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Preface

The idea of writing this book arose from the need to investigate the main principles of
modern power electronic control strategies, using fuzzy logic and neural networks, for
research and teaching. Primarily, the book aims to be a quick learning guide for
postgraduate/undergraduate students or design engineers interested in learning the
fundamentals of modern control of drives and power systems in conjunction with the
powerful design methodology based on VHDL.

At the same time, the book is structured to address the more complex needs of
professional designers, using VHDL for neural and fuzzy logic systems design, by
including comprehensive design examples. This facilitates the understanding of hardware
description language applications and provides a practical approach to the development
of advanced controllers for power electronics.

The first section of the book contains a brief review of control strategies for electric
drives/power systems and a summary description of neural networks, fuzzy logic, electronic
design automation (EDA) techniques, ASICs/FPGAs and VHDL. The aspects covered
allow a basic understanding of the main principles of modern control. The second
section contains two comprehensive case studies. The first deals with neural current and
speed control of induction motor drives, whereas the second presents the environmentally
friendly fuzzy logic control of a diesel-driven stand-alone synchronous generator set.
Both control strategies were implemented in Xilinx FPGAs and comprehensively tested
by simulation and experimental measurements.

This book brings together the complex features of control strategies, EDA, neural
networks, fuzzy logic, electric machines and drives, power systems and VHDL and
forms a basic guide for the understanding of the fundamental principles of modern
power electronic control systems design. To be expert in the design of advanced digital
controllers for drives and power systems, extra reading is strongly recommended and
comprehensive material is referenced in the bibliographical section. The book includes
a number of recent research results from work carried out by the authors, who are
members of the electronic control and drives research group at De Montfort University,
Leicester, UK.

The facilities provided by the university and the support of NEWAGE AVK SEG,
Stamford, UK, a major international manufacturer of electric generators, are gratefully
acknowledged.

Dr Marcian N. Cirstea
Dr Andrei Dinu

Dr Jeen G. Khor
Prof. Malcolm McCormick
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Control systems

1.1 Control theory: historical review

The function of a control mechanism is to maintain certain essential properties of a
system at a desired value under perturbations. Historical control systems which are
simple but effective have been employed in water regulation and control of liquid level
in wine vessels for centuries. Some of these concepts are still used today, for example
the float system in the water tank of the toilet flush. However, modern control systems
used in today’s industry are much more complex and owe their beginnings to the
development of control theory. The earliest significant work in modern automatic control
can be traced to James Watt’s design of the fly-ball governor (1788) for the speed
control of a steam engine. In 1868, Maxwell [170] presented the first mathematical
analysis of feedback control. It was during this time that systematic studies into control
systems and feedback dynamics began. One significant development was the well-
known Routh’s stability criterion (1877) which won E.J. Routh the Adam’s Prize.

The early twentieth century saw the beginning of what is now known as classical
control theory. Minorsky’s work (1922) on the determination of stability from the
differential equation describing the system (characteristic equation) and Nyquist’s
development (1932) of a graphical procedure for determining stability (frequency response)
substantially contributed to the study of control theory. In 1934, Hazen [111] introduced
the term ‘servomechanism’ to describe position control systems in his attempt to develop
a generalised theory of servomechanisms. Two years later, the development of the
proportional integral derivative (PID) controller was described by Callender et al.
(1936). Control theory, like many branches of engineering, underwent significant
development during World War II. Based on Nyquist’s work, H.W. Bode introduced a
method for feedback amplifier design, now known as the Bode plot (1945). By 1948, the
root locus method of design and stability analysis was developed by W.R. Evans [93].
With the introduction of digital computers in the 1960s, the use of frequency response
and characteristic equations began to give way to ordinary differential equations (ODEs),
which worked well with computers. This led to the birth of modern control theory.

While the term classical control theory is used to describe the design methods of
Bode, Nyquist, Minorsky and similar workers, modern control theory relies on ODE
design methods that are more suitable for computer aided engineering, for example the
state space approach. Both these branches of control theory rely on mathematical
representation of the control plant from which to derive its performance. To address the
issues of non-linearities and time-variant parameters in plant models, control strategies
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that continuously adapt to the variations of plant characteristics have been introduced.
Generally known as adaptive control systems, they include techniques such as self-
tuning control, H-infinity control, model referencing adaptive control and sliding mode
control, Studies also include the use of non-linear state observers that continuously
estimate the parameters of the control plant [174]. They can be employed to tackle the
issue of non-observability, that is the condition whereby not all of the required states are
available for feedback. This may be the cheaper solution because it does not require as
many sensors, such as in variable speed drives [59], or because it is physically difficult
or even impossible to obtain the feedback states such as in a nuclear reactor.

In many instances, the mathematical model of the plant is simply unknown or ill-
defined, leading to greater complexities in the design of the control system. It has been
proposed that intelligent control systems give a better performance in such cases.
Unlike conventional control techniques, intelligent controllers are based on artificial
intelligence (AI) rather than on a plant model. They imitate the human decision-making
process and can often be implemented in complex systems with more success than
conventional control techniques. AI can be classified into expert systems, fuzzy logic,
artificial neural networks and genetic algorithms. With the exception of expert systems,
these techniques are based on soft-computing methods. The result is that they are capable
of making approximations and ‘intelligent guesses’ where necessary, in order to come
out with a ‘good enough’ result under a given set of constraints. Intelligent control
systems may employ one or more AI techniques in their design.

1.2 Introduction to control systems

A system is a group of physical components assembled to perform a specific function.
A system may be electrical, mechanical, hydraulic, pneumatic, thermal, biomedical, or
a combination of any of these systems. An ideal control system is one in which an output
is a direct function of input. However, in practice disturbances affect the output being
controlled and cause it to deviate from the desired value. A control system may be
defined in a variety of ways, but the most basic definition is:

A control system is a group of components assembled in such a way as to regulate an
energy input to achieve the desired output.

1.2.1 Classification

Control systems are classified based on the following characteristics:

(A) The type of operating techniques used in driving the output to a desired value:
• Analogue control systems – analogue techniques are used to process the input

signal and control the output signal.
• Digital control systems – digital techniques are employed to control the output.

Analogue, digital, or both analogue and digital techniques may be used to
control a desired physical quantity, which can be any physical variable (tempera-
ture, pressure, electric voltage, mechanical position, etc.). At the beginning
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of the control era, most control systems were analogue employing analogue
techniques, but these systems were relatively bulky, complex and cumbersome,
both to design and to maintain. However, with the development of digital
technology the design of control systems became easier as well as more
economical. Nowadays, digital control systems are used more and more due to
their accuracy, precision, high speed of response, wide range of applications
and, why not, elegance. The main difference between an analogue control system
and a digital control system is that the first processes continuous signals while
the second processes discrete signals, which are in fact periodically taken samples
of continuous signals.

(B) The use of feedback:
• Closed-loop systems with either positive (regenerative) feedback or negative

(degenerative) feedback. If an output or part of an output is fed back so that it
can be compared with an input, the system is said to use feedback and the
arrangement forms a closed loop. If the feedback signal aids an input signal –
the feedback is positive; if the feedback signal opposes the input signal – the
feedback is negative.

• Open-loop systems – systems that don’t use a feedback. Advantages of open-
loop control systems are that they are relatively simple, economical and easy to
maintain. On the other hand, closed-loop systems are more accurate, stable and
less sensitive to outside disturbances, although they are relatively expensive,
complex and not easy to maintain.

(C) The nature of system behaviour:
• Linear systems – if the amplitude proportionality property (a) and the principle

of superposition (b) are satisfied. (a) If the system output is o(t) for a given
input i(t), then for an input Ki (t) the output should be Ko(t); K is the proportionality
constant. (b) According to the superposition principle if i1(t) and i2(t) are inputs
and their corresponding outputs are o1(t) and o2(t), then the input i1(t) + i2(t)
must produce the output o1(t) + o2(t). Example d.c. motor speed control system.

• Non-linear systems – these do not follow amplitude proportionality and the
superposition principle.

(D) The application area:
• Servomechanisms – control systems in which the output or the controlled variable

is a mechanical position or the rate of change of mechanical position (a motion).
Example: d.c. motor speed control.

• Sequential control systems – systems in which a prescribed set of operations are
performed. Example: automatic washing machine.

• Numerical control systems – they act on ‘numerical information’ (controlled
variables as position, speed, direction – coded in the form of instructions)
stored on a ‘control medium’ (simply a storage medium: punched cards, paper
tape, magnetic tape, CD-ROM). The control medium contains all the instructions
necessary to accomplish a desired manufacturing operation (milling, welding,
drilling). The major advantage of a numerical control system is the flexibility
of its control medium.

• Process control systems – the variables in a manufacturing process are controlled.
Examples: temperature, pressure, conductivity. They can be either closed-loop
or open-loop control systems.
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(E) The method of generating the control pulses:
• Single-channel control systems.
• Multi-channel control systems.

(F) The synchronisation between the signals within the control system and input
voltages:
• Synchronous control systems.
• Asynchronous control systems.

1.2.2 Characteristics of control systems

Although different systems are designed to perform different functions, all of them have
to meet some common requirements. The major characteristics of a typical control
system, which are often used as measures of performance to evaluate a system under
consideration, are the following:

1.2.2.1 Stability

A system is said to be stable if its output attains a certain value in a finite time after the
input is applied. When the output of a system remains constant and does not change as
a function of time, the output is said to attain a steady-state value. On the contrary, an
unstable system never attains a steady-state value. A practical system must be stable. An
unstable system may be made stable by using certain techniques, of which the most
common is the use of compensating networks. Often, an unstable system is made stable
simply by using negative feedback.

1.2.2.2 Accuracy

The accuracy indicates deviation of the actual output from its desired value and it is a
relative measure of system performance. Generally, the accuracy of a control system is
improved by using control models such as integral or integral plus proportional.

1.2.2.3 Speed of response

The speed of response is a measure of how quickly an output attains a steady-state value
after the input is applied. A practical system must have a finite response time.

1.2.2.4 Sensitivity

The sensitivity of a system is a measure of how sensitive the output is to changes in the
values of physical components as well as environmental conditions. The dependence of
output on disturbances can be minimised by using certain compensating networks.

1.2.2.5 Representation

The most common methods used to represent control systems in order to improve
communication between design engineers and users are block diagrams and signal flow
graphs. They help visualisation of the system under consideration at a glance. The block
diagram of a system consists of blocks, directed line segments joining these blocks and
the summing junctions or error detectors that are used to add the signals algebraically.



Control systems 5

A signal flow graph is a diagram that indicates the manner in which the signal flows in
a given system. It is a one-line diagram that uses directed segments.

This short overview on control systems and their general features aimed to familiarise
the reader with basic characteristics of control systems. The next section focuses on
some general aspects of control systems for electrical drives, especially for a.c. electrical
drives.

1.3 Control systems for a.c. drives

A specific definition of a process control system may be: ‘A control system is a combination
of amplifiers, transducers, and actuators, which collectively act on a process to maintain
some condition at a required value.’ The adjustable speed a.c. drive constitutes a
multivariable control system and therefore, in principle, the general theories of multivariable
control system should be applicable. Here, the voltages and the frequency are the control
inputs and the outputs may be speed, position, torque, airgap flux, stator current or a
combination of all of them. If the mathematical model of the system is considered
precise and no extraneous disturbances are possible, then theoretically open loop control
of the drive system should be satisfactory. This means that the control functions can be
defined uniquely to give the specified performance of the drive system. The performance
of the drive can be optimised by generating critical control functions using modern
optimal control theories. Optimal control theory is extremely difficult to apply to a real
life industrial drive system because of the laborious computational requirement and the
inaccuracies of the system model.

1.3.1 The objects of control systems in a.c. drives

Before the advent of power semiconductor devices, a.c. machines were commonly
accepted as fixed speed machines due to their connection to a fixed voltage and frequency
supply. Similarly, d.c. motors were considered the workhorses in industry for variable
speed applications. Although control principles and converter equipment are simple, the
d.c. machine is expensive when compared to the simple and rugged cage type induction
motor. In addition, the principal problem of a d.c. machine is that commutators and
brushes make it unreliable, unsuitable to operate in dusty and explosive environments
and it requires frequent maintenance. The a.c. machine is more rugged and reliable, as
well as less expensive and more efficient, especially the cage type induction motor;
however, the cost of the converter and the control is considerably higher, which makes
the a.c. drive more expensive than the d.c. drive. In addition, the control of a.c. drives
is very complex and requires intricate signal processing to obtain a performance comparable
to the d.c. drive. Present technology aims to provide substantial cost reductions and
performance improvements for a.c. drive systems to make them more universally used.
Some of the expanding application areas are:

• Replacement of variable speed d.c. drives by appropriate a.c. drive systems.
• Application of adjustable speed a.c. drives to constant speed process control, thereby

saving energy.
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• Replacement of heat engines (which use petroleum-based energy), hydraulic and
pneumatic controlled drive systems by electric a.c. drive systems (as in the electric
car).

An electrical a.c. machine is a complex electromagnetic and mechanical structure that
is designed for optimal conversion of electrical energy into mechanical energy, and vice
versa. In a conventional multiphase machine, the time phase distribution of power
supply and space phase distribution of stator windings produce a rotating airgap flux
wave, and the speed of rotation correlates with the frequency of the power supply. The
airgap flux reacts with the rotor magnetomotive force (MMF) wave to develop the
electrical torque, the magnitude of which depends on the flux and MMF amplitudes and
their phase displacement angle. The rotor MMF in a synchronous machine is created by
a separate field winding that carries d.c. current, whereas in an induction motor it is
produced by the stator induction effect. The speed to frequency relationship is unique in
a synchronous machine, but for induction motors, the rotor must ‘slip’ from synchronous
speed to induce rotor MMF, which results in the development of the torque.

In adjustable speed a.c. drive systems the static power converter constitutes an interface
between the primary power supply and the machine. The converter generally converts
and controls the 60 Hz, three-phase a.c. supply for the machine, which may be at
variable-voltage-constant-frequency, constant-voltage-variable-frequency or variable-
voltage-variable-frequency. A converter consists of a matrix of power semiconductor
switching devices which may be thyristors, gate turn-off (GTO) devices, power transistors,
or power MOS. This acts like a switch mode power amplifier between the control
signals and the output, with inherently rich harmonics at the input and the output. The
output harmonics cause machine heating and torque pulsation problems and the input
harmonics cause line voltage distortion and electromagnetic interference (EMI) problems.
Since generally no additional dynamics are involved in the converter circuit, the input
and output powers match at any instant, and the output waveform may be constructed
from input waves and the characteristic switching functions.

A well-designed drive system should carefully consider the interaction between the
converter and the machine, and the various design trade-off considerations. As the
converter operation and its mode of control severely affect the machine performance,
the machine parameters similarly affect the converter performance. The power switching
devices of a converter are delicate and very sensitive to voltage and current transients.
While a machine may have large overload current capability, the semiconductor device
overload capability is very limited because of the short transient thermal time constant.
In addition, the commutation capability of a converter may soon reach the limiting
condition due to overcurrent. Therefore, the converter is normally designed to match the
peak power capability of the machine, which is an expensive proposition. Because of the
possibility of overvoltage and overcurrent failures, a converter normally requires well-
designed control and protection schemes.

1.3.2 Basic principle of microcomputer control

Traditional control systems are normally implemented using analogue and digital hardware.
In its relatively short existence, digital computer technology has touched, and had a
profound effect upon, many areas of life. Its enormous success is due largely to the
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flexibility and reliability that computer systems offer to potential users. This, coupled
with the ability to handle and manipulate vast amounts of data quickly, efficiently and
repeatedly, has made computers extremely useful in many varied applications. In control
systems the digital computer acts as the controller and provides the enabling technology
that allows the design and implementation of the overall system, so that satisfactory
performance is obtained.

Digital control systems differ from continuous systems in that the computer acts only
at instants of time rather than continuously. This is because a computer can execute only
one operation at a time, and so the overall algorithm proceeds in a sequential manner.
Hence, taking measurements from the system and processing them to compute an activating
signal, which is then applied to the system, is a standard procedure in a typical control
application. Having applied a control action, the computer collects the next set of
measurements and repeats the complete iteration in an endless loop. The maximum
frequency of control update is defined by the time taken to complete one cycle of the
loop. This is obviously dependent upon the complexity of the control task and the
capabilities of the hardware.

At first glance this appears to be a poorly matched situation, where a digital computer
is attempting to control a continuous system by applying impulsive signals to it every
now and then; from this viewpoint it seems unlikely that satisfactory results are possible.
Fortunately, the setup is not as awkward as it first appears. If the cycle iteration speed
of the computer and the dynamics of the system are taken into account, adequate
performance can be expected when the former is much faster than the latter. Indeed,
digital controllers have been used to give results as good as, or better than, analogue
controllers in numerous situations, with the added feature that the control strategies can
be varied by simply reprogramming the computer instead of having to change the
hardware. In addition, analogue controllers are susceptible to ageing and drift, which in
turn causes degradation in performance. These advantages have attracted many users to
adopt digital technology in preference to conventional methods and made computer
control applicable to many areas. Some of the current interest areas are: auto-pilots for
aeroplanes/missiles, satellite altitude control, industrial and process control, robotics,
navigational systems and radar and building energy management and control systems.

With advances in VLSI (very large scale integration) and denser packing capabilities,
faster integrated circuits can be manufactured which result in quicker and more powerful
computers. Therefore, application to control areas which a few years ago were considered
to be impractical or impossible because of computer limitations, are now entering the
realms of possibility.

Another recent advance in computer systems is in the area of parallel processing,
where the computational task is shared out between several processors that can
communicate with each other in an efficient manner. Individual processors can solve
sub-problems, with the results brought together in some ordered way, to arrive at the
solution to the overall problem. Since many processors can be incorporated to execute
the computations, it is possible to solve large and complex problems quickly and efficiently.

One of the problems in a computer control system is the interfacing between computers
and continuous systems so that the analogue plant signals can first be read into the
computer, and then digital control signals can be applied to the system. Analogue
signals must be converted into digital form for analysis in the computer, and the digital
signals from the computer have to be converted back to analogue form for application
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to the plant under control. This kind of converter can introduce significant conversion
time delays into digital computer control system applications. These, together with
other sequential processing delays, mean that when continuous analogue signals are to
be converted into digital form, the conversions can only be performed at discrete instants,
separated by finite intervals.

In computer control applications impulsive signals are inappropriate for controlling
analogue systems, since these require an input signal to be present all the time. To
overcome this difficulty, hold devices are inserted at the digital-to-analogue interfaces.
The simplest device available is a zero-order-hold (ZOH), which holds the output constant
at the value fed to it at the last sampling instant; hence a piecewise constant signal is
generated. Higher order holds are also available, which use a number of previous sampling
instant values to generate the signal over the current sampling interval.

Mainly, in a digital control loop, the following procedure must take place:

• Measure system output and compare with the desired value to give an error.
• Use the error, via a control law, to compute an actuating signal.
• Apply this corrective input to the system.
• Wait for the next sampling instant.
• Repeat this algorithm.

The functions that can be incorporated in microcomputer software are summarised as
follows:

• Converter control, including firing pulse generation.
• Feedback control.
• Signal estimation for system control.
• Drive mode sequencing.
• Diagnostics.

The superiority of microcomputer control over conventional hardware-based control
can be recognised as evident when dealing with complex drive control systems. The
simplification of hardware saves control electronics cost and improves the system reliability.
Digital control has inherently improved noise immunity, which is particularly important
in drive systems because of large power switching transients in the converters. Additionally,
the software control algorithms can easily be altered or improved in the future without
changing the hardware. Another important feature is that the structure and parameters of
the control system can be altered in real time, making the control adaptive to the plant
characteristics. The complex computation and decision-taking capabilities of micro-
computers enables the application of the modern optimal and adaptive control theories
to optimise the drive system performance. In addition, powerful diagnoses can be written
in the software. Microcomputer technology is moving at such a fast rate that the use of
efficient high level language with large hardware integration and VLSI implementation
of the controller is easily possible.

Unlike dedicated hardware control, a microcomputer executes control in serial fashion,
i.e. multitasking operations are performed in a time multiplexed method. As a result, a
slow computation capability may pose serious problems in executing the fast control
loops. However, the problem can be solved by multi-microprocessor control, where
judicious partitioning of tasks can significantly enhance the execution speed. The different
stages necessary in microcomputer control development of a drive system are:
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• Develop control strategy.
• Make simplified system study and determine control parameters.
• Translate into digital control algorithm.
• Simulate drive system on hybrid/digital computer-iterate control.
• Develop hardware and software.
• Design and build breadboard test.

The foregoing outlines some basic aspects of microcomputer/microprocessor control.
Presently, many digital control systems are microprocessor-based, primarily because of
the availability of control integrated circuits (ICs), cheaper memories and tremendous
advancements in data handling capabilities. A big step forward in control is the use of
application specific integrated circuits (ASICs), which have successfully replaced
microprocessors due to their ease of design using modern computer-aided design (CAD)/
electronic design automation (EDA) techniques.



2.1 Electronic design automation (EDA)

Following the traditional design route, the engineer begins with the idea, then normally
proceeds to the paper circuit design stage. The design then continues through to the
prototype stage, using any of the many traditional construction methods. The prototype
design is then tested and verified against the specification. At this point if any conceptual
fault is found, a redesign is carried out and the process is repeated.

The use and simulation of mathematical models for electrical systems design has
been employed for some considerable time, but the functional models derived must then
be translated into hardware and it is at this stage that the technology-based design rules
and delays are taken into account. Electronic design automation (EDA) enables this
transition to take place with a higher degree of confidence than was previously possible.

EDA tools are well suited to providing low level, high speed hardware, to implement
the control functions in power electronic systems. Computer-aided design (CAD) software
enables the design and evaluation of these complex digital circuits within the PC/
workstation environment, without the requirement for physical hardware at this stage.
For the successful development of the specialised microelectronics hardware needed, a
knowledge of available technologies and EDA techniques for design, simulation, layout,
PCB production and verification is required. The design cycle can be considerably
reduced by removing three parts of the design cycle before the design is verified, by a
technique known as the modelling and simulation method. This allows a product to be
produced for the market in a much shorter time than using traditional methods. The
method is illustrated in the block diagram in Fig. 2.1.

The method allows the development of the design using the CAD system, whereby
verification is carried out by simulating the circuit design using software models. At this
point any design faults should be identified and rectified without going through the
costly step of prototype construction for verification. The modelling and simulation
method allows the design to be about 98 per cent certain of working correctly first time
[186].

The work of multidisciplinary teams is facilitated by the large variety of software
integrated into the EDA environment which improves the efficiency of the design process
by integrating the expertise of the specialists into an enabling environment. Further
development of the methodology leads to a concurrent engineering approach to the
design process. The basic concept of concurrent engineering is that all parts of the
design, production, manufacture, marketing, financing and managing of a product are

2

Modern control systems design
using CAD techniques
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carried out in a computer and workstation environment. This allows access to a common
database where any modification to a product is updated to all members of the design
and support team, but only key personnel are allowed to alter data [51].

The basic forces of change that affect product development are: technology, tools,
tasks, talent and time. These forces are at work in disturbing or stabilising a specific
company setting the product development environment. This environment includes people,
concepts and technologies necessary to design a product, manufacture it and market it.
According to Carter and Sullivan [52], change forces not only exist in parallel, but also
are fully integrated vertically and horizontally in the product development environment.

With the increasingly competitive nature of the electronics industry, the development
time for new products is rapidly decreasing. Engineers are constantly expected to develop
new products for the market within a short time. The introduction of electronic design
automation in the late 1970s and early 1980s has allowed the development time of
electronic designs to be shortened considerably. EDA is a design methodology in which
dedicated tools, primarily software products, are used to assist in the development of
integrated circuits, printed circuit boards (PCBs) and electronic systems. In the early
days, EDA tools were nothing more than a set of incoherent design tools that aided a
specific stage in the development cycle, providing what are called ‘islands of automation’.
Where the different tools need to share data, user-written data translators were sometimes
used. EDA tools have since evolved into an integration of design tool-sets that conform
to a standard data management protocol, thus eliminating the need for data translators.
Some of the advantages of EDA include [40]:

• Enabling more thorough verification of design using simulation tools. This allows the
design to be verified before being implemented into hardware, thus design faults can
be detected in the early stages of the design process.

• Exploring alternative designs using the synthesis and implementation tools. The
designer can create a few alternative designs before selecting the best design for the
implementation.

• Automating some of the design steps, thus allowing the designer to concentrate on
more important activities.

• Ease in design data management.
• Enabling the designer to operate at higher levels of abstraction, i.e. ‘top-down’ design

method.

Fig. 2.1 Modern modelling and simulation design methodology versus traditional approach

Idea
System
model

Verification
by

simulation

Circuit
design Layout

Fabrication

Test

Manufacture

Traditional

Modern



12 Neural and Fuzzy Logic Control of Drives and Power Systems

Using hardware description languages such as VHDL and Verilog HDL, top-down
design is realisable. The designs are first described at register transfer level (RTL) where
the design functions are addressed, with no reference to the hardware required for
implementation. RTL descriptions can then be automatically translated into gate level
using logic synthesis tools. This design methodology is similar to software programming,
where the programme is written in a high level language before being converted into
machine language.

The popularity of EDA tools has increased rapidly with the widespread use of application
specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) in the
1980s. In ASIC technology, the cost of correcting a design flaw late in the design
process can be very high. The need for ‘right-first-time’ designs led to demands for
reliable EDA tools. With increasing use of ASICs and FPGAs in power electronic
control systems, EDA techniques are increasingly being employed [60], [186], [187].
This has led to the development of a new design approach that relies more on verification
by simulation, allowing new products to be developed and produced for the market in
a shorter time.

2.2 Application specific integrated circuit
(ASIC) basics

For many years the designers of electronic circuits and systems have been totally dependent
upon the semiconductor manufacturers for the type of integrated circuit from which
their circuits and systems may be built. In areas where very large volumes are required,
such as calculators, televisions, radios and washing machines, the semiconductor
manufacturers have produced full custom designs. The high cost of this process has
prevented the exploitation of the size, speed, weight and reliability benefits of silicon
design for all but the mass production market or certain military products.

The introduction of computer-aided design (CAD) in the 1980s brought silicon design
costs within the bounds of possibility for an increased number of products. In most
cases, if the total production of a few thousand pieces is anticipated, then it is likely that
a semi-custom integrated circuit will prove viable. The uniqueness of a design in silicon
is also an important commercial consideration. It will take a competitor much longer to
copy the key features of a silicon chip than it would for him to produce a comparable
printed circuit board. Due to the availability of CAD systems, circuit and system designers
now have the ability to produce the design to be implemented in silicon and no longer
have to use SSI/MSI devices supplied by semiconductor manufacturers. A designer can
now consider what type of integration to use for the fabrication of his application
specific integrated circuit (ASIC) design.

Application specific integrated circuits (ASICs) is a generic term used to designate any
integrated circuit designed and built specifically for a particular application. The ASIC
concept has been introduced with the advances of VLSI technology which permits the
user to tailor his design during the development stages of an IC to suit his needs. The
advancement of the large-scale integration process has resulted in two major ASIC
technologies, CMOS and BiCMOS, that have attained feature sizes of 0.18 µm and
smaller. With the CMOS process, it is possible to manufacture ASIC devices with
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10 000 000 gates or higher (one gate is generally defined as a single NAND gate). On
the other hand, BiCMOS gate arrays (containing bipolar and CMOS devices) will offer
greater operating speed at the expense of a more complex process and lower densities.
The frequency of BiCMOS devices is relatively high (100 MHz), because of the drive
capacity of bipolar transistors. However, the density is lower. With 0.18 µm BiCMOS
technology, it is possible to obtain ICs having up to 5 000 000 gates.

Mixed-signal ASICs (containing both digital and analogue components on the same
chip) are recently offered by several chip suppliers providing more possibilities for
integration of complex systems. These chip level systems can implement combined
analogue/digital designs that formerly required board-level solutions. Analogue cells
include operational amplifiers, comparators, D/A and A/D converters, sample-and-hold,
voltage references, and RC active filters. Logic cells include gates, counters, registers,
microsequencer, PLA (programmable logic array), RAM and ROM. Interface cells include
8- and 16-bit parallel I/O ports as well as synchronous serial ports and UARTs (universal
asynchronous receiver–transmitters).

RISC and DSP cores are now offered as megacells by several chip suppliers permitting
the design of customised advanced processors using an ASIC design methodology.
Building blocks such as DSP cores, RISC cores, memory and logic modules can be
integrated on a single chip by the user using advanced CAD (computer-aided design)
tools. As an example, Texas Instruments Inc. offers DSP cores in the C1x, C2x, C3x and
C5x families as ASIC core cells. Each core is a library cell including a schematic
symbol, a timing simulation model for the simulation engine, chip layout files, and a set
of test patterns.

The design process of an ASIC consists of three main stages:

• Logic design and simulation.
• Placement, routing layout.
• Prototype production.

The end-user can enter the design process following the semi-standard, semi-custom
and full-custom paths, depending on the specific requirements of his application.

With semi-standard ASICs, cost is highly negotiable if predicted volume is sufficient
and trustworthy, and the IC manufacturer might retain some rights to resell the chip or
parts of its design to others.

In the semi-custom design path, the design engineer (end-user) establishes the
specifications, performs the logic design (schematic capture and design verification)
and simulation using CAD tools usually provided by the ASIC supplier. A CAD netlist
(a list of simulated network connections) and the performance specifications are then
submitted. The chip supplier performs the placement, routing, connectivity check and
mask layout merging precharacterised physical blocks into a mosaic with its own unique
customised metallisation and builds the prototype chip.

In the full-custom design path, in addition to the semi-custom design stages, the end-
user also goes through a placement, routing and connectivity check of the design. The
chip supplier takes responsibility only for mask layout and prototype production. The
design of semi-custom ASICs can be performed using gate arrays or standard cells
technologies. A gate array is a CMOS LSI chip consisting of p devices, n devices and
tunnels in a repetitive, ordered structure on either a silicon or a sapphire substrate. All
device nodes (gates, drains and sources) are accessible. Gate arrays are available for
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both single-layer and multilayer metallisation. To design an ASIC using a gate array, the
end-user defines the connections of the individual devices to achieve the desired functions.
At the fabrication stage, only metallisation layers are deposited on the silicon. Signal
routing over the gates makes the gates beneath unusable. In this approach, gate utilisation
factor is usually about 70–90 per cent. Macros such as RAM and ROM are very inefficient
for implementation. However, lower cost and quicker production times are expected for
this technology.

In the cell-based approach, no fixed positions for gates and routing channels are
predefined. The integrated circuit is designed using libraries of building blocks with
specific logic functions. The chip supplier generally provides extensive libraries of
well-characterised and verified standard cells, supercells and megacells. To design the
ASIC, the end-user combines the library cells into the configuration that performs the
functions required by his specific application. The fabrication process involves the
etching of the required gates as well as the deposition metallisation of layers. Standard-
cell technology offers a better utilisation factor for silicon. Dedicated macros for RAM
and ROM ensure reduced gates count and minimum silicon area. A longer fabrication
time is expected since more steps are required.

The design of ASICs is performed usually in CAD systems. The stages are: schematic
capture, simulation, logic optimisation and synthesis, placement and routing, layout
versus schematic design rule check, and functions compiler. The design of a high
performance mixed-signal IC is inherently more difficult than the design of a logic IC.
The variety of analogue and digital functions requires a cell-based approach. Thorough
simulation and layout verification is necessary to ensure the functionality of the prototype
ASIC. Redesign of large ASICs typically uses a high level design language (HDL =
hardware description language) to help designers to document designs and to simulate
large systems. The most common hardware description languages are Verilog and VHDL
(the latter conforms to IEEE Standard 1076).

Programmable logic devices (PLDs) are uncommitted arrays of AND and OR logic
gates that can be organised to perform dedicated functions by selectively making the
interconnections between the gates. Recent PLDs have additional elements (output
logic macro cell, clock, security fuse, tri-state output buffers and programmable output
feedback) that make them more adaptable for digital implementations. The most popular
PLDs are PALs (programmable array logics), PLAs (programmable logic arrays) and
EPROMs. Programming of PLDs can be done by blowing fuses (in PALs) or by EEPROM
or SRAM technologies which provide reprogrammability. The main advantages of PLDs
compared to FPGAs are the speed and ease of use without non-recurring engineering
cost. The size of PLDs is, on the other hand, smaller than that of FPGAs. Current PLDs
offer complexity equivalent to hundreds of thousands of gates and speed of the order of
hundreds of MHz.

2.3 Field programmable gate arrays (FPGAs)

Field programmable gate arrays (FPGAs) are a special class of ASICs which differ from
mask-programmed gate arrays in that their programming is done by end-users at their
site with no IC masking steps. An FPGA consists of an array of logic blocks that can be
programmed and connected to achieve different designs. Current commercial FPGAs
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utilise logic blocks that are based on one of the following: transistor pairs, basic small
gates (two-input NANDs and exclusive-ORs), multiplexers, look-up tables, and wide
fan-in AND–OR structures. Reprogramming of FPGAs is via electrically programmable
switches that are implemented by one of three main technologies: static RAM (SRAM),
antifuse and floating gate. Static RAM technology: the switch is a pass transistor that is
controlled by the state of a static RAM bit. A SRAM-based FPGA is programmed by
writing data in the static RAM. Antifuse technology: an antifuse is a two-terminal
device that irreversibly changes from a high resistance to a low resistance link when
electrically programmed by a high voltage. Floating-gate technology: the switch is a
floating-gate transistor that can be turned off by injecting a charge on the floating gate.
The charge can be removed by exposing the floating gate to ultraviolet (UV) light
(EPROM technology) or by using an electric voltage (EEPROM technology). The design
process of an FPGA consists of three main stages:

• Logic design and simulation.
• Placement, routing and connectivity check.
• Programming.

The process is the same as that used for a semi-custom ASIC gate array, except for the
last stage, and uses mostly the same software tools. Current FPGAs offer complexity
equivalent to a million gate conventional gate array and typical system clock speeds of
hundreds of MHz. The size is much smaller than mask-programmed gate arrays but
large enough to implement relatively complex functions on a single chip. The main
advantage of FPGAs over mask-programmed ASICs is the fast turnaround that can
significantly reduce design risk because a design error can be quickly and inexpensively
corrected by reprogramming the FPGA.

The Foundation Series is an EDA software by Xilinx Inc. for designing and implementing
programmable hardware such as field programmable gate arrays (FPGAs) and
programmable logic devices (PLDs). The main component of the software is the Foundation
Project Manager, an application that manages the EDA tools in the software and maintains
a unified environment for the user. It comprises five groups: Design Entry, Simulation,
Implementation, Verification and Programming. There are three Design Entries: HDL
Editor, FSM (Finite State Machine) Editor and Schematic Editor. They allow the project
design to be described either as an HDL program, a state machine description or as a
schematic design. The designs presented as examples in this book use all three methods.
After the Design Entry stage, the design can be synthesised, a process that converts the
design, whether it is an HDL program or a schematic, into a netlist format. The netlists
contain the structural description of the design and are used for functional simulation.
At this stage, it is not yet specific to any technology.

In order to download the design into hardware, the target technology has to be
specified. The netlist is compiled into a format that is compatible to the targeted device
in a process that is called implementation. This is followed by accurate timing simulation.
It is important to note that the targeted device has to be confirmed at the start of the
implementation procedure. In the applications presented in the second part of this book,
the Xilinx XC4010XL-PC84 FPGA device was used. Further information on each
implementation segment as well as on the Foundation Series in general can be found in
[14], [80]. For the present discussion, it is sufficient to point out that the final product
of this procedure is a bitstream file, which can be directly downloaded into the targeted
device via the serial or parallel interfaces of a PC.
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2.4 ASICs for power systems and drives

The development of a traditional microprocessor-based motion control system is a
complex task consisting of several stages usually completed by several engineers. It
involves the design of both hardware and software components and their integration
considering various factors such as system performance specifications, processor computing
capacities, hardware availability, software development and debugging tools, and system
cost. This development can follow the same guidelines as that adopted for any real-time
control system. However, the motion control designer has to pay particular attention to
the constraints imposed by the control configuration and strategy since the final design
can be greatly affected.

In motion control systems, ASIC technology permits the design engineer to tailor the
processor and the peripheral devices to obtain the desired specifications for his application.
Using ASIC methodology, a motion control engineer can design a control system on one
or several chips using building blocks such as DSP or RISC cores, memory, analogue
and logic modules. Optimised integration level and performance can thus be achieved.
The high integration level results in a reduced chips count that can lower significantly
the fabrication cost and improve the system reliability. A disadvantage of ASICs in
motion control systems is the lack of flexibility to modify or to adapt the design to
different types of motor drives, once the chip is built. To change the design, even in
small detail, it is necessary to go back to the initial design stages. The high development
and fabrication cost for an ASIC can thus only be justified in large volume production.
In small-volume production and in prototyping stages, FPGAs offer a realistic alternative
to full gate arrays design to implement specific motion control functions of high complexity
requiring up to a million gates.

Chip manufacturers are now offering a number of standard ASICs that perform
complex functions in drive control systems such as coordinates conversion (abc/dq
conversion), pulse width modulation, PID controllers, fuzzy controllers, neural networks,
etc. Such devices can be used with advantage in motion control designs allowing reduction
of processor computing load and increase of the sampling rate. In the following, some
examples of commercial ASICs designed for motion control are presented.

The Analogue Devices AD2SIO0/AD2S110 a.c. vector controller performs the Clark
and Park transformations, usually required for implementing field-oriented control of
a.c. motors. The Clark transform converts a three-phase parameter (abc coordinates)
into an equivalent two-phase parameter (α-β coordinates). The Park transform rotates
the resulting vector into another one, represented in a new rectangular set of coordinates,
normally linked to the rotor (α-β to d-q coordinates).

The Hewlett-Packard HCTL-1000 is a general-purpose digital motion control IC
which provides position and velocity control for d.c., d.c. brushless and stepper motors.
The HCTL-1000 executes any one of four control algorithms selected by the user:
position control, proportional velocity control, trapezoidal profile control for point-to-
point moves and integral velocity control.

The Signetics HEF4752V a.c. motor control circuit is an ASIC designed for the
control of three-phase pulse width modulated (PWM) inverters in a.c. motor speed
control systems. A pure digital waveform generation is used for synthesising three 120°
out of phase signals, the average voltage of which varies sinusoidally with time in the
frequency range 0 to 200 Hz.
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The American Neuralogix NLX230 fuzzy microcontroller is a fully configurable
fuzzy logic engine containing a 1-of-8 input selector, 16 fuzzifiers, a minimum comparator,
a maximum comparator and a rule memory. Up to 64 rules can be stored in the on-chip,
24-bit-wide rule memory. The NLX230 can perform 30 million rules per second.

The Intel 80170X ETANN (Electrically Trainable Analogue Neural Network) simulates
the data processing functions of 64 neurones, each of which is influenced by up to 128
weighted synapse inputs. The chip has 64 analogue inputs and outputs. Its control
functions for setting and reading synapse weights are digital. The 80170X is capable of
2 billion multiply–accumulate operations (connections) per second.

The few dedicated circuit examples given above, together with the general modern
trend towards ‘systems-on-a-chip’ integration in electronics, illustrate the need for further
complex ASIC/FPGA designs for drives and power systems.



3.1 Electric motors

Electric motors are major users of electricity in industrial plants and commercial premises.
Motive power accounts for almost half of the total electrical energy used in the UK and
nearly two-thirds of industrial electricity use. It is estimated that over ten million motors,
with a total capacity of 70 GW, are installed in UK industry alone [11]. Although many
motor types are currently in use (synchronous motors, PM synchronous motors, d.c.
motors, d.c.-brushless motors, switched reluctance motors, stepping motors), most of
the industrial drives are powered by three-phase induction motors. The majority of them
are rated up to 300 kW and can be classified as illustrated by Fig. 3.1.

3

Electric motors and power
systems

Fig. 3.1 Energy consumption by induction motors up to 300 kW in industry

The large industrial use of induction motors has been stimulated over the years by
their low prices and reliability. The low price of buying such a motor can, however, be
deceptive. A modest-sized 11 kW induction motor costs as little as £300 to buy, but it
could accumulate running costs of over £30 000 in ten years. The electricity bill for a
motor for just a month can be more than its purchase price [11]. Therefore, even small
efficiency improvements may produce impressive cost savings.

The most efficient and flexible solutions to the energy saving problem are based on
variable speed drives (VSDs). Using VSDs the motor speed can be readily adapted to
the requirements of particular applications. For instance, VSDs replace the old solution
of using adjustable nozzles in applications involving fans or pumps. An adjustable
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nozzle can ensure a variable flow of fluid, but at the cost of decreasing the motor
efficiency. A VSD is capable of performing the same task while maintaining the motor
efficiency at high levels. In addition to the huge potential for saving energy, the use of
induction-motor-based VSDs has other important benefits including:

• improved process control and hence enhanced productivity;
• soft starting, soft stopping and regenerative braking;
• unity power factor;
• wide range of speed, torque and power;
• good dynamic response (comparable with d.c. drives).

Previously, d.c. motors were extensively used in complex speed and position control
applications, such as industrial robots and numerically controlled machinery, because
their flux and torque can be easily controlled. However, d.c. motors have the disadvantage
of using a commutator, which increases the motor size, the maintenance cost and reduces
the motor life. Advances in digital technology and power electronics have made the
induction motor control a cost-effective solution. Therefore, d.c. motors are currently
being replaced by induction motors in many industrial plants. A large proportion of the
induction-motor VSD cost is still due to the price of the sensors and digital controllers
that are needed. However, the prices of the digital electronic circuits have decreased
sharply during the last few years. This makes the sensor cost an important consideration
in the total price of the VSD.

The speed and/or position sensors ensure high operation accuracy for the closed-loop
systems. In some practical situations, however, there are strong reasons to eliminate the
speed sensor due to both economical and technical reasons. For example, the pumps
used in oilrigs to pump out the oil have to work under the surface of the sea, sometimes
at depths of 50 metres. Obtaining the speed measurement data up to the surface means
extra cables, which is extremely expensive, therefore reducing the number of sensors
and measurement cables provides a major cost reduction [13]. Recently, it has been
shown that speed can be calculated from the current and voltage across the a.c. motor
thereby eliminating the need for speed sensors. There have been many alternative proposals
addressing the problem of speed sensorless induction motor control. These methods are
mathematically intensive as they imply the on-line calculation of the space-vector motor
model. Therefore, they are implemented using fast state-of-the-art digital circuits (ASICs
and DSPs). An example of modern sensorless neural control of an induction motor is
presented in the second part of this book.

3.2 Power systems

The discovery of electromagnetism by Michael Faraday in 1831 led to the rapid
development of electromagnet machines for converting mechanical energy into electricity.
Within a few months of Faraday’s announcement, an Italian scientist, Signor Salvator
dal Negro, invented an electric generator in which a permanent magnet was pushed and
pulled to provide the necessary motion. The first of the rotating electromagnet generators
as we know today was invented by Hypolite Pixii in Paris. It was made public at a
meeting of Académie des Science in 1832. Later that year, Pixii added a commutator to
his machine to obtain direct current (d.c.) from the alternating current (a.c.) produced.
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Early electric generators, or dynamos as they are known, produced d.c. electric current
on a small scale. They were used mainly for supplying electroplating baths and later for
providing power to arc lamps in lighthouses.

The invention of light bulbs and steam-engine-driven generators in America by Thomas
A. Edison led to the commercial expansion of electric generation for lighting purposes
towards the end of the nineteenth century. In the early days direct current was the
preference, but when long distance transmission become necessary alternating current
was found to be more suitable. Power transmission at high voltages is more economical
and the voltage level of alternating current can be easily changed using transformers. By
the second half of the twentieth century, alternating current became almost universal,
leading to the widespread use of a.c. generators. Among the various types of a.c. generators,
the polyphase synchronous generator is the largest single-unit electrical machine in
production today, with power ratings of up to several hundred MVAs being common.
They are widely used in large power stations as well as in industrial, marine,
telecommunication and other standby or continuous power applications. Recent work in
synchronous generators is mainly aimed at improving the efficiency of the machine,
quality of the output power and the stability of the system. Synchronous generators are
responsible for the bulk of the electrical power generated in the world. They are mainly
used in power stations and are predominantly driven either by steam or hydraulic turbines.
These generators are usually connected to an infinite bus where the terminal voltages are
held at a constant value irrespective of loading due to the capacity (‘momentum’) of all
the other generators also connected to it. Another common application of synchronous
generators is their use in stand-alone or isolated power generation systems. The prime
mover in such applications is usually a diesel engine.

Although a massive proportion of synchronous generators are electromagnetic, the
use of permanent magnet synchronous machines as stand-alone generators has been
studied for more than half a century. Permanent magnet synchronous generators (PMSGs)
are more difficult to regulate and it is only with the recent developments in power
electronics that they are seriously being considered for various applications [39], [191],
[17]. One of the main advantages of the control system proposed in the examples section
of this book is its ability to regulate stand-alone PMSGs as well as electromagnet
generators. This functionality is duly demonstrated by the experiments presented, in
which a PMSG is used. It has to be mentioned that synchronous machines are by no
means the only type of electrical machine used for stand-alone power generation. Studies
have been conducted into the use of induction generators [76], [77], [78], [54], reluctance
generators [18] and other types of machines that might prove to be more suitable in
certain applications.

Since the invention of electrical machines in the nineteenth century, there has been a
need to convert electrical power for various applications such as electrical machine
drives, voltage regulation, welding, heating, etc. Initially, rotating machines were
predominantly used to control and convert electrical power. It was the introduction of
the glass bulb mercury arc rectifier (1900) which led to the beginning of the power
electronics era. Power electronics is the branch of engineering concerned with the
application of electronics in the control and conversion of electrical power. Early power
electronic devices such as thyratrons and ignitrons were crude and unreliable. The
introduction of selenium rectifiers during World War II was particularly welcome due to
their reliability.
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In 1948, the invention of the p-n junction transistor by Bardeen, Brattian and Shockley
from Bell Laboratories was seen as a revolutionary advancement in the field of electronics.
This laid the foundation for the development of the p-n-p-n transistor switch by J.L.
Moll et al. (1956), a device which later became known as the thyristor, or silicon
controlled rectifier (SCR). By 1957, the first commercial thyristor was made available
by General Electric Company. This marked the beginning of the modern power electronics
era. This three-terminal device had a continuous current rating of 25 A and a blocking
voltage of up to 300 V. Since then, the thyristor has become one of the most popular
devices in power electronics. Circuit design engineers have constantly worked on improving
the operating performance of the thyristor, resulting in the creation of a range of different
types of thyristors optimised for different applications. They can generally be grouped
into six categories, namely [16]:

• Phase control thyristor.
• Inverter thyristor.
• Asymmetrical thyristor.
• Reverse conducting thyristor (RCT).
• Gate-assisted turn-off thyristor (GATT).
• Light-triggered thyristor.

Another class of power electronic device subsequently developed were the controllable
power switches. Thyristors, while being able to be latched on by a control signal, can
only be turned off by the power circuit, which is a great drawback. However, controllable
switches can be turned on as well as turned off by the control signals. Although controllable
switches like the transistor have been around since 1948, designing them to possess high
power handling capabilities was not achieved until much later. Compared to thyristors,
controllable power switches offer greater flexibility in power applications, including the
possibility of controlling d.c. circuits without complicated commutation circuitry. Thus,
they are particularly attractive in inverter applications. Examples of devices in this
category are gate turn-off thyristors (GTOs), power transistors, power MOSFETs, integrated
gate-commutated thyristors (IGCTs) and insulated gate bipolar transistors (IGBTs). The
GTO is a thyristor-like latching device but can be turned off by a negative gate current.
Power transistors and power MOSFETs were developed from small-signal designs to
later versions which are capable of handling higher voltage applications in the order of
hundreds of volts. In the early 1980s, the IGBT was developed [26], which combines the
low on-state conduction losses of the bipolar junction transistor (BJT) and the high
switching frequency of the MOSFET. The IGBT has since gained widespread popularity
in power electronic applications. Commercial IGBTs are currently available up to
3.3 kV. These components can be used in a range of power applications. The development
of such power devices is expected to grow as the use of new materials such as
monocrystalline silicon carbide (SiC) increases their voltage ratings and reduces thermal
resistance [198], [196].

Generally, a power electronic system comprises two separate sets of circuits: the
logic level control circuitry and the high power circuits. Recent developments in electronics
made it possible to combine these two components into a single integrated circuit, the
power integrated circuit (PIC). A PIC is defined by Thomas [217] as an integrated
circuit which combines the logic level control and/or protection circuitry with power
handling capability of supplying 1 A and withstanding at least 100 V. With the current
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trend towards integrated solutions, this technology is receiving a substantial amount of
attention. Integrated power electronic devices are seen as the solution for smaller and
lower cost power electronic systems in the future.

3.3 Pulse width modulation

Pulse width modulation (PWM) is currently the most widely used technique of inverter
control and has received considerable attention in the last two decades. The PWM
switching scheme essentially involves the strategic variation of the ON and OFF timing
periods of each pair of switches in the inverter. This produces a waveform that contains
a series of pulses which have the same voltage level but different widths, as illustrated
in Fig. 3.2.

Fig. 3.2 Pulse width modulation
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The fundamental component of the PWM switching pattern VPWM in Fig. 3.2 is a sine
wave, which is the required output voltage. To obtain the switching pattern, a sinusoidal
signal Vcontrol is compared with a high frequency triangular carrier wave Vtri. This form
of PWM control is sometimes called sinusoidal-PWM in order to explicitly differentiate
it from other forms of PWM control schemes. Table 3.1 illustrates how Vcontrol and Vtri
can be used to determine the switching pattern in a single phase inverter. The two
devices on the same branch (T1 and T2; T3 and T4) must not be ON at the same time,
otherwise a short circuit will occur.

Table 3.1 PWM control

T1 T2 T3 T4

Vcontrol ≥ Vtri ON OFF OFF ON
Vcontrol < Vtri OFF ON ON OFF
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In sinusoidal-PWM control schemes, there are two characteristic ratios which are
important factors in the design of the controllers. The amplitude modulation ratio ma is
defined as the ratio of the peak amplitude of the control signal to the peak amplitude of
the carrier signal,

m
V
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a = control

tri

ˆ

ˆ

The frequency modulation ratio mf is defined as the ratio of the carrier frequency to the
ratio of the control signal frequency.
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f
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The standard sinusoidal-PWM technique suffers from the major drawback that the
a.c. term gain (Gac), which is the ratio of the amplitude of the output voltage to the
amplitude of the PWM waveform, is limited to a maximum value of 0.866 (Gac ≤ 0.866).
Several improved PWM techniques have been introduced to tackle this problem but they
each have their own disadvantages. In general, improved techniques have higher a.c.
gains but suffer from more harmonic distortions and require more complicated hardware
for implementation. Further information of the improved techniques can be found in
[44]. They include techniques such as sine + 3rd harmonic PWM, harmonic injection
and programmed harmonic elimination. Other PWM techniques include random PWM
schemes and sliding mode control. Random PWM schemes [124], [106] are based on
the use of random number generation. They offer a more evenly spread harmonic spectrum
and are found to have reduced radio interference, noise and vibration effects. Sliding
mode control, on the other hand, is described by Jung and Tzou [137] to be especially
suitable for closed-loop control of power converting systems under load variations.

However, improved PWM techniques require a more complex hardware implementation.
For the present work, the standard PWM technique is found to be suitable for the
application while being easier to implement in hardware when compared to the other
techniques.

There are various design solutions to implement a PWM controller. The following
section describes a traditional circuit implementation method: a C++ program is used to
generate the switching pattern. A fairly straightforward method is to use an erasable
programmable read only memory (EPROM) to store the PWM pattern. During the
operation, this information is sequentially retrieved and fed into a driver circuit board,
which will switch the IGBTs accordingly. Figure 3.3 shows a schematic of the circuit
design. It comprises a voltage controlled oscillator NE566 (IC1), a counter (IC2), an
EPROM (IC3) and some AND gates (IC4) to act as output buffers.

The information for producing one cycle of the power waveform, i.e. one period of
the sinusoidal reference signal, is broken down into 4096 slices and stored in the EPROM
memory locations. Each momory location corresponds to an address ranging from 0 to
4095 and each bit of information in a memory location controls one power switch in the
inverter. For a single phase inverter which has four power switches, 4096 × 4 bits (16 kb)
of memory are required while a three-phase inverter with six switches requires 4096 ×
6 bits (24 kb) of memory. IC2 is a CMOS4040 12-bit counter, designed to count from
0 to 4095 in a repetitive cycle. This is used as the address input to retrieve information
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Fig. 3.3 Circuit diagram of the EPROM-based PWM generator
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from the EPROM. To obtain an output frequency of 50 Hz, the counter (IC2) has to
complete 50 cycles in one second. Therefore, the sampling frequency must be:

fs = 50 × 4096 = 204.8 kHz

The advantage of using a voltage controlled oscillator instead of a fixed frequency
oscillator is that a voltage signal can be used to control the oscillator frequency and
hence the sampling frequency of the inverter.

This makes it possible to control the inverter frequency with a closed-loop control
circuit. Due to immediate availability during the implementation stage, a 64 kb EPROM
is used in the circuit although 16 kb (212 × 4) of information is sufficient for single-
phase operation (24 kb for three phase). The period of the triangular carrier wave is
chosen to contain ten sampling units. Each sampling unit corresponds to one clock cycle
hence the actual sampling time will be the inverse of the clock frequency.

In the C program, a comparison between the reference power waveform and the
carrier waveform is made at every sampling point. The output is 1 if the reference power
value is larger than the carrier value and 0 if vice versa. The necessary switching signal
is generated from this comparison as shown in Fig. 3.4. However, as a result of introducing
discrete sampling points, a certain amount of error is inevitable. The errors are labelled
as ±εn in the diagram. The maximum value for each error is just under the length of one
sampling unit which, in this case, is 10 per cent of the period of the switching signal
(because one cycle of the switching signal consists of ten sampling units). The effects
of these errors can be reduced by increasing the number of sampling points in each cycle
of the switching signal. This can be done either by maintaining the frequency modulation
ratio mf and increasing the total number of sampling points in the power cycle or by
maintaining the number of sampling points in one power cycle and reducing mf.

Fig. 3.4 PWM waveform generation

Carrier waveform

Power waveform

5 10 n

+ε1

– ε1

PWM switching
waveform

5 10 n

1

The frequency of the triangular carrier waveform, also known as the switching frequency
is given by:

ftri = 1/(NTs) Hz

where Ts is the sampling period which is determined by the desired power frequency and
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N is the number of sampling points in one cycle of the carrier signal. For a 50 Hz power
frequency, the sampling frequency Ts is:

Ts = 1
50

  1
4096

 = 4.88 s⋅ µ

Therefore, the switching frequency is

f tri –6= 1
10  4.88  10

 Hz = 20.48 kHz
× ×

The frequency modulation factor is given by:

m
f
f

T
Tf

s

s
=  = 

(1/4096 )
(1/10 )

 = 409.6
tri

1

where:
ftri is the frequency of the triangular carrier waveform (switching frequency)
f1 is the frequency of the fundamental harmonic (sinusoidal power frequency)

A three-phase PWM waveform generator was also constructed by simply changing the
contents of the EPROM with a new C program which is written to generate the three-
phase switching data. In the program, the triangular carrier waveform is compared with
three different sinusoidal power waveforms, each phase shifted from one another by
120°. The result of each comparison determines the switching signal of the IGBTs in
each branch of the inverter. Instead of four outputs, the three-phase PWM controller has
six outputs, as there are six IGBTs in a three-phase inverter. Therefore, two additional
data outputs from the EPROM are used. The control circuit was successfully implemented
and used in the experiments of the second case study presented in this book.

3.4 The space vector in electrical systems

The space vector concept originated in the study of Y-connected induction motors but it
can be extended to describe all three-phase electric systems regardless of their exact
nature: electrical generators, electrical motors, transformers, etc. The basic principle is
to transform the scalar electromagnetic quantities describing the system (currents, voltages
and magnetic fluxes) into two-dimensional vectors named space vectors. One space
vector replaces a set of three scalar quantities of the same type, thereby generating a
more compact notation for the mathematical equations. Therefore, space vectors are
largely used to analyse the operation of three-phase electrical machines [159], [183],
[227], [229].

If ‘A’ is an electromagnetic quantity then Aa, Ab and Ac are the three values corresponding
to the three system phases. They are initially associated with two-dimensional vectors
situated on three directions 120° apart in a plane:   

r r
A Aa b, , and   

r
Ac  as illustrated in Fig.

3.5. Adding the three vectors together, a single two-dimensional vector is obtained
according to equation (3.1).   

r
A  is the space vector associated with scalar quantities Aa,

Ab and Ac. The vector components on the real axis (axis ‘d’) and on the imaginary axis
(axis ‘q’) are given in (3.2).

   
r r r r
A A A Aa b c = + + (3.1)
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In practical calculations, the space vectors are represented either by 2 × 1 matrices or
by complex quantities. Using matrix notation, equation (3.2) becomes (3.3) while (3.4)
describes the complex number approach to space vector calculation (3.1). Two-dimensional
vectors like the one in (3.1) are distinguished from the equivalent complex numbers by
means of notation. Underlined symbols stand for complex values while vectors are
represented by symbols placed under an arrow. Thus, A is a complex number while   

r
A

is a vector.
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The transformation of the set of three scalar variables into a space vector is equivalent
to a transformation from a three-phase system into a two-phase system. The inverse
transformation can be calculated based on the property that the algebraic sum of the
three scalar values is always null. This property is shared by all electromagnetic quantities
related to individual phases (currents, voltages and magnetic fluxes) if the power supply
generates symmetric voltages and the load is symmetric and Y-connected.

Aa + Ab + Ac = 0 (3.5)

Combining (3.5) with equation (3.2), the system (3.6) is generated from which (3.7) is

Fig. 3.5 The relation between phase quantities and the corresponding space vector
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derived. The system (3.7) describes the inverse transformation of a space vector into the
corresponding set of three scalar phase quantities.
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3.5 Induction motor control

3.5.1 Space vector model of three-phase induction motor

The mathematical models of the electrical machines are classified as lumped-parameter
circuit models and distributed-parameter models. The latter are more complex but more
accurate than the former. The distributed-parameter models are used for very precise
calculations necessary for optimal machine design. They allow an exact calculation of
the electromagnetic field and heat distribution inside the machine. The lumped-parameter
models can be obtained as a simplification of the distributed-parameter models. They
are used for control system design where only global quantities like currents, torque and
speed are important. Their internal distribution inside the machine is not relevant when
designing controllers to govern the evolution of speed, torque and power consumption
according to the particular application requirements.

Furthermore, the lumped-parameter circuit model is simpler and therefore more
convenient to use in the study of electric drives. The space vector model of the induction
motor is the lumped-parameter model with the largest use in the study and design of
electrical drive applications. It is common to consider as a first approximation that the
rotor windings and the stator windings have a sinusoidal distribution inside the motor
and no magnetic saturation is present [43], [159]. Therefore, the magnetomotive force
(MMF) space harmonics and slot harmonics are neglected. Although saturation is not
taken into account, the model is considered to yield acceptable results for the study of
common electric drive applications [159], [227].

The induction motor space vector model is derived from the basic electrical equations
describing each of the stator windings and each of the rotor windings. The stator windings
equations are given in (3.8) where uas, ubs and ucs are the phase voltages, ias, ibs and ics
are the phase currents, while Ψas, Ψbs and Ψcs are the phase magnetic fluxes.
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The associated space vectors (expressed as complex numbers) are obtained by
multiplying the second equation in (3.8) with ε and the third with ε2, after which all the
three equations are added together. The conversion of the three scalar equations into one
space vector equation is illustrated by (3.9) and (3.10).
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Different reference frames (still or rotating) can be used to calculate the coordinates
of the electromagnetic space vectors [43]. Equations (3.10) are written in the stator
reference frame.
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Fig. 3.6 The fixed stator reference frame and the general mobile θ reference frame

θ



30 Neural and Fuzzy Logic Control of Drives and Power Systems

Any rotating reference frame is defined by the electrical angle function θ(t) that
indicates the relative position to the still reference frame. Alternatively, it can be defined
by the electrical rotation speed ωe(t) and the initial electrical angle θ(0). For a general
rotating frame the equations (3.10) are transformed into (3.11). The fourth equation in
(3.11) can be rewritten as (3.12). Equation (3.13) is eventually obtained by dividing
(3.12) with e jθ.
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A similar complex equation describes the rotor circuit with the difference that the
reference frame rotation speed relative to the rotor is ωe – ωer instead of ωe(ωer is the
electrical rotor angular speed). Moreover, the rotor voltage is always zero for squirrel
cage induction motors.
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ω ω Ψ= + 
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d
  (  –  )   = 0+ ⋅ (3.14)

Equations (3.15) describe the relation between the electrical stator angular frequency
ωes and the stator current frequency fs on the one hand, and the relationship between the
rotor angular speed ωer and the rotor mechanical speed ωr on the other hand. The
variable ‘p’ is the number of pairs of stator poles.
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(3.15)

The individual phase fluxes that are used to calculate the magnetic flux vectors are each
composed of six components. The flux components are generated by the electromagnetic
interaction between the three rotor windings and the three stator windings.
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In equation (3.16) each flux component is identified by four indices: the first two
indicate the winding where the magnetic flux is measured while the last two indicate the
winding that generates it. For instance, Ψsarb is the flux generated into stator winding ‘a’
by rotor winding ‘b’. The flux components related to stator phase ‘a’ are described by
(3.17). The names and the significance of the symbols are as follows:

• lmsr – the mutual inductance between stator and rotor. It is proportional to the flux
created by one rotor phase into one stator phase.

• mσs – the stator mutual leakage inductance between two stator phases. It is proportional
to the flux produced by one stator phase into another stator phase without influencing
the rotor. It therefore models the magnetic field lines that intersect two stator windings
without intersecting the rotor.

• lms – the mutual inductance between stator phases. It is proportional to the flux
created by one stator phase into another stator phase through the rotor. It models the
magnetic field lines that are created by one stator phase but intersects both the rotor
and the other stator winding.

• lσs – the stator phase leakage inductance. It is proportional to the stator phase leakage
magnetic flux. The corresponding magnetic field lines do not intersect any winding
other than the stator winding which produces them.

• α – the angle between the stator d-axis and the rotor d-axis.
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The magnetic coupling between different windings is influenced by their relative position.
The coupling is maximal when the angle between the two windings is zero and it is null
at 90°. This geometric factor can be expressed by simple cosine functions due to the
assumption that the magnetic field has a sinusoidal distribution. Adding the six components
from (3.17) yields:
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3
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(3.18)

Equation (3.18) is obtained based on the property that the sum of the three phase
currents is zero. Similar results are obtained for stator phases ‘b’ and ‘c’.
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Eventually the stator flux space vector is calculated multiplying equations (3.18) and
(3.19) with l, ε and ε2 and adding them together. The flux has two components: one
depends on the stator currents and the other depends on the rotor currents.
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The expression describing the flux component Ψsr can be further transformed using the
mathematical properties (3.21). The results are presented in (3.22), (3.23) and (3.24).
Equation (3.24) becomes (3.25) in a general reference frame given by angle θ.
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The rotor flux expression is similar to the stator flux expression but each stator inductance
is replaced by the corresponding rotor inductance. Thus, inducation motor equations,
formulated for a reference frame defined by the angle θ(t) and the rotation speed ω(t),
are:
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The magnetic flux expressions in (3.26) are complicated because seven different
inductances are involved. The mathematical technique of referring the rotor quantities
to the stator is usually applied to the equations given in (3.26) in order to simplify the
flux equations. The basic principle of referring the rotor quantities to the stator is to
multiply rotor quantities with constant values in such a manner that the power transfer
between stator and rotor is not altered. Thus, if the rotor current is multiplied by constant
k then the rotor voltage and the rotor flux are multiplied by 1/k. On the other hand, the
rotor resistance and the rotor inductance are multiplied by 1/k2. The constant k that
generates the simplest transformation of system (3.26) is given by (3.27) while the
corresponding referred rotor quantities are (3.28). The equation linking all the referred
quantities is (3.29).
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The referred rotor flux can be expressed as a function of the stator current and the
referred rotor current vector (3.30).
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The inductances lms, lmr and lmsr are always related by equation (3.31). This relationship
allows the rewriting of equation (3.30) as (3.32) and (3.33).

lms · lmr = lmsr
2 (3.31)
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The significance of the symbols in the previous equations is:

• ′L
l
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r rσ σ σ=  ( –  )

2

2
 – the total referred rotor leakage inductance.

• L lm ms= 3
2   – the resulting stator–rotor mutual inductance.

• ′ ′L L Lr r m= + σ  – the total referred rotor inductance.

Substituting the first equation (3.28) in (3.25), the stator flux can be written as:
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The significance of the symbols is:

• Lσs = lσs – mσs – the total stator leakage inductance.
• Ls = Lσs + Lm – the total stator inductance.

Thus, (3.36) is the compact format of the induction motor equations initially presented
in (3.26). This system of equations expresses the space vector model of the induction
motor [159]. This model will be used in the neural induction motor control example
presented in the second section of the book.
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Note: Usually, to simplify the notation, the apostrophe symbols are not included in the
equations. Yet, the rotor quantities are implicitly referred to the stator. No apostrophe
symbol is used in the rest of this book but they are implied for all rotor equations or
parameters.

3.5.2 Induction motor control strategies

During the first one hundred years after its invention, the induction motor was known as
a constant speed electrical machine. The advent of electrical power converters in the
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1960s made possible the use of the induction motor as a variable speed machine. The
recent development of the digital technology created the possibility of implementing
complex control algorithms yielding high dynamic performance [229].

Correct control over the motor torque is a prerequisite of all the speed control strategies.
The torque equation can be derived from power-based considerations and can be expressed
as a function of the current and voltage space vectors. The total power consumed by the
motor has three components: the power dissipated by the winding resistances PR, the
power stored in the internal magnetic fields Pµ and the mechanical power PM. The motor
torque is proportional to the mechanical power and inversely proportional to the rotor
speed (3.37). The total motor power is the power consumed by all six stator and rotor
windings so it can be calculated as in equation (3.38). Elementary algebraic calculations
show that the rotor power and the stator power can be calculated as indicated by (3.39).
The calculations can be performed in any reference frame defined by the time function
θ(t). Now as:
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therefore:

P = Ps + Pr = usaisa + usbisb + uscisc + uraira + urbisb + urcisc (3.38)

where:
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The equations (3.40) are obtained by substituting general equations (3.36) into (3.39).
Thus, the three power components are calculated according to (3.41).
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The imaginary number ‘j’ in the expression of the mechanical power component PM can
be eliminated using the general algebraic property (3.42).

Re{j · z} = – Im{z} (3.42)

The two components of the imaginary part in (3.42) can be rewritten as in (3.43), so that
the mechanical power equation becomes (3.44).
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Based on the mathematical property (3.45) equation (3.44) is further transformed into
(3.46).

Im {x · y*} + Im { y  · x*} = 0 (3.45)
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Therefore, the motor torque may be expressed by (3.47). It is seen that the motor torque
depends only on the rotor current vector and on the stator current vector.
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Alternatively, the torque can be expressed as equivalent functions of the stator magnetic
flux and/or the rotor magnetic flux as shown in (3.48), where δ is the angle between the
stator flux and the rotor flux.
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Relations (3.47) and (3.48) directly or indirectly underlie all induction motor control
strategies. They can be classified as scalar control and vector control strategies (Fig.
3.7). The scalar control operates utilising simplified equations derived from the general
space vector model (3.36). This approach involves only the space vector amplitudes and
their corresponding frequencies and the simplified equations are valid only in steady-
state operation. Consequently, scalar control is simple but generates poor response
during transient operation [227]. In contrast, vector control operates directly with the
space vector model of the motor and implements the equations given in (3.48). Therefore,
it offers good results in both steady-state operation and transient operation. The group
of vector control algorithms includes the direct torque control (DTC) method and the
class of field-oriented control strategies. The theory of field-oriented control was developed
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by researchers at Siemens in 1968–1969. Since this time, researchers all over the world
have implemented increasingly efficient practical systems based on this theory [229].
The actual motor speed is the most important information for any speed control algorithm.
As illustrated in Fig. 3.7, there are two possible approaches to obtaining this measure:
either to use a speed sensor or to calculate the speed based on the electrical motor
quantities.

Fig. 3.7 Classification of the induction control strategies
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Scalar control Vector control

With speed
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vector control Direct torque
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Rotor-oriented
vector control

Airgap flux-
oriented vector
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Direct Indirect Direct Indirect Direct Indirect

Natural field
orientation

These two approaches are applicable to scalar control methods as well as to vector
control methods but the use of vector control ensures better dynamic response. The
interest in speed sensorless control emerged from practical applications where high
control quality is required but the speed sensor is either difficult to use due to technical
reasons, or too expensive. The speed sensorless control of the induction motor is currently
one of the most intensively researched fields in electrical drives [228].

3.5.3 Scalar control

Scalar control uses the stator voltage amplitude Us = 2/3 · | us | and the stator frequency
fs as input quantities and works well in steady-state and slow transient operation. This
strategy varies the stator voltage and the stator frequency according to a function Us(fs)
so that the maximum torque available is large (and almost constant) at any stator angular
frequency ωes.

In steady-state operation, the rotor flux has constant amplitude. Therefore, the rotor
equation in rotor coordinates is:
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Under these conditions, the rotor current depends on the stator current space vector and
on the slip angular frequency (the difference ωes – ωer) as indicated in (3.50).
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The initial motor torque expression (3.47) can be modified by substituting (3.50) in
(3.47) which yields equation (3.51). Therefore, the motor torque is proportional to the
stator current module squared.
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It is seen that the stator current depends on the stator voltage as indicated by (3.52),
(3.53), (3.54), while the dependency between the torque and the stator voltage is obtained
by combining equations (3.51) and (3.54) to give relationship (3.55).
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Figure 3.8 presents the torque–speed characteristic calculated according to (3.55) for
a three-phase induction motor with the parameters Rs = 0.371 Ω; Rr = 0.415 Ω; Lsσ =
2.72 mH; Lrσ = 3.3 mH; Lm = 84.33 mH; p = 1; P = 11.1 kW. The motor is supplied by
a three-phase 240 V/50 Hz supply. As the figure shows, the motor torque is zero at
synchronous speed and has its maximum at a relatively high angular speed ωM as
compared to the rated stator angular frequency (314 rad/s). The motor normally operates
at speeds between the synchronous angular speed and ωM. At high stator angular frequency,
around the rated value, the stator resistance is negligible, thus, | |i s

r  in (3.54) depends
only on the slip angular frequency (ωslp = ωes – ωer) and on the voltage angular frequency
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ratio (Us /ωs). If this ratio is kept constant then the stator current amplitude and the
motor torque depend solely on the slip angular frequency. Therefore, the maximum
motor torque TM is independent of the stator angular frequency ωes. At low frequencies,
however, the stator resistance has an important influence on the stator current and leads
to a diminished maximum torque, with negative effects on the motor operation. The
effect of the stator resistance on the motor torque can be counteracted by raising the
stator voltage to compensate for the stator resistance. The function Us(ωs) that maintains
TM constant at all frequencies can be derived from (3.55). The solution is a non-linear
expression, difficult to implement into hardware. A linear approximation of this function
is usually adopted in practical situations. The linear approximation Us(ωs) is defined by
two points corresponding to the zero stator frequency and to the rated stator frequency:

• At zero stator frequency, the stator voltage has to generate a current equal to the
stator current at rated stator angular frequency (314 rad/s) and maximum torque.

• At the rated stator frequency, the voltage attains its rated value.

The stator voltage amplitude is therefore defined by (3.56) where ‘p’ is the number
of stator pole pairs. This approximate solution does not provide a perfectly constant
Tmax but restricts its variation within a narrow interval.
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Speeds over the rated value can be obtained by increasing the stator frequency over
the 50 Hz limit but in this case the voltage is maintained constant at its maximum value
UsMAX. As a result, the maximum available torque decreases (it is inversely proportional
to the frequency squared) and very high speeds cannot be obtained using this method.
For instance, the maximum torque decreases by as much as 25 per cent from the rated
value if the stator frequency is 100 Hz. The open-loop scalar control implements the
strategy illustrated by (3.56). This offers an approximate control over the motor speed
but the effects of the load torque variations cannot be compensated for due to the lack

Fig. 3.8 Induction motor mechanical characteristic (P = 11.1 kW)
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of any feedback information. A compensation of the average slip angular frequency can
be performed instead so that the rotor speed equals the reference speed for the most
frequent load torque value.

The control scheme can be implemented with a controlled rectifier as presented in
Fig. 3.9, or with an uncontrolled rectifier. In the first case, the PWM inverter controls
only the frequency of the output voltage, while the rectifier determines the output
voltage amplitude. In the second case, the switching pattern inside the inverter is more
complex and determines both the frequency and the amplitude of the output voltage.

Fig. 3.9 Open-loop scalar control scheme

The scalar control strategy with speed sensor can be implemented as in Fig. 3.10
using a controlled rectifier and a PWM inverter. As in the previous section, the controlled
rectifier can be replaced by an uncontrolled rectifier if the inverter controls both the
frequency and the amplitude of the output voltage. The voltage control loop modifies
the d.c. voltage according to the required speed profile while the optimal slip frequency
is calculated as a function of the current absorbed by the motor: the slip increases with
the absorbed current. This type of slip-current correlation limits the current variations in
the d.c. link during the transient motor operation.
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Fig. 3.10 Scalar control scheme with speed sensor

An increase of the resistive load increases the current absorbed by the motor and
decreases its speed. This lowers the d.c. link voltage. The speed controller responds by
increasing the reference voltage while the slip calculator increases the motor slip. As
demonstrated by equation (3.55) the motor torque increases with the increase of the
stator voltage and with the increase of the slip angular frequency. On the other hand, the
stator current depends on the stator voltage in the manner indicated in (3.54). Therefore,
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a torque increase can be obtained with a diminished current change if the slip angular
frequency is changed accordingly. Conversely, when the load torque decreases the current
drop in the d.c. link is limited and the temporary transformation of the motor into a
generator is avoided, thereby reducing the strain on the power transistors in the PWM
inverter.

The sensorless scalar control strategy is based on the possibility of calculating the
slip frequency as a function of the stator frequency and the current in the d.c. link
between the rectifier and the PWM inverter [183]. The equation underlying the slip
angular frequency calculation can be derived from (3.54). The stator angular frequency
is determined as the sum of the slip angular frequency and the calculated rotor angular
speed corresponding to the actual voltage across the d.c. link. In general, the large d.c.
link capacitor prevents the amplitude of the a.c. voltage from being increased as rapidly
as the frequency, which is developed with practically no delay by simply feeding the
right triggering pulses to the inverter transistors. Hence, it is customary to calculate the
frequency control to the voltage control loop in the manner shown in Fig. 3.11 to
prevent the motor from ever receiving the inappropriate voltage–frequency ratio.

Fig. 3.11 Sensorless scalar control scheme
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Of the two control parameters, frequency control is by far the most sensitive as small
changes in frequency produce large changes of slip frequency and hence large changes
in current and torque. By slaving the frequency command to the d.c. bus voltage, the rate
of frequency change is generally limited to a value to which the motor can respond
without drawing excessive current or without regenerating.

3.5.4 Vector control

Vector control strategies use the space vector model of the induction motor to accurately
control the speed and torque both in steady-state operation and in fast transient operation.
The dynamic performance achieved by vector control strategies equals the dynamic
performance offered by d.c. motor drives. In fact, with vector control, induction motor
drives outperform d.c. drives because of higher transient current capability, increased
speed range, and lower rotor inertia [46]. The class of vector control strategies encompasses
field-oriented control methods and direct torque control methods. Field-oriented control
methods use the rotor-oriented reference frame, the airgap-oriented reference frame or the
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stator-oriented reference frame (see Fig. 3.7). In each case, the reference frame real axis
(axis ‘d’) is oriented along the direction indicated by the corresponding magnetic flux.
The rotor-oriented vector control simplifies the control system structure and generates
very fast transient response. However, systems working with the stator flux vector or with
the airgap flux vector have been successfully implemented as well [79], [43].

3.5.5 Rotor flux orientation

In the rotor flux-oriented reference frame, the rotor flux vector has no imaginary part so
that the torque expression (3.48(a)) can be written as (3.57). The rotor flux and the rotor
current depend on one another in the manner indicated by the equations in (3.58).
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Equations (3.59) and (3.60) can be derived from the previous system. They illustrate
the influence of the stator current components over the rotor flux and on the rotor
current component on axis ‘q’ (irq). Thus, the modification speed of the rotor flux is
limited by the rotor time constant Tr = Lr /Rr, while the rotor current component irq can
be changed rapidly as no time constant is involved in (3.60).
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As demonstrated by (3.59) and (3.60), the two quantities influencing the torque can
be independently controlled by two uncoupled control loops. For high dynamic
performance, the torque is controlled by keeping the rotor flux Ψrd constant while
varying the rotor current component irq. Keeping the rotor flux constant implies maintaining
isd at a constant value while the rotor current component irq is controlled by the stator
current component isq.

The control strategy requires the rotor flux orientation to be determined in order to
calculate isd and isq. The direct vector control method estimates the magnetic flux vector
as a function of the stator voltage, the stator current and the rotor speed. There are three
types of rotor flux estimators differing by the input data they use: the current–speed
estimator (Is, ωer), the current–voltage estimator (Is, Us) and the current–voltage–speed
estimator (Is, Us, ωer). The indirect vector control method is simpler as it calculates only
the argument θ of the rotor flux as a function of isd and isq. The direct vector control is more
robust than the indirect vector control but its performance depends on the type of flux
estimator used.



Electric motors and power systems 43

The current–speed estimator is derived from the basic rotor equation and from the
rotor flux expression as shown in (3.61), (3.62) and (3.63). The rotor flux is the solution
of the integral equation (3.64). This estimator works well at low speeds but it is not
precise at high speeds because in this case the speed measuring errors have a big
influence on the calculation results.
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The current–voltage flux estimator is derived from the stator equation and the stator flux
expression (see (3.65), (3.66), (3.67)). Therefore, the equation defining the current–
voltage flux estimator is (3.68). This method offers accurate results at high speeds but
the precision at low speeds is low.
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The current–voltage–speed estimator (Is, Us, ωer) combines the previous two solutions:
equation (3.64) and equation (3.68). It generates good rotor flux estimates both at low
speeds and high speeds.

Ψ
Ψ Ψ

ω
ω

r I U
s r I

s
r I U
s

( , , )
( , ) ( , )

 = 
 + 

2
(3.69)

The rotor flux is the original choice for field orientation because in this reference frame
the equations corresponding to the two axes ((3.59) and (3.60)) are completely independent.
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As a result, this control method generates the best dynamic performance. On the other
hand, the stator flux orientation has the advantage that the torque calculation uses the
stator flux instead of the rotor flux as illustrated by (3.70) which is a consequence of
(3.48(b)). The stator magnetic flux is much easier to calculate than the rotor magnetic
flux because it depends on stator quantities (currents, voltages and resistance) that can
be directly measured.

T p i p is s sd sq = 2
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   Im { }  Re { } = 2
3
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A typical direct rotor field-oriented control scheme (see Fig. 3.12) contains two closed
loops: one for isd (controlling the motor magnetic flux) and the other for isq (controlling
the motor torque). The rotor flux orientation exploits the advantage that the two quantities
can be controlled independently: the value of one stator current component does not
have any influence over the value of the other current component. This property simplifies
the control structure and generates good dynamic performance. One of the three flux
observers previously described is used to determine the rotor magnetic flux. This
information is used to calculate the reference frame transformations: from the stator
reference frame to rotor reference frame, and from the rotor reference to stator reference
frame.

The flux generating current component (isd) is maintained constant for speeds under

Fig. 3.12 Direct rotor field-oriented control scheme

the rated value but is decreased for speeds above the rated value (in the so-called field
weakening region). Regardless of the vector control strategy, it can be demonstrated that
maintaining the magnetic flux constant at different stator frequencies implies that the
stator voltage amplitude is approximately proportional to the stator frequency. As in the
case of scalar control, the stator voltage amplitude is given by an equation similar to
(3.56). Therefore, for speeds larger than the rated value the magnetic flux value cannot
be kept constant because that would require high voltages that may damage the motor.
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High speeds are obtained at the expense of the field weakening which decreases the
efficiency of the motor.

The torque generating current component (isq) is calculated as a function of the
required motor torque and the motor field. The reference current isq

ref  is proportional to
the torque-to-field ratio. The torque is calculated in turn as a function of the difference
between the reference speed and the actual speed of the motor.

In the case of indirect rotor field orientation, the flux orientation is calculated by
integrating the stator angular frequency (3.72). The slip angular frequency is estimated
as shown by equation (3.75) which is derived from the basic equations governing the
rotor circuit (see (3.73) and (3.74)). In (3.75) it is implicit that the rotor flux amplitude
is constant due to very good current controllers providing very fast (ideally instantaneous)
dynamic response. Parameter detuning leads to a loss of rotor field orientation and to a
deterioration of the system dynamic response. The rotor time constant Tr especially
should be updated through an estimator [169].
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Fig. 3.13 Indirect rotor field-oriented control scheme
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3.5.6 Stator and airgap flux orientation

In the case of stator flux orientation, the flux equations take the form presented in
(3.76). The magnetic flux vector and the stator current vector are the solutions of two
coupled equations: (3.77) and (3.78) derived from (3.76). Therefore, the magnetic flux
and the torque-generating current component cannot be controlled independently as in
the case of rotor orientation. Here any modification of the magnetic flux has effects on
the torque-generating current component. This slows the system transient response
unless special compensation blocks are added to the control scheme.
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The equations underlying the airgap flux orientation are identical to (3.77) and (3.78)
but are expressed in a different reference frame. Both the stator and the airgap-oriented
vector control strategy are similar to the rotor-oriented vector control in that the magnetic
flux vector is kept constant for speeds below the rated value, while the torque is varied
by modifying the corresponding current component (isq in this case). Figure 3.14 presents
an example of stator field orientation. The control method is similar to the rotor flux
orientation but contains an additional flux controller. The flux controller is added to
diminish the effects of the interaction between the magnetic flux vector and the torque-
generating stator current component.

Fig. 3.14 Direct stator field-oriented control scheme
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3.5.7 Direct torque control

In a PWM inverter-fed machine, the vector Ψr is more filtered than Ψs and therefore Ψr
rotates more smoothly. The motion of Ψs, dictated by the stator voltage, is discontinuous,
but the average velocity is the same with that of Ψr in steady state. The direct torque
control (DTC) method is based on relation (3.48(c)). Therefore, the torque is controlled
by varying the angle δ between the two flux vectors. Any DTC implementation contains
a flux control loop and a torque control loop. The reference torque value is calculated
by a speed controller, while the flux reference is determined as a function of the reference
speed ωref.

Fig. 3.15 Direct torque control with speed sensor

The machine voltages and currents are sensed to estimate the torque and the stator
flux vector. The flux vector estimation gives information about the 60° sector where Ψs
is located. The errors EΨ and ET generate digital signals through the respective hysteresis-
band comparators. A three-dimensional look-up table then selects the most appropriate
voltage vector (ua, ub, uc) to satisfy the flux and torque demands.

DTC ensures fast transient response and generates simple implementations due to the
absence of the closed-loop current control, traditional PWM algorithm and the vector
transformations. It can be implemented with speed sensor as well as in sensorless
configurations. However, the drawbacks of DTC are the pulsating torque, pulsating flux
and the increased harmonic loss [46]. Recently a large number of papers have been
published concerned with improving DTC control [162], [122], [123], [132], [56], [24],
[55].

3.5.8 Sensorless vector control schemes

The speed estimation methods for induction motors are based on the possibility of being
able to calculate the rotor speed as a function of stator currents and stator voltages.
Therefore the physical speed sensor is replaced by a software or hardware implemented
module that performs the necessary calculations. The relation between the voltage and
current is influenced by both the motor speed and the winding parameters. These parameters
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are subject to alterations during the motor operation due to heating and magnetic saturation.
Consequently, on-line parameter estimation procedures need to be implemented alongside
speed estimation algorithms to ensure correct results under various operation conditions.

Complex mathematical methods have been developed to integrate the speed estimation
with the electrical parameter estimation process and to achieve high accuracy and
independence of the motor parameter variations. These methods combine the classical
field orientation approach with extended Kalman filters [20], [164], Luenberger observers
[153], [190], neural networks [38], [226] and fuzzy logic [231], [34]. A different approach
makes use of the effects of the rotor saliencies on the stator currents and voltages [216]
or the parasitic effects that originate from the discrete winding structure of a cage rotor.
In both these two cases, the stator currents contain harmonics that depend on the rotor
speed so that Fourier transforms are involved in the speed calculation. Most of these
methods are more accurate at high speeds than at low speeds. As a result, the lowest
speed at which the system works correctly is an important performance indicator.

The Kalman filter (KF) was developed by R. Kalman and R. Bucy in the early 1960s
[138], [139]. The standard KF [224] is a recursive state estimator for multiple-input/
multiple-output systems with noisy measurement data and with process noise (stochastic
plant model). It uses the inputs and the outputs of the plant together with a state–space
model of the system, to give optimal estimates of the system state. The space–state
model is described by equation (3.79) where vector x is the state of the system and
vector u contains the system inputs. The system output is given by (3.80). The matrices
v and w, known as the spectral density matrices, model the noise processes. The noise
is supposed to be white and Gaussian.

ẋ = Ax + Bu + Fv (3.79)

y = C · x + w (3.80)

The filter equation is given in (3.81), where K is the gain matrix of the filter. K is
calculated as a function of the matrices u and w that describe the statistical properties of
the noise processes. Equation (3.81) has the general form of a linear state–space observer.
Thus, the KF is an optimal observer because it calculates the vector x as a function of
vector u in such a manner that the adverse effect of the noise is minimised.

ˆ̇ ˆ ˆx Ax Bu K y Cx =  +  + (  –  ) (3.81)

In the standard linear form, the Kalman filter can only estimate the stator current d-
q components, and the rotor current d-q components. To estimate the rotor speed and/
or the rotor resistance (the critical electrical parameter for most of the control strategies),
the time-varying variable is treated as a state variable. Consequently, a non-linear system
model is generated. To use a non-linear model with the standard Kalman filter, the
model must be linearised around the current operating point, giving a linear perturbation
model. The result is the extended Kalman filter (EKF). A comparison of the performances
of KF and EKF is presented in [164]. The applications using KFs and EKFs are very
popular although they impose high computational demands on the digital equipment
involved [200].

The sensorless vector control of induction motors continues to be investigated by
many authors and several improvements have been proposed in recent years [160],
[118], [140], [144], [192], [213], [230]. Many companies have launched their own
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sensorless vector control products [27]. The most representative products are shown in
Table 3.2.

Table 3.2 Representative a.c. sensorless vector control products

Company Product Ratings Vac input Speed Torque Min.
kW reg. (±%) reg. (±%) speed at

100%
cont.
torque

ABB ACS 600 2.2–600 380–690 0.1–0.3 2 2 Hz

Allen–Bradley 1336 Impact/ 0.75–485 230–600 0.5 5 0.5 Hz
Force
a.c. Drive

Baldor Electric 17H Encoderless 0.75–373 180–660 10% 3.5 100 rpm
Vector Control of slip

Cutler–Hammer AF93 1.5–15 340–528 0.5 N/A 50 rpm

Mitsubishi Electr. A200E 0.4–55 230–575 1.0 N/A <1 Hz
America A024/A044 0.1–3.7 230–460 1–3 N/A 3 Hz

Siemens E & A Master Drive to 1500 208–690 0.1 <2.5 0
6SE70

Square D Altivar 66SV 0.75–220 208–460 1.0 N/A 0.5 Hz

Yaskawa electr. VS–616G5 0.4–800 200–600 0.1 3 0.5 Hz
America

NFO Control AB NFO Sinus Switch 0.37–5.5 230–400 1 1 1

The natural field orientation (NFO) method, invented and patented by the Swedish
company NFO Control AB, is one of the simplest and most efficient sensorless motor
control strategies so far. NFO Control AB implemented this method into hardware
alongside an improved PWM switching strategy and sell it under the name ‘NFO Sinus
Switch’. NFO is derived from the stator field-oriented vector control and it can be
implemented for both speed sensor and sensorless systems but its advantages are fully
exploited in the sensorless configuration. The corresponding control circuit is a
simplification of the control scheme in Fig. 3.14. The essence of NFO is that the
magnitude of the stator flux is not calculated by integration as in the case of stator flux
orientation. The flux is set in open loop as a reference quantity that may be subject to
change for field weakening [135], [136]. Thus, both the flux controller and the divider,
that are present in Fig. 3.14 inside the speed control loop, are eliminated.

NFO can be implemented in several forms beginning with the basic configuration
without current controllers, shown in Fig. 3.16, applicable to small drives. In this case,
the voltage component usq is determined by the speed controller while the voltage
component usd is calculated only as a function of the magnetising current ims so that the
correct stator magnetic flux is generated. The stator magnetising current is defined by
(3.82).

Ψs = Lsis + Lmir = Lmism (3.82)
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The stator equations can be written using the quantity ims as in system (3.83). One of
the features of NFO is that the control scheme operates so that the modulus of ism equals
isd (see Fig. 3.17). Therefore, the reference voltages are calculated according to (3.84).
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Fig. 3.16 Natural field orientation (NFO)

Fig. 3.17 The stator and rotor current vectors in case of natural field orientation
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The speed estimation is based on an inner voltage vector es defined according to
(3.85). It is demonstrated [136] that the motor speed can be calculated using es as
indicated in (3.86). This equation is valid whether or not ism equals isd.
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At low speed, the magnitude of e is small. Therefore small errors in measuring the
motor currents will lead to large relative errors in calculating the vector e (3.85) that will
in turn reflect into large relative errors of the estimated rotor speed. Thus, the speed
estimation precision is minimal at very small rotor speed. Most sensorless control
strategies face the same problem, which is why the minimal speed that the system can
efficiently control is one of the key parameters used in measuring the control system
performance.

The space–vector concept has been described alongside the space–vector model of
the three-phase induction motor. These concepts have been used to describe the main
techniques for the control of induction motor drives. In the next chapter, neural network
theory is briefly presented and neural control is considered with a view to assessing its
applicability to produce efficient control systems for the envisaged induction motor
applications.

3.6 Synchronous generators control

Synchronous generators are responsible for the bulk of the electrical power generated in
the world today. They are mainly used in power stations and are predominantly driven
either by steam or hydraulic turbines. These generators are usually connected to an
infinite bus where the terminal voltages are held at a constant value by the ‘momentum’
of all the other generators also connected to it. Another common application of synchronous
generators is their use in stand-alone or isolated power generation systems. The prime
mover in such applications is usually a diesel engine.

The aim of the example presented in this section is to develop an improved control
system for diesel engine driven stand-alone synchronous generator sets. Its primary
objective is to design and build a working prototype that incorporates a new control
strategy and the latest engineering innovations. The subsidiary objectives include ensuring
that the prototype system:

• can be used effectively as a starting point for further studies into a new generation of
controllers for stand-alone synchronous generator sets;

• incorporates a certain amount of artificial intelligence such that it is flexible and not
specific to a particular type of engine-generator set;
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• is designed using a systematic process which enables rapid prototyping of future
improvements;

• takes advantage of modern digital electronic technology.

The following section discusses the control systems of synchronous generators, in an
attempt to tie these developments to the design example presented in the second part of
the book. Although a massive proportion of synchronous generators are electromagnetic,
the use of permanent magnet synchronous machines as stand-alone generators has been
studied for more than half a century. Permanent magnet synchronous generators (PMSGs)
are more difficult to regulate and it is only with the recent developments in power
electronics that they are seriously being considered for various applications [39], [191],
[17]. One of the main advantages of the control system proposed in the examples section
of this book is its ability to regulate stand-alone PMSGs as well as electromagnet
generators. This functionality is duly demonstrated by the experiments presented in
which a PMSG is used.

The study of synchronous generator control systems can roughly be divided into two
parts: voltage regulation and speed governing. Both control elements contribute to the
stability of the machine in the presence of perturbations. A reliable control system set
is essential for the safe operation of generators. There are various methods of controlling
a synchronous generator and suitability will depend on the type of machine, its application
and the operating conditions. For instance, the voltage regulation of an electromagnet
synchronous generator is usually achieved by controlling the field excitation current
whereas permanent magnet generators do not have excitation systems and require a
totally different strategy.

The voltage regulation system in an electromagnet synchronous generator is called
an automatic voltage regulator (AVR). It is a device that automatically adjusts the output
voltage of the generator in order to maintain it at a relatively constant value. This is
achieved by comparing the output voltage with a reference voltage and, from the difference
(or error), it makes the necessary adjustments in the field current to bring the output
voltage closer to the required value. Older AVRs used in the early days belong to a class
of electromechanical devices. They are generally slow acting and possess zones of
insensitivity known as dead bands. There is a wide variety of electromechanical AVRs,
ranging from vibrating contact regulators to carbon pile regulators [235]. However, they
are now replaced with continuously acting electronic regulators that are much faster and
do not possess dead bands, hence the term ‘continuously acting’. Figure 3.18 shows a
block diagram of an electronic AVR system [6].

The generator set comprises two sections: the main section and an exciter. Each
section consists of an armature winding and a field winding. Electrical power is derived
from the terminals of the main armature winding. The AVR maintains a closed-loop
control of the terminal voltage by taking in a ratio of the main armature voltage as the
input, comparing it to a preset reference value and producing a control signal to the
exciter field based on the error. This induces the correct amount of current in the exciter
armature and the current is transferred into the main field winding via a set of rotating
diodes. The complete system is an efficient and well-established method of regulating
the terminal voltage in a stand-alone electromagnet synchronous generator set. Power
system generators also employ AVRs in their control systems, but they form only a part
of a comprehensive control and regulation system. Most AVRs utilise analogue electronics
to accomplish the control tasks. It is found to be cheap, simple and effective for the job.
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However, like all electronic applications, there is a growing interest in applying digital
electronic technology to AVRs. The major advantages of digital AVRs over their analogue
counterparts are the capability of realising sophisticated control functions and the ease
of transmission and recording of information. The nature of digital systems allows
complex algorithms to be executed either as a software-based system [164] or a hardware-
based system [124]. Digital AVRs are capable of performing all the tasks of their
analogue counterparts as well as a range of additional functions, including the following:

• They can have direct interaction with higher levels of controls. This allows them to
be interfaced with the main computer of the building, power plant or supervisory
system, enabling interoperability.

• The control parameters are more accessible to modifications with built-in logic switches
and software tuning programs. Changes in the control parameters of analogue AVRs
can be difficult and expensive to implement. Therefore the parameter values of analogue
AVRs are usually fixed at the design and commission stage.

• Stabilisers can be configured to switch in and out the system without interrupting the
service, depending on the need.

• They can operate at optimal or suboptimal conditions over a wider range of operation.
This is especially true with the introduction of adaptive and intelligent controllers.

In 1976, Malik, Hope and Huber worked on a software-based digital AVR [124] for
a power system generator, whereby the control functions of the AVR were stored in an
on-line station mini computer. The flexibility of a software-based system extended the
mathematical capabilities of the controller and allowed for one basic hardware design to
be used with different control strategies, thus drastically reducing the cost of redesigning
the controller to different specifications. The digital AVR used by Hirayama et al.
(1993) [114] was capable of all the functions of an analogue AVR as well as possessing
additional features such as advanced fault status indication, self-diagnostic features,
verification of generator dynamics and the recording of transients. A more comprehensive
monitor of the power systems was also possible by feeding the recorded transient data

Fig. 3.18 Block diagram of a synchronous generator and AVR
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into a personal computer (PC) via an RS232C link. Dedicated software in the PC will
then calculate the Bode diagram and indicate transient responses and rise times. Similarly,
the digital excitation control systems (DECS) used in Godhwani and Basler’s (1996)
[98], [99] study into design methodology of controllers offer all the advantages of
digital control. In their work, the PID settings for a generator controller were programmed
into an electronically erasable programmable read only memory (EEPROM). Due to the
fact that different systems require different PID settings for optimal performance,
manufacturers of analogue controllers often have to provide multiple designs to
accommodate variations in stability networks. Godwhani and Basler proposed a design
methodology – direct design method of controller design – that allows the closed-loop
poles to be placed at any desired location. The PID settings were then custom designed
for each individual system using this method and stored into the EEPROM. This creates
a single design which is flexible for the operation of a wide range of generator sizes
(ranging from 10 kW to 50 MW).

As result of the highly non-linear nature of synchronous machines, it can be quite
difficult to design a control system with high performance over different operating
points. This is becoming an increasingly important issue especially in power systems.
To address the problem, Marino [167] proposed exact feedback linearisation, a technique
which received some recent attention [198]. There is also interest in adaptive AVRs
[129], [95], [238] and power system controllers. There are currently several different
approaches to adaptive control of synchronous generators in power system control such
as:

• linear optimal control theory [175];
• self-tuning control theory [98], [185];
• fuzzy logic [114];
• adaptive neural network [145], [240], [150].

Although these works are mainly targeted for power systems applications, although
some of the ideas presented can be incorporated into other applications. Stand-alone
synchronous generators, systems with conventional AVRs and speed governors have
always been operated at a fixed speed. The speed is determined by the desired power
frequency and the number of pole-pairs in the machine. Running the generator at any
other speed is not usually considered as a design option. One of the main problems in
such a scheme is the task of maintaining the desired power frequency, especially under
heavy load. Since the frequency is directly proportional to the speed, any change in
speed would certainly disrupt the shape of the power waveform in that the frequency
would vary in relation to the speed. It is only with recent developments in power devices
and converter technology that variable-speed constant-frequency (VSCF) systems have
been given serious attention. The matrix converter proposed in [232] initiated several
studies into the a.c.–a.c. converter [241], [236], [215], but disparate issues such as
commutation problems and the complexity of switching schemes generate reservations
for its use in the present work. A more common solution for a.c.–a.c. power frequency
conversion is to buffer the transition with a d.c. link, effectively producing an a.c.–d.c.–
a.c. conversion scheme. In this book, a power electronic system implementing this
scheme is called a d.c. link converter. The main components of a d.c. link converter
include some form of rectifier, energy storage component(s) such as a smoothing capacitor
and an inverter. Some schemes also incorporate a boost converter in the d.c. link [41].
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In the last decade, d.c. link converters have received considerable attention in the area
of VSCF wind energy systems. VSCF schemes are widely used in stand-alone wind
energy conversion systems to solve the problem of frequency fluctuations which result
from changes in wind velocity and load. Figure 3.19 shows a simplified block diagram
of a typical VSCF wind energy conversion system that incorporates a d.c. link converter.

Fig. 3.19 Simplified block diagram of a VSCF wind energy conversion system

Wind
turbine

Rectifier Inverter
Power
output

Control system

Although most of these schemes are designed for induction generators [188], [202],
[172] there are also numerous projects which involve synchronous generators [42].
Research in this area usually focuses around control systems for capturing maximum
energy from varying wind velocity. Others include work such as the study of interface
systems to improve the quality of power from VSCF wind turbines connected to a utility
grid [134], [206], [57]. Unfortunately, the application of VSCF schemes in other systems
such as stand-alone generators is somewhat limited. In an engine driven system, for
example, the choice of speed can have great influence on the operational characteristics
and efficiency of the engine. With the correct setting, it is possible for the system to be
optimised for specific performances such as fuel consumption, exhaust emissions, vibrations
and generator ratings. In a domestic or recreational application, where the generator
system has to be placed close to the living space, reducing noise pollution may be an
important consideration when selecting the operational speed. An example of a stand-
alone generator system controller based on fuzzy logic is presented in the second section
of this book.



Neural control is a branch of the general field of intelligent control, which is based on
the concept of artificial intelligence (AI). AI can be defined as computer emulation of
the human thinking process. The AI techniques are generally classified as expert systems
(ES), fuzzy logic (FL) and artificial neural networks (ANN). The classical expert systems
are based on Boolean algebra and use precise calculations while fuzzy logic systems
involve calculations based on an approximate reasoning. Fuzzy logic is a superset of
conventional (Boolean) logic that has been extended to handle the concept of partial
truth–truth values between ‘completely true’ and ‘completely false’ [88]. It was introduced
by Dr Lotfi Zadeh of UC/Berkeley in the 1960s as a means to model the uncertainty of
natural language. The truth of a logical expression in fuzzy logic is a number in the
interval [0,1]. Fuzzy logic has emerged as a profitable tool for the control of complex
industrial processes and systems. It is used for processes that have no simple mathematical
model, for highly non-linear processes, or where the processing of linguistically formulated
knowledge is to be performed. Although it was invented in the United States, the rapid
growth of this technology originated from Japan and has now again reached the USA
and Europe. The controllers based on this mathematical approach are known as fuzzy
controllers.

The use of artificial neural networks (ANNs) is the most powerful approach in AI.
ANNs are information processing structures which emulate the architecture and operational
mode of the biological nervous tissue. Any ANN is a system made up of several basic
entities (named neurones) which are interconnected and operate in parallel transmitting
signals to one another in order to achieve a certain processing task [237]. One of the
most outstanding features of ANNs is their capability to simulate the learning process.
They are supplied with pairs of input and output signals from which general rules are
automatically derived so that the ANN will be (in certain conditions) capable of generating
the correct output for a signal that was not previously used. The neural approach can be
combined with the fuzzy logic generating neuro-fuzzy systems that combine the advantages
of the two control paradigms.

4.1 Neurone types

The operation of the artificial neurones is inspired by their natural counterparts. Each
artificial neurone has several inputs (corresponding to the synapses of the biological
neurones) and one single output, the axon. Each input is characterised by a certain

4
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weight indicating the influence of the corresponding signal over the neurone output. The
neurone calculates an equivalent total input signal as the weighted sum of the individual
input signals (4.1).

net =   
=1
Σ
i

n

i iw x⋅ (4.1)

The resulting quantity is then compared with a constant value named the threshold
level and the output signal is calculated as a function of their difference (net – t). This
function is named the transfer function or the activation function. The input weights, the
threshold level and the activation function are the parameters which completely describe
an artificial neurone. Depending on the type of the artificial neurone the activation
function may have several forms. There are analogue neurones using continuous real
activation functions and discrete neurones whose activation functions are discontinuous.
Bipolar neurones generate both positive and negative outputs while unipolar ones generate
only positive values. In the case of bipolar analogue neurones, the most popular activation
function is given by (4.2). The output varies continuously between –1 and +1, depending
on the input signals that can have any real value (Fig. 4.1).

Fig. 4.1 Sigmoidal activation function of bipolar analogue neurones (λ = 1)
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Parameter λ is a constant controlling the slope of the activation function’s graph.
Some authors consider λ = 1 to simplify the calculations while others operate with the
more general format presented in (4.2) but the fundamental results and properties of the
corresponding ANNs remain valid in both situations. The function in (4.2) is part of a
larger transfer function class called ‘sigmoidal functions’. What they have in common
is the graph shape and the property to be derivable, which is essential in some applications.

f
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(4.2)

An alternative activation function is presented in (4.3). It is part of the sigmoidal
functions group and, as shown in (4.4), it has the same limit values as function f1.
Unipolar analogue neurones are similar to bipolar ones with the difference that the
output signals can only take values between 0 and +1 (Fig. 4.2). Their activation function
is described by (4.5).
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f
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1 +   λ ⋅ (4.5)

Not all continuous activation functions are sigmoidal. The stepwise-linear activation
function presented in (4.6) is not derivable in two points: net = t – 1.0 and net = t + 1.0
(Fig. 4.3).
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Fig. 4.2 Sigmoidal activation function for unipolar analogue neurones (λ = 1)

Fig. 4.3 Non-sigmoidal activation function
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Discrete neurones use threshold type activation functions. The bipolar discrete sort is
associated with the activation function described in (4.7) while the unipolar type uses
the activation function illustrated by (4.8). These two functions can be considered limiting
cases (λ → ∞) of the sigmoidal transfer functions presented in (4.2) and (4.5).
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Over the last few years, more sophisticated types of neurones and activation functions
have been introduced in order to solve different sorts of practical problems. In particular,
radial basis neurones have proved very useful for many control system and system
identification applications. These neurones use so-called radial basis activation functions.
Equation (4.9) presents the most often used form for such a function, where ‘x’ is the n-
dimensional vector of input signals and ‘t’ a constant vector of the same dimension
while || · || is the Euclidean norm in the n-dimensional space.

f7(x) = exp(– || x – t ||2) (4.9)

Practically f7 shows how close vector ‘x’ is to vector ‘t’ in this n-dimensional space. The
closer x is to t, the larger is f7(x); if x = t then f7(x) = 1. The classical Gaussian bell is
obtained for the unidimensional case while the two-dimensional case is illustrated by
Fig. 4.4. Obviously, such a neurone type is very far from the biological model, but this
is irrelevant since it proves useful for certain technical applications.

Fig. 4.4 Radial basis activation function: two-dimensional case
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4.2 Artificial neural networks architectures

Artificial neural networks differ by the type of neurones they are made of and by the
manner of their interconnection. There are two major classes of neural networks: feed-
forward ANNs and recurrent ANNs. Feed-forward artificial neural networks (FFANNs)
are organised into cascaded layers of neurones. Each layer contains neurones receiving
input signals from the neurones in the previous layer and transmitting outputs to the
neurones in the subsequent layer. The neurones within a layer do not communicate to
one another. The first network layer is named the input layer, while the last one is named
the output layer. All the other neurone layers are known as the hidden layers of the
neural network.

FFANNs do not have any memory of the past inputs so that they are used for applications
where the output is only a function of the present inputs. Therefore, each input vector
is simply associated with an output vector. If step activation functions are used, several
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analogue or discrete input vectors can be associated with a single discrete output vector.
Such neural networks are used to solve classification problems. In a classification problem,
the set of all possible input vectors is divided into several arbitrary subsets. Each subset
is a class. The problem consists of finding out to which class a given input vector
belongs. The neural network associates each class with a binary vector and generates the
corresponding code for any input vector. Recurrent artificial neural networks include
architectures where neurones in the same layer communicate (cellular neural networks)
or architectures where some of the outputs of a FFANN are used as inputs (real-time
recurrent networks, Hopfield networks). These neural architectures can be described
either by continuous time models or by discrete time models.

Outputs
Output
layer

Hidden
layer

Hidden
layer

Inputs

Fig. 4.5 Feed-forward neural network architecture

The concept of cellular neural network (CNN) was first introduced by Chua and Yang
(1988). It is a special class of recurrent neural networks, which consist of cells connected
only to the cells in their neighbourhood (Fig. 4.6). Thus, the main feature of CNNs is the
fact that information is directly exchanged just between neighbouring cells.

Fig. 4.6 Cellular neural network

Due to this local interconnection property, CNNs have been considered particularly
suitable for VLSI implementations for high speed parallel signal processing. CNNs are
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used in several application areas: image processing, artificial vision, associative memories,
biological systems modelling, etc.

The real-time recurrent neural networks are the most adequate neural structures for
modelling finite and infinite state machines. They explicitly implement the concept of
‘internal state’ as a set of neurone outputs which are used as future inputs of the FFANN
contained inside the feedback architecture (Fig. 4.7).

Fig. 4.7 One-layer real-time recurrent neural network (discrete time model)
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The discrete-time models contain delay units on the feedback connections, while the
continuous-time models contain low-pass filters (usually first-order elements). Finite
state machines are modelled by discrete-time models involving neurones with step
activation functions, while infinite state machines are modelled by continuous-time
models containing neurones with sigmoidal activation functions.

Hopfield networks are a particular case of recurrent neural networks that contain only
one layer of neurones and there is no feedback loop between any neurone and itself. The
connections between any two different neurones are symmetrical in Hopfield networks,
that is the corresponding weights are equal. Furthermore, each neurone is connected to
an external input signal. Each state of a Hopfield network can be characterised by a so-
called ‘energy function’. The evolution of the network’s state determines a decrease of
the energy function towards a local minimum. Each local minimum is associated to a
stable state. In this respect, Hopfield networks can be configured in manners that allow
solutions to be found for particular optimisation problems. This feature has been used
for associative memory applications, and the optimisation of the power dispatch in the
power systems [92].

4.3 Training algorithms

One of the most important features of neural networks is their ability to learn (to be
trained) and improve their operation using a set of examples named training data set.
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The training process is controlled by mathematical algorithms that fall in two main
classes: constructive and non-constructive. The non-constructive training algorithms
adapt only the connection weights and the threshold levels. The constructive algorithms
modify all the network features including its architecture (neurones and even layers are
added or eliminated as necessary). All the algorithms modify the neurone weights and
thresholds based on calculations that analyse the network response to particular inputs.
The modifications are performed in a manner that brings the network outputs closer to
the expected ones.

Depending on the nature of the training data set, there are two categories of algorithms:
supervised and unsupervised [110]. The supervised algorithms use a training data set
composed of input–output pairs. The unsupervised algorithms use only the input vectors.
In the case of supervised algorithms, the training process is controlled by an external
entity (the ‘teacher’) that is able to establish whether the network outputs are adequate
to the inputs and what is the size of the error. Then the network parameters are modified
according to the particular correction method defining each training algorithm. In case
of unsupervised methods (the Hebbian rule, the ‘winner takes all’ algorithm, etc.), there
are no means to know what the expected outputs are. The network evolves as a result of
the ‘experience’ gained from the previous input vectors. The weight values converge to
a set of final values dictated by the input values used as training data set in conjunction
with the particular training algorithm.

The unsupervised family of training algorithms is mainly used for signal and image
processing, where pattern classification, data clustering or compression algorithms are
involved. The control engineering problems are better tackled by supervised training
methods, as the relationship between inputs and desired outputs is better defined and
easier to control.

4.3.1 The error back-propagation algorithm

The most popular supervised training algorithm is the one named ‘error back-propagation’,
or simply ‘back-propagation’. It involves training a FFANN structure made up of sigmoidal
activation function neurones. The back-propagation algorithm is a gradient method
aiming to minimise the total operation error of the neural network. The total error is a
function defined by equation (4.10) where Oi

ref  is the column vector of the reference
outputs and Oi is the column vector of the actual network outputs corresponding to the
input pattern number ‘i’. The total error Err is the sum of the errors corresponding to all
np input patterns.

Err =  (  –  )  (  –  ) =  ||  –   ||
=1

ref ref
=1

ref 2Σ Σ
i

n

i i
T

i i i

n

i i

p p

O O O O O O⋅ (4.10)

For each training step, the vector of all neurone weights and threshold weights (W)
is updated in such a way that the total error Err is decreased. The vector W can be
associated to a point in a NW-dimensional space (the parameter space), where NW is the
total number of weights and thresholds in the neural network. The most efficient way to
perform the update is to shift the point W along the curve indicated by the gradient of
the total error (∇Err). This principle is illustrated by equation (4.11), where W(t) is the
parameter vector during the current training cycle, W(t + 1) is the parameter vector for



Elements of neural control 63

the next training cycle and η is the learning-rate constant. Ideally, the algorithm stops
when the total error is zero. In practice, it is stopped when the error is considered
negligible.

W(t + 1) = W(t) – η · ∇Err = W(t) – η · ∂
∂

∂
∂

∂
∂

∂
∂







Err  Err  Err  . . . Err
1 2 3w w w wN

T

w

(4.11)

For the practical calculation of the error gradient ∇Err, the components in the vector
W are usually rearranged as a three-dimensional matrix. The matrix has a number of
rectangular layers equal to the number of neurone layers in the neural network. Each
rectangular layer is a two-dimensional matrix containing one line for each neurone in
the corresponding layer of the neural network. Each line includes the input weights and
its threshold level of a neurone. Therefore, the element wjkm in the three-dimensional
matrix is the weight ‘m’ of the neurone ‘k’ situated in the layer ‘j’ inside the neural
network. The threshold level corresponds to the last element in each line and is not
treated any differently to the input weights because it can be considered as an extra
weight supplied with a constant input signal –1. In the case of a one-layer network, the
components of the error gradient are calculated according to (4.12) where the input
signal xm is the corresponding input signal.
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As demonstrated in [243], bipolar sigmoidal activation functions given by (4.2) have
the property (4.13), so that the equation (4.12) can be transformed into (4.14).
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If the network has more than one layer then the input signal xm is generated by the
neurone ‘m’ in the layer two so that xm has to be replaced with f2m. Equations (4.16) and
(4.17) illustrate the calculations for the neurones in layers two and three.
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The previous calculations can be generalised for any number of layers [155], [243].
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Each component of the gradient is determined following the iterative process (4.18).
Similar results are obtained for all types of sigmoidal activation functions These equations
justify the name of the training algorithm: the output errors of the FFANN affect the
calculations referring to any weight because their influence propagates back to the
inputs from one layer to the next in accordance with (4.18).
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The back-propagation algorithm faces the well-known problem of any non-linear
optimising algorithm using the gradient method: it can become stuck in a local minimum
of the objective function (the function ‘Err’ in this case). Therefore, the back-propagation
algorithm is not guaranteed to generate a satisfactory solution for all input–output
association problems and FFANN architectures. The training result depends on several
factors [243]:

• Network architecture (number of layers, number of neurones in each layer).
• Initial parameter values W(0).
• The details of the input–output mapping.
• Selected training data set (pairs of inputs and corresponding desired outputs).
• The learning-rate constant η.

Back-propagation is not a constructive algorithm; the network architecture has to be
chosen in advance. Unfortunately, there is no clearly defined set of rules to be followed
in order to decide which is the most appropriate architecture for a problem. Choosing
the architecture is a result of a trial and error process supported by previous experience.
However, it has been mathematically demonstrated that any input–output mapping can
be learned by a FFANN with only one hidden layer, provided that the number of
neurones in the hidden layer is large enough for the problem to be solved [173]. This
means that if a neural network proves incapable of learning how to perform a certain
task, the one possible solution is to increase the number of neurones in the hidden layer
or layers.

A different solution is to restart the algorithm with another set of initial parameters
W(0). This solution is based on the assumption that the previous failure was generated
by stopping at a local minimum. The trajectory of vector W in the parameter space is
dependent on its starting point W(0), therefore, the situation may be avoided by changing
the initial weights and thresholds.

Another important aspect is choosing an adequate training data set, so that if the
number of different input values is finite, the training data set covers all the possibilities.
Nevertheless, if this number is infinite (e.g. when the inputs are analogue signals), or if
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the number is too large, then only a selection of input combinations will be used to train
the neural network. The quality of the training process is influenced by the way the
training data set is generated. If the training data set adequately covers all the aspects of
the input–output mapping, then the network will be able to generate correct answers for
inputs that were not used during the training period. This property is called ‘generalisation’
and is made possible by the fact that any FFANN actually performs an interpolation in
an n-dimensional space (where ‘n’ is the length of the input vectors) [121]. The interpolation
is carried out based on the information provided by the input vectors used during the
training period. If the input–output mapping is continuous and smooth, then the network
will easily generalise and yield correct answers as a result of a training performed with
only few input vectors. If the input–output mapping is rugged and complicated, then a
large number of input vectors is required for an adequate training process. The training
process may require hundreds, thousands or even millions of steps of the type described
by (4.11). The actual number depends on the nature of the input–output mapping and on
the learning-rate constant η. A large value for η accelerates the training process but also
increases the chance that the vector W oscillates around the final solution without ever
reaching it. A small η increases the chances to obtain the desired solution but also
increases the necessary number of training cycles.

4.3.2 Algorithms derived from the back-propagation method

A series of new algorithms have been derived in the last two decades from the classical
back-propagation method. They bring improvements to the training process by accelerating
the convergence and improving the chances of finding a good solution for particular
application types. The improvements proposed can be summarised as:

• The learning-rate constant η is varied after each training cycle. It starts with a large
value that is progressively diminished during the training process. Therefore, the
training process is fast at the beginning but the final oscillations are avoided because
η decreases during the training process.

• Every adjustable network parameter has its own learning-rate constant ηi. The back-
propagation algorithm may be slow, because the use of a unique learning-rate parameter
may not suit all the complicated error variations in the NW-dimensional parameter
space. Thus, a learning-rate value that is appropriate for the adjustment of one weight
is not necessarily appropriate for the adjustment of another. Thus, the learning algorithm
is described by equation (4.19).
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• If one learning-rate is associated with each network parameter, then all the learning-
rates are allowed to vary from one training cycle to the next. The variance may be
calculated according to the first ballet point. More sophisticated methods may calculate
the learning-rate constants based on the error function partial derivatives. Therefore,
ηi is large if the influence of wi over the error is small and ηi is small otherwise
(4.20).
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• If the sign of the error derivative ∂Err/∂wi oscillates for several consecutive iterations,
the corresponding learning-rate parameter ηi is decreased.

• The convergence of the training is accelerated by supplementing the current weight
adjustment with a fraction of the previous weight adjustment, as shown in equation
(4.21). This algorithm is named the momentum method [243] and the second term
indicating the fraction of the most recent weight adjustment is called the momentum
term. The momentum term α is a user-selected constant with values between 0.1 and
0.8.

W(t + 1) = W(t) – η · ∇Err + α[W(t) – W(t – 1)] (4.21)

Real-time recurrent neural networks need to be trained in such a manner that they
learn a certain temporal correlation between inputs and outputs. A promising training
method applicable to such situations and named the dynamic back-propagation training
[112] has been derived from the classical one. The main feature of the new method is
that input vectors are not applied randomly, but in rigorously defined series. The expected
outputs depend both on the current input and on past inputs, while the error calculation
is performed globally for the entire temporal series of input vectors.

4.3.3 Training algorithms for neurones with step
activation functions

If the activation functions of the neurones in FFANN are not sigmoidal, the back-
propagation algorithm cannot be used because the error function cannot be derived.
However, two other recursive methods presented in (4.22) and (4.23) are applicable to
the FFANNs with only one layer. These are recursive methods like the back-propagation
algorithm, but in this case, the training process always has a finite number of cycles,
provided that the desired input–output relation can be learned by a one layer network.
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Finding the correct weights for a multilayer FFANN with step activation functions is
a complicated problem. The two previous methods cannot be generalised for such
networks and either constructive methods or genetic algorithms need to be used
instead.

There are many other training algorithms than the ones presented here. However, the
algorithms presented are used in the vast majority of control applications. The other
algorithms known in the literature are used for mainly other types of applications like
signal processing, associative memories, neurologic studies, etc.
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4.3.4 The Voronoi diagram algorithm

The Voronoi diagram is a constructive algorithm applicable to FFANNs composed of
neurones with a step activation function [47]. As previously mentioned, any FFANN
containing step activation function neurones solves a classification problem. The Voronoi
diagram is a graphical representation of the classification problem to be implemented by
the FFANN. Let us consider the m-dimensional space of the input data and a set of
points in this space, corresponding to a given set of input vectors. The Voronoi diagram
(also known as Thiessen polygons or Dirichelet tessallation) is a partitioning of the m-
dimensional space into convex regions called Voronoi cells, each of which defines the
region of influence of one given point in its interior. Any Voronoi cell can be defined as
the intersection of a finite number of half-spaces and is therefore delimited by a finite
number of hyperplanes.

Each hyperplane can be modelled by one neurone with a step activation function such
as (4.7) or (4.8). In the unipolar situation, the neurone generates the output signal ‘1’ for
the inputs corresponding to points on a given side of the hyperplane, while ‘0’ is
generated for all the other inputs. As illustrated by (4.24), there is a one-to-one
correspondence between the algebraic parameters defining the hyperplane and the neurone
parameters. The same applies to bipolar neurones, but the output ‘0’ is replaced by ‘–1’.
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A Voronoi cell is defined by its borders. Consequently, a point in the input data space
belongs to a certain Voronoi cell only if all the corresponding neurones simultaneously
generate the required outputs. Thus, the set of convex cells in a Voronoi diagram can be
modelled by a FFANN with two layers. The input layer contains the neurones modelling
the hyperplanes and the second layer contains one neurone for each convex cell. All the
neurones defining the borders of a particular cell feed the corresponding neurone in the
second layer. The classes defined by a classification operation are not necessarily convex.
Therefore, one class may be the union of several Voronoi cells. As a result, a third layer
is necessary in the corresponding neural network. The third layer contains one neurone
for each class of input vectors. Each neurone is connected only to those neurones
in the second layer implementing Voronoi cells that are part of the given input
vector class.

Figure 4.8 illustrates a Voronoi diagram example built for a neural network with two
inputs and one output. Thus, the diagram is two-dimensional and the hyperplanes are
straight lines. The shaded areas cover the Voronoi cells that belong to the class ‘1’, the
other cells are part of class ‘0’. There are four Voronoi cells in Fig. 4.8: ra, rb, rc, rd that
belong to class ‘1’, and they are bounded by nine lines modelled by neurones n1 through
n9. Therefore, the first neurone layer contains nine neurones, the second contains four
neurones (one neurone for each of the Voronoi cells) whereas the third layer contains a
single 4-input neurone (Fig. 4.9). The outputs of the neurone in the third layer are
‘1’ when X1 and X2 correspond to a point in one of the shaded areas and ‘0’ for all the
other cases.
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Very efficient computer algorithms have been developed for the construction of Voronoi
diagrams in high dimensional space [89]. They are able to solve this class of problem in
linear time and this performance provides tremendous impetus for further research on
this topic.

Fig. 4.8 The Voronoi diagram for a 2D example

Network output
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X1 X2

n1 n7 n8 n6 n2 n5 n4 n9

Fig. 4.9 The neural architecture based on the Voronoi diagram in Fig. 4.8
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4.4 Control applications of ANNs

In recent years, neural solutions have been suggested for many industrial systems using
either feed-forward or recurrent neural networks. Most of the published papers describe
control system applications built around a feed-forward neural network included inside
a traditional feedback control system. The ANN is usually made up of sigmoidal activation
function neurones and back propagation is normally used to train the network either on-
line or off-line. Some applications use neurones with a radial base activation function.
The ANN may play different roles: plant identification [105], [212], non-linear controller
[131], [225], and fault signalling [127], [126]. The neural plant identification technique
can be applied to induction motor sensorless speed estimation, for example in [38]
where the plant parameter to be identified is the rotor speed.

Typical neural networks used for identification purposes are multilayer feed-forward
structures containing neurones with sigmoidal activation function. There are two
configurations for plant identification: the forward configuration and the inverse
configuration [243]. In case of forward configuration, the neural network receives the
same input vector x as the plant, and the plant output provides the reference output Oref

during the training (Fig. 4.10(a)). During the identification, the norm of the error vector
||Oref – O|| is minimised using the back-propagation algorithm. As illustrated in Fig.
4.10(b), the inverse plant identification employs the plant output y as the network input,
while the neural network generates an approximation of the input vector of the plant.
The norm of the error vector to be minimised through learning is therefore ||x – O||.

Fig. 4.10 Neural network configuration for plant identification: (a) forward plant identification;
(b) inverse plant identification
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Feed-forward neural networks generate instantaneous response, thus they can model
the steady-state operation of the plant but are not directly capable of modelling its
dynamic behaviour. To account for the plant dynamics, the FFANN has to be supplied
with a series of past inputs of the plant. Such an approach requires that the neural
network is interfaced with a shift register that stores the time series of input vectors (see
Fig. 4.11). The shift register is updated at each operation step. An update consists of
storing the most recent input vector and discarding the oldest input vector.

An alternative solution is to use recurrent neural networks. This solution is purely
neuronal in that it does not require a shift register. However, most of the control systems
have used the first solution so far, because the dynamic back-propagation algorithm
requires more computation resources than its static counterpart.

Both identification configurations have advantages and disadvantages. Forward plant
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identification is always feasible, but it does not immediately allow for the construction
of the plant control. In contrast, plant inverse identification facilitates simple plant
control. However, the identification itself is not always feasible because in some cases
more than one vector x corresponds to a certain vector y (or series of such vectors).

Figure 4.12 presents a basic control system using a neurocontroller. There are two
alternatives: either the neural network is trained only off-line in an inverse identification
configuration, as presented in Fig. 4.10(b), or it is initially trained off-line but the
training continues on-line in the control system. For training purposes, the back-propagation
algorithm is the most appropriate. Shift registers are used, both during the off-line
identification process and inside the control system, to enable the modelling of the
dynamic plant behaviour. The neurocontroller input consists of the most recent plant
outputs plus the output reference for the current time. Therefore, at each operation
step, it generates a control vector O that causes the plant to produce the expected
output yref.

Fig. 4.11 Neural network interfacing for modelling the plant dynamics
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Fig. 4.12 Basic control system configuration using a feed-forward neurocontroller

The fault signalling applications are part of the larger class of classification
applications. The task of the neural network is to analyse the input data and to generate
information about the operation of the plant: normal operation, or abnormal operation.
In the second case, it may give further details about the abnormality: short circuit,
surpassing voltage or speed limits, etc. The neural network is of the feed-forward type
and is trained off-line using experimental data that reflects all possible operation modes
of the plant.
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4.5 Neural network implementation

Hardware implemented neural networks are essentially arrays of interconnected processing
units that operate concurrently. Each unit has a simple internal structure that, in some
cases, includes a small amount of local memory. The most important design issues
concerning any neural network hardware implementation are the degree of parallelism,
the information processing performance, the flexibility and the silicon area. There are
several categories of neural network hardware implementation [161]:

• Analogue implementation.
• Digital implementation.
• Hybrid implementation.
• Optical implementation.

4.5.1 Analogue hardware implementation

Analogue neural networks can exploit physical properties of silicon devices to perform
network operations obtaining very high processing speed. However, analogue design
can be very difficult because of the need to compensate for parameter variations with
temperature, manufacturing conditions, etc. One approach is to implement neurones
using common operational amplifiers and resistors [243]. The operational amplifier
implements the activation function, while the resistors determine the weight values (Fig.
4.13). The amplifier output voltage Vout depends on the input voltages V+ and V– that, in
turn, depend both on the input voltages and on the resistors’ values. Ohm’s laws are used
to perform all the necessary calculations.
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Fig. 4.13 Neurone implementation using operational amplifiers and resistors

The implementation style using resistors ensures very good linearity but it is not
flexible because the weight values are set during the manufacturing process and they
cannot be altered afterwards. Creating a changeable analogue synapse involves the
complication of analogue weight storage. The simplest approach is to replace the fixed
value resistors by MOS transistors that can operate as voltage adjustable switches. Each
transistor is controlled by a voltage Vgs produced by the charge stored on a capacitor,
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which periodically has to be refreshed. The influence of Vgs upon the resistance between
the source and the drain of each transistor is illustrated in Fig. 4.14. Thus, the dependence
between Ids and Vds is not linear but it can be used as an acceptable approximation of a
linear function within certain ranges of currents and voltages. More sophisticated
multiplication mechanisms (such as Gilbert multipliers) need to be used if very good
linearity is required over a large range of voltages.
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Fig. 4.14 Neurone implementation with electrically tuneable weights

The number of operational amplifiers that can be integrated on a chip is limited.
Therefore, the implementation methods that use operational amplifiers are applicable
only to small-scale neural networks. To obtain high integration densities, the implementation
of the activation function is performed with very simple circuits. A minimalist design
style is adopted in the analogue approach described in [21]: each activation function is
modelled by a circuit containing a single MOS transistor. The design methodology is
based on current-mode subthreshold CMOS circuits, according to which the signals of
interest are represented as currents. The current mode approach offers signal processing
at the highest bandwidth for a given power consumption. In [171] a different approach
is described: the basic building block is a transconductance amplifier (Fig. 4.15). In its
basic form, the amplifier contains three MOS transistors and transforms a differential
input voltage Vin = V1 – V2 into a differential output current Iout = I1 – I2. The relationship
between input and output is non-linear and is a good approximation of a sigmoidal
activation function.

Fig. 4.15 Circuit diagram of a differential transconductance amplifier
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The first analogue commercial chip was the Intel 80170NW ETANN (electrically
trainable analogue neural network) [12]. It contains 64 neurones and 10 280 weights.
The non-volatile weights are stored as charge on floating transistor gates and a Gilbert
multiplier provides 4-quadrant multiplication. A flexible design, including internal feedback
and division of the weights into 64 × 80 banks, allows multiple configurations including
three layers of 64 neurones/layer, and two layers with 128 inputs and 64 neurones/layer.
No on-chip training was provided, so the connection with a PC is necessary. The PC
performs the training process and then transmits the resulting weight values to the
neural chip.

New implementation technologies and possible applications of analogue neural chips
continue to be investigated and several successes have been reported in the literature
[176], [156], [163], [109], [168].

4.5.2 Digital hardware implementation

The digital neural network category encompasses many subcategories including slice
architectures, single instruction multiple data (SIMD) approach, systolic array devices,
radial basis function (RBF) architectures, ASIC and FPGA implementations. For designers,
digital technology has the advantage of mature fabrication techniques and digital chips
are easily embedded into most applications. However, digital calculations are usually
slower than in analogue systems, especially when performing the multiplications between
weights and input signals. Moreover, analogue inputs must first be converted into digital
format. The most common performance rating used to compare digital neural
implementations is the connection-per-seconds (CPS), which is defined as the rate of
multiplication and accumulate operations during normal operation.

Slice architectures for neural networks provide basic building blocks to construct
networks of arbitrary size and precision. For example, the NeuroLogix NLX-420 Neural
Processor Slice has 16 processing elements and a speed of 300 MCPS. A common 16-
bit input bus is multiplied by different weights in each parallel processing element. The
weights are initially read from outside the chip. The 16-bit weights and inputs can be
selected by the user as 16 1-bit values, four 4-bit values, two 8-bit values or one 16-bit
value. The 16 neuronal inputs are processed by a user-defined piecewise continuous
activation function to produce a 16-bit output. Internal feedback allows the implementation
of multilayer networks and multiple chips can be interconnected to build large networks.

A far more elaborate approach is to place many small processors on a chip. Two
architectures dominate such designs: single instruction with multiple data (SIMD) and
systolic arrays. For SIMD design, each processor executes the same instruction in
parallel, but on different data. In systolic arrays, the basic processors are connected in
a matrix architecture. Each processor does one calculation step before passing its result
on to the next processor in a pipelined manner. A systolic array system can be built with
Siemens MA-16. The MA-16 provides fast matrix operations using 4 × 4 processor
matrices with a 16-bit interconnecting bus. The overall performance is 400 MCPS. The
multiplier and accumulator outputs have 48-bit precision. Weights are stored on-chip
and neurone activation functions are generated off-chip via look-up tables. Multiple
chips can be cascaded.

The networks with RBF neurones provide fast learning and straightforward
implementation. The comparison of input vectors to stored training vectors can be done
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quickly if non-Euclidean distances (such as the Manhattan norm shown in (4.25)) are
calculated with no multiplication. One of the commercially available products is the
Nestor NI1000 chip. The Nestor NI1000, developed jointly by Intel and Nestor, contains
1024 stored vectors of 256 5-bit elements. The chip has two on-chip learning algorithms,
but it is relatively slow: 40 kCPS.

||  –   ||  =  |  –   |ManhattanX Y x y
i i iΣ (4.25)

Digital ASIC and FPGA solutions require that the ANN is fully designed and trained
for a particular application before its actual hardware implementation. The operation of
the ANN is usually described in terms of Boolean functions or in terms of logic operations
and threshold gates (TGs). The threshold gate is a more general concept than a logic
gate. Any logic gate can be considered a particular case of a TG but TGs can perform
more complex information processing tasks than logic gates. They have inputs with
different integer weights that make them very suitable for neurone hardware
implementation. Unfortunately, the technology limits the weights to small integer values:
0, ±1, ±2, ±3. The direct use of TGs to implement neurones generates compact hardware
structures, but this approach can only be used for a limited number of ASIC technologies.
It cannot be used for FPGA implementation because they are not available inside the
complex logic blocks (CLBs) of FPGA chips. However, the indirect use of TGs is
possible because a TG can be emulated by a digital structure composed of no more than
a few AND, OR and NOT interconnected logic gates.

Designing an ANN for a specific application involves the use of either training
algorithms or constructive algorithms. Constructive algorithms are the preferable approach
in many situations because they are able to determine both the network architecture and
the neurone weights and are guaranteed to converge in finite time. A large number of
constructive algorithms, reviewed in [36], have been developed in the last decade. They
are divided into three categories: geometric ([47], [193]), network-based [205] and
algebraic [120]. Several VLSI friendly algorithms have been created in order to bring
closer the design stage and the implementation stage. These algorithms consider some
specific aspects of VLSI implementation technology: the precision of the input weights
and the neurone fan-in. These factors lead to important limitations that need to be taken
into account when designing a neural network. One of the first VLSI friendly algorithms
used the concept of an ‘adaptive tree network’ [22]. Further research in this direction has
been extended by using a combination of AND gates and OR gates, alongside threshold
gates (TGs) [25].

4.5.3 Hybrid implementation techniques

Hybrid design attempts to combine the advantages of analogue and digital techniques.
The use of analogue implementation is attractive for reasons of compactness, speed and
the absence of quantisation effects. The advantage of digital signals is their robustness.
These signals are not affected by disturbances and the calculations performed in digital
format always yield precise results.

The pulse modulation technique is one of the most promising principles that can be
used to develop efficient hybrid architectures. Using pulse modulation, the internal
signals of the neural network are modelled as pulse streams whose parameters are varied
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in accordance with the neurone states. Depending on the parameter that is varied, there
are three theoretical alternatives: the pulse amplitude modulation, the pulse width
modulation and the pulse frequency modulation [110].

In case of pulse amplitude modulation, the amplitude of the pulses is modulated in
time in a manner that reflects the variation of the corresponding neurone signal. This
technique is not satisfactory in neural networks because the information is transmitted
as analogue voltage levels, which makes it susceptible to processing errors due to circuit
parameter variations.

The pulse width modulation method alters the pulses’ duration according to the
amplitude of the neural signal. The pulse width modulated signal is robust since the
information is coded as a set of time intervals and no analogue voltage is used. However,
if several signals in the neural network have almost similar values, then a large number
of pulse edges occur almost simultaneously. The existence of this synchronism represents
a drawback in VLSI networks since many synapses tend to draw current from the
internal supply lines simultaneously. It follows that the internal supply lines have to be
oversized to accommodate the high instantaneous currents that may be produced by the
use of pulse width modulation.

Pulse frequency modulation maintains both the amplitude and the width of the pulses
constant but modifies the frequency of the pulses. This modulation scheme generates
robust signals as well. Moreover, different signals modelling the equal analogue quantities
are usually phase-shifted, which leads to avoiding the synchronism of the pulse edges.
Thus, the power requirement is averaged over time as a result of using pulse frequency
modulation. Hybrid neural networks combining pulse frequency modulation and neurones
implemented in analogue technology have been successfully designed and implemented
[178], [58].

Another reason for producing hybrid neural network implementations is the need to
interface the neural architectures with existing digital equipment. In such a situation, the
external inputs and outputs are digital, to facilitate the integration into the digital systems,
while internally some or all of the processing is done in analogue technology. The
AT&T ANNA chip, for example, is externally digital and all the internal signals are in
digital format, but it uses capacitor charge to store the neurone weights [195]. The
charge is periodically refreshed by a specialised internal mechanism. The chip structure
includes multiplying digital-to-analogue converters (MDACs), electronic devices capable
of multiplying a digital value with an analogue signal. The MDACs are used to perform
the multiplications between the weights and the input signals of each neurone. Conversely,
the Bellcore CLNN-32 chip uses digital 5-bit weights, but the neurone inputs and
outputs are analogue signals [19]. As in the case of the ANNA chip, the multiplications
between weights and signals involve the use of MDACs. The overall performance of the
Bellcore chip is 100 MCPS. Thus, the MDACs allow the neural network designer freely
to combine analogue and digital technologies in an optimal fashion for a given application
problem.

4.5.4 Software versus hardware implementations

Software implementation uses a classical von Neuman machine (a general-purpose
microprocessor or a DSP). This approach can be used to implement any kind of neural
network structures and any training algorithm. However, neural networks simulated on
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von Neuman machines run in a series fashion which does not allow them to be used in
real-time applications. The operation speed of the neural network is inversely proportional
to the number of neurones. Consequently, very large neural networks can only be efficiently
software implemented if special hardware resources are also available: either large
general-purpose parallel machines or cheaper alternatives such as specialised coprocessors,
or accelerator cards for personal computers.

The hardware approach overcomes the speed limitations of software implemented
neural networks. True parallel operation mode is achieved in this case, making the
calculation speed independent of the network complexity. The actual speed of hardware
implementation solutions depends on the technology. The highest speed is achieved
using optical implementations while the lowest speed is obtained with the electronic
digital architectures. Several optical neural processors have been reported in the literature
[94], [90]; however, optical technology has not yet attained maturity. The approach is
still too expensive, too imprecise and too rigid, so electronic implementations are preferred
in most cases.

The training process is faster in the case of specialised chips when compared to
software implementations but only relatively simple training strategies are currently
implemented into hardware. Thus, a limited number of training algorithms can be performed
on-line. If the practical application does not require on-line training, the training process
can be performed off-line in a software system, and then the resulting weights can be
downloaded into the neural chip. Alternatively, the obtained weights can be used to
produce an ASIC or FPGA implementation. FPGA implementations are preferable as
they allow fast prototyping and furthermore, some FPGA chips are able to change their
structure on-line. This feature supports the design of a large range of new on-line
training algorithms for digital implemented neural networks.



This chapter describes a new strategy for implementing neural networks into digital
hardware using logic gates and determines the resulting implementation complexity to
prove its superiority when compared to results previously presented in the literature.
The strategy is illustrated by a complete implementation example: the neural network
controlling the current through the stator windings of the induction motor. Experimental
results are presented to demonstrate the validity of the adopted design and implementation
principles.

5.1 Neural networks design and
implementation strategy

The FFANN design and implementation manner adopted in this book is adapted to
applications that require high operation speed, accurate control over the network outputs,
low cost digital hardware and fast prototyping. FPGA chips are ideal for fast prototyping
but the low cost versions still have a limited number of available logic gates. Therefore,
the amount of required hardware resources needs to be minimised by optimising the
number of neurones and by a compact implementation of each neurone. The classical
FFANN design method using neurones with sigmoidal activation function and the back-
propagation training algorithm is not appropriate in this context because the resulting
number of neurones is large and the sigmoidal activation function requires a considerable
amount of hardware resources for implementation. Therefore, neural networks designed
using the constructive Voronoi algorithm and consisting of neurones with step activation
functions were used instead. The constructive algorithm ensures the minimisation of the
neurone number, while the step activation function simplifies the implementation size of
each neurone.

5.1.1 General implementation principles

The hardware resources offered by FPGA chips are limited to logic gates and flip-flops.
The implementation strategy developed in this book uses exclusively logic gates to
transform any FFANN into a digital hardware structure. The strategy exploits the
equivalence between the operation of logic gates and the operation of particular types of
neurones. N-input AND gates and n-input OR gates are assimilated to n-input unipolar

5

Neural FPGA implementation
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binary neurones (the input and output values can only be ‘0’ or ‘1’) having positive input
weights. The difference between the two logic gate types consists in the relationship
between their input weights and the threshold level.

An OR gate output is activated whenever at least one of the inputs is active (is ‘1’).
Thus, the threshold level of the corresponding neurone is positive, but lower than the
smallest input weight, as illustrated by (5.1).

0 <   min { }ORt w
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i≤ (5.1)

The output of an n-input AND logic gate is activated only when all the ‘n’ inputs are
active. Therefore, the threshold level in this case can be as large as the total sum of all
the input weights. However, it cannot be higher than this sum because otherwise the
output cannot be activated in any conditions at all.
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On the other hand, the threshold level of the corresponding neurone must be higher
than the total sum of any combination of ‘n – 1’ input weights. This condition is
expressed by (5.3):
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As a result, the threshold levels for the two sorts of neurones are confined within the
interval limits shown in (5.4). Conversely, any neurone with binary input signals (‘0’
and ‘1’) whose parameters comply with one of two conditions (5.4), behaves either as
an AND gate or as an OR gate.
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Neurones whose parameters do not comply with any of the two relations (5.4) can be
implemented as a configuration containing several interconnected logic gates. The details
of the hardware configuration depend on the relationship between the input weights and
the threshold level. The number of necessary gates increases with the complexity of this
relationship. To simplify the logical analysis, the adopted implementation strategy
decomposes the complex neurones into a pyramidal structure of simpler subneurones.
Each subneurone can be further decomposed into higher-order subneurones until each
of them can be implemented with a small number of logic gates.

As explained in Chapter 4, the Voronoi algorithm produces a FFANN with up to three
layers of neurones with step activation functions. The algorithm version that produces
unipolar neurones is adopted because unipolar neurones are more adequate for hardware
implementation than bipolar neurones. The network accepts analogue input signals but
generates digital output signals. The neurones in the input layer have analogue inputs
and binary outputs, while the rest of the neurones operate only with binary signals.
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Therefore, the neurones in layers two and three are appropriate for direct digital hardware
implementation. The neurones in the first layer need to be converted first into a digital
form that uses bit patterns as inputs instead of analogue signals.

The most appropriate binary codification to be used for neurone input quantities is
the complementary code (also named ‘two’s complement’ and symbolised by C2). It is
used mainly in computer technology for integer number representations, but it can be
readily adapted for real values in the interval [–1; +1). Considering an n-bit representation
‘bn–1 bn–2 bn–3 . . . b1b0’, the corresponding integer value (In) is given by:
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The largest positive number, which can be represented on ‘n’ bits, is 2n–1 –1 while the
smallest number is –2n–1. Real values between –1.0 and +1.0 can be represented dividing
all the integer values In by 2n–1. Thus, equation (5.6) illustrates the complementary code
extended to real numbers:
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The large-scale utilisation of complementary code in digital technology is due to the
advantages of simple hardware implementation of addition and subtraction. A hardware
implemented neural control system contains not only neural networks but also traditional
digital structures. Therefore, the use of the same codification manner for the two modules
is an important advantage because it simplifies the interface between them. Thus, the
new implementation strategy consists of two parts. In the first phase, the initial FFANN
mathematical model is digitised, so that the neurones in the input layer operate only
with binary signals. The input signals of the converted FFANN consist of bit strings
coding the values of the initial analogue inputs. In the second phase, all the neurones are
converted into a set of interconnected logic gates. The implementation into logic gate
structures is performed neurone by neurone. Each neurone corresponds to a hardware
configuration containing at least one logic gate.

5.1.2 Model digitisation

The equations underlying the conversion of the analogue neurones into equivalent digital
neurones can be demonstrated by decomposing this process in two successive stages.
The first stage is to replace the analogue input signals by binary patterns. The second
stage brings additional corrections to the neurone mathematical model, so that the
resulting neurones use the complementary code extended to real numbers described
by (5.6).

The principles underlying the digitisation process involve two basic concepts: the
codification style and the neurone behaviour. The codification style, illustrated in Fig.
5.1, is defined as the correspondence between the initial analogue input signals and the
binary input codes used by the digital neurone. On the other hand, the neurone behaviour
is described by the relationship between the analogue inputs and the neurone output
signal. The initial neurone behaviour has to be maintained unchanged during the two
stages of the digitisation process. To achieve this, the neurone parameters (input weights
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and the threshold levels) need to be modified at each conversion stage, in a manner that
counteracts the effects of replacing the analogue input signals with binary patterns.

The minimal condition to attain this aim is to perform the changes such that the sign
of the activation function argument is kept constant. This principle is expressed by
equation

sign     –   = sign(net –  ) = constant
=1
Σ
i

m

i iw x t t⋅





(5.7)

However, for reasons of mathematical simplicity, a more restrictive condition is used
instead, namely the argument ‘net – t’ of the activation function is itself kept constant
rather than only the sign of it:

Σ
i

m

i iw x t t
=1

    –   = net –   = constant⋅ (5.8)

5.1.2.1 Conversion stage one

The first step, illustrated in Fig. 5.2, transforms the analogue neurones generated by
means of the Voronoi algorithm into digital neurones. The newly obtained neurones
receive binary patterns on their inputs instead of analogue signals. The task is achieved

Fig. 5.1 Basic concepts related to the neurone digitisation process
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Fig. 5.2 The neurone model before and after stage one of the conversion
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by keeping the threshold level unchanged while splitting each input defined by its initial
weight wij into nb subinputs, whose weights wijp (p = 0, 1, . . . nb – 1) are calculated as:
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(5.9)

The superscript ‘(1)’ in equations (5.9) shows that the corresponding quantities have
been calculated during the first conversion stage. Likewise, the superscript ‘(2)’ identifies
the quantities calculated during the second conversion stage.

The result of the previous calculations is that the initial ‘m’ inputs are turned into ‘m’
input clusters, each cluster containing ‘nb’ subinputs. The symbol ‘wij’ stands for the
weight number ‘j’ of the neurone ‘i’ in the network, while ‘ ’(1)wijp  represents the weight
of subinput ‘p’ in cluster ‘j’ pertaining to neurone ‘i’. The index p = 0 corresponds to the
least significant binary figure, while p = nb – 1 corresponds to the most significant one.

According to the previous considerations, only those neurone parameter changes that
maintain argument ‘neti – ti’ of the activation function constant are allowed. The argument
corresponding to the neurone after the first conversion stage is calculated as
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where x jp
(1)  (p = 0, 1, 2, . . . nb – 1) are the bits of the binary code received by each new

neurone input.
Equation (5.10) can be transformed into

net  –   =    –  +  2    –  (1) (1)

=1 ( –1)
(1)

=0

–2
–  +  + 1 (1) (1)

i i j

m

ij j n p

n
n p

jp it w x x t
b

b
bΣ Σ⋅ ⋅







(5.11)

The expression between parentheses corresponds to the extended complementary
code definition given in equation (5.6). Therefore, (5.11) is further transformed into

net –  =     –   =     –   = net  –   (1) (1)

=1
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=1i i j

m

ij j i j

m

ij j i i it w x t w x t tΣ Σ⋅ ⋅ (5.12)

where xj is an analogue input value of the initial neurone. This proves that the condition
expressed by (5.7) is fulfilled. Thus, during conversion stage one the codification style
based on the complementary code has been introduced and the required modifications
of the neurone parameters have been performed so that the neurone behaviour has been
maintained unchanged.

5.1.2.2 Conversion stage two

The conversion of the neural network into logic gate architecture is based on the relations
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(5.4) and on the possibility to transform any neurone into an equivalent structure containing
interconnected elements that comply with (5.4). Such transformations are possible only
if all the neurone weights are positive. The stage one neurones may have both positive
and negative weights. The second conversion stage aims to replace these neurones with
equivalent ones having only positive weights. The simplest way to eliminate negative
input weights is to use only the module of their values. Consequently, the relationship
between stage one neurone weights and their stage two counterparts is expressed by

w wijp ijp
(2) (1) = | | (5.13)

Adopting this method means that supplementary parameter alterations are required in
order to counteract the neurone behaviour alteration which is caused by changing the
sign of some input weights. As the weight values have already been changed according
to (5.13), the neurone behaviour can be corrected by changing the threshold level and/
or the codification style.

It can be demonstrated that no change of the threshold level can counteract the effect
of the input weight alterations. Thus, the change of the threshold level needs to be
carried out in such a manner that equation

net – =  | |  –  =     –  = net – (2) (2)
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is fulfilled for any input bits xijp. However, if the input signals to the stage two neurones
are the same as the inputs to stage one neurones (  = )(2) (1)x xijp ijp , then there is no constant
value ti

(2)  that allows (5.14) to be valid for any combination of input signals. To prove
this, the value of ti

(2)  can be calculated as
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which is derived from equation (5.14). The value calculated according to (5.15) is
dependent on the input bits xijp

(1)  and therefore is not a constant as the threshold level
should be.

Equation (5.15) demonstrates that no acceptable solution exists when the codification
style of stage one neurone is identical to the codification style of stage two neurone.
Therefore, the codification style needs to be altered as well. A simple solution to this
problem can be found if the input bits corresponding to negative input weights at stage
one neurones are reversed at stage two neurones. The modification can be readily
implemented into hardware with NOT logic gates as shown in Fig. 5.3.

The relationship between the input bits of stage two neurones and stage one neurones
is expressed by function
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The two situations in (5.16) can be compressed into equation
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where the ‘sign’ function is defined by
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Using (5.13) and (5.17), the argument of the transfer function for stage two neurones
can be calculated as
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and
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Given the requirement of equality between the two activation function arguments, the
threshold level can be calculated based on equation
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Therefore, the result is
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The threshold level ti
(2)  is constant in equation (5.22) because it depends exclusively on

constant quantities. The parameters of stage one neurones depend on the initial parameters
as described by (5.9). Consequently, (5.22) can be successively transformed as:
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Fig. 5.3 The neurone ‘i’ before and after stage two of the conversion
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Thus, the parameters of the final digital neurones can be calculated as a function of
the initial analogue neurone parameters by combining (5.28) with (5.13) and (5.9), the
result being
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As shown in Fig. 5.4, the final implementation solution uses a codification style that
involves two binary codes. The first one is the complementary code. This code is
transformed by a set of NOT gates into the second code, which is directly used by the
neurone obtained after the second conversion stage. This neurone model has only positive
input weights so that it can be transformed into a digital structure containing exclusively
AND logic gates and OR logic gates.

Fig. 5.4 Neurone conversion solution
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5.1.3 Digital model implementation using logic gates

The FFANN implementation into a hardware structure is performed separately for each
neurone. The implementation method requires that at first the array of input weights
wijp

(2)  is sorted in descending order. The sorted array contains a total number of A = m ×
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nb elements ( , ,  . . . )1 2 3w w w ws s s
A
s , where ‘m’ is the number of analogue input signals

and nb is the number of bits used for each input code. The sorted weights correspond to
the input signals x x xs s

A
s

1 2, , . . . . An iterative conversion procedure is used to analyse the
input weights and to generate the corresponding netlist description of the logic gate
implementation. As mentioned in section 5.1.1, the iterative procedure decomposes the
initial neurone into a pyramidal structure of interconnected subneurones. The structure
comprises a top subneurone, a layer of first-order subneurones, a layer of second-order
subneurones, etc. The subneurones have all the properties of normal neurones but they
have fewer inputs than the initial neurone. Some subneurones are implementable by
very simple logic gate configurations. The rest are further decomposed into second-
order and third-order subneurones until all of them are implemented.

5.1.3.1 Preliminary considerations

A series of interrelated basic concepts needs to be defined before describing the iterative
hardware implementation process: terminal weight group, group threshold level,
dominant weight, cumulated weight, critical weight, non-critical weight, significant
weight, insignificant weight.

A terminal weight group (or simply a terminal group) is a set of weights comprising
the last N consecutive elements in the sorted array. Therefore any terminal weight
group can be uniquely identified by the symbol Gt(F) where ‘F’ is the index of its first
element. There are a number of A overlapping terminal weight groups in the sorted
array: Gt(1), Gt(2), Gt(3), . . . , Gt(A). Terminal weight group Gt(1) encompasses all the
weights in the array. The weights of each first-order subneurone generated by the
iterative implementation algorithm are the weights of a terminal group. However, no
terminal group generates a first-order subneurone in the final implementation. Thus,
the number of first-order subneurones in the pyramidal logic gate structure is situated
in the interval [0; A].

The group threshold level Tt is a quantity calculated by the conversion algorithm for
each terminal group of weights that is to be converted into a subneurone. The group
threshold level equals the threshold level of the subneurone to be generated. The same
terminal group can be analysed by the implementation algorithm more than once in
different contexts. Each time it can be associated with a different threshold level.

If a weight value is larger than the group threshold level, then it is named a dominant
weight of the corresponding terminal group. Any dominant weight is related to a dominant
input that, if active, is able to activate the neurone output signal (force it to ‘1’), even
if all the other input signals are inactive (‘0’). The dominant weights in a subneurone are
always the first in the corresponding terminal group, because the initial array of weights
was sorted in descending order. Consequently, the number D of dominant inputs can be
determined using condition (5.30), and if the largest weight in a terminal group is not
dominant, no weight is dominant in that terminal group.
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The cumulated weight of a terminal group Gt(F) is defined as the sum of all its
component weights. The cumulated weight equals the ‘net’ value of the neurone when
all its inputs are active (‘1’) in the same time. This is the maximum ‘net’ value of the
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corresponding subneurone. If the cumulated weight is smaller than the group threshold
level, then the subneurone output is always inactive, regardless of the input signals.
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The output of a subneurone can be activated either by dominant inputs or, if no
dominant input is active, by combinations of several non-dominant inputs. Some of
these non-dominant inputs are included in all the combinations capable of activating the
output. They are named critical inputs and they correspond to critical weights. Activating
these inputs does not necessarily ensure that the subneurone output is active. They only
bring the ‘net’ value of the subneurone close to the group threshold, so that the output
can be activated in conjunction with less important input signals (the importance of an
input signal is proportional to its corresponding weight). As the initial array is sorted in
descending order, the critical weights always follow the dominant weights in any terminal
group.

Thus, the critical weights can be determined by subtracting all the dominant weights
from the cumulated weight. The result has to be larger than the group threshold. Each
of the remaining weights is then subtracted from the previous result, obtaining a series
of increasing values. Those values that are smaller than the group threshold level correspond
to critical weights. This method is summarised in (5.32) where D is the number of
dominant weights and C is the number of critical weights in the given terminal group.
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Thus, if all dominant inputs are ‘0’ and at least one of the critical weights is ‘0’ at the
same time, then the neurone output cannot be active. On the other hand, the subneurone
output can be active when all the dominant inputs are inactive, but all the critical inputs
are active.

In some cases, the critical inputs are sufficient to activate the neurone output. In other
cases, the critical inputs can activate the output only in conjunction with certain
combinations of less important inputs, because the sum of the critical weights is lower
than the threshold level. These less important inputs, involved in activating the subneurone
output, are named non-critical inputs and they correspond to non-critical weights. As
opposed to critical inputs, none of the non-critical inputs is essential for the subneurone
activation. If a non-critical input is inactive, its task can be performed by groups of other
non-critical inputs, so that the ‘net’ value is maintained above the threshold level and the
subneurone is kept active. However, if all non-critical inputs are deactivated at the same
time, the subneurone output is deactivated as well. A subneurone with D dominant
weights and C critical weights has non-critical weights as well, if and only if the
conditions (5.33) are fulfilled. These conditions signify that the neurone output can be
activated by non-dominant inputs but the task cannot be performed by critical inputs
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The three previous input categories (dominant, critical and non-critical) are unequally
important for the subneurone operation, but all influence the output signal. These types
of inputs have significant weights. Insignificant inputs do not influence the subneurone
output at all. The insignificant inputs have insignificant weights, which are very small
and do not affect the relation between the subneurone ‘net’ value and the group threshold
level, regardless of the corresponding input signals. Consequently, these inputs are not
implemented into hardware.

The effect of sorting the initial array of input weights is that the weights of the same
type are grouped together. Furthermore, the groups are arranged in a standard sequence:
dominant, critical, non-critical and insignificant, as illustrated by Fig. 5.5 on the particular
case of a neurone with 12 arbitrarily chosen input weights.

Fig. 5.5 The neurone weight types and their relative position in the sorted array of weights

One or several weight types can be absent from the sequence. For instance, a neurone
complying with condition (5.4(a)) is implementable with an AND logic gate and has
only critical weights, because if one of the AND inputs is ‘0’ (inactive) the logic output
is ‘0’ as well. Similarly, the neurones complying with condition (5.4(b)) are implementable
with OR logic gates and have only dominant input weights.

13

12
11

3
2.5

2 1.5
1 0.5 0.1 0.05

1.2

Threshold level = 10.0

Dominant
weights

Critical
weights

Non-critical
weights

Insignificant
weights

Significant weights

W s
1 W s

2 W s
3 W s

4 W s
5 W s

8W s
6 W s

7 W s
9 W s

10 W s
11 W s

12



88 Neural and Fuzzy Logic Control of Drives and Power Systems

5.1.3.2 The implementation process – detailed description

In this section, the hardware implementation of the digital neurones is described in
detail, using the concepts and the formulas from the previous section. The implementation
process is divided into three procedures (Fig. 5.6):

• The first one carries out a preliminary neurone check. It analyses the sign of its
threshold level ‘t’. If the sign is negative or zero, the neurone output is always active
regardless of the input signals and the neurone implementation is a simple connection
between Vcc (+5 V) and its output.

• If the threshold level is positive, the array of weights is sorted in descending order
and then the second procedure is called. This is a recursive implementation procedure
that repeatedly calls itself and builds the required pyramidal structure, gate by gate.

• Eventually the third procedure is called which, according to the principles discussed
in section 5.1.2 (at conversion stage two), attaches inverter gates to those inputs in the
sorted array that correspond to negative weight values at conversion stage one

(    < 0)(1)w wx
s

ijp⇔ .

Fig. 5.6 The hardware implementation process

The recursive implementation procedure (B) has two input parameters that are
recalculated for each call of the procedure. The two parameters are the current terminal
group defined by its starting index F, and the associated threshold level of the terminal
group Tt. The parameters at the first call are F = 1 and Tt = t. Thus, the process starts by
analysing the terminal group Gt(F) = Gt(1), which comprises all the weights in the array
in conjunction with the neurone threshold level ‘t’. The operation of the recursive
implementation can be described in ten steps.

Step 1 The number D of dominant inputs and the number C of critical inputs are
calculated by means of (5.30) and (5.32). Condition (5.33) is used to determine whether
the subneurone has non-critical inputs. Table 5.1 presents all the possible situations and
the next algorithm step to be performed in each case.

Step 2 The neurone has no significant input and therefore its output is always inactive.
The hardware implementation reduces to a simple connection between the neurone
output and the circuit ground. End of the procedure (B).

Step 3 The subneurone has only dominant inputs and it is implemented as a D-input OR
gate. End of the procedure (B).

Start

(A)

(B)

Recursive implementation
procedure
(AND and OR gates insertion)

NOT gates
insertion (C)

Stop

Sorting the
weights

yes
t > 0

out < = Vcc

Stop

no

Preliminary
neurone
check
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Step 4 The subneurone has only critical inputs and it is implemented as a D-input AND
gate. End of the procedure (B).

Step 5 The subneurone can be activated either by one of the dominant inputs or by all
the critical inputs together. Therefore, the current subneurone can be decomposed into
a simpler subneurone plus one higher-order subneurone. The first has D + 1 dominant
inputs and is connected to the D dominant inputs of the initial subneurone, while input
D + 1 is fed by the second subneurone. The output of the second subneurone is activated
only when the initial subneurone is activated due to the critical input signals. Therefore,
it is implemented as a C-input AND logic gate. End of the procedure (B).

Table 5.1 Subneurone implementation cases

Dominant inputs Critical inputs Non-critical inputs Next algorithm step

D = 0 C = 0 N = 0 step 2
D > 0 C = 0 N = 0 step 3
D = 0 C > 0 N = 0 step 4
D > 0 C > 0 N = 0 step 5
D = 0 C = 0 N > 0 step 7
D > 0 C = 0 N > 0 step 8
D = 0 C > 0 N > 0 step 6
D > 0 C > 0 N > 0 step 9

Fig. 5.7 Subneurone implementation at step 5

Step 6 The subneurone has critical and non-critical inputs. Therefore, the subneurone
output is active if all the critical inputs are active simultaneously with certain combinations
of non-critical inputs. The subneurone can be decomposed into a higher-order subneurone
supplying a simple subneurone implementable as an AND gate with C + 1 inputs. The
first C gate inputs are connected to the current subneurone critical inputs, while the last
input is connected to the output of the higher-order subneurone which analyses the
remaining input combinations.

Subneurone output

F F + D – 1

F + D F + D + C – 1
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The recursive implementation procedure needs to be recalled to generate the
implementation of the higher-order subneurone. The new parameters are given in (5.34).
The new threshold level is lower than the previous one because the remaining input
signals need to cover only the difference between the previous threshold and the sum of
the C critical weights already implemented by the AND gate. Go to step 10.
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Step 7 The subneurone has only non-critical inputs. Thus, there are several combinations
of input signals capable to activate the subneurone output. The combinations are classified
into a number of categories. Each category is associated with a terminal group and
comprises all the combinations that involve the first input in the given terminal group.
In some terminal groups, the different combinations share only the first input but in
others, they share more than one input. It is necessary to calculate the number K of
combination categories and the number S of shared inputs, apart from the first one in
each category. The first requirement is achieved, as shown in (5.35), by calculating the
cumulated weight of the smaller terminal groups included in the current one and comparing
the result with the current threshold level.
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For each terminal group Gt(F + j) (j = 0, 1, 2, . . . K – 1), the number S(j) of shared
inputs is determined according to (5.36). To calculate S(j), individual weights are subtracted
from the cumulated weight of the group and the result is compared with Tt. One input
is shared by all the combinations in the current category, if and only if the subtraction
result is smaller than the threshold level. Otherwise, there are input combinations capable
of boosting the ‘net’ value of the neurone above the threshold level without using the
tested input. The number S(j) does not include the first input in the corresponding
terminal group. According to the definition, this input is implicitly used by all the
combinations in the same category, so that the input weight wF j i

s
+ +  is not even tested in

(5.36).

Fig. 5.8 Subneurone implementation at step 6

F F + C – 1

Subneurone output

Higher-order subneurone

F + C
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Therefore, the current subneurone is implemented as an OR gate with K inputs as
illustrated in Fig. 5.9. The OR gate inputs are fed by AND gates with S( j) + 2 inputs (j
= 0, 1, 2, . . . K – 1) that model the K different combination categories. The first S(j) +
1 inputs of each AND gate are connected to all the shared inputs of the combinations in
the respective category (including this time the first input in the corresponding terminal
group). Input S( j) + 2 is connected to the output of a higher-order subneurone that
analyses the contribution of the remaining inputs to the total net value. Go to step 10.
The recursive implementation procedure is recalled K times for each high-order subneurone.
The parameters for each call are calculated according to (5.37). The principles that
underlie these calculations are similar to those applying to the parameters in (5.34). Go
to step 10.

Subneurone output

F F + S(0)

Higher-order
subneurone 1

F + 1 F + S(1) + 1

Higher-order
subneurone 2

F + K – 1

F + K – 1 + S(K – 1)

Higher-order
subneurone K

Fig. 5.9 Subneurone implementation at step 7
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Step 8 The neurone has dominant inputs and non-critical inputs. The combinations of
non-critical inputs able to activate the neurone output fall into a number of K categories.
Number K is determined using method (5.38), which is similar to (5.35) but takes into
account the existence of the D dominant inputs. Thus, the index of the first non-critical
input is, in this case, F + D instead of F, so that the initial index F + i in (5.35) has to
be replaced with F + D + i.
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Similarly, the number S( j) of shared inputs in each category of input combinations is
calculated according to method (5.39), which is derived from (5.36) by replacing each
‘F’ with ‘F + D’ to take into account the existence of the dominant inputs.
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As shown in Fig. 5.10, the neurone is implemented by an OR gate with D + K inputs
interconnected with K AND gates. The first D inputs of the OR gate are connected to the
subneurone dominant inputs, while the rest of the inputs are supplied by the AND gates.

As in the previous cases, the recursive procedure is recalled K times to implement the
K higher-order subneurones in Fig. 5.10. The parameters for each call are given in
(5.40). Go to step 10.
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Fig. 5.10 Subneurone implementation at step 8

Step 9 The neurone contains all three types of significant inputs: dominant, critical and
non-critical. It is implemented by a D + 1-input OR logic gate cascaded with a C + 1-
input AND gate and a higher-order subneurone as shown in Fig. 5.11. The higher-order
subneurone analyses the combinations of non-critical inputs and activates the current
subneurone output when a valid combination is received on the inputs simultaneously
with all the critical inputs being active. To generate the higher-order subneurone
implementation, the recursive procedure is called with the parameters calculated in
(5.41). Go to step 10.

Subneurone output

F F + D – 1

Higher-order
subneurone 2

Higher-order
subneurone K

Higher-order
subneurone 1

F + D F + D + S(0) F + D + 1 F + D + S(1) + 1 F + D + K – 1 F + D + S(K – 1) + K– 1
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Step 10 The execution of the implementation process returns to the point where the
present procedure call has been performed. This point can be inside this procedure at
steps 6, 7, 8 or 9, or it can be at the stage where the recursive process itself was initiated.
In the first case, according to computer programming principles, the old parameters F
and Tt are restored and the execution resumes at the stage where this call was initiated.
In the second case, the execution of the present procedure stops.

5.1.3.3 Neurone implementation example

For a better understanding of the implementation algorithm, a complete example is
presented in Fig. 5.13. The neurone has A = 12 input weights and positive threshold
level ‘t’. The weights are sorted in descending order and the recursive implementation
procedure is initiated with parameters F = 1 and Tt = t = 10, as shown in Fig. 5.12. The
number of dominant and critical inputs is calculated at step 1 of the recursive
implementation procedure. The result is D = 3, C = 0. The three dominant inputs
correspond to the dominant weights w w ws s s

1 2 3, ,  in Fig. 5.13. Condition (5.33) is used
to demonstrate that the neurone has non-critical inputs as well. Thus, according to Table
5.1, the next step to be performed is step 8. The number K of non-critical input combinations
is calculated using relations (5.38). The result is K = 3. The first two groups contain
weight combinations sharing only one input each, while in the third group, four inputs
are shared. Therefore, the output of the neurone implementation is generated by the 6-
input OR gate g1 connected to the three dominant inputs and to three AND gates (g2,
g3, g4). Gates g2 and g3 have two inputs while g4 has five inputs.

As illustrated in Fig. 5.12, the iterative procedure recalls itself three times to generate
the subneurones corresponding to the three previously mentioned groups of weights.
First, the procedure is recalled with parameters F = 5 and T t wt

s =  –   = 1.94  to generate

Fig. 5.11 Subneurone structure at the step 9

Subneurone output

F + D – 1F

F + D F + D + C – 1

Higher-order subneurone
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Call 1
F = 1; Tt = 10

Call 4
F = 6; Tt = 3.9

Call 8
F = 10; Tt = 0.8

Call 7
F = 9; Tt = 1.9

Call 6
F = 8; Tt = 1.4

Call 2
F = 5; Tt = 1.9

Call 3
F = 10; Tt = 0.1

Call 5
F = 7; Tt = 1

Fig. 5.12 The recursive implementation process for the neurone in Fig. 5.13

Fig. 5.13 Digital mathematical model to gate structure conversion example

the implementation of the subneurone connected to gate g2. This subneurone has four
dominant inputs (related to the weights w w w ws s s s
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carried out and gates g5 and g6 are inserted into the hardware structure. The remaining
three inputs belong to a higher-order subneurone that requires the iterative procedure to
be called for the third time.

The procedure parameters are redefined as F = 10 and Tt = t – 1.9 – w s
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call number three. As a result, the corresponding subneurone contains two dominant
inputs plus one insignificant input (corresponding to w s

12 ) and it is implemented by the
2-input OR gate g7. At this stage, calls number 2 and 3 of the iterative procedure are
finished. The control is handed over to call number 1 which initiates the call number 4
with the parameters F = 6, Tt = t – w s
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the subneurone connected to the AND gate g3. The new subneurone has only non-
critical weights falling in K = 3 categories and it is implemented by logic gates g8, g9,
g10 and g11. This subneurone is connected to three third-order subneurones, which are
analysed during procedure calls 5, 6 and 7, and their implementations contain the gates
g12 to g15.

The end of procedure call 7 brings procedure call 4 to an end as well. The control is
passed back to procedure call 1, which initiates the call number 8 with parameters F =
10 and Tt = t – w w w ws s s s

6 7 8 9 –   –   –   = 0.8, and implements the subneurone connected
to the AND gate g4. This second-order subneurone has two dominant inputs (corresponding
to w s

10  and w s
11 ) and one insignificant input (related to w s

12 ), so that it is implemented
by the 2-input OR gate g16. The end of procedure call number 8 is followed by the end
of procedure call number 1, which stops the entire recursive process. At this point the
third procedure is called (procedure C in Fig. 5.6), and inverter gates are connected to
the inputs related to the weight w9. After this stage is finished, the neurone hardware
implementation is complete. It is seen that the weight w12 is insignificant due to its small
value and therefore the corresponding input was not necessary in any combination of
inputs. Thus, the neurone implementation consists of eight subneurones and requires a
total of 18 logic gates arranged on six layers.

This example illustrates the complicated calculations necessary to transform even a
simple neurone model into a system of interconnected logic gates. ANNs containing
several neurones require an amount of calculations that can be efficiently performed
only by specialised software instruments. Such instruments have been developed and
they are presented in the next section.

5.2 Universal programs – FFANN hardware
implementation

The solution adopted in this book is universally applicable. It implies a three stage
automatic analysis of the FFANN mathematical model and the generation of a VHDL
model describing the corresponding hardware structure. The task is carried out by a set
of three interconnected C++ programs, given in Appendix A and illustrated in Fig. 5.14,
which communicate by means of simple ASCII files.

Matrix description of
the neural network OPTIM.CPP

Optimised netlist
descriptionCONV_NET.CPP

Netlist description

VHDL_TR.CPP

VHDL model of the
digital hardware
implementation

Fig. 5.14 The data flow between mathematical description and the VHDL model of an FFANN
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The first program, CONV_NET, transforms the input mathematical model into a
preliminary netlist description of the hardware implementation. The mathematical model
consists of a set of matrices containing the parameters of the neurones in the neural
network. Each matrix refers to one neural layer and each row in a matrix contains the
parameters of a single neurone. The first elements of a row are the neurone weights
while the last one is the threshold level. The transformation starts with the model
digitisation, performed according to equations (5.29), and then applies the algorithm
illustrated by Fig. 5.6. The program allows the user to set the number of bits used by the
analogue inputs, and the maximal number of inputs per logic gate. If a larger number of
inputs are required at a certain stage of the conversion, a pyramidal interconnection of
simpler gates will be used to replace the required gate (Fig. 5.15).

Fig. 5.15 Examples of fan-in reduction using interconnections of simpler logic gates

The second program, OPTIM, minimises the netlist description by eliminating the
redundant components. The netlist optimisation requires that three memory tables
containing the circuit nodes and gates are built. Each table contains data about a specific
type of logic gate (NOT, AND, OR). The tables are thoroughly explored to find groups
of redundant gates (gates of the same type connected to the same input nodes). Each
group is replaced with a single logic gate whose output signal is distributed to all the
circuit nodes previously connected to the outputs of the eliminated gates. For instance,
the gates g7, g15 and g16 in Fig. 5.13 are redundant and can be replaced by a single 2-
input OR gate. The elimination of any gate changes the circuit configuration. Gates that
were initially connected to different nodes can be connected to the same nodes after the
elimination of a number of redundant gates. This creates the opportunity for further
elimination of redundant gates. Therefore, after the equivalent gates are removed, the
tables are updated and the process is restarted as shown in Fig. 5.16. The optimisation
process stops only when no additional modification can be made in any of the three
tables.

The third program, VHDL_TR, transforms the optimised netlist description into a
VHDL model of the hardware implemented neural network. The obtained VHDL file
can be synthesised using any commercially available software package specialised in
FPGA design. The file contains a single VHDL entity (the network) whose corresponding
architecture comprises a number of internal signals and a list of assignment statements.
Each statement models one or several identical logic gates by associating a logical
expression with an internal signal or with an output signal.

1 2 3 4 5

1   2   3        4       5

1 2 3 4 5 6

1   2   3         4   5   6
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For exemplification, the VHDL model of the neurone in Fig. 5.13 is presented below.
The model has been generated using the three universal C++ programs. It is important
to note that the index of the components inside the input port ‘d_in’ vary between 0 and
11 instead of 1 to 12 as it was in Fig. 5.13.

—— Code Fragment 5.1
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY network1 IS
PORT(d_in : IN std_logic_vector(11 DOWNTO 0); ——the 12 input signals

d_out: OUT std_logic_vector(0 DOWNTO 0));— —the single output
END network1;
ARCHITECTURE arch_network1 OF network1 IS

SIGNAL n1,n2,n3,n4,n5,n7,n8,n9,n10,
n11,n12,n13,n16: std_logic;

BEGIN
n16<= NOT d_in(8); —— the NOT gate
n1<= d_in(5) AND n4; —— gate g2
n2<=n16 AND n7; —— gate g3
n8<=d_in(1) AND n11; —— gate g9
n9 <=d_in(4) AND n12; —— gate g10
n5<=d_in(2) AND n15; —— gate g6
n13 <=d_in(9) AND d_in(10); —— gate g14
n7<=n8 AND n9 AND n10; —— gate g8

Fig. 5.16 The general flowchart underlying the optimisation program

START

Check table with NOT gates

Eliminate redundant gates and update NOT-table

Check table with OR gates

Eliminate redundant gates and update OR-table

Check table with AND gates

Eliminate redundant gates and update AND-table

yes
any update?

no

Write results into output file

STOP
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n10 <=d_in(7) AND d_in(2) AND n15; —— gate g11
n3<=d_in(1) AND d_in(4) AND d_in(7) AND d_in(2) AND n15;
n15<=d_in(9) OR d_in(10); —— gates g7, g15, g16
n12 <=d_in(7) OR d_in(2) OR n13; —— gate g13
n11 <=d_in(4) OR d_in(7) OR d_in(2) OR d_in(9); —— gate g12
n4<=n16 OR d_in(1) OR d_in(4) OR d_in(7) OR n5; —— gate g5
d_out(0)<=d_in(3) OR d_in(6) OR d_in(0) OR n1 OR n2 OR n3;
END arch_network1;

CONFIGURATION conf_network1 OF network1 IS
FOR arch_network1
END FOR;

END conf_network1;

The optimisation performed by OPTIM has three important effects on the previous
VHDL model:

• A single expression models the group of the redundant gates g7, g15 and g16. The
other logic gates are modelled by individual logic expressions.

• The internal signals n6, n14 and n15 are absent in the list at the beginning of the
network architecture. They have been removed alongside with the gates g7, g15 and
g16.

• The three types of logic operators (NOT, AND, OR) occur in three distinct sections
of the network architecture description. Inside each section, the logic expressions are
sorted in ascending order according to the number of logic operators involved. This
feature is just a side effect of the optimisation algorithm but it simplifies the inspection
of the obtained VHDL model (for instance, counting the total number of gates of a
certain type or with a certain fan-in).

5.3 Hardware implementation
complexity analysis

There are two important cost functions characterising the ANN hardware implementations:
the input–output delay and the required chip area. For most applications, the delay time
is satisfactory but the chip area is critical because the hardware resources are always
limited. The input–output delay is approximately proportional to the implementation
depth, which is defined as the number of layers of elementary circuit units: TGs or logic
gates. Several approximate methods have been proposed to determine the required chip
area of an ANN, depending on the envisaged implementation technology. They imply
the calculation of the number of neurones, the number of implementation units (logic
gates or threshold gates, depending on the technology) [36], the total input number of
all implementation units [108], the sum of all input weights and thresholds [36], etc. In
the case of FPGA implementations, the total number of gates is the most suitable means
to determine the implementation complexity.

It is difficult to calculate in advance the number of logic gates required by a pyramidal
logic structure with n inputs, like the one in Fig. 5.13, because the result depends on the
fan-in of each individual logic gate. The calculations are simple only if it is possible to
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achieve the implementation with logic gates having the same fan-in ∆. In this case, the
implementation complexity is given by equation (5.42), where x is the ceiling function
(the smallest integer greater than or equal to x).

N n
LG  =  –  1

 –  1∆ ∆  (5.42)

Usually the implementation algorithms require logic gates with different fan-ins, so that
(5.42) is applicable only to a limited number of practical situations. However, any ∆-
input AND gate or ∆-input OR gate can be replaced by a number of ∆ gates of the same
type, but having only two inputs. If the fan-in is restricted to ∆ = 2, then equation (5.42)
is simplified as (5.43).

NLG2 = n – 1 (5.43)

Any logic circuit can be built using exclusively 2-input logic gates. Therefore, the
number of equivalent 2-input gates in the neural network implementation is a universal
measure of its hardware complexity and offers a means to compare different implementation
algorithms. As opposed to the rest of the logic gates, the NOT gates always have ∆ = 1.
However, they are not taken into account when estimating the implementation complexity
because the NOT logic operator can be integrated into 2-input logic gates as shown in
Fig. 5.17. Note that the total number of inputs ‘n’ in (5.42) and (5.43) is larger than the
number of the neurone binary inputs (A = na × nb) because some input signals drive
more than one gate in the pyramidal structure.

Fig. 5.17 The integration of NOT operator in complex logic gates: NOT-AND and NOT-OR

5.3.1 Results previously reported in the literature

An efficient neural network implementation strategy is one that minimises the number
of equivalent 2-input gates in the corresponding digital circuit. Only a few complexity
minimising algorithms have been developed so far for digital hardware implementations.
The most relevant two of them are proposed in [214] and [37] and lead to the same order
of implementation complexity but generate different circuit depths. The results presented
in [37] are converted here in numbers of 2-input gates and then a comparison is performed
between these results and the hardware complexity generated by the new implementation
strategy proposed in this book.

In [37] the neural network is treated as a set of k Boolean functions Fn ,m , i (i = 1, 2,
. . . . k), with n inputs and a cumulated total of m groups of ‘1’ in the truth table. In the
one-dimensional case a group of ‘1’ is a set of successive n-bit input strings, whose
corresponding function outputs are all ‘1’. The approach can be extended from one
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dimension to several dimensions, as shown in Fig. 5.18. The number of truth table
dimensions equals the number n a of inputs of the analogue neurone modelled.

Fig. 5.18 Groups of ‘1’ in one-dimensional and two-dimensional truth tables

One-dimensional group of ‘1’

Output
values0 0 1 1 1 0 0 0

000 001 010 011 100 101 110 111
The binary code of the input signal

11 0 0 0 0

10 0 0 1 1

01 0 0 1 1

00 0 0 1 1

00 01 10 11

Two-dimensional
group of ‘1’

The binary
code of
input Y

The binary code of input X

The groups of ‘1’ are generated with a constructive method so that they optimally
cover those points in the d-dimensional input data space that have to activate the outputs
of the corresponding network. Therefore, the constructive method used in [37] is a
particular case of the Voronoi algorithm, where all the Voronoi cells are hypercubes
bounded by hyperplanes parallel to the axes of the input data space. Three implementation
alternatives are compared:

(i) Direct function implementation in disjunctive normal form (DNF) (initially proposed
[33]).

(ii) A more sophisticated strategy which involves the use of n-bit comparators alongside
AND gates and OR gates. The comparators model the na-dimensional hyperplanes
parallel to na – 1 axes of the input data space. Each of them performs comparisons
between one of the na analogue input signals and a constant. The second layer is
made up of 2na-input AND gates. Each AND gate implements a hypercube-shaped
Voronoi cell corresponding to a group of ‘1’. The third layer is made up of OR
gates combining the information provided by different AND gates.

(iii) A synthesis of the previous two methods that replaces some of the comparators
with DNF terms of the Boolean function. This method analyses the size of the
groups of ‘1’. The small cells are more efficiently implemented in DNF format,
while large groups are better implemented by comparators. Thus, some of the
comparators are replaced by a number of AND gates and NOT gates.

Any n-bit comparator between a variable quantity and a constant value can be implemented
with up to ‘n – 1’ 2-input gates [35]. A neural network with na analogue inputs coded
on nb bits each requires up to na

nb  (2 – 1)⋅  comparators, which is equivalent to
n na b

nb  (  –  1)  (2 – 1)⋅ ⋅  2-input logic gates. The redundancy across different comparators
can be reduced by optimisation algorithms. The optimisation is limited by the number
of comparators. The comparators’ outputs are independent signals and therefore are
generated by separated logic gates. Thus, if there are na

nb  (2 – 1)⋅  comparators then
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the complexity of the circuit cannot be decreased below na
nb  (2 – 1)⋅  2-input logic

gates.
The set of Boolean functions Fn ,m,i (i = 1, 2, . . . k) contains a total of m groups of

‘1’ in the truth tables. Consequently, the implementation complexity of the second
neurone layer in the corresponding ANN is up to (2 · na – 1) · m equivalent 2-input logic
gates. On the other hand, the hardware complexity of the third layer is up to m k Ck –   + 2 .
This result is a generalisation of the particular cases illustrated in Fig. 5.19. Thus, if the
neural network has only one output (k = 1) then the third layer is implemented as a
pyramid of OR logic gates with the complexity of m – 1 equivalent 2-input gates. If the
neural network has two outputs then the situation is more complex. Thus, the outputs are
generated by two different pyramids that can share some of the ‘m’ inputs (Fig. 5.19(c))
or they can be completely separate (Fig. 5.19(b)). When the two pyramids share part of
the ‘m’ inputs the resulting implementation contains three subpyramids and two extra
OR gates generating the actual output signals. As a result, the hardware complexity is
larger than in Fig. 5.19(b).

Fig. 5.19 Analysis of the third layer complexity (typical situations)

Complexity: m – 1

k = 1 (a)

k = 2

Complexity: m – 2

k = 2 (b)

(c)

Complexity: m – 1

(d)

Complexity: m – 1

k = 3

Complexity: m

(e)

k = 3

When the number of neural network outputs is larger than two, several situations are
possible depending on the number of shared clusters of input signals between different
OR-gate pyramids. Two possibilities are illustrated in Fig. 5.19(d) and Fig. 5.19(e) for
the situation when k = 3. Generally, the hardware complexity corresponding to the third
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neural network layer increases with the number of shared clusters of inputs. The maximal
number of input clusters is Ck

2 , therefore, a number of k Ck + 2  subpyramids are contained
in the corresponding hardware implementation. Furthermore, each output is generated
by a pyramidal OR-gate structure with k inputs and a complexity of k – 1 2-input logic
gates. Therefore the total complexity of the third layer can be calculated as

m – k – Ck
2  + k · (k – 1) = m – k + Ck

2 (5.44)

Thus, the upper limit of the implementation complexity for method (ii) in [37] is:

N n n m m k
k k

a
n

a
b

LG2(ii)  =   (2 – 1) + (2   –  1)   +  –    
(  –  1)

2
⋅ ⋅ ⋅ + (5.45)

It is demonstrated in [37] that the hybrid method (iii) generates implementations with
up to four times less complexity. The complexity level given in (5.45) is thereby reduced
to:

N
n n m k k ka

n
a

b

LG2(iii)  = 
  (2  –  1)

4
 + 

  
2

 + 
(  –  1)

8
 –  

4
⋅ ⋅

(5.46)

The complexity of the second layer can be calculated as a function of the number Nneur
of neurones in the first layer of the ANN generating the Boolean functions Fn ,m , i (i = 1,
2, . . . k). Two different situations are illustrated in Fig. 5.20(a) and (b). In Fig. 5.20(a),
the decomposition of the central region of the diagram into Voronoi cells is demonstrated
and the implementation of one cell is illustrated. In Fig. 5.20(b), the neural network
contains only one neurone and therefore each Voronoi cell is defined by two comparators

Neurone (1)
Neurone (2)

Neurone (3)

2 nb

2 nb

na inputs

(b)
2 na inputs

(a)

Fig. 5.20 The estimation of the second layer complexity in a two-dimensional case
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supplying a single 2-input AND gate. This result can be generalised for an na-dimensional
input data space as follows: each neurone modelling an oblique hyperplane in the input
data space is part of a number of up to 2   (  – 1)n nb a⋅  groups of ‘1’. The corresponding
Voronoi cell requires up to 2 · na comparison results but only na of them are linked to
a particular neural hyperplane. If required, the other na signals are related to a different
neurone. Therefore the maximal number of inputs of the AND-gate structure implementing
the second layer is Nneur · na · 2   (  – 1)n nb a⋅ .

In these conditions, equation (5.46) becomes (5.47). The result in (5.47) is an upper
limit because it is possible that more than one neurone includes a certain group of ‘1’.

N
n N n k k ka

n
a

n n nb a b b

LG2 oblique
neur

–

 = 
  (2 – 1)

4
 + 

    2 – 1
2

 + 
(  –  1)

8
 –  

4
⋅ ⋅ ⋅

(5.47)

The most general parameter used to compare the general properties of the
implementation algorithms is the order of complexity of the generated hardware structure.
The order of complexity is a concept initially used in software engineering and computer
sciences, but it has been extended for assessing the size of neural hardware implementations
[35], [36], [37]. The order of complexity associated with an implementation algorithm
is an expression that shows how the implementation complexity varies with the increase
of the network parameters (number of neurones, number of interconnections, etc.). The
increase can be linear, polynomial, exponential, factorial, etc. The order of complexity
is obtained considering that all network parameters involved in the exact hardware
complexity equation have very large values. In such a situation, one of the terms has a
much larger value than the others, so that the overall complexity can be approximated
by this term alone. The order of complexity is defined as the expression of the most
significant term in the hardware complexity equation, after all the constant factors have
been eliminated. The elimination of constant factors is justified by the fact that they do
not affect the relation between two different orders of complexity.

For instance, an exponential order of complexity always implies larger implementations
than a linear order of complexity. Provided that the size of the network (Nneur) is sufficiently
large, (5.48) is fulfilled and the exponential expression generates larger values than any
linear expression, regardless of the constants K1 and K2 involved. The same considerations
apply to any pair of complexity orders.

K K N
N

K
K

NN
N

1 2 neur
neur

2

1
neur  2  >     2  >    (if  is sufficiently large)neur

neur
⋅ ⋅ ⇔ (5.48)

For implementations where both na and nb are large numbers, the second term in
(5.47) is the largest and the approximation in (5.49) is valid. Thus, the implementation
size undergoes an exponential increase with na and nb which makes the implementation
of sizeable neural networks very difficult.

N
N n

O N na
n n n

a
n n n

a b b
a b b

LG2 oblique
neur

–

neur
–  

    2
2

  (     2 )≈ ⋅ ⋅ ⇔ ⋅ ⋅ (5.49)

5.3.2 The analysis of the new implementation method

The logic structure generated by the implementation algorithm adopted in this book,
initially presented in section 5.1.3.2, is analysed now from a geometrical point of view,
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in order to determine the corresponding hardware complexity. The analysis is first
performed for neurones with two analogue inputs (X and Y), and then the results are
generalised for any number of analogue inputs. The hardware complexity is initially
assessed without taking into account any hardware optimisation. Then the improvements
brought about by the optimisation algorithm presented in section 5.2 are considered as
well, and the hardware complexity after optimisation is discussed.

5.3.2.1 Implementation without optimisation

If the neurone has only two analogue inputs then the input data space is two-dimensional
and the hyperplanes are reduced to simple lines. The input data space is divided in four
quadrants depending on the values of the most significant bits in X and Y input binary
codes. The half-space where the neurone output is active covers a number of one, two,
three or four of these quadrants. The quadrants can be either partially covered or totally
covered. Each quadrant is in its turn divided into four other subquadrants defined by the
second significant bit in each input code. The division process can be carried out for nb
times because each input code contains nb bits. Each division in four subquadrants
corresponds to a subneurone inside the complete hardware implementation. The subneurone
models the boundary between the active region and the inactive region inside the
subquadrant. If the symmetrical situations are ignored, there are only eight types of
relative positions between the hyperplane and the four quadrants. They are analysed in
Fig. 5.21 alongside the corresponding subneurone implementations. The presented results
apply to the subneurones of orders larger than one but smaller than nb. The analysis of
the first-order subneurones generates results similar to the findings shown in Fig. 5.21,
but the bits ‘0’ and ‘1’ in the truth tables are reversed. This situation is caused by the use
of two’s complement codification where the most significant bit of positive numbers is
‘0’, while for negative numbers it is ‘1’. Therefore, all subneurones of order i < nb in the
pyramidal structure are fed with the signals of zero, one, two or three higher-order
subneurones. The subneurones of order nb are not fed by other subneurones because
there are no more bits available in the input codes to generate such subneurones. In this
case, as shown in Fig. 5.22, the higher-order subquadrants are either completely included
or completely excluded from the active region of the current subquadrant. Such
subquadrants are named elementary subquadrants because they cannot be further divided
into higher-order subquadrants.

If the area bounded by the hyperplane is more than half the surface of a higher-order
subquadrant then it is completely included in the active region. Otherwise, it is completely
excluded. There are five types of nb-order subneurones defined by the number of
subquadrants that are included in the active region (Fig. 5.22). Two of them have the
hardware complexity NLG2 = 1 (H and J), while the other three have the complexity NLG2
= 0 (G, I, K), because they do not require any logic gate for their implementation.

In a data space with more than two dimensions, there are more subneurone types than
in Fig. 5.21. As Fig. 5.21 demonstrates, the number of subneurones equals every time
the number of subquadrants are crossed by the hyperplane. Therefore, the highest hardware
complexity is obtained when the number of subquadrants crossed by the hyperplane is
maximal. A hyperplane in a na-dimensional space can cross up to 2 – 1na  quadrants.
Therefore, this is the maximum number of higher-order subneurones that can feed the
current subneurone. In such a situation, the pyramidal logic gate structure can be considered
as a binary tree with na + 1 layers of nodes and 2 na  leaves: one leaf for each subquadrant
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Fig. 5.21 The division of a (i – 1)-order quadrant in i-order quadrants and the corresponding subneurone
implementations (1 < i < nb)
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inside the current quadrant. Some of the leaves use the signals generated by subneurones
to produce the correct neurone output signals while others directly use the input signals
of the original neurone. Figure 5.23 illustrates a three-dimensional subneurone (na = 3)
that generates a maximal hardware implementation because the hyperplane crosses all
subquadrants except (xi, yi, zi) = (1, 1, 1). In this subquadrant, the subneurone output is
‘1’. The maximal number of nodes in the binary tree, except the neurone output, is:

Fig. 5.22 Types of nb-order subneurones

Fig. 5.23 A three-dimensional subneurone implementation and the corresponding binary tree
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Σ
i

n
i n

a
a

=1
+1 2  = 2 – 2 (5.50)

As illustrated in Fig. 5.23, each node of the binary tree generates one input in the logic
gate structure if the related input bit (xi, yi, zi) is ‘1’ on that node. Otherwise, no input
is necessary. Only half of the nodes correspond to input bits ‘1’. Thus, the total number
of inputs in the logic gate structure is the sum between the number of subneurones and
the number of nodes divided by two (5.51).

N na
n

n na
a

a
inputs

+1
( ) = 2  –  1 + 2 – 2

2
 = 2 – 2 +1 (5.51)

The maximal hardware complexity of one subneurone can be calculated as a function of
na, according to (5.52).

NGT2–max(na) = Ninputs(na) – 1 = 2 – 3 +1na (5.52)

The total pyramidal structure of logic gates corresponding to one neurone has a
complicated structure due to the variable number of higher-order subneurones feeding
each lower-order subneurone. However, it is possible to determine the total number of
subneurones of any order without analysing the detailed interconnections between them
and the subneurones of other orders. The number of subneurones equals the number of
subquadrants of corresponding size that are crossed by the hyperplane in the input data
space. In a two-dimensional case, the subquadrants are square-shaped and there are
2i–1 subquadrants on each side of the square input data space. The maximal number of
crossed subquadrants is 2 · 2i–1 – 1. In an na-dimensional data space the subquadrants are
cubes (na = 3) or hypercubes (na > 3) and the previous result can be generalised to:

N i i n i n i na a a
subn

( –1) ( –1) ( –1) ( –1) +1 ( –1) ( –1)+1( ) = 2  [2 ]  –  1 = 2 – 1 < 2⋅ ⋅ ⋅ (5.53)

The generalisation is based on the fact that the hyperplane can be projected on a base
with na – 1 dimensions upon which lie a number of maximum 2( –1) (  –1)i na⋅  quadrants.
Each of these quadrants is the bottom of an na-dimensional prism containing at most
two subquadrants that are crossed by the hyperplane. Figure 5.24 illustrates the two-
dimensional and the three-dimensional situations. Therefore, the total number of
subneurones is given by equation (5.54).
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(5.54)

Based on the previous results, an absolute upper limit of the total implementation
complexity of all the analogue neurones can be calculated as in (5.55). This calculation
does not take into account the fact that order-nb subneurones have a smaller hardware
complexity.
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(5.55)

The expression (5.55) can be replaced with the higher maximal limit that has a
simpler expression, as in (5.56).
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N N N
n n n

n
n n n na b b

a
a a b b

GT2–total neur

–

–2
+1 4

neur
– < 2  2 – 1

2
(2 –3) < 2     (2 – 1)⋅



 ⋅ ⋅ ⋅

(5.56)

The order of complexity generated by the adopted implementation method is given by
(5.58).

O N n n na b b(   2 )neur
–⋅ (5.57)

This result is superior to the one presented in (5.49) which corresponds to the method
presented in [37] because the order of complexity (5.57) is smaller than the order of
complexity (5.49). Therefore, the implementation of large neural networks designed
with Voronoi diagrams is most efficient using the implementation strategy presented in
section 5.1.3 even if no hardware optimisation is carried out.

5.3.2.2 Optimised implementations

The optimisation process presented in section 5.2 decreases even further the level of the
initial hardware complexity. Very efficient optimisations are possible because, despite
the large number of high-order subneurones, the number of different subneurone types
is relatively small. This means that many of the subneurones are redundant. Given the
correspondence between the hyperplanes in the input data space and neurones hardware
implementation, the number of different subneurones of a certain order is estimated
using geometrical considerations. An order-i subneurone, in a two-dimensional data
space, corresponds to a hyperplane (a straight line) in a quadrant with the side length
2 – +1n ib  elementary subquadrants. The slope of the two-dimensional hyperplane (the
straight line) is the same in all the subquadrants, regardless of their order. Thus, the
subquadrants differ only by the intersection points between the hyperplane and the
corresponding subquadrant sides (Fig. 5.25). For a certain order ‘i’, there are a number

Y

X

(A)

Y

(B)

X

Z

Fig. 5.24 The intersection between the hyperplane and the subquadrants of second order (i = 2) in the
two-dimensional case (A), and three-dimensional case (B)
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of Nc = 2 × 2 – +1n ib  classes of two-dimensional subquadrants, depending on these
intersection points. Similarly, in an na-dimensional data space the number of classes is
Nc = na · 2 – +1n ib .

The subquadrants in the same class can differ by the exact shape of the boundary
between the active region and the inactive region. The shape of this boundary depends
on the slope and position of the hyperplane and it contains a precisely determined
sequence of steps as in the example presented in Fig. 5.25. The maximal number of
different step patterns for a given class of subquadrants can be calculated using algebraic
and geometrical considerations. First, this upper limit is determined in a two-dimensional
input data space and then the result is generalised for an n-dimensional situation.

Fig. 5.25 Example of order-i subquadrant

Elementary subquadrants

Intersection
point

Elementary
subquadrants

2 – +1n ib

2 – +1n ib

The step pattern in each subquadrant of order ‘i’ depends on the exact position of the
straight line in the subquadrant. An elementary subquadrant is included in the active
region of the two-dimensional input data space if more than half of its surface is situated
on the active side of the hyperplane defining the neurone. In a two-dimensional case, the
hyperplane is reduced to a straight line. The inclusion or the exclusion of each elementary
quadrant can be determined by analysing the position of its centre. If the centre lies on
the active side of the hyperplane then it has to be included in the active region of the
input data space. Otherwise, it is excluded from the active region of the input data space.
All the step patterns included in one of the Nc classes contain a common elementary
quadrant on one side of the current subquadrant. This elementary subquadrant is determined
by the intersection point between the hyperplane and the side of the subquadrant, as
shown in Fig. 5.26.

The exact position of the intersection point can vary by as much as 1/2nb+1 for one
class of patterns, and it determines which other elementary subquadrants are included in
the active region. This corresponds to two extreme hyperplane positions (a) and (b),
presented in Fig. 5.26. When the hyperplane is in position (a) then only the elementary
subquadrants marked by number ‘1’ in Fig. 5.26 are included in the active region. If the
hyperplane position changes continuously from position (a) to position (b) then new
elementary quadrants are included in the active region in the order determined by the
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distance between the corresponding centres and the initial hyperplane (a). This order is
indicated for the example in Fig. 5.26 by the numbers 2 through 7. The inclusion of each
elementary quadrant generates a new pattern included in the current class. In the end,
when the position (b) is attained, a maximal number of 2 – 1– +1n ib  new elementary
subquadrants have been added. This means that in a two-dimensional input data space
the maximum number of patterns in a class is Np(i) = 2 – +1n ib .

In a three-dimensional situation, the hyperplane is immersed in a three-dimensional
data space as initially presented in Fig. 5.24(B). The elementary subquadrants are in this
case cubes grouped together into prisms with square bases included in the (X, Y) plane.
Depending on its slope, the projection of the hyperplane can cover the entire (X, Y)
square included in the current subquadrant or only part of it. If the entire (X, Y) square
is covered then the two extreme positions of the boundary plane enclose a number of up
to ( 2 – +1n ib )2 – 1 centres of elementary quadrants and therefore the maximal number of
patterns inside one class is N ip

n ib( ) = 22 ( –  + 1)⋅ . In an na-dimensional space, this can be
generalised as N ip

n n ia b( ) = 2(  – 1) ( –  + 1)⋅ . Therefore, the maximal number of different
subquadrants, and implicitly the maximal number of subneurone types of the order ‘i’,
is given by (5.58).

Nsub–q(i) = Nc(i) · Np(i) = na · 2   ( – +1)n n ia b⋅ (5.58)

The number of subneurones per layer is an increasing exponential as shown by
equation (5.53), while the number of possible subneurone implementations is a decreasing
exponential as demonstrated by (5.58). After the optimisation, the number of subneurones
of each order is the minimum between the number of possible subneurones and the
actual number of subneurones, as shown in (5.59). Therefore, due to the exponential
variation of the two functions, the remaining neurones after the optimisation are very
few as compared to the initial number of neurones. This situation is illustrated by the
example in Fig. 5.27.

Fig. 5.26 The step patterns included in one class of order ‘i’ subquadrants
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The intersection point between the two graphs illustrated by Fig. 5.27 is placed at the
location corresponding to equal exponents in (5.60). This is given by the solution of the
equation (5.61).

(na – 1) · (i – 1) +  1 = na(nb – i + 1) + log2 na (5.61)

To compare the present algorithm with the algorithm presented in [37], the limit situation,
with na and nb having very large values, is analysed in (5.62).
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Therefore, the number of optimised subneurones can be calculated as in equations
(5.63), (5.64) and (5.65).
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The resulting total complexity is given by (5.66).

Fig. 5.27 Graphical representation of the optimisation process (na = 2, nb = 10)
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Therefore, the resulting order of complexity is (5.67).
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This result does not take into account the cross-neurone optimisations, which can bring
further hardware reduction. Still, it shows that the increase of the network implementation
with parameters na and nb is much slower in the case of the new implementation method,
as compared with the standard method presented in [37]. The result in (5.67) is slightly
larger than the square root of the initial result (5.49). This implies a substantial gain in
terms of hardware complexity reduction for large neural networks.

The method in [37] considers a particular case of Voronoi algorithm where all the
hyperplanes are parallel to the axes in the input data space, in which case the generated
order of complexity is reasonable. If a general Voronoi approach using oblique hyperplanes
is necessary then method [37] generates much larger implementations than the one
presented in this chapter. In conclusion, the present implementation method is the most
adequate for ANN network implementation designed using Voronoi diagrams with oblique
hyperplanes.



Over the past few years, the use of fuzzy set theory, or fuzzy logic, in control systems
has been gaining widespread popularity, especially in Japan. From as early as the mid-
1970s, Japanese scientists have been instrumental in transforming the theory of fuzzy
logic into a technological realisation. Today, fuzzy logic-based control systems, or
simply fuzzy logic controllers (FLCs), can be found in a growing number of products,
from washing machines to speedboats, from air condition units to hand-held autofocus
cameras. In the present book, fuzzy logic is exemplified in the speed governing system
of a synchronous generator set.

The success of fuzzy logic controllers is mainly due to their ability to cope with
knowledge represented in a linguistic form instead of representation in the conventional
mathematical framework. Control engineers have traditionally relied on mathematical
models for their designs. However, the more complex a system, the less effective the
mathematical model. This is the fundamental concept that provided the motivation for
fuzzy logic and is formulated by Lofti Zadeh, the founder of fuzzy set theory, as the
Principle of Incompatibility.

Zadeh stated that [240]:
As the complexity of a system increases, our ability to make precise and yet significant
statements about its behaviour diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive
characteristics.

Real-world problems can be extremely complex and complex systems are inherently
fuzzy. The main advantage of fuzzy logic controllers is their ability to incorporate
experience, intuition and heuristics into the system instead of relying on mathematical
models. This makes them more effective in applications where existing models are ill-
defined and not reliable enough.

6.1 Historical review

The term ‘fuzzy’ in fuzzy logic was first coined in 1965 by Professor Lofti Zadeh, then
Chair of UC Berkeley’s Electrical Engineering Department. He used the term to describe
multivalued sets in the seminal paper, ‘Fuzzy Sets’ [239]. The work in his paper is
derived from multivalued logic, a concept which emerged in the 1920s to deal with

6

Fuzzy logic fundamentals
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Heisenberg’s Uncertainty Principle in quantum mechanics. Multivalued logic was further
developed by distinguished logicians such as Jan Lukasiewicz, Bertrand Russell and
Max Black. At the time, multivalence was usually described by the term ‘vagueness’.
When Zadeh developed his theory, he introduced the term ‘fuzzy’.

Zadeh applied Lukasiewicz’s multivalued logic to set theory and created what he
called fuzzy sets – sets whose elements belong to it in different degrees. According to the
fuzzy principle, ‘everything is a matter of degree’. While conventional logic is bivalence
(TRUE or FALSE, 1 or 0), fuzzy logic is multivalence (from 0 to 1). It is a shift from
conventional mathematics and number crunching to philosophy and language. At the
beginning, fuzzy logic remained very much a theoretical concept with little practical
applications. The work Zadeh was involved in consisted mainly of the computer simulation
of mathematical ideas. In the 1970s, Professor Edrahim Mamdani of Queen Mary College,
London, built the first fuzzy system, a steam engine controller, and later the first fuzzy
traffic lights. This led to the extensive development of fuzzy control applications and
products seen today.

6.2 Fuzzy sets and fuzzy logic

Classical set theory was founded by the German mathematician Georg Cantor (1845–
1918). In the theory, a universe of discourse, U, is defined as a collection of objects all
having the same characteristics. A classical set is then a collection of a number of those
elements. The member elements of a classical set belong to the set 100 per cent. Other
elements in the universe of discourse, which are non-member elements of the set, are
not related to the set at all. A definitive boundary can be drawn for the set, as depicted
in Fig. 6.1.

c

a

U

b

c

a

U

b

(a) (b)

Fig. 6.1 (a) Classical/crisp set boundary; (b) fuzzy set boundary

A classical set can be denoted by A = {x ∈ U | P(x)} where the elements of A have
the property P, and U is the universe of discourse. The characteristic function µA(x):U
→ {0, 1} is defined as ‘0’ if x is not an element of A and ‘1’ if x is an element of A. Here,
U contains only two elements, ‘1’ and ‘0’. Therefore, an element x, in the universe of
discourse is either a member of set A or not a member of set A. There is ambiguity about
membership. For example, consider the set ADULT, which contains elements classified
by the variable AGE. It can be said that an element with AGE = ‘5’ would not be a
member of the set whereas an element with AGE = ‘45’ would be. The question which
arises is, where can a sharp and discrete line be drawn in order to separate members
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from non-members? At AGE = ‘18’? By doing so, it means that elements with AGE =
‘17.9’ are not members of the set ADULT but those with AGE = ‘18.1’ are. This system
is obviously not realistic to model the definition of an adult human. Simple problems
such as this one embody the notion behind Zadeh’s Principle of Incompatibility.

In fuzzy set theory, the concept of characteristic function is extended into a more
generalised form, known as membership function: µA(x):U → [0, 1]. While a characteristic
function exists in a two-element set of {0, 1}, a membership function can take up any
value between the unit interval [0, 1] (note that curly brackets are used to represent
discrete membership while square brackets are used to represent continuous membership).
The set which is defined by this extended membership function is called a fuzzy set. In
contrast, a classical set which is defined by the two-element characteristic function, as
described earlier, is called a crisp set. Fuzzy set theory essentially extends the concept
of sets to encompass vagueness. Membership to a set is no longer a matter of ‘true’ or
‘false’, ‘1’ or ‘0’, but a matter of degree. The degree of membership becomes important.
The boundary of a fuzzy set is shown in Fig. 6.1(b). While point a is a member of the
fuzzy set and point c is not a member, the membership of point b is ambiguous as it falls
on the boundary. The concept of membership function is used to define the extent to
which a point on the boundary belongs to the set. A fuzzy set F can be defined by the set
of tuples F = {(µF(x), x) | x ∈ U}. Zadeh proposed a notation for describing fuzzy sets
whereby ‘+’ denotes enumeration and ‘/’ denotes a tuple. Therefore, the fuzzy set F
becomes:

F x x U
U

F = ( )/    for a continuous universe ∫ µ

or F x x U
x U F =  ( )/    for a discrete universe Σ
∈

µ

Returning to the earlier example, an element with AGE = ‘18.1’ may now be assigned
with the membership degree to the set ADULT of, say, 1.0. An element of AGE = ‘17.9’
may then have a membership degree of 0.8 instead of 0. Such gradual change in the
degree of membership provides a better representation of the real world. However, the
exact shape of the membership function is very subjective and depends on the designer
and the context of the application. While set operations such as complement, union and
intersection are straightforward definitions in classical set theory, their interpretation is
more complicated in fuzzy set theory due to the graded attribute of membership functions.
Zadeh [239] proposed the following fuzzy set operation definitions as an extension to
the classical operations:

• Complement ∀ ∈ ′x X x xA A  : ( ) = 1 –  ( )µ µ
• Union ∀x ∈ X:µA∪B(x) = max[µA(x), µB(y)]
• Intersection ∀x ∈ X:µA∩B(x) = min[µA(x), µB(y)]

These definitions form the foundations of the basics of fuzzy logic thoery. The relationship
between an element in the universe of discourse and a fuzzy set is defined by its
membership function. The exact nature of the relation depends on the shape or the type
of membership function used.
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6.3 Types of membership functions

Figure 6.2 shows various types of membership functions which are commonly used in
fuzzy set theory. The choice of shape depends on the individual application. In fuzzy

µ(x)

α β x α

(a) (b)
β γ

α β γ

(d)

α β
(c)

(e) (f)
α β α β γ λ

Fig. 6.2 Types of membership functions: (a) Γ-function; (b) S-function; (c) L-function; (d) Λ-function;
(e) Gaussian function; (f) Π-function

control applications, Gaussian or bell-shaped functions and S-functions are not normally
used. Functions such as Γ-function, L-function and Λ-function are far more common.

The definitions of the membership functions chosen to be exemplified in this book are:
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Λ-function,   Λ:U → [0, 1]
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6.4 Linguistic variables

The concept of a linguistic variable, a term which is later used to describe the inputs and
outputs of the FLC, is the foundation of fuzzy logic control systems. A conventional
variable is numerical and precise. It is not capable of supporting the vagueness in fuzzy
set theory. By definition, a linguistic variable is made up of words, sentences or artificial
language which are less precise than numbers. It provides the means of approximate
characterisation of complex or ill-defined phenomena. For example, ‘AGE’ is a linguistic
variable whose values may be the fuzzy sets ‘YOUNG’ and ‘OLD’. A more common
example in fuzzy control would be the linguistic variable ‘ERROR’, which may have
linguistic values such as ‘POSITIVE’, ‘ZERO’ and ‘NEGATIVE’. In this book, the
following conventions are used to define linguistic variables. If Xi is a linguistic variable
defined over the universe of discourse U where x ∈ U then

LXi
k (for k = 1, . . . n) are the linguistic values Xi can take

n is the number of linguistic values Xi have
µLXi,k(x) is the LXi

k  membership function for the value x
LXi is the set containing LX LX LX LX Lxi

k
i i i i

n, where  = { , . . . }.1 2

In the example above:

X1 is ‘ERROR’
n = 3 is the number of linguistic values in X1

LX1
1 is ‘POSITIVE’

LX1
2 is ‘ZERO’

LX1
3 is ‘NEGATIVE’

and, for x = {–1, 0, 1}:

µLX1,1(–1) = 0; µLX1,1(0) = 0; µLX1,1(1) = 1
µLX1,2(–1) = 0; µLX1,2(0) = 1; µLX1,2(1) = 0
µLX1,3(–1) = 1; µLX1,3(0) = 0; µLX1,3(1) = 0

6.5 Fuzzy logic operators

Logical connectives are also defined for fuzzy logic operations. They are closely related
to Zadeh’s definitions of fuzzy set operations. The following are four fuzzy operations
which are significant for the second example presented in this book. R denotes the
relation between the fuzzy sets A and B.
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Negation

µ µA Ax x( ) = 1 –  ( )

Disjunction

R: A OR B µR(x) = max[µA(x), µB(x)]

Conjunction

R: A AND B µR(x) = min[µA(x), µB(x)]

Implication

R: (x = A) → (y = B)   IF x is A THEN y is B

Fuzzy implication is an important connective in fuzzy control systems because the
control strategies are embodied by sets of IF-THEN rules. There are various different
techniques in which fuzzy implication may be defined. These relationships are mostly
derived from multivalued logic theory. The following are some of the common techniques
of fuzzy implication found in literature.

Zadeh’s classical implication:

µR(x, y) = max{min[µA(x), µB(y)], 1 – µA(x)}

Mamdani’s implication:

µR(x, y) = min[µA(x), µB(y)]

Note that Mamdani’s implication is equivalent to Zadeh’s classical implication when
µA(x) ≥ 0.5 and µB(y) ≥ 0.5.

Godel’s implication:

µ
µ

µ µ
R

B

A B
x y

y

x y
( , ) = 

1
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( )  ( )

otherwise

≤
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Lukasiewicz’ implication:

µR(x, y) = min{1, [1 – µA(x) + µB(y)]}

The differences in using the various implication techniques are described in [207]. It is
fairly obvious by looking at the mathematical functions of the different implication
techniques that Mamdani’s technique is the most suitable for hardware implementation.
It is also the most popular technique in control applications and is the technique used in
the design example presented in the second part.

6.6 Fuzzy control systems

Figure 6.3 shows the block diagram of a typical fuzzy logic controller (FLC) and the
system plant as described in [194]. There are five principal elements to a fuzzy logic
controller:

• Fuzzification module (fuzzifier).
• Knowledge base.
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• Rule base.
• Inference engine.
• Defuzzification module (defuzzifier).

Automatic changes in the design parameters of any of the five elements creates an
adaptive fuzzy controller. Fuzzy control systems with fixed parameters are non-adaptive.
Other non-fuzzy elements which are also part of the control system include the sensors,
the analogue–digital converters, the digital–analogue converters and the normalisation
circuits. There are usually two types of normalisation circuits: one maps the physical
values of the control inputs onto a normalised universe of discourse and the other maps
the normalised value of the control output variables back onto its physical domain.

6.6.1 Fuzzifier

The fuzzification module converts the crisp values of the control inputs into fuzzy
values, so that they are compatible with the fuzzy set representation in the rule base. The
choice of fuzzification strategy is dependent on the inference engine, i.e. whether it is
composition based or individual-rule-firing based [88].

6.6.2 Knowledge base

The knowledge base consists of a database of the plant. It provides all the necessary
definitions for the fuzzification process such as membership functions, fuzzy set
representation of the input–output variables and the mapping functions between the
physical and fuzzy domain.

6.6.3 Rule base

The rule base is essentially the control strategy of the system. It is usually obtained from
expert knowledge or heuristics and expressed as a set of IF-THEN rules. The rules are
based on the fuzzy inference concept and the antecedents and consequents are associated
with linguistic variables. For example:

Knowledge
base Rule base

Input Scaling factors
normalisation

Fuzzification Inference
Defuzzification
denormalisation

Plant Output

Output-scaling
factors

normalisation
Sensors

Fig. 6.3 Block diagram of a typical fuzzy logic controller
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Error (e) and output (u) are linguistic variables while Positive Big (PB) and Negative
Big (NB) are the linguistic values. The rules are interpreted using a fuzzy implication
technique. In fuzzy control theory, this is normally Mamdani’s implication technique.

6.6.4 Defuzzifier

The diagram in Fig. 6.4 shows the membership functions related to a typical fuzzy
controller’s output variable defined over its universe of discourse. The FLC will process
the input data and map the output to one or more of these linguistic values (LU1 to LU5).
Depending on the conditions, the membership functions of the linguistic values may be
clipped. Figure 6.5 shows an output condition with two significant (clipped above zero)
output linguistic values. The union of the membership functions forms the fuzzy output
value of the controller.

rule antecedent rule consequent

IF error (e) is Positive Big (PB) THEN output (u) is Negative Big (NB)

Fig. 6.4 Membership function of the output linguistic values

Membership
function

LU1 LU2 LU3 LU4 LU5

Output domain, y

Membership
function

D2

D1

E1 E2

Possibility

Output domain, y

Fig. 6.5 Possibility distribution of an output condition

This is represented by the shaded area in Fig. 6.5 and is expressed by the fuzzy set
equation:

S S y y i k
i

k

i S i Si =  ,   ( ) = max [ ( )]     = 1, 2, . . . 
=1
∪ µ µ

where:
S is the union of all the output linguistic values
Si is an output linguistic value with clipped membership function
k is the total number of output linguistic values defined in the universe of discourse.
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In most cases, the fuzzy output value S has very little practical use as most applications
require non-fuzzy (crisp) control actions. Therefore, it is necessary to produce a crisp
value to represent the possibility distribution of the output. The mathematical procedure
of converting fuzzy values into crisp values is known as ‘defuzzification’. A number of
defuzzification methods have been suggested. The different methods produce similar
but not always the same results for a given input condition. The choice of defuzzification
methods usually depends on the application and the available processing power.

The defuzzification method used in the example presented in the second part is the
weighted average method. This method requires relatively little processing power and is
ideal for FPGA implementation where ‘area space’ is a major consideration. However,
it is only valid for symmetrical membership functions. Each membership function is
assigned with a weighting, which is the output point where the membership value is
maximum. Based on the diagram in Fig. 6.5, the defuzzification process can be expressed
by:

f y
y y

y
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and using the weighted average method becomes:
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where:
f(y) is the crisp output value
Em is the crisp weighting for the linguistic value LUm

Dm is the membership value of y with relation to the linguistic value LUm.

The crisp defuzzifier output is used as it is or via an interfacing block, to control the plant.

6.7 Fuzzy logic in power and
control applications

Over the past two decades, there has been a tremendous growth in the use of fuzzy logic
controllers in power systems as well as power electronic applications. A recent series of
tutorials in the IEE Power Engineering Journal [208], [209] which focused entirely on
the applications of fuzzy logic in power systems is evidence of its growing significance
in the field. Current applications in power systems include power system stability control,
power system stability assessment, line fault detection and process optimisation for
generation, transmission and distribution. Fuzzy logic is also used in motion control
[45], [210], control of wind turbines [203], motor efficiency optimisation [211] and
waveform estimation [202]. The advantages of using fuzzy logic in such applications
include the following:

• Fuzzy logic controllers are not dependent on accurate mathematical models. This is
particularly useful in power system applications where large systems are difficult to
model. It is also relevant to smaller applications with significant non-linearities in the
system.



122 Neural and Fuzzy Logic Control of Drives and Power Systems

• Fuzzy logic controllers are based on heuristics and therefore able to incorporate
human intuition and experience.

There are numerous ways to build and implement a fuzzy logic system. It can either be
based on a fuzzy logic development shell or built using software programming languages
such as C++ or even Java. In the example presented in this book a different approach is
made. The fuzzy system is developed using a hardware description language, VHDL.



7.1 Introduction

Today electronic systems are so complex that traditional design methods are not able to
keep pace with the increased demands of higher levels of integration coupled with a
faster time-to-market cycle. As most of the large electronic systems typically involve
years of research and development time prior to their actual production and with the
exponential increase in complexity of integrated circuit design, it became clear that a
standard design language that referenced a much higher level of design abstraction was
required in order to facilitate the design process.

Therefore, modern design methodologies use a top-down approach in order to shorten
the design cycle and to manage such an increased complexity. A key point of this
approach is a Hardware Description Language (HDL) capable of offering support at all
levels of description (behavioural, structural, physical). The standard represents a stand-
alone specification that is not necessarily dependent on any specific tool developer or
system subcontractor [15]. The verification of textual description correctness requires a
test-bench that will ideally be able to exercise the modelled device under test at all levels
of description.

The development of the VHDL (Very High Speed Integrated Circuit Hardware
Description Language) began with a mandate set by the US Department of Defense
(DoD) in the early 1980s as part of the Very High Speed Integrated Circuit (VHSIC)
Program. This resulted in the adoption and release of the VHDL’s IEEE Standard approved
by the IEEE Standards Board in September 1993.

This chapter is a quick guide [61] to the main aspects of VHDL. The definition of the
language is detailed in [10] and in-depth discussions can be found in all major VHDL
text books [180], [189], [204], [15]. Many VHDL worked examples can be found in
[61].

7.1.1 Top-down design methodology

The challenge for the developers of VHDL was to produce a hardware description
language flexible enough to simulate conceptual designs but versatile enough to allow
detailed timing simulation. The result is that VHDL is so robust that it can support a
wide spectrum of modelling styles. For example, VHDL can represent a detailed description
of the implementation aspects, or the most abstract ideas.

7

VHDL fundamentals
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By supporting a wide array of modelling styles the language allows the designer to
quickly develop and simulate ideas without being preocupied with the details of
implementation. Simultaneously, as the design evolves to completion, the language is
able to support a complex digital system. Top-down design is the term given to the
design flow (Fig. 7.1) which begins with modelling an idea at an abstract level, and then
proceeding through the iterative steps necessary to further refine this process into a
detailed digital system.

Design specification

VHDL
behavioural model

Simulation

VHDL-RTL

Simulation

Synthesis

Simulation

Implementation

Timing analysis

Device programming

Graphical VHDL
tool

Graphical VHDL
tool

Specification
level

Behavioural
level

RT level

Netlist level

Fig. 7.1 Top-down design flow

By producing a model at a very high level of abstraction, a test environment can be
developed early in the design cycle. The development of a test environment allows
verification that the concept is functionally correct within its intended scope. As the
design evolves to each new level of detail, the test environment is used to test for
ultimate compliance with the original specification.

VHDL’s flexibility and choice of modelling styles enable a natural progression from
idea to implementation and the top-down design process encourages the designer to
develop and simulate ideas at their conception. A primary benefit of VHDL for the
designer is the ability to quickly create, simulate and verify an abstract model. By
simulating early in the process, design concepts can be tested long before investment is
made in the implementation phase. A major feature of VHDL is its inherent ability to
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handle all levels of abstraction. This means that the designer requires the use of only a
single language, as well as a single simulator for all phases of design.

7.1.2 Terminology

• Behavioural model – a simulation model that does not contain any implementation
details and is described in abstract terms.

• Structural model – a netlist representation of a device consisting of instantiated
components and their interconnections.

• Register Transfer Level (RTL) model or dataflow model – a model typically
described with basic procedural constructs and functional operators and which may
be targeted for automatic synthesis tools.

• Mixed-level modelling – a mixture of behavioural and structural modelling constructs.
• Sequential – describes procedural activity similar to most general-purpose programming

languages, implying that ordering of statements is important to the meaning of the
program and therefore statements are executed in the order in which they occur.

• Concurrent – describes statements operating in parallel with each other and initiated
by signal value changes.

• Driver – signals within VHDL are controlled by drivers, through which the new
signal values are propagated.

• Event – is a change in a signal value as a result of a new value being applied to that
signal.

• Transaction – is said to have occurred on a signal whenever a value is assigned to the
signal; the new value may or may not cause the signal value to change.

• Sensitivity list – a list of signals that activate the execution of concurrent elements
when an event occurs on any one of them.

• LRM – the IEEE Standard 1076 Language Reference Manual.
• A modified Bachus–Naur Format (BNF) description for the VHDL statements

discussed will be used in this book.
• Square brackets ‘[]’ – items contained within the square brackets are optional items

for that VHDL statement.
• Squiggly brackets ‘{}’ – items contained within the squiggly brackets indicate items

that can be included within the VHDL statement zero, one, or multiple times.

7.1.3 Behavioural and structural design

VHDL behavioural descriptions can be categorised as descriptions in which there is no
reference to submodules within a specific VHDL architecture. This does not preclude
the use of subprograms within VHDL descriptions but precludes the use of other VHDL
components. Behavioural descriptions are generally procedural descriptions defining
the design functionality. For the simple reason that one cannot necessarily relate this
functional description to physical digital devices, this type of VHDL is classed as
behavioural. The beauty of behavioural descriptions is that a designer can quickly
model a digital system without being concerned with considering the details of the
physical implementation.

Structural VHDL descriptions are categorised by the instantiation and interconnection
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of VHDL components. Structural VHDL descriptions can be viewed as VHDL netlists.
Purely structural architectures are rare in practice because they do not exploit the abstraction
capacity of VHDL language and the synthesis tool ability to deal with abstractions and
efficiently generate hardware structures corresponding to complex mathematical models.

VHDL encourages a design partitioning approach, with detailed block development
and structure implementation accomplished gradually.

VHDL supports behavioural as well as structural modelling. With behavioural modelling,
few if any implementation details are revealed. The advantage to behavioural modelling
is that one can quickly describe the functionality of a device or design using abstract
concepts, such as signals of data types like integer. Structural modelling with component
instantiation allows the designer to describe how the device will perform the function.

A designer should not assume that they must choose between a structural or behavioural
modelling style since that assumption would place severe restrictions on the language.
VHDL provides constructs that support a mix of both high level behavioural and structural
modelling in all phases of design and throughout the entire top-down design process,
allowing the designer to make a gradual transition from a behavioural model to a
structural model. A behavioural (therefore abstract) VHDL description means a reduced
number of program lines and shorter development time. Conversely, more structural
descriptions may generate a lower number of hardware primitives because the performance
of present synthesis tools is limited and they are not always capable of finding the
optimal solution to certain applications. However, detailed knowledge of both the synthesis
tool and the architecture of the target integrated circuit are required in order to write an
optimal structural description of a complex entity. An inefficient structural description
may often take more of the chip area than the solution automatically generated by the
synthesis tool and based on a behavioural architecture. Therefore it is advisable for
inexperienced engineers to keep the abstraction at a high level and rely on the synthesis
tool capabilities.

7.2 VHDL design units

There are five design units in VHDL: entity, architecture, configuration, package and
package body. Design units within a library (libraries are defined in the next section) are
classified as either primary or secondary design units. Secondary design units are
dependent upon the information contained within the primary design units. Therefore,
secondary design units may only be analysed after the analysis of the primary unit. The
primary design units within a design library are:

• the entity design unit which has as its secondary design unit the architecture (within
a library an entity may have multiple architectures);

• the package design unit which has a package body as its secondary design unit (a
package may have at most one package body within a design library);

• the configuration which has no secondary design units dependent upon it.

All primary design units (entity, package, and configuration) within a design library
must have unique names, known as identifiers. They must be legal VHDL identifiers,
which means that they must begin with an alphabetic character (a–z), all characters must
be alphanumeric (a–z, 0–9) or underscores (_), and the identifier must not be a reserved
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word. Words like ENTITY, ARCHITECTURE, CONFIGURATION, PACKAGE, etc.,
are reserved by the language, and cannot be used outside the scope for which they were
intended. Identifiers are not case sensitive and have no limitation to the number of
characters used. Some examples of illegal identifiers for design units are:

and – reserved word,
or – reserved word,
_xor_gate – cannot begin with an underscore,
5_entity – cannot begin with a numeric character,
this_is_pound£ – ‘£’ is an illegal character in identifier.

The names of secondary design units must be unique for each primary design unit. For
instance, for an entity called and2 there can be multiple architectures for that entity as
long as they have unique names. There can be two different entities that have the same
architecture name. It is legal to have an entity called and4 which has an architecture
called behave that exists in the same library as an entity called or3 with an architecture
called behave:

LIBRARY lib_1
ENTITY “and6”

ARCHITECTURE “behave”
ARCHITECTURE “stru”

ENTITY “or3”
ARCHITECTURE “behave”

7.2.1 Entity

The entity design unit is the interface between the outside world and the design. The
connection points (PORTs) to the design, the direction and type of information that
flows through these connection points are specified in this unit. For example, a 2-input
AND gate entity might look like:

ENTITY and2 IS
PORT (in1,in2: IN bit;

output: OUT bit);
END [ENTITY] [and2];
--comments in VHDLare written behind two dashes --

This design unit describes a device named and2. This device has three connection
points, two inputs and one output. The type of information that flows through these
connection points is a data type called bit that can take on the value ‘0’ or ‘1’. The
entity’s name within an END statement is optional. Additional information can be
placed to specify other parameters of the device such as speed or width. These are called
generics. The example can be extended to include some delay parameters on the device
that describe the propagation delay used in the behavioural description:

ENTITY and2 IS
GENERIC(tplh: time := 3 ns;

tphl: time := 5 ns);
PORT (in1,in2: IN bit;
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output: OUT bit);
END and2;

Two generics (tplh and tphl) of type time have been placed. The default value of the
generics (3 ns and 5 ns) are reprogrammable on an instance by instance basis. Generics
are a very powerful and important feature of the language. The syntax of the entity
statement requires the keywords ENTITY and IS to surround the user defined entity_name.
Between this header and the keyword END is the entity’s declarative region where a
GENERIC statement and a PORT statement can be placed. An example of a more
complicated entity, containing buses on the input and output ports, is:

ENTITY complex_with_buses IS
GENERIC (width: integer := 8;

tplh, tphl: time := 5 ns);
PORT(input: IN bit_vector (width-1 DOWNTO 0);

output: OUT bit_vector(0 TO width-1);
clk: IN bit);

END complex_with_buses;

7.2.2 Architecture

The architecture defines the behaviour of an entity from a simulation point of view. It
depends upon the information declared within an entity and has access to that information
(ports and generics) within its body. An example of an architecture for the 2-input AND
gate might look like:

ARCHITECTURE behave OF and2 IS
BEGIN

output <= in1 and in2;
END behave;

Between the architecture’s header and the BEGIN statement is the architecture’s declarative
region. In this region additional items can be declared which are available to the architecture.
Possible declarations within an architecture include types, signals, subprograms and
components. In the above example, the declarative region is empty. Between the BEGIN
statement and the END statement is the architecture’s statement region. Any concurrent
statement may be placed within the architecture’s statement region. In the example
above, a signal assignment statement is being used as an illustration of a concurrent
statement. This assignment statement uses the signal assignment operator “<=” to assign
the logical AND of ports in1 and in2 to the port output.

Another example of an architecture can be a structural description of a 3-input AND
gate. This example contains a COMPONENT and SIGNAL declaration; it uses the
signal internal and the ports of the and3 entity (input1, input2, input3, output) to connect
to the ports of the two instantiated components.

ARCHITECTURE struct OF and3 IS
COMPONENT and2

PORT(in1,in2: IN bit;
out1: OUT bit);
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END COMPONENT;
SIGNAL internal: bit;

BEGIN
u1:and2 PORT MAP(in1 => input1, in2 => input2, out1 => internal);
u2:and2 PORT MAP(in1 => input3, in2 => internal, out1 => output);

END;

7.2.3 Configuration

A configuration design unit is used to bind an architecture to an entity, so it defines
which functionality (architecture) a particular entity will have. As there can be multiple
different architectures for a particular entity, there can also be multiple different
configurations for that entity. An example of a configuration written for the following
entity and architecture might look like:

ENTITY and2 IS
GENERIC(delay: time := 3 ns);
PORT(in1, in2: IN bit; output: OUT bit);

END and2;
ARCHITECTURE behav OF and2 IS
BEGIN

output <= in1 and in2 AFTER delay;
END behav;
CONFIGURATION config1 OF and2 IS

FOR behav
END FOR;

END config1;

An example of a configuration called conf which binds an entity called top_level to an
architecture called struct is shown below. Inside the architecture structure are two
instantiated components, U1 and U2, both of which are bound by individual FOR
constructs which specify configurations for each of the subordinate components.

CONFIGURATION conf OF top_level IS
FOR struct

FOR u1:nand_gate USE CONFIGURATION WORK.config1;
END FOR;
FOR u2:or_gate USE CONFIGURATION WORK.config2;
END FOR;

END FOR;
END conf;

A configuration can become a detailed parts list for a design by reaching down through
the hierarchy and binding an entity/architecture pair for every instantiated component in
the design. A configuration that would bind the structural architecture to its and_or
entity and bind entity/architectures to the instantiated components might look like:

LIBRARY design_1;
CONFIGURATION con_1 of and_or IS
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FOR structure
FOR u1: and2 USE ENTITY WORK.and2(behave);
END FOR;
FOR u2: or2 USE CONFIGURATION design_1.or2_con;
END FOR;
END FOR;

END con_1;

Each of the FOR statements above is a configuration specification. There are two basic
types of configuration specifications and both are being used above. The first type uses
an ENTITY configuration specification that indicates an instantiated component whose
label is u1 and whose component declaration is and2. An entity and2 is bound to this
component, found in the library whose symbolic name is WORK, and the architecture
called behave is used for that and2 entity. The second type of configuration specification
uses the CONFIGURATION keyword, and indicates an instantiated component whose
label is u2 and whose component declaration is or2. A configuration called or2_con that
can be found in the library with symbolic name design_1 is to be bound to this component.

Configuration specifications are not limited to configurations but can be placed directly
into the architecture:

LIBRARY design_1;
ARCHITECTURE struct OF and_or IS

COMPONENT and2
PORT(and1,and2 : IN bit;

and_out: OUT bit);
END COMPONENT;
--Configuration Specification
FOR u1: and2 USE ENTITY WORK.and2(behave);
COMPONENT or2

PORT(or1,or2: IN bit;
or_out: OUT bit);

END COMPONENT;
--Configuration Specification
FOR u2: or2 USE CONFIGURATION design_1.or2_con;
SIGNAL intern_1: bit;

BEGIN
u1: and2 PORT MAP(in1, in2, intern_1);
u2: or2 PORT MAP(in3, intern_1, out_1);

END structure;

In this last example the configuration specifications are shown within the declarative
region of the architecture. This will produce the same results as shown in the first
example. It seems simpler but in order to change this configuration specification the
architecture has to be edited and recompiled, while in the first example only the
configuration had to be edited and recompiled. So, by placing configuration specifications
within a configuration, many configurations with different configuration specifications
can be defined for the same entity/architecture pair. This allows the configuration of a
design without editing it.
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7.2.4 Package

Useful data type declarations and subprogram definitions are often placed into a package
so that they can be accessed by a large number of entities, architectures or other packages.
This allows a uniform coding style and produces easy to read and understandable code
that, consequently, is easier to maintain and debug. Many useful VHDL constructs can
be placed inside a package, such as: subprograms, types and/or subtypes, constants,
signals (global), files, aliases, components, attributes. A simple example of a package is:

PACKAGE my_pack IS
TYPE data_type is (‘X’,‘0’,‘1’,‘Z’);
FUNCTION data_to_bit (input: data_type) RETURN bit;

END my_pack;

7.2.5 Package body

The package body design unit contains the functionality of subprograms or the value of
constants declared within a package. Consequently, the package body is dependent on
the package declaration. Designers can use a package body to ‘hide’ the functionality of
subprograms or the value of a constant from their user. An example of a package body
written for the package my_pack might look like:

PACKAGE my_pack IS
CONSTANT temp1: real;
PROCEDURE do_nothing (input:IN bit);

END my_pack;
PACKAGE BODY my_pack IS

CONSTANT temp1: real := 32.0;
PROCEDURE do_nothing(input:IN bit) IS
BEGIN

RETURN;
END do_nothing;

END my_pack;

7.3 Libraries, visibility and state system in VHDL

A design file is a VHDL text file that can be edited by the designer and will be the input
to a VHDL analyser. The only requirement placed on a VHDL design file is that a design
unit be completely contained within one file. It is therefore legal to create files that
contain 1, 2, 3, ..., 100+ design units within them.

7.3.1 Libraries

The concept of a design library is fundamental to the understanding of design unit
relationships, since a design unit resides within a design library. It is placed there by the
VHDL analyse process. Therefore, a design unit within a design library is always
syntactically correct. A VHDL design library is associated with a symbolic name that
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can be used by VHDL design units to access information contained within a library.
This information may include the contents of packages, entities, architectures or
configurations. Normally, a design library is implemented as a directory structure in the
file system. Once a library (directory) has been established and associated with a symbolic
name, design units may be placed into that library. This is accomplished through analysing
(compiling) VHDL code. The symbolic name associated with a library can be thought
of as an absolute address to that library structure.

There are two symbolic library names that are always available to designers. The first
is a library designated by the identifier STD. The second is a library designated by the
identifier WORK. The STD library is very special as it contains two packages that are
basic and fundamental to any VHDL design. The first package is called STANDARD
and is specified by the IEEE 1076 LRM. It contains the basic VHDL types such as
integer, real, or Boolean. The second package is called TEXTIO and is also detailed by
the IEEE 1076 standard. The TEXTIO package contains useful subprograms that enable
the user to perform ASCII file manipulation.

When VHDL source files are analysed, the results are placed into the library associated
with the symbolic name WORK. The WORK library may point to different libraries as
each design library becomes the target of an analyse process. At any point in time, the
design library to which one is compiling can be referenced in two ways: with its absolute
address (the library’s symbolic name) or with the relative address WORK.

7.3.2 Visibility

Visibility in VHDL refers to those declared constructs that are available to the current
design unit. Formally, any information visible to an entity is visible within all the
architectures for that entity. Also, any information visible to a package is visible to its
package body. It is as though a secondary design unit adopts any information available
to its parent, the associated primary design unit. To make information contained within
a package available to another design unit, an entity, an architecture, or another package
that package must be made ‘visible’ to that design unit. To do this, the LIBRARY and
the USE statements must be used. A library can be referenced by the identifier, its
symbolic name. The name of the library must be made visible. This is done by using the
LIBRARY statement.
Example:

LIBRARY IEEE;
ENTITY test IS
END test;

This would make the symbolic name IEEE available for reference within the entity
called test as well as any architecture written for this entity. VHDL implicitly provides
two library statements before every design unit making the library STD and the library
WORK available for all; they do not have to be stated explicitly. These are:

LIBRARY STD;
LIBRARY WORK;

In order to make a particular package within a library visible to a design unit, this
package must be specified with a USE statement. The USE statement takes as arguments
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a symbolic name of a library followed by a period ‘.’, the package name followed by a
period ‘.’, and a reference to a member element (type, constant, signal, function, procedure)
in the package. The statement is ended with a semicolon ‘;’. A package called
std_logic_1164 is considered as an example, which is contained in the library whose
symbolic name is ieee and this package contains a function called ‘and’. If this function
is to be made visible to an entity called ‘test’ to be analysed into the ‘ieee’ library, then:

LIBRARY ieee;
USE ieee.std_logic_1164.and;
ENTITY test IS
END test;

If the designer wants to make all declarations within a package visible to a design unit,
then ‘ALL’ is used:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY test IS
END test;

This code sequence makes everything in the package std_logic_1164 located in the
library ieee visible to the entity test and all of its architectures. The library that is
currently the target of the analysis can be referenced by the symbolic name WORK.
VHDL implicitly gives all design units access to the library WORK. If the working
library happened to be pointing to the same directory as the ieee library, then the above
example could be written as:

USE WORK.std_logic_1164.ALL
ENTITY test IS
END test;

A USE statement is implicitly provided to make the STANDARD package available to
all design units:

USE STD.STANDARD.ALL;

7.3.3 State system

Traditional simulators have a fixed palette of primitives and also have a fixed state/
strength system, applicable to discrete digital system simulations. Therefore, like the
limitations of fixed primitives, the designer has to be immediately concerned with
implementation aspects when conceiving new ideas. Traditional simulators enforced the
limitations of a fixed palette of primitives and a fixed state system by integrating a
schematic capture system. This forced the engineer to think in terms of gates, flip-flops,
multiplexers and registers instead of allowing concentration on the functionality of the
design. With VHDL, the user defines the simulator’s state system. One can duplicate a
traditional simulator’s fixed state system or define highly abstract states. For example:

TYPE week_day IS (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);

Within the context of VHDL, a TYPE is a set of values. This set of values encompasses
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all possible values held by a signal, variable, or constant of an assigned TYPE. Collectively,
signals, variables and constants are called objects. When an object is declared, the set of
values (type) that the object can hold is established. The simulator will not allow a value
to be assigned to an object that is not within the set of the declared type. For example:

SIGNAL clock : std_ulogic;
VARIABLE crayon : colour := black;
CONSTANT clear : std_ulogic := ‘1’;

In each case an object is declared and associated with a type. In the case of the variable,
an initial value is declared. With the constant declaration, the constant value is specified.
Types are usually declared within a package. This allows the type to be available to all
design units which refer to that package. A typical type definition within a package
might look like:

PACKAGE std_logic_1164 IS
TYPE std_ulogic IS (‘U’,‘0’,‘1’,‘Z’,‘X’,‘W’,‘L’,‘H’,‘-’);

END std_logic_1164;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY mux IS

GENERIC(tplh: time := 3 ns);
PORT(in1,in2,sel: IN std_ulogic; output: OUT std_ulogic);

END mux;

Type std_ulogic is declared within the package std_logic_1164. Any design unit that
references this package will be able to use std_ulogic. This is shown with the entity mux
above. By making visible the package std_logic_1164, any object can be declared using
the type std_ulogic. Types can also be defined within any declarative region of a design
unit. For example, declaring the same type, std_ulogic, within an entity would look like:

ENTITY mux IS
TYPE std_ulogic IS (‘U’,‘0’,‘1’,‘Z’,‘X’,‘W’,‘L’,‘H’,‘-’);
GENERIC(tplh: time := 3 ns);
PORT(in1,in2,sel: IN std_ulogic; output: OUT std_ulogic);

END mux;

In both the prior examples, the entity mux is identical in definition. The only difference
is that the type std_ulogic, in the first example, is globally available while the type
std_ulogic defined in the second example is only available within the entity mux and
any associated architecture. Objects are said to be in one of three possible classes:
signals, variables, or constants. Ports fall into the signals class while generics fall into
the constants class.

7.3.4 VHDL simulation

A VHDL simulation is an event-driven simulation, which detects and reacts to changes
on specific channels. In VHDL these channels are signals and the subsequent reaction
to these changes is described by the concurrent VHDL statements that are sensitive to
these signals. In a VHDL simulation cycle, signals are updated and events detected.
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VHDL statements sensitive to these events are queued and then executed. These statements
can also cause additional events without simulation time advancing. Therefore, a VHDL
simulation cycle executes all statements on the present queue, updates all signals, detects
new events and builds new execution lists. Since it is possible to have repeated executions
of a VHDL simulation cycle without advancing time, a mechanism is needed for describing
the forward motion of a VHDL simulation without regard to time. All signal assignments
occur at least one delta in the future. This is called delta ordered simulation. Example:

ARCHITECTURE behave OF rom IS
SIGNAL addr: integer;

BEGIN
PROCESS (address)
VARIABLE memory: mem_type;
BEGIN

addr <= vect_to_int(address);
data <= memory(addr);

END PROCESS
END behave;

In the example above a simple ROM is being modelled. The intent is to read in an 8-bit
binary address (address), convert the address from binary to integer (addr), and drive the
output signal (data) with the appropriate value selected by indexing memory
(memory(addr)). The algorithm will not work since it depends on the signal addr to
update its value immediately so that the memory can be indexed with the new value.
Since addr will not update until the next delta point, the memory will be indexed with
the wrong value. A correct implementation would be to declare addr as a variable.
Variable values are assigned immediately. For example:

ARCHITECTURE behave OF rom IS
BEGIN

PROCESS (address)
VARIABLE memory: mem_type;
VARIABLE addr: integer;
BEGIN

addr := vect_to_int(address);
data <= memory(addr);

END PROCESS
END behave;

7.4 Sequential statements

The process statement is the basic building block for behavioural modelling. A process
statement is a concurrent shell in which sequential statements can be executed. All
statements within a process are executed sequentially, when the process becomes active.
The process as a concurrent statement is presented in 7.5.1.

The process statement can contain one and only one sensitivity list. A process with
a sensitivity list can only be triggered by an event on a signal in this list. Once triggered,
the process will execute all statements contained within the sequential statement section,
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and then suspend until another event is detected on one of those signals. If multiple
signals are included in the sensitivity list, any one of those signals can trigger the
process. Therefore, the use of a sensitivity list in a process is fairly limited. The WAIT
sequential statement provides the user with more options than the process sensitivity
list.

7.4.1 Wait

The first advantage to a WAIT statement is that it can be placed anywhere within the
process body. With the process sensitivity list the process effectively suspends at the end
of the process. With the WAIT statement, suspension occurs wherever a WAIT statement
is encountered. The second advantage is that there is no limitation to the number of
WAIT statements within a process. The third is that WAIT statements are more flexible.
WAIT statements cannot be used in conjunction with a process sensitivity list. The
process sensitivity list is equivalent to:

WAIT on signal1, signal2, ...

placed as the last sequential statement in a process. This WAIT statement simply means
that if any of the listed signals has an event resume the process. There are four variations
of WAIT statements and combinations of them. They are:

WAIT ON signal_list;
WAIT UNTIL condition;
WAIT FOR time;
WAIT;

Examples:

WAIT ON clock, clear, preset, d;

This statement will suspend a process and will resume if an event occurs on signals
clock, clear, preset, or d.

WAIT UNTIL (clock = ‘1’);

This statement will suspend a process and will resume when an event occurs on clock
and the Boolean expression clock = ‘1’ is true. All conditions following UNTIL must
first have an event and the Boolean expression must be true.

WAIT FOR 10 ns;

Wait for simulation time to advance 10 ns, then resume the process. An effective way to
model ‘time-out’.

WAIT;

Suspend forever. There are number of instances where processes have been developed
just to execute once.

WAIT ON clock UNTIL (clear = ‘0’) FOR 10 ns;

This WAIT statement is an amalgamation of three types of WAIT statements. If a
process does not have a sensitivity list and does not have a WAIT statement contained
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within it, the process will loop forever. During the initialisation phase of simulation all
concurrent statements are executed once. The process statement is executed until it
suspends during initialisation. If the process statement does not have a sensitivity list or
at least one WAIT statement it will never suspend. Most VHDL compilers will check to
ensure that a sensitivity list or WAIT statements are included in every process.

7.4.2 If-then-else

If-then-else is a basic mechanism for building decision structures. The VHDL syntax is:

IF condition THEN
{sequence_of_statements}

[{ELSIF condition THEN}
{sequence_of_statements }]

[ELSE
{sequence_of_statements }]

END IF;

A minimum if-then-else statement is:

IF condition THEN
sequence_of_statements

END IF;

The execution of the if-then-else statement involves the sequential evaluation of the IF
clause followed by any ELSIF clauses. The first clause to evaluate true will result in the
associated sequence_of_statements to be executed. Once these sequence_of_statements
have been executed, execution will end. If an ELSE clause is included and the IF and all
ELSIF clauses have evaluated false, the ELSE will always evaluate true and execute.
Note that the use of ELSIF is correct and that END IF is two words.

Examples:

IF (clock = ‘1’) THEN
q <= d AFTER 10 ns;

END IF;
This example is a simple representation of a D flip-flop having input and output, d and
q respectively. If clock is a ‘1’ then assign to the signal q the current value on signal d
after 10 nanoseconds from the current simulation time. The next example shows the
description of a clocked 4 to 1 mux:

PROCESS (clk)
VARIABLE temp : bit;
BEGIN
IF clk = ‘1’ THEN

IF sel = “00” THEN
temp := inputs(0);

ELSIF sel = “01” THEN
temp := inputs(1);

ELSIF sel = “10” THEN
temp := inputs(2);
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ELSE
temp := inputs(3);

END IF;
output <= temp AFTER 5 ns;

END IF;
END PROCESS;

Notes:

• The syntax for the variable assignment operator ‘:=’ is different from the signal
assignment operator ‘<=.’

• Variables are assigned immediately, as opposed to signals, which are assigned at the
next delta, if no delay is specified. Changes in values of variables do not cause
simulation events.

• Variables are local to the process; their values are retained from one execution of a
process to the next. Variables are used for local storage and signals are used as a
vehicle to pass information among concurrent statements.

7.4.3 Case

The case statement can be thought of as a switch. An expression is evaluated and a
sequence_of_statements associated with the matching choice is executed. If the expression
evaluates to a choice, then the associated statements will be executed. Exit will occur
when all statements associated with the first matching choice are executed. Syntax:

CASE expression IS
WHEN choice => sequence_of_statements
[WHEN choice => sequence_of_statements]
END CASE;

Example:

CASE vect IS
WHEN “00” => int := 0;
WHEN “01” => int := 1;
WHEN “10” => int := 2;
WHEN “11” => int := 3;

END CASE;

In this example vect is a two element bit_vector. By evaluating vect the matching
WHEN choice will cause the variable int to be assigned the matching integer value. The
clocked 4 to 1 mux example modelled before by using if-then-else statements can be
rewritten using nested case statements.

PROCESS (clk)
VARIABLE temp : bit;

BEGIN
CASE clk IS
WHEN ‘1’ => CASE sel IS

WHEN “00” => temp := inputs(0);
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WHEN “01” => temp := inputs(1);
WHEN “10” => temp := inputs(2);
WHEN “11” => temp := inputs(3);
END CASE;

output <= temp AFTER 5 ns;
WHEN OTHERS => NULL;
END CASE;

END PROCESS;

7.4.4 Loop

Loop statements provide a mechanism to repeatedly execute a sequence of statements.
The syntax is:

[label: ] [iteration_scheme] LOOP
sequence_of_statements

END LOOP [label];

Iteration_schemes can be:

WHILE condition
FOR loop_iteration_range

An iteration_scheme can be one of two types, WHILE or FOR. If the WHILE construct
is used, the condition is evaluated and, if true, the sequence_of_statements within the
loop statement will be executed. If the FOR construct is used, the sequence_of_statements
within the loop will be repeatedly executed for the range specified.

Two statements can be used within the loop statement that will allow either the
termination of a loop iteration or the complete termination of the loop statement. These
statements are the NEXT and EXIT statements.

Examples:

FOR i IN 0 TO 3 LOOP
IF (bus(i) = ‘1’) THEN

value := value + 2**i;
END IF;

END LOOP;

This loop statement will examine each individual bit of the bit_vector bus. If the individual
bit is a ‘1’ then value will be increased by the exponential 2**i. After the fourth pass,
the loop range will be exceeded and the loop will terminate. A feature of VHDL, unlike
other programming languages, is that the range variable i was not declared. Any range
variables used within the FOR construct do not have to be declared. The same range
identifier can be used repeatedly from one loop statement to the next.

FOR i IN 3 DOWNTO 0 LOOP
IF (bus(i) = ‘1’) THEN

value := value + 2**i;
END IF;

END LOOP;



140 Neural and Fuzzy Logic Control of Drives and Power Systems

The above example shows that the range can be ascending or descending just by using
the keywords TO or DOWNTO.

FUNCTION vect_to_int (bus: bit_vector(0 to 3))
RETURN INTEGER IS
VARIABLE value: integer := 0;
VARIABLE i: integer := 0;
BEGIN

WHILE (i < 4) LOOP
IF (bus(i) = ‘1’) THEN

value := value + 2**i;
END IF;
END LOOP;

RETURN value;
END vector_to_integer;

This is the same example using different constructs. For the WHILE construct (unlike
the FOR construct) the range identifier i must be declared.

7.4.5 Assert

The ASSERT statement is a mechanism that allows direct reporting to a VHDL simulator’s
standard output, usually displayed in the simulation window or console; some simulators
allow the output to be redirected to a file. The ASSERT statement evaluates a Boolean
expression and, if false, will report a string to the standard output. ASSERT messages
are useful for reporting simulation progress, setup and hold violations, out of bounds
addresses, overflow and underflow, etc. The syntax is:

ASSERT condition
[REPORT string]
[SEVERITY level]

The ASSERT condition is a Boolean expression. If the condition evaluates to false the
assert statement will execute. According to the LRM, the error message reported by a
VHDL simulator must contain a minimum of:

• ASSERT message identification.
• The SEVERITY level – defaults to ERROR if not specified.
• The REPORT string.
• The name of the design unit containing the assert statement.

The optional REPORT line allows for a user-defined message to be included with the
message. This is unique in that no string formatting functions are required.

The SEVERITY level is a type defined in the package STD. The severity level can
take on one of four values:

TYPE SEVERITY_LEVEL IS (NOTE, WARNING, ERROR, FAILURE);

Examples:

PROCESS (clk)



VHDL fundamentals 141

BEGIN
IF clk = ‘X’ THEN

ASSERT false REPORT “Clock is unknown”
SEVERITY error;

END IF;
END PROCESS;

In this example the assert statement will always execute if encountered. The Boolean
condition is declared false. The if statement, clk = ‘X’, determines whether the assert
statement should be executed.

PROCESS (clk)
BEGIN

ASSERT (address < 1024)
REPORT “Address out of range!” SEVERITY warning;

END PROCESS;

In this example, if address is less than 1024 the assert message will evaluate to true and
not execute. When address is 1024 or greater the assert statement will execute.

ASSERT false REPORT “All Done With Stimulus Application!”
SEVERITY note;

This assert always evaluates false and will report to the simulator that the application of
stimulus is complete.

7.5 Concurrent statements

7.5.1 Process

The process statement is a concurent statement and constitutes the basic building block
for behavioural modelling. A process contains sequential statements which are executed
sequentially when the process becomes active. The syntax for a process statement is:

[label] : PROCESS [(sensitivity_list)]
process_declarative_part

BEGIN
process_statement_part

END PROCESS [label];

The optional label allows for a user-defined name for the process. If the label is included
with the END PROCESS clause, it must match the PROCESS label. A process statement
may contain an optional sensitivity list. A sensitivity list contains signals that trigger the
process statement. The process statement begins execution when any of the sensitivity
list’s signals contain an event. Once activated via a sensitivity list event, the process
statement executes statements in a sequential manner. Upon reaching the end of the
process, execution suspends until the next sensitivity list signal event. Without a sensitivity
list a process will suspend only when a WAIT sequential statement is encountered.
Example: a process sensitive to the signal clock. When an event occurs on clock the
process will execute. Within the statement part of the process it is a signal assignment
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statement which inverts the value of clock 50 ns in the future. This will schedule an
event on clock. This process toggles clock every 50 ns.

PROCESS (clock)
BEGIN

clock <= not(clock) AFTER 50 ns;
END PROCESS;

7.5.2 Signal assignment

This is used quite frequently. The syntax for a signal assignment statement is:

target <= delay_options straight_transforms or
conditional_transforms or
selected_transforms;

There are two delay_options, INERTIAL and TRANSPORT. Delay_options are an
advanced topic and will not be discussed. If a delay_option is not specified the default
is inertial. Signal assignments are self-contained VHDL processes. Depending on which
transforms are used, straight transforms, conditional_transforms or selected_transforms,
a concurrent signal assignment can replicate simple VHDL processes or VHDL processes
with if-then-else statements or case statements, respectively.

ARCHITECTURE arch1 OF and2 IS
BEGIN

output <= in1 and in2;
END arch1;

This architecture can be rewritten using a process statement that duplicates the functionality
of the architecture above. Rewriting the signal assignment statement as a process statement
provides insight into the operation of a concurrent signal assignment statement. All
concurrent statements have signals to which they are sensitive. This sensitivity list of
signals is what activates a concurrent statement. With the concurrent signal assignment
statement, all signals to the right of the signal assignment operator, <=, comprise the
sensitivity list of that statement. In this example, if an event occurs on signals in1 or in2
that statement will be executed.

ARCHITECTURE arch2 OF and2 IS
BEGIN

PROCESS (in1, in2)
BEGIN

output <= in1 and in2;
END PROCESS;

END arch2;

An example of a 2-input AND gate with a delay of 10 nanoseconds is:

ARCHITECTURE and2 OF and2 IS
BEGIN
output <= in1 and in2 AFTER 10 ns;

END and2;
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In conditional transforms the keywords WHEN and ELSE indicate conditional transforms.
This example replicates a VHDL process statement with if-then-else constructs. All
signals to the right of the signal assignment operator are sensitive to events, and as such
will activate this signal assignment statement.

…………
BEGIN

output <= in1 AFTER tplh WHEN sel = ‘0’ and rising(in1) ELSE
in1 AFTER tphl WHEN sel = ‘0’ and falling(in1) ELSE
in2 AFTER tplh WHEN sel = ‘1’ and rising(in2) ELSE
in2 AFTER tphl WHEN sel = ‘1’ and falling(in2) ELSE
‘0’ AFTER tphl;

END rtl;

The example below shows a 2 to 1 mux using selected_transforms within a concurrent
signal assignment statement. Since the input and sel signals appear to the right of the
signal assignment statement they make up the sensitivity list. If an event occurs on any
of those signals, one of the four drivers will be selected. Selection is based on which
WHEN condition matches the value on the sel signal.

.................
BEGIN

WITH sel SELECT
output <= input(0) AFTER 5 ns WHEN “00”,

input(1) AFTER 5 ns WHEN “01”,
input(2) AFTER 5 ns WHEN “10”,
input(3) AFTER 5 ns WHEN “11”;

END simple;

The example below uses the sequential case statement within a process statement:

ENTITY mux IS
PORT (input: IN bit_vector(0 to 3);

sel: IN bit_vector(0 to 1);
output: OUT bit);

END mux;
ARCHITECTURE simple OF mux IS
BEGIN

PROCESS (input,sel)
BEGIN
CASE sel IS

WHEN “00” => output <= input(0) AFTER 5 ns;
WHEN “01” => output <= input(1) AFTER 5 ns;
WHEN “10” => output <= input(2) AFTER 5 ns;
WHEN “11” => output <= input(3) AFTER 5 ns;

END CASE;
END PROCESS;

END simple;
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7.5.3 Component instantiation

The component instantiation statement is the vehicle used to provide structural design
mechanisms to VHDL. It is with this construct that hierarchical designs may be developed.
The component instantiation statement allows the placement of an instance of a VHDL
entity, the connection of signals to the ports of the entity and, if necessary, the modification
of generic values declared within the entity of the instantiated component. The syntax
is:

label: component_name
[GENERIC MAP (association_list)]
[PORT MAP (association_list)];

The label and component_name are the only required elements of the component
instantiation statement. The GENERIC MAP is optional if there are no generics declared
within the entity declaration of the instantiated component or there is no need to override
the generics declared. The PORT MAP is optional if the component has no ports or if
the designer does not have the intention to hook it up.

Before a component can be instantiated it must be declared. The declaration can be
either in an architecture’s declarative region or within a package. The package is referenced
through the LIBRARY and the USE clauses. The component declaration clause only
specifies an entity and not an entity/architecture pair. The intended architecture for the
declared components is specified through configuration specifications which bind an
architecture to an entity. The PORT MAP constructs wire up the devices and the GENERIC
MAP constructs allow the overriding of the default generic values declared within the
entity statements of the subcomponents. By default, the mapping of signals to the actual
ports of the component is a positional relationship. The first signal listed in a port map
construct will map to the first port defined in the component declaration.

With the remapping construct ‘=>’ the designer can force the connection of signals
to specific ports, despite the order in which they were declared. Each instantiated component
executes concurrently with all other concurrent statements. If an event occurs on any
ports of mode in or inout, the associated entity/architecture pair will execute.

7.5.4 Generate

A generate statement provides a mechanism for iterative or conditional elaboration of a
portion of a description. Some schematic capture systems provide a mechanism that
allows a designer to instantiate a single component and then attach a property that will
cause the replication of the component a specific number of times. This expansion is
handled by the schematic compiler. This provides a higher level of abstraction when
designing at the gate level. The expansion of such a construct is iterative elaboration.

A conditional generate statement will be compiled regardless of the condition. During
the elaboration phase of simulation, if the condition is false the behaviour within the
generate statement will be discarded. The syntax is:

label: generation_scheme GENERATE
{concurrent_statements}
END GENERATE [label];
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generation_scheme ::=
FOR generate_specification
IF condition

A label is required for a generate statement and is optional when used with the END
GENERATE construct. If the optional label is used with the END GENERATE construct
it must match the generate label. There are two generation_schemes available for the
generate, which are the FOR generation scheme and the IF generation scheme. Depending
on which generation scheme is chosen, the resulting behaviour will be either iterative or
conditional elaboration. The FOR scheme will cause an iterative elaboration scheme
and the IF scheme will cause a conditional elaboration scheme. Only the iterative
elaboration scheme will be discussed. Example:

ENTITY reg16 IS
PORT (input : IN bit_vector (0 to 15);

clock : IN bit;
output : OUT bit_vector (0 to 15));

END reg16;
ARCHITECTURE struct OF reg16 IS

COMPONENT dff
PORT (d, clk : IN bit; q : OUT bit);

END COMPONENT;
BEGIN

G1: FOR i IN 0 TO 15 GENERATE
G1: dff PORT MAP (input(i),clock,output(i));

END GENERATE G1;
END struct;

This example shows the VHDL equivalent of the description given using schematic
capture to imply a 16-bit register without instantiating all 16 flip-flops. By using the
generate statement and a FOR generation scheme the dff device can be easily replicated.
As in the sequential loop statement, the counter i does not have to be declared and will
increment by 1 for each loop through the generate statement. When 16 loops have been
completed, generation stops.

7.5.5 Assert

The assert statement can be used both as a sequential statement and a concurrent statement.
Instead of including the assert statement within a process as used in section 7.4, it will
be stand-alone. Its functionality is identical but the signals within the assert condition
constructs become the sensitivity list for the concurrent assert statement. Whenever an
event occurs on one of those signals, the assert statement will become active and execute.
Once active, the assert statement will only report to the simulator if the Boolean expression
evaluates to false.

Example:

ASSERT (address < 5) REPORT “Address out of range!”
SEVERITY warning;
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7.6 Functions and procedures

7.6.1 Functions

A function can be thought of as a user-defined expression and, similar to an expression,
returns a single value. A function can be called from anywhere within a VHDL statement
that an expression can be placed. A function can have a parameter list, the same as a
procedure but unlike a procedure, each parameter in the function’s parameter list has a
mode of input IN. The class of the parameter can be explicitly declared but, if absent,
will default to CONSTANT. This means that a function can only read the value on any
of its parameters and cannot make assignments to any of these parameters. A function
cannot have an assignment to signals or variables that it up-level references and thus has
no side-effects.

Functions have two parts, the declaration and the body. Function declarations are
only allowed within a package. Functions declared within a package are available for
use by any design unit that makes reference to it via the LIBRARY and USE statements.
The simplified syntax for a function declaration is:

FUNCTION function_name [( parameter_list )] RETURN type_mark;

The keywords FUNCTION and RETURN signify the declaration of a function. The
function_name is a user-chosen identifier for the function. Formal parameters of functions
can be objects of class constant or signal and can only be of mode IN. If the object class
of a formal parameter is not explicitly specified, the class will default to CONSTANT.
The parameter_list is optional. Although the passing of parameters to a function is
optional the returning of one value is mandatory. This is required since a function call
is used as an expression and not as a VHDL statement. The function declaration includes
the type of the returned value. Function examples:

PACKAGE utilities IS
FUNCTION v_to_int ( vect : bit_vector(0 TO 3))

RETURN integer;
FUNCTION rising (SIGNAL sig : bit) RETURN boolean;
FUNCTION falling(SIGNAL sig : bit) RETURN boolean;

END utilities;

The first function declared is a vector to integer conversion. A 4-element bit_vector is
passed in and an integer value is returned. The class of the formal vector parameter is
not specified and therefore becomes CONSTANT and the mode is unspecified and
therefore defaults to IN. The mode of parameters in function parameter lists is rarely
explicitly specified as the only acceptable mode is IN. The functions rising and falling
will decide if a rising or falling edge occurred on the signal passed in. Edge detection
routines commonly use information stored by the simulator in the attributes of a signal.
To access this information the parameter must be declared to have a class of SIGNAL.

7.6.2 Function body

The body of a function contains the procedural instructions which encompass the behaviour
of a function. The function declaration defines the calling interface of the function.
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Since functions are used as expressions in VHDL, a function body defines an evaluation
or conversion the function will carry out. The simplified syntax is:

FUNCTION function_name [( parameter_list )] RETURN type_mark IS
[declarative_items ; ]

BEGIN
[sequential_statements ; ]

END [function_name ];

The keywords FUNCTION, RETURN and IS represent the beginning delimiter of a
function body and the keyword END marks the ending delimiter. The function_name
used with the END construct is optional and, if used, must match the function_name
used with the FUNCTION construct. The parameter_list requirements are identical to
those discussed with the function declaration. A function body can exist without a
corresponding function declaration.

Matching function declarations and function bodies are required if the function body
is defined within a package and the function must be visible to design units that reference
it via the library and use statements. If a function will only be used by other functions
or procedures within the same package, the declaration can be omitted. The function
body can be thought of as a function declaration and function body all wrapped into one.
This capability is needed since functions can be defined within declarative regions of
entity and architecture design units or within the declarative regions of a process, generate,
block, function or procedure VHDL statements.

The function body has a declarative region that begins immediately after the keyword
IS and ends right before the keyword BEGIN. Inside this region declarative_items can
be declared. Declarative_items include: types, variables, constants, procedures, functions,
and so forth. The keyword BEGIN delimits the beginning of the sequential statements
that define the action the function will execute. A function call is only executed as a
result of encountering its call within a calling expression. A function initialises any
internal variables declared in the declarative region to their initial value and begins
sequential execution of statements located after the BEGIN statement until it hits a
RETURN statement. The RETURN statement must be accompanied by an expression
that evaluates to the type declared in the function’s RETURN type_mark. It is a run-time
error if the end of a function is encountered prior to hitting an explicit RETURN
statement.

Examples:

PACKAGE BODY utilities IS
FUNCTION vector_to_integer ( vect : bit_vector(0 to 3))

RETURN integer IS
VARIABLE result: integer := 0;
VARIABLE weight: integer := 1;
BEGIN
For i IN 0 TO 3 LOOP

IF vect(i) = ‘1’ THEN
result := result+weight;

END IF;
weight := weight * 2;
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END LOOP;
RETURN result;
END vector_to_integer;
FUNCTION rising(SIGNAL sig : bit) RETURN boolean IS
BEGIN
IF sig = ‘0’ THEN

RETURN false;
ELSE

RETURN true;
END IF;
END rising;
FUNCTION falling(SIGNAL sig : bit) RETURN boolean IS
BEGIN

IF sig = ‘0’ THEN
RETURN true;

ELSE
RETURN false;

END IF;
END falling;

END utilities;

7.6.3 Procedures

A procedure is a group of sequential VHDL statements that typically represent a single
logical action. Therefore, a procedure call is a single stand-alone VHDL statement.
Typical situations for a procedure could include:

request_bus(request_level,timeout);
initialise_memory(memory_id,data_file);
refresh_screen;

Modular design with subprograms results in clean and easily maintainable code. If
there is a problem with the protocol or the functionality of one of the procedures, it is
far easier to fix that anomaly within the affected procedure than to go to each of the
instances where that procedure is used and make the changes. Modular coding also
allows a designer to concentrate on the functionality of the model rather than the
implementation.

A VHDL procedure can be called as a sequential statement or as a concurrent statement.
If it is being called sequentially, the procedure begins execution when the call is encountered.
As a concurrent statement, the signals in the procedure’s parameter list (of mode IN or
INOUT) comprise the sensitivity list for the procedure. That is, whenever a signal in a
concurrent procedure call’s parameter list has an event, the procedure begins execution.

Independent of whether the procedure is activated via sequential or concurrent activity,
all statements within a procedure are executed sequentially from the top to the bottom;
therefore, all statements within a procedure’s body must be sequential. There is no limit
to the number of input or output parameters that can be passed to or from a procedure.
A function returns one value only and because of this property, a procedure is often a
more appropriate choice of implementation than a function. For instance, when
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implementing a vector addition operation, it is often necessary to produce the carry
output and overflow status along with the sum. Since three items must be returned, the
appropriate choice for this implementation is a procedure.

Procedures can have side-effects. These are modifications of objects declared outside
the procedure that were not passed through the procedure’s argument list. This capability,
commonly referred to as up-level referencing, is extremely powerful; however, these
types of procedures can make the operation of a design difficult to understand.

Technically, a procedure has two parts: the declaration and the body. A procedure
declaration is only allowed within a package. Procedures declared within a package are
available for use by any design unit that refers to it via the LIBRARY and USE statements.
The syntax for a procedure declaration within a package is:

PROCEDURE procedure_name [( parameter_list )];

The keyword PROCEDURE signifies the declaration of a procedure. The procedure_name
is a user-chosen name for the procedure and the parameter_list is the argument list of
objects that can be passed to or from the procedure. Formal parameters of procedures
have an associated class and their class can be constant, variable, or signal. Formal
parameters of procedures are also associated with a direction or mode; this mode can be
in, out, or inout. Although an explicit definition for the class and mode of a parameter
is optional, an implicit declaration for these exists. If neither the parameter’s mode nor
the class is explicitly defined, the resulting parameter will be treated as mode IN with
class CONSTANT. If, however, the mode is explicitly specified but no class is given,
then the parameter will be treated as having the VARIABLE class. For a procedure, the
parameter_list is optional.

A procedure’s name, the number of arguments passed, the object class and mode of
the arguments all make up the signature of a procedure call. It is, therefore, possible to
have a single procedure name that has many different signatures. The mode of the
parameter determines what the procedure may do with the parameter. If the mode on a
parameter is IN, then the procedure may only read the value on the parameter. If the
mode on the parameter is OUT, then the procedure may only assign to this parameter.
If the parameter has a mode of INOUT, then the procedure may read the value of the
parameter and also make an assignment to the parameter.

The result of a variable assignment statement occurs immediately and the result is
available to the next sequential statement. Whereas, in a signal assignment statement, all
effects of that signal assignment statement occur in the future, and the result is not
available to the next sequential statement. Therefore, a procedure must know whether it
is dealing with variables or signals. Signals carry more information about themselves
than simply their current value, this attribute information including the event status of
the signal, the last value of the signal, and more. If a parameter has been given the
explicit class of SIGNAL, then the procedure also has access to this important attribute
information for the parameter. Procedure examples:

PACKAGE utilities IS
PROCEDURE add_element( element:IN real;

VARIABLE filter_data: INOUT filter_data_type);
PROCEDURE zero_out(input:INOUT filter_data_type);
PROCEDURE still_busy;

END utilities;
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The example shows procedure declarations within a PACKAGE. In the ‘utilities’ package
three procedures are being declared. The first procedure declares add_element as having
two parameters in its parameter_list, element and filter_data. The first parameter has no
explicit class but is of mode IN. This parameter will default to a class of CONSTANT.
The second parameter has an explicit class of VARIABLE and has an explicit mode of
INOUT. Within the add_element procedure, no assignment to the parameter called
element is allowed (mode IN) but both assignment and reading of the parameter called
filter_data (mode INOUT) are permissible. The second procedure declared is called
zero_out and has a single argument in its parameter list. Since the class is not explicitly
specified and the mode is INOUT, the class of the parameter defaults to variable. Within
this procedure, therefore, this parameter can be read and can also be assigned a new
value by using the variable assignment operator (:=). The last procedure declaration
shown is called still_busy and does not have a parameter list. Therefore, no arguments
are passed in or returned. This can still perform a valuable function by utilising WAIT
statements to delay simulation or by using up-level referencing to gather information or
make assignments to signals that have not been explicitly passed through the parameter
list.

7.6.4 Procedure body

The procedure body contains the procedural instructions that encompass the behaviour
of a procedure. In contrast, the procedure declaration defines the calling interface of the
procedure and identifies whether or not the procedure is available for global use. The
procedure body uses the procedure’s declaration for its interface and defines the action
the procedure will carry out. The syntax for the procedure body is:

PROCEDURE procedure_name [( parameter_list )] IS [declarative_items; ]
BEGIN

[sequential_statements; ]
END [ procedure_name ];

The keywords PROCEDURE and IS represent the beginning delimiter of a procedure
body and the keyword END marks the ending delimiter. The procedure_name used with
the END construct is optional and, if used, must match the procedure_name used with
the procedure construct. The parameter_list requirements are identical to those discussed
with the procedure declaration.

The procedure body can be thought of as a procedure declaration and procedure body
all wrapped into one. This is needed since procedures can be defined within declarative
regions of entity and architecture design units or within the declarative regions of a
process, generate, block, function or procedure VHDL statements. This provides the
ability to localise procedures. The procedure body has a declarative region that begins
immediately after the keyword IS and ends right before the keyword BEGIN. Inside this
region declarative_items can be declared. Declarative_items include: types, variables,
constants, procedures, functions, and so forth. The keyword BEGIN delimits the beginning
of the sequential statements that define the action a procedure will execute. The keyword
END delimits the end of a procedure body with the optional procedure_name. If the
procedure’s label is used in conjunction with the END statement, it must match the
procedure_name declared at the beginning of the procedure body.



VHDL fundamentals 151

Once activated, a procedure initialises any internal variables declared in the declarative
region to their initial value and begins sequential execution of statements. It continues
execution until it hits a WAIT statement, a RETURN statement, or the end of the
procedure (implicit RETURN). Upon hitting a RETURN statement, the calling program
resumes execution with any parameters passed out of the procedure updated with their
new values.

Examples

PROCEDURE add_element(element:IN real;
VARIABLE filter_data: INOUT filter_data_type) IS

BEGIN
FOR i IN filter_data’high DOWNTO filter_data’low+1 LOOP

filter_data(i) := filter_data(i-1);
END LOOP;
filter_data(filter_data’low) := element;

END add_element;
PROCEDURE zero_out(input:INOUT filter_data_type) is
BEGIN

FOR i IN input’range LOOP
input(i) := 0.0;

END LOOP;
END zero_out;

7.7 Advanced features in VHDL

7.7.1 Attributes

There are two types of attributes: predefined attributes and user-defined attributes. The
user-defined attribute is an advanced feature that allows the user to expand the language
beyond what is available. It would be useful to maintain information about a signal other
than its present value. Such information could include: the prior value of the signal, the
time elapsed since the signal value changed or last event, the time elapsed since the
signal value was driven or last transaction, if the signal is an array, what is the length of
the array, etc.

ENTITY reg IS
GENERIC (tsu:time := 3 ns);
PORT( d: IN bit_vector(3 DOWNTO 0);

clk: IN bit;
q: OUT bit_vector(3 DOWNTO 0));

BEGIN
PROCESS (clk)
BEGIN

IF clock = ‘1’ THEN
ASSERT (d’LAST_EVENT > tsu)

REPORT “Setup Violation on the d Input!”
SEVERITY error;
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END IF;
END PROCESS;

END reg;

The expression which the assert statement evaluates has the ‘LAST_EVENT attribute
on the d input port and this is a signal attribute. Port d is a signal and ‘LAST_EVENT
is one of the predefined attributes for a signal. The time since the last event occurred on
the signal d is stored within the attribute d’LAST_EVENT. There are predefined attributes
for signals, types and blocks. Attribute information is also maintained for objects declared
as arrays allowing the determination of array length, dimension, indexing of an array.
Predefined attributes include:

• ‘EVENT Boolean value that is true when signal that it is attached to has had
an event in the current delta.

• ‘LEFT Value that indicates the leftmost bound of an array index.
• ‘RIGHT Value that indicates the rightmost bound of an array index.
• ‘HIGH Value that indicates the highest value of an array index.
• ‘LOW Value that indicates the lowest value of an array index.
• ‘RANGE The range of values that an array index can take on.
• ‘LAST_VALUE The value that the signal this is attached to was prior to its current

value.

7.7.2 Overloading

Overloading refers to using the same identifier to mean different things based on the
context in which it is used. Overloading is a powerful concept which applies to three
different areas: subprogram overloading, enumerated value overloading, operator
overloading. With respect to subprogram overloading an example is given of an overloaded
subprogram (function) called rotate_left which can be used to work on different input
parameter types:

PACKAGE util IS
TYPE mvl3 IS (‘X’,‘0’,‘1’);
TYPE mvl4 IS (‘X’,‘0’,‘1’,‘Z’);
TYPE mvl3_vector IS ARRAY(natural RANGE <>) OF mvl3;
TYPE mvl4_vector IS ARRAY(natural RANGE <>) OF mvl4;
FUNCTION rotate_left(input:mvl3_vector) RETURN mvl3_vector;
FUNCTION rotate_left(input:mvl4_vector) RETURN mvl4_vector;

END util;

Two overloaded functions are being declared. The functions are overloaded because the
identifiers for the functions are the same but the signature of the functions is different.
A subprogram’s signature includes the subprogram name, the number of subprogram
parameters, the types of each subprogram’s parameters, the class of each subprogram’s
parameters and, in the case of functions, the subprogram return type. If any of these are
different between two subprograms of the same name, they are said to be overloaded. In
the example above there are two subprograms (functions) being declared that have the
same name, the same number of parameters and each subprogram parameter has the
same class. However, the type of the parameters and the type being returned by the
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subprogram are different. These two functions are overloaded. VHDL allows the end-
user to overload the common operators for various data types. Other operators that may
be overloaded include “+”, “–”, “*”, “/”, etc.

7.7.3 Passive processes

A passive PROCESS is any PROCESS which does not affect the simulation behaviour
of any signal, therefore no signal assignments can occur. All PROCESSes communicate
with the outside world by manipulating signal values. A passive PROCESS can be used
to monitor simulation activity and report on erroneous behaviour through textual messages.
A passive PROCESS can appear either within an architecture or within an entity’s body.
The only type of PROCESS that may appear within an entity’s body is a passive PROCESS.
Typically, timing checks are implemented as passive PROCESSes within the entity’s
body section. An example is given below showing how a single passive PROCESS is
activated by an event on the clk port. If this is a rising edge, the PROCESS checks to
make sure that the d input has been stable for at least tsu time units. If it is violated, a
message will be reported:

ENTITY reg IS
GENERIC (tsu:time := 3 ns);
PORT(d: IN bit_vector(3 DOWNTO 0);

clk: IN bit;
q: OUT bit_vector(3 DOWNTO 0));

BEGIN
PROCESS (clk)
BEGIN

IF clock = ‘1’ THEN
ASSERT (d’LAST_EVENT > tsu)

REPORT “Setup Violation on the d Input!”
SEVERITY error;

END IF;
END PROCESS;

END reg;

7.7.4 TEXTIO

Within the STD library TEXTIO contains file input/output routines. These allow the
user to read and write ASCII files within a VHDL model. In order to access a text file
from VHDL, the user must create a symbolic name, known as a file designator for the
file, using the FILE statement. An example shows how a file designator called demo_file
is being created. The type of the file is text and the file is read only (mode is IN). The
only other mode of a file designator is OUT (write only). A line variable is an access
type with each element being of type character. To read a line from a file into a line
variable the readline routine from TEXTIO is engaged. The PROCESS reads a line out
of the demo_file every time there is an event on the clk signal, it then places the line read
from that file into a variable (l_var) that is of elastic array type called a line type:
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USE STD.textio.ALL;
ARCHITECTURE behave OF t_bench IS
FILE demo_file: text IS IN “/home/stim_file.txt”;
BEGIN

PROCESS(clk)
VARIABLE l_var:line;
BEGIN

readline(demo_file,l_var);
END PROCESS;

END behave;

7.8 Summary

• VHDL supports behavioural as well as structural modelling. With behavioural modelling,
few if any implementation details are revealed. The advantage to behavioural modelling
is that the functionality of a device or design can easily be described using abstract
concepts. Structural modelling with component instantiation allows the designer to
describe how the device will perform the function.

• VHDL provides constructs that support a mix of both high level behavioural and
structural modelling in all phases of design and throughout the entire top-down
design process.

• Five different design units were discussed that comprise the fundamental building
blocks in VHDL. The entity, the architecture and the configuration constitute the
physical aspects of a design. The entity describes the interface information for a
device. The architecture describes the behaviour for a device. There could be many
different architectures for a given entity. The configuration design unit describes the
binding of an architecture to an entity.

• The packages are a repository for common elements that may be used by many
different designs. These common elements quite often include subprograms,
components, constants and other objects that may need to be generally available. The
package body design unit contains the functionality of subprograms or the value of
constants declared within a package.

• The library is the physical repository in which design units (that have been successfully
analysed by the VHDL analyser) are stored. There are two statements that make
design units visible to other design units: LIBRARY and USE. The LIBRARY statement
activates a library for potential use by a design unit. Depending on the syntax used,
the USE statement engages other elements. Three statements are always implied, or
made available to VHDL design units. These are:

LIBRARY std;
LIBRARY work;

USE std.standard.ALL;

• VHDL provides multi-level design simulations, which can range from most abstract
to details of a switch level simulation. A VHDL simulator is a concurrent event
simulator. When an event is detected the VHDL statements that are sensitive to that
event are queued for execution. This cycle is repeated. Signals are only updated at the
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beginning of a simulation cycle and are not updated immediately after execution.
Delta ordering is a vehicle in which forward motion in a VHDL simulation can be
expressed without advancing simulation time. Time in a VHDL simulation is represented
by two axes, delta ordering and simulation time. Simulation time will never advance
until all deltas scheduled for the present simulation time have been executed.

• Since VHDL is a concurrent programming language, all sequential statements are
contained within a concurrent shell called a PROCESS. The most common used five
concurrent statements were discussed: Process, Assert, Component Instantiation,
Generate, Signal Assignment. Concurrent statements are miniature forms of describing
a VHDL PROCESS. Each concurrent statement has a sensitivity list and each concurrent
statement will execute asynchronously when an event occurs in its respective sensitivity
list. Most concurrent statements could be modelled as PROCESSes and, as such,
provide a mechanism for partitioning a large design.

• Through a combination of TEXTIO techniques, portable VHDL test-benches can be
developed. It can be seen how a component could be stimulated by information
contained within a file, the results of that component’s behaviour can be compared
against an expected results file and any errata could be reported to a file.
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This chapter presents the mathematical principles and algorithms underlying a new
sensorless control strategy for three-phase cage induction motors. The control method
comprises two elements: the stator current control strategy and the sensorless speed
control strategy. Both of them are based on an equivalent three-phase R–L–e circuit
whose parameters are derived from the space vector model of the induction motor. An
induction motor speed estimation strategy is presented. A new sensorless speed control
method is formulated and tested by simulation. The VHDL design and FPGA
implementation of the new controller are presented, including simulation and experimental
results.

8.1 The induction motor equivalent circuit

The proposed motor control strategy uses the classical sensorless drive system structure
with the motor supplied by a VSI-PWM inverter, which is controlled by a digital circuit
based only on the stator current feedback information. As mentioned in Chapter 3, the
predictive current control method uses an equivalent R–L–e circuit for the load modelled
by the equation

u t Ri t L
i t

t
e t( ) = ( ) +  

d ( )
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 + ( ) (8.1)

The R–L–e equivalent circuit parameters for an induction motor can be derived from its
general space vector model
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particularised for the stator reference frame. Thus, the parameters defining the reference
frame are θ = 0 and ω = ωes = 0, which yields the equation system

8

Neural current and speed control
of induction motors
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The two fluxes can be eliminated from the equations giving:
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Therefore the derivative of the rotor current vector is
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Substituting this in (8.4) gives
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Identifying this result with the fundamental equation (8.1), the parameters of the equivalent
circuit are determined as follows:
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Consequently, the voltage space vector u is the voltage supplying the motor, the current
i is the stator current, while the internal voltage e is a quantity bearing information on
the motor operation parameters (speed and rotor current). Table 8.1 presents the electrical
parameters of five different three-phase cage induction motors. It reflects the influence
of the motor power on other parameter values. Thus, the stator and the rotor resistances
are larger at lower powers and smaller at higher powers. In a well-designed motor, the
leakage inductances are always small compared to the mutual inductance and the total
leakage inductance Lσs + Lσr does not generally exceed 10 per cent of the mutual
inductance Lm.

Under these conditions, the expression of the equivalent inductance L can be transformed
as shown in (8.8) and it can be approximated by the sum of the two leakage inductances.
The result is the approximate equivalent circuit illustrated in Fig. 8.1.
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Thus, despite the large number of turns in the motor windings, the equivalent inductance
L is relatively small due to the tight magnetic coupling between stator and rotor. However,
the precise circuit contains a slightly larger equivalent inductance that can be calculated
according to (8.7).

The parameters of the 11.1 kW motor presented on column (b) in Table 8.1 are used
in the example to illustrate all the control principles formulated in this chapter. Using
the same parameters for all simulations and calculations facilitates meaningful comparisons
between alternative control strategies.

8.2 The current control algorithm

8.2.1 The switching strategy

The predictive current control strategy proposed in this section [81] involves the concept
of non-inductive voltage, which is defined as the sum of the resistive voltage component
Ri and the internal voltage component e. This quantity, denoted by Vni, excludes the
inductive voltage component Ldi/dt from the total voltage, hence the name of non-
inductive voltage. This can be calculated using one of the two expressions:

V Ri e u L
i
tni  =  +  =  –   

d
d

(8.9)

The second formulation is more profitable as it does not use the value of the internal
voltage e, which is difficult to calculate. The digital implementation of the control

Table 8.1 Electrical parameters of three-phase induction motors

Quantity (a) (b) (c) (d) (e)

Rs 0.0114 Ω 0.371 Ω 0.79 Ω 2.89 Ω 5.9 Ω
Rr 0.011 Ω 0.415 Ω 0.76 Ω 2.39 Ω 4.62 Ω
Lsσ 0.32 mH 2.72 mH 1.57 mH 11 mH 22 mH
Lrσ 0.36 mH 3.3 mH 1.59 mH 6 mH 24 mH
Lm 11.68 mH 84.33 mH 65 mH 214 mH 809 mH
p (pole pairs) 2 1 2 1 1
P 110 kW 11.1 kW 5 kW 3 kW 2 kW

Fig. 8.1 The approximate R–L–e equivalent circuit of a three-phase induction motor
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algorithm requires that all the quantities are sampled at equal time intervals. If the
sampling process is taken into account then equation (8.1) becomes (8.10), where Ts is
the sampling period and k is the index of the samples:

u kT Ri kT L
T

i k T i k T e k T k Ts s
s

s s s s( ) = ( ) + [ ( ) –  ((  –  1) )] + ( ) + Err( , ) (8.10)

The function Err(k, Ts) represents the calculation error generated by replacing the derivative
in (8.1) with the approximation calculated based on the difference between two consecutive
current values. The calculation error decreases with increasing frequency of the PWM
and is negligible at the frequencies commonly used in induction motor drive systems
(2 kHz to 20 kHz). Under these conditions, equation (8.10) can be written as:

u kT Ri kT L
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i kT i k T e kTs s
s

s s s( )  ( ) + [ ( ) –  ((  –  1) )] + ( )≅ (8.11)

The notation can be simplified by replacing the time argument ‘kTs’ with the sample
index k, thereby transforming equation (8.11) into the equivalent form
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Based on (8.9) and (8.12), the non-inductive voltage can be approximated as

V k u k L
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( )  ( ) –  [ ( ) –  (  –  1)]≅ (8.13)

The inverter output voltage is constant between two consecutive switching transients
and if the PWM period is sufficiently short, the internal voltage e can be considered
constant as well (u(t) = U), e(t) = E). This assumption substantially simplifies the
current calculations. Thus, the relationship (8.1) becomes
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The real and the imaginary part of the current space vector are
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Combining the two equations (8.16), the result is
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which can be reduced to
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The constants ‘a’ and ‘b’ in (8.18) are defined by
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Equation (8.18) is that of a straight line. This entails that the vertex of the current space
vector i shifts with a variable speed along a straight trajectory. Due to the linear relationship
between vectors Vni and i, the trajectory of Vni is straight as well. Furthermore, according
to (8.20), the vertices of the two space vectors shift along parallel trajectories whose
direction is indicated by the argument ε calculated according to (8.21).

V t R i t E V R ini ni( ) =   ( ) +   d  =   d⋅ ⇒ ⋅ (8.20)

ε = arg(d ) = arg(d  = arg( (+ ) –  (0)) = arg( (+ ) –  (0))V i i i V Vni ni ni∞ ∞ (8.21)

The value V ni(+∞) is the non-inductive voltage after an infinitely long time and can be
calculated as:
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As a result, the angle ε is

ε = arg(  –  (0))U V ni (8.23)

Thus, as illustrated in Fig. 8.2, the trajectory of vector Vni is a straight line oriented on
the direction that links the point corresponding to the inverter output voltage with the
initial value of the non-inductive voltage Vni(0). These considerations can be used to
determine the direction of the current trajectory in the complex plane without using the
value of the internal voltage e. The control voltages to the transistors in the PWM
inverter need to be generated in such a way that the inverter output voltage maintains the
required currents across the load. The required current modification during one sampling
period is a complex quantity defined by the argument ‘arg{i ref (k + 1) – i(k)}’ and the
module |i ref(k + 1) – i(k)|. These two parameters are often impossible to achieve
simultaneously because only seven inverter output voltages are available, which means
that only seven different current shifts can be performed at a given moment. Therefore,
there are two alternative switching strategies:

• Minimising the module of the current error | iref(k + 1) – i(k + 1)|.
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• Minimising the angle between the direction of the required current trajectory and the
direction of the actual current trajectory |arg{iref(k + 1) – i(k)} – arg{i(k + 1) – i(k)}|.

The first alternative generates optimal control results but requires that equation (8.14) is
solved for all seven possible output voltages and the results are compared. The most
important disadvantage of this method is that the internal voltage E needs to be determined
first. The calculation can be performed according to the equation

E k V k Ri k u k L
T

i k i k Ri kni
s

( ) = ( ) –  ( )  ( ) –  [ ( ) –  (  –  1)] –  ( )≅ (8.24)

but this involves the value of the stator resistance R that needs to be determined on-line
due to temperature variation during the motor operation. Therefore, this method necessitates
complicated calculations that make it impractical. The inverter switching strategy adopted
in this example uses the second alternative. This approach yields good control results
without requiring the value of the stator resistance, because it involves Vni instead of E
in the calculations. Thus, the directions εj (j = 1, 2, 3, . . . 7) of the possible current
trajectories are first determined according to equation (8.23). Then the output voltage uj
that minimises the expression | –  arg{ (  + 1) –  ( )}|refε j i k i k  is generated during the next
sampling period. This current control strategy is illustrated by the example in Fig. 8.3.
The current error vector ∆iref = iref(k + 1) – i(k) indicates a direction in the complex plane
which is not identical to any of the directions that can be achieved using the available
voltages. However, the voltage coded as (0, 1, 0) is capable of producing a current
change in a direction that is much closer to the reference one than the other six possibilities
(including the zero output voltage). As a result, this voltage is generated during the next
sampling period Ts. A consequence of the fast voltage switching is that the non-inductive
voltage vector Vni never reaches the final value Vni(+∞) = u during any of the sampling
periods and therefore Vni is always inside the hexagon in Fig. 8.3.

The switching strategy can include the null voltage generated by the inverter, thereby
increasing the control flexibility, or it can exclude it improving the current response

(0, 1, 0)
Im

(1, 1, 0)

V1(0)

ε (1, 0, 0)

Re0

(0, 1, 1) (1, 1, 1)

(0, 0, 0)

(0, 0, 1)
V1(+00) = u

(1, 0, 0)

Fig. 8.2 The trajectory of the vertex of Vni space vector
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speed. Including the null output voltage in the switching strategy improves the current
harmonic content [81], but presents the disadvantage that the current response is slow if
the motor current is small. The current change rate |di/dt | when u = 0 is governed by
equation

d
d

 = – 1 |  + |
i
t L

Ri e (8.25)

that is derived from (8.1). As demonstrated by (8.7), the internal voltage e is proportional
to the motor currents, and therefore the module of vector e is approximately proportional
with the module of the equivalent current vector (the stator current). In this case, the
current change rate can be considered proportional to the module of the current vector,
which means that the system response is infinitely slow when the motor currents tend to
zero.

d
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  – | |  | |  (0)  –i
t
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If the inverter generated voltage is not zero then the current change rate is given by
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V uni= (8.27)

This ensures high response speed because the vector Vni lies always inside the voltage
hexagon and therefore |Vni – u| is always much larger than zero. As a result, the control
method excluding the zero output voltage has to be adopted when the value of |Vni |  is
below a critical limit |Vni |crt. The zero voltage can be involved in the switching strategy
when |Vni | is above this limit. The value of the critical limit is chosen based on the
required current response and the parameters in the equivalent circuit. Consequently, the
control method that always excludes the zero voltage can be considered a particular case

Output voltage

(0, 1, 0)

Im

(1, 1, 0)

V n i(k)R[iref (k +1) –i(k)]

0

(0, 1, 1)

(0, 0, 1) (1, 0, 1)

(1, 0, 0)

Re

Fig. 8.3 The graphic representation of the PWM current control principle
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of the general control strategy. This particular case is defined by | Vni |crt = +∞ so that
| Vni | < | Vni |crt in all situations.

Therefore, the adopted current control strategy in this basic form is flexible as it
allows adjusting the relationship between the response speed and the harmonic content.
A small | Vni |crt ensures a better harmonic content while a large | Vni |crt generates faster
transient response. The new current control strategy generates voltage pulses defined by
widths that are integer multiples of the sampling period Ts. The motor currents are
sampled before each switching process. Every time, the last two sets of current samples
are used in the calculations for the next voltage. Therefore, the output voltage can
change only at definite moments in time given by

tk = kTs + δt   k = 0, 1, 2, 3, . . . (8.28)

where δt is the time required for the calculation process to be fulfilled (Fig. 8.4).

Fig. 8.4 The PWM voltage signal generated by the basic version of the new control algorithm
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The classical PWM signals are generated by comparing a sine wave (the modulator)
with a triangular wave (the carrier). The widths of the generated voltage pulses vary
continuously between zero and the period of the triangular carrier Tc. The frequency of
the voltage pulses fPWM equals the carrier frequency fc. An alternative method is the
space vector PWM. It changes the inverter voltage between the seven possible values in
such a manner that the average voltage over several switching periods equals the reference
voltage space vector. In both cases, the PWM frequency has to be vigorously controlled
because it influences the quality of the generated voltage signal, but it is also approximately
proportional to the losses in the inverter. Thus, it has to be limited to an acceptable value
by adopting an appropriate carrier frequency. The PWM frequency used in common
drive systems varies between 2 kHz and 20 kHz.

The PWM frequency generated by the new control method is not constant but is
influenced by the motor operation conditions and it varies inside the interval [0; 1/
(2Ts)]. The maximal number of switching processes per second is restricted by equation
(8.28). This number needs to be large so that a voltage change can be generated at
approximately the moment it is required. This consideration leads to the necessity of a
short sampling period. Nonetheless, a short Ts is equivalent to an increased upper limit
of the PWM frequency. Therefore, an additional restriction needs to be imposed on the
current control algorithm in order to limit the frequency of the PWM voltage while
maintaining a short sampling period. A given PWM frequency fPWM can be imposed if
only two switching processes are allowed during a time interval of TPWM = 1/fPWM. If the
voltage has already been switched twice during a certain time period, then the switching
process is inhibited until a new period begins. Thus, Ts and TPWM are now independent
quantities and Ts can be set at much smaller values than TPWM. Typically, TPWM is 10 to
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40 times longer than Ts. As the PWM frequency can be as high as 20 kHz, it means that
the sampling frequency can be up to 800 kHz, which requires fast A/D converters. This
is the enhanced version of the current control algorithm. It is more flexible than the
basic algorithm version because it allows a supplemental adjustment of the inverter
losses beside control over the current harmonics.

8.2.2 The adopted neural architecture

The output voltages generated by a PWM inverter can be associated with a 3-bit code.
The neural network has the task of generating the correct bit code related to each PWM
rectangular voltage pulse. According to the current control strategy adopted, the neural
network output signals depend on two factors: the vertex position of the non-inductive
space vector Vni(k) in the complex plane, and the direction indicated by error vector
[i ref(k + 1) – i(k)] = R∆i ref. For each position in the complex plane and for each
direction, one specific set of control signals is generated to the inverter.

The actual current i(k), the reference current i ref (k + 1) and the non-inductive voltage
Vni(k) are complex quantities treated as pairs of real values. This implies the construction
of a four-dimensional Voronoi diagram: two dimensions correspond to current error
vector, while the other two are the components of vector Vni(k). To simplify the design
process, the network has been decomposed into functional modules. Each module was
then designed separately by means of two-dimensional Voronoi diagrams. The novel
architecture is defined by three interconnected subnetworks (Fig. 8.5). The first neural
component determines the position of the non-inductive voltage space vector Vni(k) in
the complex plane, while the second determines the direction of the current error vector
∆i ref. The third subnetwork merges the two results and generates a 3-bit code associated
with one of the output voltages of the PWM inverter.

Control signals generation
(two layers)

Layer 4
Layer 3

Layer 2

Layer 1

Angle calculation
(one layer)

Position calculation
(two layers)

iref(k + 1) – i(k) V ni(k)

Fig. 8.5 The architecture of the neural network

The first two subnetworks are designed by means of Voronoi diagrams. Two bi-
dimensional Voronoi diagrams were used, each being the projection of a four-dimensional
diagram on perpendicular planes. Each combination of four real inputs corresponds to
two input-data points in two different diagrams. They are the projections of the unique
input-data point in the four-dimensional input-data space.

The adopted implementation solution is: the angle subnetwork determines the argument
of the error vector ∆iref with a precision of ±α°, while the position subnetwork divides
the complex plane into ‘m’ polygonal cells and determines the cell which includes the
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vertex of Vni(k). The generation of the control signals to be supplied to the PWM inverter
considers that the vertex of Vni(k) is located in the centre of the corresponding cell, and
the calculation is performed accordingly.

8.2.2.1 The angle subnetwork

This subnetwork uses a number of ‘n’ neurones placed within a single layer to divide the
complex plane into ‘2n’ sectors (Fig. 8.6). The calculation error ‘∆ε’ is related to the
number of neurones ‘n’ according to equation (8.29):

∆ε = 360
2  

°
⋅ n

(8.29)

Fig. 8.6 The division of the complex plane into sectors (angular Voronoi cells)
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The neurone output is ‘1’ if the vertex of the current error vector is located in the
active region defined by the neurone in the complex plane, and it is ‘0’ otherwise.
Consequently, a different result is generated for each of the n sectors. The obtained
binary code has an important property: any group of consecutive sectors shares several
identical bits on certain positions in the corresponding codes, as shown in Table 8.2.

The number of shared bits decreases when the width of the group increases. Thus, if
the sectors are defined by n neurones then the codes corresponding to a group of m
consecutive sectors share n – m + 1 identical bits. The positions of the shared bits
depend on the position of the sector group inside the 360° interval. These properties are
exploited by the control signal subnetwork described in section 8.2.2.3, and by the
implementation of the on-line inductance estimator.

8.2.2.2 The position subnetwork

The position subnetwork divides the complex plane into polygonal cells. There is a large
range of possible solutions for performing this division. According to the adopted current
control principles, the argument of the difference vector Vni – uPWM, where uPWM is one
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of the inverter output voltages, equals to the argument of the corresponding current
variation across the load. To ensure good operation accuracy, the arguments corresponding
to the same voltage uPWM but to different vectors Vni inside the same Voronoi cell,
should have almost equal values. Using geometrical considerations, three conclusions
can be drawn:

• Increasing the number of cells increases the operational accuracy of the neural network.
• The point in the complex plane corresponding to an inverter output voltage uPWM

cannot be included in any Voronoi cell. If such a point were included in a cell then
arg{Vni – uPWM} varies between 0° and 360° for different vectors Vni in the same cell.
Therefore, these points need to be part of the cell boundaries.

• As a consequence of the previous point, the vectors Vni situated close to a voltage
vector uPWM should be separated into a large number of cells, the criterion of separation
being the value of arg{Vni – uPWM}. This means that the complex plane division into
cells should have a radial structure around each point corresponding to an inverter
output voltage. Around such a point, the Voronoi diagram has to be similar to
Fig. 8.6.

The adopted solution simultaneously takes into account the previous three points and
the need to minimise the number of neurones. Therefore, the division into cells shown
in Fig. 8.7 has been chosen. It has the advantage that one neurone can be involved in the
radial configuration of two or three different inverter voltages thereby optimising the
ratio between the current control quality and the hardware implementation complexity.

The position subnetwork contains two layers. The first layer models the boundaries
of the triangular Voronoi cells. The second layer contains a number of neurones equal
to the number of Voronoi cells. Each neurone is activated if the input-data point is
situated inside the associated cell. The output data generated by this subnetwork is
therefore a string of NV bits that contains a single bit ‘1’ and NV – 1 bits ‘0’, where NV
is the total number of Voronoi cells. The neurones in the second layer can be implemented
as a combination of NOT gates and 3-input AND gates that are driven by the neurones
in the first layer.

Table 8.2 The codes generated by an angle subnetwork with n = 6 neurones

Angle interval Code

[–15°; 15°) 0 0 0 0 0 0
[15°; 45°) 1 0 0 0 0 0
[45°; 75°) 1 1 0 0 0 0
[75°; 105°) 1 1 1 0 0 0
[105°; 135°) 1 1 1 1 0 0

[135°; 165°) 1 1 1 1 1 0
[165°; 195°) 1 1 1 1 1 1
[195°; 225°) 0 1 1 1 1 1
[225°; 255°) 0 0 1 1 1 1
[255°; 285°) 0 0 0 1 1 1

[285°; 315°) 0 0 0 0 1 1
[315°; 345°) 0 0 0 0 0 1
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8.2.2.3 The control signal subnetwork

The control signal subnetwork has the task of generating the 3-bit output code related
to the inverter voltage, using the information generated by the other two subnetworks.
For each triangular Voronoi cell, the argument of the current error vector can have
values between 0° and 360°. The interval [0°; 360°] corresponding to each cell is
divided into sectors related to different inverter output voltages. The division into sectors
is carried out considering that the vector Vni is always situated in the centre of the
corresponding triangular Voronoi cell. There are two alternative control strategies: the
zero output voltage generated by the inverter is either included or excluded from the
calculations. Therefore, the 360° interval is divided into either six or seven intervals,
depending whether the zero voltage is used or not. The zero voltage is never used by the
Voronoi cells in the immediate neighbourhood of the complex plane origin because in
this case |Vni | is small, and using the zero voltage would cause a very slow current
response (Fig. 8.8).

The architecture of the control subnetwork contains two layers. The first layer includes
six or seven neurones, one for each triangular Voronoi cell, depending on the adopted
current control version and on the position of the cell with respect to the origin of the
complex plane. Each neurone identifies a sector in the complex plane that is associated
with a range of error vectors arguments arg{∆iref}. This argument information is coded
by the angle subnetwork (Table 8.3, see page 222). Therefore, all the angle values inside
a certain sector correspond to binary codes that share a given set of identical bits on
certain consecutive positions inside these codes. As a result, the neurones in the first
layer are implemented as AND connected to a certain number of NOT gates depending
on the numbers of bits ‘0’ and ‘1’ to be tested. An additional input of the AND gate is
connected to the output of one neurone in the position subnetwork. The output of this

Im

(0, 1, 0) (1, 1, 0)

(0, 1, 1)
0

(1, 0, 0)

Re

(1, 0, 1)(0, 0, 1)

Fig. 8.7 The partition of the interest area into Voronoi cells
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neurone is activated when the vector Vni is situated in the correct triangular Voronoi cell.
The second layer consists of three neurones generating the three general output bits of
the neural network. These neurones multiplex the information supplied by the first layer
neurones, and they are implemented as OR logic gates.

8.2.3 The automated design process

A set of three programs has been developed in order to generate an adequate matrix
description for the three neural subnetworks. These programs (see Appendix B) are used
in conjunction with other three universal programs – CONV_NET, OPTIM and VHDL_TR
– to obtain a complete automation of the neural network design and implementation.
The conversion process is monitored by a master program (PWM_GEN) that controls
the user interface and calls all the six specialised programs in the correct order. The
logical connections between these programs are illustrated by Fig. 8.9. The master
program allows the user to control the main parameters of the neural networks to be
generated:

• The number of triangular Voronoi cells.
• The number ‘n’ of sectors used to divide the 360° interval.
• The number of bits used to code the analogue inputs of the angle subnetwork.
• The number of bits used to code the analogue inputs of the position subnetwork.
• The maximum number of inputs allowed for one gate.
• Whether six or seven PWM output voltages are used.

Note: If the number of triangular Voronoi cells is only six, the present current control
method becomes similar to the control algorithm presented in [179] where the complex
plane is divided into six regions. The control algorithm in [179] uses very limited
information on vector e because only the region in the complex plane that includes the
vertex of e can be calculated. The information on Vni used by the present control
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Fig. 8.8 The triangular cell classification based on position with respect to the origin
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algorithm is more accurate because the inductance L is estimated on-line in the manner
described in 8.2.4.

Alternative architectures defined by different numerical parameters have been tested
by means of computer simulation. The solution generating an optimal performance–
complexity ratio has been adopted. The implementation solution uses nb = 5 input bits
to code each analogue input for both the angle subnetwork and the position subnetwork.
The 360° interval is divided into 36 sectors while the complex plane is divided into 54
triangular Voronoi cells. The zero voltage is not used (the parameter | Vni |crt was considered
infinite).

The initial netlist description of the angle subnetwork contained 660 logic gates
arranged on 11 gate layers. The netlist was eventually optimised to 378 gates (representing
57.27 per cent of the initial gate count). The initial and the final number of gates for the
position subnetwork are 567 and 242, which means compression to 42.68 per cent. This
subnetwork has been implemented by a logic gate structure with 14 layers, while the
control signal subnetwork has been optimised from 3026 to 709 gates resulting in a
compression ratio of approx. 1:4. The corresponding hardware implementation contains
only six layers of logic gates. Therefore, the total number of logic gates in the optimised
neural implementation is 1329 logic gates. The overall circuit depth is 14 + 6 = 20 layers
of logic gates. The VHDL descriptions of the angle subnetwork and of the position
subnetwork are presented in Appendix C.

8.2.4 The on-line inductance estimation

For correct current control, the value of inductance L needs to be either measured or
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CTRL. CPP

CONV_NET.CPP

OPTIM.CPP

VHDL_TR.CPP

File name:
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File names:
wrl. asc & wr2.asc

File name:
points.asc

File names:
wc1.asc &

wc2.asc

File name:
context dependent

File name:
context dependent

File name:
context dependent

Fig. 8.9 The neural PWM generator design programs and their interconnections
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estimated. An original on-line estimation method has been integrated into the switching
algorithm to transform it into a universal control strategy that does not require any
previous information about the motor parameters.

The on-line estimation starts with an initial inductance L̂(0). The inductance estimation
L̂(0)  is then incrementally updated and progressively more accurate estimations
ˆ ˆ ˆL L L(1), (2), (3)  are calculated until the correct value is found. The algorithm convergence

is guaranteed for any initial inductance value, but for reasons of simplicity, it is considered
that L̂(0) = 0 . Each incremental correction is performed in parallel with one current
control step (one output voltage being determined). The effect of using an estimated
inductance instead of the exact value is that the non-inductive voltage Vni cannot be
calculated exactly, but an estimated value V̂ ni  is determined instead. Equation (8.13)
can be therefore rewritten as

ˆ
ˆ ˆ

V k u k
L
T

i k i k u k L
T

i kni
s s

( ) = ( ) –  [ ( ) –  (  –  1)] = ( ) –    ( )⋅ ∆ (8.30)

The estimated inductance is given by the relation L̂  = L + ∆L where L is the real
inductance and ∆L is the estimation error. As a result, equation (8.30) becomes
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During the next sampling period the current varies according to equation

u(k + 1 ) ≅  Ri(k + 1) + e(k + 1) + L
Ts

 ∆i(k + 1) (8.32)

Adding and subtracting Vni(k) = Ri(k) + e(k) gives

u(k + 1) ≅ Vni(k) – Ri(k) – e(k) + Ri(k + 1) + e(k + 1) + L
Ts

 ∆i(k + 1) (8.33)

With the notation ∆e(k + 1) = e(k + 1) – e(k), (8.33) can be written as

u(k + 1) ≅ Vni(k) + R∆i(k + 1) + ∆e(k + 1) + L
Ts

 ∆i(k + 1) (8.34)

and as

u(k + 1) – Vni(k) ≅ R
L
Ts

 + 



  · ∆i(k + 1) + ∆e(k + 1) (8.35)

Substituting (8.31) in (8.35) gives:
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where

ˆ ˆV k u k V kni∆ (  + 1) = (  + 1) –  ( ) (8.38)
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The internal voltage e is shown to be a function of the motor currents, which has a rate
of change limited by the motor inductance. Therefore, the change of the internal voltage
e is similarly limited and |∆e(k + 1)| decreases with the increase of the sampling frequency
fs = 1/Ts. As a result, in many practical applications |∆e(k + 1)| is much smaller than the
module of the other two terms in equation (8.37).
If conditions
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are fulfilled then equation (8.37) can be simplified as
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The on-line induction estimation is based on the approximate equation (8.40) and on
geometrical properties of the set of three space vectors involved in it. Thus, if the
estimation error ∆L is positive then the space vector V̂ k∆(  + 1) is situated between
∆i(k + 1) and ∆i(k) as illustrated by Fig. 8.10(a). On the other hand, if ∆L is negative
then ∆i(k + 1) lies between ∆i(k) and V̂ k∆ (  + 1) . In case ∆L = 0, the direction of
V̂ k∆ (  + 1)  will be the same as the direction of ∆i(k + 1).

Fig. 8.10 Inductance estimation principle
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The estimated inductance L̂  = L + ∆L needs to be corrected by decreasing it whenever
the situation in Fig. 8.10(a) occurs, and by increasing it in the situation illustrated by
Fig. 8.10(b). The algorithm is concisely expressed as
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where the increment step δL is a small positive quantity.
The presented algorithm operates correctly only if |∆e(k + 1)| is negligible. The

validity conditions (8.39) for induction estimation are a prerequisite for obtaining accurate
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estimation values. The larger the value of |∆e(k + 1) | the larger the estimation errors.
Other factors that influence the induction estimation process are the quantisation error
of the A/D converters and the value of the step δL.

Due to the quantisation error, the vectors V̂ k∆ (  + 1)  and ∆i(k + 1) are not always in
the same direction even if the inductance estimation is correct. This causes small fluctuations
of the estimated value after the approximate inductance has already been calculated.
The amplitude of the fluctuations is proportional to the increment step size δL and
therefore it has to be small to ensure good estimation precision.

8.2.5 Conditions for accurate current control

As previously demonstrated, the PWM current controller operates correctly if the sampling
frequency is high. Two conditions need to be fulfilled:

• The sampling frequency has to be sufficiently high to ensure that the approximate
expression (8.13) of the non-inductive voltage Vni is valid.

• The sampling frequency needs to be high enough to ensure that the variations of the
internal voltage |∆e(k + 1) | fulfil the conditions (8.39) for accurate inductance estimation.

The limitations imposed by these conditions in the particular case where the inverter
load is an induction motor are investigated and presented in [81]. The calculations
incorporate a series of approximations that do not diminish the generality of the conclusions.
The values of the motor parameters in Table 8.1 are used as a guide to determining the
validity of the approximations. The sampling frequency fs must comply [81] with the
condition

f
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It can be demonstrated [81] that the first condition for accurate induction estimation
becomes
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which is equivalent to condition (8.42).

The second condition for accurate induction estimation is [81]:
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The sampling frequency fs which fulfils this condition is given by
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The accepted inductance estimation error ∆L is an important factor that influences the
minimal sampling frequency. Very accurate inductance estimations imply small ∆L that,
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according to (8.45), require high sampling frequencies. Less accurate inductance estimation
can be performed at lower sampling frequency. For example, the inductance estimation
with a precision of 0.5 mH for the 11.1 kW motor in Table 8.1, when kPWM = 0.7,
requires that the fs is much larger than 46.2 kHz. Therefore, an adequate sampling
frequency is 450 kHz. Even larger sampling frequencies are required if either kPWM has
larger values or if higher estimation precision is required. The practical solution to limit
the sampling frequency fs while obtaining accurate induction estimation is to perform
the estimation process at small stator angular frequency ωes.

In conclusion, the lower limit for the sampling frequency has been determined [81].
It is defined by conditions (8.42), (8.43) and (8.45) which must be simultaneously
fulfilled. The first two conditions are less restrictive as they depend only on the maximal
motor speed. The last condition is more restrictive and depends on the motor speed, on
its electrical parameters and on the PWM modulation index. Consequently, condition
(8.45) alone can be used for practical calculations as any sampling frequency determined
based on (8.45) also fulfils conditions (8.42) and (8.43).

8.2.6 Current control implementation methods

The implementation of the two interrelated algorithms can be performed using DSPs or
specialised digital architectures (ASICs or FPGAs). The DSPs approach is simple because
the corresponding software development is straightforward. However, the two algorithms
imply a large number of time-consuming mathematical operations to be performed for
each PWM pulse and therefore they use most of the DSP resources, limiting its capability
to perform the speed control task. The use of specialised digital structures ensures fast
operation and allows the speed control and current control algorithms to be performed
in parallel.

There are two possible software implementations for the current control algorithm:
the direct implementation of calculating all the angles, and the indirect implementation
that uses scalar products between vectors to find the optimal output voltage. The direct
implementation implies calculating the six necessary angles using ‘arctan’ trigonometric
function [81] as shown in (8.46), and then comparing the results.
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The ‘arctan’ function can be implemented as a look-up table thereby accelerating the
calculations but the sequentially performed subtractions, divisions and comparisons
required by (8.46) considerably slow down the calculation process. A realistic estimate
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of the computational effort can be obtained considering that the first two possibilities in
(8.46) are equally probable while the last two are unlikely to be fulfilled due to the exact
equalities which are involved. In this case between 12 and 18 subtractions (depending
how many times case (a) and case (b) occur in (8.46)) are requested. Additionally, a
further six divisions and between 6 + 6 = 12 and 9 + 6 = 15 comparisons have to be
performed for each sampling period.

There are DSPs containing on-chip RAM and on-chip maskable ROM (for instance,
TMS320C5x) [9]. Consequently, both the control program and the look-up table can
reside either on-chip or off-chip in an external EPROM. On-chip configuration is
advantageous because it is compact, reliable and simplifies the PCB design. Unfortunately,
the on-chip ROM memory space is limited. A total of 8.210 memory words are available
for TMS320C51 and twice as much for TMS320C53 [9]. If the complete motor control
program is large then space for a look-up table might not be available. In these circumstances
the table would have to be placed in an external EPROM.

For a simple and compact hardware implementation, alternative algorithms must be
used to eliminate the need for the external EPROM memory chip. As a result, the
trigonometric function calculations must be avoided because any specialised routine for
calculating such functions is a huge time consumer. The indirect implementation avoids
trigonometric functions by utilising scalar products, which are performed between each
of the six vectors and the reference vector. By definition the scalar product between two
n-dimensional vectors a  and b  is given by

a b a b   = |  |  |  |  cos ⋅ ⋅ ⋅ ϕ (8.47)

The smaller the angle ϕ between the two vectors, the larger the result. Thus, the correct
output voltage is chosen by maximising the corresponding scalar product [81]. The
calculations are relevant only if the six vectors have the same module. To fulfil this
condition, the six vectors need to be normalised. Consequently the six scalar products
pj (where j = 1, 2, . . ., 6) have to be calculated.

The combined software implementation of the current control and inductance estimation
algorithms requires a very large number of mathematical operations to be performed. In
the case where the direct current control implementation is employed, then up to 12 +
24 = 36 algebraic calculations and 15 + 2 = 17 comparisons are requested for each
algorithm step. The use of the indirect current control implementation in order to eliminate
the need for look-up tables requires up to 12 + 54 = 66 algebraic operations and 5 + 2
= 7 comparisons for each algorithm step. In a typical situation where the PWM frequency
of 20 kHz and TPWM = 10·Ts, the algorithm requires that 200 000 calculation steps are
performed each second. This amounts to a total of 7 200 000 algebraic operations plus
3 400 000 comparisons per second in the case of the direct implementation. The indirect
implementation requires a computational effort of 13 200 000 algebraic operations and
1 400 000 comparisons per second.

A DSP program created to perform all these operations contains supplementary
instructions: reading operands from memory, writing results to memory, program control
instructions (jumps), and so on. An optimistic estimate is that the calculation and comparison
instruction number is approximately equal to the number of all other instructions in the
program. This means that a speed of at least 30 000 000 instructions per second (30
MIPS) is required for on-line operation. The DSPs commonly used in drive system
applications belong to the TMS320C3x and TMS320C5x series and are fast and inexpensive
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processors. For example, the 16-bit, fixed-point DSPs TMS320C5x generation performs
up to 50 MIPS while some of the TMS320C3x perform 30 MIPS but have a separate
60 MFLOPS floating point arithmetic unit, which increases the total computation power
tremendously. The latest DSP devices offer much larger calculation speeds (TMS320C6x
generation offers 1600 MIPS) but their price is still too high for inexpensive drive
control applications. Thus, the computation effort required by the adopted current control
strategy can be handled by an inexpensive DSP. However, the algorithm consumes a
significant part of its total resources (up to 33 per cent if a DSP from the TMS320C3x
generation is used and up to 60 per cent if a TMS320C5x is used). Therefore, a complex
induction motor control strategy including the presented current control method can be
difficult to implement using a single common inexpensive DSP. The resistance estimation
algorithms plus the flux and speed control procedures involve a large number of calculations
and the total requirements can easily surpass the calculation power of such a chip.

Multiprocessor DSP-based control systems are therefore not a practical solution, and
hardware implementation using ASIC or FPGA technologies proves to be an adequate
alternative strategy for a fast and efficient control system capable of providing high
performance. The high speed is achieved by adapting the hardware architecture to the
algorithm specific data flow requirements. In addition, pipelining and parallel processing
can be used on a large scale to exploit all the opportunities offered by the specific
calculation algorithms. The more parallelisms that can be found in one algorithm the
faster the operation of its hardware implementation can be. Calculation parallelism is
best exploited by hardware implemented neural networks containing tens or hundreds of
elementary processing units cooperating to solve a particular problem. The neural approach
is flexible as the neurone number can be increased or decreased and the calculation
precision varied accordingly. The neural network size and architecture is determined
based on the necessary calculation precision and the available hardware resources. The
motor controller structure developed in this research work uses FPGA implemented
neural networks alongside pipelined digital structures to carry out the computationally
intensive task of controlling the stator current. This solution is fast, inexpensive and
eliminates the timing problems related to the sequential operation of a DSP processor.
Using this approach, the complexity of the control tasks performed is not significantly
limited by the hardware operation speed. The only important limitation is given by the
available amount of hardware resources.

8.2.7 Current control simulation
The system simulation approach combines the modelling flexibility of the VHDL software
tools with the graphical capabilities of MATLAB. Thus, the simulation results have
been generated in a numerical format using Workview Office 7.31 produced by Viewlogic,
and then imported in MATLAB to generate the corresponding graphs.

A VHDL model of a three-phase induction motor has been created using the
mathematical space vector model of the motor. A separate simplified model of the PWM
inverter has been developed considering all power transistors as ideal switches. The two
modules were combined with an abstract VHDL description of the adopted control
strategy to generate a model of the entire drive system. This has been used to analyse the
current control principles presented in section 8.2. The system operation has been simulated
with different parameter values and the simulation results validated the current control
principles previously presented.
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In the VHDL Code Fragment 8.1, the motor model is an entity having two input ports
(the stator voltage and load torque) and two output ports (the stator currents and the
rotor angular frequency). All data regarding the motor operation during the simulation
is stored in an output ASCII file (motor.txt). The file contains numerical data in matrix
format, which is compatible with MATLAB. Each line in the matrix contains the set of
quantities that characterise the motor operation at a certain moment in time: currents,
voltages, speed and torque.

—— Code Fragment 8.1
LIBRARY math;
USE math.complex_basic.all;
USE math.mathtyx.all;
USE std.textio.all;

ENTITY motor IS
PORT(us: IN COMPLEX;
Tload: IN REAL;
ist: OUT COMPLEX;
omegar: OUT REAL);

END motor;

ARCHITECTURE arch_motor OF motor IS
CONSTANT Rs: REAL :=0.371;
CONSTANT Rr: REAL :=0.415;
CONSTANT Ls: REAL :=0.08705;
CONSTANT Lr: REAL :=0.08763;
CONSTANT Lm: REAL :=0.08433;
CONSTANT Jr: REAL :=0.1;
CONSTANT p: REAL :=2.0;
CONSTANT deltat: TIME :=50 ns;
CONSTANT dt: REAL := 5.0e-8;
SIGNAL next_step: INTEGER :=1;
FILE outf : TEXT IS OUT “c:\andrei\motor.txt”;

BEGIN
PROCESS(next_step)
VARIABLE my_line: LINE;
VARIABLE ist1,ist2,ir1,ir2,Fist1,Fist2,Fir1,Fir2,z:
COMPLEX :=(0.0,0.0);
VARIABLE T,omegar1,omegar2: REAL :=0.0;
CONSTANT d_space: STRING :=” “;
BEGIN
IF next_step=1 THEN
WRITE(my_line,us.re);
WRITE (my_line,d_space);
WRITE(my_line,us.im);
WRITE (my_line,d_space);
WRITE(my_line,ist1.re);
WRITE (my_line,d_space);
WRITE(my_line,ist1.im);
WRITE (my_line,d_space);
WRITE(my_line,ir1.re);
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WRITE (my_line,d_space);
WRITE(my_line,ir1.im);
WRITE (my_line,d_space);
WRITE(my_line,T);
WRITE (my_line,d_space);
WRITE(my_line,omegar1);
WRITELINE(outf,my_line);
END IF;
ist1:=ist2;
ir1:=ir2;
Fist1:=Fist2;
Fir1:=Fir2;
omegar1:=omegar2;
Fist2:=Fist1+(us-Rs*ist1)*dt;
Fir2:=Fir1+(j*omegar1*Fir1-Rr*ir1)*dt;
ist2:=(Lr*Fist2-Lm*Fir2)/(Lr*Ls-Lm*Lm);
ir2:=(Ls*Fir2-Lm*Fist2)/(Lr*Ls-Lm*Lm);
z:=ist1*conj(ir1);
T:=3.0/4.0*p*Lm*(z.im);
omegar2:=omegar1+(T-Tload)/Jr;
IF next_step<1000 THEN
next_step<=next_step+1 AFTER deltat;
ELSE
next_step<=1 AFTER deltat;
END IF;
ist<=ist1;
omegar<=omegar1;
END PROCESS;

END arch_motor;

CONFIGURATION conf_motor OF motor IS
FOR arch_motor
END FOR;

END conf_motor;

The PWM inverter is modelled as a simple VHDL process. The sensitivity list of the
process contains the 6-bit vector ‘abcdef’ containing the control signals to the six power
transistors. The first three bits uniquely define the inverter output voltage. They are used
as the selection criterion in the CASE statement that generates the corresponding voltage
space vector ‘us’.

—— Code Fragment 8.2
process(abcdef(5 downto 3))

constant U0: REAL :=
begin
case abcdef(5 downto 3) is
when “100”=> us<=U0*(1.0,0.0);
when “110”=> us<=U0*(0.5,0.866);
when “010”=> us<=U0*(-0.5,0.866);
when “011”=> us<=U0*(-1.0,0.0);
when “001”=> us<=U0*(-0.5,-0.866);
when “101”=> us<=U0*(0.5,-0.866);
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when others=> us<=(0.0,0.0);
end case;
end process;

The motor parameters used for the simulations presented in Figs. 8.11, 8.12 and 8.13 are
given in column (b) of Table 8.1. Thus, according to equation (8.8) the inductance in the
equivalent circuit is L = 5.9 mH. The parameters defining the operation of the current
controller are as follows:

• The module of the reference stator current space vector: 10 A.
• The reference frequency: 50 Hz.
• The inductance updating step δL: 0.05 mH.
• The PWM frequency: 20 kHz.
• The sampling frequency: 450 kHz.
• | Vni |crt = ∞.

In Fig. 8.11 it is shown that the correct inductance value is obtained in a short time
interval (about 200 ms). The initial induction estimation error is very large causing very
large errors in the calculation of the non-inductive voltage vector Vni. The increasing
accuracy of the inductance estimate is reflected in the decreasing ripples of estimated
Vni shown in Fig. 8.12.
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Fig. 8.11 Inductance estimation values

Figure 8.13 presents the trajectory in the complex plane of the actual current space
vector across the stator winding. It demonstrates that the current ripples are maintained
at low levels.

Similar simulations have been performed for a current control algorithm version that
always uses all the seven output voltages (| Vni |crt = 0). Similar results are obtained but
the inductance estimation process is much slower (about ten times slower). Moreover,
the variations of the inductance estimation value in steady-state operation are twice the
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amplitude of the result of Fig. 8.11. However, the current ripple amplitude decreased to
approximately 70 per cent compared to Fig. 8.13 after the inductance estimation process
was finished. Thus, although using the zero voltage decreases the current ripples, it also
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Fig. 8.13 The load current space vector
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increases the inductance estimation errors, thereby affecting the accuracy of the information
on motor operation. Consequently, this control method version decreases the precision
of any sensorless speed control strategy based on the equivalent R–L–e circuit.

8.3 The new sensorless motor control strategy

The common sensorless induction motor control strategies are derived from the sensor-
based field-oriented control methods that have been extended to include speed estimation
algorithms. All field orientation methods require several transformations of the
electromagnetic quantities from the stator reference frame into the flux reference frame,
and back from the flux reference frame into stator reference frame. Thus, a general
stator quantity ‘A’ is transformed from fixed stator coordinates into mobile flux coordinates,
using equation (8.48). The inverse transformation is carried out according to (8.49)
where θ(t) indicates the angle of the flux vector (the rotor flux, the stator flux or the
airgap flux) and is a function of time. The complete control algorithms require several
other mathematical calculations to be carried out: integrations, divisions, multiplications
and square roots.
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The sensorless speed control strategies are usually software implemented using DSPs
or microcontrollers, because the hardware implementation is difficult to achieve due to
the large number of different mathematical operations to be implemented. Attempts
have been made to combine the software and the hardware approaches [98]. This strategy
requires the implementation of a custom mathematical processor alongside specialised
control modules, RAM memory and ROM memory (to store the control programs). The
specialised modules implement routine tasks such as the PWM signal generation or the
A/D converter control, while the mathematical processor carries out all the complex
mathematical calculations and updates the operation parameters for the specialised
modules. Such an approach combines the flexibility of software implementation and the
speed of the hardware implementation. It requires large integrated circuits and complex
design procedures including simulation tools capable of checking the operation of the
mixed software–hardware control block. An inexpensive, simple and compact hardware
implementation requires the calculation overhead to be minimised so that the software
component of the control algorithm can be eliminated. Therefore, simpler speed estimation
methods and control strategies need to be devised.

The calculation complexity can be much reduced if quantities that are invariant at
reference frame transformations are used so that matrix equations like (8.48) and (8.49)
can be eliminated. The two types of quantities having such a property are the space
vector modules and the phase shifts between the space vectors. A control algorithm that
operates with these quantities is more suitable to using polar coordinates than the
classical rectangular coordinates. Consequently, new speed estimation algorithms and
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speed control algorithms need to be developed and expressed as simple equations in
polar coordinates. The novel speed control strategy proposed can operate in conjunction
with the current control method described in section 8.2, or it can be implemented
independently. In both situations the speed control strategy is based on two principles:

• The speed information is extracted by analysing the magnitude and/or the phase shift
between two space vectors A and B, chosen from the electromagnetic variables in the
equivalent R–L–e circuit (u, Vni, e, i).

• The motor speed is controlled by modifying the amplitude and the angular speed of
the stator current vector.

Using only quantities that are invariant at reference frame transformations (phase
shifts and amplitudes) implies that the choice over the reference frame does not change
the form of the speed estimation method or the form of the speed control algorithm. All
reference frames are equivalent. However, the mathematical demonstration of the principles
underlying the new control strategy is simpler in rectangular coordinates than in polar
coordinates. For simplification the most appropriate approach is to define the reference
frame orientation using vector A involved in the motor speed estimation (the real axis of
the rectangular coordinates is maintained parallel to this vector as illustrated in Fig.
8.14). In this situation, the phase shift αBA between B and A is calculated using only the
rectangular components of vector B:
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Fig. 8.14 The reference frame oriented on vector A
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Section 8.2.2.1 demonstrates that the calculation of the space vector arguments can be
efficiently carried out by hardware implemented neural networks. The result is that the
phase shift calculation is reduced to subtracting the space vector arguments, thereby
avoiding trigonometric calculations and reducing the total chip area of the controller.
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Therefore, equations like (8.50) are used only for theoretical analysis but do not have to
be implemented directly into hardware.

8.3.1 Speed estimation algorithms

Several estimation methods can be developed depending on the vectors A and B that are
chosen from the quantities available in the R–L–e circuit (u, Vni, e, i). The methods have
different degrees of accuracy and imply different calculation complexity levels. The
most straightforward solution is operating with the voltage u and the current i because
they are directly measurable quantities. The non-inductive voltage Vni is a good option
if the speed estimation is performed by a controller that uses the current control strategy
presented in section 8.2. The vector Vni is calculated for the current control algorithm
but the information can also be transferred to the speed estimator thereby decreasing the
computation effort. The use of the internal voltage e requires the largest number of
calculations because its value needs to be derived from the space vectors u or Vni.

The class of estimation methods defined by A = is is analysed in a stator current-
oriented reference frame. Due to the stator current orientation, the imaginary part of the
stator current vector is zero and the reference frame rotates with the angular speed ωes,
which corresponds to the synchronism speed in steady-state operation. Throughout this
section, the superscript ‘syn’ is attached to space vectors expressed in the synchronous
stator current-oriented reference frame. The conditions defining the chosen reference
frame are mathematically described by
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where Is designates a real quantity. The induction motor space vector model in a stator
current-oriented reference frame is expressed as
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If the last two equations in (8.52) are substituted in the first two, the result is

u R I L
i

t
L

I
t

j L I L i

R i L
i

t
L

I
t

j L I L i

s s s m
r

s
s

es s s m r

r r r
r

m
s

m s r r

syn
syn

syn

syn
syn

slp
syn

= + 
d

d
 + 

d
d

+ ( + )

0 = + 
d

d
 + 

d
d

+ ( + )

ω

ω










(8.53)

The quantity ‘ωslp’ in (8.53) is the ‘slip angular frequency’ and represents the difference
between the stator and the rotor electrical angular frequencies.

ωslp = ωes – ωer (8.54)
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The slip angular frequency is related to the motor slip ‘s’ as follows

ωslp = s · ωes (8.55)

The calculation of ωslp is a prerequisite for the rotor speed estimation. The relation
between ωslp and the rotor speed is described by
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Therefore, the speed estimation methods can be reduced to methods of estimating the
slip angular frequency. Due to their mathematical simplicity and hardware implementation
advantages, the estimators based on the phase-shift information are adopted in this work
as the optimal solution to the speed calculation problem [81]. To achieve the motor
speed estimation, the information contained in the value of the angle α between the
stator current vector i and one of the other vectors: e, us or Vni is processed. The
calculations [81] yield the following results:
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Relation (8.57) is very complicated and non-linear. It is not suitable to hardware
implemented estimation of the slip angular speed. The result in (8.58) is simpler than
(8.57), it contains one term that is proportional with ωslp and another term proportional
with the slip angular frequency squared. If the stator angular frequency is high (ωes ≅
314 rad/s), and the slip is small (it normally is during typical motor operation) then the
last term in (8.58) can be neglected and an almost linear relationship between ωslp and
tan–1 ( )αV ini  is obtained:
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Figure 8.15 presents the numerical calculation results obtained for the 11.1 kW motor
at a stator angular frequency ωs = 314 rad/s. It can be seen that the Re(Vni)/Im(Vni)
characteristics are almost straight lines. Unfortunately, their curvature increases with
the decrease of speed so that the relationship (8.60) is not valid for speeds much below
the rated speed.

The approximate relationship (8.60) is appropriate for hardware implementation together
with the current control strategy previously presented in section 8.2, because it provides
the value of Vni. This version of the slip estimator is based on the equation
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However, such an estimation method can be used only in a limited number of practical
applications, where the motor speed is variable but always high. The correct slip estimation
at any speed can only be performed using the equation
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that is derived from (8.59).
The internal voltage vector e can be calculated either as a function of Vni, is and Rs,

or based on us, Rs, ωes and is. The two alternatives are:
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The choice made depends upon the electrical quantities available. If the new current
control method is used, then the Vni-based estimator is optimal in terms of hardware
implementation. Otherwise, the u-based estimator is the better option. Thus, the two
alternative estimators operate based on the equivalent equations
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These two estimators are superior to the amplitude-based estimators because the division
and the square root calculation are eliminated. The Vni-based estimator is particularly
simple, as it requires only two multiplications and one subtraction. The u-based estimator
is slightly more complicated because it requires one additional multiplication and two

Fig. 8.15 Quasi-linear dependency between ωslp and Re(Vni)/Im(Vni) ratio (ωes = 314 rad/s)
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additional subtractions (the current derivative being approximated by the difference of
the last two current samples). The vector argument calculations in the stator reference
frame can be performed by a hardware implemented neural network. Alternatively, the
function tan–1 can be easily implemented as a small look-up table because it is a periodical
and symmetrical function and only its values between 0° and 90° need to be stored.
Such a small table is implementable into the same chip as the rest of the speed controller.

8.3.2 The novel speed control algorithm

In accordance with the general principles exposed at the beginning of section 8.3, a
novel speed control algorithm is proposed which can be expressed as a set of simple
mathematical equations written in polar coordinates. The proposed speed control strategy
incorporates the slip estimator based on the phase-shift between the vectors e and is. The
new method simultaneously carries out two interrelated tasks:

• Controlling the rotor speed ωr so that it follows the reference speed ωref.
• Maintaining the slip angular frequency at a constant value: ωslp = Ωslp.

The two tasks are performed by controlling the angular frequency and the amplitude of
the stator current. Thus, the speed controller contains two control loops. The slip control
loop determines the stator current amplitude Is in such a manner that ωslp is maintained
as close as possible to the reference value Ωslp, while the speed control loop calculates
the stator angular frequency ωes.

8.3.2.1 The slip control loop

The slip control loop implements a non-linear control strategy to keep ωslp constant by
modifying the stator current amplitude Is. The stator current controls the rotor current
and the interaction of the two generates the motor torque, which in turn affects the slip
angular frequency. The induction motor torque is given by the general equation

T L i im s r = 2
3

  Im {  }*⋅ ⋅ (8.65)

If the expression of the rotor current for steady-state operation [81] is substituted in
(8.65) then the steady-state motor torque is obtained as a function of current amplitude
and slip angular frequency:
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This expression can be further simplified as follows:
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Thus, the motor torque increases as the stator current squared and has a non-linear
variation against the slip speed. Figure 8.16 illustrates the torque-slip characteristics for
the steady-state operation of the 11.1 kW induction motor. The critical slip angular
frequency at which the torque attains its maximum corresponds to the null torque
derivative:
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Fig. 8.16 Steady-state torque variation for stator currents between 1 A and 7 A
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From (8.69), the critical slip angular frequency ω slp
k  is calculated as

ω slp = = 1k r

r er

R
L T (8.70)

The motor windings heat up during the operation. The result is a progressive increase of
the stator and rotor resistances, which entails an increase of the rotor electrical time
constant Ter, and therefore an increase of the critical slip angular frequency. Thus, ω slp

k

is independent of the stator current amplitude Is but depends on the rotor temperature.
The actual variation of ω slp

k  during the motor operation depends on the construction
details of the motor and on its operation mode. In practical applications, the load torque
Tl decreases with the decrease of the motor speed (∂Tl/∂ωr > 0). The stability of the
motor operation is ensured only if the motor torque T and the load torque Tl comply with
the condition

ω slp
k
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As a result, the motor speed is stable only if the slip angular frequency is in the interval
[0; ω slp

k ). Therefore, the reference slip angular frequency Ωslp has to be set to a value
situated inside this interval. According to Fig. 8.16, the motor slip can be varied at
constant load torque by controlling the stator current amplitude. The slip control loop
needs to increase the stator current amplitude Is when the slip angular frequency ωslp is
larger than the reference Ωslp, and to decrease it when the slip angular frequency is
smaller than Ωslp. The process requires information on the actual motor slip. To calculate
this information, the control loop incorporates the slip estimation principles based on
the phase shift between esyn and isyn. Thus, maintaining a constant slip angular frequency
during the steady-state operation is equivalent to maintaining a constant angle between
esyn and isyn.

The locus of esyn is a set of circles tangential to the real axis of the rectangular
synchronous reference frame [81]. The stator current amplitude Is is proportional to the
circle radius so that for a given stator current amplitude the locus is made up of the two
circles illustrated in Fig. 8.17. As demonstrated by (8.72), the quadrant where the
internal voltage esyn is situated depends on the sign of the stator angular frequency ωes
and on the sign of the slip angular frequency ωslp:
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Fig. 8.17 Internal load voltage locus in the complex plane
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In most practical applications, the load torque opposes the motor shaft rotation. In this
situation, the absolute value of the rotor speed is smaller than the absolute value of the
magnetic field speed. Therefore ωes and ωslp have the same sign and esyn is situated
either in quadrant I or in quadrant IV of Fig. 8.17.

| ωes | > | ωer | ⇒ sign (ωslp) = sign (ωes) (8.73)

There are applications where the torque may not be opposed to the shaft rotation, for
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example cranes and elevators. When an elevator is moving down, its weight creates a
torque that tends to accelerate the shaft rotation. As a result, the rotor moves faster than
the motor magnetic field, and the slip angular frequency sign is the opposite of the stator
angular frequency sign. In this situation, the vector esyn is situated in either quadrant II
or quadrant III.

| ωes | < | ωer | ⇒ sign (ωslp) = – sign (ωes) (8.74)

In conclusion, the sign of the reference slip angular frequency Ωslp depends on the stator
angular frequency sign and on the nature of the load. It is positive for motor operation
in quadrants I and III and negative otherwise. The motor operation in the four quadrants
corresponds to four different internal voltage vectors for steady-state operation: esyn(Ωslp1),
esyn(Ωslp2), esyn(Ωslp3), esyn(Ωslp4) where | Ωslp1 | = | Ωslp2 | = | Ωslp3 | = | Ωslp4 |. The values
of the four reference slip values Ωslp have to be smaller in absolute value than the
module of the critical slip angular frequency | |slpω k . If equation (8.70) is substituted in
(8.59), the result is:

tan = –1 slp

slp
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ω
ωei k

(8.75)

Consequently, the internal voltage vectors corresponding to the motor operation at
critical slip are placed at 45o with regard to the reference frame axes. At slip values
smaller in absolute values than | |slpω k  tan–1αei decreases and if ωslp is null then tan–1 αei
is null as well. As shown in Fig. 8.18, the vectors esyn(Ωslp1), esyn(Ωslp2), esyn(Ωslp3),
esyn(Ωslp4) need to be situated in the sectors limited by the imaginary axis of the synchronous
reference system and by the vectors esyn(ωslp1), e

syn(ωslp2), esyn(ωslp3), esyn(ωslp4). The
slip control principle is formulated as follows:

• When the internal voltage vector esyn lies in one of the shaded areas in Fig. 8.18, the
controller decreases the stator current amplitude in order to increase the absolute
value of the slip angular frequency | ωslp |.

Fig. 8.18 Characteristic points on esyn locus and corresponding slip angular frequencies
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• When the internal voltage vector lies outside the shaded sectors the speed controller
needs to decrease the stator current amplitude in order to increase the | ωslp |.

Due to the symmetry in Fig. 8.18 the calculations referring to four quadrants can be
reduced to equivalent calculations in only one quadrant. This transformation is carried
out by replacing the real and imaginary parts of vector esyn by absolute values. The
result (Fig. 8.19) is an equivalent vector E eqv

syn  given by

E e j e E jeqv
syn syn syn

eqv
syn

eqv
ref

eqv
ref= |Re{ }| +   | Im { | = | |  [cos ( ) +   sin ( )]⋅ ⋅ ⋅} α α (8.76)

Fig. 8.19 The reduction of the four quadrants to one
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The rules governing the control of the stator current amplitude can therefore be expressed
as the differential equation
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(8.77)

where the angle βeqv is the difference between the reference argument α eqv
ref  =

arg { ( )eqv
syn

slpE Ω  and the argument αeqv of the actual equivalent vector E eqv
syn .

There are several alternative expressions for the function FI but all of them have to
limit the current amplitude within an interval of acceptable values [Ismin; Ismax]. The
maximum limit is imposed by safety considerations as the motor and the power electronics
circuitry has to be protected against overheating. The minimal stator current is imposed
so that the internal voltage amplitude | esyn | does not decrease under the limit where its
argument cannot be calculated. Several versions of function FI are analysed in [81] and
the corresponding motor control performance is assessed.
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8.3.2.2 The speed control loop

If the slip angular frequency ωslp is maintained constant then the steady-state relationship
between the rotor mechanical speed and the stator electrical angular frequency is linear:

ωes = Ωslp + ωer = Ωslp + p · ωr (8.78)

However, the slip angular frequency ωslp cannot be kept constant at the reference value
Ωslp in transient operation. During transient operation all the quantities describing the
motor operation undergo complicated changes that are difficult to control due to the
non-linearities. Furthermore, transient operation causes the slip estimation errors, thereby
increasing the difficulty of the control task. The speed control loop must simultaneously
compensate the errors of the motor slip estimation and control the rotor speed. The
control strategy can be expressed by the general differential equations

ω ω ω ω ω
ω ω ω βω

es r er r r
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(8.79)

where the function ‘sign’ is defined by
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Any speed control strategy can be defined by the two functions Fω and FI involved in
equations (8.77) and (8.79). The simplest control version is defined by the functions
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where KI and Kω are proportionality constants. In this case, the derivative of the current
amplitude is proportional to the angular error βeqv, while the derivative of the angular
frequency depends on the sign of the stator frequency error. Therefore, the motor control
is linear and uses two P controllers operating in an independent manner, as the two
functions FI and Fω are calculated based on different parameters. This type of control is
appropriate when the application requirements do not include fast transient response.

Using this control strategy, the motor behaves similarly to a synchronous machine
with a start-up cage rotor:

• It is able to generate a constant speed for a certain range of load torque values.
• The rotor speed follows the variations of the stator frequency if this variation is slow.
• If the variations of the stator frequency are too fast, they take the rotor out of synchronism

and the speed response becomes relatively slow.

The simulation results in [81] prove that the transient slip estimation errors do not
affect the stability of the drive system operation. The errors cause oscillations of the
angles αeqv and βeqv but the stator current amplitude is given by
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Is(t) = KI · ∫  βeqv(t) · dt (8.82)

so that the effect of these oscillations is filtered out by integration. However, control
strategies of increased complexity are required to obtain a fast response of the system
to step changes of ωref. Very fast induction motor transient responses are typically
obtained using the rotor field-oriented control strategy. The new speed control strategy
can be improved by finding two functions FI and Fω that emulate the behaviour of a
rotor field-oriented controller. Thus, the field generating current component isd needs to
be maintained constant while modifying the torque generating current component according
to the speed error. This requires the calculation of the position θψ(t) of the rotor flux
vector ψ

r  and the equations (8.83) to be solved.
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The rotor flux vector is not calculated by the new speed control strategy in order to
minimise the calculation amount. On the other hand, solving the equation system (8.83)
would increase the hardware implementation complexity to an unacceptable level. However,
this strategy can approximate the position of ψ

r  using the position of esyn for large and
medium power motors. If the speed is larger than a few revolutions per second, then esyn

is approximately perpendicular on the rotor flux vector ψ
r  because the rotor resistance

can be neglected as compared to motor reactance. Under these conditions, esyn can be
used to determine the position of vector ψ

r  in the complex plane.
Figure 8.20 indicates the typical positions of the vectors e, i and Ψr in the synchronous

reference frame. Modifying the motor speed requires a modification of the motor torque.
The field orientation solution is to alter the stator current component isq while keeping

Fig. 8.20 Relative position of vectors e, i and Ψr in the synchronous reference frame
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isd constant. According to the new control method, the task is achieved by simultaneously
changing the stator angular frequency ωes and the stator current amplitude Is. The two
stator current components are:

i I
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γ (8.84)

where the angle γ is indicated in Fig 8.20, while the derivatives of the two components
are
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The derivative disd /dt is ideally null during the motor speed change and therefore the
variation of the stator current amplitude Is depends on γ according to

d
d

 =  tg   
d
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I
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s
s ⋅ ⋅γ γ

(8.86)

which is derived from the first equation (8.85). Substituting (8.86) into the second
equation (8.85), the result is
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which demonstrates that the stator current component isq increases with the increase of
Is. At the same time, any variation of Is has to comply with the condition (8.86).
Consequently, any increase of the stator current amplitude Is has to be simultaneous
with an increase of the angle γ = π/2 – arg{esyn}. The variation of Is generates an initial
increase of arg{esyn} followed by a decrease [81]. This variation is reflected in the
opposite alteration of the slip estimation results and of the angle γ (unwanted result). To
maintain the relationship between Is and γ in accordance with (8.86), the stator angular
frequency ωes must be simultaneously altered with Is so that the effects of ωes variations
compensate the unwanted effects over angle γ. It was proven in [81] that increasing the
slip angular frequency ωslp = ωes – ωer leads to oscillations starting with an initial
decrease of arg{esyn}. This can cancel out the unwanted increase caused by the modification
of Is. The subsequent oscillations of angle γ resulting from the modification of Is need
to be cancelled out by suitable variations of ωes. The exact analytical non-linear solution
to this problem is difficult to find. However, simplified solutions, equivalent to quasi-
field-oriented control methods, can be investigated based on a few principles derived
from the previous considerations and from the rules governing the slip estimation process.
The principles are:

• The value of arg{esyn} needs to be maintained at values close to 90° (Ωslp has to be
small) to maintain the slip estimation errors at acceptable levels.

• The rotor speed changes are always initiated by the speed control loop according to
equations (8.78) and (8.79). The stator current variations compensate for the unwanted
oscillations of angle γ, which can be calculated as a function of βeqv and α eqv

ref .
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• The angle γ must be allowed to increase during the speed changes simultaneously
with the increase of Is. This is equivalent with a simultaneous increase of βeqv and Is,
which can be easily achieved if ∂FI/∂βeqv > 0.

• If the angles γ and βeqv become too large, the speed of variation of the stator frequency
has to be limited in order to reduce the motor slip and the error slip estimations.
However, provided the motor slip has small values, the stator frequency can be
allowed to undergo fast speed changes.

One of the simplest solutions that complies with the principles outlined is
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where Fω is a piecewise linear function (Fig. 8.21) defined by the constants KI, Kω1, Kω2,
β whose optimal values depend on the motor parameters. The functions (8.88) represent

Fig. 8.21 The variation of Fω with β when ω es
ref  > ωes

the basic version of the new sensorless speed control algorithm proposed in this book.
This control solution has been tested by simulations on the 11.1 kW motor using different
values for the constants in (8.88). The MATLAB simulation results demonstrate
substantially improved dynamic response, as exemplified in Fig. 8.22. In the same time,
the method is capable of maintaining the rotor speed constant despite load torque
variations (Fig. 8.23). The system response speed is approximately proportional to Kω1
but increasing Kω1 over a certain limit actually deteriorates the system response. This
phenomenon is illustrated in Fig. 8.24, which can be compared with Fig. 8.22.

As shown by these simulation results, the stator angular frequency undergoes non-
linear variation caused by the non-linear mathematical model (8.88) of the control
strategy. Again, the motor behaves in a similar manner to a synchronous motor: the rotor
speed follows the stator frequency changes only if the speed of these changes is below
a critical limit depending on the rotor inertia and on the load torque.
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The speed control strategy can be further refined by using different values for the
constant KI depending on the stator current amplitude Is. A single value KI cannot be
optimal for all the motor currents in the range (Is-min; Is-max) because, as demonstrated by
equation (8.68), the motor torque is proportional to Is squared, and the same derivative
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Fig. 8.22 Quasi-field oriented control method results (Kω1 = 1000 s–1)

Speed (rad/s)
350

300

250

200

150

100

50

0

Time (s)
0 0.5 1 1.5 2 2.5 3

Time (s)
0 0.5 1 1.5 2 2.5 3

Torque (N.m)
7

6

5

4

3

2

1

0

Fig. 8.23 The motor speed variation during a step increase of the load torque (Kω1 = 1000 s–1)
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dIs /dt produces different torque variations at different stator current amplitudes. The
effect is a slow dynamic response of the motor when the current is close to Is-min and a
very fast one when the current is close to Is-max. Thus, to optimise the motor response,
an improved function FI needs to be found, which ensures the same dynamic parameters
both at small stator currents and at large stator currents. This requires that the motor
derivative does not depend on the stator current amplitude. The time derivative of the
torque is:
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Consequently, the torque derivative dT/dt is independent of the current amplitude Is if
dIs/dt is inversely proportional to Is. To include this improvement, the quasi-field-oriented
control strategy initially formulated in (8.88) can be transformed into
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(8.90)

In case the limited hardware resources available do not allow the implementation of a
supplementary division block (it consumes a significant amount of chip area), the division
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Fig. 8.24 Quasi-field-oriented control method results (Kω1 = 3000 s–1)
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by Is can be replaced by a stepwise approximation. Therefore, the unique constant KI is
replaced by a stepwise approximation that uses a set of different constants KI1, KI2, KI3,
. . . depending on the value of Is. In this case, the parameters of the electrical drive
dynamic response depend on the quality of the approximation, which in turn depends on
the amount of available hardware resources. The functions (8.90) represent the enhanced
version of the new sensorless speed control algorithm proposed in this book.

8.3.3 The complete control scheme

The complete sensorless induction motor control scheme includes a speed controller
that operates according to (8.90), a current controller that implements the new method
described in section 8.2, and a conversion block that interfaces the two controllers (Fig.
8.25), which transforms the quantities ω es sIref ref and  into the reference current is for the
current controller.

Fig. 8.25 The block diagram of the sensorless control scheme
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The current control principles formulated represent a generalisation of the method
presented in [179) that leads to superior control performance. The new method requires
a big computational effort that can only be performed with the aid of hardware implemented
neural networks. The combined effect of the speed controller non-linearity and the slip
estimation errors during the transients are very difficult to analyse mathematically but
the overall system behaviour can be studied using computer simulations. MATLAB
simulations prove that the drive system operates without significant speed oscillations,
without stationary errors and with good dynamic performance.

8.4 Induction motor controller VHDL design

The design and hardware implementation of the motor controller is carried out using
two main software resources: Workview Office 7.31 and Xilinx Foundation 1.4. Both of
them are sophisticated tools for the design, simulation and testing of FPGA implemented
circuits. Workview Office is a general software package produced by Viewlogic [2], [3]
and it can be used in conjunction with FPGAs manufactured by a large variety of

ω s
ref I s

ref



200 Neural and Fuzzy Logic Control of Drives and Power Systems

producers. It includes a flexible VHDL simulator that supports all the features described
by the IEEE 1076-1993 standard definition of the language [10]. On the other hand,
Xilinx Foundation is a software package specialised in developing applications using
the FPGA families manufactured by Xilinx [5], [8], [14]. It is capable of optimising the
hardware implementation according to speed and chip area requirements of particular
applications, being more versatile than Workview Office from this point of view. However,
Xilinx Foundation supports only a subset of the standard VHDL language, namely those
statements and functions that can be synthesised and directly implemented into hardware.
Furthermore, this software lacks a VHDL simulator. It performs simulations using the
netlist files obtained after the synthesis stage, which limits its capabilities and slows
down the design and test cycle. Consequently, the VHDL design and simulation have
been performed using Workview Office while the implementation and timing verification
have been carried out using Xilinx Foundation. The combined use of the two software
packages improved the overall efficiency of the simulation, troubleshooting and synthesis
stages in the design cycle. The VHDL description of the complete motor controller
includes the current control strategy and the sensorless speed control algorithm. The
model has been developed using a hierarchical approach and contains four tiers that
consist of several specialised logic blocks (Fig. 8.26).
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Fig. 8.26 The functional blocks of the FPGA motor controller

The VHDL code related to these blocks utilises generic parameters to define the size
of the registers, adders, subtracters, buses and other elements involved. This allows



Neural current and speed control of induction motors 201

rescaling of the controller hardware structure according to the calculation precision
imposed by the available types of FPGA circuits. The present version of the motor
controller has been implemented into a Xilinx XC4010XL FPGA included on an XS40
test board, which contains a 12 MHz clock circuit. The control units included in the
structure of tiers 0, 1 and 2 synchronise the operation of all the other logic blocks and
control the information transfer between different tiers. They have been designed as
clock-synchronised finite state machines (FSMs) using the specialised State Editor
program included in the Xilinx Foundation package. Using this program, a FSM is
graphically described as a state diagram, which can be automatically converted into a
VHDL model. The other blocks in each tier have been directly described in VHDL using
the register-transfer logic (RTL) manner. Therefore, they consist of registers interleaved
with combinational logic structures: adders, subtracters, comparators, etc.

Each of the four tiers performs specific tasks:

• Tier0 generates a space vector of constant amplitude and variable angular speed. The
angular speed corresponds to the stator current frequency. The vector is defined by its
real and imaginary parts in the stator reference frame. Therefore, tier0 is a sine wave
generator. It produces two variable frequency sine waves shifted with 90°.

• Tier1 carries out the algebraic calculations required by the control algorithm and
controls the operation of the A/D converters that provide information on the motor
currents. It determines the reference current space vector by multiplying the unit
space vector generated by tier1 with the amplitude of the reference stator current. It
also calculates the vectors Vni and V∆ involved in the current control algorithm and in
the on-line inductance estimation process.

• Tier2 contains the neural network that generates the PWM switching pattern based
on space vectors is and Vni. The angle calculation subnetwork, which is part of the
complex neural network, is involved in the on-line inductance estimation algorithm.
It also calculates the motor slip angle αeqv that is used by tier3.

• Tier3 generates the reference stator angular frequency and the reference stator current
amplitude using the external reference rotor speed and the motor slip angle as input
information.

8.4.1 The reference speed calculator and sine wave
generator (Tier 0)

Tier0 is described by a VHDL entity with three input ports (clock, reset and speed_rate)
and three output ports: cosx, cosy and start_tier1 as shown in the Code Fragment
8.3. The first two outputs are the projections on axes OX and OY (Fig. 8.27) of the unit
vector rotating around the origin of the two-dimensional plane with the angular speed
indicated by the input port speed_rate. The output port start_tier1 informs tier1
when the calculations performed by tier0 have been completed and the data on the
output ports cosx and cosy is ready.

—— Code Fragment 8.3
entity tier0 is

port (
clk: in STD_LOGIC;
reset: in STD_LOGIC;
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speed_rate: in STD_LOGIC_VECTOR(16 downto 0);
cosx: out STD_LOGIC_VECTOR (8 downto 0);
cosy: out STD_LOGIC_VECTOR (8 downto 0);
start_tier1: out STD_LOGIC
);

end tier0;

The architecture of tier0 contains three components: a data processing unit (data_tier0),
a control unit (ctrl_tier0) and a look-up table (sin_rom). The look-up table stores
information about the waveform of the two sine waves that need to be generated.
Traditionally, the look-up table contains the samples of the sine wave to be generated
and the data processing unit reads the table in sequence and at the required speed. To
reduce the memory size, only the information referring to a quarter of a sine wave
period is stored in the memory. However, such a look-up table is still too large to be
efficiently implemented in the same FPGA with the rest of the controller. To minimise
the memory implementation size, the differential modulation technique has been used.
This was made possible by the fact that the angle θ in Fig. 8.27 has a predictable
variation in time due to its relation to the stator current angular frequency: dθ/dt = ωes.
It increases or decreases depending on the sign of ωes, but is not subject to sudden
variations. Therefore, the values of cosx and cosy can be determined by adding or
subtracting small increments to the values calculated during the previous calculation
cycle. The increments take up fewer bits than the corresponding sine wave samples
because they are small quantities. These small increments can be stored in a compact
look-up table that requires much less hardware resources than the classical look-up
table.

Fig. 8.27 The real and imaginary components of the unit vector
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The VHDL code describing the look-up table has been automatically generated by
the specialised C++ program Sin_Rom.CPP presented in Appendix D. The program has
two parameters defining the amplitude of the sine wave (ampl) and the number of
entries in the look-up table (n_steps). Therefore, several versions of the look-up table
can be generated by altering these two parameters. The optimal version depends on the
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required precision and on the available hardware resources. Different alternatives have
been tested by simulation and physical implementation, and the solution given by ampl
= 127 and n_steps = 64 has eventually been adopted. These two parameters define a
sine wave with 265 samples per period and values between –127 and +127. The difference
between two samples varies between 0 and 7, so 3 bits are sufficient for each memory
location. In conclusion, the differential modulation technique reduces the size of the
look-up table to 33 per cent because the initial 9-bit samples can be replaced by 3-bit
sample differences. The VHDL model automatically generated by the C++ program is
an entity with one input port (the address bus) and one output port (the data bus). The
associated architecture contains a single process that produces the data corresponding to
the address using the constant array of 64 std_logic_vector elements shown in Code
Fragment 8.4

—— Code Fragment 8.4
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
ENTITY sin_rom IS

PORT(
A: IN std_logic_vector(5 DOWNTO 0);
DO: OUT std_logic_vector(2 DOWNTO 0));

END sin_rom;

ARCHITECTURE sin_rom_arch OF sin_rom IS
TYPE mem_data IS ARRAY (0 TO 63) OF std_logic_vector(2 downto 0);
constant VD: mem_data :=
( (‘0’,‘0’,‘0’),
(‘0’,‘0’,‘0’),
(‘0’,‘0’,‘1’),
(‘0’,‘0’,‘0’),

—— .................
(‘1’,‘1’,‘1’),
(‘1’,‘1’,‘0’),
(‘1’,‘1’,‘0’),
(‘1’,‘1’,‘0’),
(‘1’,‘1’,‘0’),
(‘1’,‘1’,‘1’),
(‘1’,‘1’,‘0’));

BEGIN
PROCESS(A)
begin
DO<=VD(conv_integer(A));
END PROCESS;

END sin_rom_arch;

The data processing unit inside the sine wave generator has a cyclical operation. During
each cycle, it reads the look-up table in sequence and adds or subtracts the memory
values to the current outputs in order to generate the required sine waves. The operation
cycles are initiated by a clock divider modelled by the VHDL process start_generator
inside the architecture of data_tier0. The corresponding VHDL code is:
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—— Code Fragment 8.5
start_generator: process(reset,clk)

variable counter_val: integer range 0 to 511;
begin
if reset=‘1’ then
counter_val:=2;
start<=‘0’;
elsif clk=‘1’ and clk’event then
if counter_val=0 then
counter_val:=UpperCount_tierf;
start<=‘1’;
else
counter_val:=counter_val-1;
start<=‘0’;
end if;
end if;
end process;

end data_tierf_arch;

The clock division ratio specified by the constant UpperCount_tierf has been set
to 79. Given the 12 MHz frequency of the clock signal, a number of 150 000 operation
cycles are initiated every second. A complete sine wave period contains 256 samples, so
each sample is repeatedly generated for a number of times that depends on the required
sine wave frequency. To achieve this, a new value read from the ROM memory is added
to the previous result only when the memory address changes. Thus, the speed of
changing the memory address is proportional to the required frequency. The multiplication
with the corresponding proportionality constant is performed by tier1, which transmits
the result to tier0 on the input port speed_rate.

The value of speed_rate is added to the signal adr_cosy and the result is stored
in the register next_adr_cosy. Based on the information stored in adr_cosy and
next_adr_cosy, the correct memory address is generated, after which the value of
cosy is updated. At the end of each operation cycle, next_adr_cosy is copied to
adr_cosy so that a new value for next_adr_cosy can be calculated at the beginning
of the next cycle. The addition is performed using the ‘+’ operator defined in
std_logic_signed package from IEEE library. The operators in this package have the
advantage that the sign bit of the shorter operand is always extended on the empty
positions as shown in Fig. 8.28. This simplifies the design process for complementary
code adders and subtracters. They can be directly modelled by the corresponding algebraic
equations.

Two signals generated by the control unit, add_speed_rate and inc_adr, indicate
the moments when the two address values adr_cosy and next_adr_cosy are updated.
They correspond to independent VHDL processes because the updating operations are
carried out at separate moments in time:

—— Code Fragment 8.6
process(reset,add_speed_rate)

begin
if reset=‘1’ then
next_adr_cosy<=(others=>‘0’);
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speed_sign<=‘0’;
elsif add_speed_rate=‘1’ and add_speed_rate’event then
next_adr_cosy<=adr_cosy+speed_rate;
speed_sign<=speed_rate(16);
end if;
end process;

process(inc_adr,reset) ——It is the last process to be performed
begin
if reset=‘1’ then
adr_cosy<=(others=>‘0’);
elsif inc_adr=‘1’ and inc_adr’event then
adr_cosy<=next_adr_cosy;
end if;
end process;

The signals adr_cosy and next_adr_cosy are 24-bit vectors whose most significant
8 bits correspond to the sample index relative to the beginning of the sine wave period
(a number between 0 and 255). During each operation cycle, next_adr_cosy is compared
to adr_cosy. If the most significant 8 bits in the two vectors are different, it means that
the current sample index has changed after next_adr_cosy has been modified by
adding speed_rate. Consequently, a new value is to be read from the memory and it
has to be either added to or subtracted from cosy, depending on the slope of the sine
wave around the current sample. Otherwise no operation is performed.

The look-up table has only 64 entries corresponding to a quarter of the complete sine
wave period. As a result, the address required by the look-up table is made up of only
6 bits and varies between 0 and 63. The address needs to be calculated according to a
certain algorithm, which locates the correct look-up table entry depending on the current
sample index (between 0 and 255) and the sine wave frequency sign. The details of the
address calculation algorithm are first presented for positive speeds and then it is extended
to both positive and negative speeds. As the sample index increases from 0 to 255, the
memory address varies according to Fig. 8.29. Thus, when the sample index is inside the
interval [0; 63] (the first sine wave quarter), the bits 16 to 21 of adr_cosy are used as
memory address:

mem_adr = adr_cosy(21 downto 16) (8.91)

For sample indices in the interval [64; 127] (the second sine wave quarter), the memory

Fig. 8.28 NEXT_ADR_COSY calculation
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values need to be extracted in the reversed order. The address is in this case calculated
using the formula:

mem_adr = 127 – adr_cosy (22 downto 16) (8.92)

The same addressing sequence is used for the second sine wave half because the two
halves differ only by the most significant bit of adr_cosy, which is ‘0’ during the first
half and ‘1’ during the second half. The bits 16 to 22 of adr_cosy undergo the same
sequence of changes during the two sine wave halves (Fig. 8.30) and therefore the same
calculations can be used to generate the entire waveform. Thus, formula (8.91) is applied
for the third sine wave quarter, while formula (8.92) is used for the fourth quarter.

Fig. 8.29 The correspondence between the sine wave sample index and the memory address
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Fig. 8.30 The bits of signal adr_cosy

The most significant bit of adr_cosy (the bit 23) is used to decide whether the new
memory value has to be added to or subtracted from the current cosy value. These
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values are added during the first half and subtracted during the second as shown in Fig.
8.31.

Fig. 8.31 Sine wave generation algorithm (positive speeds)

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
0 50 100 150 200 250

Addr. increase
mem. values

are added

Addr. decrease
mem. values

are added

Addr. increase
mem. values

are subtracted

Addr. decrease
mem. values

are subtracted

Sample
index

The values from
the look-up table
are added to the
previous result

The values from the
look-up table are

subtracted from the
previous result

The algorithm can be now extended for both positive and negative speeds. To do so,
it must be noted that each location in the look-up table stores the difference between the
next sine wave sample and the current sine wave sample for positive sine wave
slope and positive speed:

TABLE [mem_adr] = | NextSample – CurrentSample | (8.93)

At negative speeds the sequence of samples is reversed so that the previous sample is
calculated instead of the next sample:

TABLE [mem_adr–1] = | CurrentSample – PreviousSample | (8.94)

The vector next_adr_cosy is larger than adr_cosy at positive speed because
speed_rate is a positive value. When the speed is negative, speed_rate is negative
as well, and next_adr_cosy becomes smaller than adr_cosy. Thus, adr_cosy is
used to generate mem_adr when the speed is positive, while next_adr_cosy is used
to calculate mem_adr-1 when the speed is negative.

The memory address used to update cosx is derived from signals adr_cosx and
next_adr_cosx which are 8-bit long vectors. Their values are related to the values of
adr_cosy and next_adr_cosy because the two sine waves are 90° shifted, which is
translated into a sample index difference of 64. Consequently, adr_cosx is obtained
adding 64 to the most significant 8 bits of adr_cosy, which can be reduced to adding
‘01’ to the bits 22 and 23 of adr_cosy (Fig. 8.32). The vector next_adr_cosx is used
only to generate the memory addresses at negative speeds because the transitions between
two sine wave samples are already determined by the difference between adr_cosy
and next_adr_cosy. Consequently, next_adr_cosx is calculated according to the
simple equation
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next_adr_cosx = adr_cosx – 1 (8.95)

The sine wave generator calculates the address in two stages implemented as two
VHDL processes. First, an internal memory address (int_mem_adr) is calculated
based on the 7 bits which give the relative sample index to the beginning of the current
sine wave half (Fig. 8.30). The internal memory address is compared to 63 during the
second stage, and in case it surpasses this limit then equation (8.92) is used to calculate
the equivalent address, which is confined between 0 and 63. When this upper limit is not
surpassed, no calculation is performed. The final result mem_adr consists of the least
significant 6 bits of the vector x generated at stage two.

Due to the large number of operation cycles performed every second compared to the
number of sine wave samples, there are numerous cycles when the memory is not
addressed because tier0 outputs do not need to be updated. During the cycles when the
memory needs to be addressed, the operation is carried out twice: first time to update
cosy and second time to update cosx. The signal controlling which of the two memory
addresses is to be calculated at a certain moment (adr_mux) is generated by the control
unit. This signal is ‘0’ when the address corresponding to cosy is calculated, and it is ‘1’
otherwise. Therefore, the calculation of int_mem_adr in the first VHDL process depends
both on adr_mux and on the speed sign stored by the signal speed_sign as shown in
the following code fragment.

—— Code Fragment 8.7
process(adr_cosy,adr_cosx,next_adr_cosy,next_adr_cosx,

adr_mux,speed_sign)
begin
if speed_sign=‘0’ and adr_mux=‘0’ then
int_mem_adr<=adr_cosy(22 downto 16);
elsif speed_sign=‘0’ and adr_mux=‘1’ then
int_mem_adr<=adr_cosx(6 downto 0);
elsif speed_sign=‘1’ and adr_mux=‘0’ then
int_mem_adr<=next_adr_cosy(22 downto 16);
else
int_mem_adr<=next_adr_cosx(6 downto 0);
end if;
end process;

process(int_mem_adr)
variable x: std_logic_vector(6 downto 0);
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Fig. 8.32 ADR_COSX calculation
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begin
x:=int_mem_adr;
if x(6)=‘1’ then
x:=“0111111”-(‘0’ & x(5 downto 0));
end if;
mem_adr<=x(5 downto 0);
end process;

adr_cosx<=(adr_cosy(23 downto 22)+“01”) & adr_cosy(21 downto 16);
next_adr_cosx<=adr_cosx-“01”;

Signals cosy and cosx are updated inside two VHDL processes, which are activated
by the signals add_cosy and add_cosx generated by the control unit. These processes
decide whether to add or subtract the value read from the look-up table based on the
speed sign and the most significant bit of adr_cosy and adr_cosx, respectively. This
most significant bit indicates if the current sample is situated in the first or in the second
half of the sine wave period. This information is correlated with the sign of the sine
wave slope. If the slope is positive the new value has to be added to the output signal,
otherwise it has to be subtracted. The reset signal is part of the sensitivity list of the two
processes so it initialises the outputs at the beginning of the circuit operation. The two
outputs cosx and cosy are also periodically reinitialised to the correct values whenever
adr_cosy is zero (Code Fragment 8.8). This mechanism improves the system robustness
by avoiding the accumulation of errors caused by possible electromagnetic interference
generated by the power transistors in the PWM inverter.

—— Code Fragment 8.8
process(adr_cosy)

—This reset ensures that errors are periodically eliminated
begin
if adr_cosy(23 downto 16)=“00000000” then
periodical_reset<=‘1’;
else
periodical_reset<=‘0’;
end if;
end process;

process(add_cosy,reset,adr_cosy,periodical_reset)
begin
if (reset=‘1’) or (periodical_reset=‘1’) then
int_cosy<=(8=>‘1’,0=>‘1’,others=>‘0’);
elsif add_cosy=‘1’ and add_cosy’event then
if (adr_cosy(23) xor speed_sign)=‘0’ then
int_cosy<=int_cosy+(‘0’ & data);
else
int_cosy<=int_cosy-(‘0’ & data);
end if;
end if;
end process;

——The value of ‘cosx’ is reset whenever the memory address is 0 and
——mux_adr=0. When mux_adr=1 it means cosx will be increased.
——Therefore it mustn’t be reset any longer.
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process(add_cosx,reset,adr_cosy,adr_mux,periodical_reset)
begin
if reset=‘1’ or (periodical_reset=‘1’ and adr_mux=‘0’) then
int_cosx<=(others=>‘0’);
elsif add_cosx=‘1’ and add_cosx’event then
if (adr_cosx(7) xor speed_sign)=‘0’ then
int_cosx<=int_cosx+(‘0’ & data);
else
int_cosx<=int_cosx-(‘0’ & data);
end if;
end if;
end process;
cosy<=int_cosy;
cosx<=int_cosx;

As previously mentioned, the control unit has been designed as a finite state machine
using the State Editor included in the Xilinx Foundation software package. Thus, the
operation of ctrl_tier0 was initially described by a state diagram, which has subsequently
been converted into a VHDL model. The elements of a typical diagram are states,
transitions, transition conditions, actions, the reset signal, the clock signal, input ports
and output ports.

• The transitions between states are triggered by the clock signal. The state machine
can be defined as either active on the rising clock edge or active on the falling clock
edge.

• A condition assigned to a transition inhibits the state change until the condition is
fulfilled. All conditions need to comply with the VHDL syntax because they are
included as they were written in the automatically generated VHDL model of the
FSM.

• The actions performed by the state machine are changes of the output ports. There are
three different types of actions entry actions, state actions and exit actions. The
changes occur at different moments in time: at the transition from the previous state
to the current state (entry action), during the current state (state action) or at the
transition between current state and next state (exit actions).

• The reset signal is a special input port that brings the state machine in its original
state. It can be defined as synchronous or asynchronous. The synchronous reset
brings the FSM in the initial state only when the correct clock edge occurs, while the
effect of an asynchronous reset signal is instantaneous.

• There are two types of output ports: registered and combinational. The registered
outputs are modelled as registers and therefore the effect of any action is valid until
the next action modifies the port. The combinational outputs have no memory. The
effect of any action lasts as long as the FSM is in the state linked to the respective
action, after which the output returns value specified for the original state (the state
forced by the reset signal).

The model of ctrl_tier0 has been defined as a state machine with six states that is
active on the falling clock edge and uses an asynchronous reset signal. The control unit
has five output ports: adr_mux, add_cosx, add_cosy, add_speed_rate and inc_adr.
The port adr_mux is registered while the others are combinational (Fig. 8.33). Each
operation cycle of ctrl_tier0 begins when the start signal is activated by the process in
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Code Fragment 8.5 contained in the data processing unit. The first action carried out
during the control unit operation cycle is to trigger the calculation of next_adr_cosy
by adding speed_rate to its previous value. The vectors adr_cosy and next_adr_cosy
are compared by the data processing unit and the signal equal is set accordingly. This
requires the inclusion of a comparator in the structure of the data processing unit. The
corresponding VHDL model is described by Code Fragment 8.9.

—— Code Fragment 8.9
process(adr_cosy,next_adr_cosy)

begin
if adr_cosy(22 downto 16) /= next_adr_cosy(22 downto 16) then
equal<=‘0’;
else
equal<=‘1’;
end if;
end process;

If the most significant 8 bits of next_adr_cosy and adr_cosy are different, then the
values of cosx and cosy need to be updated. During states S1, S2 and S3 the variable
adr_mux is set to ‘0’ so that cosy can be updated when add_cosy is activated.
During states S4, S5 and S6 adr_mux is set to ‘1’ to calculate the memory address
corresponding to cosx. The output vector cosx is updated during the state S5. During
state S6, the signal inc_adr is activated and, as shown by Code Fragment 8.6, the
vector adr_cosy is updated. If the vectors adr_cosy and next_adr_cosy are equal
then the operation cycle comprises only the final action linked to the state S6. Consequently,
there are short operation cycles and long operation cycles depending on the value of the
signal equal generated by the data processing unit. These two cycle types are illustrated
by the simulation results in Fig. 8.34.

The complete model of the sine wave generator has been simulated using Workview

Fig. 8.33 The state diagram of ctrl_tier0
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Office and the results have been exported in MATLAB to draw the graphs. Figure 8.35
illustrates the operation corresponding to four different frequencies and proves the
correct generation of the two sine waves, cosx and cosy. It also demonstrates the
correct transition from the waveforms corresponding to one frequency to the waveforms
corresponding to another frequency.

Fig. 8.34 Control unit simulation results
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8.4.2 The multiplication and algebraic calculations (Tier 1)

Tier1 is a complex processing module composed of a control unit (ctrl_tier1) and a data
processing unit (data_tier1) that performs several calculations and control tasks required
by both tier0 and tier2:
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• Controls the operation of the two A/D converters connected to Hall sensors that
measure the stator currents of the motor.

• Uses the digital output from the A/D converters to calculate the stator current space
vector.

• Determines the derivative of the current space vector and uses this information to
calculate the non-inductive space vector Vni .

• Calculates the space vector V∆ = u(k) – Vni(k – 1), which is used by tier2 to estimate
the inductance in the equivalent R–L–e circuit.

• Calculates the vector speed_rate used by tier0.
• Calculates the rectangular coordinates of the reference stator current by multiplying

the unit vector produced by tier0 with the amplitude calculated by tier3.
• Performs adjustments of the numerical values supplied to the neural network located

in tier2, so that the network operation speed is maximised.

To achieve all these tasks, tier1 needs to perform several multiplications. There are
numerous multiplier hardware architectures reported in the literature [233], [234], [151],
[91]. They differ in hardware complexity and operating speed. The fastest multipliers
use combinational architectures but unfortunately they have very large hardware complexity.
Sequential architectures are more compact but at the same time they are slower. To
optimise both the speed of the motor controller and its complexity, a single fast multiplier
is used by tier1 to perform all the multiplications. Therefore, all the signals involved in
multiplications have been multiplexed to the inputs of this multiplier.

The VHDL multiplier model developed implements the 2 Nsl  – radix multiplication
algorithm which is flexible as it allows good control over the trade-off between speed
and circuit complexity. The multiplication is carried out in several stages using groups
of Nsl bits at a time, where the number Nsl is the multiplier’s step length. If Nsl is 1 the
classical Booth architecture is obtained. This generates a very compact but slow multiplier.
If the value of Nsl is larger than 1 then faster multipliers are obtained but they occupy
more space on the chip. The fastest architecture is obtained when Nsl equals the length
of the second operand. In this case, the corresponding hardware multiplier has a purely
combinational structure, which makes it space inefficient but very fast.

The VHDL multiplier model uses three generic parameters that define the length of
the two operands and the step length, as shown in Code Fragment 8.10. These parameters
allow the adaptation of the multiplier to any application requirements referring to speed,
operand size and hardware complexity.

—— Code Fragment 8.10
entity smultiplier is

generic(n,m,step_length: integer);
port (
a: in STD_LOGIC_VECTOR (n-1 downto 0);

—— Can be only positive
b: in STD_LOGIC_VECTOR (m-1 downto 0);

—— Can be both positive and negative
prod: out STD_LOGIC_VECTOR (n+m-1 downto 0);
clk,start: in STD_LOGIC;
ready: out STD_LOGIC
);

end smultiplier;
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The fact that all the multiplications required by the motor control algorithm involve a
signed operand and an unsigned operand has been exploited to optimise the structure of
the controller. Thus, a specialised multiplier has been created, which has an unsigned
input bus (b) and a signed one (a). The multiplication process is composed of a series
of simple operation cycles. Each cycle consists in multiplying the operand a with the
least significant Nsl bits of b and adding the result into a shift register. Both the result
and the operand b are then shifted with Nsl positions to the right. The architecture
comprises two shift registers, a control unit and a reduced size combinational multiplier
with input buses of width equal to the size of a and Nsl, as illustrated in Fig. 8.36. The
multiplication process is triggered by the start input signal. When this signal is active
(is ‘1’) both the control unit and the multiplication result register are reset. When start
returns to ‘0’, the control unit initiates the multiplier operation by activating the signal
first_step which causes the operand b to be loaded into the corresponding shift register.
After b has been loaded, the series of calculation cycles commences. During each cycle,
the load_step signal is activated first and then shift_step is activated. After the shift,
the most significant Nsl bits of the two registers in Fig. 8.36 are padded with zeroes.

Fig. 8.36 Flexible multiplier structure
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The number of necessary calculation cycles is given by the VHDL constant nsteps
that depends on the length of b (parameter m) and on the step length Nsl, according to
equation

nsteps = ceiling (m/Nsl) (8.96)

where the function ‘ceiling’ generates the smallest integer that is larger than its argument.
Signal count is loaded with value nsteps when the input signal start is activated, and
it is decreased at each calculation cycle simultaneously with adding the partial multiplication
result to the result register. If count is larger than 1 then the two registers are shifted
and a new cycle is initiated, otherwise the calculations are stopped and the ready signal
is activated.

The VHDL model of the control unit, shown in Code Fragment 8.11, operates with
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five different states (s0, s1, s2, s3, s4), each of them activating one of the control signals
previously discussed.

—— Code Fragment 8.11
type state is (s0,s1,s2,s3,s4);

signal s: state;
constant nsteps: integer := (m+step_length-1)/step_length;
process(clk,start)

begin
if start=‘1’ then
s<=s0;
count<=nsteps;
elsif clk=‘1’ and clk’event then
case s is
when s0 => s<=s1;
when s1 => s<=s2;
when s2 => if count>1 then
s<=s3;
count<=count-1;
else
s<=s4;
end if;
when s3 => s<=s2;
when s4 => null;
when others => null;
end case;
end if;
end process;
first_step <= ‘1’ when s=s1 else ‘0’;
load_step <= ‘1’ when s=s2 else ‘0’;
shift_step <= ‘1’ when s=s3 else ‘0’;
ready_int <= ‘1’ when s=s4 else ‘0’;
ready<=ready_int;

This algorithm is applicable only to positive values. Therefore, if the operand b is
positive then the multiplication result is the value stored in the result register after the
calculation sequence has finished. Otherwise, this result has to be transformed into a
valid two’s complement codification of the negative multiplication result. This
transformation is based on the next considerations:

• If b is a negative number then ‘2m – b’ which is its two’s complement is a positive
number.

• If b is replaced by ‘2m – b’ in the multiplication process, the result is ‘(2m – b) ⋅ a’
that has the same module as the correct result but it has the opposite sign.

• The correct multiplication result is obtained by reversing the sign of the previous
expression. Therefore, the calculation formula is: a ⋅ b–2m ⋅ a.

The VHDL implementation of this principle is described by the process in Code Fragment
8.12, where the information is transferred from the internal register int_prod to the
output port prod in two manners, depending on the most significant bit of b. If b(m –
1) = ‘0’ then the operand b is positive and the internal information is copied to the output
port, while if b(m – 1) = ‘1’ then the previous calculation formula is used.
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—— Code Fragment 8.12
process(a,b,int_prod)

begin
if b(m-1)=‘0’ then
prod<=int_prod(n+m-1 downto 0);
else
prod<=int_prod(n+m-1 downto 0) - (a & zeroes(m));
end if;
end process;

Figure 8.37 presents the pipelined architecture of data_tier1 that includes the multiplier
previously discussed. The first operation performed is the calculation of the rectangular
components ix and iy of the stator current space vector. The calculation is carried out
using a modified form of the classical conversion equations. Thus, the two components
are replaced by equivalent values that are rescaled to limit their maximal values and to
limit the number of bits necessary to be allocated for each of them. The rescaling
technique allows a good control over the number of bits used by each internal signal, but
on the other hand decreases the calculation precision of data_tier1. Furthermore, the
rescaling factors need to be taken into account by the subsequent calculations that
involve the equivalent quantities. The simulation and the synthesis results showed that
rescaling with 0.5 offers the best trade-off between precision and hardware complexity.
Therefore, the calculations are performed according to:
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The multiplication with 0.866 required in (8.97) is performed by the multiplier integrated
in data_tier1. Once the two rectangular components have been determined, the current
error vector ∆iref(k) = iref(k + 1) – i(k) and the current variation ∆i(k) = i(k) – i(k – 1) are
calculated by simple subtracters. The components of ∆i(k) are multiplied with the estimated
inductance L and subtracted from the corresponding voltage components to determine
the vector Vni, which is used by both the neural network generating the PWM signal and
by data_tier1 to calculate the vector V∆. The adapter blocks included in Fig. 8.37 enhance the
operational precision of the angle subnetwork inside the neural network contained by tier2.

The angle subnetwork calculates the argument of a space vector based on its rectangular
coordinates. The number of input bits of the angle subnetwork is smaller than the total
number of bits of the two coordinates. Therefore, it uses only the most significant n bits
of these coordinates. If the two values are small numbers, the most significant bits are
all ‘0’ or all ‘1’ (depending on the sign of the numbers) and an incorrect result is generated.

The adapter simultaneously shifts the two coordinate values to the left until their
leftmost n positions contain significant bits. Shifting a binary number to the left is
equivalent to a multiplication by a power of two. As the two coordinates are simultaneously
multiplied with the same power of two, the adapter amplifies the module of the vector
but leaves the vector argument unchanged.
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The VHDL model of the adapter has two main input ports inbusa and inbusb (the
initial two coordinates) and two main outputs outbusa and outbusb, as shown in
Code Fragment 8.13. The generic parameter ‘n’ defines the width of the input and the
output buses. It has to be set in accordance with the width of the VHDL signals to which
it is connected. All the signals in this tier have correlated widths that are primarily
determined by a generic parameter ‘ni’ which determines the width of the buses ia and
ib presented in Fig. 8.37.

—— Code Fragment 8.13
entity adapter is

generic(n: integer);
port (
inbusa: in STD_LOGIC_VECTOR (n-1 downto 0);
inbusb: in STD_LOGIC_VECTOR (n-1 downto 0);
outbusa: out STD_LOGIC_VECTOR (n-1 downto 0);
outbusb: out STD_LOGIC_VECTOR (n-1 downto 0);
clk: in STD_LOGIC;
ld: in STD_LOGIC;
ready: out STD_LOGIC
);

end adapter;

The additional input ld triggers the shifting process while ready signals the moment
when the process is finished. Each step of the process is synchronised by the clock
signal clk. The method to determine the end of the process is to test the most significant
two bits in each of the two partial results. If any of the two pairs contains different bits
then the process must stop to avoid an overflow that would change the sign of at least
one of the coordinates.

The process must also be stopped if all the bits are zero in the same time. This
happens when both input coordinates are simultaneously zero, which would cause an
infinite shifting process. The architecture of the adapter contains two VHDL processes:
the first shifts the two input values in a synchronised manner, while the second verifies
the existence of non-zero bits and communicates the result through the internal signal
not_all_zero:

—— Code Fragment 8.14
architecture adapter_arch of adapter is

signal int_busa,int_busb: STD_LOGIC_VECTOR(n-1 downto 0);
signal not_all_zero: std_logic;

begin
process(ld,clk,inbusa,inbusb)
begin
if clk=‘1’ and clk’event then
if ld=‘1’ then
int_busa<=inbusa;
int_busb<=inbusb;
ready<=‘0’;
elsif (int_busa(n-1)=int_busa(n-2)) and
(int_busb(n-1)=int_busb(n-2))
and (not_all_zero=‘1’) then
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int_busa<=int_busa(n-1) & int_busa(n-3 downto 0) & ‘0’;
int_busb<=int_busb(n-1) & int_busb(n-3 downto 0) & ‘0’;
else

Fig. 8.37 The structure of data_tier1
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ready<=‘1’;
end if;
end if;
end process;

process(int_busa,int_busb)
variable x: std_logic;
begin
x:=‘0’;
for i in 0 to n-1 loop
x:=x or int_busa(i);
x:=x or int_busb(i);
end loop;
not_all_zero<=x;
end process;
outbusa<=int_busa;
outbusb<=int_busb;

end adapter_arch;

Figure 8.38 presents the state diagram that describes the operating sequence of tier1,
which is controlled by ctrl_tier1 modelled as a pair of correlated state machines. The
first dictates the sequence of mathematical operations performed by tier1 while the
other controls the interface with the A/D converters. The A/D circuits TLC1550 produced
by Texas Instruments [1] have been used, as they offer the advantage of integrating the
sample-and-hold circuit, an internal clock oscillator and the digital converter itself in
the same chip. Moreover, this type of chip can be easily interfaced with other digital
circuits due to the 3-state parallel port, and it can be addressed as an external memory
device. Thus, it has an RD input pin that triggers the conversion and an active low EOC
output pin that signals the end of the conversion. The interface state machine activates
RD in state S28 and then waits for the conversion to finish. After each conversion, it
loads the information in the specialised registers, as shown in Fig. 8.38 correlated with
Fig. 8.37.

The operation of the first state machine in Fig. 8.38 is described by a linear sequence
of states which controls the multiplier, the associated multiplexers and loads each partial
result in the specially allocated register. The activity of the two state machines is correlated
by means of the internal signal RdNow that is used to indicate the moments when the
analogue to digital conversion is finished. Each operation cycle of ctrl_tier1 is triggered
by the start_tier1 signal, which has a frequency of 150 kHz and it is generated by
ctrl_tier0. As a result, the A/D converters are activated with the same frequency and
therefore the sampling frequency of the motor controller is 150 kHz as well.

8.4.3 The PWM generation and on-line inductance
estimation (Tier 2)

The data processing unit of tier2 named data_tier2 (Fig. 8.39) contains the PWM signal
generator, which includes the new neural network architecture presented at the beginning
of this example, the on-line inductance estimator and the motor slip calculator. All these
three digital structures use information provided by the angle subnetwork. Thus, the
inductance estimation is performed by comparing the arguments of vectors ∆i(k), ∆i(k
– 1), V∆(k), the motor slip is calculated as the difference between arg{e} and arg{is},
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while the PWM generation requires the calculation of arg{∆iref}. This implementation
solution reduces the hardware complexity of the motor controller because the same
neural structure is used for three different purposes.

The structure of data_tier2, shown in Fig. 8.39, includes three registers that are
connected to the angle subnetwork and store the output codes associated with the vectors
∆i(k), ∆i(k – 1), V∆(k) calculated by tier1. They provide this information to an analysis
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Fig. 8.38 The state diagram of ctrl_tier1

RdNow = ‘1’;



Neural current and speed control of induction motors 221

module that controls the inductance updating block, which increments or decrements
the value of the inductance, depending on the relative position between the three vectors.
The induction estimation result is loaded into a register whose ‘load’ input is validated
by comparing the reference rotor frequency with the upper limit of 10 Hz. It was shown
in an earlier section that the induction estimation errors increase with increasing stator
frequency. It is also demonstrated that stator frequency increases linearly with the rotor
steady-state angular speed. Thus, the inductance estimation errors can be maintained
low if the estimation process is performed only at low rotor reference speed. The
‘frequency check’ block in Fig. 8.39 compares the reference speed with the upper limit
and validates the estimate signal generated by ctrl_tier2 only if the reference speed is
situated below this limit. Otherwise, the estimated inductance L̂  is unchanged.

Fig. 8.39 The RTL description of data_tier2
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According to the induction estimation algorithm discussed in Chapter 4, the analysis
module has to determine which vector (∆i(k), ∆i(k – 1) or V∆(k)) is situated between the
other two. As demonstrated earlier, the angle subnetwork divides the 360° interval into
a number of equal sectors. All the output codes associated with space vectors that
belong to a given group of consecutive sectors correspond to binary codes that share a
certain number of identical bits. One space vector is situated between the other two if
it is included in the group of sectors delimited by the two vectors. Therefore, the relative
position of the space vectors can be determined by analysing the codes associated with
the angle subnetwork.
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The method is illustrated by an example in Table 8.3 that involves three vectors v2,
v4, v6 situated in the sectors 2, 4 and 6. It can be calculated that v4 lies between v2 and
v6 because the code associated with v4 shares the bits b5 and b0 with the codes corresponding
to v2 and v6. On the other hand, the vectors v2 and v4 share the bits b5, b2, b1, b0.
Therefore, v6 is not situated between v2 and v4 because the code of v6 does not share the
bits b2 and b1 with the other two codes.

Table 8.3 The output codes of an angle subnetwork with n = 6 neurones

Sector index Angle interval Code
b5 b4 b3 b2 b1 b0

1 [–15°; 15°) 0 0 0 0 0 0

2 [15°; 45°) 1 0 0 0 0 0

3 [45°; 75°) 1 1 0 0 0 0

4 [75°; 105°) 1 1 1 0 0 0

5 [105°; 135°) 1 1 1 1 0 0

6 [135°; 165°) 1 1 1 1 1 0

7 [165°; 195°) 1 1 1 1 1 1
8 [195°; 225°) 0 1 1 1 1 1
9 [225°; 255°) 0 0 1 1 1 1

10 [255°; 285°) 0 0 0 1 1 1
11 [285°; 315°) 0 0 0 0 1 1
12 [315°; 345°) 0 0 0 0 0 1

The PWM inverter interface transforms the 3 bits ‘abc’ defining the desired inverter
output voltage into a vector with six control signals ‘abcdef’ that are transmitted to the
power transistors. The edges of the signals controlling the transistors in the same inverter
leg (a–d, b–e, and c–f) do not simultaneously occur so that short-circuits are avoided.

Thus, a transistor is turned on at 2.5 µs after its counterpart in the inverter leg has
been turned off. This is achieved by using the hardware structure in Fig. 8.40 where the
control signals are generated by AND gates whose outputs depend both on the current
bits and on the previous bits generated by the neural network.

The previous bits are stored into a 6-bit register that is loaded at 2.5 µs after the
neural network new output has been transmitted to the interface block. If one of the bits
was previously ‘1’ while the current value is ‘0’, then the corresponding AND gate
output changes from ‘1’ to ‘0’ immediately. If the previous value was ‘0’ and the current
value is ‘1’ the AND gate output transition cannot occur immediately because the gate
inputs are different for a period of 2.5 µs. The 2.5 µs delay is generated by a down-
counter that is reset by the same signal ld_reg which loads the ‘abc’ register (Fig. 8.39).

The signal ld_reg is generated by the validation block, which is a modulo 9 counter.
Therefore, the frequency of ld_reg is ten times smaller than the frequency of ld_abc.
The signal ld_abc is activated once during each operation cycle of the motor controller.
The operation cycles are initiated by tier0 with a frequency of 150 kHz, which entails
that the signal ld_reg has a frequency of 15 kHz. Therefore, in this configuration the
frequency of the PWM signal generated by the motor controller is 15 kHz.

The control unit of tier2 (Fig. 8.41) synchronises the operation of the multiplexer
connected to the angle subnetwork in Fig. 8.39 with the activity of the registers and the
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operation of the inductance updating block. The operation cycle of the control unit is
described by Fig. 8.41 and it consists of the following steps:

1. The stator current vector is supplied to the angle subnetwork and after the calculations
the 3-bit vector abc is loaded in the corresponding register.

2. The shifted components of vector e are analysed and the corresponding value is
stored in the specialised register by activating signal ld_es.

3. The angle of the current space vector is is determined and the quantity proportional
with the slip angular frequency is determined.

4. The code corresponding to the argument of the vector V∆ is calculated and stored in
a register.

5. The argument of ∆i(k) is calculated and it replaces the value of ∆i(k – 1) which is
transferred into a second register (Fig. 8.39).

6. Once the angle codes associated with the three vectors ∆i(k), ∆i(k – 1), V∆(k) are
known, their relative position is analysed by the corresponding combinational module
and then the estimated value of L is updated. It can be increased, decreased or left
unchanged.

Each operation cycle starts when the necessary input information, calculated by tier1, is
available on the input ports of tier2. The appropriate moment to start the operation of
tier2 is indicated by the signal start_tier2 generated by tier1. On the other hand,
ctrl_tier2 waits for the four adapters included inside tier1 to finish their shifting tasks.
As shown in Fig. 8.41, the signals ready_erris, ready_es, ready_V2s and ready_dis
generated by the adapters in Fig. 8.37 are used to test the validity of the input before it
is processed by the angle subnetwork.
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Fig. 8.40 The PWM inverter interface
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8.4.4 The implementation of the speed control
strategy (Tier 3)

Tier3 calculates the stator frequency and the stator current amplitude using the slip
angle and the rotor reference speed. The calculations are performed according to the
control principles discussed. The simplified function FI using a single proportionality
constant KI has been used to minimise the hardware structure of this tier. To simplify the
VHDL model even further, the multiplication with KI has been modelled as a set of
shifts and additions as follows:

—— Code Fragment 8.15
process(beta) —— Multiplication by 0.101B=0.625

variable x: std_logic_vector(7 downto 0);
begin

x:=beta & “0000”;
x:=beta+beta(3) & beta(3) & beta & “00”;

Ki_times_beta<=x;
end process;

The approach is advantageous when KI contains a large number of ‘0’ bits but a small
number of ‘1’ bits. The current increments calculated using FI are accumulated in a
specialised register. The accumulation process can be inhibited if Is decreases under the
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limit Is-min or increases over Is-max, thereby maintaining the current amplitude within the
acceptable range of values (Fig. 8.42). The speed derivative function Fω has been

Fig. 8.42 The structure of tier3
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implemented as a look-up table. The angle neural network divides the 360° interval into
36 sectors, which means that only nine sectors are allocated to each quadrant. Therefore,
the look-up table is small and can be modelled by a case VHDL statement:

—— Code Fragment 8.16
process(alpha)
begin

case alpha is
when “0000”=> F_omega<=”00011”;
when “0001”=> F_omega<=”00011”;
when “0010”=> F_omega<=”00011”;
when “0011”=> F_omega<=”00100”;
when “0100”=> F_omega<=”00110”;
when “0101”=> F_omega<=”01000”;
when “0110”=> F_omega<=”01010”;
when “0111”=> F_omega<=”01100”;
when “1000”=> F_omega<=”01110”;
when others=> F_omega<=”01111”
end case;

end process;

The approach has the advantage that non-linear versions of Fω can be implemented with
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the same hardware resources as the piecewise linear versions. The values generated by
Fω are always positive and are added or subtracted depending on the difference between
the reference speed and the calculated speed of the rotor. Furthermore, the constant
quantity Ωslp needs to be added to or subtracted from the previously obtained result
depending on the sign of the reference speed. All these situations are analysed by the
simple interconnection of adders, subtracters and multiplexers shown in Fig. 8.42.

The operation of tier3 does not require a control unit. All the results are updated when
the input signal update is activated by tier2. This input signal is connected to the signal
estimate generated by ctrl_tier2. The signal estimate is activated at the end of the
operation cycle of tier2 after the motor slip angle has been calculated. Therefore, it
indicates an appropriate moment for tier3 to perform its calculations as the slip angle
αeqv is one of the two input data used by this tier.

8.4.5 The complete motor controller simulations

A VHDL test-bench can be developed by combining the model of the complete controller
with the VHDL model of the three-phase induction motor presented earlier. Several
simulations have been performed using a Workview Office software package with different
values of the generic parameters involved in the controller description, in order to test
its correct operation. The simulations demonstrate the controller capability to generate
correct PWM signals (Fig. 8.43), to accurately control the stator current and to determine
the motor equivalent inductance.
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Fig. 8.43 Motor controller simulation results

The precision of the neural network generating the PWM signal is restricted by the
limited number of Voronoi cells. However, given an adequately high number of cells,
the operation imprecision is sufficiently low to have a negligible effect on the overall
operation of the drive system. The on-line induction estimation process is affected by
the limited precision of the angle subnetwork involved (±5° error), and as result, the
final estimated inductance is smaller than the correct value. Figure 8.44 presents a
comparison between the simulation results performed in ideal conditions (perfectly
accurate angle calculations), and the simulation results obtained with the controller
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8.5 FPGA controller experimental results

This section presents experimental results relating to the performance of a complete
three-phase induction motor drive system controlled by the new neural FPGA controller.

8.5.1 The drive system

Practical tests have been performed using the FH2 MkIV test-bench produced by
TecQuipment [4]. The test-bench offers the facility to mount up to two electrical machines,
d.c. and a.c. on the same shaft (Fig. 8.45) and includes speed and torque sensors for
testing the motor operation.

model that performs angle calculations using the hardware implemented angle subnetwork.
The inductance estimation inaccuracy causes errors in the calculation of vectors Vni and
e but this does not affect their average value over several operation cycles of the controller.
Thus, the effect of the inductance estimation error over the motor speed control is
minimal due to the high inertia of the rotor that filters out the ripples of the control
signals, originated by the induction estimation errors. The accuracy of the inductance
estimation can be increased by increasing the number of neurones included in the angle
subnetwork. However, the simulations performed proved that adapting this approach
brings only a minimal improvement to the global behaviour of the drive system which
is not justified due to the increase of the total hardware complexity of the motor controller.
The computer simulations demonstrated the adequate operation of the motor controller
including the neural network, and a satisfactory capability to control the operation of a
three-phase induction motor. After the successful implementation of the motor controller
into a Xilinx XC4010XL FPGA, it has been tested in conjunction with a small three-
phase induction motor (less than 0.5 kW).
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Fig. 8.44 Comparison of inductance estimation simulation results
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The laboratory test-bench configuration available includes the FH90 four-pole three-
phase cage induction motor and the FH50 d.c. motor (not used in the experiments). The
stator windings are reconfigurable, both ∆-connection and Y-connection being possible.
Nevertheless, TecQuipment recommends that the ∆-connection is used. The rated line
voltage is 220 V in this configuration, while the line currents have values of up to 1 A,
depending on the load torque. The practical experiments proved that the speed control
principles discussed in section 8.3.2 are valid for both Y-connection and ∆-connection.
This experimental conclusion is supported by the theoretical possibility of transforming
any ∆-connected load supplied by a sinusoidal voltage system into an equivalent Y-
connected load. The high frequency harmonics contained by the PWM voltage are
filtered by the motor inductances and therefore the corresponding current harmonics are
negligible. As a result, only the fundamental harmonics of the voltage and current need
to be taken into account and the Y-connected equivalent R–L–e circuit is applicable to
∆-connected motors as well.

The experimental setup that includes the FH2 MkIV test-bench and the FH90 induction
motor is presented as a block diagram in Fig. 8.46. The motor is supplied by a PWM
inverter bridge SKM40GD132D produced by Semikron [7] which contains 1200 V
IGBT transistors. The bridge is supplied with d.c. voltage by a diode rectifier via a low-
pass filter. The input voltage of the rectifier can be adjusted using an autotransformer,
which allows the smooth control of the d.c.-link voltage. The IGBT transistors in the
inverter are controlled by the XC4010XL FPGA controller on the XS40 test board. This
FPGA is a low voltage device that associates the voltage level of 3.3 V with logic ‘1’ [8].

The voltage level of the control signals is adapted in two stages to the electrical
characteristics of the power transistors. First, the CMOS interface in Fig. 8.46 amplifies

Fig. 8.45 The FH2 MkIV test-bench
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the output signals of the FPGA to 5 V and supplies them to the transistor driver board.
At the same time, the CMOS interface protects the control circuits against the damaging
effects of any failure that may occur in the power circuits. In the second stage, the driver
board amplifies the control signals to 15 V, which is the control voltage level, recommended
by the IGBT manufacturer.

Two of the motor currents are measured using Hall effect transducers that generate a
voltage proportional to the measured current, which are then amplified using simple
operational amplifiers and transmitted to the TLC1550 10-bit A/D converters produced
by Texas Instruments [1]. The binary codes produced by the A/D converters are transmitted
to the FPGA controller. As mentioned in Chapter 6, the VHDL controller model contains
a series of generic parameters defining the size of several internal modules. Many of
these parameters are correlated and depend on the width ‘ni’ of the two current input
buses ‘ia’ and ‘ib’. To implement the entire motor controller in a single XC4010XL
FPGA, the generic parameter ‘ni’ was limited to eight. Thus, only the eight most significant
bits are used by the FPGA controller in this configuration. The reference speed of the
motor is set in two’s complement code using a set of eight switches. Consequently, the
rotor electrical angular frequency ωer can be set at values between –128 and +127 Hz,
corresponding to mechanical speeds between –3840 rev/s and +3810 rev/s. The CMOS
interface and the operational amplifiers have been implemented on a single interface
board, illustrated in Fig. 8.47 together with the XS40 board.

The parameters of the speed control algorithm implemented by tier3 (see Chapter 6)
have been determined based on practical experiments with the motor. The equivalent
parameters of the FH90 motor were initially determined. The stator resistance was
directly measured, the result being 95 Ω, which is a large value for a three-phase
induction motor. The equivalent inductance L has been approximated by measuring the
voltages across the motor and currents at 50 Hz stator frequency, with the rotor locked
(zero speed). In these conditions, the internal voltage e has a small value and the total
impedance of the motor is mainly due to the resistance R and the equivalent inductance.

Fig. 8.46 The schematic of the experimental setup
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The measurements and the calculations showed that L is approximately 220 mH. The
critical slip angular frequency was determined while keeping the stator current constant.
This was achieved by connecting the rotor windings to variable resistors as shown in
Fig. 8.48. The obtained result was ω slp = 95k  rad/s corresponding to a speed of
1050 rev/s (the rated speed is 1500 rev/s). The equivalent slip angle α eqv

ref  has been
arbitrarily set at 65° (according to the considerations in Chapter 4, it can have any value
between 45° and 90°). The equation

tan ( ) = –1
eqv
ref slp

slp

α
α
Ω

k (8.98)

Fig. 8.47 The XS40 board and the interface board
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Fig. 8.48 The measurement of the critical slip at constant current

demonstrated in Chapter 4, yields the value Ωslp = 44.3 rad/s, corresponding to a slip
frequency of 7 Hz. The other parameters that define the speed control algorithm (Kω1,
Kω2, βmax, KI) were determined by tuning in practical experiments.
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In conclusion, the main characteristics of the adopted VHDL motor controller are:

• The sampling frequency (tier1) fs = 150 kHz.
• The PWM frequency (tier2) fPWM = 15 kHz.
• The maximal rotor speed allowing inductance estimation 600 rev/min (10 Hz).
• The width of the input buses ia and ib (tier1) ni = 8.
• The step length of the multiplier Nsl = 4.
• The stator resistance (defined by a constant in the model of tier1): Rs = 95 Ω.
• The equivalent slip angle αeqv = 65°.
• The reference slip angular frequency Ωslp = 44.3 rad/s.
• The parameters defining the speed control dynamics: Kω1 = 650 s–1, Kω2 = 200 s–1,

βmax = 0.7 rad, KI = 1 A/s.
• The switching delay between the two transistors in the same inverter leg: 2.5 µs.
• The input clock frequency fclk = 12 MHz.
• The number of samples used to generate the reference sine wave (tier0): 256.
• The number of bits for each entry of the look-up table (tier0): 3.
• The number of bits used for the reference motor speed: 8.
• The number of inverter output voltages used: 6 out of 7 (the null voltage is not used).
• The number of triangular Voronoi cells of the position neural subnetwork: 54.
• The number of sectors of the angle subnetwork: 36.
• The number of bits used to code the input signals of the position subnetwork: 5.
• The number of bits used to code the input signals of the angle subnetwork: 5.

In this configuration, the implementation of the controller took up 98 per cent of the
hardware resources available on the XC4010XL FPGA. The values of all the parameters
can be easily modified by altering a series of constants and generic parameters in the
VHDL code describing the model of the motor controller. Consequently, given the
appropriate FPGA, the controller can be adapted in terms of hardware complexity and
operation accuracy to the requirements of a large range of particular applications.

Two sets of experiments were carried out. The first set verified the PWM voltage
generation and the current control accuracy, while the second set referred to the speed
control performance of the drive system.

8.5.2 Current and voltage control tests

A special version of the controller VHDL model was created for the first set of experiments.
This version lacks tier3 so the frequency of the stator current is identical to the frequency
specified by means of the eight switches and the stator current amplitude is constant.
This approach simplifies the testing procedure because it checks the operation of tiers
0, 1 and 2 without the feedback signals calculated by tier3 and therefore any operational
error can be easily located.

Figure 8.49 presents four of the PWM control signals generated by the FPGA motor
controller. They were monitored using a four-channel Hewlett Packard digital oscilloscope.
The waveforms demonstrate the correlation between two of the signals that control the
transistor on the same inverter leg (ctrl(5) and ctrl(2)). Thus, the two signals have
complementary values: when one of them is ‘0’ the other is ‘1’. The 2.5 µs delay
generated by the interface block contained in tier2 is not visible in Fig. 8.49 due to
the inappropriate time scale (50 µs/div), but it can be observed in Fig. 8.50 where the
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time scale is 15 µs/div. The overall PWM voltage across the motor can be seen in Fig.
8.51.

Fig. 8.49 Four of the FPGA output signals controlling the transistors in the PWM inverter
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abcdef(2)

Fig. 8.50 Switching delays produced by tier2 to avoid the short-circuits in the PWM inverter

abcdef(3)

abcdef(0)

Fig. 8.51 The PWM voltage generated by the inverter for a reference stator frequency of 50 Hz
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Figure 8.52 illustrates one of the motor currents corresponding to the operation mode
generated by the voltages in Fig. 8.51. The voltage signal in Fig. 8.52 is acquired from
one of the Hall transducers and its amplitude of 200 mV corresponds to current amplitude
of 0.4 A. Figure 8.53 presents the d.c.-link voltage in the same operation conditions and
demonstrates that the gamma filter composed of the 6 mH inductor and 470 µF capacitor
illustrated in Fig. 8.46 is capable of maintaining the d.c. voltage level within acceptable
limits.

Fig. 8.52 One of the stator currents (the stator is Y-connected) measured using a Hall transducer

8.5.3 Speed control tests

The second set of experiments, demonstrating speed control, were carried out using the
entire VHDL model of the controller, as presented in the previous chapter. The tests
were performed with the stator ∆-connected, but similar results are obtained when the

200 V

Fig. 8.53 The voltage ripple on the d.c. link
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stator winding is Y-connected. The drive system has been tested both in steady-state and
in transient operation.

Figure 8.54 compares the steady-state operation of the induction motor with or without
the new FPGA controller connected. The reference speed of the controller is 1500
rev/s (the rated speed of the FH90 motor). The graphs demonstrate that the controller is
capable of maintaining the rotor speed almost constant despite large variations of the
load torque. The improvement brought aboard by the new controller is seen in the
improved speed–torque characteristic. The improvement can be quantified as the speed
increase produced by the controller for each value of the load torque.

Fig. 8.54 The static mechanical characteristic of the motor with and without digital controller
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Figure 8.55 presents the motor transient response to a fast variation of the torque. A
perfect step variation of the load torque could not be achieved due to the limitations of
the test-bench. However, Fig. 8.55 shows the capability of the FPGA controller to
maintain the speed almost constant while the load torque undergoes significant variations
relative to the motor rated power. Thus, the increase of the torque causes a slight slow
down of the rotor and this leads to an increase of the motor slip above the imposed
value. Therefore, the slip compensation mechanism included in the controller increases
the motor current and boosts the active torque reducing the slip frequency to the initial
value. The transient process takes approximately 0.8 s.

Figure 8.56 illustrates the motor start-up when the load torque is null. The transient
response lasts for approximately 0.65 s, after which the motor speed is constant at
1500 rev/min.

The load torque during the transient operation illustrated in Figs. 8.57 and 8.58 is
proportional to the rotor speed and therefore motor acceleration is more difficult and the
transient response slower. The result in Fig. 8.58 can be compared with the motor
starting characteristic when no speed control system is used (Fig. 8.57). Clearly, the
FPGA speed controller improves the dynamic response of the drive system.
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Fig. 8.55 The drive system response to a step change of the load torque
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Fig. 8.57 The natural motor start under load without the FPGA controller
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The improvement is limited by two factors:

• The motor parameters.
• The available hardware resources.

The parameters of the motor FH90 are not suitable for sensorless control with high
response speed because the stator resistance is large (95 Ω) and therefore the resistive
voltage component is large. Furthermore, the motor power is small (approximately
0.5 kW) so the amplitude of the internal voltage e is smaller than the resistive voltage
component. As a result, the calculated equivalent slip angle αeqv is inaccurate and
affected by large fluctuations during motor operation. These fluctuations tend to cause
system instability, which can be counteracted only by increasing the time constants of
the system, equivalent to limiting its overall dynamic performance. Nonetheless, the
limitations imposed by the motor parameters are not particular to the new control
method developed, they affect most of the sensorless speed control algorithms.

Fig. 8.58 The motor start under load when controlled by the FPGA device
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9.1 System representation

Before commencing an in-depth discussion about the control system, it is appropriate to
discuss the plant, i.e. the elements to be controlled. In this chapter mathematical models
of some of the control plant elements are described. The plant comprises a power
electronic system, a permanent magnet synchronous generator and a diesel engine. Two
control units are presented in this example, a fuzzy logic controller (FLC) for the engine
and a PWM controller for the output inverter. The analysis of the system is divided into
two parts as shown in Fig. 9.1. Ensuing sections in this chapter discuss the control plant
elements relating to the fuzzy logic controller, namely the rectifier, the generator and the
diesel engine. The analysis of the inverter and the PWM controller is presented as a
separate section.

9

Fuzzy logic control of a
synchronous generator set

Diesel
engine

Permanent
magnet

synchronous
generator

Rectifier

Fuzzy logic
controller

Inverter

PWM
controller

Power
output

Fig. 9.1 Block diagram of complete system

9.1.1 Rectifier circuit

A circuit diagram of a three-phase uncontrolled (diode) rectifier attached to a Y-connected
sinusoidal voltage source is shown in Fig. 9.2. This circuit is used to convert the a.c.
output of the generator terminals into d.c. power. The phases are marked a, b and c. The
branches of the rectifier bridge are connected to the generator terminals, therefore the
line to line voltage vl–l of the rectifier is equal to the generator terminal voltage vt.

9.1.1.1 Voltage analysis

Figure 9.3 shows the waveforms of various voltages taken from the circuit in Fig. 9.2.
Waveforms va–n, vb–n and vc–n are the line–neutral voltages of each phase. vdc is the
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instantaneous rectifier output voltage while Vt is the r.m.s. value of the line–line voltage,
vt. The mean output voltage Vdc can be obtained by integrating vdc over a period of π /3
radians as follows:

V V t t Vt tdc
–
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Fig. 9.2 Three-phase uncontrolled rectifier

n

a

b

c

vt

it,a

it,b

it,c

vdc

id,c

Load

Fig. 9.3 Voltage waveforms of rectifier circuit
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9.1.1.2 Current analysis

The current waveforms of the rectifier circuit are shown in Fig. 9.4. The line current
waveform it,a is not sinusoidal, therefore the r.m.s. value cannot be obtained simply with
a division by √2. From the definition of root mean square, the r.m.s. of it,a is given by
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Taking samples at every π/6 interval,
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9.1.2 Synchronous generator

9.1.2.1 Voltage analysis

The operation of the synchronous generator is based on Faraday’s law of electromagnetic
induction which states that: The total electromagnetic force (e.m.f.) generated in a
closed circuit is equal to the negative time rate of change of the flux linkages linking the
circuit.

This law was derived from Faraday’s observation that an e.m.f. is induced in a
conductor or circuit placed in a magnetic field when there is a change of flux linkages
linking the circuit. The flux changes can be the result of a relative motion between the
circuit and the flux or the effect of a varying magnetic flux. Faraday’s law can be
represented by the following equation:

e t
t

( ) = – d
d

λ

where e(t) is the generated e.m.f. and λ is the flux linkage. In a synchronous machine,
the magnetic flux is provided either by a permanent magnet or an electromagnet, placed
inside a set of windings as shown in Fig. 9.5. The flux linkages linking the winding are
varied by physically rotating the magnet. The rotor can be a permanent magnet, or an
electromagnet with a field winding. Electromagnet generators are easier to control and
therefore more common. The stator houses the armature windings.

The armature windings are the windings in which the e.m.f. is induced. Figure 9.5
shows a three-phase synchronous machine, with armature windings marked aa′, bb′,
and cc′. If the angular velocity of the rotating field in radians per second is ω, then:

ϕ = ωt (9.1)

Considering only phase a, if the rotor moves by an angle ϕ, the flux linking aa′ is given
by,

Fig. 9.4 Current waveform of rectifier circuit
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λ = Nφ cos ϕ (9.2)

where N is the number of turns in aa′ and φ is the airgap flux. Therefore, the e.m.f.
induced per phase is given by

e
t t

N
ta  = –

d
d

 = –
d
d

  
d
d

 = (     sin )  
d
d

λ λ
ϕ

ϕ φ ϕ ϕ⋅ ⋅ ⋅ ⋅ (9.3)

Substituting ϕ for ωt and dϕ/dt for 2πf yields

ea = 2πf N φ sin ωt (9.4)

In practice, the constructions of the machine, such as the pitch and distribution of the
coils, assert influence on the waveshape of the induced e.m.f. A reduction factor known
as the winding factor KW has to be applied to account for this. Therefore, the induced
e.m.f. per phase becomes

ea = 2π fNφKw sin ωt (9.5)

which can also be written as

e E fta i =  sin 2ˆ π (9.6)

where Êi  is the peak value of the induced e.m.f. and f is its frequency.
Using phase a as reference and because phases a, b and c are displaced by 120°, the

voltages for each field are therefore given by

e E f ta i =  sin 2ˆ π (9.7)

e E f tb i =  sin (2  –  120 )ˆ π ° (9.8)

e E f tc i =  sin (2  + 120 )ˆ π ° (9.9)

In machines with more than a pair of poles, the generated electrical frequency f is given
by

f = p . nmech (9.10)
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Fig. 9.5 Three-phase synchronous machine
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where nmech is the mechanical synchronous speed (revolutions per second) and p is the
number of machine pole-pairs.

9.1.3 Equivalent circuit model

Dynamic models of the synchronous machine can be derived from the generalised
theory of electrical machines and are widely used in the design of classical control
systems. The design of the controllers is derived from the plant model. However, because
the control system presented in this example is not developed from a model of the plant,
the accuracy of the model does not directly influence the performance of the design.
Instead, the model is used to study the response of the design and to verify its functionality
through simulations. Although a dynamic model would provide a more comprehensive
analysis, the steady-state model is sufficient for the task.

An equivalent circuit model of a synchronous generator can be derived to study the
voltage and current characteristics of the machine. The flow of current in the field
winding If induces a flux φi in the airgap which links with the armature winding.
Similarly, the flow of current in the armature winding also produces a flux, φa. The
armature flux φa comprises two components, the armature reaction flux  φar, and the
leakage flux φal. The larger component, φar, is established in the airgap and links with
the field winding, while φal does not exist in the airgap and links only with the armature
winding. Therefore, the resultant flux in the airgap φag is made up of φi and φar.

φag = φi + φar (9.11)

φag induces a voltage in the stator winding, Eag which lags φag by 90°. According to the
superposition theorem, Eag comprises two components, induced by the corresponding
flux component. Hence,

Eag = Ei + Ear (9.12)

Ei is the induced e.m.f. also known as the internal generated voltage of the machine. A
diagram of the vectors concerned is shown in Fig. 9.6(a). It shows the armature reaction
voltage Ear, lagging φar and Ia by 90°. In other words, –Ear leads Ia by 90°. A voltage
leading a current by 90° can be represented as the voltage drop across a reactance.
Hence –Ear can be represented as the voltage drop across a reactance, say Xar, where Xar
is known as the magnetising reactance. Therefore, by substituting (–Ear) with (Ia jXar),
(9.12) can be rewritten as

Ei = Ia jXar + Eag (9.13)

Figure 9.1(b) shows an equivalent circuit of the model described by (9.13). To include
the terminal voltage per phase Vφ (instead of just the airgap voltage, Eag), the leakage
reactance Xal and the effective armature winding resistance Ra have to be taken into
account. The effective resistance of Ra is approximately 1.6 times its d.c. resistance as
a result of skin effect and operating temperature effects. Figure 9.6(c) shows the complete
equivalent circuit of a synchronous machine.

Xar and Xal can be lumped together as a single reactance denoted by Xs, which is known
as the synchronous reactance.

Xs = Xar + Xal (9.14)
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The synchronous impedance is given by

Zs = Ra + jXs (9.15)

The steady-state mathematical model of the synchronous machine can therefore be
described by the equation

Ei = Ia(Ra + jXs) + Vφ (9.16)

The equivalent circuit model is a steady-state model and does not provide any information
about the dynamics of the machine. Transient response to load changes, faults and other
disturbances cannot be properly analysed using this model. Dynamic models of the
synchronous machine can be derived from the generalised theory of electrical machines
and are widely used in the design of classical control systems. The design of the controllers
is derived from the plant model.

9.1.4 The generator–rectifier model

From (9.5) and (9.10), the peak value of the internal generated voltage is found to be

Ê N K pni w = 2 mechπ φ (9.17)

Because the generated voltage is sinusoidal, its r.m.s. value is given by

E N K pni w = 2 mechπ φ (9.18)

For an electromagnet generator the flux in the machine is controlled by its field current.
The relationship between the flux and the field current can be observed by performing
an open circuit test on the machine and plotting the results on an ‘Ei vs. If’ graph which
is sometimes called the open circuit characteristic (OCC) plot. Details of the test can be
found in any text book on electrical machines. Figure 9.7 shows a typical OCC plot of
a synchronous generator. The curve is observed to be linear until some saturation starts
to occur at high field current. This is due to iron saturation in the synchronous generator.

Fig. 9.6 Equivalent circuit model of a synchronous generator
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From (9.18) and the OCC plot, it can be assumed that flux φ is directly proportional to
the field current If in the linear region. Therefore, φ ∝ If

φ = G ⋅ If (9.19)

where G is the proportionality constant.
From (9.16), (9.18) and (9.19), the synchronous generator can be described by the

steady-state model,

Ei = K ⋅ G ⋅ If ⋅ nmech (9.20)

Vφ = Ei – Ia ( jXs + Ra) (9.21)

where K N K pw = 2 .π
Equation (9.20) gives the phase voltage of the generator output. The generator’s terminal
voltage may or may not be the same as its phase voltage, depending on the configuration
of its windings. The three phases of a synchronous generator can either be connected in
a star (Y) configuration or delta (∆) configuration as shown by Fig. 9.8.

For a Y-connected generator,

V V I It t a = 3  and  = φ (9.22)

Fig. 9.7 A typical open circuit plot for a synchronous generator
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For a ∆-connected generator,

V V I It t a =  and  = 3φ (9.23)

where:
Vt is the generator’s terminal voltage
It is the generator’s terminal current
Vφ is the generator’s phase voltage
Ia is the armature current or the generator’s phase current.

Figure 9.9 shows a block diagram of the synchronous generator model based on the
equivalent circuit model. Vt is the complex r.m.s. voltage of the generator terminal. For

nmech

If G
φ

K
Ei Vφ Vt

+
–

Ra

jXs +
+

Ia
It

Y:1
or

∆:1/ 3

Y: 3
or

∆:1

Fig. 9.9 Block diagram based on equivalent circuit model

the present application, this model has to be further developed to include a three-phase
rectifier and also to consider the torque characteristics as well as the power factor. A
phasor diagram of the generator voltages and currents is shown in Fig. 9.10. The angle
between the phase voltage Vφ and the internal generated voltage Ei is known as the
power angle δ. For generator operation (as opposed to motor operation), the power
angle is always positive, as shown in Fig. 9.10. The diagram also shows a lagging power
factor condition whereby the current Ia lags Vφ by an angle θ. The power factor is given
by cos θ.

Ei

δ

θ
Ia

Vφ IaRa

jIaXs

Fig. 9.10 Phasor diagram of a synchronous generator

Using Vφ as reference, the equivalent circuit model can be expressed as

Vφ ∠0° = Ea ∠δ – Ia ∠θ (Ra + jXs)
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Vφ = {Ei cos δ – IaRa cos θ + IaXs sin θ} + j {Ei sin δ – IaXs cos θ – IaRa sin θ}

Because Vφ is the reference, its imaginary component is zero, therefore,

Vφ = Ei cos δ – IaRa cos θ + IaXs sin θ (9.24)

and Ei sin δ – IaXs cos θ – IaRa sin θ = 0

δ θ θ = sin (  cos  +  sin –1 I
E

X Ra

i
s a







(9.25)

For a three-phase synchronous generator, power is given by Preal = 3VφIa cos θ.
Power is the product of torque and speed, hence the induced torque is

τ ω θφ
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6
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V I
n

a
(9.26)

where ωmech is the mechanical speed in radians per second and nmech is the mechanical
speed in revolutions per second.

Figure 9.11 shows the model that is developed to represent the synchronous generator
and rectifier. The inputs of this model are the rotational speed nmech, field current If,
power factor angle θ and the current at the d.c. link Idc, used as a measure of the
electrical load. The outputs are the d.c. link voltage Vdc and the induced torque τind
which loads the engine. To account for the generator winding configuration (Y or ∆),
conversions between the phase values and terminal values of voltage and current are
based on (9.22) and (9.23). The generator phase voltage is obtained from (9.24) and
(9.25) while the induced torque is from (9.26).

9.1.5 The diesel engine

The second model to be developed is one for the diesel engine. The operation of diesel
engines involves a large number of complex processes, with many delays, lags and non-
linearities. It is therefore difficult to develop a comprehensive mathematical model to
study and analyse the diesel engine. Even manufacturers of control systems and speed
governors for diesel engines are known to focus on empirical methods rather than
theoretical modelling for analysis. In this book, a model of a diesel engine is required
to provide a complete representation of the control plant. The aim of this exercise is to
develop a ‘good enough’ model for the functional verification of the control system.
Since detailed studies are not necessary at this stage, an approach which favours reduced
complexity and incorporates a certain degree of approximation is preferred. For the
purpose of speed control studies, the diesel engine can be represented as a combustion
system and inertia as shown by the block diagram in Fig. 9.12. The combustion system
produces an engine torque τE as a function of the fuel rack position y. The engine torque
is used to oppose the load torque τL and the difference ∆τ is converted into acceleration/
deceleration ∆nmech in the lumped inertia (engine inertia + load ineria).
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When the speed of the engine changes, it moves along the engine’s torque curve as
shown in Fig. 9.13. Each engine’s torque curve is specific to a fuelling rate q. For a
given speed, the developed engine torque τE can be increased by increasing q. An
equilibrium point is reached when the engine’s torque curve intersects the load’s torque
curve.

If the engine torque is written as

τE = f(nmech, q) (9.27)

and the equilibrium point for a given operating condition is when

n n q qmech mech = ;     = ˜ ˜

then, expanding (9.27) into a Taylor series about the equilibrium point yields

Fig. 9.11 Model of generator–rectifier system
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If the operating condition is within the vicinity of the equilibrium point, it can be
assumed that the higher order terms are negligible, therefore,
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(9.28)

Using ‘δ’ to denote small changes about the equilibrium point, this can be written as
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(9.29)

At this juncture, a bold step is taken to further simplify the situation by extending the
use of the equation above over the entire range of analysis. It is acknowledged that
(9.29) is a linearised approximation which is only valid within the proximity of the
operational point from which the equation is derived. However, this linear model is
assumed to be capable of providing at least a qualitative ‘feel’ of the engine’s torque–
speed characteristics, even if the quantitative results are only rough approximations. It
has to be pointed out that these models are not developed to be used as a starting point
for the design of the control system. The controllers presented are model-free designs,
therefore there is no danger of the limitations of the models being translated into the
control system. Writing
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where δy is the change in fuel rack position y, (9.29) can be written as

δτE = A · δ nmech + B ⋅ δy

Fig. 9.13 Torque–speed characteristics
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By extending the linear properties over the entire range of analysis, it can be assumed
that A and B are constants. Therefore, from the superposition principle, the engine’s
torque curve can be represented by the linear equation:

τE = A · nmech + B · y (9.30)

The net accelerating torque is given by the difference between the engine’s torque and
the load torque:

∆τ = τE – τL

Since ∆ τ ω
 = 

d
d

J
t
m

where J is the combined moment of inertia of the engine and generator and ωm is the
mechanical speed in radians per second. It can be shown that the discrete equivalent can
be written as

C n n z
T J

(  –    )
 = mech mech

–1⋅ ∆τ

∆ ∆τ
n

J
Dmech  = (9.31)

where:
C is a constant
T is the sampling period
D = (T/C)
nmech is the mechanical speed in revolutions per second.

A block diagram of a discrete engine model based on (9.30) and (9.31) is shown in Fig.
9.14.
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Fig. 9.14 Linearised discrete model of the diesel engine

9.2 VHDL modelling

Although VHDL is a hardware description language and is used primarily for circuit
design, it has the basic properties of any software programming language. It is therefore
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capable of implementing mathematical models. Two VHDL components are designed to
represent the models of the generator–rectifier and the diesel engine developed in this
chapter. The complete source codes of the models can be found in Appendix E. Since
the models are initially designed for the purpose of computer simulations and not for
hardware implementation, it is possible to declare the signals and variables as the type
REAL. This gives the design a greater freedom in numerical analysis. It is also possible
to incorporate complex mathematical functions such as trigonometry in the design.

The VHDL design of the generator and rectifier model is configured with the entity
name Generect. It is designed as a synchronous circuit with five input signals (including
CLK). Three output signals provide simulated information on the generator’s phase
voltage Vph and induced torque TG as well as the d.c. voltage at the rectifier’s output
Vdc. As already touched upon earlier in this chapter, the voltages at the generator’s
terminals are largely determined by the nature of its winding configuration. Two constants,
YD–CURR and VD–VOLT, which have values defined in the declaration section of the
design architecture sets the configuration of the model. In this, they are defined with
values that set the model as a Y-connected generator.

The VHDL model for the diesel engine is configured with the entity name Engine.
The input signals of the model are load torque TL, control signal to the fuel actuator Y,
the clock signal CLK and the sampling period PRD while the engine’s torque TE and
speed NE make up the output signals. It implements the mathematical equations of the
engine and, like Genrect, the section of the code that does this is self-explanatory. A
slight addition to the model, to prevent the calculated output values from ‘running away’
in the event of simulation errors, is that the output signals are designed to operate within
a fixed boundary of values. The maximum and minimum limits of these values are set
within the code.

Figure 9.15 (a) and (b) show the block diagram of Genrect and Engine respectively.
The two components have their respective input and output ports and can be connected

Fig. 9.15 Block diagram of VHDL models: (a) Genrect; (b) Engine
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directly to the VHDL designs of the control system for simulation purposes. The use of
the plant models in conjunction with the control system in a functional simulation will
be discussed later. The PWM inverter is presented in the following chapter. It includes
some functional and performance simulations as well as a description of the inverter
control system design.

9.2.1 PWM inverter design and analysis

While the previous chapter discussed the mathematical representation of the diesel
engine, synchronous generator and rectifier, this chapter presents an analysis of the
control plant, namely the power inverter system shown as shaded blocks in Fig. 9.16. A
common application of power inverters is in a.c.–d.c.–a.c. systems, such as variable
speed control of a.c. motors, uninterruptible power supplies and variable speed wind
energy conversion systems. In this example, the inverter is used to convert the d.c.
voltage at the d.c. link into a constant 50 Hz sinusoidal output voltage.

Fig. 9.16 Block diagram of the complete system
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The diagrams in Fig. 9.17 show the configurations of single-phase and three-phase
switch-mode inverters. They are made up of a number of power switches (four for single
phase and six for three phase) arranged in a bridge configuration. At present, IGBTs are
the most widely used type of power switches for inverter applications due to their
controllability and relatively high voltage ratings. Various control strategies can be used
to control the power switches such that a sinusoidal waveform can be obtained at the
output. However, the raw output voltage usually contains other high frequency harmonic

Fig. 9.17 Switch-mode inverter: (a) single phase; (b) three phase
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components, which have to be eliminated before the desired voltage waveform can be
recovered. This is normally achieved using a low-pass filter. The amount of harmonic
distortion at the output depends largely on the type of switching pattern. Examples of
commonly used switching patterns are square wave, quasi square wave and pulse width
modulation (PWM). The switching strategy used is pulse width modulation, a technique
that produces waveforms, which tend to contain less of the low order harmonics than
other switching arrangements.

9.2.2 Fuzzy synchronous generator control

There are a number of reasons for using fuzzy logic in this application, the primary
advantage being the flexibility offered by fuzzy logic. The backbone of any FLC is
embodied in a set of fuzzy rules, with two implications:

• The fact that the control strategy is represented by a set of rules and not an elaborated
set of equations. This allows the designer to change the basic characteristics of the
controller with minimal fuss, simply by redefining the rules. The structure of other
components in the FLC remains intact and hence the effort to redesign the hardware
configuration is significantly reduced. This is a great advantage in research applications
where some further studies into alternative control strategies are expected.

• The fuzzy aspect of the rules, which is dealing with the imprecise definition of the
system. This allows vagueness in the design of the control system to be tolerated to
a certain degree and eliminates the need for a well-defined mathematical model of
the plant. The control plant in this project is not a trivial system to model with
significant accuracy, since it comprises a number of different non-linear components
such as the diesel engine and synchronous generator. Models with reduced complexity
can be employed for analysing the functional characteristics of the FLC.

The following sections describe the work involved in developing the desired controller
for the generator set based on the concepts introduced at the beginning of this chapter.

9.2.2.1 Control block

Figure 9.18 shows a block diagram of the FLC and a stand-alone generator set. The
components of the FLC are represented by the shaded blocks. There are two inputs to
the FLC. Its final functionality is determined by the choice of inputs and the definition
of the fuzzy rule base. This allows the system to be studied under different control
strategies and specifications using the same hardware. Only three sections have to be
modified: the two interfacing blocks and the rule base. In this experiment, the d.c.
voltage at the output of the rectifier is used as an input to the FLC. The plan is to test
the system with a basic control strategy: maintaining the d.c. voltage within a small
range, over varying load currents. The control output u is used to control the rate of flow
of the fuel to the diesel engine.

The tasks involved in designing a typical FLC can be loosely summarised as follows:

• Decide on an overall strategy based on the design criteria.
• Identify an implementation technology.
• Identify the I/O variables (knowledge base).
• Define the membership functions for the variables (knowledge base).
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Fig. 9.18 Block diagram of fuzzy logic controller and control plant

• Formulate a fuzzy rule base.
• Choose a method of inference.
• Choose a defuzzification technique.

This design procedure forms a general guide and may well vary from one design to
another, depending on the individual aims and requirements.

9.2.2.2 Overall strategy

The design has to be able to accommodate different control strategies and yet not be too
inherently complex for hardware implementation. Two input variables (x1 and x2) are
used. This is enough to give the system a certain amount of possible capabilities. Too
many inputs add complications to the design as the number of fuzzy rules expands
exponentially with the number of input variables. There are methods to handle large
amounts of input variables but these are not discussed in this book. A generic structure
of the FLC is first designed and the specific functionality which is determined by the
knowledge base and the formulation of the rule base is designed at a later stage.

9.2.2.3 Implementation technology

The most common method of implementing fuzzy controllers at the moment is with
microprocessors. In this project, a different implementation technology has been chosen.
One of the objectives of this book is to investigate the implementation of FLCs into
FPGAs. This is a major consideration, as the design would ultimately have to be able to
fit into the chosen FPGA(s). The required ‘area space’ or gate count becomes a significant
design criteria.

9.2.2.4 Membership functions

The present design utilises three types of functions – Γ-function, L-function and Λ-
function – all of which have already been presented. These functions have been proven
to produce good results for control applications and can be easily implemented into
hardware. The universe of discourse of the input variables is partitioned into five fuzzy
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sets or linguistic values (B1 to B5), while the output variable can take any of the seven
linguistic values (D1 to D7). Graphical representations of the membership functions are
shown in Figs. 9.19 and 9.20.
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Fig. 9.19 Membership function of input variables
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Fig. 9.20 Membership function of output variable
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where i = 1, 2 and j = 1, . . . , 5.
The crisp values of the input variables are mapped onto the fuzzy plane using the

equations above. It gives each input variable a membership function relating to the
fuzzy sets, B Bi i

1 5 to . It has to be pointed out that in these equations, Bi
j  is used to

denote the membership function. The reader should be aware that in this book, the
symbol Bi

j  is used for both, the linguistic value as well as the membership function.
Strictly speaking, the linguistic value should be denoted using Bi

j , while the membership
function using µBi, j(xi).

In this example, ‘µ’ and ‘(xi)’ are dropped from the denotation of membership function,
thus,

µ Bi j i i
jx B, ( ) =  = 0.5

is used to indicate that xi belongs to the linguistic value Bi
j  by a membership function

of the value 0.5.
The universe of discourse of the output variable is divided into seven linguistic

values. The membership functions of the output values are intentionally made to be
symmetrical, as this will simplify the defuzzification computation. E1 to E7 are the mean
of each function and act as the weightings to the weighted average method of
defuzzification.

9.2.2.5 Fuzzy rule base

Each input variable can take any of the five linguistic values, therefore 25 (= 5 × 5) rules
are formulated. The rules have the typical fuzzy rule structure, using linguistic variables
in both the antecedent and consequent, and are expressed in IF-THEN manner. They
map the input states onto 25 output conditions (C1 to C25). The fuzzy rules have the
general form,

R x A x A y Ck k k k: IF  is  AND  is , THEN  is 1 1 2 2 (9.35)

where:
Rk (k = 1, 2, …, 25) is the kth rule of the fuzzy system
x1, x2  are the input linguistic variables
y is the output linguistic variable
Ai

k  (i = 1, 2; k = 1, 2, …, 25) is the kth fuzzy set defined in the ith input space
and Ai

k  can take any linguistic value associated with xi,
Ck is the output condition inferred by the kth rule.

If the denotation is such that the linguistic variables:

xi   for i = 1, 2
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have the following linguistic values:

B i ji
j    for  = 1, 2;   = 1 to 5

then the rule base can be represented by a fuzzy associative memory (FAM) table (Table
9.1).

Table 9.1 Fuzzy associative memory table

x2 B2
1 B2

2 B2
3 B2

4 B2
5

x1

B1
1 C1 C2 C3 C4 C5

B1
2 C6 C7 C8 C9 C10

B1
3 C11 C12 C13 C14 C15

B1
4 C16 C17 C18 C19 C20

B1
5 C21 C22 C23 C24 C25

9.2.2.6 Inference engine

The FLC design in this project incorporates Mamdani’s implication method of inference,
which is one of the most popular methods in fuzzy control applications. In essence,
Mamdani’s implication for the fuzzy rule of (9.35) is given by

µ µ µC
k

y x x kk k( ) = max [min[ ( ), ( )]]    = 1, 2, . . . , 25
A 1 A 2

1 2
(9.36)

The implication has a simple min–max structure which makes it easy to incorporate into
hardware. The block diagram in Fig. 9.21 provides an overview of the controller’s
internal structure. Two input variables are fuzzified, producing the corresponding linguistic
values and membership functions ( ).Bi

j The first phase of Mamdani’s implication involves
min-operation since the antecedent pairs in the rule structure are connected by a logical
‘AND’. All the rules are then aggregated using a max-operation.

9.2.2.7 Defuzzification technique

Different defuzzification techniques have different levels of complexities. There have
been several studies into the methodology to guide the selection of defuzzification
techniques based on the criteria of the design [207]. The dominant criteria in this design
lies in the implementation stage. In order to implement the system into an FPGA, it
would be advantageous for the defuzzification technique to be fairly straightforward and
not to involve a large number of complex calculations. The weighted average method is
viewed to be an appropriate technique for systems involving hardware implementation.
Due to the fact that the output membership functions are symmetrical in nature, the
mean of the fuzzy sets can be used as weightings for the defuzzification process. This
technique requires several multiply-by-a-constant operations and only one division process.
The fact that the multipliers have constant values further reduces the complexity of the
hardware structure.
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9.2.3 Rule base design

It has been mentioned that the rule base moulds the functionality of an FLC. The rules
are most likely to be formulated based on some level of human understanding of the
plant, and although a fuzzy logic control system supports heuristics, the process of
constructing the rules is still the subject of considerable studies. The most basic way of
constructing the rule base is by trial and error, but this usually involves heavy computation
and has a low efficiency. Numerous other techniques have been suggested, some of
which involve automatic generation of the rule base using computational methods such
as genetic algorithms [141], [116] and evolutionary programming [128]. The design of
FLCs can also be based on conventional control structures such as PID and sliding mode
control. Description and examples of such structures in fuzzy control can be found in
[177], [157]. The design of the FLC in the present work is based on PI controllers
because it is highly suitable for the governing (of the d.c. voltage) system required. The
rule base is constructed from the control law of a PI system.

9.2.3.1 PI control

The proportional–integral (PI) controller is a well-known system in control engineering.
It is, in essence, a lag compensator characterised by the transfer function

G s K
T s

( ) = 1 + 
1
  ⋅





 (9.37)

Fig. 9.21 Block diagram of the operations in a fuzzy logic controller
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where:
G(s) is the gain
K is the control parameter
T is the time constant.

The control law is given by the equation

u K e K
T

e tp I

t

PI
0

 =    +   1    d⋅ ⋅ ⋅∫ (9.38)

where:
u is the control signal
e is the error, given by e = (input value) – (reference value).

Differentiating (9.38) gives

d
d

 =   
d
d

 +   
u
t

K
e
t

K eP I⋅ ⋅ (9.39)

In discrete-time systems, (9.39) can be written as

u(kT) – u(kT – T ) = KP · {e(kT ) – e(kT – T )} + KI · e(kT )

∆u = KP · ∆e + KI · e (9.40)

where:
∆u is the change in u over one sampling period
∆e  is the change in e over one sampling period.

The characteristic of a PI controller can be represented by the phase plane diagram
shown in Fig. 9.22. A diagonal line where ∆u = 0 divides the area where ∆u is positive
and ∆u is negative.

∆e

∆u < 0

∆u > 0
e

∆u = 0

Fig. 9.22 Characteristic of PI controller

9.2.3.2 PI-like fuzzy control

At this stage, the control law in (9.40) is not in fuzzy terms. In order to design a fuzzy
controller based on the PI control structure, the following definitions are made:

Let E be the linguistic variable for the error e
∆E be the linguistic variable for the change of error ∆e
U be the linguistic variable for the control output u.
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Based on the conventions in Section 6.1.4, the following sets are defined:

LE = {Negative Big, Negative, Zero, Positive, Positive Big}

L E∆ = {Negative Big, Negative, Zero, Positive, Positive Big}

LU = {Negative Big, Negative, Negative Small, Zero, Positive Small, Positive, Positive
Big}

The corresponding PI control law in IF-THEN rules has the form:

R E A E A U Ck k k k : IF  is  and  is , THEN  is 1 2∆ (9.41)

where:
Ak

1  can take any linguistic value in the set LE
Ak

2  can take any linguistic value in the set L E∆
Ck can take any linguistic value in the set LU .

To implement this design into the FLC, let:

• x1 = E
• x2 = ∆E
• { , , , , }1 2 3 4 5B B B B Bi i i i i  = {Negative Big, Negative, Zero, Positive, Positive Big}

for i =1, 2
• {D1, D2, D3, D4, D5, D6, D7} = {Negative Big, Negative, Negative Small, Zero,

Positive Small, Positive, Positive Big}.

Table 9.2 shows the FAM table of the design.

Table 9.2 FAM table for FLC design

  ∆E NB N Z P PB
E

NB R1 R2 R3 R4 R5 NVB Negative Very Big
u = PVB u = PB u = P u = PS u = Z NB Negative Big

N R6 R7 R8 R9 R10 N Negative
u = PB u = P u = PS u = Z u = NS NS Negative Small

Z R11 R12 R13 R14 R15 Z Zero
u = P u = PS u = Z u = NS u = N PS Positive Small

P R16 R17 R18 R19 R20 P Positive
u = PS u = Z u = NS u = N u = NB PB Positive Big

PB R21 R22 R23 R24 R25 PVB Positive Very Big
u = Z u = NS u = N u = NB u = NVB

9.2.3.3 Interfacing blocks

Figure 9.23 shows a block diagram demonstrating the implementation of the FLC in a
stand-alone generator system. The control plant in the diagram represents the engine,
generator and rectifier system. The notation ‘z–1’ is used to mark a delay in the signal by
one sampling period (the subject of Z-transform can be found in [184]).

In this application, the input interface converts the d.c. voltage at the output of the
plant into error and change of error which are used as the two inputs to the FLC.
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Another interface converts the output into the required value for the plant. The characteristics
of the interfacing blocks can be described by the following equations:

Input interface:

e = VREF – Vdc

x1 = e

x2 = x1 – x1⋅ z –1

Output interface:

∆u = y

u = ∆u + u ⋅ z –1

Once the design issues of the FLC have been resolved, the next step is to consider the
implementation scheme. In this project, the design is achieved using VHDL.

9.2.4 VHDL description

The FLC is designed and modelled in an EDA environment using VHDL. The controller
is broken down into ‘components’, with each component performing a specific function
such as fuzzification, inference, etc. This means that the design of each component can
be modified or simply combined with one another to form a complete system. Two
levels of design descriptions are presented in this example. A behavioural level description
is used to test the functional validity of the design. At this level, the design is relatively
generic and not restricted by any particular technological constraints. Once the functionality
of the design is verified, it is subsequently modified for implementation into the chosen
technology. This involves two main tasks: converting the code into structural level and
optimising the design. The amount of optimisation required will depend on the target
technology. In a general sense, the smaller the targeted device the greater the amount of
effort required. The target device in this case is the Xilinx XC4010XL FPGA, which has
an equivalent logic gate count of 10 000. This is comparatively small as FPGAs with
millions of gates are nowadays available on the market.

The FLC is divided into five VHDL components. Figure 9.24 shows a diagram of the

Fig. 9.23 Block diagram of the control system
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FLC architecture. Each component is depicted with its VHDL code file ‘<filename>.vhd’.
The functionality of components Interface1, Interface2 and part of the component
Infer will determine the characteristics of the FLC. Input and output variables are
designed with a resolution of 8 bits.

Fig. 9.24 Components of the fuzzy logic controller

The ports and signals can be declared either as type integer or std_logic_vector.
An example of the two ways of declaration mentioned here are:

port(x1 :in integer;
x2 :in integer;
y :out integer);

and

port(x1 :in std_logic_vector(7 downto 0);
x2 :in std_logic_vector(7 downto 0);
y :out std_logic_vector(7 downto 0));

The choice of type will depend on whether it is easier to write the VHDL code using
integer or std_logic_vector. At synthesis level there is little difference between
the two types. However, when developing the design for hardware implementation, the
range of the integer must be specified during declaration. In this example both types
are used, depending on the conditions. Conversion functions exist in VHDL to convert
between the types [10]. They are:

conv_integer( ); and conv_std_logic_vector( );

9.2.4.1 Interfacing components

The interfacing circuits are vital parts of the FLC. They form the link between the core
of the FLC and the control plant and, together with the rule base, shape the characteristics
of the complete control system. The FLC is used as a PI-like controller in the stand-
alone generator system, using the d.c. voltage as an input.

Components Interface1 and Interface2 are used to implement the input and output
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interfacing functions. Part of the code in the VHDL file Interface1.vhd is shown below
(the complete contents of the VHDL files can be found in Appendix E):

process(CLK)
…

begin
…
PAST_VAR := NOW_VAR;
 NOW_VAR := error;

…
DIFF := NOW_VAR - PAST_VAR;
—— Normalised input values:
x1 <= NOW_VAR ;
x2 <= DIFF * GAIN ;
…
end process;

In the final version of the design, Interface2 is embedded within the code for
Defuzz. The following code section implements the output interface function:

——Output interface
…
U_var := Uz + Y ;
Uz := U_var ;
…
U <= U_var ;
…

9.2.4.2 Fuzzify

The function of the component Fuzzify is to convert the crisp input variables into fuzzy
values. The membership functions of the input variables are defined in the ‘constant-
declaration’ part of Fuzzify as shown below:

architecture Fuzzify_arc of Fuzzify is
constant a1:integer := -60;
constant b1:integer := -30;
constant a2:integer := -10;
constant b2:integer := -30;
constant c2:integer := 0;
…

The membership values of the input variables to the linguistic values are then assigned
based on these constant values. Thus, the membership functions can be slightly modified
by redefining the constants. However, the shape of the membership functions would
remain more or less the same, i.e. L–, Γ- and Λ-functions as shown in Fig. 9.25.

9.2.4.3 Fuzzy inference

The component Infer performs Mamdani’s min–max inference to obtain the resulting
fuzzy output, as a consequence of the rule base. A model, as shown in Fig. 9.26, is
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developed to represent the inference engine in such a way that it can be easily adopted
into the hardware description. The left-hand side of the diagram shows the implication
of 25 output conditions by the fuzzy rule antecedent using min-operators. Each output
condition models the consequence of a single rule. Therefore, the rule

R1 : IF x1 is B x B U C1
1

2 2
1 1 and  is , THEN  is 

becomes

C B B1
1
1

2
1 = min[ , ].

The max-operator is used to take into account the combined effect of all the rules. The
25 output conditions are aggregated into seven linguistic values (D1 to D7) based on the
conditions set by the rules. This operation is depicted by the right-hand side blocks in
Fig. 9.26.

Fig. 9.25 Membership function of input variables
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For the purpose of illustration, switches are used to model the association of the
output conditions to the linguistic values. A switch is set ‘ON’ if an output condition is
associated with the linguistic value for the block of max-operation in question. This
means that the collective effect of the rule base can be modelled by defining the status
of the switches. For example, in the design of the FVG (refer to FAM table in Table 9.2),
the membership function of the linguistic value D1 is the aggregate of conditions C20,
C24 and C25. This is modelled by ‘connecting’ the three output conditions to the max-
operation of D1 and ‘disconnecting’ the other conditions, as illustrated by the block in
Fig. 9.27. The operation is described by the function:

D1 = max[C20, C24, C25].

Fig. 9.27 Model of the process of aggregating the fuzzy rules
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Using the same principle, the entire set of fuzzy rules of the FVG is implemented into
the VHDL component Infer simply by defining the association between the output
conditions and the linguistic values (D1 to D7). The following functions are used to
incorporate the rule base of the FVG into the FLC.

D1 = max[C20, C24, C25]
D2 = max[C15, C15, C23]
D3 = max[C10, C14, C18, C22]
D4 = max[C5, C9, C13, C17, C21]
D5 = max[C4, C8, C12, C16]
D6 = max[C3, C7, C11]
D7 = max[C1, C2, C6]

9.2.4.4 Defuzzifier

The function of the component Defuzz is to convert the fuzzy output value of the
control system into the corresponding crisp value. This is achieved using the weighted
average defuzzification method. This defuzzification operation requires several multipliers
and a divider. Behavioural modelling in VHDL supports multiplication and division but
these operations are complicated to realise in the synthesis and implementation stages.
However, in this chapter only the functional simulation is discussed. Therefore, the
multiplication operator ‘*’ and the division operator ‘/’ are used. At subsequent stages,
modifications are required, as most synthesis tools do not support the division operator
‘/’. In addition, using a lower level of design description has the advantage of requiring
fewer gates than the ‘*’ operator. Using the multiplication and division operators results
in the defuzzification code being fairly straightforward, as shown below:

DEFUZZ_PROCESS:
process(CLK)
variable Dividend, Divisor : integer;
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begin
if CLK’event and CLK=‘1’ then

Dividend := (E1*D1)+(E2*D2)+ (E3*D3)+(E4*D4)+(E5*D5)+
(E6*D6)+(E7*D7)+(E8*D8)+(E9*D9);

Divisor := (D1+D2+D3+D4+D5+D6+D7+D8+D9);
if Divisor = 0 then

— *** Avoid division by zero ***
Y := 0;

else
Y := (Dividend/Divisor);
…

end if;
end if;

end process;

The dividend is obtained from the sum of the product of the linguistic values and their
respective weightings while the divisor is simply the sum of all the linguistic values.
A section of the design, marked ‘***Avoid division by zero***’, is dedicated to
checking if the value of the divisor is zero and taking the appropriate measures to avoid
a ‘division by zero’ error.

Once all the components of the FLC are successfully designed, a top hierarchy
VHDL component, Control, is created to bind them together in the manner shown in
Fig. 9.24 such as to form the complete controller. Within Control, the interfacing
components, Fuzzify, Infer and Defuzz are instantiated and connected to one another.
Control also features two clocking signals for synchronising its internal components.
By combining the completed design of Control with the plant models, the performance
can be analysed using computer simulations.

9.2.5 Simulations

A series of computer simulations is conducted on the FLC to analyse its performance
before proceeding to hardware implementation. For this task, a VHDL test component,
Sim, is created to simulate the control environment. By using the models developed
already, Engine and Genrect, it is possible to simulate the relationship between the
FLC and the control plant within the VHDL platform in order to study the controller.
Figure 9.28 shows a simplified block diagram of the structural composition of Sim.

The shaded blocks represent components that have been previously described and are
instantiated inside the structure of Sim. The white blocks are sections of code which
perform the data type conversions between the signals of the plant models and those of
the controller. A listing of the VHDL code for Sim is found in Appendix E – 11.5.9.

The method adopted for running the simulation is by using a VHDL test-bench. A
test-bench is a VHDL design written specifically to provide a test environment for the
design under study. A model of the test-bench is shown in Fig. 9.29. It is made up of two
main parts, the stimulus and the observer. The former generates the necessary input
signals to the design while the observer reads and records the output signals resulting
from the stimulus signals.

A test-bench TB_Sim is subsequently created for Sim. The code for TB_Sim
can be found in Appendix E – 11.5.10. The following VHDL codes are two important
sections in TB_Sim:
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VHDL code (TB_Sim):
—— Stimulus

CLK1 <= not CLK1 after 10 ns;
CLK2 <= not CLK2 after 1 ns;
Period <= 3.0;
Theta <= 0.0;
Ifield <= 2.5;
Vref <= 1000;
Idc <= 2.0, 6.0 after 4000 ns;

—— Observer
—— Write results into file
process (CLK1)

file outfile : text is out
“C:\My Designs\Simulation\src\Results\Result1a.txt”;
variable out_line : line;

begin
write(out_line, Vdc);

Fig. 9.28 Block diagram of Sim

Fig. 9.29 Model of a VHDL test-bench
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writeline(outfile, out_line);
end process;

The first section, marked Stimulus, is responsible for assigning the appropriate values to
the components in the test environment. In the given example, the load current (measured
at the d.c. link) Idc is changed from 2.0 A to 6.0 A when t = 4000 ns. The other section
of code (with the marking Observer) records the response of the system and writes the
information into a text file. This is achieved using the write and writeline statements
that are found in the std.textio library package. In this chapter, graphical representations
of the system responses designed using MS Excel are shown instead of the raw numerical
data. The voltage values shown in the graphs are normalised to the reference voltage.

9.2.5.1 Simulation 1

In this simulation, the effects of the weightings E1–7 for the defuzzification process in
the component Defuzz are investigated. The values of the weightings in Simulation
No.1a are:

E1 = –8; E2 = –6; E3 = –4; E4 = –2; E5 = 0; E6 = 2; E7 = 4; E8 = 6; E9 = 8

Using the stimulus signals described by the VHDL code below, the d.c. voltage response
of the system is simulated.

VHDL code (TB_Sim):
—— Stimulus

CLK1 <= not CLK1 after 10 ns;
CLK2 <= not CLK2 after 1 ns;
Period <= 3.0;
Theta <= 0.0;
Ifield <= 2.5;
Vref  <= 1000;
Idc  <= 10.0;

The reference voltage is set to 1000 as this is a convenient value with which to analyse
the performance of the controller. In the graphs shown, Figs 9.30 to 9.37, the values of

Fig. 9.30 Voltage response in simulation No. 1a
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the d.c. voltage in the graphs are normalised to the reference voltage (i.e. d.c. voltage =
Vds/Vref).

It is clearly visible from Fig. 9.30 that the system is unstable. The d.c. voltage
oscillates continuously with a magnitude of up to 9 per cent of the reference value. This
is partly caused by overcompensation, which results from the large weighting values in
the defuzzification process. In Simulation No. 1b, the weighting values are reduced to:

E1 = –4; E2 = –3; E3 = –2; E4 = –1; E5 = 0; E6 = 1; E7 = 2; E8 = 3; E9 = 4

The voltage response, plotted in the graph in Fig. 9.31, shows that the system has been
stabilised by reducing the weightings in the defuzzification process. However, there is
a steady-state error of almost 7.5 per cent. In order to improve the performance in this
respect, it is necessary to examine the shapes of the input membership functions in the
component Fuzzify and its effect on the control performance.

Fig. 9.31 Voltage response in Simulation No.1b
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The conditions set in the fuzzification process in Simulations No. 1a and No. 1b are
as follows:

VHDL Code (Fuzzify):
Simulation Nos.1a and b

constant a1 :INTEGER := -80;
constant b1 :INTEGER := -40;
constant a2 :INTEGER := -80;
constant b2 :INTEGER := -40;
constant c2 :INTEGER := 0;
constant a3 :INTEGER := -40;
constant b3 :INTEGER := 0;
constant c3 :INTEGER := 40;
constant a4 :INTEGER := 0;
constant b4 :INTEGER := 40;
constant c4 :INTEGER := 80;
constant a5 :INTEGER := 40;
constant b5 :INTEGER := 80;

Plotted on a graph, these conditions present a membership function diagram similar to
the one shown in Fig. 9.32. The shapes of the membership functions of the three
linguistic values in the middle are identical, with each of them spanning 80 units over
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the x-axis. By making the linguistic value at the centre (Zero) more focused around the
value zero, it is possible to reduce the magnitude of the steady-state error. The FLC
design is constructed such that this task can be achieved simply by changing some
values of the 13 constants (a1-4, b1-5, c2-5) inside Fuzzify.

Fig. 9.32 Input variables membership functions in Simulations No. 1a and No. 1b
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9.2.5.2 Simulation 2

If the membership function in Fig. 9.32 is made too narrow, the system loses its stability.
This is demonstrated by Simulation No. 2a, in which the membership function of the
input variables is changed to that of Fig. 9.33 whereby the linguistic value Zero ranges
between (–5) and (+5). The voltage response is plotted in the graph in Fig. 9.34. The
system response is oscillatory albeit with a smaller magnitude (2.5 per cent) than that of
Simulation No. 1a.
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Fig. 9.33 Input variables membership functions in Simulation No. 2a

In Simulation No. 2b, the membership function of the input variables is modified to
resemble the diagram in Fig. 9.35. The result, shown by the graph in Fig. 9.36 clearly
proves that, when the correct balance is achieved in the choice of membership function,
the FLC performance is considerably improved. The steady-state error in this case is
less than 1.6 per cent.
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9.2.5.3 Simulation 3

Once the parameters in Fuzzify and Defuzz are properly tuned, the system can be
simulated under varying load conditions. In Simulation No. 3a, the d.c. load current is
changed from 2 A to 6 A. Figure 9.37 shows the voltage response whereby the change
occurs when t = 20 seconds. There is a transient dip in the voltage of less than 14 per
cent when the load current increases suddenly, but the FLC is shown to be capable of
restoring the voltage to its original value in less than 5 seconds.

This section has presented an extensive example of the VHDL design of a fuzzy logic
controller. A series of simulations was presented and the results provided the necessary
system validation to proceed to hardware implementation with confidence.

Fig. 9.34 Voltage response in Simulation No. 2a.
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Fig. 9.36 Voltage response in Simulation No. 2b

Fig. 9.35 Input variables membership functions in Simulation No. 2b
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9.3 FPGA implementation

In order to transform a behavioural level VHDL design such as the one presented in the
previous section into a hardware design, a number of considerations have to be made
and the design must be optimised before implementation. The synthesis and implementation
processes are discussed. Synthesis is the act of converting the VHDL code into a netlist.
A netlist is a standard method of describing the design at a level of abstraction that is
suitable for hardware implementation, either at an architectural level which consists of
logic blocks or at a logic level which is made up of logic primitives. Implementation is
the process of converting the netlist into a format that can be downloaded into the target
technology. This procedure is very technology-specific since different devices require
different formats. The target technology for this design is the XC4010XL-PC84, a
member of the Xilinx XC4000XL Series of FPGAs [8]. These devices are fully
reconfigurable and can be reprogrammed an unlimited number of times. The Xilinx
XC4010 has a maximum logic gate count of 10 000. The relevance of this point will
become clear later in the section when it is shown that the original FLC design discussed
so far is too large to fit into a Xilinx XC4010.

The design of the FLC presented so far in this example did not take into account the
synthesis and implementation considerations and the limitations of the target technology.
Xilinx XC4010XL FPGA has a total of 400 CLBs and an equivalent gate count of 10 000.

Using the EDA tool, Xilinx Foundation Series [14], a VHDL design can be synthesised
then implemented for a particular device. Figure 9.38 shows a simplified block diagram
of the process. In the synthesis stage, the VHDL code is converted into a netlist, which
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Fig. 9.37 Voltage response in Simulation No. 3a
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Fig. 9.38 Simplified block diagram of the hardware design process
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is a format that contains the structural hardware description of the design. A function is
considered NOT to be ‘synthesisable’ if the synthesis tool cannot readily convert it into
hardware description. Functions such as mathematical division and trigonometric operations
are not synthesisable using currently available synthesis tools. Implementation in this
context is the process of converting the netlist into a bitstream file. The information in
the bitstream is used to configure the functionality of the target FPGA. During the
implementation stage, the target technology and other hardware design specifications
such as pin allocation have to be confirmed. For troubleshooting and analysis purposes,
Xilinx Foundation also generates a status report at each stage of the process.

Before a VHDL design can be synthesised, all the VHDL functions which are not
‘synthesisable’ have to be eliminated and replaced with functions that can be translated
into hardware.

9.3.1 The divider

The FLC’s defuzzification process requires a division operation. In the behavioural
design, the division is achieved with the following VHDL statements (refer to Appendix
E – 11.5.6):

process(CLK)
variable Dividend, Divisor : integer;

begin
…
Y <= (Dividend/Divisor);
…

end process;

This process is not suitable for synthesis for two reasons:

• The variables Dividend and Divisor are declared as open-ended integers, with no
meaning in hardware design. Integer variables and signals should be given a well-
defined range such as

process(CLK)
variable Dividend :integer range 0 to 512;

begin

This way of declaration informs the synthesis tool about the maximum number of bits
required by the variables. By not explicitly defining a range, the synthesis tool will
assign a default number of bits to model the variable. This usually results in a waste of
resources. Alternatively, they can be declared as std_logic_vector type, which has a
more relevant form in hardware terms. The declaration is written as:

process(CLK)
variable Dividend :std_logic_vector(8 downto 0);

begin

• The division operator ‘/’ is not supported by present synthesis tools, including Xilinx
Foundation. To implement this calculation in hardware, it is necessary to design a
digital divider at structural level.
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9.3.2 Analysis of binary integer division

Before entering a discussion on binary division, it is appropriate to define some of the
terms which are used. The dividend (divA) is defined as the number to be divided while
the divisor (divB) is the number by which the dividend is divided. The division process
can then be expressed by the following equation:

divA
divB

 =  + 
divB

Y R

where Y is the quotient and R is the remainder whereby R < divB.
In binary notation, the numbers can be written as

div A = 2(n–1) · a(n–1) + 2(n–2) · a(n–2) . . . + 21 · a1 + 2° · a0

div B = 2(m–1) · b(m–1) + 2(m–2) · b(m–2) . . . + 21 · b1 + 2° · b0

Y = 2(n–1) · y(n–1) + 2(n–2) · y(n–2) . . . + 21 · y1 + 2° · y0

Using the pencil-and-paper method, a binary division process is performed in a number
of steps. In each step, a partial dividend {PD} is divided by the divisor such that if j is
the index for the steps, then,

y
PD R

j
j j

 = 
{ }  –  

divB

and

{PD}( j –1) = 2Rj + a( j–1)

where:
j = (n – 1), (n – 2) …, 0
Rj is the partial remainder and Rj < div B.

For example, dividing the binary number ‘1101’ by ‘11’:

)11 {1}101
0100

using the pencil-and-paper method,

when j = 3, {PD} = {1} ⇒ y3 = 0, R3 = 1,
when j = 2, {PD} = {11} ⇒ y2 = 1, R2 = 0,
when j = 1, {PD} = {0} ⇒ y1 = 0, R1 = 0,
when j = 0, {PD} = {01} ⇒ y0 = 0, R0 = 1.

R0 is also the true remainder R.
Therefore, the result of the division can be written as:

1101
11

 = 0100  + 
1
11

2

2
2

2

2

or, in decimal notation,

13
3

 = 4 + 1
3
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9.3.3 Binary integer division algorithm

There are several different algorithms, which can perform binary integer division. Some
algorithms have parallel operations and require only one clock cycle to carry out the
calculation while others operate in a sequential manner and may require more clock
cycles, such as the one presented later in this chapter. As a general rule, the algorithms
with parallel operations are larger in area size than the sequential ones when they are
implemented into hardware. The division algorithm used in this example is derived from
the pencil-and-paper method of binary division. Let

divA be an n-bit register which holds the unsigned dividend,
divB be an m-bit register which holds the unsigned divisor,
Bp be a signed (m + 1)-bit register which holds the positive value of B,
Bn be a signed (m + 1)-bit register which holds the negative value of B,
A be an n-bit register which holds the partial dividend {PD},
As be a flip-flop appended to the left end of A to store the sign bit, and
ZsZ be the temporary register used to store.

Using the symbol ‘←’ to denote ‘is assigned as’, the division algorithm used in this
book can be written as follows:

• Block 1:
Initialisation:

clear A;
Bp ← positive value of divB;
Bn ← negative value of divB (two’s complement);

• Block 2:
For j = (n – 1):

shift left (A)(divA);
ZjZ ← (AsA + Bn);
qj ← not(Zj);

• Block 3
For j = (n – 2), (n – 3) …, 1, 0

shift left AP;
if q( j–1) = ‘0’ then:
ZsZ ← (As A + Bp);
else if q( j–1) = ‘1’ then:
ZsZ ← (As A + Bn);
end if;

qj ← not(Zs);
AsA ← ZsZ.

A VHDL code is written to implement this algorithm for a 14-bit dividend and a 9-bit
divisor. The code defines the dividend as divA, the divisor as divB and the quotient is
defined as Y. It is assumed that the effects of the Remainder on the control performance
is small, therefore the Remainder can be truncated altogether. Since the algorithm is
sequential, the entire operation is carried out in a VHDL process. A circuit is also
included to avoid a division-by-zero error by clearing Y (assign all bits to zero) when
divB equals zero. Using two’s complement conversion to obtain the negative value of
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divB, the ‘Initialisation’ procedure in Block 1 is performed by the following section of
code:

—— Initialisation
—— Clear A

A(13 downto 0) :=”0000000000000000”;
—— Assign divB(+ve) and divB(-ve)

Bp:=”00000”&divB;
Bn:=not(Bp)+”000000000000001”;

It can be observed that the variables are treated as binary-valued bits and bytes instead
of whole numbers. This is a realistic view of digital circuits and highlights an important
difference between hardware description and software programming. The next sequence
of commands converts the dividend divA into an unsigned value. This is essential
because the algorithm is not designed to cope with negative values of the dividend.
From the defuzzification process, it is known that the divisor divB is always a positive
number. Therefore, it follows that the sign status (whether positive or negative) of the
quotient Y is always the same as the sign status of divA. The functions in Blocks 2 and
3 are implemented by introducing the status bits Load and Ready. ‘Load = 1’ relates
to the condition whereby a new set of dividend and divisor values are loaded into the
divider circuit, i.e. when j = (n –1), while ‘Ready = 1’ is the condition whereby the
division calculation for the recent set of values has been completed, that is when j = 0.
The VHDL code also includes the description of the output interface circuit of the
controller, which implements the following function:

u ← u ⋅ z –1 + y

where:
y is the crisp output from the defuzzifier
u is the actual control signal.

The section of code that describes this circuit is written as follows:

…
if SIGN=‘1’ then
…
- - Negative

U-var := U_Past - Y;
…
else
- - Positive

U_var := U_Past + Y;
…
end if;
…

In any hardware code that involves continuous increment or decrement of numerical
values, there is a danger of overflow. Therefore, the upper and lower limit of the output
is set at ‘11111111’ and ‘00000000’, respectively. This prevents the 8-bit output register
from overflowing into a 9-bit value (e.g. 11111111 + 1 = [1]00000000).
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The VHDL code is subsequently configured as a component and a netlist is created.
Figure 9.39 shows the symbol of the component Divider as viewed in the Xilinx
Foundation Schematic Editor.

Fig. 9.39 Symbol of the component ‘Divider’ with I/O buffers and pads
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9.3.4 Design optimisation

Even after the behavioural design of the FLC is converted into a format that is fully
supported for synthesis, there are still other issues to consider, particularly regarding
implementation. This section looks at the question of area optimisation. Figure 9.40
shows an extract from the implementation status report of the FLC design targeted at the
Xilinx XC4010 FPGA.

Fig. 9.40 Synthesis report for top hierarchy entity: Control.vhd

>> Control_b.vhd (Behavioural)

Design summary
———————

Number of errors: 2
Number of warnings: 3
Number of CLBs: 600 out of 400 150%

CLB Flip Flops:
CLB Latches:
4 input LUTs:
3 input LUTs:

Number of bonded  IOBs: 60 out of 63 95%
IOB Flops: 0
IOB Latches: 0

Number of BUFGLSs: 1 out of 8 12%
Number of RPM macros: 30

Total equivalent gate count for design: 6341
Additional JTAG gate count for IOBs: 2880

Not enough CLBs
to support design

Maximum gate
count in 10 000
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The following points can be noted:

• The FLC design requires more CLBs than is readily available in a Xilinx
XC4010.

• The total equivalent gate count for the design is below the maximum stated in the
Data Book.

• The number of bonded IOBs in the device is sufficient for the design.

From these observations, it can be seen that although the design is too large for the
Xilinx XC4010 in terms of CLBs, it has a total equivalent gate count that is within its
limits. This suggests that the design is not fully utilising the logic gates in each CLB.
The design can be easily implemented into one of the bigger devices in the Xilinx 4000
family, but in order to implement it into the XC4010XL, a certain number of modifications
have to be made. These modifications optimise the design such that it is functionally
identical to the original design but requires a smaller area. However, in reducing the area
space, there is a trade-off between other properties. In this case, one of the concerns is
that by optimising the design, the fuzzy rule base also becomes more deeply integrated
into its structure, thereby losing some of the features which make the controller generic
and flexible.

The quality of a design can be measured by two main variables, area and performance.
The area of a design simply refers to the sum of the area space of the circuit components.
The measure of performance is more complex as it involves analysis of the structure and
behaviour of the circuit. There are a number of variables that relate to circuit performance
such as propagation delay, cycle-time, latency and throughput but they are not discussed
in great detail here. Briefly, propagation delay is the delay through the critical path of
a circuit (for combinational logic circuit), cycle-time is the fastest clock period that can
be applied to the circuit (for synchronous sequential circuit), latency is the number of
clock cycles required to execute the operation and throughput refers to the rate at which
data is consumed and produced by the circuit. Optimisation is the act of minimising the
area and maximising the performance. Usually, there has to be a trade-off between the
two. In most cases, design optimisation is subject to constraints such as:

• minimise the area under performance constraints
• maximise the performance under area constraints.

The task in this design falls under the first category, which is to minimise the area.

9.3.4.1 Structural multiplication

It has already been shown how multiplication in VHDL programs can be carried out
using the operator ‘*’. A simple multiplication by an arbitrary number, say five, can be
performed with the following statement:

A<= B*5;

Another method of implementing this operation is to explicitly describe the step-by-step
procedure of the binary multiplication. Returning to the recent example, the pencil-and-
paper method of the binary multiplication when B = 9 is written as follows:
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1001 ←  B
× 101 ←  5

————————
1001 ←  B
0000 ←  0
1001 ←  B, shift left by 2 bits

———————
101101 ←  A

This can be described in VHDL as: A<= B + shl(B,“s10”);
where shl( B, “10” ) is the command statement to shift the contents of B to the left
by 2 bits.

The multiplication process effectively becomes a combination of an addition and a
shift-left operation. Using this method to describe all the multiply-by-a-constant procedures,
the area size of the design can be reduced significantly.

9.3.4.2 Fuzzifier optimisation

In the fuzzification process of the FLC design that was previously presented, the two
inputs, x1 and x2, are processed using two separate fuzzification blocks. Since both of
the inputs are fuzzified in exactly the same manner, it is possible to create just one
fuzzification block to be shared between the two input variables. This reduces the area
but it is at the expense of the performance, particularly latency.

While previously the entire process can be completed in just one clock cycle, this
approach requires at least two clock cycles. To achieve this, there is also the need for
memory elements to store the result of the first computation while the second set of data
is being computed. At the end of the second computation, both sets of results are
released simultaneously. In order to reduce the area size further, another method of
optimisation is devised.

The fuzzification block has five outputs, one for each fuzzy value defined in the
inputs’ universe of discourse. However, the fuzzification process entails that, for any
single crisp value of the input xi, only two adjacent fuzzy values are significant (with
non-zero membership values). By ignoring the insignificant fuzzy values, the number of
output signals can also be reduced from five to two. The possible combinations of
significant fuzzy values for an arbitrary input are:

B B B B B B B Bi i i i i i i i
1 2 2 3 3 4 4 5 and ;    and ;      and ;      and   

It is found that using just three variables, ADRi, Bi_A and Bi_B, all the combinations
can be sufficiently represented for any value of xi as shown by the following statements:

ADRi = “00” : Bi_A = Bi
1 , Bi_B = Bi

2

ADRi = “01” : Bi_A = Bi
2 , Bi_B = Bi

3

ADRi = “10” : Bi_A = Bi
3 , Bi_B = Bi

4

ADRi = “11” : Bi_A = Bi
4 , Bi_B = Bi

5

Figure 9.41 illustrates how these conditions correspond with the universe of discourse.
The complete VHDL code of the fuzzifier can be found in Appendix F. An outline of

the code’s functional structure is described by the flowchart shown in Fig. 9.42.
Management of the input and output signals is mainly controlled by a status bit, R_sig.
When R_sig is ‘1’, the input x1 is fuzzified but the output values remain unchanged.
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When R_sig is ‘0’, the input x2 is fuzzified and the new values of all the outputs are
assigned. The variables temp, temp_A and temp_B represent the temporary registers
used to store the fuzzy values of x1 while the fuzzy values of x2 are being computed.
The operation takes two clock cycles to complete and all the fuzzy values are simultaneously
released.

9.3.4.3 ‘Mini’ FAM tables

The FAM table of the FLC design discussed in an earlier section is shown again in Table
9.3. It was mentioned that the inference of the fuzzy rules is achieved using Mamdani’s
inference technique and the VHDL code presented uses an inference engine which
triggers all 25 rules during every calculation. This section describes an algorithm which
is developed to reduce the amount of computation required by focusing only on the
relevant rules and ignoring those which are irrelevant to the conditions in question.
From the previous section, it is known that for every set of inputs, only four fuzzy values
(two for each input) are significant. This means that only four fuzzy rules are relevant
at any one time.

An easier way of explaining the technique is to imagine the entire FAM table to be
covered from view. Access to the content of the FAM table is only allowed through a
small window and only four adjoining rules can be viewed through this window at a
time. Therefore, instead of having to access 25 rules, the inference engine only has to
access four rules during every computation. The window can move around the FAM
table and its position is identified by an index j defined as:

ADR1 = ”00” & ADR2 = ”00” → j = 0
ADR1 = ”00” & ADR2 = ”01” → j = 1
ADR1 = ”00” & ADR2 = ”10” → j = 2
ADR1 = ”00” & ADR2 = ”11” → j =  3
ADR1 = ”01” & ADR2 = ”00” → j = 4
ADR1 = ”01” & ADR2 = ”01” → j = 5
ADR1 = ”11” & ADR2 = ”11” → j = 15

There are 16 ‘window positions’ altogether and the first six are shown in Fig. 9.43. The
shaded blocks are the rules which are considered relevant for the input conditions
corresponding to the index j. To distinguish the ‘windowed’ view of the FAM table from
the original table, the first is referred to as the ‘Mini’ fuzzy associative memory (FAM)
table.

Membership
function

Bi
1 Bi

2 Bi
3 Bi

4 Bi
5

ADRi “00” ADRi “01” ADRi “10” ADRi “11”

xi

Fig. 9.41 Definition of input fuzzy values
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START
Process (CLK,RST)

RST = 1
YES

NO

CLK’event
&CLK = 1

YES

NO

Clear all output
signals;

R_sig <=‘1’;

YES
R_sig = 1

x := x1 x := x2

Fuzzification Block
input :x

outputs: ADR, B_A, B_B

NOYES
R_sig = 1

temp <=ADR;
temp_A <=B_A;
temp_B <=B_B;
READY <=‘0’;
R_sig <=‘0’;

ADR1 <=temp;
B1_A <=temp_A;
B1_B <=temp_B;
ADR2 <=ADR;
B2_A <=B_A;
B_B <=B_B;
READY <=‘1’;
R_sig <=‘1’;

END Process

Fig. 9.42 Flowchart of the fuzzifier

When the window technique is applied to the FAM table in Table 9.3, it is observed that
a number of the mini-FAM tables are identical (e.g. j = 1 and j = 4). Out of the 16 mini-
FAM tables, there are only seven unique tables as shown in Fig. 9.44.

If WIN is the index for the new set of tables, then the tables can be arranged using the
following:
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IF j=0 THEN WIN=“0000”
IF j=1 OR j=4 THEN WIN=”0001”
IF j=2 OR j=5 OR j=8 THEN WIN=”0010”
…
F j=11 OR j=14 THEN WIN=”0101”
IF j=15 THEN WIN=”0110”

This algorithm requires a considerable number of IF-THEN operations and is not necessarily
an efficient way to implement the design into hardware. By observing the pattern in the
original FAM table, it can be shown that the mini-FAM tables are identical when the
sum of ADR1 and ADR2 is the same. Therefore, instead of using numerous IF-THEN
operations, the arrangement of the mini-FAM tables is achieved using a single addition

Table 9.3 FAM table of the FLC design

∆ E NB N Z P PB
E

NB R1 R2 R3 R4 R5

u = PVB u = PB u = P u = PS u = Z NVB Negative Very Big
N R6 R7 R8 R9 R10 NB Negative Big

u = PB u = P u = PS u = Z u = NS N Negative
Z R11 R12 R13 R14 R15 NS Negative Small

u = P u = PS u = Z u = NS u = N Z Zero
P R16 R17 R18 R19 R20 PS Positive Small

u = PS u = Z u = NS u = N u = NB P Positive
PB R21 R22 R23 R24 R25 PB Positive Big

u = Z u = NS u = N u = NB u =NVB PVB Positive Very Big

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4 C1 C2

C3 C4

C1 C2

C3 C4

j = 0 j = 1 j = 2

j = 3 j = 4 j = 5

Fig. 9.43 ‘Mini’ FAM tables
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operation as shown by the following statement in the VHDL code (see Appendix F –
11.6.4):

WIN <= (“00”&ADR1) + ADR2;

where ADR1 and ADR2 are signals from the component Fuzzify. The function of
the statement (“00”&ADR1) is to expand the value of ADR1 from 2 bits to 4 bits
such that it is compatible with the 4-bit signal WIN. The variables inside the mini-FAM
table are subsequently processed in the section of the code that is marked ‘Mini-Fuzzy
Inference Engine’. In the original code, the inference engine contains 25 MIN-operations.
The modified code consists of only four MIN-operations, which is a notable reduction.

9.3.4.4 Defuzzification algorithm

The original algorithm for the MAX-operation and defuzzification process contains two
important computations: the aggregation of 25 rule-consequents into nine output (fuzzy)
values, and the multiplication of each output value by a constant weighting.

By incorporating the modifications discussed in the previous sections, only four
significant rule-consequents are considered. Therefore, the number of rule-consequents
to be aggregated is reduced but the allocation of correct weightings for the significant
output values becomes slightly more complicated. From the tables in Fig. 9.44 it is
obvious that regardless of the WIN value, the consequents C2 and C3 always point to the
same fuzzy value (e.g. when WIN = “0000”: C1→PVB, C2→PB, C3→PB, C4→P).
This implies that only C2 and C3 have to be aggregated, hence:

DA = C1
DB = max[ C2, C3]
DC = C4

where DA, DB and DC represent the membership function of the output fuzzy values.
The actual fuzzy values referred to by DA, DB and DC are determined by the value

of WIN. If Ei is the weighting while VA, VB and VC are the weighted values, then

WIN = “0000” : VA = DA* EPVB, VB = DB* EPB, VC = DC* EP ;
WIN = “0001” : VA = DA* EPB, VB = DB* EP, VC = DC* EPS ;

PVB PB

PB P

PB P

P PS

P PS

PS Z

PS Z

Z NS

Z NS

NS N

NS N

N NB

N NB

NB NVB

WIN “0000” WIN “0001” WIN “0010” WIN “0011”

WIN “0100” WIN “0101” WIN “0110”

Fig. 9.44 Mini-FAM tables for the FLC design
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WIN = “0010” : VA = DA* EP, VB = DB* EPS, VC = DC* EZ ;
WIN = “0011” : VA = DA* EPS, VB = DB* EZ, VC = DC* ENS ;
WIN = “0100” : VA = DA* EZ, VB = DB* ENS, VC = DC* EN ;
WIN = “0101” : VA = DA* ENS, VB = DB* EN, VC = DC* ENB ;
WIN = “0110” : VA = DA* EN, VB = DB* ENB, VC = DC* ENVB ;

Although the functions above can be implemented with seven IF-THEN statements it is
preferable to adopt a less space consuming method. Figure 9.45 shows a flowchart of
the modified Defuzz design. The complete VHDL code can be found in Appendix F. In
this design, instead of seven IF-THEN operations, only three are required to accomplish
the main task (not counting the reset and clocking circuits). The command statements in
Block 0 implement the reset conditions whereby all the outputs (except READY) and
internal variables are cleared. The condition LOAD=’1’ and READY=’1’ indicates that
the component is ready to initialise the defuzzification process and proceeds to execute
the commands in Block 1 and Block 2. Block 1 performs the aggregation of C2 and
C3 using a MAX-operator:

Block 1:
DA = C1
DB = max[ C2, C3]
DC = C4

In Block 2, it is assumed that WIN = “0000”, and the fuzzy values are then multiplied
by the appropriate weightings for PVB, PB and P. If the weightings are defined as:

EPVB = 40; EPB = 30; EP = 20; EPS = 10; EZ = 0;
ENS = –10; EN = –20; ENB = –30; ENVB = – 40;

then Block 2 can be written as:

Block 2:
VA = DA * 40
VB = DB * 30
VC = DC * 20

The subsequent commands check to see if WIN is in fact “0000”. If the case is true (i.e.
COUNT = WIN), then the computation is complete and the output signals divA, divB
and READY are assigned with the appropriate values. Otherwise, the computation is
incomplete (READY = ’0’) and Block 3 is executed in the next clock cycle.

The strategy of this algorithm relies on the fact that the values of VA, VB and VC
decrease steadily as WIN increases. In other words,

IF
WIN = “0000”: VA0 = DA*40, VB0 = DB*30, VC0 = DC*20

THEN,
WIN = “0001”: VA1 = VA0 – (DA*10), VB1 = VB0 – (DB*10), VC1 = VC0 – (DC*10)
WIN = “0010”: VA2 = VA1 – (DA*10), VB2 = VB1– (DB*10), VC2 = VC1 – (DC*10)
WIN = “0011”: VA3 = VA2– (DA*10), VB3 = VB2– (DB*10), VC3 = VC2 – (DC*10)
….

By taking advantage of the recurring pattern, Block 3 can be described with just four
logical statements:
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Block 3:
COUNT = COUNT + 1
VA = VA – (DA*10)

START
Process (CLK, RST)

YES
RST = 1

NO

CLK’ event
&CLK = 1

NO

YES

YES

NO

LOAD = 1
&READY = 1

BLOCK 0

BLOCK 1

BLOCK 2

NO
READY = 0

YES

BLOCK 3

NOYES
COUNT = WIN

divA<=VA+VB+VC;
divB<=DA+DB+DC;

READY <=’1’;
READY <=’0’;

END PROCESS

Fig. 9.45 Flowchart of the code for defuzzification
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VB = VB – (DB*10)
VC = VC – (DC*10)

Once the optimised structural-level design is successfully completed, it is implemented
using Xilinx Foundation HDL Editor.

9.3.5 Implementation

Each element of the FLC is designed and carefully optimised for synthesis. Five VHDL
components DERIV, FUZZIFY, INFER, DEFUZZ and DIVIDER make up the core
of the fuzzy controller. The nature of the components’ connection and the functionality
of the processes are described by an upper hierarchy VHDL code Control.vhd.
These components are wired to each other to form the complete control system. In
addition to the components, two synchronous processes Process1 and Process2
are used to synchronise various signals. The code is subsequently synthesised to generate
a netlist of the upper hierarchy component Control.

In creating a single top hierarchy component, it is easier to proceed into the
implementation stage using the Xilinx Foundation Schematic Editor whereby the design
can be developed in a graphical form. The ‘Create Macro symbol from netlist’
function allows the component Control to be converted into a Macro symbol that can
exist in the Schematic Editor. Then, using Xilinx Foundation Implementation tools, the
design can be compiled into a bitstream file.

Xilinx XC4010 FPGA is available in several packages and the one used for this
design is the PC-84 package which has 84 I/O pins in total. During the generation of the
bitstream, the inputs and outputs of the design are mapped to the physical I/O pins of the
FPGA. The allocation of pin numbers can either be automatically performed by the
implementation tools or explicitly specified by the user. In this design, all the pins are
specified by manually assigning the appropriate pin numbers to the IPADs and OPADs
in the Schematic Editor. This enables the designer to have full control over the function
of the physical pins in the FPGA.

The allocation of pin numbers to the I/O pads is shown by the schematic diagram (as
seen in the Xilinx Foundation Schematic Editor) of the design in Fig. 9.46. The numbers
(preceded by the letter ‘p’) in the I/O pads are the allocated pin numbers. It can be seen
from the diagram that the clock input of the design is allocated to pin 35, and as it is the
main clock signal, a global buffer IBUFG is used instead of the normal input buffer.

Once the hardware specifications have been confirmed, the netlist is compiled into a
bitstream file using the Implementation procedure in Xilinx Foundation Project Manager.
The implementation report shows that the modifications were effective in utilising the
logic blocks in the FPGA in a more efficient manner and confirms that the bitstream file
is successfully generated without errors and is ready for downloading.

The circuit board used to house the target FPGA during downloading is the XS40
Board, a Xilinx FPGA evaluation board from X Engineering Software Systems (XESS)
Corp. Figure 9.47 shows a picture of the XS40. The XS40 Board connects to the parallel
port of a personal computer (PC) via a cable with DB-25 connectors. Having set up the
board appropriately, the bitstream file can then be downloaded into the FPGA using the
XSTOOLS software. The downloading of the FLC design in FPGA represents a major
milestone in the hardware realisation of the control system. The next section shows
some experimental test results of the complete system using the FPGA controller.
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9.4 System assembly and experimental tests

A block diagram of the complete test system is shown in Fig. 9.48.
The system can be subdivided into three main sections:

• an electromechanical system which comprises the generator, the diesel engine and
the electromagnetic actuator

Fig. 9.47 Picture of XS40 Board (reproduced with permission of XESS Corporation, USA)
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• a power electronic system consisting of the diode bridge rectifier, d.c. link and IGBT
inverter

• an electronic control system.

The electronic control system can be further divided into two components, namely
the PWM controller and a control loop consisting of the sensing and interfacing circuits
as well as the FPGA (fuzzy) controller.

9.4.1 The fuzzy logic controller (FLC)

The integration of the FLC in the system is illustrated by Fig. 9.49 whereas the main
VHDL components of the FLC are shown in Fig. 9.50.

Fig. 9.48 Block diagram of engine–generator set and controller
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Fig. 9.49 Block diagram of fuzzy variable speed governor and generator system
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9.4.2 The PWM controller

The PWM control circuit used for testing the system does not form a specific objective
for presentation as part of this example because it uses a PWM controller commercially
available and not a controller specifically designed for this application. However, this
will be briefly presented in this section.

The PWM IGBT inverter is controlled using SA828, a three-phase PWM waveform
generator from GEC Plessey. The SA828 has six TTL level PWM outputs that control
the six switches in a three-phase inverter via a driver circuit.

9.4.2.1 Functional description

The PWM fundamental waveform (a standard sinusoidal reference waveform) is stored
in an on-chip ROM, storing only the shape of the power waveform and not the actual
switching pattern. Calculation of the switching pattern is performed on the chip. The
advantage of this approach is the ability to change PWM parameters such as the modulation
ratios during the generation of the switching pattern. Using the maximum clock frequency
of 12.5 MHz, the triangular carrier frequency can be selected up to 24 kHz. The SA828
is designed to operate in conjunction with an external microprocessor. Values of two
groups of registers have to be programmed into the device in order to set the parameters
for the desired output waveform. The SA828 is controlled by loading data into two 24-
bit registers, the initialisation register and the control register, via a microprocessor
interface. The initialisation register contains all the information on the parameters,
which are constant. The parameters set in the initialisation register are:

• Carrier frequency.
• Power frequency range.
• Pulse delay time.
• Pulse deletion time.
• Counter reset.

The data in the initialisation register is loaded only once, during power up, and does not
change in the course of the operation. Data in the control register, however, can be

Fig. 9.50 VHDL entity diagram of FVSG
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modified during the operation of the chip, allowing real-time control of the PWM
waveform. The parameters set in the control register are:

• Power frequency.
• Overmodulation.
• Forward/Reverse.
• Output inhibit.
• Power waveform amplitude.

The choices for the PWM parameters are based on the desired output waveform as well
as the overall system requirements. The following calculations are used to determine the
necessary data for the initialisation and control registers. The clock frequency used is
12 MHz.

9.4.2.2 Initialisation register

The initialisation register controls five PWM parameters. They are:

The carrier frequency fcarr is set at 11.7 kHz
This is the frequency of the triangular waveform that is compared to the reference
waveform to obtain the PWM switching pattern.

f
f

ncarr
clk = 

512  ×

⇒ ×
×

× ×
  = 

512  
 = 12  10

512  11.7  10
 = 2clk

carr

6

3n
f

f
where fcarr = carrier frequency and fclk = clock frequency.

The reference frequency range frange is set for 61 Hz
This parameter sets the maximum reference frequency of the waveform. In variable
speed motor applications, this feature prevents the machine from being operated outside
its design parameters.

f
f m

range
carr = 

  
384

×

⇒
× ×

×
  = 

  384
 = 61  384

11.7  10
 = 2

range

carr
3m

f
f

The pulse delay time tdelay is set at 5.83 µµµµµs
The pulse delay time is the blanking time between two complementary switching
waveforms. Setting a large delay time increases low harmonic distortion to the output
waveform. At the same time, the delay has to be large enough to prevent a ‘shoot-
through’ between two complementary power switches. The pulse delay time is determined
by a 6-bit word, PDY.

t
pdy

fdelay
carr

 = 
  512×

⇒ pdy = tdelay × fcarr × 512 = 5.83 × 10–6 × 11.7 × 103 × 512 = 35

where pdy is the value of the PDY word.



Fuzzy logic control of a synchronous generator set 289

The pulse deletion time tpd is set at 10 µµµµµs
Theoretically, the pulses in a PWM waveform can be infinitesimally narrow. However,
in practice, a narrow pulse may cause problems to the power switches due to storage
effects. The pulse deletion time sets a minimum pulse width time. Pulses with widths
narrower than the minimum time are eliminated altogether. From the data sheet:

t
pdt

fpd
carr

 = 
  512×

⇒ pdt = tpdt × fcarr × 512 = 10 × 10–6 × 11.7 × 103 × 512 = 60

PDT is the 7-bit word which determines the pulse deletion time and pdt is the value of
PDT. From the data sheet, when pdt = 60, PDT =1001110.

Counter reset (active low)
This facility allows the internal reference frequency counter to be set to zero. When the
counter reset is active LOW, the internal reference frequency phase counter is set to 0°
for the red phase. The counter reset is released when HIGH. For this application the
counter is set HIGH all the time.

9.4.2.3 Control register

The control register provides on-line control over four parameters. They are:

Reference frequency (power frequency)
The reference frequency is the frequency of the inverter’s output voltage. The present
application does not require variable frequency output. The reference frequency is set at
a constant value of 50 Hz by the 8-bit word PFS in the control register. The decimal
value of the word is denoted by pfs.

f
f p f s

power
range

 = 
  

4096
×

p fs
f

f
 = 

  4096
 = 50  4096

61
 = 3357

power

range

× ×

From the data sheet, when pfs = 3357, PFS = 00011011.

Overmodulation
Overmodulation is not required, therefore the overmodulation switch OM is set to 0.

Reference waveform amplitude (power waveform amplitude)
The reference waveform amplitude is set in percentage of the maximum value. For this
application, the reference waveform amplitude is required to be maintained constant
even if disturbances cause the d.c. line voltage to change. This means that on-line
control of the reference waveform amplitude setting is required to maintain a constant
output. However, for initial testing purposes, the amplitude setting of this open-loop
control circuitry is set at 80 per cent. Hence the amplitude in percentage is:
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A A
power  = 

255
  100%×

⇒
× ×  = 

  255
100

 = 80  255
100

 = 204
power

A
A

where A is the decimal value of the 7-bit word AMP which determines the reference
waveform amplitude. From the data sheet, when A = 204, AMP =1001100.

Inhibit
Output inhibit is set to ‘0’ during the first control sequence and set to ‘1’ during subsequent
control sequences.

From the preceding set of calculations, a table containing the register data can be
obtained as shown in Table 9.4. The first column shows the register while the last
column shows the hexadecimal value of the register. The present design employs the use
of a PIC16x00 series microcontroller to control the SA828. The microcontroller is
programmed to feed the necessary signals into the PWM SA828. A listing of the program
code is included in Appendix G. This control circuit was successfully implemented and
used in the practical experiments.

Table 9.4 Values for initialisation and control registers

Initialisation
CR PDT6 PDT5 PDT4 PDT3 PDT2 PDT1 PDT0

R0 1 1 0 0 1 1 1 0 CE
FRS2 FRS1 FRS0 X X CFS2 CFS1 CFS0

R1 0 0 1 1 1 0 0 1 39
X X PDY5 PDY4 PDY3 PDY2 PDY1 PDY0

R2 1 1 1 0 0 0 0 1 E1

Control 1
PFS7 PFS6 PFS5 PFS4 PFS3 PFS2 PFS1 PFS0

R0 0 0 0 1 1 0 1 1 1B
F/R OM INH X PFS11 PFS10 PFS9 PFS8

R1 0 0 0 1 1 1 0 1 1D
AMP7 AMP6 AMP5 AMP4 AMP3 AMP2 AMP1 AMP0

R2 1 1 0 0 1 1 0 0 CC

Control 2
PFS7 PFS6 PFS5 PFS4 PFS3 PFS2 PFS1 PFS0

R0 0 0 0 1 1 0 1 1 1B
F/R OM INH X PFS11 PFS10 PFS9 PFS8

R1 0 0 1 1 1 1 0 1 3D
AMP7 AMP6 AMP5 AMP4 AMP3 AMP2 AMP1 AMP0

R2 1 1 0 0 1 1 0 0 CC

9.4.3 Experimental results

The system was initially tested under a ‘step change in rectifier load’ condition. The
objective of this test was to check if the control system is capable of maintaining the d.c.
voltage at a desired level under a step change in loading condition. The output of the
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generator is connected to a rectifier, which is loaded with a set of resistive banks. The
load is changed from 119 Ω to 37.5 Ω and the voltage response is monitored. The clock
frequency of the controller in this test is 1.2 kHz. For the purpose of comparison, an
initial test is carried out without the control system, whereby the actuator is set at a fixed
position. The result shown in Fig. 9.51 confirms that the generator system is not intrinsically
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Fig. 9.51 Voltage response to d.c. load step variation without controller

stable under changing load; when the load changes, it can be observed that the operational
speed drops steadily until the engine finally stalls. Figure 9.52 shows the voltage response
when the controller is connected to the system. The desired d.c. voltage is set at 250 V.
The graph shows that the controller is successful in stabilising the generator system.
Although there is a voltage drop of about 14 per cent when the load changes, this effect
is soon counteracted by the controller and the voltage level recovers to a steady value.

d.
c.

 v
ol

ta
ge

 (
vo

lt
)

350

300

250

200

150

100

50

0
0 5 10 15 20 25 30 35 40 45

Time (sec)

Fig. 9.52 Voltage response to d.c. load step variation with control system

Another test was that of a step variation of inverter load. The inverter was loaded with
a star connected resistive load at time t = 10 s. Figure 9.53 shows the response of the d.c.
link voltage when the controller is connected. The results show that the control system
manages to maintain the d.c. voltage level constant despite load changes. The clocking
frequency value used for test is 1.2 kHz. The load current measured on the d.c. link is
5 A. It was observed that the output frequency of the inverter is maintained at 50 Hz
during the entire operation, while there are variations in the generator speed, depending
on the load and the actions taken by the controller. These speed variations do not affect
the output frequency.

From the experimental results presented it can be concluded that the controller is
successful at governing the d.c. voltage level over different loading conditions. The
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controller coped well with rectifier load changes as well as inverter load changes. When
the complete system is considered, the a.c. output frequency is not affected by the
variations of the generator speed and the desired output frequency is maintained constant.
This feature allows the variable speed operation of the generator set.

9.4.4 Conclusions

A fuzzy controller for the diesel driven stand-alone generator system was designed
using VHDL, implemented into a Xilinx FPGA XC4010E device and comprehensively
tested in conjunction with the power system. The main achievements of the system are:

• The output voltage and frequency are independent of the rotational speed of the
generator, thus allowing the optimum speed operation of the diesel engine.

• Fuel economy is achieved by the use of the fuzzy logic controller.
• The PWM control system maintains the output voltage at the desired magnitude and

frequency against changes in Vdc which arise from changes in speed and/or load.
• The FPGA controller provides a reliable hardware framework for design verification.
• The system provides a suitable platform for extensive study and development of

efficient diesel engine driven variable speed generator systems.

The reconfigurability of the controller design is achieved at two levels: the easy modification
of the rule base by simple changes of the VHDL code, and the reprogramming capability
of the FPGA. These features have enabled extensive practical tests to be carried out for
a number of different operating conditions at no extra cost.

Fig. 9.53 Voltage response to a.c. load step variation with control system
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Final notes

The VHDL approach to the holistic modelling, simulation, design and controller
implementation of complex power systems including digital controllers enables a unique
working environment, a short development time, multiple choices for the implementation
target technology and universal compatibility of the design with respect to a range of
existing modern CAD tools.

Specific digital electronic modules, implementing fast and effective neural and
fuzzy logic control elements, can be included in complex control systems as intellectual
property (IP) blocks and reused in accordance with modern principles of design
reuse.

Due to these advantages, the authors estimate that such methodologies, based on
hardware description languages, will be used on a larger scale in the future for digitally
controlled power systems modelling, design and analysis.
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The electronic format of the program codes (ASCII text) is downloadable from the
publisher’s website at: http://www.bh.com/newnes

11.1 Appendix A – C++ code for ANN
implementation

11.1.1 CONV_NET.CPP

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <memmanag.h>
#define MaximumDepth 100
#define LengthInputTab 2000
#define AND 1
#define ANY 0
ofstream output_file;
int *out_layer, *index, *node, *inverter, *used;
// Index specifies the initial position of the weights in the matrix
// row before they were rearranged according to their descending
// values.Node is a vector which stores the node numbers corresponding
// to the weights. The node number is not generally speaking corelated
// with the input numbers because there are inversor gates and because
// some neurones are located in other layers than the first.
double *w; //The weights vector for one neurone
int no_w; //The number of weights per neurone
int current_node,output_node,no_gates=0,max_depth,depth=0;
int no_max_inputs;
void add_gate(int ind_init, double threshold, char and_gate);
void arrange(void)
{

int i,i_max,i_aux,j;
double max,max_aux;
for(i=0;i<no_w;i++)
{

max=w[i];

11
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i_max=i;
for(j=i+1;j<no_w;j++)

if (max<w[jl)
{

max=w[j];
i_max=j;

}
if(i_max != i)
{

max_aux=w[i_max];
w[i_max]=w[i];
w[i]=max_aux;
i_aux=index[i_max];
index[i_max]=index[i];
index[i]=i_aux;

}
}

}
int add_inverter(int i)
{

no_gates++;
++current_node;
output_file<<“.NOT ”;
output_file<<node[index[i]]<<“ “<<current_node<<“\n”;
if(!output_file.good())
{

cout<<“\n\aError on file writing”;
exit(1);

}
return current_node;

}
double* measure_matrix(int& no_neu,int& no_values, istream& input_file)
{

double temp;
char buffer[2];
no_neu=no_values=0;
while(input_file.read(buffer,1),!input_file.eof())
{

if(buffer[0]==‘\n’)
no_neu++;

}
input_file.clear();
input_file.seekg(0,ios::beg);
do
{

input_file>>temp;
if(!input_file.eof())

no_values++;
}
while(!input_file.eof());
if(no_neu==0)

no_neu++;
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if((no_values/no_neu)*no_neu == no_values)
no_values=no_values/no_neu;

else
if((no_values/(no_neu+1)) == no_values)
{

no_values=no_values/(no_neu+1);
no_neu++;

}
else
{

cout<<“\n\aError in input file!”;
exit(1);

}
input_file.clear();
input_file.seekg(0,ios::beg);
w=alloc_double(no_values);
return w;

}
void read_line_matrix(istream& input_file)
{

int i;
for(i=0;i<no_w+1;i++)

input_file>>w[i];
if(!input_file.good())
{

cout<<“\n\aError when reading the input file”;
exit(1);

}
}
int convert_neuron(void)
{

int i;
double threshold;

inverter=alloc_int(no_w); //Shows if the corresponding weight was
// negative thereby requiring an inversor gate

used=alloc_int(no_w);   //Shows if the node has been already used
// in the past so that the inverter has already been put

index=alloc_int(no_w+1);

for(i=0;i<no_w;i++)
{

index[i]=i;
inverter[i]=0;
used[i]=0;

}
for(i=0;i<no_w;i++)
{

if(w[i]<0)
{

w[i]=-w[i];
inverter[index[i]]=1;

}
w[no_w]-=w[i];
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w[i]=2*w[i];
}
threshold=-w[no_w];
if(threshold<=0)
{

output_node=-1; //Output value is constantly 1
cout<<“\n\aWarning: The output of a neurone is constantly 1”;

}
else
{

arrange();
add_gate(0,threshold,ANY);

}
delete index;
delete used;
delete inverter;
return output_node;

}
int port_number(int i)
{

int rez;
if (inverter[index[i]]==0)
{

rez=node[index[i]];
if(depth>max_depth)

max_depth=depth;
}
else
{

if(depth+1>max_depth)
max_depth=depth+1;

if (used[index[i]])
rez=used[index[i]];

else
{

used[index[i]]=add_inverter(i);
rez=used[index[i]];

}
}
return rez;

}
int det_num_internal_gate_layers(int no_inp)
{

int no_inp_top,no_layers=1;
if(no_inp<=no_max_inputs)

return 1;
else
while(no_inp>no_max_inputs)
{

no_inp_top=no_inp/no_max_inputs;
if(no_inp>no_inp_top*no_max_inputs)

no_inp_top++;
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no_inp=no_inp_top;
no_layers++;

}
return no_layers;

}
int cursor=0;
int input[LengthInputTab];
void write_gate(char *name,int no_inputs, int local_cursor)
{

int i,no_inp_top_gate,no_last_inputs;
if(no_inputs<=no_max_inputs)
{

output_file<<name<<no_inputs;
for(i=0;i<no_inputs;i++)

output_file<<“ “<<input[local_cursor+i];
current_node++;
output_file<<“ ”<<current_node<<“\n”;
output_node=current_node;
no_gates++;
if(!output_file.good())
{

cout<<“\n\aError on file writing”;
exit(1);

}
}
else
{

no_inp_top_gate=no_inputs/no_max_inputs;
if(no_inputs>no_inp_top_gate*no_max_inputs)

no_inp_top_gate++;
if(cursor+no_inputs+no_inp_top_gate>=LengthInputTab)
{

cout<<“\n\aError: Input table is full”;
exit(1);

}
for(i=0;i<no_inp_top_gate-1;i++)
{

local_cursor=cursor+i*no_max_inputs;
write_gate(name,no_max_inputs,local_cursor);
input[cursor+no_inputs+i]=output_node;

}
local_cursor=cursor+(no_inp_top_gate-1)*no_max_inputs;
no_last_inputs=no_inputs-(no_inp_top_gate_1)*no_max_inputs;
if(no_last_inputs>1) //It is possible to have only one remaining

input
{

write_gate(name,no_last_inputs,local_cursor);
input[cursor+no_inputs+no_inp_top_gate-1]=output_node;

}
else

input[cursor+no_inputs+no_inp_top_gate-1]=input[cursor+no_inputs-
1];
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for(i=0;i<no_inp_top_gate;i++)
input[cursor+i]=input[cursor+no_inputs+i];

write_gate(name,no_inp_top_gate,cursor);
}

}
double sum;
int j;
void add_gate(int ind_init, double threshold, char and_gate)
{

int i,no_inputs,no_big_weights,ind_for_AND;
//These are local variables because they need to be preserved during

the
//recursive calls of the function
if(threshold<=0)
{

cout<<“\n\aError: The output of a subneurone is constantly 1”;
exit(1);

}
if(!and_gate)
{

sum=0;
no_inputs=0;
no_big_weights=0;
ind_for_AND=ind_init;
for(i=ind_init; i<no_w;i++)

if(w[i]>=threshold)
{

no_inputs++;
no_big_weights++;
ind_for_AND=i+1;

}
for(i=ind_for_AND;i<no_w;i++)
{

sum=0;
for(j=i;j<no_w;j++)
sum+=w[j];  //The sum will be the result of several cumulated

if(sum>=threshold) //inputs anyway because these are not big weights.
no_inputs++;

}
}
if((no_inputs>1) && (!and_gate))
{

depth=depth+det_num_internal_gate_layers(no_inputs);
//‘-1’ because there is one gate anyway

if(depth>MaximumDepth)
{

cout<<“\n\aError: Too many recursive calls!”;
exit(1);

}
for(i=0;i<no_inputs;i++)

if(i>=no_big_weights)
{
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cursor+=no_inputs;
if(cursor>=LengthInputTab)
{

cout<<“\n\aError: Input table is full. Enlarge the input table”;
exit(1);

}
add_gate(ind_init+i,threshold,AND);
cursor-=no_inputs; //necessarily be an AND gate
input[cursor+i]=output_node;

}
else

input[cursor+i]=port_number(ind_init+i);
write_gate(“.OR”,no_inputs,cursor); //the gate is written
depth=depth-det_num_internal_gate_layers(no_inputs);

}
else if((no_inputs==1) && (no_big_weights==1) && (!and_gate))

output_node=port_number(ind_init); //It is just a straightforward
//input-output connection

else if(((no_inputs==1) && (no_big_weights==0)) || and_gate)
//An AND gate will be used

{
no_inputs=1; //When is just a simple AND gate, it corresponds to a
//single combination of inputs. Variable ‘no_inputs’ is

//used for economy of space in the stack. The first input
//is compulsory to be used which is why no_inputs=1.

sum=0;
for(i=ind_init;i<no_w;i++)

sum+=w[i];
for(i=ind_init+1;i<no_w;i++)

if(sum-w[i]<threshold)
no_inputs++;

else
break;
sum=0;
for(i=ind_init;i<ind_init+no_inputs;i++)

sum+=w[i];
if(threshold-sum>0)

no_inputs++;   //A further subneurone is required
if(no_inputs<2)
{

cout<<“\n\aError in algorithm! An AND gate has less than 2
inputs!”;

exit(1);
}
depth+=det_num_internal_gate_layers(no_inputs);

//‘–1’ because there is one gate anyway
if(depth>MaximumDepth)
{

 cout<<“\n\aError: Too many recursive calls!”;
 exit(1);

}
for(i=0;i<no_inputs;i++)
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{
if((i<no_inputs-1) || (threshold-sum<=0))

input[cursor+i]=port_number(i+ind_init);
if((i==no_inputs-1) && (threshold-sum>0))
{

cursor+=no_inputs;   //The supplementary subneurone is added
if(cursor>=LengthInputTab)
{

cout<<“\n\aError: Input table is full. Enlarge the input table”;
exit(1);

}
add_gate(ind_init+no_inputs-1,threshold-sum,ANY);
cursor-=no_inputs;
input[cursor+i]=output_node;

}
}
write_gate(“.AND”,no_inputs,cursor);
depth-=det_num_internal_gate_layers(no_inputs);

}
else if(no_inputs==0)
{

output_node=0;  //Output value is constantly 0
cout<<“\n\aWarning: The output of a neurone is constantly 0”;

}
else
{

cout<<“\n\aError in conversion algorithm”;
exit(1);

}
}
void main(int no_par, char** par)
{

ifstream input_file;
int no_neu=0, no_values_per_line, previous_no_neu,gate_layers=0;
int i,no_file;
if(no_par<4)
{

cout<<“\nToo few parameters”;
exit(1);

}
no_max_inputs=atoi(par[no_par-1]);
output_file.open(par[no_par-2],ios::out);
if(!output_file.good())
{

cout<<“\n\aError: The output file cannot be opened!”;
exit(1);

}
cout<<“\n----- Start conversion -----”;
for(no_file=1;no_file<no_par-2;no_file++)
{

input_file.open(par[no_file],ios::in);
if(!input_file.good())
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{
cout<<“\n\aError: The input file cannot be opened!”;
exit(1);

}
cout<<“\nProcessing file ”<<no_file;
previous_no_neu=no_neu;
w=measure_matrix(no_neu,no_values_per_line, input_file);
no_w=no_values_per_line-1;
if((no_file>1)&&(previous_no_neu != no_values_per_line-1))
{

cout<<“\n\aError: Wrong number of neurones in layer”<<no_file;
exit(1);

}
out_layer=alloc_int(no_neu);
if(no_file==1)
{

node=alloc_int(no_w);
for(i=0;i<no_w;i++)
{

node[i]=i+1;
output_file<<“.INPUT “<<node[i]<<“\n”;
if(!output_file.good())
{

cout<<“\n\aError on file writing”;
exit(1);

}
}
current_node=no_w;

}
max_depth=0;
for(i=0;i<no_neu;i++)
{

read_line_matrix(input_file);
out_layer[i]=convert_neuron();

}
gate_layers+=max_depth;
if(no_file==no_par-3)  //It was the last input file so the output

//ports must be written
for(i=0;i<no_neu;i++)
{

output_file<<“.OUTPUT “<<out_layer[i]<<“\n”;
if(!output_file.good())
{

cout<<“\n\aError on file writing”;
exit(1);
}

}
delete node;
if(no_file<no_par-3)

//File no ‘no_par-2’ is the output file so this is
{ //not the last input file

node=alloc_int(no_neu);
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for(i=0;i<no_neu;i++)
{

node[i]=out_layer[i];  //The outputs of the previous layer are
//the inputs for the next one

if(node[i]<=0)
{

cout<<“\n\aWarning: The output of the hidden neuron “<<(i+1);
cout<<“ in layer “<<no_file<<“ is constant!”;

}
}

}
input_file.close();
delete w;
delete out_layer;

}
input_file.close();
cout<<“\nThe output file contains “<<no_gates<<“ logic gates on “;
cout<<gate_layers<<“ gate layers\n”;

}

11.1.2 OPTIM.CPP

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <memmanag.h>
#define NOT 3
#define AND 1
#define OR 4
#define INPUT 2
#define OUTPUT 5
#define NO_WORDS 5
#define CANCELLED -2
//‘0’ is already defined in CONV_NET!.CPP as ‘ground’ and ‘-1’ as ‘Vcc’.

char* words[5]={“.AND”,“.INPUT”,“.NOT”,”.OR”,“.OUTPUT”};
int length[5]={4,6,4,3,7};
struct gate_string
{

char name[8];
int no_gates;
int cursor;
int* gate_nodes;

};
gate_string *and_s, *or_s;
int *input_s, *output_s, *not_s;
int max_input=0,max_output=0,max_and=0,max_or=0,max_not=0;
int cursor_input=0,cursor_output=0,cursor_not=0;
int no_init_gates,no_fin_gates;
gate_string* alloc_gate_string(int no_gate_strings)
{
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gate_string *pointer;
if(no_gate_strings>0)
{

if(!(pointer=new gate_string[no_gate_strings]))
{

cout<<alloc_err;
exit(1);

}
return pointer;

}
else

return NULL;
}
void init_structures(void)
{

int i;
for(i=0;i<max_and-1;i++)
{

and_s[i].no_gates=0;
and_s[i].cursor=0;
and_s[i].name[0]=0;

}
for(i=0;i<max_or-1;i++)
{

or_s[i].no_gates=0;
or_s[i].cursor=0;
or_s[i].name[0]=0;

}
}
int check_word(char* buffer)
{

int i,j,found;
for(i=0;i<NO_WORDS;i++)
{

found=1;
for(j=0;j<length[i];j++)

if(buffer[j] != words[i][j])
{

found=0;
break;

}
if(found==1)

return i+1;
}
return 0;

}
int det_inputs(char *buffer)
{

int i=0;
while(((buffer[i]>=‘A’) && (buffer[i]<=‘Z’)) || (buffer[i]==‘.’))

i++;
return atoi(buffer+i);
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}
void first_scan(ifstream& in_file)
{

char buffer[10];
int i, node,ind_word,no_inputs;
cout<<“First scan\n”;
while(!in_file.eof())
{

in_file>>buffer;
ind_word=check_word(buffer);
switch (ind_word)
{

case INPUT: in_file>>node;
max_input++;
break;

case OUTPUT:in_file>>node;
max_output++;
break;

case AND: no_inputs=det_inputs(buffer);
if(no_inputs>max_and)

max_and=no_inputs;
for(i=0;i<=no_inputs;i++)

in_file>>node;
break;

case OR: no_inputs=det_inputs(buffer);
if(no_inputs>max_or)
max_or=no_inputs;

for(i=0;i<=no_inputs;i++)
in_file>>node;

break;
case NOT: in_file>>node;

in_file>>node;
max_not++;
break;

default: if(buffer[0]==0)
break;

else
{

cout<<“\n\aSyntax error in input file”;
exit(1);

}
}

}
and_s=alloc_gate_string(max_and-1);
or_s=alloc_gate_string(max_or-1);
input_s=alloc_int(max_input);
output_s=alloc_int(max_output);
not_s=alloc_int(2*max_not);
init_structures();
no_init_gates=max_not;

}
void second_scan(ifstream& in_file)
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{
char buffer[10];
int i, node,ind_word,no_inputs;
cout<<“Second scan\n”;
in_file.seekg(0,ios::beg);
in_file.clear();
while(!in_file.eof())
{

in_file>>buffer;
ind_word=check_word(buffer);
switch (ind_word)
{

case INPUT: in_file>>node;
input_s[cursor_input]=node;
cursor_input++;
break;

case OUTPUT:in_file>>node;
output_s[cursor_output]=node;
cursor_output++;
break;

case AND: no_inputs=det_inputs(buffer);
and_s[no_inputs-2].no_gates++;
strcpy(and_s[no_inputs-2].name,buffer);
for(i=0;i<=no_inputs;i++)
in_file>>node;
break;

case OR: no_inputs=det_inputs(buffer);
or_s[no_inputs-2].no_gates++;
strcpy(or_s[no_inputs-2].name,buffer);
for(i=0;i<=no_inputs;i++)

in_file>>node;
break;

case NOT: in_file>>node;
not_s[cursor_not++]=node;
in_file>>node;
not_s[cursor_not++]=node;
break;

default: if(buffer[0]==0)
break;

else
{

cout<<“\n\aSyntax error in input file”;
exit(1);

}
}

}
for(i=0;i<max_and-1;i++)
{

and_s[i].gate_nodes=alloc_int((and_s[i].no_gates)*(i+3));
no_init_gates+=and_s[i].no_gates;

}
for(i=0;i<max_or-1;i++)
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{
or_s[i].gate_nodes=alloc_int((or_s[i].no_gates)*(i+3));
no_init_gates+=or_s[i].no_gates;

}
}
void third_scan(ifstream& in_file)
{

char buffer[10];
int i,node,ind_word,no_inputs,curs;
cout<<“Third scan\n”;
in_file.seekg(0,ios::beg);
in_file.clear();
while(!in_file.eof())
{

in_file>>buffer;
ind_word=check_word(buffer);
switch (ind_word)
{

case AND: no_inputs=det_inputs(buffer);
curs=and_s[no_inputs-2].cursor;
for(i=0;i<=no_inputs;i++)
in_file>>and_s[no_inputs-2].gate_nodes[curs+i];
and_s[no_inputs-2].cursor+=(no_inputs+1);
break;

case OR: no_inputs=det_inputs(buffer);
curs=or_s[no_inputs-2].cursor;
for(i=0;i<=no_inputs;i++)
in_file>>or_s[no_inputs-2].gate_nodes[curs+i];
or_s[no_inputs-2].cursor+=(no_inputs+1);
break;

case NOT:  in_file>>node; //If it is an inverter gate there are
case INPUT:  //two nodes to be read. If it is just
case OUTPUT: in_file>>node; //a port, there is only one node to

break;  //be read;
default: if(buffer[0]==0)

break;
else
{

cout<<“\n\aSyntax error in input file”;
exit(1);

}
}

}
}
void write_file(ofstream& out_file)
{

int i,j,k;
for(i=0;i<max_input;i++)

out_file<<“.INPUT ”<<input_s[i]<<“\n”;
for(i=0;i<max_not;i++)

if(not_s[2*i] != CANCELLED)
out_file<<“.NOT ”<<not_s[2*i]<<“ ”<<not_s[2*i+1]<<“\n”;
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for(i=0;i<max_and-1;i++)
if(and_s[i].name[0])

for(j=0;j<and_s[i].no_gates;j++)
if(and_s[i].gate_nodes[j*(i+3)]!=CANCELLED)
{

out_file<<and_s[i].name;
for(k=0;k<i+3;k++)

out_file<<“ ”<<and_s[i].gate_nodes[j*(i+3)+k];
out_file<<“\n”;

}
for(i=0;i<max_or-1;i++)

if(or_s[i].name[0])
for(j=0;j<or_s[i].no_gates;j++)

if(or_s[i].gate_nodes[j*(i+3)]!=CANCELLED)
{

out_file<<or_s[i].name;
for(k=0;k<i+3;k++)

out_file<<“ ”<<or_s[i].gate_nodes[j*(i+3)+k];
out_file<<“\n”;

}
for(i=0;i<max_output;i++)

out_file<<“.OUTPUT ”<<output_s[i]<<“\n”;
}
void arrange_inputs(int *begin, int length)
{

int i,j,i_min,min,aux;
for(i=0;i<length-2;i++) //The last is the output node and the
{ //second-last doesn’t need to be

exchanged
min=begin[i]; //with itself
i_min=i;
for(j=i+1;j<length-1;j++) //The last is the output node which is

not
if(begin[j]<min) //to be modified
{

min=begin[j];
i_min=j;

}
if(i != i_min)
{

aux=begin[i];
begin[i]=begin[i_min];
begin[i_min]=aux;

}
}

}
void arrange_all_inputs(void)
{

int i,j;
for(i=0;i<max_and-1;i++)

for(j=0;j<and_s[i].no_gates;j++)
arrange_inputs(and_s[i].gate_nodes+j*(i+3),i+3);
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for(i=0;i<max_or-1;i++)
for(j=0;j<or_s[i].no_gates;j++)

arrange_inputs(or_s[i].gate_nodes+j*(i+3),i+3);
}
int check_inputs(int *begin1, int *begin2, int length)
{

int i, rez=1;
if((*begin1 == CANCELLED) || (*begin2 == CANCELLED))

return 0;
else
{

for(i=0;i<length-1;i++)
if(begin1[i] != begin2[i])
{

rez=0;
break;

}
return rez;

}
}
void replace_all(int dest, int source)
{

int i,j;
for(i=0;i<max_not;i++)

if(not_s[2*i]==dest)
not_s[2*i]=source;

for(i=0;i<max_and-1;i++)
for(j=0;j<(and_s[i].no_gates)*(i+3);j++)

if(and_s[i].gate_nodes[j]==dest)
and_s[i].gate_nodes[j]=source;
for(i=0;i<max_or-1;i++)

for(j=0;j<(or_s[i].no_gates)*(i+3);j++)
if(or_s[i].gate_nodes[j]==dest)

or_s[i].gate_nodes[j]=source;
for(i=0;i<max_output;i++)

if(output_s[i]==dest)
output_s[i]=source;

}
void optimise_structure(void)
{

int i,j,k,replacement;
do
{

replacement=0;
arrange_all_inputs();
for(i=0;i<max_not-1;i++)

for(j=i+1;j<max_not;j++)
if((not_s[2*i]==not_s[2*j]) && (not_s[2*i] != CANCELLED))
{

not_s[2*j]=CANCELLED;
replace_all(not_s[2*j+1],not_s[2*i+1]);
replacement=1;
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no_fin_gates––;
}

for(i=0;i<max_and-1;i++)
for(j=0;j<and_s[i].no_gates-1;j++)

for(k=j+1;k<and_s[i].no_gates;k++)
if(check_inputs(and_s[i].gate_nodes+j*(i+3),

and_s[i].gate_nodes+k*(i+3),i+3))
{

and_s[i].gate_nodes[k*(i+3)]=CANCELLED;
replace_all(and_s[i].gate_nodes[k*(i+3)+i+2],

and_s[i].gate_nodes[j*(i+3)+i+2]);
replacement=1;
no_fin_gates––;

}
for(i=0;i<max_or-1;i++)

for(j=0;j<or_s[i].no_gates-1;j++)
for(k=j+1;k<or_s[i].no_gates;k++)

if(check_inputs(or_s[i].gate_nodes+j*(i+3),
or_s[i].gate_nodes+k*(i+3),i+3))

{
or_s[i].gate_nodes[k*(i+3)]=CANCELLED;
replace_all(or_s[i].gate_nodes[k*(i+3)+i+2],

or_s[i].gate_nodes[j*(i+3)+i+2]);
replacement=1;
no_fin_gates––;

}
}
while(replacement);

}
void dealloc_everything(void)
{

int i;
for(i=0;i<max_and-1;i++)

delete and_s[i].gate_nodes;
for(i=0;i<max_or-1;i++)

delete or_s[i].gate_nodes;
delete and_s;
delete or_s;
delete not_s;
delete input_s;
delete output_s;

}
void main(int no_par, char** par)
{

ifstream in_file;
ofstream out_file;
if(no_par<3)
{

cout<<“\nToo few parameters”;
exit(1);

}
in_file.open(par[1],ios::in);
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if(!in_file.good())
{

cout<<“\n\aError: The input file cannot be opened!”;
exit(1);

}
cout<<“\n---------- Start optimisation ----------\n”;
first_scan(in_file);
second_scan(in_file);
third_scan(in_file);
cout<<no_init_gates<<“ gates in the input file\n”;
no_fin_gates=no_init_gates;
optimise_structure();
out_file.open(par[2],ios::out);
if(!out_file.good())
{

cout<<“\n\aError: The output file cannot be opened!”;
exit(1);

}
write_file(out_file);
dealloc_everything();
in_file.close();
out_file.close();
cout<<no_fin_gates<<“ gates in the output file\n”;
if(no_fin_gates<no_init_gates)
{

cout<<“The structure has been compressed at ”;
cout<<((100.0*no_fin_gates)/no_init_gates)<<“% from the initial

size\n”;
}
else

cout<<“The structure could not be compressed\n”;
}

11.1.3 VHDL_TR.CPP

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <memmanag.h>
#define NO_WORDS 5
#define BUFFER_SIZE 30
#define NO_INPUTS_MAX 25
#define NO_PORTS 300
#define NO_MAX_FILES 5
#define _and 1
#define _or 2
#define _inv 3
#define _input 4
#define _output 5
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#define INPUT_TYPE 1
#define NODE_TYPE 2
#define OUTPUT_TYPE 3

typedef char standard_list[2][NO_INPUTS_MAX];
char *dict[NO_WORDS]={“AND”,“OR”,“NOT”,“INPUT”,“OUTPUT”};
char buffer[BUFFER_SIZE];
char* node_list;
int input_list[NO_PORTS],output_list[NO_PORTS];
int max_node_number,internal_nodes,input_cursor,output_cursor;
int gate_count[NO_MAX_FILES];
int no_first_net;
ofstream output_file;
void init_list_gate_count(void)
{

int i;
for(i=0;i<NO_MAX_FILES;i++)

gate_count[i]=0;
}
int search_word(char* name, int length)
{

int i,answer=0;
char* temp=alloc_char(length+1);
for(i=0;i<length;i++)

temp[i]=name[i];
temp[length]=0;
for(i=0;i<NO_WORDS;i++)

if(!strcmp(dict[i],temp))
{

answer=i+1;
break;

}
delete temp;
return answer;

}
int word_limit(char* buffer, int& w_beg, int& w_end)
{

int i;
w_beg=w_end=-1;
for(i=0;i<BUFFER_SIZE && buffer[i]!=0;i++)
{

if(buffer[i]>=‘A’ && buffer[i]<=‘Z’ && w_beg==-1)
w_beg=i;

if(buffer[i]<‘A’ || buffer[i]>‘Z’ && w_beg!=-1)
w_end=i-1;

if(w_beg!=-1 && w_end!=-1)
return 1;

}
if(buffer[i]==0 && w_beg>-1)
{

w_end=i-1;
return 1;

}
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return 0;
}
void count_ports_and_nodes(int no_file, char** par)
{

ifstream input_file;
int w_beg,w_end,index;
int input_number=0,output_number=0,current_node_number;
input_cursor=0;
output_cursor=0;
input_number=0;
output_number=0;
cout<<“\n Processing file ”<<no_file;
input_file.open(par[no_file],ios::in);
if(!input_file.good())
{

cout<<“\n\aError: The input file cannot be opened”;
exit(1);

}
input_file>>buffer;
while(!input_file.eof() || buffer[0])
{

if(word_limit(buffer,w_beg,w_end))
if(index=search_word(&buffer[w_beg],w_end-w_beg+1))
{

if(index==_input)
input_number=1;

if(index==_output)
output_number=1;
}
else
{

cout<<“\n\aError: Syntax error in input file”;
exit(1);

}
else
{

current_node_number=atoi(buffer);
if(max_node_number<current_node_number)

max_node_number=current_node_number;
if(input_number==1)
{

input_list[input_cursor++]=current_node_number;
input_number=0;

}
if(output_number==1)
{

output_list[output_cursor++]=current_node_number;
output_number=0;

}
}
input_file>>buffer;

}
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input_file.close();
if(input_cursor>=NO_PORTS)
{

cout<<“\n\aError: Too many input ports”;
exit(1);

}
if(output_cursor>=NO_PORTS)
{

cout<<“\n\aError: Too many output ports”;
exit(1);

}
}
int find_node_in_vector(int* vector, int node_num, int total_num)
{

int i;
for(i=0; i<NO_PORTS;i++)
{

if(vector[i]==node_num)
return total_num-i-1;

}
cout<<“\n\aSerious internal error in the algorithm”;
exit(1);
return 0;

}
void write_network_entity(int no_file)
{

output_file<<“LIBRARY ieee;\nUSE ieee.std_logic_1164.all;\n\n”;
output_file<<“ENTITY network”<<(no_file+no_first_net-1)<<“ IS\n”;
output_file<<“ PORT(d_in : IN std_logic_vector(“<<(input_cursor-1);
output_file<<“ DOWNTO 0);\n d_out: OUT std_logic_vector(“;
output_file<<(output_cursor-1)<<“ DOWNTO 0));\nEND network”;
output_file<<(no_file+no_first_net-1)<<“;\n\n”;

}
void write_logic_exp(ifstream& input_file,int no_file)
{

#define NO_GATE_INP 30
char gate_name[5];
int i,no_inputs,w_beg,w_end,index;
int gate_nodes[NO_GATE_INP];
input_file>>buffer;
while(!input_file.eof())
{

if(word_limit(buffer,w_beg,w_end))
{

index=search_word(&buffer[w_beg],w_end-w_beg+1);
if(index<=3)
{

for(i=0;*(dict[index-1]+i)!=0;i++)
gate_name[i]=(*(dict[index-1]+i));

gate_name[i]=0;
gate_count[no_file-1]++;
if(index<3)
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no_inputs=atoi(&buffer[w_end+1]);
else

no_inputs=1;
if(no_inputs>NO_GATE_INP)
{

cout<<“\n\aError: One of the gates has too many inputs”;
exit(1);

}
for(i=0;i<no_inputs+1;i++)

input_file>>gate_nodes[i];
if(node_list[gate_nodes[no_inputs]-1]==NODE_TYPE)

output_file<<“ n”<<gate_nodes[no_inputs];
else
{

output_file<<“ d_out(“<<find_node_in_vector(output_list,
gate_nodes[no_inputs],output_cursor);

output_file<<“)”;
}
output_file<<“<=”;
if (no_inputs>1)
{

if(node_list[gate_nodes[0]-1]==NODE_TYPE)
output_file<<“ n”<<gate_nodes[0];

else
{

output_file<<“ d_in(“<<find_node_in_vector(input_list,
 gate_nodes[0],input_cursor);
output_file<<“)”;

}
for(i=1;i<no_inputs;i++)
{

output_file<<“ “<<gate_name;
if(node_list[gate_nodes[i]-1]==NODE_TYPE)

output_file<<“ n”<<gate_nodes[i];
else
{

output_file<<“ d_in(”<<find_node_in_vector(input_list,

gate_nodes[i],input_cursor);
output_file<<“)”;

}
}
output_file<<“;\n”;

}
else
{

output_file<<“ ”<<gate_name;
if(node_list[gate_nodes[0]-1]==NODE_TYPE)

output_file<<“ n”<<gate_nodes[0];
else
{

output_file<<“ d_in(”<<find_node_in_vector(input_list,
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gate_nodes[0],input_cursor);
output_file<<“)”;

}
output_file<<“;\n”;

}
}

}
input_file>>buffer;

}
}
void write_network_architecture(char* file_name,int no_file)
{

ifstream input_file;
int i,it_is_input,it_is_output,w_beg,w_end,index,current_node_number;
int no_signals;
node_list=alloc_char(max_node_number+1); //+1 is for safety
for(i=0;i<max_node_number;i++)

node_list[i]=0;
cout<<“\n Reprocessing file ”<<no_file;
output_file<< “ARCHITECTURE arch_network”<<(no_file+no_first_net-1);
output_file<<“ OF network”<<(no_file+no_first_net-1)<<“ IS\n”;
input_file.open(file_name,ios::in);
if(!input_file.good())
{

cout<<“\n\aError: The input file cannot be opened”;
exit(1);

}
input_file>>buffer;
while(!input_file.eof()|| buffer[0])
{

if(word_limit(buffer,w_beg,w_end))
{

index=search_word(&buffer[w_beg],w_end-w_beg+1);
if(index==_input)

it_is_input=1;
else

it_is_input=0;
if(index==_output)

it_is_output=1;
else

it_is_output=0;
}
else
{
current_node_number=atoi(buffer);
if(it_is_input)

node_list[current_node_number-1]=INPUT_TYPE;
else if(it_is_output)

node_list[current_node_number-1]=OUTPUT_TYPE;
else if(node_list[current_node_number-1]!=INPUT_TYPE &&

node_list[current_node_number-1]!=OUTPUT_TYPE)
{
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node_list[current_node_number-1]=NODE_TYPE;
internal_nodes=1;
}

}
input_file>>buffer;
}

no_signals=1;
if (internal_nodes)

{
output_file<<“ SIGNAL n”;
for(i=0;i<max_node_number;i++)

if(node_list[i]==NODE_TYPE)
{

output_file<<(i+1);
break;

}
for(i++;i<max_node_number;i++)
{

if(node_list[i]==NODE_TYPE)
{
no_signals++;

if(no_signals%10==0)
output_file<<“,\n n”;

else
output_file<<“,n”;

output_file<<(i+1);
}

}
output_file<<“: std_logic;\n”;

}
output_file<<“BEGIN\n”;
input_file.seekg(0,ios::beg);
input_file.clear();
write_logic_exp(input_file, no_file);
output_file<<“END arch_network”<<(no_file+no_first_net-1)<<“;\n\n”;
input_file.close();
delete node_list;

}
void write_network_configuration(int no_file)
{

output_file<<“CONFIGURATION conf_network” <<(no_file+no_first_net-
1);

output_file<<“ OF network”;
output_file<<(no_file+no_first_net-1)<<“ IS\n FOR arch_network”;
output_file<<(no_file+no_first_net-1);
output_file<<“\nEND FOR;\nEND conf_network” <<(no_file+no_first_net-

1);
output_file<<“;\n\n”;

}
void write_networks(int no_file, char** par)
{

write_network_entity(no_file);
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write_network_architecture(par[no_file],no_file);
write_network_configuration(no_file);

}
void main(int no_par, char** par)
{

ifstream input_file;
int i,j,total_gate_count=0;
init_list_gate_count();
if(no_par<4)
{

cout<<“\n\aError: Too few parameters!”;
exit(1);

}
if(no_par>NO_MAX_FILES+3) //3 is for prog.name+out file+ no. first

net.
{

cout<<“\n\aError: Too many files!”;
exit(1);

}
no_first_net=atoi(par[no_par-1]);
output_file.open(par[no_par-2],ios::out);
if(!output_file.good())
{

cout<<“\n\aError: Output file cannot be opened!”;
exit(1);

}
for(i=1;i<no_par-2;i++)
{

for(j=0;j<NO_PORTS;j++)
{

input_list[j]=0;
output_list[j]=0;

}
max_node_number=0;
internal_nodes=0;
count_ports_and_nodes(i, par);
write_networks(i,par);
cout<<“\nArchitecture no. “<<i<<“ contains “<<gate_count[i-1]<<“

gates”;
total_gate_count+=gate_count[i-1];

}
cout<<“\nTotal gate count: ”<<total_gate_count;
output_file.close();

}

11.1.4 MEMMANAG.H

//This is a header file used by the three universal programs
#if !defined( __STDLIB_H )
#include <stdlib.h>
#endif
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char* alloc_err=“\n\aError: Insufficient RAM memory for dinamic
allocation!”;

float* alloc_float(int mem_length)
{

float *pointer;
if(mem_length>0)
{

if(!(pointer=new float[mem_length]))
{

cout<<alloc_err;
exit(1);

}
return pointer;

}
else

return NULL;
}
double* alloc_double(int mem_length)
{

double *pointer;
if(mem_length>0)
{

if(!(pointer=new double[mem_length]))
{

cout<<alloc_err;
exit(1);

}
return pointer;

}
else

return NULL;
}
int* alloc_int(int mem_length)
{

int *pointer;
if(mem_length>0)
{

if(!(pointer=new int[mem_length]))
{

cout<<alloc_err;
exit(1);

}
return pointer;

}
else

return NULL;
}
char* alloc_char(int mem_length)
{

char *pointer;
if(mem_length>0)
{
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if(!(pointer=new char[mem_length]))
{

cout<<alloc_err;
exit(1);

}
return pointer;

}
else

return NULL;
}

11.1.5 MATRIX.H

//This is a header file used by the three universal programs
#include <iostream.h>
#include <process.h>
char* alloc_error=“\n\aError: Not enough memory for dinamic allocation!”;
class vector
{

private:
int length;
double* no;

public:
vector(void);
vector(int);
~vector(void);
double& operator[](int);
void resize(int);

};
class matrix
{

private:
int rows,columns;
vector* val;

public:
matrix(int,int);
~matrix();
vector& operator[](int);
int no_rows(void);
int no_columns(void);

};
vector::vector(void)
{

length=0;
no=NULL;

}
vector::vector(int nlength)
{

length=nlength;
if(length>0)
{
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if(!(no=new double[length]))
{

cout<<alloc_error;
exit(1);

}
}
else

no=NULL;
}
vector::~vector(void)
{

if(no!=NULL)
delete no;

}
double& vector::operator[](int index)
{

if(index<0 || index>=length)
{

cout<<“\n\aError: Index value is outside limits”;
exit(1);

}
return no[index];

}
void vector::resize(int nlength)
{

if (no!=NULL)
delete no;

length=nlength;
if(length>0)
{

if(!(no=new double[length]))
{

cout<<alloc_error;
exit(1);

}
}
else

no=NULL;
}
matrix::matrix(int length1, int length2)
{

int i;
if(length1<=0 || length2<=0)
{

cout<<“\n\aError: The matrix dimensions must be positive!”;
exit(1);

}
rows=length1;
columns=length2;
if(!(val=new vector[rows]))
{

cout<<alloc_error;
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exit(1);
}
for(i=0;i<rows;i++)

val[i].resize(columns);
}
matrix::~matrix(void)
{

delete [] val;
}
vector& matrix::operator[](int index)
{

if(index<0 || index>=rows)
{

cout<<“\n\aError: Index value is outside limits”;
exit(1);

}
return val[index];

}
int matrix::no_rows(void)
{

return rows;
}
int matrix::no_columns(void)
{

return columns;
}

11.2 Appendix B – C++ Programs for PWM
generation

11.2.1 ANGLES.CPP

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>

int main(int no_par, char** par)
{

int no_bits, no_sectors;
int no_lines,i,j,k;
double val[2],val_dig,step,threshold;
ofstream f;
if(no_par<4)
{

cout<<“\nError: Too few pparameters!”;
exit(1);

}
no_bits=atoi(par[1]);
no_sectors=atoi(par[2]);
no_lines=no_sectors/2;
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step=M_PI/no_lines;
f.open(par[3],ios::out);
if(!f.good())
{

cout<<“\n\aError: The output file cannot be opened!”;
exit(1);

}
f.precision(12);
f.setf(ios::fixed);
for(i=1;i<=no_lines;i++)
{

if(i*step-step/2!=M_PI_2)
{

val[0]=-tan(i*step-step/2);
if(val[0]<0)

val[1]=1;
else
{

val[0]=-val[0];
val[1]=-1;

}
}
else
{

val[0]=-1;
val[1]=0;

}
for(j=0;j<2;j++)

for(k=no_bits-1;k>=0;k––)
{

val_dig=val[j]*pow(2,k)/(pow(2,no_bits)-1);
if(k==no_bits-1)

val_dig=-val_dig; //In order to have C2 codification for inputs
f<<val_dig<<“ ”;

}
threshold=(val[0]+val[1])/(pow(2,no_bits)-1);
f<<(-threshold)<<endl;

}
f.close();
return 0;

}

11.2.2 REGIONS.CPP

#include <iostream.h>
#include <fstream.h>
#include <process.h>
#include <matrix.h>
#include <math.h>
#include <stdlib.h>

void write_matrix(matrix& mat,char* file_name)
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{
int i,j;
ofstream f(file_name,ios::out);
f.precision(12);
if(!f.good())
{

cout<<“\n\aError:Output file could not be open in regions.exe”;
cout<<“\nFile name:”<<file_name;
exit(1);

}
for(i=0;i<mat.no_rows();i++)
{

for(j=0;j<mat.no_columns()-1;j++)
f<<mat[i][j]<<“  ”;

f<<mat[i][mat.no_columns()-1]<<“\n”;
}
f.close();

}
int main(int no_par, char** par)
{

int no_bits, no_int_stripes,no_ext_stripes,no_boundaries;
int i,j,k,ind,outer_limit,matrix_lines,third_vertex_j,line,no_regions;
double vertical_step;
if(no_par<6)
{

cout<<“\n\aError:Too few parameters”;
exit(1);

}
no_bits=atoi(par[1]);
no_int_stripes=atoi(par[2]);
no_ext_stripes=atoi(par[3]);
outer_limit=(no_ext_stripes+no_int_stripes)/2-1;
matrix_lines=3*(2*outer_limit+1);
{

matrix w1(matrix_lines,3);
for(j=0,i=-outer_limit;i<=outer_limit;i++,j++)
{

w1[j][0]=0;
w1[j][1]=1;
w1[j][2]=-vertical_step*i-1.0/(pow(2,no_bits)-1);

}
for(i=-outer_limit;i<=outer_limit;i++,j++)
{

w1[j][0]=-sqrt(3); //positive slopes y=-w1*x-w3
w1[j][1]=1;
w1[j][2]=-2*vertical_step*i-(1-sqrt(3))/(pow(2,no_bits)-1);

}
for(i=-outer_limit;i<=outer_limit;i++,j++)
{

w1[j][0]=sqrt(3); //negative slopes y=-w1*x-w3
w1[j][1]=1;
w1[j][2]=-2*vertical_step*i-(1+sqrt(3))/(pow(2,no_bits)-1);
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}
matrix w_dig(matrix_lines,2*no_bits+1);
for(i=0;i<matrix_lines;i++)
{

for(j=0;j<no_bits;j++)
{

w_dig[i][j]=w1[i][0]*pow(2,(no_bits-j-1))/(pow(2,no_bits)-1);
w_dig[i][no_bits+j]=w1[i][1]*
pow(2,(no_bits-j-1))/(pow(2,no_bits)-1);
if(j==0) //Condition necessary in order to obtain
{ //C2 representation for the input values

w_dig[i][j]=-w_dig[i][j];
w_dig[i][no_bits+j]=-w_dig[i][no_bits+j];

}
}
w_dig[i][2*no_bits]=w1[i][2];

}
write_matrix(w_dig,par[4]);

}
ofstream f2(par[5],ios::out);
if(!f2.good())
{

cout<<“\n\aError:Output file could not be opened by regions.exe”;
cout<<“\nFile name:”<<par[5];
exit(1);

}
no_regions=6*(no_int_stripes+no_ext_stripes)*

 (no_int_stripes+no_ext_stripes)/4;
matrix points(no_regions,2);
line=0;
for(i=-outer_limit-1;i<=outer_limit;i++) //i & j are vertex

coordinates
for(j=-outer_limit-1;j<=outer_limit+1;j++)

if(j-i<=outer_limit+1 && j-i>=-outer_limit)
//j-i=index of positive slope boundary
for(k=-1;k<=1;k+=2)
{

third_vertex_j=j+k;
if(third_vertex_j>=-outer_limit-1 && third_vertex_j<=outer_limit+1)
{

no_boundaries=0;
if(k>0)
{

for(ind=-outer_limit;ind<=outer_limit;ind++)
if(j==ind) //horizontal boundary
{
f2<<“1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

for(ind=-outer_limit;ind<=outer_limit;ind++)
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if(j-i==ind)  //positive slope boundary
{
f2<<“-1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

for(ind=-outer_limit;ind<=outer_limit;ind++)
if(i+1==ind) //negative slope boundary
{
f2<<“-1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

}
else
{
for(ind=-outer_limit;ind<=outer_limit;ind++)

if(j==ind) //horizontal boundary
{
f2<<“-1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

for(ind=-outer_limit;ind<=outer_limit;ind++)
if(j-(i+1)==ind) //positive slope boundary
{
f2<<“1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

for(ind=-outer_limit;ind<=outer_limit;ind++)
if(i==ind) //negative slope boundary
{
f2<<“1 ”;
no_boundaries++;
}
else
f2<<“0 ”;

}
f2<<(-no_boundaries+0.5)<<“\n”;
points[line][0]=2.0/no_int_stripes*(i-j/2.0+0.5);
points[line][1]=2.0/no_int_stripes*(j+k/3.0)*sqrt(3)/2;
line++;

}
}
f2.close();
write_matrix(points,par[6]);
return 0;

}



338 Neural and Fuzzy Logic Control of Drives and Power Systems

11.2.3 CTRL.CPP

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <memmanag.h>
int no_regions,no_angles;
double xh[7]={1,0.5,-0.5,-1,-0.5,0.5,0.0},yh[7]={0,sqrt(3)/2, sqrt(3)/

2,0,
-sqrt(3)/2,-sqrt(3)/2,0.0};

char* there_is_neu;
double* read_matrix(double *w,ifstream& in_file)
{

int i;
char buffer[40];
no_regions=0;
in_file>>buffer;
while(buffer[0])
{

no_regions++;
in_file>>buffer;

}
no_regions/=2;
in_file.seekg(0,ios::beg);
in_file.clear();
w=alloc_double(2*no_regions);
for(i=0;i<2*no_regions;i++)

in_file>>w[i];
return w;

}
double minimal_difference(double ang1, double ang2)
{

double dif;
dif=fabs(ang2-ang1);
while(dif>M_PI)

dif=fabs(2*M_PI-dif);
return dif;

}
int right_direction(double x, double y, int k, int index)
{

int i,i_min;
double step=2*M_PI/no_angles;
double ang[7],min;
for(i=0;i<7;i++)
{

ang[i]=atan2(yh[i]-y,xh[i]-x);
ang[i]=minimal_difference(ang[i],k*step);

}
min=ang[0];
i_min=0;
for(i=1;i<7;i++)
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if(ang[i]<=min) //The condition <= instead of < helps including
{ //the zero inverter voltage in the considered

set
min=ang[i]; //of possibilities. Zero voltage is the last in

the
i_min=i; //lists xh and yh.

}
if (i_min==index)

return 1;
else

return 0;
}
void write_first_layer(double *w, ofstream& out_file)
{

int i,j,k,l,num,not_null;
double step=2*M_PI/no_angles;
int *neu_o=alloc_int(no_angles/2);
int *neu_i=alloc_int(no_angles/2);
for(i=0;i<7;i++)

for(j=0;j<no_regions;j++)
{

num=0;
for(k=0;k<no_angles/2;k++)

neu_o[k]=0;
for(k=0;k<no_angles;k++) //Checking each possible direction

if(right_direction(w[2*j], w[2*j+1],k,i))
{

for(l=0;l<no_angles/2;l++) //To determine the corresponding
//result from angle calculation network

if((k*step>=l*step+step/2) && (k*step<l*step+step/2+M_PI))
neu_i[l]=1;

else
neu_i[l]=-1;

for(l=0;l<no_angles/2;l++)
neu_o[l]+=neu_i[l];

num++;
}

not_null=0; //This variable counts the input weights which are not
null

for(k=0;k<no_angles/2;k++)
if(neu_o[k]==num && num>0)
{

neu_o[k]=1;
not_null++;

}
else if(neu_o[k]==-num && num>0)
{

neu_o[k]=-1;
not_null++;

}
else

neu_o[k]=0;
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if(not_null)
{

for(k=0;k<no_regions;k++)
if(j==k)

out_file<<“1 ”;
else

out_file<<“0 ”;
for(k=0;k<no_angles/2;k++)

out_file<<neu_o[k]<<“ ”;
out_file<<(-not_null-0.5)<<“\n”;
there_is_neu[i*no_regions+j]=1;

}
else

there_is_neu[i*no_regions+j]=0;
}

delete neu_o;
delete neu_i;

}
void write_second_layer(ofstream& out_file)
{

int i,j,k,ones,no_inputs;
int corelation[3][3]={{5,0,1},{1,2,3},{3,4,5}};
for(i=0;i<3;i++)
{

no_inputs=0;
for(j=0;j<7*no_regions;j++)
{

ones=0;
for(k=0;k<3;k++)

if(corelation[i][k] == j/no_regions || j/no_regions == 6)
{

ones=1;
break;

}
if(there_is_neu[j])
{

if(ones)
{

out_file<<“1 ”;
no_inputs++;

}
else

out_file<<“0 ”;
}

}
if(no_inputs)
out_file<<(no_inputs-0.5)<<“\n”;

}
}
void main(int no_par, char** par)
{

double* w;
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ifstream in_file;
ofstream out_file;
if(no_par<5)
{

cout<<“\n\aToo few parameters”;
exit(1);

}
no_angles=atoi(par[4]);
if(no_angles%2==1)
{

cout<<“\a\nError:The number of angles cannot be odd”;
exit(1);

}
in_file.open(par[1],ios::in);

if (!in_file.good())
{

cout<<“\n\aError: The input file could not be opened”;
exit(1);

}
w=read_matrix(w,in_file);
there_is_neu=alloc_char(7*no_regions);
in_file.close();
out_file.open(par[2],ios::out);
if (!out_file.good())
{

cout<<“\n\aError: The output file could not be opened”;
exit(1);

}
write_first_layer(w, out_file);
out_file.close();
out_file.open(par[3],ios::out);
if (!out_file.good())
{

cout<<“\n\aError: The output file could not be opened”;
exit(1);

}
write_second_layer(out_file);
out_file.close();
delete w;
delete there_is_neu;

}

11.3 Appendix C – Subnetworks VHDL models

11.3.1 The angle subnetwork

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY network2 IS

PORT(d_in : IN std_logic_vector(9 DOWNTO 0);
d_out: OUT std_logic_vector(17 DOWNTO 0));
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END network2;
ARCHITECTURE arch_network2 OF network2 IS

SIGNAL n11,n12,n13,n14,n15,n16,n17,n18,n19,
n20,n21,n22,n29,n30,n31,n32,n33,n34,n35,
n36,n37,n38,n39,n40,n41,n43,n44,n46,n47,
n48,n49,n57,n58,n59,n60,n62,n63,n64,n65,
n69,n70,n76,n77,n78,n79,n80,n81,n82,n83,
n84,n85,n89,n90,n91,n92,n93,n100,n101,n103,
n104,n105,n106,n110,n111,n112,n113,n114,n115,n116,
n117,n118,n120,n121,n122,n123,n124,n125,n127,n128,
n129,n130,n131,n132,n133,n135,n137,n138,n139,n140,
n147,n148,n150,n151,n152,n157,n158,n159,n160,n173,
n174,n175,n176,n205,n206,n215,n216,n217,n218,n219,
n222,n223,n225,n226,n230,n231,n232,n233,n235,n236,
n238,n239,n240,n241,n242,n243,n244,n245,n246,n250,
n251,n252,n253,n260,n261,n263,n264,n265,n266,n267,
n270,n271,n272,n273,n274,n275,n276,n277,n278,n280,
n281,n282,n283,n287,n288,n290,n291,n292,n293,n294,
n302,n305,n306,n310,n311,n312,n313,n314,n315,n316,
n317,n318,n319,n320,n321,n322,n330,n331,n332,n333,
n334,n335,n336,n337,n343,n344,n345,n346,n347,n348,
n349,n350,n351,n352,n353,n361,n362,n365,n366,n367,
n368,n369,n370,n372,n373,n375,n376,n377,n378,n379,
n380,n381,n382,n383,n384,n385,n395,n396,n397,n398,
n399,n400,n401,n405,n406,n407,n408,n409,n410,n411,
n412,n413,n414,n415,n419,n420,n421,n422,n423,n424,
n426,n427,n437,n438,n439,n440,n441,n443,n444,n446,
n447,n448,n450,n452,n453,n454,n455,n456,n457,n459,
n460,n461,n462,n466,n467,n468,n469,n472,n473,n474,
n475,n476,n477,n478,n479,n490,n491,n496,n497,n505,
n506,n507,n508,n509,n529,n530,n542,n544,n545,n548,
n551,n552,n553,n554,n555,n556,n557,n558,n559,n561,
n562,n563,n564,n565,n566,n570,n571,n572,n573,n576,
n577,n579,n580,n581,n582,n593,n595,n596,n597,n598,
n602,n603,n604,n605,n606,n607,n608,n610,n611,n612,
n616,n617,n618,n619,n620,n621,n622,n623,n624,n632,
n633,n637,n638,n639,n640,n641,n643,n644,n646,n647,
n648,n649,n650,n651,n652,n653,n661,n662,n667,n668,
n669: std_logic;

BEGIN
n11<= NOT d_in(4);
n12<= NOT d_in(8);
n13<= NOT d_in(7);
n18<= NOT d_in(6);
n19<= NOT d_in(5);
n343<= NOT d_in(3);
n344<= NOT d_in(2);
n347<= NOT d_in(1);
n348<= NOT d_in(0);
n15<= d_in(0) AND n14;
n17<= n11 AND n16;
n20<= n18 AND n19;
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n30<= d_in(2) AND n29;
n31<= d_in(0) AND n13;
n33<= n12 AND n32;
n36<= n11 AND n35;
n38<= n13 AND n37;
n41<= n12 AND n40;
n44<= n13 AND n43;
n47<= d_in(1) AND n46;
n58<= d_in(1) AND n57;
n60<= d_in(0) AND n59;
n63<= n13 AND n62;
n65<= d_in(2) AND n64;
n70<= d_in(1) AND n69;
n77<= n12 AND n76;
n79<= n11 AND n78;
n80<= d_in(0) AND n18;
n82<= d_in(1) AND n81;
n85<= d_in(2) AND n84;
n91<= n12 AND n90;
n101<= d_in(1) AND n100;
n104<= d_in(3) AND n103;
n106<= d_in(2) AND n105;
n111<= n13 AND n110;
n114<= n12 AND n113;
n118<= n11 AND n117;
n120<= n18 AND n115;
n121<= d_in(0) AND n19;
n123<= n12 AND n122;
n125<= n13 AND n124;
n128<= d_in(1) AND n127;
n130<= d_in(2) AND n129;
n133<= d_in(3) AND n132;
n135<= d_in(1) AND n37;
n140<= d_in(9) AND n139;
n148<= n18 AND n147;
n150<= d_in(1) AND n115;
n152<= n13 AND n151;
n158<= d_in(2) AND n157;
n160<= n12 AND n159;
n174<= d_in(3) AND n173;
n176<= d_in(9) AND n175;
n206<= n11 AND n205;
n215<= d_in(1) AND n19;
n217<= n12 AND n216;
n219<= n13 AND n218;
n223<= d_in(2) AND n222;
n226<= d_in(3) AND n225;
n233<= d_in(9) AND n232;
n236<= d_in(3) AND n235;
n238<= d_in(2) AND n124;
n240<= n18 AND n239;
n243<= n13 AND n242;
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n246<= n12 AND n245;
n253<= n11 AND n252;
n261<= n18 AND n260;
n263<= d_in(2) AND n239;
n265<= n13 AND n264;
n267<= n18 AND n266;
n271<= d_in(3) AND n270;
n273<= d_in(9) AND n272;
n274<= d_in(1) AND d_in(0);
n276<= n18 AND n275;
n278<= n19 AND n277;
n281<= d_in(2) AND n280;
n283<= n13 AND n282;
n288<= n18 AND n287;
n292<= d_in(3) AND n291;
n302<= d_in(2) AND n147;
n306<= d_in(3) AND n305;
n311<= n18 AND n310;
n313<= d_in(9) AND n312;
n315<= d_in(3) AND n314;
n317<= n18 AND n316;
n319<= n13 AND n318;
n330<= d_in(2) AND n277;
n332<= d_in(9) AND n331;
n334<= n19 AND n333;
n335<= d_in(3) AND d_in(2);
n346<= d_in(9) AND n345;
n349<= n347 AND n348;
n351<= n343 AND n350;
n362<= n343 AND n361;
n366<= n19 AND n365;
n368<= n18 AND n367;
n370<= d_in(9) AND n369;
n373<= n343 AND n372;
n376<= n18 AND n375;
n379<= n13 AND n378;
n382<= d_in(4) AND n381;
n385<= n12 AND n384;
n396<= n344 AND n395;
n399<= n13 AND n398;
n401<= n18 AND n400;
n406<= n343 AND n405;
n409<= d_in(9) AND n408;
n411<= n18 AND n410;
n413<= n344 AND n412;
n415<= n13 AND n414;
n420<= n344 AND n419;
n422<= n343 AND n421;
n424<= d_in(4) AND n423;
n427<= n12 AND n426;
n438<= n347 AND n437;
n439<= n19 AND n348;
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n441<= n12 AND n440;
n444<= n344 AND n443;
n448<= n343 AND n447;
n450<= n18 AND n412;
n455<= d_in(9) AND n454;
n457<= n343 AND n456;
n459<= n18 AND n395;
n460<= n19 AND n347;
n462<= n13 AND n461;
n469<= n12 AND n468;
n473<= n344 AND n472;
n478<= d_in(4) AND n477;
n491<= n13 AND n490;
n497<= n12 AND n496;
n506<= n343 AND n505;
n509<= d_in(9) AND n508;
n530<= d_in(4) AND n529;
n542<= n18 AND n437;
n545<= n343 AND n544;
n548<= n13 AND n443;
n552<= n12 AND n551;
n554<= n347 AND n553;
n559<= d_in(4) AND n558;
n561<= n12 AND n456;
n563<= n347 AND n562;
n564<= n18 AND n348;
n566<= n344 AND n565;
n573<= n343 AND n572;
n577<= n13 AND n576;
n582<= d_in(9) AND n581;
n593<= n13 AND n562;
n596<= n344 AND n595;
n598<= n347 AND n597;
n603<= n12 AND n602;
n606<= d_in(4) AND n605;
n608<= n347 AND n607;
n610<= n13 AND n553;
n612<= n344 AND n611;
n617<= n13 AND n616;
n619<= n12 AND n618;
n621<= d_in(9) AND n620;
n624<= n343 AND n623;
n633<= n12 AND n632;
n637<= n59 AND n348;
n639<= n347 AND n638;
n641<= d_in(4) AND n640;
n644<= n12 AND n643;
n647<= n347 AND n646;
n650<= n344 AND n649;
n662<= d_in(4) AND n661;
n667<= n12 AND n21;
n34<= d_in(1) AND d_in(0) AND n13;
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n39<= d_in(0) AND n18 AND n19;
n83<= d_in(0) AND n13 AND n18;
n93<= d_in(9) AND d_in(3) AND n92;
n241<= d_in(1) AND d_in(0) AND n19;
n290<= d_in(2) AND n19 AND n277;
n294<= n11 AND n12 AND n293;
n322<= n11 AND n12 AND n321;
n397<= n19 AND n347 AND n348;
n446<= n18 AND n347 AND n437;
n453<= n13 AND n344 AND n452;
n467<= n18 AND n344 AND n466;
n476<= n13 AND n343 AND n475;
n555<= n18 AND n19 AND n348;
n557<= n13 AND n344 AND n556;
n571<= n13 AND n347 AND n570;
n580<= n12 AND n344 AND n579;
n653<= d_in(9) AND n343 AND n652;
n49<= d_in(9) AND d_in(3) AND d_in(2) AND n48;
n89<= d_in(0) AND n13 AND n18 AND n19;
n112<= d_in(1) AND d_in(0) AND n18 AND n19;
n138<= d_in(2) AND n12 AND n13 AND n137;
n231<= d_in(2) AND n13 AND n18 AND n230;
n244<= d_in(2) AND d_in(1) AND n18 AND n19;
n251<= d_in(3) AND d_in(2) AND n13 AND n250;
n377<= n19 AND n344 AND n347 AND n348;
n474<= n18 AND n19 AND n347 AND n348;
n648<= n13 AND n18 AND n19 AND n348;
n116<= d_in(2) AND d_in(1) AND n13 AND n18 AND n115;
n131<= d_in(1) AND d_in(0) AND n13 AND n18 AND n19;
n337<= n11 AND n12 AND n13 AND n18 AND n336;
n353<= d_in(4) AND n12 AND n13 AND n18 AND n352;
n380<= n18 AND n19 AND n343 AND n344 AND n347;
n407<= n18 AND n19 AND n344 AND n347 AND n348;
n604<= n13 AND n18 AND n19 AND n347 AND n348;
n651<= n12 AND n13 AND n18 AND n347 AND n348;
n669<= d_in(9) AND n343 AND n344 AND n347 AND n668;
n320<= d_in(3) AND d_in(2) AND d_in(1) AND d_in(0) AND n18 AND n19;
n507<= n13 AND n18 AND n19 AND n344 AND n347 AND n348;
n22<= d_in(9) AND d_in(3) AND d_in(2) AND d_in(1) AND d_in(0) AND n12

AND n21;
n383<= n13 AND n18 AND n19 AND n343 AND n344 AND n347 AND n348;
n622<= n12 AND n13 AND n18 AND n19 AND n344 AND n347 AND n348;
n479<= n12 AND n13 AND n18 AND n19 AND n343 AND n344 AND n347 AND n348;
n14<= n12 OR n13;
n21<= n13 OR n20;
d_out(17)<= n17 OR n22;
n32<= d_in(1) OR n31;
n37<= d_in(0) OR n18;
n43<= d_in(0) OR n20;
n46<= n39 OR n44;
n48<= n41 OR n47;
d_out(16)<= n36 OR n49;
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n59<= n18 OR n19;
n62<= n20 OR n60;
n76<= n63 OR n70;
n81<= n13 OR n80;
n90<= n82 OR n89;
n92<= n85 OR n91;
d_out(15)<= n79 OR n93;
n110<= n80 OR n101;
n115<= d_in(0) OR n19;
n127<= n18 OR n121;
n129<= n125 OR n128;
n137<= n39 OR n135;
n139<= n133 OR n138;
d_out(14)<= n118 OR n140;
n157<= n148 OR n150;
n173<= n152 OR n158;
n205<= n160 OR n174;
d_out(13)<= n176 OR n206;
n222<= n18 OR n150;
n230<= n121 OR n150;
n239<= d_in(1) OR n19;
n250<= n148 OR n241;
n252<= n246 OR n251;
d_out(12)<= n233 OR n253;
n270<= n263 OR n267;
n277<= d_in(1) OR d_in(0);
n280<= n274 OR n278;
n291<= n288 OR n290;
n293<= n283 OR n292;
d_out(11)<= n273 OR n294;
n310<= n215 OR n302;
n316<= d_in(2) OR n19;
n318<= n315 OR n317;
n321<= n319 OR n320;
d_out(10)<= n313 OR n322;
n336<= n334 OR n335;
d_out(9)<= n332 OR n337;
n350<= n344 OR n349;
n352<= n19 OR n351;
d_out(8)<= n346 OR n353;
n365<= n347 OR n348;
n367<= n344 OR n366;
n381<= n379 OR n380;
n384<= n382 OR n383;
d_out(7)<= n370 OR n385;
n412<= n19 OR n347;
n419<= n19 OR n349;
n421<= n411 OR n420;
n423<= n415 OR n422;
n426<= n383 OR n424;
d_out(6)<= n409 OR n427;
n437<= n19 OR n348;
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n452<= n397 OR n450;
n466<= n438 OR n439;
n472<= n18 OR n438;
n475<= n473 OR n474;
n477<= n469 OR n476;
n553<= n18 OR n348;
n556<= n554 OR n555;
n570<= n439 OR n542;
n576<= n347 OR n542;
n579<= n474 OR n577;
n581<= n573 OR n580;
d_out(3)<= n559 OR n582;
n616<= n20 OR n348;
n618<= n608 OR n617;
n620<= n612 OR n619;
n623<= n621 OR n622;
d_out(2)<= n606 OR n624;
n638<= n13 OR n637;
n652<= n650 OR n651;
d_out(1)<= n641 OR n653;
n668<= n348 OR n667;
d_out(0)<= n662 OR n669;
n40<= d_in(1) OR n38 OR n39;
n57<= d_in(0) OR n13 OR n20;
n64<= n12 OR n58 OR n63;
n69<= n13 OR n20 OR n60;
n84<= n12 OR n82 OR n83;
n100<= d_in(0) OR n18 OR n19;
n113<= n106 OR n111 OR n112;
n132<= n123 OR n130 OR n131;
n147<= d_in(1) OR d_in(0) OR n19;
n151<= d_in(2) OR n148 OR n150;
n159<= d_in(3) OR n152 OR n158;
n175<= n11 OR n160 OR n174;
n225<= n112 OR n219 OR n223;
n242<= n238 OR n240 OR n241;
n245<= n236 OR n243 OR n244;
n264<= d_in(3) OR n261 OR n263;
n266<= d_in(2) OR d_in(1) OR n19;
n275<= d_in(2) OR n19 OR n274;
n282<= d_in(3) OR n276 OR n281;
n287<= d_in(2) OR n274 OR n278;
n305<= n18 OR n278 OR n302;
n314<= d_in(2) OR n18 OR n19;
n361<= n18 OR n19 OR n344;
n375<= n19 OR n344 OR n349;
n378<= n373 OR n376 OR n377;
n395<= n19 OR n347 OR n348;
n405<= n396 OR n397 OR n401;
n410<= n19 OR n344 OR n347;
n414<= n343 OR n411 OR n413;
n443<= n18 OR n347 OR n439;



Appendices 349

n447<= n13 OR n444 OR n446;
n461<= n344 OR n459 OR n460;
n468<= n457 OR n462 OR n467;
d_out(5)<= n455 OR n478 OR n479;
n505<= n444 OR n474 OR n491;
n529<= n497 OR n506 OR n507;
d_out(4)<= n479 OR n509 OR n530;
n551<= n344 OR n446 OR n548;
n562<= n18 OR n19 OR n348;
n565<= n13 OR n563 OR n564;
n572<= n561 OR n566 OR n571;
n602<= n555 OR n593 OR n598;
n607<= n13 OR n18 OR n348;
n611<= n12 OR n608 OR n610;
n632<= n13 OR n347 OR n348;
n646<= n13 OR n20 OR n348;
n649<= n644 OR n647 OR n648;
n78<= d_in(9) OR d_in(3) OR n65 OR n77;
n105<= d_in(1) OR d_in(0) OR n13 OR n18;
n117<= d_in(9) OR n104 OR n114 OR n116;
n124<= d_in(1) OR d_in(0) OR n18 OR n19;
n232<= n11 OR n217 OR n226 OR n231;
n260<= d_in(2) OR d_in(1) OR d_in(0) OR n19;
n272<= n11 OR n12 OR n265 OR n271;
n333<= d_in(3) OR d_in(2) OR d_in(1) OR d_in(0);
n372<= n18 OR n19 OR n344 OR n349;
n398<= n18 OR n343 OR n396 OR n397;
n400<= n19 OR n344 OR n347 OR n348;
n454<= d_in(4) OR n441 OR n448 OR n453;
n490<= n18 OR n344 OR n347 OR n439;
n496<= n343 OR n444 OR n474 OR n491;
n508<= d_in(4) OR n497 OR n506 OR n507;
n558<= d_in(9) OR n545 OR n552 OR n557;
n595<= n12 OR n347 OR n555 OR n593;
n597<= n13 OR n18 OR n19 OR n348;
n643<= n13 OR n20 OR n347 OR n348;
n16<= d_in(9) OR d_in(3) OR d_in(2) OR d_in(1) OR n15;
n35<= d_in(9) OR d_in(3) OR n30 OR n33 OR n34;
n103<= d_in(2) OR n12 OR n13 OR n39 OR n101;
n122<= d_in(2) OR d_in(1) OR n13 OR n120 OR n121;
n216<= d_in(3) OR d_in(2) OR n13 OR n148 OR n215;
n218<= d_in(2) OR d_in(1) OR d_in(0) OR n18 OR n19;
n235<= d_in(2) OR d_in(1) OR n13 OR n18 OR n121;
n312<= n11 OR n12 OR n13 OR n306 OR n311;
n369<= d_in(4) OR n12 OR n13 OR n362 OR n368;
n408<= d_in(4) OR n12 OR n399 OR n406 OR n407;
n605<= d_in(9) OR n343 OR n596 OR n603 OR n604;
n640<= d_in(9) OR n343 OR n344 OR n633 OR n639;
n29<= d_in(1) OR d_in(0) OR n12 OR n13 OR n18 OR n19;
n440<= n13 OR n18 OR n343 OR n344 OR n438 OR n439;
n456<= n13 OR n18 OR n19 OR n344 OR n347 OR n348;
n544<= n12 OR n13 OR n344 OR n347 OR n439 OR n542;
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n331<= d_in(3) OR n11 OR n12 OR n13 OR n18 OR n19 OR n330;
n345<= d_in(4) OR n12 OR n13 OR n18 OR n19 OR n343 OR n344;
n661<= d_in(9) OR n12 OR n13 OR n343 OR n344 OR n347 OR n348;

END arch_network2;
CONFIGURATION conf_network2 OF network2 IS

FOR arch_network2
END FOR;

END conf_network2;

11.3.2 The position subnetwork

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY network1 IS

PORT(d_in : IN std_logic_vector(9 DOWNTO 0);
 d_out: OUT std_logic_vector(53 DOWNTO 0));

END network1;
ARCHITECTURE arch_network1 OF network1 IS

SIGNAL n11,n12,n13,n14,n16,n17,n18,n21,n22,
n24,n25,n26,n28,n29,n30,n31,n32,n33,n34,
n35,n36,n37,n38,n39,n40,n41,n42,n43,n44,
n45,n46,n47,n48,n49,n50,n51,n52,n53,n54,
n55,n57,n58,n59,n60,n61,n62,n63,n64,n65,
n66,n67,n68,n74,n75,n80,n81,n86,n87,n93,
n94,n95,n96,n97,n98,n99,n100,n108,n109,n110,
n116,n117,n133,n134,n149,n150,n151,n152,n153,n154,
n163,n164,n165,n166,n173,n174,n183,n184,n185,n197,
n198,n199,n217,n218,n220,n221,n239,n240,n241,n242,
n243,n245,n246,n247,n248,n249,n250,n251,n253,n254,
n258,n259,n260,n261,n264,n265,n266,n267,n268,n269,
n270,n271,n272,n273,n274,n275,n276,n277,n278,n279,
n280,n281,n282,n283,n284,n285,n288,n289,n293,n294,
n296,n297,n298,n304,n305,n314,n315,n316,n317,n324,
n325,n326,n329,n330,n334,n335,n348,n349,n367,n368,
n369,n372,n373,n379,n380,n390,n391,n399,n400,n401,
n411,n412,n450,n451,n452,n453,n455,n457,n460,n462,
n465,n469,n470,n487,n491,n492,n514,n521,n547: std_logic;

BEGIN
n11<= NOT d_in(4);
n28<= NOT d_in(8);
n29<= NOT d_in(7);
n30<= NOT d_in(6);
n31<= NOT d_in(5);
n243<= NOT d_in(9);
n452<= NOT n154;
n453<= NOT n285;
n455<= NOT n14;
n457<= NOT n199;
n460<= NOT n18;
n462<= NOT n242;
n465<= NOT n11;
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n469<= NOT n110;
n470<= NOT n326;
n487<= NOT n22;
n491<= NOT n68;
n492<= NOT n369;
n514<= NOT n26;
n521<= NOT n412;
n547<= NOT n451;
n13<= d_in(3) AND n12;
n22<= n11 AND n21;
n26<= n11 AND n25;
n34<= d_in(9) AND n33;
n36<= d_in(2) AND n35;
n38<= n30 AND n37;
n41<= d_in(3) AND n40;
n43<= d_in(2) AND n42;
n45<= n30 AND n44;
n47<= n29 AND n46;
n50<= n11 AND n49;
n52<= d_in(1) AND n51;
n53<= d_in(0) AND n31;
n55<= d_in(2) AND n54;
n59<= d_in(3) AND n58;
n60<= d_in(1) AND n31;
n62<= d_in(2) AND n61;
n65<= n29 AND n64;
n67<= n28 AND n66;
n75<= n29 AND n74;
n81<= d_in(9) AND n80;
n87<= n28 AND n86;
n94<= n29 AND n93;
n97<= d_in(3) AND n96;
n100<= n11 AND n99;
n117<= n28 AND n116;
n134<= d_in(9) AND n133;
n150<= n28 AND n149;
n153<= n11 AND n152;
n164<= n30 AND n163;
n166<= n11 AND n165;
n174<= n28 AND n173;
n185<= d_in(9) AND n184;
n218<= n29 AND n217;
n221<= n11 AND n220;
n240<= d_in(9) AND n239;
n246<= d_in(1) AND n245;
n247<= d_in(5) AND d_in(0);
n249<= n243 AND n248;
n251<= d_in(8) AND n250;
n254<= d_in(2) AND n253;
n259<= d_in(6) AND n258;
n261<= d_in(3) AND n260;
n265<= d_in(2) AND n264;
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n268<= d_in(7) AND n267;
n270<= n11 AND n269;
n272<= d_in(7) AND n271;
n274<= d_in(6) AND n273;
n277<= d_in(2) AND n276;
n280<= d_in(3) AND n279;
n284<= d_in(8) AND n283;
n289<= d_in(3) AND n288;
n294<= d_in(7) AND n293;
n298<= n243 AND n297;
n305<= d_in(8) AND n304;
n317<= n11 AND n316;
n330<= n11 AND n329;
n335<= d_in(8) AND n334;
n349<= n243 AND n348;
n373<= d_in(7) AND n372;
n380<= n11 AND n379;
n391<= d_in(8) AND n390;
n401<= n243 AND n400;
n451<= n243 AND n450;
d_out(53)<= n452 AND n453;
d_out(52)<= n154 AND n455;
d_out(50)<= n199 AND n460;
d_out(48)<= n242 AND n465;
d_out(47)<= n11 AND n453;
d_out(46)<= n469 AND n470;
d_out(38)<= n22 AND n470;
d_out(37)<= n491 AND n492;
d_out(27)<= n26 AND n492;
d_out(26)<= n369 AND n455;
d_out(16)<= n242 AND n369;
d_out(15)<= n412 AND n460;
d_out(7)<= n199 AND n412;
d_out(6)<= n451 AND n465;
d_out(5)<= n11 AND n491;
d_out(3)<= n22 AND n469;
d_out(1)<= n26 AND n452;
d_out(0)<= n154 AND n451;
n17<= d_in(3) AND d_in(2) AND n16;
n24<= d_in(2) AND d_in(1) AND d_in(0);
n39<= d_in(1) AND d_in(0) AND n31;
n57<= d_in(1) AND n30 AND n51;
n183<= d_in(3) AND n29 AND n108;
n198<= n11 AND n28 AND n197;
n266<= d_in(6) AND d_in(5) AND d_in(1);
n275<= d_in(5) AND d_in(1) AND d_in(0);
n296<= d_in(6) AND d_in(2) AND n281;
n315<= d_in(7) AND d_in(3) AND n314;
n368<= d_in(8) AND n11 AND n367;
n399<= d_in(7) AND d_in(3) AND n324;
d_out(51)<= n14 AND n453 AND n457;
d_out(49)<= n18 AND n453 AND n462;
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d_out(45)<= n110 AND n285 AND n455;
d_out(44)<= n14 AND n452 AND n470;
d_out(43)<= n154 AND n285 AND n460;
d_out(42)<= n18 AND n457 AND n470;
d_out(41)<= n199 AND n285 AND n465;
d_out(40)<= n11 AND n462 AND n470;
d_out(39)<= n242 AND n285 AND n487;
d_out(36)<= n68 AND n326 AND n455;
d_out(35)<= n14 AND n469 AND n492;
d_out(34)<= n110 AND n326 AND n460;
d_out(33)<= n18 AND n452 AND n492;
d_out(32)<= n154 AND n326 AND n465;
d_out(31)<= n11 AND n457 AND n492;
d_out(30)<= n199 AND n326 AND n487;
d_out(29)<= n22 AND n462 AND n492;
d_out(28)<= n242 AND n326 AND n514;
d_out(25)<= n14 AND n491 AND n521;
d_out(24)<= n68 AND n369 AND n460;
d_out(23)<= n18 AND n469 AND n521;
d_out(22)<= n110 AND n369 AND n465;
d_out(21)<= n11 AND n452 AND n521;
d_out(20)<= n154 AND n369 AND n487;
d_out(19)<= n22 AND n457 AND n521;
d_out(18)<= n199 AND n369 AND n514;
d_out(17)<= n26 AND n462 AND n521;
d_out(14)<= n18 AND n491 AND n547;
d_out(13)<= n68 AND n412 AND n465;
d_out(12)<= n11 AND n469 AND n547;
d_out(11)<= n110 AND n412 AND n487;
d_out(10)<= n22 AND n452 AND n547;
d_out(9)<= n154 AND n412 AND n514;
d_out(8)<= n26 AND n457 AND n547;
d_out(4)<= n68 AND n451 AND n487;
d_out(2)<= n110 AND n451 AND n514;
n63<= d_in(1) AND d_in(0) AND n30 AND n31;
n95<= d_in(2) AND d_in(1) AND n30 AND n31;
n109<= d_in(3) AND n28 AND n29 AND n108;
n278<= d_in(6) AND d_in(5) AND d_in(1) AND d_in(0);
n282<= d_in(7) AND d_in(6) AND d_in(2) AND n281;
n325<= d_in(8) AND d_in(7) AND d_in(3) AND n324;
n48<= d_in(2) AND d_in(1) AND d_in(0) AND n30 AND n31;
n411<= d_in(8) AND d_in(7) AND d_in(3) AND n11 AND n314;
n98<= d_in(2) AND d_in(1) AND d_in(0) AND n29 AND n30 AND n31;
n151<= d_in(3) AND d_in(2) AND d_in(1) AND n29 AND n30 AND n31;
n241<= d_in(3) AND d_in(2) AND d_in(1) AND n11 AND n28 AND n29 AND n30

AND n31;
n12<= d_in(2) OR d_in(1);
n14<= n11 OR n13;
n16<= d_in(1) OR d_in(0);
n18<= n11 OR n17;
n21<= d_in(3) OR d_in(2);
n25<= d_in(3) OR n24;
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n33<= d_in(0) OR n32;
n44<= d_in(1) OR n31;
n46<= n43 OR n45;
n51<= d_in(0) OR n31;
n61<= n30 OR n60;
n64<= n62 OR n63;
n66<= n59 OR n65;
n96<= n94 OR n95;
n108<= n55 OR n57;
n152<= n150 OR n151;
n154<= n134 OR n153;
n163<= d_in(1) OR n53;
n197<= n97 OR n98;
n199<= n185 OR n198;
n217<= n43 OR n164;
n239<= n67 OR n221;
n242<= n240 OR n241;
n245<= d_in(5) OR d_in(0);
n258<= n246 OR n247;
n264<= d_in(6) OR n246;
n267<= n265 OR n266;
n276<= n274 OR n275;
n281<= d_in(5) OR d_in(1);
n283<= n280 OR n282;
n314<= n254 OR n259;
n316<= n305 OR n315;
n324<= n277 OR n278;
n367<= n261 OR n268;
n369<= n349 OR n368;
n412<= n401 OR n411;
n450<= n270 OR n284;
n37<= d_in(1) OR d_in(0) OR n31;
n42<= d_in(1) OR n30 OR n31;
n54<= n30 OR n52 OR n53;
n58<= n29 OR n55 OR n57;
n68<= n34 OR n50 OR n67;
n93<= n36 OR n38 OR n39;
n99<= n87 OR n97 OR n98;
n110<= n81 OR n100 OR n109;
n149<= n41 OR n47 OR n48;
n184<= n166 OR n174 OR n183;
n253<= d_in(6) OR d_in(1) OR n247;
n260<= d_in(7) OR n254 OR n259;
n269<= n251 OR n261 OR n268;
n273<= d_in(5) OR d_in(1) OR d_in(0);
n279<= n272 OR n277 OR n278;
n285<= n249 OR n270 OR n284;
n326<= n298 OR n317 OR n325;
n390<= n289 OR n294 OR n296;
n400<= n380 OR n391 OR n399;
n35<= d_in(1) OR d_in(0) OR n30 OR n31;
n40<= n29 OR n36 OR n38 OR n39;
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n49<= n28 OR n41 OR n47 OR n48;
n86<= d_in(3) OR n29 OR n43 OR n45;
n133<= n11 OR n59 OR n65 OR n117;
n173<= d_in(3) OR n62 OR n63 OR n75;
n220<= n28 OR n41 OR n48 OR n218;
n271<= d_in(6) OR d_in(5) OR d_in(2) OR d_in(1);
n293<= d_in(6) OR d_in(2) OR n246 OR n247;
n304<= d_in(7) OR d_in(3) OR n265 OR n266;
n348<= n280 OR n282 OR n330 OR n335;
n74<= d_in(2) OR d_in(1) OR d_in(0) OR n30 OR n31;
n165<= d_in(3) OR n28 OR n29 OR n43 OR n164;
n288<= d_in(7) OR d_in(6) OR d_in(5) OR d_in(2) OR d_in(1);
n297<= d_in(8) OR n11 OR n289 OR n294 OR n296;
n372<= d_in(6) OR d_in(5) OR d_in(2) OR d_in(1) OR d_in(0);
n379<= d_in(8) OR d_in(3) OR n265 OR n266 OR n373;
n80<= d_in(3) OR n11 OR n28 OR n62 OR n63 OR n75;
n334<= d_in(7) OR d_in(6) OR d_in(3) OR d_in(2) OR n246 OR n247;
n116<= d_in(3) OR d_in(2) OR d_in(1) OR d_in(0) OR n29 OR n30 OR n31;
n250<= d_in(7) OR d_in(6) OR d_in(5) OR d_in(3) OR d_in(2) OR d_in(1)

OR d_in(0);
n32<= d_in(3) OR d_in(2) OR d_in(1) OR n11 OR n28 OR n29 OR n30 OR n31;
n248<= d_in(8) OR d_in(7) OR d_in(6) OR d_in(3) OR d_in(2) OR n11 OR

n246 OR n247;
n329<= d_in(8) OR d_in(7) OR d_in(6) OR d_in(5) OR d_in(3) OR d_in(2)

OR d_in(1) OR d_in(0);
END arch_network1;
CONFIGURATION conf_network1 OF network1 IS

FOR arch_network1
END FOR;

END conf_network1;

11.4 Appendix D – VHDL model of sine wave ROM

11.4.1 SIN_ROM.CPP

/* This program generates the VHDL model of the internal look-up table
used by tier1.
*/
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <process.h>
#include <string.h>
#include <conio.h>
#define AMPL 255
#define N_STEPS 64
#define FileName “c:\\andrei\\sin_rom.vhd”
const int upper_index=((int)floor(log(N_STEPS-1)/log(2)));
void write_header(ofstream& f)
{

f<<“LIBRARY IEEE;”<<endl;
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f<<“USE IEEE.std_logic_1164.ALL;”<<endl;
f<<“USE IEEE.std_logic_unsigned.ALL;”<<endl<<endl;
f<<“ENTITY sin_rom IS”<<endl;
f<<“ PORT(“<<endl;
f<<“ A: IN std_logic_vector(“<<upper_index;
f<<“ DOWNTO 0);”<<endl;
f<<“ DO: OUT std_logic_vector(2 DOWNTO 0));”<<endl;
f<<“END sin_rom;”<<endl<<endl;
f<<“ARCHITECTURE sin_rom_arch OF sin_rom IS”<<endl;
f<<“ TYPE mem_data IS ARRAY (0 TO “<<(pow(2,upper_index+1)-1);
f<<“) OF std_logic_vector(2 downto 0);”<<endl;
f<<“ constant VD: mem_data :=”<<endl<<“ (“;

}
void write_end(ofstream& f)
{

f<<“BEGIN”<<endl;
f<<“  PROCESS(A)”<<endl;
f<<“  begin”<<endl;
f<<“ DO<=VD(conv_integer(A));”<<endl;
f<<“ END PROCESS;”<<endl;
f<<“END sin_rom_arch;”;

}
void main(void)
{

clrscr();
ofstream f;
int sample;
double step=M_PI/2.0/N_STEPS;
int sum=-AMPL,max=0;
f.open(FileName,ios::out);
if(f.fail())
{

cout<<“Error:The file could not be opened”<<endl;
exit(1);

}
write_header(f);
for(int i=0;i<N_STEPS;i++)
{

sample=floor(AMPL*sin(-M_PI_2+(i+1)*step)-sum+0.5);
if(max<sample)

max=sample;
sum+=sample;
cout<<sample<<endl;
switch(sample)
{

case 0: f<<“ (‘0’,‘0’,‘0’)”;
if (i<N_STEPS-1)

f<<“,”<<endl;
break;

case 1: f<<“ (‘0’,‘0’,‘1’)”;
if (i<N_STEPS-1)

f<<“,”<<endl;
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break;
case 2: f<<“ (‘0’,‘1’,‘0’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

break;
case 3: f<<“ (‘0’,‘1’,‘1’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

break;
case 4: f<<“ (‘1’,‘0’,‘0’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

break;
case 5: f<<“ (‘1’,‘0’,‘1’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

break;
case 6: f<<“ (‘1’,‘1’,‘0’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

break;
default: f<<“ (‘1’,‘1’,‘1’)”;

if (i<N_STEPS-1)
f<<“,”<<endl;

}
}
f<<“);”<<endl;
write_end(f);
f.close();

}

11.5 Appendix E – VHDL code for simulation

Plant models for simulation

11.5.1 Generator and rectifier model

—— File: Genrect.vhd
—— Model of Synchronous Generator-Rectifier system.
—— Steady state model of generator-rectifier system
—— is derived from the equivalent circuit model of synchronous generators.
library ieee;
use ieee.std_logic_1164.all;
use ieee.math_real.all;
entity Genrect is

port (
—— inputs

 n : in REAL;
Ifield : in REAL;
Idc : in REAL;
theta : in REAL;
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CLK : in STD_LOGIC;
—— outputs

Vph : out REAL;
Vdc : out REAL;
torque : out REAL);

end Genrect;
architecture Genrect_arc of Genrect is
constant PI :REAL:=3.1416;
constant KG_CONST :REAL:=4.7997;
constant R_CONST :REAL:=0.0015;
constant X_CONST :REAL:=1.0000;
constant RECT1_CONST :REAL:=0.8165;
constant RECT2_CONST :REAL:=1.3500;
—— Star Configuration
constant YD_CURR :REAL:=1.0000;
constant YD_VOLT :REAL:=1.7320;
begin
—— REM: Architecture is Synchronous and Sequential
GENREC_PROCESS:
process(CLK)

variable Ei_VAR : REAL;
variable Iph_VAR, Vph_VAR : REAL;
variable torque_VAR : REAL;
variable delta_VAR : REAL;

begin
if (CLK‘event and CLK=’1’) then

—— Avoid division by zero when n=0.0
if (n=0.0) then

—— Assign output signals
—— No speed -> No voltage
Vph <= 0.0;
Vdc <= 0.0;
torque<=50.0;

else
Ei_VAR := KG_CONST * n * Ifield;
Iph_VAR := RECT1_CONST * YD_CURR * Idc;
delta_VAR := arcsin( (Iph_VAR/Ei_VAR) * (X_CONST*cos(theta) +

R_CONST*sin(theta)) );
Vph_VAR := Ei_VAR*cos(delta_VAR) + Iph_VAR*(X_CONST*sin(theta) -

R_CONST*cos(theta) );
—— Assign output signals

Vph <= Vph_VAR;
Vdc <= YD_VOLT * RECT2_CONST * Vph_VAR;
torque<=(6.0*PI*Vph_VAR*Iph_VAR*cos(theta))/n;

end if;
end if;
end process;
end Genrect_arc;
configuration Genrect_conf1 of Genrect is

for Genrect_arc
end for;

end Genrect_conf1;
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11.5.2 Diesel engine model

—— File: Engine.vhd
—— Diesel Engine Model Based on linearised torque-speed characteristics.
library ieee;
use ieee.MATH_REAL.all;
use ieee.std_logic_1164.all;
entity Engine is

port (
 —— inputs
 TL : in REAL;
 Q : in REAL;
 Period : in REAL;
 CLK : in STD_LOGIC;
 —— output
 Te : out REAL;
 Nout : out REAL);

end Engine;
architecture Engine_arc of Engine is

signal Nz_SIG : REAL:=0.0;
constant A_CONST :REAL:= 0.9;
constant B_CONST :REAL:= 50.53;
—— Total inertia
constant J_CONST :REAL:= 10.0;

begin
—— REM Architecture is Synchronous and Sequential
ENGINE_PROCESS:

process(CLK)
variable Te_VAR :REAL:=0.0;
variable N_VAR :REAL:=0.0;
variable TL_VAR :REAL:=0.0;

begin
if (CLK’event and CLK=‘1’) then
TL_VAR := TL;
Te_VAR := (B_CONST*Q)-(A_CONST*Nz_SIG);
N_VAR := (((Te_VAR-TL_VAR)/J_CONST)*Period)+Nz_SIG;

—— Assign output/signal with MAX/MIN limit
if (N_VAR > -5000.0 or N_VAR < 5000.0) then

Nz_SIG <= N_VAR;
Nout <= N_VAR;

elsif (N_VAR < -5000.0) then
Nz_SIG <= -5000.0;
Nout <= -5000.0;

elsif (N_VAR > 5000.0) then
Nz_SIG <= 5000.0;
Nout <= 5000.0;

end if;
if (Te_VAR > -5000.0 or Te_VAR < 5000.0) then

Te <= Te_VAR;
elsif (Te_VAR < -5000.0) then

Te <= -5000.0;
elsif (Te_VAR > 5000.0) then

Te <= 5000.0;



360 Neural and Fuzzy Logic Control of Drives and Power Systems

end if;
end if;

end process;
end Engine_arc;
configuration Engine_conf1 of Engine is

for Engine_arc
end for;

end Engine_conf1;

Fuzzy logic controller

11.5.3 Input interface

—— File: Interface1.vhd
—— Part of Fuzzy Logic Controller
—— Simulation Version
library ieee;
use ieee.std_logic_1164.all;
entity Interface1 is

port (
CLK :in STD_LOGIC;
Vdc :in INTEGER;
Vref :in INTEGER;
x1 :out INTEGER;
x2 :out INTEGER);

end Interface1;
architecture Interface1_arc of Interface1 is
begin

LATCH_PROCESS:
process(CLK)
variable NOW_VAR:INTEGER:=0;
variable PAST_VAR:INTEGER:=0;
variable error:INTEGER:=0;
variable DIFF :INTEGER:=0;
begin
if CLK’event and CLK=‘1’ then
—— error
error:= (Vdc-Vref)/3;
—— x1 -> (x1, x2)
PAST_VAR:=NOW_VAR;
NOW_VAR:=error;
—— Output Assignment
if (NOW_VAR<=(-127)) then

x1<=(-127);
elsif (NOW_VAR>=128) then

x1<=128;
else

x1<=NOW_VAR;
end if;
DIFF:= NOW_VAR-PAST_VAR;
if (DIFF>=30) then
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x2<=100;
elsif (DIFF<=-30) then

x2<=-100;
else

x2<=DIFF*3;
end if;

x2<=0;
end if;
end process;

end Interface1_arc;
configuration Interface1_conf1 of Interface1 is

for Interface1_arc
end for;

end Interface1_conf1;

11.5.4 Fuzzifier

—— File: Fuzzify.vhd
—— Fuzzifier
—— Part of Fuzzy Logic Controller
—— Simulation Version
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity Fuzzify is

port (
—— inputs
x1: in INTEGER range -127 to 128;
x2: in INTEGER range -127 to 128;
—— fuzzy sets for x1
B1_1: out INTEGER range 0 to 128;
B1_2: out INTEGER range 0 to 128;
B1_3: out INTEGER range 0 to 128;
B1_4: out INTEGER range 0 to 128;
B1_5: out INTEGER range 0 to 128;
—— fuzzy sets for x2
B2_1: out INTEGER range 0 to 128;
B2_2: out INTEGER range 0 to 128;
B2_3: out INTEGER range 0 to 128;
B2_4: out INTEGER range 0 to 128;
B2_5: out INTEGER range 0 to 128);

end Fuzzify;
architecture Fuzzify_arc of Fuzzify is

constant a1:INTEGER:=-60;
constant b1:INTEGER:=-10;
constant a2:INTEGER:=-60;
constant b2:INTEGER:=-10;
constant c2:INTEGER:=0;
constant a3:INTEGER:=-10;
constant b3:INTEGER:=0;
constant c3:INTEGER:=10;
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constant a4:INTEGER:=0;
constant b4:INTEGER:=10;
constant c4:INTEGER:=60;
constant a5:INTEGER:=10;
constant b5:INTEGER:=60;

begin
—— Concurrent Architechture

——| Fuzzify input x1 |——
—— 1. Very Small
B1_1 <= 100 when x1<=a1 else(100*(x1-b1))/(a1-b1)when(x1>a1 and x1<=b1)else

0;
—— 2. Small
B1_2 <= (100*(x1-a2))/(b2-a2) when (x1>=a2 and x1<=b2) else

(100*(x1-c2))/(b2-c2) when (x1>b2 and x1<=c2) else 0;
—— 3. Optimum
B1_3 <= (100*(x1-a3))/(b3-a3) when (x1>=a3 and x1<=b3) else

(100*(x1-c3))/(b3-c3) when (x1>b3 and x1<=c3) else 0;
—— 4. Big
B1_4 <= (100*(x1-a4))/(b4-a4) when (x1>=a4 and x1<=b4) else

(100*(x1-c4))/(b4-c4) when (x1>b4 and x1<=c4) else 0;
—— 5. Very Big
B1_5 <= 0 when x1<=a5 else

(100*(x1-b5))/(a5-b5) when (x1>a5 and x1<b5) else 100;
——| Fuzzify input x2 |——
—— 1. Very Small
B2_1 <= 100 when x2<=a1 else

 (100*(x2-b1))/(a1-b1) when (x2>a1 and x2<=b1) else 0;
—— 2. Small
B2_2 <= (100*(x2-a2))/(b2-a2) when (x2>=a2 and x2<=b2) else

(100*(x2-c2))/(b2-c2) when (x2>b2 and x2<=c2) else 0;
—— 3. Optimum
B2_3 <= (100*(x2-a3))/(b3-a3) when (x2>=a3 and x2<=b3) else

(100*(x2-c3))/(b3-c3) when (x2>b3 and x2<=c3) else 0;
—— 4. Big
B2_4 <= (100*(x2-a4))/(b4-a4) when (x2>=a4 and x2<=b4) else

(100*(x2-c4))/(b4-c4) when (x2>b4 and x2<=c4) else 0;
—— 5. Very Big

B2_5 <= 0 when x2<=a5 else
(100*(x2-b5))/(a5-b5) when (x2>a5 and x2<b5) else 100;

end Fuzzify_arc;
configuration Fuzzify_conf1 of Fuzzify is

for Fuzzify_arc
end for;

end Fuzzify_conf1;

11.5.5 Rule base and inference engine

—— File: Infer.vhd
—— Rule base and Inference Engine
—— Part of Fuzzy Logic Controller
—— Simulation Version
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library ieee;
use ieee.std_logic_1164.all;
entity Infer is

port (
CLK: in STD_LOGIC;

—— Inputs
B1_1: in INTEGER range 0 to 128;
B1_2: in INTEGER range 0 to 128;
B1_3: in INTEGER range 0 to 128;
B1_4: in INTEGER range 0 to 128;
B1_5: in INTEGER range 0 to 128;
B2_1: in INTEGER range 0 to 128;
B2_2: in INTEGER range 0 to 128;
B2_3: in INTEGER range 0 to 128;
B2_4: in INTEGER range 0 to 128;
B2_5: in INTEGER range 0 to 128;

—— Outputs
D1: out INTEGER range 0 to 128;
D2: out INTEGER range 0 to 128;
D3: out INTEGER range 0 to 128;
D4: out INTEGER range 0 to 128;
D5: out INTEGER range 0 to 128;
D6: out INTEGER range 0 to 128;
D7: out INTEGER range 0 to 128;
D8: out INTEGER range 0 to 128;
D9: out INTEGER range 0 to 128);

end Infer;
architecture Infer_arc of Infer is
begin
Sequential:
process(CLK)

variable c1,c2,c3,c4,c5: INTEGER range 0 to 128;
variable c6,c7,c8,c9,c10: INTEGER range 0 to 128;
variable c11,c12,c13,c14,c15: INTEGER range 0 to 128;
variable c16,c17,c18,c19,c20: INTEGER range 0 to 128;
variable c21,c22,c23,c24,c25: INTEGER range 0 to 128;

begin
—— Fuzzy Inference Engine —— Ci = min(U1_x,U2_y)
if B1_1 < B2_1 then c1:=B1_1;
else c1:=B2_1;
end if;

if B1_1 < B2_2 then c2:=B1_1;
else c2:=B2_2;
end if;

if B1_1 < B2_3 then c3:=B1_1;
else c3:=B2_3;
end if;

if B1_1 < B2_4 then c4:=B1_1;
else c4:=B2_4;
end if;

if B1_1 < B2_5 then c5:=B1_1;
else c5:=B2_5;
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end if;
if B1_2 < B2_1 then c6:=B1_2;

else c6:=B2_1;
end if;

if B1_2 < B2_2 then c7:=B1_2;
else c7:=B2_2;
end if;

if B1_2 < B2_3 then c8:=B1_2;
else c8:=B2_3;
end if;

if B1_2 < B2_4 then c9:=B1_2;
else c9:=B2_4;
end if;

if B1_2 < B2_5 then c10:=B1_2;
else c10:=B2_5;
end if;

if B1_3 < B2_1 then c11:=B1_3;
else c11:=B2_1;
end if;

if B1_3 < B2_2 then c12:=B1_3;
else c12:=B2_2;
end if;

if B1_3 < B2_3 then c13:=B1_3;
else c13:=B2_3;
end if;

if B1_3 < B2_4 then c14:=B1_3;
else c14:=B2_4;
end if;

if B1_3 < B2_5 then c15:=B1_3;
else c15:=B2_5;
end if;

if B1_4 < B2_1 then c16:=B1_4;
else c16:=B2_1;
end if;

if B1_4 < B2_2 then c17:=B1_4;
else c17:=B2_2;
end if;

if B1_4 < B2_3 then c18:=B1_4;
else c18:=B2_3;
end if;

if B1_4 < B2_4 then c19:=B1_4;
else c19:=B2_4;
end if;
if B1_4 < B2_5 then c20:=B1_4;
else c20:=B2_5;
end if;
if B1_5 < B2_1 then c21:=B1_5;
else c21:=B2_1;
end if;
if B1_5 < B2_2 then c22:=B1_5;
else c22:=B2_2;
end if;
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if B1_5 < B2_3 then c23:=B1_5;
else c23:=B2_3;
end if;
if B1_5 < B2_4 then c24:=B1_5;
else c24:=B2_4;
end if;
if B1_5 < B2_5 then c25:=B1_5;
else c25:=B2_5;
end if;

—— 25 Fuzzy Rules -> 9 Fuzzy Sets (Get MAX) ——
—— Negative Very Big
D1 <= c25;
—— Negative Big
if ( c20=0 and c24=0 ) then

D2<= 0;
elsif (c20>=c24) then

D2<=c20;
else

D2<=c24;
end if;
—— Negative
if (c15=0 and c19=0 and c23=0) then D3<=0;
elsif (c15>=c19 and c15>=c23) then D3<=c15;
elsif (c19>=c15 and c19>=c23) then D3<=c19;
else
D3<=c23;
end if;
—— Negative Small
if (c10=0 and c14=0 and c18=0 and c22=0) then D4<=0;
elsif (c10>=c14 and c10>=c18 and c10>=c22)then D4<=c10;
elsif (c14>=c10 and c14>=c18 and c14>=c22)then D4<=c14;
elsif (c18>=c10 and c18>=c14 and c18>=c22) then D4<=c18;
else D4<=c22;
end if;
—— Zero
if (c5 =0 and c9 =0 and c13=0 and c17=0 and c21=0)then D5<=0;
elsif (c5>=c9 and c5>=c13 and c5>=c17 and c5>=c21)then D5<=c5;
elsif (c9>=c5 and c9>=c13 and c9>=c17 and c9>=c21)then D5<=c9;
elsif (c13>=c5 and c13>=c9 and c13>=c17 and c13>=c21)then D5<=c13;
elsif (c17>=c5 and c17>=c9 and c17>=c13 and c17>=c21)then D5<=c17;
else D5<=c21;
end if;
—— Positive Small
if (c4 =0 and c8 =0 and c12=0 and c16=0) then D6<=0;
elsif (c4 >=c8 and c4 >=c12 and c4 >=c16) then D6<=c4;
elsif (c8 >=c4 and c8 >=c12 and c8 >=c16) then D6<=c8;
elsif (c12>=c4 and c12>=c8 and c12>=c16) then D6<=c12;
else D6<=c16;
end if;

—— Positive
if (c3 =0 and c7 =0 and c11=0) then D7<=0;
elsif (c3 >=c7 and c3 >=c11) then D7<=c3;
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elsif (c7 >=c3 and c7 >=c11) then D7<=c7;
else D7<=c11;
end if;

—— Positive Big
if (c2=0 and c6=0) then D8<=0;
elsif (c2>=c6) then D8<=c2;
else D8<=c6;
end if;

—— Positive Very Big
D9 <= c1;

end process;
end Infer_arc;
configuration Infer_conf1 of Infer is

for Infer_arc
end for;

end Infer_conf1;

11.5.6 Defuzzifier and output interface

—— File: Defuzz.vhd
—— Defuzzifier and Output Interface
—— Part of Fuzzy Logic Controller
—— Simulation Version
library ieee;
use ieee.std_logic_1164.all;
entity Defuzz is

port (
CLK: in STD_LOGIC;

D1: in INTEGER range 0 to 128;
D2: in INTEGER range 0 to 128;
D3: in INTEGER range 0 to 128;
D4: in INTEGER range 0 to 128;
D5: in INTEGER range 0 to 128;
D6: in INTEGER range 0 to 128;
D7: in INTEGER range 0 to 128;
D8: in INTEGER range 0 to 128;
D9: in INTEGER range 0 to 128;

—— Crisp control signal
U: out INTEGER);

end Defuzz;
architecture Defuzz_arc of Defuzz is

constant E1: INTEGER:=-4;
constant E2: INTEGER:=-3;
constant E3: INTEGER:=-2;
constant E4: INTEGER:=-1;
constant E5: INTEGER:=0;
constant E6: INTEGER:=1;
constant E7: INTEGER:=2;
constant E8: INTEGER:=3;
constant E9: INTEGER:=4;

begin
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—— Defuzz Engine : Weighted average method
DEFUZZ_PROCESS:
process(CLK)

variable Dividend :INTEGER:=0;
variable Divisor :INTEGER:=1;
variable Y :INTEGER;
variable Uz :INTEGER:=20;
variable U_var :INTEGER;

begin
if CLK’event and CLK=‘1’ then
Dividend:=(E1*D1)+(E2*D2)+(E3*D3)+(E4*D4)+(E5*D5)+(E6*D6)

+(E7*D7)+(E8*D8)+(E9*D9);
Divisor:=(D1+D2+D3+D4+D5+D6+D7+D8+D9);

—— To avoid division by zero
if Divisor=0 then

Y:=0;
else

—— Definition of crisp output
Y := (Dividend/Divisor);

end if;
Ys<=Y;
—— Output interface

U_var :=Uz+Y;
Uz :=U_var;

if (U_VAR<=(-254)) then
U<=(-254);

elsif (U_VAR>=255) then
U<=255;

else
U<=U_var;

end if;
end if;
end process;
end Defuzz_arc;
configuration Defuzz_conf1 of Defuzz is

for Defuzz_arc
end for;

end Defuzz_conf1;

11.5.7 Top hierarchy of FLC

—— File: Controller.vhd
—— Binds all the components together
—— Simulation Version
library ieee;
use ieee.std_logic_1164.all;
entity Controller is

port (
CLK :in STD_LOGIC;
Vdc :in INTEGER;
Vref :in INTEGER;
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U :out INTEGER);
end Controller;
architecture Controller_arc of Controller is
component Interface1

port (
CLK :in STD_LOGIC;
Vdc :in INTEGER;
Vref :in INTEGER;
x1 :out INTEGER;
x2 :out INTEGER);

end component Interface1;
component Fuzzify

port (
—— inputs
x1: in INTEGER range -127 to 128;
x2: in INTEGER range -127 to 128;
—— fuzzy sets for x1
B1_1: out INTEGER range 0 to 128;
B1_2: out INTEGER range 0 to 128;
B1_3: out INTEGER range 0 to 128;
B1_4: out INTEGER range 0 to 128;
B1_5: out INTEGER range 0 to 128;
—— fuzzy sets for x2
B2_1: out INTEGER range 0 to 128;
B2_2: out INTEGER range 0 to 128;
B2_3: out INTEGER range 0 to 128;
B2_4: out INTEGER range 0 to 128;
B2_5: out INTEGER range 0 to 128);

end component Fuzzify;
component Infer

port (
CLK: in STD_LOGIC;
—— Inputs

B1_1: in INTEGER range 0 to 128;
B1_2: in INTEGER range 0 to 128;
B1_3: in INTEGER range 0 to 128;
B1_4: in INTEGER range 0 to 128;
B1_5: in INTEGER range 0 to 128;
B2_1: in INTEGER range 0 to 128;
B2_2: in INTEGER range 0 to 128;
B2_3: in INTEGER range 0 to 128;
B2_4: in INTEGER range 0 to 128;
B2_5: in INTEGER range 0 to 128;

—— Outputs
D1: out INTEGER range -127 to 128;
D2: out INTEGER range -127 to 128;
D3: out INTEGER range -127 to 128;
D4: out INTEGER range -127 to 128;
D5: out INTEGER range -127 to 128;
D6: out INTEGER range -127 to 128;
D7: out INTEGER range -127 to 128;
D8: out INTEGER range -127 to 128;
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D9: out INTEGER range -127 to 128
);

end component Infer;
component Defuzz

port (
CLK: in STD_LOGIC;
D1: in INTEGER range -127 to 128;
D2: in INTEGER range -127 to 128;
D3: in INTEGER range -127 to 128;
D4: in INTEGER range -127 to 128;
D5: in INTEGER range -127 to 128;
D6: in INTEGER range -127 to 128;
D7: in INTEGER range -127 to 128;
D8: in INTEGER range -127 to 128;
D9: in INTEGER range -127 to 128;

—— Crisp control signal
U: out INTEGER);

end component Defuzz;
signal x1_SIG, x2_SIG : INTEGER;
signal SB1_1,SB1_2,SB1_3,SB1_4,SB1_5 : INTEGER range 0 to 128;
signal SB2_1,SB2_2,SB2_3,SB2_4,SB2_5 : INTEGER range 0 to 128;
signal D1_SIG,D2_SIG,D3_SIG : INTEGER range -127 to 128;
signal D4_SIG,D5_SIG,D6_SIG : INTEGER range -127 to 128;
signal D7_SIG,D8_SIG,D9_SIG : INTEGER range -127 to 128;

begin
Interface1_U: Interface1 port map(CLK=>CLK, Vdc=>Vdc, Vref=>Vref,

x1=>x1_SIG, x2=>x2_SIG);
Fuzzify_U: Fuzzify port map(x1=>x1_SIG, x2=>x2_SIG,

B1_1=>SB1_1,B1_2=>SB1_2, B1_3=>SB1_3, B1_4=>SB1_4,
B1_5=>SB1_5,B2_1=>SB2_1, B2_2=>SB2_2, B2_3=>SB2_3, B2_4=>SB2_4,
B2_5=>SB2_5);

Infer_U: Infer port map(CLK=>CLK, B1_1=>SB1_1, B1_2=>SB1_2, B1_3=>SB1_3,
B1_4=>SB1_4, B1_5=>SB1_5, B2_1=>SB2_1, B2_2=>SB2_2, B2_3=>SB2_3,
B2_4=>SB2_4, B2_5=>SB2_5,
—— Outputs D1=>D1_SIG,D2=>D2_SIG,D3=>D3_SIG, D4=>D4_SIG, D5=>D5_SIG,
D6=>D6_SIG, D7=>D7_SIG,D8=>D8_SIG,D9=>D9_SIG);

Defuzz_U:Defuzz port map(
—— Inputs
CLK=>CLK, D1=>D1_SIG, D2=>D2_SIG, D3=>D3_SIG, D4=>D4_SIG, D5=>D5_SIG,
D6=>D6_SIG, D7=>D7_SIG,D8=>D8_SIG,D9=>D9_SIG,
—— Output
U=>u);

end Controller_arc;
configuration Controller_conf1 of Controller is

for Controller_arc
for Interface1_U: Interface1 use configuration work.Interface1_conf1;
end for;
for Fuzzify_U:Fuzzify use configuration work.Fuzzify_conf1;
end for;
for Infer_U:Infer use configuration work.Infer_conf1;
end for;
for Defuzz_U:Defuzz use configuration work.Defuzz_conf1;
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end for;
end for;

end Controller_conf1;

Test-benches and simulations

11.5.8 Delay

—— File: Delay.vhd
—— Part of Simulation component
library ieee;
use ieee.std_logic_1164.all;
entity delay is

port (
Tin: in REAL;
Uin: in REAL;
MUX: in STD_LOGIC;

Uout: out REAL:=2.0;
Tout: out REAL:=10.0);

end delay;
architecture delay_arc of delay is

begin
Tout <= Tin when MUX=‘1’;
Uout <= Uin when MUX=‘1’;

end delay_arc;
configuration delay_conf1 of delay is

for delay_arc
end for;

end delay_conf1;

11.5.9 Simulator

—— File: Sim.vhd
—— Simulation component
—— This test unit comprises:
—— FLC, Engine, Genrect and a delay component
library ieee;
use ieee.math_real.all;
use ieee.std_logic_1164.all;
entity Sim is
port (

—— inputs
CLK1 : in STD_LOGIC;
CLK2 : in STD_LOGIC;
Period : in REAL;
Idc : in REAL;
theta : in REAL;
Ifield : in REAL;
Vref : in INTEGER;

—— outputs
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TE : out REAL;
Vph : out REAL;
Vdc : out REAL);

end Sim;
architecture Sim_arc of Sim is

component Controller
port( CLK :in std_logic;

Vdc :in INTEGER;
Vref:in INTEGER;
U :out INTEGER);

end component;
component Engine
port(

TL : in REAL;
U : in REAL;
CLK : in STD_LOGIC;
Period : in REAL;
TE : out REAL;
N : out REAL);

end component;
component Genrect
port(

N : in REAL;
Ifield : in REAL;
Idc : in REAL;
theta : in REAL;
CLK : in STD_LOGIC;
Vph : out REAL;
Vdc : out REAL;
TG : out REAL);

end component;
component delay
port(

Tin : in REAL;
Uin : in REAL;
MUX : in STD_LOGIC;
Uout : out REAL;
Tout : out REAL);

end component;
—— Controller input flow

signal Vdc_SIG :REAL;
signal Vdc_rSIG :REAL;
signal Vdc_iSIG :INTEGER;

—— Controller output flow
signal U_iSIG :INTEGER;
signal U_rSIG, Uo_SIG :REAL;

—— Torque & Speed signals
signal TL_SIG :REAL :=50.0;
signal TG_SIG :REAL;
signal N_SIG :REAL;

—— Delay element
signal MUX :STD_LOGIC:=‘0’;
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signal UE_SIG :REAL :=2.0;
begin
Controller_U: Controller

port map(
—— Inputs
CLK=>CLK1, Vdc =>Vdc_iSIG, Vref=>Vref,
—— Outputs
U=>U_iSIG);

Engine_U: Engine port map(TL=>TL_SIG,U=>UE_SIG,CLK=>CLK2,Period =>Period,
TE=>TE,N=>N_SIG);
Genrect_U: Genrect
port map(N=>N_SIG, Ifield=>Ifield,Idc=>Idc, theta=>theta, CLK=>CLK2,
Vph=>Vph,Vdc=>Vdc_SIG,TG=>TG_SIG);
delay_U: delay
port map(Tin=>TG_SIG,Uin=>Uo_SIG,MUX=>MUX,Uout=>UE_SIG,Tout

=>TL_SIG);
—— Torque in/out delay to overcome problem
—— caused by propagation of unknown values during the starting transient.

MUX <=’1' after 30ns;
—— error: Normalise
Vdc_rSIG <= Vdc_SIG * 1.0;
—— error: Real-Integer Conversion
Vdc_iSIG <= 2000 when (Vdc_rSIG>2000.0) else
0 when (Vdc_rSIG<0.0) else
INTEGER(Vdc_rSIG);
—— U: Integer-Real Conversion
U_rSIG <= REAL(U_iSIG);
—— UnNormalise U (from -127/128 to 12.7/12.8)
OutputU:
process(CLK1)
variable COUNT_VAR : STD_LOGIC := ‘0’;
variable U_VAR :REAL;
begin
if (CLK1’event and CLK1=‘1’) then
if (COUNT_VAR=‘1’) then

U_VAR := (U_rSIG/10.0);
if (U_VAR>25.5) then

Uo_SIG <= 25.5;
elsif (U_VAR<-25.4) then

Uo_SIG <= -25.4;
else
Uo_SIG <= U_VAR;

end if;
else
—— Initial condition

COUNT_VAR:=‘1’;
Uo_SIG <= 2.0;

end if;
end if;
end process;

—— Assign output Vdc
Vdc <= Vdc_SIG;
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end Sim_arc;
configuration Sim_conf1 of Sim is

for Sim_arc
for Controller_U: Controller use configuration work.Controller_conf1;
end for;
for Engine_U: Engine use configuration work.Engine_conf1;
end for;
for Genrect_U: Genrect use configuration work.Genrect_conf1;
end for;
for delay_U: delay use configuration work.delay_conf1;
end for;

end for;
end Sim_conf1;

11.5.10 Test-bench for ‘Sim’

—— File: TB_Sim.vhd
—— Testbench for Sim
—— Provides the appropriate stimuli and observes the simulated signals
—— Writes the observed values into a text file
library ieee;
use ieee.math_real.all;
use ieee.std_logic_1164.all;
use std.textio.all;
entity TB_Sim is
end TB_Sim;
architecture TB_Sim_arc of TB_Sim is

—— Component declaration of the tested unit
component Sim
port(
——Inputs
CLK1 :in std_logic;
CLK2 :in std_logic;
Period in REAL;
Idc :in REAL;
theta :in REAL;
Ifield :in REAL;
Vref :in INTEGER;
——Outputs
TE :out REAL;
Vph :out REAL;
Vdc :out REAL );
end component;
—— Stimulus signals - signals mapped to the input and inout ports of

tested entity
signal CLK1 : std_logic:=‘1’;
signal CLK2 : std_logic:=‘1’;
signal Period : REAL;
signal Idc : REAL;
signal theta : REAL;
signal Ifield : REAL;
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signal Vref : INTEGER;
—— Observed signals - signals mapped to the output ports of tested

entity
signal TE : REAL;
signal Vph : REAL;
signal Vdc : REAL;
—— Signals for simulation purposes

begin
—— Unit Under Test port map
UUT : Sim

port map(
——Inputs
CLK1 => CLK1,CLK2 => CLK2, Period => Period, Idc => Idc, theta => theta,
Ifield => Ifield, Vref => Vref,
——Outputs
TE => TE, Vph => Vph, Vdc => Vdc );

—— ***Stimulus***——
CLK1 <= not CLK1 after 10ns;
CLK2 <= not CLK2 after 1ns;
—— Period:
Period <= 3.0;
theta <= 0.0;
Ifield <= 2.5;
Vref <= 1000;
Idc <= 25.0,1.0 after 4100ns;

——Write results into file
process (CLK1)

file outfile : text is out
“C:\My Designs\Simulation\src\Results\Further25.txt”;
variable out_line : line;

begin
write(out_line, Vdc);

——write(out_line, “ ”); write(out_line, Idc);
writeline(outfile, out_line);

end process;
end TB_Sim_arc;
configuration TB_Sim_conf1 of TB_Sim is

for TB_Sim_arc
for UUT : Sim
use entity work.Sim(Sim_ARC);
end for;
end for;

end TB_Sim_conf1;

11.6 Appendix F – VHDL code for synthesis

Fuzzy logic controller

11.6.1 Input interface

—— File: Deriv.vhd
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
entity Deriv is

port (
CLK : in STD_LOGIC;
RST : in STD_LOGIC;
Vdc : in std_logic_vector(7 downto 0);
Vref : in std_logic_vector(7 downto 0);
x1: out std_logic_vector(8 downto 0);
x2: out std_logic_vector(8 downto 0));

end Deriv;
architecture Deriv_arc of Deriv is
begin
LATCH_PROCESS:
process(CLK,RST)

variable x: std_logic_vector(8 downto 0);
variable NOW_VAR: std_logic_vector(8 downto 0);
variable PAST_VAR: std_logic_vector(8 downto 0);
variable DIFF: std_logic_vector(8 downto 0);
variable Vdc_var: std_logic_vector(8 downto 0);
variable Vref_var: std_logic_vector(8 downto 0);
variable x_temp: std_logic_vector(8 downto 0);
variable error: std_logic_vector(8 downto 0);

begin ——process
if RST=‘1’ then

NOW_VAR :=“000000000”;
PAST_VAR :=“000000000”;
DIFF:= “000000000”;
x1<= “000000000”;
x2<= “000000000”;

elsif CLK’event and CLK=‘1’ then
——Convert from unsigned to signed
Vdc_var(8):=‘0’;
Vdc_var(7 downto 0):=Vdc;
Vref_var(8):=‘0’;
Vref_var(7 downto 0):=Vref;
——Get Error
error:=Vdc_var-Vref_var;
——x is error*(Gain=3)
x:=error+shl(error,“1”);
——Overflow check
if (error(8) XOR x(8))=‘1’ then
if error(8)=‘1’ then

x:=“110011100”;
else

x:=“001100100”;
end if;
end if;
——Block: x -> x1, x2——
—— Effect immediately
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PAST_VAR:=NOW_VAR;
NOW_VAR:=x;
DIFF:= NOW_VAR-PAST_VAR;
— —x1 is NOW_VAR
x1<=NOW_VAR;
——x2——
x2<=“000000000”;

end if; —— Clock,Reset
end process;
end Deriv_arc;
—— Configuration
configuration Deriv_conf1 of Deriv is

for Deriv_arc
end for;

end Deriv_conf1;

11.6.2 Fuzzifier

—— File: Fuzzify2.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
entity Fuzzify2 is

port (
—— inputs
CLK : in STD_LOGIC;
RST : in STD_LOGIC;
x1 : in std_logic_vector(8 downto 0);
x2 : in std_logic_vector(8 downto 0);
—— address
ADR1 : out std_logic_vector(1 downto 0);
ADR2 : out std_logic_vector(1 downto 0);
—— fuzzy sets for x1 (data)
B1_A : out std_logic_vector(8 downto 0);
B1_B : out std_logic_vector(8 downto 0);
—— fuzzy sets for x2 (data)
B2_A : out std_logic_vector(8 downto 0);
B2_B : out std_logic_vector(8 downto 0);

READY : out std_logic);
end Fuzzify2;
architecture Fuzzify2_arc of Fuzzify2 is

signal temp : std_logic_vector(1 downto 0);
signal temp_A : std_logic_vector(8 downto 0);
signal temp_B : std_logic_vector(8 downto 0);
signal R_sig : std_logic;

begin
—— Sequential Architecture (Synchronous)
process(CLK,RST)
constant AA_const:std_logic_vector(8 downto 0): =conv_std_logic_vector

(-60,9);
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constant BB_const:std_logic_vector(8 downto 0): =conv_std_logic_vector
(-10,9);

constant CC_const:std_logic_vector(8 downto 0):=“000000000”;
constant DD_const:std_logic_vector(8 downto 0): =conv_std_logic_

vector(10,9);
constant EE_const:std_logic_vector(8 downto 0): =conv_std_logic_

vector(60,9);
constant hundred: std_logic_vector(8 downto 0):=“001100100”;
constant zero: std_logic_vector(8 downto 0):=“000000000”;

variable dumbs: std_logic_vector(8 downto 0);
variable x: std_logic_vector(8 downto 0);
variable ADR: std_logic_vector(1 downto 0);
variable B_A: std_logic_vector(8 downto 0);
variable B_B: std_logic_vector(8 downto 0);

begin
if RST=‘1’ then

ADR1<=“00”;
ADR2<=“00”;
—— fuzzy sets for x1 (data)
B1_A<= zero;
B1_B<= zero;
—— fuzzy sets for x2 (data)
B2_A<= zero;
B2_B<= zero;

R_sig<=‘1’;
READY<=‘0’;

elsif CLK’event and CLK=‘1’ then
——MUX
if R_sig=‘1’ then

x:=x1;
else

x:=x2;
end if; ——select bit
——| Fuzzify input x (Sequential) |——

if x<=AA_const then
——Zone 0a
ADR:=“00”;
——Very Small(B_1)
B_A:=hundred;
——Small(B_2)
B_B:=zero;

elsif (x>AA_const and x<=BB_const) then
——Zone 0b
ADR:=“00”;
——Very Small(B_1)=2(-x-10)
dumbs:=not(x-“01”)-“01010”;
B_A :=shl(dumbs,“1”);
——Small(B_2)=100-2(-x-10)
B_B:=hundred-B_A;

elsif (x>BB_const and x<=CC_const) then
——Zone1
ADR:=”01";
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——Small(B_2)=x*(-10)=pos_x*10
dumbs:=not(x-“01”);
B_A:=shl(dumbs,“1”)+shl(dumbs,“11”);
——Optimum(B_3)
B_B:=hundred-B_A;

elsif (x>CC_const and x<=DD_const) then
——Zone2
ADR:=”10";
——Optimum(B_3)
dumbs:=shl(x,“1”)+shl(x,“11”);
B_A:=hundred-dumbs;
——Big(B_4)
B_B:=dumbs;

elsif (x>DD_const and x<=EE_const) then
——Zone3a
ADR:=“11”;
——Big(B_4)=100-2(x-10)
dumbs:=x-“01010”;
——Very Big(B_5)
B_B:=shl(dumbs,“1”);
B_A:=hundred-B_B;

else ——(x>EE_const)
——Zone3b
ADR:=“11”;
——Big(B_4)
B_A:=zero;
——Very Big(B_5)
B_B:=hundred;

end if; —— fuzzy sets for x
——Storing of process results

if R_sig=‘1’ then
temp<=ADR;
temp_A<=B_A;
temp_B<=B_B;

READY<=‘0’;
R_sig<=‘0’;

elsif R_sig=‘0’ then
ADR1<=temp;
B1_A<=temp_A;
B1_B<=temp_B;
ADR2<=ADR;
B2_A<=B_A;
B2_B<=B_B;
READY<=‘1’;
R_sig<=‘1’;

end if; ——R_sig
end if; ——CLK,RESET
end process; —— main
end Fuzzify2_arc;
—— Configuration
configuration Fuzzify2_conf1 of Fuzzify2 is

for Fuzzify2_arc
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end for;
end Fuzzify2_conf1;

11.6.3 Inference engine

—— File: Infer.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
entity Infer is

port (
—— Standard Input
CLK : in std_logic;
LOAD: in std_logic;
RST : in std_logic;
—— Inputs
ADR1: in std_logic_vector(1 downto 0);
B1_Ad: in std_logic_vector(8 downto 0);
B1_Bd: in std_logic_vector(8 downto 0);

ADR2: in std_logic_vector(1 downto 0);
B2_Ad: in std_logic_vector(8 downto 0);
B2_Bd: in std_logic_vector(8 downto 0);
—— Outputs
win: out std_logic_vector(3 downto 0);
c1: out std_logic_vector(8 downto 0);
c2: out std_logic_vector(8 downto 0);
c3: out std_logic_vector(8 downto 0);
c4: out std_logic_vector(8 downto 0));

end Infer;
architecture Infer_arc of Infer is
begin
MAIN_PROCESS:
process(CLK,RST)
begin ——process
if RST=‘1’ then

win<=“0000”;
c1<=“000000000”;
c2<=“000000000”;
c3<=“000000000”;
c4<=“000000000”;

elsif CLK’event and CLK=‘1’ then
if LOAD=‘1’ then

——| Fuzzy Inference Engine | Ci=min(B1_a,B2_b)|——
win<=(“00”& ADR1)+ADR2;
——| Mini Fuzzy Inference Engine |——
——:B—>C (min operation)
—— c1:=min(B1_Ad,B2_Ad)

if (B1_Ad<B2_Ad) then
c1<=B1_Ad;

else
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c1<=B2_Ad;
end if;

—— c2:=min(B1_Bd,B2_Ad)
if (B1_Bd<B2_Ad) then

c2<=B1_Bd;
else

c2<=B2_Ad;
end if;

—— c3:=min(B1_Ad,B2_Bd)
if (B1_Ad<B2_Bd) then

c3<=B1_Ad;
else

c3<=B2_Bd;
end if;

– – c4:=min(B1_Bd,B2_Bd)
if (B1_Bd<B2_Bd) then

c4<=B1_Bd;
else

c4<=B2_Bd;
end if;
end if; ——LOAD

end if; ——RST,CLK
end process;
end Infer_arc;
—— Configuration
configuration Infer_conf1 of Infer is

for Infer_arc
end for;

end Infer_conf1;

11.6.4 Defuzzifier

—— File: Defuzz.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
entity Defuzz is

port (
—— Standard Input
CLK: in std_logic;
RST: in std_logic;
LOAD: in std_logic;
WIN: in std_logic_vector(3 downto 0);
c1: in std_logic_vector(8 downto 0);
c2: in std_logic_vector(8 downto 0);
c3: in std_logic_vector(8 downto 0);
c4: in std_logic_vector(8 downto 0);

—— Outputs
READY: out std_logic;
divA: out std_logic_vector(13 downto 0);
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divB: out std_logic_vector(8 downto 0));
end Defuzz;
architecture Defuzz_arc of Defuzz is

signal READY_sig: std_logic;
begin
MAIN_PROCESS:
process(CLK,RST)

variable COUNT: std_logic_vector(3 downto 0);
variable DA: std_logic_vector(8 downto 0);
variable DB: std_logic_vector(8 downto 0);
variable DC: std_logic_vector(8 downto 0);
variable VA1: std_logic_vector(13 downto 0);
variable VB1: std_logic_vector(13 downto 0);
variable VC1: std_logic_vector(13 downto 0);
variable VA: std_logic_vector(13 downto 0);
variable VB: std_logic_vector(13 downto 0);
variable VC: std_logic_vector(13 downto 0);
variable SA: std_logic_vector(13 downto 0);
variable SB: std_logic_vector(13 downto 0);
variable SC: std_logic_vector(13 downto 0);

begin ——process
if RST=‘1’ then

divA<=“00000000000000”;
divB<=“000000001”;
READY<=‘1’;
READY_sig<=‘1’;
COUNT:=“0000”;
DA:=“000000000”;
DB:=“000000000”;
DC:=“000000000”;
VA:=“00000000000000”;
VB:=“00000000000000”;
VC:=“00000000000000”;

elsif CLK’event and CLK=‘1’ then
if LOAD=‘1’ and (READY_sig=‘1’ or (COUNT>WIN)) then
COUNT:=“0000”;
——Sample
——DA:=c1
DA:=c1;
—— DB:=max(c2,c3)
if c2>c3 then DB:=c2;
else DB:=c3;
end if;
——DC:=c3
DC:=c4;
——Defuzz: Multiplication
——VA:=DA*POS_40;

VA1:=”00000"&DA;
——SA:=shl(VA1,“1”)+shl(VA1,“11”); ——VA1*10

SA:=VA1;
VA:=shl(SA,[10”); ——SAv*4

——VB:=DB*POS_30;
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VB1:=“00000”&DB;
——SB:=shl(VB1,“1”)+shl(VB1,“11”); ——VB1*10

SB:=VB1;
VB:=shl(SB,“1”)+SB; ——SAc*3

—— VC:=DC*POS_20;
VC1:=“00000”&DC;

—— SC:=shl(VC1,“1”)+shl(VC1,“11”); ——VC1*10
SC:=VC1;
VC:=shl(SC,“1”); ——SCv*2

elsif READY_sig=‘0’ then
COUNT:=COUNT+1;
VA:=VA-SA;
VB:=VB-SB;
VC:=VC-SC;

else
—— LOAD=0, READY_sig=1
—— Do nothing
end if;
——READY,LOAD
if COUNT=WIN then

——Inputs to the divider
divA<=VA+VB+VC;
divB<=DA+DB+DC;
READY_sig<=‘1’;
READY<=‘1’;

else
READY_sig<=‘0’;
READY<=‘0’;

end if; ——WIN=COUNT
end if; ——RST,CLK
end process;
end Defuzz_arc;
—— Configuration
configuration Defuzz_conf1 of Defuzz is

for Defuzz_arc
end for;

end Defuzz_conf1;

11.6.5 Divider

—— File: Divide.vhd
—— Remarks:
—— Part of Fuzzy Logic Controller
—— Implementation Version
—— Includes output interface
—— Output of divider is Y
—— Output of interface is U
—— Overflow limit included
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
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use ieee.std_logic_arith.all;
entity Divider is

port (
—— Standard Input

CLK: in std_logic;
RST: in std_logic;
LOAD: in std_logic;
—— Inputs

divA: in std_logic_vector(13 downto 0);
divB: in std_logic_vector(8 downto 0);

—— Outputs
READY: out std_logic;
U: out std_logic_vector(7 downto 0));

end Divider;
architecture Divider_arc of Divider is

signal READY_sig: std_logic;
begin
MAIN_PROCESS:
process(CLK,RST)

——Variables for divider
variable SIGN: std_logic;
variable divBp: std_logic_vector(13 downto 0);
variable divBn: std_logic_vector(13 downto 0);
variable A: std_logic_vector(13 downto 0);
variable divA_var: std_logic_vector(12 downto 0);
variable Y1_var: std_logic_vector(12 downto 0);
variable Y: std_logic_vector(7 downto 0);
variable U_past: std_logic_vector(7 downto 0);
variable U_var: std_logic_vector(7 downto 0);
variable COUNT: integer range -1 to 11;

begin
if RST=‘1’ then

U<=“01111111”;
U_past:=“01111111”;
READY_sig<=‘1’;
READY<=‘0’;
COUNT:=11;

elsif CLK’event and CLK=’1' then
——Loading new input values and perform first division sequence
——Condition: Load=1 & Ready=1
if LOAD=‘1’ and READY_sig=‘1’ then
——Division by zero check
if divB=“00000000” then

——Avoid division by zero: assign Y=0
Y1_var:=“0000000000000”;
READY<=‘1’;
READY_sig<=‘1’;

else ——divB
——Assign D(+ve) and D(-ve)
divBp:=“00000”&divB;
divBn:=not(divBp)+“00000000000001”;
——Convert SIGNED into UNSIGNED
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SIGN:=divA(13);
if SIGN=‘1’ then

divA_var:=not(divA(12 downto 0))+“01”;
else

divA_var:=divA(12 downto 0);
end if; ——SIGN type conversion
——First division sequence after loading
A(13 downto 1):=“0000000000000”;
A(0):=divA_var(12);
divA_var:=shl(divA_var,“1”);
A:=A+divBn;
Y1_var(12):=not(A(13));
COUNT:=11; ——END First division sequence

end if; ——divB
——Subsequent Division sequence.
——Condition: Load=[don’t care] & Ready=0
elsif (READY_sig=‘0’ and COUNT>0) then
—————————————————————————————————————————————————————————————
—— DIVIDER ——
—— divA: in std_logic_vector(13 downto 0); ——
—— divB: in std_logic_vector(7 downto 0); ——
—— Y: out std_logic_vector(7 downto 0); ——
—— U: out std_logic_vector(7 downto 0); ——

COUNT:=COUNT-1;
A:=shl(A,“1”);
A(0):=divA_var(12);
divA_var:=shl(divA_var,“1”);
if Y1_var(COUNT+1)=‘0’ then

A:=A+divBp;
else

A:=A+divBn;
end if;
Y1_var(COUNT):=not(A(13));

——LOAD=0, READY=1
——No operation
end if; ——LOAD, READY
if COUNT=0 then

——Ready to spit out the answer
——Converts back into SIGNED value (2’s complement)
——Assume that Y2_var’s value does not exceed 8bits(signed)

Y:=Y1_var(7 downto 0);
if SIGN=‘1’ then

—— Y2_var:=not((‘0’&Y1_var)-“01”);
—— Y<=Y2_var(7 downto 0);
——Negative

U_var:=U_Past-Y;
——Set lower limit “00000000”

if U_var>U_past then
U_past:=“00000000”;
U<=“00000000”;

else
U_past:=U_var;
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U<=U_var;
end if;

else
——Positive

U_var:=U_Past+Y;
——Set upper limit “11111111”

if U_var<U_past then
U_past:=“11111111”;
U<=“11111111”;

else
U_past:=U_var;
U<=U_var;

end if;
end if; ——SIGN
READY<=‘1’;
READY_sig<=‘1’;

else ——COUNT
——Not ready: condition: COUNT != 0
READY<=‘0’;
READY_sig<=‘0’;

end if; ——COUNT
end if; ——CLK,RST
end process;
end Divider_arc;
—— Configuration
configuration Divider_conf1 of Divider is

for Divider_arc
end for;

end Divider_conf1;

11.6.6 Top hierarchy component of FLC

—— File: Control.vhd
—— Remarks: Fuzzy Logic Controller (Top hierarchy component)
—— Contains Deriv, Fuzzify2, Infer, Defuzz, Divider
—— Modified to fit 9bits
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use ieee.std_logic_arith.all;
entity Control is

port (
—— inputs

CLK1: in std_logic;
CLK2: in std_logic;
RST: in std_logic;
Vdc: in std_logic_vector(7 downto 0);
Vref: in std_logic_vector(7 downto 0);
——Test Probes
——x1: out std_logic_vector(8 downto 0);
——x2: out std_logic_vector(8 downto 0);
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—— Outputs
U: out std_logic_vector(7 downto 0);
READY: out std_logic);

end Control;
architecture Control_arc of Control is
component Deriv

port(
CLK: in STD_LOGIC;
RST: in STD_LOGIC;
Vdc: in std_logic_vector(7 downto 0);
Vref: in std_logic_vector(7 downto 0);

x1: out std_logic_vector(8 downto 0);
x2: out std_logic_vector(8 downto 0));

end component;
component Fuzzify2

port(
—— inputs
CLK: in STD_LOGIC;
RST: in STD_LOGIC;
x1: in std_logic_vector(8 downto 0);
x2: in std_logic_vector(8 downto 0);
—— address
ADR1: out std_logic_vector(1 downto 0);
ADR2: out std_logic_vector(1 downto 0);
—— fuzzy sets for x1 (data)
B1_A: out std_logic_vector(8 downto 0);
B1_B: out std_logic_vector(8 downto 0);
—— fuzzy sets for x2 (data)
B2_A: out std_logic_vector(8 downto 0);
B2_B: out std_logic_vector(8 downto 0);
READY: out std_logic);

end component;
component Infer

port(
—— Standard Input
CLK: in std_logic;
LOAD: in std_logic;
RST: in std_logic;
—— Inputs

ADR1: in std_logic_vector(1 downto 0);
B1_Ad: in std_logic_vector(8 downto 0);
B1_Bd: in std_logic_vector(8 downto 0);
ADR2: in std_logic_vector(1 downto 0);
B2_Ad: in std_logic_vector(8 downto 0);
B2_Bd: in std_logic_vector(8 downto 0);
—— Outputs
win: out std_logic_vector(3 downto 0);
c1: out std_logic_vector(8 downto 0);
c2: out std_logic_vector(8 downto 0);
c3: out std_logic_vector(8 downto 0);
c4: out std_logic_vector(8 downto 0));

end component;
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component Defuzz
port (
—— Standard Input
CLK: in std_logic;
RST: in std_logic;
LOAD: in std_logic;
WIN: in std_logic_vector(3 downto 0);
c1: in std_logic_vector(8 downto 0);
c2: in std_logic_vector(8 downto 0);
c3: in std_logic_vector(8 downto 0);
c4: in std_logic_vector(8 downto 0);
—— Outputs
READY: out std_logic;
divA: out std_logic_vector(13 downto 0);
divB: out std_logic_vector(8 downto 0));

end component;
component Divider

port (
—— Standard Input
CLK: in std_logic;
RST: in std_logic;
LOAD: in std_logic;
—— Inputs

divA: in std_logic_vector(13 downto 0);
divB: in std_logic_vector(8 downto 0);

—— Outputs
READY: out std_logic;
U: out std_logic_vector(7 downto 0));

end component;
——Signal Declaration
signal SIG2_4, SIG4_5: std_logic;
signal x1_sig, x2_sig: std_logic_vector(8 downto 0);
signal adr1_sig, adr2_sig: std_logic_vector(1 downto 0);
signal B1a_sig, B1b_sig, B2a_sig, B2b_sig: std_logic_vector(8 downto 0);
signal c1_sig, c2_sig, c3_sig, c4_sig: std_logic_vector(8 downto 0);
signal win: std_logic_vector(3 downto 0);
signal DA_sig: std_logic_vector(13 downto 0);
signal DB_sig: std_logic_vector(8 downto 0);
signal READY2, READY4: std_logic;
begin
Deriv_U: Deriv

port map(
——in
CLK=>CLK1,

RST=>RST,
Vdc=>Vdc,
Vref=>Vref,
——out
x1=>x1_sig,
x2=>x2_sig);

Fuzzify2_U: Fuzzify2
port map(
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——in
CLK=>CLK2,

RST=>RST,
x1=>x1_sig,
x2=>x2_sig,
——out
ADR1=>adr1_sig,
ADR2=>adr2_sig,
B1_A=>B1a_sig,
B1_B=>B1b_sig,
B2_A=>B2a_sig,
B2_B=>B2b_sig,
READY=>READY2);

Infer_U: Infer
port map(
——in

CLK=>CLK2,
LOAD=>READY2,
RST=>RST,
ADR1=>adr1_sig,

B1_Ad=>B1a_sig,
B1_Bd=>B1b_sig,
ADR2=>adr2_sig,
B2_Ad=>B2a_sig,
B2_Bd=>B2b_sig,
—— Outputs
win=>win,
c1=>c1_sig,

c2=>c2_sig,
c3=>c3_sig,
c4=>c4_sig);

Defuzz_U: Defuzz
port map(
—— Standard Input
CLK=>CLK2,
RST=>RST,
LOAD=>SIG2_4,
WIN=>win,
c1=>c1_sig,
c2=>c2_sig,
c3=>c3_sig,
c4=>c4_sig,
READY=>READY4,
divA=>DA_sig,
divB=>DB_sig);

Divider_U: Divider
port map(
CLK=>CLK2,
RST=>RST,
LOAD=>SIG4_5,
divA=>DA_sig,
divB=>DB_sig,
READY=>READY,
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U=>U);
——Infer-Defuzz
process(CLK2,RST)
begin
if RST=‘1’ then

SIG2_4<=‘0’;
elsif CLK2’event and CLK2=‘1’ then

if READY2=‘1’ then
SIG2_4<=‘1’;

else
SIG2_4<=‘0’;

end if;
end if;
end process;
——Defuzz-Divider
process(CLK2,RST)
begin
if RST=‘1’ then

SIG4_5<=‘0’;
elsif CLK2’event and CLK2=‘1’ then

if READY4=‘1’ then
SIG4_5<=‘1’;

else
SIG4_5<=‘0’;

end if;
end if;
end process;
——Probe
——x1<=x1_sig;
——x2<=x2_sig;
end Control_arc;
——configuration Control_conf1 of Control is
——for Control_arc
—— for Deriv_U: Deriv use configuration work.Deriv_conf1;
—— end for;
—— for Fuzzify2_U: Fuzzify2 use configuration work.Fuzzify2_conf1;
—— end for;
—— for Infer_U: Infer use configuration work.Infer_conf1;
—— end for;
—— for Defuzz_U: Defuzz use configuration work.Defuzz_conf1;
—— end for;
—— for Divider_U: Divider use configuration work.Divider_conf1;
—— end for;
—— end for;
—— end Control_conf1;

11.7 Appendix G – PWM controllers

11.7.1 C++ program for PWM waveform generation

// This program generates the PWM waveforms based on the desired
parameters.
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#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
// Function prototype
int Sign(float);
int main(void)

{
fstream out_file;
//define stream object
char filename[30] ;
char T;
int Choice;
float n,NT,M,N;
//initialise values
N=4096; //EPROM memory spaces, Sinewave period
int A[4096],B[4096],C[4096],NA[4096],Out[4096];
float Tri[4096];
cout <<“\n Pulse Width Modulation Pattern Generation Program”;
// Request for parameters
cout <<“\n”;
cout <<“\n1. Three Phase.”;
cout <<“\n2. Single Phase, bipolar voltage switching.”;
cout <<“\n3. Single Phase, half controlled switching.”;
cout <<“\n\nEnter selection (1-3): ”;
cin >>Choice;
cout <<“\nEnter triwave period, NT (N=4096) : ”;
cin >>NT;
cout <<“Enter amplitude modulation factor : ”;
cin >>M;
//Triangular wave generation
Tri[0]=0;
for(n=1;n<N;n++)

{
Tri[n]=Tri[n-1]+(Sign(sin(2*M_PI*(n/NT)+M_PI)-

sin(2*M_PI*((n-1)/NT)+M_PI))*(4.0/NT));
}

//Comparator - Phase A only
for(n=0;n<N;n++)

{
// Phase A
if((M*sin(2*M_PI*(n/N))) >= Tri[n])
{
A[n]=2;
NA[n]=1;
}

else
{
A[n]=1;
NA[n]=2;
}

}
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// Defining Phases B & C - shift by 120deg (1365)
for (n=0;n<N;n++)

{
// Phase B
if((M*sin((2*M_PI*(n/N))+2.094395)) >= Tri[n])
{
B[n]=2;
}
else
{
B[n]=1;
}

// Phase C
if((M*sin((2*M_PI*(n/N))-2.094395)) >= Tri[n])
{
C[n]=2;
}
else
{
C[n]=1;
}
}

// Assigning values for Out[n]
switch(Choice) {

case 1:
for (n=0;n<N;n++)
{
Out[n]= A[n]+(B[n]*4)+(C[n]*16);
}
break;
case 2:
for (n=0;n<N;n++)
{
Out[n]= A[n]+(NA[n]*4);
}
break;
case 3:
for (n=0;n<N;n++)
{
if (n<(N/2))
{
Out[n]=A[n]+(2*4);
}
else
{
Out[n]=A[n]+(1*4);
}
}
}

/***** Filing Operation *****/
cout <<“\nEnter name of input file : ”;
gets(filename);
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cout <<“\nInclude test parameters (y/n) ? ”;
cin >>T;
out_file.open(filename, ios::out);
// Filing Error
if(! out_file)

{
cout << “\nUnable to open file ”;
return 1;
}

cout << “\nWriting data into file : “ << filename;
// Writing into file
if(T==‘y’|| T==‘Y’)

{
out_file <<“<Testing Parameters>\n”;
switch(Choice)
{
case 1:
out_file <<“Three Phase\n”;
break;
case 2:
out_file <<“Single Phase (full)\n”;
break;
case 3:
out_file <<“Single Phase (half)\n”;
break;
}

out_file <<“N=” <<N <<“ ; NT=” <<NT <<“ ; Ma=”<<M <<“\n\n”;
}

for(n=0;n<N;n++)
{
out_file << hex << Out[n] <<“ ”;
}

out_file.close();
cout <<“\n\nOk.”;
return 0;
}

/***** End of Main() *****/
//FUNCTION : Sign
//PURPOSE : To return the sign of the float a.
int Sign(float a)

{
if(a<0)

{
return -1;
}

else
{
return 1;
}

}
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11.7.2 PIC assembly code to control SA828

;This program initialises the SA828 pulse width modulation chip
LIST C=80, P=16C84, F=INHX8M

include “c:\pic\p16cxx.inc”
list

;************************ EQUATES **************************
;********************PIN/BIT DEFINITIONS***********************

 __FUSES _CP_OFF&_PWRTE_OFF&_WDT_OFF&_XT_OSC
; __CONFIG 11H

#DEFINE ALE 0 ;PORT A
#DEFINE WRTE 1 ;PORT A
#DEFINE RST 2 ;PORT A
#DEFINE LIGHT 3 ;PORT A CONFIDENCE LIGHT
#DEFINE SWTCH 4 ;PORT A INPUT
;PORTB IS ALL ADDRESS LINES AND DATA LINES
ADDRSS EQU 11H
DAT EQU 12H
COUNTER EQU 13H
COUNTER2 EQU 14H
ORG  000H
RESET GOTO START
;***********************MAIN PROGRAM**************************
START CLRF STATUS ;Initialise port b as outputs

MOVLW 0X00
MOVWF PORTB
MOVLW 0X00
TRIS PORTB
; port a arranged as all outputs
CLRF PORTA
MOVLW 0X10
TRIS PORTA
BCF EEADR,7 ;Clear EE top addresses to minimise

power
BCF EEADR,6

;SORT OUT ALL THE INTERRUPTS
BCF INTCON,GIE ;GLOBAL INTERRUPT

DISABLE
BCF INTCON,EEIE ;NO EEPROM INTERRUPT
BCF INTCON,T0IE ;NO TIMER INTERRUPT
BSF INTCON,INTE ;PORT B PIN 6 INTERRUPT

ENABLED
BCF INTCON,RBIE ;CHANGE ON PORT B

INTERRUPT BISABLED
BSF STATUS,RP0
BCF 0X1,INTEDG ;INTERRUPT ON FALLING

EDGE
;FOR PORT B PIN 6
INTERRUPT

BCF STATUS,RP0
;****FIRST MAKE SURE DEVICE IS RESET**************



394 Neural and Fuzzy Logic Control of Drives and Power Systems

BCF PORTA,RST
MAIN

;*******SENDS D2 TO ADDRESS 0
MOVLW 0
MOVWF ADDRSS
MOVLW 0XD2
MOVWF DAT
CALL SENDIT

;*******SENDS 0 TO ADDRESS 1
MOVLW 1
MOVWF ADDRSS
MOVLW 0X00
MOVWF DAT
CALL SENDIT

;*******SENDS 7F TO ADDRESS 2
MOVLW 2
MOVWF ADDRSS
MOVLW 0X7F
MOVWF DAT
CALL SENDIT

;*******SENDS FF TO ADDRESS 4
MOVLW 4
MOVWF ADDRSS
MOVLW 0XFF
MOVWF DAT
CALL SENDIT

;*******SENDS CD TO ADDRESS 0
MOVLW 0
MOVWF ADDRSS
MOVLW 0XCD
MOVWF DAT
CALL SENDIT

;*******SENDS 0C TO ADDRESS 1
MOVLW 1
MOVWF ADDRSS
MOVLW 0X0C
MOVWF DAT
CALL SENDIT

;*******SENDS CC TO ADDRESS 2
MOVLW 2
MOVWF ADDRSS
MOVLW 0XCC
MOVWF DAT
CALL SENDIT

;*******SENDS FF TO ADDRESS 3
MOVLW 3
MOVWF ADDRSS
MOVLW 0XFF
MOVWF DAT
CALL SENDIT

;Enable PWM Output
BSF PORTA,RST
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;*******SENDS CD TO ADDRESS 0
MOVLW 0
MOVWF ADDRSS
MOVLW 0XCD
MOVWF DAT
CALL SENDIT

;*******SENDS 2C TO ADDRESS 1
MOVLW 1
MOVWF ADDRSS
MOVLW 0X2C
MOVWF DAT
CALL SENDIT

;*******SENDS CC TO ADDRESS 2
MOVLW 2
MOVWF ADDRSS
MOVLW 0XCC
MOVWF DAT
CALL SENDIT

;*******SENDS FF TO ADDRESS 3
MOVLW 3
MOVWF ADDRSS
MOVLW 0XFF
MOVWF DAT
CALL SENDIT

WAIT1 MOVLW 0XFF
MOVWF COUNTER
MOVWF COUNTER2

WAIT2 NOP
NOP
DECFSZ COUNTER,F
GOTO WAIT2
DECFSZ COUNTER2,F
GOTO WAIT2
BSF PORTA,LIGHT
MOVLW 0XFF
MOVWF COUNTER
MOVWF COUNTER2

WAIT3 NOP
NOP
DECFSZ COUNTER,F
GOTO WAIT3
DECFSZ COUNTER2,F
GOTO WAIT3
BCF PORTA,LIGHT
GOTO WAIT2
GOTO MAIN

;THIS SUBROUTINE IS USED TO DRIVE ALE AND WRTE HIGH AND LOW
;AS PER THE INTEL TIMING SPECIFICATIONS
SENDIT

BSF PORTA,ALE ;take ale high
MOVF ADDRSS,W ;send the address
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MOVWF PORTB
BCF PORTA,ALE ;take ale low
BCF PORTA,WRTE ;take write low
MOVF DAT,W
MOVWF PORTB ;send the data
BSF PORTA,WRTE ;take write high
RETURN

END
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