f=@A, where �

@ f

@A

½

i j
D @ f

@ai j

In particular, we have

@jAj
@A
D .adjoint of A/T D jAj.A�1/T if A�1 exists

and for a symmetric matrix
@

@x
xT Ax D 2Ax

Also, an important derivative involving traces of matrices is

@

@A
.TrfAT MAg/ DMACMT A
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C.2 Notes and references

In this appendix we have introduced the necessary matrix terminology that will be useful
throughout most of this book. We have necessarily been brief on detail and proofs of some
of the assertions, together with additional explanation, may be found in most books on
linear algebra; for example, the book by Stewart (1973) provides a very good introduction
to matrix computations. Also, Press et al. (1992) give clear descriptions of the numerical
procedures.

The book by Thisted (1988) gives a good introduction to elements of statistical com-
puting, including numerical linear algebra and nonlinear optimisation schemes for func-
tion minimisation that are required by some pattern processing algorithms.





D

Data

D.1 Introduction

Many of the methods described in this book for discrimination and classification often
have been, and no doubt will continue to be, employed in isolation from other essential
stages of a statistical investigation. This is partly due to that fact that data are often
collected without the involvement of a statistician. Yet it is the early stages of a statistical
investigation that are the most important and may prove critical in producing a satisfactory
conclusion. These preliminary stages, if carried out carefully, may indeed be sufficient,
in many cases, to answer the questions being addressed. The stages of an investigation
may be characterised as follows.

1. Formulation of the problem.

2. Data collection. This relates to questions concerning the type of data, the amount, and
the method and cost of collection.

3. Initial examination of the data. Assess the quality of the data and get a feel for its
structure.

4. Data analysis. Apply discrimination and classification methods as appropriate.

5. Assessment of the results.

6. Interpretation.

This is necessarily an iterative process. In particular, the interpretation may pose questions
for a further study or lead to the conclusion that the original formulation of the problem
needs re-examination.

D.2 Formulating the problem

The success of any pattern recognition investigation depends to a large extent on how
well the investigator understands the problem. A clear understanding of the aims of the
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study is essential. It will enable a set of objectives to be specified in a way that will
allow the problem to be formulated in precise statistical terms.

Although certainly the most important part of a study, problem formulation is probably
the most difficult. Care must be taken not to be over-ambitious, and the investigator
must try to look ahead, beyond the current study, possibly to further investigations, and
understand how the results of the present study will be used and what will be the possible
consequences of various outcomes.

Thought should be given to the data collection process. In a discrimination problem,
priors and costs will need to be specified or estimated. Often the most important classes
are underrepresented.

A great deal can be learned from past approaches to the particular problem under
investigation, and related ones. Data from previous studies may be available. Some
preliminary experiments with these data may give an indication as to the choice of
important variables for measurement. Previous studies may also highlight good and bad
strategies to follow.

Another factor to take into account at the planning stage is cost. More data means a
greater cost, both in terms of collection and analysis. Taking too many observations, with
measurements on every possible variable, is not a good strategy. Cost is also strongly
related to performance and a strategy that meets the desired performance level with
acceptable cost is required.

Finally, thought must be given to the interpretation and presentation of the results to
the user. For example, in a discrimination problem, it may be inappropriate to use the
classifier giving the best results if it is unable to ‘explain’ its decisions. A suboptimal
classifier that is easier to understand may be preferable.

D.3 Data collection

In a pattern recognition problem in which a classifier is being designed to automate
some particular task, it is important that the data collected are representative of the
expected operating conditions. If this is not so, then you must say how and why the
data differ.

There are several aspects of data collection that must be addressed. These include the
collection of calibration or ‘ground truth’ data; the variables measured and their accuracy;
the sampling strategy, including the total sample size and the proportions within each
class (if sampling from each class separately); the costs involved; and the principle of
randomisation.

When collecting data it is important to record details of the procedure and the equip-
ment used. This may include specifying a type of sensor, calibration values, and a de-
scription of the digitising and recording equipment. Conditions prevailing at the time of
the experiment may be important for classifier design, particularly when generalisation
to other conditions is required.

The choice of which variables to measure is crucial to successful pattern recognition
and is based on knowledge of the problem at hand and previous experience. Use knowl-
edge of previous experiments whenever this is available. It has been found that increasing
the number of variables measured does not necessarily increase classification performance
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on a data set of finite size. This trade-off between sample size and dimensionality, dis-
cussed more fully below, is something to consider when taking measurements. Although
variables may be pruned using a variable selection technique, such as those described in
Chapter 9, if measurements are expensive, then it would be better not to make unneces-
sary ones in the first place. However, there is sometimes a need for redundant variables
as an aid to error checking.

Once the measurement variables have been prescribed, the designer must decide on
the sampling strategy and select an appropriate sample size. In a discrimination problem,
in which a measurement vector x has an associated class label, perhaps coded as a vector
z, there are two main sampling strategies under which the training data f.xi ; zi /; i D
1; : : : ; pg may be realized. The first of these is separate or class-conditional sampling.
Here, the feature vectors are sampled from each class separately and therefore this strategy
does not give us estimates of the prior probabilities of the classes. Of course, if these are
known, then we may sample from the classes in these proportions. The second sampling
design is joint or mixture sampling. In this scheme, the feature vector and the class are
recorded on the samples drawn from a mixture of groups. The proportions in each group
emerge from the data.

The sample size depends on a number of factors: the number of features, the de-
sired performance, the complexity of the classification rule (in terms of the number of
parameters to estimate) and the asymptotic probability of misclassification. It is very
difficult to obtain theoretical results about the effects of finite sample size on classifier
performance. However, if the number of features is large and the classifier is com-
plex then a large number of measurements should be made. Yet, it is difficult to know,
before the data collection, how complex the resulting classifier needs to be. In addi-
tion, a large number of data samples is necessary if the separation between classes is
small or high confidence in the error rate estimate is desired. Further, if little knowl-
edge about the problem is available, necessitating the use of nonparametric methods,
then generally larger data sets than those used for parametric approaches are required.
This must be offset against factors limiting the sample size such as measurement cost.
Again, much can be learned from previous work (for example, Fukunaga and Hayes,
1989c; Jain and Chandrasekaran, 1982). Several papers suggest that the ratio of sam-
ple size to number of features is a very important factor in the design of a pattern
recognition system (Jain and Chandrasekaran, 1982; Kalayeh and Landgrebe, 1983) giv-
ing the general guidance of having 5–10 times more samples per class than feature
measurements.

Once gathered, the data are often partitioned into training (or design) and test sets.
The training set should be a random sample from the total data set. There are two
main reasons for partitioning the data. In one instance, the classifier is trained using the
training set and the test set is used to provide an independent estimate of its perfor-
mance. This makes inefficient use of the data for training a classifier (see Chapter 11).
The second way in which training and test sets are used is in classifier design. It
applies to classifiers of perhaps differing complexity or classifiers of the same com-
plexity (in terms of the architecture and the number of parameters) but with differ-
ent initial conditions in a nonlinear optimisation procedure. These are trained using
the training set and the performance on the test set monitored. The classifier giv-
ing the best performance on the test set is adopted. Using the test set in this man-
ner means that it is being used as part of the training process and cannot be used
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to provide an independent error estimate. Other methods of error rate estimation must
be employed.

The test set used in the above manner is more properly termed a validation set,
which is used to tune classifier parameters. A third independent data set may required
for performance evaluation purposes.

Whatever way we design our classifier, in many practical applications we shall desire
good generalisation; that is, good performance on unseen data representative of the true
operational conditions in which the classifier is to be deployed. Of course, the aim should
be to collect data representative of those conditions (this is the test set). Nevertheless,
if your budget allows, it is worthwhile collecting a set of data, perhaps at a different
location, perhaps at a different time of year, or by a different group of researchers (if
your classifier is meant to be invariant to these factors) and validating your conclusions
on this data set.

A final point to mention with respect to data collection is randomisation. This reduces
the effects of bias. The order of the data should be randomised, not collecting all the
examples from class 1, then all the examples from class 2 and so on. This is particularly
important if the measurement equipment or the background or environmental conditions
change with time. Complete randomisation is not possible and some form of restricted
randomisation could be employed (Chatfield, 1988).

The following points summarise the data-collection strategy.

1. Choose the variables. If prior knowledge is available then this must be used.

2. Decide on the sample size and proportions within each class (for separate sampling).

3. Record the details of the procedure and measuring equipment.

4. Measure an independent test set.

5. Randomise the data collection.

D.4 Initial examination of data

Once the data have been collected it is tempting to rush into an analysis perhaps using
complicated multivariate analysis techniques. With the wide availability of computer
packages and software, it is relatively easy to perform such analyses without first having
a careful or even cursory look at the data. The initial examination of the data is one of
the most important parts of the data analysis cycle (and we emphasise again the iterative
aspect to an investigation). Termed an initial data analysis (IDA) by Chatfield (1985,
1988) or exploratory data analysis by Tukey (1977), it constitutes the first phase of the
analysis and comprises three parts:

1. checking the quality of the data;

2. calculating summary statistics;

3. producing plots of the data in order to get a feel for their structure.
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Checking the data
There are several factors that degrade data quality, the main ones being due to errors,
outliers and missing observations. Errors may occur in several ways. They may be due
to malfunctions in recording equipment, for example transcription errors, or they may
even be deliberate if a respondent in a survey gives false replies. Some errors may be
difficult to detect, particularly if the value in error is consistent with other observations.
Alternatively, if the error gives rise to an outlier (an observation that appears to be
inconsistent with the remainder of the data) then a simple range test on each variable
may pick it up.

Missing values can arise in a number of different ways and it is important to know
how and why they occur. Extreme care must be taken in the coding of missing values,
not treating them as special numerical values if possible. Procedures for dealing with
missing observations are also discussed more fully in Chapter 11.

Summary statistics
Summary statistics should be calculated for the whole data set and for each class indi-
vidually. The most widely used measures of location and spread are the sample mean
and the standard deviation. The sample mean should be calculated on each variable and
can be displayed, along with the standard deviation and range, in a table comparing
these values with the class-conditional ones. This might provide important clues to the
variables important for discriminating particular classes.

Plotting the data
Graphical views of the data are extremely useful in providing an insight into the nature of
multivariate data. They can prove to be a help as a means of detecting clusters in the data,
indicating important (or unimportant) variables, suggesting appropriate transformations
of the variables and for detecting outliers.

Histograms of the individual variables and scatterplots of pairwise combinations of
variables are easy to produce. Scatterplots produce projections of the data onto various
planes and may show up outliers. Different classes can be plotted with different sym-
bols. Scatterplots do not always reflect the true multidimensional structure and if the
number of variables, p, is large then it might be difficult to draw conclusions from the
correspondingly large number, p.p � 1/, of scatterplots.

There are many other plots, some of which project the data linearly or nonlinearly
onto two dimensions. These techniques, such as multidimensional scaling, Sammon plots,
and principal components analysis, are very useful for exploratory data analysis. They
involve more than simply ‘looking’ at the data and are explored more fully in Chapter 9.

Summary
The techniques briefly described in this section form an essential part of data analysis in
the early stages before submitting the data to a computer package. Initial data analysis
provides aids for data description, data understanding and for model formation, perhaps
giving vital clues as to which subsequent methods of analysis should be undertaken. In
many cases it will save a lot of wasted effort.
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D.5 Data sets

The book by Andrews and Herzberg (1985) provides a range of data sets from the
widely used Fisher–Anderson iris data to the more unusual data set of number of deaths
by falling off horseback in the Prussian army. Some of the data sets in the book can
be used for discrimination problems. The Handbook of Data Sets of Hand et al. (1993)
consists of around 500 small data sets that are very useful for illustration purposes.

There are several electronic sources. The UCI repository of machine learning data-
bases and domain theories (Murphy and Aha, 1995) contains over 70 data sets, most of
them documented and for which published results of various analyses are available.

In addition to assessing methods on real data, which is an essential part of technique
development, simulated data can prove extremely valuable. We can obtain as much
(subject to the properties of the random number generation process) or as little as we
wish for nominal cost. This enables asymptotic error rates to be estimated. These can
be used to assess performance of error rate estimation procedures. Also, if we know the
model that has generated the data, then we have a means of assessing our model order
selection procedures. For example, if we design a classifier that we believe is optimal
(in the sense of producing the Bayes minimum error rate) for the particular case of
normally distributed classes, then we ought to be able to test our numerical procedure
using such data.

D.6 Notes and references

The book by Chatfield (1988) provides an excellent account of the general principles
involved in statistical investigation. Emphasis is placed on initial data analysis (see also
Chatfield, 1985; Tukey, 1977), but all stages from problem formulation to interpretation
of results are addressed. On experimental design, the classic texts by Cochran and Cox
(1957) and Cox (1958) are still very relevant today. Further guidelines are given by Hahn
(1984), based on experiences of six case studies. The book by Everitt and Hay (1992)
provides a very good introduction to the design and analysis of experiments through a
case study in psychology. It also presents many recent developments in statistics and is
much more widely applicable than the particular application domain described. A further
discussion in mapping a scientific question to a statistical one is given by Hand (1994).

Techniques for visualising multivariate data are described in the books by Chatfield
and Collins (1980), Dillon and Goldstein (1984) and Everitt and Dunn (1991). Wilkinson
(1992) gives a review of graphical displays.



E

Probability theory

E.1 Definitions and terminology

The rudiments of probability theory used in the development of decision theory are now
presented. Firstly, we introduce the idea of an experiment or observation. The set of
all possible outcomes is called the sample space, �, of the model, with each possible
outcome being a sample point. An event, A, is a set of experimental outcomes, and
corresponds to a subset of points in �.

A probability measure is a function, P.A/, with a set, A, as argument. It can be
regarded as the expected proportion of times that A actually occurs and has the following
properties:

1. 0 � P.A/ � 1.

2. P.�/ D 1.

3. If A and B are mutually exclusive events (disjoint sets) then

P.A [ B/ D P.A/C P.B/

More generally, when A and B are not necessarily exclusive,

P.A [ B/ D P.A/C P.B/� P.A \ B/

A random variable is a function that associates a number with each possible outcome
! 2 �. We denote random variables by upper-case letters here, but in the main body
of work we generally use the same symbol for a random variable and a measurement,
the meaning being clear from context. Although the argument of P is a set, it is usual
to use a description of the event as the argument, regarding this as equivalent to the
corresponding set. Thus, we write P.X > Y / for the probability that X is greater than
Y , rather than P.f! : X .!/ > Y .!/g/.

The cumulative distribution function, sometimes simply called the distribution func-
tion, of a random variable is the probability that the random variable is less than or equal
to some specified value x ; that is,

PX .x/ D probability that X � x (E.1)
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Usually, when there is no ambiguity, we drop the subscript X . The cumulative distribution
function is a monotonic function of its argument with the property that P.�1/ D 0;
P.1/ D 1. The derivative of the distribution function,

p.x/ D d P

dx

is the probability density function of the random variable X . For sample spaces such as
the entire real line, the probability density function, p.x/, has the following properties:

Z 1
�1

p.x/ dx D 1

Z b

a
p.x/ dx D probability that X lies between a and b

D P.a � X � b/

p.x/ ½ 0

Much of the discussion in this book will relate to vector quantities, since the inputs
to many pattern classification systems may be expressed in vector form. Random vectors
are defined similarly to random variables, associating each point in the sample space, �,
to a point in R

p:
X : � �! R

p

The joint distribution of X is the p-dimensional generalisation of (E.1) above:

PX .x/ D PX .x1; : : : ; x p/ D probability that X1 � x1; : : : ; X p � x p

and the joint density function is similarly given by

p.x/ D @ p P.x/

@x1 : : : @x p

Given the joint density of a set of random variables X1; : : : ; X p, then a smaller set
X1; : : : ; Xm.m < p/ also possesses a probability density function determined by

p.x1; : : : ; xm/ D
Z 1
�1

: : :

Z 1
�1

p.x1; : : : ; x p/ dxmC1 : : : dx p

This is sometimes known as the marginal density of X1; : : : Xm , although the expression
is more usually applied to the single-variable densities, p.x1/; p.x2/; : : : ; p.x p/ given by

p.xi / D
Z 1
�1

: : :

Z 1
�1

p.x1; : : : ; x p/ dx1 : : : dxi�1 dxiC1 : : : dx p

The expected vector, or mean vector, of a random variable x, is defined by

m D E[X] D
Z

x p.x/ dx
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where dx denotes dx1 : : : dx p and the integral is over the entire space (and unless oth-
erwise stated

R D R1�1) and E[:] denotes the expectation operator. The i th component
of the mean can be calculated by

mi D E[Xi ] D
Z
: : :

Z
xi p.x1; : : : ; x p/ dx1 : : : dx p D

Z
xi p.x/ dx

D
Z 1
�1

xi p.xi / dxi

where p.xi / is the marginal density of the single variable Xi given above.
The covariance of two random variables provides a measure of the extent to which

the deviations of the random variables from their respective mean values tend to vary
together. The covariance of random variables xi and x j , denoted by Ci j , is given by

Ci j D E[.X j � E[X j ]/.Xi � E[Xi ]/]

which may be expressed as

Ci j D E[Xi X j ]� E[Xi ]E[X j ]

where E[Xi X j ] is the autocorrelation. The matrix with .i; j/th component Ci j is the
covariance matrix

C D E[.X �m/.X �m/T ]

Two random variables Xi and X j are uncorrelated if the covariance between the two
variables is zero, Ci j D 0, which implies

E[Xi X j ] D E[Xi ]E[X j ]

Two vectors, X and Y , are uncorrelated if

E[XT Y ] D E[X]T E[Y ] (E.2)

In the special case where the means of the vectors are zero, so that the relation above
becomes E[XT Y ] D 0, then the random variables are said to be mutually orthogonal.

Two events, A and B, are statistically independent if

P.A \ B/ D P.A/P.B/

and two random variables Xi and X j are independent if

p.xi ; x j / D p.xi /p.x j /

If the random variables X1; X2; : : : ; X p are independent then the joint density function
may be written as a product of the individual densities:

p.x1; : : : ; x p/ D p.x1/ : : : p.x p/

If two variables are independent then the expectation of X1 X2 is given by

E[X1 X2] D
Z Z

x1x2 p.x1; x2/ dx1 dx2
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and, using the independence property,

E[X1 X2] D
Z

x1 p.x1/ dx1

Z
x2 p.x2/ dx2

D E[X1]E[X2]

This shows that X1 and X2 are uncorrelated. However, this does not imply that two
variables that are uncorrelated are statistically independent.

Often we shall want to consider a functional transformation from a given set of
random variables fX1; X2; : : : ; X pg represented by the vector X to a set fY1; Y2; : : : ;

Ypg represented by the vector Y . How do probability density functions change under
such a transformation? Let the transformation be given by Y D g.X/, where g D
.g1; g2; : : : ; gp/

T . Then the density functions of X and Y are related by

pY .y/ D pX .x/

jJ j
where jJ j is the absolute value of the Jacobian determinant

J .x1; : : : ; x p/ D

þþþþþþþþþþþ

@g1

@x1
: : :

@g1

@x p
:::

: : :
:::

@gp

@x1
: : :

@gp

@x p

þþþþþþþþþþþ

A simple transformation is the linear one

Y D AX C B

Then if X has the probability density pX .x/, the probability density of Y is

pY .y/ D pX .A
�1.y � B//

jAj (E.3)

where jAj is the absolute value of the determinant of the matrix A.
Given a random system and any two events A and B that can occur together, we can

form a new system by taking only those trials in which B occurs. The probability of A
in this new system is called the conditional probability of A given B and is denoted by
P.AjB/; if P.B/ > 0 it is given by

P.AjB/ D P.A \ B/

P.B/

or
P.A \ B/ D P.AjB/P.B/ (E.4)

This is the total probability theorem.
Now, since P.A \ B/ D P.B \ A/, we have from (E.4)

P.AjB/P.B/ D P.BjA/P.A/
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or

P.AjB/ D P.BjA/P.A/
P.B/

This is Bayes’ theorem.
Now, if A1; A2; : : : ; AN are events which partition the sample space (that is, they are

mutually exclusive and their union is �) then

P.B/ D
NX

iD1

P.B \ Ai /

D
NX

iD1

P.BjAi /P.Ai /

(E.5)

and we obtain a more practical form of Bayes’ theorem

P.A j jB/ D P.BjA j /P.A j /PN
iD1 P.BjAi /P.Ai /

(E.6)

In pattern classification problems, B is often an observation event and the A j are pattern
classes. The term a priori probability is often used for the quantity P.Ai / and the
objective is to find P.Ai jB/, which is termed the a posteriori probability of Ai .

The conditional distribution, PX .x jA/, of a random variable X given the event A is
defined as the conditional probability of the event fX � xg

P.x jA/ D P.fX � xg; A/

P.A/

and P.1jA/ D 1; P.�1jA/ D 0. The conditional density p.x jA/ is the derivative
of P.x jA/

p.x jA/ D d P

dx
D lim
1x!0

P.x � X � x C1x jA/
1x

The extension of the result (E.5) to the continuous case gives

p.x/ D
NX

iD1

p.x jAi /p.Ai /

where p.x/ is the mixture density and we have taken B D fX � xg, and the continuous
version of Bayes’ theorem may be written

p.x jA/ D p.Ajx/p.x/
p.A/

D p.AjX D x/p.x/Z 1
�1

p.AjX D x/p.x/ dx

The conditional density of x given that the random vector Y has some specified value,
y, is obtained by letting A D fy � Y � y C1yg and taking the limit

lim
1y!0

p.x jfy � Y � y C1yg/ D lim
1y!0

p.x; fy � Y � y C1yg/
p.fy � Y � y C1yg/
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giving

p.x jy/ D p.x; y/

p.y/
(E.7)

where p.x; y/ is the joint density of X and Y and p.y/ is the marginal density

p.y/ D
Z

p.x; y/ dx (E.8)

Equations (E.7) and (E.8) lead to the density form of Bayes’ theorem

p.x jy/ D p.yjx/p.x/
p.y/

D p.yjx/p.x/R
p.yjx/p.x/ dx

A generalisation of (E.7) is the conditional density of the random variables XkC1; : : : ; X p

given X1; : : : ; Xk :

p.xkC1; : : : ; x pjx1; : : : ; xk/ D p.x1; : : : ; x p/

p.x1; : : : ; xk/
(E.9)

This leads to the chain rule

p.x1; : : : ; x p/ D p.x pjx1; : : : ; x p�1/p.x p�1jx1; : : : ; x p�2/ : : : p.x2jx1/p.x1/

The results of (E.8) and (E.9) allow unwanted variables in a conditional density to be
removed. If they occur to the left of the vertical line, then integrate with respect to them.
If they occur to the right, then multiply by the conditional density of the variables given
the remaining variables on the right and integrate. For example,

p.ajl;m; n/ D
Z

p.a; b; cjl;m; n/ db dc

p.a; b; cjm/ D
Z

p.a; b; cjl;m; n/p.l; njm/ dl dn

E.2 Normal distribution

We shall now illustrate some of the definitions and results of this section using the
Gaussian or normal distribution (we use the two terms interchangeably in this book). It is
a distribution to which we often refer in our discussion of pattern recognition algorithms.

The standard normal density of a random variable X has zero mean and unit variance,
and has the form

p.x/ D 1p
2³

exp

²
� x2

2

¦
�1 < x <1
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The distribution function is given by

P.X/ D
Z X

�1
p.x/ dx D 1p

2³

Z X

�1
exp

²
�1

2
x2
¦

dx D 1

2
C 1

2
erf

²
Xp
2

¦

where erffxg is the error function, 2p
³

R x
0 exp.�x2/ dx .

For the function Y D ¼C ¦ X of the random variable X , the density function of Y is

p.y/ D 1p
2¦ 2³

exp

"
�1

2

	
y � ¼
¦


2
#
;

which has mean ¼ and variance ¦ 2, and we write Y ¾ N .¼; ¦ 2/.
If X1; X2; : : : ; X p are independently and identically distributed, each following the

standard normal distribution, then the joint density is given by

p.x1; x2; : : : ; x p/ D
pY

iD1

p.xi / D 1

.2³/p=2
exp

(
�1

2

pX
iD1

x2
i

)

The transformation Y D AX C µ leads to the density function for Y (using (E.3))

p.y/ D 1

.2³/p=2jAj exp

²
�1

2
.y � µ/T .A�1/T A�1.y � µ/

¦
(E.10)

and since the covariance matrix, �, of Y is

� D E[.Y � µ/.Y � µ/T ] D AAT

Equation (E.10) is usually written

p.y/ D N .yjµ;�/ D 1

.2³/p=2j�j 12
exp

²
�1

2
.y � µ/T ��1.y � µ/

¦

This is the multivariate normal distribution.
Recall from the previous section that if two variables are independent then they are

uncorrelated, but that the converse is not necessarily true. However, a special property
of the normal distribution is that if two variables are joint normally distributed and
uncorrelated, then they are independent.

The marginal densities and conditional densities of a joint normal distribution are
all normal.

E.3 Probability distributions

We introduce some of the more commonly used distributions with pointers to some places
where they are used in the book (further probability distributions are listed by Bernardo
and Smith, 1994). If x has a specific probability density function, R.x jÞ/, where Þ is
the set of parameters of the specific functional form R, then for shorthand notation we
may write x ¾ R.Þ/; similarly, we use x jþ ¾ R. f .þ//, for some function f , to mean
p.x jþ/ D R.x j f .þ//.



456 Probability theory

N .xjµ;�/, pp. 30, 34, 52, 68 Normal 1

p.x/ D 1

j�j1=2.2³/p=2
exp

²
�1

2
.x � µ/T ��1.x � µ/

¦

�, symmetric positive definite; E[x] D µ; V[x] D �.

Sometimes it is convenient to express the normal with the inverse of the covariance
matrix as a parameter.

Np.xjµ; λ/, pp. 53, 53, 61, 67 Normal 2

p.x/ D jλj
1=2

.2³/p=2
exp

²
�1

2
.x � µ/T λ.x � µ/

¦

λ, symmetric positive definite; E[x] D µ; V[x] D λ�1.

Wip.xjÞ;β/, pp. 53, 53 Wishart

p.x/ D
"
³ p.p�1/=4

pY
iD1

	
1

2
.2Þ C 1� i/


#�1

jβjÞjxjÞ�.pC1/=2 exp.�Tr.βx//

x, symmetric positive definite; β, symmetric nonsingular; 2Þ > p � 1; E[x] D Þβ�1;
E[x�1] D .Þ � .p C 1/=2/�1β.

Stp.xjµ; λ; Þ/, p. 53 Multivariate Student

p.x/ D 0. 1
2 .Þ C p//

0.Þ2 /.Þ³/
p=2
jλj 12

�
1C 1

Þ
.x � µ/T λ.x � µ/

½�.ÞCp/=2

Þ > 0, λ symmetric positive definite; E[x] D µ; V[x] D λ�1.Þ � 2/�1Þ.

DiC .xja/, pp. 54, 70 Dirichlet

p.x/ D
0
@0

�PC
iD1 ai

�

QC
iD1 ai

1
A

CY
iD1

xai�1
i

0 < xi < 1, ai > 0, a D .a1; : : : ; aC/, x D .x1; : : : ; xC/,
PC

iD1 xi D 1;
E[xi ] D ai=

P
i ai .
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Ga.x jÞ; þ/, pp. 61, 61 Gamma

p.x/ D þÞ

0.Þ/
xÞ�1 exp.�þx/

Þ > 0; þ > 0; E[x] D Þþ�1; V[x] D Þþ�2.

Ig.x jÞ; þ/, pp. 67, 68 Inverted gamma

p.x/ D þÞ

0.Þ/
x�.ÞC1/ exp.�þ=x/

Þ > 0; þ > 0; E[x] D þ=.Þ � 1/.

If 1=y ¾ Ga.Þ; þ/, then y ¾ Ig.Þ; þ/.

Be.x jÞ; þ/, p. 253 Beta

p.x/ D 0.Þ C þ/
0.Þ/0.þ/

xÞ�1.1� x/þ�1

Þ > 0; þ > 0, 0 < x < 1; E[x] D Þ=.Þ C þ/.

Bi.x j�; n/, p. 253 Binomial

p.x/ D
	

n
x



� x .1� �/n�x

0 < � < 1, n D 1; 2; : : : ; x D 0; 1; : : : ; n.

Muk.xjθ; n/, pp. 54, 292 Multinomial

p.x/ D n!Qk
iD1 xi !

kY
iD1

�
xi
i

0 < �i < 1,
Pk

iD1 �i D 1,
Pk

iD1 xi D n, xi D 0; 1; : : : ; n.
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neural networks model selection, 410
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RBF learning, 189
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covariance matrix, see matrix, covariance
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error rate, see error-rate estimation,
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data
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dimension, 3
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missing values, 447

test set, 445
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data mining, 1, 221
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decision rule, 6
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decision theory, 6–18
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linear discriminant function, 36
quadratic discriminant function, 35

regularised discriminant analysis, see
regularised discriminant analysis
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suboptimal methods, 314–318
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k-nearest-neighbour method, see
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nearest-neighbour methods
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see feature extraction,
Karhunen–Loève
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latent variables, 337, 343
LBG algorithm, 384
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marginal density, see density function,
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multivariate adaptive regression splines,
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85–91
histogram method, 82, 119

variable cell, 83
kernel methods, 106–116, 119
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nearest-neighbour algorithms, 95–98
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nearest-neighbour methods, 93–105,
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k-nearest-neighbour decision rule,
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normal distribution, 454
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discriminant analysis, 45, 46
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function, 35
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outlier detection, 414–415

parameter estimation, 431–435
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functions of, 452
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regression, 20, 24–27
regularisation, 155, 174–175
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representation space, 344
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ROC, see receiver operating characteristic

sampling
mixture, 445
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simulated annealing

in clustering, 381
single-link, see clustering, hierarchical

methods, single-link method
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specific factors, 337
stochastic vector quantisation, see

clustering, sum-of-squares
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application studies, 163, 198
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multiclass algorithms, 155–156

two-class algorithms, 134–142
nonlinear, 190–197

surrogate splits, 237

total probability theorem, 452
training set, see data, training set, 6
tree-structured vector quantisation, 385

ultrametric dissimilarity coefficient, 397
ultrametric inequality, 363
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