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Preface

This book results from my teaching and research activities at the Technical Uni-
versity of Hamburg-Harburg (TUHH), Germany. It is based on my German book
“Mobilfunkkanäle — Modellierung, Analyse und Simulation” published by Vieweg &
Sohn, Braunschweig/Wiesbaden, Germany, in 1999. The German version served as a
text for the lecture Modern Methods for Modelling of Networks, which I gave at the
TUHH from 1996 to 2000 for students in electrical engineering at masters level.

The book mainly is addressed to engineers, computer scientists, and physicists, who
work in the industry or in research institutes in the wireless communications field and
therefore have a professional interest in subjects dealing with mobile fading channels.
In addition to that, it is also suitable for scientists working on present problems of
stochastic and deterministic channel modelling. Last, but not least, this book also is
addressed to master students of electrical engineering who are specialising in mobile
radio communications.

In order to be able to study this book, basic knowledge of probability theory and
system theory is required, with which students at masters level are in general
familiar. In order to simplify comprehension, the fundamental mathematical tools,
which are relevant for the objectives of this book, are recapitulated at the beginning.
Starting from this basic knowledge, nearly all statements made in this book are
derived in detail, so that a high grade of mathematical unity is achieved. Thanks
to sufficient advice and help, it is guaranteed that the interested reader can verify
the results with reasonable effort. Longer derivations interrupting the flow of the
content are found in the Appendices. There, the reader can also find a selection
of MATLAB-programs, which should give practical help in the application of the
methods described in the book. To illustrate the results, a large number of figures
have been included, whose meanings are explained in the text. Use of abbreviations
has generally been avoided, which in my experience simplifies the readability consid-
erably. Furthermore, a large number of references is provided, so that the reader is led
to further sources of the almost inexhaustible topic of mobile fading channel modelling.

My aim was to introduce the reader to the fundamentals of modelling, analysis,
and simulation of mobile fading channels. One of the main focuses of this book is
the treatment of deterministic processes. They form the basis for the development
of efficient channel simulators. For the design of deterministic processes with given
correlation properties, nearly all the methods known in the literature up to now
are introduced, analysed, and assessed on their performance in this book. Further
focus is put on the derivation and analysis of stochastic channel models as well
as on the development of highly precise channel simulators for various classes of
frequency-selective and frequency-nonselective mobile radio channels. Moreover, a
primary topic is the fitting of the statistical properties of the designed channel models
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to the statistics of real-world channels.

At this point, I would like to thank those people, without whose help this book
would never have been published in its present form. First, I would like to express
my warmest thanks to Stephan Kraus and Can Karadogan, who assisted me with
the English translation considerably. I would especially like to thank Frank Laue for
performing the computer experiments in the book and for making the graphical plots,
which decisively improved the vividness and simplified the comprehension of the text.
Sincerely, I would like to thank Alberto Dı́az Guerrero and Qi Yao for reviewing most
parts of the manuscript and for giving me numerous suggestions that have helped me
to shape the book into its present form. Finally, I am also grateful to Mark Hammond
and Sarah Hinton my editors at John Wiley & Sons, Ltd.

Matthias Pätzold

Grimstad
January 2002
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1

INTRODUCTION

1.1 THE EVOLUTION OF MOBILE RADIO SYSTEMS

For several years, the mobile communications sector has definitely been the fastest-
growing market segment in telecommunications. Experts agree that today we are
just at the beginning of a global development, which will increase considerably
during the next years. Trying to find the factors responsible for this development,
one immediately discovers a broad range of reasons. Certainly, the liberalization
of the telecommunication services, the opening and deregulation of the European
markets, the topping of frequency ranges around and over 1GHz, improved modu-
lation and coding techniques, as well as impressive progress in the semiconductor
technology (e.g., large-scale integrated CMOS- and GaAs-technology), and, last but
not least, a better knowledge of the propagation processes of electromagnetic waves
in an extraordinary complex environment have made their contribution to this success.

The beginning of this turbulent development now can be traced to more than 40
years ago. The first generation mobile radio systems developed at that time were
entirely based on analog technique. They were strictly limited in their capacity of
subscribers and their accessibility. The first mobile radio network in Germany was in
service between 1958 and 1977. It was randomly named A-net and was still based on
manual switching. Direct dialling was at first possible with the B-net, introduced in
1972. Nevertheless, the calling party had to know where the called party was located
and, moreover, the capacity limit of 27 000 subscribers was reached fairly quickly. The
B-net was taken out of service on the 31st of December 1994. Automatic localization
of the mobile subscriber and passing on to the next cell was at first possible with the
cellular C-net introduced in 1986. It operates at a frequency range of 450MHz and
has a Germany-wide accessibility with a capacity of 750 000 subscribers.

Second generation mobile radio systems are characterized by digitalization of the
networks. The GSM standard (GSM: Groupe Spécial Mobile)1 developed in Europe
is generally accepted as the most elaborated standard worldwide. The D-net, brought
into service in 1992, is based on the GSM standard. It operates at a frequency range
of 900MHz and offers all subscribers a Europe-wide coverage. In addition to this,
the E-net (Digital Cellular System, DCS 1800) has been running parallel to the

1 By now GSM stands for “Global System for Mobile Communications”.
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D-net since 1994, operating at a frequency range of 1800 MHz. Mainly, these two
networks only differ in their respective frequency range. In Great Britain, however,
the DCS 1800 is known as PCN (Personal Communications Network). Estimates say
the amount of subscribers using mobile telephones will in Europe alone grow from 92
million at present to 215 million at the end of 2005. In consequence, it is expected
that in Europe the number of employees in this branch will grow from 115 000 at
present to 1.89 million (source of information: Lehman Brothers Telecom Research
estimates). The originally European GSM standard has in the meantime become
a worldwide mobile communication standard that has been accepted by 129 (110)
countries at the end of 1998 (1997). The network operators altogether ran 256 GSM
networks with over 70.3 million subscribers at the end of 1997 worldwide. But only
one year later (at the end of 1998), the amount of GSM networks had increased to
324 with 135 million subscribers. In addition to the GSM standard, a new standard
for cordless telephones, the DECT standard (DECT: Digital European Cordless
Telephone), was introduced by the European Telecommunications Standard Institute
(ETSI). The DECT standard allows subscribers moving at a fair pace to use cordless
telephones at a maximum range of about 300 m.

In Europe, third generation mobile radio systems is expected to be practically ready
for use at the beginning of the twenty-first century with the introduction of the
Universal Mobile Telecommunications System (UMTS) and the Mobile Broadband
System (MBS). With UMTS, in Europe one is aiming at integrating the various
services offered by second generation mobile radio systems into one universal system
[Nie92]. An individual subscriber can then be called at any time, from any place
(car, train, aircraft, etc.) and will be able to use all services via a universal terminal.
With the same aim, the system IMT 2000 (International Mobile Telecommunications
2000)2 is being worked on worldwide. Apart from that, UMTS/IMT 2000 will also
provide multimedia services and other broadband services with maximum data rates
up to 2 Mbit/s at a frequency range of 2 GHz. MBS plans mobile broadband services
up to a data rate of 155 Mbit/s at a frequency range between 60 and 70GHz. This
concept is aimed to cover the whole area with mobile terminals, from fixed optical
fibre networks over optical fibre connected base stations to the indoor area. For
UMTS/IMT 2000 as for MBS, communication by satellites will be of vital importance.

From future satellite communication it will be expected — besides supplying areas
with weak infrastructure — that mobile communication systems can be realized
for global usage. The present INMARSAT-M system, based on four geostationary
satellites (35 786 km altitude), will at the turn of the century be replaced by satellites
flying on non-geostationary orbits at medium height (Medium Earth Orbit, MEO)
and at low height (Low Earth Orbit, LEO). The MEO satellite system is represented
by ICO with 12 satellites circling at an altitude of 10 354 km, and typical represen-
tatives of the LEO satellite systems are IRIDIUM (66 satellites, 780 km altitude),
GLOBALSTAR (48 satellites, 1 414 km altitude), and TELEDESIC (288 satellites,

2 IMT 2000 was formally known as FPLMTS (Future Public Land Mobile Telecommunications
System).
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1 400 km altitude)3 [Pad95]. A coverage area at 1.6 GHz is intended for hand-portable
terminals that have about the same size and weight as GSM mobile telephones today.
On the 1st of November 1998, IRIDIUM took the first satellite telephone network
into service. An Iridium satellite telephone cost 5 999DM in April 1999, and the price
for a call was, depending on the location, settled at 5 to 20 DM per minute. Despite
the high prices for equipment and calls, it is estimated that in the next ten years
about 60 million customers worldwide will buy satellite telephones.

At the end of this technical evolution from today’s point of view is the development
of the fourth generation mobile radio systems. The aim of this is integration of
broadband mobile services, which will make it necessary to extend the mobile
communication to frequency ranges up to 100GHz.

Before the introduction of each newly developed mobile communication systems a large
number of theoretical and experimental investigations have to be made. These help to
answer open questions, e.g., how existing resources (energy, frequency range, labour,
ground, capital) can be used economically with a growing number of subscribers and
how reliable, secure data transmission can be provided for the user as cheaply and as
simple to handle as possible. Also included are estimates of environmental and health
risks that almost inevitably exist when mass-market technologies are introduced and
that are only to a certain extent tolerated by a public becoming more and more critical.
Another boundary condition growing in importance during the development of new
transmission techniques is often the demand for compatibility with existing systems.
To solve the technical problems related to these boundary conditions, it is necessary
to have a firm knowledge of the specific characteristics of the mobile radio channel.
The term mobile radio channel in this context is the physical medium that is used
to send the signal from the transmitter to the receiver [Pro95]. However, when the
channel is modelled, the characteristics of the transmitting and the receiving antenna
are in general included in the channel model. The basic characteristics of mobile radio
channels are explained later. The thermal noise is not taken into consideration in the
following and has to be added separately to the output signal of the mobile radio
channel, if necessary.

1.2 BASIC KNOWLEDGE OF MOBILE RADIO CHANNELS

In mobile radio communications, the emitted electromagnetic waves often do not
reach the receiving antenna directly due to obstacles blocking the line-of-sight path. In
fact, the received waves are a superposition of waves coming from all directions due to
reflection, diffraction, and scattering caused by buildings, trees, and other obstacles.
This effect is known as multipath propagation. A typical scenario for the terrestrial
mobile radio channel is shown in Figure 1.1. Due to the multipath propagation, the
received signal consists of an infinite sum of attenuated, delayed, and phase-shifted
replicas of the transmitted signal, each influencing each other. Depending on the
phase of each partial wave, the superposition can be constructive or destructive. Apart

3 Originally TELEDESIC planned to operate 924 satellites circling at an altitude between 695 and
705 km.
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from that, when transmitting digital signals, the form of the transmitted impulse
can be distorted during transmission and often several individually distinguishable
impulses occur at the receiver due to multipath propagation. This effect is called the
impulse dispersion. The value of the impulse dispersion depends on the propagation
delay differences and the amplitude relations of the partial waves. We will see
later on that multipath propagation in a frequency domain expresses itself in the
non-ideal frequency response of the transfer function of the mobile radio channel.
As a consequence, the channel distorts the frequency response characteristic of the
transmitted signal. The distortions caused by multipath propagation are linear and
have to be compensated for on the receiver side, for example, by an equalizer.

Line-of-sight component

Diffraction

Base station

Scattering

Scattering

Mobile unit

Reflection

Shadowing

Figure 1.1: Typical mobile radio scenario illustrating multipath propagation in a
terrestrial mobile radio environment.

Besides the multipath propagation, also the Doppler effect has a negative influence
on the transmission characteristics of the mobile radio channel. Due to the movement
of the mobile unit, the Doppler effect causes a frequency shift of each of the partial
waves. The angle of arrival αn, which is defined by the direction of arrival of the nth
incident wave and the direction of motion of the mobile unit as shown in Figure 1.2,
determines the Doppler frequency (frequency shift) of the nth incident wave according
to the relation

fn := fmax cos αn . (1.1)
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In this case, fmax is the maximum Doppler frequency related to the speed of the mobile
unit v, the speed of light c0, and the carrier frequency f0 by the equation

fmax =
v
c0

f0 . (1.2)

The maximum (minimum) Doppler frequency, i.e., fn = fmax (fn = −fmax), is
reached for αn = 0 (αn = π). In comparison, though, fn = 0 for αn = π/2 and
αn = 3π/2. Due to the Doppler effect, the spectrum of the transmitted signal
undergoes a frequency expansion during transmission. This effect is called the
frequency dispersion. The value of the frequency dispersion mainly depends on the
maximum Doppler frequency and the amplitudes of the received partial waves. In the
time domain, the Doppler effect implicates that the impulse response of the channel
becomes time-variant. One can easily show that mobile radio channels fulfil the
principle of superposition [Opp75, Lue90] and therefore are linear systems. Due to
the time-variant behaviour of the impulse response, mobile radio channels therefore
generally belong to the class of linear time-variant systems.

α

Direction of motion

n

x

thof the n incident wave

y

Direction of arrival

Figure 1.2: Angle of arrival αn of the nth incident wave illustrating the Doppler effect.

Multipath propagation in connection with the movement of the receiver and/or the
transmitter leads to drastic and random fluctuations of the received signal. Fades of
30 to 40 dB and more below the mean value of the received signal level can occur
several times per second, depending on the speed of the mobile unit and the carrier
frequency [Jak93]. A typical example of the behaviour of the received signal in mobile
communications is shown in Figure 1.3. In this case, the speed of the mobile unit
is v = 110 km/h and the carrier frequency is f0 = 900MHz. According to (1.2),
this corresponds to a maximum Doppler frequency of fmax = 91 Hz. In the present
example, the distance covered by the mobile unit during the chosen period of time
from 0 to 0.327 s is equal to 10m.

In digital data transmission, the momentary fading of the received signal causes burst
errors, i.e., errors with strong statistical connections to each other [Bla84]. Therefore,
a fading interval produces burst errors, where the burst length is determined by the
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Figure 1.3: Typical behaviour of the received signal in mobile communications.

duration of the fading interval for which the expression duration of fades has been
introduced in [Kuc82]. Corresponding to this, a connecting interval produces a bit
sequence almost free of errors. Its length depends on the duration of the connecting
interval for which the term connecting time interval has been established [Kuc82].
As suitable measures for error protection, high performance procedures for channel
coding are called in to help. Developing and dimensioning of codes require knowledge
of the statistical distribution of the duration of fades and of the connecting time
intervals as exact as possible. The task of channel modelling now is to record and to
model the main influences on signal transmission to create a basis for the development
of transmission systems [Kit82].

Modern methods of modelling mobile radio channels are especially useful, for they
not only can model the statistical properties of real-world (measured) channels
regarding the probability density function (first order statistics) of the channel
amplitude sufficiently enough, but also regarding the level-crossing rate (second order
statistics) and the average duration of fades (second order statistics). Questions
connected to this theme will be treated in detail in this book. Mainly, two goals
are aimed at. The first one is to find stochastic processes especially suitable for
modelling frequency-nonselective and frequency-selective mobile radio channels. In
this context, we will establish a channel model described by ideal (not realizable)
stochastic processes as the reference model or as the analytical model. The second
goal is the derivation of efficient and flexible simulation models for various typical
mobile radio scenarios. Following these aims, the relations shown in Figure 1.4, which
demonstrates the connections between the physical channel, the stochastic reference
model, and the therefrom derivable deterministic simulation model, will accompany
us throughout the book. The usefulness and the quality of a reference model and
the corresponding simulation model are ultimately judged on how well its individual
statistics can be adapted to the statistical properties of measured or specified channels.



STRUCTURE OF THIS BOOK 7
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Figure 1.4: Relationships between the physical channel, the stochastic reference model,
the deterministic simulation model, and the measurement or specification.

1.3 STRUCTURE OF THIS BOOK

A good knowledge of statistics and system theory are the necessary tools for engineers
in practice as well as for scientists working in research areas, making the approach to
a deeper understanding of channel modelling possible. Therefore, in Chapter 2 some
important terms, definitions, and formulae often referred to in following chapters will
be recapitulated. Chapter 2 makes the reader familiar with the nomenclature used in
the book.

Building on the terms introduced in Chapter 2, in Chapter 3 Rayleigh and Rice
processes are dealt with as reference models to describe frequency-nonselective
mobile radio channels. These are at first described in general (Section 3.1). Then,
a description of the most frequently used Doppler power spectral densities (Jakes
or Clarke power spectral density and Gaussian power spectral density) and their
characteristic quantities such as the Doppler shift and the Doppler spread are given
(Section 3.2). After that, in Section 3.3 the statistical properties of the first kind
(probability density of amplitude and phase) and of the second kind (level-crossing
rate and average duration of fades) are investigated. Chapter 3 ends with an analysis
of the statistics of the duration of fades of Rayleigh processes.

In Chapter 4, it is at first made clear that, from the developers of simulation models
point of view, analytical models represent reference models to a certain extent.
Their relevant statistical properties will be modelled sufficiently exactly with the



8 INTRODUCTION

smallest possible realization expenditure. To solve this problem, various deterministic
and statistic methods have been proposed in the literature. The heart of many
procedures for channel modelling is based on the principle that filtered Gaussian
random processes can be approximated by a sum of weighted harmonic functions.
This principle in itself is not at all new, but can historically be traced back to
basic works of S. O. Rice [Ric44, Ric45]. In principle, all attempts to compute the
parameters of a simulation model can be classified as either statistic, deterministic
or as a combination of both. A fact though is that the resulting simulation model
is definitely of pure deterministic nature, which is made clear in Section 4.1. The
analysis of the elementary properties of deterministic simulation systems is therefore
mainly performed by the system theory and signal theory (Section 4.2). Investigating
the statistical properties of the first kind and of the second kind, however, we will
again make use of the probability theory and statistics (Section 4.3).

Chapter 5 contains a comprehensive description of the most important procedures
presently known for computing the model parameters of deterministic simulation
models (Sections 5.1 and 5.2). The performance of each procedure will be assessed
with the help of quality criteria. Often, also the individual methods are compared in
their performance to allow the advantages and disadvantages stand out. Chapter 5
ends with an analysis of the duration of fades of deterministic Rayleigh processes
(Section 5.3).

It is well known that the statistics (of the first kind and of the second kind) of
Rayleigh and Rice processes can only be influenced by a small number of parameters.
On the one hand, this makes the mathematical description of the model much easier,
but on the other hand, however, it narrows the flexibility of these stochastic processes.
A consequence of this is that the statistical properties of real-world channels can
only be roughly modelled with Rayleigh and Rice processes. For a finer adaptation
to reality, one therefore needs more sophisticated model processes. Chapter 6
deals with the description of stochastic and deterministic processes for modelling
frequency-nonselective mobile radio channels. The so-called extended Suzuki processes
of Type I (Section 6.1) and of Type II (Section 6.2) as well as generalized Rice and
Suzuki processes (Section 6.3) are derived and their statistical properties are analysed.
Apart from that, in Section 6.4, a modified version of the Loo model is introduced,
containing the classical Loo model as a special case. To demonstrate the usefulness
of all channel models suggested in this chapter, the statistical properties (probability
density of the channel amplitude, level-crossing rate and average duration of fades)
of each model are fitted to measurement results in the literature and are compared
with the corresponding simulation results.

Chapter 7 is dedicated to the description of frequency-selective stochastic and
deterministic channel models beginning with the ellipses model introduced by Parsons
and Bajwa, illustrating the path geometry for multipath fading channels (Section 7.1).
In Section 7.2, a description of linear time-variant systems is given. With the help
of system theory, four important system functions are introduced allowing us to
describe the input-output behaviour of linear time-variant systems in different
ways. Section 7.3 is devoted to the theory of linear time-variant stochastic systems
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going back to Bello [Bel63]. In connection with this, stochastic system functions
and characteristic quantities derivable from these are defined. Also the reference
to frequency-selective stochastic channel models is established and, moreover, the
channel models for typical propagation areas specified in the European work group
COST 207 [COS89] are given. Section 7.4 deals with the derivation and analysis
of frequency-selective deterministic channel models. Chapter 7 ends with the de-
sign of deterministic simulation models for the channel models according to COST 207.

Chapter 8 deals with the derivation, analysis, and realization of fast channel
simulators. For the derivation of fast channel simulators, the periodicity of harmonic
functions is exploited. It is shown how alternative structures for the simulation of
deterministic processes can be derived. In particular, for complex Gaussian random
processes it is extraordinarily easy to derive simulation models merely based on
adders, storage elements, and simple address generators. During the actual simulation
of the complex-valued channel amplitude, time-consuming trigonometric operations as
well as multiplications are then no longer required. This results in high-speed channel
simulators, which are suitable for all frequency-selective and frequency-nonselective
channel models dealt with in previous chapters. Since the proposed principle can be
generalized easily, we will in Chapter 8 restrict our attention to the derivation of fast
channel simulators for Rayleigh channels. Therefore, we will exclusively employ the
discrete-time representation and will introduce so-called discrete-time deterministic
processes in Section 8.1. With these processes there are new possibilities for indirect
realization. The three most important of them are introduced in Section 8.2. In the
following Section 8.3, the elementary and statistical properties of discrete deter-
ministic processes are examined. Section 8.4 deals with the analysis of the required
realization expenditure and with the measurement of the simulation speed of fast
channel simulators. Chapter 8 ends with a comparison between the Rice method and
the filter method (Section 8.5).





2

RANDOM VARIABLES,
STOCHASTIC PROCESSES,
AND DETERMINISTIC
SIGNALS

Besides clarifying the used nomenclature, we will in this chapter introduce some
important terms, which will later often be used in the context of describing stochastic
and deterministic channel models. However, the primary aim is to familiarize the
reader with some basic principles and definitions of probability, random signals,
and systems theory, as far as it is necessary for the understanding of this book.
A complete and detailed description of these subjects will not be presented here;
instead, some relevant technical literature will be recommended for further studies.
As technical literature for the subject of probability theory, random variables, and
stochastic processes, the books by Papoulis [Pap91], Peebles [Pee93], Therrien [The92],
Dupraz [Dup86], as well as Shanmugan and Breipohl [Sha88] are recommended.
Also the classical works of Middleton [Mid60], Davenport [Dav70], and the book
by Davenport and Root [Dav58] are even nowadays still worth reading. A modern
German introduction to the basic principles of probability and stochastic processes
can be found in [Boe98, Bei97, Hae97]. Finally, the excellent textbooks by Oppenheim
and Schafer [Opp75], Papoulis [Pap77], Rabiner and Gold [Rab75], Kailath [Kai80],
Unbehauen [Unb90], Schüßler [Sch91], and Fettweis [Fet96] provide a deep insight into
systems theory as well as into the principles of digital signal processing.

2.1 RANDOM VARIABLES

In the context of this book, random variables are of central importance, not only to the
statistical but also to the deterministic modelling of mobile radio channels. Therefore,
we will at first review some basic definitions and terms which are frequently used in
connection with random variables.

An experiment whose outcome is not known in advance is called a random experiment.
We will call points representing the outcomes of a random experiment sample points
s. A collection of possible outcomes of a random experiment is an event A. The
event A = {s} consisting of a single element s is an elementary event. The set of
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all possible outcomes of a given random experiment is called the sample space Q of
that experiment. Hence, a sample point is an element of the event, i.e., s ∈ A, and the
event itself is a subset of the sample space, i.e., A ⊂ Q. The sample space Q is called
the certain event, and the empty set or null set, denoted by ∅, is the impossible event.
Let A be a class (collection) of subsets of a sample space Q. In probability theory, A
is often called σ-field (or σ-algebra), if and only if the following conditions are fulfilled:

(i) The empty set ∅ ∈ A.

(ii) If A ∈ A, then also Q− A ∈ A, i.e., if the event A is an element of the class A,
then so is its complement.

(iv) If An ∈ A (n = 1, 2, . . .), then also ∪∞n=1An ∈ A, i.e., if the events An are all
elements of the class A, then so is their countable union.

A pair (Q,A) consisting of a sample space Q and a σ-field A is called a measurable
space.

A mapping P : A → IR is called the probability measure or briefly probability, if the
following conditions are fulfilled:

(i) If A ∈ A, then 0 ≤ P (A) ≤ 1.

(ii) P (Q) = 1.

(iii) If An ∈ A (n = 1, 2, . . .) with ∪∞n=1An ∈ A and An ∩Ak = ∅ for any n 6= k, then
also P (∪∞n=1An) =

∑∞
n=1 P (An).

A probability space is the triple (Q,A, P ).

A random variable µ ∈ Q is a mapping which assigns to every outcome s of a random
experiment a number µ(s), i.e.,

µ : Q → IR , s 7−→ µ(s) . (2.1)

This mapping has the property that the set {s|µ(s) ≤ x} is an event of the considered
σ-algebra for all x ∈ IR, i.e., {s|µ(s) ≤ x} ∈ A. Hence, a random variable is a function
of the elements of a sample space Q.

For the probability that the random variable µ is less or equal to x, we use the
simplified notation

P (µ ≤ x) := P ({s|µ(s) ≤ x}) (2.2)

in the sequel.

Cumulative distribution function: The function Fµ, defined by

Fµ : IR → [0, 1] , x 7−→ Fµ(x) = P (µ ≤ x) , (2.3)

is called the cumulative distribution function of the random variable µ. The cumulative
distribution function Fµ(x) satisfies the following properties: a) Fµ(−∞) = 0; b)
Fµ(∞) = 1; and c) Fµ(x) is non-decreasing, i.e., Fµ(x1) ≤ Fµ(x2) if x1 ≤ x2.
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Probability density function: The function pµ, defined by

pµ : IR → IR , x 7−→ pµ(x) =
dFµ(x)

dx
, (2.4)

is called the probability density function (or probability density or simply density) of
the random variable µ, where it is assumed that the cumulative distribution function
Fµ(x) is differentiable with respect to x. The probability density function pµ(x)
satisfies the following properties: a) pµ(x) ≥ 0 for all x; b)

∫∞
−∞ pµ(x) dx = 1; and c)

Fµ(x) =
∫ x

−∞ pµ(x) dx.

Joint cumulative distribution function: The function Fµ1µ2 , defined by

Fµ1µ2 : IR2 → [0, 1] , (x1, x2) 7−→ Fµ1µ2(x1, x2) = P (µ1 ≤ x1, µ2 ≤ x2) , (2.5)

is called the joint cumulative distribution function (or bivariate cumulative distribution
function) of the random variables µ1 and µ2.

Joint probability density function: The function pµ1µ2 , defined by

pµ1µ2 : IR2 → IR , (x1, x2) 7−→ pµ1µ2(x1, x2) =
∂2Fµ1µ2(x1, x2)

∂x1∂x2
, (2.6)

is called the joint probability density function (or bivariate density function or simply
bivariate density) of the random variables µ1 and µ2, where it is assumed that the joint
cumulative distribution function Fµ1µ2(x1, x2) is partially differentiable with respect
to x1 and x2.

The random variables µ1 and µ2 are said to be statistically independent, if the events
{s|µ1(s) ≤ x1} and {s|µ2(s) ≤ x2} are independent for all x1, x2 ∈ IR. In this case,
we can write Fµ1µ2(x1, x2) = Fµ1(x1) · Fµ2(x2) and pµ1µ2(x1, x2) = pµ1(x1) · pµ2(x2).

The marginal probability density functions (or marginal densities) of the joint
probability density function pµ1µ2(x1, x2) are obtained by

pµ1(x1) =

∞∫

−∞
pµ1µ2(x1, x2) dx2 , (2.7a)

pµ2(x2) =

∞∫

−∞
pµ1µ2(x1, x2) dx1 . (2.7b)

Expected value (mean value): The quantity

E{µ} =

∞∫

−∞
x pµ(x) dx (2.8)

is called the expected value (or mean value or statistical average) of the random variable
µ, where E{·} denotes the expected value operator. The expected value operator E{·} is
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linear, i.e., the relations E{αµ} = αE{µ} (α ∈ IR) and E{µ1 +µ2} = E{µ1}+E{µ2}
hold. Let f(µ) be a function of the random variable µ. Then, the expected value of
f(µ) can be determined by applying the fundamental relationship

E{f(µ)} =

∞∫

−∞
f(x) pµ(x) dx . (2.9)

The generalization to two random variables µ1 and µ2 leads to

E{f(µ1, µ2)} =

∞∫

−∞

∞∫

−∞
f(x1, x2) pµ1µ2(x1, x2) dx1 dx2 . (2.10)

Variance: The value

Var {µ} = E
{
(µ− E{µ})2}

= E{µ2} − (E{µ})2 (2.11)

is called the variance of the random variable µ, where Var {·} denotes the variance
operator. The variance of a random variable µ is a measure of the concentration of µ
near its expected value.

Covariance: The covariance of two random variables µ1 and µ2 is defined by

Cov {µ1, µ2} = E{(µ1 − E{µ1})(µ2 − E{µ2})} (2.12a)
= E{µ1µ2} − E{µ1} · E{µ2} . (2.12b)

Moments: The kth moment of the random variable µ is defined by

E{µk} =

∞∫

−∞
xk pµ(x) dx , k = 0, 1, . . . (2.13)

Characteristic function: The characteristic function of a random variable µ is
defined as the expected value

Ψµ(ν) = E
{
ej2πνµ

}
=

∞∫

−∞
pµ(x) ej2πνx dx , (2.14)

where ν is a real-valued variable. It should be noted that Ψµ(−ν) is the Fourier
transform of the probability density function pµ(x). The characteristic function often
provides a simple technique for determining the probability density function of a sum
of statistically independent random variables.

Chebyshev inequality: Let µ be an arbitrary random variable with a finite expected
value and a finite variance. Then, the Chebyshev inequality

P (|µ− E{µ}| ≥ ε) ≤ Var {µ}
ε2

(2.15)
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holds for any ε > 0. The Chebyshev inequality is often used to obtain bounds on the
probability of finding µ outside of the interval E{µ} ± ε

√
Var {µ}.

Central limit theorem: Let µn (n = 1, 2, . . . , N) be statistically independent
random variables with E{µn} = mµn and Var {µn} = σ2

µn
. Then, the random variable

µ = lim
N→∞

1√
N

N∑
n=1

(µn −mµn
) (2.16)

is asymptotically normally distributed with the expected value E{µ} = 0 and the
variance Var {µ} = σ2

µ = lim
N→∞

1
N

∑N
n=1 σ2

µn
.

The central limit theorem plays a fundamental role in statistical asymptotic theory.
The density of the sum (2.16) of merely seven statistically independent random
variables with almost identical variance often results in a good approximation of the
normal distribution.

2.1.1 Important Probability Density Functions

In the following, a summary of some important probability density functions often used
in connection with channel modelling will be presented. The corresponding statistical
properties such as the expected value and the variance will be dealt with as well. At
the end of this section, we will briefly present some rules of calculation, which are of
importance to the addition, multiplication, and transformation of random variables.

Uniform distribution: Let θ be a real-valued random variable with the probability
density function

pθ(x) =





1
2π

, x ∈ [−π, π) ,

0 , else .

(2.17)

Then, pθ(x) is called the uniform distribution and θ is said to be uniformly distributed
in the interval [−π, π). The expected value and the variance of a uniformly distributed
random variable θ are E{θ} = 0 and Var {θ} = π2/3, respectively.

Gaussian distribution (normal distribution): Let µ be a real-valued random
variable with the probability density function

pµ(x) =
1√

2πσµ

e
− (x−mµ)2

2σ2
µ , x ∈ IR . (2.18)

Then, pµ(x) is called the Gaussian distribution (or normal distribution) and µ is said to
be Gaussian distributed (or normally distributed). In the equation above, the quantity
mµ ∈ IR denotes the expected value and σ2

µ ∈ (0,∞) is the variance of µ, i.e.,

E{µ} = mµ (2.19a)
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and

Var {µ} = E{µ2} −m2
µ = σ2

µ . (2.19b)

To describe the distribution properties of Gaussian distributed random variables µ, we
often use the short notation µ ∼ N(mµ, σ2

µ) instead of giving the complete expression
(2.18). Especially, for mµ = 0 and σ2

µ = 1, N(0, 1) is called the standard normal
distribution.

Multivariate Gaussian distribution: Let us consider n real-valued Gaussian
distributed random variables µ1, µ2, . . . , µn with the expected values mµi (i =
1, 2, . . . , n) and the variances σ2

µi
(i = 1, 2, . . . , n). The multivariate Gaussian

distribution (or multivariate normal distribution) of the Gaussian random variables
µ1, µ2, . . . , µn is defined by

pµ1µ2...µn
(x1, x2, . . . , xn) =

1(√
2π

)n √
detCµ

e−
1
2 (x−mµ)T C−1

µ (x−mµ) , (2.20)

where T denotes the transpose of a vector (or a matrix). In the above expression, x
and mµ are column vectors, which are given by

x =




x1

x2

...
xn


∈ IRn×1 (2.21a)

and

mµ =




E{µ1}
E{µ2}

...
E{µn}


 =




mµ1

mµ2

...
mµn


∈ IRn×1, (2.21b)

respectively, and det Cµ (C−1
µ ) denotes the determinant (inverse) of the covariance

matrix

Cµ =




Cµ1µ1 Cµ1µ2 · · · Cµ1µn

Cµ2µ1 Cµ2µ2 · · · Cµ2µn

...
...

. . .
...

Cµnµ1 Cµnµ2 · · · Cµnµn


 ∈ IRn×n . (2.22)

The elements of the covariance matrix Cµ are given by

Cµiµj = Cov {µi, µj} = E{(µi −mµi)(µj −mµj )} , ∀ i, j = 1, 2, . . . , n . (2.23)

If the n random variables µi are normally distributed and uncorrelated in pairs, then
the covariance matrix Cµ results in a diagonal matrix with diagonal entries σ2

µi
. In

this case, the joint probability density function (2.20) decomposes into a product of n
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Gaussian distributions of the normally distributed random variables µi ∼ N(mµi , σ
2
µi

).
This implies that the random variables µi are statistically independent for all i =
1, 2, . . . , n.

Rayleigh distribution: Let us consider two zero-mean statistically independent
normally distributed random variables µ1 and µ2, each having a variance σ2

0 , i.e.,
µ1, µ2 ∼ N(0, σ2

0). Furthermore, let us derive a new random variable from µ1 and µ2

according to ζ =
√

µ2
1 + µ2

2. Then, ζ represents a Rayleigh distributed random variable.
The probability density function pζ(x) of Rayleigh distributed random variables ζ is
given by

pζ(x) =





x

σ2
0

e
− x2

2σ2
0 , x ≥ 0 ,

0 , x < 0 .

(2.24)

Rayleigh distributed random variables ζ have the expected value

E{ζ} = σ0

√
π

2
(2.25a)

and the variance

Var {ζ} = σ2
0

(
2− π

2

)
. (2.25b)

Rice distribution: Let µ1, µ2 ∼ N(0, σ2
0) and ρ ∈ IR. Then, the random variable

ξ =
√

(µ1 + ρ)2 + µ2
2 is a so-called Rice distributed random variable. The probability

density function pξ(x) of Rice distributed random variables ξ is

pξ(x) =





x

σ2
0

e
− x2+ρ2

2σ2
0 I0

(
xρ

σ2
0

)
, x ≥ 0 ,

0 , x < 0 ,

(2.26)

where I0(·) denotes the modified Bessel function of 0th order. For ρ = 0, the Rice
distribution pξ(x) results in the Rayleigh distribution pζ(x) described above. The first
and second moment of Rice distributed random variables ξ are [Wol83a]

E{ξ} = σ0

√
π

2
e
− ρ2

4σ2
0

{(
1 +

ρ2

2σ2
0

)
I0

(
ρ2

4σ2
0

)
+

ρ2

2σ2
0

I1

(
ρ2

4σ2
0

)}
(2.27a)

and

E{ξ2} = 2σ2
0 + ρ2 , (2.27b)

respectively, where In(·) denotes the modified Bessel function of nth order. From
(2.27a), (2.27b), and by using (2.11), the variance of Rice distributed random variables
ξ can easily be calculated.

Lognormal distribution: Let µ be a Gaussian distributed random variable with
the expected value mµ and the variance σ2

µ, i.e., µ ∼ N(mµ, σ2
µ). Then, the random
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variable λ = eµ is said to be lognormally distributed. The probability density function
pλ(x) of lognormally distributed random variables λ is given by

pλ(x) =





1√
2πσµx

e
− (ln x−mµ)2

2σ2
µ , x ≥ 0 ,

0 , x < 0 .

(2.28)

The expected value and the variance of lognormally distributed random variables λ
are given by

E{λ} = emµ+
σ2

µ
2 (2.29a)

and

Var {λ} = e2mµ+σ2
µ

(
eσ2

µ − 1
)

, (2.29b)

respectively.

Suzuki distribution: Consider a Rayleigh distributed random variable ζ with the
probability density function pζ(x), according to (2.24), and a lognormally distributed
random variable λ with the probability density function pλ(x), according to (2.28). Let
us assume that ζ and λ are statistically independent. Furthermore, let η be a random
variable defined by the product η = ζ ·λ. Then, the probability density function pη(z)
of η, that is

pη(z) =





z√
2πσ2

0σµ

∞∫

0

1
y3
· e−

z2

2y2σ2
0 · e−

(ln y−mµ)2

2σ2
µ dy , z ≥ 0 ,

0 , z < 0 ,

(2.30)

is called the Suzuki distribution [Suz77]. Suzuki distributed random variables η have
the expected value

E{η} = σ0

√
π

2
emµ+

σ2
µ
2 (2.31)

and the variance

Var {η} = σ2
0 · e2mµ+σ2

µ ·
(
2eσ2

µ − π

2

)
. (2.32)

Nakagami distribution: Consider a random variable ω distributed according to the
probability density function

pω(x) =





2mmx2m−1e−(m/Ω)x2

Γ(m)Ωm
, m ≥ 1/2 , x ≥ 0 ,

0 , x < 0 .

(2.33)

Then, ω denotes a Nakagami distributed random variable and the corresponding
probability density function pω(x) is called the Nakagami distribution or m-distribution
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[Nak60]. In (2.33), the symbol Γ(·) represents the Gamma function, the second moment
of the random variable ω has been introduced by Ω = E{ω2}, and the parameter
m denotes the reciprocal value of the variance of ω2 normalized to Ω2, i.e., m =
Ω2/E{(ω2−Ω)2}. From the Nakagami distribution, we obtain the one-sided Gaussian
distribution and the Rayleigh distribution as special cases if m = 1/2 and m = 1,
respectively. In certain limits, the Nakagami distribution, moreover, approximates
both the Rice distribution and the lognormal distribution [Nak60, Cha79].

2.1.2 Functions of Random Variables

In some parts of this book, we will deal with functions of two and more random
variables. In particular, we will often make use of fundamental rules in connection with
the addition, multiplication, and transformation of random variables. In the sequel,
the mathematical principles necessary for this will briefly be reviewed.

Addition of two random variables: Let µ1 and µ2 be two random variables, which
are statistically characterized by the joint probability density function pµ1µ2(x1, x2).
Then, the probability density function of the sum µ = µ1 + µ2 can be obtained as
follows

pµ(y) =

∞∫

−∞
pµ1µ2(x1, y − x1) dx1

=

∞∫

−∞
pµ1µ2(y − x2, x2) dx2 . (2.34)

If the two random variables µ1 and µ2 are statistically independent, then it follows
that the probability density function of µ is given by the convolution of the probability
densities of µ1 and µ2. Thus,

pµ(y) = pµ1(y) ∗ pµ2(y)

=

∞∫

−∞
pµ1(x1)pµ2(y − x1) dx1

=

∞∫

−∞
pµ1(y − x2)pµ2(x2) dx2 , (2.35)

where ∗ denotes the convolution operator.

Multiplication of two random variables: Let ζ and λ be two random variables,
which are statistically described by the joint probability density function pζλ(x, y).
Then, the probability density function of the random variable η = ζ · λ is equal to

pη(z) =

∞∫

−∞

1
|y|pζλ

(
z

y
, y

)
dy . (2.36)
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From this relation, we obtain the expression

pη(z) =

∞∫

−∞

1
|y|pζ

(
z

y

)
· pλ(y) dy (2.37)

for statistically independent random variables ζ, λ.

Functions of random variables: Let us assume that µ1, µ2, . . . , µn are random
variables, which are statistically described by the joint probability density function
pµ1µ2...µn

(x1, x2, . . . , xn). Furthermore, let us assume that the functions f1, f2, . . . , fn

are given. If the system of equations fi(x1, x2, . . . , xn) = yi (i = 1, 2, . . . , n) has real-
valued solutions x1ν , x2ν , . . . , xnν (ν = 1, 2, . . . , m), then the joint probability density
function of the random variables ξ1 = f1(µ1, µ2, . . . , µn), ξ2 = f2(µ1, µ2, . . . , µn), . . . ,
ξn = fn(µ1, µ2, . . . , µn) can be expressed by

pξ1ξ2...ξn(y1, y2, . . . , yn) =
m∑

ν=1

pµ1µ2...µn(x1ν , x2ν , . . . , xnν)
|J(x1ν , x2ν , . . . , xnν)| , (2.38)

where

J(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣

(2.39)

denotes the Jacobian determinant.

Furthermore, we can compute the joint probability density function of the random
variables ξ1, ξ2, . . . , ξk for k < n by using (2.38) as follows

pξ1ξ2...ξk
(y1, y2, . . . , yk) =

∞∫

−∞

∞∫

−∞
. . .

∞∫

−∞
pξ1ξ2...ξn(y1, y2, . . . , yn) dyk+1 dyk+2 . . . dyn .

(2.40)

2.2 STOCHASTIC PROCESSES

Let (Q,A, P ) be a probability space. Now let us assign to every particular outcome
s = si ∈ Q of a random experiment a particular function of time µ(t, si) according to
a rule. Hence, for a particular si ∈ Q, the function µ(t, si) denotes a mapping from IR
to IR (or C) according to

µ(·, si) : IR → IR (or C) , t 7→ µ(t, si) . (2.41)
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The individual functions µ(t, si) of time are called realizations or sample functions. A
stochastic process µ(t, s) is a family (or an ensemble) of sample functions µ(t, si), i.e.,
µ(t, s) = {µ(t, si)|si ∈ Q} = {µ(t, s1), µ(t, s2), . . .}.
On the other hand, at a particular time instant t = t0 ∈ IR, the stochastic process
µ(t0, s) only depends on the outcome s and, thus, equals a random variable. Hence,
for a particular t0 ∈ IR, µ(t0, s) denotes a mapping from Q to IR (or C) according to

µ(t0, ·) : Q → IR (or C) , s 7→ µ(t0, s) . (2.42)

The probability density function of the random variable µ(t0, s) is determined by the
occurrence of the outcomes.

Therefore, a stochastic process is a function of two variables t ∈ IR and s ∈ Q, so that
the correct notation is µ(t, s). Henceforth, however, we will drop the second argument
and simply write µ(t) as in common practice.

From the statements above, we can conclude that a stochastic process µ(t) can be
interpreted as follows [Pap91]:

(i) If t is a variable and s is a random variable, then µ(t) represents a family or an
ensemble of sample functions µ(t, s).

(ii) If t is a variable and s = s0 is a constant, then µ(t) = µ(t, s0) is a realization or
a sample function of the stochastic process.

(iii) If t = t0 is a constant and s is a random variable, then µ(t0) is a random variable
as well.

(iv) If both t = t0 and s = s0 are constants, then µ(t0) is a real-valued (complex-
valued) number.

The relationships following from the statements (i)–(iv) made above are illustrated in
Figure 2.1.

Complex-valued stochastic processes: Let µ′(t) and µ′′(t) be two real-valued
stochastic processes, then a (complex-valued) stochastic process is defined by µ(t) =
µ′(t) + jµ′′(t).

We have stated above that a stochastic process µ(t) can be interpreted as a random
variable for fixed values of t ∈ IR. This random variable can again be described by
a distribution function Fµ(x; t) = P (µ(t) ≤ x) or a probability density function
pµ(x; t) = dFµ(x; t)/dx. The extension of the concept of the expected value, which
was introduced for random variables, to stochastic processes leads to the expected
value function

mµ(t) = E{µ(t)} . (2.43)

Let us consider the random variables µ(t1) and µ(t2), which are assigned to the
stochastic process µ(t) at the time instants t1 and t2, then

rµµ(t1, t2) = E{µ∗(t1)µ(t2)} (2.44)
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Figure 2.1: Relationships between stochastic processes, random variables, sample
functions, and real-valued (complex-valued) numbers.

is called the autocorrelation function of µ(t), where the superscripted asterisk ∗ denotes
the complex conjugation. Note that the complex conjugation is associated with the
first independent variable in rµµ(t1, t2).1 The so-called variance function of a complex-
valued stochastic process µ(t) is defined as

σ2
µ(t) = Var {µ(t)} = E{|µ(t)− E{µ(t)}|2}

= E{µ∗(t)µ(t)} − E{µ∗(t)}E{µ(t)}
= rµµ(t, t)− |mµ(t)|2 , (2.45)

where rµµ(t, t) denotes the autocorrelation function (2.44) at the time instant t1 =
t2 = t, and mµ(t) represents the expected value function according to (2.43). Finally,
the expression

rµ1µ2(t1, t2) = E{µ∗1(t1)µ2(t2)} (2.46)

introduces the cross-correlation function of the stochastic processes µ1(t) and µ2(t) at
the time instants t1 and t2.

2.2.1 Stationary Processes

Stationary processes are of crucial importance to the modelling of mobile radio
channels and will therefore be dealt with briefly here. One often distinguishes between
strict-sense stationary processes and wide-sense stationary processes.

1 It should be noted that in the literature, the complex conjugation is often also associated with
the second independent variable of the autocorrelation function rµµ(t1, t2), i.e., rµµ(t1, t2) =
E{µ(t1)µ∗(t2)}.
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A stochastic process µ(t) is said to be strict-sense stationary, if its statistical properties
are invariant to a shift of the origin, i.e., µ(t1) and µ(t1 + t2) have the same statistics
for all t1, t2 ∈ IR. This leads to the following conclusions:

(i) pµ(x; t) = pµ(x) , (2.47a)
(ii) E{µ(t)} = mµ = const. , (2.47b)
(iii) rµµ(t1, t2) = rµµ(|t1 − t2|) . (2.47c)

A stochastic process µ(t) is said to be wide-sense stationary if (2.47b) and (2.47c) are
fulfilled. In this case, the expected value function E{µ(t)} is independent of t and, thus,
simplifies to the expected value mµ introduced for random variables. Furthermore, the
autocorrelation function rµµ(t1, t2) merely depends on the time difference t1−t2. From
(2.44) and (2.47c), with t1 = t and t2 = t + τ , it then follows for τ > 0

rµµ(τ) = rµµ(t, t + τ) = E{µ∗(t)µ(t + τ)} , (2.48)

where rµµ(0) represents the mean power of µ(t). Analogously, for the cross-correlation
function (2.46) of two wide-sense stationary processes µ1(t) and µ2(t), we obtain

rµ1µ2(τ) = E{µ∗1(t)µ2(t + τ)} = r∗µ2µ1
(−τ) . (2.49)

Let µ1(t), µ2(t), and µ(t) be three wide-sense stationary stochastic processes. The
Fourier transform of the autocorrelation function rµµ(τ), defined by

Sµµ(f) =

∞∫

−∞
rµµ(τ) e−j2πfτ dτ , (2.50)

is called the power spectral density (power density spectrum). The general relation
given above between the power spectral density and the autocorrelation function is
also known as the Wiener-Khinchine relationship. The Fourier transform of the cross-
correlation function rµ1µ2(τ), defined by

Sµ1µ2(f) =

∞∫

−∞
rµ1µ2(τ) e−j2πfτ dτ , (2.51)

is called the cross-power spectral density (cross-power density spectrum). Taking (2.49)
into account, we immediately realize that Sµ1µ2(f) = S∗µ2µ1

(f) holds.

Let ν(t) be the input process and µ(t) the output process of a linear time-invariant
stable system with the impulse response h(t). Furthermore, let us assume that the
system is deterministic, meaning that it only operates on the time variable t. Then,
the output process µ(t) is the convolution of the input process ν(t) and the impulse
response h(t), i.e., µ(t) = ν(t) ∗ h(t). It is well known that the transfer function H(f)
of the system is the Fourier transform of the impulse response h(t). Moreover, the
following relations hold:
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rνµ(τ) = rνν(τ) ∗ h(τ) ◦—• Sνµ(f) = Sνν(f) ·H(f) , (2.52a, b)
rµν(τ) = rνν(τ) ∗ h∗(−τ) ◦—• Sµν(f) = Sνν(f) ·H∗(f) , (2.52c, d)

rµµ(τ) = rνν(τ) ∗ h(τ) ∗ h∗(−τ) ◦—• Sµµ(f) = Sνν(f) · |H(f)|2 , (2.52e, f)

where the symbol ◦—• denotes the Fourier transform. We will assume in the sequel
that all systems under consideration are linear, time-invariant, and stable.

It should be noted that, strictly speaking, no stationary processes can exist. Stationary
processes are merely used as mathematical models for processes, which hold their
statistical properties over a relatively long time. From now on, a stochastic process
will be assumed as a strict-sense stationary stochastic process, as long as nothing else
is said.

A system with the transfer function

Ȟ(f) = −j sgn (f) (2.53)

is called the Hilbert transformer. We observe that this system causes a phase shift of
−π/2 for f > 0 and a phase shift of +π/2 for f < 0. It should also be observed that
H(f) = 1 holds. The inverse Fourier transform of the transfer function Ȟ(f) results
in the impulse response

ȟ(t) =
1
πt

. (2.54)

Since ȟ(t) 6= 0 holds for t < 0, it follows that the Hilbert transformer is not causal.
Let ν(t) with E{ν(t)} = 0 be a real-valued input process of the Hilbert transformer,
then the output process

ν̌(t) = ν(t) ∗ ȟ(t) =
1
π

∞∫

−∞

ν(t′)
t− t′

dt′ (2.55)

is said to be the Hilbert transform of ν(t). One should note that the computation of
the integral in (2.55) must be performed according to Cauchy’s principal value.

With (2.52) and (2.54), the following relations hold:

rνν̌(τ) = řνν(τ) ◦—• Sνν̌(f) = −j sgn (f) · Sνν(f) , (2.56a, b)
rνν̌(τ) = −rν̌ν(τ) ◦—• Sνν̌(f) = −Sν̌ν(f) , (2.56c, d)

rν̌ν̌(τ) = rνν(τ) ◦—• Sν̌ν̌(f) = Sνν(f) . (2.56e, f)
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2.2.2 Ergodic Processes

The description of the statistical properties of stochastic processes, like the expected
value or the autocorrelation function, is based on ensemble means (statistical means),
which takes all possible sample functions of the stochastic process into account. In
practice, however, one almost always observes and records only a finite number of
sample functions (mostly even only one single sample function). Nevertheless, in order
to make statements on the statistical properties of stochastic process, one refers to
the ergodicity hypothesis.

The ergodicity hypothesis deals with the question, whether it is possible to evaluate
only a single sample function of a stationary stochastic process instead of averaging
over the whole ensemble of sample functions at one or more specific time instants.
Of particular importance is the question whether the expected value and the
autocorrelation function of a stochastic process µ(t) equal the temporal means taken
over any arbitrarily sample function µ(t, si). According to the ergodic theorem, the
expected value E{µ(t)} = mµ equals the temporal average of µ(t, si), i.e.,

mµ = m̃µ := lim
T→∞

1
2T

+T∫

−T

µ(t, si) dt , (2.57)

and the autocorrelation function rµµ(τ) = E{µ∗(t)µ(t + τ)} equals the temporal
autocorrelation function of µ(t, si), i.e.,

rµµ(τ) = r̃µµ(τ) := lim
T→∞

1
2T

+T∫

−T

µ∗(t, si) µ(t + τ, si) dt . (2.58)

A stationary stochastic process µ(t) is said to be strict-sense ergodic, if all expected
values, which take all possible sample functions into account, are identical to the
respective temporal averages taken over an arbitrary sample function. If this condition
is only fulfilled for the expected value and the autocorrelation function, i.e., if only
(2.57) and (2.58) are fulfilled, then the stochastic process µ(t) is said to be wide-sense
ergodic. A strict-sense ergodic process is always stationary. The inverse statement is
not always true, although commonly assumed.

2.2.3 Level-Crossing Rate and Average Duration of Fades

Apart from the probability density function and the autocorrelation function, other
characteristic quantities describing the statistics of mobile fading channels are of
importance. These quantities are the level-crossing rate and the average duration of
fades.

As we know, the received signal in mobile radio communications often undergoes
heavy statistical fluctuations, which can reach as high as 30 dB and more. In digital
communications, a heavy decline of the received signal directly leads to a drastic
increase of the bit error rate. For the optimization of coding systems, which are
required for error correction, it is not only important to know how often the received



26 STOCHASTIC PROCESSES AND DETERMINISTIC SIGNALS

signal crosses a given signal level per time unit, but also for how long on average the
signal is below a certain level. Suitable measures for this are the level-crossing rate
and the average duration of fades.

Level-crossing rate: The level-crossing rate, denoted by Nζ(r), describes how often
a stochastic process ζ(t) crosses a given level r from up to down (or from down to up)
within one second. According to [Ric44, Ric45], the level-crossing rate Nζ(r) can be
calculated by

Nζ(r) =

∞∫

0

ẋ pζζ̇(r, ẋ) dẋ , r ≥ 0 , (2.59)

where pζζ̇(x, ẋ) denotes the joint probability density function of the process ζ(t) and
its time derivative ζ̇(t) = dζ(t)/dt at the same time instant. Analytical expressions for
the level-crossing rate of Rayleigh and Rice processes can be calculated easily.

Consider two uncorrelated real-valued zero-mean Gaussian random processes µ1(t)
and µ2(t) with identical autocorrelation functions, i.e., rµ1µ1(τ) = rµ2µ2(τ). Then, for
the level-crossing rate of the resulting Rayleigh processes ζ(t) =

√
µ2

1(t) + µ2
2(t), we

obtain the following expression [Jak93]

Nζ(r) =

√
β

2π
· r

σ2
0

e
− r2

2σ2
0

=

√
β

2π
· pζ(r) , r ≥ 0 , (2.60)

where σ2
0 = rµiµi(0) denotes the mean power of the underlying Gaussian random

processes µi(t) (i = 1, 2). Here, β is a short notation for the negative curvature of the
autocorrelation functions rµ1µ1(τ) and rµ2µ2(τ) at the origin τ = 0, i.e.,

β = − d2

dτ2
rµiµi(τ)

∣∣∣∣
τ=0

= −r̈µiµi(0) , i = 1, 2 . (2.61)

For the Rice process ξ(t) =
√

(µ1(t) + ρ)2 + µ2
2(t), we obtain the following expression

for the level-crossing rate [Ric48]

Nξ(r) =

√
β

2π
· r

σ2
0

e
− r2+ρ2

2σ2
0 I0

(
rρ

σ2
0

)

=

√
β

2π
· pξ(r) , r ≥ 0 . (2.62)

Average duration of fades: The average duration of fades, denoted by Tζ (r), is
the expected value for the length of the time intervals in which the stochastic process
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ζ(t) is below a given level r. The average duration of fades Tζ (r) can be calculated
by means of [Jak93]

Tζ (r) =
Fζ (r)
Nζ(r)

, (2.63)

where Fζ (r) denotes the cumulative distribution function of the stochastic process
ζ(t) being the probability that ζ(t) is less or equal to the level r, i.e.,

Fζ (r) = P (ζ(t) ≤ r) =

r∫

0

pζ(x) dx . (2.64)

For the Rayleigh processes ζ(t), the average duration of fades is given by

Tζ (r) =
√

2π

β
· σ2

0

r

(
e

r2

2σ2
0 − 1

)
, r ≥ 0 , (2.65)

where the quantity β is again given by (2.61).

For Rice processes ξ(t), however, we find by substituting (2.26), (2.64), and (2.62) in
(2.63) the following integral expression

Tξ (r) =
√

2π

β
· e

r2

2σ2
0

r I0

(
rρ
σ2
0

)
r∫

0

x e
− x2

2σ2
0 I0

(
xρ

σ2
0

)
dx , r ≥ 0 , (2.66)

which has to be evaluated numerically.

Analogously, the average connecting time interval Tζ+(r) can be introduced. This
quantity describes the expected value for the length of the time intervals, in which the
stochastic process ζ(t) is above a given level r. Thus,

Tζ+(r) =
Fζ+(r)
Nζ(r)

, (2.67)

where Fζ+(r) is called the complementary cumulative distribution function of ζ(t). This
function describes the probability that ζ(t) is larger than r, i.e., Fζ+(r) = P (ζ(t) >
r). The complementary cumulative distribution function Fζ+ and the cumulative
distribution function Fζ−(r) are related by Fζ+(r) = 1− Fζ−(r).

2.3 DETERMINISTIC CONTINUOUS-TIME SIGNALS

In principle, one distinguishes between continuous-time and discrete-time signals. For
deterministic signals, we will in what follows use the continuous-time representation
wherever it is possible. Only in those sections where the numerical simulations of
channel models play a significant role, is the discrete-time representation of signals
chosen.

A deterministic (continuous-time) signal is usually defined over IR. The set IR is
considered as the time space in which the variable t takes its values, i.e., t ∈ IR.
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A deterministic signal is described by a function (mapping) in which each value of
t is definitely assigned to a real-valued (or complex-valued) number. Furthermore,
in order to distinguish deterministic signals from stochastic processes better, we will
put the tilde-sign onto the symbols chosen for deterministic signals. Thus, under a
deterministic signal µ̃(t), we will understand a mapping of the kind

µ̃ : IR → IR (or C) , t 7−→ µ̃(t) . (2.68)

In connection with deterministic signals, the following terms are of importance.

Mean value: The mean value of a deterministic signal µ̃(t) is defined by

m̃µ := lim
T→∞

1
2T

T∫

−T

µ̃(t)dt . (2.69)

Mean power: The mean power of a deterministic signal µ̃(t) is defined by

σ̃2
µ := lim

T→∞
1

2T

T∫

−T

|µ̃(t)|2dt . (2.70)

From now on, we will always assume that the power of a deterministic signal is finite.

Autocorrelation function: Let µ̃(t) be a deterministic signal. Then, the
autocorrelation function of µ̃(t) is defined by

r̃µµ(τ) := lim
T→∞

1
2T

T∫

−T

µ̃∗(t) µ̃(t + τ)dt , τ ∈ IR . (2.71)

Comparing (2.70) with (2.71), we realize that the value of r̃µµ(τ) at τ = 0 is identical
to the mean power of µ̃(t), i.e., the relation r̃µµ(0) = σ̃2

µ holds.

Cross-correlation function: Let µ̃1(t) and µ̃2(t) be two deterministic signals. Then,
the cross-correlation function of µ̃1(t) and µ̃2(t) is defined by

r̃µ1µ2(τ) := lim
T→∞

1
2T

T∫

−T

µ̃∗1(t) µ̃2(t + τ) dt , τ ∈ IR . (2.72)

Here, r̃µ1µ2(τ) = r̃∗µ2µ1
(−τ) holds.

Power spectral density: Let µ̃(t) be a deterministic signal. Then, the Fourier
transform of the autocorrelation function r̃µµ(τ), defined by

S̃µµ(f) :=

∞∫

−∞
r̃µµ(τ)e−j2πfτdτ , f ∈ IR , (2.73)
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is called the power spectral density (or power density spectrum) of µ̃(t).

Cross-power spectral density: Let µ̃1(t) and µ̃2(t) be two deterministic signals.
Then, the Fourier transform of the cross-correlation function r̃µ1µ2(τ)

S̃µ1µ2(f) :=

∞∫

−∞
r̃µ1µ2(τ)e−j2πfτdτ , f ∈ IR , (2.74)

is called the cross-power spectral density (or cross-power density spectrum). From (2.74)
and the relation r̃µ1µ2(τ) = r̃∗µ2µ1

(−τ) it follows that S̃µ1µ2(f) = S̃∗µ2µ1
(f) holds.

Let ν̃(t) and µ̃(t) be the deterministic input signal and the deterministic output signal,
respectively, of a linear time-invariant stable system with the transfer function H(f).
Then, the relationship

S̃µµ(f) = |H(f)|2S̃νν(f) (2.75)

holds.

2.4 DETERMINISTIC DISCRETE-TIME SIGNALS

By equidistant sampling of a continuous-time signal µ̃(t) at the discrete time instants
t = tk = kTs, where k ∈ Z and Ts symbolizes the sampling interval, we obtain the
sequence of numbers {µ̃(kTs)} = {. . . , µ̃(−Ts), µ̃(0), µ̃(Ts), . . .}. In specific questions of
many engineering fields, it is occasionally strictly distinguished between the sequence
{µ̃(kTs)} itself, which is then called a discrete-time signal, and the kth element
µ̃(kTs) of it. For our purposes, however, this differentiation is not connected to
any advantage worth mentioning. In what follows, we will therefore simply write
µ̃(kTs) for discrete-time signals or sequences, and we will make use of the notation
µ̄[k] := µ̃(kTs) = µ̃(t)|t=kTs .

It is clear that by sampling a deterministic continuous-time signal µ̃(t), we obtain a
discrete-time signal µ̄[k], which is deterministic as well. Under a deterministic discrete-
time signal µ̄[k], we understand a mapping of the kind

µ̄ : Z→ IR (or C) , k 7−→ µ̄[k] . (2.76)

The terms such as mean value, autocorrelation function, and power spectral density,
which were previously introduced for deterministic continuous-time signals, can also
be applied to deterministic discrete-time signals. The most important definitions and
relationships will only be introduced here, as far as they are actually used, especially
in Chapter 8. The reader can find a detailed presentation of the relationships, e.g., in
[Opp75, Kam98, Unb90].

Mean value: The mean value of a deterministic sequence µ̄[k] is defined by

m̄µ := lim
K→∞

1
2K + 1

K∑

k=−K

µ̄[k] . (2.77)
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Mean power: The mean power of a deterministic sequence µ̄[k] is defined by

σ̄2
µ := lim

K→∞
1

2K + 1

K∑

k=−K

|µ̄[k]|2 . (2.78)

Autocorrelation sequence: Let µ̄[k] be a deterministic sequence, then the
corresponding autocorrelation sequence is defined by

r̄µµ[κ] := lim
K→∞

1
2K + 1

K∑

k=−K

µ̄∗[k] µ̄[k + κ] , κ ∈ Z . (2.79)

Thus, in connection with (2.78), it follows σ̄2
µ = r̄µµ[0].

Cross-correlation sequence: Let µ̄1[k] and µ̄2[k] be two deterministic sequences,
then the cross-correlation sequence is defined by

r̄µ1µ2 [κ] := lim
K→∞

1
2K + 1

K∑

k=−K

µ̄∗1[k] µ̄2[k + κ] , κ ∈ Z . (2.80)

Here, the relation r̄µ1µ2 [κ] = r̄∗µ2µ1
[−κ] holds.

Power spectral density: Let µ̄[k] be a deterministic sequence, then the discrete
Fourier transform of the autocorrelation sequence r̄µµ[κ], defined by

S̄µµ(f) :=
∞∑

κ=−∞
r̄µµ[κ] e−j2πfTsκ , f ∈ IR , (2.81)

is called the power spectral density or power density spectrum of µ̄[k].

Between (2.81) and (2.73), the relation

S̄µµ(f) :=
1
Ts

∞∑
m=−∞

S̃µµ(f −mfs) (2.82)

holds, where fs = 1/Ts is called the sampling frequency or the sampling rate.
Obviously, the power spectral density S̄µµ(f) is periodic with the period fs, since
S̄µµ(f) = S̄µµ(f −mfs) holds for all m ∈ Z. The relation (2.82) states that the power
spectral density S̄µµ(f) of µ̄[k] follows from the power spectral density S̃µµ(f) of µ̃(t),
if the latter one is weighted by 1/Ts and periodically continued at instants mfs, where
m ∈ Z.

The inverse discrete Fourier transform of the power spectral density S̄µµ(f) again
results in the autocorrelation sequence r̄µµ[κ] of µ̄[k], i.e.,

r̄µµ[κ] :=
1
fs

fs/2∫

−fs/2

S̄µµ(f) ej2πfTsκ df , κ ∈ Z . (2.83)
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Cross-power spectral density: Let µ̄1[k] and µ̄2[k] be two deterministic sequences.
Then, the discrete Fourier transform of the cross-correlation sequence r̄µ1µ2 [κ], defined
by

S̄µ1µ2(f) :=
∞∑

κ=−∞
r̄µ1µ2 [κ] e−j2πfTsκ , f ∈ IR , (2.84)

is called the cross-power spectral density or the cross-power density spectrum. From the
above equation and r̄µ1µ2 [κ] = r̄∗µ2µ1

[−κ] it follows that S̄µ1µ2(f) = S̄∗µ2µ1
(f) holds.

Sampling theorem: Let µ̃(t) be a band-limited continuous-time signal with the cut-
off frequency fc. If this signal is sampled with a sampling frequency fs greater than
the double of its cut-off frequency fc, i.e.,

fs > 2fc , (2.85)

then µ̃(t) is completely determined by the corresponding sampling values µ̄[k] =
µ̃(kTs). In particular, the continuous-time signal µ̃(t) can be reconstructed from the
sequence µ̄[k] by means of the relation

µ̃(t) =
∞∑

k=−∞
µ̄[k] sinc

(
π

t− kTs

Ts

)
, (2.86)

where sinc (·) denotes the sinc function, which is defined by sinc (x) = sin(x)/x.

It should be added that the sampling condition (2.85) can be replaced by the
less restrictive condition fs ≥ 2fc, if the power spectral density S̃µµ(f) has no δ-
components at the limits f = ±fc [Fet96]. In this case, even on condition that fs ≥ 2fc

holds, the validity of the sampling theorem is absolutely guaranteed.





3

RAYLEIGH AND RICE
PROCESSES AS REFERENCE
MODELS

From now on, we assume that the transmitter is stationary. The transmitted electro-
magnetic waves mostly do not, at least in urban areas, arrive at the vehicle antenna
of the receiver over the direct path. On the other hand, due to reflections from
buildings, from the ground, and from other obstacles with vast surfaces, as well as
scatters from trees and other scatter-objects, a multitude of partial waves arrive
at the receiver antenna from different directions. This effect is known as multipath
propagation. Due to multipath propagation, the received partial waves increase or
weaken each other, depending on the phase relations of the waves. Consequently, the
received electromagnetic field strength and, thus, also the received signal are both
strongly fluctuating functions of the receiver’s position [Lor85] or, in case of a moving
receiver, strongly fluctuating functions of time. Besides, as a result of the Doppler
effect, the motion of the receiver leads to a frequency shift (Doppler shift)1 of the
partial waves hitting the antenna. Depending on the direction of arrival of these partial
waves, different Doppler shifts occur, so that for the sum of all scattered (and reflected)
components, we finally obtain a continuous spectrum of Doppler frequencies, which is
called the Doppler power spectral density.

If the propagation delay differences among the scattered signal components at the
receiver are negligible compared to the symbol interval, what we will assume in the
following, then the channel is said to be frequency-nonselective. In this case, the
fluctuations of the received signal can be modelled by multiplying the transmitted
signal with an appropriate stochastic model process. After extensive measurements
of the envelope of the received signal [You52, Nyl68, Oku68] in urban and suburban
areas, i.e., in regions where the line-of-sight component is often blocked by obstacles,
the Rayleigh process was suggested as suitable stochastic model process. In rural
regions, however, the line-of-sight component is often a part of the received signal, so

1 In the two-dimensional horizontal plane, the Doppler shift (Doppler frequency) of an elementary
wave is equal to f = fmax cos α, where α is the angle of arrival as illustrated in Figure 1.2 and
fmax =vf0/c0 denotes the maximum Doppler frequency (v: velocity of the vehicle, f0: carrier
frequency, c0: speed of light) [Jak93].
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that the Rice process is the more suitable stochastic model for these channels.

However, the validity of these models is limited to relatively small areas with
dimensions in the order of about some few tens of wavelengths, where the local mean
of the envelope is approximately constant [Jak93]. In larger areas, however, the local
mean fluctuates due to shadowing effects and is approximately lognormally distributed
[Oku68, Par92].

The knowledge of the statistical properties of the received signal envelope is necessary
for the development of digital communication systems and for planning mobile radio
networks. Usually, Rayleigh and Rice processes are preferred for modelling fast-
term fading, whereas slow-term fading is modelled with a lognormal process [Par92].
Slow-term fading not only has a strong influence on channel availability, selection
of the carrier frequency, handover, etc., but is also important in the planning of
mobile radio networks. For the choice of the transmission technique and the design of
digital receivers, however, the properties of the fast-term statistics, on which we will
concentrate in this chapter, are of vital importance [Fec93b].

In order to better assess the performance of deterministic processes and deterministic
simulation models derivable from these, we will often refer to stochastic reference
models. As reference models — depending on the objective — the respective reference
models for Gaussian, Rayleigh or Rice processes will be used. The aim of this chapter
is to describe these reference models. At first, an introductory description of the
reference models is given in Section 3.1. After some elementary properties of these
models have been examined closer in Section 3.2, we will finally analyse in Section 3.3
the statistical properties of the first order (Subsection 3.3.1) and of the second order
(Subsection 3.3.2), as far as it is necessary for the further aims of this book. Chapter 3
ends with an analysis of the fading intervals of Rayleigh processes (Subsection 3.3.3).

3.1 GENERAL DESCRIPTION OF RICE AND RAYLEIGH PROCESSES

The sum of all scattered components of the received signal is — when transmitting
an unmodulated carrier over a frequency-nonselective mobile radio channel — in
the equivalent complex baseband often described by a zero-mean complex Gaussian
random process

µ(t) = µ1(t) + jµ2(t) . (3.1)

Usually, it is assumed that the real-valued Gaussian random processes µ1(t) and
µ2(t) are statistically uncorrelated. Let the variance of the processes µi(t) be equal to
Var {µi(t)} = σ2

0 for i = 1, 2, then the variance of µ(t) is given by Var {µ(t)} = 2σ2
0 .

The line-of-sight component of the received signal will in the following be described
by a general time-variant part

m(t) = m1(t) + jm2(t) = ρej(2πfρt+θρ) , (3.2)

where ρ, fρ, and θρ denote the amplitude, the Doppler frequency, and the phase of
the line-of-sight component, respectively. One should note about this that, due to the



ELEMENTARY PROPERTIES OF RICE AND RAYLEIGH PROCESSES 35

Doppler effect, the relation fρ = 0 only holds if the direction of arrival of the incident
wave is orthogonal to the direction of motion of the mobile user. Consequently, (3.2)
then becomes a time-invariant component, i.e.,

m = m1 + jm2 = ρejθρ . (3.3)

At the receiver antenna, we have the superposition of the sum of the scattered
components with the line-of-sight component. In the model chosen here, this
superposition is equal to the addition of (3.1) and (3.2). For this reason, we introduce
a further complex Gaussian random process

µρ(t) = µρ1(t) + jµρ2(t) = µ(t) + m(t) (3.4)

with time-variant mean value m(t).

As we know, forming the absolute values of (3.1) and (3.4) leads to Rayleigh and Rice
processes [Ric48], respectively. In order to distinguish these processes clearly from each
other, we will in the following denote Rayleigh processes by

ζ(t) = |µ(t)| = |µ1(t) + jµ2(t)| (3.5)

and Rice processes by

ξ(t) = |µρ(t)| = |µ(t) + m(t)| . (3.6)

3.2 ELEMENTARY PROPERTIES OF RICE AND RAYLEIGH PROCESSES

The shape of the power spectral density of the complex Gaussian random process (3.4)
is identical to the Doppler power spectral density, which is obtained from both the
power of all electromagnetic waves arriving at the receiver antenna and the distribution
of the angles of arrival. In addition to that, the antenna radiation pattern of the
receiving antenna has a decisive influence on the shape of the Doppler power spectral
density.

By modelling mobile radio channels, one frequently simplifies matters by assuming
that the propagation of electromagnetic waves occurs in the two-dimensional plane,
hence, horizontally. Furthermore, mostly the idealized assumption is made that the
angles of incidence of the waves arriving at the antenna of the mobile participant
(receiver) are uniformly distributed from 0 to 2π. For omnidirectional antennas, we
can then easily calculate the (Doppler) power spectral density Sµµ(f) of the scattered
components µ(t) = µ1(t) + jµ2(t). For Sµµ(f), one finds the following expression
[Cla68, Jak93]

Sµµ(f) = Sµ1µ1(f) + Sµ2µ2(f) , (3.7)

where

Sµiµi(f) =





σ2
0

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax ,

(3.8)
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holds for i = 1, 2 and fmax denotes the maximum Doppler frequency. In the literature,
(3.8) is often called Jakes power spectral density (Jakes PSD), although it was originally
derived by Clarke [Cla68]. The reader can find a full derivation of the Jakes power
spectral density in Appendix A.

In principle, the electromagnetic waves arriving at the receiver have besides the
vertical also a horizontal component. The latter is considered in the three-dimensional
propagation model derived in [Aul79]. The only difference between the resulting power
spectral density and (3.8) is that there are no poles at f = ±fmax. Apart from that,
the course of the curve is similar to that of (3.8).

A stochastic model for a land mobile radio channel with communication between two
moving vehicles (mobile-to-mobile communication) was introduced in [Akk86]. It was
shown there that the channel can again be represented by a narrow-band complex
Gaussian random process with symmetrical Doppler power spectral density, which
has poles though at the points f = ±(fmax1 − fmax2). Here, fmax1 (fmax2) denotes
the maximum Doppler frequency due to the motion of the receiver (transmitter). The
shape of the curve differs considerably from the Jakes power spectral density (3.8),
but contains it as a special case for fmax1 = 0 or fmax2 = 0. The statistical properties
(of second order) for this channel model were analysed in a further paper [Akk94].

Considering (3.7) and (3.8), we see that Sµµ(f) is an even function. This property
no longer exists, however, as soon as either a spatially limited shadowing prevents
an isotropic distribution of the received waves or sector antennas with a formative
directional antenna radiation pattern are used at the receiver [Cla68, Gan72]. The
electromagnetic reflecting power of the environment can also be in such a condition
that waves from certain directions are reflected with different intensities. In this case,
the Doppler power spectral density Sµµ(f) of the complex Gaussian random process
(3.1) is also unsymmetrical [Kra90b]. We will return to this subject in Chapter 5.

The inverse Fourier transform of Sµµ(f) results for the Jakes power spectral density
(3.8) in the autocorrelation function derived in Appendix A

rµµ(τ) = rµ1µ1(τ) + rµ2µ2(τ) , (3.9)

where

rµiµi(τ) = σ2
0J0(2πfmaxτ) , i = 1, 2 , (3.10)

holds, and J0(·) denotes the 0th-order Bessel function of the first kind.

By way of illustration, the Jakes power spectral density (3.8) is presented together
with the corresponding autocorrelation function (3.10) in Figures 3.1(a) and 3.1(b),
respectively.

Besides the Jakes power spectral density (3.8), the so-called Gaussian power spectral
density (Gaussian PSD)

Sµiµi(f) =
σ2

0

fc

√
ln 2
π

e− ln 2( f
fc

)2

, i = 1, 2 , (3.11)
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Figure 3.1: (a) Jakes power spectral density Sµiµi(f) and (b) the corresponding
autocorrelation function rµiµi(τ) (fmax = 91Hz, σ2

0 = 1).

will play an important role in the following, where fc denotes the 3-dB-cut-off
frequency.

Theoretical investigations in [Bel73] have shown that the Doppler power spectral
density of aeronautical channels has a Gaussian shape. Further information on the
measurements concerning the propagation characteristics of aeronautical satellite
channels can be found, for example, in [Neu87]. Although no absolute correspondence
to the obtained measurements could be proved, (3.11) can in most cases very well be
used as a sufficiently good approximation [Neu89]. For signal bandwidths up to some
10 kHz, the aeronautical satellite channel belongs to the class of frequency-nonselective
mobile radio channels [Neu89].

Especially for frequency-selective mobile radio channels, it has been shown [Cox73]
that the Doppler power spectral density of the far echoes deviates strongly from
the shape of the Jakes power spectral density. Hence, the Doppler power spectral
density is approximately Gaussian shaped and is generally shifted from the origin of
the frequency plane, because the far echoes mostly dominate from a certain direction
of preference. Specifications for frequency-shifted Gaussian power spectral densities
for the pan-European, terrestrial, cellular GSM system can be found in [COS86].

The inverse Fourier transform results for the Gaussian power spectral density (3.11)
in the autocorrelation function

rµiµi(τ) = σ2
0 e
−
�

π fc√
ln 2

τ
�2

. (3.12)

In Figure 3.2, the Gaussian power spectral density (3.11) is illustrated with the
corresponding autocorrelation function (3.12).

Characteristic quantities for the Doppler power spectral density Sµiµi(f) are the
average Doppler shift B

(1)
µiµi and the Doppler spread B

(2)
µiµi [Bel63]. The average Doppler

shift (Doppler spread) describes the average frequency shift (frequency spread) that
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Figure 3.2: (a) Gaussian power spectral density Sµiµi(f) and (b) corresponding

autocorrelation function rµiµi(τ) (fc =
√

ln 2fmax, fmax = 91Hz, σ2
0 = 1).

a carrier signal experiences during transmission. The average Doppler shift B
(1)
µiµi is

the first moment of Sµiµi(f) and the Doppler spread B
(2)
µiµi is the square root of the

second central moment of Sµiµi(f). Consequently, B
(1)
µiµi and B

(2)
µiµi are defined by

B(1)
µiµi

:=

∫∞
−∞ fSµiµi(f)df∫∞
−∞ Sµiµi(f)df

(3.13a)

and

B(2)
µiµi

:=

√√√√
∫∞
−∞(f −B

(1)
µiµi)2Sµiµi(f)df∫∞

−∞ Sµiµi(f)df
, (3.13b)

for i = 1, 2, respectively. Equivalent — but often easier to calculate — expressions for
(3.13a) and (3.13b) can be obtained by using the autocorrelation function rµiµi(τ) as
well as its first and second time derivative at the origin, i.e.,

B(1)
µiµi

:=
1

2πj
· ṙµiµi(0)
rµiµi(0)

and B(2)
µiµi

=
1
2π

√(
ṙµiµi(0)
rµiµi(0)

)2

− r̈µiµi(0)
rµiµi(0)

,(3.14a, b)

for i = 1, 2, respectively.

For the important special case where the Doppler power spectral densities Sµ1µ1(f)
and Sµ2µ2(f) are identical and symmetrical, ṙµiµi(0) = 0 (i = 1, 2) holds. Hence, by
using (3.7), we obtain the following expressions for the corresponding characteristic
quantities of the Doppler power spectral density Sµµ(f)

B(1)
µµ = B(1)

µiµi
= 0 and B(2)

µµ = B(2)
µiµi

=
√

β

2πσ0
, (3.15a, b)
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where σ2
0 = rµiµi

(0) ≥ 0 and β = −r̈µiµi
(0) ≥ 0.

By making use of (3.15a, b), especially for the Jakes power spectral density [see (3.8)]
and the Gaussian power spectral density [see (3.11)], the expressions

B(1)
µiµi

= B(1)
µµ = 0 and B(2)

µiµi
= B(2)

µµ =





fmax√
2

, Jakes PSD ,

fc√
2 ln 2

, Gaussian PSD ,
(3.16a, b)

for i = 1, 2 follow for the average Doppler shift B
(1)
µiµi and the Doppler spread B

(2)
µiµi ,

respectively. From (3.16b), it follows that the Doppler spread of the Jakes power
spectral density is identical to the Doppler spread of the Gaussian power spectral
density, if the 3-dB-cut-off frequency fc and the maximum Doppler frequency fmax

are related by fc =
√

ln 2fmax.

3.3 STATISTICAL PROPERTIES OF RICE AND RAYLEIGH PROCESSES

Besides the probability density of the amplitude and the phase, we will in this section
also analyse the level-crossing rate as well as the average duration of fades of Rice
processes ξ(t) = |µ(t) + m(t)| [see (3.6)] with time-variant line-of-sight components
m(t). Analysing the influence of the power spectral density Sµµ(f) of the complex
Gaussian random process µ(t) on the statistical properties of ξ(t), we will restrict
ourselves to the Jakes and Gaussian power spectral densities introduced above.

3.3.1 Probability Density Function of the Amplitude and the Phase

The probability density function of the Rice process ξ(t), pξ(x), is described by the so
called Rice distribution [Ric48]

pξ(x) =





x

σ2
0

e
− x2+ρ2

2σ2
0 I0

(
xρ

σ2
0

)
, x ≥ 0 ,

0 , x < 0 ,

(3.17)

where I0(·) is the 0th-order modified Bessel function of the first kind and σ2
0 =

rµiµi(0) = rµµ(0)/2 again denotes the power of the real-valued Gaussian random
process µi(t) (i = 1, 2). Obviously, neither the time variance of the mean (3.2) caused
by the Doppler frequency of the line-of-sight component nor the exact shape of the
Doppler power spectral density Sµµ(f) influences the probability density function
pξ(x). Merely the amplitude of the line-of-sight component ρ and the power σ2

0 of the
real part or the imaginary part of the scattered component determine the behaviour
of pξ(x).

Of particular interest is in this context the Rice factor, denoted by cR, which describes
the ratio of the power of the line-of-sight component to the sum of the power of all
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scattered components. Thus, the Rice factor is defined by

cR :=
ρ2

2σ2
0

. (3.18)

From the limit ρ → 0, i.e., cR → 0, the Rice process ξ(t) results in the Rayleigh process
ζ(t), whose statistical amplitude variations are described by the Rayleigh distribution
[Pap91]

pζ(x) =





x

σ2
0

e
− x2

2σ2
0 , x ≥ 0 ,

0 , x < 0 .

(3.19)

The probability density functions pξ(x) and pζ(x) according to (3.17) and (3.19) are
shown in the Figures 3.3(a) and 3.3(b), respectively.
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Figure 3.3: The probability density function of (a) Rice and (b) Rayleigh processes.

As mentioned before, the exact shape of the Doppler power spectral density Sµµ(f)
has no effect on the probability density of the absolute value of the complex Gaussian
random process, i.e., ξ(t) = |µρ(t)|. Analogously, this statement is also valid for
the probability density function of the phase ϑ(t) = arg{µρ(t)}, where ϑ(t) can be
expressed with (3.1), (3.2), and (3.4) as follows

ϑ(t) = arctan
{

µ2(t) + ρ sin (2πfρt + θρ)
µ1(t) + ρ cos (2πfρt + θρ)

}
. (3.20)

In order to confirm this statement, we study the probability density function pϑ(θ; t)
of the phase ϑ(t) given by the following relation [Pae98d]
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pϑ(θ; t) =
e
− ρ2

2σ2
0

2π

{
1 +

ρ

σ0

√
π

2
cos(θ − 2πfρt− θρ)e

ρ2 cos2(θ−2πfρt−θρ)

2σ2
0

[
1 + erf

(
ρ cos(θ − 2πfρt− θρ)

σ0

√
2

)]}
, −π < θ ≤ π , (3.21)

where erf (·) is called the error function.2 The dependence of the probability density
function pϑ(θ; t) on the time t is due to the Doppler frequency fρ of the line-of-sight
component m(t). According to Subsection 2.2.1, the stochastic process ϑ(t) is not
stationary in the strict sense, because the condition (2.47a) is not fulfilled. Only for
the special case that fρ = 0 (ρ 6= 0), the phase ϑ(t) is a strict-sense stationary process
which is then described by the probability density function shown in [Par92]

pϑ(θ) =
e
− ρ2

2σ2
0

2π

{
1 +

ρ

σ0

√
π

2
cos(θ − θρ)e

ρ2 cos2(θ−θρ)

2σ2
0

[
1 + erf

(
ρ cos(θ − θρ)

σ0

√
2

)]}
, −π < θ ≤ π . (3.22)

As ρ → 0, it follows µρ(t) → µ(t) and, thus, ξ(t) → ζ(t), and from (3.22), we obtain
the uniform distribution

pϑ(θ) =
1
2π

, −π < θ ≤ π . (3.23)

Therefore, the phase of zero-mean complex Gaussian random processes with
uncorrelated real and imaginary parts is always uniformly distributed. Finally, it
should be mentioned that in the limit ρ →∞, (3.22) tends to pϑ(θ) = δ(θ − θρ).

By way of illustration, the probability density function pϑ(θ) is depicted in Figure 3.4
for several values of ρ.

3.3.2 Level-Crossing Rate and Average Duration of Fades

As further statistical quantities, we will in this subsection study the level-crossing
rate and the average duration of fades. Therefore, we at first turn to the Rice process
ξ(t) introduced by (3.6), and we impose on our reference model that the real-valued
zero-mean Gaussian random processes µ1(t) and µ2(t) are uncorrelated and both have
identical autocorrelation functions, i.e., rµ1µ2(τ) = 0 and rµ1µ1(τ) = rµ2µ2(τ). When
calculating the level-crossing rate Nξ(r) of the Rice process ξ(t) = |µρ(t)|, however,
it must be taken into consideration that a correlation exists between the real and
imaginary part of the complex Gaussian random process µρ(t) [see (3.4)] due to the
time-variant line-of-sight component (3.2).

2 The error function is defined as erf (x) = 2√
π

R x
0 e−t2dt.
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Figure 3.4: The probability density function of the phase pϑ(θ) (fρ = 0, θρ = 0, σ2
0 = 1).

For the level-crossing rate Nξ(r) it then holds [Pae98d]

Nξ(r) =
r
√

2β

π3/2σ2
0

e
− r2+ρ2

2σ2
0

π/2∫

0

cosh
(

rρ

σ2
0

cos θ

)

{
e−(αρ sin θ)2 +

√
παρ sin(θ) · erf (αρ sin θ)

}
dθ , r ≥ 0 , (3.24)

where the quantities α and β are given by

α = 2πfρ

/√
2β (3.25)

and

β = βi = −r̈µiµi(0) , i = 1, 2 , (3.26)

respectively. Considering (3.25), we notice that the Doppler frequency fρ of the line-
of-sight component m(t) has an influence on the level-crossing rate Nξ(r). However, if
fρ = 0, and, thus, α = 0, it follows from (3.24) the relation (2.62), which will at this
point be given again for completeness, i.e.,

Nξ(r) =

√
β

2π
· pξ(r) , r ≥ 0 . (3.27)

Therefore, (3.27) describes the level-crossing rate of Rice processes with a time-
invariant line-of-sight component. For ρ → 0, it follows pξ(r) → pζ(r), and for the
level-crossing rate Nζ(r) of Rayleigh processes ζ(t), we obtain the relation

Nζ(r) =

√
β

2π
· pζ(r) , r ≥ 0 . (3.28)
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For Rice and Rayleigh processes, the expressions (3.27) and (3.28), respectively,
clearly show the proportional relation between the level-crossing rate and the
corresponding probability density function of the amplitude. The value of the
proportional constant

√
β/(2π) is due to (3.26) only depending on the negative

curvature of the autocorrelation function of the real-valued Gaussian random processes
at the origin. Especially for the Jakes and the Gaussian power spectral density, we
obtain by using (3.10), (3.12), and (3.26), the following result for the quantity β:

β =

{
2(πfmaxσ0)2 , Jakes PSD ,

2(πfcσ0)2/ ln 2 , Gaussian PSD .
(3.29)

Despite the large differences existing between the shape of the Jakes and the Gaussian
power spectral density, both Doppler power spectral densities enable the modelling of
Rice or Rayleigh processes with identical level-crossing rates, as long as the relation
fc =

√
ln 2fmax between fmax and fc holds.

The influence of the parameters fρ and ρ on the normalized level-crossing rate
Nξ(r)/fmax is illustrated in Figures 3.5(a) and 3.5(b), respectively. Thereby,
Figure 3.5(a) points out that an increase of |fρ| leads to an increase of the level-
crossing rate Nξ(r).
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Figure 3.5: Normalized level-crossing rate Nξ(r)/fmax of Rice processes dependent on
(a) fρ and (b) ρ (Jakes PSD, fmax = 91Hz, σ2

0 = 1).

In some passages of this book, the case rµ1µ1(0) = rµ2µ2(0) but β1 = −r̈µ1µ1(0) 6=
−r̈µ2µ2(0) = β2 will be relevant for us. For the level-crossing rate Nξ(r) of the Rice
process ξ(t), we on this condition obtain the expression (B.13) derived in Appendix B

Nξ(r) =

√
β1

2π

r

σ2
0

e
− r2+ρ2

2σ2
0
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· 1
π

π∫

0

cosh
[

rρ

σ2
0

cos(θ − θρ)
] √

1− k2 sin2 θ dθ , r ≥ 0 , (3.30)

where k =
√

(β1 − β2)/β1, β1 ≥ β2. In this case, the level-crossing rate is in general
no longer proportional to the probability density function of the Rice distribution.

On the other hand, we again obtain the usual relations for Rayleigh processes ζ(t),
whose level-crossing rate Nζ(r) is obtained from (3.30) by taking the limit ρ → 0, i.e.,

Nζ(r) =

√
β1

2π
· r

σ2
0

e
− r2

2σ2
0 · 1

π

∫ π

0

√
1− k2 sin2 θ dθ , r ≥ 0 . (3.31)

In the literature (see [Gra81, vol. II, eq. (8.111.3)]), the above integral with the form

E(ϕ, k) =

ϕ∫

0

√
1− k2 sin2 θ dθ (3.32)

is known as elliptic integral of the second kind. The parameter k denotes the modulus
of the integral. For ϕ = π/2 these integrals are also called the complete elliptic integrals
of the second kind and we write E(k) = E(π

2 , k).

Let us use (3.19). Then, the level-crossing rate for Rayleigh processes can now be put
in the following form

Nζ(r) =

√
β1

2π
pζ(r) · 2

π
E(k) , r ≥ 0 , (3.33)

where for the modulus k again k =
√

(β1 − β2)/β1 , β1 ≥ β2, holds. Thus, for
Rayleigh processes the level-crossing rate is proportional to the probability density
function of the amplitude even for the case β1 6= β2. The proportional constant is here
not only determined by β1, but also by the difference β1 − β2.

Furthermore, we are interested in the level-crossing rate Nζ(r) for the case that the
relative deviation between β1 and β2 is very small. Therefore, let us assume that a
positive number ε = β1 − β2 ≥ 0 with ε/β1 << 1 exists, so that

k =

√
β1 − β2

β1
=

√
ε

β1
<< 1 (3.34)

holds. Next, we make use of the relation (see [Gra81, vol. II, eq. (8.114.1)])

E(k) =
π

2
F

(
−1

2
,
1
2
; 1; k2

)

=
π

2

{
1−

∞∑
n=1

[
1 · 3 · 5 · . . . · (2n− 1)

2n n!

]2
k2n

2n− 1

}
, (3.35)
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where F (., .; .; .) is called the hypergeometric function. By using the first two terms of
the series for E(k), we obtain the following approximation formula

E(k) ≈ π

2

(
1− k2

4

)
≈ π

2

√
1− k2

2
, k << 1 . (3.36)

Now, substituting (3.34) into (3.36) and taking (3.33) into account, leads for the level-
crossing rate Nζ(r) to the approximation

Nζ(r) ≈
√

β

2π
· pζ(r) , r ≥ 0 , (3.37)

which is valid for the case (β1 − β2)/β1 << 1, where in (3.37) the quantity β is given
by β = (β1 + β2)/2. Hence, (3.28) approximately keeps its validity if the relative
deviations between β1 and β2 are small and if β = β1 = β2 is in (3.28) replaced by
the arithmetical mean β = (β1 + β2)/2.

The average duration of fades, i.e., the average length of the duration while the channel
amplitude is below a level r, is defined by the quotient of the distribution function of
the channel amplitude over the level-crossing rate, according to (2.63). The probability
density function and the level-crossing rate of Rice and Rayleigh processes considered
here have already been analysed in detail, so that the analysis of the corresponding
average duration of fades can easily be carried out. For completeness, however, the
resulting relations will again be given here. For Rice processes with fρ = 0 and
Rayleigh processes, we obtain for the average duration of fades [see also (2.66) and
(2.65), respectively]:

Tξ−(r) =
Fξ−(r)
Nξ(r)

=
√

2π

β
· e

r2

2σ2
0

r I0

(
rρ
σ2
0

)
r∫

0

x e
− x2

2σ2
0 I0

(
xρ

σ2
0

)
dx , r ≥ 0 , (3.38a)

and

Tζ−(r) =
Fζ−(r)
Nζ(r)

=
√

2π

β
· σ2

0

r

(
e

r2

2σ2
0 − 1

)
, r ≥ 0 , (3.38b)

respectively, where Fξ−(r) = P (ξ(t) ≤ r) and Fζ−(r) = P (ζ(t) ≤ r) denote the
cumulative distribution function of the Rice and Rayleigh process, respectively.

In channel modelling, we are especially interested in the behaviour of the average
duration of fades at low levels r. We therefore wish to analyse this case separately.
For this purpose, let r << 1, so that for moderate Rice factors, we may write
rρ/σ2

0 << 1 and, consequently, both I0(rρ/σ2
0) and I0(xρ/σ2

0) can be approximated
by one in (3.38a), since the independent variable x is within the relevant interval [0, r].
After a series expansion of the integrand in (3.38a), Tξ (r) can be given in a closed
form. By this means, it quickly turns out that for low levels r, Tξ (r) converges to
Tζ (r) given by (3.38b). Furthermore, the relation(3.38b) can be simplified by using
ex ≈ 1 + x (x << 1), so that we finally obtain the approximations

Tξ−(r) ≈ Tζ−(r) ≈ r

√
π

2β
, r << 1 , (3.39)



46 RAYLEIGH AND RICE PROCESSES AS REFERENCE MODELS

where rρ/σ2
0 << 1 is assumed. The above result shows that the average duration of

fades of Rice and Rayleigh processes are at low levels r approximately proportional
to r.

An illustration of the results is shown in Figure 3.6. In Figure 3.6(a) it can be seen
that an increase of |fρ| leads to a decrease of the average duration of fades Tξ−(r).
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Figure 3.6: Normalized average duration of fades Tξ (r) · fmax of Rice processes
depending on (a) fρ and (b) ρ (Jakes PSD, fmax = 91Hz, σ2

0 = 1).

3.3.3 The Statistics of the Fading Intervals of Rayleigh Processes

The statistical properties of Rayleigh and Rice processes analysed so far are
independent of the behaviour of the autocorrelation function rµiµi(τ) (i = 1, 2) of
the underlying Gaussian random processes for values τ > 0. For example, we have
seen that the probability density function of the amplitude ζ(t) = |µ(t)| is totally
determined by the behaviour of the autocorrelation function rµiµi(τ) at the origin,
i.e., by the variance σ2

0 = rµiµi(0). The behaviour of rµiµi(τ) at the origin determines
the level-crossing rate Nζ(r) and the average duration of fades Tζ−(r). These quantities
are, besides on the variance σ2

0 = rµiµi(0), also dependent on the negative curvature of
the autocorrelation function at the origin β = −r̈µiµi(0). If we now ask ourselves which
relevant statistical properties are at all affected by the behaviour of the autocorrelation
function rµiµi(τ) (i = 1, 2) for τ > 0, then this leads to the statistical distribution of
the fading intervals.

The conditional probability density function for the event that a Rayleigh process
ζ(t) crosses a given level r in an infinitesimal time interval (t + τ−, t + τ− + dτ−)
upwards for the first time on condition that the last down-crossing occurred within
the time interval (t, t+dt) is denoted as p0−(τ−; r). An exact theoretical derivation for
p0−(τ−; r) is still today even for Rayleigh processes an unsolved problem. In [Ric58],
Rice, however, managed to derive the probability density p1−(τ−; r) for the case that
the Rayleigh process ζ(t) crosses the level r in the order mentioned, where, however,
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no information on the behaviour of ζ(t) between t and t + τ− is given. For small
τ−-values, at which the probability that further level-crossings occur between t and
t + τ− is very low, p1−(τ−; r) can be considered a very good approximation for the
desired probability density function p0−(τ−; r). On the other hand, for large τ−-values,
p1−(τ−; r) cannot be used any further as a suitable approximation for p0−(τ−; r).

The determination of p1−(τ−; r) requires the numerical calculation of the threefold
integral [Ric58]

p1 (τ−; r) =
rM22 e

r2
2√

2πβ(1− r2
µiµi

(τ−))2

2π∫

0

J(a, b) e
−r2 1−rµiµi

(τ−)·cos ϕ

1−r2
µiµi

(τ−) dϕ , (3.40)

where

J(a, b) =
1

2π
√

1− a2

∞∫

b

∞∫

b

(x− b)(y − b) e
− x2+y2−2axy

2(1−a2) dx dy , (3.41)

a = cos ϕ · M23

M22
, (3.42)

b =
r ṙµiµi(τ−) · (rµiµi(τ−)− cos ϕ)

1− r2
µiµi

(τ−)
·
√

1− r2
µiµi

(τ−)
M22

, (3.43)

M22 = β(1− r2
µiµi

(τ−))− ṙ2
µiµi

(τ−) , (3.44)

M23 = r̈µiµi(τ−)(1− r2
µiµi

(τ−)) + rµiµi(τ−)ṙ2
µiµi

(τ−) , (3.45)

and β is again the quantity defined by (3.26).

Figures 3.7 and 3.8 show the evaluation of the probability density function p1−(τ−; r)
by using Jakes and Gaussian power spectral densities, respectively. For the 3-dB-
cut-off frequency of the Gaussian power spectral density, the value fc =

√
ln 2fmax

was chosen. For the quantity β, we hereby obtain identical values for the Jakes and
Gaussian power spectral density due to (3.29). Observing Figures 3.7(a) and 3.8(a),
we see that at low levels (r = 0.1) the courses of the probability density functions
p1−(τ−; r) are identical. With increasing levels r, however, these courses differ more
and more from each other (cf. Figures 3.7(b) and 3.8(b) for medium levels (r = 1) as
well as Figures 3.7(c) and 3.8(c) for high levels (r = 2.5)).

In these figures, it should be observed that p1−(τ−; r) does not converge to zero at
medium and large values for the level r. Obviously, p1−(τ−; r) ≥ 0 holds if τ− → ∞
which extremely jeopardizes the accuracy of (3.40) — at least for the range of medium
and high levels of r in connection with long fading intervals τ−.

The validity of the approximate solution (3.40) can ultimately only be determined
by simulating the level-crossing behaviour. Therefore, simulation models are needed,
which reproduce the Gaussian random processes µi(t) of the reference model with
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Figure 3.7: The probability density function p1−(τ−; r) when using the Jakes power

spectral density (fmax = 91Hz, σ2
0 = 1).
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respect to the probability density function pµi(x) and the autocorrelation function
rµiµi

(τ) extremely accurate. We will return to this subject in Section 5.3. For our
purposes, at first only the discovery that the probability density function of the fading
intervals of Rayleigh channels at medium and high levels r decisively depends on the
behaviour of the autocorrelation function rµiµi

(τ) for τ ≥ 0 is of importance.

In the following, we will analyse the statistics of the deep fades. The knowledge of the
statistics of the deep fades is of great importance in mobile radio communications,
since the bit and symbol error probability are mainly determined by the occurrence of
deep fades. Hence, let r << 1. In this case, the duration of fades τ− are short. Thus,
the probability that further level-crossings occur between t and t+ τ− is very low, and
the approximation p0−(τ−; r) ≈ p1−(τ−; r) is very good. In [Ric58] it is shown that
the probability density function (3.40) converges to

p1−(τ−; r) = − 1
Tζ−(r)

d

du

[
2
u

I1(z) e−z

]
(3.46)

as r → 0, where z = 2/(πu2) and u = τ−/Tζ−(r) hold. After some algebraic
manipulations, we find the following expression for this

p1−(τ−; r) =
2πz2e−z

Tζ−(r)

[
I0(z)−

(
1 +

1
2z

)
I1(z)

]
, r → 0 , (3.47)

where z = 2
[
Tζ−(r)/τ−

]2
/π. Considering (3.46) or (3.47), we see that, besides on the

level r, p1−(τ−; r) only depends on the average duration of fades Tζ−(r) and, hence, on
σ2

0 = rµiµi(0) and β = −r̈µiµi(0). Consequently, the probability density of the fading
intervals at low levels (r << 1) is independent of the shape of the autocorrelation
function rµiµi(τ) for τ > 0. The numerical evaluation of the probability density
function (3.47) for the level r = 0.1 is also depicted in Figures 3.7(a) and 3.8(a).
These figures clearly show that the deviations between (3.40) and (3.47) are negligible
for low levels r.

In the limits τ− → 0 and τ− → ∞, (3.47) converges to p1−(0; r) = p1−(∞; r) = 0.
Finally, it should be mentioned that by using (3.47) one finds – after a short side-
calculation – the following result for the expected value of the fading intervals τ−

E{τ−} =

∞∫

0

τ− p1−(τ−; r) dτ− = Tζ−(r) . (3.48)

With τq, we will in the following denote the time interval of the duration of fades
which includes q per cent of all fading intervals. Thus, by τq the lower bound of the
integral

∞∫

τq

p0−(τ−; r) dτ− = 1− q

100
(3.49)

is determined. The knowledge of the quantities τ90, τ95, and τ99 is of great importance
to the (optimal) design of the interleaver/deinterleaver as well as for the channel
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coder/decoder. With the approximation p0−(τ−; r) ≈ p1−(τ−; r), we are now able to
derive an approximate solution for τq in an explicit form. We at first proceed by
developing (3.47) into a power series, where we make use of the series expansions
[Abr72, eq. (4.2.1)]

e−z =
∞∑

n=0

(−z)n

n!
(3.50)

and [Abr72, eq. (9.6.10)]

Iν(z) =
(z

2

)ν ∞∑
n=0

(z2/4)n

n! Γ(ν + n + 1)
, ν = 0, 1, 2, . . . (3.51)

In the latter expression Γ(·) denotes the gamma function.3 Terminating the resulting
series after the second term, leads for the right-sided tail of the distribution p1−(τ−; r)
to the approximation usable for our purposes

p1−(τ−; r) ≈ πz2

2
(3− 5z)/Tζ−(r) , (3.52)

where z again represents z = 2
[
Tζ−(r)/τ−

]2
/π. If we now replace the probability

density p0−(τ−; r) in (3.49) by (3.52), then an explicit expression for the quantity
τq = τq(r) can be derived from the result of the integration.

Finally, we obtain the approximation valid for 75 ≤ q ≤ 100 [Pae96e]

τq(r) ≈
Tζ−(r)

{π
4 [1−√

1− 4(1− q
100 )]} 1

3
, r << 1 . (3.53)

This equation clearly shows that the quantity τq(r) is at deep fades proportional to
the average duration of fades. Especially for τ90(r), τ95(r), and τ99(r), we obtain from
(3.53):

τ90(r) ≈ 1.78 · Tζ−(r) , (3.54)
τ95(r) ≈ 2.29 · Tζ−(r) , (3.55)
τ99(r) ≈ 3.98 · Tζ−(r) . (3.56)

Further simplifications are possible if we approximate the average duration of fades
Tζ−(r) for r << 1 by Tζ−(r) ≈ r

√
π/(2β) [cf. (3.39)]. If β is in this relation now

replaced by the formula (3.29) found for the Jakes and Gaussian power spectral density,
then we obtain, e.g., for the quantity τ90(r) the approximation

τ90(r) ≈





r

2 σ0 fmax
, Jakes PSD ,

r
√

ln 2
2 σ0 fc

, Gaussian PSD ,

(3.57)

3 According to Euler the gamma function Γ(x) is defined for real numbers x > 0 by Γ(x) :=R∞
0 e−t tx−1 dt . If x is a natural number, then Γ(x) = (x− 1)! holds.
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which is valid for all r << 1. By means of this result, we see that the quantity
τ90(r) and, hence, the general quantity τq(r) (75 ≤ q ≤ 100) are proportional to r
and reciprocally proportional to fmax or fc for low levels r. Hereby, it is of major
importance that the exact form of the power spectral density of the complex Gaussian
random process, which generates the Rayleigh process, does not have any influence
on the behaviour of τq(r). Hence, for the Jakes and the Gaussian power spectral
density, we again obtain identical values for τq(r) by choosing fc =

√
ln 2 fmax.

Therefore, one may also compare Figures 3.7(a) and 3.8(a), where the approximation
(3.52) and the quantities τ90(r), τ95(r), and τ99(r) [see (3.54)–(3.56)] derived from that
are illustrated. It should be noted that at the level r = 0.1, the relative deviations
of the approximations (3.54)–(3.56) from the corresponding quantities τq(r), which
were calculated over (3.49) in a numerical way, are less than one per thousand. The
validity of all these approximate solutions for τq(r) can again ultimately only be
judged by simulating the level-crossing behaviour. In Section 5.3, we will see that
the approximations introduced in this section match the simulation results obtained
there quite well.

In [Wol83a], computer simulations of probability density functions p0−(τ−; r) were
also performed for Rice processes. Thereby, it has turned out that a Rice process
has practically the same probability density function of the fading intervals as the
corresponding Rayleigh process. These results are at least for low levels not surprising
any more, because from (3.47) it follows that p1−(τ−; r) merely depends on Tζ−(r),
and on the other hand, we have seen in Subsection 3.3.2 that Tξ−(r) ≈ Tζ−(r) holds
if r << 1 and rρ/σ2

0 << 1. The analytical approximations obtained for Rayleigh
processes for p0−(τ−; r) and τq(r) can in such cases be directly taken over for Rice
processes.

At this point it should be mentioned that the calculation of the probability density
function of fading intervals carried out by Rice [Ric58] caused various further research
activities in this field (e.g., [McF56, McF58, Lon62, Rai65, Bre70]). They followed the
goal of deriving new and more precise approximations than the approximate solutions
(3.40) given by Rice. The mathematical treatment of the so-called level-crossing
problem is even for Rayleigh channels connected with considerable difficulties and an
exact general solution is still to be found. Special attention in this field should be paid
to the works [Bre78, Mun82, Mun83, Wol83a, Wol83b, Mun86, Tez87] carried out at
the Institute for Applied Physics of Frankfurt University, led by Prof. Wolf. In [Mun82],
data have been reported about a 4-state model which gives a valid approximation for
the probability density p0−(τ−; r) over a much greater region than (3.40) [Wol83a]. The
obtained approximate solutions could again be noticeably improved by extending the
4-state model to 6- and 8-state models [Mun83, Wol83b, Mun86, Tez87]. However,
investigations on generalized Gaussian random processes, the so-called spherical
invariant stochastic processes [Bre78], have shown [Bre89] that the 4- and 6-state
models in this process class — especially for negative levels — often do not achieve
satisfying results, whereas the approximation suggested in [Bre70] does quite well. In
spite of all the progress in this field, the expenditure of mathematical and numerical
calculation is considerable. Moreover, the reliability of all theoretically obtained
approximations is not guaranteed from the start, so that we cannot get by without an
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experimental verification of the results.

From this point of view, it seems more sensible to give up the lavish numerical
calculations and instead only carry out simulations on (however precisely) generated
sample processes [Bre89]. This background will be taken into consideration in the
following two chapters, where we will introduce and analyse methods for the efficient
realization of highly precise simulation models for the generation of sample processes.



4

INTRODUCTION TO THE
THEORY OF DETERMINISTIC
PROCESSES

All channel models studied in the sequel of this book are based on the use of at least two
real-valued coloured Gaussian random processes. In the previous chapter, for example,
we have seen that the modelling of the classical Rayleigh or Rice processes requires
the realization of two real-valued coloured Gaussian random processes. Whereas for a
Suzuki process [Suz77], which is defined by the product process of a Rayleigh process
and a lognormal process, three real-valued coloured Gaussian random processes are
needed. In connection with digital data transmission over land mobile radio channels,
we often refer to such processes (Rayleigh, Rice, Suzuki) as appropriate stochastic
models in order to describe the random amplitude fluctuations of the received signal in
the equivalent complex baseband. Mobile radio channels, whose statistical amplitude
behaviour can be described by Rayleigh, Rice or Suzuki processes, consequently
will be denoted as Rayleigh, Rice or Suzuki channels. These models can be classed
into the group of frequency-nonselective channels [Pro95]. A further example can be
given by the modelling of frequency-selective channels [Pro95] using finite impulse
response (FIR) filters with L time-variant complex-valued coefficients. This requires
the realization of 2L real-valued coloured Gaussian random processes. With the help of
these few examples, it already becomes clear that the development of efficient methods
for the realization of coloured Gaussian random processes is of the utmost importance
in the modelling of both frequency-nonselective and frequency-selective mobile radio
channels.

For the solution of this problem, we will introduce in this chapter a fundamental
method which is based on a superposition of a finite number of harmonic functions.
The principle of this procedure is based on an approach of Rice [Ric44, Ric45]. In
Section 4.1, we will first explain the principle of deterministic channel modelling.
The following Section 4.2 deals with elementary properties of deterministic processes
such as the autocorrelation function, power spectral density, Doppler spread, etc. The
statistical properties of these processes are the subject of the discussions in Section 4.3.
In this connection, we will also introduce suitable quality criteria, on the basis of which
a fair assessment of the performance for all design methods, which are introduced later
in Chapter 5, can be carried out. The application of these criteria allows us to state
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some rules for certain design methods. On the other hand, also the problems occurring
when less suitable methods are used can be made clear.

4.1 PRINCIPLE OF DETERMINISTIC CHANNEL MODELLING

In the literature, one essentially finds two fundamental methods for the modelling of
coloured Gaussian random processes: the filter method and the Rice method.

When using the filter method, as shown in Figure 4.1(a), white Gaussian noise (WGN)
νi(t) is given to the input of a linear time-invariant filter, whose transfer function
is denoted by Hi(f). In the following, we assume that the filter is ideal, i.e., the
transfer function Hi(f) can be fitted to any given frequency response with arbitrary
precision. If νi(t) ∼ N(0, 1), then we have a zero-mean stochastic Gaussian random
process µi(t) at the filter output, where according (2.52e, f) the power spectral density
Sµiµi(f) of µi(t) matches the square of the absolute value of the transfer function, i.e.,
Sµiµi

(f) = |Hi(f)|2. Hence, by filtering of white Gaussian noise νi(t), we obtain a
coloured Gaussian random process µi(t).

The principle of the Rice method [Ric44, Ric45] is illustrated in Figure 4.1(b). It is
based on a superposition of an infinite number of weighted harmonic functions with
equidistant frequencies and random phases. According to this principle, a stochastic
Gaussian process µi(t) can be described mathematically as

µi(t) = lim
Ni→∞

Ni∑
n=1

ci,n cos (2πfi,nt + θi,n) , (4.1)

where

ci,n = 2
√

∆fiSµiµi(fi,n) , (4.2a)

fi,n = n ·∆fi . (4.2b)

The phases θi,n (n = 1, 2, . . . , Ni) are random variables, which are uniformly
distributed in the interval (0, 2π], and the quantity ∆fi is here chosen in such a way
that (4.2b) covers the whole relevant frequency range, where it is furthermore assumed
that the following property holds: ∆fi → 0 as Ni →∞.

As we know, a Gaussian random process is completely characterized by its mean
value and its colour, which can be described either by the power spectral density
or, alternatively, by the autocorrelation function. According to Rice [Ric44, Ric45],
the expression (4.1) represents a zero-mean Gaussian random process with the power
spectral density Sµiµi(f). Consequently, the analytical models shown in Figures 4.1(a)
and 4.1(b) are equivalent, i.e., the two introduced methods — the filter method and the
Rice method — result in identical stochastic processes. For both methods, however, one
should take into account that these processes are not exactly realizable. When using
the filter method, an exact realization is prevented by the assumption that the filter
should be ideal. Strictly speaking, the input signal of the filter — the white Gaussian
noise — can also not be realized exactly. When using the Rice method, a realization is
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Figure 4.1: Stochastic reference models for coloured Gaussian random processes µi(t):
(a) filter method and (b) Rice method.

impossible because an infinite number of harmonic functions Ni is not implementable
on a computer or on a hardware platform. Hence, for a coloured Gaussian random
process, the filter method and the Rice method only result in a stochastic analytical
(ideal) model, which will be considered as reference model throughout the book.

As is well known, when using the filter method, the use of non-ideal but therefore
realizable filters makes the realization of stochastic simulation models possible.
Here, depending on the extent of the realization expenditure, one should take into
consideration that the statistics of the filter output signal deviates more or less from
that of the desired ideal Gaussian random process. In numerous publications (e.g.,
[Bre86a, Sch89, Fec93a, Mar94b, Lau94]), this method has been applied in order to
design simulation models for mobile radio channels. In Section 8.5, we will return to
the filter method once more. In the following sections, however, we will first present
a detailed analysis of the Rice method. It should be noted that many of the results
found for the Rice method can be applied directly to the filter method.

If the Rice method is applied by using only a finite number of harmonic functions Ni,
then we obtain a further stochastic process denoted by

µ̂i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , (4.3)

where we assume for the moment that the parameters ci,n and fi,n are still given
by (4.2a) and (4.2b), respectively, and θi,n are again uniformly distributed random
variables. Now, this method can be applied to the realization of a simulation model
whose general structure is shown in Figure 4.2(a). It is obvious that µ̂i(t) → µi(t)
holds as Ni → ∞. At this point, it should be emphasized that the simulation model
is still of stochastic nature, since the phases θi,n are uniformly distributed random
variables for all n = 1, 2, . . . , Ni.

Only after the phases θi,n (n = 1, 2, . . . , Ni) are taken out of a random generator
with a uniform distribution in the interval (0, 2π], the phases θi,n no longer represent
random variables but constant quantities, since they are now realizations (outcomes)
of a random variable. Thus, in connection with (4.2a), (4.2b), and (4.3), it becomes
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obvious that

µ̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) (4.4)

is a deterministic process or a deterministic function. Hence, from the stochastic
simulation model shown in Figure 4.2(a), a deterministic simulation model follows,
whose structure is presented in Figure 4.2(b) in its continuous-time form of
representation. Note that in the limit Ni → ∞, the deterministic process µ̃i(t) tends
to a sample function of the stochastic process µi(t).
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Figure 4.2: Simulation models for coloured Gaussian random processes: (a) stochastic
simulation model (random phases θi,n) and (b) deterministic simulation
model (constant phases θi,n).

In Section 4.3 and Chapter 5, it will be shown that by choosing the parameters
describing the deterministic process (4.4) appropriately, a very good approximation
can be achieved in such a way that the statistical properties of µ̃i(t) are very close to
those of the underlying zero-mean coloured Gaussian random process µi(t). For this
reason, µ̃i(t) will be called real deterministic Gaussian process and

µ̃(t) = µ̃1(t) + jµ̃2(t) (4.5)

will be named complex deterministic Gaussian process. With reference to (3.5), a so-
called deterministic Rayleigh process

ζ̃(t) = |µ̃(t)| = |µ̃1(t) + jµ̃2(t)| . (4.6)

follows from the absolute value of (4.5). Logically, by taking the absolute value of
µ̃ρ(t) = µ̃(t) + m(t), a deterministic Rice process

ξ̃(t) = |µ̃ρ(t)| = |µ̃(t) + m(t)| (4.7)

can be introduced, where m(t) again describes the line-of-sight component of the
received signal, as defined by (3.2). The resulting structure of the simulation model
for deterministic Rice processes is shown in Figure 4.3.
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Figure 4.3: A deterministic simulation model for Rice processes.

The discrete-time simulation model, which is required for computer simulations, can
directly be obtained by substituting the time variable t with t = kTs, where Ts denotes
the sampling interval and k is an integer. To carry out computer simulations, one
generally proceeds by determining the parameters of the simulation model ci,n, fi,n,
and θi,n for n = 1, 2, . . . , Ni during the simulation set-up phase. During the simulation
run phase following this, all parameters are kept constant for the whole duration of
the simulation.

Since for our purpose the deterministic processes are exclusively used for the modelling
of the time-variant fading behaviour caused by the Doppler effect, we will in the
following call the parameters ci,n, fi,n, and θi,n describing the deterministic process
(4.4) the Doppler coefficients, discrete Doppler frequencies, and Doppler phases,
respectively.

One aim of this book is to present methods by which the model parameters
(ci,n, fi,n, θi,n) can be determined in such a way that the statistical properties of
the deterministic process µ̃i(t) or µ̃i(kT ) match those of the (ideal) stochastic process
µi(t) as closely as possible. Of course, this aim is pursued under the boundary condition
that the realization expenditure should be kept as low as possible. Here, the realization
expenditure is mainly determined by the number of harmonic functions Ni. However,
before turning to this topic, we will first of all present some fundamental properties
of deterministic processes.

4.2 ELEMENTARY PROPERTIES OF DETERMINISTIC PROCESSES

The interpretation of µ̃i(t) as a deterministic process, i.e., as a mapping of the form

µ̃i : IR → IR , t 7→ µ̃i(t) , (4.8)
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enables us to derive for these kind of processes simple analytical closed-form solutions
for most of the fundamental characteristic quantities like autocorrelation function,
power spectral density, Doppler spread, etc.

First, a discussion of the terms introduced in Section 2.3 follows, where the definitions
of these terms are now applied to the deterministic processes µ̃i(t) (i = 1, 2) defined
by (4.4).

Mean value: Let µ̃i(t) be a deterministic process with fi,n 6= 0 (n = 1, 2, . . . , Ni).
Then, it follows from (2.69) that the mean value of µ̃i(t) is given by

m̃µi
= 0 . (4.9)

In the following, it is always assumed that fi,n 6= 0 holds for all n = 1, 2, . . . , Ni and
i = 1, 2.

Mean power: Let µ̃i(t) be a deterministic process. Then, it follows from (2.70) that
the mean power of µ̃i(t) is given by

σ̃2
µi

=
Ni∑

n=1

c2
i,n

2
. (4.10)

Obviously, the mean power σ̃2
µi

depends on the Doppler coefficients ci,n but not on
the discrete Doppler frequencies fi,n and the Doppler phases θi,n.

Autocorrelation function: For the autocorrelation function of deterministic
processes µ̃i(t), the following closed-form expression follows from (2.71)

r̃µiµi(τ) =
Ni∑

n=1

c2
i,n

2
cos(2πfi,nτ) . (4.11)

One should note that r̃µiµi(τ) depends on the Doppler coefficients ci,n and the discrete
Doppler frequencies fi,n, but not on the Doppler phases θi,n. Note also that the
mean power σ̃2

µi
is identical to the autocorrelation function r̃µiµi(τ) at τ = 0, i.e.,

σ̃2
µi

= r̃µiµi(0).

Cross-correlation function: Let µ̃1(t) and µ̃2(t) be two deterministic processes.
Then, it follows from (2.72) that the cross-correlation function of µ̃1(t) and µ̃2(t) can
be written as

r̃µ1µ2(τ) = 0 , if f1,n 6= ±f2,m , (4.12)

holds for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2. This result shows that the
deterministic processes µ̃1(t) and µ̃2(t) are uncorrelated if the absolute values of
the respective discrete Doppler frequencies are different from each other. However, if
f1,n = ±f2,m holds for some or all pairs of (n,m), then µ̃1(t) and µ̃2(t) are correlated,
and we obtain the following expression for the cross-correlation function

r̃µ1µ2(τ) =
N∑

n=1
f1,n=±f2,m

c1,nc2,m

2
cos(2πf1,nτ − θ1,n ± θ2,m) , (4.13)
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where N denotes the largest number of N1 and N2, i.e., N = max{N1, N2}. One
should note that in this case r̃µ1µ2(τ) also depends on the Doppler phases θi,n.
The cross-correlation function r̃µ2µ1(τ) can be obtained from the relation r̃µ2µ1(τ) =
r̃∗µ1µ2

(−τ) = r̃µ1µ2(−τ).

Power spectral density: Let µ̃i(t) be a deterministic process. Then, it follows
from (2.73) in connection with (4.11) that the power spectral density of µ̃i(t) can
be expressed as

S̃µiµi(f) =
Ni∑

n=1

c2
i,n

4
[δ(f − fi,n) + δ(f + fi,n)] . (4.14)

Hence, the power spectral density of µ̃i(t) is a symmetrical line spectrum, i.e.,
S̃µiµi

(f) = S̃µiµi
(−f). The spectral lines are located at the discrete points f = ±fi,n

and weighted by the factor c2
i,n/4.

Cross-power spectral density: Let µ̃1(t) and µ̃2(t) be two deterministic processes.
Then, it follows from (2.74) with (4.12) and (4.13) that the cross-power spectral density
of µ̃1(t) and µ̃2(t) is given by

S̃µ1µ2(f) = 0 , if f1,n 6= ±f2,m , (4.15)

and

S̃µ1µ2(f) =
N∑

n=1
f1,n=±f2,m

c1,nc2,m

4
[δ(f − f1,n) · e−j(θ1,n∓θ2,m)

+ δ(f + f1,n) · ej(θ1,n∓θ2,m)] (4.16)

for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2, where N = max{N1, N2}. The
cross-power spectral density S̃µ2µ1(f) can directly be obtained from the relation
S̃µ2µ1(f) = S̃∗µ1µ2

(f).

Average Doppler shift: Let µ̃i(t) be a deterministic process with the power spectral
density S̃µiµi(f). Then, by analogy to (3.13a), the average Doppler shift B̃

(1)
µiµi of µ̃i(t)

is defined by

B̃(1)
µiµi

:=

∫∞
−∞ f S̃µiµi(f) df∫∞
−∞ S̃µiµi(f) df

=
1

2πj
·

˙̃rµiµi(0)
r̃µiµi(0)

. (4.17)

Due to the symmetry property S̃µiµi(f) = S̃µiµi(−f), it follows that

B̃(1)
µiµi

= 0 . (4.18)
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On condition that the real and imaginary parts are uncorrelated, one analogously
obtains for complex deterministic processes µ̃(t) = µ̃1(t)+jµ̃2(t), the following relation
between the average Doppler shifts of µ̃(t) and µ̃i(t)

B̃(1)
µµ = B̃(1)

µiµi
= 0 , i = 1, 2 . (4.19)

By considering the relations (4.19) and (3.15a), it turns out that the average Doppler
shift of the simulation model is identical to that of the reference model.

Doppler spread: Let µ̃i(t) be a deterministic process with the power spectral density
S̃µiµi(f). Then, analogous to (3.13b), the Doppler spread B̃

(2)
µiµi of µ̃i(t) is defined by

B̃(2)
µiµi

:=

√√√√
∫∞
−∞(f − B̃

(1)
µiµi)2 S̃µiµi(f) df∫∞

−∞ S̃µiµi(f) df

=
1
2π

√( ˙̃rµiµi(0)
r̃µiµi(0)

)2

−
¨̃rµiµi(0)
r̃µiµi(0)

. (4.20)

Using (4.10) and (4.11), the last equation can be written as

B̃(2)
µiµi

=

√
β̃i

2πσ̃µi

, (4.21)

where

β̃i = −¨̃rµiµi(0) = 2π2
Ni∑

n=1

(ci,nfi,n)2 . (4.22)

The comparison of the equation (3.15b) with (4.21) shows that the Doppler spreads
B

(2)
µiµi and B̃

(2)
µiµi are always identical, if the Doppler coefficients ci,n and the discrete

Doppler frequencies fi,n are determined in such a way that σ̃2
µi

= σ2
0 and β̃i = β hold.

(In particular, it is sufficient that the condition β̃i/σ̃2
0 = β/σ2

0 is fulfilled.)

Analogously, the Doppler spread B̃
(2)
µµ corresponding to the power spectral density

S̃µµ(f) of the complex deterministic process µ̃(t) = µ̃1(t) + jµ̃2(t) can be determined.
On condition that µ̃1(t) and µ̃2(t) are uncorrelated, the Doppler spread B̃

(2)
µµ can be

expressed as

B̃(2)
µµ =

√
β̃

2πσ̃µ
, (4.23)

where σ̃2
µ = σ̃2

µ1
+ σ̃2

µ2
> 0 and β̃ = β̃1 + β̃2 > 0 hold. In Chapter 5, we will get

acquainted with methods for the design of deterministic processes µ̃1(t) and µ̃2(t)
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having the properties σ̃2
µ1

= σ̃2
µ2

and β̃1 6= β̃2. Especially in this case, the Doppler

spread B̃
(2)
µµ can be calculated from the quadratic mean of B̃

(2)
µ1µ1 and B̃

(2)
µ2µ2 , i.e.,

B̃(2)
µµ =

√√√√
(
B̃

(2)
µ1µ1

)2

+
(
B̃

(2)
µ2µ2

)2

2
. (4.24)

Finally, it should be mentioned that if σ̃2
0 = σ̃2

µ1
= σ̃2

µ2
and β̃ = β̃1 = β̃2 hold, then

we obtain the result

B̃(2)
µµ = B̃(2)

µiµi
=

√
β̃

2πσ̃0
, i = 1, 2 (4.25)

which is closely related to (3.15b). However, if the deviations between β̃1 and β̃2 are
small, which is often the case, then the above expression is a very good approximation
for B̃

(2)
µµ if β̃ is replaced by β̃ = β̃1 ≈ β̃2 there.

Periodicity: Let µ̃i(t) be a deterministic process with arbitrary but nonzero
parameters ci,n, fi,n (and θi,n). If the greatest common divisor of the discrete Doppler
frequencies

Fi = gcd{fi,1, fi,2, . . . , fi,Ni} 6= 0 (4.26)

exists, then µ̃i(t) is periodic with the period Ti = 1/Fi, i.e., it holds µ̃i(t+ Ti) = µ̃i(t)
and r̃µiµi(τ + Ti) = r̃µiµi(τ).

The proof of this theorem is relatively simple and will therefore be presented here only
briefly. Since Fi is the greatest common divisor of fi,1, fi,2, . . . , fi,Ni , there are integers
qi,n ∈ Z, so that fi,n = qi,n · Fi holds for all n = 1, 2, . . . , Ni and i = 1, 2. By putting
fi,n = qi,n · Fi = qi,n/Ti into (4.4) and (4.11), the validity of µ̃i(t + Ti) = µ̃i(t) and
r̃µiµi(τ + Ti) = r̃µiµi(τ), respectively, can be proved directly.

4.3 STATISTICAL PROPERTIES OF DETERMINISTIC PROCESSES

Even though a discussion of the elementary properties of deterministic processes
could be performed in the previous section without any problems, an analysis of
the statistical properties first seems to be absurd, since statistical methods can
meaningfully be applied only on random variables and stochastic processes. But, on
the other hand, their application to deterministic processes (4.4) makes no sense. In
order in this case to gain access to statistical quantities like the probability density
function, the level-crossing rate, and the average duration of fades, we will study the
behaviour of deterministic processes µ̃i(t) at random time instants t. If nothing else
is explicitly mentioned, we will assume throughout this section that the time variable
t is a random variable uniformly distributed within the interval IR. It should also be
noted that both the time variable t and the Doppler phases θi,n are in the argument of
the cosine functions of (4.4). Therefore, we could alternatively assume that the time
t = t0 is a constant and the phases θi,n are uniformly distributed random variables.
In both cases, however, we would obtain exactly the same results for the following
computations.
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4.3.1 Probability Density Function of the Amplitude and the Phase

In this subsection, we will analyse the probability density function of the amplitude
and phase of complex deterministic processes µ̃(t) = µ̃1(t) + jµ̃2(t). It will be shown
that these probability density functions are completely determined by the number of
harmonic functions Ni and the choice of the Doppler coefficients ci,n.

Therefore, we first consider a single weighted harmonic elementary function of the
form

µ̃i,n(t) = ci,n cos(2πfi,nt + θi,n) , (4.27)

where ci,n, fi,n, and θi,n are arbitrary but constant parameters different from zero and
t is a uniformly distributed random variable. Due to the periodicity of µ̃i,n(t), it is
sufficient to restrict t on the open interval (0, f−1

i,n ) with fi,n 6= 0. Since t was assumed
to be a uniformly distributed random variable, µ̃i,n(t) is no longer a deterministic
function but a random variable as well, whose probability density function is given by
[Pap91, p. 98]

p̃µi,n(x) =





1
π ci,n

√
1− (x/ci,n)2

, |x| < ci,n ,

0 , |x| ≥ ci,n .

(4.28)

The expected value and the variance of µ̃i,n(t) are equal to 0 and c2
i,n/2, respectively. If

the random variables µ̃i,n(t) are statistically independent, then the probability density
function p̃µi(x) of the sum

µ̃i(t) = µ̃i,1(t) + µ̃i,2(t) + . . . + µ̃i,Ni(t) (4.29)

can be obtained from the convolution of the individual probability density functions
p̃µi,n(x), i.e.,

p̃µi(x) = p̃µi,1(x) ∗ p̃µi,2(x) ∗ . . . ∗ p̃µi,Ni
(x). (4.30)

The expected value m̃µi and the variance σ̃2
µi

of µ̃i(t) are then given by

m̃µi = 0 (4.31a)

and

σ̃2
µi

=
Ni∑

n=1

c2
i,n

2
, (4.31b)

respectively. In principle, a rule for the computation of p̃µi(x) is given by (4.30). But
with regard to the following procedure, it is more advantageous to apply the concept
of the characteristic function [see (2.14)]. After substituting (4.28) into (2.14), we
find the following expression for the characteristic function Ψ̃µi,n(ν) of the random
variables µ̃i,n(t)

Ψ̃µi,n(ν) = J0(2πci,nν) . (4.32)
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The Ni-fold convolution (4.30) of the probability density functions p̃µi,n(x) can now
be formulated as the Ni-fold product of the corresponding characteristic functions
Ψ̃µi,n

(ν)

Ψ̃µi
(ν) = Ψ̃µi,1(ν) · Ψ̃µi,2(ν) · . . . · Ψ̃µi,Ni

(ν)

=
Ni∏

n=1

J0(2πci,nν) . (4.33)

Concerning (4.30), an alternative expression for the probability density function p̃µi
(x)

is then given by the inverse Fourier transform of Ψ̃µi(−ν) = Ψ̃µi(ν) [Ben48]

p̃µi(x) =
∫ ∞

−∞
Ψ̃µi(ν) ej2πνx dν

= 2
∫ ∞

0

[
Ni∏

n=1

J0(2πci,nν)

]
cos(2πνx) dν , i = 1, 2 . (4.34)

It is important to realize that the probability density function p̃µi(x) of µ̃i(t) is
completely determined by the number of harmonic functions Ni and by the Doppler
coefficients ci,n, whereas the discrete Doppler frequencies fi,n and the Doppler phases
θi,n have no influence on p̃µi(x).

In the following, let ci,n = σ0

√
2/Ni and fi,n 6= 0 for all n = 1, 2, . . . , Ni and i = 1, 2.

Then, due to (4.31a) and (4.31b), the sum µ̃i(t) introduced by (4.29) is a random
variable with the expected value 0 and the variance

σ̃2
0 = σ̃2

µ1
= σ̃2

µ2
= σ2

0 . (4.35)

Regarding the central limit theorem [see (2.16)], it turns out that in the limit Ni →∞,
the sum µ̃i(t) tends to a normally distributed random variable having the expected
value 0 and the variance σ2

0 , i.e.,

lim
Ni→∞

p̃µi(x) = pµi(x) =
1√

2πσ0

e
− x2

2σ2
0 . (4.36)

Hence, after computing the Fourier transform of this equation, one obtains the
following relation for the corresponding characteristic functions

lim
Ni→∞

Ψ̃µi(ν) = Ψµi(ν) = e−2(πσ0ν)2 , (4.37)

from which — by using (4.33) — the remarkable property

lim
Ni→∞

[
J0

(
2πσ0

√
2
Ni

ν

)]Ni

= e−2(πσ0ν)2 (4.38)

finally follows.
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Of course, for a finite number of harmonic functions Ni, we have to write: p̃µi(x) ≈
pµi

(x) and Ψ̃µi
(ν) ≈ Ψµi

(ν). From Figure 4.4(a), illustrating p̃µi
(x) according to

(4.34) with ci,n = σ0

√
2/Ni for Ni ∈ {3, 5, 7,∞}, it follows that in fact for Ni ≥ 7,

the approximation p̃µi(x) ≈ pµi(x) is astonishingly good. An appropriate measure of
the approximation error is the mean-square error of the probability density function
p̃µi(x) defined by

Epµi
:=

∫ ∞

−∞

(
pµi(x)− p̃µi(x)

)2
dx . (4.39)

The behaviour of the mean-square error Epµi
as a function of the number of harmonic

functions Ni is shown in Figure 4.4(b). This figure gives us an impression of how fast
p̃µi

(x) converges to pµi
(x) if Ni increases.
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Figure 4.4: (a) Probability density function p̃µi(x) for Ni ∈ {3, 5, 7,∞}, (b) mean-
square error Epµi

as a function of Ni. (Analytical results obtained with

ci,n = σ0

p
2/Ni, σ2

0 = 1.)

Due to the good convergence behaviour that p̃µi(x) exhibits in conjunction with
ci,n = σ0

√
2/Ni, we will occasionally assume (without causing too large an error)

that the identity

p̃µi(x) = pµi(x) , if Ni ≥ 7 , (4.40)

holds. In this case, many analytical problems, which are otherwise difficult to
overcome, can then be solved in a relatively easy way.

Next, we will derive the probability density function of the absolute value and the
phase of the complex-valued random variable

µ̃ρ(t) = µ̃ρ1(t) + jµ̃ρ2(t) , (4.41)

where µ̃ρi(t) = µ̃i(t) + mi(t) (i = 1, 2). Here, concerning mi(t) according to (3.2), we
have to discuss the cases fρ = 0 and fρ 6= 0 separately.
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At first, we consider the case fρ = 0. By doing this, mi becomes independent of the
random variable t. Consequently, mi is a constant whose probability density function
is described by pmi

(x) = δ(x−mi). Furthermore, it follows that the probability density
function p̃µρi

(x) of µ̃ρi(t) can now be expressed directly by using p̃µi(x) as

p̃µρi
(x) = p̃µi(x) ∗ pmi(x)

= p̃µi
(x−mi) . (4.42)

On the assumption that µ̃ρ1(t) and µ̃ρ2(t) are statistically independent, and, thus,
f1,n 6= ±f2,m holds for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2, the joint probability
density function of the random variables µ̃ρ1(t) and µ̃ρ2(t), denoted by p̃µρ1µρ2

(x1, x2),
can be expressed by

p̃µρ1µρ2
(x1, x2) = p̃µρ1

(x1) · p̃µρ2
(x2) . (4.43)

The transform of the Cartesian coordinates (x1, x2) into polar coordinates (z, θ) by
means of

x1 = z cos θ , x2 = z sin θ (4.44a, b)

allows us to calculate the joint probability density function p̃ξϑ(z, θ) of the amplitude
ξ̃(t) = |µ̃ρ(t)| and the phase ϑ̃(t) = arg{µ̃ρ(t)} as follows:

p̃ξϑ(z, θ) = z p̃µρ1µρ2
(z cos θ, z sin θ) (4.45a)

= z p̃µρ1
(z cos θ) · p̃µρ2

(z sin θ) (4.45b)

= z p̃µ1(z cos θ − ρ cos θρ) · p̃µ2(z sin θ − ρ sin θρ) . (4.45c)

By using (2.40), we obtain the probability density functions of the amplitude p̃ξ(z)
and phase p̃ϑ(θ) from the preceding equation in the form:

p̃ξ(z) = z

∫ π

−π

p̃µ1(z cos θ − ρ cos θρ) · p̃µ2(z sin θ − ρ sin θρ) dθ , (4.46a)

p̃ϑ(θ) =
∫ ∞

0

z p̃µ1(z cos θ − ρ cos θρ) · p̃µ2(z sin θ − ρ sin θρ) dz . (4.46b)

Putting (4.34) into the last two expressions gives us the following threefold integrals
for the desired probability density functions:

p̃ξ(z) = 4z

∫ π

−π

{∫ ∞

0

[
N1∏

n=1

J0(2πc1,nν1)

]
g1(z, θ, ν1) dν1

}

·
{∫ ∞

0

[
N2∏

m=1

J0(2πc2,mν2)

]
g2(z, θ, ν2) dν2

}
dθ , (4.47a)
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p̃ϑ(θ) = 4
∫ ∞

0

z

{∫ ∞

0

[
N1∏

n=1

J0(2πc1,nν1)

]
g1(z, θ, ν1) dν1

}

·
{∫ ∞

0

[
N2∏

m=1

J0(2πc2,mν2)

]
g2(z, θ, ν2) dν2

}
dz , (4.47b)

where

g1(z, θ, ν1) = cos[2πν1(z cos θ − ρ cos θρ)] , (4.48a)

g2(z, θ, ν2) = cos[2πν2(z sin θ − ρ sin θρ)] . (4.48b)

Up to now, there are no further simplifications known for (4.47b), so that the remaining
three integrals must be solved numerically. In comparison with that, it is possible to
reduce the threefold integral on the right-hand side of (4.47a) to a double integral by
making use of the expression [Gra81, eq. (3.876.7)]

∫ 1

0

cos
(
2πν2z

√
1− x2

)
√

1− x2
cos(2πν1zx) dx =

π

2
J0

(
2πz

√
ν2
1 + ν2

2

)
. (4.49)

After some algebraic manipulations, we finally come to the result

p̃ξ(z) = 4πz

∫ π

0

∫ ∞

0

[
N1∏

n=1

J0(2πc1,ny cos θ)

][
N2∏

m=1

J0(2πc2,my sin θ)

]

· J0(2πzy) cos
[
2πρy cos(θ − θρ)

]
y dy dθ . (4.50)

The results of the numerical evaluations of p̃ξ(z) and p̃ϑ(θ) for the special case
ci,n = σ0

√
2/Ni (σ2

0 = 1) are illustrated in Figures 4.5(a) and 4.5(b), respectively.
These illustrations again make clear that the approximation error can in general be
ignored if Ni ≥ 7.

We also want to show that if the Doppler coefficients ci,n are given by ci,n = σ0

√
2/Ni,

then it follows in the limit Ni → ∞ from (4.47a) and (4.47b) the expected result:
p̃ξ(z) → pξ(z) and p̃ϑ(θ) → pϑ(θ), respectively. To show this, we apply the property
(4.38) enabling us to express (4.47a) and (4.47b) as

lim
Ni→∞

p̃ξ(z) = 4z

∫ π

−π

[∫ ∞

0

e−2(πσ0ν1)
2

g1(z, θ, ν1) dν1

]

·
[∫ ∞

0

e−2(πσ0ν2)
2

g2(z, θ, ν2) dν2

]
dθ (4.51)

and
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Figure 4.5: (a) Probability density function p̃ξ(z) of the amplitude ξ̃(t) = |µ̃ρ(t)| and

(b) probability density function p̃ϑ(θ) of the phase ϑ̃(t) = arg{µ̃ρ(t)} for

N1 = N2 = 7. (Analytical results obtained with ci,n = σ0

p
2/Ni and

σ2
0 = 1.)

lim
Ni→∞

p̃ϑ(θ) = 4
∫ z

0

z

[∫ ∞

0

e−2(πσ0ν1)
2

g1(z, θ, ν1) dν1

]

·
[∫ ∞

0

e−2(πσ0ν2)
2

g2(z, θ, ν2) dν2

]
dz , (4.52)

respectively. The use of the integral [Gra81, eq. (3.896.2)]
∫ ∞

−∞
e−q2x2

cos(px) dx =
√

π

q
e
− p2

4q2 (4.53)

allows us to present the expressions (4.51) and (4.52) in the form

lim
Ni→∞

p̃ξ(z) =
z

σ2
0

e
− z2+ρ2

2σ2
0 · 1

π

∫ π

0

e
zρ

σ2
0

cos(θ−θρ)
dθ (4.54)

and

lim
Ni→∞

p̃ϑ(θ) =
1

2πσ2
0

e
− ρ2

2σ2
0

∫ ∞

0

z e
− z2

2σ2
0
+ zρ

σ2
0

cos(θ−θρ)
dz , (4.55)

respectively. With the integral representation of the modified Bessel function of zeroth
order [Abr72, eq. (9.6.16)]

I0(z) =
1
π

π∫

0

e ±z cos θ dθ , (4.56)

we can immediately identify (4.54) with the Rice distribution pξ(z) defined by (3.17),
and from (4.55), using [Gra81, eq. (3.462.5)]
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∞∫

0

z e−qz2−2pzdz =
1
2q
− p

2q

√
π

q
e

p2

q

[
1− erf

(
p√
q

)]
,

| arg{p}| < π

2
, Re {q} > 0 , (4.57)

we obtain, after elementary calculations, the probability density function pϑ(θ) given
by (3.22).

Furthermore, we will pay attention to the general case, where fρ 6= 0. The line-of-sight
component m(t) = m1(t) + jm2(t) [see (3.2)] will now be considered as time-variant
mean value, whose real and imaginary parts can consequently be described by the
probability density functions

pm1(x1 ; t) = δ(x1 −m1(t)) = δ(x1 − ρ cos(2πfρt + θρ)) (4.58)

and

pm2(x2 ; t) = δ(x2 −m2(t)) = δ(x2 − ρ sin(2πfρt + θρ)) , (4.59)

respectively. The derivation of the probability density functions p̃ξ(z; t) and p̃ϑ(θ; t)
can be performed analogously to the case fρ = 0. For these functions, one
obtains expressions, which coincide with the right-hand side of (4.47a) and (4.47b),
respectively, if there the functions gi(z, θ, νi) for i = 1, 2 are substituted by

g1(z, θ, ν1) = cos {2πν1[z cos θ − ρ cos(2πfρt + θρ)]} (4.60a)

and

g2(z, θ, ν2) = cos {2πν2[z sin θ − ρ sin(2πfρt + θρ)]} . (4.60b)

Concerning the convergence behaviour, it can be shown that for Ni → ∞ with
ci,n = σ0

√
2/Ni, it follows p̃ξ(z; t) → pξ(z) and p̃ϑ(θ; t) → pϑ(θ; t) as expected, where

pξ(z) and pϑ(θ; t) are the probability density functions described by (3.17) and (3.21),
respectively.

In order to complete this topic, we will verify the derived analytical expressions for
the probability density functions p̃ξ(z) and p̃ϑ(θ) by simulation. In principle, we can
proceed here by making use of the simulation model shown in Figure 4.3, where we
have to substitute the time variable t by a uniformly distributed random variable,
which already helped us to achieve our aim in deriving the analytical expressions. In
the following, however, we will keep the conventional approach, i.e., we replace t by
t = kTs, where Ts denotes the sampling interval and k = 1, 2, . . . , K. One should
note here that the sampling interval Ts is chosen sufficiently small enough to assure
that the statistical analysis and the evaluation of the deterministic sequences ξ̃(kTs) =
|µ̃ρ(kTs)| and ϑ̃(kTs) = arg {µ̃ρ(kTs)} can be performed as precisely as possible. It will
not be sufficient in this context if the sampling frequency fs = 1/Ts is merely given
by the value fs = 2 ·max {fi,n}Ni

n=1; although this value would be completely sufficient
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to fulfil the sampling theorem. For our purposes, the inequality fs À max {fi,n}Ni

n=1
should rather hold. Experience shows that a good compromise between computational
expenditure and attainable precision is achieved, if — depending on the case of
application — fs ≈ 20 · max{fi,n}Ni

n=1 up to fs ≈ 100 · max{fi,n}Ni
n=1 holds, and for

the number of iterations K, the value K = 106 is chosen. From the simulation of the
discrete-time signals ξ̃(kTs) and ϑ̃(kTs), the probability density functions p̃ξ(z) and
p̃ϑ(θ) can then be determined by means of the histograms of the simulated signals.
Here, the choice of the discrete Doppler frequencies fi,n is not decisive. On these
parameters, we only impose that they should all be unequal and different from zero.
Moreover, due to the periodical behaviour of µ̃i(t), the discrete Doppler frequencies
fi,n have to be determined in such a way that the period Ti = 1/ gcd{fi,n}Ni

n=1 is
greater or equal to the simulation time Tsim, i.e., Ti ≥ Tsim = KTs.

Exemplary simulation results for the probability density functions p̃ξ(z) and p̃ϑ(θ)
are depicted in Figure 4.6 for the case ci,n = σ0

√
2/Ni, where Ni = 7 (i = 1, 2) and

σ2
0 = 1.
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Figure 4.6: (a) Probability density function p̃ξ(z) of the amplitude and (b) probability

density function p̃ϑ(θ) of the phase for N1 = N2 = 7 (ci,n = σ0

p
2/Ni,

σ2
0 = 1, fρ = 0, θρ = 0).

Figures 4.6(a) and 4.6(b) confirm that the probability density functions, which have
been obtained from the simulation of deterministic processes, are identical to the
analytical expressions describing the statistics of the underlying random variables. In
the remainder of this book, we will therefore call p̃µi(x) [see (4.34)] the probability
density function of the deterministic process µ̃i(t). Consequently, p̃ξ(z) [see (4.47a)]
and p̃ϑ(θ) [see (4.47b)] describe the probability density functions of the amplitude
ξ̃(t) and the phase ϑ̃(t) of the complex deterministic process µ̃ρ(t) = µ̃ρ1(t) + jµ̃ρ2(t),
respectively.
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4.3.2 Level-Crossing Rate and Average Duration of Fades

In this subsection, we will derive general analytical expressions for the level-crossing
rate Ñξ(r) and the average duration of fades T̃ξ−(r) of the deterministic simulation
model for Rice processes shown in Figure 4.3. The knowledge of analytical solutions
makes the determination of Ñξ(r) and T̃ξ−(r) from time-consuming simulations
superfluous. Moreover, they enable a deeper insight into the cause and the effect of
statistical degradations, which can be attributed to the finite number of used harmonic
functions Ni, on the one hand, but also to the applied method for the determination
of the model parameters, on the other.

In the preceding Subsection 4.3.1, we have seen that the probability density function
p̃µi(x) of the deterministic process µ̃i(t) is almost identical to the probability density
function pµi

(x) of the (ideal) stochastic process µi(t), provided that the number of
harmonic functions Ni is sufficiently high, let us say Ni ≥ 7. On condition that the
relations

(i) p̃µi(x) = pµi(x) , (4.61a)

(ii) β̃ = β̃1 = β̃2 (4.61b)

hold, then the level-crossing rate Ñξ(r) is still given by (3.24), if there the quantities α
and β of the stochastic reference model are replaced by the corresponding quantities α̃
and β̃ of the deterministic simulation model. Thus, one obtains the following expression
for deterministic Rice processes ξ̃(t) with fρ 6= 0:

Ñξ(r) =
r

√
2β̃

π3/2σ2
0

e
− r2+ρ2

2σ2
0

π/2∫

0

cosh
(

rρ

σ2
0

cos θ

)

·
{

e−(α̃ρ sin θ)2 +
√

πα̃ρ sin(θ) erf (α̃ρ sin θ)
}

dθ , r ≥ 0 , (4.62)

where

α̃ = 2πfρ

/√
2β̃ , (4.63a)

β̃ = β̃i = −¨̃rµiµi(0) = 2π2
Ni∑

n=1

(ci,nfi,n)2 . (4.63b)

For the special case fρ = 0, it follows from (4.63a) that α̃ = 0 holds, so that (4.62)
simplifies to the following expression

Ñξ(r) =

√
β̃

2π
· pξ(r) , r ≥ 0 , (4.64)

which is identical to (3.27) after replacing β by β̃ there. Obviously, the quality of the
approximation β̃ ≈ β quite decisively determines the deviation of the level-crossing
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rate of the deterministic simulation model from that of the underlying stochastic
reference model.

For further analyses, we write

β̃ = β + ∆β , (4.65)

where ∆β describes the true error of β̃ caused by the chosen method for the
computation of the model parameters ci,n and fi,n. In the following, we will call
∆β the model error for short. Let us assume that the true relative error of β̃,
which is the relative model error ∆β/β, is small, then, with the approximation√

β + ∆β ≈ √
β(1 + ∆β

2β ), the level-crossing rate (4.64) can be approximated by

Ñξ(r) ≈ Nξ(r)
(

1 +
∆β

2β

)

= Nξ(r) + ∆Nξ(r) , r ≥ 0 , (4.66)

where

∆Nξ(r) =
∆β

2β
Nξ(r) =

∆β

2
√

2πβ
pξ(r) (4.67)

describes the true error of Ñξ(r). In this case, ∆Nξ(r) behaves proportionally to ∆β,
or in other words: for any given level r, the relation ∆Nξ(r)/∆β will be constant, and,
thus, independent of the model error ∆β of the simulation model.

For ρ → 0, it follows ξ̃(t) → ζ̃(t), and, thus p̃ξ(r) → p̃ζ(r). Consequently, with
reference to the assumptions (4.61a) and (4.61b), we obtain the following relation for
the level-crossing rate Ñζ(r) of deterministic Rayleigh processes ζ̃(t)

Ñζ(r) =

√
β̃

2π
· pζ(r) , r ≥ 0 . (4.68)

Now, it is obvious that the approximation (4.66) also holds for Ñζ(r) in connection
with (4.67) if the index ξ is replaced by ζ in both equations.

For reasons of illustration, the analytical expression for Ñξ(r) given by (4.64) is shown
in Figure 4.7 for a relative model error ∆β/β in the range of ±10 per cent. This figure
also shows the ideal conditions, i.e., β̃ = β, which we have already seen in Figure 3.5(b).

We now want to concentrate on the analysis of the average duration of fades of
deterministic Rice processes, where we again hold on to the assumptions (4.61a) and
(4.61b). In particular, it follows from (4.61a) that the cumulative distribution function
F̃ξ−(r) of deterministic Rice processes is identical to that of stochastic Rice processes,
i.e., F̃ξ−(r) = Fξ−(r). Hence, by taking the definition (2.63) into consideration, it
turns out that in this case the average duration of fades T̃ξ−(r) of deterministic Rice
processes ξ̃(t) can be expressed by

T̃ξ−(r) =
Fξ−(r)

Ñξ(r)
, r ≥ 0 , (4.69)
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Figure 4.7: Normalized level-crossing rate Ñξ(r)/fmax of deterministic Rice processes

for various values of β̃ = β + ∆β (Jakes PSD, fmax = 91Hz, fρ = 0).

where Ñξ(r) is given by (4.62).

For the special case fρ = 0, simple approximate solutions can again be given if the
relative model error ∆β/β is small. Hence, after substituting (4.66) into (4.69) and
using the approximation formula 1

/(
1 + ∆β

2β

)
≈ 1− ∆β

2β , we obtain the expression

T̃ξ−(r) ≈ Tξ−(r)
(

1− ∆β

2β

)

= Tξ−(r) + ∆Tξ−(r) , r ≥ 0 , (4.70)

where

∆Tξ−(r) = −∆β

2β
Tξ−(r) (4.71)

denotes the true error of T̃ξ−(r). Hence, the approximation (4.70) states that the
average duration of fades of the deterministic Rice process decreases (increases)
approximately linearly with an increasing (decreasing) model error ∆β.

For low levels r and moderate Rice factors cR = ρ2/(2σ2
0), we obtain the following

approximation after a short calculation from (4.70) in connection with (3.39)

T̃ξ−(r) ≈ T̃ζ−(r) ≈ r

√
π

2β

(
1− ∆β

2β

)
, (4.72)

where this result is valid for r << 1 and rρ/σ2
0 << 1. Thus, it appears that the fading

intervals of deterministic Rice and Rayleigh processes are approximately identical at
low signal levels, if the influence of the line-of-sight component is of no consequence.
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By comparing (3.39) with (4.72) it also becomes clearer that the relative model error
again determines the deviation from the average duration of fades of the corresponding
reference model.

An interesting statement can also be made on the product Ñξ(r) · T̃ξ−(r). Namely,
from (2.63) and (4.69), the model error law of deterministic channel modelling

Ñξ(r) · T̃ξ−(r) = Nξ(r) · Tξ−(r) (4.73)

follows, which means that the product of the level-crossing rate and the average
duration of fades of deterministic Rice processes is independent of the model error
∆β. With an increasing model error ∆β, the level-crossing rate Ñξ(r) may rise, but
the average duration of fades T̃ξ−(r) decreases by the same extent, so that the product
Ñξ(r) · T̃ξ−(r) remains constant at any given level r = const. This result is also
approximately obtained from the product of the approximations (4.66) and (4.70) if
we ignore in the resulting product the quadratic term [∆β/(2β)]2.

Since Rayleigh processes can naturally be considered as Rice processes for the special
case ρ = 0, the relations (4.69)–(4.71) and (4.73) in principle hold for Rayleigh
processes as well. Only the indices ξ and ξ− have to be replaced by ζ and ζ−,
respectively.

The evaluation of the analytical expression for T̃ξ−(r) [see (4.69)] is shown in Figure 4.8
for ∆β/β ∈ {−0.1, 0,+0.1}.
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Figure 4.8: Normalized average duration of fades T̃ξ−(r) · fmax of deterministic Rice

processes for various values of β̃ = β + ∆β (Jakes PSD, fmax = 91Hz,
fρ = 0).

In Chapter 5, where the individual methods for the determination of the simulation
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model parameters are analysed, we will see that the condition (4.61b) can often not
be fulfilled exactly. In most cases, however, the relative deviation between β̃1 and β̃2

is very small. Due to the analysis of the level-crossing rate and the average duration
of fades of Rice and Rayleigh processes, which was dealt with in Subsection 3.3.2, we
already know that for small relative deviations between β1 and β2, the ideal relations
derived on condition that β = β1 = β2 holds will still keep their validity in a very
good approximation, if we replace the quantity β = β1 = β2 by the arithmetical mean
β = (β1 + β2)/2 [see (3.37)] in the corresponding expressions or if we directly identify
β with β1, i.e., β = β1 ≈ β2 [see also Appendix B, eq. (B.17)]. Analogous results
can be found for the deterministic model as well. For further simplification, we will
therefore set β̃ = β̃1 ≈ β̃2 in the following, in case the relative deviation between β̃1

and β̃2 is small.

Finally, concerning this subject, it should be noted that even without the stated
conditions (4.61a) and (4.61b), the level-crossing rate and, thus, also the average
duration of fades of deterministic Rice processes can be calculated exactly. However,
the numerical expenditure for the solution of the obtained integral equations is
considerably high. Apart from that the achievable improvements are often only low,
even for a small number of harmonic functions Ni, so that the comparatively high
numerical expenditure does not seem to be justified. Not only against this background,
it turns out that especially the condition (4.61a) is meaningful, even though — strictly
speaking — this condition is only fulfilled exactly as Ni →∞.

For completeness, the exact calculation of both the level-crossing rate and the average
duration of fades of deterministic Rice processes for any number of harmonic functions
Ni is presented in Appendix C, where both conditions (4.61a) and (4.61b) have been
dropped. In Appendix C, one finds the following analytical closed-form expression for
the level-crossing rate Ñξ(r)

Ñξ(r) = 2r

∞∫

0

π∫

−π

w1(r, θ) w2(r, θ)

∞∫

0

j1(z, θ) j2(z, θ) ż cos(2πzż) dz dθ dż , (4.74)

where

w1(r, θ) = p̃µ1(r cos θ − ρ cos θρ) , (4.75a)
w2(r, θ) = p̃µ2(r sin θ − ρ sin θρ) , (4.75b)

j1(z, θ) =
N1∏

n=1

J0(4π2c1,nf1,nz cos θ) , (4.75c)

j2(z, θ) =
N2∏

n=1

J0(4π2c2,nf2,nz sin θ) . (4.75d)

Now, if we substitute (4.74) into (4.69) and replace the cumulative distribution
function Fξ−(r) by F̃ξ−(r) in the latter equation and using for F̃ξ−(r) the expression
(C.40) derived in Appendix C, then we also find an exact analytical expression for the
average duration of fades T̃ξ−(r) of deterministic Rice processes ξ̃(t).
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4.3.3 Statistics of the Fading Intervals at Low Levels

In this subsection, we will discuss the statistical properties of the fading intervals of
deterministic Rayleigh processes. We will restrict ourselves to low levels here, because
in this case very precise approximate solutions can be derived by analytical means.
At medium and high levels, however, we have to rely on simulations to which we will
come back in Section 5.3.

At first, we will study the probability density function of the fading intervals of
deterministic Rayleigh processes p̃0−(τ−; r). This density characterizes the conditional
probability density function for the case that a deterministic Rayleigh process ζ̃(t)
crosses a level r for the first time at the time instant t2 = t1 + τ−, provided that the
last down-crossing occurred at the time instant t1. If no further statements are made
about the level-crossing behaviour of ζ̃(t) between t1 and t2, then the corresponding
probability density function is denoted by p̃1−(τ−; r). During the analysis proceeded
for the stochastic reference model in Subsection 3.3.3, it was pointed out that,
according to (3.47), p1−(τ−; r) can be regarded as a very good approximation for
p0−(τ−; r) if the level r is low. Consequently, it also holds for the deterministic model:
p̃0−(τ−; r) → p̃1−(τ−; r) if r → 0, where p̃1−(τ−; r) follows directly from (3.47) if there
Tζ−(r) is substituted by T̃ζ−(r) [Pae96e], i.e.,

p̃1−(τ−; r) =
2πz̃2 e−z̃

T̃ζ−(r)

[
I0(z̃)−

(
1 +

1
2z̃

)
I1(z̃)

]
, 0 ≤ r << 1 , (4.76)

where z̃ = 2
[
T̃ζ−(r)/τ−

]2/
π. The use of the result (4.70) now gives us the opportunity

to investigate the influence of the model error ∆β on the probability density function
of the fading intervals of deterministic Rayleigh processes at deep signal levels
analytically. The evaluation of p̃1−(τ−; r) according to (4.76) for various values of
β̃ = β+∆β is shown in Figure 4.9 for a level r of r = 0.1. In this figure, one recognizes
that a positive model error ∆β > 0 is always connected with a distinct decrease
(increase) of the probability density function p̃1−(τ−; r) in the range of relatively large
(small) fading intervals τ−. With a negative model error ∆β < 0, logically, the inverse
behaviour occurs.

In a similar way, we obtain an expression for τ̃q describing the length of the time
interval of those fading intervals of deterministic Rayleigh processes ζ̃(t) which include
q per cent of all fading intervals. The quantity τ̃q = τ̃q(r) follows directly from (3.53)
if we again replace Tζ−(r) by T̃ζ−(r), i.e., for 75 ≤ q ≤ 100 it follows that

τ̃q(r) ≈
T̃ζ−(r)

{
π
4

[
1−

√
1− 4

(
1− q

100

)]}1/3
, r << 1 . (4.77)

In order to make the influence of the model error ∆β easily identifiable, we use
T̃ζ−(r) = Tζ−(r)[1 − ∆β/(2β)] and in connection with (3.53), we write the relation
above in the form

τ̃q(r) ≈ τq(r)
(

1− ∆β

2β

)
, r << 1 . (4.78)
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0 = 1).

This relation makes clear that a relative error of β in the order of ±ε approximately
causes a relative error of τq(r) in the order of ∓ε/2.

In particular, after putting (3.54)–(3.56) into (4.78), the quantities τ̃90(r), τ̃95(r), and
τ̃99(τ) can now approximately be expressed by:

τ̃90(r) ≈ 1.78 · Tζ−(r)[1−∆β/(2β)] , (4.79a)
τ̃95(r) ≈ 2.29 · Tζ−(r)[1−∆β/(2β)] , (4.79b)
τ̃99(r) ≈ 3.98 · Tζ−(r)[1−∆β/(2β)] . (4.79c)

At this point, it should be explicitly emphasized that all approximations for p̃0−(τ−; r)
and τ̃q(r), which were specially derived in this subsection for deterministic Rayleigh
processes, are also valid for deterministic Rice processes with moderate Rice factors.
This statement becomes clear immediately if we take into consideration that p̃1−(τ−; r)
[see (4.76)] and τ̃q(r) [see (4.77)] only depend on the average duration of fades T̃ζ−(r),
and, due to (4.72), T̃ζ−(r) can approximately be replaced at low signal levels r by the
average duration of fades T̃ξ−(r) of Rice processes.

4.3.4 Ergodicity and Criteria for the Performance Evaluation

As already mentioned, a deterministic process µ̃i(t), defined by (4.4), is a sample
function of the corresponding stochastic process µ̂i(t). In this subsection, we will
discuss the ergodic properties of the stochastic process µ̂i(t). Hence, we first distinguish
between the ergodicity with respect to the mean value and the ergodicity with respect
to the autocorrelation function [Pap91]. After that, we will look at some criteria for
the assessment of the performance, which will play a significant role in the following
chapter.
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Ergodicity with respect to the mean value: A stochastic process µ̂i(t) is said to
be ergodic with respect to the mean value if the temporal mean value of µ̃i(t) computed
over the interval [-T,T] converges in the limit T → ∞ to the statistical mean value
m̂µi := E{µ̂i(t)}, i.e.,

m̂µi
= m̃µi

:= lim
T→∞

1
2T

∫ T

−T

µ̃i(t) dt . (4.80)

Since the Doppler phases θi,n of the stochastic process µ̂i(t) are random variables
uniformly distributed in the interval (0, 2π], the left-hand side of the equation above
is equal to zero. The right-hand side is also equal to zero if all discrete Doppler
frequencies fi,n are unequal to zero, i.e., if fi,n 6= 0 for all n = 1, 2, . . . , Ni and i = 1, 2.
That requirement (fi,n 6= 0) can be fulfilled without any difficulty by all parameter
computation methods introduced in the next chapter. Hence, m̂µi = m̃µi = 0 holds,
and, thus, the stochastic process µ̂i(t) is ergodic with respect to the mean value.

Ergodicity with respect to the autocorrelation function: A stochastic process
µ̂i(t) is said to be ergodic with respect to the autocorrelation function if the temporal
mean of µ̃i(t)µ̃i(t+τ) computed over the interval [−T, T ] converges in the limit T →∞
to the statistical mean r̂µiµi(τ) := E{µ̂i(t)µ̂i(t + τ)}, i.e.,

r̂µiµi(τ) = r̃µiµi(τ) := lim
T→∞

1
2T

∫ T

−T

µ̃i(t) µ̃i(t + τ) dt . (4.81)

If the discrete Doppler frequencies fi,n and the Doppler coefficients ci,n of the
stochastic process µ̂i(t) are constant quantities and merely the Doppler phases
θi,n ∈ (0, 2π] are uniformly distributed random variables, then the left-hand side of
the equation above leads to

r̂µiµi(τ) =
Ni∑

n=1

c2
i,n

2
cos(2πfi,nτ) . (4.82)

Due to (4.11), we are already familiar with the solution of the right-hand side of
(4.81). The comparison of (4.11) with (4.82) shows us that r̂µiµi(τ) = r̃µiµi(τ) holds,
and, thus, the stochastic process µ̂i(t) is ergodic with respect to the autocorrelation
function.

Without wanting to jump ahead, it should be noted here that for the Monte Carlo
method described in Subsection 5.1.4, the discrete Doppler frequencies fi,n of the
stochastic process µ̂i(t) are not constants but random variables. We will see that in
this case r̂µiµi(τ) 6= r̃µiµi(τ) holds, and, thus, the stochastic process µ̂i(t) is not ergodic
with respect to the autocorrelation function.

Indeed, for channel modelling it is not the crucial factor whether the stochastic process
µ̂i(t) is ergodic with respect to the mean value or the autocorrelation function. The
deviations of statistical properties of the deterministic process µ̃i(t) from the statistical
properties of the underlying ideal stochastic process µi(t) are decisive. From these
deviations, criteria can be gained for the performance evaluation of the methods for
the computation of the model parameters presented in the next chapter.
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Since the process µi(t) was introduced here as a zero-mean normally distributed
stochastic process, i.e., µi(t) ∼ N(0, σ2

0), the mean-square error of the probability
density function p̃µi

(x) [cf. (4.39)]

Epµi
:=

∞∫

−∞
(pµi

(x)− p̃µi
(x))2 dx (4.83)

defines the first important criterion for the performance evaluation [Pae98b].

As is well known, real-valued Gaussian random processes are described completely
by their probability density function and their autocorrelation function. A further
important criterion for the performance evaluation is therefore the mean-square error
of the autocorrelation function r̃µiµi

(τ) defined by

Erµiµi
:=

1
τmax

τmax∫

0

(rµiµi(τ)− r̃µiµi(τ))2 dτ . (4.84)

For the parameter τmax, the value τmax = Ni/(2fmax) has turned out to be suitable,
especially for the Jakes power spectral density, as we will see in the next chapter.

Meanwhile, it has already been mentioned several times that the statistical properties
of deterministic simulation models can deviate considerably from those of the
underlying ideal stochastic reference model. We have seen that for many important
statistical quantities, the model error ∆β could be held responsible for this. Therefore,
a good parameter computation procedure should only cause a small relative model
error ∆β/β, even when the realization expenditure is low, i.e., for a small number
of harmonic functions Ni. Hence, the model error ∆β and its convergence property
∆β → 0 or β̃ → β for Ni → ∞ will be paid attention to in the subsections of the
following chapter as well.





5

METHODS FOR THE
COMPUTATION OF THE
MODEL PARAMETERS OF
DETERMINISTIC PROCESSES

By now there is a multitude of various methods for the computation of the primary
parameters of the simulation model (Doppler coefficients ci,n and discrete Doppler
frequencies fi,n). Exactly like the original Rice method [Ric44, Ric45], the method of
equal distances [Pae94b, Pae96d] as well as the mean-square-error method [Pae96d]
are characterized by the fact that the distances between two neighbouring discrete
Doppler frequencies are equidistant. These three methods merely differ in the specific
way of how the Doppler coefficients are adapted to the desired Doppler power
spectral density. Due to the equidistant property of discrete Doppler frequencies,
which are in neighbouring pairs, all three procedures have one decisive disadvantage
in common, namely the comparatively small period of the designed deterministic
Gaussian processes, and, thus, of the resulting simulation model. This disadvantage
can be avoided, e.g., by using the method of equal areas [Pae94b, Pae96d], which
has an acceptable performance when applied to the Jakes power spectral density.
However, this method fails or leads to a comparatively high realization expenditure,
if the procedure is used in connection with Gaussian shaped power spectral densities.
In German-speaking countries, the Monte Carlo method [Schu89, Hoe92] has become
quite popular. In comparison with other methods, however, the performance of this
method is poor [Pae96d, Pae96e] if the approximation precision of the autocorrelation
function of the resulting deterministic Gaussian processes is used as a criterion for the
evaluation of the performance. The principle of the Monte Carlo method is that the
discrete Doppler frequencies of the stochastic simulation system are obtained from the
mapping of a uniformly distributed random variable into a random variable with a
distribution proportional to the desired Doppler power spectral density. Consequently,
the discrete Doppler frequencies themselves are random variables. The realization of a
set {fi,n} of discrete Doppler frequencies can thus result in a deterministic Gaussian
process µ̃i(t), whose statistical properties may largely deviate from the desired
properties of the (ideal) stochastic Gaussian random process µi(t). This even holds if
the number of harmonic functions Ni chosen is very large, let us say Ni = 100 [Pae96e].
A quasi-optimal procedure is the method of exact Doppler spread [Pae98b, Pae96c].
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This method is almost ideally suitable for Jakes shaped power spectral densities. The
performance of the method of exact Doppler spread can only be outperformed by the
Lp-norm method [Pae98b, Pae96c]. Unfortunately, the arising numerical complexity
of this method is comparatively high, so that an application, especially in connection
with the Jakes and Gaussian power spectral density, is often not worth the effort.
The Lp-norm method only unfolds its full performance when the statistical properties
of the deterministic simulation model have to be adapted to snapshot measurements
of real-world mobile radio channels. A further design method is the Jakes method
[Jak93], which, however, does not fulfil the often imposed requirement that the real
and imaginary part of the complex Gaussian random processes describing the Rayleigh
(Rice) process should be uncorrelated.

For an infinite number of harmonic functions, all these methods result in deterministic
processes with identical statistical properties, which even match the ones of the
reference model exactly. However, as soon as only a finite number of harmonic
functions is used, we obtain deterministic processes with completely different statistical
properties, which in particular cases can considerably deviate from those of the
reference model. The discussion of these properties will be one objective of the
following Section 5.1. Thus, in order to compute the model parameters ci,n and fi,n,
we will proceed by deriving the seven design procedures mentioned just in such a way
that they are generally applicable. Afterwards, the methods are respectively applied
to both of the often used Jakes and Gaussian power spectral densities. In general, we
obtain simple equations allowing us to quickly determine the desired model parameters
for the most important practical application cases. For each method, the characteristic
properties as well as the advantages and disadvantages will be discussed. For a fair
judgement of the performance, the criteria of assessment introduced in the preceding
Subsection 4.3.4 will be made use of. At places in the text, where relations among the
individual methods occur, these connections will be pointed out.

The computation of the Doppler phases {θi,n} can be carried out independently of
these methods. Without restriction of generality, we at first assume that the elements of
the set {θi,n} are generated from Ni statistically independent realizations of a random
variable uniformly distributed in the interval [0, 2π). Afterwards, in Section 5.2, we
will discover a deterministic design method for the computation of the set {θi,n}. At
that stage, the relevance of the Doppler phases {θi,n} with regard to the statistical
properties of µ̃i(t) will also be analysed more precisely.

Finally, we will again deal with the analysis of the probability density function of the
fading intervals of deterministic Rayleigh processes in Section 5.3.
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5.1 METHODS FOR THE COMPUTATION OF THE DISCRETE DOPPLER
FREQUENCIES AND DOPPLER COEFFICIENTS

5.1.1 Method of Equal Distances (MED)

One of the main characteristics of the method of equal distances (MED) [Pae94b,
Pae96d] is that discrete Doppler frequencies, which are found in neighbouring pairs,
have the same distance. This property is achieved by defining the discrete Doppler
frequencies fi,n as

fi,n :=
∆fi

2
(2n− 1) , n = 1, 2, . . . , Ni , (5.1)

where

∆fi = fi,n − fi,n−1 , n = 2, 3, . . . , Ni , (5.2)

denotes the distance between two neighbouring discrete Doppler frequencies of the ith
deterministic process µ̃i(t) (i = 1, 2).

In order to compute the Doppler coefficients ci,n, we take a look at the frequency
interval

Ii,n :=
[
fi,n − ∆fi

2
, fi,n +

∆fi

2

)
, n = 1, 2, . . . , Ni , (5.3)

and demand that within this interval, the mean power of the power spectral density
Sµiµi(f) of the stochastic reference model is identical to that of the power spectral
density S̃µiµi(f) of the deterministic simulation model, i.e.,

∫

fεIi,n

Sµiµi(f) df =
∫

fεIi,n

S̃µiµi(f) df (5.4)

for all n = 1, 2, . . . , Ni and i = 1, 2. Thus, after substituting (4.14) into the above
equation, the Doppler coefficients ci,n are determined by the expression

ci,n = 2

√∫

fεIi,n

Sµiµi(f) df . (5.5)

After substituting (5.5) into (4.11), one can easily prove that r̃µiµi(τ) → rµiµi(τ) holds
as Ni →∞. Referring to the central limit theorem, it can furthermore be shown that
the convergence property p̃µi(x) → pµi(x) holds as Ni → ∞. Thus, for an infinite
number of harmonic functions, the deterministic processes designed according to the
method of equal distances can be interpreted as sample functions of the underlying
ideal Gaussian random process.

The major disadvantage of this method is the resulting poor periodicity property of
µ̃i(t). To make this clear, we start from (4.26), and in connection with (5.1) it follows
that the greatest common divisor of the discrete Doppler frequencies is

Fi = gcd{fi,n}Ni
n=1 =

∆fi

2
. (5.6)
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Consequently, µ̃i(t) is periodical with the period Ti = 1/Fi = 2/∆fi. To obtain a large
value for Ti, a small value for ∆fi is required, which is in general involved with a high
realization amount as we will see below.

Jakes power spectral density: The frequency range of the Jakes power spectral
density [see (3.8)] is limited to the range |f | ≤ fmax, so that for a given number of
harmonic functions Ni, a reasonable value for the difference between two neighbouring
discrete Doppler frequencies ∆fi is given by ∆fi = fmax/Ni. Consequently, from (5.1)
we obtain the following relation for the discrete Doppler frequencies fi,n

fi,n =
fmax

2Ni
(2n− 1) (5.7)

for all n = 1, 2, . . . , Ni and i = 1, 2. The corresponding Doppler coefficients ci,n

can now easily be computed with (3.8), (5.3), (5.5), and (5.7). After an elementary
computation, we find the expression

ci,n =
2σ0√

π

[
arcsin

(
n

Ni

)
− arcsin

(
n− 1
Ni

)]1/2

(5.8)

for all n = 1, 2, . . . , Ni and i = 1, 2.

The deterministic processes µ̃i(t) designed with (5.7) and (5.8) obviously have the
mean value m̃µi = 0 and the mean power

σ̃2
µi

= r̃µiµi(0) =
Ni∑

n=1

c2
i,n

2
= σ2

0 . (5.9)

Hence, both the mean value and the mean power of the deterministic process µ̃i(t)
exactly match the corresponding quantities of the stochastic process µi(t), i.e., the
expected value and the variance.

Designing the complex deterministic processes µ̃(t) = µ̃1(t) + jµ̃2(t), the uncor-
relatedness of µ̃1(t) and µ̃2(t) must be guaranteed. This can be ensured without
difficulty by choosing N2 in accordance with N2 = N1 + 1, so that due to (5.7) it
follows: f1,n 6= f2,m for n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2. This again leads to the
desired property that µ̃1(t) and µ̃2(t) are uncorrelated [cf. (4.12)].

As an example, the power spectral density S̃µiµi(f) and the corresponding
autocorrelation function r̃µiµi(τ) are depicted in Figure 5.1, where the value 25 has
been chosen for the number of harmonic functions Ni.

For comparison, the autocorrelation function rµiµi(τ) of the reference model is also
presented in Figure 5.1(b). The shape of r̃µiµi(τ) shown in this figure makes the
periodical behaviour clearly recognizable. In general, the following relation holds

r̃µiµi(τ + mTi/2) =

{
r̃µiµi(τ) , m even ,

−r̃µiµi(τ) , m odd ,
(5.10)
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Figure 5.1: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function
r̃µiµi(τ) for Ni = 25 (MED, Jakes PSD, fmax = 91Hz, σ2

0 = 1).

where Ti = 1/Fi = 2/∆fi = 2Ni/fmax. If we now choose the value τmax = Ti/4 =
Ni/(2fmax) for the upper limit of the integral (4.84), the mean-square error Erµiµi

[see (4.84)] can thus be usefully evaluated, particularly since Erµiµi
represents a

measure of the performance of the method of equal distances as a function of the
realization complexity determined by Ni. The evaluation of the performance criteria
Erµiµi

and Epµi
according to (4.84) and (4.83), respectively, were performed on

the basis of the method of equal distances. The obtained results are presented in
Figures 5.2(a) and 5.2(b) showing the influence of the used number of harmonic
functions Ni. For a better classification of the performance of this method, the results
obtained for ci,n = σ0

√
2/Ni are also shown in Figure 5.2(b). Hence, one realizes

that the approximation of the Gaussian distribution using the Doppler coefficients
ci,n according to (5.8) is worse in comparison with the results obtained by using
ci,n = σ0

√
2/Ni.

Finally, we will also study the model error ∆βi = β̃i−β. With (5.7), (5.8), (3.29), and
(4.22), we find the closed-form expression

∆βi = β

[
1 +

1− 4Ni

2N2
i

− 8
πN2

i

Ni−1∑
n=1

n · arcsin
(

n

Ni

)]
, (5.11)

whose right-hand side tends to 0 as Ni →∞, i.e., it holds limNi→∞∆βi = 0. Figure 5.3
depicts the relative model error ∆βi/β. It should be observed that the ratio ∆βi/β
merely depends on Ni.

Gaussian power spectral density: The frequency range of the Gaussian power
spectral density (3.11) must first be limited to the relevant range. Therefore, we
introduce the quantity κc which is chosen in such a way that the mean power of
the Gaussian power spectral density obtained within the frequency range |f | ≤ κcfc

makes up at least 99.99 per cent of its total mean power. This demand is fulfilled with
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Figure 5.2: Mean-square errors: (a) Erµiµi
and (b) Epµi

(MED, Jakes PSD, fmax =

91Hz, σ2
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Figure 5.3: Relative model error ∆βi/β (MED, Jakes PSD).
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κc = 2
√

2/ ln 2. Depending on the number of harmonic functions Ni, the difference
between two neighbouring discrete Doppler frequencies ∆fi can then be described by
∆fi = κcfc/Ni. Thus, with (5.1), we obtain the following expression for the discrete
Doppler frequencies fi,n

fi,n =
κcfc

2Ni
(2n− 1) (5.12)

for all n = 1, 2, . . . , Ni and i = 1, 2. Now, using (3.11), (5.3), and (5.5), this enables
the computation of the Doppler coefficients ci,n. As a result, we find the formula

ci,n = σ0

√
2

[
erf

(
nκc

√
ln 2

Ni

)
− erf

(
(n− 1)κc

√
ln 2

Ni

)] 1
2

(5.13)

for all n = 1, 2, . . . , Ni and i = 1, 2. Deterministic processes µ̃i(t) designed with (5.12)
and (5.13) have a mean value of zero and a mean power of

σ̃2
µi

= r̃µiµi(0) =
Ni∑

n=1

c2
i,n

2

= σ2
0 erf

(
κc

√
ln 2

)

= 0.9999366 · σ2
0 ≈ σ2

0 , (5.14)

provided that κc is chosen as suggested, i.e., κc = 2
√

2/ ln 2. In the present case, the
period of µ̃i(t) is given by Ti = 2/∆fi = 2Ni/(κcfc).

Figure 5.4(a) shows the power spectral density S̃µiµi(f) for Ni = 25 and Figure 5.4(b)
illustrates the corresponding behaviour of the autocorrelation function r̃µiµi(τ) in
comparison with the autocorrelation function rµiµi(τ) of the reference model in the
range 0 ≤ τ ≤ Ti/2.

A suitable value for the upper limit of the integral (4.84) is also in this case a quarter
of the period Ti, i.e., τmax = Ti/4 = Ni/(2κcfc). If the mean-square error Erµiµi

[see
(4.84)] is evaluated with respect to the upper limit τmax prescribed in this way, then
we obtain the graph presented in Figure 5.5(a) showing the influence of the number
of harmonic functions Ni. Figure 5.5(b) presents the results of the evaluation of the
performance criterion Epµi

according to (4.83). For comparison, the results obtained
by using ci,n = σ0

√
2/Ni are shown in this figure as well.

Finally, we will also analyse the model error ∆βi. Using (4.22), (5.12), (5.13), and
(3.29), we find the following closed-form solution for ∆βi = β̃i − β

∆βi = β

{
2 ln 2κ2

c

[(
1− 1

2Ni

)2

erf
(
κc

√
ln 2

)
− 2

N2
i

Ni−1∑
n=1

n erf

(
nκc

√
ln 2

Ni

)]
−1

}
.

(5.15)
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Figure 5.4: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (MED, Gaussian PSD, fc =
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ln 2fmax, fmax = 91 Hz,

σ2
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Let us choose κc = 2
√

2/ ln 2 again. From the above equation, it then follows the
following expression for the relative model error ∆βi/β

∆βi

β
= 16

[(
1− 1

2Ni

)2

erf
(
2
√

2
)
− 2

N2
i

Ni−1∑
n=1

n · erf

(
n2
√

2
Ni

)]
− 1 , (5.16)

whose behaviour is depicted in Figure 5.6 as a function of Ni. In addition to the rather
small values for ∆βi/β, the fast convergence behaviour is to be assessed positively.
When considering the limit Ni → ∞, it turns out that the model error ∆βi is very
small but still larger than 0, because, due to the finite value for κc, the frequency
range of the Gaussian power spectral density (3.11) is not covered completely by the
discrete Doppler frequencies.
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Figure 5.6: Relative model error ∆βi/β (MED, Gaussian PSD, κc = 2
p

2/ ln 2).

In order to avoid correlations between µ̃1(t) and µ̃2(t), N2 is again defined by
N2 := N1 + 1. Hence, ∆β = ∆β1 ≈ ∆β2 holds, and we can easily analyse the
characteristic quantities Ñξ(r), T̃ξ−(r), and τ̃q(r) of deterministic Rice processes ξ̃(t)
by making use of (4.66), (4.70), and (4.78), respectively. Concerning the simulation
of ξ̃(t), it must be taken into account that the simulation time Tsim does not exceed
the period Ti, i.e., Tsim ≤ Ti = 2Ni/fmax (Jakes PSD). As an example, we consider
Ni = 25 and fmax = 91 Hz (v = 110 km/h, f0 = 900 MHz). This results in a maximum
simulation time of Tsim = 0.549 s. Within this time, the vehicle covers a distance of
16.775m, so that the model of the underlying mobile radio channel can be regarded
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as wide-sense stationary.1 Nevertheless, this simulation time is not by a long way
sufficient to determine typical characteristic quantities such as Ñξ(r), T̃ξ−(r), and τ̃q(r)
with acceptable precision. A more exact measurement of these quantities for the same
parameter sets {fi,n} and {ci,n} can be achieved by ensemble averaging (statistical
averaging). Therefore, various realizations of ξ̃(t) are required, which can be generated
by means of various sets for the Doppler phases {θi,n}. Due to the relatively small
period Ti, which only increases linearly with Ni, the method of equal distances is
not recommendable for long-time simulations. For this reason, the properties of this
method will not be investigated here in any detail. Further results of this approach
can be found in [Pae96d].

5.1.2 Mean-Square-Error Method (MSEM)

The mean-square-error method (MSEM) is based on the idea that the model parameter
sets {ci,n} and {fi,n} are computed in such a way that the mean-square error (4.84)

Erµiµi
=

1
τmax

∫ τmax

0

(rµiµi(τ)− r̃µiµi(τ))2 dτ (5.17)

becomes minimal [Pae96d]. Here, rµiµi(τ) can be any autocorrelation function of the
process µi(t) describing a theoretical reference model. Alternatively, rµiµi(τ) can also
be obtained from the measurement data of a real-world channel. The autocorrelation
function r̃µiµi(τ) of the deterministic model is again given by (4.11). In the equation
given above, τmax describes an appropriate time interval over which the approximation
of the autocorrelation function rµiµi(τ) is of interest. Unfortunately, a simple and
closed-form solution for this problem only exists, if the discrete Doppler frequencies
fi,n are again defined by (5.1) and, consequently, they are equidistant.

After substituting (4.11) into (5.17) and setting the partial derivatives of Erµiµi
with

respect to the Doppler coefficients ci,n equal to zero, i.e., ∂Erµiµi
/∂ci,n = 0, we obtain,

in connection with (5.1), the following formula for ci,n [Pae96d]:

ci,n = 2

√
1

τmax

∫ τmax

0

rµiµi(τ) cos(2πfi,nτ) dτ (5.18)

for all n = 1, 2, . . . , Ni (i = 1, 2), where τmax shall again be given by τmax = Ti/4 =
1/(2∆fi).

In case of the limit ∆fi → 0, one can show that from (5.18) the expression

ci,n = lim
∆fi→0

2
√

∆fiSµiµi(fi,n) (5.19)

follows, which is identical to the relation (4.2a) given by Rice [Ric44, Ric45]. Numerical
analysis have shown that for ∆fi > 0, the formula

ci,n = 2
√

∆fiSµiµi(fi,n) , (5.20)

1 Measurements have shown [Cox73] that in urban areas mobile radio channels can appropriately
be modelled for signal bandwidths up to 10MHz and covered distances up to 30m by so-called
GWSSUS channels (“Gaussian wide-sense stationary uncorrelated scattering”).
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which can easily be evaluated, even then shows a quite usable approximation of the
exact solution (5.18), if the number of used harmonic functions Ni is moderate.

We also want to show that r̃µiµi
(τ) → rµiµi

(τ) follows as Ni →∞ (∆fi → 0). Putting
(5.1) and (5.18) into (4.11) and taking τmax = 1/(2∆fi) into account, we may write

lim
Ni→∞

r̃µiµi
(τ) = lim

Ni→∞

Ni∑
n=1

c2
i,n

2
cos(2πfi,nτ)

= lim
Ni→∞

4
Ni∑

n=1

∫ 1
2∆fi

0

rµiµi(τ
′) cos(2πfi,nτ ′) cos(2πfi,nτ) dτ ′∆fi

= 4
∫ ∞

0

∫ ∞

0

rµiµi
(τ ′) cos(2πfτ ′) cos(2πfτ) dτ ′ df

= 2
∫ ∞

0

Sµiµi
(f) cos(2πfτ) df

= rµiµi(τ) . (5.21)

Next, we will study the application of the mean-square-error method (MSEM) on the
Jakes and the Gaussian power spectral densities.

Jakes power spectral density: When using the MSEM, the formula for the
computation of the discrete Doppler frequencies fi,n is identical to the relation (5.7),
which has been obtained by applying the MED. For the corresponding Doppler
coefficients ci,n, however, we obtain quite different expressions. After substituting
(3.10) into (5.18), we find

ci,n = 2σ0

√
1

τmax

∫ τmax

0

J0(2πfmaxτ) cos(2πfi,nτ) dτ , (5.22)

where τmax = 1/(2∆fi) = Ni/(2fmax). There is no closed-form solution for the definite
integral appearing in (5.22), so that in this case a numerical integration technique has
to be applied in order to calculate the Doppler coefficients ci,n.

As an example, we consider Figure 5.7, where the power spectral density S̃µiµi(f)
and the corresponding autocorrelation function r̃µiµi(τ) for Ni = 25 are depicted. For
reasons of comparison, the autocorrelation function rµiµi(τ) of the reference model
[see (3.10)] is also shown in Figure 5.7(b). The unwanted periodical behaviour of
r̃µiµi(τ), as a consequence of the equidistant discrete Doppler frequencies, is again
clearly visible.

The evaluation of the performance criteria Erµiµi
and Epµi

[see (4.84) and (4.83),
respectively] has been performed for the MSEM. The obtained results, pointing out
the influence of the number of harmonic functions Ni, are shown in Figures 5.8(a) and
5.8(b). For a better classification of the performance of the MSEM, the results found
before by applying the MED as well as the results obtained by using the approximate
solution (5.20) are likewise included in these figures.
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Figure 5.7: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function
r̃µiµi(τ) for Ni = 25 (MSEM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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In case of the MSEM, a simple solution for the model error ∆βi does not exist. By
means of (5.7), (5.22), (3.29), and (4.22), the following formula for β̃i is obtained after
a short computation

β̃i = β
1
Ni

Ni∑
n=1

(2n− 1)2
∫ 1

0

J0(πNiu) cos
[π

2
(2n− 1)u

]
du . (5.23)

With this expression and by making use of β = 2(πfmaxσ0)2, the model error
∆βi = β̃i − β can be calculated. Figure 5.9 depicts the resulting relative model error
∆βi/β in terms of Ni. This figure also shows the results which can be found when the
approximate solution (5.20) is used. For reasons of comparison, the graph of ∆βi/β
obtained by applying the MED is also presented here once again.
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Figure 5.9: Relative model error ∆βi/β (MSEM, Jakes PSD).

Gaussian power spectral density: The discrete Doppler frequencies fi,n are given
by (5.12). For the Doppler coefficients ci,n, we now obtain, after substituting (3.12)
into (5.18), the expression

ci,n = 2σ0

√
1

τmax

∫ τmax

0

e−(πfcτ)2/ ln 2 cos(2πfi,nτ) dτ (5.24)

for all n = 1, 2, . . . , Ni (i = 1, 2), where τmax = 1/(2∆fi) = Ni/(2κcfc). Let the
quantity κc again be defined by κc = 2

√
2/ ln 2, so that the period Ti is given by

Ti = Ni/(
√

2/ ln 2fc). The definite integral under the square root of (5.24) has to be
solved numerically.

As an example, the power spectral density S̃µiµi(f) for Ni = 25 is shown in
Figure 5.10(a). Figure 5.10(b) presents the corresponding autocorrelation function
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r̃µiµi(τ) in comparison with the autocorrelation function rµiµi(τ) of the reference
model in the range 0 ≤ τ ≤ Ti/2.
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Figure 5.10: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (MSEM, Gaussian PSD, fc =
√

ln 2fmax, fmax =

91Hz, σ2
0 = 1, κc = 2

p
2/ ln 2).

The mean-square errors Erµiµi
and Epµi

[see (4.84) and (4.83)], occurring when the
MSEM is applied, are depicted in the Figures 5.11(a) and 5.11(b), respectively. For
comparison, the results found for the MED before and the results by using the
approximation (5.20) are also shown in these figures.
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We briefly turn to the model error ∆βi. Putting (5.12) and (5.24) into the formula for
β̃i [see (4.22)] and making use of (3.29), the expression

β̃i = β
κ2

c ln 2
N2

i

Ni∑
n=1

(2n− 1)2
∫ 1

0

e
−
�

πNi
2κc

√
ln 2

u
�2

cos
[π

2
(2n− 1)u

]
du (5.25)

follows, making the computation of the model error ∆βi = β̃i−β possible. Figure 5.12
displays the resulting relative model error ∆βi/β as a function of Ni. This figure also
presents the results which can be found by using the approximate solution (5.20)
derived for the Doppler coefficients ci,n. For comparison, this figure also shows the
graph previously obtained for the MED.
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Figure 5.12: Relative model error ∆βi/β (MSEM, Gaussian PSD, κc = 2
p

2/ ln 2).

5.1.3 Method of Equal Areas (MEA)

The method of equal areas (MEA) [Pae94b] is characterized by the fact that the
discrete Doppler frequencies fi,n are determined in such a way that the area under
the Doppler power spectral density Sµiµi(f) is equal to σ2

0/(2Ni) within the frequency
range fi,n−1 < f ≤ fi,n, i.e.,

∫ fi,n

fi,n−1

Sµiµi(f) df =
σ2

0

2Ni
(5.26)

for all n = 1, 2, . . . , Ni and i = 1, 2, where fi,0 := 0. For an explicit computation of
the discrete Doppler frequencies fi,n, the introduction of the auxiliary function

Gµi(fi,n) :=
∫ fi,n

−∞
Sµiµi(f) df (5.27)
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turns out to be helpful. In case of symmetrical Doppler power spectral densities, i.e.,
Sµiµi

(f) = Sµiµi
(−f), and by using (5.26), we may express Gµi

(fi,n) in the form

Gµi(fi,n) =
σ2

0

2
+

n∑
ν=1

∫ fi,ν

fi,ν−1

Sµiµi(f) df

=
σ2

0

2

(
1 +

n

Ni

)
. (5.28)

If the inverse function of Gµi , denoted by G−1
µi

, exists, then the discrete Doppler
frequencies fi,n are given by

fi,n = G−1
µi

[
σ2

0

2

(
1 +

n

Ni

)]
(5.29)

for all n = 1, 2, . . . , Ni and i = 1, 2.

The Doppler coefficients ci,n are now determined by imposing on both the reference
model and the simulation model that within the frequency interval Ii,n := (fi,n−1, fi,n],
the mean power of the stochastic process µi(t) is identical to that of the deterministic
process µ̃i(t), i.e.,

∫

fεIi,n

Sµiµi(f) df =
∫

fεIi,n

S̃µiµi(f) df . (5.30)

From the equation above and by using the relations (4.14) and (5.26), it now follows
the following simple formula for the Doppler coefficients

ci,n = σ0

√
2
Ni

, (5.31)

where n = 1, 2, . . . , Ni and i = 1, 2. Just as with the previous methods, we will also
apply this procedure to the Jakes and Gaussian power spectral density.

Jakes power spectral density: With the Jakes power spectral density (3.8), we
obtain the following expression for (5.27)

Gµi(fi,n) =
σ2

0

2

[
1 +

2
π

arcsin
(

fi,n

fmax

)]
, (5.32)

where 0 < fi,n ≤ fmax, ∀n = 1, 2, . . . , Ni and i = 1, 2. If we set up a relation between
the right-hand side of (5.32) and (5.28), then the discrete Doppler frequencies fi,n can
be computed explicitly. As a result, we find the equation

fi,n = fmax sin
(

πn

2Ni

)
, (5.33)

which is valid for all n = 1, 2, . . . , Ni and i = 1, 2. The corresponding Doppler
coefficients ci,n are furthermore given by (5.31). Theoretically, for all relevant values of
Ni, say Ni ≥ 5, the greatest common divisor Fi := gcd{fi,n}Ni

n=1 is equal to zero, and,
thus, the period Ti = 1/Fi is infinite. Hence, in this idealized case, the deterministic
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process µ̃i(t) is nonperiodic. In practical cases of application, however, the discrete
Doppler frequencies fi,n can only be calculated with a finite precision. Let us assume
that the discrete Doppler frequencies fi,n, according to (5.33), are representable up
to the lth decimal place after the comma, then the greatest common divisor is equal
to Fi = gcd{fi,n}Ni

n=1 = 10−l s−1. Consequently, the period Ti of the deterministic
process µ̃i(t) is Ti = 1/Fi = 10l s, so that µ̃i(t) can be considered as quasi-nonperiodic
if l ≥ 10.

Deterministic processes µ̃i(t) designed with (5.31) and (5.33) are characterized by the
mean value m̃µi = 0 and the mean power

σ̃2
µi

= r̃µiµi(0) =
Ni∑

n=1

c2
i,n

2
= σ2

0 . (5.34)

When designing the complex deterministic processes µ̃(t) = µ̃1(t)+jµ̃2(t), the demand
for uncorrelatedness of the real part and the imaginary part can be fulfilled sufficiently,
if the number of harmonic functions N2 is defined by N2 := N1 + 1. However, the fact
that f1,N1 = f2,N2 = fmax always holds for any chosen values of N1 and N2 has
the consequence that µ̃1(t) and µ̃2(t) are not completely uncorrelated. But even for
moderate values of Ni, the resulting correlation is very small, so that this effect will
be ignored in order to simplify matters.

Let us choose Ni = 25, for example, then we obtain the results shown in Figures 5.13(a)
for the power spectral density S̃µiµi(f). The corresponding autocorrelation function
r̃µiµi(τ) is presented in 5.13(b).
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Figure 5.13: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function
r̃µiµi(τ) for Ni = 25 (MEA, Jakes PSD, fmax = 91Hz, σ2

0 = 1).

Without any difficulty, it can be proved that r̃µiµi(τ) → rµiµi(τ) holds as Ni → ∞.
To prove this property, we substitute (5.31) and (5.33) into (4.11), so that we may
write
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lim
Ni→∞

r̃µiµi
(τ) = lim

Ni→∞

Ni∑
n=1

c2
i,n

2
cos(2πfi,nτ)

= lim
Ni→∞

σ2
0

1
Ni

Ni∑
n=1

cos
[
2πfmaxτ sin

(
πn

2Ni

)]

= σ2
0

2
π

∫ π/2

0

cos(2πfmaxτ sin α) dα

= σ2
0J0(2πfmaxτ)

= rµiµi
(τ) . (5.35)

In Subsection 4.3.1, we have furthermore proved that for ci,n = σ0

√
2/Ni it holds:

p̃µi
(x) → pµi

(x) as Ni → ∞. Consequently, for an infinite number of harmonic
functions, the deterministic Gaussian process µ̃i(t) represents a sample function of
the stochastic Gaussian random process µi(t). Note that the same relation also exists
between the deterministic Rice process ξ̃(t) and the stochastic Rice process ξ(t).

A deeper insight into the performance of the MEA can again be gained by evaluating
the performance criteria (4.83) and (4.84). Both of the resulting mean-square errors
Erµiµi

and Epµi
are shown in Figures 5.14(a) and 5.14(b), respectively.
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Figure 5.14: Mean-square errors: (a) Erµiµi
and (b) Epµi

(MEA, Jakes PSD, fmax =

91Hz, σ2
0 = 1, τmax = Ni/(2fmax)).

Now, let us analyse the model error ∆βi as well. With (5.31), (5.33), and (3.29), we
at first find the following expression for β̃i [see (4.22)]

β̃i = β
2
Ni

Ni∑
n=1

sin2

(
πn

2Ni

)
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= β

(
1 +

1
Ni

)
. (5.36)

Since β̃i was introduced as β̃i = β +∆βi, we thus obtain a simple closed-form formula
for the model error

∆βi = β/Ni . (5.37)

One may note that ∆βi → 0 as Ni →∞. The convergence characteristic of the relative
model error ∆βi/β can be seen in Figure 5.15.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Ni

∆β
i /

 β

MEA

Figure 5.15: Relative model error ∆βi/β (MEA, Jakes PSD).

We furthermore look at the relative error of the level-crossing rate Ñξ(r), to which we
want to refer as εNξ

in the following, i.e.,

εNξ
=

Nξ(r)− Ñξ(r)
Nξ(r)

. (5.38)

By using (4.66) and (5.37), we can approximate the relative error εNξ
in the present

case as follows

εNξ
≈ −∆β

2β
≈ −∆βi

2β
= − 1

2Ni
. (5.39)

This result makes clear that for a finite number of Ni, the level-crossing rate of the
simulation model, which was designed with the MEA, is always greater than the level-
crossing rate of the reference model. Obviously, εNξ

→ 0 holds as Ni →∞.



100 METHODS FOR THE COMPUTATION OF THE MODEL PARAMETERS

Analogously, for the relative error of the average duration of fades T̃ξ−(r) one finds
the approximate solution

εTξ− ≈
∆β

2β
≈ ∆βi

2β
=

1
2Ni

. (5.40)

The quasi-nonperiodic property of µ̃i(t) now allows us to determine both the level-
crossing rate and the average duration of fades of deterministic Rice processes by
means of simulation. For this purpose, the parameters of the simulation model {ci,n}
and {fi,n} were determined by applying the method of equal areas with (N1, N2) =
(10, 11). For the computation of the Doppler phases {θi,n}, everything that we said
at the beginning of this chapter also holds here. Just as in the previous examples,
the Jakes power spectral density (3.8) was again characterized by fmax = 91Hz and
σ2

0 = 1. For the sampling interval Ts of the deterministic Rice process ξ̃(kTs), the
value Ts = 10−4 s was chosen. The simulation time Tsim was determined for each
individual signal level r in such a way that always 106 fading intervals or downwards
(upwards) level crossings could be evaluated. The results found under these conditions
are presented in Figures 5.16(a) and 5.16(b).
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Figure 5.16: (a) Normalized level-crossing rate Ñξ(r)/fmax and (b) normalized average

duration of fades T̃ξ−(r) ·fmax (MEA, Jakes PSD, fmax = 91Hz, σ2
0 = 1).

These figures also show the analytical solutions previously found for the reference
model and the simulation model. The quantities Ñξ(r) and T̃ξ−(r) were computed
by using β̃ = β̃1 = β(1 + 1/N1) and by means of (4.64) and (4.69), respectively.
These figures also demonstrate the excellent correspondence between the analytical
expressions derived for the simulation model and the corresponding quantities
determined from the measurement results of the simulated amplitude behaviour.
Unfortunately, the statistical deviations between the reference model and the
simulation model are comparatively high, which gives us a reason to search for a
better parameter computation technique. For example, under the conditions given
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here, where N1 = 10 and N2 = 11, the percentage of the relative error of the level-
crossing rate Ñξ(r) and the average duration of fades T̃ξ−(r) is about εNξ

≈ −5 per
cent and εTξ− ≈ +5 per cent, respectively.

Gaussian power spectral density: With the Gaussian power spectral density
(3.11), we obtain the following expression for (5.27)

Gµi
(fi,n) =

σ2
0

2

[
1 + erf

(
fi,n

fc

√
ln 2

)]
(5.41)

for all n = 1, 2, . . . , Ni and i = 1, 2. Since the inverse function erf−1(·) of the Gaussian
error function does not exist, the discrete Doppler frequencies fi,n cannot be in this
case computed explicitly. Nevertheless, from the difference of both relations, (5.28)
and (5.41), we obtain the equation

n

Ni
− erf

(
fi,n

fc

√
ln 2

)
= 0 , ∀n = 1, 2, . . . , Ni (i = 1, 2) , (5.42)

from which the discrete Doppler frequencies fi,n can be determined by means of a
proper numerical root-finding technique.

Since the difference between two neighbouring discrete Doppler frequencies ∆fi,n =
fi,n − fi,n−1 depends on the index n over a strongly nonlinear relation, it can be
assumed that the greatest common divisor Fi = gcd{fi,n}Ni

n=1 is quite small, so that
the period Ti = 1/Fi of µ̃i(t) is quite high. We can therefore assume that µ̃i(t) is
quasi-nonperiodic.

For the corresponding Doppler coefficients ci,n, (5.31) moreover holds. Thus, the
deterministic processes µ̃i(t) designed in this way have the mean power σ̃2

µi
= σ2

0 . In
the same way as with the Jakes power spectral density, here also the uncorrelatedness
of the deterministic processes µ̃1(t) and µ̃2(t) can be guaranteed sufficiently by defining
N2 according to N2 := N1 + 1.

For example, for Ni = 25, both the power spectral density S̃µiµi(f) [cf. (4.14)] and
the corresponding autocorrelation function r̃µiµi(τ) [cf. (4.11)] will be computed again.
For these two functions, we obtain the results shown in Figures 5.17(a) and 5.17(b).

For the performance assessment, the criteria introduced by (4.84) and (4.83) will again
be evaluated for Ni = 5, 6, . . . , 50 at this point. The results obtained for Erµiµi

and
Epµi

are depicted in Figures 5.18(a) and 5.18(b), respectively. Figure 5.18(a) also
shows the graph of Erµiµi

obtained by applying the modified method of equal areas
(MMEA), which will be described below.

We now come to the analysis of the model error ∆βi. Since the discrete Doppler
frequencies fi,n are not given in an explicit form, no closed-form solution can be
derived for the model error ∆βi either. Therefore, we proceed as follows. At first,
the parameter sets {ci,n} and {fi,n} will be computed by using (5.31) and (5.42).
Then, the quantity β̃i can be determined by means of (4.22). In connection with
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Figure 5.17: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (MEA, Gaussian PSD, fc =
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ln 2fmax, fmax =
91Hz, σ2

0 = 1).
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β = 2(πfcσ0)2/ ln 2, we are now able to evaluate the model error ∆βi = β̃i − β. The
results obtained for the relative model error ∆βi/β are plotted in Figure 5.19 as a
function of the number of sinusoids Ni.
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Figure 5.19: Relative model error ∆βi/β (MEA, Gaussian PSD, fc =
√

ln 2fmax,
fmax = 91 Hz, σ2

0 = 1).

Taking Figure 5.19 into account, it turns out that the percentage of the relative model
error ∆βi/β is only lower than 50 per cent if Ni ≥ 49. Hence, the MEA is totally
unsuitable for the Gaussian power spectral density. Since the main reason for this is
the bad positioning of the discrete Doppler frequency fi,n for the value n = Ni [see also
Figure 5.17(a)], this imperfect adaptation can be avoided by a simple modification of
the procedure. Instead of computing the complete set {fi,n}Ni

n=1 of the discrete Doppler
frequencies according to (5.42), as done before, we will now only use the root-finding
algorithm for the computation of {fi,n}Ni−1

n=1 and determine the remaining discrete
Doppler frequency fi,Ni in such a way that β̃i = β holds.

For this so-called modified method of equal areas (MMEA), one obtains the following
set of equations:

n

Ni
− erf

(
fi,n

fc

√
ln 2

)
= 0 , ∀n = 1, 2, . . . , Ni − 1 , (5.43a)

fi,Ni =

√√√√ βNi

(2πσ0)2
−

Ni−1∑
n=1

f2
i,n . (5.43b)

The corresponding Doppler coefficients ci,n are of course still given by (5.31). The
advantage of the modified method of equal areas is that the relative model error
∆βi/β is always equal to zero for all given values of Ni = 1, 2, . . . (i = 1, 2). This
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is graphically demonstrated in Figure 5.19. However, the effects on the mean-square
error Erµiµi

are small, as can be seen from Figure 5.18(a).

For the determination of the level-crossing rate Ñξ(r) and the average duration of
fades T̃ξ−(r), we proceed in the same way as described in connection with the Jakes
power spectral density before. The results obtained for Ñξ(r) and T̃ξ−(r) by choosing
(N1, N2) = (10, 11) are presented in Figures 5.20(a) and 5.20(b), respectively. Here,
the modified method of equal areas was used for the computation of the model
parameters.
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Figure 5.20: (a) Normalized level-crossing rate Ñξ(r)/fmax and (b) normalized average

duration of fades T̃ξ−(r) · fmax (MMEA, Gaussian PSD, fc =
√

ln 2fmax,

fmax = 91 Hz, σ2
0 = 1).

Closed-form analytical expressions for the relative error of both the level-crossing rate
Ñξ(r) and the average duration of fades T̃ξ−(r) cannot be derived for the MEA in the
case of the Gaussian power spectral density. The reason for this is to be sought in the
implicit equation (5.42) for the determination of the discrete Doppler frequencies fi,n.
For the MMEA, however, both relative errors εNξ

and εTξ− are equal to zero.

5.1.4 Monte Carlo Method (MCM)

The Monte Carlo method was first proposed in [Schu89] for the stochastic modelling
and the digital simulation of mobile radio channels. Based on this paper, a model for
the equivalent discrete-time channel [For72] in the complex baseband was introduced in
[Hoe90, Hoe92]. In the following, we will use this method for the design of deterministic
processes and will afterwards analyse their statistical properties.

The principle of the Monte Carlo method is based on the realization of the discrete
Doppler frequencies fi,n according to a given probability density function pµi(f), which
is related to the power spectral density Sµiµi(f) of the coloured Gaussian random
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process µi(t) by

pµi
(f) =

1
σ2

0

Sµiµi
(f) . (5.44)

Again, σ2
0 here denotes the mean power (variance) of the Gaussian random process

µi(t).

For the computation of the discrete Doppler frequencies fi,n, we will be guided by
the procedure presented in [Hoe90, Hoe92]. Let un be a random variable uniformly
distributed within the interval (0,1]. Furthermore, let gµi

(un) be a mapping that
is chosen in such a way that the distribution of the discrete Doppler frequencies
fi,n = gµi(un) is equal to the desired cumulative distribution function

Fµi(fi,n) =
∫ fi,n

−∞
pµi(f) df . (5.45)

According to [Pap91], gµi(un) can then be identified with the inverse function of
Fµi(fi,n) = un. Consequently, for the discrete Doppler frequencies fi,n, the relation

fi,n = gµi(un) = F−1
µi

(un) (5.46)

holds for all n = 1, 2, . . . , Ni (i = 1, 2). Generally, we obtain positive as well as
negative values for fi,n. In cases where the probability density function pµi(f) is an
even function, i.e., pµi(f) = pµi(−f), we can confine ourselves to positive values for
fi,n without restriction of generality. This will be made possible by substituting the
uniformly distributed random variable un ∈ (0, 1] in (5.45) by (1 + un)/2 ∈ ( 1

2 , 1].

Since it follows from un > 0 that fi,n > 0 holds, the time average of µ̃i(t) is equal to
zero, i.e., m̃µi = mµi = 0.

The Doppler coefficients ci,n are chosen so that the mean power of µ̃i(t) is identical
to the variance of µi(t), i.e., σ̃2

0 = r̃µiµi(0) = σ2
0 , which is guaranteed by choosing ci,n

according to (5.31). Hence, it then follows

ci,n = σ0

√
2
Ni

(5.47)

for all n = 1, 2, . . . , Ni (i = 1, 2).

One may consider that with the Monte Carlo method, not only the Doppler phases
θi,n, but also the discrete Doppler frequencies fi,n are random variables. In principle,
there is no difference whether statistical or deterministic methods are applied for the
determination of the model parameters (ci,n, fi,n, θi,n), because the process µ̃i(t),
which matters here, is a deterministic function per definition. (We refer to Section 4.1,
where deterministic processes µ̃i(t) have been introduced as sample functions or as
realizations of stochastic processes µ̂i(t).) However, especially for a small number of
harmonic functions, the ergodic properties of the stochastic process µ̂i(t) are poor,
if the Monte Carlo method is applied for the computation of the discrete Doppler
frequencies fi,n [Pae96e]. The consequence is that many important characteristic
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quantities of the deterministic process µ̃i(t), like the Doppler spread, the level-crossing
rate, and the average duration of fades become random values, which in particular
cases can considerably deviate from the desired characteristic quantities prescribed by
the reference model. In the following, we want to put this into concrete terms with
the example of the Jakes and Gaussian power spectral density.

Jakes power spectral density: The application of the Monte Carlo method in
connection with the Jakes power spectral density (3.8) results in the following
expression for the discrete Doppler frequencies fi,n

fi,n = fmax sin
(π

2
un

)
, (5.48)

where un ∈ (0, 1] for all n = 1, 2, . . . , Ni (i = 1, 2). For the Doppler coefficients ci,n,
furthermore (5.47) holds. It should be observed that the substitution of un in (5.48)
by the deterministic quantity n/Ni exactly leads to the relation (5.33) that we found
for the method of equal areas.

Since the discrete Doppler frequencies fi,n are random variables, the greatest common
divisor Fi = gcd{fi,n}Ni

n=1 is a random variable as well. However, for a given realization
of the set {fi,n} with Ni elements, the greatest common divisor Fi is a constant that
can be determined by applying the Euclidian algorithm on {fi,n}, where we have
to take into account that the discrete Doppler frequencies fi,n are real numbers.
Generally, one can assume that the greatest common divisor Fi is very small, and,
thus, the period Ti = 1/Fi is very large, so that µ̃i(t) can be considered as a quasi-
nonperiodical function. Obviously, this holds even more, the greater the number of
harmonic functions Ni is chosen.

The demand for uncorrelatedness of the real and the imaginary part generally
also does not cause any difficulty when designing complex deterministic processes
µ̃(t) = µ̃1(t) + jµ̃2(t). The reason for this is that even for N1 = N2, the realized sets
{f1,n} and {f2,n} are in general mutually exclusive events, leading to the result that
µ̃1(t) and µ̃2(t) are uncorrelated with respect to time averaging.

An example of the power spectral density S̃µiµi(f), obtained with Ni = 25 harmonic
functions, is shown in Figure 5.21(a). The autocorrelation function r̃µiµi(τ), which was
computed according to (4.11), is plotted in Figure 5.21(b) for two different realizations
of the sets {fi,n}.

Regarding Figure 5.21(b), one can see that even in the range 0 ≤ τ ≤ τmax,
the autocorrelation function r̃µiµi(τ) of the deterministic process µ̃i(t) can deviate
considerably from the ideal autocorrelation function rµiµi(τ) of the stochastic process
µi(t).2

On the other hand, if we analyse the autocorrelation function r̂µiµi(τ) of the stochastic
process µ̂i(t), then, by using (4.82), we obtain

2 Using the Jakes power spectral density, furthermore, let τmax = Ni/(2fmax).
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Figure 5.21: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function
r̃µiµi(τ) for Ni = 25 (MCM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).

r̂µiµi(τ) := E{µ̂i(t)µ̂i(t + τ)}

=
Ni∑

n=1

c2
i,n

2
E{cos(2πfi,nτ)}

=
Ni∑

n=1

c2
i,n

2
J0(2πfmaxτ)

= σ2
0J0(2πfmaxτ)

= rµiµi(τ) . (5.49)

Summarizing, we can say that the autocorrelation function r̂µiµi(τ) of the stochastic
simulation model is equal to the ideal autocorrelation function rµiµi(τ) of the reference
model, whereas the autocorrelation function r̃µiµi(τ) of the deterministic simulation
model is different from both of the first-mentioned autocorrelation functions, i.e.,
rµiµi(τ) = r̂µiµi(τ) 6= r̃µiµi(τ) [Pae96e]. Due to r̂µiµi(τ) 6= r̃µiµi(τ), the stochastic
process µ̂i(t) is therefore not ergodic with respect to the autocorrelation function [cf.
Subsection 4.3.4].

The performance of the Monte Carlo method can again be assessed more precisely
with the help of the mean-square error Erµiµi

[see (4.84)]. Figure 5.22 illustrates the
evaluation of Erµiµi

as a function of Ni for a single realization of the autocorrelation
function r̃µiµi(τ) as well as for the expected value obtained by averaging Erµiµi

over
a thousand realizations of r̃µiµi(τ).

Figure 5.22 also shows the results found for the method of equal areas, which are
obviously better compared to the results obtained for the Monte Carlo method. The
relation (5.47) for the computation of the Doppler coefficients ci,n matches (5.31)
exactly. Hence, for the mean-square error Epµi

[cf. (4.83)], we obtain exactly the same
results as presented in Figure 5.14(b).
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Figure 5.22: Mean-square error Erµiµi
(MCM, Jakes PSD, fmax = 91Hz, σ2

0 = 1,

τmax = Ni/(2fmax)).

The discussion on the model error ∆βi follows. Let us start with (4.22). Then, by
using (3.29) and (5.47), the quantity β̃i = β + ∆βi can be expressed as a function of
the discrete Doppler frequencies fi,n as follows

β̃i =
2β

f2
maxNi

Ni∑
n=1

f2
i,n . (5.50)

For the Monte Carlo method, the discrete Doppler frequencies fi,n are random
variables, so that β̃i is also a random variable. In what follows, we will determine
the probability density function of β̃i.

Starting from the uniform distribution of un ∈ (0, 1] and noting that the mapping
from un to fi,n is defined by (5.48), it follows that the probability density function of
the discrete Doppler frequencies fi,n can be written as

pfi,n(fi,n) =





2

πfmax

√
1−

(
fi,n

fmax

)2
, 0 < f ≤ fmax ,

0 , else .

(5.51)

Now, with the probability density function of fi,n, the density of f2
i,n can easily be

computed, and in order to compute the density of the sum of these squares, we
preferably apply the concept of the characteristic function. After some straightforward
computations, we obtain the result for the probability density function of β̃i in the
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following form [Pae96e]

pβ̃i
(β̃i) =





2

∞∫

0

[
J0

(
2πβν

Ni

)]Ni

cos[2π(β̃i − β)ν] dν , if β̃i ∈ (0, 2β] ,

0 , if β̃i /∈ (0, 2β] .

(5.52)

By way of illustration, the probability density function pβ̃i
(β̃i) of β̃i is plotted in

Figure 5.23 with Ni as a parameter.
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Figure 5.23: Probability density function pβ̃i
(β̃i) of β̃i by using the Monte Carlo method

(Jakes PSD, fmax = 91Hz, σ2
0 = 1).

The expected value E{β̃i} and the variance Var {β̃i} of β̃i are as follows:

E{β̃i} = β , (5.53a)

Var {β̃i} =
β2

2Ni
. (5.53b)

It will also be shown that for large values of Ni, the random variable β̃i is
approximately normally distributed with a mean value and a variance according to
(5.53a) and (5.53b), respectively. Using the approximation for the Bessel function of
0th order [Abr72, eq. (9.1.12)]

J0(x) ≈ 1− x2

4
(5.54)

and taking into account that the relation [Abr72, eq. (4.2.21)]

e−x = lim
Ni→∞

(
1− x

Ni

)Ni

(5.55)
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can be approximated by e−x ≈ (1 − x/Ni) if Ni is sufficiently large, we may express
pβ̃i

(β̃i) [see (5.52)] approximately by

pβ̃i
(β̃i) ≈

∫ ∞

−∞
e
− (πβν)2

Ni e−j2π(β̃i−β)ν dν , β̃i ∈ (0, 2β] . (5.56)

Finally, using the integral [Gra81, vol. I, eq. (3.323.2)]
∫ ∞

−∞
e−(ax)2±bx dx =

√
π

a
e( b

2a )2 , a > 0 , (5.57)

the desired approximation directly follows

pβ̃i
(β̃i) ≈ 1√

2πβ/
√

2Ni

e
− (β̃i−β)2

2β2/(2Ni) , β̃i ∈ (0, 2β] . (5.58)

Hence, for large values of Ni, the quantity β̃i is approximately normally distributed,
and we may write β̃i ∼ N(β, β2/(2Ni)) without making too large an error. It should be
observed that in the limit Ni →∞, it obviously follows pβ̃i

(β̃i) → δ(β̃i−β). Evidently,
the model error ∆βi = β̃i − β is likewise approximately normally distributed, i.e.,
∆βi ∼ N(0, β2/(2Ni)), so that the random variable ∆βi is in fact zero-mean, but
unfortunately its variance merely behaves proportionally to the reciprocal value of
the number of harmonic functions Ni. Finally, we also investigate the relative model
error ∆βi/β, for which it approximately holds: ∆βi/β ∼ N(0, 1/(2Ni)). Hence, the
standard deviation of ∆βi/β is equal to 1/

√
2Ni and for Ni > 2 it is thus always

greater than the relative model error ∆βi/β = 1/Ni obtained by using the method of
equal areas [cf. (5.37)]. Figure 5.24 demonstrates the random behaviour of the relative
model error ∆βi/β in terms of the number of harmonic functions Ni. The evaluation
of ∆βi/β was performed here by means of (5.50), where five events of the set {fi,n}Ni

n=1

were processed for every value of Ni ∈ {5, 6, . . . , 100}.

Due to (4.66), (4.70), and (4.78), it now becomes clear that the level-crossing rate
Ñξ(r), the average duration of fades T̃ξ−(r), and the time intervals τ̃q(r) likewise
deviate in a random manner from the corresponding quantities of the reference model.
For example, if we choose the pair (10, 11) for the couple (N1, N2), then for two
different realizations of each of the sets {f1,n}N1

n=1 and {f2,n}N2
n=1, the behaviours

shown in Figures 5.25(a) and 5.25(b) could occur for Ñξ(r) and T̃ξ−(r), respectively.
Here, the simulations were carried out in the same way as previously described in
Subsection 5.1.3.

With the Chebyshev inequality (2.15), one can show [see Appendix C] that even if
Ni = 2500 harmonic functions are used, the probability that the absolute value of the
relative model error |∆βi/β| exceeds a value of more than 2 per cent is merely less or
equal to 50 per cent.

Gaussian power spectral density: If we apply the Monte Carlo method in
connection with the Gaussian power spectral density (3.11), then it is not possible
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Figure 5.24: Relative model error ∆β̃i/β (MCM, Jakes PSD).

(a) N1 = 10, N2 = 11
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to find a closed-form expression for the discrete Doppler frequencies fi,n. In this case,
however, the discrete Doppler frequencies fi,n, are determined by the roots (zeros) of
the following equations

un − erf
(

fi,n

fc

√
ln 2

)
= 0 , ∀n = 1, 2, . . . , Ni (i = 1, 2) . (5.59)

Here, the corresponding Doppler coefficients ci,n are also available in the form (5.47).
A comparison between the equation above and (5.42) again makes the close relation
between the method of equal areas and the Monte Carlo method clear. If the uniformly
distributed random variable un is substituted by the deterministic quantity n/Ni,
then the latter statistical procedure turns into the former deterministic one. For any
(arbitrary) event {fi,n}, it turns out that the mean value m̃µi , the mean power σ̃2

µi
, and

the period Ti of the deterministic process µ̃i(t) have the same properties as described
before in connection with the Jakes power spectral density. The same also holds for
the cross-correlation properties of the deterministic processes µ̃1(t) and µ̃2(t).

For an event {fi,n} with Ni = 25 outcomes, the power spectral density S̃µiµi(f) is
depicted in Figure 5.26(a). Likewise for Ni = 25, Figure 5.26(b) shows two possible
realizations of the autocorrelation function r̃µiµi(τ).
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Figure 5.26: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (MCM, Gaussian PSD, fc =
√

ln 2fmax, fmax =
91Hz, σ2

0 = 1).

The large deviations between r̃µiµi(τ) and rµiµi(τ) within the range 0 ≤ τ ≤ τmax

(τmax = Ni/(2κcfc)) are typical of the Monte Carlo method. This can be confirmed by
evaluating the mean-square error Erµiµi

[see (4.84)]. Figure 5.27 shows the obtained
results. In this figure, the mean-square error Erµiµi

is presented as a function of Ni for
both a single realization of the autocorrelation function r̃µiµi(τ) and for the average
value of Erµiµi

obtained by averaging Erµiµi
over a thousand realizations of r̃µiµi(τ).
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Figure 5.27: Mean-square error Erµiµi
(MCM, Gaussian PSD, fc =

√
ln 2fmax, fmax =

91Hz, σ2
0 = 1, τmax = Ni/(2κcfc), κc = 2

p
2/ ln 2).

In this case, the analysis of the model error ∆βi cannot be carried out analytically.
Therefore, we proceed in such a way that for a given realization of {fi,n}, at first
the corresponding elementary event of the random variable β̃i is determined by
means of (4.22). Afterwards, with β = 2(πfcσ0)2/ ln 2, the computation of the model
error ∆βi = β̃i − β will be performed. Figure 5.28 presents the evaluation of the
relative model error ∆βi/β, where the obtained results are shown for each value of
Ni ∈ {5, 6, . . . , 100} on the basis of five realizations of the set {fi,n}.

The determination as well as the investigation of the properties of the level-crossing
rate Ñξ(r) and the average duration of fades T̃ξ−(r) are also performed on the basis
of several realizations of the set {fi,n}. To illustrate the obtained results, we take
a look at Figures 5.29(a) and 5.29(b), where two different realizations of Ñξ(r) and
T̃ξ−(r) are shown, respectively. All the presented results have been obtained by using
(N1, N2) = (10, 11).

5.1.5 Lp-Norm Method (LPNM)

The Lp-norm method (LPNM) is based on the idea that the sets {ci,n} and {fi,n} are
to be determined in such a way that the following requirements will be fulfilled for a
given number of harmonic functions Ni [Pae98b, Pae96c]:

(i) With respect to the following Lp-norm

E(p)
pµi

:=
{∫ ∞

−∞
|pµi(x)− p̃µi(x)|p dx

}1/p

, p = 1, 2, . . . , (5.60)

the probability density function p̃µi(x) of the deterministic process µ̃i(t) will be an
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optimal approximation of the Gaussian distribution pµi(x) of the stochastic process
µi(t).

(ii) With respect to the following Lp-norm

E(p)
rµiµi

:=
{

1
τmax

∫ τmax

0

|rµiµi(τ)− r̃µiµi(τ)|p dτ

}1/p

, p = 1, 2, . . . , (5.61)

the autocorrelation function r̃µiµi(τ) of the deterministic process µ̃i(t) will be fitted
as close as possible to a given (desired) autocorrelation function rµiµi

(τ) of the
stochastic process µi(t), where τmax again defines an appropriate time interval
[0, τmax] over which the approximation of rµiµi

(τ) is of interest.

We first pay attention to the requirement (i). Since, according to (4.34), p̃µi(x)
merely depends on the Doppler coefficients ci,n, we ask ourselves: does an optimal
solution for the set of Doppler coefficients {ci,n} exist, for which the Lp-norm E

(p)
pµi

becomes minimal? In order to answer this question, we first substitute (4.34) and
(4.36) into (5.60), and afterwards perform a numerical optimization of the Doppler
coefficients ci,n, so that E

(p)
pµi

becomes minimal. As a numerical optimization technique,
for example, the Fletcher-Powell algorithm [Fle63] is particularly well suited for this
kind of problem. After the minimization of (5.60), the optimized Doppler coefficients
ci,n = c

(opt)
i,n are available for the realization of deterministic simulation models.

Figure 5.30(a) shows the resulting probability density function p̃µi(x) by using the
optimized quantities c

(opt)
i,n . For the choice of suitable starting values for the Doppler

coefficients, we appropriately fall back to the quantities ci,n = σ0

√
2/Ni. For a better

assessment of the obtained results, the probability density function p̃µi(x), which is
obtained by using the starting values ci,n = σ0

√
2/Ni [cf. also Figure 4.4(a)], is again

presented in Figure 5.30(b).

More meaningful than the comparison of Figures 5.30(a) and 5.30(b) are the results of
Figure 5.31, where the mean-square error Epµi

[see (4.39)] is presented for ci,n = c
(opt)
i,n

as well as for ci,n = σ0

√
2/Ni. One can clearly realize that the optimization gain

decreases strictly monotonously if the number of sinusoids Ni increases.

It is also worth mentioning that after the minimization of (5.60), all optimized Doppler
coefficients c

(opt)
i,n are in fact identical (due to the central limit theorem). But for a finite

number of harmonic functions Ni, they are always smaller than the pre-set starting
values, i.e., c

(opt)
i,n < σ0

√
2/Ni, ∀Ni = 1, 2, . . . Since the optimized Doppler coefficients

c
(opt)
i,n are identical, which is even the case when arbitrary starting values are chosen,

it is probable that the Lp-norm (5.60) has a global minimum at ci,n = c
(opt)
i,n , and,

thus, the Doppler coefficients ci,n = c
(opt)
i,n are optimal. For finite values of Ni, one

may also take into account that due to ci,n = c
(opt)
i,n < σ0

√
2/Ni, the mean power of

the deterministic process µ̃i(t) is always smaller than the variance of the stochastic
process µi(t), i.e., it holds σ̃2

0 < σ2
0 . This can be realized by considering Figure 5.32.
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Obviously, a compromise between the attainable approximation precision of p̃µi(x) ≈
pµi(x) and σ̃2

0 ≈ σ2
0 has to be made here. Let us try to avoid this compromise by

imposing the so-called power constraint defined by σ̃2
0 = σ2

0 on the simulation model.
Then, we have to optimize, e.g., the first Ni−1 Doppler coefficients ci,1, ci,2, . . . , ci,Ni−1

and the remaining parameter ci,Ni is determined in such a way that the imposed power
constraint σ̃2

0 = σ2
0 is always fulfilled. In this case, the optimization results in c

(opt)
i,n =

σ0

√
2/Ni for all n = 1, 2, . . . , Ni. Thus, by including the power constraint σ̃2

0 = σ2
0 in

the parameter design, an optimal approximation of the Gaussian distribution pµi(x)
for any number of harmonic functions Ni can only become possible if the Doppler
coefficients ci,n are given by ci,n = c

(opt)
i,n = σ0

√
2/Ni. Therefore, when modelling

Gaussian random processes and other processes derivable from these, such as Rayleigh
processes, Rice processes, and lognormal processes, we will usually make use of the
relation ci,n = σ0

√
2/Ni in the following.

The suggested method is still quite useful and advantageous for the approximation
of probability density functions which are not derivable from Gaussian distributions,
e.g., like the Nakagami distribution (2.33). The Nakagami distribution [Nak60] is more
flexible than the frequently used Rayleigh or Rice distribution and often enables a
better adaptation to probability density functions which follow from experimental
measurement results [Suz77].

In order to be able to determine the set of Doppler coefficients {ci,n} in such a way that
the probability density function of the deterministic simulation model approximates
the Nakagami distribution, we perform the optimization of the Doppler coefficients
in a similar manner as described before in connection with the normal distribution.
The only difference is that in (5.60) we have to substitute the Gaussian distribution
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pµi(x) by the Nakagami distribution pω(z) [see (2.33)] and p̃µi(x) has to be replaced
by p̃ξ(z) given by (4.50). Some optimization results obtained for various values of the
parameter m are shown in Figure 5.33, where N1 = N2 = 10 harmonic functions have
been used in all cases.
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Figure 5.33: Approximation of the Nakagami distribution by using deterministic
processes with N1 = N2 = 10 (Ω = 1).

Further details on the derivation and simulation of Nakagami fading channels can be
found in [Bra91, Der93]. Results on the analysis of both the level-crossing rate and
the average duration of fades of Nakagami processes were first published in [You96].

In [She77], the Weibull distribution was suggested for the approximation of the
probability density function of real-world mobile radio channels in the 900MHz
frequency range. As is well known, the Weibull distribution can be derived by means of
a nonlinear transformation of a uniformly distributed random variable [Joh94]. Since
the uniform distribution can be determined from a further nonlinear transformation
of two Gaussian distributed random variables [Joh94], the problem of modelling the
Weibull distribution can thus be reduced to the problem of modelling Gaussian random
processes, which we have already discussed. Therefore, we do not expect any essential
new discoveries from further analysis of this matter.

Let us now consider the requirement (ii) [see (5.61)]. According to (4.11), the
autocorrelation function r̃µiµi(τ) depends on both the Doppler coefficients ci,n and
the discrete Doppler frequencies fi,n. Since the Doppler coefficients ci,n were already
determined so that the probability density function p̃µi(x) of the deterministic process
µ̃i(t) approximates the Gaussian distribution pµi(x) of the stochastic process µ̃i(t)
as well as possible, only the discrete Doppler frequencies fi,n can be used for the
minimization of the Lp-norm E

(p)
rµiµi

defined by (5.61). The discrete Doppler frequencies
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fi,n are now optimized, e.g., by applying the Fletcher-Powell algorithm again, so that
E

(p)
rµiµi

becomes as small as possible, and, hence, the autocorrelation function r̃µiµi
(τ)

of the deterministic process µ̃i(t) approximates the given autocorrelation function
rµiµi

(τ) of the stochastic process µi(t) within the interval [0, τmax]. In general, we
cannot guarantee that the Fletcher-Powell algorithm — like any other optimization
algorithm suitable for this problem — finds the global minimum of E

(p)
rµiµi

, so that in
most cases, we have to be satisfied with a local minimum. This property, which at
first seems to be disadvantageous, could easily turn out to be an advantage, if we take
into account that various local minima also lead to various sets of discrete Doppler
frequencies {fi,n}. For the generation of uncorrelated deterministic processes µ̃1(t) and
µ̃2(t), we are therefore no longer restricted to the previous convention N2 := N1 + 1,
but can now guarantee that the processes µ̃1(t) and µ̃2(t) are also uncorrelated for
N1 = N2. However, the latter property can also be obtained by carrying out the
optimizations with different values for the parameter p or by using different starting
values for the discrete Doppler frequencies fi,n.

In the following, we will apply the Lp-norm method to the Jakes and the Gaussian
power spectral density, where it has to be taken into account that, in connection
with the power constraint σ̃2

0 = σ2
0 , the requirement (i) is already fulfilled by

ci,n = c
(opt)
i,n = σ0

√
2/Ni and, therefore, only the requirement (ii) has to be investigated

in more detail.

Jakes power spectral density: By substituting (3.10) and (4.11) into (5.61),
we obtain an optimized set {f (opt)

i,n } for the discrete Doppler frequencies after the

numerical minimization of the Lp-norm E
(p)
rµiµi

. As starting values for the discrete
Doppler frequencies fi,n, for example, the quantities fi,n = fmax sin[nπ/(2Ni)], ∀n =
1, 2, . . . , Ni (i = 1, 2), derived by using the method of equal areas, are suitable. For
the Jakes power spectral density, the upper limit of the integral in (5.61) is given by
the relation τmax = Ni/(2fmax), which we already know from Subsection 5.1.1. All of
the following optimization results are based on the Lp-norm E

(p)
rµiµi

with p = 2.

Generally valid statements on the greatest common divisor Fi = gcd{f (opt)
i,n }Ni

n=1 cannot
be made here. Numerical investigations, however, have shown that Fi is usually zero
or at least extremely small. Therefore, the deterministic processes µ̃i(t) designed with
the Lp-norm method are nonperiodical or quasi-nonperiodical. For the time average
m̃µi and the mean power σ̃2

µi
, again the relations m̃µi = mµi = 0 and σ̃2

µi
= σ2

0 follow,
respectively.

As for the preceding methods, the power spectral density S̃µiµi(f) and the
autocorrelation function r̃µiµi(τ) have been evaluated exemplary for Ni = 25 here.
One may study the results shown in Figures 5.34(a) and 5.34(b).

Due to ci,n = σ0

√
2/Ni, we again obtain the graph presented in Figure 5.14(b) for the

mean-square error Epµi
[see (4.83)]. The results of the evaluation of Erµiµi

[see (4.84)]
are shown in Figure 5.35, where also the corresponding graph obtained by applying
the method of equal areas is presented.
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Figure 5.34: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function
r̃µiµi(τ) for Ni = 25 (LPNM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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Figure 5.35: Mean-square error Erµiµi
(LPNM, Jakes PSD, fmax = 91Hz, σ2

0 = 1,

τmax = Ni/(2fmax)).

In order to compute the model error ∆βi = β̃i − β, the expression (4.22) has to be
evaluated for ci,n = σ0

√
2/Ni and fi,n = f

(opt)
i,n . In comparison with the method of

equal areas, we then obtain the graphs illustrated in Figure 5.36 for the relative model
error ∆βi/β.

The simulation of the level-crossing rate and the average duration of fades is carried
out in the same way as already described in Subsection 5.1.3. For reasons of unity, we
here again choose the pair (10, 11) for the couple (N1, N2). The simulation results for
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Figure 5.36: Relative model error ∆βi/β (LPNM, Jakes PSD).

the normalized level-crossing rate Ñξ(r)/fmax and the normalized average duration
of fades T̃ξ−(r) · fmax are illustrated in Figures 5.37(a) and 5.37(b), respectively. The
analytical results one finds for the reference model and the simulation model are also
illustrated in these figures. Since the relative model errors ∆β1 and ∆β2 are extremely
small for both cases N1 = 10 and N2 = 11, the individual curves can no longer be
distinguished from each other in the presented graphs.
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0 = 1).
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Gaussian power spectral density: The previously analysed methods for the
determination of the model parameters of the deterministic processes have made it
quite clear that the Gaussian power spectral density causes much greater problems
than the Jakes power spectral density. In this subsection, we will find out how to
get these problems under control by using the Lp-norm method. Therefore, we fully
exploit the degrees of freedom which this method has to offer. All in all, this leads
us to three fundamental variants [Pae97d] of the Lp-norm method. In the following,
these variants will be briefly described and afterwards analysed with respect to their
performances.

First variant of the Lp-norm method (LPNM I): In the first variant, the Doppler
coefficients ci,n are again computed according to the equation ci,n = σ0

√
2/Ni for

all n = 1, 2, . . . , Ni, whereas the discrete Doppler frequencies fi,n are optimized for
n = 1, 2, . . . , Ni − 1 in such a way that the Lp-norm E

(p)
rµiµi

[see (5.61)] results in a
(local) minimum, i.e.,

E(p)
rµiµi

(f i) = Min! , (5.62)

where f i stands for the parameter vector f i = (fi,1, fi,2, . . . , fi,Ni−1)T ∈ IRNi−1.
Boundary conditions, like the restriction that the components of the parameter vector
f i shall be positive, do not need to be imposed on the procedure, since the Gaussian
power spectral density is symmetrical. The remaining discrete Doppler frequency fi,Ni

is defined by

fi,Ni :=

√√√√ βNi

(2πσ0)2
−

Ni−1∑
n=1

f2
i,n , (5.63)

so that we have guaranteed in a simple manner that the model error ∆βi is always
zero for all chosen values of Ni = 1, 2, . . . (i = 1, 2). With the corresponding quantity
β, we can of course make use of this possibility when dealing with the Jakes power
spectral density (or any other given power spectral density) as well. Quite suitable
starting values for the optimization of the involved discrete Doppler frequencies are
the quantities found with the method of equal areas [cf. Subsection 5.1.3]. For the
evaluation of the Lp-norm E

(p)
rµiµi

, it is sufficient for our objectives to restrict ourselves
to the case p = 2. In this connection, for the parameter τmax, we return to the relation
τmax = Ni/(2κcfc) with κc = 2

√
2/ ln 2 and fc =

√
ln 2fmax, which has already been

employed several times in preceding investigations. For the quantities Fi, m̃µi , and σ̃2
µi

,
the statements made for the Jakes power spectral density are still valid in the present
case. Uncorrelated deterministic processes µ̃1(t) and µ̃2(t) can also be obtained for
N1 = N2 by optimizing the parameter vectors f1 and f2 under different conditions.
Therefore, it is sufficient to change, for example, τmax or p slightly and then to repeat
the optimization once again.

We choose Ni = 25 and with the first variant of the Lp-norm method, we obtain the
power spectral density S̃µiµi(f) presented in Figure 5.38(a). Figure 5.38(b) shows the
corresponding autocorrelation function r̃µiµi(τ).
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Figure 5.38: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (LPNM I, Gaussian PSD, fc =
√

ln 2fmax, fmax =
91Hz, σ2

0 = 1).

Second variant of the Lp-norm method (LPNM II): With the second variant of the Lp-
norm method, our aim will be to fit the autocorrelation function r̃µiµi(τ) within the
interval [0, τmax] far closer to rµiµi(τ) than it is possible with the LPNM I. Therefore,
we combine all parameters determining the behaviour of r̃µiµi(τ) into the parameter
vectors ci = (ci,1, ci,2, . . . , ci,Ni)

T ∈ IRNi and f i = (fi,1, fi,2, . . . , fi,Ni)
T ∈ IRNi . Now,

the task is actually to optimize the parameter vectors ci and f i in such a way that
the Lp-norm E

(p)
rµiµi

becomes minimal, i.e.,

E(p)
rµiµi

(ci, f i) = Min! . (5.64)

In this case as well, we again do not need to impose any boundary conditions on the
components of the parameter vectors ci and f i.

An example of the resulting power spectral density S̃µiµi(f) is depicted in
Figure 5.39(a), where again Ni = 25 is chosen. In addition to that, Figure 5.39(b)
shows the graph of the corresponding autocorrelation function r̃µiµi(τ).

It cannot be missed that the approximation rµiµi(τ) ≈ r̃µiµi(τ) for τ ∈ [0, τmax] is
extraordinary good. However, in order to obtain this advantage, we have to accept
some disadvantages. Thus, for example, the power constraint σ̃2

µi
= σ2

0 is only fulfilled
approximately; besides, the model error ∆βi is unequal to zero. In general, the obtained
approximations σ̃2

µi
≈ σ2

0 and β̃i ≈ β or ∆βi ≈ 0 are still very good and absolutely
sufficient for most practical applications. A problem which should be considered as
serious, however, occurs for the LPNM II when optimizing the Doppler coefficients
ci,n. The degradation of the probability density function p̃µi(x), to which this problem
leads, will be discussed further below. At this point, it is sufficient to mention that all
of these disadvantages can be avoided with the third variant.

Third variant of the Lp-norm method (LPNM III): The third variant has the aim
of optimizing both the autocorrelation function r̃µiµi(τ) and the probability density
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Figure 5.39: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (LPNM II, Gaussian PSD, fc =
√

ln 2fmax, fmax =
91Hz, σ2

0 = 1).

function p̃µi(x). An error function suitable for this purpose has the form

E(ci, f i) = W1 · E(p)
rµiµi

(ci, f i) + W2 · E(p)
pµi

(ci) , (5.65)

where E
(p)
rµiµi

(·) and E
(p)
pµi

(·) denote the Lp-norms introduced by (5.61) and (5.60),
respectively. The quantities W1 and W2 are appropriate weighting factors, which will
be defined by W1 = 1/4 and W2 = 3/4 in the sequel. To have both constraints σ̃2

µi
= σ2

0

and β̃i = β exactly fulfilled now, we will define the parameter vectors ci and f i by

ci = (ci,1, ci,2, . . . , ci,Ni−1)T ∈ IRNi−1 (5.66a)

and

f i = (fi,1, fi,2, . . . , fi,Ni−1)T ∈ IRNi−1 , (5.66b)

respectively, and calculate the remaining model parameters ci,Ni and fi,Ni as follows:

ci,Ni =

√√√√2σ2
0 −

Ni−1∑
n=1

c2
i,n , (5.67a)

fi,Ni =
1

ci,Ni

√√√√ β

2π2
−

Ni−1∑
n=1

(ci,nfi,n)2 , (5.67b)

where β = −r̈µiµi(0) = 2(πfcσ0)2/ ln 2 (i = 1, 2). Correlations between the
deterministic processes µ̃1(t) and µ̃2(t) can now be avoided for N1 = N2 by performing
the minimization of the error function (5.65) for i = 1 and i = 2 with different
weighting factors of the respective Lp-norms E

(p)
rµiµi

and E
(p)
pµi

.
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As in the preceding examples, we choose Ni = 25 and observe the resulting
power spectral density S̃µiµi

(f) in Figure 5.40(a). The corresponding autocorrelation
function r̃µiµi

(τ) is shown in Figure 5.40(b).
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Figure 5.40: (a) Power spectral density S̃µiµi(f) and (b) autocorrelation function

r̃µiµi(τ) for Ni = 25 (LPNM III, Gaussian PSD, fc =
√

ln 2fmax,
fmax = 91 Hz, σ2

0 = 1).

Finally, we will also analyse the performance of these three variants of the Lp-norm
method. Here, we are especially interested in the mean-square errors Erµiµi

and Epµi

[see (4.84) and (4.83), respectively], both of which are shown as a function of Ni in
Figures 5.41(a) and 5.41(b), respectively. For the starting values, the parameters to
be optimized were in all cases computed with the method of equal areas.

Studying Figure 5.41(a) it becomes obvious that the quality of the approximation
rµiµi(τ) ≈ r̃µiµi(τ) can be improved enormously, if, besides the discrete Doppler
frequencies fi,n, also the Doppler coefficients ci,n are included in the optimization, as it
is intended for the LPNM II and III. It should be noted that among the three variants
of the Lp-norm method introduced here, the LPNM I has in fact the largest mean-
square error Erµiµi

[see Figure 5.41(a)], but on the other hand the mean-square error
Epµi

[see Figure 5.41(b)] is the smallest. Exactly the opposite statement applies to the
LPNM II. Only the LPNM III is a guarantee of a successful compromise between the
minimization of both Erµiµi

and Epµi
. With a suitable choice of the weighting factors

in (5.65), the minimization of E
(p)
rµiµi

always turns out well with this method, i.e., we
do not have to come to terms with the fact that considerable degradations concerning
E

(p)
pµi

occur. Not only due to this property, but also because the boundary conditions
σ̃2

µi
= σ2

0 and β̃i = β can be fulfilled exactly with the LPNM III, this variant of the
Lp-norm method is without doubt the most efficient one.
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Figure 5.41: Mean-square errors: (a) Erµiµi
and (b) Epµi

(LPNM I–III, Gaussian

PSD, fc =
√

ln 2fmax, fmax = 91Hz, σ2
0 = 1, τmax = Ni/(2κcfc),

κc = 2
p

2/ ln 2).

Concerning the evaluation of the model error ∆βi = β̃i − β for the three variants
of the Lp-norm method, we recall that during the introduction of the LPNM I and
III we set great store on the fact that the model error ∆βi is always equal to zero.
This is guaranteed by (5.63) for the LPNM I and by (5.67b) for the LPNM III. In
order to get the model error for the LPNM II, we substitute the optimized Doppler
coefficients ci,n = c

(opt)
i,n and the optimized discrete Doppler frequencies fi,n = f

(opt)
i,n

into (4.22). All the results obtained for the relative model error ∆βi/β are presented
in Figure 5.42. It can be seen that the model error ∆βi corresponding to the LPNM II
is different from zero. In the present case, the autocorrelation function r̃µiµi(τ) was
optimized over the interval [0, τmax] with a constant weighting factor. However, if the
approximation error of r̃µiµi(τ) is weighted higher within an infinitesimal ε-interval
around τ = 0, then the model error ∆βi can once more be reduced remarkably. Since it
can still be seen clearly in Figure 5.42 that the relative model error ∆βi/β is sufficiently
small, we will accept the results found for this subject so far and continue with the
analysis of the level-crossing rate and the average duration of fades.

For the analysis of the level-crossing rate Ñξ(r) and the average duration of fades
T̃ξ−(r), we will confine ourselves to the LPNM III. Again, the simulation of the
quantities Ñξ(r) and T̃ξ−(r) will be performed on the conditions described in
Subsection 5.1.3. For the normalized level-crossing rate Ñξ(r)/fmax, the simulation
results as well as the analytical results are depicted in Figure 5.43(a), where the pair
(10, 10) was chosen for the couple (N1, N2), exactly as in the preceding examples.
Figure 5.43(b) next to it shows the corresponding normalized average duration of
fades T̃ξ−(r)fmax.

We want to close this subsection with some general remarks about the Lp-norm
method. The decisive advantage of this method lies in the possibility to design
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deterministic processes µ̃i(t) or ξ̃(t) so that they are able to reproduce the statistical
properties of snapshot measurements taken from real-world mobile radio channels.
Therefore, we only have to replace the probability density function pµi

(x) in (5.60)
and the autocorrelation function rµiµi(τ) in (5.61) with the corresponding measured
quantities. The optimization can then be performed as described. Compared with
other methods, the only disadvantage of the Lp-norm method is the relatively high
numerical complexity. In fact, with modern computers, this is no longer a serious
problem. But nevertheless, the expenditure is not worth it, at least not in connection
with the Jakes power spectral density, since there exists a quite simple, elegant, and
quasi-optimal solution, which we will discuss in the next subsection.

5.1.6 Method of Exact Doppler Spread (MEDS)

The method of exact Doppler spread (MEDS) was first introduced in [Pae96c] and has
been developed especially for the often used Jakes power spectral density. Despite its
simplicity, the method is distinguished for its high performance and enables a quasi-
optimal approximation of the autocorrelation function corresponding to the Jakes
power spectral density. In the following, we will first derive the method of exact
Doppler spread in connection with the Jakes power spectral density and afterwards, we
will investigate to what extent the method also offers advantages for the application
on the Gaussian power spectral density.

Jakes power spectral density: Let us start with the integral presentation of the
Bessel function of 0th order [Abr72, eq. (9.1.18)]

J0(z) =
2
π

∫ π/2

0

cos(z sin α) dα , (5.68)

which can be expressed in form of an infinite series as

J0(z) = lim
Ni→∞

2
π

Ni∑
n=1

cos(z sin αn)∆α , (5.69)

where αn = π(2n−1)/(4Ni) and ∆α = π/(2Ni). Hence, for (3.10) we can alternatively
write

rµiµi(τ) = lim
Ni→∞

σ2
0

Ni

Ni∑
n=1

cos
{

2πfmax sin
[

π

2Ni

(
n− 1

2

)]
· τ

}
. (5.70)

This relation describes the autocorrelation function of the stochastic reference model
for a Gaussian random process µi(t), whose power spectral density is given by the
Jakes power spectral density. Now, if we do not take the limit Ni → ∞, then the
stochastic reference model turns into the stochastic simulation model, as described in
Section 4.1. Hence, the autocorrelation function of the stochastic simulation model for
the process µ̂i(t) is

r̂µiµi(τ) =
σ2

0

Ni

Ni∑
n=1

cos
{

2πfmax sin
[

π

2Ni

(
n− 1

2

)]
· τ

}
. (5.71)
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The stochastic process µ̂i(t) will be ergodic with respect to the autocorrelation
function. Then, regarding Subsection 4.3.4, it follows that r̂µiµi

(τ) = r̃µiµi
(τ) holds.

Consequently, for the autocorrelation function of the deterministic process µ̃i(t), we
obtain the equation

r̃µiµi
(τ) =

σ2
0

Ni

Ni∑
n=1

cos
{

2πfmax sin
[

π

2Ni

(
n− 1

2

)]
· τ

}
. (5.72)

If we now compare the above relation with the general expression (4.11), then the
Doppler coefficients ci,n and the discrete Doppler frequencies fi,n can be identified
with the equations

ci,n = σ0

√
2
Ni

(5.73)

and

fi,n = fmax sin
[

π

2Ni

(
n− 1

2

)]
, (5.74)

respectively, for all n = 1, 2, . . . , Ni (i = 1, 2). A deterministic process µ̃i(t) designed
with these parameters, has the time average m̃µi = mµi = 0 and the mean power
σ̃2

µi
= σ2

0 . For all relevant values of Ni, the greatest common divisor Fi = gcd{fi,n}Ni
n=1

is equal to zero (or very small), so that the period Ti = 1/Fi becomes infinite (or very
large). The uncorrelatedness of two deterministic processes µ̃1(t) and µ̃2(t) is again
guaranteed by the convention N2 := N1 + 1.

The autocorrelation function r̃µiµi(τ) computed according to (5.72) is presented in
Figure 5.44(a) for Ni = 7 and in Figure 5.44(b) for Ni = 21.
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Figure 5.44: Autocorrelation function r̃µiµi(τ) for (a) Ni = 7 and (b) Ni = 21 (MEDS,
Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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In connection with the Jakes power spectral density, the following rule of thumb
applies: let there be Ni harmonic functions are given, then the approximation
rµiµi

(τ) ≈ r̃µiµi
(τ) is quite good up to the Nith zero-crossing of rµiµi

(τ).

Since the relation ci,n = σ0

√
2/Ni, which has already been obtained several times for

the Doppler coefficients, also applies here, the mean-square error Epµi
[see (4.83)]

is again identical to the results shown in Figure 5.14(b). The evaluation of the
mean-square error Erµiµi

[see (4.84)] in terms of Ni results in the graph depicted
in Figure 5.45. As shown in this figure, the comparison with the Lp-norm method
clearly demonstrates that even by applying numerical optimization techniques, only
minor improvements can be achieved.
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Figure 5.45: Mean-square error Erµiµi
(MEDS, Jakes PSD, fmax = 91Hz, σ2

0 =

1, τmax = Ni/(2fmax)).

Putting the equations (5.73) and (5.74) into (4.22) and making use of the relation
(3.29), we can easily show that β̃i = β holds. In other words, the model error ∆βi is
equal to zero for all Ni ∈ N \ {0}. Since we have σ̃2

µi
= σ2

0 and β̃i = β̃ = β in the
present case, it follows from (3.15b) and (4.25) that

B̃(2)
µµ = B̃(2)

µiµi
= B(2)

µiµi
= B(2)

µµ (5.75)

holds. Hence, the Doppler spread of the simulation model is identical to that of the
reference model. This is exactly the reason why this procedure is called the ‘method
of exact Doppler spread’.

The time-domain simulation will be restricted here to the emulation of the level-
crossing rate, where we now choose the couple (N1, N2) = (5, 6) and proceed, apart
from that, exactly as in Subsection 5.1.3. Even for such small numbers of harmonic
functions, the simulation results match the analytical results very well, as can be seen
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when considering the results shown in Figure 5.46.
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Figure 5.46: Normalized level-crossing rate Ñξ(r)/fmax for N1 = 5 and N2 = 6 (MEDS,
Jakes PSD, fmax = 91Hz, σ2

0 = 1).

Gaussian power spectral density: From (5.33) and (5.74), we can see that the
latter equation is obtained if n is substituted by n − 1/2 in the one mentioned first.
This points out that a close relation exists between the method of equal areas and the
method of exact Doppler spread. We will briefly return to this relation at the end of
this subsection. At first, it seems obvious to make an attempt to apply the mapping
n → n − 1/2 to (5.43a) and (5.43b) as well, so that the discrete Doppler frequencies
fi,n are now computed by means of the relations

2n− 1
2Ni

− erf
(

fi,n

fc

√
ln 2

)
= 0 , ∀n = 1, 2, . . . , Ni − 1 , (5.76a)

and

fi,Ni =

√√√√ βNi

(2πσ0)2
−

Ni−1∑
n=1

f2
i,n , (5.76b)

where the latter equation again guarantees that the model error ∆βi is equal to zero
for all Ni = 1, 2, . . . (i = 1, 2). For the Doppler coefficients ci,n, the expression (5.73)
still remains valid.

The autocorrelation function r̃µiµi(τ) can be computed according to (4.11) with
the model parameters obtained in this way. Figures 5.47(a) and 5.47(b) give us an
impression of the behaviour of r̃µiµi(τ) for Ni = 7 and Ni = 21, respectively.
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(a) Ni = 7
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Figure 5.47: Autocorrelation function r̃µiµi(τ) for (a) Ni = 7 and (b) Ni = 21 (MEDS,

Gaussian PSD, fc =
√

ln 2fmax, fmax = 91 Hz, σ2
0 = 1).

The mean-square error Erµiµi
[see (4.84)], which results from the application of the

present method and the standard Lp-norm method, is presented in the succeeding
Figure 5.48 as a function of Ni. Unlike the case of the Jakes power spectral density,
for a small number of harmonic functions Ni, the method of exact Doppler spread
delivers clearly higher values for Erµiµi

than the Lp-norm method does. However,
if Ni ≥ 25, no considerable improvements are achievable by means of numerical
optimization techniques.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Ni

E
r µ

iµ
i 

MEDS
LPNM
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Due to σ̃2
µi

= σ2
0 and ∆βi = 0, i.e., β̃i = β, (5.75) holds here again.

It remains worth mentioning that the analytical results of the level-crossing rate can
be confirmed very precisely by simulation, even if N1 and N2 are chosen very low,
e.g., (N1, N2) = (5, 6). One may therefore study the results shown in the following
Figure 5.49.
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Figure 5.49: Normalized level-crossing rate Ñξ(r)/fmax for N1 = 5 and N2 = 6 (MEDS,

Gaussian PSD, fc =
√

ln 2fmax, fmax = 91 Hz, σ2
0 = 1).

As mentioned before, the method of equal areas is closely related to the method of
exact Doppler spread. In fact, the former method can be transformed into the latter
one and vice versa. For example, if we replace the right-hand side of (5.26) by σ2

0/(4Ni)
and fi,n by fi,2n−1 in (5.27), then we obtain (5.29), if n is replaced by n− 1/2 there.
Consequently, for (5.33) and (5.43), we exactly obtain the equations (5.74) and (5.76),
respectively. A similar relationship exists between the Monte Carlo method and the
method of exact Doppler spread. For example, if we substitute the random variable
un ∈ (0, 1] in (5.48) by the deterministic quantity (n−1/2)/Ni for all n = 1, 2, . . . , Ni

(i = 1, 2), then we again obtain (5.74).

5.1.7 Jakes Method (JM)

The Jakes method (JM) [Jak93] has been developed exclusively for the Jakes power
spectral density. Not only for completeness, but also due to its great popularity, this
so-called classical method will be described here as well. A detailed description will
not be given — this can be found in [Jak93, p. 67ff.]. Instead of this, we will primarily
restrict ourselves to the analysis of the performance investigated in [Pae98e].
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Jakes power spectral density: After rewriting the expressions for the parameters
of the simulation model given in [Jak93, p. 70] by taking the notation chosen here
into account, the following relations hold for the Doppler coefficients ci,n, the discrete
Doppler frequencies fi,n, and the Doppler phases θi,n:

ci,n =





2σ0√
Ni − 1

2

sin
(

πn

Ni − 1

)
, n = 1, 2, . . . , Ni − 1 , i = 1 ,

2σ0√
Ni − 1

2

cos
(

πn

Ni − 1

)
, n = 1, 2, . . . , Ni − 1 , i = 2 ,

σ0√
Ni − 1

2

, n = Ni , i = 1, 2 ,

(5.77)

fi,n =





fmax cos
(

nπ

2Ni − 1

)
, n = 1, 2, . . . , Ni − 1 , i = 1, 2 ,

fmax , n = Ni , i = 1, 2
(5.78)

θi,n = 0 , n = 1, 2, . . . , Ni , i = 1, 2 , (5.79)

where N1 = N2. The Doppler coefficients ci,n were scaled here in such a way that the
mean power σ̃2

µi
of µ̃i(t) meets the relation σ̃2

µi
= σ2

0 for i = 1, 2. Due to fi,n 6= 0, the
following relation holds for the time average: m̃µi = mµi = 0 (i = 1, 2).

The resulting power spectral densities S̃µ1µ1(f) and S̃µ2µ2(f) as well as the
corresponding autocorrelation functions r̃µ1µ1(τ) and r̃µ2µ2(τ) are shown in
Figures 5.50(a)–5.50(d) for N1 = N2 = 9. Even for small values of τ , it can be
seen from Figures 5.50(b) and 5.50(d) that the autocorrelation functions of the
deterministic processes µ̃1(t) and µ̃2(t) strongly deviate from the ideal autocorrelation
function rµiµi(τ) = σ2

0J0(2πfmaxτ). On the other hand, as Figure 5.50(f) reveals, the
autocorrelation function r̃µµ(τ) of the complex deterministic process µ̃(t) over the
interval τ ∈ [0, τmax] matches rµµ(τ) = 2σ2

0J0(2πfmaxτ) very well. Figure 5.50(e)
shows the power spectral density S̃µµ(f) that corresponds to the autocorrelation
function r̃µµ(τ).

It is interesting that even for Ni →∞, the autocorrelation function r̃µiµi(τ) does not
tend to rµiµi(τ). Instead of this, after substituting (5.77) and (5.78) into (4.11) and
taking the limit Ni →∞ afterwards, we rather obtain the functions

lim
N1→∞

r̃µ1µ1(τ) =
2σ2

0

π

∫ π/2

0

[
1− cos(4z)

]
cos(2πfmaxτ cos z) dz (5.80a)

and

lim
N2→∞

r̃µ2µ2(τ) =
2σ2

0

π

∫ π/2

0

[
1 + cos(4z)

]
cos(2πfmaxτ cos z) dz , (5.80b)

which, by making use of [Gra81, eq. (3.715.19)]
∫ π/2

0

cos(z cos x) cos(2nx) dx = (−1)n · π

2
J2n(z) , (5.81)
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Figure 5.50: Power spectral densities and corresponding autocorrelation functions for
N1 = N2 = 9: (a) S̃µ1µ1(f), (b) r̃µ1µ1(τ), (c) S̃µ2µ2(f), (d) r̃µ2µ2(τ), (e)

S̃µµ(f), and (f) r̃µµ(τ) (JM, Jakes PSD, fmax = 91 Hz, σ2
0 = 1).
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can also be brought into the form

lim
N1→∞

r̃µ1µ1(τ) = σ2
0

[
J0(2πfmaxτ)− J4(2πfmaxτ)

]
(5.82a)

and

lim
N2→∞

r̃µ2µ2(τ) = σ2
0

[
J0(2πfmaxτ) + J4(2πfmaxτ)

]
, (5.82b)

as shown in [Pae98e]. Thus, even after taking the limit Ni → ∞, the inequality
r̃µiµi(τ) 6= rµiµi(τ) (i = 1, 2) holds. On the contrary, the autocorrelation function
r̃µµ(τ) of the complex deterministic process µ̃(t) = µ̃1(t) + jµ̃2(t) does tend very well
to the autocorrelation function rµµ(τ) of the reference model, as Ni → ∞. This fact
becomes immediately evident after substituting (5.82a) and (5.82b) into the general
expression

r̃µµ(τ) = r̃µ1µ1(τ) + r̃µ2µ2(τ) + j
(
r̃µ1µ2(τ)− r̃µ2µ1(τ)

)
(5.83)

following from (2.71), and then making use of the relation r̃µ1µ2(τ) = r̃µ2µ1(τ), which
holds here, as we will see subsequently. Hence, one directly realizes that

lim
Ni→∞

r̃µµ(τ) = rµµ(τ) = 2σ2
0 J0(2πfmaxτ) (5.84)

holds.

We furthermore want to analyse to which functions the power spectral densities
S̃µ1µ1(f) and S̃µ2µ2(f) tend to in the limits N1 → ∞ and N2 → ∞, respectively.
Therefore, we transform (5.82a) and (5.82b) into the spectral domain by means of the
Fourier transform and obtain

lim
N1→∞

S̃µ1µ1(f) =





σ2
0 ·

1− cos
[
4 arcsin(f/fmax)

]

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax ,

(5.85a)

lim
N2→∞

S̃µ2µ2(f) =





σ2
0 ·

1 + cos
[
4 arcsin(f/fmax)

]

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax .

(5.85b)

Of course, we might as well have substituted (5.77) and (5.78) in S̃µiµi(f) given by
(4.14). Then, after taking the limit Ni → ∞, we would have obtained the results
(5.85a) and (5.85b) stated above in an alternative way. If we now put these results
into the Fourier transform of (5.83), then we obtain the Jakes power spectral density
as expected, i.e.,

lim
Ni→∞

S̃µµ(f) = Sµµ(f) =





2σ2
0

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax .

(5.86)
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Consequently, as Ni → ∞, it follows S̃µµ(f) → Sµµ(f) but not S̃µiµi(f) →
Sµiµi

(f) (i = 1, 2).

To illustrate the results given above, we study Figure 5.51, where the power
spectral densities S̃µ1µ1(f), S̃µ2µ2(f), and S̃µµ(f) are presented together with the
corresponding autocorrelation functions for the limit Ni →∞.

Using the Jakes method it has to be taken into account that the deterministic processes
µ̃1(t) and µ̃2(t) are correlated, because f1,n = f2,n holds according to (5.78) for all
n = 1, 2, . . . , N1 (N1 = N2). After substituting (5.77)–(5.79) into (4.13), we find the
following expression for the cross-correlation function r̃µ1µ2(τ)

r̃µ1µ2(τ) =
σ2

0

Ni − 1
2

{
Ni−1∑
n=1

sin
(

2πn

Ni − 1

)
cos

[
2πfmax cos

(
nπ

2Ni − 1

)
τ

]

+
1
2

cos(2πfmaxτ)

}
. (5.87)

Since r̃µ1µ2(τ) is a real-valued and even function, it can be shown, by using (2.49),
that r̃µ2µ1(τ) = r̃∗µ1µ2

(−τ) = r̃µ1µ2(τ) holds. Figure 5.52(b) conveys an impression
of the behaviour of the cross-correlation function r̃µ1µ2(τ) computed according to
(5.87). Figure 5.52(a) next to it shows the corresponding cross-power spectral density
S̃µ1µ2(f) computed by using (4.16). The results in these figures have been obtained
by choosing N1 = N2 = 9.

One can see that a strong correlation between µ̃1(t) and µ̃2(t) exists. This problem
was taken up in [Den93], where a modification for the Jakes method was suggested,
which is essentially based on a modification of the relation (5.77). However, this variant
merely guarantees that r̃µ1µ2(τ) is 0 at the origin τ = 0. In order to guarantee that
r̃µ1µ2(τ) = 0 holds for all values of τ , the deterministic processes µ̃1(t) and µ̃2(t) have
to be realized with disjoint sets {f1,n} and {f2,n}.
The question, whether the cross-correlation function r̃µ1µ2(τ) vanishes for Ni → ∞,
will be answered in the following. Therefore, we let Ni tend to infinity in (5.87), so
that we find the integral

lim
Ni→∞

r̃µ1µ2(τ) =
2σ2

0

π

∫ π/2

0

sin(4z) cos(2πfmaxτ cos z) dz , (5.88)

which has to be solved numerically. The result of the numerical integration is shown
in Figure 5.53(b). Obviously, even when the number of harmonic functions Ni is
infinite, the correlation between µ̃1(t) and µ̃2(t) does not vanish. Consequently,
r̃µ1µ2(τ) → rµ1µ2(τ) does not hold for Ni →∞.
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Figure 5.51: Power spectral densities and corresponding autocorrelation functions for
N1 → ∞ and N2 → ∞: (a) S̃µ1µ1(f), (b) r̃µ1µ1(τ), (c) S̃µ2µ2(f), (d)

r̃µ2µ2(τ), (e) S̃µµ(f), and (f) r̃µµ(τ) (JM, Jakes PSD, fmax = 91 Hz,
σ2

0 = 1).
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Figure 5.52: (a) Cross-power spectral density S̃µ1µ2(f) and (b) cross-correlation
function r̃µ1µ2(τ) for N1 = N2 = 9 (JM, Jakes PSD, fmax = 91Hz,
σ2

0 = 1).

In case of the limit Ni → ∞, we obtain the following closed-form expression for the
cross-power spectral density S̃µ1µ2(f) after performing the Fourier transform of (5.88)

lim
Ni→∞

S̃µ1µ2(f) =





σ2
0 ·

sin
[
4 arccos(|f |/fmax)

]

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax .

(5.89)

The evaluation result of this equation is illustrated in Figure 5.53(a). In contrast to the
Jakes power spectral density (3.8), which becomes singular at f = ±fmax, the cross-
power spectral density (5.89) takes on the finite value 4/(πfmax) at these points, i.e.,
S̃µ1µ2(±fmax) = 4/(πfmax) holds, which can easily be proven by using the rule of
de l’Hospital [Bro91].

Expediently, the mean-square error (4.84) of the autocorrelation function is in this
case evaluated with respect to r̃µ1µ1(τ), r̃µ2µ2(τ), and r̃µµ(τ). The obtained results are
depicted in Figure 5.54(a) as a function of Ni. Using the Jakes method, the Doppler
coefficients ci,n partly deviate considerably from the (quasi-)optimal quantities ci,n =
σ0

√
2/Ni. This inevitably leads to an increase in the mean-square error Epµi

[see
(4.83)], as can clearly be seen in Figure 5.54(b).

For the Jakes method, we have: N1 = N2 and f1,n = f2,n ∀n = 1, 2, . . . , N1 (N2). But,
on the other hand, c1,n 6= c2,n still holds for almost all n = 1, 2, . . . , N1 (N2). Thus, it
is to be expected that the model errors ∆β1 and ∆β2 are different for a given number
of harmonic functions Ni. One should therefore study Figure 5.55, where the relative
model errors ∆β1/β and ∆β2/β are presented.

Due to ∆β1 6= ∆β2, we must use the expression (B.13) for the computation of the
level-crossing rate Ñξ(r), where β1 and β2 have to be substituted by β̃1 = β+∆β1 and



140 METHODS FOR THE COMPUTATION OF THE MODEL PARAMETERS

(a)

-100 -50 0 50 100

0

5

10

15
x 10

-3

Ni → ∞

f (Hz)

S̃
µ

1
µ

2
(f

)

(b)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

τ (s)

r̃ µ
1

µ
2

(τ
)

r̃µ1µ2
(τ) (Simulation model, Ni → ∞)

rµ1µ2
(τ) (Reference model)

Figure 5.53: (a) Cross-power spectral density S̃µ1µ2(f) and (b) cross-correlation
function r̃µ1µ2(τ) for Ni →∞ (JM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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Figure 5.55: Relative model errors ∆β1/β and ∆β2/β (JM, Jakes PSD, fmax = 91 Hz,
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0 = 1).

β̃2 = β + ∆β2, respectively. Generally speaking, in case of a correlation between µ̃1(t)
and µ̃2(t), the level-crossing rate Ñξ(r) also depends on the quantities ˙̃rµ1µ2(0) and
¨̃rµ1µ2(0). Since it follows immediately from (5.87) that ˙̃rµ1µ2(0) is equal to zero, and
furthermore the influence of ¨̃rµ1µ2(0) on Ñξ(r) is quite small, this dependency will be
ignored here. Figure 5.56(a) presents the analytical results for Nξ(r)/fmax as well as for
Ñξ(r)/fmax with N1 = N2 = 9. This figure also shows the corresponding simulation
results, which match the analytical solutions for Nξ(r)/fmax and Ñξ(r)/fmax very
well.
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Figure 5.56: (a) Normalized level-crossing rate Ñξ(r)/fmax and (b) normalized average

duration of fades T̃ξ−(r) · fmax for N1 = N2 = 9 (JM, Jakes PSD,

fmax = 91 Hz, σ2
0 = 1).
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When using the Jakes method, it seems that the relatively large deviations between
the autocorrelation functions r̃µiµi

(τ) and rµiµi
(τ) as well as the cross-correlation

function r̃µ1µ2(τ) different from zero, do not have an excessively negative influence
on Ñξ(r). By the way, this also holds for the average duration of fades T̃ξ−(r) [see
Figure 5.56(b)] as well as for the probability density function p̃0−(τ−; r) of the fading
intervals τ− at low levels r [see Figure 5.57]. From this, however, we may not conclude
that especially the influence of the cross-correlation function r̃µ1µ2(τ) on Ñξ(r) and
therefore also on T̃ξ−(r) can be ignored in all cases. This rather depends on the specific
type of the cross-correlation function r̃µ1µ2(τ). In the following Chapter 6, we will see
that certain classes of cross-correlation functions really exist, which not only affect the
statistical properties of higher orders, but also have an influence on the probability
density function of the signal amplitude. In this way, it is possible to increase the
flexibility of the statistical properties of mobile fading channel models considerably.
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Figure 5.57: Probability density function p̃0−(τ−; r) of the fading intervals τ− at the

level r = 0.1 (JM, Jakes PSD, fmax = 91Hz, σ2
0 = 1).

Summarizing, we can record the fact that the essential disadvantage of the Jakes
method is not to be seen in the cross-correlation function different from zero, but in
the fact that the deterministic processes µ̃1(t) and µ̃2(t) are not optimally Gaussian
distributed [cf. Figure 5.54(b)] for a given number of harmonic functions Ni. Since
the loss of performance is not too high and can easily be compensated by a slight
increase of the number of harmonic functions Ni, we can all in all say that in case Ni

is chosen higher or equal to nine, the Jakes method is quite suitable for the modelling
of Rayleigh and Rice processes with the classical Doppler power spectral density given
by (3.8) [Pae98e]. Finally, it should also be noted that an implementation technique
of the Jakes method on a signal processor has been described in [Cas88, Cas90].
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5.2 METHODS FOR THE COMPUTATION OF THE DOPPLER PHASES

In this section, we will briefly deal with the significance of the Doppler phases θi,n.
Moreover, we will also make a suggestion for the deterministic computation of these
quantities.

Except for the Jakes method, where the Doppler phases θi,n are equal to zero per
definition, we have assumed that for all other parameter computation methods treated
in Section 5.1 the Doppler phases θi,n are realizations of a random variable uniformly
distributed within the interval (0, 2π]. Let us in the following assume that the set of
Doppler coefficients {ci,n} and the set of discrete Doppler frequencies {fi,n} have been
computed with the method of exact Doppler spread. Then, for two determined events
{θ1,n}N1

n=1 and {θ2,n}N2
n=1 of the size N1 = 7 and N2 = 8, respectively, the behaviour

of the resulting deterministic Rayleigh process ζ̃(t) is as shown in Figure 5.58(a).
Here, it has to be taken into account that different events {θi,n}Ni

n=1 always result
in different realizations for ζ̃(t). However, all of these different realizations have the
same statistical properties, since the underlying stochastic processes µ̂1(t) and µ̂2(t)
are ergodic with respect to the autocorrelation function. Moreover, with the method
of exact Doppler spread it is guaranteed that due to the definition N2 := N1 + 1,
the relation f1,n 6= ±f2,m holds for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2, so that
the cross-correlation function r̃µ1µ2(τ) [cf. (4.13)], which in general depends on θi,n,
is equal to zero. Since the Doppler phases θi,n have no influence on the statistical
properties of ζ̃(t) if the underlying deterministic Gaussian processes µ̃1(t) and µ̃2(t)
are uncorrelated, we are inclined to set the Doppler phases θi,n equal to zero. In
this case, however, we obtain µ̃i(0) = σ0

√
2Ni (i = 1, 2), so that the deterministic

Rayleigh process ζ̃(t) takes its maximum value 2σ0

√
N1 + 1/2 at the time-instant

t = 0, i.e., ζ̃(0) = 2σ0

√
N1 + 1/2. This leads to the typical transient behaviour

depicted in Figure 5.58(b). As we can see in Figure 5.58(c), a similar effect is also
obtained, if the Doppler phases θi,n are computed deterministically, according to
θi,n = 2πn/Ni (n = 1, 2, . . . , Ni and i = 1, 2). A simple possibility to avoid the
transient behaviour around the origin is to substitute the time variable t by t + T0,
where T0 is a positive real-valued quantity, which has to be chosen sufficiently high.
It should therefore be noted that the substitution t → t + T0 is equivalent to the
substitution θi,n → θi,n + 2πfi,nT0, which leads to the fact that for different values of
n, the transformed Doppler phases now no longer have any rational relation to each
other.

A further possibility would be [Pae98b] to introduce a standard phase vector ~Θi with
Ni deterministic components according to

~Θi =
(

2π
1

Ni + 1
, 2π

2
Ni + 1

, . . . , 2π
Ni

Ni + 1

)
(5.90)

and to regard the Doppler phases θi,n as components of the so-called Doppler phase
vector

~θi = (θi,1, θi,2, . . . , θi,Ni) . (5.91)

By identifying the components of the Doppler phase vector ~θi with the permutated
components of the standard phase vector ~Θi, the transient behaviour located around
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the origin of the time axis can be avoided from the start. In this connection, one may
observe the simulation results of ζ̃(t) shown in Figure 5.58(d).
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Figure 5.58: Influence of the phases θi,n on the transient behaviour of ζ̃(t) around the
origin: (a) random phases θi,n ∈ (0, 2π], (b) θi,n = 0, (c) θi,n = 2πn/Ni

(n = 1, 2, . . . , Ni), and (d) permutated phases (MEDS, Jakes PSD,
fmax = 91 Hz, σ2

0 = 1, N1 = 21, N2 = 22).

By permuting the components of (5.90), it is possible to construct Ni! different sets
{θi,n} of Doppler phases. Thus, for any given sets of {ci,n} and {fi,n}, altogether
N1! · N2! deterministic Rayleigh processes ζ̃(t) with different time behaviour but
identical statistical properties can be realized.
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5.3 FADING INTERVALS OF DETERMINISTIC RAYLEIGH PROCESSES

The statistical properties of deterministic Rayleigh and Rice processes analysed so
far, such as the probability density function of the amplitude and phase, the level-
crossing rate, and the average duration of fades, are independent of the behaviour of
the autocorrelation function r̃µiµi(τ) (i = 1, 2) for τ > 0. In the following, we will
again follow the question, which statistical properties depend on r̃µiµi

(τ) (i = 1, 2) for
τ > 0 at all. Related to this question is the open problem of determining the size of
the interval [0, τmax] over which the approximation of rµiµi(τ) by r̃µiµi(τ) is relevant.
Hence, we have to find a value for τmax in such a way that further statistical properties
of the simulation system can also hardly be distinguished from those of the reference
system. In case of the Jakes power spectral density, where τmax is related with Ni

over τmax = Ni/(2fmax), we will see in the following that the number of harmonic
functions Ni necessary for the simulation system can — at least for this kind of power
spectral density — easily be determined.

We will therefore once again return to the probability density function p̃0−(τ−; r) of
the fading intervals of deterministic Rayleigh processes. Since an approximate solution
with sufficient precision neither exists for p̃0−(τ−; r) nor for p0−(τ−; r) at medium and
especially at high levels of r, this problem can only solved by means of simulation.

We will first carry out the simulation for the Jakes power spectral density with fmax =
91Hz and σ2

0 = 1 and determine the parameters of the simulation model by making
use of the method of exact Doppler spread. Due to the advantages of this method
(very good approximation of the autocorrelation function rµiµi(τ) = σ2

0J0(2πfmaxτ)
from τ = 0 to τ = τmax = Ni/(2fmax), no model error, no correlation between µ̃1(t)
and µ̃2(t), and, last but not least, the very good periodicity properties), the resulting
deterministic simulation model will fulfil all essential demands. In this specific case,
we may regard the simulation model designed with the couple (N1, N2) = (100, 101)
as the reference model. The simulation of the resulting discrete deterministic process
ζ̃(kT ) has been performed with the sampling interval Ts = 0.5 · 10−4 s. The simulated
samples of ζ̃(kTs) have then been used to measure the probability density function
p̃0−(τ−; r) at a low level (r = 0.1), a medium level (r = 1), and a high level
(r = 2.5). All obtained results are shown in Figures 5.59(a)–(c) for various couples
(N1, N2), where 107 fading intervals τ− have been used for the determination of
each probability density function p̃0−(τ−; r). As can be seen from Figure 5.59(a),
there is an excellent accordance between the results obtained for p̃0−(τ−; r) and
the theoretical approximation p1−(τ−; r) [cf. (3.47)] at the low level r = 0.1. That
was to be expected, since at deep fades, the probability that a fading interval is
long, is very low, consequently, the probability that further level-crossings occur
between t1 and t2 = t1 + τ− is negligible. Exactly for this case, the approximation
p0−(τ−; r) ≈ p1−(τ−; r) turns out to be very useful. Figures 5.59(a) and (b) clearly
depict that with N1 = 7 and N2 = 8, the number of harmonic functions chosen is
sufficiently large, so that at least at low and medium levels, the obtained probability
density functions p̃0−(τ−; r) are hardly to be distinguished from the ones of the
reference model (N1 = 100, N2 = 101). As shown in Figure 5.59(c), clear differences
in comparison with the reference model first occur if the level r is high (r = 2.5) and
if the simulation model is designed with N1 = 7 and N2 = 8 harmonic functions.
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However, if the differences from the reference model will be negligible for this level
too, then at least N1 = 21 and N2 = 22 harmonic functions will be required. A further
increase of Ni makes no sense!

At this point, it should be noted that N1 = 7 and N2 = 8 harmonic functions are in
general sufficient for the modelling of mobile radio channels, where channel models are
often required to determine the bit error probability of digital transmission systems
consisting of a transmitter, a channel model, and a receiver. Of course, N1 = 7 and
N2 = 8 are only sufficient, if the parameter design of the harmonic functions has been
carried out correctly. This can be attributed to the fact that the bit error probability
is essentially determined by the statistical properties (i.e., the probability density
function of the amplitude, the level-crossing rate, the average duration of fades, and
the probability density function of the fading intervals) of ζ̃(t) at low levels r. The
behaviour of ζ̃(t) at high levels is in this case not of particular importance.

A comparison of Figures 3.7(a)–(c) and Figures 5.59(a)–(c) shows that the theoretical
approximation p1−(τ−; r) at all levels r only fits the measured probability densities
p̃0(τ−; r) at small fading intervals τ− very well. One should also note that for τ− →∞,
it always follows p̃0−(τ−; r) → 0 ∀ r ∈ {0.1, 1, 2.5}. However, this convergence property
is not fulfilled by p1−(τ−; r) for the levels r = 1 and r = 2.5 [see Figures 3.7(b) and
3.7(c)]. From the convergence behaviour of p̃0−(τ−; r), we can now approximately
conclude the interval [0, τmax], over which the approximation rµiµi(τ) ≈ r̃µiµi(τ) has
to be as good as possible. We will therefore make use of the quantity τq = τq(r),
introduced in Subsection 3.3.3, where we substitute p0−(τ−; r) into (3.49) by the
probability density function p̃0−(τ−; r) of the fading intervals of the reference model
(N1 = 100, N2 = 101) and choose q so large that for all fading intervals τ− ≥ τq, the
probability density function p̃0−(τ−; r) becomes sufficiently small. Furthermore, we
demand that τmax must fulfil the inequality τmax ≥ τq. We remember that by using
the method of exact Doppler spread, r̃µiµi(τ) represents a very good approximation
for rµiµi(τ) within the range 0 ≤ τ ≤ τmax, where τmax is related with Ni over
the equation τmax = Ni/(2fmax). Therefore, for the estimation of the required
number of harmonic functions Ni, we can obtain the following simple formula by
using τmax = Ni/(2fmax) ≥ τq(r)

Ni ≥ d2fmaxτq(r)e . (5.92)

For example, if we choose q = 90, then we find the value 135.7ms for τ90 = τ90(r)
at the high level r = 2.5 [see Figure 5.59(c)]. With respect to (5.92) it then follows
Ni ≥ 25. This result matches the one obtained before by experimental means very
well. Now, in reverse order, let us assume that Ni is given (for example, by Ni ≥ 7),
then the resulting probability density function p̃0(τ−; r) matches the corresponding
probability density function of the reference model within the range 0 ≤ τ− ≤ 38.5ms
very well. This is also confirmed by considering Figure 5.59(c).

For low and medium levels, where usually τ90 < 1/fmax holds, (5.92) does not provide
any admissible values for Ni, since in these cases the obtained values fall below the
lower limit Ni = 7, which is considered to be the necessary number of harmonic
functions for a sufficient approximation of the Gaussian probability density function
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Figure 5.59: Probability density function p̃0−(τ−; r) of the fading intervals of

deterministic Rayleigh processes ζ̃(t): (a) r = 0.1, (b) r = 1, and (c)
r = 2.5 (MEDS, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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pµi(x). Therefore, as a useful estimation, which is valid for all levels r ≥ 0, the
inequality

Ni ≥ max{7, d2fmaxτq(r)e} (5.93)

is suggested.

Next, we will study the statistics of the fading intervals of deterministic Rayleigh
processes ζ̃(t) with underlying Gaussian shaped coloured processes µ̃1(t) and µ̃2(t).
The Gaussian power spectral density (3.11) is characterized by the parameters
fc =

√
ln 2fmax, fmax = 91 Hz, and σ2

0 = 1. The parameters of the simulation
model are again determined with respect to the method of exact Doppler spread.
Exactly as in the preceding case, we consider the simulation model for the couple
(N1, N2) = (100, 101) as reference model. The repetition of the measurement of the
probability density function p̃0−(τ−; r), which was carried out on the simulated fading
behaviour of ζ̃(kTs) for low, medium, and high levels r, now leads to the results shown
in Figures 5.60(a)–(c). For all levels, the sampling interval Ts was thereby again given
by the constant quantity Ts = 0.5 · 10−4 s. Here again 107 fading intervals τ− were
evaluated for the determination of each probability density function p̃0−(τ−; r).

From the comparison of Figures 5.60(a) and 5.59(a), it follows that the respective
probability density functions p̃0−(τ−; r) are identical. That was to be expected, since
the exact shape of the power spectral density of the processes µ̃1(t) and µ̃2(t) has no
influence on the density p̃0(τ−; r) at low levels r. Only the values of the quantities
σ̃2

0 = r̃µiµi(0) and β̃i = −¨̃rµiµi(0) are of importance here. In the present case, they
are identical for the Jakes and the Gaussian power spectral density. Only with an
increasing level r, the behaviour of r̃µiµi(τ) gains more and more influence on the
density p̃0−(τ−; r) for values τ > 0. Therefore, one should compare Figures 5.60(b)
and 5.60(c) with Figures 5.59(b) and 5.59(c), respectively. Obviously, the following
fundamental relation exists between p̃0−(τ−; r) and r̃µµ(τ): the probability density
function p̃0−(τ−; r) only has several maxima if this also holds for the autocorrelation
function r̃µµ(τ) of the underlying complex deterministic process µ̃(t) = µ̃1(t)+ jµ̃2(t).

At the end of this section, we will study the two-dimensional joint probability
density function of the fading and connecting intervals, which will be denoted here
by p̃0−+(τ−, τ+; r). The function p̃0−+(τ−, τ+; r) describes the density of the joint
probability that the fading interval τ− and the connecting interval τ+ occur in pairs.
This is the probability density for the case that a deterministic Rayleigh process ζ̃(t)
crosses a constant level r upwards after the time duration τ− for the first time within
the interval (t + τ−, t + τ− + dτ−) and afterwards falls below that level again after
the duration τ+ within the interval (t + τ− + τ+, t + τ− + τ+ + dτ+) for the first time,
provided that a level-crossing through r has already appeared from up to down at the
time instant t.

Some simulation results for the two-dimensional joint probability density function
p̃0−+(τ−, τ+; r) are shown in Figures 5.61(a)–(c) and 5.62(a)–(c) for the case of
Jakes and Gaussian shaped coloured deterministic processes µ̃i(t), respectively. The
numerical integration of these probability densities over the connecting interval τ+,
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Figure 5.60: Probability density function p̃0−(τ−; r) of the fading intervals of

deterministic Rayleigh processes ζ̃(t): (a) r = 0.1, (b) r = 1, and (c)

r = 2.5 (MEDS, Gaussian PSD, fc =
√

ln 2fmax, fmax = 91Hz, σ2
0 = 1).



150 METHODS FOR THE COMPUTATION OF THE MODEL PARAMETERS

i.e., p̃0−(τ−; r) =
∫∞
0

p̃0−+(τ−, τ+; r) dτ+, again results in the graphs depicted in
Figures 5.59(a)–(c) and 5.60(a)–(c) before.

At the end of this chapter, we want to return to the Monte Carlo method and the
Jakes method again. We will therefore repeat the previously described simulations
for the determination of the probability density function p̃0−(τ−; r), where we now
determine the parameters of the simulation model first with respect to the Monte Carlo
method and afterwards by applying the Jakes method. In order to shorten matters,
we will here only apply both methods on the Jakes power spectral density (3.8) with
the parameters fmax = 91 Hz and σ2

0 = 1. The probability densities p̃0−(τ−; r) which
were found based on the Monte Carlo method are shown in Figures 5.63(a)–(c) for
various levels r with two different realizations of the respective sets of discrete Doppler
frequencies {fi,n}. Although in this case, the quantities N1 and N2 with N1 = 21 and
N2 = 22 are chosen relatively high, one can clearly recognize the random behaviour
of the probability density p̃0−(τ−; r), which partly deviates from the desired density
of the reference model (MEDS with N1 = 100 and N2 = 101) considerably.

Finally, Figures 5.64(a)–(c) depict the results obtained by applying the Jakes method.
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Figure 5.61: Joint probability density function p̃0−+(τ−, τ+; r) of the fading and

connecting intervals of deterministic Rayleigh processes ζ̃(t): (a) r = 0.1,
(b) r = 1, and (c) r = 2.5 (MEDS, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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Figure 5.62: Joint probability density function p̃0−+(τ−, τ+; r) of the fading and

connecting intervals of deterministic Rayleigh processes ζ̃(t): (a) r = 0.1,

(b) r = 1, and (c) r = 2.5 (MEDS, Gaussian PSD, fc =
√

ln 2fmax,
fmax = 91 Hz, σ2

0 = 1).
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Figure 5.63: Probability density function p̃0−(τ−; r) of the fading intervals of

deterministic Rayleigh processes ζ̃(t): (a) r = 0.1, (b) r = 1, and (c)
r = 2.5 (MCM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).
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Figure 5.64: Probability density function p̃0−(τ−; r) of the fading intervals of

deterministic Rayleigh processes ζ̃(t): (a) r = 0.1, (b) r = 1, and (c)
r = 2.5 (JM, Jakes PSD, fmax = 91Hz, σ2

0 = 1).



6

FREQUENCY-NONSELECTIVE
STOCHASTIC AND
DETERMINISTIC CHANNEL
MODELS

For frequency-nonselective, terrestrial, cellular land mobile radio channels and
frequency-nonselective satellite mobile radio channels, meaning channels, in which
the propagation delay differences of the reflected and scattered signal components
at the receiver antenna are negligible in comparison with the symbol interval, the
random fluctuations of the received signal can be modelled by a multiplication of the
transmitted signal with a suitable stochastic model process. The discovery and the
description of suitable stochastic model processes and their adaptation to real-world
channels have been the subject of research [Suz77, Loo85, Loo91, Lut91, Cor94] for a
considerable time.

The simplest stochastic model processes to be applied to this are Rayleigh and Rice
processes described in the third chapter. The flexibility of these models is, however,
too limited and often not large enough for a sufficient adaptation to the statistics
of real-world channels. For the frequency-nonselective land mobile radio channel, it
has turned out that the Suzuki process [Suz77, Han77] is a more suitable stochastic
model in many cases. The Suzuki process is a product process of a Rayleigh process
and a lognormal process. The slow signal fading, stated for real-world channels, is
here modelled by the lognormal process taking the slow time variation of the average
local received power into account. The Rayleigh process here models the fast fading
as always. By modelling the channel on the basis of the Suzuki process, it is assumed
that no line-of-sight component exists due to shadowing. Usually, it is also assumed
that the two narrow-band real-valued Gaussian random processes, which produce the
Rayleigh process, are uncorrelated. If we drop the last assumption, then this leads to
the so-called modified Suzuki process analysed in [Kra90a, Kra90b].

Although the Suzuki process and its modified version were originally suggested
as a model for the terrestrial, cellular land mobile radio channel, these stochastic
processes are also quite suitable for modelling satellite mobile radio channels in urban
regions, where the assumption that the line-of-sight signal component is shadowed, is



156 FREQUENCY-NONSELECTIVE CHANNEL MODELS

justified for most of the time. Suburban and rural regions or even open areas with
partial or no shadowing of the line-of-sight component, however, make further model
extensions necessary. A contribution to this was made in the publication [Cor94].
The stochastic model introduced there is based on a product process of a Rice
process and a lognormal process. Such a product process is suitable for modelling a
large class of environments (urban, suburban, rural, open). Here, the two real-valued
Gaussian random processes producing the Rice process are again assumed to be
uncorrelated. If this assumption is dropped, then the flexibility of this model can
be improved considerably with respect to the statistics of higher order. According
to the specification of the cross-correlation, we distinguish between extended Suzuki
processes of Type I [Pae98d] and such of Type II [Pae97a].

Moreover, in [Pae97c] a so-called generalized Suzuki process was suggested, which
contains the classical Suzuki process [Suz77, Han77], the modified Suzuki process
[Kra90a, Kra90b], as well as the two extended Suzuki processes [Pae98d, Pae97a] of
Type I and Type II as special cases. As a rule, the first and second order statistical
properties of generalized Suzuki processes are very flexible and can therefore be
adapted to given measurement results of real-world channels very well.

A further stochastic model was introduced by Loo [Loo85, Loo87, Loo90, Loo91].
Loo’s model is designated for a satellite mobile radio channel in rural environments,
where a line-of-sight component between the satellite and the vehicle exists for most of
the time of the transmission. The model is based on a Rayleigh process with constant
mean power for the absolute value of the sum of all scattered and reflected multipath
components. For the amplitude of the line-of-sight component, it is assumed that the
statistics of this amplitude behaves like a lognormal process. In this way, the slow
amplitude variations of the line-of-sight component caused by foliage (shadowing) are
taken into account.

All the stochastic channel models described up to now have one property in common:
They are stationary, i.e., they are based on stationary stochastic processes with
constant parameters. A non-stationary model, which is valid for very large areas,
was introduced by Lutz et al. [Lut91]. This model has especially been developed
for frequency-nonselective, land mobile satellite channels. One distinguishes between
regions, in which the line-of-sight component is shadowed (bad channel state), and
regions without shadowing (good channel state). The important thing is that the
proposed channel model is a 2-state model, for which the amplitude of the fading
signal is modelled by the classical Suzuki process in the bad channel state and by a
Rice process in the good channel state. This procedure can easily be generalized and
leads to an M-state model, where each state is represented by a specific stationary
stochastic model process. In this sense, the fading behaviour of non-stationary
channels can be approximated by M stationary channel models [Vuc92, Mil95].
Experimental measurements have shown that a 4-state model is sufficient for most
channels [Vuc90]. After all, as it has been shown in [Pae99a], even one and the same
stationary channel model can be applied for each state, provided that the flexibility
of this model is sufficiently high. Then, a specific set of coefficients will be assigned
to each channel state. A change of a channel state is thus equivalent to a new
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configuration of a universal stationary channel model.

In this chapter, we will in detail deal with the description of the extended Suzuki
process of Type I (Section 6.1) and of Type II (Section 6.2) as well as with the
generalized Suzuki process (Section 6.3). Also, we will get to know a modified version
of the Loo model in Section 6.4. The modified Loo model contains the classical Loo
model as a special case. Moreover, in Section 6.5, some methods for the modelling of
nonstationary mobile radio channels will be introduced. In each section, we will always
proceed in such a way that a description of the respective reference model takes place
at first. Afterwards, the corresponding deterministic simulation model derivable from
the reference model will be presented. For the purpose of demonstrating the usefulness
of the suggested reference models, the statistical properties like the probability density
function of the amplitude, the level-crossing rate, and the average duration of fades
are always fitted to measurement results available from the literature. All conformities
achieved between the reference model, the simulation model, and the underlying
measurements are usually astonishingly good, as will be clearly demonstrated by
various examples.

6.1 THE EXTENDED SUZUKI PROCESS OF TYPE I

As mentioned at the beginning, the product process of a Rayleigh process and a
lognormal process is said to be a Suzuki process. For these kind of processes, an
extension is suggested in the text that follows. The Rayleigh process is in this case
substituted by a Rice process taking the influence of a line-of-sight component
into account. In the proposed model, the line-of-sight component can definitely
be Doppler-shifted. Also, a cross-correlation between the two real-valued Gaussian
random processes determining the Rice process can be admitted. In this way, the
number of the grades of freedom increases, which in fact increases the mathematical
complexity to be pursued, but on the other hand clearly improves the flexibility
of the stochastic model in the end. The resulting product process from a Rice
process with cross-correlated underlying Gaussian random processes and a lognormal
process was introduced as extended Suzuki process (of Type I) [Pae95a, Pae98d]. This
process is suitable as a stochastic model for a large class of satellite and land mobile
radio channels in environments, where a direct line-of-sight connection between the
transmitter and the receiver cannot be ignored.

The description of the reference model and the derivation of the statistical properties
are carried out here by using the (complex) baseband notation as usual. At first, we
will deal with the Rice process, which is used for the modelling of the short-term
fading.

6.1.1 Modelling and Analysis of the Short-Term Fading

For the modelling of the short-term fading, thus, the fast fading, we will consider the
Rice process (3.6), i.e.,

ξ(t) = |µρ(t)| = |µ(t) + m(t)| , (6.1)
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where the line-of-sight component m(t) will again be described according to (3.2),
and µ(t) is the narrow-band complex-valued Gaussian random process introduced
by (3.1), whose real and imaginary parts have zero-mean and identical variances
σ2

µ1
= σ2

µ2
= σ2

0 .

We have assumed until now that the angles of arrival of the electromagnetic waves
arriving the antenna of the receiver are uniformly distributed within the interval
[0, 2π), and that the antenna has a circular-symmetrical radiation pattern. The
Doppler power spectral density Sµµ(f) of the complex-valued process µ(t) then has
a symmetrical form (see (3.8)), which has the consequence that the two real-valued
Gaussian random processes µ1(t) and µ2(t) are uncorrelated. In the following, we will
drop this assumption. Instead of this, we assume that by spatially limited obstacles
or by using directional antennas or sector antennas, i.e., antennas with noncircular-
symmetrical radiation patterns, no electromagnetic waves with angles of arrival within
the interval from α0 to 2π−α0 can arrive at the receiver, where α0 shall be restricted to
the interval [π/2, 3π/2]. The resulting unsymmetrical Doppler power spectral density
Sµµ(f) is then described as follows

Sµµ(f) =





2σ2
0

πfmax

√
1− (f/fmax)2

, −fmin ≤ f ≤ fmax ,

0 , else ,

(6.2)

where fmax again denotes the maximum Doppler frequency, and fmin = −fmax cos α0

lies within the range 0 ≤ fmin ≤ fmax. Only for the special case α0 = π, i.e.,
fmin = fmax, do we obtain the symmetrical Doppler power spectral density according
to Jakes again. In general, however, the shape of (6.2) is unsymmetrical, which results
in a cross-correlation of the real-valued Gaussian random processes µ1(t) and µ2(t).
In the following, we denote the Doppler power spectral density according to (6.2) as
left-sided restricted Jakes power spectral density. With a given value for fmax and a
suitable choice of fmin, this often allows a better fitting to the Doppler spread of
measured fading signals than the conventional Jakes power spectral density whose
Doppler spread is often too large in comparison with reality (see Subsection 6.1.5).

Figure 6.1 depicts the reference model for the Rice process ξ(t), whose underlying
complex-valued Gaussian random process is characterized by the left-sided restricted
Jakes power spectral density (6.2).

From this figure, we conclude the relations

µ1(t) = ν1(t) + ν2(t) (6.3)

and

µ2(t) = ν̌1(t)− ν̌2(t) , (6.4)

where νi(t) represents a coloured Gaussian random process, and its Hilbert transform
is denoted by ν̌i(t) (i=1,2). Here, the spectral shaping of νi(t) is based on filtering of
white Gaussian noise ni(t) ∼ N(0, 1) by using an ideal filter whose transfer function
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Figure 6.1: Reference model for Rice processes ξ(t) with cross-correlated underlying
Gaussian random processes µ1(t) and µ2(t).

is given by Hi(f) =
√

Sνiνi(f). In the following, we will assume that the white
Gaussian random processes n1(t) and n2(t) are uncorrelated.

The autocorrelation function of µ(t) = µ1(t) + jµ2(t), which is generally defined by
(2.48), can be expressed in terms of the autocorrelation and cross-correlation functions
of µ1(t) and µ2(t) as follows [Kam96]

rµµ(τ) = rµ1µ1(τ) + rµ2µ2(τ) + j(rµ1µ2(τ)− rµ2µ1(τ)) . (6.5)

Using the relations rνiνi(τ) = rν̌iν̌i(τ) and rνiν̌i(τ) = rν̌iνi(−τ) = −rν̌iνi(τ) (cf. also
(2.56e) and (2.56c), respectively), we may write:

rµ1µ1(τ) = rν1ν1(τ) + rν2ν2(τ) = rµ2µ2(τ) , (6.6a)

rµ1µ2(τ) = rν1ν̌1(τ)− rν2ν̌2(τ) = −rµ2µ1(τ) , (6.6b)

so that (6.5) can be expressed by

rµµ(τ) = 2[rν1ν1(τ) + rν2ν2(τ) + j(rν1ν̌1(τ)− rν2ν̌2(τ))] . (6.7)

After the Fourier transform of (6.5) and (6.7), we obtain the following expressions for
the Doppler power spectral density

Sµµ(f) = Sµ1µ1(f) + Sµ2µ2(f) + j(Sµ1µ2(f)− Sµ2µ1(f)) , (6.8a)

Sµµ(f) = 2[Sν1ν1(f) + Sν2ν2(f) + j(Sν1ν̌1(f)− Sν2ν̌2(f))] . (6.8b)

For the Doppler power spectral densities Sνiνi(f) and Sνiν̌i(f) as well as for the
corresponding autocorrelation functions rνiνi(τ) and rνiν̌i(τ), the following relations
hold:

Sν1ν1(f) =
σ2

0

2πfmax

√
1− (f/fmax)2

, (6.9a)
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•∣∣
◦

rν1ν1(τ) =
σ2

0

2
J0(2πfmaxτ) , (6.9b)

Sν2ν2(f) = rect (f/fmin) · Sν1ν1(f) , (6.9c)
•∣∣
◦

rν2ν2(τ) = fminσ2
0J0(2πfmaxτ) ∗ sinc (2πfminτ) , (6.9d)

Sν1ν̌1(f) = −j sgn (f) · Sν1ν1(f) , (6.9e)
•∣∣
◦

rν1ν̌1(τ) =
σ2

0

2
H0(2πfmaxτ) , (6.9f)

Sν2ν̌2(f) = −j sgn (f) · Sν2ν2(f) , (6.9g)
•∣∣
◦

rν2ν̌2(τ) = fminσ2
0H0(2πfmaxτ) ∗ sinc (2πfminτ) , (6.9h)

where J0(·) and H0(·) denote the 0th order Bessel function of the first kind and the
Struve’s function of 0th order, respectively.1 If we now substitute (6.9e) and (6.9g)
into (6.8b), then we can express Sµµ(f) in terms of Sνiνi(f) as follows

Sµµ(f) = 2[(1 + sgn (f)) · Sν1ν1(f) + (1− sgn (f)) · Sν2ν2(f)] . (6.10)

Figure 6.2 illustrates the shapes of Sν1ν1(f) and Sν2ν2(f) as well as the corresponding
left-sided restricted Jakes power spectral density Sµµ(f).

In the following derivation of the statistical properties of ξ(t) = |µρ(t)| and ϑ(t) =
arg{µρ(t)}, we often make use of the abbreviations

ψ
(n)
0 :=

dn

dτn
rµ1µ1(τ)

∣∣∣∣
τ=0

=
dn

dτn
rµ2µ2(τ)

∣∣∣∣
τ=0

(6.11a)

and

φ
(n)
0 :=

dn

dτn
rµ1µ2(τ)

∣∣∣∣
τ=0

(6.11b)

for n = 0, 1, 2. Using (6.6) and (6.9), these characteristic quantities can be expressed
as follows:

1 The rectangular function used in (6.9c) is defined by

rect (x) =

8
<
:

1 for |x| < 1
1/2 for x = ±1
0 for |x| > 1

and sinc (x) = sin(x)/x in (6.9d) denotes the sinc function.
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Figure 6.2: Doppler power spectral densities: (a) Sν1ν1(f), (b) Sν2ν2(f), and (c) the
resulting left-sided restricted Jakes power spectral density.
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ψ
(0)
0 = ψ0 =

σ2
0

2

[
1 +

2
π

arcsin(κ0)
]

, (6.12a)

ψ
(1)
0 = ψ̇0 = 0 , (6.12b)

ψ
(2)
0 = ψ̈0 = −(πσ0fmax)2

{
1 +

2
π

[
arcsin(κ0)− 1

2
sin(2 arcsin(κ0))

]}
, (6.12c)

φ
(0)
0 = φ0 = 0 , (6.12d)

φ
(1)
0 = φ̇0 = 2σ2

0fmax

√
1− κ2

0 , (6.12e)

φ
(2)
0 = φ̈0 = 0 , (6.12f)

where the overdot indicates the time derivative, and the parameter κ0 denotes the
frequency ratio

κ0 = fmin/fmax , 0 ≤ κ0 ≤ 1 . (6.13)

One should note that the shape of Sµµ(f) is only symmetrical for the special case
κ0 = 1. In this case, the processes µ1(t) and µ2(t) are uncorrelated, and from
(6.12a)–(6.12f), the relations ψ0 = σ2

0 , ψ̈0 = −2(πσ0fmax)2, and φ̇0 = 0, which we
already know from Subsection 3.3.2, follow.

A starting point for the derivation of the statistical properties of Rice processes ξ(t)
with unsymmetrical Doppler power spectral densities is given by the joint probability
density function of the processes µρ1(t), µρ2(t), µ̇ρ1(t), and µ̇ρ2(t) [see (3.4)] at the
same point within the time t. This joint probability density function will be denoted
by pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) here. It should be noted that µρi(t) is a real-valued
Gaussian random process with the time variant mean value E{µρi(t)} = mi(t)
and the variance Var {µρi(t)} = Var {µi(t)} = rµiµi(0) = ψ0. Consequently, its
time derivative µ̇ρi(t) is a real-valued Gaussian random process too. However, this
process is characterized by the mean value E{µ̇ρi(t)} = ṁi(t) and the variance
Var {µ̇ρi(t)} = Var {µ̇i(t)} = rµ̇iµ̇i(0) = −r̈µiµi(0) = −ψ̈0. It is also worth mentioning
that the processes µρi(t) and µ̇ρi(t) are in pairs correlated at the same time instant
t. The joint probability density function pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) can therefore be
expressed by the multivariate Gaussian distribution (2.20), i.e.,

pµρ1µρ2 µ̇ρ1 µ̇ρ2
(x1, x2, ẋ1, ẋ2) =

e
− 1

2 (x − m)T C−1
µρ

(x − m)

(2π)2
√

det Cµρ

, (6.14)

where x and m are the column vectors defined by

x =




x1

x2

ẋ1

ẋ2


 (6.15)
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and

m =




E {µρ1(t)}
E {µρ2(t)}
E {µ̇ρ1(t)}
E {µ̇ρ2(t)}


 =




m1(t)
m2(t)
ṁ1(t)
ṁ2(t)


 =




ρ cos(2πfρt + θρ)
ρ sin(2πfρt + θρ)

−2πfρρ sin(2πfρt + θρ)
2πfρρ cos(2πfρt + θρ)


 , (6.16)

respectively, and det Cµρ ( C−1
µρ

) denotes the determinant (inverse) of the covariance
matrix

Cµρ =




Cµρ1µρ1
Cµρ1µρ2

Cµρ1 µ̇ρ1
Cµρ1 µ̇ρ2

Cµρ2µρ1
Cµρ2µρ2

Cµρ2 µ̇ρ1
Cµρ2 µ̇ρ2

Cµ̇ρ1µρ1
Cµ̇ρ1µρ2

Cµ̇ρ1 µ̇ρ1
Cµ̇ρ1 µ̇ρ2

Cµ̇ρ2µρ1
Cµ̇ρ2µρ2

Cµ̇ρ2 µ̇ρ1
Cµ̇ρ2 µ̇ρ2




. (6.17)

The entries of the covariance matrix Cµρ can be calculated as follows

C
µ

(k)
ρi

µ
(`)
ρj

= C
µ

(k)
ρi

µ
(`)
ρj

(ti, tj) (6.18a)

= E{
(
µ(k)

ρi
(ti)−m

(k)
i (ti)

)(
µ(`)

ρj
(tj)−m

(`)
j (tj)

)
} (6.18b)

= E{µ(k)
i (ti)µ

(`)
j (tj)} (6.18c)

= r
µ

(k)
i µ

(`)
j

(ti, tj) (6.18d)

= r
µ

(k)
i µ

(`)
j

(τ) , (6.18e)

for all i, j = 1, 2 and k, ` = 0, 1. The transition from (6.18d) to (6.18e) is possible if
we take into account that µi(t) and µ̇i(t) are Gaussian random processes, which are
strict-sense stationary per definition. As a consequence, for the autocorrelation and
cross-correlation functions, it follows that these correlation functions only depend on
the time difference τ = tj − ti, i.e., r

µ
(k)
i µ

(`)
j

(ti, tj) = r
µ

(k)
i µ

(`)
j

(ti, ti + τ) = r
µ

(k)
i µ

(`)
j

(τ).

Studying the equations (6.17) and (6.18e), it now becomes clear that the covariance
matrix Cµρ of the processes µρ1(t), µρ2(t), µ̇ρ1(t), and µ̇ρ2(t) is identical to the
correlation matrix Rµ of the processes µ1(t), µ2(t), µ̇1(t), and µ̇2(t), i.e., we may
write

Cµρ(τ) = Rµ(τ) =




rµ1µ1(τ) rµ1µ2(τ) rµ1µ̇1(τ) rµ1µ̇2(τ)

rµ2µ1(τ) rµ2µ2(τ) rµ2µ̇1(τ) rµ2µ̇2(τ)

rµ̇1µ1(τ) rµ̇1µ2(τ) rµ̇1µ̇1(τ) rµ̇1µ̇2(τ)

rµ̇2µ1(τ) rµ̇2µ2(τ) rµ̇2µ̇1(τ) rµ̇2µ̇2(τ)




. (6.19)

For the entries of the correlation matrix Rµ(τ), the following relations hold [Pap91]:

rµjµi(τ) = rµiµj (−τ) , rµiµ̇j (τ) = ṙµiµj (τ) , (6.20a, b)
rµ̇iµj (τ) = −ṙµiµj (τ) , rµ̇iµ̇j (τ) = −r̈µiµj (τ) , (6.20c, d)
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for all i, j = 1, 2.

For the derivation of the level-crossing rate and the average duration of fades, we have
to consider the correlation properties of the processes µ

(k)
ρi (ti) and µ

(`)
ρj (tj) at the same

time instant, i.e., ti = tj , and, thus, the time-difference variable τ = tj − ti is equal
to zero. Therefore, in connection with (6.12a)–(6.12f), we can profit from the notation
(6.11) enabling us to present the covariance matrix and the correlation matrix (6.19)
as follows

Cµρ
(0) = Rµ(0) =




ψ0 0 0 φ̇0

0 ψ0 −φ̇0 0

0 −φ̇0 −ψ̈0 0

φ̇0 0 0 −ψ̈0




. (6.21)

After substituting (6.21) into the relation (6.14), we can now express the joint
probability density function pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) in terms of the quantities
(6.12a)–(6.12f). For our intention, however, it is advisable to perform a transformation
of the Cartesian coordinates (x1, x2) to polar coordinates (z, θ) first. For that purpose,
we consider the following system of equations:

z =
√

x2
1 + x2

2 , ż =
x1ẋ1 + x2ẋ2√

x2
1 + x2

2

, (6.22a)

θ = arctan
(

x2

x1

)
, θ̇ =

x1ẋ2 − x2ẋ1

x2
1 + x2

2

. (6.22b)

For z > 0, |ż| < ∞, |θ| ≤ π, and |θ̇| < ∞, this system of equations has the real-valued
solutions

x1 = z cos θ , ẋ1 = ż cos θ − θ̇z sin θ , (6.23a)

x2 = z sin θ , ẋ2 = ż sin θ + θ̇z cos θ . (6.23b)

Applying the transformation rule (2.38) leads to the joint probability density function

pξξ̇ϑϑ̇(z, ż, θ, θ̇) = |J |−1pµρ1µρ2 µ̇ρ1 µ̇ρ2
(z cos θ, z sin θ,

ż cos θ − θ̇z sin θ, ż sin θ + θ̇z cos θ) , (6.24)

where J denotes the Jacobian determinant

J =

∣∣∣∣∣∣∣∣∣∣∣

∂z
∂x1

∂z
∂x2

∂z
∂ẋ1

∂z
∂ẋ2

∂ż
∂x1

∂ż
∂x2

∂ż
∂ẋ1

∂ż
∂ẋ2

∂θ
∂x1

∂θ
∂x2

∂θ
∂ẋ1

∂θ
∂ẋ2

∂θ̇
∂x1

∂θ̇
∂x2

∂θ̇
∂ẋ1

∂θ̇
∂ẋ2

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂z

∂x1
∂ż

∂x1
∂θ

∂x1

∂θ̇
∂x2
∂z

∂x2
∂ż

∂x2
∂θ

∂x2

∂θ̇
∂ẋ1
∂z

∂ẋ1
∂ż

∂ẋ1
∂θ

∂ẋ1

∂θ̇
∂ẋ2
∂z

∂ẋ2
∂ż

∂ẋ2
∂θ

∂ẋ2

∂θ̇

∣∣∣∣∣∣∣∣∣∣∣

−1

= − 1
z2

. (6.25)
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After some further algebraic manipulations, we are now in the position to bring
the desired joint probability density function pξξ̇ϑϑ̇(z, ż, θ, θ̇) into the following form
[Pae98d]

pξξ̇ϑϑ̇(z, ż, θ, θ̇) =
z2

(2π)2ψ0β
e−

z2+ρ2

2ψ0 · e zρ
ψ0

cos(θ−2πfρt−θρ)

·e− 1
2β [ż−√2βαρ sin(θ−2πfρt−θρ)]2

·e− z2
2β

n
θ̇− φ̇0

ψ0
−√2β αρ

z cos(θ−2πfρt−θρ)
o2

(6.26)

for z ≥ 0, |ż| < ∞, |θ| ≤ π, and |θ̇| < ∞, where

α =

(
2πfρ − φ̇0

ψ0

)/√
2β , (6.27)

β = −ψ̈0 − φ̇2
0/ψ0 . (6.28)

The joint probability density function (6.26) represents a fundamental equation. With
this, we will at first determine the probability density function of the amplitude and
the phase of the process µρ(t) in the following subsection, and will then proceed with
the derivation of the level-crossing rate and the average duration of fades of the process
ξ(t) = |µρ(t)| by again making use of (6.26).

6.1.1.1 Probability Density Function of the Amplitude and the Phase

Employing the rule (2.40) now allows us to calculate the probability density pξ(z)
of the process ξ(t) from the joint probability density function pξξ̇ϑϑ̇(z, ż, θ, θ̇). We
therefore consider the threefold integral

pξ(z) =

∞∫

−∞

π∫

−π

∞∫

−∞
pξξ̇ϑϑ̇(z, ż, θ, θ̇) dθ̇ dθ dż , z ≥ 0 . (6.29)

Putting (6.26) in the above expression results in the well-known Rice distribution

pξ(z) =





z

ψ0
e−

z2+ρ2

2ψ0 I0

(
zρ

ψ0

)
, z ≥ 0 ,

0 , z < 0 .

(6.30)

Due to the correlation of the processes µ1(t) and µ2(t), this result cannot be regarded
as a matter of course, as we will see later in Subsection 6.2. Since the probability
density (6.30) is independent of the quantity φ̇0 in the present case, it follows that the
correlation between the processes µ1(t) and µ2(t) has no influence on the probability
density function of the amplitude ξ(t). However, one should note that the parameter
κ0 determining the Doppler bandwidth exerts an influence on the variance ψ0 of the
processes µ1(t) and µ2(t) [cf. (6.12a)] and consequently determines the behaviour of
(6.30) decisively.
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The probability density function of the phase ϑ(t), denoted by pϑ(θ), can be calculated
in a similar way. Substituting (6.26) into

pϑ(θ) =

∞∫

0

∞∫

−∞

∞∫

−∞
pξξ̇ϑϑ̇(z, ż, θ, θ̇) dθ̇ dż dz , −π ≤ θ ≤ π , (6.31)

results in

pϑ(θ) = pϑ(θ; t) =
e−

ρ2

2ψ0

2π

{
1 +

√
π

2ψ0
ρ cos(θ − 2πfρt− θρ) · e

ρ2 cos2(θ−2πfρt−θρ)
2ψ0

[
1 + erf

(
ρ cos(θ − 2πfρt− θρ)√

2ψ0

)] }
, −π ≤ θ ≤ π . (6.32)

One observes that also in this case, the cross-correlation function rµ1µ2(τ) has no
influence on the probability density function pϑ(θ), since pϑ(θ) is independent of φ̇0.
For the special case κ0 = 1, we have ψ0 = σ2

0 , and, thus, from (6.32) it follows (3.21).
The investigation of further special cases, for example: (i) fρ = 0, (ii) ρ → 0, and (iii)
ρ → ∞ leads to the statements made below the equation (3.21), which will not be
revised again at this point.

6.1.1.2 Level-Crossing Rate and Average Duration of Fades

The derivation of the level-crossing rate using

Nξ(r) =
∫ ∞

0

ż pξξ̇(r, ż) dż (6.33)

requires the knowledge of the joint probability density function pξξ̇(z, ż) of the
stationary processes ξ(t) and ξ̇(t) at the same time instant t at the level z = r.
For the joint probability density function pξξ̇(z, ż), one finds, after substituting (6.26)
into

pξξ̇(z, ż) =

π∫

−π

∞∫

−∞
pξξ̇ϑϑ̇(z, ż, θ, θ̇) dθ̇ dθ , z ≥ 0 , |ż| < ∞ , (6.34)

the result

pξξ̇(z, ż) =
z

ψ0

√
β(2π)3/2

· e− z2+ρ2

2ψ0

∫ π

−π

e
zρ
ψ0

cos θ

·e− 1
2β [ż−√2βαρ sin θ]2 dθ , z ≥ 0 , |ż| < ∞ , (6.35)

where α, β, and ψ0 are the quantities introduced by (6.27), (6.28), and (6.12a),
respectively. Obviously, the processes ξ(t) and ξ̇(t) are in general statistically
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dependent, because pξξ̇(z, ż) 6= pξ(z) ·pξ̇(ż) holds. Only for the special case α = 0, i.e.,
(i) if the two real-valued Gaussian random processes µ1(t) and µ2(t) are uncorrelated
and fρ is equal to zero, or, (ii) if fρ and φ̇0 are related by fρ = φ̇0/(2πψ0), then
we obtain statistically independent processes ξ(t) and ξ̇(t), since from (6.35) it now
follows

pξξ̇(z, ż) = pξ(z) · pξ̇(ż)

=
z

ψ0
e−

z2+ρ2

2ψ0 I0

(
zρ

ψ0

)
· e−

ż2
2β

√
2πβ

, (6.36)

where β in this case again represents β = −ψ̈0 − φ̇2
0/ψ0 ≥ 0. Hence, for α = 0, the

joint probability density function pξξ̇(z, ż) is equal to the product of the probability
density functions of the stochastic processes ξ(t) and ξ̇(t), which are Rice and Gaussian
distributed, respectively.

With the joint probability density function (6.35), we are now able to calculate
the level-crossing rate of Rice processes whose underlying complex-valued Gaussian
process has cross-correlated in-phase and quadrature components. In this way, after
substituting (6.35) in the definition (6.33) and performing some tedious algebraic
manipulations, we finally obtain the result [Pae98d]

Nξ(r) =
r
√

2β

π3/2ψ0
e−

r2+ρ2

2ψ0

∫ π/2

0

cosh
(

rρ

ψ0
cos θ

)

·
{

e−(αρ sin θ)2 +
√

παρ sin(θ) · erf (αρ sin θ)
}

dθ , r ≥ 0 , (6.37)

where the characteristic quantities α, β, and ψ0 are given in the form (6.27), (6.28),
and (6.12a), respectively. Further simplifications are not possible; the remaining
integral has to be solved numerically. Let us again consider the special case κ0 = 1.
Then, we obtain: α = 2πfρ/

√
2β, β = −ψ̈0 = −r̈µiµi(0), and ψ0 = σ2

0 , so that the
level-crossing rate Nξ(r) given above results in the expression introduced by (3.24),
as was to be expected.

Let us assume that the line-of-sight component tends to zero, i.e., ρ → 0, which leads
to ξ(t) → ζ(t). Then, it follows that (6.37) tends to

Nξ(r) =

√
β

2π
· r

ψ0
e−

r2
2ψ0 , r ≥ 0 , (6.38)

where the quantity β is given by (6.28). The above result shows us that the level-
crossing rate is proportional to the Rayleigh distribution. This property has also
been mentioned in [Kra90b]. Due to (6.28), the proportionality factor

√
β/(2π) is

not only determined by the curvature of the autocorrelation function at the origin
τ = 0 (ψ̈0 = r̈µiµi(0)), but also decisively by the gradient of the cross-correlation
function at τ = 0 (φ̇0 = ṙµ1µ2(0)).



168 FREQUENCY-NONSELECTIVE CHANNEL MODELS

Now, let ρ 6= 0 and fρ = φ̇0/(2πψ0). Then, it follows α = 0 [see (6.27)], and from
(6.37) we obtain the level-crossing rate Nξ(r) according to (3.27), if σ2

0 is substituted
by ψ0 in that equation, i.e.,

Nξ(r) =

√
β

2π
· r

ψ0
e−

r2+ρ2

2φ0 I0

(
rρ

ψ0

)
, r ≥ 0 , (6.39)

where β is again given by (6.28).

In connection with the Jakes power spectral density, the level-crossing rate Nξ(r)
described by (6.37) is always proportional to the maximum Doppler frequency fmax.
The normalization of Nξ(r) to fmax therefore eliminates the influence of both the
velocity of the vehicle and the carrier frequency. The influence of the parameters κ0

and σ2
0 on the normalized level-crossing rate Nξ(r)/fmax is illustrated in Figure 6.3(a)

and in Figure 6.3(b), respectively.
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Figure 6.3: Normalized level-crossing rate Nξ(r)/fmax of Rice processes (with cross-
correlated underlying Gaussian random processes): (a) κ0 = fmin/fmax

(σ2
0 = 1) and (b) σ2

0 (ρ = 0, κ0 = 1).

For the calculation of the average duration of fades Tξ−(r), we will be guided by the
basic relation (2.63), i.e.,

Tξ (r) =
Fξ (r)
Nξ(r)

, (6.40)

where Fξ−(r) denotes the cumulative distribution function of the Rice process ξ(t)
and therefore states the probability that ξ(t) takes a value which is lower or equal to
the signal level r. Using (6.30), the following integral expression can be derived for
Fξ−(r)

Fξ (r) = P (ξ(t) ≤ r)



THE EXTENDED SUZUKI PROCESS OF TYPE I 169

=
∫ r

0

pξ(z)dz

=
e−

ρ2

2ψ0

ψ0

∫ r

0

ze−
z2
2ψ0 I0

(
zρ

ψ0

)
dz . (6.41)

The average duration of fades of Rice processes ξ(t) with cross-correlated in-phase
and quadrature components µ1(t) and µ2(t) is, thus, the quotient (6.40) of the
integral expressions (6.41) and (6.37), which have to be solved numerically.

The influence of the parameters κ0 and σ2
0 on the normalized average duration of fades

Tξ−(r) · fmax is depicted in Figures 6.4(a) and 6.4(b), respectively.
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Figure 6.4: Normalized average duration of fades Tξ(r) · fmax of Rice processes
(with cross-correlated underlying Gaussian random processes): (a) κ0 =
fmin/fmax (σ2

0 = 1) and (b) σ2
0 (ρ = 0, κ0 = 1).

6.1.2 Modelling and Analysis of the Long-Term Fading

Measurements have shown that the slow fading behaves in its statistical properties
quite similar to a lognormal process [Reu72, Bla72, Oku68]. With such a process, the
slow fluctuations of the local mean value of the received signal, which are determined
by shadowing effects, can be reproduced. In the following, we will denote lognormal
processes by λ(t). Lognormal processes can be derived by means of the nonlinear
transform

λ(t) = eσ3ν3(t)+m3 (6.42)

from a third real-valued Gaussian random process ν3(t) with the expected value
E{ν3(t)} = 0 and the variance Var {ν3(t)} = 1. Fitting the model behaviour to
the statistics of real-world channels, the model parameters m3 and σ3 can be used in
connection with the parameters of the Rice process (σ2

0 , fmax, fmin, ρ, fρ). We assume
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henceforth that the stochastic process ν3(t) is statistically independent of the processes
ν1(t) and ν2(t). Figure 6.5 illustrates the reference model for the lognormal process
λ(t) introduced this way.

H 3 (f)

σ3 m3

exp( ).
µ3(t)ν

WGN
(t)3n 3(t)

λ (t)

Figure 6.5: Reference model for lognormal processes λ(t).

Here, the process ν3(t) is obtained by filtering white Gaussian noise n3(t) ∼ N(0, 1)
with a real-valued low-pass filter, whose transfer function H3(f) is related to the
power spectral density Sν3ν3(f) of the process ν3(t) according to (2.52f), i.e., H3(f) =√

Sν3ν3(f). For Sν3ν3(f), the Gaussian power spectral density is assumed in the form
[cf. also (3.11)]

Sν3ν3(f) =
1√

2πσc

e
− f2

2σ2
c , (6.43)

where the 3-dB-cut-off frequency fc = σc

√
2 ln 2 is in general much smaller than the

maximum Doppler frequency fmax. In order to simplify the notation, we introduce the
symbol κc for the frequency ratio fmax/fc, i.e., κc = fmax/fc. A study on modified
Suzuki processes has shown [Kra90b] that both the parameter κc as well as the exact
shape of the power spectral density of ν3(t) have no considerable influence on the
relevant statistical properties of modified Suzuki processes, if κc > 10. Other types
of power spectral densities Sν3ν3(f) than the form (6.43) studied here have been
proposed, for example, in [Kra90a, Kra90b] and [Loo91], where RC-low-pass filters
and Butterworth filters of third order have been applied, respectively.

The autocorrelation function rν3ν3(τ) of the process ν3(t) can be described after
calculating the inverse Fourier transform of (6.43) by

rν3ν3(τ) = e−2(πσcτ)2 . (6.44)

Next, let us consider the lognormal process λ(t) [see (6.42)]. The autocorrelation
function rλλ(τ) of this process can be expressed in terms of rν3ν3(τ) as follows

rλλ(τ) = E{λ(t) · λ(t + τ)}
= E{e2m3+σ3[ν3(t)+ν3(t+τ)]}
=

∫ ∞

−∞

∫ ∞

−∞
e2m3+σ3(x1+x2) · pν3ν′3(x1, x2) dx1 dx2 , (6.45)
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where

pν3ν′3(x1, x2) =
1

2π
√

1− r2
ν2ν3

(τ)
e
− x2

1−2rν3ν3 (τ) x1x2+x2
2

2[1−r2
ν3ν3

(τ)] (6.46)

describes the joint probability density function of the Gaussian random process ν3(t)
at two different time instants t1 = t and t2 = t + τ . After substituting (6.46) in (6.45)
and solving the double integral, the autocorrelation function rλλ(τ) can be expressed
in a closed form by

rλλ(τ) = e2m3+σ2
3 [1+rν3ν3 (τ)] . (6.47)

With this relation, the mean power of the lognormal process λ(t) can easily be
determined. We obtain rλλ(0) = e2(m3+σ2

3).

The power spectral density Sλλ(f) of the lognormal process λ(t) can now be expressed
in terms of the power spectral density Sν3ν3(f) of ν3(t) as follows [Pae98c]

Sλλ(f) =

∞∫

−∞
rλλ(τ)e−j2πfτdτ

= e2m3+σ2
3 · {δ(f) +

∞∫

−∞

(
eσ2

3rν3ν3 (τ) − 1
)

e−j2πfτ}dτ

= e2m3+σ2
3 ·


δ(f) +

∞∑
n=1

σ2n
3

n!
·
Sν3ν3

(
f√
n

)
√

n


 . (6.48)

This result shows us that the power spectral density Sλλ(f) of the lognormal process
λ(t) consists of a weighted delta function at the origin f = 0 and of an infinite sum
of strictly monotonously decreasing power spectral densities Sν3ν3(f/

√
n)/

√
n. One

should note that Sν3ν3(f/
√

n)/
√

n follows directly from (6.43), if the quantity σc is
replaced by

√
nσ3 there.

The probability density function pλ(y) of the lognormal process λ(t) is described by
the lognormal distribution (2.28), i.e.,

pλ(y) =





1√
2πσ3y

e
− (ln y−m3)2

2σ2
3 , y ≥ 0 ,

0 , y < 0 ,

(6.49)

with the expected value and the variance according to (2.29a) and (2.29b), respectively.

For the calculation of the level-crossing rate and the average duration of fades of
(extended) Suzuki processes, we require the knowledge of the joint probability density
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function of the lognormal process λ(t) and its corresponding time derivative λ̇(t) at
the same time instant t. This joint probability density function will be denoted by
pλλ̇(y, ẏ) here and will briefly be derived in the following. We start from the underlying
Gaussian random process ν3(t) and its time derivative ν̇3(t). For the cross-correlation
function of these two processes it follows that rν3ν̇3(0) = 0 holds, i.e., ν3(t1) and
ν̇3(t2) are uncorrelated at the same time instant t = t1 = t2. Since ν3(t) and, hence,
also ν̇3(t) are Gaussian random processes, it follows from the uncorrelatedness that
these processes are statistically independent. For the joint probability density function
pν3ν̇3(x, ẋ) of the processes ν3(t) and ν̇3(t), we can therefore write

pν3ν̇3(x, ẋ) = pν3(x) · pν̇3(ẋ) =
e−

x2
2√

2π
· e−

ẋ2
2γ

√
2πγ

, (6.50)

where

γ = rν̇3ν̇3(0) = −r̈ν3ν3(0) = (2πσc)2 (6.51)

denotes the variance of the process ν̇3(t).

Similar to the scheme described in detail in Subsection 6.1.1, we can take pν3ν̇3(x, ẋ) as
our starting point to determine the desired joint probability density function pλλ̇(y, ẏ).
The nonlinear mapping (6.42) in connection with the following substitution of variables

x =
ln y −m3

σ3
, ẋ =

ẏ

σ3y
(6.52a, b)

yields the expression J = (σ3y)2 for the Jacobian determinant (6.25). With the
transformation rule (2.38), we then obtain the following result for the joint probability
density function pλλ̇(y, ẏ)

pλλ̇(y, ẏ) =
e
− (ln y−m3)2

2σ2
3√

2π σ3y
· e
− ẏ2

2γ(σ3y)2

√
2πγ σ3y

. (6.53)

This result shows us that the processes λ(t) and λ̇(t) are statistically dependent,
although the underlying Gaussian processes ν3(t) and ν̇3(t) are statistically
independent.

6.1.3 The Stochastic Extended Suzuki Process of Type I

The extended Suzuki process (Type I), denoted by η(t), was introduced in [Pae98d]
as a product process of a Rice process ξ(t) [see (6.1)] with cross-correlated underlying
Gaussian random processes µ1(t) and µ2(t) and a lognormal process λ(t) [see (6.42)],
i.e.,

η(t) = ξ(t) · λ(t) . (6.54)

Figure 6.6 shows the structure of the reference model belonging to η(t) for a frequency-
nonselective mobile radio channel.
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Figure 6.6: Reference model for extended Suzuki processes (Type I).

The probability density function pη(z) of the extended Suzuki process η(t) can be
calculated by means of the relation [Pap91]

pη(z) =
∫ ∞

−∞

1
|y| pξλ

(
z

y
, y

)
dy , (6.55)

where pξλ(x, y) is the joint probability density function of the processes ξ(t) and λ(t) at
the same time instant t. According to our assumption, the coloured Gaussian random
processes ν1(t), ν2(t), and ν3(t) are in pairs statistically independent. Consequently,
the Rice process ξ(t) and the lognormal process λ(t) are also statistically independent,
so that for the joint probability density function pξλ(x, y) it follows: pξλ(x, y) =
pξ(x) · pλ(y). Hence, the multiplicative relation between the processes ξ(t) and λ(t)
leads to the following integral equation for the probability density function of extended
Suzuki processes

pη(z) =
z√

2πψ0σ3

∫ ∞

0

1
y3

e−
(z/y)2+ρ2

2ψ0 I0

(
zρ

yψ0

)
e
− (ln y−m3)2

2σ2
3 dy , z ≥ 0 . (6.56)

For ρ = 0, it should be noted that the probability density function (6.56) can
be reduced to the (classical) Suzuki distribution (2.30) introduced in [Suz77]. The
influence of the parameters ρ and σ3 on the behaviour of pξ(z) can be concluded from
Figure 6.7.

Studying (6.56), one can clearly see that pη(z) merely depends on the quantities
ψ0, ρ, σ3, and m3. Accordingly, the exact shape of the power spectral density of the
complex-valued Gaussian random process µ(t) and especially the cross-correlation of
the processes µ1(t) and µ2(t) have no influence on the probability density function
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Figure 6.7: Probability density function pη(z) for various values of the parameters ρ
and σ3 (ψ0 = 1, m3 = −σ2

3/2).

of the extended Suzuki process. For the adaptation of (6.56) to a given measured
probability density function by merely optimizing these model parameters, there is
a risk that the statistics of real-world channels are reproduced insufficiently by the
channel model.

In the following, we therefore study the level-crossing rate Nη(r) of the process η(t),
i.e.,

Nη(r) =
∫ ∞

0

ż pηη̇(r, ż) dż , (6.57)

which requires the knowledge of the joint probability density function pηη̇(z, ż) of
the process η(t) and its time derivative η̇(t) at the same time instant t. This joint
probability density can be derived by substituting the equations (6.35) and (6.53)
obtained for pξξ̇(x, ẋ) and pλλ̇(y, ẏ), respectively, into the relation [Kra90a]

pηη̇(z, ż) =

∞∫

0

∞∫

−∞

1
y2

pξξ̇

(
z

y
,
ż

y
− z

y2
ẏ

)
pλλ̇(y, ẏ) dẏ dy , z ≥ 0, |ż| < ∞ . (6.58)

Hence, after some tedious algebraic manipulations, we find the expression

pηη̇(z, ż) =
z

(2π)
3
2 ψ0

√
β

∫ ∞

0

e−
(z/y)2+ρ2

2ψ0

y3K(z, y)
· e
− (ln y−m3)2

2σ2
3√

2π σ3y
·

∫ 2π

0

e
zρ

yψ0
cos θ · e−

(ż−√2βαyρ sin θ)2

2βy2K2(z,y) dθ dy , z ≥ 0 , |ż| < ∞ , (6.59)
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where

K(z, y) =

√
1 +

γ

β

(
zσ3

y

)2

. (6.60)

After substituting (6.59) into (6.57), we then obtain the following final result for the
level-crossing rate Nη(r) of the extended Suzuki process of Type I

Nη(r) =
r
√

2β

π3/2ψ0
·
∞∫

0

K(r, y)
y

· e
− (lny−m3)2

2σ2
3√

2π σ3y
e−

(r/y)2+ρ2

2ψ0 ·
π/2∫

0

cosh
(

rρ

yψ0
cos θ

)

{
e−(αρ sin θ

K(r,y) )
2

+
√

π αρ
sin θ

K(r, y)
erf

[
αρ

sin θ

K(r, y)

]}
dθ dy, (6.61)

where α, β, and γ again are the quantities introduced by (6.27), (6.28), and (6.51),
respectively, and ψ0 is determined by (6.12a). Exactly due to α and β, the influence
of the shape of the Doppler power spectral density is now taken into consideration,
because α depends on φ̇0 and β is a function of φ̇0 and ψ̈0. A detailed analysis of (6.61)
here also shows that Nη(r) is again proportional to the maximum Doppler frequency
and, thus, to the speed of the vehicle as well.

Moreover, we are interested in some special cases. Assuming σ3 → 0, then the
lognormal distribution (6.49) converges to the probability density function pλ(y) =
δ(y − em3). Consequently, especially in case m3 = 0, the level-crossing rate Nη(r)
tends to Nξ(r) according to (6.37).

In case of a missing line-of-sight component, i.e., ρ = 0, the level-crossing rate of
modified Suzuki processes follows from (6.61)

Nη(r)|ρ=0 =

√
β

2π

r

ψ0

∫ ∞

0

K(r, y)
y

pλ(y) e
− r2

2ψ0y2 dy

=

√
β

2π

∫ ∞

0

K(r, y) pζ(r/y) pλ(y) dy (6.62)

as stated in [Kra90a, Kra90b]. It should also be mentioned that for ρ 6= 0, the two
cases

(i) fρ = φ̇0/(2πψ0) , (6.63a)

(ii) fρ = 0 and φ̇0 = 0 (6.63b)

are equivalent with respect to the level-crossing rate Nη(r), because we then have
α = 0 due to (6.27), and from (6.61) the same expression

Nη(r)|α=0 =

√
β

2π

r

ψ0

∫ ∞

0

K(r, y)
y

pλ(y) e−
(r/y)2+ρ2

2ψ0 I0

(
rρ

yψ0

)
dy

=

√
β

2π

∫ ∞

0

K(r, y) pξ(r/y) pλ(y) dy (6.64)
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always follows. One should note, however, that the cases (i) and (ii) result in different
values for β. Under the condition (i), the general relation (6.28) is valid for β, whereas
this equation can be simplified in case of (ii) to β = −ψ̈0.

At the end of this subsection, we also derive the cumulative distribution function
Fη−(r) = P (η(t) ≤ r), which is required for the calculation of the average duration of
fades of extended Suzuki processes of Type I

Tη (r) =
Fη (r)
Nη(r)

. (6.65)

Thus, using (6.56), we obtain

Fη (r) =
∫ r

0

pη(z) dz

=
1√

2π ψ0σ3

∫ ∞

0

∫ r

0

z

y3
e−

(z/y)2+ρ2

2ψ0 I0

(
zρ

yψ0

)
e
− (ln y−m3)2

2σ2
3 dz dy

= 1−
∫ ∞

0

Q1

(
ρ√
ψ0

,
r

y
√

ψ0

)
pλ(y) dy , (6.66)

where Q1(., .) (see [Pro95, p. 44]) is the generalized Marcum’s Q-function defined by

Qm(a, b) =

∞∫

b

z
(z

a

)m−1

e−
z2+a2

2 Im−1(az) dz , m = 1, 2, . . . (6.67)

In order to illustrate the results found in this section, let us consider the parameter
study shown in Figures 6.8(a)–6.8(d). Figures 6.8(a) and 6.8(b) depict the normalized
level-crossing rate Nη(r)/fmax calculated according to (6.61) for several values of the
parameters m3 and σ3. The graphs of the corresponding normalized average duration
of fades Tη−(r) · fmax are presented in Figures 6.8(c) and 6.8(d).

6.1.4 The Deterministic Extended Suzuki Process of Type I

In the preceding subsection, we have seen that the reference model for the extended
Suzuki process of Type I is based on the use of three real-valued coloured Gaussian
random processes νi(t) or µi(t) (i = 1, 2, 3) (see Figure 6.6). We now make use of the
principle of deterministic channel modelling explained in Section 4.1, and approximate
the ideal Gaussian random processes νi(t) by

ν̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , i = 1, 2, 3 . (6.68)

In the following, we therefore assume that the processes ν̃1(t), ν̃2(t), and ν̃3(t) are
uncorrelated in pairs. The uncorrelatedness property can be guaranteed without
problems for nearly all parameter design methods discussed in Section 6.1. After
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a few elementary network transformations, the continuous-time structure shown in
Figure 6.9 enabling the simulation of deterministic extended Suzuki processes of Type I
follows from the stochastic reference model (see Figure 6.6).

.

c1,1

c
11,N

c2,1

cos(2 π f +   θ )t1,1 1,1

cos(2 +π f    θt
1

)
11,N 1,N

cos(2 π f +   θ )t 2,12,1

cos(2 +   θπ f t
2

)
22,N 2,N

π f +   θ )sin(2 t1,1 1,1

+   θπ fsin(2 t
1 11,N 1,N

π f +   θ )sin(2 t 2,12,1

+   θπ fsin(2 t2,N2 22,N
ρ π

Deterministic lognormal process

ρf  t +      ) θρ=(t)m
2

sin(2 

.exp( )

ρ cos(2 π ρf  t +      ) θρ=(t)
1

m

µ (t)1
~

µ~ 2(t)

µ~ ρ(t)

ν~3(t)

σ3 m 3

µ~ 3 (t)

ξ (t)
~

~
(t)λ

η~ (t) .ξ (t)
~

(t)
~
λ=

cos(2 π +   θ )f

cos(2 π +   θ )f
c

3,1 3,1

3,1

t

t3,2 3,2

c3,2

cos(2 +   θπ f

c

t3,N3 3,N3
)

3,N3

c
1

c

)

)
1,N

1,1

22,N

- c 2,1

2
- c 2,N

c

Deterministic Rice process with cross-correlated underlying components

Figure 6.9: Deterministic simulation model for extended Suzuki processes (Type I).

Studying Figure 6.9, we notice that not only the design of the digital filters, which
are usually employed for spectral shaping, but also the realization of the Hilbert
transformer can be avoided. Moreover, deterministic simulation models offer the
advantage that all relations derived for the reference model before such as, for instance,
the expressions for the probability density function pη(z), the level-crossing rate Nη(r),
and the average duration of fades Tη−(r) can be used to approximately describe the
behaviour of deterministic extended Suzuki process η̃(t). In all those expressions, which
are of interest for us, we therefore only have to replace the characteristic quantities of
the reference model ψ0, ψ̈0, and φ̇0 by the corresponding quantities of the simulation
model, i.e.,
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ψ̃0 = r̃µ1µ1(0) = r̃ν1ν1(0) + r̃ν2ν2(0) = r̃µ2µ2(0) , (6.69a)

¨̃
ψ0 = ¨̃rµ1µ1(0) = ¨̃rν1ν1(0) + ¨̃rν2ν2(0) = ¨̃rµ2µ2(0) , (6.69b)

˙̃
φ0 = ˙̃rµ1µ2(0) = ˙̃rν1ν̌1(0)− ˙̃rν2ν̌2(0) = − ˙̃rµ2µ1(0) , (6.69c)

where the tilde (∼) refers to the fact that the underlying processes are deterministic
processes. These quantities determine the statistical behaviour of η̃(t) decisively and
can explicitly be calculated in a simple way. With the autocorrelation function

r̃νiνi
(τ) =

Ni∑
n=1

c2
i,n

2
cos(2πfi,nτ) , i = 1, 2, 3 , (6.70)

and the property (2.56a), it then follows from (6.69a)–(6.69c) [Pae95a]:

ψ̃0 =
N1∑

n=1

c2
1,n

2
+

N2∑
n=1

c2
2,n

2
, (6.71a)

¨̃
ψ0 = −2π2

[
N1∑

n=1

(c1,nf1,n)2 +
N2∑

n=1

(c2,nf2,n)2
]

, (6.71b)

˙̃
φ0 = π

[
N1∑

n=1

c2
1,nf1,n −

N2∑
n=1

c2
2,nf2,n

]
. (6.71c)

Throughout Chapter 6, we will exclusively employ the method of exact Doppler spread
described in detail in Subsection 5.1.6 for the computation of the model parameters ci,n

and fi,n. The Doppler phases θi,n ∈ (0, 2π] are assumed to be realizations (outcomes)
of a uniformly distributed random generator. For the method of exact Doppler spread,
however, we have to take into account that this procedure was originally derived for
the classical Jakes power spectral density (κ0 = 1). Its application on the restricted
Jakes power spectral density (κ0 ≤ 1) makes a slight modification necessary. For the
discrete Doppler frequencies fi,n, we now have [Pae98d]

fi,n =





fmax sin
[

π

2N1

(
n− 1

2

)]
, i = 1 , n = 1, 2, . . . , N1 ,

fmax sin
[

π

2N ′
2

(
n− 1

2

)]
, i = 2 , n = 1, 2, . . . , N2 ,

(6.72)

where

N ′
2 =

⌈
N2

2
π arcsin(κ0)

⌉
(6.73)

is an auxiliary variable that depends on the frequency ratio κ0 = fmin/fmax. In
connection with (6.72), the quantity N ′

2 restricts the discrete Doppler frequencies
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f2,n to the relevant interval (0, fmin]. One should take note of the fact that the
actual required number of harmonic functions N2 (≤ N ′

2), which is necessary for
the realization of ν̃2(t), is still defined by the user. We therefore call the auxiliary
variable N ′

2 the virtual number of harmonic functions of ν̃2(t). Moreover, the Doppler
coefficients ci,n are also affected by this modification, particularly since a power
adaptation is necessary. Now, the Doppler coefficients read as follows

ci,n =

{
σ0

√
1/N1 , i = 1 , n = 1, 2, . . . , N1 ,

σ0

√
1/N ′

2 , i = 2 , n = 1, 2, . . . , N2 .
(6.74)

The computation of the discrete Doppler frequencies f3,n of the third deterministic
Gaussian process ν̃3(t), whose power spectral density is Gaussian shaped, can be
accomplished by means of (5.76a) and (5.76b). After the adaptation of these equations
to the notation used here, we obtain the following set of equations

2n− 1
2N3

− erf
(

f3,n√
2σc

)
= 0 , ∀n = 1, 2, . . . , N3 − 1 , (6.75a)

and

f3,N3 =

√√√√ γN3

(2π)2
−

N3−1∑
n=1

f2
3,n , (6.75b)

where the meaning of σc = fmax/(κc

√
2 ln 2) follows from (6.43), and the parameter γ

is defined by (6.51). Due to ν3(t) ∼ N(0, 1), we compute c3,n according to the formula
c3,n =

√
2/N3 for all n = 1, 2, . . . , N3.

When using the method of exact Doppler spread, we obtain the results shown in
Figure 6.10 as a function of N1 = N2 = Ni for the convergence behaviour and for
the approximation quality of the normalized characteristic quantities ¨̃

ψ0/f2
max and

˙̃
φ0/fmax. Figures 6.10(a) and 6.10(b) also show us that in all cases where Ni ≥ 10
holds, the deviations between the presented characteristic quantities of the simulation
model and the ones of the reference model can be ignored.

Let Ni ≥ 7, then (6.61) can be considered an excellent approximation for the level-
crossing rate of the simulation model Ñη(r), if the characteristic quantities of the
reference model (ψ0, ψ̈0, φ̇0) and (α, β, γ) are replaced there by the corresponding
quantities of the simulation model (ψ̃0,

¨̃
ψ0,

˙̃
φ0) and (α̃, β̃, γ̃), respectively. The same

of course also holds for the average duration of fades T̃η−(r) of the simulation
model. Hence, Ñη(r) and T̃η−(r) must not necessarily be determined from lengthy
and time-consuming simulation runs, but they can be determined directly by solving
the integral equation (6.61) and making use of (6.65) in conjunction with (6.71a)–
(6.71c). Nevertheless, if Ñη(r) (T̃η−(r)) is determined by means of simulation of the
fading envelope η̃(t) in the following, then this only serves to support the obtained
theoretical results. We will see subsequently that the deviations between Ñη(r) and
Nη(r) are actually extremely small, so that a further analysis of the facts of the matter
is unnecessary at this point.
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Figure 6.10: Illustration of (a) ψ̈0/f2
max and

¨̃
ψ0/f2

max as well as (b) φ̇0/fmax and
˙̃
φ0/fmax (MEDS, σ2

0 = 1, κ0 = 1/2).

6.1.5 Applications and Simulation Results

In this subsection, we will show how the statistics of the channel model can be
adapted to the statistics of real-world channels by optimizing the relevant parameters
of the reference model. Here we are not satisfied with an adaptation of the first order
statistics, but we include the statistics of the second order in the design procedure as
well. Starting from the fitted reference model, the parameters of the corresponding
deterministic simulation model will be determined afterwards. At the end of this
subsection, the verification of the proposed procedure will then follow by means of
simulation as well.

The measurement results of the complementary cumulative distribution function2

F ?
η+

(r) [Figure 6.11(a)] and the level-crossing rate N?
η (r) [Figure 6.11(b)] considered

here were taken from the literature [But83]. For the measurement experiments carried
out therein, a helicopter equipped with an 870 MHz transmitter and a vehicle
with a receiver were used to simulate a real-world satellite channel. Concerning the
relative location of the helicopter and the mobile receiver, the elevation angle was
held constant at 15◦. One test route led through regions, in which the line-of-sight
component was heavily shadowed, another one through regions with light shadowing.
The measurement results of this so-called equivalent satellite channel have also been
used in [Loo91]. Therefore, they offer a suitable basis for a fair comparison of the
procedures. Further reports on measurement results of real-world satellite channels
can be found, e.g., in [Huc83, Vog88, Vog90, Vog95].

Now let us combine all relevant model parameters, which decisively determine the
statistical properties of the extended Suzuki process (Type I), into a parameter vector
denoted and defined by Ω := (σ0, κ0, ρ, fρ, σ3, m3). In practice, the frequency ratio

2 We mention here that the complementary cumulative distribution function Fη+ (r) = P (η(t) > r)
and the cumulative distribution function Fη− (r) = P (η(t) ≤ r) are generally related by Fη+ (r) =
1− Fη− (r).
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κc = fmax/fc is in general greater than 10. According to the statements made in
Subsection 6.1.2, that parameter in this case exerts no influence on the statistics of
the first and second order of η(t). This is the reason, why κc has not been included in
the parameter vector Ω. Without restriction of generality, we will therefore arbitrarily
fix the value of the frequency ratio κc to 20. Moreover, without having to take any
further restrictions into account, we also choose a priori θρ = 0.

As suitable measure of the deviations between the complementary distribution
functions Fη+(r/ρ) and F ?

η+
(r/ρ) as well as between the normalized level-crossing

rates Nη(r/ρ)/fmax and N?
η (r/ρ)/fmax, we introduce the following error function

E2(Ω) :=

{
M∑

m=1

[
W1

(
rm

ρ

)(
F ?

η+

(
rm

ρ

)
− Fη+

(
rm

ρ

))]2
}1/2

+
1

fmax

{
M∑

m=1

[
W2

(
rm

ρ

)(
N?

η

(
rm

ρ

)
−Nη

(
rm

ρ

))]2
}1/2

, (6.76)

where M is the number of different levels rm at which the measurements were taken.
In addition, W1(·) and W2(·) denote two weighting functions, which we here want
to choose proportionally to the reciprocals of F ?

η+
(·) and N?

η (·), respectively. The
optimization of the components of the parameter vector Ω is carried out numerically
by applying the quasi-Newton procedure according to Fletcher-Powell [Fle63].

We first perform the optimization by using the classical Jakes power spectral density.
Therefore, we keep the parameter κ0 = fmin/fmax constant at the value κ0 = 1
during the minimization. Furthermore, we also fix fρ to the value fρ = 0, so that
the extended Suzuki model simplifies to the conventional Rice-lognormal model. Now,
we are confronted with the problem that there are no free parameters available for
the optimization of the normalized level-crossing rate Nη(r/ρ)/fmax, because all the
remaining model parameters (σ0, ρ, σ3, m3) are completely used for the optimization
of the complementary cumulative distribution function Fη+(r/ρ). In other words, a
better approximation of the second order statistics is only possible at the expense of a
worse approximation of the first order statistics. We will not yet make this compromise
at this point. For the moment, we will be content with the approximation of Fη+(r/ρ),
and temporarily put W2(r/ρ) equal to 0. The results of the parameter optimization
for regions with light and heavy shadowing are listed in Table 6.1.

Table 6.1: The optimized parameters of the reference model for areas with heavy and
light shadowing (without optimization of κ0 and fρ).

Shadowing σ0 ρ σ3 m3

heavy 0.1847 0.0554 0.1860 0.3515
light 0.3273 0.9383 0.0205 0.1882
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Studying Figure 6.11(a), where the resulting complementary cumulative distribution
function Fη+(r/ρ) is depicted, one can see that this function can be fitted very closely
to the given measurement results. However, it becomes clear from Figure 6.11(b)
that these satisfying results cannot be obtained for the normalized level-crossing rate
Nη(r/ρ)/fmax. The deviations from the measurement results are partly more than 300
per cent in this case. The deeper reason of this mismatching is due to the far too high
Doppler spread of the Jakes power spectral density.
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Figure 6.11: (a) Complementary cumulative distribution function Fη+(r/ρ) and (b)
normalized level-crossing rate Nη(r/ρ)/fmax for regions with heavy and
light shadowing (without optimization of κ0 and fρ).

For comparison and in order to confirm the results found, Figures 6.11(a) and 6.11(b)
also show the results obtained from a discrete-time simulation of the extended Suzuki
process. The deterministic processes ν̃1(t), ν̃2(t), and ν̃3(t) were in this case designed
by applying the techniques described in the preceding Subsection 6.1.4 (MEDS with
N1 = 15, N2 = 16, and N3 = 15).

The next step is to enable a reduction of the Doppler bandwidth and, thus, of the
Doppler spread as well, by including the parameter κ0 in the optimization procedure.
In order to exploit the full flexibility of the channel model, the optimization of the
parameter fρ will now also be permitted within the range −fmin ≤ fρ ≤ fmax. The
numerical minimization of the error function (6.76) then yields for the components of
the parameter vector Ω to the results presented in Table 6.2. With these parameters,
which have been optimized with respect to both Fη+(r/ρ) and Nη(r/ρ)/fmax, the
behaviour of Fη+(r/ρ) remains almost unchanged (cf. Figures 6.11(a) and 6.12(a).)
However, the actual advantages of the extended Suzuki model of Type I first become
apparent by studying the statistics of second order. Observe that due to the model
extension, the normalized level-crossing rate Nη(r/ρ)/fmax of the reference model can
now obviously be fitted to the measurement results better than in the case κ0 = 1 and
fρ = 0 (cf. Figures 6.11(b) and 6.12(b)).
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Table 6.2: The optimized parameters of the reference channel model for areas with
heavy and light shadowing (with optimization of κ0 and fρ).

Shadowing σ0 κ0 ρ σ3 m3 fρ/fmax

heavy 0.2022 4.4E-11 0.1118 0.1175 0.4906 0.6366
light 0.4497 5.9E-08 0.9856 0.0101 0.0875 0.7326
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Figure 6.12: (a) Complementary cumulative distribution function Fη+(r/ρ) and (b)
normalized level-crossing rate Nη(r/ρ)/fmax for regions with heavy and
light shadowing (with optimization of κ0 and fρ).

It should also be mentioned that the Rice factor (3.18) of the extended Suzuki model
(Type I) now reads as

cR =
ρ2

2ψ0
=

ρ2

σ2
0 [1 + 2

π arcsin(κ0)]
. (6.77)

Using the parameters listed in Table 6.2, we obtain the values cR = −5.15 dB (heavy
shadowing) and cR = 6.82 dB (light shadowing) for the Rice factor.

The verification of the analytical results is now again established by means of
simulation. Due to the fact that κ0 = fmin/fmax is very small in both cases determined
by light and heavy shadowing (see Table 6.2), the influence of ν2(t) or ν̃2(t) can
be neglected, and, consequently, N2 can be set to zero, which is synonymous with
an additional drastic reduction concerning the realization expenditure. The other
processes ν̃1(t) and ν̃3(t) are again realized by employing the method of exact Doppler
spread with N1 = 15 and N3 = 15 cosine functions, respectively. The simulation
results are also depicted in Figures 6.12(a) and 6.12(b). From these figures, it can be
realized that there is nearly an absolute correspondence between the reference model
and the simulation model.
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In order to illustrate the results, the Figures 6.13(a) and 6.13(b) both show us a
part of the simulated sequence of the deterministic extended Suzuki process η̃(t) for
regions with heavy and light shadowing, respectively. One recognizes that for a heavily
shadowed line-of-sight component (see Figure 6.13(a)), the average signal level is, all
in all, obviously smaller than for an only lightly shadowed line-of-sight component (see
Figure 6.13(b)). Also, the deep fades for heavy shadowing are much deeper than for
light shadowing.

(a)

0 0.5 1 1.5 2 2.5 3
-50

-40

-30

-20

-10

0

10

t (s)

20
 lo

g 
η̃(

t)

(b)

0 0.5 1 1.5 2 2.5 3
-50

-40

-30

-20

-10

0

10

t (s)

20
 lo

g 
η̃(

t)

Figure 6.13: Simulation of deterministic extended Suzuki processes η̃(t) of Type I
for regions with (a) heavy shadowing and (b) light shadowing (MEDS,
N1 = 15, N2 = 0, N3 = 15, fmax = 91Hz, κc = 20).

6.2 THE EXTENDED SUZUKI PROCESS OF TYPE II

In the preceding Section 6.1, it has been shown how a higher model class can be created
by introducing a correlation between the two Gaussian random processes determining
the Rice process. In this way, the flexibility of the statistical properties of the second
order could be increased. On the other hand, the statistical properties of the first
order were not influenced. The model described in Section 6.1, however, is not the
only possible one for which cross-correlated Gaussian random processes can be used.
A further possibility, which was first introduced in [Pae97a], will be discussed in this
section. We will see that a special type can be found for the cross-correlation function
of the real part and the imaginary part of a complex-valued Gaussian random process,
which not only increases the flexibility of the statistical properties of the second order
of the stochastic model for modelling the short-term fading, but also the ones of
the first order. In this model, the Rice, Rayleigh, and one-sided Gaussian random
processes are included as special cases. The long-term fading is again modelled by
means of a lognormal process as usual. The product of both processes, which is useful
for modelling short-term and long-term fading, is called extended Suzuki process of
Type II.
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The description of the extended Suzuki process (of Type II) and the derivation of its
statistical properties of first and second order will be the aim of this section. We will
at first deal with the modelling and analysis of short-term fading.

6.2.1 Modelling and Analysis of the Short-Term Fading

The modelling of short-term fading will be performed by considering the reference
model depicted in Figure 6.14. In the following, this model will be described.

(t)µ2

θ ρ

(t)µρ (t)ξ
H  (f)o

n ο (t) νο (t)

m1 = ρ θ ρcos

 Hilbert

m = ρ sin2sin

cos θ o

θ o

(t)1µ

WGN

  transformer

Figure 6.14: Reference model for stochastic processes ξ(t) with cross-correlated
Gaussian random processes µ1(t) and µ2(t).

Regarding this figure, one should notice that the complex-valued Gaussian random
process

µ(t) = µ1(t) + jµ2(t) (6.78)

with the cross-correlated components µ1(t) and µ2(t) is derived from a single real-
valued zero-mean Gaussian random process ν0(t). In order to simplify the model, we
will in the following assume that the Doppler frequency of the line-of-sight component
is equal to zero, and, thus, the line-of-sight component is described by the time-
invariant expression (3.3), i.e.,

m = m1 + jm2 = ρejθρ . (6.79)

As for the preceding models, we will also derive a further stochastic process for this
one by taking the absolute value of the complex-valued Gaussian random process
µρ(t) = µ(t) + m, i.e.,

ξ(t) = |µρ(t)| =
√

(µ1(t) + m1)2 + (µ2(t) + m2)2 . (6.80)

We will see in Subsection 6.2.1.1 that Rice, Rayleigh, and one-sided Gaussian random
processes are merely special cases of this process. To do justice to this property, the
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output process of the model shown in Figure 6.14 will be called extended Rice process
in the following.

The Doppler power spectral density Sν0ν0(f) of the process ν0(t) is described by the
function (see Figure 6.15(a))

Sν0ν0(f) =





σ2
0

πfmax

√
1− (f/fmax)2

, |f | ≤ κ0 · fmax ,

0 , |f | > κ0 · fmax ,

(6.81)

where 0 < κ0 ≤ 1. The symmetrical Doppler power spectral density Sν0ν0(f) as
defined above is called the restricted Jakes power spectral density. We note that for
the special case κ0 = 1, the (classical) Jakes power spectral density (3.8) follows from
the restricted Jakes power spectral density (6.81). The underlying physical model
of the restricted Jakes power spectral density is based on the simplified assumption
that in the presence of spatially limited obstacles or if sector antennas are used, the
electromagnetic waves, whose angles of arrival lie within the intervals (−α0, α0) and
(π − α0, π + α0), do not make a contribution to the received signal. Here, α0 will be
restricted to the range (0, π/2]. Furthermore, α0 can be related to the parameter κ0

via the equation κ0 = fmin/fmax = cos α0. All angles of arrival, which do not lie in
any of the intervals just mentioned, are again assumed to be uniformly distributed.
The actual reason for introducing the restricted Jakes power spectral density in our
model is not to be found in the fitting of the theoretical Doppler power spectral
density to power spectral densities rarely seen in practice. Instead of this, the variable
κ0 will give us a simple and an effective chance to reduce the Doppler spread of the
Jakes power spectral density, which is often too large compared with practice.

From Figure 6.14, we can read the relations

µ1(t) = ν0(t) (6.82)

and

µ2(t) = cos θ0 · ν0(t) + sin θ0 · ν̌0(t) , (6.83)

where the parameter θ0 will be kept restricted to the interval [−π, π), and ν̌0(t)
denotes the Hilbert transform of the coloured Gaussian random process µ0(t). The
spectral shaping of ν0(t) in the reference model is obtained by filtering of white
Gaussian noise n0(t) ∼ N(0, 1), where we again assume that the filter is real-valued
and completely described by the transfer function H0(f) =

√
Sν0ν0(f).

The autocorrelation functions rµ1µ1(τ) and rµ2µ2(τ), as well as the cross-correlation
functions rµ1µ2(τ) and rµ2µ1(τ) can be expressed in terms of the autocorrelation
function rν0ν0(τ) of the process ν0(t) and the cross-correlation function rν̌0ν0(τ) of
the processes ν̌0(t) and ν0(t) as follows:

rµ1µ1(τ) = rµ2µ2(τ) = rν0ν0(τ) , (6.84a)

rµ1µ2(τ) = cos θ0 · rν0ν0(τ)− sin θ0 · rν̌0ν0(τ) , (6.84b)
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rµ2µ1(τ) = cos θ0 · rν0ν0(τ) + sin θ0 · rν̌0ν0(τ) . (6.84c)

One should be aware of the influence of the parameter θ0 here. Note that this
parameter does not have any influence on the autocorrelation functions rµ1µ1(τ) and
rµ2µ2(τ), but on the cross-correlation functions rµ1µ2(τ) and rµ2µ1(τ).

Substituting the relations (6.84a)–(6.84c) into (6.5), we obtain the following expression
for the autocorrelation function rµµ(τ) of the complex-valued process µ(t) = µ1(t) +
jµ2(t)

rµµ(τ) = 2rν0ν0(τ)− j2 sin θ0 · rν̌0ν0(τ) . (6.85)

The Fourier transform of the above result gives us the power spectral density in the
form

Sµµ(f) = 2Sν0ν0(f)− j2 sin θ0 · Sν̌0ν0(f) . (6.86)

From (2.56b) and (2.56d), we obtain the relation Sν̌0ν0(f) = j sgn (f)·Sν0ν0(f), so that
Sµµ(f) can now be expressed in terms of the restricted Jakes power spectral density
Sν0ν0(f) as follows

Sµµ(f) = 2[1 + sgn (f) sin θ0] · Sν0ν0(f) . (6.87)

Note that Sµµ(f) is an unsymmetrical function for all values of θ0 ∈ (−π, π)\{0}. An
example of the power spectral density Sµµ(f) is depicted in Figure 6.15(b), where the
value 19.5◦ has been chosen for the parameter θ0.
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Figure 6.15: Doppler power spectral densities: (a) restricted Jakes PSD Sν0ν0(f) and
(b) Sµµ(f) (θ0 = 19.5◦).

Deriving the statistical properties of ξ(t) = |µρ(t)| and ϑ(t) = arg{µρ(t)}, we will
again make use of the abbreviations (6.11a) and (6.11b). Therefore, we substitute
(6.84a) into (6.11a) and (6.84b) into (6.11b), so that after some lengthy but simple
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algebraic computations, the characteristic quantities of the extended Rice model can
be written as follows:

ψ
(0)
0 = ψ0 =

2
π

σ2
0 arcsin(κ0) , (6.88a)

ψ
(1)
0 = ψ̇0 = 0 , (6.88b)

ψ
(2)
0 = ψ̈0 = −ψ0 · 2(πfmax)2

{
1− sin[2 arcsin(κ0)]

2 arcsin(κ0)

}
, (6.88c)

φ
(0)
0 = φ0 = ψ0 · cos θ0 , (6.88d)

φ
(1)
0 = φ̇0 = 4σ2

0fmax(1−
√

1− κ2
0 ) · sin θ0 , (6.88e)

φ
(2)
0 = φ̈0 = ψ̈0 · cos θ0 , (6.88f)

where 0 < κ0 ≤ 1 and −π ≤ θ0 < π. A comparison between the equations (6.88a)–
(6.88f) and (6.12a)–(6.12f) shows us that for the present model even the quantities
φ0 and φ̈0 are in general different from zero. Only for the special case θ0 = ±π/2,
do we have φ0 = φ̈0 = 0. Hence, there are reasons for supposing that the statistical
properties of the extended Rice process are different from those of the classical Rice
process.

The starting point, which enables the analysis of the statistical properties of extended
Rice processes, is again the multivariate Gaussian distribution of the processes µρ1(t),
µρ2(t), µ̇ρ1(t), and µ̇ρ2(t) at the same time instant t [see (6.14)]. For the present
model, where it was assumed for simplification that fρ = 0, the multivariate Gaussian
distribution (6.14) is completely described by the column vectors

x =




x1

x2

ẋ1

ẋ2


 and m =




m1

m2

ṁ1

ṁ2


 =




ρ cos θρ

ρ sin θρ

0
0


 (6.89a, b)

as well as by the covariance or correlation matrix

Cµρ(0) = Rµ(0) =




ψ0 φ0 0 φ̇0

φ0 ψ0 −φ̇0 0

0 −φ̇0 −ψ̈0 −φ̈0

φ̇0 0 −φ̈0 −ψ̈0




. (6.90)

Employing the relations (6.88d) and (6.88f) results in

Cµρ(0) = Rµ(0) =




ψ0 ψ0 cos θ0 0 φ̇0

ψ0 cos θ0 ψ0 −φ̇0 0

0 −φ̇0 −ψ̈0 −ψ̈0 cos θ0

φ̇0 0 −ψ̈0 cos θ0 −ψ̈0




. (6.91)
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Now, after substituting (6.89a, b) and (6.91) into (6.14), the desired joint probability
density function pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) of our model can be calculated. We then
transform the Cartesian coordinates (x1, x2) of this density to polar coordinates (z, θ)
by means of (6.22a,b). After some further algebraic manipulations, we will succeed in
converting the joint probability density function (6.24) to the following form [Pae97a]

pξξ̇ϑϑ̇(z, ż, θ, θ̇) =
z2

(2π)2βψ0 sin2 θ0

· e−
1

2ψ0 sin2 θ0
[z2+ρ2−2zρ cos(θ−θρ)]

·e
cos θ0

2ψ0 sin2 θ0
[z2 sin 2θ+ρ2 sin 2θρ−2zρ sin(θ+θρ)]

·e−
1

2β(1+cos θ0·sin 2θ) ·
�

ż+
φ̇0[ρ sin(θ−θρ)−cos θ0(z cos 2θ−ρ cos(θ+θρ))]

ψ0 sin2 θ0

�2

·e−
z2(1+cos θ0·sin 2θ)

2β sin2 θ0
·
�

θ̇+
φ̇0[ρ cos(θ−θρ)−z]−ψ0ż cos θ0·cos 2θ

ψ0z(1+cos θ0·sin 2θ)

�2

(6.92)

for z ≥ 0, |ż| < ∞, |θ| ≤ π, and |θ̇| < ∞. Here, one should note that the quantity β in
(6.92) is no longer given by (6.28), but is defined by the extended expression

β = −ψ̈0 − φ̇2
0

ψ0 sin2 θ0

. (6.93)

In the following subsection, we will derive the probability density function of the
amplitude ξ(t) and the phase ϑ(t) from the joint probability density function (6.92).
The analysis of the level-crossing rate and the average duration of fades of ξ(t) will
then follow subsequently.

6.2.1.1 Probability Density Function of the Amplitude and the Phase

For the probability density function of the extended Rice process ξ(t), denoted by
pξ(z), we obtain the following result after substituting (6.92) into (6.29)

pξ(z) =
z

2πψ0| sin θ0|e
− z2+ρ2

2ψ0 sin2 θ0

·
π∫

−π

e
zρ cos(θ−θρ)

ψ0 sin2 θ0 · e
cos θ0

2ψ0 sin2 θ0
[z2 sin 2θ+ρ2 sin 2θρ−2zρ sin(θ+θρ)]

dθ, z ≥ 0 . (6.94)

Exactly as for conventional Rice processes, the probability density function pξ(z) in
this case also depends on the mean power of the processes µ1(t) and µ2(t), i.e., ψ0,
as well as on the amplitude ρ of the line-of-sight component. Moreover, the density
of the extended Rice process is also determined by the parameter θ0 and — what is
surprising at first — by the phase θρ of the line-of-sight component. We will understand
this property as soon as we have derived the corresponding simulation model (see
Subsection 6.2.3). In order to illustrate the results, we will study Figures 6.16(a) and
6.16(b), where the probability density function (6.94) is shown for various values of
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the parameters θ0 and θρ, respectively. It should be pointed out that even for this
model, the density pξ(z) neither depends on the first and second time derivative of
the autocorrelation function (6.11a), i.e., ψ̇0 and ψ̈0, nor on the first and second time
derivative of the cross-correlation function (6.11b), i.e., φ̇0 and φ̈0.
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Figure 6.16: Probability density function pξ(z) of extended Rice processes ξ(t) for
various values of the parameters (a) θ0 (ψ0 = 1, ρ = 1, θρ = 127◦) and
(b) θρ (ψ0 = 1, ρ = 1, θ0 = 45◦).

In the text that follows, we will study some special cases. Especially, if we have
θ0 = ±π/2, then the integral in (6.94) can be solved explicitly, and it again follows
the Rice distribution

pξ(z) =
z

ψ0
e−

z2+ρ2

2ψ0 I0

(
zρ

ψ0

)
, z ≥ 0 , (6.95)

with ψ0 according to (6.88a). For a shadowed line-of-sight component, i.e., ρ = 0, and,
at first, for arbitrary values of θ0 ∈ [−π, π), the following density follows from (6.94)

pξ(z) =
z

ψ0| sin θ0|e
− z2

2ψ0 sin2 θ0 I0

(
z2 cos θ0

2ψ0 sin2 θ0

)
, z ≥ 0 , (6.96)

from which, especially for θ0 = ±π/2, the Rayleigh distribution

pξ(z) =
z

ψ0
e−

z2
2ψ0 , z ≥ 0 , (6.97)

and for θ0 → 0, the one-sided Gaussian distribution

pξ(z) =
1√
πψ0

e−
z2
4ψ0 , z ≥ 0 , (6.98)

follows. Consequently, the Rice distribution, the Rayleigh distribution, and the
one-sided Gaussian distribution are special cases of the extended Rice distribution
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(6.94).

For the probability density function of the phase ϑ(t), denoted by pϑ(θ), we obtain,
after substituting (6.92) into (6.31), the expression

pϑ(θ) =
| sin θ0|

2π(1− cos θ0 · sin 2θ)
· e−

ρ2(1−cos θ0·sin 2θρ)

2ψ0 sin2 θ0

·
{

1 +
√

πf(θ)ef2(θ)[1 + erf (f(θ))]
}

, −π ≤ θ ≤ π , (6.99)

where

f(θ) =
ρ[cos(θ − θρ)− cos θ0 · sin(θ + θρ)]
| sin θ0|

√
2ψ0(1− cos θ0 · sin 2θ)

. (6.100)

Exactly like the probability density function of the amplitude [see (6.94)], the
probability density function of the phase merely depends on the parameters ψ0, ρ, θ0,
and θρ, and not on the quantities ψ̇0, ψ̈0, φ̇0, and φ̈0.

The same probability density function of the phase, that we became acquainted with
during the analysis of Rice processes with uncorrelated Gaussian random processes
µ1(t) and µ2(t) in Subsection 3.3.1 [see there (3.22)], also follows from (6.99) for
the special case θ0 = ±π/2. If the parameters ρ and θ0 are determined by ρ = 0
and θ0 = ±π/2, then the phase ϑ(t) is uniformly distributed within the interval [−π, π].

Finally, the influence of the parameters θ0 and θρ on the behaviour of the density
pϑ(θ) shall be made clear by the Figures 6.17(a) and 6.17(b), respectively.
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Figure 6.17: Probability density function pϑ(θ) of the phase ϑ(t) for various values
of the parameters (a) θ0 (ψ0 = 1, ρ = 1, θρ = 45◦) and (b) θρ

(ψ0 = 1, ρ = 1, θ0 = 45◦).
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6.2.1.2 Level-Crossing Rate and Average Duration of Fades

For the calculation of the level-crossing rate Nξ(r), the joint probability density
function pξξ̇(z, ż) of the stochastic processes ξ(t) and ξ̇(t) have to be known at the
same time instant t. For this density, we obtain the following integral expression after
substituting (6.92) into (6.34)

pξξ̇(z, ż) =
z

(2π)3/2ψ0

√
β| sin θ0|

e
− z2+ρ2

2ψ0 sin2 θ0

∫ π

−π

1√
1 + cos θ0 · sin 2θ

·e
zρ cos(θ−θρ)

ψ0 sin2 θ0 · e
cos θ0

2ψ0 sin2 θ0
[z2 sin 2θ+ρ2 sin 2θρ−2zρ sin(θ+θρ)]

·e−
1

2β(1+cos θ0·sin 2θ)

�
ż+

φ̇0[ρ sin(θ−θρ)−cos θ0(z cos 2θ−ρ cos(θ+θρ))]

ψ0 sin2 θ0

�2

dθ , (6.101)

for z ≥ 0 and |ż| < ∞. Here, ψ0, φ̇0, and β again are the quantities defined by (6.88a),
(6.88e), and (6.93), respectively. Within the interval (−π, π)\{0}, no value can be
found for the parameter θ0 in such a way that the stochastic processes ξ(t) and ξ̇(t)
become statistically independent, because pξξ̇(z, ż) 6= pξ(z) · pξ̇(ż) always holds. Even
for the special case θ0 = ±π/2, the equation (6.35) may follow from (6.101), but here
it has to be taken into consideration that the relations (6.88a)–(6.88f) hold now, so
that we have φ̇0 6= 0 (α 6= 0), and, thus, (6.101) can never be brought into the form
(6.36).

With the joint probability density function (6.101), all assumptions for the derivation
of the level-crossing rate Nξ(r) of extended Rice processes ξ(t) are made. We substitute
(6.101) into the definition (6.33), and, after some algebraic manipulations, obtain the
result

Nξ(r) =
r
√

β

(2π)3/2ψ0| sin θ0|
· e−

r2+ρ2

2ψ0 sin2 θ0

∫ π

−π

√
1 + cos θ0 · sin 2θ

·e
rρ cos(θ−θρ)

ψ0 sin2 θ0 e
cos θ0

2ψ0 sin2 θ0
[r2 sin 2θ+ρ2 sin 2θρ−2rρ sin(θ+θρ)]

·
{

e−g2(r,θ) +
√

πg(r, θ)[1 + erf (g(r, θ))]
}

dθ , r ≥ 0 , (6.102)

where the function g(r, θ) stands for

g(r, θ) = − φ̇0{ρ sin(θ − θρ)− cos θ0[r cos 2θ − ρ cos(θ + θρ)]}
ψ0 sin2 θ0

√
2β(1 + cos θ0 · sin 2θ)

. (6.103)

The quantities ψ0, φ̇0, and β are again defined by (6.88a), (6.88e), and (6.93),
respectively. It should be noted that we have made use of the integral [Gra81, vol. I,
eq. (3.462.5)]

∫ ∞

0

x e−ax2−2bx dx =
1
2a

{
1− b

√
π

a
e

b2
a

[
1− erf

(
b√
a

)]}
, a > 0 , (6.104)
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for the derivation of (6.102). Using (6.88a)–(6.88f), we easily find out that (6.102)
is proportional to the maximum Doppler frequency fmax, i.e., the normalised level-
crossing rate Nξ(r)/fmax is independent of the speed of the vehicle and the carrier
frequency, just as in the previous case. A brief parameter study, which makes the
influence of the parameters κ0, ρ, θ0, and θρ on the normalised level-crossing
rate Nξ(r)/fmax clear, is depicted in Figures 6.18(a)–6.18(d). The variation of κ0

(Figure 6.18(a)) and ρ (Figure 6.18 (b)) leads to curves, which are in principle similar
to those shown in Figure 6.3(a) and Figure 3.5(b), respectively. A further, more
powerful parameter exists, namely θ0, which has a decisive influence on the behaviour
of Nξ(r)/fmax, as can be seen in Figure 6.18(c). For the parameters (ψ0, κ0, ρ, θ0),
which give rise to the results shown in Figure 6.18(d), the value of the quantity θρ is
only of secondary importance.

Now, attention is given to some special cases. On the assumption that θ0 = ±π/2
holds, the level-crossing rate described by (6.37) follows from (6.102). If, in addition,
ρ = 0 holds, then Nξ(r) becomes directly proportional to the Rayleigh distribution
and can be brought into the form (6.38). Moreover, for the special case ρ = 0 and
θ0 → 0◦, one can show that the level-crossing rate of one-sided Gaussian random
processes follows from (6.102), i.e.,

Nξ(r) =
√

β

π
√

ψ0
e−

r2
4ψ0 , r ≥ 0 , (6.105)

where β is given by β = −ψ̈0 > 0 in the present case. Further special cases such as,
e.g., ρ = 0 in connection with arbitrary values for θ0 ∈ [−π, π) can also be analysed
easily with the help of (6.102).

When calculating the average duration of fades Tξ−(r) [see (6.40)], we also need to
know the cumulative distribution function Fξ−(r) of the extended Rice process ξ(t),
besides the level-crossing rate Nξ(r). For the former, we obtain the following double
integral by using the probability density function (6.94)

Fξ−(r) =
∫ r

0

pξ(z) dz

=
∫ r

0

z

2πψ0| sin θ0|e
− z2+ρ2

2ψ0 sin2 θ0 ·
∫ π

−π

e
zρ cos(θ−θρ)

ψ0 sin2 θ0

·e
cos θ0

2ψ0 sin2 θ0
·[z2 sin 2θ+ρ2 sin 2θρ−2zρ sin(θ+θρ)]

dθ dz , r ≥ 0 . (6.106)

According to (6.40), the average duration of fades Tξ−(r) of extended Rice processes
ξ(t) is then the quotient of (6.106) and (6.102).

Figures 6.19(a) to 6.19(d) clearly show the influence which the parameters κ0, ρ, θ0,
and θρ have on the normalised average duration of fades Tξ−(r) · fmax. The model
parameters, which lead to the results shown in Figures 6.18(a) to 6.18(d), have also
been used for the calculation of Tξ−(r) · fmax here. Varying the parameter κ0, we
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Figure 6.18: Normalized level-crossing rate Nξ(r)/fmax of extended Rice processes
(Type II) depending on: (a) κ0 (σ2

0 = 1, ρ = 0, θ0 = 45◦), (b)
ρ (ψ0 = 1, κ0 = 1, θρ = 45◦, θ0 = 45◦), (c) θ0 (ψ0 = 1, κ0 = 1, ρ = 0),
and (d) θρ (ψ0 = 1, κ0 = 1, ρ = 1, θ0 = 45◦).
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can recognize similar effects on Tξ−(r) · fmax in Figure 6.19(a) as in Figure 6.4(a).
Figure 6.19(b) shows that even at low levels r, an increase of ρ results in a reduction in
the normalised average duration of fades Tξ−(r) ·fmax. This is obviously in contrast to
the results depicted in Figure 3.6(b), where no considerable effects on Tξ−(r)·fmax can
be observed at low levels r by a variation of ρ. From Figure 6.19(c), it can be realized
that the parameter θ0 affects the behaviour of Tξ−(r) ·fmax at medium and high levels
r, whereas its influence at low levels r can be ignored (at least if the parameters are
chosen as in the present example: ψ0 = 1, κ0 = 1, and ρ = 0). Similarly, the exact
opposite relations hold for the variation of the parameter θρ (see Figure 6.19(d)).

6.2.2 The Stochastic Extended Suzuki Process of Type II

In [Pae97a], the extended Suzuki process of Type II, denoted by η(t), was introduced
as product process of the extended Rice process ξ(t) studied before and the lognormal
process λ(t) described in Subsection 6.1.2, i.e., η(t) = ξ(t) · λ(t). The structure of the
reference model corresponding to this process is depicted in Figure 6.20.

In the following, we will analyse the probability density function of the amplitude,
the level-crossing rate, and the average duration of fades of this model.

Let us assume that the coloured Gaussian random processes ν0(t) and ν3(t) are
statistically independent, which leads to the fact that the extended Rice process
ξ(t) and the lognormal process λ(t) are statistically independent as well. Due to the
multiplicative relation between the two statistically independent processes ξ(t) and
λ(t), the probability density function pη(z) of the extended Suzuki process of Type II
can be derived by using (6.94) and (6.49) as follows:

pη(z) =

∞∫

−∞

1
|y|pξ

(
z

y

)
· pλ(y) dy , (6.107a)

=

∞∫

−∞

1
|y|pξ(y) · pλ

(
z

y

)
dy , (6.107b)

=
1

2πψ0| sin θ0|

∞∫

0

e
− [ln(z/y)−m3]2

2σ2
3√

2πσ3(z/y)
· e−

y2+ρ2

2ψ0 sin2 θ0 ·
π∫

−π

e
yρ cos(θ−θρ)

ψ0 sin2 θ0

·e
cos θ0

2ψ0 sin2 θ0
[y2 sin 2θ+ρ2 sin 2θρ−2yρ sin(θ+θρ)]

dθ dy, z ≥ 0 . (6.107c)

Here, we deliberately preferred the relation (6.107b) to (6.107a), because the solution
of (6.107c) can then be performed more advantageously by means of numerical
integration techniques. For σ3 → 0 and m3 → 0, it follows pλ(z/y) → |y|δ(z − y)
and, thus, pη(z) → pξ(z), where pξ(z) is described by (6.94). In general, the
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Figure 6.19: Normalized average duration of fades Tξ−(r) · fmax of extended Rice

processes (Type II) depending on: (a) κ0 (σ2
0 = 1, ρ = 0, θ0 = 45◦), (b)

ρ (ψ0 = 1, κ0 = 1, θρ = 45◦, θ0 = 45◦), (c) θ0 (ψ0 = 1, κ0 = 1, ρ = 0),
and (d) θρ (ψ0 = 1, κ0 = 1, ρ = 1, θ0 = 45◦).
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Figure 6.20: Reference model for extended Suzuki processes (Type II).

probability density function (6.107c) depends on the mean power ψ0, the parameters
σ3, m3, ρ, θρ, and, last but not least, on θ0. Figures 6.21(a) and 6.21(b) let us
imagine what influence the parameters σ3 and m3, respectively, have on the behaviour
of the probability density function pη(z).

Next, we will calculate the level-crossing rate Nη(r) of extended Suzuki processes
(Type II). Since the joint probability density function pηη̇(z, ż) of the processes η(t)
and η̇(t) at the same time t is required for our purpose, we at first substitute the
relations (6.101) and (6.53) found for pξξ̇(z, ż) and pλλ̇(y, ẏ), respectively, into (6.58).
Thus,

pηη̇(z, ż) =
1

(2π)3/2ψ0

√
β| sin θ0|

·
∫ ∞

0

e
− [ln(z/y)−m3]2

2σ2
3√

2πσ3(z/y)2
· e−

y2+ρ2

2ψ0 sin2 θ0

·
∫ π

−π

e
yρ cos(θ−θρ)

ψ0 sin2 θ0 e
cos θ0

2ψ0 sin2 θ0
[y2 sin 2θ+ρ2 sin 2θρ−2yρ sin(θ+θρ)]

h(y, θ)
√

1 + cos θ0 · sin 2θ

·e−
(

ż+
φ̇0(z/y)[ρ sin(θ−θρ)−cos θ0(y cos 2θ−ρ cos(θ+θρ))]

ψ0 sin2 θ0

)

2β(z/y)2h2(y,θ)(1+cos θ0·sin 2θ) dθ dy, z ≥ 0, |ż| < ∞, (6.108)
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Figure 6.21: Probability density function pη(z) of extended Suzuki processes (Type II)
for various values of the parameters (a) σ3 (m3 = 1, ψ0 = 0.0412, ρ =
0.918, θρ = 86◦, θ0 = 97◦) and (b) m3 (σ3 = 0.5, ψ0 = 0.0412, ρ =
0.918, θρ = 86◦, θ0 = 97◦).

where

h(y, θ) =

√
1 +

γ(σ3y)2

β(1 + cos θ0 · sin 2θ)
. (6.109)

Here, ψ0, φ̇0, β, and γ again are the quantities introduced by (6.88a), (6.88e), (6.93),
and (6.51), respectively. If we furthermore substitute (6.108) into (6.57), we obtain
the result for the level-crossing rate Nη(r) of extended Suzuki processes of Type II
as follows

Nη(r) =
√

β

(2π)2σ3ψ0| sin θ0| ·
∫ ∞

0

e
− [ln(r/y)−m3]2

2σ2
3 · e−

y2+ρ2

2ψ0 sin2 θ0

·
∫ π

−π

h(y, θ)
√

1 + cos θ0 · sin 2θ

·e
yρ cos(θ−θρ)

ψ0 sin2 θ0 · e
cos θ0

2ψ0 sin2 θ0
[y2 sin 2θ+ρ2 sin 2θρ−2yρ sin(θ+θρ)]

·
{

e−[ g(y,θ)
h(y,θ) ]

2

+
√

π
g(y, θ)
h(y, θ)

[
1 + erf

(
g(y, θ)
h(y, θ)

)]}
dθ dy , r ≥ 0 , (6.110)

where the functions g(y, θ) and h(y, θ) are given by (6.103) and (6.109), respectively.

In the case σ3 → 0 and m3 → 0, it follows pλ(r/y) → |y|δ(r − y) and h(y, θ) → 1,
so that Nη(r), according to (6.110), converges towards the expression (6.102), which
describes the level-crossing rate of extended Rice processes. This result was to be
expected. Furthermore, it should be taken into account that although (6.110) can be
brought into the form (6.61) for the special case θ0 = ±π/2, however, the definitions
(6.88a)–(6.88f) still hold and not (6.12a)–(6.12f), so that, generally speaking, the
level-crossing rate of extended Suzuki processes of Type II cannot be mapped exactly
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onto that of Type I. The maximum Doppler frequency fmax is again proportional to
the level-crossing rate Nη(r), as can easily be shown by substituting (6.88a)–(6.88f)
into (6.110).

For the computation of the average duration of fades Tη−(r), we again make use of
the definition (6.65). For the necessary cumulative distribution function Fη−(r) =
P (η(t) ≤ r), we obtain the following double integral by means of (6.107c)

Fη−(r) =
∫ r

0

pη(z) dz

=
1

2πψ0| sin θ0|
∫ ∞

0

y

2

{
1 + erf

[
ln(r/y)−m3

σ3

]}
· e−

y2+ρ2

2ψ0 sin2 θ0

·
∫ π

−π

e
yρ cos(θ−θρ)

ψ0 sin2 θ0 · e
cos θ0

2ψ0 sin2 θ0
[y2 sin 2θ+ρ2 sin 2θρ−2yρ sin(θ+θρ)]

dθ dy . (6.111)

According to (6.65), the quotient of (6.111) and (6.110) results in the average duration
of fades Tη−(r) of extended Suzuki processes of Type II.

A few examples, which should help illustrate the results found for Nη(r) and Tη−(r) are
depicted in Figures 6.22(a) to 6.22(d). Figures 6.22(a) and 6.22(b) show the normalized
level-crossing rate Nη(r)/fmax, calculated according to (6.110) for various values of
the parameter m3 and κc = fmax/fc, respectively. In the logarithmic representation
of Figure 6.22(a), one can see that a change of the parameter m3 essentially causes
a horizontal shift of the normalized level-crossing rate. Figure 6.22(b) makes it clear
that the influence of the parameter κc is absolutely negligible, if κc takes on realistic
values, i.e., κc > 10. The normalized average duration of fades Tη−(r)·fmax, which was
calculated according to (6.65), is depicted in Figures 6.22(c) and 6.22(d) for different
values of m3 and κc, respectively.

6.2.3 The Deterministic Extended Suzuki Process of Type II

Referring to the stochastic model of the extended Suzuki process of Type II described
in the subsection before, we will now derive the corresponding deterministic model.
Therefore, we again make use of the principle of deterministic channel modelling (see
Section 4.1), and approximate the coloured zero-mean Gaussian random process ν0(t)
by a finite sum of weighted harmonic functions

ν̃0(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n) . (6.112)

With the Hilbert transform of the deterministic process above

ˇ̃ν0(t) =
N1∑

n=1

c1,n sin(2πf1,nt + θ1,n) , (6.113)
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Figure 6.22: Normalized level-crossing rate Nη(r)/fmax of extended Suzuki processes
(Type II) for various values of the parameters: (a) m3 (κc = 5) and (b) κc

(m3 = 0.5), as well as (c) and (d) the corresponding normalized average
duration of fades Tη−(r)·fmax (ψ0 = 0.0412, κ0 = 0.4553, ρ = 0.918, θρ =
86◦, θ0 = 97◦, σ3 = 0.5).
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we can transform the two relations (6.82) and (6.83) to the deterministic model.
Accordingly, we obtain

µ̃1(t) = ν̃0(t) (6.114)

and

µ̃2(t) = cos θ0 · ν̃0(t) + sin θ0 · ˇ̃ν0(t) . (6.115)

If we now substitute the deterministic process ν̃0(t) and its Hilbert transform ˇ̃ν0(t) by
the respective right-hand side of (6.112) and (6.113), then the generating deterministic
components can be written as follows:

µ̃1(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n) , (6.116)

µ̃2(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n − θ0) . (6.117)

At this point, the role of θ0 becomes clear: The parameter θ0 describes the phase shift
between the elementary harmonic functions µ̃1,n(t) and µ̃2,n(t) [see (4.27)]. Therefore,
the Doppler phases θ2,n of the second deterministic process µ̃2(t) depend on the
Doppler phases θ1,n of the first deterministic process µ̃1(t), because θ2,n = θ1,n − θ0

holds.

One may also take into account that for the Doppler coefficients ci,n and the Doppler
frequencies fi,n the relations c1,n = c2,n and f1,n = f2,n hold. In particular, for the
special case θ0 = ±90◦, the complex-valued deterministic process µ̃(t) = µ̃1(t)+jµ̃2(t)
can be represented as

µ̃(t) =
N1∑

n=1

c1,ne±j(2πf1,nt+θ1,n) . (6.118)

The deterministic lognormal process λ̃(t), which models the slow fading, is realized
exactly as shown in the bottom part of Figure 6.9. Accordingly, a further deterministic
process ν̃3(t) is necessary, which has to be designed in such a way that it does
not correlate with the process ν̃0(t). Since these two processes are (approximately)
Gaussian distributed, the statistical independence of ν̃0(t) and ν̃3(t) follows from the
uncorrelatedness. As a result, the deterministic processes ξ̃(t) and λ̃(t) derived from
these are also statistically independent.

By using (6.116) and (6.117), the stochastic reference model for the extended
Suzuki process of Type II (see Figure 6.20) can now easily be transformed into the
deterministic simulation model shown in Figure 6.23.

The statistical properties of deterministic extended Suzuki processes η̃(t) of Type II
can approximately be described by the relations pη(z), Nη(r), and Tη−(r) derived for



THE EXTENDED SUZUKI PROCESS OF TYPE II 203

.exp( )

.

cos(2 +   θπ f )t 1,21,2

cos(2 +   θπ f t )1,N1 1,N1

cos(2 π f )+   θ    θ- 0t1,1 1,1

cos(2 +   θπ f )   θ-1,2 1,2 0t

. .
 .

cos(2 +   θπ f )   θ- 01,N1
t 1,N1

cos(2 π f +   θ 1,11,1 t )

µ
3
(t)~

3σ m 3

ν
3

Deterministic lognormal process

~ (t)
λ (t)
~

ξ (t)
~

(t)µ
2ρ

~µ~
2
(t)

µ~1(t) (t)µρ1

~

(t)µρ
~

η (t)~
θρ

θρ

c

c.
 . 

.

c

c.
 . 

.

c

c.
 . 

.

c

c1,1

1,N1

1,2

c1,1

1,2

1,N1

ρ
1

m   =
. .

 .
. .

 .

cos(2 π f +   θt )

+   θπ f t )

cos(2 +   θπ f t )

3,1 3,1

3,1

3,2 3,2

3,2

3,N3 3,N3

3,N3

cos(2 

ρm   =
2

sin

cos

         Deterministic process with cross-correlated underlying
components

Figure 6.23: Deterministic simulation model for extended Suzuki processes (Type II).

the reference model before, if the characteristic quantities (6.88a)–(6.88f) are there
replaced by those corresponding to the simulation model. In the following, we will
derive the characteristic quantities of the simulation model. We therefore need the
autocorrelation functions of the processes µ̃1(t) and µ̃2(t)

r̃µ1µ1(τ) = r̃µ2µ2(τ) =
N1∑

n=1

c2
1,n

2
cos(2πf1,nτ) (6.119)

as well as the cross-correlation function calculated according to (4.13)

r̃µ1µ2(τ) = r̃µ2µ1(−τ) =
N1∑

n=1

c2
1,n

2
cos(2πf1,nτ − θ0) . (6.120)

With these two functions, the characteristic quantities of the simulation model
ψ̃

(n)
0 = r̃

(n)
µ1µ1(0) and φ̃

(n)
0 = r̃

(n)
µ1µ2(0) can easily be determined for n = 0, 1, 2. We

immediately obtain the following closed-form expressions:
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ψ̃
(0)
0 = ψ̃0 =

N1∑
n=1

c2
1,n

2
, (6.121a)

ψ̃
(1)
0 = ˙̃

ψ0 = 0 , (6.121b)

ψ̃
(2)
0 = ¨̃

ψ0 = −2π2
N1∑

n=1

(c1,nf1,n)2 , (6.121c)

φ̃
(0)
0 = φ̃0 = ψ̃0 · cos θ0 , (6.121d)

φ̃
(1)
0 = ˙̃

φ0 = π

N1∑
n=1

(c2
1,nf1,n) · sin θ0 , (6.121e)

φ̃
(2)
0 = ¨̃

φ0 = ¨̃
ψ0 · cos θ0 . (6.121f)

Since this model uses the restricted Jakes power spectral density (κ0 ≤ 1), we
appropriately return to the modified method of exact Doppler spread described in
Subsection 6.4.1 in order to calculate the discrete Doppler frequencies f1,n and the
Doppler coefficients c1,n. After adjusting the equations (6.72)–(6.74) to the present
model, we obtain

f1,n = fmax sin
[

π

2N ′
1

(
n− 1

2

)]
and c1,n = σ0

√
2

N ′
1

(6.122a, b)

for n = 1, 2, . . . , N1, where N1 denotes the actual (user defined) number of harmonic
functions and

N ′
1 =

⌈
N1

2
π arcsin(κ0)

⌉
(6.123)

is the virtual number of harmonic functions.

For the Doppler phases θ1,n, it is assumed that they are realizations of a random
variable uniformly distributed within the interval (0, 2π].

The calculation of the discrete Doppler frequencies f3,n of the deterministic Gaussian
process ν̃3(t) is performed exactly according to (6.75a) and (6.75b). Accordingly, for
c3,n again the formula c3,n =

√
2/N3 for all n = 1, 2, . . . , N3 is used. The remaining

parameters of the simulation model (ρ, θρ,m3, σ3) are identical to those of the reference
model.

With (6.122a) and (6.122b), the characteristic quantities of the simulation model
(6.121a)–(6.121f) can now be evaluated. A comparison with the corresponding
quantities of the reference model (6.88a)–(6.88f) then gives us the desired information
on the precision of the simulation model. As an example, the convergence behaviour
of the normalized quantities ¨̃

ψ0/f2
max and ˙̃

φ0/fmax is depicted in Figures 6.24(a) and
6.24(b), respectively. Just as in Figures 6.10(a) and 6.10(b), one can here as well see
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that the deviations of the depicted quantities of the simulation model are negligible
compared to the reference model for all cases relevant in practice (i.e., N1 ≥ 7).
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Figure 6.24: Illustration of (a) ψ̈0/f2
max and

¨̃
ψ0/f2

max as well as (b) φ̇0/fmax and
˙̃
φ0/fmax in terms of the N1 (MEDS, σ2

0 = 2, κ0 = 1/2, θ0 = 45◦).

For the level-crossing rate Ñη(r) and the average duration of fades T̃η−(r) of the
simulation model the statements made in Subsection 6.1.4 are also valid in the present
case.

6.2.4 Applications and Simulation Results

This subsection intends to show us how the statistical properties of stochastic and
deterministic extended Suzuki processes of Type II can be brought into accordance
with those of measured channels. This is again performed by optimizing the primary
model parameters. The basis for this is provided by the measurement results found
in the literature [But83] (F ?

η+
(r), N?

η (r), T ?
η−(r)), which we have already introduced in

Subsection 6.1.5. Only in this way, is a fair performance-comparison between extended
Suzuki processes of Type I and those of Type II possible.

In the present case, the parameter vector Ω is defined by

Ω := (σ0, κ0, θ0, ρ, θρ, σ3,m3, κc) . (6.124)

This time, the vector Ω contains all primary model parameters of the extended Suzuki
process (Type II), also including κc, although exactly this parameter has no influence
worth mentioning on the first and second order statistics of the process η(t), if κc

exceeds the value 10. It will be left to the optimization procedure to find a suitable
value for this quantity.

Since the error function E2(Ω) [see (6.76)] has turned out to be useful in our previous
applications, we will also make use of it in the present minimization problem, where we
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again apply the Fletcher-Powell method [Fle63]. Of course, concerning the evaluation
of (6.76), it has to be taken into account that now the complementary cumulative
distribution function Fη+(r/ρ) = 1 − Fη−(r/ρ) has to be calculated by means of
(6.111) and that the level-crossing rate Nη(r/ρ) is defined by (6.110). Table 6.3 shows
the results obtained for the components of the parameter vector Ω after the numerical
minimization of the error function E2(Ω).

Table 6.3: The optimized primary parameters of the reference channel model for areas
with light and heavy shadowing.

Shadowing σ0 κ0 θ0 ρ θρ σ3 m3 κc

heavy 0.2774 0.506 30◦ 0.269 45◦ 0.0905 0.0439 119.9
light 0.7697 0.4045 164◦ 1.567 127◦ 0.0062 -0.3861 1.735

With the results shown in Table 6.3 for the parameters σ0, κ0, and ρ, the Rice factor
cR [see (3.18)] of the extended Suzuki model (Type II), given by

cR =
ρ2

2ψ0
=

π

4
· ρ2

σ2
0 arcsin(κ0)

, (6.125)

takes on the values cR = 1.43 dB (heavy shadowing) and cR = 8.93 dB (light
shadowing).

Figure 6.25(a) shows the complementary cumulative distribution function Fη+(r/ρ)
of the reference model in comparison with that of the real-world channel F ?

η+
(r/ρ).

At heavy shadowing, we obtain minor deviations at low (normalized to ρ) levels r/ρ.
The deviations almost disappear as soon as r/ρ takes on medium or even large values.
At light shadowing, on the other hand, the deviations are largest at medium levels,
whereas they can be ignored at low levels.

Figure 6.25(b) shows the normalized level-crossing rate Nη(r/ρ)/fmax of the reference
model and that of the measured channel N?

η (r/ρ)/fmax. One can see that the two level-
crossing rates match each other astonishingly well over the whole depicted amplitude
range.

A comparison between the corresponding normalized average duration of fades is
shown in Figure 6.25(c). The results presented there are quite good already, but it
seems a likely supposition that there is still room for further improvement, which we
can indeed achieve by a further model extension, as we will see in the next section.

At this point, a comparison of the performance between the two extended Suzuki
processes (Type I and Type II) suggests itself. With regard to the complementary
cumulative distribution function, both model types provide the same good results to
a certain extent (compare Figure 6.25(a) with Figure 6.12(a)). However, the flexibility
of the level-crossing rate of the extended Suzuki process of Type II seems to be higher
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Figure 6.25: (a) Complementary cumulative distribution function Fη+(r/ρ), (b)
normalized level-crossing rate Nη(r/ρ)/fmax, and (c) normalized average
duration of fades Tη−(r/ρ)·fmax for areas with heavy and light shadowing.
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than that of Type I, which would explain the definitely better results of Figure 6.25(b)
compared to those of Figure 6.12(b). To be fair though, we have to add that the higher
flexibility comes along with a greater complexity of the reference model. Since the
achievable improvements can only be reached with a higher numerical computation
expenditure, the user himself has to decide from case to case, i.e., in our terminology
“from channel to channel”, whether the achievable improvements justify a higher
analytical and numerical computation expenditure or not.

However, if the parameters of the reference model have been determined, then the
determination of the parameters of the corresponding deterministic simulation model
can be regarded as trivial due to the closed-form formulas derived here.

If we once again study the simulation models depicted in Figures 6.9 and 6.23, it
becomes clear that the structure corresponding to the model Type II is, generally
speaking, the more efficient one, and that the structure of Type I can only keep up
with it, if N2 is equal to zero, which is equivalent to the assumption that κ0 = 0 holds.

Finally, the verification of the analytical results by means of simulation remains.
Therefore, we design the deterministic processes ν̃0(t) and ν̃3(t) by applying the
techniques described in the preceding Subsection 6.2.3 (modified MEDS with N1 = 25
and N3 = 15). The measurement of the functions F̃η+(r/ρ), Ñη(r/ρ)/fmax, and
T̃η−(r/ρ)·fmax N3 = 15) from a discrete-time simulation of the deterministic extended
Suzuki process (Type II) η̃(t) leads to the curves also depicted in Figures 6.25(a)–
6.25(c). Again, there is a nearly complete correspondence between the reference model
and the simulation model, so that the graphs corresponding to these models can hardly
be distinguished from each other.

A small part of the sequence of the simulated deterministic process η̃(t) is depicted
in Figure 6.26(a) for an area with heavy shadowing and in Figure 6.26(b) for an area
with light shadowing.

6.3 THE GENERALIZED RICE PROCESS

The extended Suzuki processes of Type I and Type II represent two classes of
stochastic processes with different statistical properties. Both models are identical,
however, if κ0 = 0 holds in the former and if in the latter, the parameters κ0

and θ0 are given by κ0 = 1 and θ0 = π/2, respectively. But in general, we can
say that neither the extended Suzuki process of Type I is completely covered by
that of Type II nor that the reverse is true. In [Pae96b] it has been pointed out,
and shown later in [Pae97c], that both models can be combined in a single model.
This so-called generalized Suzuki model contains the extended Suzuki processes of
Type I and of Type II as special cases. The mathematical expenditure required to
describe the generalized model is considerable, however, not much higher than that
of Type II. Without the lognormal process, the generalized Rice process follows from
the generalized Suzuki process. The generalized Rice process is considerably easier to
describe and is in many cases sufficient for modelling frequency-nonselective mobile
radio channels.
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Figure 6.26: Simulation of deterministic extended Suzuki processes η̃(t) of Type II for

areas with (a) heavy shadowing and (b) light shadowing (MEDS, N1 = 25,
N3 = 15, fmax = 91 Hz).

This section deals with the description and the analysis of stochastic generalized
Rice processes. Here, just as in previous sections, we will generally be concerned
with the probability density function of the amplitude, the level-crossing rate, and
the average duration of fades. Since the derivation of these quantities is again
performed analogously to the procedure described in Subsection 6.1.1, we will be
considerably briefer here. However, the comprehensibility of the derived results will
still be maintained for the reader. Starting from the stochastic generalized Rice model,
it then follows the derivation of the corresponding deterministic simulation model.
Finally, the section closes with the fitting of the stochastic reference model and the
deterministic simulation model to a real-world channel.

6.3.1 The Stochastic Generalized Rice Process

Let us study the reference model for a generalized Rice process ξ(t) as depicted in
Figure 6.27. The directly visible parameters of this model are θ0, ρ, and θρ, which are
already known to us. We demand from the coloured real-valued Gaussian random
processes ν1(t) and ν2(t) that they are zero-mean and statistically independent.
For the Doppler power spectral density Sνiνi(f) of the Gaussian random processes
νi(t) (i = 1, 2) it holds

Sνiνi(f) =





σ2
i

2πfmax

√
1− (f/fmax)2

, |f | ≤ κifmax ,

0 , |f | > κifmax ,

(6.126)

where fmax again denotes the maximum Doppler frequency, and κi is a positive
constant determining the Doppler bandwidth. Note that κi, together with the
quantity σ2

i , determines the variance of νi(t). In order to ensure that the chosen
notation remains homogeneous, we make the following agreements: κ1 = 1 and
κ2 = κ0 with κ0 ∈ [0, 1], so that Sν1ν1(f) corresponds to the classical Jakes power
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spectral density (6.9a), and Sν2ν2(f) is identical to the restricted Jakes power spectral
density (6.9c).

The reference model shown in Figure 6.27 includes two special cases:

(i) σ2
1 = σ2

2 = σ2
0 and θ0 = π/2 , (6.127a)

(ii) σ2
1 = 0 and σ2

2 = 2σ2
0 . (6.127b)

In case (i), exactly the Rice process depicted in Figure 6.1, whose underlying complex-
valued Gaussian process is described by the left-hand side restricted Jakes power
spectral density (6.2), follows from the generalized Rice process. If we leave the missing
minus sign in the lower branch of the structure shown in Figure 6.14 aside,3 then in
case (ii) the extended Rice process (Figure 6.14) follows from the generalized Rice
process (Figure 6.27).
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Figure 6.27: Reference model for generalized Rice processes ξ(t).

Next, we are interested in the autocorrelation function rµµ(τ) and the Doppler power
spectral density Sµµ(f) of the complex-valued process µ(t) = µ1(t) + jµ2(t). From
Figure 6.27, we first read the relations

µ1(t) = ν1(t) + ν2(t) (6.128)

and

µ2(t) = [ν1(t) + ν2(t)] cos θ0 + [ν̌1(t)− ν̌2(t)] sin θ0 . (6.129)

From these equations, we obtain the following relations for the autocorrelation
functions rµ1µ1(τ) and rµ2µ2(τ), as well as for the cross-correlation functions rµ1µ2(τ)
and rµ2µ1(τ)

rµ1µ1(τ) = rµ2µ2(τ) = rν1ν1(τ) + rν2ν2(τ) , (6.130a)

3 It should be noted that the minus sign has no influence on the statistics of ξ(t). Also, it can easily
be obtained by substituting θ0 with −θ0.
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rµ1µ2(τ) = [rν1ν1(τ) + rν2ν2(τ)] cos θ0 + [rν1ν̌1(τ)− rν2ν̌2(τ)] sin θ0 , (6.130b)

rµ2µ1(τ) = [rν1ν1(τ) + rν2ν2(τ)] cos θ0 − [rν1ν̌1(τ)− rν2ν̌2(τ)] sin θ0 , (6.130c)

where rνiνi(τ) (i = 1, 2) denotes the inverse Fourier transform of (6.126), i.e,

rνiνi
(τ) = σ2

i

2
π

∫ arcsin(κi)

0

cos(2πfmaxτ sin ϕ) dϕ , (6.131)

and rνiν̌i(τ), due to (2.56a), denotes the Hilbert transform of rνiνi(τ), so that

rνiν̌i
(τ) = σ2

i

2
π

∫ arcsin(κi)

0

sin(2πfmaxτ sin ϕ) dϕ (6.132)

holds. By using the relation (6.5), the desired autocorrelation function rµµ(τ) can now
be written as

rµµ(τ) = 2[rν1ν1(τ) + rν2ν2(τ)] + j2[rν1ν̌1(τ)− rν2ν̌2(τ)] sin θ0 . (6.133)

After performing the Fourier transform of (6.133) and taking the relation Sνiν̌i(f) =
−j sgn (f)Sνiνi(f) into account, we can then express the Doppler power spectral
density Sµµ(f) in terms of Sνiνi(f) [cf. (6.126)] as follows

Sµµ(f) = 2[1 + sgn (f) sin θ0] · Sν1ν1(f)
+2[1− sgn (f) sin θ0] · Sν2ν2(f) . (6.134)

An example of this in general unsymmetrical Doppler power spectral density is
depicted in Figure 6.28.

It is obvious that for the two special cases (6.127a) and (6.127b) Figure 6.28 converts
to Figures 6.2(c) and 6.15(b), respectively. Also, the Doppler power spectral density
(6.134) contains the classical Jakes power spectral density according to (3.7) as
further special case, because we obtain the latter with the parameter constellation
σ2

1 = σ2
2 = σ2

0 , κ1 = κ2 = 1, and θ0 = π/2.

Next follows the derivation of the characteristic quantities ψ
(n)
0 and φ

(n)
0 (n = 0, 1, 2).

Therefore, we substitute (6.130a) into (6.11a) and (6.130b) into (6.11b), which leads
to the following expressions:

ψ
(0)
0 = ψ0 =

σ2
2

2

[(
σ1

σ2

)2

+
2
π

arcsin(κ0)

]
, (6.135a)

ψ
(1)
0 = ψ̇0 = 0 , (6.135b)

ψ
(2)
0 = ψ̈0 =−(πσ2fmax)2

{(
σ1

σ2

)2

+
2
π

[
arcsin(κ0)− 1

2
sin(2 arcsin(κ0))

]}
,(6.135c)
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Figure 6.28: Unsymmetrical Doppler power spectral density Sµµ(f) (σ2
1 = 0.25, σ2

2 = 1,
θ0 = 15◦, κ0 = 0.4).

φ
(0)
0 = φ0 = ψ0 · cos θ0 , (6.135d)

φ
(1)
0 = φ̇0 = 2σ2

2fmax

[(
σ1

σ2

)2

−
(

1−
√

1− κ2
0

)]
· sin θ0 , (6.135e)

φ
(2)
0 = φ̈0 = ψ̈0 · cos θ0 , (6.135f)

where 0 ≤ κ0 ≤ 1 and −π ≤ θ0 < π. One may take into account that in the special
case (i) described by (6.127a), the quantities presented above exactly result in the
equations (6.12a)–(6.12f). On the other hand, the special case (ii) [cf. (6.127b)] leads
to the formulae4 (6.88a)–(6.88f).

With the characteristic quantities (6.135a)–(6.135f) the covariance matrix Cµρ(τ) of
the vector process µρ(t) = (µρ1(t), µρ2(t), µ̇ρ1(t), µ̇ρ2(t)) at the same time t, i.e.,
τ = 0, is completely determined. It holds

Cµρ(0) = Rµ(0) =




ψ0 ψ0 cos θ0 0 φ̇0

ψ0 cos θ0 ψ0 −φ̇0 0

0 −φ̇0 −ψ̈0 −ψ̈0 cos θ0

φ̇0 0 −ψ̈0 cos θ0 −ψ̈0




. (6.136)

For us it is important now to realize that the covariance matrix (6.136) has the
same form as (6.91). As a consequence of this, we again obtain the joint probability
density function pξξ̇ϑϑ̇(z, ż, θ, θ̇) described by (6.92), where we have to substitute the
quantities ψ0, ψ̈0, and φ̇0 with the equations derived above, i.e., (6.135a), (6.135c), and

4 Due to the minus sign in the lower part of the sinal flow diagram shown in Figure 6.27, it has to
be taken into account that the equations (6.88e) and (6.135e) have different signs.
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(6.135e), respectively. Consequently, all relations derivable from these, as for example
those for pξ(z), pϑ(θ), Nξ(r), and Tξ−(r), exactly lead to the results already found
in Subsection 6.2.1. In the formulae given there, we merely have to replace ψ0, ψ̈0,
and φ̇0 with (6.135a), (6.135c), and (6.135e), respectively. Therefore, all further cal-
culations for the description of generalized Rice processes can at this point be omitted.

This fact, however, should not mislead us into concluding that extended Rice processes
and generalized Rice processes are two different ways of describing one and the same
stochastic process. The flexibility of generalized Rice processes is definitely higher
than that of extended Rice processes. The reason for this lies in the additional
primary model parameter σ2

1 , which is zero per definition for the extended Rice process
and which contributes to a further de-coupling of the secondary model parameters
(ψ0, ψ̇0, ψ̈0, φ0, φ̇0, φ̈0) of the generalized Rice process. In order to make this clear with
the help of an example, we consider (6.88e). There, in the interval (0, 1] no real number
exists for the parameter κ0, so that φ̇0 = 0 holds. On the other hand, the quantity
φ̇0 according to (6.135e) behaves differently. Let σ2

1 ∈ [σ2
2 , 2σ2

2), then a real-valued
number

κ0 =
σ1

σ2

√
2−

(
σ1

σ2

)2

(6.137)

always exists in the interval (0, 1], so that φ̇0 = 0 holds.

The multiplication of the generalized Rice process with a lognormal process results
in the so-called generalized Suzuki process suggested in [Pae97c]. The generalized
Suzuki process contains the classical Suzuki process [Suz77], the modified Suzuki
process [Kra90b], as well as the two extended Suzuki processes of Type I [Pae98d]
and of Type II [Pae97a] as special cases. This product process is described by the
probability density function (6.107c), where we have to use the equation (6.135a)
for ψ0. Similarly, for the level-crossing rate one finds the expression (6.110). Now,
however, it has to be emphasized that the entries (ψ0, ψ̇0, ψ̈0, φ0, φ̇0, φ̈0) of the
covariance matrix Cµρ are defined by (6.135a)–(6.135f).

A detailed discussion of generalized Rice respectively Suzuki processes is not necessary
for our purposes. Instead, we will continue with the design of deterministic generalized
Rice processes.

6.3.2 The Deterministic Generalized Rice Process

We again proceed by at first replacing the coloured zero-mean Gaussian random
processes ν1(t) and ν2(t) by a finite sum of Ni weighted harmonic functions of the
form

ν̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , i = 1, 2 . (6.138)

When designing the deterministic processes (6.138), it has to be taken into account
that ν̃1(t) and ν̃2(t) have to be uncorrelated, i.e., f1,n 6= f2,m must hold for all
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n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2. With the deterministic processes designed
in this way and the corresponding Hilbert transforms, i.e.,

ˇ̃νi(t) =
Ni∑

n=1

ci,n sin(2πfi,nt + θi,n) , i = 1, 2 , (6.139)

we can directly replace the stochastic processes µ1(t) and µ2(t) [cf. (6.128) and (6.129),
respectively] with the corresponding deterministic processes µ̃1(t) and µ̃2(t). Thus, the
latter processes can be expressed as follows:

µ̃1(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n)

+
N2∑

n=1

c2,n cos(2πf2,nt + θ2,n) , (6.140)

µ̃2(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n − θ0)

+
N2∑

n=1

c2,n cos(2πf2,nt + θ2,n + θ0) . (6.141)

As a result, the deterministic generalized Rice process is completely determined, and
we obtain the simulation system in the continuous-time representation form depicted
in Figure 6.29.

Now, let θ0 = π/2, then the structure of the deterministic Rice process with cross-
correlated underlying components (cf. Figure 6.9) follows from Figure 6.29. Moreover,
in the special case σ2

2 = 0, i.e., N2 = 0, we obtain the deterministic extended Rice
process depicted in the top part of Figure 6.23.

In the following, we will derive the characteristic quantities of the simulation model,
i.e., ψ̃

(n)
0 = r̃

(n)
µ1µ1(0) = r̃

(n)
µ2µ2(0) and φ̃

(n)
0 = r̃

(n)
µ1µ2(0) for n = 0, 1, 2. The autocorrelation

functions r̃µ1µ1(τ) and r̃µ2µ2(τ) necessary for this can be expressed as

r̃µ1µ1(τ) = r̃µ2µ2(τ)

=
N1∑

n=1

c2
1,n

2
cos(2πf1,nτ) +

N2∑
n=1

c2
2,n

2
cos(2πf2,nτ) , (6.142)

and for the cross-correlation function r̃µ1µ2(τ) calculated according to (4.13) it holds

r̃µ1µ2(τ) = r̃µ2µ1(−τ)

=
N1∑

n=1

c2
1,n

2
cos(2πf1,nτ − θ0) +

N2∑
n=1

c2
2,n

2
cos(2πf2,nτ + θ0) . (6.143)
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Figure 6.29: Deterministic simulation model for generalized Rice processes.

Thus, we obtain the following expressions for the characteristic quantities of the
deterministic simulation model:

ψ̃
(0)
0 = ψ̃0 =

N1∑
n=1

c2
1,n

2
+

N2∑
n=1

c2
2,n

2
, (6.144a)

ψ̃
(1)
0 = ˙̃

ψ0 = 0 , (6.144b)

ψ̃
(2)
0 = ¨̃

ψ0 = −2π2

[
N1∑

n=1

(c1,nf1,n)2 +
N2∑

n=1

(c2,nf2,n)2
]

, (6.144c)

φ̃
(0)
0 = φ̃0 = ψ̃0 · cos θ0 , (6.144d)
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φ̃
(1)
0 = ˙̃

φ0 = π

[
N1∑

n=1

(c2
1,nf1,n)−

N2∑
n=1

(c2
2,nf2,n)

]
· sin θ0 , (6.144e)

φ̃
(2)
0 = ¨̃

φ0 = ¨̃
ψ0 · cos θ0 . (6.144f)

With these quantities, β̃ is also determined, because

β̃ = − ¨̃
ψ0 −

˙̃
φ

2

0

ψ̃0 sin2 θ0

(6.145)

holds.

The calculation of the model parameters fi,n and ci,n is performed according to the
method of exact Doppler spread. As described in Subsection 6.1.4, however, this
procedure must be slightly modified due to κ2 = κ0 ∈ (0, 1]. Therefore, the formula
(6.72) is also valid for the discrete Doppler frequencies fi,n in the present case, where
we have to take into account that (6.73) holds. Similarly, the calculation of the
Doppler coefficients ci,n is performed by using (6.74), where σ0 has to be replaced
by σi. Finally, for the Doppler phases θi,n it is assumed that these quantities are
realizations (outcomes) of a random variable uniformly distributed within (0, 2π].

Analysing the characteristic quantities of the simulation model, we restrict ourselves
to ψ̃0 and β̃/f2

max. If these quantities are calculated according to (6.144a) and (6.145),
respectively, by means of (6.72) and (6.74), then the convergence behaviour in terms
of Ni (N1 = N2) appears as depicted in Figures 6.30(a) and 6.30(b). The results
shown are based on the primary model parameters σ2

1 , σ2
2 , and κ0, as they are listed

in the following subsection in Table 6.4.
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Figure 6.30: Illustration of (a) ψ0 and ψ̃0 as well as (b) β/f2
max and β̃/f2

max (MEDS,
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i and κ2 according to Table 6.4).
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Since the deviations between ψ̃0 and ψ0 as well as between β̃/f2
max and β/f2

max are
negligible for all cases relevant in practice (Ni ≥ 7), it follows that the probability
density function p̃ξ(z), the level-crossing rate Ñξ(r), and the average duration of fades
T̃ξ−(r) of the simulation model are extremely close to the corresponding quantities of
the reference model.

6.3.3 Applications and Simulation Results

In this subsection, it will be shown that the statistical properties of stochastic and
deterministic generalized Rice processes can be brought into astonishingly good
agreement with real-world measurement results, even without multiplying the Rice
process with a lognormal process. Since a fair comparison of the performance between
different channel models is intended, we here again use the measurement results for
F ?

ξ+
(r), N?

ξ (r), and T ?
ξ−(r) from [But83], which were also the basis for the experiments

described in Subsections 6.1.5 and 6.2.4.

In the present case, the parameter vector Ω contains all six primary model parameters.
Thus, Ω is defined by

Ω := (σ1, σ2, κ0, θ0 ρ, θρ) . (6.146)

The optimization of the components of Ω is again performed as described in
Subsection 6.1.5 by minimizing the error function E2(Ω) [cf. (6.76)] by means of
the Fletcher-Powell algorithm [Fle63]. The optimization results found are presented
in Table 6.4.

Table 6.4: The optimized primary model parameters of the reference model for areas
with heavy and light shadowing.

Shadowing σ1 σ2 κ0 θ0 ρ θρ

heavy 0.0894 0.7468 0.1651 0.3988 0.2626 30.3◦

light 0.1030 0.9159 0.2624 0.3492 1.057 53.1◦

The Rice factor cR [see (3.18)], i.e.,

cR =
ρ2

2ψ0
=

ρ2

σ2
2

[(
σ1
σ2

)2

+ 2
π arcsin(κ2)

] , (6.147)

of the present model takes on the values cR = 0.134 dB (heavy shadowing) and
cR = 8.65 dB (light shadowing), which are about as large as the Rice factors
determined for the extended Suzuki model of Type II (cf. Subsection 6.2.4).

Figure 6.31(a) shows us the complementary cumulative distribution function Fξ+(r/ρ)
of the reference model and that of the measured channel F ?

ξ+
(r/ρ). Clearly visible

deviations from the results depicted in Figure 6.25(a) do not seem to be apparent.
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On the other hand, especially when considering the channel with heavy shadowing,
we are able to achieve further improvement in view of fitting the normalized level-
crossing rate of the reference model Nξ(r/ρ)/fmax to that of the measured channel
N?

ξ (r/ρ)/fmax. This immediately becomes obvious if we compare Figure 6.31(b) with
Figure 6.25(b). Especially with regard to the level-crossing rate, it seems as if the
higher flexibility of the generalized Rice model has a positive effect.

Clearly visible are also the improvements achieved for the adapting of the normalized
average duration of fades Tξ−(r/ρ)·fmax to T ?

ξ−(r/ρ)·fmax. Concerning this statement,
one may compare the two Figures 6.31(c) and 6.25(c). Now the present model is in
very good agreement with the measurements, even at low levels.

Finally, it should be pointed out that the corresponding simulation results are also
depicted in Figures 6.31(a)–6.31(c). For the realization and the simulation of the
channel with heavy (light) shadowing, we have used N1 = N2 = 7 (N1 = N2 = 15)
harmonic functions. In each of the two situations, a channel output sequence ξ̃(kTs)
(k = 1, 2, . . . , Ns) with Ns = 3 · 106 sampling values was generated and used for the
evaluation of the statistics. For the maximum Doppler frequency fmax, the value 91 Hz
was chosen here, and the sampling interval Ts was prescribed by Ts = 0.3ms.

6.4 THE MODIFIED LOO MODEL

Loo developed a stochastic model for the modelling of frequency-nonselective
terrestrial mobile radio channels on the basis of measurements in [Loo85]. This
model was also the topic of further investigations in [Loo87, Loo90, Loo91, Loo96],
which were summarized in [Loo98] at a later point. Loo’s model is based on the
physically plausibly reasoned assumption that the line-of-sight component underlies
slow amplitude fluctuations caused by shadowing effects. In this model, it is assumed
that the slow amplitude fluctuations of the line-of-sight component are lognormally
distributed, while the fast fading, caused by the multipath propagation, behaves like
a Rayleigh process.

In this section, we will combine Loo’s stochastic model and the Rice process with
cross-correlated in-phase and quadrature components to a superordinate model. The
resulting model, which we will call the modified Loo model, then contains the original
model suggested by Loo and the extended Rice process as respective special case.

6.4.1 The Stochastic Modified Loo Model

The model with which we will deal with in this subsection is depicted in Figure 6.32. It
is a matter of the modified Loo model for which ν1(t), ν2(t), and ν3(t) are uncorrelated
zero-mean real-valued Gaussian random processes. Let the Doppler power spectral
density Sνiνi(f) of the Gaussian random processes νi(t) for i = 1, 2 be given by the
restricted Jakes power spectral density (6.126) with κi ∈ [0, 1], whereas we again use
the Gaussian power spectral density according to (6.43) for Sν3ν3(f).
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duration of fades Tξ−(r/ρ)·fmax for areas with heavy and light shadowing.
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Figure 6.32: The modified Loo model (reference model).

In this model, the fast signal fluctuations caused by the multipath propagation are
modelled in the equivalent complex baseband by a complex-valued Gaussian random
process

µ(t) = µ1(t) + jµ2(t) , (6.148)

where its real and imaginary part

µ1(t) = ν1(t) + ν2(t) , (6.149a)

µ2(t) = ν̌1(t)− ν̌2(t) , (6.149b)

are statistically uncorrelated. Here, ν̌i(t) (i = 1, 2) again denotes the Hilbert transform
of νi(t).

For the line-of-sight component m(t) = m1(t)+ jm2(t), we read from Figure 6.32 that

m(t) = ρ(t) · ej(2πfρt+θρ) (6.150)

holds, where fρ and θρ again denote the Doppler frequency and the Doppler phase of
the line-of-sight component, respectively, and

ρ(t) = eσ3ν3(t)+m3 (6.151)

designates a lognormal process with which the slow amplitude fluctuations of the
line-of-sight component are modelled. For the spectral and statistical properties of
the lognormal process (6.151), the statements made in Subsection 6.1.2 hold. Let us
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assume that the bandwidth of the Gaussian random process ν3(t) is very small in
comparison with the bandwidth of µ(t), so that, consequently, the amplitude ρ(t) of
the line-of-sight component (6.150) only varies relatively slowly compared to the fast
signal fading.

The sum of the scattered component and the line-of-sight component results in the
complex-valued Gaussian random process

µρ(t) = µ(t) + m(t) , (6.152)

whose real and imaginary part can be expressed — by using (6.149a), (6.149b), and
(6.150) — as follows:

µρ1(t) = ν1(t) + ν2(t) + ρ(t) · cos(2πfρt + θρ) , (6.153a)

µρ2(t) = ν̌1(t)− ν̌2(t) + ρ(t) · sin(2πfρt + θρ) . (6.153b)

The absolute value of (6.152) finally results in a new stochastic process

%(t) =
√[

µ1(t)+ρ(t) cos(2πfρt+θρ)
]2+

[
µ2(t)+ρ(t) sin(2πfρt+θρ)

]2
, (6.154)

which is called the modified Loo process. This process will in the following be used as
a stochastic model to describe the fading behaviour of frequency-nonselective satellite
mobile radio channels.

The modified Loo model introduced here contains the following three special cases:

(i) σ2
1 = σ2

2 = σ2
0 , κ1 = κ2 = 1 , and fρ = 0 , (6.155a)

(ii) σ2
2 = 0 or κ2 = 0 , (6.155b)

(iii) σ2
1 = σ2

2 = σ2
0 , κ1 = 1 , κ2 = κ0 , and σ2

3 = 0 . (6.155c)

Further on, we will see that in the special case (i), the power spectral density Sµµ(f)
of the complex-valued Gaussian random process µ(t) [see (6.148)] is equal to the
Jakes power spectral density. Since the Gaussian random processes µ1(t) and µ2(t)
are uncorrelated due to the symmetry of the Jakes power spectral density, the modified
Loo model (Figure 6.32) can be reduced to the classical Loo model [Loo85, Loo91]
depicted in Figure 6.33. One should take into account that also fρ = 0 holds, so
that the power spectral density of the line-of-sight component does not experience a
frequency shift (Doppler shift) in this model. For the second special case (ii), where σ2

2

or κ2 are equal to zero, the coloured Gaussian random process ν2(t) can just as well
be removed and one obtains the channel model proposed in [Pae98c], which stands
out against the general variant due to its considerably smaller realization expense.
Finally, the third special case (iii) leads to the Rice process depicted in Figure 6.1,
for which the underlying Gaussian random processes µ1(t) and µ2(t) are, admittedly,
also correlated, but for which the absolute value of the line-of-sight component m(t)
is time-independent, i.e., it then holds |m(t)| = ρ(t) = ρ = em3 .
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Figure 6.33: The classical Loo model (reference model).

6.4.1.1 Autocorrelation Function and Doppler Power Spectral Density

We are now interested in the autocorrelation function rµρµρ(τ) and in the
corresponding Doppler power spectral density Sµρµρ(f) of the complex-valued random
process µρ(t) introduced by (6.152). Therefore, we at first calculate the autocorrelation
function rµρi

µρi
(τ) (i = 1, 2) of the processes µρi(t) as well as the cross-correlation

function rµρ1µρ2
(τ) of the processes µρ1(t) and µρ2(t). By using (6.153a) and (6.153b),

we obtain the following relations for these correlation functions:

rµρ1µρ1
(τ) = rµρ2µρ2

(τ) = rν1ν1(τ) + rν2ν2(τ) +
1
2
rρρ(τ) · cos(2πfρτ) , (6.156a)

rµρ1µρ2
(τ) = r∗µρ2µρ1

(−τ) = rν1ν̌1(τ)− rν2ν̌2(τ) +
1
2
rρρ(τ) · sin(2πfρτ) , (6.156b)

where rνiνi(τ) (i = 1, 2) describes the autocorrelation function of the Gaussian random
process νi(t), and with rνiν̌i(τ) (i = 1, 2) exactly the cross-correlation function of νi(t)
and ν̌i(t) is meant. Recall that rνiνi(τ) and rνiν̌i(τ) are already known to us due to
(6.131) and (6.132), respectively. Furthermore, rρρ(τ) describes the autocorrelation
function of ρ(t) [cf. (6.151)] in (6.156a) and in (6.156b). One may take into account
that ρ(t) has been introduced as lognormal process in this section. That is why the
autocorrelation function rρρ(τ) of ρ(t) can be directly identified with the right-hand
side of (6.47). Hence, we can therefore directly write

rρρ(τ) = e2m3+σ2
3(1+rν3ν3 (τ)) . (6.157)

The autocorrelation function rµρµρ(τ) of the complex-valued process µρ(t) = µρ1(t) +
jµρ2(t) will in imitation of (6.5) be expressed in terms of the autocorrelation functions
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and the cross-correlation functions of µρ1(t) and µρ2(t) as follows

rµρµρ
(τ) = rµρ1µρ1

(τ) + rµρ2µρ2
(τ) + j

(
rµρ1µρ2

(τ)− rµρ2µρ1
(τ)

)
. (6.158)

When studying (6.157) and taking (6.44) into account, we notice that rρρ(τ) is
a real and even function in τ . From the relation (6.132), we can on the other
hand conclude that rνiν̌i

(τ) is real and odd, so that from (6.156b) the relation
rµρ1µρ2

(τ) = r∗µρ2µρ1
(−τ) = −rµρ2µρ1

(τ) follows. If we also take into account that
rµρ1µρ1

(τ) = rµρ2µρ2
(τ) holds, then (6.158) simplifies to

rµρµρ(τ) = 2
(
rµρ1µρ1

(τ) + jrµρ1µρ2
(τ)

)
. (6.159)

In this relation, we also substitute (6.156a) and (6.156b), so that we finally find the
following expression for the desired autocorrelation function rµρµρ(τ)

rµρµρ(τ) = 2
(
rν1ν1(τ) + jrν1ν̌1(τ)

)

+2
(
rν2ν2(τ)− jrν2ν̌2(τ)

)
+ rρρ(τ)ej2πfρτ . (6.160)

After performing the Fourier transform of (6.160) and using the relation Sνiν̌i(f) =
−j sgn (f) · Sνiνi(f), we obtain the Doppler power spectral density Sµρµρ(f), which
can be presented as follows

Sµρµρ(f) = 2
(
1 + sgn (f)

)
Sν1ν1(f)

+2
(
1− sgn (f)

)
Sν2ν2(f) + Sρρ(f − fρ) , (6.161)

where Sνiνi(f) (i = 1, 2) is again given by (6.126), and Sρρ(f − fρ) can be identified
with the right-hand side of (6.48) if the frequency variable f is substituted by f − fρ

there, i.e.,

Sρρ(f − fρ) = e2m3+σ2
3 ·


δ(f − fρ) +

∞∑
n=1

σ2n
3

n!
·
Sν3ν3

(
f−fρ√

n

)
√

n


 , (6.162)

where Sν3ν3(f) denotes the Gaussian power spectral density according to (6.43).

Figures 6.34(a)–6.34(f) symbolically show how the generally unsymmetrical Doppler
power spectral density Sµρµρ(f) is composed of the individual power spectral densities
Sν1ν1(f), Sν2ν2(f), and Sν3ν3(f). The spectra shown are valid for the following
parameters: σ2

1 = σ2
2 = 1, κ1 = 0.8, κ2 = 0.6, σ2

3 = 0.01, m3 = 0, fρ = 0.4fmax, fc =
0.13fmax, and σ2

c = 100.

From the general representation (6.161), we can easily derive the power spectral
densities determined by the special cases (i)–(iii) according to (6.155a)–(6.155c),
respectively. For example, on condition that (6.155a) holds, the Doppler power spectral
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Figure 6.34: Various power spectral densities: restricted Jakes power spectral density
(a) Sν1ν1(f) and (b) Sν2ν2(f), (c) Gaussian power spectral density
Sν3ν3(f), (d) power spectral density Sρρ(f) of the lognormal process
ρ(t), (e) power spectral density Sµµ(f), and (f) resulting unsymmetrical
Doppler power spectral density Sµρµρ(f).
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density Sµρµρ(f) of the classical Loo model (see Figure 6.33) can be derived from
(6.161) in the form

Sµρµρ
(f) = Sµµ(f) + Sρρ(f) , (6.163)

where Sµµ(f) denotes the Jakes power spectral density according to (3.7), and Sρρ(f)
represents the power spectral density of the lognormal process ρ(t). An example of
the shape of Sρρ(f) is depicted in Figure 6.34(d). For the special case (ii) determined
by (6.155b), the Doppler power spectral density Sµρµρ(f) disappears for negative
frequencies in Figure 6.34(f). Finally, in the special case (iii), Sρρ(f −fρ) only delivers
a contribution to Sµρµρ

(f) according to (6.161), which is characterized by a weighted
Delta function at the point f = fρ.

Next, we will calculate the characteristic quantities ψ
(n)
0 and φ

(n)
0 (n = 0, 1, 2) valid

for the modified Loo model. Therefore, we substitute rµ1µ1(τ) = rν1ν1(τ) + rν2ν2(τ)
and rµ1µ2(τ) = rν1ν̌1(τ) − rν2ν̌2(τ) into (6.11a) and (6.11b), respectively, and obtain
the following expressions by using (6.131) as well as (6.132):

ψ
(0)
0 = ψ0 =

1
π

2∑

i=1

σ2
i arcsin(κi) , (6.164a)

ψ
(1)
0 = ψ̇0 = 0 , (6.164b)

ψ
(2)
0 = ψ̈0 = −(πfmax)2

[
2ψ0 − 1

π

2∑

i=1

σ2
i sin

(
2 arcsin(κi)

)
]

, (6.164c)

φ
(0)
0 = φ0 = 0 , (6.164d)

φ
(1)
0 = φ̇0 = −2fmax

2∑

i=1

(−1)iσ2
i

(
1−

√
1− κ2

i

)
, (6.164e)

φ
(2)
0 = φ̈0 = 0 , (6.164f)

where 0 ≤ κi ≤ 1 holds for i = 1, 2. In the special case (iii) described by (6.155c),
one can easily convince oneself that the characteristic quantities (6.164a)–(6.164f) are
identical to those described by (6.12a)–(6.12f), respectively.

6.4.1.2 Probability Density Function of the Amplitude and the Phase

In principle, the statistical properties of the modified Loo process %(t) = |µρ(t)|
can again be calculated by means of the joint probability density function
pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) or p%%̇ϑϑ̇(z, ż, θ, θ̇), as in the previous cases. Due to the
time variability of ρ(t), the mathematical computation expenditure is in this case
much higher than for the models analysed before, where ρ(t) = ρ was always a
constant quantity. Therefore, we will choose a more elegant alternative way, which
leads us to our goal faster and which, furthermore, lets us profit from the results
found in Section 6.1. Considering that the reference model depicted in Figure 6.1 is
basically a special case of the modified Loo model shown in Figure 6.32 on condition
that ρ(t) = ρ holds, then the conditional probability density function p%(z|ρ(t) = ρ) of
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the stochastic process %(t), which is defined by (6.154), has to be identical to (6.30).
Therefore, we can write

p%(z|ρ(t) = ρ) = pξ(z) =





z

ψ0
e−

z2+ρ2

2ψ0 I0

(
zρ

ψ0

)
, z ≥ 0 ,

0 , z < 0 ,

(6.165)

where ψ0 describes the mean power of µi(t) (i = 1, 2) according to (6.164a). Since the
amplitude ρ(t) of the line-of-sight component is lognormally distributed in the Loo
model, i.e., the density pρ(y) of ρ(t) is given by the lognormal distribution [cf. (2.28)]

pρ(y) =





1√
2πσ3y

e
− (ln y−m3)2

2σ2
3 , y ≥ 0 ,

0 , y < 0 ,

(6.166)

the probability density function p%(z) of the modified Loo process %(t) can be derived
from the joint probability density function p%ρ(z, y) of the stochastic processes %(t)
and ρ(t) as follows:

p%(z) =
∫ ∞

0

p%ρ(z, y) dy

=
∫ ∞

0

p%(z|ρ(t) = y) · pρ(y) dy

=
∫ ∞

0

pξ(z; ρ = y) · pρ(y) dy , z ≥ 0 . (6.167)

If we now substitute (6.30) (or (6.165)) and (6.166) into (6.167), then we obtain the
following expression for the probability density function p%(z) of the modified Loo
process %(t)

p%(z) =
z√

2πψ0σ3

∫ ∞

0

1
y

e−
z2+y2

2ψ0 I0

(
zy

ψ0

)
e
− (ln y−m3)2

2σ2
3 dy , z ≥ 0 , (6.168)

where ψ0 is given by (6.164a). We notice that the probability density function p%(z)
depends on three parameters, namely ψ0, σ3, and m3. In connection with (6.155a),
it now becomes apparent that (6.168) also holds for the classical Loo model, if we
leave the influences of the parameters σ2

i and κi on ψ0 aside. The same statement also
holds for the special case (ii) introduced by (6.155b). Therefore, it is not surprising
if one also finds the probability density function p%(z) in the form (6.168), e.g., in
[Loo85, Loo91, Loo98] and [Pae98c]. Differences, however, do occur for the level-
crossing rate and the average duration of fades, as we will see in the following
Subsection 6.4.1.3. For completeness, we will also briefly study the effects of the
special case (iii) [see (6.155c)]. In the limit σ2

3 → 0, the lognormal distribution (6.166)
converges to pρ(y) = δ(y − ρ), where ρ = em3 . In this case, the Rice distribution
(6.165) follows directly from (6.167), where it has to be taken into account that ρ is
equal to em3 .
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In order to illustrate the probability density function p%(z) of the modified Loo process
%(t), we study Figures 6.35(a) and 6.35(b), which allow the influence of the parameters
σ3 and m3, respectively, to stand out.
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Figure 6.35: Probability density function p%(z) of the amplitude %(t) of modified and
classical Loo processes depending on: (a) σ3 (ψ0 = 1, m3 = −σ2

3) and (b)
m3 (ψ0 = 1, σ2

3 = 1).

Next, we will analyse the probability density function pϑ(θ) of the phase ϑ(t) =
arg{µρ(t)} of the modified Loo model. Here, we proceed in a similar way as for the
computation of p%(z). In consideration of the present situation this means that we
exploit the fact that the probability density function pϑ(θ) for ρ(t) = ρ = const. is
identical to the right-hand side of (6.32). Hence, we have

pϑ(θ; t|ρ(t) = ρ) =
e−

ρ2

2ψ0

2π

{
1 +

√
π

2ψ0
ρ cos(θ − 2πfρt− θρ) e

ρ2 cos2(θ−2πfρt−θρ)
2ψ0

[
1 + erf

(
ρ cos(θ − 2πfρt− θρ)√

2ψ0

)] }
, −π ≤ θ ≤ π . (6.169)

Since the conditional probability density function of the phase ϑ(t) for fρ 6= 0 is always
a function of the time t according to this equation, we first perform an averaging of
the expression above with respect to the time t. This leads to the uniform distribution

pϑ(θ|ρ(t) = ρ) = lim
T→∞

1
2T

∫ T

−T

pϑ(θ; t|ρ(t) = ρ) dt

=
1
2π

, −π ≤ θ ≤ π . (6.170)

The desired probability density function pϑ(θ) of the phase ϑ(t) = arg{µρ(t)} can now
be determined by means of the joint probability density function pϑρ(θ, y) of ϑ(t) and
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ρ(t) as follows:

pϑ(θ) =
∫ ∞

0

pϑρ(θ, y) dy

=
∫ ∞

0

pϑ(θ|ρ(t) = y) · pρ(y) dy

=
1
2π

∫ ∞

0

pρ(y) dy

=
1
2π

, −π ≤ θ ≤ π . (6.171)

Thus, it is proven that the phase ϑ(t) of µρ(t) is uniformly distributed in the interval
[−π, π], if the Doppler frequency fρ of the line-of-sight component m(t) is not equal
to zero. Similarly, an expression for pϑ(θ) can be derived for the case fρ = 0. We will,
however, refrain from a presentation of the resulting formula at this point.

6.4.1.3 Level-Crossing Rate and Average Duration of Fades

The derivation of the level-crossing rate N%(r) of the modified Loo process %(t) is
performed by means of the fundamental relation (6.33). Since the knowledge of the
joint probability density function p%%̇(z, ż) of the processes %(t) and %̇(t) at the same
time t is necessary again, we will at first derive this. Therefore, we write

p%%̇(z, ż) =
∫ ∞

0

∫ ∞

−∞
p%%̇ρρ̇(z, ż, y, ẏ) dẏ dy

=
∫ ∞

0

∫ ∞

−∞
p%%̇(z, ż|ρ(t) = y, ρ̇(t) = ẏ) · pρρ̇(y, ẏ) dẏ dy . (6.172)

In the latter expression, pρρ̇(y, ẏ) denotes the joint probability density function of ρ(t)
and ρ̇(t) at the same time t. Since the process ρ(t) is lognormally distributed in the
modified Loo model, we can directly identify pρρ̇(y, ẏ) with the relation (6.53), i.e., we
can write

pρρ̇(y, ẏ) =
e
− (ln y−m3)2

2σ2
3√

2π σ3y
· e
− ẏ2

2γ(σ3y)2

√
2πγ σ3y

, (6.173)

where γ = −r̈ν3ν3(0) = (2πσc)2. At the beginning of Subsection 6.4.1, we assumed
that the amplitude ρ(t) of the line-of-sight component will itself only vary very slowly.
Therefore, ρ̇(t) ≈ 0 must approximately hold, so that the probability density function
pρ̇(ẏ) of ρ̇(t) can be approximated by pρ̇(ẏ) ≈ δ(ẏ). Since this always holds if γ is
sufficiently small or if the frequency ratio κc = fmax/fc is sufficiently large, we can in
this case replace (6.173) by the approximation

pρρ̇(y, ẏ) ≈ pρ(y) · δ(ẏ) , (6.174)

where pρ(y) again denotes the lognormal distribution according to (6.166). Regarding
the sifting property of the Delta function, we now substitute (6.174) into (6.172) and
obtain the approximation
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p%%̇(z, ż) ≈
∫ ∞

0

∫ ∞

−∞
p%%̇(z, ż|ρ(t) = y, ρ̇(t) = ẏ) · pρ(y) δ(ẏ) dẏ dy

=
∫ ∞

0

p%%̇(z, ż|ρ(t) = y, ρ̇(t) = 0) · pρ(y) dy . (6.175)

With this relation, we can now approximate the level-crossing rate N%(r) [cf. (6.33)]
as follows:

N%(r) =
∫ ∞

0

ż p%%̇(r, ż) dż

≈
∫ ∞

0

∫ ∞

0

ż p%%̇(z, ż|ρ(t) = y, ρ̇(t) = 0) · pρ(y) dy dż

=
∫ ∞

0

N%(r|ρ(t) = y, ρ̇(t) = 0) · pρ(y) dy . (6.176)

Here, we have to take into account that the level-crossing rate N%(r|ρ(t) = ρ, ρ̇(t) = 0)
appearing under the integral of (6.176) exactly corresponds to the relation (6.37)
derived in Subsection 6.1.1.2. If we now substitute this equation together with (6.166)
into (6.176), then we obtain the following approximation for the level-crossing rate of
the modified Loo process

N%(r) ≈
∫ ∞

0

e
− (ln y−m3)2

2σ2
3√

2πσ3y
· r
√

2β

π3/2ψ0
e−

r2+y2

2ψ0 ·
∫ π/2

0

cosh
(

ry

ψ0
cos θ

)

·
[
e−(αy sin θ)2 +

√
παy sin(θ) erf (αy sin θ)

]
dθ dy , (6.177)

where the relations (6.27) and (6.28) hold for α and β, respectively, if there the
formulae (6.164a), (6.164c), and (6.164e) are used for the characteristic quantities
ψ0, ψ̈0, and φ̇0, respectively.

The investigation of the special case (i) [see (6.155a)] at first provides α = 0. This
leads to the fact that the approximation (6.177) can be simplified considerably. Thus,
on condition that α = 0 holds, the level-crossing rate N%(r) of the modified Loo model
simplifies to that of the classical Loo model, which can be approximated as follows:

N%(r)|α=0 ≈
√

β

2π
· r

ψ0

∫ ∞

0

e
− (ln y−m3)2

2σ2
3√

2πσ3y
· e− r2+y2

2ψ0 I0

(
ry

ψ0

)
dy

=

√
β

2π

∫ ∞

0

pξ(r; ρ = y) · pρ(y) dy , (6.178)

where the quantities β and ψ0 are in this case given by β = −2(πσ0fmax)2 and
ψ0 = σ2

0 , respectively, and pξ(r; ρ = y) denotes the Rice distribution (2.26), if ρ is
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replaced by y there. Studying (6.178) and (6.167) it becomes clear that on condition
that α = 0 holds, the level-crossing rate N%(r) is again proportional to the probability
density function p%(r). This is always the case if the Doppler power spectral density
is symmetrical, which often does not correspond with reality. The special case (ii) [see
(6.155b)] does not lead to a simplification of (6.177). Here, however, the characteristic
quantities ψ0, ψ̈0, and φ̇0 are coupled stronger to each other, so that the flexibility of
N%(r) suffers in the end. Finally, we will investigate the consequences which the special
case (iii) [see (6.155c)] has on the level-crossing rate N%(r). In the limit σ2

3 → 0, we
obtain pρ(y) = δ(y−ρ) with ρ = em3 , so that (6.37) again follows from the right-hand
side of (6.176). By the way, (6.174) is then exactly fulfilled, so that we can replace the
approximations sign by an equals sign in (6.176) without hesitation.

In order to be able to calculate the average duration of fades

T%−(r) =
F%−(r)
N%(r)

(6.179)

of the modified Loo process, we still need an expression for the cumulative distribution
function F%−(r) = P (%(t) ≤ r) of the stochastic process %(t). For the derivation of
F%−(r), we use (6.168) and obtain

F%−(r) =
∫ r

0

p%(z) dz

=
1√

2πψ0σ3

∫ r

0

∫ ∞

0

z

y
e−

z2+y2

2ψ0 I0

(
zy

ψ0

)
e
− (ln y−m3)2

2σ2
3 dy dz

= 1−
∫ ∞

0

Q1

(
y√
ψ0

,
r√
ψ0

)
pρ(y) dy , (6.180)

where Q1(·, ·) is the generalized Marcum’s Q-function defined by (6.67).

In order to illustrate the results found for the level-crossing rate N%(r) and the average
duration of fades T%−(r), we study the graphs depicted in Figures 6.36(a)–6.36(d). In
Figures 6.36(a) and 6.36(b), the normalized level-crossing rate N%(r)/fmax, calculated
according to (6.177), is presented for various values of the parameters m3 and σ3,
respectively. The figures below, Figures 6.36(c) and 6.36(d), each show the behaviour
of the corresponding normalized average duration of fades T%−(r) · fmax.

6.4.2 The Deterministic Modified Loo Model

For the derivation of a proper simulation model for modified Loo processes, we proceed
as in Subsection 6.1.4. That means, we replace the three stochastic Gaussian random
processes νi(t) (i = 1, 2, 3) by deterministic Gaussian processes ν̃i(t) of the form (6.68).
When constructing the sets {f1,n}, {f2,n}, and {f3,n}, one has to take care that they
are mutually disjoint (mutually exclusive), which leads to the fact that the resulting
deterministic Gaussian processes ν̃1(t), ν̃2(t), and ν̃3(t) are in pairs uncorrelated. The
substitution νi(t) → ν̃i(t) leads to µi(t) → µ̃i(t), where the deterministic Gaussian
processes µ̃i(t) (i = 1, 2, 3) can be expressed after a short side calculation as follows:
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Figure 6.36: Normalized level-crossing rate N%(r)/fmax of the modified Loo model for
various values of (a) m3 (σ3 = 1/2) and (b) σ3 (m3 = 1/2) as well
as (c) and (d) the corresponding normalized average duration of fades
T%−(r) · fmax (κ1 = κ2 = 1, ψ0 = 1, fρ = 0).
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µ̃1(t) =
N1∑

n=1

c1,n cos(2πf1,nt + θ1,n) +
N2∑

n=1

c2,n cos(2πf2,nt + θ2,n) , (6.181a)

µ̃2(t) =
N1∑

n=1

c1,n sin(2πf1,nt + θ1,n)−
N2∑

n=1

c2,n sin(2πf2,nt + θ2,n) , (6.181b)

µ̃3(t) = σ3

N3∑
n=1

c3,n cos(2πf3,nt + θ3,n) + m3 . (6.181c)

With these relations, the stochastic reference model (see Figure 6.32) can be directly
transformed into the deterministic Loo model, shown in Figure 6.37. The output
process %̃(t) of this model is mnemonically named deterministic modified Loo process.
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Figure 6.37: The deterministic modified Loo model (simulation model).

For the special case (i), introduced in (6.155a), the structure of the so-called
deterministic classical Loo model follows from Figure 6.37. Here, each of the two
deterministic processes µ̃1(t) and µ̃2(t), given by (6.181a) and (6.181b), respectively,



THE MODIFIED LOO MODEL 233

can be replaced by the fundamental relation (4.4), as a result of which the realization
expenditure of the model reduces considerably. The special case (ii) [see (6.155b)] also
leads to a simplification of the structure of the simulation model, because σ2

2 = 0 is
equivalent to N2 = 0. It should be noted that, for this case, one obtains the simulation
model introduced in [Pae98c]. Finally, we want to point out that in the special
case (6.155c), the structure of the deterministic Rice process with cross-correlated
components follows from Figure 6.37, as we have already discovered from the top part
of Figure 6.9.

On condition that Ni ≥ 7 holds, the equations (6.168), (6.177), and (6.179) derived
for the reference model in Subsection 6.4.1 approximately also hold for deterministic
modified Loo processes %̃(t), if the substitutions ψ0 → ψ̃0, ψ̈0 → ¨̃

ψ0, and φ̇0 → ˙̃
φ0

are performed in the formulae concerned. Here, the characteristic quantities ψ̃0,
¨̃
ψ0,

and ˙̃
φ0 of the simulation model are given by the relations (6.71a), (6.71b), and (6.71c)

derived in Subsection 6.1.4, respectively. This is not particularly surprising because
here as well as in Subsection 6.1.4, the deterministic Gaussian processes µ̃1(t) and µ̃2(t)
are based on the same expressions. Differences, however, only occur in the calculation
of the model parameters fi,n and ci,n for i = 1, 2. In the present case, we have to
take into account that the Jakes power spectral density is in general left-hand side
restricted as well as right-hand side restricted, due to κ1 ∈ [0, 1] and κ2 ∈ [0, 1]. If we
take this fact into account, when calculating the model parameters fi,n and ci,n, by
means of the method of exact Doppler spread (MEDS), then the following expressions
hold for the deterministic modified Loo model:

fi,n = fmax sin
[

π

2N ′
i

(
n− 1

2

)]
, n = 1, 2, . . . , Ni (i = 1, 2) , (6.182a)

ci,n =
σi√
N ′

i

, n = 1, 2, . . . , Ni (i = 1, 2) , (6.182b)

where

N ′
i =

⌈
Ni

2
π arcsin(κi)

⌉
, i = 1, 2, (6.183)

describes the virtual number of harmonic functions, and Ni again denotes the actual
number, i.e., the number of harmonic functions set by the user. For the Doppler phases
θi,n, we assume as usual that these quantities are outcomes (realizations) of a random
generator uniformly distributed in the interval (0, 2π].

The design of the third deterministic Gaussian process ν̃3(t) is performed exactly
according to the method described in Subsection 6.1.4. In particular, the calculation
of the discrete Doppler frequencies f3,n is carried out by means of the relation
(6.75a) in connection with (6.75b), and for the Doppler coefficients ci,n the formula
c3,n =

√
2/N3 again holds for all n = 1, 2, . . . , N3. The remaining parameters of the

simulation model (fρ, θρ,m3, σ3) of course correspond to those of the reference model,
so that all parameters are now determined.
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With the characteristic quantities ψ̃0,
¨̃
ψ0, and ˙̃

φ0, the secondary model parameters of
the simulation model

α̃ =

(
2πfρ −

˙̃
φ0

ψ̃0

)/√
2β̃ (6.184)

and

β̃ = − ¨̃
ψ0 − ˙̃

φ
2

0

/
ψ̃0 (6.185)

can be explicitly calculated similarly to (6.27) and (6.28). The convergence behaviour
of α̃ and β̃/f2

max is depicted in terms of Ni in Figure 6.38(a) and 6.38(b), respectively.
The graphs shown hold for the primary model parameters σ1, σ2, κ1, κ2, and fρ

presented in Table 6.5.
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Figure 6.38: Illustration of (a) α and α̃ as well as (b) β/f2
max and β̃/f2

max when using
the MEDS with N1 = N2 but N ′

1 6= N ′
2 (σi, κi, and fρ according to

Table 6.5).

Figure 6.39 is an example of the time behaviour of the deterministic Loo process %̃(t)
(continuous line), where the values N1 = N2 = N3 = 13 were chosen for the number
of harmonic functions Ni (i = 1, 2, 3), and the maximum Doppler frequency fmax

was again fixed by fmax = 91 Hz. This figure also illustrates the behaviour of the
deterministic lognormal process ρ̃(t) (dotted line).

A comparison between the statistical properties of the reference model and those of the
simulation model is shown in Figures 6.40(a)–6.40(c). Except for the parameter κc =
fmax/fc, whose influence will be investigated here, all parameters of the simulation
model and of the reference model were chosen exactly as in the previous example. The
sampling interval Ts of the discrete deterministic Loo process %̃(kTs) (k = 1, 2, . . . , K)
was given by Ts = 1/(36.63fmax). Altogether K = 3·107 sampling values of the process



THE MODIFIED LOO MODEL 235

0 1 2 3 4 5
-50

-40

-30

-20

-10

0

10

20

t/s

20
 lo

g 
ρ̃ -

(t
)

ρ̃(t)
ρ̃- (t)

Figure 6.39: The deterministic processes %̃(t) and ρ̃(t) (σ2
1 = σ2

2 = 1, κ1 = 0.8, κ2 =
0.5, σ3 = 0.5, m3 = 0.25, fρ = 0.2fmax, θρ = 0, κc = 50, and
fmax = 91 Hz).

%̃(kTs) (k = 1, 2, . . . ,K) have been simulated and used for the determination of the
probability density function p̃%(z) [see Figure 6.40(a)], the normalized level-crossing
rate Ñ%(r)/fmax [see Figure 6.40(b)], and the normalized average duration of fades
T̃%−(r) · fmax [see Figure 6.40(c)] of the simulation model.

Figure 6.40(a) makes us recognize that the behaviour of the probability density
function p̃%(z) is not influenced by the quantity κc. This result was to be expected,
because p̃%(z) is, according to (6.168), independent of the bandwidth of the process
ν3(t), which completely explains the missing influence of the frequency ratio κc =
fmax/fc. The minor differences that can be observed between p%(z) and p̃%(z), are
due to the limited numbers of harmonic functions, which were here equal to Ni = 13
for i = 1, 2, 3. It does not need to be explicitly emphasized that these deviations
decrease if Ni increases, and that they converge against zero as Ni →∞.

The results of Figure 6.40(b) show us that the deviations between the level-crossing
rate of the reference model and that of the simulation model are only relatively high
for unrealistically small values of κc, i.e., κc ≤ 5. On the contrary, for κc ≥ 20 the
differences between the analytical approximate solution (6.177) and the corresponding
simulation results can be ignored.

Studying Figure 6.40(c), we notice that the same statements also hold for the average
duration of fades. Consequently, the approximate solutions derived for this model for
the level-crossing rate and the average duration of fades are very exact, provided that
the frequency ratio κc = fmax/fc is greater than or equal to 20, i.e., if the amplitude
of the line-of-sight component changes relatively slowly compared to the amplitude
variations of the scattered component. We do not need to be afraid of a restriction
connected with the boundary condition κc ≥ 20 for practically relevant cases, because
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for real-world channels, κc À 1 holds anyway.

6.4.3 Applications and Simulation Results

In this subsection, we want to fit the statistic properties of the modified Loo model
to the statistics of real-world channels. Just as for the extended Suzuki process of
Type I and Type II as well as for the generalized Rice process, we here also use the
measurement results presented in [But83] as a basis for the complementary cumulative
distribution function, the level-crossing rate, and the average duration of fades.

In the following, we will choose the realistic value κc = 20 for the frequency ratio
κc = fmax/fc, so that the level-crossing rate N%(r) of the Loo model is approximated
by (6.177) very well. Without restriction of generality, we will also set the phase θρ of
the line-of-sight component to the arbitrary value θρ = 0.

The remaining free model parameters of the modified Loo model are the quantities
σ1, σ2, κ1, κ2, σ3, m3, and fρ, which are set for the model fitting procedure. With
these primary model parameters, we defined the parameter vector

Ω :=
(
σ1, σ2, κ1, κ2, σ3, m3, fρ

)
, (6.186)

whose components are to be optimized according to the scheme described in
Subsection 6.1.5. In order to minimize the error function E2(Ω) [cf. (6.76)], we again
make use of the Fletcher-Powell algorithm [Fle63]. The optimized components of the
parameter vector Ω obtained in this way are presented in Table 6.5 for areas with
light and heavy shadowing.

Table 6.5: The optimized primary model parameters of the modified Loo model for
areas with light and heavy shadowing.

Shadowing σ1 σ2 κ1 κ2 σ3 m3 fρ/fmax

heavy 0 0.3856 0 0.499 0.5349 -1.593 0.1857
light 0.404 0.4785 0.6223 0.4007 0.2628 -0.0584 0.0795

For the modified Loo model, the Rice factor cR is calculated as follows:

cR =
E

{|m(t)|2}

E {|µ(t)|2} =
E

{
%2(t)

}

2E {µ2
i (t)}

(i = 1, 2)

=
r%%(0)
2ψ0

=
π

2
· e2(m3+σ2

3)

∑2
i=1 σ2

i arcsin(κi)
. (6.187)

Thus, with the parameters taken from Table 6.5, the Rice factor cR is cR = 1.7 dB for
heavy shadowing and cR = 8.96 dB for light shadowing.
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In Figure 6.41(a), the complementary cumulative distribution function F%+(r) =
1 − F%−(r) of the modified Loo model is depicted together with that of the
measured channel for the areas with light shadowing and with heavy shadowing.
Figure 6.41(b) makes it clear that the differences between the normalized level-
crossing rate N%(r)/fmax of the modified Loo model and the measured normalized
level-crossing rate used here are acceptable.

Finally, Figure 6.41(c) shows the corresponding normalized average duration of fades.
Here, an excellent agreement is again observable between the reference model and the
measured channel.

For the verification of the analytical results, the corresponding simulation results
are also depicted in Figures 6.41(a)–6.41(c). Therefore, the deterministic Gaussian
processes ν̃1(t), ν̃2(t), and ν̃3(t) were designed according to the method described in
Subsection 6.4.2 by using N1 = N2 = N3 = 15 cosine functions.

Finally, the deterministic modified Loo process %̃(t) is depicted in Figures 6.42(a)
and 6.42(b) for areas with light shadowing and for areas with heavy shadowing,
respectively.
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7

FREQUENCY-SELECTIVE
STOCHASTIC AND
DETERMINISTIC CHANNEL
MODELS

So far, we have been exclusively concerned with the description of frequency-
nonselective mobile radio channels, which are characterized by the fact that the
differences between the propagation delays of the received electromagnetic waves can
be ignored compared to the symbol interval. Obviously, this assumption is less and
less justified the shorter the symbol interval or the higher the data rate becomes.
Channels for which the propagation delay differences cannot be ignored in comparison
with the symbol interval, therefore, represent a further important class of channels,
namely the class of frequency-selective channels. The statistic and deterministic
modelling of this class of channels is the topic of this chapter.

In the literature, the number of publications merely dealing with frequency-selective
mobile radio channels has grown so much that even scientists mainly involved
with this subject are running the risk of losing the overview. Therefore, it is here
impossible to mention every author who has made a contribution to this subject,
particularly since this introduction can only present a small selection of publications.
In order to organize this group of themes systematically, it is sensible to make a
rough classification of the publications, dividing them into the following categories:
theory, measurement, and simulation.

In the first category belong works in which the description and analysis of mobile
radio channels are mainly treated theoretically. The most important article in this
category is indisputably [Bel63]. In this fundamental work on stochastic time-variant
linear systems, Bello introduces the WSSUS1 model that is employed almost ex-
clusively for the description of frequency-selective mobile radio channels. With this
model, the input-output behaviour of mobile radio channels can be described in
the equivalent complex baseband in a relatively simple manner, since the channel

1 WSSUS: wide-sense stationary uncorrelated scattering
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is assumed to be quasi-stationary during the observation time interval. Empirically
grounded statements have shown [Par82] that the assumption of quasi-stationarity
is justified, when the mobile unit covers a distance in the order of less than a few
tens of the wavelength of the carrier signal. The articles [Par82, Ste87, Lor85] give
a good overview of the most important characteristics of time-variant channels, to
which naturally mobile radio channels also belong. Books discussing this subject are,
for example, [Ste94, Stu96, Pro95] and [Jun97]. A deep insight into the theory of
WSSUS models can be obtained by studying [Fle90]. A detailed analysis of WSSUS
models can also be found in [Sad98] for instance, where correlation functions as well
as scattering functions are derived on the assumption of non-uniformly distributed
angles of arrival. The article [Fle96] gives an overview of the state of research in
the field of channel modelling, carried out until 1996 by European research projects
such as COST 207, RACE CODIT, and RACE ATDMA. In the meantime, intensive
research on spatial-temporal channel models for future mobile radio systems with
adaptive antennas has been carried out [Lib99]. Detailed articles giving an overview
with many references concerning this subject are the publications [Ert98] and [Mar99].

In the second category belong publications reporting on experimental measurement
results of mobile radio channels as well as works treating the technology of mobile
radio channel measurement. Certainly, the works by Young [You52], NyLund [Nyl68],
Cox [Cox72, Cox73], Nielson [Nie78], as well as by Bajwa and Parsons [Baj82] belong
to the pioneering works in the field of channel measurements. The subject of channel
measuring is treated in an easily understandable manner in the overview article by
Andersen et al. [And95]. In this publication, mobile radio channels are divided into
classes depending on the environment, and typical measured characteristic quantities
for different propagation scenarios are given. Particularly in connection with the
measurement of system functions of mobile radio channels, the papers [Wer91]
and [Kat95] are interesting. For the measurement of the propagation properties of
mobile radio channels, special measuring devices are required. They are denoted
as channel sounders. At the Telecommunications Institute of the University of
Erlangen–Nuremberg, Germany, the three channel sounders RUSK 400, RUSK 5000,
and RUSK X have been developed [Mar94a] as part of research projects in association
with the Deutsche Telekom in Darmstadt, Germany. Detailed information on the
principle of the applied measurement methods of the channel sounders can be found
in [Mar92, Mar94a, Mar94b]. Results of measurement campaigns performed with
the device type RUSK 5000 are, for example, reported in [Kad91, Goe92a, Goe92b].
The channel sounders RUSK 400 and RUSK 5000 have been produced merely as
prototypes, whereas RUSK X and the succeeding models RUSK SX and RUSK WLL
have for some time already been commercially sold by the company MEDAV GmbH.
Recently, the device RUSK ATM also became part of the RUSK channel sounders’
family. This device arose within the framework of the project ATMmobil, which was
promoted by the BMFT and supported by the company MEDAV [Tho99]. With this
vector channel sounder, in particular directional resolved measurements of mobile
radio channels can be carried out in the frequency band of 5 GHz up to 6 GHz. A
further channel sounder named SIMOCS 2000 has been produced by the Siemens AG
in Munich, Germany. The principle of the functionality of SIMOCS 2000 is described
in [Fel94] and [Jun97]. Furthermore, it should be mentioned that Zollinger [Zol93]
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has developed a channel sounder at the ETH (Swiss Federal Institute of Technology
Zurich) in Zurich, Switzerland. The channel sounder ECHO 24 (ETH Channel
Sounder operating at 24 GHz) also traces its descent from the ETH. With this
channel sounder, complex channel impulse responses can be measured in buildings
with a temporal resolution of 2 ns [Hed99].

In the third and last category finally belong works stressing the development of
simulation models of frequency-selective mobile radio channels. Concerning the
method of realization of these so-called channel simulators, one distinguishes between
hardware realization and software realization. Hardware realizations can in addition
be divided into analog and digital channel simulators. Analog channel simulators (e.g.,
[Cap80, Ber86]) model the channel in the high-frequency band or in the intermediate-
frequency band, where surface acoustic wave (SAW) filters are applied to realize
different multipath propagation delays. Digital channel simulators in general perform
all arithmetic operations that become necessary in the complex baseband in real-time
using digital signal processors [Sch89] or vector processors (e.g., [Ehr82, Sch90]). In
most applications, however, the channel simulation does not take place under real-time
conditions, but is performed on a workstation or a PC. As design methods for the
required algorithms, in principle both the filter method (e.g., [Fec93a, Lau94]) and
the Rice method (e.g., [Schu89, Hoe90, Hoe92, Cre95, Yip95, Pae95b]) are possible.
Incidentally, both of these methods are eligible for the design of channel simulators for
mobile communication systems with frequency-hopping capabilities, which has been
shown by using the filter method in [Lam97] and by using the Rice method in [Pae97b].

The present Chapter 7 is structured as follows. In order to illustrate the path geometry
for multipath fading channels with different propagation delays, we will at first
describe the ellipses model introduced by Parsons and Bajwa [Par82] in Section 7.1. In
Section 7.2, we will be concerned with the system theoretical description of frequency-
selective channels. In this context, we will discuss four system functions introduced
by Bello [Bel63]. It will be pointed out how to get various insights with these system
functions into the input-output behaviour of linear time-variant systems. Section 7.3
contains a description of the theory of frequency-selective stochastic channel models,
which is also going back to Bello [Bel63]. Here, the WSSUS channel model is of central
importance. In particular, stochastic system functions as well as the characteristic
quantities derivable from these will be introduced to characterize the statistical
properties of WSSUS channel models. These models are also suitable for modelling
channels specified by the European working group COST 207 [COS86, COS89]. The
description of the COST 207 channel models is the topic of Subsection 7.3.3. Section 7.4
is dedicated to the mathematical description of frequency-selective deterministic
channel models. The mathematical methods applied in this section are an extension
of the theory of deterministic processes introduced in Chapter 4. Finally, Chapter 7
ends with the derivation of deterministic simulation models for the channel models
according to COST 207.
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7.1 THE ELLIPSES MODEL OF PARSONS AND BAJWA

During the transmission of data, the emitted electromagnetic waves are influenced
by a multitude of various obstacles. Depending on the geometric dimensions and the
electromagnetic properties of these obstacles, one can distinguish between reflected
waves, scattered waves, diffracted waves, and absorbed waves. For our purposes, a
strict distinction between reflection, scattering, and diffraction is not as useful as the
exact knowledge of the location and the consistency of each individual obstacle. Here,
it is sufficient to merely speak of scattering, and — for the sake of simplicity — to
introduce elliptical scattering zones, which lead us to the ellipses model of Parsons
and Bajwa [Par82] (see also [Par89] and [Par92]) shown in Figure 7.1. All ellipses are
confocal, i.e., they have common focal points Tx and Rx, which in our case coincide
with the position of the transmitter (Tx) and the receiver (Rx). As is well known,
the ellipse is the set of all points for which the sum of the distances to the focal
points Tx and Rx is equal. Referring to Figure 7.1, this means that the propagation
paths Tx − A − Rx and Tx − C − Rx have the same path length. However, the
respective angles of arrival are different, and, consequently, the corresponding Doppler
frequencies, caused by the movement of the transmitter (receiver), are also different.
The exact opposite occurs for the (multipath) propagation paths Tx − A − Rx and
Tx−B−Rx, where the path lengths are different, but the angles of arrival are equal,
and, thus, the Doppler frequencies are equal too.

τ0

τ 1

τ2

τ 3

Direction ofC
motion

LOS component
RxTx

B

A

Figure 7.1: The ellipses model describing the path geometry according to Parsons and
Bajwa [Par82].

The path length of each wave determines the propagation delay and essentially also the
average power of the wave at the antenna of the receiver. Every wave in the scattering
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zone characterized by the `th ellipses undergoes the same discrete propagation delay

τ ′` = τ ′0 + ` ∆τ ′ , ` = 0, 1, . . . , L − 1 , (7.1)

where τ ′0 is the propagation delay of the line-of-sight (LOS) component, ∆τ ′ is an
infinitesimal propagation delay, and L denotes the number of paths with different
propagation delays. It is evident that the ellipses model increases in precision if L
increases and ∆τ ′ becomes smaller. In the limit L → ∞ and ∆τ ′ → 0, the discrete
propagation delay τ ′` results in the continuous propagation delay τ ′ restricted to the
interval [τ ′0, τ

′
max]. Here, τ ′max characterizes the maximum propagation delay, which

depends on the environment. The maximum propagation delay τ ′max is chosen in such
a way that the contributions of the scattered components with propagation delays τ ′

greater than τ ′max can be ignored.

In the following discussion, we will see that the ellipses model forms to a certain extent
the physical basis for the modelling of frequency-selective channels. In particular, the
number of paths L with different propagation delays exactly corresponds to the number
of delay elements required for the tapped-delay-line structure of the time-variant filter
used for modelling frequency-selective channels. In order to achieve an economical
realization, L should be kept as small as possible.

7.2 SYSTEM THEORETICAL DESCRIPTION OF FREQUENCY-SELECTIVE
CHANNELS

Using the system functions introduced by Bello [Bel63], the input and output signals
of frequency-selective channels can be related to each other in different ways. The
starting point for the derivation of the system functions is based on the assumption
that the channel is a linear time-variant system in the equivalent complex baseband.
In time-variant systems, the impulse response — denoted by h0(t0, t) — is a function
of the time t0 at which the channel has been excited by the impulse δ(t − t0), and
the time t at which the effect of the impulse is observed at the output of the channel.
The relation between the impulse δ(t − t0) and the corresponding impulse response
h0(t0, t) can therefore be expressed by

δ(t− t0) → h0(t0, t) . (7.2)

Since every physical channel is causal, the impulse cannot produce an effect before
the impulse has excited the channel. This is the so-called law of causality that can be
expressed by

h0(t0, t) = 0 for t < t0 . (7.3)

Using the impulse response h0(t0, t), we now want to compute the output signal y(t)
of the channel for an arbitrary input signal x(t). For this purpose, we at first represent
x(t) as an infinite densely superposition of weighted delta functions. By applying the
sifting property of delta functions, this leads us to

x(t) =
∫ ∞

−∞
x(t0) δ(t− t0) dt0 . (7.4)
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Alternatively, we can also use the expression

x(t) = lim
∆t0→0

∑
t0

x(t0) δ(t− t0) ∆t0 . (7.5)

Since the channel was assumed to be linear, we may employ the principle of
superposition [Lue90]. Hence, by using (7.2), the response to the sum in (7.5) can
be written as

∑
t0

x(t0) δ(t− t0) ∆t0 →
∑
t0

x(t0)h0(t0, t) ∆t0 . (7.6)

For the desired relation

x(t) → y(t) , (7.7)

we obtain the following result from (7.6) in the limit ∆t0 → 0
∫ ∞

−∞
x(t0) δ(t− t0) dt0 →

∫ ∞

−∞
x(t0) h0(t0, t) dt0 . (7.8)

If we now make use of the causality property (7.3), then the output signal is given by

y(t) =
∫ t

−∞
x(t0)h0(t0, t) dt0 . (7.9)

Next, we substitute the variable t0 by the propagation delay

τ ′ = t− t0 , (7.10)

which defines the time elapsed from the moment at which the channel was excited by
the impulse to the moment at which the response was observed at the output of the
channel. Substituting t0 by t− τ ′ in (7.9) results in

y(t) =
∫ ∞

0

x(t− τ ′) h(τ ′, t) dτ ′ . (7.11)

In order to simplify the notation, the time-variant impulse response h0(t − τ ′, t) has
been replaced by h(τ ′, t) := h0(t− τ ′, t). Physically, the time-variant impulse response
h(τ ′, t) can be interpreted as the response of the channel at the time t to a delta
impulse that stimulated the channel at the time t−τ ′. Considering (7.10), the causality
property (7.3) can be expressed by

h(τ ′, t) = 0 for τ ′ < 0 . (7.12)

From (7.11), we now directly obtain the tapped-delay-line model shown in Figure 7.2
of a frequency-selective channel with the time-variant impulse response h(τ ′, t). Note
that the tapped-delay-line model can be interpreted as transversal filter with time-
variant coefficients.
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Figure 7.2: Tapped-delay-line representation of a frequency-selective and time-variant
channel in the equivalent complex baseband.

Modelling mobile radio channels by using a tapped-delay-line structure with time-
variant coefficients gives a deep insight into the channel distortions caused by
scattering components with different propagation delays. Thus, it is recognizable
that the received signal, for example, is composed of an infinite number of delayed
and weighted replicas of the transmitted signal. In digital data transmission this
causes intersymbol interferences (ISI) which have to be eliminated as best as possible
in the receiver, e.g., by using equalizers. Moreover, the close relation between the
tapped-delay-line structure of the channel model and the ellipses model, described in
the previous section, becomes obvious.

The time-variant transfer function H(f ′, t) of the channel is defined by the Fourier
transform of the time-variant impulse response h(τ ′, t) with respect to the propagation
delay variable τ ′, i.e.,

H(f ′, t) :=
∫ ∞

0

h(τ ′, t) e−j2πf ′τ ′ dτ ′ , (7.13)

which is expressed symbolically by h(τ ′, t) τ ′ f ′◦——• H(f ′, t). Here, we realize that
H(f ′, t) only fulfils the condition H∗(f ′, t) = H(−f ′, t) if h(τ ′, t) is a real-valued
function. Starting from (7.11), we can represent the input-output relation with H(f ′, t)
as follows

y(t) =
∫ ∞

−∞
X(f ′)H(f ′, t) ej2πf ′t df ′ , (7.14)

where X(f ′) is the Fourier transform of the input signal x(t) at f = f ′.

Now, let x(t) be a complex oscillation of the form

x(t) = Aej2πf ′t , (7.15)
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where A denotes a complex-valued constant, then it follows from (7.11)

y(t) = A

∫ ∞

0

h(τ ′, t) ej2πf ′(t−τ ′) dτ ′ . (7.16)

Using (7.13), we may also write

y(t) = AH(f ′, t) ej2πf ′t . (7.17)

Therefore, the response of the channel can in this case be represented by the input
signal (7.15) weighted by the time-variant transfer function H(f ′, t). The form (7.17)
consequently makes clear that the time-variant transfer function H(f ′, t) can be
measured directly in the relevant frequency band by sinusoidal excitation.

Neither the time-variant impulse response h(τ ′, t) nor the corresponding transfer
function H(f ′, t) allow an insight into the phenomena caused by the Doppler effect. In
order to eliminate this disadvantage, we apply the Fourier transform on h(τ ′, t) with
respect to the time variable t. In this way, we obtain a further system function

s(τ ′, f) :=
∫ ∞

−∞
h(τ ′, t) e−j2πft dt , (7.18)

which is called the Doppler-variant impulse response.

Instead of (7.18), we may also write h(τ ′, t) t f◦——• s(τ ′, f). Expressing the time-
variant impulse response h(τ ′, t) by the inverse Fourier transform of s(τ ′, f), allows
the representation of (7.11) in the form

y(t) =
∫ ∞

0

∫ ∞

−∞
x(t− τ ′) s(τ ′, f) ej2πft df dτ ′ . (7.19)

This relation shows that the output signal y(t) can be represented by an infinite
sum of delayed, weighted, and Doppler shifted replicas of the input signal x(t).
Signals delayed during transmission in the range of [τ ′, τ ′ + dτ ′) and affected by a
Doppler shift within [f, f + df) are weighted by the differential part s(τ ′, f) df dτ ′.
The Doppler-variant impulse response s(τ ′, f), therefore, explicitly describes the
dispersive behaviour of the channel as a function of both the propagation delays τ ′

and the Doppler frequencies f . Consequently, the physical interpretation of s(τ ′, f)
directly leads to the ellipses model shown in Figure 7.1.

A further system function, the so-called Doppler-variant transfer function T (f ′, f), is
defined by the two-dimensional Fourier transform of the time-variant impulse response
h(τ ′, t) according to

T (f ′, f) :=
∫ ∞

−∞

∫ ∞

0

h(τ ′, t) e−j2π(ft+f ′τ ′) dτ ′ dt . (7.20)

Due to (7.13) and (7.18), we may also write T (f ′, f) f t•——◦ H(f ′, t) or

T (f ′, f) f ′ τ ′•——◦ s(τ ′, f) for (7.20).
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The computation of the Fourier transform of (7.11) with respect to the time variable
t allows the representation of the spectrum Y (f) of the output signal y(t) in the form

Y (f) =
∫ ∞

−∞
X(f − f ′)T (f − f ′, f ′) df ′ . (7.21)

Finally, we exchange the frequency variables f and f ′ and obtain

Y (f ′) =
∫ ∞

−∞
X(f ′ − f)T (f ′ − f, f) df . (7.22)

This equation shows how a relation between the spectrum of the output-signal and
the input-signal can be established by making use of the Doppler-variant transfer
function T (f ′, f). Regarding (7.22), it becomes obvious that the spectrum of the
output signal can be interpreted as a superposition of an infinite number of Doppler
shifted and filtered replicas of the spectrum of the input signal.

At the end of this section, we keep in mind that the four system functions h(τ ′, t),
H(f ′, t), s(τ ′, f), and T (f ′, f) are related in pairs by the Fourier transform. The
Fourier transform relationships established above are illustrated in Figure 7.3.
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Figure 7.3: Fourier transform relationships between the system functions according to
Bello [Bel63].
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7.3 FREQUENCY-SELECTIVE STOCHASTIC CHANNEL MODELS

7.3.1 Correlation Functions

In the following, we consider the channel as a stochastic system. In this case, the
four functions h(τ ′, t), H(f ′, t), s(τ ′, f), and T (f ′, f) are stochastic system functions.
Generally, these stochastic system functions can be described by the following
autocorrelation functions:

rhh(τ ′1, τ
′
2; t1, t2) := E{h∗(τ ′1, t1) h(τ ′2, t2)} , (7.23a)

rHH(f ′1, f
′
2; t1, t2) := E{H∗(f ′1, t1) H(f ′2, t2)} , (7.23b)

rss(τ ′1, τ
′
2; f1, f2) := E{s∗(τ ′1, f1) s(τ ′2, f2)} , (7.23c)

rTT (f ′1, f
′
2; f1, f2) := E{T ∗(f ′1, f1)T (f ′2, f2)} . (7.23d)

Since the system functions are related by the Fourier transform, it is not surprising
that analog relations are also valid for the autocorrelation functions. For example,
(7.23a) and (7.23b) are related by

rHH(f ′1, f
′
2; t1, t2) :=E{H∗(f ′1, t1)H(f ′2, t2)}

= E

{∫ ∞

−∞
h∗(τ ′1, t1) ej2πf ′1τ ′1 dτ ′1

∫ ∞

−∞
h(τ ′2, t2) e−j2πf ′2τ ′2 dτ ′2

}

=
∫ ∞

−∞

∫ ∞

−∞
E{h∗(τ ′1, t1)h(τ ′2, t2)} ej2π(f ′1τ ′1−f ′2τ ′2) dτ ′1 dτ ′2

=
∫ ∞

−∞

∫ ∞

−∞
rhh(τ ′1, τ

′
2; t1, t2) ej2π(f ′1τ ′1−f ′2τ ′2) dτ ′1 dτ ′2 . (7.24)

Finally, we replace the variable f ′1 by −f ′1 on both sides of the last equa-
tion, to make clear that rHH(−f ′1, f

′
2; t1, t2) is the two-dimensional Fourier

transform of rhh(τ ′1, τ
′
2; t1, t2) with respect to the two propagation delay

variables τ ′1 and τ ′2. This can be expressed symbolically by the notation
rhh(τ ′1, τ

′
2; t1, t2)

τ ′1,τ ′2 f ′1,f ′2◦————• rHH(−f ′1, f
′
2; t1, t2). The Fourier transform relationships

between all the other pairs of (7.23a)–(7.23d) can be derived in a similar way. As
a result, one finds the relationships between the autocorrelation functions of the
stochastic system functions shown in Figure 7.4.

In order to describe the input-output relation of the stochastic channel, we assume that
the input signal x(t) is a stochastic process with the known autocorrelation function
rxx(t1, t2) := E{x∗(t1)x(t2)}. As (7.11) is valid for deterministic systems as well as
for stochastic systems, we can express the autocorrelation function ryy(t1, t2) of the
output signal y(t) as a function of rxx(t1, t2) and rhh(τ ′1, τ

′
2; t1, t2) as follows:

ryy(t1, t2) := E{y∗(t1) y(t2)}

= E

{∫ ∞

0

∫ ∞

0

x∗(t1 − τ ′1)x(t2 − τ ′2)h∗(τ ′1, t1) h(τ ′2, t2) dτ ′1 dτ ′2

}
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Figure 7.4: Relationships between the autocorrelation functions of the stochastic
system functions.

=
∫ ∞

0

∫ ∞

0

E{x∗(t1 − τ ′1)x(t2 − τ ′2)}E{h∗(τ ′1, t1)h(τ ′2, t2)} dτ ′1 dτ ′2

=

∞∫

0

∞∫

0

rxx(t1 − τ ′1; t2 − τ ′2) rhh(τ ′1, τ
′
2; t1, t2) dτ ′1 dτ ′2 . (7.25)

In the derivation above, we have implicitly assumed that the time-variant impulse
response h(τ ′, t) of the channel and the input signal x(t) are statistically independent.

Significant simplifications can be made by assuming that the time-variant impulse
response h(τ ′, t) is stationary in the wide sense with respect to t, and that the
scattering components with different propagation delays are statistically uncorrelated.
Basing on these assumptions, Bello introduced the so-called WSSUS model in his
essential work [Bel63] on stochastic time-variant linear systems. The description of
the WSSUS model is the topic of the following subsection.

7.3.2 The WSSUS Model According to Bello

The WSSUS model enables the statistical description of the input-output relation
of mobile radio channels for the transmission of bandpass signals in the equivalent
complex baseband for observation periods in which the stationarity of the channel is
ensured in the wide sense. According to empirical studies [Par82], the channel can be
considered as wide-sense stationary as long as the mobile unit covers a distance in the
dimension of a few tens of the wavelength of the carrier signal.

7.3.2.1 WSS Models

A channel model with a wide-sense stationary impulse response is called WSS channel
model (WSS, wide-sense stationary). Instead of the term WSS channel model, we
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also use the short form WSS model, since it is evident that this model is exclusively
used for modelling channels. The assumption of wide-sense stationarity leads to the
fact that the two autocorrelation functions in (7.23a) and (7.23b) are invariant with
respect to a translation of time, i.e., the autocorrelation functions rhh(τ ′1, τ

′
2; t1, t2) and

rHH(f ′1, f
′
2; t1, t2) merely depend on the time difference τ := t2 − t1. With t1 = t and

t2 = t + τ , we can therefore write in case of WSS models:

rhh(τ ′1, τ
′
2; t, t + τ) = rhh(τ ′1, τ

′
2; τ) , (7.26a)

rHH(f ′1, f
′
2; t, t + τ) = rHH(f ′1, f

′
2; τ) . (7.26b)

The restricted behaviour of these two autocorrelation functions certainly has
consequences for the remaining autocorrelation functions (7.23c) and (7.23d). To
clarify this, we look at the Fourier transform relation between rhh(τ ′1, τ

′
2; t1, t2) and

rss(τ ′1, τ
′
2; f1, f2) which can, by considering Figure 7.4, be formulated as follows

rss(τ ′1, τ
′
2; f1, f2) =

∫ ∞

−∞

∫ ∞

−∞
rhh(τ ′1, τ

′
2; t1, t2) ej2π(t1f1−t2f2) dt1 dt2 . (7.27)

The substitutions of the variables t1 → t and t2 → t + τ , in connection with (7.26a),
result in

rss(τ ′1, τ
′
2; f1, f2) =

∫ ∞

−∞
e−j2π(f2−f1)t dt

∫ ∞

−∞
rhh(τ ′1, τ

′
2; τ) e−j2πf2τ dτ . (7.28)

The first integral on the right-hand side of (7.28) can be identified with the delta
function δ(f2 − f1). Consequently, rss(τ ′1, τ

′
2; f1, f2) can be expressed by

rss(τ ′1, τ
′
2; f1, f2) = δ(f2 − f1)Sss(τ ′1, τ

′
2; f1) , (7.29)

where Sss(τ ′1, τ
′
2; f1) is the Fourier transform of the autocorrelation function

rhh(τ ′1, τ
′
2; τ) with respect to the time separation variable τ . The assumption that the

time-variant impulse response h(τ ′, t) is wide-sense stationary therefore leads to the
fact that the system functions s(τ ′1, f1) and s(τ ′2, f2) are statistically uncorrelated if
the Doppler frequencies f1 and f2 are different.

It can be shown in a similar way that (7.23d) can be represented in the form

rTT (f ′1, f
′
2; f1, f2) = δ(f2 − f1)STT (f ′1, f

′
2; f1) , (7.30)

where STT (f ′1, f
′
2; f1) denotes the Fourier transform of the autocorrelation function

rHH(f ′1, f
′
2; τ) with respect to τ . From (7.30), it can be realized that the system

functions T (f ′1, f1) and T (f ′2, f2) are statistically uncorrelated for different Doppler
frequencies f1 and f2.

Since the time-variant impulse response h(τ ′, t) results from a superposition of
a multitude of scattered components, it can generally be stated that the WSS
assumption leads to the fact that scattering components with different Doppler
frequencies or different angles of arrival are statistically uncorrelated.
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7.3.2.2 US Models

A second important class of channel models is obtained by assuming that scattering
components with different propagation delays are statistically uncorrelated. These
channel models are called US channel models or US models (US, uncorrelated
scattering). The autocorrelation functions rhh(τ ′1, τ

′
2; t1, t2) and rss(τ ′1, τ

′
2; f1, f2) of

US models can first of all be described formally by

rhh(τ ′1, τ
′
2; t1, t2) = δ(τ ′2 − τ ′1)Shh(τ ′1; t1, t2) , (7.31a)

rss(τ ′1, τ
′
2; f1, f2) = δ(τ ′2 − τ ′1)Sss(τ ′1; f1, f2) . (7.31b)

The singular behaviour of the autocorrelation function (7.31a) has significant conse-
quences on the tapped-delay-line model shown in Figure 7.2, because the time-variant
coefficients of this model are now uncorrelated as a result of the US assumption.
In practice, the coefficients of the tapped-delay-line model are realized almost
exclusively by coloured Gaussian random processes. It should be taken into account
that uncorrelated Gaussian random processes are also statistically independent.

Formal expressions for the autocorrelation functions of the remaining stochastic system
functions H(f ′, t) and T (f ′, f) can easily be determined by using the relations shown
in Figure 7.4. With the substitutions f ′1 = f ′ and f ′2 = f ′+υ′, the following equations
can be found:

rHH(f ′, f ′ + υ′; t1, t2) = rHH(υ′; t1, t2) , (7.32a)
rTT (f ′, f ′ + υ′; f1, f2) = rTT (υ′; f1, f2) . (7.32b)

Obviously, the autocorrelation functions of the system functions H(f ′, t) and T (f ′, f)
only depend on the frequency difference υ′ := f ′2 − f ′1. As a consequence, US models
are wide-sense stationary with respect to the frequency f ′.

If we now compare the above mentioned autocorrelation functions of US models with
those derived for WSS models, then we notice that they are dual to each other.
Therefore, we can say that the class of US models stands in a duality relationship
to the class of WSS models.

7.3.2.3 WSSUS Models

The most important class of stochastic time-variant linear channel models is rep-
resented by models belonging to the class of WSS models as well as to the class
of US models. These channel models with wide-sense stationary impulse responses
and uncorrelated scattering components are called WSSUS channel models or simply
WSSUS models (WSSUS, wide-sense stationary uncorrelated scattering). Due to
their simplicity, they are of great practical importance and are nowadays almost
exclusively employed for modelling frequency-selective mobile radio channels.
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In the case of the WSSUS assumption, the autocorrelation function of the time-variant
impulse response h(τ ′, t) has to be describable by (7.26a) as well as by (7.31a). Hence,
we may formally write

rhh(τ ′1, τ
′
2; t, t + τ) = δ(τ ′2 − τ ′1)Shh(τ ′1, τ) , (7.33)

where Shh(τ ′1, τ) is called the delay cross-power spectral density. With this represen-
tation it becomes obvious that the time-variant impulse response h(τ ′, t) of WSSUS
models has the characteristic properties of non-stationary white noise with respect
to the propagation delay τ ′, on the one hand, and is also wide-sense stationary with
respect to the time t, on the other hand.

By analogy, we can directly obtain the autocorrelation function of T (f ′, f) by bringing
(7.30) and (7.32b) together. Thus, for WSSUS models, it holds

rTT (f ′, f ′ + υ′; f1, f2) = δ(f2 − f1)STT (υ′, f1) , (7.34)

where STT (υ′, f1) is called Doppler cross-power spectral density. This result shows
that the system function T (f ′, f) of WSSUS models behaves like non-stationary
white noise with respect to the Doppler frequency f and like a wide-sense stationary
stochastic process with respect to the frequency f ′.

Furthermore, we can combine the relations (7.29) and (7.31b) and obtain the
autocorrelation function of s(τ ′, f) in the form

rss(τ ′1, τ
′
2; f1, f2) = δ(f2 − f1) δ(τ ′2 − τ ′1) S(τ ′1, f1) . (7.35)

From this, we conclude that the system function s(τ ′, f) of WSSUS models has the
character of non-stationary white noise with respect to τ ′ as well as with respect to
f . In [Bel63], Bello called the function S(τ ′1, f1) appearing in (7.35) the scattering
function.

Finally, by combining (7.26b) and (7.32a), it follows for the autocorrelation function
of H(f ′, t) the relation

rHH(f ′, f ′ + υ′; t, t + τ) = rHH(υ′, τ) . (7.36)

The autocorrelation function rHH(υ′, τ) is called the time-frequency correlation
function. Regarding (7.36) it becomes obvious that the system function H(f ′, t) of
WSSUS models has the properties of wide-sense stationary stochastic processes with
respect to f ′ and t.

Figure 7.4 shows the universally valid relationships between the autocorrelation
functions of the four system functions. With the expressions (7.33)–(7.36), it is now
possible to derive the specific relations valid for WSSUS models. One may therefore
study Figure 7.5, where the relationships between the delay cross-power spectral
density Shh(τ ′, τ), the time-frequency correlation function rHH(υ′, τ), the Doppler
cross-power spectral density STT (υ′, f), and the scattering function S(τ ′, f) are shown.
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Figure 7.5: Relationships between the delay cross-power spectral density Shh(τ ′, τ),
the time-frequency correlation function rHH(υ′, τ), the Doppler cross-power
spectral density STT (υ′, f), and the scattering function S(τ ′, f) of WSSUS
models.

Here, it should be noted that the substitutions f1 → f and τ ′1 → τ ′ have been carried
out for reasons of simplifying the notation.

Figure 7.5 makes clear that the knowledge of one of the four depicted functions is
sufficient to calculate the remaining three. For example, from the scattering function
S(τ ′, f), we can directly obtain the delay cross-power spectral density Shh(τ ′, τ) by
computing the inverse Fourier transform with respect to the Doppler frequency f , i.e.,

Shh(τ ′, τ) =
∫ ∞

−∞
S(τ ′, f) ej2πfτ df , (7.37)

where τ = t2 − t1.

The delay cross-power spectral density Shh(τ ′, τ) at τ = 0 defines the so-called delay
power spectral density Sτ ′τ ′(τ ′), which is due to (7.37) related to the scattering function
S(τ ′, f) according to

Sτ ′τ ′(τ ′) := Shh(τ ′, 0) =
∫ ∞

−∞
S(τ ′, f) df . (7.38)

The delay power spectral density Sτ ′τ ′(τ ′) determines the average power of scattering
components occurring with the propagation delay τ ′. It can easily be shown that
Sτ ′τ ′(τ ′) is proportional to the probability density function of the propagation delays
τ ′. From the delay power spectral density Sτ ′τ ′(τ ′), two important characteristic
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quantities for the characterization of WSSUS models can be derived: the average
delay and the delay spread.

Average delay: The average delay B
(1)
τ ′τ ′ is defined by the first moment of Sτ ′τ ′(τ ′),

i.e.,

B
(1)
τ ′τ ′ :=

∫∞
−∞ τ ′ Sτ ′τ ′(τ ′) dτ ′∫∞
−∞ Sτ ′τ ′(τ ′) dτ ′

. (7.39)

It corresponds to the centre of gravity of the delay power spectral density Sτ ′τ ′(τ ′).
The average delay B

(1)
τ ′τ ′ is the statistical mean delay that a carrier signal experiences

during the transmission over a multipath fading channel.

Delay spread: The delay spread B
(2)
τ ′τ ′ is defined by the square root of the second

central moment of Sτ ′τ ′(τ ′), i.e.,

B
(2)
τ ′τ ′ :=

√√√√√
∫∞
−∞

(
τ ′ −B

(1)
τ ′τ ′

)2

Sτ ′τ ′(τ ′) dτ ′
∫∞
−∞ Sτ ′τ ′(τ ′) dτ ′

. (7.40)

The delay spread B
(2)
τ ′τ ′ provides us with a measure of the time spread of an impulse

passed through a multipath fading channel.

From Figure 7.5, we realize that the Doppler cross-power spectral density STT (υ′, f)
is the Fourier transform of the scattering function S(τ ′, f) with respect to the delay
τ ′, i.e., the relation

STT (υ′, f) =
∫ ∞

−∞
S(τ ′, f) e−j2πυ′τ ′ dτ ′ (7.41)

holds, where υ′ = f ′2 − f ′1.

For υ′ = 0, the already known Doppler power spectral density Sµµ(f) follows from
the Doppler cross-power spectral density STT (υ′, f), because

Sµµ(f) := STT (0, f) =
∫ ∞

−∞
S(τ ′, f) dτ ′ (7.42)

holds. The Doppler power spectral density Sµµ(f) gives the average power of the
scattering components occurring with the Doppler frequency f . In Appendix A, it is
shown that Sµµ(f) is proportional to the probability density function of the Doppler
frequencies f . Remember that two important characteristic quantities can be derived
from the Doppler power spectral density Sµµ(f), namely, the average Doppler shift
B

(1)
µµ [cf. (3.13a)] and the Doppler spread B

(2)
µµ [cf. (3.13b)].

According to Figure 7.5, the time-frequency correlation function rHH(υ′, τ) can be
calculated from the scattering function S(τ ′, f) as follows:

rHH(υ′, τ) =
∫ ∞

−∞

∫ ∞

−∞
S(τ ′, f) e−j2π(υ′τ ′−fτ) dτ ′ df , (7.43)
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where υ′ = f ′2− f ′1 and τ = t2− t1. Alternatively, we could have calculated rHH(υ′, τ)
by applying the Fourier transform on Shh(τ ′, τ) with respect to the propagation
delays τ ′ or via the inverse Fourier transform of STT (υ′, f) with respect to the
Doppler frequency f .

From the time-frequency correlation function rHH(υ′, τ), two further correlation
functions can be derived. They are called frequency correlation function and time
correlation function. From each of these functions, a further important characteristic
quantity can be derived: the coherence bandwidth and the coherence time.

Frequency correlation function: The frequency correlation function rτ ′τ ′(υ′) is
defined by the time-frequency correlation function rHH(υ′, τ) at τ = t2 − t1 = 0, i.e.,

rτ ′τ ′(υ′) := rHH(υ′, 0)

=
∫ ∞

−∞

∫ ∞

−∞
S(τ ′, f) e−j2πυ′τ ′ dτ ′ df

=
∫ ∞

−∞
Sτ ′τ ′(τ ′) e−j2πυ′τ ′ dτ ′ . (7.44)

Obviously, the frequency correlation function rτ ′τ ′(υ′) is the Fourier transform
of the delay power spectral density Sτ ′τ ′(τ ′). The frequency correlation function
characterizes the similarity of the time-variant transfer functions H(f ′1, t) and H(f ′2, t)
as a function of the frequency separation variable υ′ = f ′2 − f ′1.

Coherence bandwidth: The frequency separation variable υ′ = BC that fulfils the
condition

|rτ ′τ ′(BC)| = 1
2
|rτ ′τ ′(0)| (7.45)

is called the coherence bandwidth.

Since, referring to (7.44), the frequency correlation function rτ ′τ ′(υ′) and the
delay power spectral density Sτ ′τ ′(τ ′) form a Fourier transform pair, the coherence
bandwidth BC is, according to the uncertainty principle of communications
engineering [Lue90], approximately reciprocally proportional to the delay spread B

(2)
τ ′τ ′ .

With an increasing ratio of signal bandwidth to coherence bandwidth, the expenditure
of signal equalization in the receiver grows. An important special case occurs if the
coherence bandwidth BC is much greater than the symbol rate fsym, i.e., if

BC À fsym or B
(2)
τ ′τ ′ ¿ Tsym (7.46a, b)

holds, where Tsym = 1/fsym denotes the symbol interval. In this case, the effect of
the impulse dispersion can be ignored and the time-variant impulse response h(τ ′, t)
of the channel can approximately be represented by

h(τ ′, t) = δ(τ ′) · µ(t) , (7.47)
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where µ(t) is a proper complex stochastic process. Using (7.11), the output signal y(t)
may be expressed as

y(t) = µ(t) · x(t) . (7.48)

Due to the multiplicative relation between µ(t) and x(t), we speak of multiplicative
fading in this context. After substituting (7.47) in (7.13), we obtain the following
expression for the time-variant transfer function H(f ′, t)

H(f ′, t) = µ(t) , (7.49)

In this case, the time-variant transfer function is obviously independent of the
frequency f ′. Thus, the channel is said to be frequency-nonselective, because all
frequency components of the transmitted signal are subjected to the same variations.
A frequency-nonselective modelling of the mobile radio channel is always adequate
if the delay spread B

(2)
τ ′τ ′ does not exceed 10 per cent to 20 per cent of the symbol

interval Tsym.

Time correlation function: The time correlation function rµµ(τ) is defined by the
time-frequency correlation function rHH(υ′, τ) at υ′ = f ′2 − f ′1 = 0, i.e.,

rµµ(τ) := rHH(0, τ)

=
∫ ∞

−∞

∫ ∞

−∞
S(τ ′, f) ej2πfτ dτ ′ df

=
∫ ∞

−∞
Sµµ(f) ej2πfτ df . (7.50)

This correlation function describes the correlation properties of the received scattered
components as a function of the time difference τ = t2 − t1.

Coherence time: The time interval τ = TC that fulfils the condition

|rµµ(TC)| = 1
2
|rµµ(0)| (7.51)

is called the coherence time.

According to (7.50), the time correlation function rHH(0, τ) and the Doppler power
spectral density Sµµ(f) form a Fourier transform pair. Consequently, the coherence
time TC behaves approximately reciprocally proportional to the Doppler spread B

(2)
µµ .

The smaller the ratio of the coherence time TC and the symbol interval Tsym is, the
higher are the demands on the tracing performance of the channel estimator in the
receiver. If the coherence time TC is much larger than the symbol interval Tsym, i.e.,

TC À Tsym or B(2)
µµ ¿ fsym , (7.52a, b)
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then the impulse response of the channel may be regarded as approximately constant
for the duration of one symbol. In this case, we speak of slow fading.

Figure 7.6 once more shows the relationships between the correlation functions and
the power spectral densities introduced in this subsection in conjunction with the
characteristic quantities of WSSUS models derived from these.

This figure vividly shows us that for WSSUS models the knowledge of the scattering
function S(τ ′, f) is sufficient to determine all correlation functions and power spectral
densities as well as their characteristic quantities such as the delay spread and Doppler
spread.

7.3.3 The Channel Models According to COST 207

In 1984, the European working group COST2 207 was established by CEPT.3 At that
time, this working group developed suitable channel models for typical propagation
environments, in view of the planned pan-European mobile communication system
GSM. The typical propagation environments are classifiable into areas with rural
character (RA, Rural Area), areas typical for cities and suburbs (TU, Typical Urban),
densely built urban areas with bad propagation conditions (BU, Bad Urban), and
hilly terrains (HT, Hilly Terrain). Basing on the WSSUS assumption, the working
group COST 207 developed specifications for the delay power spectral density and
the Doppler power spectral density for these four classes of propagation environments
[COS86, COS89]. The main results will be presented subsequently.

The specification of typical delay power spectral densities Sτ ′τ ′(τ ′) is based on the
assumption that the corresponding probability density function pτ ′(τ ′), which is
proportional to Sτ ′τ ′(τ ′), can be represented by one or more negative exponential
functions. The delay power spectral density functions Sτ ′τ ′(τ ′) of the channel models
according to COST 207 are shown in Table 7.1 and in Figure 7.7. The real-valued
constant quantities cRA, cTU , cBU , and cHT introduced there can in principle be
chosen arbitrarily. Hence, they can be determined in such a way that the average
delay power is equal to one for example, i.e.,

∫∞
0

Sτ ′τ ′(τ ′) dτ ′ = 1. In this case, it
holds:

cRA =
9.2

1− e−6.44
, cTU =

1
1− e−7

, (7.53a, b)

cBU =
2

3(1− e−5)
, cHT =

1
(1− e−7)/3.5 + (1− e−5)/10

. (7.53c, d)

In the GSM system, the symbol interval Tsym is defined by Tsym = 3.7µs. If we

2 COST: European Cooperation in the Field of Scientific and Technical Research.
3 CEPT: Conference of European Posts and Telecommunications Administrations.
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Figure 7.7: Delay power spectral densities Sτ ′τ ′(τ
′) of the channel models according to

COST 207 [COS89].
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Table 7.1: Specification of typical delay power spectral densities Sτ ′τ ′(τ
′) according to

COST 207 [COS89].

Propagation area Delay power spectral density Delay
spread

Sτ ′τ ′(τ ′) B
(2)
τ ′τ ′

cRA e−9.2τ ′/µs, 0 ≤ τ ′ < 0.7µs
Rural Area (RA)

0, else
0.1 µs

Typical Urban (TU)
cTU e−τ ′/µs, 0 ≤ τ ′ < 7µs

0.98 µs
0, else

cBU e−τ ′/µs, 0 ≤ τ ′ < 5µs

Bad Urban (BU) cBU
1
2e(5−τ ′/µs), 5µs ≤ τ ′ < 10µs 2.53 µs

0, else

cHT e−3.5τ ′/µs, 0 ≤ τ ′ < 2µs

Hilly Terrain (HT) cHT 0.1e(15−τ ′/µs), 15µs ≤ τ ′ < 20µs 6.88 µs

0, else

bring Tsym in relation to the delay spread B
(2)
τ ′τ ′ , which is listed in the last column

of Table 7.1, then we realize that (7.46b) is only fulfilled for the Rural Area (RA).
Consequently, the RA channel belongs to the class of frequency-nonselective channels,
whereas the other channels (TU, BU, HT) are frequency-selective.

Table 7.2 shows the four types of Doppler power spectral densities Sµµ(f) specified by
COST 207. They are also presented graphically in Figure 7.8 for better illustration.
For the real-valued constants A1 and A2, preferably the values A1 = 50/

(√
2π3fmax

)

and A2 = 101.5/
[√

2π
(√

10 + 0.15
)
fmax

]
are chosen, since it is then ensured that∫∞

−∞ Sµµ(f) df is equal to one. The classical Jakes power spectral density only occurs
in the case of very short propagation delays (τ ′ ≤ 0.5 µs) [see Figures 7.8(a) and 7.8(d)].
Only in this case, the assumptions that the amplitudes of the scattering components
are homogeneous and the angles of arrival are uniformly distributed between 0 and
2π are justified. For scattering components with medium and long propagation delays
τ ′, however, it is assumed that the corresponding Doppler frequencies are normally
distributed, resulting in a Doppler power spectral density with a Gaussian shape [see
Figures 7.8(b) and 7.8(c)]. This had already been pointed out by Cox [Cox73] at a
very early stage after performing extensive empirical investigations.

From Tables 7.1 and 7.2, it can be seen that the delay power spectral density Sτ ′τ ′(τ ′)
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Figure 7.8: Doppler power spectral densities Sµµ(f) of the channel models according
to COST 207 [COS89].
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Table 7.2: Specification of typical Doppler power spectral densities Sµµ(f) according
to COST 207 [COS89], where G(Ai, fi, si) is defined by G(Ai, fi, si) :=

Ai exp{− (f−fi)
2

2s2
i
}.

Type Doppler power Propagation Doppler
spectral density delay spread

Sµµ(f) τ ′ B
(2)
µµ

“Jakes”
1

πfmax

√
1−(f/fmax)2 0 ≤ τ ′ ≤ 0.5µs fmax/

√
2

“Gauss I”
G (A1,−0.8fmax, 0.05fmax)

+G (A1/10, 0.4fmax, 0.1fmax)
0.5µs ≤ τ ′ ≤ 2µs 0.45fmax

“Gauss II”
G (A2, 0.7fmax, 0.1fmax)

+G
(
A2/101.5,−0.4fmax, 0.15fmax

) τ ′ ≥ 2µs 0.25fmax

“Rice”
0.412

πfmax

√
1−(f/fmax)2

+0.912 δ(f − 0.7fmax)
τ ′ = 0µs 0.39fmax

is independent of the Doppler frequencies f , but the propagation delays τ ′ have a
decisive influence on the shape of the Doppler power spectral density Sµµ(f). However,
this is not valid for rural areas, where only the classical Jakes power spectral density
is used. In this special case, the scattering function S(τ ′, f) can be represented by the
product of the delay power spectral density and the Doppler power spectral density,
i.e.,

S(τ ′, f) = Sτ ′τ ′(τ ′) · Sµµ(f) . (7.54)

Channels with a scattering function of the form (7.54) are called independent
time dispersive and frequency dispersive channels. For this class of channels, the
physical mechanism causing the propagation delays is independent from that which
is responsible for the Doppler effect [Fle90].

Regarding the design of hardware or software simulation models for frequency-selective
channels, a discretization of the delay power spectral density Sτ ′τ ′(τ ′) has to be
performed. In particular, the propagation delays τ ′ have to be made discrete and
adapted to the sampling interval. This is the reason why discrete L-path channel
models have been specified in [COS89] for the four propagation areas (RA, TU, BU,
HT). Some of these specified L-path channel models are listed in Table 7.3 for L = 4
and L = 6. The resulting scattering functions S(τ ′, f) are shown in Figures 7.9(a)–(d).
In [COS89], moreover, alternative 6-path channel models as well as more complex, but
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therefore more exact, 12-path channel models have been specified. They are presented
in Appendix E for the sake of completeness.
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Figure 7.9: Scattering functions S(τ ′, f) of the L-path channel models according to
COST 207 [COS89].
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Table 7.3: Specification of the L-path channel models according to COST 207 [COS89],
where L = 4 (RA) and L = 6 (TU, BU, HT).

Path no. Propagation Path Category of the Delay
` delay power Doppler power spread

τ ′` (lin.) (dB) spectral density B
(2)
τ ′τ ′

(a) Rural Area

0 0.0 µs 1 0 “Rice”
1 0.2 µs 0.63 -2 “Jakes”
2 0.4 µs 0.1 -10 “Jakes”

0.1 µs

3 0.6 µs 0.01 -20 “Jakes”

(b) Typical Urban

0 0.0 µs 0.5 -3 “Jakes”
1 0.2 µs 1 0 “Jakes”
2 0.6 µs 0.63 -2 “Gauss I”
3 1.6 µs 0.25 -6 “Gauss I”

1.1 µs

4 2.4 µs 0.16 -8 “Gauss II”
5 5.0 µs 0.1 -10 “Gauss II”

(c) Bad Urban

0 0.0 µs 0.5 -3 “Jakes”
1 0.4 µs 1 0 “Jakes”
2 1.0 µs 0.5 -3 “Gauss I”
3 1.6 µs 0.32 -5 “Gauss I”

2.4 µs

4 5.0 µs 0.63 -2 “Gauss II”
5 6.6 µs 0.4 -4 “Gauss II”

(d) Hilly Terrain

0 0.0 µs 1 0 “Jakes”
1 0.2 µs 0.63 -2 “Jakes”
2 0.4 µs 0.4 -4 “Jakes”
3 0.6 µs 0.2 -7 “Jakes”

5.0 µs

4 15.0 µs 0.25 -6 “Gauss II”
5 17.2 µs 0.06 -12 “Gauss II”
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7.4 FREQUENCY-SELECTIVE DETERMINISTIC CHANNEL MODELS

In this section, we will deal with the derivation and the analysis of frequency-selective
deterministic channel models. For this purpose, we again apply the principle of
deterministic channel modelling described in Section 4.1.

7.4.1 System Functions of Frequency-Selective Deterministic Channel
Models

Starting point for the derivation of the system functions of frequency-selective
deterministic channel models is the time-variant impulse response consisting of a sum
of L discrete propagation paths

h̃(τ ′, t) =
L−1∑

`=0

ã` µ̃`(t) δ(τ ′ − τ̃ ′`) . (7.55)

The quantities ã` in (7.55) are real-valued and they are called the delay coefficients.
As we will see later on, both the delay coefficients ã` and the discrete propagation
delays τ̃ ′` [see (7.1)] determine the delay power spectral density of frequency-selective
deterministic channel models. Strictly speaking, the delay coefficient ã` is a measure
of the square root of the average delay power which is assigned to the `th discrete
propagation path. In general, one can say that the delay coefficients ã` and the discrete
propagation delays τ̃ ′` determine the frequency-selective behaviour of the channel,
which can be attributed to the effect of multipath propagation. In the present case, it
is assumed that elliptical scattering zones with different discrete axes are the reason
for multipath propagation. The disturbances of the channel caused by the Doppler
effect, i.e., the disturbances caused by the motion of the receiver (transmitter), are
modelled in (7.55), according to the principle of deterministic channel modelling, by
complex deterministic Gaussian processes

µ̃`(t) = µ̃1,`(t) + jµ̃2,`(t) , ` = 0, 1, . . . ,L − 1 , (7.56a)

where

µ̃i,`(t) =
Ni,`∑
n=1

ci,n,` cos(2πfi,n,`t + θi,n,`) , i = 1, 2 . (7.56b)

Here, Ni,` denotes the number of harmonic functions belonging to the real part
(i = 1) or the imaginary part (i = 2) of the `th propagation path. In (7.56b), ci,n,`

is the Doppler coefficient of the nth component of the `th propagation path, and the
remaining model parameters fi,n,` and θi,n,` are, as stated before, called the Doppler
frequencies and the Doppler phases, respectively.

Figure 7.10 shows the structure of the complex Gaussian random process µ̃`(t) in the
continuous-time representation. To ensure that the simulation model derived below
has the same striking properties as a US model, the complex deterministic Gaussian
processes µ̃`(t) must be uncorrelated for different propagation paths. Therefore, it is
inevitable that the deterministic Gaussian processes µ̃`(t) and µ̃λ(t) are designed in
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such a way that they are uncorrelated for ` 6= λ, where `, λ = 0, 1, . . . ,L − 1. This
demand can easily be fulfilled. One merely has to ensure that the discrete Doppler
frequencies fi,n,` are designed so that the resulting sets {fi,n,`} are disjoint (mutually
exclusive) for different propagation paths. For the simulation model, the demand for
uncorrelated scattering (US) propagation can therefore be formulated as follows:

US ⇐⇒ fi,n,` 6= fj,m,λ for ` 6= λ , (7.57)

where i, j = 1, 2, n = 1, 2, . . . , Ni,`, m = 1, 2, . . . , Nj,λ, and `, λ = 0, 1, . . . ,L − 1.
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Figure 7.10: Simulation model for complex deterministic Gaussian processes µ̃`(t).

In the following, we assume that the US condition (7.57) is always fulfilled. In this
case, the correlation properties of the complex deterministic Gaussian processes µ̃`(t)
introduced by (7.56a) can be described by

lim
T→∞

1
2T

∫ T

−T

µ̃∗` (t) µ̃λ(t + τ) dt =

{
r̃µ`µ`

(τ) , if ` = λ ,

0 , if ` 6= λ ,
(7.58)

where

r̃µ`µ`
(τ) =

2∑

i=1

r̃µi,`µi,`
(τ) , (7.59a)

r̃µi,`µi,`
(τ) =

Ni,`∑
n=1

c2
i,n,`

2
cos(2πfi,n,`τ) (7.59b)
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holds for i = 1, 2 and `, λ = 0, 1, . . . ,L − 1.

At this stage, it should be mentioned that all parameters determining the statistical
behaviour of the time-variant impulse response h̃(τ ′, t) can be calculated in such a
way that the scattering function of the deterministic system approximates a given
specified or measured scattering function. A procedure for this will be introduced
in Subsection 7.4.4. We may therefore assume that the parameters mentioned above
are not only known, but also constant quantities, which will not be changed during
the channel simulation run. In this case, the time-variant impulse response h̃(τ ′, t)
is a deterministic function (sample function) which will consequently be called the
time-variant deterministic impulse response. It defines a further important class of
channel models. In the following, channel models with an impulse response according
to (7.55) will be called DGUS4 models.

Since the discrete propagation delays τ̃ ′` in (7.55) cannot become negative, h̃(τ ′, t)
fulfils the causality condition, i.e., it holds

h̃(τ ′, t) = 0 for τ ′ < 0 . (7.60)

By analogy to (7.11), we can compute the output signal y(t) for any given input signal
x(t) by applying

y(t) =
∫ ∞

0

x(t− τ ′) h̃(τ ′, t) dτ ′ . (7.61)

If we now employ the expression (7.55) for the time-variant deterministic impulse
response h̃(τ ′, t), we obtain

y(t) =
L−1∑

`=0

ã` µ̃`(t)x(t− τ̃ ′`) . (7.62)

Hence, the output signal y(t) of the channel can be interpreted as a superposition
of L delayed versions of the input signal x(t − τ̃ ′`), where each of the delayed
versions is weighted by a constant delay coefficient ã` and a time-variant complex
deterministic Gaussian process µ̃`(t). Without restriction of generality, we may ignore
the propagation delay of the line-of-sight component in this model. To simplify
matters, we define τ̃ ′0 := 0. This does not cause any problem, because only the
propagation delay differences ∆τ̃ ′` = τ̃ ′` − τ̃ ′`−1 (` = 1, 2, . . . ,L − 1) are relevant for
the system behaviour. From (7.62) follows the tapped-delay-line structure shown in
Figure 7.11 of a deterministic simulation model for a frequency-selective mobile radio
channel in the continuous-time representation.

The discrete-time simulation model, required for computer simulations, can be
obtained from the continuous-time structure, e.g., by substituting τ̃ ′` → `T ′s,
x(t) → x(kT ′s), y(t) → y(kT ′s) and µ̃`(t) → µ̃`(kTs), where Ts and T ′s denote sampling

4 DGUS is introduced here as an abbreviation for “deterministic Gaussian uncorrelated scattering”.
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Figure 7.11: Deterministic simulation model for a frequency-selective mobile radio
channel in the equivalent complex baseband.

intervals, k is an integer, and ` refers to the `th propagation path (` = 0, 1, . . . ,L−1).
For the propagation delay differences ∆τ̃ ′` = τ̃ ′`− τ̃ ′`−1, we in this case obtain ∆τ̃ ′` → T ′s
for all ` = 1, 2, . . . ,L − 1. The sampling intervals Ts and T ′s have to be sufficiently
small, but must not necessarily be identical. Between Ts and T ′s, we can therefore
establish the general relation Ts = m′

s T ′s, where m′
s ∈ N is in the following called

the sampling rate ratio. The larger (smaller) the sampling rate ratio m′
s is chosen,

the higher (lower) the simulation speed of the channel simulator is and the larger
(smaller) the error occurring due to the discretization of µ̃`(t) is. The sampling rate
ratio m′

s enables the user to find a good compromise between the simulation speed
and the precision of the channel model. As a guideline, m′

s should be chosen so that
the sampling interval Ts satisfies the condition T ′s ≤ Ts ≤ Tsym for any given symbol
interval Tsym. The upper limit Ts = Tsym corresponds to the often made assumption
that the impulse response is constant for the duration of one data symbol. However,
this assumption is only justified if the product fmax Tsym is very small.

From the general relation (7.62), two important special cases can be derived. These
are characterized by

(i) ã0 6= 0 , ã1 = ã2 = . . . = ãL−1 = 0 (7.63a)

and

(ii) µ̃`(t) = µ̃` = const. , ∀ ` = 0, 1, . . . ,L − 1 . (7.63b)

The first special case (i) describes a channel for which all scattering components
caused by obstacles situated relatively far away from the receiver can be ignored.
Using µ̃(t) := ã0µ̃0(t), we can in this case represent the time-variant deterministic
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impulse response by

h̃(τ ′, t) = δ(τ ′) · µ̃(t) . (7.64)

A comparison with (7.47) shows that we are here dealing with a frequency-nonselective
channel model. This also explains the fact that the multiplicative relation

y(t) = µ̃(t) · x(t) (7.65)

follows from (7.61).

The second special case (ii) always occurs if both the transmitter and the receiver
are not moving. In this case, the Doppler effect disappears and the deterministic
Gaussian processes µ̃`(t) become complex-valued constants µ̃` for all discrete paths
` = 0, 1, . . . ,L − 1. From (7.55) then follows the impulse response of a time-invariant
finite impulse response (FIR) filter with L complex-valued coefficients

h̃(τ ′) =
L−1∑

`=0

a` δ(τ ′ − τ̃ ′`) , (7.66)

where a` := ã` µ̃` for ` = 0, 1, . . . ,L − 1.

Now, we consider the general case more detailed. By analogy to (7.13), we define the
time-variant transfer function H̃(f ′, t) by the Fourier transform of the time-variant
deterministic impulse response h̃(τ ′, t) with respect to the propagation delay τ ′, i.e.,
we may write h̃(τ ′, t) τ ′ f ′◦——• H̃(f ′, t). If we replace the impulse response h(τ ′, t) by
the deterministic impulse response h̃(τ ′, t) in (7.13), and take (7.55) into account, then
we can easily derive the following closed-form solution for the time-variant transfer
function H̃(f ′, t) of DGUS models

H̃(f ′, t) =
L−1∑

`=0

ã` µ̃`(t) e−j2πf ′τ̃ ′` . (7.67)

It is obvious that H̃(f ′, t) is deterministic, because the Fourier transform of a
deterministic function again results in a deterministic function. For the description
of the input-output relationship of DGUS models, we may refer to (7.14), where
of course the time-variant transfer function H(f ′, t) has to be replaced by H̃(f ′, t).
Moreover, (7.62) can directly be derived from (7.14). Therefore, H(f ′, t) has to be
substituted by H̃(f ′, t) in (7.14), where H̃(f ′, t) is given by (7.67).

An insight into the phenomena of the Doppler effect can be obtained from the Doppler-
variant impulse response s̃(τ ′, f). This function is defined by the Fourier transform
of h̃(τ ′, t) with respect to the time variable t, i.e., h̃(τ ′, t) t f◦——• s̃(τ ′, f). Using the
expression (7.55), we obtain the following closed-form solution for the Doppler-variant
impulse response s̃(τ ′, f) of DGUS models

s̃(τ ′, f) =
L−1∑

`=0

ã` Ξ̃`(f) δ(τ ′ − τ̃ ′`) , (7.68)
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where Ξ̃`(f) denotes the Fourier transform of µ̃`(t), i.e.,

Ξ̃`(f) = Ξ̃1,`(f) + jΞ̃2,`(f) , ` = 0, 1, . . . ,L − 1 , (7.69a)

Ξ̃i,`(f) =
Ni,`∑
n=1

ci,n,`

2
[
δ(f − fi,n,`) ejθi,n,` + δ(f + fi,n,`) e−jθi,n,`

]
, i = 1, 2 .

(7.69b)

Thus, s̃(τ ′, f) is a two-dimensional discrete line spectrum, where the spectral lines
are located at the discrete positions (τ ′, f) = (τ̃ ′`,±fi,n,`) and weighted by the
complex-valued factors 1

2 ã`ci,n,`e
±jθi,n,` . For the description of the input-output

behaviour, the relation (7.19) is useful, if the Doppler-variant impulse response
s(τ ′, f) is substituted by s̃(τ ′, f) there. It should also be observed that (7.62) follows
from (7.19), if in the latter equation s(τ ′, f) is replaced by (7.68).

Finally, we consider the Doppler-variant transfer function T̃ (f ′, f) of DGUS models
which is defined by the two-dimensional Fourier transform of the time-variant
deterministic impulse response h̃(τ ′, t), i.e., h̃(τ ′, t) τ ′,t f ′,f◦————• T̃ (f ′, f). Due to

h̃(τ ′, t) τ ′ f ′◦——• H̃(f ′, t) and h̃(τ ′, t) t f◦——• s̃(τ ′, f), the computation of an expression
for T̃ (f ′, f) can also be carried out via the one-dimensional Fourier transform
H̃(f ′, t) t f◦——• T̃ (f ′, f) or s̃(τ ′, f) τ ′ f ′◦——• T̃ (f ′, f). No matter which procedure we
decide upon, we in any case obtain the following closed-form expression for the
Doppler-variant transfer function T̃ (f ′, f) of the deterministic system

T̃ (f ′, f) =
L−1∑

`=0

ã` Ξ̃`(f) e−j2πf ′τ̃ ′` . (7.70)

Summarizing, we should keep in mind that when the model parameters {ci,n,`},
{fi,n,`}, {θi,n,`}, {ã`}, {τ̃ ′`}, {Ni,`}, and L are known and constant quantities, the four
system functions h̃(τ ′, t), H̃(f ′, t), s̃(τ ′, f), and T̃ (f ′, f) can be calculated explicitly.
By analogy to Figure 7.3, the system functions of deterministic channel models are
related in pairs by the Fourier transform. The resulting relationships are illustrated
in Figure 7.12.

7.4.2 Correlation Functions and Power Spectral Densities of DGUS
Models

With reference to the WSSUS model, analog relations can be established in the general
sense for the correlation functions and power spectral densities of the frequency-
selective deterministic channel model (DGUS model). In particular, the correlation
functions of the four system functions h̃(τ ′, t), H̃(f ′, t), s̃(τ ′, f), and T̃ (f ′, f) of the
deterministic system can be represented by the following relations:

r̃hh(τ ′1, τ
′
2; t, t + τ) = δ(τ ′2 − τ ′1) S̃hh(τ ′1, τ) , (7.71a)
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Figure 7.12: Relationships between the system functions of frequency-selective
deterministic channel models.

r̃HH(f ′, f ′ + υ′; t, t + τ) = r̃HH(υ′, τ) , (7.71b)
r̃ss(τ ′1, τ

′
2; f1, f2) = δ(f2 − f1) δ(τ ′2 − τ ′1) S̃(τ ′1, f1) , (7.71c)

r̃TT (f ′, f ′ + υ′; f1, f2) = δ(f2 − f1) S̃TT (υ′, f1) . (7.71d)

In these equations, S̃hh(τ ′1, τ) denotes the delay cross-power spectral density,
r̃HH(υ′, τ) is the time-frequency correlation function, S̃(τ ′1, f1) is the scattering
function, and S̃TT (υ′, f1) is the Doppler cross-power spectral density of the
deterministic system. Two of these quantities at a time form a Fourier transform pair
in the same way as for the WSSUS model. By analogy to Figure 7.5, we obtain the
relations depicted in Figure 7.13 for frequency-selective deterministic channel models.
In order to simplify the notation, the variables τ ′1 and f1 have again been replaced by
τ ′ and f , respectively.

The interpretation of h̃(τ ′, t) as time-variant deterministic function, enables us to
derive closed-form solutions for the correlation functions (7.71a)–(7.71d), and, hence,
also for the functions shown in Figure 7.13. This provides the basis for analysing the
statistical properties of the deterministic channel model analytically. We will deal
with this task in the following.

Therefore, we at first define the autocorrelation function of the time-variant
deterministic impulse response h̃(τ ′, t) as follows

r̃hh(τ ′1, τ
′
2; t, t + τ) := lim

T→∞
1

2T

∫ T

−T

h̃∗(τ ′1, t) h̃(τ ′2, t + τ) dt . (7.72)

It should be taken into account that the time averaging, which has to be carried out
here, is in contrast to (7.23a), whereas the computation of the autocorrelation function
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the time-frequency correlation function r̃HH(υ′, τ), the scattering function

S̃(τ ′, f), and the Doppler cross-power spectral density S̃TT (υ′, f) of DGUS
models.

of the stochastic impulse response h(τ ′, t) requires statistical averaging (ensemble
average). In the equation above, we use the expression (7.55) for h̃(τ ′, t), so that
we may write

r̃hh(τ ′1, τ
′
2; t, t + τ) = lim

T→∞
1

2T

∫ T

−T

[L−1∑

`=0

ã` µ̃∗` (t) δ(τ ′1 − τ̃ ′`)

]

·
[L−1∑

λ=0

ãλ µ̃λ(t + τ) δ(τ ′2 − τ̃ ′λ)

]
dt

= lim
T→∞

L−1∑

`=0

L−1∑

λ=0

ã` ãλ δ(τ ′1 − τ̃ ′`) δ(τ ′2 − τ̃ ′λ)

· 1
2T

∫ T

−T

µ̃∗` (t) µ̃λ(t + τ) dt . (7.73)

Using (7.58), it follows

r̃hh(τ ′1, τ
′
2; t, t + τ) =

L−1∑

`=0

ã2
` r̃µ`µ`

(τ) δ(τ ′1 − τ̃ ′`) δ(τ ′2 − τ̃ ′`) . (7.74)

Generally, the product of two delta functions is not defined. But in the present case,
however, the first delta function appearing in (7.74) depends on the variable τ ′1 and the
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second one on τ ′2. Since τ ′1 and τ ′2 are independent variables, the product will not cause
any problems in the two-dimensional (τ ′1, τ

′
2)-plane. Furthermore, δ(τ ′1 − τ̃ ′`) δ(τ ′2 − τ̃ ′`)

is equivalent to δ(τ ′1 − τ̃ ′`) δ(τ ′2 − τ̃ ′1), so that (7.74) can be represented by

r̃hh(τ ′1, τ
′
2; t, t + τ) = δ(τ ′2 − τ̃ ′1) S̃hh(τ ′1, τ) , (7.75)

where

S̃hh(τ ′, τ) =
L−1∑

`=0

ã2
` r̃µ`µ`

(τ) δ(τ ′ − τ̃ ′`) (7.76)

denotes the delay cross-power spectral density of frequency-selective deterministic
channel models. Note that (7.75) has the same form as (7.33). The delay cross-power
spectral density S̃hh(τ ′, τ) can be computed explicitly in connection with the auto-
correlation functions (7.59a) and (7.59b) if all model parameters {ci,n,`}, {fi,n,`},
{ã`}, {τ̃ ′`}, {Ni,`}, and L are known.

The Fourier transform of the delay cross-power spectral density S̃hh(τ ′, τ) with respect
to the propagation delay τ ′ results in the time-frequency correlation function

r̃HH(υ′, τ) =
L−1∑

`=0

ã2
` r̃µ`µ`

(τ) e−j2πυ′τ̃ ′` (7.77)

of the deterministic system.

Preferably, we also refer to the delay cross-power spectral density S̃hh(τ ′, τ) in order
to calculate an analytical expression for the scattering function. The Fourier transform
of (7.76) with respect to τ immediately leads to the expression

S̃(τ ′, f) =
L−1∑

`=0

ã2
` S̃µ`µ`

(f) δ(τ ′ − τ̃ ′`) , (7.78)

which describes the scattering function of frequency-selective deterministic channel
models. In this equation,

S̃µ`µ`
(f) =

2∑

i=1

Ni,`∑
n=1

c2
i,n,`

4
[δ(f − fi,n,`) + δ(f + fi,n,`)] , ` = 0, 1, . . . ,L− 1 ,(7.79)

represents the Doppler power spectral density of the `th scattering component, which is
defined by the Fourier transform of the autocorrelation function r̃µ`µ`

(τ) according to
(7.59a). Now it becomes obvious that the scattering function S̃(τ ′, f) of deterministic
channel models can be represented by a finite sum of weighted delta functions.
The delta functions are located in the two-dimensional (τ ′, f)-plain at the positions
(τ̃ ′`, ±fi,n,`), and are weighted by the constants (ã`ci,n,`)2/4. Without restriction
of generality, we assume in the following that the scattering function S̃(τ ′, f) is
normalized to unity, so that the volume under S̃(τ ′, f) is equal to one, i.e.,

∫ ∞

−∞

∫ ∞

0

S̃(τ ′, f) dτ ′ df = 1 . (7.80)
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To ensure that (7.80) is definitely fulfilled, the Doppler coefficients ci,n,` and the delay
coefficients ã` have to fulfil the boundary conditions

Ni,`∑
n=1

c2
i,n,` = 1 and

L−1∑

`=0

ã2
` = 1 . (7.81a, b)

Finally, we determine the Fourier transform of the scattering function S̃(τ ′, f) with
respect to τ ′ in order to obtain the Doppler cross-power spectral density

S̃TT (υ′, f) =
L−1∑

`=0

ã2
` S̃µ`µ`

(f) e−j2πυ′τ̃ ′` (7.82)

of frequency-selective deterministic channel models. We can easily assure ourselves of
the fact that one also obtains the Doppler cross-power spectral density S̃TT (υ′, f) in
the presented form (7.82), if the alternative possibility — via the Fourier transform
of the time-frequency correlation function r̃HH(υ′, τ) with respect to τ — is made
use of, where in this case the relation (7.77) has to be used for r̃HH(υ′, τ).

Thus, it has been shown that the four functions S̃hh(τ ′, τ), r̃HH(υ′, τ), S̃(τ, f), and
S̃TT (υ′, f) characterizing the deterministic system can be calculated analytically, if
the relevant model parameters {ci,n,`}, {fi,n,`}, {ã`}, {τ̃ ′`}, {Ni,`}, and L are known.

7.4.3 Delay Power Spectral Density, Doppler Power Spectral Density,
and Characteristic Quantities of DGUS Models

In this subsection, simple closed-form solutions will be derived for the fundamental
characteristic functions and quantities of DGUS models, such as the delay power
spectral density, Doppler power spectral density, and delay spread. For this purpose,
we will here discuss the terms introduced for stochastic models (WSSUS models) in
Subsection 7.3.2.3 for deterministic systems.

Delay power spectral density: Let S̃(τ ′, f) be the scattering function of a
deterministic channel model, then, by analogy to (7.38), the corresponding Delay
power spectral density S̃τ ′τ ′(τ ′) is defined by

S̃τ ′τ ′(τ ′) := S̃hh(τ ′, 0)

=
∫ ∞

−∞
S̃(τ ′, f) df . (7.83)

After employing (7.78) and considering the boundary condition (7.81a), it follows

S̃τ ′τ ′(τ ′) =
L−1∑

`=0

ã2
` δ(τ ′ − τ̃ ′`) . (7.84)
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Hence, the delay power spectral density S̃τ ′τ ′(τ ′) is a discrete line spectrum, where
the spectral lines are located at the discrete positions τ ′ = τ̃ ′` and weighted by the
constants ã2

` . Consequently, the behaviour of S̃τ ′τ ′(τ ′) is completely determined
by the model parameters ã`, τ̃ ′`, and L. It should be pointed out that the area
under the Delay power spectral density S̃τ ′τ ′(τ ′) is equal to one due to (7.81b), i.e.,∫∞
0

S̃τ ′τ ′(τ ′) dτ ′ = 1.

Average delay: Let S̃τ ′τ ′(τ ′) be the delay power spectral density of a deterministic
channel model, then the first moment of S̃τ ′τ ′(τ ′) is called the average delay B̃

(1)
τ ′τ ′ .

Thus, by analogy to (7.39), the definition

B̃
(1)
τ ′τ ′ :=

∫∞
−∞ τ ′ S̃τ ′τ ′(τ ′) dτ ′∫∞
−∞ S̃τ ′τ ′(τ ′) dτ ′

(7.85)

holds. Putting (7.84) in (7.85) and taking the boundary condition (7.81b) into account,
then the average delay B̃

(1)
τ ′τ ′ can be expressed in closed form as follows

B̃
(1)
τ ′τ ′ =

L−1∑

`=0

τ̃ ′` ã2
` . (7.86)

Delay spread: The square root of the second central moment of S̃τ ′τ ′(τ ′) is called
the Delay spread B̃

(2)
τ ′τ ′ , which is, by analogy to (7.40), defined by

B̃
(2)
τ ′τ ′ :=

√√√√√
∫∞
−∞

(
τ ′ − B̃

(1)
τ ′τ ′

)2

S̃τ ′τ ′(τ ′) dτ ′
∫∞
−∞ S̃τ ′τ ′(τ ′) dτ ′

. (7.87)

With (7.84) and (7.81b), the closed-form expression

B̃
(2)
τ ′τ ′ =

√√√√
L−1∑

`=0

(τ̃ ′` ã`)
2 −

(
B̃

(1)
τ ′τ ′

)2

(7.88)

can be derived, where B̃
(1)
τ ′τ ′ is the average delay according to (7.86).

Doppler power spectral density: Let S̃(τ ′, f) be the scattering function of a
deterministic channel model, then — by analogy to (7.42) — the corresponding
Doppler power spectral density S̃µµ(f) can be determined via the relation

S̃µµ(f) := S̃TT (0, f)

=
∫ ∞

−∞
S̃(τ ′, f) dτ ′ . (7.89)

With the scattering function S̃(τ ′, f) given by (7.78), we can now derive a closed-form
solution for the Doppler power spectral density S̃µµ(f) of the deterministic system.
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Thus, we obtain

S̃µµ(f) =
L−1∑

`=0

ã2
` S̃µ`µ`

(f) , (7.90)

where S̃µ`µ`
(f) denotes the Doppler power spectral density of the `th scattering

component determined by (7.79). This result shows that the Doppler power spectral
density S̃µµ(f) of frequency-selective deterministic channel models is given by the
sum of the Doppler power spectral densities S̃µ`µ`

(f) of all propagation paths
` = 0, 1, . . . ,L, where each individual Doppler power spectral density S̃µ`µ`

(f) has to
be weighted by the square of the corresponding delay coefficient. Here, the square of
the delay coefficient ã2

` represents the path power, that is the mean (average) power
of the `th scattering component.

With knowledge of the Doppler power spectral density S̃µµ(f) or S̃µ`µ`
(f), the average

Doppler shift and the Doppler spread can be computed. The definition, derivation,
and discussion of these characteristic quantities have already been performed in
Section 4.2. We will refrain from a recapitulation of these results at this place.

Frequency correlation function: Let r̃HH(υ′, τ) be the time-frequency correlation
function of a deterministic channel model. Then, by analogy to (7.44), the frequency
correlation function r̃τ ′τ ′(υ′) is defined by the time-frequency correlation function
r̃HH(υ′, τ) at τ = t2 − t1 = 0, i.e.,

r̃τ ′τ ′(υ′) := r̃HH(υ′, 0)

=
∫ ∞

−∞

∫ ∞

−∞
S̃(τ ′, f) e−j2πυ′τ ′ dτ ′ df

=
∫ ∞

−∞
S̃τ ′τ ′(τ ′) e−j2πυ′τ ′ dτ ′ . (7.91)

A closed-form expression for the frequency correlation function r̃τ ′τ ′(υ′) is obtained
in a simple way by setting τ = 0 in (7.77). Taking the boundary condition (7.81a)
into consideration, which implies that r̃µ`µ`

(0) = 1 holds for all ` = 0, 1, . . . ,L− 1, we
then obtain

r̃τ ′τ ′(υ′) =
L−1∑

`=0

ã2
` e−j2πυ′τ̃ ′` . (7.92)

Coherence bandwidth: Let r̃τ ′τ ′(υ′) be the frequency correlation function given by
(7.92), then the frequency separation variable υ′ = B̃C for which

|r̃τ ′τ ′(B̃C)| = 1
2
|r̃τ ′τ ′(0)| (7.93)

holds, is called the coherence bandwidth of deterministic channel models. With
(7.92) and taking the boundary condition (7.81b) into consideration, we obtain the
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transcendental equation
∣∣∣∣∣
L−1∑

`=0

ã2
` e−j2πB̃Cτ ′`

∣∣∣∣∣−
1
2

= 0 . (7.94)

The smallest positive value for B̃C which fulfils the equation above is the coherence
bandwidth. Apart from simple special cases, (7.94) has generally to be solved by
means of numerical root-finding techniques. The Newton-Raphson method is one of the
most powerful and well-known numerical methods for solving root-finding problems.

Time correlation function: Let r̃HH(υ′, τ) be the time-frequency correlation
function of a deterministic channel model. Then, by analogy to (7.50), the time
correlation function r̃µµ(τ) is defined by the time-frequency correlation function
r̃HH(υ′, τ) at υ′ = f ′2 − f ′1 = 0, i.e.,

r̃µµ(τ) := r̃HH(0, τ)

=
∫ ∞

−∞

∫ ∞

−∞
S̃(τ ′, f) ej2πfτ dτ ′ df

=
∫ ∞

−∞
S̃µµ(f) ej2πfτ df . (7.95)

We consider (7.77) at υ′ = 0 and, thus, obtain

r̃µµ(τ) =
L−1∑

`=0

ã2
` r̃µ`µ`

(τ) . (7.96)

Coherence time: Let r̃µµ(τ) be the time correlation function given by (7.96), then
the time interval τ = T̃C for which

|r̃µµ(T̃C)| = 1
2
|r̃µµ(0)| (7.97)

holds, is called the coherence time of deterministic channel models. Substituting (7.96)
in (7.97), and taking (7.59a) and (7.59b) into account, results in the transcendental
equation

∣∣∣∣∣∣

2∑

i=1

L−1∑

`=0

Ni,`∑
n=1

(ã`ci,n,`)2

2
cos(2πfi,n,`T̃C)

∣∣∣∣∣∣
− 1

2
= 0 , (7.98)

from which the coherence time T̃C can be computed by applying numerical zero
finding techniques. The smallest positive value for T̃C which solves (7.98) is the
coherence time.

In order to facilitate an overview, the above derived relationships between the
correlation functions and the power spectral densities as well as the characteristic
quantities of frequency-selective deterministic channel models derivable from these
are depicted in Figure 7.14.
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Figure 7.14: Relationships between the correlation functions, the power spectral
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7.4.4 Determination of the Model Parameters of DGUS Models

In this subsection, we are concerned with the determination of the model parameters
τ̃ ′`, ã`, fi,n,`, ci,n`, and θi,n,` of the simulation model shown in Figure 7.11, and,
thus, of the DGUS model determined by (7.55). The starting point of the procedure
described here is the scattering function S(τ ′, f) of a given stochastic channel model.
Since the procedure is universally valid, S(τ ′, f) can, for example, be any specified
scattering function. The method may just as well be applied if S(τ ′, f) is the result
of an evaluation of a single snapshot measurement obtained from a real-world channel.

From the scattering function S(τ ′, f), which is assumed to be known henceforth, the
corresponding delay power spectral density Sτ ′τ ′(τ ′) and the Doppler power spectral
density Sµµ(f) are determined first. For this purpose, we use the relations

Sτ ′τ ′(τ ′) =
∫ ∞

−∞
S(τ ′, f) df and Sµµ(f) =

∫ ∞

−∞
S(τ ′, f) dτ ′ , (7.99a, b)

which are defined by (7.38) and (7.42), respectively. The causality condition (7.12)
leads to Sτ ′τ ′(τ ′) = 0 if τ ′ < 0. Furthermore, we assume that all scattering components
with propagation delays τ ′ > τ ′max can be ignored. For the Delay power spectral
density, we then may generally write

Sτ ′τ ′(τ ′) = 0 for τ ′ 6∈ I = [0, τ ′max] . (7.100)

Next, we perform a partition of the interval I = [0, τ ′max] into a number of L disjoint
subintervals I` according to I =

⋃L−1
`=0 I`. This partition is realized in a way that

allows us to consider the Delay power spectral density Sτ ′τ ′(τ ′) and the Doppler power
spectral density Sµ`µ`

(f) appertaining to I` as independent within each subinterval I`.
From this, it follows that the scattering function S(τ ′, f) can be expressed by means
of Sτ ′τ ′(τ ′) and Sµ`µ`

(f) as

S(τ ′, f) =
L−1∑

`=0

Sµ`µ`
(f) Sτ ′τ ′(τ ′)

∣∣∣∣∣
τ ′∈I`

. (7.101)

Continuing from this form, we will now determine the model parameters of the
deterministic system.

7.4.4.1 Determination of the discrete propagation delays and delay coefficients

The discrete propagation delays τ̃ ′` are integer multiples of the sampling interval T ′s,
i.e.,

τ̃ ′` = ` · T ′s , ` = 0, 1, . . . ,L − 1 , (7.102)

where the number of discrete paths L with different propagation delays is given by

L =
⌊

τ ′max

T ′s

⌋
+ 1 . (7.103)
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Thus, the ratio τ ′max/T ′s determines the number of delay elements shown in Fig-
ure 7.11. Note that L → ∞ as T ′s → 0.

With the discrete propagation delays τ̃ ′` given by (7.102) and the sampling interval T ′s,
the subintervals I` required for the partition of the interval I = [0, τ ′max] =

⋃L−1
`=0 I`

can be defined as follows:

I` :=





[0, T ′s/2) for ` = 0 ,

[τ̃ ′` − T ′s/2, τ̃ ′` + T ′s/2) for ` = 1, 2, . . . ,L − 2 ,

[τ̃ ′` − T ′s/2, τ ′max] for ` = L − 1 .

(7.104)

Next, we demand that the areas under the delay power spectral densities Sτ ′τ ′(τ ′) and
S̃τ ′τ ′(τ ′) are identical within each subinterval I`, i.e., we demand that

∫

τ ′∈I`

Sτ ′τ ′(τ ′) dτ ′ =
∫

τ ′∈I`

S̃τ ′τ ′(τ ′) dτ ′ (7.105)

holds for all ` = 0, 1, . . . ,L − 1. Substituting S̃τ ′τ ′(τ ′) by the expression (7.84) in
the right-hand side of the equation above and applying the sifting property of delta
functions leads directly to the following explicit formula for the delay coefficients

ã` =

√∫

τ ′∈I`

Sτ ′τ ′(τ ′) dτ ′ , ` = 0, 1, . . . ,L − 1 , (7.106)

where I` are the subintervals defined by (7.104). This result shows that the delay
coefficient ã` of the `th propagation path is the square root of the average path power
within the subinterval I`.

Next, we will consider the limit of the delay power spectral density S̃τ ′τ ′(τ ′) for L → ∞
and T ′s → 0. For this purpose, we substitute (7.106) into (7.84) and obtain [Pae95b]

lim
L→∞
T ′s→0

S̃τ ′τ ′(τ ′) = lim
L→∞
T ′s→0

L−1∑

`=0

[∫

τ ′∈I`

Sτ ′τ ′(τ ′) dτ ′
]

δ(τ ′ − τ̃ ′`)

= lim
L→∞

L−1∑

`=0

Sτ ′τ ′(τ̃ ′`) δ(τ ′ − τ̃ ′`) ∆τ̃ ′`

=
∫ ∞

0

Sτ ′τ ′(τ̃ ′`) δ(τ ′ − τ̃ ′`) dτ̃ ′`

= Sτ ′τ ′(τ ′) . (7.107)

Thus, it becomes obvious that S̃τ ′τ ′(τ ′) converges to Sτ ′τ ′(τ ′) if the number of discrete
propagation paths L tends to infinity. Consequently, this also holds for the average
delay B̃

(1)
τ ′τ ′ and the delay spread B̃

(2)
τ ′τ ′ of the simulation model, i.e., we obtain

B̃
(1)
τ ′τ ′ → B

(1)
τ ′τ ′ as L → ∞ (T ′s → 0). For L < ∞ (T ′s > 0), however, we generally have to

write B̃
(1)
τ ′τ ′ ≈ B

(1)
τ ′τ ′ and B̃

(2)
τ ′τ ′ ≈ B

(2)
τ ′τ ′ . Especially for the delay power spectral densities



FREQUENCY-SELECTIVE DETERMINISTIC CHANNEL MODELS 283

of the channel models according to COST 207, which are depicted in Figure 7.7 (see
also Table 7.1), the quality of the approximation B̃

(i)
τ ′τ ′ ≈ B

(i)
τ ′τ ′ is shown for i = 1, 2 in

Figures 7.15(a)–7.15(d) as a function of the number of discrete propagation paths L.
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Figure 7.15: Average delay B̃
(1)

τ ′τ ′ and delay spread B̃
(2)

τ ′τ ′ of the delay power spectral
densities according to COST 207 [COS89]: (a) Rural Area, (b) Typical
Urban, (c) Bad Urban, and (d) Hilly Terrain.

7.4.4.2 Determination of the discrete Doppler frequencies and Doppler coefficients

The discrete Doppler frequencies fi,n,` and the Doppler coefficients ci,n,` can be
determined by applying the methods described in Section 5.1. As well as the method of
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exact Doppler spread (MEDS), we preferably also use the Lp-norm method (LPNM).
The first method mentioned is especially recommended for the Jakes power spectral
density. However, it has to be taken into account that the complex deterministic
Gaussian processes µ̃`(t) are designed in such a way that µ̃`(t) and µ̃λ(t) are
uncorrelated for ` 6= λ (`, λ = 0, 1, . . . ,L − 1). This is always the case if the discrete
Doppler frequencies fi,n,` fulfil the condition (7.57). Using the MEDS, this condition is
always fulfilled in case the number of harmonic functions Ni,` are chosen in such a way
that Ni,` 6= Nj,λ holds if ` 6= λ, where i, j = 1, 2 and `, λ = 0, 1, . . . ,L − 1. However,
when using the LPNM method, we do not have to take the inequality Ni,` 6= Nj,λ

into account, because even for Ni,` = Nj,λ, disjoint sets {fi,n,`} and {fj,m,λ} with
` 6= λ can easily be found, so that the resulting deterministic processes µ̃`(t) and
µ̃λ(t) are uncorrelated for ` 6= λ. For this purpose, it is sufficient to either minimize
the Lp-norm (5.61) by using different values for the parameter p, or by performing the
optimization of each set {fi,n,`} of discrete Doppler frequencies with different values
for the quantity τmax defining the upper limit of the integral in (5.61). Having this
in mind, the numerical optimization of the autocorrelation function r̃µi,`µi,`

(τ) [see
(7.59b)] guarantees that the desired property

{fi,n,`}
⋂
{fj,m,λ} = ∅ ⇐⇒ ` 6= λ (7.108)

is usually fulfilled for all i, j = 1, 2, n = 1, 2, . . . , Ni,`, m = 1, 2, . . . , Nj,λ, and
`, λ = 0, 1, . . . ,L − 1.

7.4.4.3 Determination of the Doppler phases

In Subsections 7.4.2 and 7.4.3, it was pointed out that the Doppler phases θi,n,` have
no influence on the system functions shown in Figure 7.14. Hence, we may conclude
that the fundamental statistical properties of DGUS models are independent of the
choice of the Doppler phases θi,n,`. The statements made in Section 5.2 are still valid
for the frequency-selective case. Therefore, we once again may assume that the Doppler
phases θi,n,` are realizations of a random variable, uniformly distributed in the interval
(0, 2π]. Alternatively, θi,n,` can also be determined by applying the deterministic
procedure described in Section 5.2. In both cases different events (sets) {θi,n,`} always
result in different realizations (sample functions) for the time-variant impulse response
h̃(τ ′, t) but, nevertheless, all impulse responses have the same statistical properties. In
other words: every realization of the impulse response h̃(τ ′, t) contains the complete
statistical information.

7.4.5 Deterministic Simulation Models for the Channel Models
According to COST 207

At the end of this chapter, we will once more pick up the channel models according
to COST 207 [COS89] and will show how to develop efficient simulation models for
them. For this purpose, we restrict our attention to the 4-path and 6-path channel
models (RA, TU, BU, HT) specified in Table 7.3. Due to the fact that these models
are already presented in a discrete form with respect to τ ′, the discrete propagation
delays τ̃ ′` can directly be equated with the values for τ ′`, presented in Table 7.3, i.e.,
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τ̃ ′` = τ ′`. Adaptation of the sampling interval T ′s to the discrete propagation delays τ̃ ′`
is achieved here by τ̃ ′` = q` · T ′s, where q` denotes an integer and T ′s is the greatest
common divisor of τ ′1, τ

′
2, . . . , τ

′
L−1, i.e., T ′s = gcd{τ ′`}L−1

`=1 . The corresponding delay
coefficients ã` are identical to the square root of the path power as listed in Table 7.3.

The specifications for the Doppler power spectral density can be found in Table 7.2. In
the case of the Jakes power spectral density, we determine the model parameters fi,n,`

and ci,n,` by applying the Lp-norm method described in Subsection 5.1.5, taking into
account that (7.108) is fulfilled. For the Gaussian power spectral densities (Gauss I
and Gauss II), the third variant of the Lp-norm method (LPNM III) is of advantage.
For the solution of the present problem, it is recommended to start with a Gaussian
random process νi,`(t) having a symmetrical Gaussian power spectral density of the
form

Sνi,`νi,`
(f) = Ai,` e

− f2

2s2
i,` , i = 1, 2 , (7.109)

and then perform a frequency shift of fi,0,`, which finally results in

Sµ`µ`
(f) =

2∑

i=1

Sνi,`νi,`
(f − fi,0,`) , (7.110)

where Ai,`, si,`, and fi,0,` denote the quantities specified in Table 7.2. The
autocorrelation function required for the minimization of the error function (5.65)
is in the present case given by the inverse Fourier transform of (7.109), i.e.,

rνi,`νi,`
(τ) = σ2

i,` e−2(πsi,`τ)2 , (7.111)

where σ2
i,` =

√
2π Ai,` si,` describes the variance of the Gaussian random process

νi,`(t). For the simulation model this means that we first have to determine the model
parameters fi,n,` and ci,n,` of the deterministic process

ν̃i,`(t) =
Ni,`∑
n=1

ci,n,` cos(2πfi,n,` + θi,n,`) (7.112)

by using the LPNM III. The application of the frequency translation theorem of the
Fourier transform then provides the demanded complex deterministic Gaussian process
in the form

µ̃`(t) =
2∑

i=1

ν̃i,`(t) e−j2πfi,0,`t

=
2∑

i=1

ν̃i,`(t) cos(2πfi,0,`t)− j

2∑

i=1

ν̃i,`(t) sin(2πfi,0,`t) . (7.113)

The resulting simulation model for the complex deterministic process µ̃`(t) is shown
in Figure 7.16.
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Figure 7.16: Simulation model for complex deterministic Gaussian processes µ̃`(t) by
using the frequency-shifted Gaussian power spectral densities according
to COST 207 [see Table 7.2].

Using the Lp-norm method, we have the chance to choose an equal number of har-
monic functions Ni,` not only for all propagation paths, but also for the corresponding
real and imaginary parts, without violating the condition (7.108). As an example,
we fix Ni,` for the L-path channel models according to COST 207 by Ni,` = 10
(∀ i = 1, 2, and ` = 0, 1, . . . ,L − 1). For the maximum Doppler frequency fmax, we
choose the value 91Hz. Now, the remaining model parameters can be computed
by using the method described above. Knowing the model parameters, not only
the scattering function S̃(τ ′, f) [see (7.78)], but also all other correlation functions,
power spectral densities, and characteristic quantities shown in Figure 7.14 can be
determined analytically. For example, the resulting scattering functions S̃(τ ′, f) of
the deterministic simulation models are shown in Figures 7.17(a)–7.17(d) for the
L-path channel models listed in Table 7.3.

At the end of this chapter it should be mentioned that the processing of the discrete
input signal x(kT ′s) and the corresponding output signal y(kT ′s) is performed with
the sampling rate f ′s = 1/T ′s, whereas the sampling of the complex deterministic
Gaussian process µ̃`(t) (` = 0, 1, . . . ,L − 1) takes place at the discrete time instants
t = k Ts = k m′

s T ′s. It should be noted that the statements made in Subsection 7.4.1
have to be taken into account for the choice of the sampling rate ratio m′

s.
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Figure 7.17: Scattering function S̃(τ ′, f) of deterministic channel models on the basis
of the L-path channel models according to COST 207 [COS89]: (a) Rural
Area, (b) Typical Urban, (c) Bad Urban, and (d) Hilly Terrain.
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FAST CHANNEL SIMULATORS

The description of the channel simulators considered up to now has always been
performed by using the continuous-time representation. In Section 4.1, it was stated
that a discrete-time simulation model, which is required for computer simulations,
can directly be obtained from the continuous-time simulation model by substituting
in the latter the time variable t by t = kTs, where Ts denotes the sampling interval.
This way of implementation will henceforth be denoted by direct realization and the
corresponding simulation model will be called direct system. In order to realize a real-
valued deterministic Gaussian process by using the direct realization, Ni harmonic
functions as well as several multiplications and additions have to be computed at
each instant k. Since the number of harmonic functions Ni is the decisive quantity
determining the computation time, the efficiency can only be increased essentially
by reducing Ni. On the other hand, we know from our investigations in Chapter 5
that a natural lower limit at Ni = 7 exists, and, consequently, choosing Ni < 7 will
result in heavy losses in quality. Thus, the possibilities for a further increase of the
speed of direct systems with Ni = 7 are exhausted to a large extent. A speed-up of
the simulator without accepting losses in precision can only be attained with indirect
realization forms.

In this chapter, several ways of indirect implementation forms will be investigated.
The basic idea which enables the derivation of new structures for the simulation of
deterministic processes is based on taking advantage of the periodicity of harmonic
functions. During the set-up phase, each of the Ni harmonic functions is sampled only
once within its basic period. The samples are then stored in Ni tables. During the
simulation run, the registers of each table are read out cyclically and summed up.

In this manner, it is possible to realize simulation models for complex-valued Gaussian
random processes by merely using adders, storage elements, and a simple address
generator. Time-consuming trigonometric operations as well as the implementation of
multiplications are then no longer required. This results in fast channel simulators
[Pae98f, Pae00e, Pae99b], which are applicable for all frequency-nonselective and
frequency-selective channel models that can be derived from (complex-valued)
Gaussian random processes. Since the proposed principle can be generalized easily, we
will restrict our attention in this chapter to the derivation of fast channel simulators
for Rayleigh channels.

For that purpose, we will employ the discrete-time representation to describe so-called
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discrete-time deterministic processes in Section 8.1. This class of processes opens
up new possibilities to establish indirect realization forms, where three of the most
relevant will be presented in Section 8.2. The elementary and statistical properties
of discrete deterministic processes will then be examined in Section 8.3. Section 8.4
deals with the analysis of the required realization expenditure as well as with the
measurement of the speed of fast channel simulators. Finally, a comparison with a
filter method based simulation model for Rayleigh processes will be carried out in
Section 8.5.

8.1 DISCRETE DETERMINISTIC PROCESSES

Our starting point is the deterministic Gaussian process µ̃i(t) introduced by (4.4).
Sampling this process at t = kTs will result in a discrete-time signal (sequence)

µ̃i[k] := µ̃i(kTs) =
Ni∑

n=1

ci,n cos(2πfi,nkTs + θi,n) . (8.1)

With respect to a preferably efficient realization, the range of values has to be limited
for the discrete Doppler frequencies fi,n as well as for the Doppler phases θi,n. Thus,
for the reciprocal value of the discrete Doppler frequencies 1/fi,n, for example, only
integer multiples of the sampling interval Ts are henceforth permissible. The Doppler
phases θi,n are subject to a similar restriction. According to two mappings, defined
below, we obtain from fi,n → f̄i,n and θi,n → θ̄i,n quantized Doppler frequencies f̄i,n

and quantized Doppler phases θ̄i,n, respectively. Provided that the deviations between
fi,n and f̄i,n are sufficiently small, and, consequently, f̄i,n ≈ fi,n holds, then

µ̄i[k] := µ̄i(kTs) =
Ni∑

n=1

ci,n cos(2πf̄i,nkTs + θ̄i,n) (8.2)

describes a sequence, which is equivalent to (8.1) (with respect to the relevant
statistical properties). In the following, the sequence µ̄i[k] is called discrete
deterministic Gaussian process. Thereby, the Doppler coefficients in (8.2) are identical
to those in (8.1), whereas the quantized Doppler frequencies f̄i,n are related to the
quantities fi,n and Ts according to

f̄i,n :=
1

Ts round {1/(fi,nTs)} (8.3)

for all n = 1, 2, . . . , Ni.1 We call

Li,n =
1

f̄i,nTs
= round

{
1

fi,nTs

}
(8.4)

the period of the individual discrete harmonic elementary function µ̄i,n[k] =
ci,n cos(2πf̄i,nkTs+ θ̄i,n), i.e., it applies µ̄i,n[k] = µ̄i,n[k+Li,n]. Note that the rounding

1 The operator round{x} in (8.3) rounds the real-valued number x to the nearest integer.
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operation used in (8.4) always results in a natural number for the period Li,n. In
the next section, we will see that this will turn out to be a clear advantage for the
realization.

The quantized Doppler phases θ̄i,n in (8.2) are calculated from the given quantities
θi,n according to the expression

θ̄i,n :=
2π

Li,n
round

{
Li,n

2π
θi,n

}
(8.5)

for all n = 1, 2, . . . , Ni. Remember that the Doppler phases θi,n are real-valued
numbers within the interval (0, 2π], whereas the quantized values θ̄i,n according to
(8.5) are elements of the set

Θ̄i,n =
{

2π
1

Li,n
, 2π

2
Li,n

, . . . , 2π
Li,n − 1

Li,n
, 2π

}
. (8.6)

The mapping θi,n → θ̄i,n according to (8.5) has been chosen in such a way that
θ̄i,n ∈ Θ̄i,n is as close as possible to θi,n.

By using x − 1/2 ≤ round {x} ≤ x + 1/2, one can show that in the limit Ts → 0
from (8.3) and (8.5) it follows f̄i,n = fi,n and θ̄i,n = θi,n, respectively. However, for
sufficiently small sampling intervals Ts, we can write f̄i,n ≈ fi,n and θ̄i,n ≈ θi,n. At
this point, we want to note that the quality of the approximation θ̄i,n ≈ θi,n under
particular conditions, which will be discussed in detail in Section 8.3, does not affect
the statistical properties of µ̄i[k]. On the other hand, the deviations between f̄i,n and
fi,n determined by the sampling interval Ts cannot be ignored without hesitation,
which will also be substantiated in Section 8.3. As an appropriate measure of the
deviation between f̄i,n and fi,n, we consider the relative error

εf̄i,n
=

f̄i,n − fi,n

fi,n
(8.7)

represented in Figure 8.1. From this figure, it can be realized that the quality of the
approximation f̄i,n ≈ fi,n decreases if the sampling interval Ts increases. This result
indicates that the statistical properties of µ̄i[k] depend on the size of the sampling
interval Ts. However, for Ts < 1/(10fi,n) the absolute value of the relative error |εf̄i,n

|
is below a limit of 5 per cent, which can be tolerated in most practical applications.

Obviously, the discrete deterministic Gaussian process µ̄i[k] introduced by (8.2) can
be derived from the continuous-time deterministic process µ̃i(t) by sampling the latter
at time instants t = kTs and, furthermore, by replacing the quantities fi,n and θi,n by
their quantized versions f̄i,n and θ̄i,n, respectively, i.e.,

µ̃i(t)
t → kTs

————–Â µ̃i[k] := µ̃i(kTs)

fi,n → f̄i,n

θi,n → θ̄i,n

—————-Â µ̄i[k] := µ̄i(kTs) . (8.8)

From the fact that f̄i,n and θ̄i,n converge to fi,n and θi,n, respectively, as Ts tends
to zero, it follows: µ̄i[k] → µ̃i(t) as Ts → 0. Considering the results of Chapter 4,
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Figure 8.1: Relative error εf̄i,n
according to (8.7) for fi,n = 91Hz as a function of the

sampling interval Ts.

it becomes obvious that the discrete deterministic Gaussian process µ̄i[k] tends to a
sample function of the Gaussian random process µi(t) as Ts → 0 and Ni →∞.

By analogy with (4.5), we here introduce the complex-valued sequence

µ̄[k] = µ̄1[k] + jµ̄2[k] (8.9)

as complex discrete deterministic Gaussian process and we call its absolute value

ζ̄[k] = |µ̄[k]| = |µ̄1[k] + jµ̄2[k]| (8.10)

discrete deterministic Rayleigh process. Moreover, we will in the following study the
phase ϑ̄[k] = arg{µ̄[k]} defined by the discrete deterministic process

ϑ̄[k] = arctan
{

µ̄2[k]
µ̄1[k]

}
. (8.11)

8.2 REALIZATION OF DISCRETE DETERMINISTIC PROCESSES

The discrete deterministic processes introduced above open up new possibilities for
the development of fast channel simulators. In the following, three procedures will be
presented.

8.2.1 Tables System

The basic idea of the tables system is to store the samples of one period of the sequence
µ̄i,n[k] = ci,n cos(2πf̄i,nkTs + θ̄i,n) into a table and to read out the table entries
cyclically during the simulation [Pae00e]. For the design of a simulation model of
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Rayleigh channels, N1 +N2 tables instead of N1 +N2 harmonic functions are required.
By means of an address generator, the values stored in the tables are accessed. At any
discrete time k = 0, 1, 2, . . ., the discrete sequence µ̄[k] = µ̄1[k] + jµ̄2[k] can simply be
reconstructed by summing up the selected entries of the table as shown in Figure 8.2.
After taking the absolute value, the desired discrete deterministic Rayleigh process
ζ̄[k] is then available.

.
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Figure 8.2: Tables system for the fast simulation of Rayleigh channels.

The table, in which the information of one period of a discrete harmonic elementary
function µ̄i,n[k] is stored, will be denoted by Tabi,n. The entry of the table Tabi,n at
position l ∈ {0, 1, . . . , Li,n − 1} corresponds to the value of µ̄i,n[k] at k = l, i.e., it
holds

µ̄i,n[l] = ci,n cos(2πf̄i,nlTs + θ̄i,n) (8.12)
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for all n = 1, 2, . . . , Ni (i = 1, 2). Now, reading out the entries of the table Tabi,n

cyclically, results in the sequence {µ̄i,n[0], µ̄i,n[1], . . . , µ̄i,n[Li,n − 1], µ̄i,n[Li,n] =
µ̄i,n[0], . . .}. Hence, by exploiting the periodicity, µ̄i,n[k] can be reconstructed
completely for all k = 0, 1, 2, . . . The length of the table Tabi,n is identical to the
period Li,n of µ̄i,n[k]. In consequence, the total amount of storage elements required
for the implementation of discrete deterministic processes µ̄i[k] is given by the sum∑Ni

n=1 Li,n. Due to (8.4), the total memory size is not only determined by the number
of used tables Ni, but also by the value of the sampling interval Ts or, alternatively,
the sampling frequency fs = 1/Ts. In Figures 8.3(a) and 8.3(b), the table lengths Li,n

as well as their resulting sums are depicted as a function of the normalized sampling
frequency fs/fmax for commonly used values of N1 = 7 and N2 = 8, respectively.
Thereby, the MEDS has been applied.
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Figure 8.3: Table lengths Li,n as a function of the normalized sampling frequency
fs/fmax: (a) L1,n for N1 = 7 and (b) L2,n for N2 = 8 (MEDS, Jakes
PSD, fmax = 91 Hz, σ2

0 = 1).

Viewing Figures 8.3(a) and 8.3(b), one realizes that within the range of small values
of fs/fmax, two or even more tables Tabi,n can have the same length. The problems
associated with this phenomenon will be discussed later in Subsection 8.3.2.

The task of the address generator shown in Figure 8.2 is to find the correct position
of the table entries required to reconstruct µ̄[k] = µ̄1[k] + jµ̄2[k] for any instant
k = 0, 1, 2, . . .. Therefore, the address generator has to generate altogether N1 + N2

addresses for each discrete time k. As can be seen from Figure 8.2, ai,n[k] denotes the
address of the table Tabi,n at the discrete time k. Figure 8.4 illustrates the mode of
operation of the address generator.

At the instant k = 0, the address ai,n[0] points at the register µ̄i,n[0] of the table
Tabi,n. At the next instant k = 1, ai,n[1] refers to µ̄i,n[1], etc., up to the instant
k = Li,n − 1, where the address ai,n[Li,n − 1] points to the last position of the table
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Figure 8.4: Mode of operation of the address generator.

with the entry µ̄i,n[Li,n − 1]. At the following instant k = Li,n, the address ai,n[Li,n]
is reset to ai,n[0], which points at the initial position µ̄i,n[0].

Starting with the initial addresses ai,n[0] = 0 and applying the modulo operation, all
addresses ai,n[k] can be found at any instant k > 0 by using the following recursive
algorithm:

ai,n[k] = (ai,n[k − 1] + 1) mod Li,n , (8.13)

where n = 1, 2, . . . , Ni (i = 1, 2). It should be mentioned that the modulo operation
in (8.13) has been applied here only for mathematical convenience. For the realization
of the algorithm on a computer, only one addition and a simple conditional control
flow statement (if-else statement) are required for the computation of ai,n[k].

Thus, the entire tables system (see Figure 8.2) only consists of adders, storage
elements, and simple conditional operators. Multiplications as well as trigonometric
operations no longer have to be carried out for the computation of µ̄[k] = µ̄1[k]+jµ̄2[k].

8.2.2 Matrix System

The matrix system combines the Ni tables to a channel matrix M i. The number
of rows of the channel matrix M i is identical to the number of tables Ni. Thereby,
the nth row of M i contains the entries of the table Tabi,n. As a result, the length
of the largest table, i.e., Li,max = max{Li,n}Ni

n=1, defines the number of columns
of the channel matrix M i. Without loss of generality, we assume in the following
that Li,max = Li,1 holds, which is actually always the case by using the MEDS (see
Figure 8.3). The first Li,n entries of the nth row of M i are exactly identical to the
entries of the table Tabi,n, whereas the rest of the row is filled up with zeros. Thus,
the channel matrix M i ∈ IRNi×Li,1 can be represented as follows:

M i =




µ̄i,1[0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ̄i,1[Li,1 − 1]
µ̄i,2[0] . . . . . . . . . . . . . . . . . . . µ̄i,2[Li,2 − 1] 0 · · · 0

...
. . .

...
µ̄i,Ni [0] · · · µ̄i,Ni [Li,Ni − 1] 0 · · · 0


 .

(8.14)



296 FAST CHANNEL SIMULATORS

The channel matrix M i contains the complete information needed for the
reconstruction of µ̄i[k]. In order to guarantee the correct reconstruction of µ̄i[k] for
all values of k = 0, 1, 2, . . ., it is necessary to select from each row of M i one entry at
the correct position. This can be achieved by introducing a further matrix Si, which
will henceforth be called the selection matrix. The entries of the selection matrix
Si are time variant quantities, which can only take the values 0 or 1. There is a
close relation between the address generator introduced in the previous subsection
and the selection matrix Si. This becomes obvious by noting that the entries of
Si = (sl,n) ∈ {0, 1}Li,1×Ni can be calculated at any instant k by using the addresses
ai,n[k] (8.13) according to

sl,n = sl,n[k] =
{

1 if l = ai,n[k]
0 if l 6= ai,n[k] (8.15)

for all l = 0, 1, . . . , Li,1 − 1 and n = 1, 2, . . . , Ni (i = 1, 2).

The discrete deterministic Gaussian process µ̄i[k] can now be obtained from the
product of the channel matrix M i and the selection matrix Si as follows:

µ̄i[k] = tr (M i · Si) , (8.16)

where tr(·) denotes the trace2 [Zur92, Hor85].

Using (8.16), we can thus also express the complex discrete deterministic Gaussian
process (8.9) in an alternative form

µ̄[k] = tr (M1 · S1) + j tr (M2 · S2) . (8.17)

It is worth mentioning that the number of columns (rows) of the channel matrix M i

(selection matrix Si) tends to infinity as Ts → 0 and, thus, µ̄i[k] converges to µ̃i(t).
In the limits Ts → 0 and Ni → ∞, the number of columns and the number of rows
of both the channel matrix M i and the selection matrix Si tend to infinity. In this
case, the complex discrete deterministic Gaussian process µ̄[k] converges, as it was
expected, to a sample function of the complex stochastic Gaussian random process
µ(t).

An equivalent representation of the discrete deterministic Rayleigh process ζ̄[k],
introduced by (8.10), can be obtained by taking the absolute value of (8.17), i.e.,

ζ̄[k] = |µ̄[k]| = | tr (M1 · S1) + j tr (M2 · S2)| . (8.18)

For the sake of completeness, we write the phase ϑ̄[k] of µ̄[k] = µ̄1[k] + jµ̄2[k] in the
form

ϑ̄[k] = arctan
{

tr (M2 · S2)
tr (M1 · S1)

}
. (8.19)

2 The trace of a square matrix A = (an,m) ∈ IRN×N is defined by the sum of the main diagonal
entries an,m, i.e., tr(A) =

PN
n=1 an,n.
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It is evident that in the limit Ts → 0 it follows: ζ̄[k] → ζ̃(t) and ϑ̄[k] → ϑ̃(t).
Furthermore, the sequences ζ̄[k] and ϑ̄[k] are converging for Ts → 0 and Ni →∞ to a
sample function of the corresponding stochastic processes ζ(t) and ϑ(t), respectively.

It should be mentioned that the computation of the discrete deterministic processes
(8.16)–(8.19) by taking the trace of the product of two matrices is not a very efficient
approach due to the large number of multiplications and additions that have to
be carried out. However, considerable simplifications are possible if all unnecessary
operations such as multiplications with zero and one are avoided at the beginning.
In this case, the matrix system reduces to the tables system. In other words: the
matrix system actually represents no genuine alternative realization form to the tables
system, but provides some new aspects regarding the interpretation and representation
of discrete-time deterministic processes.

8.2.3 Shift Register System

From the tables system (see Figure 8.2), we can derive the shift register system
depicted in Figure 8.5 by replacing in the former the tables Tabi,n with feedback shift
registers Regi,n. Instead of N1 +N2 tables, now N1 +N2 shift registers are required for
the realization of µ̄[k] = µ̄1[k]+jµ̄2[k]. The length of the shift register Regi,n is thereby
identical to the length Li,n of the corresponding table Tabi,n. During the simulation
set-up phase, the shift registers Regi,n are filled at the positions l ∈ {0, 1, . . . , Li,n−1}
with the values µ̄i,n[l] = ci,n cos(2πf̄i,nlTs + θ̄i,n), where n = 1, 2, . . . , Ni and i = 1, 2.
Throughout the simulation run phase, the contents of the shift registers are shifted
by one position to the right at every clock pulse (see Figure 8.5). Due to the links
created between the shift register outputs (positions 0) with their respective inputs
(positions Li,n− 1), it is ensured that the discrete deterministic processes µ̄i,n[k] and,
consequently, also µ̄[k] = µ̄1[k] + jµ̄2[k] as well as ζ̄[k] = |µ̄[k]| can be reconstructed
for all k = 0, 1, 2, . . .

Note that in comparison with the tables system, no address generator is needed, but
instead of this,

∑2
i=1

∑Ni

n=1 Li,n register entries have to be shifted at every clock pulse,
which — especially for software realizations in connection with large register lengths
— does not lead to a satisfying solution. For that reason, we will prefer the tables
system to the shift register system and will turn our attention in the next section to
the analysis of the properties of discrete deterministic processes.

8.3 PROPERTIES OF DISCRETE DETERMINISTIC PROCESSES

By analogy to the analysis of continuous-time deterministic processes (Chapter 4), we
start in Subsection 8.3.1 with the investigation of the elementary properties of discrete
deterministic processes, and then we will continue with the analysis of the statistical
properties in the following Subsection 8.3.2.
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Figure 8.5: Realization of discrete deterministic Rayleigh processes ζ̄[k] by using shift
registers.

8.3.1 Elementary Properties of Discrete Deterministic Processes

The interpretation of µ̄i[k] as discrete deterministic process, i.e., as a mapping of the
form

µ̄i : Z→ IR , k 7→ µ̄i[k] , (8.20)

allows us to establish a close relationship with the investigations performed in
Section 4.2. Therefore, we proceed analogously to Section 4.2 and derive simple closed
solutions for the fundamental characteristic quantities of µ̄i[k] such as mean value,
mean power, autocorrelation sequence, etc.

Mean value: Let µ̄i[k] be a discrete deterministic process with f̄i,n 6= 0 (n =
1, 2, . . . , Ni). Then, by using (2.77) and (8.2), it can be shown that the mean value of
µ̄i[k] is equal to

m̄µi = lim
K→∞

1
2K + 1

K∑

k=−K

µ̄i[k] = 0 . (8.21)

It is henceforth assumed that f̄i,n 6= 0 holds for all n = 1, 2, . . . , Ni and i = 1, 2.
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Mean power: Let µ̄i[k] be a discrete deterministic process. Then, it follows by using
(2.78) and (8.2) that its mean power is given by

σ̄2
µi

= lim
K→∞

1
2K + 1

K∑

k=−K

µ̄2
i [k] =

Ni∑
n=1

c2
i,n

2
. (8.22)

In particular, by applying the MEDS, we obtain due to (5.73) the desired result
σ̄2

µi
= σ2

0 .

Autocorrelation sequence: Let µ̄i[k] be a discrete deterministic process. Then,
it follows from (2.79) and (8.2) that the autocorrelation sequence of µ̄i[k] can be
expressed by

r̄µiµi
[κ] = lim

K→∞
1

2K + 1

K∑

k=−K

µ̄i[k] µ̄i[k + κ]

=
Ni∑

n=1

c2
i,n

2
cos(2πf̄i,nTsκ) . (8.23)

A comparison with (4.11) shows that r̄µiµi [κ] can be obtained from r̃µiµi(τ) if r̃µiµi(τ)
is sampled at τ = κTs and if additionally the quantities fi,n are substituted by f̄i,n.
In addition, we realize that also in the discrete-time case, the quantized Doppler
phases θ̄i,n have no influence on the behaviour of the autocorrelation sequence r̄µiµi [κ].
Observe that from (8.22) and (8.23) the relation σ̄2

µi
= r̄µiµi [0] can directly be

obtained.

The deviations between r̃µiµi [κ] := r̃µiµi(κTs) and r̄µiµi [κ], caused by the quantization
of the discrete Doppler frequencies fi,n, can be observed in Figure 8.6. Thereby, the
MEDS has been applied by using Ni = 8 harmonic functions (tables). Figure 8.6(a)
shows that for sufficiently small sampling intervals (Ts = 0.1ms) no significant
differences occur between r̃µiµi [κ] and r̄µiµi [κ] if τ = κTs is within its range of interest
τ =∈ [0, Ni/(2fmax)]. However, this does not apply for large values of Ts, as can
be seen when considering Figure 8.6(b), where the corresponding ratios in case of
Ts = 1ms are shown.

Cross-correlation sequence: Let µ̄1[k] and µ̄2[k] be two discrete deterministic
processes. Then, it follows from (2.80) in connection with (8.2) that the cross-
correlation sequence is equal to

r̄µ1µ2 [κ] = 0 , (8.24)

if f̄1,n 6= ±f̄2,m is fulfilled for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2, or

r̄µ1µ2 [κ] =
max{N1,N2}∑

n=1
f̄1,n=±f̄2,m

c1,nc2,m

2
cos(2πf̄1,nTsκ− θ̄1,n ± θ̄2,m) , (8.25)
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Figure 8.6: Autocorrelation sequence r̄µiµi [κ] of discrete deterministic Gaussian
processes µ̄i[k] for (a) Ts = 0.1ms and (b) Ts = 1ms (MEDS, Jakes PSD,
Ni = 8, fmax = 91Hz, σ2

0 = 1).

if f̄1,n = ±f̄2,m holds for one or several pairs (n,m). Notice that r̄µ1µ2 [κ] can
immediately be derived from r̃µ1µ2(τ) if in (4.12) and (4.13) the continuous variable
τ is replaced by κTs, and, additionally, the quantities fi,n and θi,n are substituted
by their quantized quantities f̄i,n and θ̄i,n, respectively. The two cross-correlation
sequences r̄µ1µ2 [κ] and r̄µ2µ1 [κ] are related by r̄µ2µ1 [κ] = r̄∗µ1µ2

[−κ] = r̄µ1µ2 [−κ].

Power spectral density: Let µ̄i[k] be a discrete deterministic process. Then, it
follows for the power spectral density by applying the discrete Fourier transform (2.81)
in connection with (8.23)

S̄µiµi(f) =
1
Ts

∞∑
ν=−∞

Ni∑
n=1

c2
i,n

4
[
δ(f − f̄i,n − νfs) + δ(f + f̄i,n − νfs)

]
, (8.26)

where fs = 1/Ts denotes the sampling frequency. Thus, the power spectral density
S̄µiµi(f) is a symmetrical line spectrum, where the spectral lines are located at
f = ±fi,n+νfs and weighted by the factor c2

i,n/(4Ts). Using (2.82) and taking S̃µiµi(f)
according to (4.14) into account, one can derive the following relation between S̄µiµi(f)
and S̃µiµi(f)

S̄µiµi(f) =
1
Ts

∞∑
ν=−∞

S̃µiµi(f − νfs)
∣∣
fi,n=f̄i,n

. (8.27)

The equation above makes clear that the power spectral density S̄µiµi(f) of the discrete
deterministic process µ̄i[k] can be represented by an infinite sum of weighted and
frequency-shifted versions of the power spectral density S̃µiµi(f) of the corresponding
continuous-time deterministic process µ̃i(t), where the weighting factor is equal to
1/Ts and the shift frequencies are integer multiples of the sampling frequency fs. In
addition, the quantities fi,n have to be replaced by f̄i,n.
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Cross-power spectral density: Let µ̄1[k] and µ̄2[k] be two discrete deterministic
processes. Then, it follows from (2.81) by using (8.24) and (8.25) that the cross-power
spectral density of µ̄1[k] and µ̄2[k] can be expressed by

S̄µ1µ2(f) = 0 , (8.28)

if f̄1,n 6= ±f̄2,m holds for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2, or

S̄µ1µ2(f) =
1

4Ts

∞∑
ν=−∞

max{N1,N2}∑
n=1

f̄1,n=±f̄2,m

c1,nc2,m

[
δ(f − f̄1,n − νfs) · e−j(θ̄1,n∓θ̄2,m)

+ δ(f + f̄1,n − νfs) · ej(θ̄1,n∓θ̄2,m)
]
, (8.29)

if f̄1,n = ±f̄2,m is valid for one or several pairs (n,m). Employing (4.15), (4.16), and
(2.82), the results of (8.28) and (8.29) can be combined as follows

S̄µ1µ2(f) =
1
Ts

∞∑
ν=−∞

S̃µ1µ2(f − νfs)
∣∣∣ fi,n=f̄i,n

θi,n=θ̄i,n

. (8.30)

The cross-power spectral densities S̄µ1µ2(f) and S̄µ2µ1(f) are related by S̄µ2µ1(f) =
S̄∗µ1µ2

(f).

Average Doppler shift: Let µ̄i[k] be a discrete deterministic process with the power
spectral density S̄µiµi(f) as given by (8.26). Then, the corresponding average Doppler
shift B̄

(1)
µiµi is defined by

B̄(1)
µiµi

:=

fs/2∫
−fs/2

f S̄µiµi(f) df

fs/2∫
−fs/2

S̄µiµi(f) df

=
1

2πj
· ˙̄rµiµi [0]
r̄µiµi [0]

. (8.31)

In contrast to (3.13a) and (4.17), where the integration is carried out over the entire
frequency range, the limits of the integration in (8.31) are restricted to the Nyquist
range defined by the frequency interval [−fs/2, fs/2). In the special case that the
Doppler power spectral density has a symmetrical shape, i.e., S̄µiµi(f) = S̄µiµi(−f),
it follows directly

B̄(1)
µiµi

= B(1)
µiµi

= 0 . (8.32)

A comparison with (4.18) shows that neither the effect caused by the substitution of
the time variable t by t = kTs nor the quantization of the discrete Doppler frequencies
has an influence on the average Doppler shift.

Doppler spread: Let µ̄i[k] be a discrete deterministic process with power spectral
density S̄µiµi(f) as given by (8.26). Then, the corresponding Doppler spread B̄

(2)
µiµi is

defined by
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B̄(2)
µiµi

: =

√√√√√√√√√

fs/2∫
−fs/2

(f − B̄
(1)
µiµi)2 S̄µiµi(f) df

fs/2∫
−fs/2

S̄µiµi
(f) df

=
1
2π

√( ˙̄rµiµi
[0]

r̄µiµi
[0]

)2

− ¨̄rµiµi
[0]

r̄µiµi
[0]

. (8.33)

Using (8.31), (8.32), and σ̄2
µi

= r̄µiµi
[0], we can — especially for symmetrical Doppler

power spectral densities — express the last equation as follows

B̄(2)
µiµi

=

√
β̄i

2πσ̄µi

, (8.34)

where

β̄i = −¨̄rµiµi [0] = 2π2
Ni∑

n=1

(ci,nf̄i,n)2 . (8.35)

It should be remembered that the MEDS has been developed especially for the Jakes
power spectral density. In Subsection 5.1.6, we learned that in this case the Doppler
spread of the continuous-time simulation model is identical to the Doppler spread of
the reference model, i.e., B̃

(2)
µiµi = B

(2)
µiµi . This relationship is now only approximately

valid. The reason for this is that although σ̄2
µi

= σ̃2
µi

= σ2
0 holds, but due to f̄i,n ≈ fi,n

it follows β̄i ≈ β̃i = βi and, thus,

B̄(2)
µiµi

≈ B̃(2)
µiµi

= B(2)
µiµi

. (8.36)

The deviation between B̄
(2)
µiµi and B

(2)
µiµi or between β̄i and βi is basically determined

by the chosen value for the sampling interval Ts. We will find out more details about
this by analysing the model error of discrete-time systems.

Model error: Let µ̄i[k] be a discrete deterministic process introduced by (8.2). Then,
the model error ∆β̄i of the discrete-time system is defined by

∆β̄i := β̄i − βi . (8.37)

Using (3.29) and (8.35), the model error ∆β̄i can easily be evaluated for all
parameter computation methods described in Chapter 5 as a function of Ni and Ts

or alternatively fs = 1/Ts. An example of the behaviour of the relative model error
∆β̄i/βi of discrete-time systems is shown in Figure 8.7 as a function of the normalized
sampling frequency fs/fmax. Thereby, the MEDS has been applied with Ni = 7 (Jakes
PSD, fmax = 91 Hz, σ2

0 = 1).

Figure 8.7 clearly illustrates that the model error ∆β̄i/βi decreases if the sampling
frequency fs increases. In the limit fs → ∞ or Ts → 0, we obtain ∆β̄i/βi → 0
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as expected, since it is well known that the quantized Doppler frequencies f̄i,n are
approaching the quantities fi,n as Ts → 0. In case of the MSEM, this directly results
in β̄i → β̃i = βi and, thus, ∆β̄i → 0.

Periodicity: Let µ̄i[k] be a discrete deterministic process with arbitrary but nonzero
parameters ci,n, f̄i,n (and θ̄i,n). Then, µ̄i[k] is periodic with the least common multiple
(lcm) of the set {Li,n}Ni

n=1, i.e., the period Li of µ̄i[k] is equal to

Li = lcm {Li,n}Ni
n=1 . (8.38)

In order to prove this theorem, we have to show that

µ̄i[k] = µ̄i[k + Li] (8.39)

is valid for all k ∈ Z. Since Li is the least common multiple of the set {Li,n}Ni
n=1, Li

must be an integer multiple of every table length Li,n. Thus, we may write

Li,n =
Li

qi,n
, (8.40)

where qi,n is a natural number, which can be different for every Li,n. Since the table
length Li,n is identical to the period of µ̄i,n[k], the product qi,n · Li,n has to fulfil the
relation

µ̄i,n[k] = µ̄i,n[k + qi,nLi,n] ∀ k ∈ Z . (8.41)

Using the last two equations, we can prove the validity of (8.39) in the following way:

µ̄i[k] =
Ni∑

n=1

µ̄i,n[k]
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=
Ni∑

n=1

µ̄i,n[k + qi,nLi,n]

=
Ni∑

n=1

µ̄i,n[k + Li]

= µ̄i[k + Li] ∀ k ∈ Z . (8.42)

From Li being the least common multiple of the set {Li,n}Ni
n=1, it follows that Li is

the smallest (positive) value for which (8.39) is valid. Consequently, Li is said to be
the period of the discrete deterministic process µ̄i[k].

We will point out here that an upper bound on the period Li (8.38) is given by the
product of all table lengths Li,n, i.e.,

L̂i =
Ni∏

n=1

Li,n . (8.43)

Taking the above remarks into account, it can easily be shown that L̂i also fulfils
(8.39). However, the period Li and its upper bound L̂i are related by L̂i ≥ Li.

From the fact that the table length Li,n depends on the sampling frequency fs, it
follows that the period Li depends on fs as well. This dependency is illustrated in
Figure 8.8, where the period Li and its upper bound L̂i are presented as a function
of the normalized sampling frequency fs/fmax. Thereby, the results are deliberately
shown for a small, medium, and large number of tables (Ni = 7, Ni = 14, Ni = 21)
in order to make clear that both Ni and fs have a decisive influence on the period
Li. We can also note, especially for low values of Ni, that the period Li is often close
to its upper bound L̂i. The easily computable expression (8.43) therefore allows in
general to estimate the period Li with sufficient precision. Furthermore, it can be
realized by considering Figure 8.8 that the period Li is very large even for small
values of fs/fmax. For that reason, we may denote µ̄i[k] as quasi-nonperiodic discrete
deterministic Gaussian process, provided that the sampling frequency fs is sufficiently
large, i.e., fs > 20fmax.

Next, we will examine the period of discrete deterministic Rayleigh processes ζ̄[k].
Therefore, we consider the following theorem:

Let µ̄1[k] and µ̄2[k] be two discrete deterministic Gaussian processes, which are
periodic with L1 and L2, respectively. Then, the discrete deterministic Rayleigh
process ζ̄[k] = |µ̄1[k] + jµ̄2[k]| is periodic with the period

L = lcm {L1, L2} . (8.44)

The proof of this theorem is similar to the proof of (8.39) allowing us this time to
present an abridged version. Due to (8.44), two natural numbers q1 and q2 exist,
which fulfil the equations L = q1L1 and L = q2L2, respectively. Thus, it follows
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ζ̄[k] = |µ̄1[k] + jµ̄2[k]|
= |µ̄1[k + L1] + jµ̄2[k + L2]|
= |µ̄1[k + q1L1] + jµ̄2[k + q2L2]|
= |µ̄1[k + L] + jµ̄2[k + L]|
= ζ̄[k + L] ∀ k ∈ Z . (8.45)

This shows that ζ̄[k] is periodic with L. Since L is due to (8.44) the smallest integer
number which fulfils (8.45), L = lcm {L1, L2} must be the period of the discrete
deterministic Rayleigh process ζ̄[k]. An upper limit on L is given by

L̂ = L1L2 ≥ L = lcm {L1, L2} . (8.46)

8.3.2 Statistical Properties of Discrete Deterministic Processes

This subsection begins with the analysis of the probability density function and the
cumulative distribution function of the amplitude and phase of complex discrete
deterministic Gaussian processes µ̄[k] = µ̄1[k] + jµ̄2[k]. Subsequently, it follows
the investigation of the level-crossing rate and the average duration of fades of
discrete deterministic Rayleigh processes ζ̄[k] introduced by (8.10). When analysing
the statistical properties of discrete deterministic processes, we always assume that all
model parameters (ci,n, f̄i,n, and θ̄i,n) are constant quantities. However, we get access
to the analysis of the statistical properties by picking up the numbers (samples) of the
discrete deterministic Gaussian process µ̄i[k] at random instants k, i.e., we assume in
this subsection that k is a random variable, uniformly distributed in the interval Z.
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8.3.2.1 Probability Density Function and Cumulative Distribution Function of the
Amplitude and the Phase

In this subsection, we will derive analytical expressions for the probability density
function and cumulative distribution function of the amplitude as well as the phase
of complex discrete deterministic Gaussian processes µ̄[k]. Let us start by considering
one single discrete harmonic elementary sequence of the form

µ̄i,n[k] = ci,n cos(2πf̄i,nkTs + θ̄i,n) , (8.47)

where the model parameters ci,n, f̄i,n, and θ̄i,n are arbitrary but nonzero quantities
and k is the uniformly distributed random variable mentioned above. Since µ̄i,n[k]
is periodic with Li,n, we can assume, without restriction of generality, that the
random variable k is limited to the half-open interval [0, Li,n). In this case, µ̄i,n[k]
has no longer to be regarded as a deterministic sequence but as a random variable,
whose possible elementary events (outcomes or realizations) are the elements of
the set {µ̄i,n[0], µ̄i,n[1], . . . , µ̄i,n[Li,n − 1]}. Thereby, it should be noted that each
elementary event occurs with the probability 1/Li,n. Consequently, the probability
density function of µ̄i,n[k] can be written as

p̄µi,n(x) =
1

Li,n

Li,n−1∑

l=0

δ(x− µ̄i,n[l]) , (8.48)

where n = 1, 2, . . . , Ni (i = 1, 2). Since the discrete harmonic elementary sequence
µ̄i,n[k] converges to the corresponding harmonic elementary function µ̃i,n(t) [see (4.27)]
as the sampling interval Ts tends to zero, the discrete probability density function
p̄µi,n(x) converges consequently to the continuous probability density function p̃µi,n(x)
defined by (4.28), i.e., in the limit Ts → 0 it follows p̄µi,n(x) → p̃µi,n(x). An example
of the probability density function p̄µi,n(x) of µ̄i,n[k] is shown in Figure 8.9(a) for the
case Ts = 0.1 ms. As well as that, Figure 8.9(b) illustrates the results obtained after
taking the limit Ts → 0.

Following the approach described above, we proceed with the derivation of the
probability density function p̄µi(x) of discrete deterministic Gaussian processes µ̄i[k].
Due to the periodicity of µ̄i[k], we can restrict k to the half-open interval [0, Li).
Therefore, let k be a random variable, uniformly distributed over [0, Li), then µ̄i[k]
[see (8.2)] is also a random variable whose elementary events µ̄i[0], µ̄i[1], . . . , µ̄i[Li−1]
are uniformly distributed. By analogy to (8.48), the probability density function of
discrete deterministic Gaussian processes µ̄i[k] can be expressed by

p̄µi(x) =
1
Li

Li−1∑

l=0

δ(x− µ̄i[l]) . (8.49)

This result shows that the density p̄µi(x) of µ̄i[k] can be represented as a weighted sum
of delta functions. Thereby, the delta functions are located at µ̄i[0], µ̄i[1], . . . , µ̄i[Li−1]
and weighted by the reciprocal value of the period Li. Notice that p̄µi(x) does
not result from the convolution p̄µi,1(x) ∗ p̄µi,2(x) ∗ . . . ∗ p̄µi,Ni

(x), because the
random variables µ̄i,1[k], µ̄i,2[k], . . . , µ̄i,Ni [k] are, strictly speaking, not statistically
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Figure 8.9: Probability density function p̄µi,n(x) of µ̄i,n(x) with (a) Ts = 0.1ms and

(b) Ts → 0 (MEDS, Jakes PSD, Ni = 7, n = 7, fmax = 91Hz, σ2
0 = 1).

independent. Regarding the tables system, for example, the statistical dependency
finds expression in the fact that the address generator in general does not produce
the maximum number of different address combinations (states). This, in the ultimate
analysis, is the reason why the actual period Li and the maximum period L̂i are
related by the inequality Li ≤ L̂i. It should also be noted that in the limit Ts → 0 it
follows p̄µi(x) → p̃µi(x), where p̃µi(x) [see (4.34)] is the probability density function
of µ̃i(t). Moreover, p̄µi(x) approaches to the Gaussian probability density function
pµi(x) defined by (4.36) as Ts → 0 and Ni → ∞. For Ts > 0, it is not advisable
to analyse the difference between the probability density functions p̄µi(x) and p̃µi(x)
directly, because the former density is a discrete function, and the latter is a continuous
function. However, this problem can easily be avoided by considering the cumulative
distribution function F̄µi(r) of the discrete deterministic Gaussian process µ̄i[k]. From
(8.49), we obtain immediately

F̄µi(r) =
1
Li

Li−1∑

l=0

∫ r

0

δ(x− µ̄i[l]) dx , r ≥ 0 . (8.50)

A comparison of F̄µi(r) with the cumulative distribution function F̃µi(r) of the
corresponding continuous-time deterministic Gaussian process µ̃i(t)

F̃µi(r) =
1
2

+ 2r

∫ ∞

0

[
Ni∏

n=1

J0(2πci,nν)

]
sinc (2πνr) dν , r ≥ 0 (8.51)

is shown in Figure 8.10. The analytical expression for the cumulative distribution
function F̃µi(r) given above can directly be obtained after substituting the probability
density function (4.34) in F̃µi(r) =

∫ r

−∞ p̃µi(x) dx and then solving the integral with
respect to the independent variable x.

In addition, the cumulative distribution function

Fµi(r) =
1
2

[
1 + erf

(
r√
2σ0

)]
, r ≥ 0 , (8.52)
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of the zero-mean Gaussian random process µi(t) represents in Figure 8.10 the
behaviour of the reference model.
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Figure 8.10: Cumulative distribution function F̄µi(x) of discrete deterministic Gaussian
processes µ̄i[k] for Ts = 0.1ms (MEDS, Jakes PSD, Ni = 7, fmax = 91 Hz,
σ2

0 = 1).

For sufficiently small values of the sampling interval Ts, the period Li becomes very
large (see Figure 8.8) and, consequently, the sample space {µ̄i[l]}Li−1

l=0 becomes very
large as well. In such cases, it is not possible to evaluate the cumulative distribution
function F̄µi(r) according to (8.50) exactly without exceeding any reasonably chosen
time-out interval for the computer simulation. Fortunately, this problem can be
avoided, because one even obtains excellent results by merely evaluating K ¿ Li

elements of the subset {µ̄i[k]}K−1
k=0 , as demonstrated in Figure 8.10. This figure shows

an almost perfect correspondence between F̄µi(r) and F̃µi(r) or Fµi(x), although (8.50)
has been evaluated by using only K = 50·103 ¿ Li samples µ̄i[k] (k = 0, 1, . . . , K−1).

Next, we will examine the probability density function and the cumulative distribution
function of discrete deterministic Rayleigh processes ζ̄[k]. Thereby, we take into
account that ζ̄[k] is periodic with L = lcm {L1, L2}. Let us assume until further
notice that k is a random variable, uniformly distributed in the interval [0, L). Then,
it follows that ζ̄[k] defined by (8.10) is also a random variable, where each of the
possible outcomes ζ̄[0], ζ̄[1], . . . , ζ̄[L− 1] occurs with the probability 1/L. By analogy
to (8.49), we can thus write for the probability density function p̄ζ(z) of discrete
deterministic Rayleigh processes ζ̄[k]

p̄ζ(z) =
1
L

L−1∑

l=0

δ(z − ζ̄[l]) , z ≥ 0 . (8.53)
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This result allows us to express the cumulative distribution function of ζ̄[k] as

F̄ζ−(r) =
1
L

L−1∑

l=0

∫ r

0

δ(z − ζ̄[l]) dz , r ≥ 0 . (8.54)

Note that due to ζ̄[k] → ζ̃(t) as Ts → 0, it follows p̄ζ(z) → p̃ζ(z) and F̄ζ−(r) → F̃ζ−(r).
Thereby, p̃ζ(z) results from (4.47a) with ρ = 0, which allows us to present the
cumulative distribution function F̃ζ−(r) of ζ̃(t) as

F̃ζ−(r) =
∫ r

0

p̃ζ(z) dz

= 4r

∞∫

0

J1(2πrz)

π/2∫

0

[
N1∏

n=1

J0(2πc1,nz cos θ)

]

[
N2∏

n=1

J0(2πc2,nz sin θ)

]
dθ dz , r ≥ 0 . (8.55)

Finally, it should be noted that after performing the limits Ts → 0 and Ni →∞, the
identity F̄ζ−(r) = Fζ−(r) is obtained, where

Fζ−(r) = 1− e
− r2

2σ2
0 , r ≥ 0 , (8.56)

describes the cumulative distribution function of Rayleigh processes.

The cumulative distribution functions (8.54)–(8.56) are depicted in Figure 8.11. For
the evaluation of F̄ζ−(r) according to (8.54), K = 50 · 103 ¿ L samples ζ̄[k]
(k = 0, 1, . . . , K − 1) have been used. The sampling interval Ts has been chosen
sufficiently small (Ts = 0.1 ms).

Now, let us analyse in detail the influence of the sampling interval Ts on the statistics
of ζ̄[k]. In particular, it is our intention to answer the following question: what is the
maximum value of Ts for which F̄ζ−(r) does not perceptibly differ from F̃ζ−(r)? Up to
now, we have in general assumed that Ts is sufficiently small without concretely saying
what the phrase ‘sufficiently small’ really means. In the following, we want to make up
for this by deriving a lower limit for Ts. To illustrate the problem that occurs when Ts

exceeds a certain critical threshold, we consider the graphs presented in Figure 8.12.
In contrast to the cumulative distribution function F̄ζ−(r) shown in Figure 8.11, we
have used in the present case K = L = 9240 samples ζ̄[k] (k = 0, 1, . . . , K − 1) for
the computation of F̄ζ−(r) by using (8.54). At the same time, the sampling interval
Ts has been increased from Ts = 0.1ms up to Ts = 5 ms. Obviously, this seems
to be problematical, because different realizations of the quantized Doppler phases
{θ̄i,n}Ni

n=1 are now leading to different cumulative distribution functions F̄ζ−(r), which
may differ considerably (see Figure 8.12). It should be observed that in this example
the sampling theorem for low-pass signals [Fet96] is still fulfilled, because the chosen
values Ts = 5ms, i.e., fs = 200 Hz, and fmax = 91Hz are sufficient for the sampling
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Figure 8.11: Cumulative distribution function F̄ζ−(r) of discrete deterministic Rayleigh

processes ζ̄[k] for Ts = 0.1 ms (MEDS, Jakes PSD, N1 = 7, N2 =
8, fmax = 91 Hz, σ2

0 = 1).

theorem (2.85), i.e., it yields fs > 2fmax. By fulfilling the sampling theorem, it is
guaranteed that the continuous-time function ζ̄(t) can be reconstructed completely
from its samples ζ̃[k]. But in addition to that, the sampling theorem provides no
further information, for example, about the uniqueness of the cumulative distribution
function F̄ζ−(r) of ζ̄[k].

The reason for the problem illustrated in Figure 8.12 can be put down to the fact
that due to (8.3) the quantized Doppler frequencies fi,n are related to the sampling
interval Ts. The consequence of this relation is that from the requirement

fi,n 6= fj,m (8.57)

it does not inevitably follow that by increasing Ts the two inequalities

f̄i,n 6= f̄j,m ⇐⇒ Li,n 6= Lj,m (8.58)

are also fulfilled, where n = 1, 2, . . . , Ni and m = 1, 2, . . . , Nj (i, j = 1, 2). If Ts exceeds
a certain threshold, then one or several pairs (n,m) exist for which f̄1,n = f̄2,m and,
thus, L1,n = L2,m hold. In this case, the discrete harmonic elementary sequences
µ̄1,n[k] and µ̄2,n[k] are identical apart from a phase shift. Hence, it follows that the
discrete deterministic Gaussian processes µ̄1[k] and µ̄2[k] are correlated. Moreover, by
increasing Ts it can also be the case that f̄i,n = f̄i,m ⇔ Li,n = Li,m holds for i = 1, 2
and n 6= m. This, by the way, becomes obvious by examining the graphs shown in
Figures 8.3(a) and 8.3(b) for fs/fmax < 10.

For the derivation of a lower limit on the sampling frequency fs,min, the auxiliary
function

∆(i,j)
n,m := Li,n − Lj,m (8.59)
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Figure 8.12: Cumulative distribution function F̄ζ−(r) of discrete deterministic Rayleigh
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is useful. Using (8.4), we can also write

∆(i,j)
n,m = round

{
fs

fi,n

}
− round

{
fs

fj,m

}
, (8.60)

where n = 1, 2, . . . , Ni and m = 1, 2, . . . , Nj (i, j = 1, 2). The lower limit on the
sampling frequency fs,min is determined by those pairs (n,m) and (i, j) for which, by
decreasing fs, the auxiliary function (8.60) is zero for the first time. Hence,

fs,min = max
{
fs

∣∣ ∆(i,j)
n,m = 0 ∀ i, j = 1, 2

}Ni,Nj

n,m=1
. (8.61)

This result can be summarized in the following statement: Let us assume that the
elements of the two sets {f1,n}N1

n=1 and {f2,m}N2
m=1 fulfil the property fi,n 6= fj,m,

then the corresponding elements of sets {f̄1,n}N1
n=1 and {f̄2,m}N2

m=1 fulfil the analogous
property f̄i,n 6= f̄j,m for all n = 1, 2, . . . , N1 and m = 1, 2, . . . , N2 (i, j = 1, 2), if the
sampling frequency fs is above the threshold defined by (8.61), i.e., fs > fs,min. In
this case, it follows that if the processes µ̃1(t) and µ̃2(t) are uncorrelated, then the
corresponding sequences µ̄1[k] and µ̄2[k] are also uncorrelated.

Two examples showing the results of the evaluation of (8.61) by using the MEDS are
presented in Figure 8.13. In particular by using the MEDS, the lower limit for the
sampling frequency fs,min is determined by that value for fs for which the auxiliary
function ∆(1,2)

N1,N2
becomes zero for the first time. Problems caused by correlation (see

Figure 8.12) can thus be avoided if the sampling frequency fs is above the threshold
shown in Figure 8.13, which is not the case for the negative examples shown in
Figure 8.12.
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Figure 8.13: Lower limit on the sampling frequency fs,min as a function of N1 (MEDS,
Jakes PSD, N2 = N1 + 1, fmax = 91 Hz, σ2

0 = 1).

It should finally be mentioned that the lower limit fs,min according to (8.61) is
sufficient, but not necessary in order to fulfil the condition (8.58), i.e., it cannot be
excluded that there exist values for fs which are below fs,min and even though the two
inequalities in (8.58) are fulfilled. Here, it is not our intention to discuss this problem
in detail. Instead of this, we consider fs > 20fmax as a rule of thumb, which turned
out to be very useful for most practical applications. Hence, we say that the sampling
frequency fs is sufficiently large, if fs is larger than 20fmax.

We will proceed with the analysis of the probability density function p̄ϑ(θ) of the
phase of complex discrete deterministic Gaussian processes µ̄[k]. Of course, similar
arguments to those used for the derivation of (8.53) can be applied here to achieve
the present aim. However, we prefer a more simple and straightforward approach by
substituting in (8.53) the amplitude ζ̄[l] by the phase ϑ̄[l] allowing us directly to
express the probability density function p̄ϑ(θ) of the phase as

p̄ϑ(θ) =
1
L

L−1∑

l=0

δ(θ − ϑ̄[l]) , |θ| ≤ π , (8.62)

where ϑ̄[l] = arctan{µ̄2[l]/µ̄1[l]} denotes the phase of the complex deterministic
Gaussian process µ̄[k] = µ̄1[k] + jµ̄2[k] at instants k = l ∈ {0, 1, . . . , L − 1}. Using
(8.62), the corresponding cumulative distribution function can be written as

F̄ϑ(ϕ) =
1
L

L−1∑

l=0

ϕ∫

−π

δ(θ − ϑ̄[l]) dϕ , |ϕ| ≤ π . (8.63)

It should be mentioned that due to ϑ̄[k] → ϑ̃(t) as Ts → 0, it also follows p̄ϑ(θ) → p̃ϑ(θ)
and, thus, F̄ϑ(ϕ) → F̃ϑ(ϕ) as Ts → 0, where p̃ϑ(θ) can be obtained from (4.47b)
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for ρ = 0, so that the cumulative distribution function F̃ϑ(ϕ) of the phase ϑ̃(t) of
µ̃(t) = µ̃1(t) + jµ̃2(t) can be expressed as

F̃ϑ(ϕ) =

ϕ∫

−π

p̃ϑ(θ) dθ

= 4

ϕ∫

−π

∞∫

0

z





∞∫

0

[
N1∏

n=1

J0(2πc1,nν1)

]
cos(2πν1z cos θ) dν1









∞∫

0

[
N2∏

m=1

J0(2πc2,mν2)

]
cos(2πν2z sin θ) dν2



 dz dθ , |ϕ| ≤ π .

(8.64)

As Ts → 0 and Ni →∞, it follows F̄ϑ(ϕ) → Fϑ(ϕ), where

Fϑ(ϕ) =
1
2

(
1 +

ϕ

π

)
, |ϕ| ≤ π , (8.65)

is the cumulative distribution function of the uniformly distributed phase of zero-mean
complex Gaussian random processes µ(t) = µ1(t) + jµ2(t).

Figure 8.14 illustrates the cumulative distribution functions (8.63)–(8.65). The
evaluation of (8.63) has been performed by using K = 50·103 ¿ L samples (outcomes)
of the sample space {ϑ̄[l]}L−1

l=0 . For the sampling interval Ts, the value Ts = 0.1ms has
been chosen. Thus, by using the MEDS with the parameters specified in the figure
caption of Figure 8.14, the relation fs/fmax is close to the threshold fs,min/fmax (see
Figure 8.13).

8.3.2.2 Level-Crossing Rate and Average Duration of Fades

In contrast to continuous-time deterministic Rayleigh processes for which analytical
expressions for both the level-crossing rate and the average duration of fades have
been derived (see Appendix C), up to now no comparable solutions for discrete-time
deterministic Rayleigh processes exist. In the following, we restrict our investigation
to the derivation of approximate formulas by assuming that the normalized sampling
frequency fs/fmax lies above the threshold shown in Figure 8.13. Thereby, the number
of harmonic functions (tables) Ni is assumed to be sufficiently large, i.e., Ni ≥ 7.
Moreover, we assume that the relative model error ∆β̄i/βi of the discrete-time system
is small, which is in particular the case when the MEDS is applied on condition that
fs > fs,min is fulfilled (see Figure 8.7). Taking into account that the probability density
function p̄µi(x) of discrete deterministic processes µ̄i[k] is asymptotically equal to the
probability density function p̃µi(x) of continuous-time deterministic processes µ̃i(t),
i.e., p̄µi(x) ∼ p̃µi(x), then we can summarize the above mentioned statements and
assumptions as follows:
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(i) p̄µi(x) ∼ p̃µi(x) ≈ pµi(x) , (8.66a)
(ii) β̄ = (β̄1 + β̄2)/2 ≈ β = β1 = β2 . (8.66b)

Taking these assumptions into account, the level-crossing rate N̄ζ(r) and the average
duration of fades T̄ζ−(r) of discrete deterministic Rayleigh processes ζ̄[k] are in
principle still given by the approximations (4.66) and (4.70), respectively. However,
we only have to evaluate these equations for the case ρ = 0 and after that, we have to
replace the model error ∆β by ∆β̄. This results in

N̄ζ(r) ≈ Nζ(r)
(

1 +
∆β̄

2β

)
, (8.67a)

T̄ζ−(r) ≈ Tζ−(r)
(

1− ∆β̄

2β

)
, (8.67b)

where ∆β̄ = β̄ − β. In (8.67a), Nζ(r) denotes the level-crossing rate of Rayleigh
processes as defined by (2.60) and in (8.67b), Tζ−(r) refers to the average duration of
fades introduced by (2.65). As Ts → 0 and Ni → ∞ it follows N̄ζ(r) → Nζ(r) and
T̄ζ− → Tζ−(r).

Figure 8.15(a) shows an example for the normalized level-crossing rate N̄ζ(r)/fmax of
discrete deterministic Rayleigh processes ζ̄[k]. Just as in the previous examples, we
computed here the model parameters by using the MEDS with N1 = 7 and N2 = 8.
For the sampling interval Ts, again, the value Ts = 0.1ms has been chosen. The
corresponding normalized average duration of fades T̄ζ−(r) · fmax is illustrated in
Figure 8.15(b).
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8.4 REALIZATION EXPENDITURE AND SIMULATION SPEED

In this section, we will examine in detail the efficiency of the tables system (see
Figure 8.2). Moreover, the tables system’s efficiency will be compared to that of
the corresponding discrete-time direct system, which is obtained by replacing the
continuous-time variable t by kTs in Figure 4.3. For convenience, we ignore the
influence of the line-of-sight component by choosing ρ = 0. Let us assume in the
following that the set-up phase has been completed, so that we can restrict our
investigations to the computation expenditure required for the generation of the
respective complex-valued channel output sequence.

It can easily be seen from Figure 8.2 that the operations listed in Table 8.1 have to be
carried out at each instant k in order to compute one sample of the complex discrete
deterministic Gaussian process µ̄[k] = µ̄1[k]+jµ̄2[k]. One realizes that merely additions
and simple conditional control flow statements (if-else statements) are required. The
additions are needed for the generation of the addresses within the address generator
as well as for adding up the tables outputs, whereas the conditional control flow
statements are only required for the generation of the addresses within the address
generator.

The number of operations required for the generation of the complex-valued sequence
µ̃[k] = µ̃1[k]+jµ̃2[k] by employing the direct system is also listed in Table 8.1. Thereby,
normalized Doppler frequencies Ωi,n = 2πfi,nTs have been used in order to avoid
unnecessary multiplications within the arguments of the harmonic functions.

The results shown in Table 8.1 can be summarized as follows: all multiplications can be
avoided, the number of additions remains unchanged, and all trigonometric operations
can be substituted by simple if-else statements, when the tables system is used instead
of the direct system for the generation of complex-valued channel output sequences. It
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Table 8.1: Number of operations required for the computation of µ̄[k] (tables system)
and µ̃[k] (direct system).

Number of operations Tables system Direct system
# Multiplications 0 2(N1 + N2)
# Additions 2(N1 + N2)− 2 2(N1 + N2)− 2
# Trig. operations 0 N1 + N2

# If-else operations N1 + N2 0

is therefore not surprising when it turns out in the following that the tables system has
clear advantages in comparison with the direct system with respect to the simulation
speed.

As an appropriate measure of the simulation speed of channel simulators, we introduce
the iteration time defined by

∆Tsim =
Tsim

K
, (8.68)

where Tsim denotes the simulation time required for the computation of K samples
of the complex-valued channel output sequence. Thus, the quantity ∆Tsim represents
the average computation time per complex-valued channel output sample. Figure 8.16
shows the iteration time ∆Tsim for both the direct system and the tables system as
function of the number of harmonic functions (tables) N1. The model parameters fi,n

and ci,n have been computed by applying the MEDS with N2 = N1+1 and by using the
JM with N2 = N1. The algorithms of the channel simulators have been implemented
on a computer by using MATLAB and the simulation results for Tsim are obtained
by running the programs on a workstation (HP 730). For each run, the number of
samples of the complex-valued channel output sequence was equal to K = 104.

The results illustrated in Figure 8.16 clearly show the difference in speed of the treated
channel simulators. When using the MEDS, for example, the simulation speed of
the tables system is approximately 3.8 times higher than that of the direct system.
Applying the JM, we can exploit the fact that the discrete Doppler frequencies f1,n and
f2,n are identical, whereas the corresponding Doppler phases θ1,n and θ2,n are zero for
all n = 1, 2, . . . , N1 (N1 = N2). This enables a drastic reduction of the complexity of
both simulation systems. The consequence for the direct system is that only N1 instead
of N1+N2 harmonic functions have to be evaluated at each instant k. The speed of the
direct system can thus be increased by approximately a factor of two (see Figure 8.16).
The properties of the JM (f1,n = f2,n, c1,n 6= c2,n, θ1,n = θ2,n = 0, N1 = N2)
furthermore imply that the tables Tab1,n and Tab2,n of the tables system have the
same length, i.e., it holds L1,n = L2,n for all n = 1, 2, . . . , N1 (N1 = N2). Bearing this
in mind and noticing that from θi,n = 0 it follows immediately θ̄i,n = 0, it is seen that
the address generator only needs to compute half of the usually required number of
addresses. This is the reason for the fact that the speed of the tables system increases
approximately for another 40 per cent (see Figure 8.16).
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Figure 8.16: Iteration time ∆Tsim as a function of the number of harmonic functions
(tables) N1 (MEDS with N2 = N1 + 1, JM with N2 = N1, fmax = 91Hz,
σ2

0 = 1, Ts = 0.1ms).

Summing up, we can say that the tables system is — by using the MEDS (JM) —
approximately four times (three times) faster than the corresponding direct system.
The benefit of higher speed is confronted by the disadvantage of higher demand for
storage elements, but this, however, is the only disadvantage of the tables system worth
mentioning. Remember that the total demand for storage elements is proportional to
the sampling frequency (see Figure 8.3). By choosing the sampling frequency fs just
above fs,min, then the minimum number of storage elements is obtained without
accepting appreciable losses in precision. However, a good compromise between
the model’s precision and complexity is obtained by choosing fs within the range
20fmax ≤ fs ≤ 30fmax. When such a designed channel simulator is used as link
between the transmitter and the receiver of a mobile communication system, then
a sampling rate conversion by means of an interpolation (a decimation) filter is in
general required in order to fit the sampling frequency of the channel simulator to the
sampling frequency of the receiver’s input (transmitter’s output).

8.5 COMPARISON WITH THE FILTER METHOD

At this point, it is advisable to carry out a comparison with the filter method, which is
also often used in the design of simulation models for mobile radio channels. Here, we
restrict our investigations to the modelling of Rayleigh processes. For that purpose,
we consider the discrete-time structure depicted in Figure 8.17.

Since white Gaussian noise is, strictly speaking, not realizable, we consider ν̃1[k] and
ν̃2[k] as two realizable noise sequences whose statistical properties are sufficiently close
to those of ideal white Gaussian random processes. In particular, we demand that these
pseudo-random sequences ν̃i[k] (i = 1, 2) are uncorrelated, having a very long period,
and fulfilling the properties E{ν̃i[k]} = 0 and Var {ν̃i[k]} = 1.
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Figure 8.17: A simulation model for Rayleigh processes on basis of the filter method.

In Figure 8.17, H̃(z) denotes the transfer function of a digital filter in the z-domain. In
practice, recursive digital filters are widely in use for modelling of narrow-band random
processes. The transfer function of such filters can be represented in the z-domain as
follows

H̃(z) = A0

N0/2∏
n=1

(
z − ρ0n ejϕ0n

) (
z − ρ0n e−jϕ0n

)

N0/2∏
n=1

(z − ρ∞n ejϕ∞n) (z − ρ∞n e−jϕ∞n)

, (8.69)

where N0 denotes the order of the filter and A0 is a constant which will be determined
in such a way that the mean power at the output of the digital filter is equal to σ2

0 . As
we already know, the principle of the filter method is to determine the coefficients of the
transfer function of the filter in such a way that the deviations between the magnitude
of the transfer function |H̃(ej2πfTs)| and the square root of the desired Doppler power
spectral density

√
Sµiµi(f) are minimal, or at least as small as possible, with respect to

an appropriate error criterion. This problem is in general solved by applying numerical
optimization procedures such as, e.g., the Fletcher-Powell algorithm [Fle63] or the
Remez exchange procedure. An overview of commonly used optimization procedures
can be found in [Fle87, Gro97, Ent76].

Particularly for the widely used Jakes power spectral density (3.8), a recursive digital
filter of eighth order has been designed in [Bre86a], which very closely approximates
the desired frequency response. In Table 8.2 the coefficients of the recursive digital filter
adopted from [Hae88] are listed for a cut-off frequency fc that has been normalized to
the sampling frequency fs according to fc = fs/(110.5).

The resulting graph of the squared magnitude function |H̃(ej2πfTs)|2 and the
desired Jakes power spectral density are both presented in Figure 8.18(a). The very
good conformity between the corresponding autocorrelation functions is shown in
Figure 8.18(b).

The cut-off frequency fc is in case of the Jakes power spectral density identified
with the maximum Doppler frequency fmax. This means that by changing of fmax
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Table 8.2: Coefficients of the transfer function of the eighth order recursive filter
[Hae88].

n ρ0n ϕ0n ρ∞n ϕ∞n

1 1.0 5.730778 · 10−2 0.991177 4.542547 · 10−2

2 1.0 7.151706 · 10−2 0.980664 1.912862 · 10−2

3 1.0 0.105841 0.998042 5.507401 · 10−2

4 1.0 0.264175 0.999887 5.670618 · 10−2
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Figure 8.18: (a) Squared magnitude function |H̃(ej2πfTs)|2 of the eighth order recursive
filter and (b) autocorrelation sequence r̃µiµi [κ] of the filtered random
process µ̃i[k] (i = 1, 2) [Bre86a].

or fc, all coefficients of the transfer function H̃(z) have to be recalculated employing
common lowpass-to-lowpass transformations [Opp75]. In this case it should be noted
that due to these frequency transformations nonlinear frequency distortions occur,
which in particular cannot be ignored when the relation fc/fs is small. In practice,
this problem is solved by employing sampling rate conversion. Thereby, the digital filter
operates with a small sampling rate that has to be converted afterwards by means of
an interpolation filter to the mostly much higher sampling rate of the transmission
system. We will not go into details of sampling rate conversion, since our aim here is
to compare the computation speed of different channel simulators, which disregards
anyway the conversion of the sampling rate for the reason of fairness. Otherwise, an
interpolator would also be necessary for both the tables system and the direct system.
Clearly, this is in principle always feasible, but with regard to a simple measurement
of the computation speed, this will only lead to the fact that the computation speed
becomes dependent, aside from other factors, on the chosen interpolation factor.

In [Pae00e], the structure shown in Figure 8.17 of the eighth order recursive digital
filter described above has been implemented by using MATLAB on a workstation
(HP 730) and the iteration time ∆Tsim has been measured according to the rule
(8.68). The result of this measurement was ∆Tsim = 0.02ms. It also turned out that
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approximately 70 per cent of the total computation time is required for the generation
of the real-valued random sequences ν̃1[k] and ν̃2[k], whereas the filtering of these
sequences only occupies the remaining 30 per cent of the computation time. From this
result we conclude that a reduction of the filter order does not automatically lead to
a significant reduction in iteration time ∆Tsim.

Relating now the iteration time obtained for the filter system of eighth order to
the corresponding iteration time of the direct system and the tables system, it
becomes apparent that by using the MEDS (N1 = 7, N2 = 8) the direct system
is approximately 25 per cent slower than the filter system, whereas the speed of the
tables system outperforms that of the filter system by approximately 300 per cent.



Appendix A

DERIVATION OF THE JAKES
POWER SPECTRAL DENSITY
AND THE CORRESPONDING
AUTOCORRELATION
FUNCTION

The derivation of the Jakes power spectral density is based on the following three
assumptions:

(i) The propagation of the electromagnetic waves takes place in the two-dimensional
(horizontal) plane, and the receiver is located in the centre of an isotropic
scattering area.

(ii) The angles of arrival α of the waves arriving the receiving antenna are uniformly
distributed in the interval [−π, π).

(iii) The antenna radiation pattern of the receiving antenna is circular-symmetrical
(omnidirectional antenna).

Due to the assumption that the angles of arrival α are random variables with the
probability density function

pα(α) =





1
2π

, α ∈ [−π, π) ,

0 , else ,

(A.1)

it follows that the Doppler frequencies, defined by

f = f(α) := fmax cos(α) , (A.2)

are also random variables. The probability density function of the Doppler frequencies
f , denoted by pf (f), can easily be computed by using (2.38). Applying (2.38) to the
present problem enables us to write the probability density function pf (f) in the
following form

pf (f) =
m∑

ν=1

pα(αν)∣∣ d
dαf(α)

∣∣
α=αν

, (A.3)
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where m is the number of solutions of the equation (A.2) within the interval [−π, π).
For |f | > fmax, the equation f = fmax cos(α) has no real-valued solution and,
consequently, pf (f) = 0 for |f | > fmax. However, due to the ambiguity of the inverse
function of the cosine function within the interval [−π, π), two solutions exist for
|f | < fmax, namely,

α1 = −α2 = arccos (f/fmax) , (A.4)

so that m = 2. After elementary computations and by using (A.1)–(A.4), we find the
following result for the probability density function pf (f) of the Doppler frequencies

pf (f) =





1
πfmax

√
1− (f/fmax)2

, |f | < fmax ,

0 , |f | > fmax .

(A.5)

It can easily be seen that the probability density function pf (f) of the Doppler
frequencies has to be directly proportional to the power spectral density Sµµ(f) of
the scattered components µ(t) = µ1(t) + jµ2(t), received at the receiving antenna.
Therefore, we imagine that µ(t) can be represented by a superposition of an infinite
number of exponential functions according to

µ(t) = lim
N→∞

N∑
n=1

cn ej(2πfnt+θn) . (A.6)

As a consequence of the idealized assumption of isotropic scattering propagation, all
amplitudes cn = σ0

√
2/N have the same size. The Doppler frequencies fn in (A.6) are

random variables whose probability density function is determined by (A.5). Likewise,
the phases θn are random variables, but they are uniformly distributed in the interval
[0, 2π). One may note that the power spectral density Sµµ(f) of (A.6) is composed of
an infinite number of discrete spectral lines and that within an infinitesimal frequency
interval df the average power Sµµ(f) df can be observed. This power has to be
proportional to the number of spectral lines contained in df . On the other hand,
with (A.5) the number of spectral lines contained in the frequency interval df can also
be represented by pf (f) df . Hence, the following relation holds

Sµµ(f) df ∼ pf (f) df , (A.7)

and, thus,

Sµµ(f) ∼ pf (f) . (A.8)

Consequently, due to
∫∞
−∞ Sµµ(f) df = 2σ2

0 and
∫∞
−∞ pf (f) df = 1, it follows the

relation

Sµµ(f) = 2σ2
0 pf (f) . (A.9)

Thus, by taking (A.5) into account, we find the power spectral density

Sµµ(f) =





2σ2
0

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax ,

(A.10)



DERIVATION OF THE JAKES POWER SPECTRAL DENSITY 323

which in the literature is often called Jakes power spectral density or Clarke power
spectral density. Strictly speaking, in the above equation, we should have used the less
strict inequality |f | < fmax instead of |f | ≤ fmax. In other publications, however, the
poles at f = ±fmax are commonly assigned to the range of the Jakes power spectral
density. Without wanting to go into a detailed analysis of Sµµ(f) at f = ±fmax, we
will follow the conventional notation, particularly since this small modification does
not have any effect on the subsequent computations anyway.

For the power spectral density of the real part and the imaginary part of µ(t) =
µ1(t) + jµ2(t), the relation

Sµiµi(f) =
Sµµ(f)

2
=





σ2
0

πfmax

√
1− (f/fmax)2

, |f | ≤ fmax ,

0 , |f | > fmax ,

(A.11)

holds for i = 1 and i = 2, respectively.

Finally, we also compute the autocorrelation function rµµ(τ) of the scattered
component µ(t) = µ1(t) + jµ2(t). At first, we choose the way over the inverse Fourier
transform of the Jakes power spectral density (A.10) and obtain — by taking into
account that Sµµ(f) is an even function — the expression

rµµ(τ) =

∞∫

−∞
Sµµ(f) ej2πfτ df

=
4σ2

0

πfmax

fmax∫

0

cos(2πfτ)√
1− (f/fmax)2

df . (A.12)

The substitution of f by fmax cos(α) first of all leads to

rµµ(τ) = σ2
0

4
π

π/2∫

0

cos(2πfmaxτ cosα) dα , (A.13)

from which, by using the integral representation of the zeroth-order Bessel function of
the first kind [Gra81, eq. (3.715.19)]

J0(z) =
2
π

π/2∫

0

cos(z cosα) dα , (A.14)

the result

rµµ(τ) = 2σ2
0 J0(2πfmaxτ) (A.15)

immediately follows.
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An alternative to this computation method is the following one. Starting with the
definition of the autocorrelation function

rµµ(τ) := E{µ∗(t)µ(t + τ)} , (A.16)

introduced by (2.48) and using (A.6), we find

rµµ(τ) = lim
N→∞

lim
M→∞

N∑
n=1

M∑
m=1

cncm E
{

ej[2π(fm−fn)t+2πfmτ+θm−θn]
}

. (A.17)

The calculation of the expected value has to be performed with respect to the uniformly
distributed phases as well as with respect to the Doppler frequencies distributed
according to (A.5). Determining the expected value with respect to θm and θn results
in rµµ(τ) = 0 for n 6= m and in

rµµ(τ) = lim
N→∞

N∑
n=1

c2
n E

{
ej2πfnτ

}
(A.18)

for n = m. With the probability density function (A.5), we can — after a short
intermediate computation similar to that of the first procedure — represent the
expected value appearing the right-hand side of (A.18) by

E
{
ej2πfnτ

}
=

∞∫

−∞
pf (f) ej2πfτ df

= J0(2πfmaxτ) . (A.19)

Finally, we recall that the amplitudes cn are determined, according to the assumptions
made before, by cn = σ0

√
2/N . Thus, from (A.18) and under consideration of (A.19),

it follows the expression

rµµ(τ) = 2σ2
0 J0(2πfmaxτ) , (A.20)

which is identical to the result (A.15) obtained by computing the inverse Fourier
transform of the Jakes power spectral density.
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DERIVATION OF THE
LEVEL-CROSSING RATE OF
RICE PROCESSES WITH
DIFFERENT SPECTRAL
SHAPES OF THE UNDERLYING
GAUSSIAN RANDOM
PROCESSES

Let µ1(t) and µ2(t) be two uncorrelated zero-mean Gaussian random processes with
identical variances but different spectral shapes, i.e., the corresponding autocorrelation
functions are subject to the following conditions:

(i) rµ1µ1(0) = rµ2µ2(0) = σ2
0 , (B.1)

(ii) rµ1µ1(τ) 6= rµ2µ2(τ) , if τ > 0 , (B.2)

(iii)
dn

dτn
rµ1µ1(τ) 6= dn

dτn
rµ2µ2(τ) , if τ ≥ 0 , n = 1, 2, . . . (B.3)

For the purpose of further simplification of the problem, we assume that fρ = 0,
i.e., the line-of-sight component m is supposed to be time invariant and, thus, is
determined by (3.3).

Starting point for the computation of the level-crossing rate of the resulting Rice
process is the joint probability density function of the stationary processes µρ1(t),
µρ2(t), µ̇ρ1(t), and µ̇ρ2(t) [see (3.4)] at the same time t. Here, we have to take
the following fact into account: if µρi(t) is a real-valued (stationary) Gaussian
random process with mean value E{µρi

(t)} = mi 6= 0 and variance Var {µρi
(t)} =

Var {µi(t)} = rµiµi
(0) = σ2

0 , then its derivative with respect to time, denoted
by µ̇ρi(t), is also a real-valued (stationary) Gaussian random process but with
mean value E{µ̇ρi

(t)} = ṁi = 0 and variance Var {µ̇ρi
(t)} = Var {µ̇i(t)} =

rµ̇iµ̇i(0) = −r̈µiµi(0) = βi (i = 1, 2). Due to (B.3), the inequality β1 6= β2 holds
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for βi. Furthermore, the processes µρi(t) and µ̇ρi(t) are in pairs uncorrelated at the
same time t. From this fact, it follows that the joint probability density function
pµρ1µρ2 µ̇ρ1 µ̇ρ2

(x1, x2, ẋ1, ẋ2) is given by the multivariate Gaussian distribution, which
can, by using (2.20), be represented by

pµρ1µρ2 µ̇ρ1 µ̇ρ2
(x1, x2, ẋ1, ẋ2) =

e
− (x1−m1)2

2σ2
0√

2π σ0

· e
− (x2−m2)2

2σ2
0√

2π σ0

· e−
ẋ2
1

2β1√
2πβ1

· e−
ẋ2
2

2β2√
2πβ2

. (B.4)

The transformation of the Cartesian coordinates (x1, x2) into polar coordinates (z, θ),
by means of z =

√
x2

1 + x2
2 and θ = arctan(x2/x1), leads to the following system of

equations:

x1 = z cos θ , ẋ1 = ż cos θ − θ̇z sin θ ,

x2 = z sin θ , ẋ2 = ż sin θ + θ̇z cos θ ,
(B.5)

for z ≥ 0 and |θ| ≤ π. The application of the transformation rule (2.38) then results
in the joint probability density function

pξξ̇ϑϑ̇(z, ż, θ, θ̇) = |J |−1pµρ1µρ2 µ̇ρ1 µ̇ρ2
(z cos θ, z sin θ, ż cos θ − θ̇z sin θ, ż sin θ + θ̇z cos θ),

(B.6)

where

J = J(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂z

∂x1
∂ż

∂x1
∂θ

∂x1

∂θ̇

∂x2
∂z

∂x2
∂ż

∂x2
∂θ

∂x2

∂θ̇

∂ẋ1
∂z

∂ẋ1
∂ż

∂ẋ1
∂θ

∂ẋ1

∂θ̇

∂ẋ2
∂z

∂ẋ2
∂ż

∂ẋ2
∂θ

∂ẋ2

∂θ̇

∣∣∣∣∣∣∣∣∣∣∣∣

−1

= − 1
z2

(B.7)

denotes the Jacobian determinant [see (2.39)]. Inserting (B.5) and (B.7) into (B.6)
results, after some algebraic calculations, in the following expression for the joint
probability function pξξ̇ϑϑ̇(z, ż, θ, θ̇)

pξξ̇ϑϑ̇(z, ż, θ, θ̇) =
z2

(2πσ0)2
√

β1β2

e
− 1

2σ2
0
[z2+ρ2−2zρ cos(θ−θρ)]

· e − ż2
2 ( cos2 θ

β1
+ sin2 θ

β2
)−z2θ̇2( cos2 θ

β2
+ sin2 θ

β1
)−zżθ̇(

β1−β2
β1β2

) cos θ sin θ , (B.8)

for z ≥ 0, |ż| < ∞, |θ| ≤ π and |θ̇| < ∞. Using (2.40), we can now compute the joint
probability density function of the processes ξ(t) and ξ̇(t) at the same time t by using
the relation

pξξ̇(z, ż) =

∞∫

−∞

π∫

−π

pξξ̇ϑϑ̇ (z, ż, θ, θ̇) dθ dθ̇ , z ≥ 0 , |ż| < ∞ . (B.9)
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Inserting (B.8) into (B.9) finally results in

pξξ̇(z, ż) =
z

(2π)3/2 σ2
0

e
− z2+ρ2

2σ2
0

π∫

−π

e
zρ

σ2
0

cos (θ−θρ) · e
− ż2

2(β1 cos2 θ+β2 sin2 θ)

√
β1 cos2 θ + β2 sin2 θ

dθ .

(B.10)

Since the level-crossing rate Nξ(r) of Rice process ξ(t) is generally defined by

Nξ(r) :=

∞∫

0

ż pξξ̇(r, ż)dż , r ≥ 0 , (B.11)

we obtain, by using the above expression (B.10), the result

Nξ(r) =
r e

− r2+ρ2

2σ2
0

(2π)3/2σ2
0

·
π∫

−π

e
rρ

σ2
0

cos(θ−θρ)
√

β1 cos2 θ + β2 sin2 θ dθ , (B.12)

which holds for β1 6= β2. Without restriction of generality, we may assume that β1 ≥ β2

holds. On this condition, we can also express (B.12) by

Nξ(r) =

√
β1

2π
· r

σ2
0

e
− r2+ρ2

2σ2
0 · 1

π

π∫

0

cosh
[

rρ

σ2
0

cos(θ − θρ)
] √

1− k2 sin2 θ dθ , r ≥ 0 ,

(B.13)

where k =
√

(β1 − β2)/β1.

It should be mentioned that for β = β1 = β2 6= 0, i.e., k = 0, and by using the relation
[Abr72, eq. (9.6.16)]

I0(z) =
1
π

π∫

0

cosh(z cos θ) dθ , (B.14)

the above expression for the level-crossing rate Nξ(r) can be reduced to the form
(3.27), as it was to be expected.

At the end of Appendix B, we consider an approximation for the case that the
relative deviation between β1 and β2 is very small. Thus, for a positive number ε
with ε/β1 << 1, it holds

β1 = β2 + ε . (B.15)

Due to k =
√

(β1 − β2)/β1 =
√

ε/β1 << 1, we may use the approximation
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√
1− k2 sin2 θ ≈ 1− k2

2
sin2 θ

= 1− ε

2β1
sin2 θ , (B.16)

so that the relation (B.13) can be simplified for θρ = 0 by the following approximations

Nξ(r)|β1≈β2 ≈
√

β1

2π
· r

σ2
0

e
− r2+ρ2

2σ2
0

[
I0

(
rρ

σ2
0

)
− ε

2β1
I1

(
rρ

σ2
0

)
/

(
rρ

σ2
0

)]

≈
√

β1

2π
· r

σ2
0

e
− r2+ρ2

2σ2
0 I0

(
rρ

σ2
0

)

≈
√

β1

2π
· pξ(r) . (B.17)

For the derivation of this relation, we have made use of the integral representation of
the first-order modified Bessel function of the first kind [Abr72, eq. (9.6.18)]

I1(z) =
z

π

π∫

0

e±z cos θ sin2 θ dθ . (B.18)

Hence, (B.17) shows that in case β1 ≈ β2, the expression (3.27) approximately holds
for the level-crossing rate of Rice processes ξ(t), if the quantity β is substituted by β1

in (3.27).
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DERIVATION OF THE EXACT
SOLUTION OF THE
LEVEL-CROSSING RATE AND
THE AVERAGE DURATION OF
FADES OF DETERMINISTIC
RICE PROCESSES

We start with the derivation of the exact solution of the level-crossing rate of
deterministic Rice processes using a finite number of harmonic functions. The
assumptions (4.61a) and (4.61b), which were made in Subsection 4.3.2 for the purpose
of simplification, will be dropped here. After that follows the computation of the
corresponding average duration of fades.

Let us consider two uncorrelated zero-mean deterministic Gaussian processes

µ̃i(t) =
Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , i = 1, 2 , (C.1)

with identical variances equal to Var {µ̃i(t)} = σ̃2
µi

=
∑Ni

n=1 c2
i,n/2, where the

parameters ci,n, fi,n, and θi,n are nonzero real-valued constants. We demand that
the discrete Doppler frequencies have to be different from each other for all n =
1, 2, . . . , Ni and i = 1, 2, so that in particular the sets {f1,n}N1

n=1 and {f2,n}N2
n=1 are

disjoint, guaranteeing that the deterministic Gaussian processes µ̃1(t) and µ̃2(t) are
uncorrelated. According to (4.34), the probability density function of µ̃i(t) reads as
follows

p̃µi
(x) = 2

∫ ∞

0

[
Ni∏

n=1

J0(2πci,nν)

]
cos(2πνx)dν , i = 1, 2 . (C.2)

Since the differentiation with respect to time is a linear operation, it follows from (C.1)
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that

˙̃µi(t) = −2π

Ni∑
n=1

ci,nfi,n sin(2πfi,nt + θi,n) , i = 1, 2 , (C.3)

also describes two uncorrelated zero-mean deterministic Gaussian processes, where the
variance of this processes is equal to Var { ˙̃µi(t)} = β̃i = 2π2

∑Ni

n=1(ci,nfi,n)2. For the
corresponding probability density function p̃µ̇i

(ẋ) of ˙̃µi(t), the expression

p̃µ̇i
(ẋ) = 2

∫ ∞

0

[
Ni∏

n=1

J0

[
(2π)2ci,nfi,nν

]
]

cos(2πνẋ) dν , i = 1, 2 , (C.4)

holds.

In this connection it has to be taken into account that with (4.13), the cross-correlation
function of µ̃i(t) and ˙̃µi(t) can be expressed by

r̃µiµ̇i(τ) = ˙̃rµiµi(τ) = −π

Ni∑
n=1

c2
i,nfi,n sin(2πfi,nτ) , (C.5)

and, thus, it becomes clear that µ̃i(t) and ˙̃µi(t) are in general correlated. For the
computation of the level-crossing rate, however, we are only interested in the behaviour
of µ̃i(t1) and ˙̃µi(t2) at the same time instant t = t1 = t2, which is equivalent to
τ = t2 − t1 = 0. Observe that from (C.5) it follows r̃µiµ̇i(τ) = 0 for τ = 0, i.e.,
the deterministic Gaussian processes µ̃i(t) and ˙̃µi(t) are uncorrelated at the same
time t. Consequently, also the deterministic processes µ̃1(t), µ̃2(t), ˙̃µ1(t), and ˙̃µ2(t),
are uncorrelated in pairs at the same time t. We know that if two random variables
are uncorrelated, then they are not necessarily statistically independent. However, for
Gaussian distributed random variables, uncorrelatedness is equivalent to independence
[Pap91]. In the present case, the probability density functions p̃µi(xi) and p̃µ̇i(ẋ) [see
(C.2) and (C.4), respectively] are both almost identical to the Gaussian distribution
if Ni ≥ 7. Therefore, we may assume that µ̃1(t), µ̃2(t), ˙̃µ1(t), and ˙̃µ2(t) are mutually
statistically independent at the same time t. As a consequence, the joint probability
density function of these processes can be expressed by the product of the individual
probability density functions, i.e.,

p̃µ1µ2µ̇1µ̇2(x1, x2, ẋ1, ẋ2) = p̃µ1(x1) · p̃µ2(x2) · p̃µ̇1(ẋ1) · p̃µ̇2(ẋ2) . (C.6)

Considering the line-of-sight component (3.2), we assume — in order to simplify matter
— that fρ = 0 holds, so that m = m1 + jm2 is a complex-valued constant, whose
real and imaginary part is characterized by the discrete probability density function
pmi(xi) = δ(xi −mi), i = 1, 2. For the probability density functions of the complex
deterministic processes µ̃ρi(t) = µ̃i(t) + mi and ˙̃µρi

(t) = ˙̃µi(t) + ṁi = ˙̃µi(t), the
following relations hold for i = 1, 2:

p̃µρi
(xi) = p̃µi(xi) ∗ pmi(xi) = p̃µi(xi −mi) , (C.7a)

p̃µ̇ρi
(ẋi) = p̃µ̇i(ẋi) ∗ pṁi(ẋi) = p̃µ̇i(ẋi) . (C.7b)
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Thus, for the joint probability density function of the deterministic processes µ̃ρ1(t),
µ̃ρ2(t), ˙̃µρ1

(t), and ˙̃µρ2
(t), we may write

p̃µρ1µρ2 µ̇ρ1 µ̇ρ2
(x1, x2, ẋ1, ẋ2) = p̃µ1(x1 −m1) · p̃µ2(x2 −m2) · p̃µ̇1(ẋ1) · p̃µ̇2(ẋ2) .

(C.8)

The transformation of the Cartesian coordinates (x1, x2, ẋ1, ẋ2) to polar coordinates
(z, ż, θ, θ̇) [cf. Appendix B, eq. (B.5)] results in the joint probability density function
of the processes ξ̃(t), ˙̃

ξ(t), ϑ̃(t), and ˙̃
ϑ(t) at the same time t according to

p̃ξξ̇ϑϑ̇(z, ż, θ, θ̇) = z2·p̃µ1(z cos θ − ρ cos θρ) · p̃µ2(z sin θ − ρ sin θρ)

·p̃µ̇1(ż cos θ − θ̇z sin θ) · p̃µ̇2(ż sin θ + θ̇z cos θ) , (C.9)

for 0 ≤ z < ∞, |ż| < ∞, |θ| ≤ π, and |θ̇| < ∞. From this expression, the joint
probability density function p̃ξξ̇(z, ż) of the deterministic processes ξ̃(t) and ˙̃

ξ(t) can
be obtained after applying the relation (2.40). Hence,

p̃ξξ̇(z, ż) = z2

∫ ∞

−∞

∫ π

−π

p̃µ1(z cos θ − ρ cos θρ) · p̃µ2(z sin θ − ρ sin θρ)

·p̃µ̇1(ż cos θ − θ̇z sin θ) · p̃µ̇2(ż sin θ + θ̇z cos θ) dθ dθ̇ , (C.10)

where 0 ≤ z < ∞ and |ż| < ∞. If we substitute the equation above into the definition
of the level-crossing rate for deterministic Rice processes ξ̃(t)

Ñξ(r) :=
∫ ∞

0

ż p̃ξξ̇(r, ż) dż , r ≥ 0 , (C.11)

then we obtain the expression

Ñξ(r) = r2

π∫

−π

p̃µ1(r cos θ − ρ cos θρ) · p̃µ2(r sin θ − ρ sin θρ)

·
∞∫

0

ż

∞∫

−∞
p̃µ̇1(ż cos θ − θ̇r sin θ) · p̃µ̇2(ż sin θ + θ̇r cos θ) dθ̇ dż dθ .

(C.12)

It is mathematically convenient to express (C.12) as

Ñξ(r) = r2

∫ π

−π

w1(r, θ) w2(r, θ)
∫ ∞

0

ż f(r, ż, θ) dż dθ , (C.13)

where w1(r, θ), w2(r, θ), and f(r, ż, θ) are auxiliary functions defined by
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w1(r, θ) := p̃µ1(r cos θ − ρ cos θρ) , (C.14a)
w2(r, θ) := p̃µ2(r sin θ − ρ sin θρ) , (C.14b)

and

f(r, ż, θ) := 2
∫ ∞

0

[
N1∏

n=1

J0(4π2c1,nf1,nν1)

] ∫ ∞

0

[
N2∏

m=1

J0(4π2c2,mf2,mν2)

]

·
∫ ∞

−∞

{
cos

[
2πż(ν1 cos θ − ν2 sin θ)− 2πθ̇r(ν1 sin θ + ν2 cos θ)

]

+ cos
[
2πż(ν1 cos θ + ν2 sin θ)− 2πθ̇r(ν1 sin θ − ν2 cos θ)

]}
dθ̇ dν1 dν2 , (C.15)

respectively. The integration over θ̇ in (C.15) results in

∫ ∞

−∞
cos

[
2πż(ν1 cos θ ∓ ν2 sin θ)− 2πθ̇r(ν1 sin θ ± ν2 cos θ)

]
dθ̇

= cos[2πż(ν1 cos θ ∓ ν2 sin θ)] · δ[r(ν1 sin θ ± ν2 cos θ)] . (C.16)

Putting the relation

δ[r(ν1 sin θ ± ν2 cos θ)] =
δ(tan θ ± ν1/ν2)

|rν1 cos θ| (C.17)

into (C.16) and using the transformation of the variables ϕ = tan θ, then (C.13) can
be represented by

Ñξ(r) = 2r2

∫ ∞

−∞
w1(r, arctanϕ) w2(r, arctan ϕ)

·
∫ ∞

0

ż f(r, ż, arctan ϕ) cos2(arctanϕ) dż dϕ , (C.18)

where

f(r, ż, arctan ϕ) = 2

∞∫

0

∞∫

0

[∏N1
n=1 Jo(4π2c1,nf1,nν1)

] [∏N2
m=1 Jo(4π2c2,mf2,mν2)

]

|rν1 cos(arctan ϕ)|

·
{

cos
[
2πżν2 cos(arctanϕ)

(
ν1

ν2
− ϕ

)]
· δ

(
ϕ +

ν2

ν1

)

+ cos
[
2πżν2 cos(arctanϕ)

(
ν1

ν2
+ ϕ

)]
· δ

(
ϕ− ν2

ν1

)}
dν1 dν2 . (C.19)
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If we now substitute (C.19) into (C.18) and subsequently transform the Cartesian
coordinates (ν1, ν2) to polar coordinates (z, θ) by means of (ν1, ν2) → (z cos θ, z sin θ),
then we obtain

Ñξ(r) = 2r

∫ ∞

0

∫ π

0

w1(r, θ) [w2(r, θ) + w2(r,−θ)]

·
∫ ∞

0

j1(z, θ) j2(z, θ) ż cos(2πzż) dz dθ dż , (C.20)

where

j1(z, θ) =
N1∏

n=1

J0(4π2c1,nf1,nz cos θ) , (C.21a)

j2(z, θ) =
N2∏

n=1

J0(4π2c2,nf2,nz sin θ) , (C.21b)

and w1(r, θ), w2(r, θ) are the auxiliary functions introduced by (C.14a) and (C.14b),
respectively. For the derivation of (C.20), we exploited the fact that w1(r, θ) is an even
function in θ, i.e., w1(r, θ) = w1(r,−θ). Since w2(r, θ) is neither even nor odd in θ if
ρ 6= 0 (or θρ 6= kπ, k = 0,±1,±2, . . .), we may also write for the level-crossing rate of
deterministic Rice processes [Pae99c]

Ñξ(r) = 2r

∞∫

0

π∫

−π

w1(r, θ) w2(r, θ)

∞∫

0

j1(z, θ) j2(z, θ) ż cos(2πzż) dz dθ dż . (C.22)

Further but only slight simplifications are possible for the level-crossing rate Ñζ(r) of
deterministic Rayleigh processes ζ̃(t). Since ρ = 0 holds in this case, it follows that
w2(r, θ) is an even function in θ as well, so that from (C.22), the expression

Ñζ(r) = 4r

∞∫

0

π∫

0

w1(r, θ) w2(r, θ)

∞∫

0

j1(z, θ) j2(z, θ) ż cos(2πzż) dz dθ dż (C.23)

can be obtained, where w1(r, θ) and w2(r, θ) have to be computed according to (C.14a)
and (C.14b), respectively, by taking ρ = 0 into account. In (C.23), j1(z, θ) and j2(z, θ)
again denote the functions (C.21a) and (C.21b), respectively.

By means of the exact solution of the level-crossing rate Ñξ(r) of deterministic Rice
processes ξ̃(t) it now becomes obvious that apart from ρ and the number of harmonic
functions Ni, Ñξ(r) also depends on the quantities ci,n and fi,n. In contrast to that, the
Doppler phases θi,n have no influence on Ñξ(r). Thus, for a given number of harmonic
functions Ni, the deviations between the level-crossing rate of the simulation model
and that of the reference model are essentially determined by the method applied for
the computation of the model parameters ci,n and fi,n. For the purpose of illustration
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and verification of the obtained results, the normalized level-crossing rates, computed
according to (C.22) and (C.23), are depicted in Figure C.1 together with the pertinent
simulation results. The methods (MEDS, MEA, MCM) applied for the determination
of the model parameters ci,n and fi,n are described in detail in Chapter 5. For the
MCM it should in addition be noted that the results shown in Figure C.1 are only valid
for a certain realization of the set of discrete Doppler frequencies {fi,n}Ni

n=1. Another
realization for {fi,n}Ni

n=1 may give better or worse results for Ñξ(r). The reason for
this is in the nature of the MCM, according to which the discrete Doppler frequencies
fi,n are random variables, so that the deviations between Ñξ(r) and Nξ(r) can only be
described statistically. Further details on this subject are described in Subsection 5.1.4.
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Figure C.1: Normalized level-crossing rate of deterministic Rice and Rayleigh processes
both realized with N1 = 7 and N2 = 8 (Jakes PSD, fmax = 91Hz,
σ2

0 = 1, θρ = π/4).

Next, we want to show that the level-crossing rate of deterministic Rice processes
indeed converges to the level-crossing rate of the reference model as Ni →∞, i.e.,

Ñξ(r) = Nξ(r) , Ni →∞ . (C.24)

Therefore, we merely assume that the autocorrelation function r̃µiµi(τ) of µ̃i(t) fulfils
the following two conditions:

(i) r̃µiµi(0) = rµiµi(0) ⇐⇒ σ̃2
µi

= σ̃2
0 = σ2

0 , (C.25a)

(ii) ¨̃rµiµi(0) = r̈µiµi(0) ⇐⇒ β̃i = β̃ = β . (C.25b)

The first condition (i) imposes the so-called power constraint on the simulation model.
If the power constraint is fulfilled, then the mean power of the deterministic process
µ̃i(t) is identical to the variance of the stochastic process µi(t). By analogy to the power
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constraint (C.25a), we will in the following denote (C.25b) as curvature constraint.
The curvature constraint imposes on the simulation model that the curvature of
the autocorrelation function r̃µiµi

(τ) of µ̃i(t) is identical to the curvature of the
autocorrelation function rµiµi(τ) of µi(t) at τ = 0. It should be mentioned that the
power constraint is a necessary condition and the curvature constraint is a sufficient
condition for the validity of the relation (C.24).

In order to prove (C.24), we once again consider the time t as a uniformly distributed
random variable, and we remember that as Ni →∞, it follows from the central limit
theorem (2.16) that the probability density function of (C.1) converges to a Gaussian
distribution with the mean 0 and the variance σ̃2

0 , i.e.,

lim
Ni→∞

p̃µi
(xi) =

1√
2πσ̃0

e
− x2

i
2σ̃2

0 , i = 1, 2 , (C.26)

where

σ̃2
0 = lim

Ni→∞
r̃µiµi(0) = lim

Ni→∞

Ni∑
n=1

c2
i,n

2
. (C.27)

If we now substitute the result (C.26) into (C.14a) and (C.14b), then it follows

w1(r, θ) =
1√

2πσ̃0

e
− (r cos θ−ρ cos θρ)2

2σ̃2
0 , as N1 →∞ , (C.28a)

w2(r, θ) =
1√

2πσ̃0

e
− (r sin θ−ρ sin θρ)2

2σ̃2
0 , as N2 →∞ . (C.28b)

Applying the Fourier transform on the right-hand side of (C.2) and (C.26), we realize
that (4.38) can be expressed more generally by

lim
Ni→∞

Ni∏
n=1

J0(2πci,nν) = e−2(πσ̃0ν)2 , (C.29)

where σ̃2
0 is given by (C.27). Furthermore, by replacing the quantities ci,n with

2πci,nfi,n in (C.29), the relation

lim
Ni→∞

Ni∏
n=1

J0(4π2fi,nci,nν) = e−2β̃i(πν)2 (C.30)

can easily be derived, where β̃i denotes the quantity introduced by (4.22). Thus, it
becomes clear that in the limit Ni →∞, the functions j1(z, θ) [see (C.21a)] and j2(z, θ)
[see (C.21b)] converge to

j1(z, θ) = e−2β̃1(πz cos θ)2 , as N1 →∞ , (C.31a)

j2(z, θ) = e−2β̃2(πz sin θ)2 , as N2 →∞ , (C.31b)
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respectively. If we now substitute the obtained results (C.28a), (C.28b), (C.31a), and
(C.31b) into Ñξ(r) according to (C.22), then — on the condition that β̃ = β̃1 = β̃2

holds — it follows the expression

lim
Ni→∞

Ñξ(r) =
r

πσ̃2
0

e
− r2+ρ2

2σ̃2
0

∫ ∞

0

∫ π

−π

ż e
rρ

σ̃2
0

cos(θ−θρ)

∫ ∞

0

e−2β̃(πz)2 cos(2πzż) dz dθ dż . (C.32)

Using the integral [Gra81, eq. (3.896.4)]

∫ ∞

0

e−ux2
cos(bx) dx =

1
2

√
π

u
e−

b2
4u , Re {u} > 0 , (C.33)

(C.32) can be simplified to

lim
Ni→∞

Ñξ(r) =
r√

2πβ̃σ̃2
0

e
− r2+ρ2

2σ̃2
0 · 1

2π

∫ π

−π

e
rρ

σ̃2
0

cos(θ−θρ)
dθ ·

∫ ∞

0

ż e
− ż2

2β̃ dż . (C.34)

The remaining two integrals over θ and ż can be solved without great expense by
using the integral representation of the zeroth-order modified Bessel function of the
first kind [Abr72, eq. (9.6.16)]

I0(z) =
1
π

∫ π

0

e±z cos θ dθ (C.35)

and the integral [Gra81, eq. (3.461.3)]
∫ ∞

0

x2n+1 e−px2
dx =

n!
2pn+1

, p > 0 . (C.36)

Finally, we obtain

lim
Ni→∞

Ñξ(r) =

√
β̃

2π
· r

σ̃2
0

e
− r2+ρ2

2σ̃2
0 I0

(
rρ

σ̃2
0

)
. (C.37)

Taking the power constraint (C.25a) and the curvature constraint (C.25b) into
account, the right-hand side of the above equation can now directly be identified
with (2.62), which proves the validity of (C.24).

For completeness, we will also give the exact solution for the average duration of
fades T̃ξ−(r) of deterministic Rice processes ξ̃(t). Since we need an expression for
the cumulative distribution function F̃ξ−(r) of ξ̃(t), we will first of all derive this by
substituting (4.50) into

F̃ξ−(r) =
∫ r

0

p̃ξ(z) dz . (C.38)
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The integration over z can be carried out by using the indefinite integral [Gra81,
eq. (5.56.2)]

∫
z J0(z) dz = z J1(z) , (C.39)

so that after some algebraic manipulations, the following result is obtained

F̃ξ−(r) = 2r

∫ ∞

0

J1(2πry)
∫ π

0

h1(y, θ)h2(y, θ) cos[2πρy cos(θ − θρ)] dθ dy , (C.40)

where

h1(y, θ) =
N1∏

n=1

J0(2πc1,ny cos θ) , (C.41a)

h2(y, θ) =
N2∏

n=1

J0(2πc2,ny sin θ) . (C.41b)

With the cumulative distribution function (C.40) presented above and the solution
for the level-crossing rate (C.22) found before, the average duration of fades T̃ξ−(r) of
deterministic Rice processes ξ̃(t) can now be analysed analytically using

T̃ξ−(r) =
F̃ξ−(r)

Ñξ(r)
. (C.42)

In order to illustrate the obtained results, we consider Figure C.2, which shows the
normalized average duration of fades of deterministic Rice and Rayleigh processes,
according to the theoretical results (C.42), in comparison with the corresponding
simulation results.

Subsequently, we want to prove that in the conditions (C.25a) and (C.25b), the average
duration of fades T̃ξ−(r) of deterministic Rice processes ξ̃(t) converges to the average
duration of fades Tξ−(r) of stochastic Rice processes ξ(t) as the number of harmonic
functions Ni tends to infinity, i.e.,

T̃ξ−(r) = Tξ−(r) , as Ni →∞ . (C.43)

Due to (C.24) and the general relation (C.42), it is sufficient here to show that

F̃ξ−(r) = Fξ−(r) , as Ni →∞ , (C.44a)

or, equivalently, that

p̃ξ(r) = pξ(r) , as Ni →∞ , (C.44b)

holds. Due to (C.29), we therefore first realize that the functions h1(y, θ) [see (C.41a)]
and h2(y, θ) [see (C.41b)] tend to

h1(y, θ) = e−2(πσ̃0y cos θ)2 , as N1 →∞ , (C.45a)
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and

h2(y, θ) = e−2(πσ̃0ysinθ)2 , as N2 →∞ , (C.45b)

respectively. With this result it follows from (4.50)

lim
Ni→∞

p̃ξ(z) = (2π)2z

∞∫

0

e−2(πσ̃0y)2J0(2πzy)
1
π

π∫

0

cos[2πρy cos(θ − θρ)]dθ y dy .

(C.46)

The integral representation of the zeroth-order Bessel function [Abr72, eq. (9.1.18)]

J0(z) =
1
π

∫ π

0

cos(z cos θ) dθ (C.47)

enables us to write the expression (C.46) in the form

lim
Ni→∞

p̃ξ(z) = (2π)2z
∫ ∞

0

e−2(πσ̃0y)2 J0(2πzy) J0(2πρy) y dy . (C.48)

The remaining integral can be solved by using [Gra81, eq. (6.633.2)]
∫ ∞

0

e−(ax)2J0(αx) J0(βx) x dx =
1

2a2
e−

α2+β2

4a2 I0

(
αβ

2a2

)
. (C.49)

Thus, we finally obtain

p̃ξ(z) =
z

σ̃2
0

e
− z2+ρ2

2σ̃2
0 I0

(
zρ

σ̃2
0

)
, Ni →∞ . (C.50)
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With the power constraint (C.25a), i.e., σ̃2
0 = σ2

0 , the Rice distribution (2.26) follows
from the right-hand side of (C.50) proving the validity of (C.44b) and, consequently,
also the validity of (C.43).



Appendix D

ANALYSIS OF THE RELATIVE
MODEL ERROR BY USING THE
MONTE CARLO METHOD IN
CONNECTION WITH THE
JAKES POWER SPECTRAL
DENSITY

We consider the relative model error

∆βi

β
=

β̃i − β

β
, i = 1, 2 , (D.1)

where the quantities β and β̃i are, especially for the Jakes power spectral density,
given by

β = 2(πσ0fmax)2 (D.2)

and

β̃i =
2β

f2
maxNi

Ni∑
n=1

f2
i,n , (D.3)

respectively. If we use the Monte Carlo method for the computation of the model
parameter, then the discrete Doppler frequencies fi,n are random variables, where
each random variable fi,n is characterized by the probability density function

pfi,n(fi,n) =





2
πfmax

√
1− (fi,n/fmax)2

, 0 < f ≤ fmax ,

0 , else .

(D.4)

With the Chebyshev inequality (2.15), the relation

P

(∣∣∣∣
∆βi

β
− E

{
∆βi

β

}∣∣∣∣ ≥ ε

)
≤ Var {∆βi/β}

ε2
(D.5)
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holds for all ε > 0. Using (D.4), we find

E
{
f2

i,n

}
=

f2
max

2
(D.6)

and

Var
{
f2

i,n

}
= E

{
f4

i,n

}− (
E

{
f2

i,n

})2

=
3
8
f4

max −
f4

max

4

=
f4

max

8
. (D.7)

Hence, for the mean value and the variance of the relative model error ∆βi/β [cf.
(D.1)], we obtain the following expression in connection with (D.3)

E

{
∆βi

β

}
= 0 (D.8)

and

Var
{

∆βi

β

}
= Var

{
βi

β

}
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(

2
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)2
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{
Ni∑

n=1

f2
i,n

}

=
(

2
f2

maxNi

)2 Ni∑
n=1

Var
{
f2

i,n

}

=
1

2Ni
, (D.9)

respectively. Thus, with the Chebyshev inequality (D.5) the relation

P

(∣∣∣∣
∆βi

β

∣∣∣∣ ≥ ε

)
≤ 1

2Niε2
(D.10)

follows. For example, let ε = 0.02 and Ni = 2500 (!), then the above inequality can
be interpreted as follows: the probability that the absolute value of the relative model
error |∆βi/β| is greater than or equal to 2 per cent is smaller than or equal to 50 per
cent.





Appendix E

SPECIFICATION OF FURTHER
L-PATH CHANNEL MODELS
ACCORDING TO COST 207

In addition to the 4-path and 6-path channel models presented in Table 7.3, further
L-path channel models have been specified by COST 207 [COS89]. They are quoted
in this appendix for completeness.

Table E.1: Rural Area.

Path no. Propagation Path Category Delay
` delay power of the Doppler spread

τ ′` (lin.) (dB) PSD B
(2)
τ ′τ ′

Rural Area: 6-path channel model (alternative)

0 0 µs 1 0 “Rice”
1 0.1 µs 0.4 -4 “Jakes”
2 0.2 µs 0.16 -8 “Jakes”
3 0.3 µs 0.06 -12 “Jakes”

0.1 µs

4 0.4 µs 0.03 -16 “Jakes”
5 0.5 µs 0.01 -20 “Jakes”
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Table E.2: Typical Urban.

Path no. Propagation Path Category Delay
` delay power of the Doppler spread

τ ′` (lin.) (dB) PSD B
(2)
τ ′τ ′

(i) Typical Urban: 12-path channel model

0 0.0 µs 0.4 -4 “Jakes”
1 0.2 µs 0.5 -3 “Jakes”
2 0.4 µs 1 0 “Jakes”
3 0.6 µs 0.63 -2 “Gauss I”
4 0.8 µs 0.5 -3 “Gauss I”
5 1.2 µs 0.32 -5 “Gauss I”
6 1.4 µs 0.2 -7 “Gauss I”

1.0 µs

7 1.8 µs 0.32 -5 “Gauss I”
8 2.4 µs 0.25 -6 “Gauss II”
9 3.0 µs 0.13 -9 “Gauss II”
10 3.2 µs 0.08 -11 “Gauss II”
11 5.0 µs 0.1 -10 “Gauss II”

(ii) Typical Urban: 12-path channel model (alternative)

0 0.0 µs 0.4 -4 “Jakes”
1 0.1 µs 0.5 -3 “Jakes”
2 0.3 µs 1 0 “Jakes”
3 0.5 µs 0.55 -2.6 “Jakes”
4 0.8 µs 0.5 -3 “Gauss I”
5 1.1 µs 0.32 -5 “Gauss I”
6 1.3 µs 0.2 -7 “Gauss I”

1.0 µs

7 1.7 µs 0.32 -5 “Gauss I”
8 2.3 µs 0.22 -6.5 “Gauss II”
9 3.1 µs 0.14 -8.6 “Gauss II”
10 3.2 µs 0.08 -11 “Gauss II”
11 5.0 µs 0.1 -10 “Gauss II”

(iii) Typical Urban: 6-path channel model (alternative)

0 0.0 µs 0.5 -3 “Jakes”
1 0.2 µs 1 0 “Jakes”
2 0.5 µs 0.63 -2 “Jakes”
3 1.6 µs 0.25 -6 “Gauss I”

1.0 µs

4 2.3 µs 0.16 -8 “Gauss II”
5 5.0 µs 0.1 -10 “Gauss II”
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Table E.3: Bad Urban.

Path no. Propagation Path Category Delay
` delay power of the Doppler spread

τ ′` (lin.) (dB) PSD B
(2)
τ ′τ ′

(i) Bad Urban: 12-path channel model

0 0.0 µs 0.2 -7 “Jakes”
1 0.2 µs 0.5 -3 “Jakes”
2 0.4 µs 0.79 -1 “Jakes”
3 0.8 µs 1 0 “Gauss I”
4 1.6 µs 0.63 -2 “Gauss I”
5 2.2 µs 0.25 -6 “Gauss II”
6 3.2 µs 0.2 -7 “Gauss II”

2.5 µs

7 5.0 µs 0.79 -1 “Gauss II”
8 6.0 µs 0.63 -2 “Gauss II”
9 7.2 µs 0.2 -7 “Gauss II”
10 8.2 µs 0.1 -10 “Gauss II”
11 10.0 µs 0.03 -15 “Gauss II”

(ii) Bad Urban: 12-path channel model (alternative)

0 0.0 µs 0.17 -7.7 “Jakes”
1 0.1 µs 0.46 -3.4 “Jakes”
2 0.3 µs 0.74 -1.3 “Jakes”
3 0.7 µs 1 0 “Gauss I”
4 1.6 µs 0.59 -2.3 “Gauss I”
5 2.2 µs 0.28 -5.6 “Gauss II”
6 3.1 µs 0.18 -7.4 “Gauss II”

2.5 µs

7 5.0 µs 0.72 -1.4 “Gauss II”
8 6.0 µs 0.69 -1.6 “Gauss II”
9 7.2 µs 0.21 -6.7 “Gauss II”
10 8.1 µs 0.1 -9.8 “Gauss II”
11 10.0 µs 0.03 -15.1 “Gauss II”

(iii) Bad Urban: 6-path channel model (alternative)

0 0.0 µs 0.56 -2.5 “Jakes”
1 0.3 µs 1 0 “Jakes”
2 1.0 µs 0.5 -3 “Gauss I”
3 1.6 µs 0.32 -5 “Gauss I”

2.5 µs

4 5.0 µs 0.63 -2 “Gauss II”
5 6.6 µs 0.4 -4 “Gauss II”
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Table E.4: Hilly Terrain.

Path no. Propagation Path Category Delay
` delay power of the Doppler spread

τ ′` (lin.) (dB) PSD B
(2)
τ ′τ ′

(i) Hilly Terrain: 12-path channel model

0 0.0 µs 0.1 -10 “Jakes”
1 0.2 µs 0.16 -8 “Jakes”
2 0.4 µs 0.25 -6 “Jakes”
3 0.6 µs 0.4 -4 “Gauss I”
4 0.8 µs 1 0 “Gauss I”
5 2.0 µs 1 0 “Gauss I”
6 2.4 µs 0.4 -4 “Gauss II”

5.0 µs

7 15.0 µs 0.16 -8 “Gauss II”
8 15.2 µs 0.13 -9 “Gauss II”
9 15.8 µs 0.1 -10 “Gauss II”
10 17.2 µs 0.06 -12 “Gauss II”
11 20.0 µs 0.04 -14 “Gauss II”

(ii) Hilly Terrain: 12-path channel model (alternative)

0 0.0 µs 0.1 -10 “Jakes”
1 0.1 µs 0.16 -8 “Jakes”
2 0.3 µs 0.25 -6 “Jakes”
3 0.5 µs 0.4 -4 “Jakes”
4 0.7 µs 1 0 “Gauss I”
5 1.0 µs 1 0 “Gauss I”
6 1.3 µs 0.4 -4 “Gauss I”

5.0 µs

7 15.0 µs 0.16 -8 “Gauss II”
8 15.2 µs 0.13 -9 “Gauss II”
9 15.7 µs 0.1 -10 “Gauss II”
10 17.2 µs 0.06 -12 “Gauss II”
11 20.0 µs 0.04 -14 “Gauss II”

(iii) Hilly Terrain: 6-path channel model (alternative)

0 0.0 µs 1 0 “Jakes”
1 0.1 µs 0.71 -1.5 “Jakes”
2 0.3 µs 0.35 -4.5 “Jakes”
3 0.5 µs 0.18 -7.5 “Jakes”

5.0 µs

4 15 µs 0.16 -8.0 “Gauss II”
5 17.2 µs 0.02 -17.7 “Gauss II”



347

MATLAB-PROGRAMS

In the following, a selection of MATLAB-programs (m-files) is presented, which
save the user from programming effort during the realization of the methods used
to design the model parameters of deterministic processes, and which will help him
find his way in the topic of simulation and analysis of mobile radio channel models.
MATLAB stands for matrix laboratory, an interpreter language developed by The
Math Works, Inc., for the numerical computation and visualization of matrices. The
m-files presented below require the Signal Processing Toolbox and the Optimization
Toolbox.

References on necessary subroutines (functions) and a description of the input and
output parameters of the individual programs can be found in the program header
block of each program.

At first, the m-files for the computation of the model parameters are presented
by making use of the methods described in Chapter 5. Here, these methods are
subdivided depending on the type of power spectral density (Jakes/Gauss) of the
deterministic Gaussian processes to be realized. Subsequently, functions for the
time-domain simulation of various frequency-nonselective (Chapter 6) and frequency-
selective (Chapter 7) mobile radio channels are presented. Finally, further tools are
provided, with the help of which the designed channel simulators can be analysed
with respect to their statistical properties such as the probability density function,
the cumulative distribution function, the level-crossing rate, and the average duration
of fades.

%--------------------------------------------------------------------
% parameter_Jakes.m -------------------------------------------------
%
% Program for the computation of the discrete Doppler frequencies,
% Doppler coefficients and Doppler phases by using the Jakes power
% spectral density.
%
% Used m-files: LPNM_opt_Jakes.m, fun_Jakes.m,
% grad_Jakes.m, acf_mue.m
%--------------------------------------------------------------------
% [f_i_n,c_i_n,theta_i_n]=parameter_Jakes(METHOD,N_i,sigma_0_2,...
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% f_max,PHASE,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% METHOD:
% |----------------------------------------------|------------------|
% | Methods for the computation of the discrete | Input |
% | Doppler frequencies and Doppler coefficients | |
% |----------------------------------------------|------------------|
% |----------------------------------------------|------------------|
% | Method of equal distances (MED) | ’ed_j’ |
% |----------------------------------------------|------------------|
% | Mean square error method (MSEM) | ’ms_j’ |
% |----------------------------------------------|------------------|
% | Method of equal areas (MEA) | ’ea_j’ |
% |----------------------------------------------|------------------|
% | Monte Carlo method (MCM) | ’mc_j’ |
% |----------------------------------------------|------------------|
% | Lp-norm method (LPNM) | ’lp_j’ |
% |----------------------------------------------|------------------|
% | Method of exact Doppler spread (MEDS) | ’es_j’ |
% |----------------------------------------------|------------------|
% | Jakes method (JM) | ’jm_j’ |
% |----------------------------------------------|------------------|
%
% N_i: number of harmonic functions
% sigma_0_2: average power of the real deterministic Gaussian
% process mu_i(t)
% f_max: maximum Doppler frequency
%
% PHASE:
% |----------------------------------------------|------------------|
% | Methods for the computation of the Doppler | Input |
% | phases | |
% |----------------------------------------------|------------------|
% |----------------------------------------------|------------------|
% | Random Doppler phases | ’rand’ |
% |----------------------------------------------|------------------|
% | Permuted Doppler phases | ’perm’ |
% |----------------------------------------------|------------------|
%
% PLOT: plot of the ACF and the PSD of mu_i(t), if PLOT==1

function [f_i_n,c_i_n,theta_i_n]=parameter_Jakes(METHOD,N_i,...
sigma_0_2,f_max,PHASE,PLOT)

if nargin<6,
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error(’Not enough input parameters’)
end

sigma_0=sqrt(sigma_0_2);

% Method of equal distances (MED)
if METHOD==’ed_j’,

n=(1:N_i)’;
f_i_n=f_max/(2*N_i)*(2*n-1);
c_i_n=2*sigma_0/sqrt(pi)*(asin(n/N_i)-asin((n-1)/N_i)).^0.5;
K=1;

% Mean square error method (MSEM)
elseif METHOD==’ms_j’,

n=(1:N_i)’;
f_i_n=f_max/(2*N_i)*(2*n-1);
Tp=1/(2*f_max/N_i);
t=linspace(0,Tp,5E3);
Jo=besselj(0,2*pi*f_max*t);
c_i_n=zeros(size(f_i_n));
for k=1:length(f_i_n),

c_i_n(k)=2*sigma_0*...
sqrt(1/Tp*( trapz( t,Jo.*...
cos(2*pi*f_i_n(k)*t )) ));

end
K=1;

% Method of equal areas (MEA)
elseif METHOD==’ea_j’

n=(1:N_i)’;
f_i_n=f_max*sin(pi*n/(2*N_i));
c_i_n=sigma_0*sqrt(2/N_i)*ones(size(n));
K=1;

% Monte Carlo method (MCM)
elseif METHOD==’mc_j’

n=rand(N_i,1);
f_i_n=f_max*sin(pi*n/2);
c_i_n=sigma_0*sqrt(2/N_i)*ones(size(n));

K=1;

% Lp-norm method (LPNM)
elseif METHOD==’lp_j’,

if exist(’fminu’)~=2
disp([’ =====> This method requires ’,...

’the Optimization Toolbox !!’])
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return
else

N=1E3;
p=2; % Norm
s_o=1;
[f_i_n,c_i_n]=LPNM_opt_Jakes(N,f_max,sigma_0,p,N_i,s_o);
K=1;

end

% Method of exact Doppler spread (MEDS)
elseif METHOD==’es_j’,

n=(1:N_i)’;
f_i_n=f_max*sin(pi/(2*N_i)*(n-1/2));
c_i_n=sigma_0*sqrt(2/(N_i))*ones(size(f_i_n));
K=1;

% Jakes method (JM)
elseif METHOD==’jm_j’,

n=1:N_i-1;
f_i_n=f_max*[[cos(pi*n/(2*(N_i-1/2))),1]’,...

[cos(pi*n/(2*(N_i-1/2))),1]’];
c_i_n=2*sigma_0/sqrt(N_i-1/2)*[[sin(pi*n/(N_i-1)),1/2]’,...

[cos(pi*n/(N_i-1)),1/2]’];
K=1;
theta_i_n=zeros(size(f_i_n));
PHASE=’none’;

else
error(’Method is unknown’)

end

% Computation of the Doppler phases:
if PHASE==’rand’,

theta_i_n=rand(N_i,1)*2*pi;

elseif PHASE==’perm’,
n=(1:N_i)’;
Z=rand(size(n));
[dummy,I]=sort(Z);
theta_i_n=2*pi*n(I)/(N_i+1);

end;

if PLOT==1,
if METHOD==’jm_j’

subplot(2,3,1)
stem([-f_i_n(N_i:-1:1,1);f_i_n(:,1)],...

1/4*[c_i_n(N_i:-1:1,1);c_i_n(:,1)].^2)
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title(’i=1’)
xlabel(’f (Hz)’)
ylabel(’PSD’)
subplot(2,3,2)
stem([-f_i_n(N_i:-1:1,2);f_i_n(:,2)],...

1/4*[c_i_n(N_i:-1:1,2);c_i_n(:,2)].^2)
title(’i=2’)
xlabel(’f (Hz)’)
ylabel(’PSD’)
tau_max=N_i/(K*f_max);
tau=linspace(0,tau_max,500);
r_mm=sigma_0^2*besselj(0,2*pi*f_max*tau);

r_mm_tilde1=acf_mue(f_i_n(:,1),c_i_n(:,1),tau);
subplot(2,3,4)
plot(tau,r_mm,’r-’,tau,r_mm_tilde1,’g--’)
title(’i=1’)
xlabel(’tau (s)’)
ylabel(’ACF’)
r_mm_tilde2=acf_mue(f_i_n(:,2),c_i_n(:,2),tau);
subplot(2,3,5)
plot(tau,r_mm,’r-’,tau,r_mm_tilde2,’g--’)
title(’i=2’)
xlabel(’tau (s)’)
ylabel(’ACF’)
subplot(2,3,3)
stem([-f_i_n(N_i:-1:1,1);f_i_n(:,1)],...

1/4*[c_i_n(N_i:-1:1,1);c_i_n(:,1)].^2+...
1/4*[c_i_n(N_i:-1:1,2);c_i_n(:,2)].^2)

title(’i=1,2’)
xlabel(’f (Hz)’)
ylabel(’PSD’)
subplot(2,3,6)
plot(tau,2*r_mm,’r-’,tau,r_mm_tilde1+r_mm_tilde2,’g--’)
title(’i=1,2’)
xlabel(’tau (s)’)
ylabel(’ACF’)

else
subplot(1,2,1)
stem([-f_i_n(N_i:-1:1);f_i_n],...

1/4*[c_i_n(N_i:-1:1);c_i_n].^2)
xlabel(’f/Hz’)
ylabel(’LDS’)
tau_max=N_i/(K*f_max);
tau=linspace(0,tau_max,500);
r_mm=sigma_0^2*besselj(0,2*pi*f_max*tau);
r_mm_tilde=acf_mue(f_i_n,c_i_n,tau);
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subplot(1,2,2)
plot(tau,r_mm,’r-’,tau,r_mm_tilde,’g--’)
xlabel(’tau (s)’)
ylabel(’ACF’)

end
end

%--------------------------------------------------------------------
% LPNM_opt_Jakes.m --------------------------------------------------
%
% Program for the computation of the discrete Doppler frequencies
% employing the Jakes PSD by using a numerical optimization method.
%
% Used m-files: parameter_Jakes.m, fun_Jakes.m,
% grad_Jakes.m, acf_mue.m
%--------------------------------------------------------------------
% [f_i_n,c_i_n]=LPNM_opt_Jakes(N,f_max,sigma_0_2,p,N_i,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N: length of vector tau
% f_max: maximum Doppler frequency
% sigma_0_2: average power of the real Gaussian process mu_i(t)
% p: parameter of the Lp-norm (here: p=2,4,6,...)
% N_i: number of harmonic functions
% PLOT: display of the intermediate optimization results, if PLOT==1

function [f_i_n,c_i_n]=LPNM_opt_Jakes(N,f_max,sigma_0_2,p,N_i,PLOT)

tau=linspace(0,N_i/(2*f_max),N);
Jo=sigma_0_2*besselj(0,2*pi*f_max*tau);
c_i_n=sqrt(sigma_0_2)*sqrt(2/N_i)*ones(N_i,1);

save data Jo tau N_i c_i_n p PLOT

% Initial values:
[f_i_n,dummy1,dummy2]=parameter_Jakes(’es_j’,N_i,...

sqrt(sigma_0_2),f_max,’none’,0);
o=foptions;
o(1)=1;
o(1)=0;
o(2)=1e-9;
o(14)=N_i/10*200;
o(9)=0;

xo=f_i_n;
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x=fminu(’fun_Jakes’,xo,o,’grad_Jakes’);

load x

f_i_n=x;

%--------------------------------------------------------------------
% fun_Jakes.m -------------------------------------------------------
%
% Computation of the error function according to Eq.(5.61) for the
% optimization of the discrete Doppler frequencies (Jakes PSD).
%
% Used m-file: acf_mue.m
%--------------------------------------------------------------------
% F=fun_Jakes(x)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% x: parameter vector to be optimized

function F=fun_Jakes(x)

load data

f_i_n=x;
r=acf_mue(f_i_n,c_i_n,tau);
F=norm(abs(Jo-r),p);
if PLOT==1,

subplot(1,2,1)
stem(f_i_n,c_i_n)
xlabel(’f_i_n’)
ylabel(’c_i_n’)
title([’N_i = ’,num2str(N_i)])
subplot(1,2,2)
plot(tau,Jo,tau,r)
xlabel(’tau (s)’)
ylabel(’ACF’)
title([’Error-norm=’,num2str(F)])
pause(0)

end

save x x

%--------------------------------------------------------------------
% grad_Jakes.m ------------------------------------------------------
%
% Computation of the analytical gradient of the error function for
% the optimization of the discrete Doppler frequencies (Jakes PSD).
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%
% Used m-file: acf_mue.m
%--------------------------------------------------------------------
% G=grad_Jakes(x)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% x: parameter vector to be optimized

function G=grad_Jakes(x)

load data

f_i_n=x;
r=acf_mue(f_i_n,c_i_n,tau);
D=Jo-r;
F=norm(D,p);
G=[];
for k=1:N_i,

g=F^(1-p)*D.^(p-1)*(2*pi*c_i_n(k)^2*tau.*...
sin(2*pi*f_i_n(k)*tau)).’;

G=[G;g];
end

%--------------------------------------------------------------------
% acf_mue.m ---------------------------------------------------------
%
% Computation of the ACF of deterministic Gaussian processes mu_i(t)
%
%--------------------------------------------------------------------
% r_mm=acf_mue(f,c,tau)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% f: discrete Doppler frequencies
% c: Doppler coefficients
% tau: time separation variable

function r_mm=acf_mue(f,c,tau)

r_mm=0;
for n=1:length(c),

r_mm=r_mm+0.5*c(n)^2*cos(2*pi*f(n)*tau);
end

%--------------------------------------------------------------------
% parameter_Gauss.m -------------------------------------------------
%
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% Program for the computation of the discrete Doppler frequencies,
% Doppler coefficients, and Doppler phases by using the Gaussian
% power spectral density.
%
% Used m-files: LPNM_opt_Gauss.m, fun_Gauss.m,
% grad_Gauss.m, acf_mue.m
%--------------------------------------------------------------------
% [f_i_n,c_i_n,theta_i_n]=parameter_Gauss(METHOD,N_i,sigma_0_2,...
% f_max,f_c,PHASE,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% METHOD:
% |----------------------------------------------|------------------|
% | Methods for the computation of the discrete | Input |
% | Doppler frequencies and Doppler coefficients | |
% |----------------------------------------------|------------------|
% |----------------------------------------------|------------------|
% | Method of equal distances (MED) | ’ed_g’ |
% |----------------------------------------------|------------------|
% | Mean square error method (MSEM) | ’ms_g’ |
% |----------------------------------------------|------------------|
% | Method of equal areas (MEA) | ’ea_g’ |
% |----------------------------------------------|------------------|
% | Monte Carlo method (MCM) | ’mc_g’ |
% |----------------------------------------------|------------------|
% | Lp-norm method (LPNM) | ’lp_g’ |
% |----------------------------------------------|------------------|
% | Method of exact Doppler spread (MEDS) | ’es_g’ |
% |----------------------------------------------|------------------|
%
% N_i: number of harmonic functions
% sigma_0_2: average power of the real deterministic Gaussian
% process mu_i(t)
% f_max: maximum Doppler frequency
% f_c: 3-dB-cutoff frequency
%
% PHASE:
% |----------------------------------------------|------------------|
% | Methods for the computation of the Doppler | Input |
% | phases | |
% |----------------------------------------------|------------------|
% |----------------------------------------------|------------------|
% | Random Doppler phases | ’rand’ |
% |----------------------------------------------|------------------|
% | Permuted Doppler phases | ’perm’ |
% |----------------------------------------------|------------------|
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%
% PLOT: plot of the ACF and the PSD of mu_i(t), if PLOT==1

function [f_i_n,c_i_n,theta_i_n]=parameter_Gauss(METHOD,N_i,...
sigma_0_2,f_max,f_c,PHASE,PLOT)

if nargin<7,
error(’Not enough input parameters’)

end

sigma_0=sqrt(sigma_0_2);
kappa_c=f_max/f_c;

% Method of equal distances (MED)
if METHOD==’ed_g’,

n=(1:N_i)’;
f_i_n=kappa_c*f_c/(2*N_i)*(2*n-1);
c_i_n=sigma_0*sqrt(2)*sqrt(erf(n*kappa_c*...

sqrt(log(2))/N_i)-erf((n-1)*kappa_c*...
sqrt(log(2))/N_i) );

K=1;

% Mean square error method (MSEM)
elseif METHOD==’ms_g’,

n=(1:N_i)’;
f_i_n=kappa_c*f_c/(2*N_i)*(2*n-1);
tau_max=N_i/(2*kappa_c*f_c);
N=1E3;
tau=linspace(0,tau_max,N);
f1=exp(-(pi*f_c*tau).^2/log(2));
c_i_n=zeros(size(f_i_n));
for k=1:length(c_i_n),

c_i_n(k)=2*sigma_0*sqrt(trapz(tau,f1.*...
cos(2*pi*f_i_n(k)*tau))/tau_max);

end
K=1;

% Method of equal areas (MEA)
elseif METHOD==’ea_g’

n=(1:N_i)’;
c_i_n=sigma_0*sqrt(2/N_i)*ones(size(n));
f_i_n=f_c/sqrt(log(2))*erfinv(n/N_i);
f_i_n(N_i)=f_c/sqrt(log(2))*erfinv(0.9999999);
K=1;

% Monte Carlo method (MCM)
elseif METHOD==’mc_g’
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n=rand(N_i,1);
f_i_n=f_c/sqrt(log(2))*erfinv(n);
c_i_n=sigma_0*sqrt(2/N_i)*ones(size(n));
K=1;

% Lp-norm method (LPNM)
elseif METHOD==’lp_g’,

if exist(’fminu’)~=2
disp([’ =====> This method requires ’,...

’the Optimization Toolbox !!’])
return

else
N=1e3;
p=2;
[f_i_n,c_i_n]=LPNM_opt_Gauss(N,f_max,f_c,...

sigma_0_2,p,N_i,PLOT);
K=2;

end

% Method of exact Doppler spread (MEDS)
elseif METHOD==’es_g’,

n=(1:N_i)’;
c_i_n=sigma_0*sqrt(2/N_i)*ones(size(n));
f_i_n=f_c/sqrt(log(2))*erfinv((2*n-1)/(2*N_i));
K=1;

else
error([setstr(10),’Method is unknown’])

end

% Computation of the Doppler phases:
if PHASE==’rand’,

theta_i_n=rand(N_i,1)*2*pi;
elseif PHASE==’perm’,

n=(1:N_i)’;
Z=rand(size(n));
[dummy,I]=sort(Z);
theta_i_n=2*pi*n(I)/(N_i+1);

end

if PLOT==1,
subplot(1,2,1)
stem([-f_i_n(N_i:-1:1);f_i_n],...

1/4*[c_i_n(N_i:-1:1);c_i_n].^2)
xlabel(’f (Hz)’)
ylabel(’PSD’)
tau_max=N_i/(K*kappa_c*f_c);
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tau=linspace(0,tau_max,500);
r_mm=sigma_0_2*exp(-(pi*f_c/sqrt(log(2))*tau).^2);
r_mm_tilde=acf_mue(f_i_n,c_i_n,tau);
subplot(1,2,2)
plot(tau,r_mm,’r-’,tau,r_mm_tilde,’g--’)
xlabel(’tau (s)’)
ylabel(’ACF’)

end

%--------------------------------------------------------------------
% LPNM_opt_Gauss.m --------------------------------------------------
%
% Program for the computation of the discrete Doppler frequencies
% employing the Gaussian PSD by using a numerical optimization
% method.
%
% Used m-files: parameter_Gauss.m, fun_Gauss.m,
% grad_Gauss.m, acf_mue.m
%--------------------------------------------------------------------
% [f_i_n,c_i_n]=LPNM_opt_Gauss(N,f_max,f_c,sigma_0_2,p,N_i,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N: length of vector tau
% f_max: maximum Doppler frequency
% f_c: 3-dB-cutoff frequency
% sigma_0_2: average power of the real Gaussian process mu_i(t)
% p: parameter of the Lp-norm (here: p=2,4,6,...)
% N_i: number of harmonic functions
% PLOT: display of the intermediate optimization results, if PLOT==1

function [f_i_n,c_i_n]=LPNM_opt_Gauss(N,f_max,f_c,sigma_0_2,...
p,N_i,PLOT)

kappa_c=f_max/f_c;

F_list=[];
save F_list F_list

tau_max=N_i/(2*kappa_c*f_c);
tau=linspace(0,tau_max,N);
r_mm=sigma_0_2*exp(-(pi*f_c/sqrt(log(2))*tau).^2);

[f_i_n,c_i_n,dummy]=parameter_Gauss(’es_g’,N_i,sigma_0_2,f_max,...
f_c,’none’,PLOT);

save data r_mm tau N_i c_i_n p PLOT
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o=foptions;
o(1)=1;
o(1)=0;
o(2)=1e-9;
o(14)=N_i/10*200;
o(9)=0;

xo=f_i_n;

x=fminu(’fun_Gauss’,xo,o,’grad_Gauss’);

load x

f_i_n=sort(abs(x));

%--------------------------------------------------------------------
% fun_Gauss.m -------------------------------------------------------
%
% Computation of the error function according to Eq.(5.61) for the
% optimization of the discrete Doppler frequencies (Gaussian PSD).
%
% Used m-file: acf_mue.m
%--------------------------------------------------------------------
% F=fun_Gauss(x)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% x: parameter vector to be optimized

function F=fun_Gauss(x)

load data

f_i_n=x;

r=acf_mue(f_i_n,c_i_n,tau);
F=norm(abs(r_mm-r),p);
if PLOT==1,

subplot(1,2,1)
stem(f_i_n,c_i_n)
xlabel(’f_i_n’)
ylabel(’c_i_n’)

title([’N_i = ’,num2str(N_i)])
subplot(1,2,2)
plot(tau,r_mm,tau,r)
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xlabel(’tau (s)’)
ylabel(’ACF’)
title([’Error-norm=’,num2str(F)])
pause(0)

end

save x x

%--------------------------------------------------------------------
% grad_Gauss.m ------------------------------------------------------
%
% Computation of the analytical gradient of the error function for
% the optimization of the discrete Doppler frequencies
% (Gaussian PSD).
%
% Used m-file: acf_mue.
%--------------------------------------------------------------------
% G=grad_Gauss(x)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% x: parameter vector to be optimized

function G=grad_Gauss(x)

load data

f_i_n=x;
r=acf_mue(f_i_n,c_i_n,tau);
D=r_mm-r;
F=norm(D,p);
G=[];
for k=1:N_i,

g=F^(1-p)*D.^(p-1)*(2*pi*c_i_n(k)^2*tau.*...
sin(2*pi*f_i_n(k)*tau)).’;

G=[G;g];
end

%--------------------------------------------------------------------
% Mu_i_t.m ----------------------------------------------------------
%
% Program for the simulation of real deterministic Gaussian processes
% mu_i(t) [see Fig. 4.2(b)].
%--------------------------------------------------------------------
% mu_i_t=Mu_i_t(c,f,th,T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
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%
% f: discrete Doppler frequencies
% c: Doppler coefficients
% th: Doppler phases
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the deterministic Gaussian process mu_i(t),
% if PLOT==1

function mu_i_t=Mu_i_t(c,f,th,T_s,T_sim,PLOT)

if nargin==5,
PLOT=0;

end

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;
mu_i_t=0;
for k=1:length(f),

mu_i_t=mu_i_t+c(k)*cos(2*pi*f(k)*t+th(k));
end

if PLOT==1,
plot(t,mu_i_t)
xlabel(’t (s)’)
ylabel(’mu_i(t)’)

end

%--------------------------------------------------------------------
% Rice_proc.m -------------------------------------------------------
%
% Program for the simulation of deterministic Rice processes xi(t)
% (see Fig. 4.3).
%
% Used m-file: Mu_i_t.m
%--------------------------------------------------------------------
% xi_t=Rice_proc(f1,c1,th1,f2,c2,th2,rho,f_rho,theta_rho,...
% T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% f1, c1, th1: discrete Doppler frequencies, Doppler coefficients,
% and Doppler phases of mu_1(t)
% f2, c2, th2: discrete Doppler frequencies, Doppler coefficients,
% and Doppler phases of mu_2(t)
% rho: amplitude of the LOS component m(t)
% f_rho: Doppler frequency of the LOS component m(t)
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% theta_rho: phase of the LOS component m(t)
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the deterministic Rice process xi(t), if PLOT==1

function xi_t=Rice_proc(f1,c1,th1,f2,c2,th2,rho,f_rho,theta_rho,...
T_s,T_sim,PLOT)

if nargin==10,
PLOT=0;

end

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;
arg=2*pi*f_rho*t+theta_rho;

xi_t=abs(Mu_i_t(c1,f1,th1,T_s,T_sim)+rho*cos(arg)+...
j*(Mu_i_t(c2,f2,th2,T_s,T_sim)+rho*sin(arg)) );

if PLOT==1,
plot(t,20*log10(xi_t))
xlabel(’t (s)’)
ylabel(’20 log xi(t)’)

end

%--------------------------------------------------------------------
% Suzuki_Type_I.m ---------------------------------------------------
%
% Program for the simulation of deterministic extended Suzuki
% processes of Type I (see Fig. 6.9).
%
% Used m-files: parameter_Jakes.m, parameter_Gauss.m, Mu_i_t.m
%--------------------------------------------------------------------
% eta_t=Suzuki_Type_I(N_1,N_2,N_3,sigma_0_2,kappa_0,f_max,sigma_3,...
% m_3,rho,f_rho,theta_rho,f_c,T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N_1, N_2, N_3: number of harmonic functions of the real deter-
% ministic Gaussian processes nu_1(t), nu_2(t),
% and nu_3(t), respectively
% sigma_0_2: average power of the real deterministic Gaussian
% processes mu_1(t) and mu_2(t)
% kappa_0: frequency ratio f_min/f_max (0<=kappa_0<=1)
% f_max: maximum Doppler frequency
% sigma_3: square root of the average power of the real deterministic
% Gaussian process nu_3(t)
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% m_3: average value of the third real deterministic Gaussian
% process mu_3(t)
% rho: amplitude of the LOS component m(t)
% f_rho: Doppler frequency of the LOS component m(t)
% theta_rho: phase of the LOS component m(t)
% f_c: 3-dB-cut-off frequency
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the deterministic extended Suzuki process eta(t) of
% Type I, if PLOT==1

function eta_t=Suzuki_Type_I(N_1,N_2,N_3,sigma_0_2,kappa_0,f_max,...
sigma_3,m_3,rho,f_rho,theta_rho,f_c,T_s,T_sim,PLOT)

if nargin==14,
PLOT=0;

end

[f1,c1,th1]=parameter_Jakes(’es_j’,N_1,sigma_0_2,f_max,’rand’,0);
c1=c1/sqrt(2);

N_2_s=ceil(N_2/(2/pi*asin(kappa_0)));
[f2,c2,th2]=parameter_Jakes(’es_j’,N_2_s,sigma_0_2,f_max,’rand’,0);
f2 =f2(1:N_2);
c2 =c2(1:N_2)/sqrt(2);
th2=th2(1:N_2);

[f3,c3,th3]=parameter_Gauss(’es_g’,N_3,1,f_max,f_c,’rand’,0);
gaMma=(2*pi*f_c/sqrt(2*log(2)))^2;
f3(N_3)=sqrt(gaMma*N_3/(2*pi)^2-sum(f3(1:N_3-1).^2));

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;

arg=2*pi*f_rho*t+theta_rho;

xi_t=abs(Mu_i_t(c1,f1,th1,T_s,T_sim)+...
Mu_i_t(c2,f2,th2,T_s,T_sim)+rho*cos(arg)+...
j*(Mu_i_t(c1,f1,th1-pi/2,T_s,T_sim)-...
Mu_i_t(c2,f2,th2-pi/2,T_s,T_sim)+rho*sin(arg)));

lambda_t=exp(Mu_i_t(c3,f3,th3,T_s,T_sim)*sigma_3+m_3);

eta_t=xi_t.*lambda_t;

if PLOT==1,
plot(t,20*log10(eta_t),’b-’)
xlabel(’t (s)’)
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ylabel(’20 log eta(t)’)
end

%--------------------------------------------------------------------
% Suzuki_Type_II.m ------------------------------------------------------
%
% Program for the simulation of deterministic extended Suzuki
% processes of Type II (see Fig. 6.23).
%
% Used m-files: parameter_Jakes.m, parameter_Gauss.m, Mu_i_t.m
%--------------------------------------------------------------------
% eta_t=Suzuki_Type_II(N_1,N_3,sigma_0_2,kappa_0,theta_0,f_max,...
% sigma_3,m_3,rho,theta_rho,f_c,T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N_1, N_3: number of harmonic functions of the real deterministic
% Gaussian processes nu_0(t) and nu_3(t), respectively
% sigma_0_2: average power of the real deterministic Gaussian
% process mu_0(t) (for kappa_0=1)
% kappa_0: frequency ratio f_min/f_max (0<=kappa_0<=1)
% theta_0: phase shift between mu_1_n(t) and mu_2_n(t)
% f_max: maximum Doppler frequency
% sigma_3: square root of the average power of the real deterministic
% Gaussian process nu_3(t)
% m_3: average value of the real deterministic Gaussian
% process mu_3(t)
% rho: amplitude of the LOS component m(t)
% theta_rho: phase of the LOS component m(t)
% f_c: 3-dB-cut-off frequency
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the deterministic extended Suzuki process eta(t) of
% Type II, if PLOT==1

function eta_t=Suzuki_Type_II(N_1,N_3,sigma_0_2,kappa_0,theta_0,...
f_max,sigma_3,m_3,rho,theta_rho,f_c,...
T_s,T_sim,PLOT)

if nargin==13,
PLOT=0;

end

N_1_s=ceil(N_1/(2/pi*asin(kappa_0)));
[f1,c1,th1]=parameter_Jakes(’es_j’,N_1_s,sigma_0_2,f_max,’rand’,0);
f1 =f1(1:N_1);
c1 =c1(1:N_1);
th1=th1(1:N_1);
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[f3,c3,th3]=parameter_Gauss(’es_g’,N_3,1,f_max,f_c,’rand’,0);
gaMma=(2*pi*f_c/sqrt(2*log(2)))^2;
f3(N_3)=sqrt(gaMma*N_3/(2*pi)^2-sum(f3(1:N_3-1).^2));

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;

xi_t=abs(Mu_i_t(c1,f1,th1,T_s,T_sim)+rho*cos(theta_rho)+...
j*(Mu_i_t(c1,f1,th1-theta_0,T_s,T_sim)+...

rho*sin(theta_rho) ) );

lambda_t=exp(Mu_i_t(c3,f3,th3,T_s,T_sim)*sigma_3+m_3);

eta_t=xi_t.*lambda_t;

if PLOT==1,
plot(t,20*log10(eta_t),’b-’)
xlabel(’t (s)’)
ylabel(’20 log eta(t)’)

end

%--------------------------------------------------------------------
% gen_Rice_proc.m ---------------------------------------------------
%
% Program for the simulation of deterministic generalized Rice
% processes (see Fig. 6.29).
%
% Used m-files: parameter_Jakes.m, Mu_i_t.m
%--------------------------------------------------------------------
% xi_t=gen_Rice_proc(N_1,N_2,sigma_1_2,sigma_2_2,kappa_0,...
% theta_0,rho,theta_rho,f_max,...
% T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N_1, N_2: number of harmonic functions of the real deterministic
% Gaussian processes nu_1(t) and nu_2(t), respectively
% sigma_1_2: average power of the real deterministic Gaussian
% process nu_1(t)
% sigma_2_2: average power of the real deterministic Gaussian
% process nu_2(t)
% kappa_0: frequency ratio f_min/f_max (0<=kappa_0<=1)
% theta_0: phase shift between mu_1_n(t) and mu_2_n(t)
% rho: amplitude of the LOS component m(t)
% theta_rho: phase of the LOS component m(t)
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% f_max: maximum Doppler frequency
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the deterministic generalized Suzuki process xi(t),
% if PLOT==1

function xi_t=gen_Rice_proc(N_1,N_2,sigma_1_2,sigma_2_2,kappa_0,...
theta_0,rho,theta_rho,f_max,T_s,...
T_sim,PLOT)

if nargin==11,
PLOT=0;

end

[f1,c1,th1]=parameter_Jakes(’es_j’,N_1,sigma_1_2,f_max,’rand’,0);
c1=c1/sqrt(2);

N_2_s=ceil(N_2/(2/pi*asin(kappa_0)));
[f2,c2,th2]=parameter_Jakes(’es_j’,N_2_s,sigma_2_2,f_max,’rand’,0);
f2 =f2(1:N_2);
c2 =c2(1:N_2)/sqrt(2);
th2=th2(1:N_2);

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;

xi_t=abs(Mu_i_t(c1,f1,th1,T_s,T_sim)+...
Mu_i_t(c2,f2,th2,T_s,T_sim)+rho*cos(theta_rho)+...
j*(Mu_i_t(c1,f1,th1-theta_0,T_s,T_sim)+...
Mu_i_t(c2,f2,th2+theta_0,T_s,T_sim)+...
rho*sin(theta_rho)));

if PLOT==1,
plot(t,20*log10(xi_t),’b-’)
xlabel(’t (s)’)
ylabel(’20 log xi(t)’)

end

%--------------------------------------------------------------------
% det_mod_Loo.m -----------------------------------------------------
%
% Program for the simulation of modified Loo processes.
%
% Used m-files: parameter_Jakes.m, parameter_Gauss.m, Mu_i_t.m
%--------------------------------------------------------------------
% rho_t=det_mod_Loo(N_1,N_2,N_3,sigma_1_2,kappa_1,sigma_2_2,...
% kappa_2,f_max,sigma_3,m_3,f_rho,...
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% theta_rho,f_c,T_s,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% N_1, N_2, N_3: number of harmonic functions of the real determi-
% nistic Gaussian processes nu_1(t), nu_2(t), and
% nu_3(t), respectively
% sigma_1_2: average power of the real deterministic Gaussian
% process nu_1(t)
% kappa_1: frequency ratio f_min/f_max (0<=kappa_0<=1) of nu_1(t)
% sigma_2_2: average power of the real deterministic Gaussian
% process nu_2(t)
% kappa_2: frequency ratio f_min/f_max (0<=kappa_0<=1) of nu_2(t)
% f_max: maximum Doppler frequency
% sigma_3: square root of the average power of the real deterministic
% Gaussian process nu_3(t)
% m_3: average value of the third real deterministic Gaussian
% process mu_3(t)
% f_rho: Doppler frequency of the LOS component m(t)
% theta_rho: phase of the LOS component m(t)
% f_c: 3-dB-cut-off frequency
% T_s: sampling interval
% T_sim: duration of the simulation
% PLOT: plot of the time-domain signal rho(t), if PLOT==1

function rho_t=det_mod_Loo(N_1,N_2,N_3,sigma_1_2,kappa_1,...
sigma_2_2,kappa_2,f_max,sigma_3,m_3,f_rho,...
theta_rho,f_c,T_s,T_sim,PLOT)

if nargin==15,
PLOT=0;

end

sigma_1=sqrt(sigma_1_2);
sigma_2=sqrt(sigma_2_2);

N_1_s=ceil(N_1/(2/pi*asin(kappa_1)));
[f1,c1,th1]=parameter_Jakes(’es_j’,N_1_s,sigma_1_2,f_max,’rand’,0);
f1 =f1(1:N_1);
c1 =c1(1:N_1)/sqrt(2);
th1=th1(1:N_1);

N_2_s=ceil(N_2/(2/pi*asin(kappa_2)));
[f2,c2,th2]=parameter_Jakes(’es_j’,N_2_s,sigma_2_2,f_max,’rand’,0);
f2 =f2(1:N_2);
c2 =c2(1:N_2)/sqrt(2);
th2=th2(1:N_2);
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[f3,c3,th3]=parameter_Gauss(’es_g’,N_3,1,f_max,f_c,’rand’,0);
gaMma=(2*pi*f_c/sqrt(2*log(2)))^2;
f3(N_3)=sqrt(gaMma*N_3/(2*pi)^2-sum(f3(1:N_3-1).^2));

N=ceil(T_sim/T_s);
t=(0:N-1)*T_s;

arg=2*pi*f_rho*t+theta_rho;

RHO_t=exp(Mu_i_t(c3,f3,th3,T_s,T_sim)*sigma_3+m_3);

rho_t=abs(Mu_i_t(c1,f1,th1,T_s,T_sim)+...
Mu_i_t(c2,f2,th2,T_s,T_sim)+RHO_t.*cos(arg)+...
j*(Mu_i_t(c1,f1,th1-pi/2,T_s,T_sim)-...
Mu_i_t(c2,f2,th2-pi/2,T_s,T_sim)+RHO_t.*sin(arg)));

if PLOT==1,
plot(t,20*log10(rho_t),’b-’,t,20*log10(RHO_t),’y--’)
xlabel(’t (s)’)
ylabel(’20 log rho(t)’)

end

%--------------------------------------------------------------------
% F_S_K.m -----------------------------------------------------------
%
% Program for the simulation of deterministic frequency-selective
% mobile radio channels.
%
%--------------------------------------------------------------------
% [y_t,T,t_0]=F_S_K(x_t,f_max,m_s,T,t_0,q_l,...
% C1,F1,TH1,C2,F2,TH2,F01,F02,RHO,F_RHO,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% x_t: time-domain input signal of the channel simulator (sampled
% with T_s=0.2E-6 s)
% f_max: maximum Doppler frequency
% m_s: sampling rate ratio
% T: contents of the delay elements of the time variant FIR filter
% t_0: offset in time
% q_l: q_l=tau_l/T_s+1
%--------------------------------------------------------------------
% The following matrices are generated in F_S_K_p.m:
% F1, F2: discrete Doppler frequencies
% C1, C2: Doppler coefficients
% TH1, TH2: Doppler phases
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% F01, F02: frequency shift value of the Doppler PSD according to
% Gauss I and Gauss II, respectively
% RHO: amplitude of the direct component
% F_RHO: Doppler frequency of the direct component
%--------------------------------------------------------------------
% PLOT: plot of the output signal of the channel, if PLOT==1

function [y_t,T,t_0]=F_S_K(x_t,f_max,m_s,T,t_0,q_l,...
C1,F1,TH1,C2,F2,TH2,F01,F02,RHO,F_RHO,PLOT)

T_s=0.2E-6;

% Initialization:
mu_l=zeros(size(q_l));
y_t=zeros(size(x_t));

for n=0:length(x_t)-1,
if rem(n/m_s,m_s)-fix(rem(n/m_s,m_s))==0,

mu_l=sum((C1.*cos(2*pi*F1*f_max*(n*T_s+t_0)+TH1)).’).*...
exp(-j*2*pi*F01*f_max*(n*T_s+t_0))+j*...
(sum((C2.*cos(2*pi*F2*f_max*(n*T_s+t_0)+TH2)).’).*...
exp(-j*2*pi*F02*f_max*(n*T_s+t_0)))+...
RHO.*exp(j*2*pi*F_RHO*f_max*(n*T_s+t_0));

end
T(1)=x_t(n+1);
y_t(n+1)=sum(mu_l.*T(q_l));
T(2:length(T))=T(1:length(T)-1);

end

t_0=length(x_t)*T_s+t_0;

if PLOT==1,
plot((0:length(y_t)-1)*T_s,20*log10(abs(y_t)),’g-’)

end

%--------------------------------------------------------------------
% F_S_K_p.m ---------------------------------------------------------
%
% Program for the generation of the matrices used in F_S_K.m.
%
% Used m-file: pCOST207.m
%--------------------------------------------------------------------
% [C1,F1,TH1,C2,F2,TH2,F01,F02,RHO,F_RHO,q_l,T]=
% F_S_K_p(N_1,AREA,f_max)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%



370 MATLAB-PROGRAMS

% N_1: minimum number of discrete Doppler frequencies
% AREA: according to COST 207, 4 types of channels are specified:
% 1) Rural Area: ’ra’
% 2) Typical Urban: ’tu’
% 3) Bad Urban: ’bu’
% 4) Hilly Terrain: ’ht’
% f_max: maximum Doppler frequency

function [C1,F1,TH1,C2,F2,TH2,F01,F02,RHO,F_RHO,q_l,T]=...
F_S_K_p(N_1,AREA,f_max)

% The greatest common divisor of the discrete propagation delays
% defines the sampling interval T_s:
T_s=0.2E-6;

if all(lower(AREA)==’ra’),
a_l=[1,0.63,0.1,0.01];
tau_l=[0,0.2,0.4,0.6]*1E-6;
DOPP_KAT=[’RI’;’JA’;’JA’;’JA’];

elseif all(lower(AREA)==’tu’),
a_l=[0.5,1,0.63,0.25,0.16,0.1];
tau_l=[0,0.2,0.6,1.6,2.4,5]*1E-6;
DOPP_KAT=[’JA’;’JA’;’G1’;’G1’;’G2’;’G2’];

elseif all(lower(AREA)==’bu’),
a_l=[0.5,1,0.5,0.32,0.63,0.4];
tau_l=[0,0.4,1.0,1.6,5.0,6.6]*1E-6;
DOPP_KAT=[’JA’;’JA’;’G1’;’G1’;’G2’;’G2’];

elseif all(lower(AREA)==’ht’),
a_l=[1,0.63,0.4,0.2,0.25,0.06];
tau_l=[0,0.2,0.4,0.6,15,17.2]*1E-6;
DOPP_KAT=[’JA’;’JA’;’JA’;’JA’;’G2’;’G2’];

end

% Generate the parameters and assign them to the matrices:
num_of_taps=length(DOPP_KAT);
F1=zeros(num_of_taps,N_1+2*num_of_taps-1);
F2=F1;C1=F1;C2=F1;TH1=F1;TH2=F1;
F01=zeros(1,num_of_taps);F02=F01;
RHO=zeros(1,num_of_taps);F_RHO=RHO;
NN1=N_1+2*(num_of_taps-1):-2:N_1;
for k=1:num_of_taps,

[f1,f2,c1,c2,th1,th2,rho,f_rho,f01,f02]=...
pCOST207(DOPP_KAT(k,:),NN1(k));
F1(k,1:NN1(k))=f1;
C1(k,1:NN1(k))=c1*sqrt(a_l(k));
TH1(k,1:NN1(k))=th1;
F2(k,1:NN1(k)+1)=f2;
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C2(k,1:NN1(k)+1)=c2*sqrt(a_l(k));
TH2(k,1:NN1(k)+1)=th2;
F01(k)=f01;F02(k)=f02;
RHO(k)=rho;F_RHO(k)=f_rho;

end

% Determine indices of the delay elements of the FIR filter:
q_l=tau_l/T_s+1;

% Initialization of the delay elements of the FIR filter:
T=zeros(1,max(q_l));

%--------------------------------------------------------------------
% pCOST207.m --------------------------------------------------------
%
% Program for the derivation of the channel parameters of the
% Doppler PSDs defined by COST 207.
%
%--------------------------------------------------------------------
%[f1,f2,c1,c2,th1,th2,rho,f_rho,f01,f02]=pCOST207(D_S_T,N_i)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% D_S_T: type of the Doppler PSD:
% Jakes: D_S_T=’JA’
% Rice: D_S_T=’RI’
% Gauss I: D_S_T=’G1’
% Gauss II: D_S_T=’G2’
% N_i: number of harmonic functions

function [f1,f2,c1,c2,th1,th2,rho,f_rho,f01,f02]=pCOST207(D_S_T,N_i)

if all(lower(D_S_T)==’ri’), % RICE
n=(1:N_i);
f1=sin(pi/(2*N_i)*(n-1/2));
c1=0.41*sqrt(1/N_i)*ones(1,N_i);
th1=rand(1,N_i)*2*pi;
n=(1:N_i+1);
f2=sin(pi/(2*(N_i+1))*(n-1/2));
c2=0.41*sqrt(1/(N_i+1))*ones(1,N_i+1);
th2=rand(1,N_i+1)*2*pi;
f01=0;f02=0;
rho=0.91;f_rho=0.7;

elseif all(lower(D_S_T)==’ja’), % JAKES
n=(1:N_i);
f1=sin(pi/(2*N_i)*(n-1/2));
c1=sqrt(1/N_i)*ones(1,N_i);
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th1=rand(1,N_i)*2*pi;
n=(1:N_i+1);
f2=sin(pi/(2*(N_i+1))*(n-1/2));
c2=sqrt(1/(N_i+1))*ones(1,N_i+1);
th2=rand(1,N_i+1)*2*pi;
f01=0;f02=0;
rho=0;f_rho=0;

elseif all(lower(D_S_T)==’g1’), % GAUSS I
n=(1:N_i);
sgm_0_2=5/6;
c1=sqrt(sgm_0_2*2/N_i)*ones(1,N_i);
f1=sqrt(2)*0.05*erfinv((2*n-1)/(2*N_i));
th1=rand(1,N_i)*2*pi;
sgm_0_2=1/6;
c2=[sqrt(sgm_0_2*2/N_i)*ones(1,N_i),0]/j;
f2=[sqrt(2)*0.1*erfinv((2*n-1)/(2*N_i)),0];
th2=[rand(1,N_i)*2*pi,0];
f01=0.8;f02=-0.4;
rho=0;f_rho=0;

elseif all(lower(D_S_T)==’g2’), % GAUSS II
n=(1:N_i);
sgm_0_2=10^0.5/(sqrt(10)+0.15);
c1=sqrt(sgm_0_2*2/N_i)*ones(1,N_i);
f1=sqrt(2)*0.1*erfinv((2*n-1)/(2*N_i));
th1=rand(1,N_i)*2*pi;
sgm_0_2=0.15/(sqrt(10)+0.15);
c2=[sqrt(sgm_0_2*2/N_i)*ones(1,N_i),0]/j;
f2=[sqrt(2)*0.15*erfinv((2*n-1)/(2*N_i)),0];
th2=[rand(1,N_i)*2*pi,0];
f01=-0.7;f02=0.4;
rho=0;f_rho=0;

end

%--------------------------------------------------------------------
% cdf_sim.m ---------------------------------------------------------
%
% Program for the computation of cumulative distribution
% functions F(r).
%
%--------------------------------------------------------------------
% F_r=cdf_sim(xi_t,r,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% xi_t: deterministic process or time-domain signal to be analysed
% with respect to the cumulative distribution function F(r).
% r: level vector
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% PLOT: plot of the resulting cumulative distribution function F(r),
% if PLOT==1

function F_r=cdf_sim(xi_t,r,PLOT)

if nargin==2,
PLOT=0;

end

F_r=zeros(size(r));

for l=1:length(r),
F_r(l)=length(find(xi_t<=r(l)));

end

F_r=F_r/length(xi_t);

if PLOT==1,
plot(r,F_r,’rx’)
xlabel(’r’)
ylabel(’F(r)’)

end

%--------------------------------------------------------------------
% pdf_sim.m ---------------------------------------------------------
%
% Program for the computation of probability density functions p(z).
%
%--------------------------------------------------------------------
% p_z=pdf_sim(xi_t,z,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% xi_t: deterministic process or time-domain signal to be analysed
% with respect to the probability density function p(z).
% z: equidistant level vector
% PLOT: plot of the resulting probability density function p(z),
% if PLOT==1

function p_z=pdf_sim(xi_t,z,PLOT)

if nargin==2,
PLOT=0;

end

p_z=hist(xi_t,z)/length(xi_t)/abs(z(2)-z(1));
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if PLOT==1,
plot(z,p_z,’mx’)
xlabel(’z’)
ylabel(’p(z)’)

end

%--------------------------------------------------------------------
% lcr_sim.m ---------------------------------------------------------
%
% Program for the computation of the level-crossing rate N(r).
%
%--------------------------------------------------------------------
% N_r=lcr_sim(xi_t,r,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% xi_t: deterministic process or time-domain signal to be analysed
% with respect to the level-crossing rate N(r)
% r: level vector
% T_sim: duration of the simulation
% PLOT: plot of the resulting level-crossing rate N(r), if PLOT==1

function N_r=lcr_sim(xi_t,r,T_sim,PLOT)

if nargin==3,
PLOT=0;

end

N_r=zeros(size(r));

for k=1:length(r),
N_r(k)=sum(xi_t(2:length(xi_t)) < r(k) & ...

xi_t(1:length(xi_t)-1) >= r(k) );
end

N_r=N_r/T_sim;

if PLOT==1,
plot(r,N_r,’yx’)
xlabel(’r’)
ylabel(’N(r)’)

end

%--------------------------------------------------------------------
% adf_sim.m ---------------------------------------------------------
%
% Program for the computation of the average duration of fades T_(r).
%
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% Used m-files: cdf_sim.m, lcr_sim.m
%--------------------------------------------------------------------
% adf=adf_sim(xi_t,r,T_sim,PLOT)
%--------------------------------------------------------------------
% Explanation of the input parameters:
%
% xi_t: deterministic process or time-domain signal to be analysed
% with respect to the average duration of fades T_(r)
% r: equidistant level vector
% T_sim: duration of the simulation
% PLOT: plot of the resulting average duration of fades T_(r),
% if PLOT==1

function adf=adf_sim(xi_t,r,T_sim,PLOT)

cdf=cdf_sim(xi_t,r);
lcr=lcr_sim(xi_t,r,T_sim);

adf=cdf./lcr;

if PLOT==1,
plot(r,adf,’yx’)
xlabel(’r’)
ylabel(’T_(r)’)

end
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ABBREVIATIONS

ACF autocorrelation function

ATDMA Advanced Time Division Multiple Access

BMFT Bundesministerium für Forschung und Technologie

BU Bad Urban

CEPT Conference of European Posts and Telecommunications Administra-
tions

COST European Cooperation in the Field of Scientific and Technical Research

DCS Digital Cellular System

DECT Digital European Cordless Telephone

DGUS deterministic Gaussian uncorrelated scattering

ETSI European Telecommunications Standards Institute

FIR finite impulse response

FPLMTS Future Public Land Mobile Telecommunications System

GSM Global System for Mobile Communications (former: Groupe Spécial
Mobile)

GWSSUS Gaussian wide-sense stationary uncorrelated scattering

HT Hilly Terrain

IMT 2000 International Mobile Telecommunications 2000

INMARSAT International Maritime Satellite Organisation

ISI intersymbol interference

JM Jakes method

LEO low earth orbit

LOS line-of-sight

LPNM Lp-norm method

MBS Mobile Broadband System

MCM Monte Carlo method

MEA method of equal areas

MED method of equal distances
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MEDS method of exact Doppler spread

MEO medium earth orbit

MMEA modified method of equal areas

MSEM mean-square-error method

PCN Personal Communications Network

PSD power spectral density

RA Rural Area

RACE Research on Advanced Communications in Europe

TU Typical Urban

UMTS Universal Mobile Telecommunications System

WGN white Gaussian noise

WSSUS wide-sense stationary uncorrelated scattering
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SYMBOLS

SET THEORY

C set of complex numbers

N set of natural numbers

IR set of real numbers

Z set of integer numbers

∈ is an element of

6∈ is not an element of

∀ for all

⊂ subset

∪ union

∩ intersection

A \B difference of set A and set B

∅ empty set or null set

[a, b] set of real numbers within the closed interval from a to b, i.e.,
[a, b] = {x ∈ IR|a ≤ x ≤ b}

[a, b) set of real numbers within the right-hand side open interval from a to
b, i.e., [a, b) = {x ∈ IR|a ≤ x < b}

(a, b] set of real numbers within the left-hand side open interval from a to
b, i.e., (a, b] = {x ∈ IR|a < x ≤ b}

{xn}N
n=1 set of elements x1, x2, . . . , xN

OPERATORS AND MISCELLANEOUS SYMBOLS

arg{x} argument of x = x1 + jx2

Cov {x1, x2} covariance between x1 and x2

ex exponential function

E{x} (statistical) mean value or expected value of x
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F{x(t)} Fourier transform of x(t)

exp{x} exponential function

F−1{X(f)} inverse Fourier transform of X(f)

gcd{xn}N
n=1 greatest common divisor (also known as highest common factor) of

x1, x2, . . . , xN

Im{x} imaginary part of x = x1 + jx2

lcm {xn}N
n=1 least common multiple of x1, x2, . . . , xN

lim limit

ln x natural logarithm of x

loga x logarithm of x to base a

max{xn}N
n=1 largest element of the set {x1, x2, . . . , xN}

min{xn}N
n=1 smallest element of the set {x1, x2, . . . , xN}

mod modulo operation

n! factorial function

P (µ ≤ x) probability that the event µ is less than or equal to x

Re{x} real part of x = x1 + jx2

round{x} nearest integer to x

sgn (x) sign of the number x: 1 if x > 0, −1 if x < 0

Var {x} variance of x

x1(t) ∗ x2(t) convolution of x1(t) and x2(t)

x∗ complex conjugate of the complex number x = x1 + jx2

|x| absolute value of x
√

x principal value of the square root of x, i.e.,
√

x ≥ 0 for x ≥ 0
∏N

n=1 multiple product
∑N

n=1 multiple sum
∫ b

a
x(t)dt integral of the function x(t) over the interval [a, b]

ẋ(t) derivative of the function x(t) with respect to time t

x̌(t) Hilbert transform of x(t)

x → a x tends to a or x approaches a

dxe ceiling function, the smallest integer greater than or equal to x

bxc floor function, the greatest integer less than or equal to x

≈ approximately equal

∼ distributed according to (statistics) or asymptotically equal (analysis)

≤ less than or equal to

¿ much less than
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= equal

6= unequal

◦—• Fourier transform

MATRICES AND VECTORS

(am,n) matrix with am,n as the entry of the mth row and the nth column

AT transpose matrix of the matrix A

A−1 inverse matrix of the matrix A

Cµρ
covariance matrix of the vector process
µρ(t) = (µρ1(t), µρ2(t), µ̇ρ1(t), µ̇ρ2(t))

T

detA determinant of the matrix A

J Jacobian determinant

m column vector of m1, m2, ṁ1, and ṁ2, i.e., m = (m1,m2, ṁ1, ṁ2)T

Rµ autocorrelation matrix of the vector process
µ(t) = (µ1(t), µ2(t), µ̇1(t), µ̇2(t))T

tr(A) trace of the matrix A = (am,n) ∈ IRN×N , i.e., tr(A) =
∑N

n=1 an,n

x column vector of x1, x2, ẋ1, and ẋ2, i.e., x = (x1, x2, ẋ1, ẋ2)T

Ω parameter vector

SPECIAL FUNCTIONS

erf (·) error function

erfc (·) complementary error function

E(·, ·) elliptic integral of the second kind

E(·) complete elliptic integral of the second kind

F (·, ·; ·; ·) hypergeometric function

H0(·) Struve’s function of order zero

Iν(·) modified Bessel function of the first kind of order ν

Jν(·) Bessel function of the first kind of order ν

Qm(·, ·) generalized Marcum’s Q-function

rect (·) rectangular function

sinc (·) sinc function

δ(·) delta function

Γ(·) gamma function
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STOCHASTIC PROCESSES

BC coherence bandwidth

B
(1)
µiµi average Doppler shift of µi(t)

B
(2)
µiµi Doppler spread of µi(t)

B
(1)
τ ′τ ′ average delay

B
(2)
τ ′τ ′ delay spread

c0 speed of light

cR Rice factor

E2(Ω) mean-square-error norm

f Doppler frequency

f0 carrier frequency

fc cut-off frequency

fmax maximum Doppler frequency

fmin lower cut-off frequency of the left-hand side restricted Jakes power
spectral density

fs sampling rate

fsym symbol rate

fρ Doppler frequency of the line-of-sight component m(t)

Fζ−(r) cumulative distribution function of Rayleigh processes ζ(t)

Fη−(r) cumulative distribution function of Suzuki processes η(t)

Fη+(r) complementary cumulative distribution function of Suzuki processes
η(t)

Fϑ(ϕ) cumulative distribution function of the phase ϑ(t) of
µ(t) = µ1(t) + jµ2(t)

Fµi(r) cumulative distribution function of Gaussian random processes µi(t)

Fξ−(r) cumulative distribution function of Rice processes ξ(t)

Fξ+(r) complementary cumulative distribution function of Rice processes ξ(t)

F%−(r) cumulative distribution function of Loo processes %(t)

F%+(r) complementary cumulative distribution function of Loo processes %(t)

h(τ ′) time-invariant impulse response

h(τ ′, t) time-variant impulse response

H(f) transfer function of linear time-invariant systems

H(f ′, t) time-variant transfer function

Ȟ(f) Hilbert transformer

L number of discrete paths
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m(t) (time-variant) line-of-sight component

m′
s sampling rate ratio, i.e., m′

s = f ′s/fs = Ts/T ′s
mµi

mean value of µi(t)

Nζ(r) level-crossing rate of Rayleigh processes ζ(t)

Nη(r) level-crossing rate of Suzuki processes η(t)

Nξ(r) level-crossing rate of Rice processes ξ(t)

N%(r) level-crossing rate of Loo processes %(t)

p0−(τ−; r) probability density function of the fading intervals τ− of Rayleigh
processes ζ(t)

p1−(τ−; r) approximate solution for p0−(τ−; r)

pζ(z) Rayleigh distribution

pη(z) Suzuki distribution

pλ(z) lognormal distribution

pϑ(θ) probability density function of the phase ϑ(t)

pµi(x) Gaussian distribution

pµρ1µρ2 µ̇ρ1 µ̇ρ2
joint probability density function of µρ1(t), µρ2(t), µ̇ρ1(t), and µ̇ρ2(t)

pξ(z) Rice distribution

p%(z) probability density function of Loo processes %(t)

pω(z) Nakagami distribution

pξξ̇(z, θ) joint probability density function of ξ(t) and ξ̇(t)

pξξ̇ϑϑ̇(z, ż, θ, θ̇) joint probability density function of ξ(t), ξ̇(t), ϑ(t), and ϑ̇(t)

Qm(·, ·) generalized Marcum’s Q-function

r amplitude level

rhh(·, ·; ·, ·) autocorrelation function of h(τ ′, t)

rHH(υ′, τ) time-frequency correlation function of WSSUS models

rHH(·, ·; ·, ·) autocorrelation function of H(f ′, t)

rss(·, ·; ·, ·) autocorrelation function of s(τ ′, f)

rTT (·, ·; ·, ·) autocorrelation function of T (f ′, f)

rxx(t1, t2) autocorrelation function of x(t), i.e., rxx(t1, t2) = E{x∗(t1)x(t2)}
ryy(t1, t2) autocorrelation function of y(t), i.e., ryy(t1, t2) = E{y∗(t1)y(t2)}
rµµ(τ) autocorrelation function of µ(t) = µ1(t) + jµ2(t)

rµiµi(τ) autocorrelation function of µi(t)

r̂µiµi(τ) autocorrelation function of µ̂i(t)

rµ1µ2(τ) cross-correlation function of µ1(t) and µ2(t)

rτ ′τ ′(υ′) frequency correlation function

s(τ ′, f) Doppler-variant impulse response
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S(τ ′, f) scattering function of WSSUS models

Shh(τ ′, τ) delay cross-power spectral density of WSSUS models

STT (υ′, f) Doppler cross-power spectral density of WSSUS models

Sτ ′τ ′(τ ′) delay power spectral density

Sµµ(f) power spectral density of µ(t) = µ1(t) + jµ2(t)

Sµiµi
(f) power spectral density of µi(t)

Sµ1µ2(f) cross-power spectral density of µ1(t) and µ2(t)

t time variable

T (f ′, f) Doppler-variant transfer function

TC coherence time

Ts sampling interval

Tsym symbol interval

Tζ−(r) average duration of fades of Rayleigh processes ζ(t)

Tη−(r) average duration of fades of Suzuki processes η(t)

Tξ−(r) average duration of fades of Rice processes ξ(t)

T%−(r) average duration of fades of Loo processes %(t)

un random variable, uniformly distributed in the interval (0, 1]

v speed of the mobile unit

Wi(·) weighting function

x(t) input signal

y(t) output signal

β negative curvature of the autocorrelation function rµiµi(τ) at the
origin, i.e., β = βi = −r̈µiµi(0) (i = 1, 2)

γ negative curvature of the autocorrelation function rν3ν3(τ) at the
origin, i.e., γ = −r̈ν3ν3(0)

ζ(t) Rayleigh process

η(t) Suzuki process

θρ phase of the line-of-sight component m(t)

ϑ(t) phase of µρ(t), i.e., ϑ(t) = arg{µρ(t)}
κ0 frequency ratio fmin over fmax

κc frequency ratio fmax over fc

λ(t) lognormal process

µ(t) zero-mean complex Gaussian random process

µi(t) real Gaussian random process (stochastic reference model)

µ̂i(t) real stochastic process (stochastic simulation model)

µρ(t) complex Gaussian random process with mean m(t)
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νi(t) white Gaussian noise

ξ(t) Rice process

ρ amplitude of the line-of-sight component m(t)

%(t) Loo process

σ2
0 mean power of µi(t)

τ time difference between t2 and t1, i.e., τ = t2 − t1

τ− fading interval

τ+ connecting interval

τq(r) length of the time interval that comprises q % of all fading intervals of
the process ζ(t) at level r

τ ′ continuous propagation delay

τ ′` discrete propagation delay of the `th path

τ ′max maximum propagation delay

∆τ ′` propagation delay difference between τ ′` and τ ′`−1, i.e., ∆τ ′` = τ ′`− τ ′`−1

φ0 symbol for the cross-correlation function rµ1µ2(τ) at τ = 0

ψ0 symbol for the autocorrelation function rµiµi(τ) at τ = 0

Ψµi(ν) characteristic function of µi(t)

DISCRETE-TIME DETERMINISTIC PROCESSES

ai,n[k] address of the table Tabi,n at the discrete time k

B̄
(1)
µiµi average Doppler shift of µ̄i[k]

B̄
(2)
µiµi Doppler spread of µ̄i[k]

ci,n Doppler coefficient of the nth component of µ̄i[k]

f̄i,n quantised Doppler frequency of the nth component of µ̄i[k]

fs sampling frequency

fs,min minimum sampling frequency

F̄ζ−(r) cumulative distribution function of discrete deterministic Rayleigh
processes ζ̄[k]

F̄ϑ(ϕ) cumulative distribution function of the phase ϑ̄[k] of
µ̄[k] = µ̄1[k] + jµ̄2[k]

F̄µi(r) cumulative distribution function of discrete deterministic Gaussian
processes µ̄i[k]

k discrete time variable (t = kTs)

K number of simulated samples of a discrete deterministic process

L period of ζ̄[k]
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L̂ upper limit of the period of ζ̄[k]

Li period of µ̄i[k]

L̂i upper limit of the period of µ̄i[k]

Li,n period of the nth component of µ̄i[k]

m̄µi
mean value of the sequence µ̄i[k]

M i channel matrix; contains the complete information for the reconstruc-
tion of µ̄i[k]

N̄ζ(r) level-crossing rate of discrete deterministic Rayleigh processes ζ̄[k]

p̄ζ(z) probability density function of discrete deterministic Rayleigh
processes ζ̄[k]

p̄ϑ(θ) probability density function of the phase ϑ̄[k] of µ̄[k] = µ̄1[k] + jµ̄2[k]

p̄µi
(x) probability density function of discrete deterministic Gaussian

processes µ̄i[k]

Regi,n register; contains one period of the harmonic elementary sequence
µ̄i,n[k]

r̄µiµi [κ] autocorrelation sequence of µ̄i[k]

r̄µ1µ2 [κ] cross-correlation sequence of µ̄1[k] and µ̄2[k]

Si selection matrix

S̄µiµi(f) power spectral density of µ̄i[k]

S̄µ1µ2(f) cross-power spectral density of µ̄1[k] and µ̄2[k]

Tabi,n table; contains one period of the harmonic elementary sequence µ̄i,n[k]

Ts sampling interval

Tsim simulation time

∆Tsim iteration time

T̄ζ−(r) average duration of fades of discrete deterministic Rayleigh processes
ζ̄[k]

β̄i negative curvature of the autocorrelation sequence r̄µiµi [κ] at the
origin, i.e., β̄i = −¨̄rµiµi [0] (i = 1, 2)

∆β̄i model error of ¨̄rµiµi [0], i.e., ∆β̄i = β̄i − β

∆(i,j)
n,m auxiliary function for the determination of the minimum sampling

frequency fA,min

εf̄i,n
relative error of the quantized Doppler frequencies f̄i,n

ζ̄[k] discrete-time deterministic Rayleigh process

θ̄i,n quantized Doppler phase of the nth component of µ̄i[k]

ϑ̄[k] phase of µ̄[k] = µ̄1[k] + jµ̄2[k], i.e., ϑ̄[k] = arg{µ̄[k]}
κ time difference between the instants k2 and k1, i.e., κ = k2 − k1

µ̄[k] complex discrete-time deterministic Gaussian process
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µ̄i[k] real discrete-time deterministic Gaussian process

µ̄i,n[k] nth harmonic elementary function of µ̄i[k]

σ̄2
µi

mean power of µ̄i[k]

CONTINUOUS-TIME DETERMINISTIC PROCESSES

ã` delay coefficient of the `th path

B̃C coherence bandwidth of DGUS models

B̃
(1)
µiµi average Doppler shift of µ̃i(t)

B̃
(2)
µiµi Doppler spread of µ̃i(t)

B̃
(1)
τ ′τ ′ average delay of DGUS models

B̃
(2)
τ ′τ ′ delay spread of DGUS models

ci,n Doppler coefficient of the nth component of µ̃i(t)

ci,n,` Doppler coefficient of the nth component of µ̃i,`(t)

Epµi
mean-square error of p̃µi(x)

Erµiµi
mean-square error of r̃µiµi(τ)

fi,n discrete Doppler frequency of the nth component of µ̃i(t)

fi,n,` discrete Doppler frequency of the nth component of µ̃i,`(t)

Fi greatest common divisor fi,1, fi,2, . . . , fi,Ni , i.e., Fi = gcd{fi,n}Ni
n=1

F̃ζ−(r) cumulative distribution function of deterministic Rayleigh processes
ζ̃(t)

F̃η−(r) cumulative distribution function of deterministic Suzuki processes η̃(t)

F̃ϑ(ϕ) cumulative distribution function of the phase ϑ̃(t) of
µ̃(t) = µ̃1(t) + jµ̃2(t)

F̃µi(r) cumulative distribution function of deterministic Gaussian processes
µ̃i(t)

F̃ξ−(r) cumulative distribution function of deterministic Rice processes ξ̃(t)

F̃%−(r) cumulative distribution function of deterministic Loo processes %̃(t)

h̃(τ ′) time-invariant impulse response of DGUS models

h̃(τ ′, t) time-variant impulse response of DGUS models

H̃(f ′, t) time-variant transfer function of DGUS models

m̃µi mean value of µ̃i(t)

N smallest number of N1 and N2, i.e., N = min{N1, N2}
Ns number of sampling values

Ni number of harmonic functions of µ̃i(t)
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Ni,` number of harmonic functions of µ̃i,`(t)

N ′
i virtual number of harmonic functions of µ̃i(t)

Ñζ(r) level-crossing rate of deterministic Rayleigh processes ζ̃(t)

Ñη(r) level-crossing rate of deterministic Suzuki processes η̃(t)

Ñξ(r) level-crossing rate of deterministic Rice processes ξ̃(t)

Ñ%(r) level-crossing rate of deterministic Loo processes %̃(t)

p̃0−(τ−; r) probability density function of the fading intervals τ− of ζ̃(t)

p̃0−+(τ−, τ+; r) joint probability density function of fading and connecting intervals of
ζ̃(t)

p̃1−(τ−; r) approximate solution for p̃0−(τ−; r)

p̃ζ(z) probability density function of deterministic Rayleigh processes ζ̃(t)

p̃η(z) probability density function of deterministic Suzuki processes η̃(t)

p̃ϑ(θ) probability density function of the phase ϑ̃(t) of µ̃(t) = µ̃1(t) + jµ̃2(t)

p̃µi(x) probability density function of deterministic Gaussian processes µ̃i(t)

p̃ξ(z) probability density function of deterministic Rice processes ξ̃(t)

p̃%(z) probability density function of deterministic Loo processes %̃(t)

p̃ξξ̇(z, θ) joint probability density function of ξ̃(t) and ˙̃
ξ(t)

r̃hh(·, ·; ·, ·) autocorrelation function h̃(τ ′, t)

r̃HH(υ′, τ) time-frequency correlation function of DGUS models

r̃ss(·, ·; ·, ·) autocorrelation function of s̃(τ ′, f)

r̃TT (·, ·; ·, ·) autocorrelation function of T̃ (f ′, f)

r̃µµ(τ) autocorrelation function of µ̃(t) = µ̃1(t) + jµ̃2(t)

r̃µiµi(τ) autocorrelation function of µ̃i(t)

r̃µi,`µi,`
(τ) autocorrelation function of µ̃i,`(t)

r̃µ`µ`
(τ) autocorrelation function of µ̃`(t)

r̃µ1µ2(τ) cross-correlation function of µ̃1(t) and µ̃2(t)

r̃τ ′τ ′(υ′) frequency correlation function of DGUS models

s̃(τ ′, f) Doppler-variant impulse response of DGUS models

S̃(τ ′, f) scattering function of DGUS models

S̃hh(τ ′, τ) delay cross-power spectral density of DGUS models

S̃TT (υ′, f) Doppler cross-power spectral density of DGUS models

S̃µiµi(f) power spectral density of µ̃i(t)

S̃µ`µ`
(f) power spectral density of µ̃`(t)

S̃µ1µ2(f) cross-power spectral density of µ̃1(t) and µ̃2(t)

S̃τ ′τ ′(τ ′) delay power spectral density of DGUS models
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T̃ (f ′, f) Doppler-variant transfer function of DGUS models

T̃C coherence time of DGUS models

Ti period of µ̃i(t)

Ts, T ′s sampling intervals

Tsim simulation time

T̃ζ−(r) average duration of fades of deterministic Rayleigh processes ζ̃(t)

T̃η−(r) average duration of fades of deterministic Suzuki processes η̃(t)

T̃ξ−(r) average duration of fades of deterministic Rice processes ξ̃(t)

T̃%−(r) average duration of fades of deterministic Loo processes %̃(t)

β̃i negative curvature of the autocorrelation function r̃µiµi(τ) at the
origin, i.e., β̃i = −¨̃rµiµi(0) (i = 1, 2)

∆βi model error of the simulation model, i.e., ∆βi = β̃i − β

γ̃ negative curvature of the autocorrelation function of r̃ν3ν3(τ) at the
origin, i.e., γ̃ = −¨̃rν3ν3(0)

εNξ
relative error of the level-crossing rate Ñξ(r)

εTξ
relative error of the average duration of fades T̃ξ−(r)

ζ̃(t) continuous-time deterministic Rayleigh process

η̃(t) continuous-time deterministic Suzuki process

θ0 phase difference between µ̃1,n(t) and µ̃2,n(t)

θi,n Doppler phase of the nth component of µ̃i(t)

θi,n,` Doppler phase der nth component of µ̃i,`(t)
~θi Doppler phase vector
~Θi standard phase vector

ϑ̃(t) phase of µ̃ρ(t), i.e., ϑ̃(t) = arg{µ̃ρ(t)}
λ̃(t) continuous-time deterministic lognormal process

µ̃(t) zero-mean complex continuous-time deterministic Gaussian process

µ̃i(t) zero-mean real continuous-time deterministic Gaussian process

µ̃i,`(t) real deterministic Gaussian process of the `th path of DGUS models

µ̃i,n(t) nth harmonic elementary function of µ̃i(t)

µ̃`(t) complex deterministic Gaussian process of the `th path of DGUS
models

µ̃ρ(t) complex deterministic Gaussian process with mean value m(t)

ξ̃(t) continuous-time deterministic Rice process

%̃(t) continuous-time deterministic Loo process

σ̃2
µ mean power of µ̃(t)
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σ̃2
µi

mean power of µ̃i(t)

τ̃ ′` discrete propagation delay of the `th path

∆τ̃ ′` propagation delay difference between τ̃ ′` and τ̃ ′`−1, i.e., ∆τ̃ ′` = τ̃ ′`− τ̃ ′`−1

τ̃q(r) length of the time interval that comprises q % of all fading intervals of
the process ζ̃(t) at level r

φ̃0 symbol for the cross-correlation function r̃µ1µ2(τ) at τ = 0

ψ̃0 symbol for the autocorrelation function r̃µiµi
(τ) at τ = 0

Ξ̃`(f) Fourier transform of µ̃`(t)

Ψ̃µi
(ν) characteristic function of µ̃i(t)

Ωi,n normalized discrete Doppler frequency, i.e., Ωi,n = 2πfi,nTs



391

Bibliography

[Abr72] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Washington: National
Bureau of Standards, 1972.

[Aka97] Y. Akaiwa, Introduction to Digital Mobile Communication. New York:
John Wiley & Sons, 1997.

[Akk86] A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land
communication channel,” IEEE Trans. Veh. Technol., vol. 35, no. 1, pp.
2–7, Feb. 1986.

[Akk94] A. S. Akki, “Statistical properties of mobile-to-mobile land communica-
tion channels,” IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 826–831,
Nov. 1994.

[Ald82] M. Aldinger, “Die Simulation des Mobilfunk-Kanals auf einem Digital-
rechner,” FREQUENZ, vol. 36, no. 4/5, pp. 145–152, 1982.

[And92] J. B. Andersen and P. Eggers, “A heuristic model of power delay profiles in
landmobile communications,” in Proc. URSI Int. Symp. Electromagnetic
Theory, Sydney, Australia, Aug. 1992, pp. 55–57.

[And95] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation
measurements and models for wireless communications channels,” IEEE
Commun. Mag., vol. 33, no. 1, pp. 42–49, Jan. 1995.

[Arr73] G. Arredondo, W. Chriss, and E. Walker, “A multipath fading simulator
for mobile radio,” IEEE Trans. Veh. Technol., vol. 22, no. 4, pp. 241–244,
May 1973.

[Aul79] T. Aulin, “A modified model for the fading signal at the mobile radio
channel,” IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182–203, Aug.
1979.

[Baj82] A. S. Bajwa and J. D. Parsons, “Small-area characterisation of UHF urban
and suburban mobile radio propagation,” Inst. Elec. Eng. Proc., vol. 129,
no. 2, pp. 102–109, April 1982.

[Bei97] F. Beichelt, Stochastische Prozesse für Ingenieure. Stuttgart: Teubner,
1997.



392 Bibliography

[Bel63] P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Comm. Syst., vol. 11, no. 4, pp. 360–393, Dec. 1963.

[Bel73] P. A. Bello, “Aeronautical channel characterization,” IEEE Trans.
Commun., vol. 21, pp. 548–563, May 1973.

[Ben48] W. R. Bennett, “Distribution of the sum of randomly phased
components,” Quart. Appl. Math., vol. 5, pp. 385–393, May 1948.

[Ber86] D. Berthoumieux and J. M. Pertoldi, “Hardware propagation simulator of
the frequency-selective fading channel at 900 MHz,” in Proc. 2nd Nordic
Seminar on Land Mobile Radio Communications, Stockholm, Sweden,
1986, pp. 214–217.

[Bla72] D. M. Black and D. O. Reudink, “Some characteristics of mobile radio
propagation at 836 MHz in the Philadelphia area,” IEEE Trans. Veh.
Technol., vol. 21, pp. 45–51, Feb. 1972.

[Bla84] R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
Massachusetts: Addison-Wesley, 1984.
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[Hoe92] P. Höher, “A statistical discrete-time model for the WSSUS multipath
channel,” IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 461–468, Nov.
1992.

[Hor85] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge
University Press, 1985.

[Huc83] R. W. Huck, J. S. Butterworth, and E. E. Matt, “Propagation
measurements for land mobile satellite services,” in Proc. IEEE 33rd
Vehicular Technology Conference, Toronto, Canada, 1983, pp. 265–268.

[Jah95] A. Jahn, “Propagation data and channel model for LMS systems,”
ESA Purchase Order 141742, Final Report, DLR, Institute for
Communications Technology, Jan. 1995.



Bibliography 397

[Jak93] W. C. Jakes, Ed., Microwave Mobile Communications. Piscataway, NJ:
IEEE Press, 1993.

[Joh94] G. E. Johnson, “Constructions of particular random processes,” Proc. of
the IEEE, vol. 82, no. 2, pp. 270–285, Feb. 1994.

[Jun97] P. Jung, Analyse und Entwurf digitaler Mobilfunksysteme. Stuttgart:
Teubner, 1997.

[Kad91] G. Kadel and R. W. Lorenz, “Breitbandige Ausbreitungsmessungen zur
Charakterisierung des Funkkanals beim GSM-System,” FREQUENZ, vol.
45, no. 7/8, pp. 158–163, 1991.

[Kad92] G. Kadel and R. W. Lorenz, “Wideband propagation measurements of
the mobile radio channel,” in Proc. ISAP-92, Sappore, Japan, 1992, pp.
81–84.

[Kai80] T. Kailath, Linear Systems. Englewood Cliffs, New Jersey: Prentice-Hall,
1980.
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funkkanälen und ein Verfahren zur Nachverarbeitung der Meßdaten,”
FREQUENZ, vol. 46, no. 7/8, pp. 178–188, 1992.

[Mar94a] U. Martin, Ausbreitung in Mobilfunkkanälen: Beiträge zum Entwurf
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INDEX

Addition of random variables, 19
Address generator, 293, 294
Analytical model, 6

for Gaussian random processes, 56
Angle of arrival, 4, 158, 187, 244, 321
Autocorrelation function

of deterministic processes, 60, 268
of deterministic signals, 28
of DGUS models, 272ff
of lognormal processes, 171
of stochastic processes, 22
of the output signal of frequency-

selective stochastic channel mod-
els, 250

of time-variant deterministic impulse
responses, 273

of US models, 253ff
of WSS models, 251ff
of WSSUS models, 253ff

Autocorrelation sequence
of deterministic sequences, 30
of discrete deterministic processes,

299
Average connecting time interval, 27
Average delay, 256

of DGUS models, 277
of WSSUS models, 256

Average Doppler shift
definition, 37
of deterministic processes, 61
of DGUS models, 278
of discrete deterministic processes,

301
of WSSUS models, 256

Average duration of fades, 25ff
definition, 26
of deterministic Rice processes, 72ff,

73, 337

derivation, 329ff
exact analytical solution, 76

of extended Rice processes, 194
of extended Suzuki processes of

Type I, 176
of extended Suzuki processes of

Type II, 200
of generalized Rice processes, 213
of modified Loo processes, 230
of Rayleigh processes, 27, 45ff
of Rice processes, 27, 45ff
of Rice processes with cross-corre-

lated components, 168

Bad Urban, 259, 345
Baseband representation, 157
Bessel function, 36, 160

approximation, 109
integral representation, 128, 323, 338
modified, 17

integral representation, 69, 327,
328

series representation, 51
Bivariate cumulative distribution func-

tion, see Joint cumulative distribu-
tion function

Bivariate probability density function,
see Joint probability density func-
tion

Burst error, 5

Cartesian coordinates, 67, 164, 326
Causality, see Law of causality
Central limit theorem, 15, 65
Certain event, 12
Channel matrix, 295
Channel models

COST 207 models, 259ff
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DGUS models, 269
frequency-nonselective models, 155ff
frequency-selective models, 241ff

deterministic, 267ff
stochastic, 250ff

L-path models, 266, 343ff
US models, 253ff
WSS models, 251ff
WSSUS models, 251, 253ff

Channel simulator
fast, 289ff

Channel sounder, 242
Channel state, 156
Channels

frequency-nonselective, see Fre-
quency-nonselective channels

frequency-selective, see Frequency-
selective channels

independent time dispersive and
frequency dispersive, 264

Characteristic function
definition, 14
of deterministic Gaussian processes,

65
of Gaussian distributed random vari-

ables, 65
of harmonic elementary functions, 64

Characteristic quantities
of deterministic Gaussian processes,

178, 203, 215
of stochastic Gaussian processes,

160, 211, 225
Chebyshev inequality, 14, 341
Clarke power spectral density, 323
Coherence bandwidth

of DGUS models, 278
of WSSUS models, 257

Coherence time
of DGUS models, 279
of WSSUS models, 258

Coloured Gaussian random process, 56
Complementary cumulative distribu-

tion function, 27, 181
Component

line-of-sight, 34, 58, 158, 186, 218,
220

Connecting time interval, 6

average, see Average connecting time
interval

Convolution
of probability density functions, 19,

64
Convolution operator, 19
Coordinates

Cartesian, see Cartesian coordinates
polar, see Polar coordinates

Correlation functions
of DGUS models, 272ff
of frequency-selective stochastic

channel models, 250ff
of WSSUS models, 253ff
relations for DGUS models, 280
relations for frequency-selective

stochastic channel models, 251
relations for WSSUS models, 260

Correlation matrix, 163, 189
Covariance

definition, 14
Covariance matrix, 16, 163, 189, 212
Cross-correlation function

of deterministic processes, 60
of deterministic signals, 28
of stochastic processes, 22

Cross-correlation sequence
of deterministic sequences, 30
of discrete deterministic processes,

299
Cross-power density spectrum, see

Cross-power spectral density
Cross-power spectral density

of deterministic processes, 61
of deterministic sequences, 31
of deterministic signals, 29
of discrete deterministic processes,

301
of stochastic processes, 23

Cumulative distribution function
bivariate, see Joint cumulative distri-

bution function
complementary, 181
definition, 12
of continuous-time deterministic

Gaussian processes, 307
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of continuous-time deterministic
Rayleigh processes, 309

of deterministic Rice processes, 336
of discrete deterministic Gaussian

processes, 307
of discrete deterministic Rayleigh

processes, 309
of extended Rice processes, 194
of extended Suzuki processes of

Type I, 176
of extended Suzuki processes of

Type II, 200
of modified Loo processes, 230
of Rayleigh processes, 309
of Rice processes, 168
of the phase of complex continuous-

time deterministic Gaussian pro-
cesses, 313

of the phase of complex discrete
deterministic Gaussian pro-
cesses, 312

of zero-mean Gaussian random pro-
cesses, 307

Curvature constraint, 335
Cut-off frequency, 31

3-dB-cut-off frequency, 170

Delay
average, see Average delay
continuous propagation, 245
discrete propagation, 245, 267, 281ff
infinitesimal propagation, 245
maximum propagation, 245

Delay coefficient, 267, 281ff
Delay cross-power spectral density

of DGUS models, 273, 275
of WSSUS models, 254

Delay power spectral density
of DGUS models, 276
of WSSUS models, 255
specification according to COST 207,

261, 262
Delay spread, 256

of DGUS models, 277
of WSSUS models, 256

Density, see Probability density func-
tion

bivariate, see Joint probability den-
sity function

Determinant
Jacobian, see Jacobian determinant

Deterministic Gaussian uncorrelated
scattering (DGUS) models, 269

Deterministic process, 55ff
definition, 58
elementary properties, 59ff
statistical properties, 63ff

DGUS models, 269
Direct system, 289
Doppler coefficients, 59, 283

by using the Jakes method, 134
by using the Lp-norm method, 115ff
by using the mean-square-error

method, 90, 91, 93
by using the method of equal areas,

96, 101
by using the method of equal distan-

ces, 83, 84, 87
by using the method of exact Dopp-

ler spread, 129, 131
by using the Monte Carlo method,

105, 106, 112
of the `th propagation path, 267

Doppler cross-power spectral density
of DGUS models, 273, 276
of WSSUS models, 254, 256

Doppler effect, 4
Doppler frequencies, 244, 321

discrete, 59, 283
by using the Jakes method, 134
by using the Lp-norm method, 118
by using the mean-square-error

method, 90, 91, 93
by using the method of equal areas,

96, 101
by using the method of equal dis-

tances, 83, 84, 87
by using the method of exact

Doppler spread, 129, 131
by using the Monte Carlo method,

105, 106, 112
of the `th propagation path, 267

quantized, 290
Doppler frequency, 33
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definition, 4
maximum, 5, 33

Doppler phases, 59, 284
methods for the computation, 143ff
of the `th propagation path, 267
quantized, 290

Doppler power spectral density, 33, 35ff
of DGUS models, 277
of WSSUS models, 256
specification according to COST 207,

263, 264
unsymmetrical, 158ff, 188, 211, 224

Doppler shift, 33
average, see Average Doppler shift

Doppler spread
definition, 37
of deterministic processes, 62
of DGUS models, 278
of discrete deterministic processes,

301
of WSSUS models, 256

Duration of fades, 6

Elementary event, 11
Elementary function

discrete harmonic, 290
harmonic, 64

Ellipses model, 244ff
Elliptic integral of the second kind, 44

complete, 44
Empty set, 12
Ensemble of sample functions, 21
Ergodic processes, 25ff

strict-sense, 25
wide-sense, 25
with respect to the autocorrelation

function, 79
with respect to the mean value, 79

Ergodic theorem, 25
Ergodicity

with respect to the autocorrelation
function, 79

with respect to the mean value, 79
Ergodicity hypothesis, 25
Error

mean-square, see Mean-square error
Error function, 41, 182

Event, 11
certain, 12
elementary, 11
impossible, 12

Expected value
definition, 13
of Gaussian distributed random vari-

ables, 15
of lognormally distributed random

variables, 18
of Rayleigh distributed random vari-

ables, 17
of Rice distributed random variables,

17
of Suzuki distributed random vari-

ables, 18
Expected value function, 21
Expected value operator, 13

Fading, 5
fast, 155
multiplicative, see Multiplicative

fading
slow, 155, 259

Family of sample functions, 21
Fast channel simulator, 289ff
Fast-term fading, 34
Filter method, 56, 57, 317
Finite impulse response (FIR) filter,

271
Fourier transform, 23

discrete, 30
inverse discrete, 30

Frequency correlation function
of DGUS models, 278
of WSSUS models, 257

Frequency dispersion, 5
Frequency ratio, 162, 170
Frequency shift, see Doppler shift
Frequency-nonselective channels, 33,

55, 155ff, 258
Frequency-selective channels, 55, 241ff

system theoretical description, 245ff
tapped-delay-line representation,

247
Function
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characteristic, see Characteristic
function

deterministic, see Deterministic pro-
cess

error, see Error function
harmonic, see Harmonic functions
hypergeometric, see Hypergeometric

function
inverse, see Inverse function
Struve’s, see Struve’s function

Functions of random variables, 19ff

Gamma function, 51
Gaussian distribution, 15, 65

multivariate, 16, 162, 326
one-sided, 19, 191

Gaussian noise
white, see White Gaussian noise

Gaussian power spectral density, 36,
38, 170, 224, 262

Gaussian process
complex deterministic, 58, 267
complex discrete deterministic, 292
discrete deterministic, 290
real deterministic, 58, 267
stochastic, 56

Gaussian random process
coloured, see Coloured Gaussian

random process
complex, 34
real, 34

Harmonic elementary function, see
Elementary function, harmonic

Harmonic functions
number, 59
number of the `th propagation path,

267
virtual number, 180, 204, 233

Hilbert transform, 24
Hilbert transformer, 24
Hilly Terrain, 259, 346
Hypergeometric function, 45

Impossible event, 12
Impulse dispersion, 4
Impulse response

Doppler-variant, 248
of DGUS models, 271

of frequency-nonselective determinis-
tic channels, 271

of frequency-nonselective stochastic
channels, 257

of time-invariant finite impulse re-
sponse (FIR) filters, 271

time-variant, 245ff
of DGUS models, 269

time-variant deterministic, 267
Integral

elliptic, see Elliptic integral
Intersymbol interference, 247
Inverse function, 105
Iteration time, 316

Jacobian determinant, 20, 164, 326
Jakes method, 82, 133ff
Jakes power spectral density, 36, 37,

262, 323
derivation, 321ff
left-sided restricted, 158, 161
restricted, 187, 188, 210, 224

JM, see Jakes method
Joint cumulative distribution function

definition, 13
Joint probability density function, 13,

67, 162, 172, 174, 190, 198, 228,
326, 330

of fading and connecting intervals,
148ff

L-path channel models
specification according to COST 207,

266, 343ff
Land mobile radio channels, 155
Law of causality, 245, 246
Level-crossing problem, 52
Level-crossing rate, 25ff

definition, 26
of classical Loo processes, 229
of deterministic Rayleigh processes,

73, 333
of deterministic Rice processes, 72ff,

333
derivation, 329ff
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exact analytical solution, 76
of extended Rice processes, 193
of extended Suzuki processes of

Type I, 175
of extended Suzuki processes of

Type II, 199
of generalized Rice processes, 213
of modified Loo processes, 229
of modified Suzuki processes, 175
of Rayleigh processes, 26, 41ff
of Rice processes, 26, 41ff, 327

derivation, 325ff
of Rice processes with cross-corre-

lated components, 167
Line-of-sight component, 34, 58, 158,

186, 218, 220
Lognormal distribution, 17, 171
Lognormal process, 169

deterministic, 202
reference model, 170

Long-term fading, 169
Loo model, 156, 218

classical, 222
deterministic modified, 232
modified, 218ff

Loo process
deterministic modified, 232ff
modified, 221

average duration of fades, 230
cumulative distribution function,

230
deterministic simulation model,

232
level-crossing rate, 229
probability density function, 226
reference model, 220

Lp-norm method, 82, 113ff
first variant, 122
second variant, 123
third variant, 123

LPNM, see Lp-norm method
Lutz model, 156

Marcum’s Q-function
generalized, 176, 230

Marginal density, see Marginal proba-
bility density function

Marginal probability density function,
13

Matrix system, 295ff
MCM, see Monte Carlo method
m-distribution, see Nakagami distribu-

tion
MEA, see Method of equal areas
Mean power

of deterministic processes, 60
of deterministic sequences, 30
of deterministic signals, 28
of discrete deterministic processes,

299
of lognormal processes, 171

Mean value
definition, 13
of deterministic processes, 60
of deterministic sequences, 29
of deterministic signals, 28
of discrete deterministic processes,

298
Mean-square error

of autocorrelation functions, 80
of probability density functions, 66,

80
Mean-square-error method, 81, 90ff
Measurable space, 12
MED, see Method of equal distances
MEDS, see Method of exact Doppler

spread
Method

of equal areas, 81, 95ff
of equal distances, 81, 83ff
of exact Doppler spread, 81, 128ff
of mean-square error, 81, 90ff

MMEA, see Modified method of equal
areas

Model
analytical, see Analytical model
reference, see Reference model

Model error, 73, 77, 80
by using the Jakes method, 139
by using the Lp-norm method, 120,

126
by using the mean-square-error

method, 93, 95
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by using the method of equal areas,
98, 101

by using the method of equal distan-
ces, 85, 87

by using the method of exact Dopp-
ler spread, 130, 131

by using the Monte Carlo method,
108ff, 113, 341ff

of discrete-time systems, 302
relative, 73, 74

Model error law, 75
Modified method of equal areas, 103
Moments

definition, 14
Monte Carlo method, 81, 104ff, 341ff
MSEM, see Mean-square-error method
Multipath propagation, 3, 33
Multiplication of random variables, 19
Multiplicative fading, 258
Multivariate Gaussian distribution, 16

Nakagami distribution, 18, 117
Noise

white Gaussian, see White Gaussian
noise

Normal distribution, see Gaussian dis-
tribution

Null set, 12

Parameter vector, 181, 205, 217, 236
Path power, 278
Paths

number of, 245
propagation paths, 244

Performance evaluation
criteria, 79ff

Period
of deterministic processes, 63, 96
of discrete deterministic processes,

303
Phase of complex Gaussian random

processes, 40
Polar coordinates, 67, 164, 326
Power

mean, see Mean power
Power constraint, 334

Power density spectrum, see Power
spectral density

Power spectral density
of deterministic processes, 61
of deterministic sequences, 30
of deterministic signals, 28
of DGUS models, 272ff
of discrete deterministic processes,

300
of lognormal processes, 171, 224
of stochastic processes, 23
of WSSUS models, 253ff
relations for DGUS models, 280
relations for WSSUS models, 260

Principle
of deterministic channel modelling,

56ff
Probability

definition, 12
Probability density, see Probability

density function
Probability density function

bivariate, see Joint probability den-
sity function

definition, 13
of classical Loo processes, 226
of deterministic Gaussian processes,

65
of deterministic Rice processes, 67,

68
of discrete deterministic Rayleigh

processes, 308
of Doppler frequencies, 322
of extended Rice processes, 190
of extended Suzuki processes of

Type I, 173
of extended Suzuki processes of

Type II, 196
of fading intervals of deterministic

Rayleigh processes, 77ff, 145ff
of Gaussian distributed random vari-

ables, 15
of generalized Rice processes, 213
of harmonic elementary functions, 64
of lognormal processes, 171
of lognormally distributed random

variables, 18
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of modified Loo processes, 226
of multivariate Gaussian distributed

random variables, 16
of multivariate normally distributed

random variables, 16
of Nakagami distributed random

variables, 18
of normally distributed random vari-

ables, 15
of Rayleigh distributed random vari-

ables, 17
of Rayleigh processes, 40
of Rice distributed random variables,

17
of Rice processes, 39
of Rice processes with cross-corre-

lated components, 165
of Suzuki distributed random vari-

ables, 18
of the amplitude of complex deter-

ministic Gaussian processes, 64ff
of the fading intervals of Rayleigh

processes, 46ff
of the fading intervals of Rice

processes, 52
of the line-of-sight component, 67
of the phase of complex deterministic

Gaussian processes, 64ff, 67
of the phase of complex discrete de-

terministic Gaussian processes,
312

of the phase of complex Gaussian
random processes, 40

of the phase of complex Gaussian
random processes with cross-
correlated components, 166, 192,
227

of uniformly distributed random
variables, 15

Probability measure, 12
Probability space, 12, 20
Processes

deterministic, 55ff, 58ff
elementary properties, 59ff
statistical properties, 63ff

discrete deterministic, 290ff
ergodic, see Ergodic processes

stationary, see Stationary processes
stochastic, see Stochastic processes

Random variables, 11ff
addition of, 19
definition, 12
functions of, 19ff
multiplication of, 19

Rayleigh channel, 55
Rayleigh distribution, 17
Rayleigh process, 35

deterministic, 58
discrete deterministic, 292
statistical properties, 39ff

Realization, 21
direct, 289

Rectangular function, 160
Reference model, 6

for classical Loo processes, 222
for extended Suzuki processes of

Type I, 173
for extended Suzuki processes of

Type II, 198
for Gaussian random processes, 57
for generalized Rice processes, 210
for modified Loo processes, 220

Rice channel, 55
Rice distribution, 17
Rice factor, 39

of extended Suzuki models of Type I,
184

of extended Suzuki models of
Type II, 206

of generalized Rice processes, 217
of modified Loo models, 236

Rice method, 56, 81
Rice process, 35

deterministic, 58
deterministic generalized, 213ff
extended, 187
generalized, 208ff
statistical properties, 39ff
with cross-correlated components,

157ff
analytical model, 159

Rural Area, 259, 343
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Sample function, 21
Sample points, 11
Sample space, 12
Sampling condition, 31
Sampling frequency, 30, 70, 294
Sampling interval, 29, 59, 70, 270, 289
Sampling rate, 30
Sampling rate ratio, 270, 286
Sampling theorem, 31, 310
Satellite mobile radio channels, 155
Scattering function

of DGUS models, 273, 275
of L-path channel models according

to COST 207, 265
of WSSUS models, 254

Scattering zones
elliptical, 244

Selection matrix, 296
Shift register, 297
Shift register system, 297ff
Short-term fading, 157, 186
σ-algebra, 12
σ-field, 12
Signals

deterministic continuous-time, 27ff
deterministic discrete-time, 29ff

Simulation
of deterministic extended Suzuki

processes of Type I, 185
of deterministic extended Suzuki

processes of Type II, 209
of deterministic modified Loo pro-

cesses, 235, 240
Simulation model

for complex deterministic Gaussian
processes, 268

for deterministic extended Suzuki
processes of Type I, 178

for deterministic extended Suzuki
processes of Type II, 203

for deterministic Gaussian processes,
58

for deterministic generalized Rice
processes, 215

for deterministic modified Loo pro-
cesses, 232

for deterministic Rice processes, 59

for discrete-time deterministic Rice
processes, 59

for frequency-selective mobile radio
channels, 270

for stochastic Gaussian processes, 58
for the channel models according to

COST 207, 284ff
Simulation time, 71
Sinc function, 31, 160
Slow-term fading, 34
Standard normal distribution, 16
State model, 156
Stationary processes, 22ff

strict-sense, 23
wide-sense, 23

Stochastic processes, 20ff
complex-valued, 21

Struve’s function, 160
Suzuki channel, 55
Suzuki distribution, 18
Suzuki process, 155

classical, 156
deterministic extended of Type I,

178ff
deterministic extended of Type II,

200ff
extended of Type I, 156, 157ff, 172ff

average duration of fades, 176
cumulative distribution function,

176
deterministic simulation model,

178
level-crossing rate, 175
probability density function, 173
reference model, 173

extended of Type II, 156, 185ff, 196ff
average duration of fades, 200
cumulative distribution function,

200
deterministic simulation model,

203
level-crossing rate, 199
probability density function, 196
reference model, 198

generalized, 156, 213
modified, 155

System functions
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of frequency-selective channels, 245ff
of frequency-selective deterministic

channel models, 267ff
relations for DGUS models, 273
relations for frequency-selective

channels, 249

Tables system, 292ff
Tapped-delay-line model, 247
Tchebycheff inequality, see Chebyshev

inequality
Time correlation function

of DGUS models, 279
of WSSUS models, 258

Time-frequency correlation function
of DGUS models, 273, 275
of WSSUS models, 254, 256

Transfer function, 56
Doppler-variant, 248

of DGUS models, 272
time-variant, 247

of DGUS models, 271
Transversal filter, 246
Typical Urban, 259, 344

Uncorrelated scattering (US) models,
253ff

Uniform distribution, 15
US models, 253ff

Variance
definition, 14
of Gaussian distributed random vari-

ables, 16
of lognormally distributed random

variables, 18
of Rayleigh distributed random vari-

ables, 17
of Rice distributed random variables,

17
of Suzuki distributed random vari-

ables, 18
Variance function, 22
Variance operator, 14

Weibull distribution, 118
WGN, see White Gaussian noise
White Gaussian noise, 56

Wide-sense stationary (WSS) models,
251ff

Wide-sense stationary uncorrelated
scattering (WSSUS) models, 251,
253ff

Wiener-Khinchine relationship, 23
WSS models, 251ff
WSSUS models, 251, 253ff
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