

ASIC AND FPGA VERIFICATION:
A GUIDE TO COMPONENT MODELING

ABOUT THE AUTHOR

Richard Munden has been using and managing CAE systems since 1987. He has been
concerned with simulation and modeling issues for as long.

Richard co-founded the Free Model Foundry (http://eda.org/fmf/) in 1995 and is its
president and CEO. He has a day job as CAE/PCB manager at Siemens Ultrasound
(previously Acuson Corp) in Mountain View, California. Prior to joining Acuson, he
was a CAE manager at TRW in Redondo Beach, California. He is a well-known con-
tributor to several EDA users groups and industry conferences.

His primary focus over the years has been verification of board-level designs.

ASIC AND FPGA
VERIFICATION:
A GUIDE TO
COMPONENT
MODELING

RICHARD MUNDEN

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

MAGPR 8/18/04 2:59 PM Page iii

The Morgan Kaufmann Series in Systems on Silicon

Series Editors: Peter Ashenden, Ashenden Designs Pty. Ltd. and Adelaide University, and
Wayne Wolf, Princeton University

The rapid growth of silicon technology and the demands of applications are
increasingly forcing electronics designers to take a systems-oriented approach to
design. This has led to new challenges in design methodology, design automation,
manufacture and test. The main challenges are to enhance designer productivity
and to achieve correctness on the first pass. The Morgan Kaufmann Series in
Systems on Silicon presents high quality, peer-reviewed books authored by leading
experts in the field who are uniquely qualified to address these issues.

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Readings in Hardware/Software Co-Design
Edited by Giovanni De Micheli, Rolf Ernst, and Wayne Wolf

Modeling Embedded Systems and SoCs
Axel Jantsch

Multiprocessor Systems-on-Chips
Edited by Wayne Wolf and Ahmed Jerraya

Forthcoming Titles

Rosetta User’s Guide: Model-Based Systems Design
Perry Alexander, Peter J. Ashenden, and David L. Barton

Rosetta Developer’s Guide: Semantics for Systems Design
Perry Alexander, Peter J. Ashenden, and David L. Barton

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

MAGPR 8/18/04 2:59 PM Page iv

Senior Editor Denise E. M. Penrose Composition SNP Best-set Typesetter Ltd.

Publishing Services Manager Andre Cuello Technical Illustration Graphic World

Project Manager Brandy Palacios Copyeditor Graphic World

Project Management Graphic World Proofreader Graphic World

Developmental Editor Nate McFadden Indexer Graphic World

Editorial Assistant Summer Block Printer Maple Press

Cover Design Chen Design Associates Cover printer Phoenix Color

Morgan Kaufmann Publishers

An imprint of Elsevier.

500 Sansome Street, Suite 400

San Francisco, CA 94111

www.mkp.com

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks

or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of

a claim, the product names appear in initial capital or all capital letters. Readers, however,

should contact the appropriate companies for more complete information regarding trademarks

and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—

without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in

Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.

You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by

selecting “Customer Support” and then “Obtaining Permissions.”

Reprinted with permission from IEEE Std. 1076.4-2000, Copyright 2000 by IEEE, “IEEE

Standard VHDL Language Reference Manual”; IEEE Std. 1076.4-1995, Copyright 1995 by

IEEE, “Structure of a VITAL Model”; and IEEE Std.1497-2001, Copyright 2001 by IEEE, “IEEE

Standard for Standard Delay Format (SDF) for the Electronic Design Process.” The IEEE dis-

claims any responsibility or liability resulting from the placement and use in the described

manner.

Library of Congress Cataloging-in-Publication Data: Application Submitted

ISBN: 0-12-510581-9

Printed in the United States of America

05 06 07 08 09 5 4 3 2 1

MAGPR 8/18/04 2:59 PM Page v

This page intentionally left blank

vii

CONTENTS

Preface xv

PART I INTRODUCTION 1

CHAPTER 1 INTRODUCTION TO BOARD-LEVEL VERIFICATION 3

1.1 Why Models are Needed 3
1.1.1 Prototyping 3
1.1.2 Simulation 4

1.2 Definition of a Model 5
1.2.1 Levels of Abstraction 6
1.2.2 Model Types 7
1.2.3 Technology-Independent Models 9

1.3 Design Methods and Models 10

1.4 How Models Fit in the FPGA/ASIC Design Flow 10
1.4.1 The Design/Verification Flow 11

1.5 Where to Get Models 13

1.6 Summary 14

CHAPTER 2 TOUR OF A SIMPLE MODEL 15

2.1 Formatting 15

2.2 Standard Interfaces 17

MAGPR 8/18/04 2:59 PM Page vii

2.3 Model Delays 18

2.4 VITAL Additions 19
2.4.1 VITAL Delay Types 19
2.4.2 VITAL Attributes 20
2.4.3 VITAL Primitive Call 21
2.4.4 VITAL Processes 22
2.4.5 VitalPathDelays 24

2.5 Interconnect Delays 25

2.6 Finishing Touches 27

2.7 Summary 31

PART II RESOURCES AND STANDARDS 33

CHAPTER 3 VHDL PACKAGES FOR COMPONENT MODELS 35

3.1 STD_LOGIC_1164 35
3.1.1 Type Declarations 36
3.1.2 Functions 37

3.2 VITAL_Timing 37
3.2.1 Declarations 37
3.2.2 Procedures 38

3.3 VITAL_Primitives 39
3.3.1 Declarations 40
3.3.2 Functions and Procedures 40

3.4 VITAL_Memory 41
3.4.1 Memory Functionality 41
3.4.2 Memory Timing Specification 42
3.4.2 Memory_Timing Checks 42

3.5 FMF Packages 42
3.5.1 FMF gen_utils and ecl_utils 43
3.5.2 FMF ff_package 44
3.5.3 FMF Conversions 45

3.6 Summary 45

CHAPTER 4 AN INTRODUCTION TO SDF 47

4.1 Overview of an SDF File 47
4.1.1 Header 48

viii Contents

MAGPR 8/18/04 2:59 PM Page viii

4.1.2 Cell 50
4.1.3 Timing Specifications 50

4.2 SDF Capabilities 52
4.2.1 Circuit Delays 52
4.2.2 Timing Checks 55

4.3 Summary 58

CHAPTER 5 ANATOMY OF A VITAL MODEL 59

5.1 Level 0 Guidelines 59
5.1.1 Backannotation 60
5.1.2 Timing Generics 60
5.1.3 VitalDelayTypes 61

5.2 Level 1 Guidelines 63
5.2.1 Wire Delay Block 63
5.2.2 Negative Constraint Block 65
5.2.3 Processes 65
5.2.4 VITAL Primitives 70
5.2.5 Concurrent Procedure Section 70

5.3 Summary 70

CHAPTER 6 MODELING DELAYS 73

6.1 Delay Types and Glitches 73
6.1.1 Transport and Inertial Delays 73
6.1.2 Glitches 74

6.2 Distributed Delays 75

6.3 Pin-to-Pin Delays 75

6.4 Path Delay Procedures 76

6.5 Using VPDs 82

6.6 Generates and VPDs 83

6.7 Device Delays 83

6.8 Backannotating Path Delays 88

6.9 Interconnect Delays 89

6.10 Summary 90

Contents ix

MAGPR 8/18/04 2:59 PM Page ix

CHAPTER 7 VITAL TABLES 91

7.1 Advantages of Truth and State Tables 91

7.2 Truth Tables 92
7.2.1 Truth Table Construction 92
7.2.2 VITAL Table Symbols 92
7.2.3 Truth Table Usage 93

7.3 State Tables 97
7.3.1 State Table Symbols 97
7.3.2 State Table Construction 97
7.3.3 State Table Usage 98
7.3.4 State Table Algorithm 99

7.4 Reducing Pessimism 100

7.5 Memory Tables 101
7.5.1 Memory Table Symbols 101
7.5.2 Memory Table Construction 102
7.5.3 Memory Table Usage 103

7.6 Summary 105

CHAPTER 8 TIMING CONSTRAINTS 107

8.1 The Purpose of Timing Constraint Checks 107

8.2 Using Timing Constraint Checks in VITAL Models 108
8.2.1 Setup/Hold Checks 108
8.2.2 Period/Pulsewidth Checks 112
8.2.3 Recovery/Removal Checks 114
8.2.4 Skew Checks 117

8.3 Violations 121

8.4 Summary 122

PART III MODELING BASICS 123

CHAPTER 9 MODELING COMPONENTS WITH REGISTERS 125

9.1 Anatomy of a Flip-Flop 125
9.1.1 The Entity 125
9.1.2 The Architecture 129

x Contents

MAGPR 8/18/04 2:59 PM Page x

9.1.3 A VITAL Process 131
9.1.4 Functionality Section 133
9.1.5 Path Delay 134
9.1.6 The “B” Side 135

9.2 Anatomy of a Latch 137
9.2.1 The Entity 138
9.2.2 The Architecture 140

9.3 Summary 146

CHAPTER 10 CONDITIONAL DELAYS AND TIMING CONSTRAINTS 147

10.1 Conditional Delays in VITAL 147

10.2 Conditional Delays in SDF 149

10.3 Conditional Delay Alternatives 150

10.4 Mapping SDF to VITAL 152

10.5 Conditional Timing Checks in VITAL 153

10.6 Summary 156

CHAPTER 11 NEGATIVE TIMING CONSTRAINTS 157

11.1 How Negative Constraints Work 157

11.2 Modeling Negative Constraints 158

11.3 How Simulators Handle Negative Constraints 176

11.4 Ramifications 177

11.5 Summary 178

CHAPTER 12 TIMING FILES AND BACKANNOTATION 179

12.1 Anatomy of a Timing File 179
12.1.1 Header 179
12.1.2 Body 181
12.1.3 FMFTIME 181

12.2 Separate Timing Specifications 182

12.3 Importing Timing Values 183

12.4 Custom Timing Sections 183

Contents xi

MAGPR 8/18/04 2:59 PM Page xi

12.5 Generating Timing Files 184

12.6 Generating SDF Files 184

12.7 Backannotation and Hierarchy 185

12.8 Summary 187

PART IV ADVANCED MODELING 189

CHAPTER 13 ADDING TIMING TO YOUR RTL CODE 191

13.1 Using VITAL to Simulate Your RTL 191

13.2 The Basic Wrapper 192

13.3 A Wrapper for Verilog RTL 206

13.4 Modeling Delays in Designs with Internal Clocks 206

13.5 Caveats 207

13.6 Summary 208

CHAPTER 14 MODELING MEMORIES 209

14.1 Memory Arrays 209
14.1.1 The Shelor Method 210
14.1.2 The VITAL_Memory Package 210

14.2 Modeling Memory Functionality 211
14.2.1 Using the Behavioral (Shelor) Method 211
14.2.2 Using the VITAL2000 Method 223

14.3 VITAL_Memory Path Delays 231

14.4 VITAL_Memory Timing Constraints 232

14.5 PreLoading Memories 235
14.5.1 Behavioral Memory PreLoad 235
14.5.2 VITAL_Memory PreLoad 237

14.6 Modeling Other Memory Types 238
14.6.1 Synchronous Static RAM 238
14.6.2 DRAM 241
14.6.3 SDRAM 244

14.7 Summary 249

xii Contents

MAGPR 8/18/04 2:59 PM Page xii

CHAPTER 15 CONSIDERATIONS FOR COMPONENT MODELING 251

15.1 Component Models and Netlisters 251

15.2 File Contents 253

15.3 Generics Passed from the Schematic 253
15.3.1 Timing Generics 253
15.3.2 Control Generics 253

15.4 Integrating Models into a Schematic Capture System 254
15.4.1 Library Structure 254
15.4.2 Technology Independence 255
15.4.3 Directories 255
15.4.4 Map Files 256

15.5 Using Models in the Design Process 256
15.5.1 VHDL Libraries 257
15.5.2 Schematic Entry 257
15.5.3 Netlisting the Design 258
15.5.4 VHDL Compilation 258
15.5.5 SDF Generation 259
15.5.6 Simulation 261
15.5.7 Layout 261
15.5.8 Signal Analysis 262
15.5.9 Timing Backannotation 262
15.5.10 Timing Analysis 262

15.6 Special Considerations 262
15.6.1 Schematic Considerations 262
15.6.2 Model Considerations 263

15.7 Summary 266

CHAPTER 16 MODELING COMPONENT-CENTRIC FEATURES 269

16.1 Differential Inputs 269

16.2 Bus Hold 279

16.3 PLLs and DLLs 282

16.4 Assertions 284

16.5 Modifying Behavior with the TimingModel Generic 285

16.6 State Machines 285

16.7 Mixed Signal Devices 288

16.8 Summary 294

Contents xiii

MAGPR 8/18/04 2:59 PM Page xiii

CHAPTER 17 TESTBENCHES FOR COMPONENT MODELS 295

17.1 About Testbenches 295
17.1.1 Tools 295

17.2 Testbench Styles 296
17.2.1 The Empty Testbench 296
17.2.2 The Linear Testbench 296
17.2.3 The Transactor Testbench 296

17.3 Using Assertions 297

17.4 Using Transactors 298

17.5 Testing Memory Models 301

17.6 Summary 308

xiv Contents

PREFACE

Digital electronic designs continue to evolve toward more complex, higher pincount
components operating at higher clock frequencies. This makes debugging board
designs in a lab with a logic analyzer and an oscilloscope considerably more difficult
than in the past. This is because signals are becoming physically more difficult to
probe and because probing them is more likely to change the operation of the circuit.

Much of the custom logic in today’s products is designed into ASICs or FPGAs.
Although this logic is usually verified through simulation as a standard part of
the design process, the interfaces to standard components on the board, such as
memories and digital signal processors, often go unsimulated and are not verified
until a prototype is built.

Waiting to test for problems this late in the design process can be expensive,
however. In terms of both time and resources, the costs are higher than perform-
ing up-front simulation. The decision not to do up-front board simulation usually
centers around a lack of models and methodology. In ASIC and FPGA Verification:
A Guide to Component Modeling, we address both of these issues.

Historical Background

The current lack of models and methodology for board-level simulation is, in large
part, due to the fact that when digital simulation started to become popular in the
1980s, the simulators were all proprietary. Every Electronic Design Automation
(EDA) vendor had their own and it was not possible to write models that were
portable from one tool to another. They offered tools with names like HILO, SILO,
and TEGAS. Most large corporations, like IBM, had their own internal simulators.
At the ASIC and later FPGA levels each foundry had to decide which simulators
they would support. There were too many simulators available for anyone to
support them all. Each foundry had to validate that the models they provided
worked correctly on each supported release of their chosen simulators.

At the board level, the component vendors saw it was impractical to support all
the different simulators on the market. Rather than choose sides, they generally

xv

decided not to provide models at all. This led to the EDA vendors trying to provide
models. After all, what good is a simulator if the customer has nothing to simulate?

So, each EDA vendor produced its own library of mostly the same models: 7400
series TTL, 4000 series CMOS, a few small memories, and not much else. In those
days, that might be the majority of the parts needed to complete a design. But there
were always other parts used and other models needed. Customers wanting to run
a complete simulation had to model the rest of the parts themselves.

Eventually, someone saw an opportunity to sell (or rent) component models to
all the companies that wanted to simulate their designs but did not want to create
all the models required. A company (Logic Automation) was formed to lease models
of off-the-shelf components to the groups that were designing them into new
products. They developed the technology to model the components in their own
internal proprietary format and translate them into binary code specific to each
simulator.

Verilog, VHDL, and the Origin of VITAL

Verilog started out as another proprietary simulator in 1984 and enjoyed consid-
erable success. In 1990, Cadence Design Systems placed the language in the public
domain. It became an IEEE standard in 1995.

VHDL was developed under contract to the U.S. Department of Defense. It
became an IEEE standard in 1987. Whereas Verilog is a C-like language, it is clear
that VHDL has its roots in Ada. For many years there was intense competition
between Verilog and VHDL for mind share and market share. Both languages have
their strong points. In the end, most EDA companies came out with simulators that
work with both.

Early in the language wars it was noted that Verilog had a number of built-in,
gate-level primitives. Over the years these had been optimized for performance by
Cadence and later by other Verilog vendors. Verilog also had a single defined
method of reading timing into a simulation from an external file.

VHDL, on the other hand, was designed for a higher level of abstraction.
Although it could model almost anything Verilog could, and without primitives, it
allowed things to be modeled in a multitude of ways. This made performance opti-
mization or acceleration impractical. VHDL was not successfully competing with
Verilog-XL as a sign-off ASIC simulator. The EDA companies backing VHDL saw
they had to do something. The something was named VITAL, the VHDL Initiative
toward ASIC Libraries.

The VITAL Specification

The intent of VITAL was to provide a set of standard practices for modeling ASIC
primitives, or macrocells, in VHDL and in the process make acceleration possible.
Two VHDL packages were written: a primitives package and a timing package. The
primitives package modeled all the gate-level primitives found in Verilog. Because

xvi Preface

MAGPR 8/18/04 2:59 PM Page xvi

these primitives were now in a standard package known to the simulator writers,
they could be optimized by the VHDL compilers for faster simulation.

The timing package provided a standard, acceleratable set of procedures for
checking timing constraints, such as setup and hold, as well as pin-to-pin propa-
gation delays. The committee writing the VITAL packages had the wisdom to avoid
reinventing the wheel. They chose the same SDF file format as Verilog for storing
and annotating timing values.

SDF is the Standard Delay Format, IEEE Standard 1497. It is a textual file format
for timing and delay information for digital electronic designs. It is used to convey
timing and delay values into both VHDL and Verilog simulations. (SDF is discussed
in greater detail in Chapter 4.)

Another stated goal of VITAL is model maintainability. It restricts the writer to
a subset of the VHDL language and demands consistant use of provided libraries.
This encourages uniformity among models, making them easily readable by anyone
familiar with VITAL. Reabability and having the difficult code placed in a provided
library greatly facilitate the maintainence of models by engineers who are not the
original authors.

VITAL became IEEE Standard 1076.4 in 1995. It was reballoted in 2000. The 2000
revision offers several enhancements. These include support for multisource inter-
connect timing, fast path delay disable, and skew constraint timing checks.
However, the most important new feature is the addition of a new package to
support the modeling of static RAMs and ROMs.

The Free Model Foundry

In 1994 I was working at TRW in Redondo Beach California as a CAE manager. The
benefits of board-level simulation were clear but models were not available for most
of the parts we were using. I had written models for the Hilo simulator and then
rewritten them for the ValidSim simulator and I knew I would have to write them
again for yet another simulator. I did not want to waste time writing models for
another proprietary simulator.

At this time VITAL was in its final development and a coworker, Russ Vreeland,
convinced me to look at it. I had already tried Verilog and found it did not work
well at the board level. Although the show-stopper problems were tool related, such
as netlisting, and have since been fixed, other problems remain with the language
itself. These include (but are not limited to) a lack of library support and the inabil-
ity to read the strength of a signal. My personal opinion is that Verilog is fine for
RTL simulation and synthesis but a bit weak at board- and system-level modeling.
All that may be changed by SystemVerilog.

In 1994, VITAL seemed to have everything I needed to model off-the-shelf com-
ponents in a language that was supported by multiple EDA vendors. Russ figured
out how to use it for component models, developed the initial style and method-
ology, and wrote the first models. VHDL/VITAL seemed to be the answer to our
modeling problem.

Preface xvii

MAGPR 8/18/04 2:59 PM Page xvii

But TRW was in the business of developing products, not models. We felt that
models should be supplied by the component vendors just as data sheets were. We
suggested this to a few of our suppliers and quickly realized it was going to take a
long time to convince them. In the mean time we thought we could show other
engineers how our modeling techniques worked and share models with them.

In 1995, Russ Vreeland, Luis Garcia, and I cofounded the Free Model Foundation.
Our hope was to do for simulation models what the Free Software Foundation had
done for software: promote open source standards and sharing. We incorporated as
a not-for-profit. Along the way the state of California insisted that we were not a
“foundation” in their interpretation of the word. We decided we would rather switch
than fight and renamed the organization the Free Model Foundry (FMF).

Today, FMF has models with timing covering over 7,000 vendor part numbers.
All are free for download from our website at www.eda.org/fmf/. The models are
generally copyrighted under the Free Software Foundation’s General Public License
(GPL). Most of the examples in this book are taken from the FMF Web site.

Structure of the Book

ASIC and FPGA Verification: A Guide to Component Modeling is organized so that it
can be read linearly from front to back. Chapters are grouped into four parts: Intro-
duction, Resources and Standards, Modeling Basics, and Advanced Modeling. Each
part covers a number of related modeling concepts and techniques, with individ-
ual chapters building upon previous material.

Part I serves as an introduction to component models and how they fit into
board-level verification. Chapter 1 introduces the idea of board-level verification.
It defines component models and discusses why they are needed. The concept of
technology-independent modeling is introduced, as well as how it fits in the FPGA
and ASIC design flow. Chapter 2 provides a guided tour of a basic component
model, including how it differs from an equivalent synthesizable model.

Part II covers the standards adhered to in component modeling and the many
supporting packages that make it practical. Chapter 3 covers several IEEE and FMF
packages that are used in writing component models. Chapter 4 provides an
overview of SDF as it applies to component modeling. Chapter 5 describes the
organization and requirements of VITAL models. Chapter 6 describes the details
of modeling delays within and between components. Chapter 7 deals with VITAL
truth tables and state tables and how to use them. In Chapter 8, the basics of
modeling timing constraints are described.

Part III puts to use the material from the earlier chapters. Chapter 9 deals with
modeling devices containing registers. Chapter 10 details the use of conditional
delays and timing constraints. Chapter 11 covers negative timing constraints.
Chapter 12 discusses the timing files and SDF backannotation that make the style
of modeling put forth here so powerful.

Part IV introduces concepts for modeling more complex components. Chapter
13 demonstrates how to use the techniques discussed to build a timing wrapper

xviii Preface

MAGPR 8/18/04 2:59 PM Page xviii

around an FPGA RTL model so it can be used in a board-level simulation. Chapter
14 covers the two primary ways of modeling memories. Chapter 15 looks at some
things to consider when writing models that will be integrated into a schematic
capture system. Chapter 16 describes a number of different features encountered
in commercial components and how they can be modeled. Chapter 17 is a discus-
sion of techniques used in writing testbenches to verify component models.

Intended Audience

This book should be valuable to anyone who needs to simulate digital designs that
are not contained within a single chip. It covers the creation and use of a particu-
lar type of model useful for verifying ASIC and FPGA designs and board-level
designs that use off-the-shelf digital components. Models of this type are based on
VHDL/VITAL and are distinguished by their inclusion of timing constraints and
propagation delays. The numeric values used in the constraints and delays are
external to the actual models and are applied to the simulation through SDF
annotation.

The intent of this book is show how ASICs and FPGAs can be verified in the
larger context of a board or system. To improve readability, the phrase “ASICs and
FPGAs” will be abbreviated to just FPGAs. However, nearly everything said about
FPGA verification applies equally to ASIC verification.

This book should also be useful to engineers responsible for the generation and
maintenance of VITAL libraries used for gate-level simulation of ASICs and FPGAs.
Component vendors that provide simulation models to their customers are able to
take advantage of some important opportunities. The more quickly a customer is
able to verify a design and get it into production, the sooner the vendors receive
volume orders for their parts. The availability of models may even exert an influ-
ence over which parts, from which vendors, are designed into new products. Thus,
the primary purpose of this book is to teach how to effectively model complex off-
the-shelf components. It should help component vendors, or their contractors,
provide models to their customers. It should also help those customers understand
how the models work. If engineers are unable to obtain the models they need, this
book will show them how to create their own models.

Readers of this book should already have a basic understanding of VHDL. This
book will cover the details of modeling for verification of both logic and timing.
Because many people must work in both Verilog and VHDL, it will show how to
use VHDL component models in the verification of FPGAs written in Verilog.

The modeling style presented here is for verification and is not intended to be
synthesizable.

Resources for Help and Information

Although this book attempts to provide adequate examples of models and tips on
using published VHDL packages, most models and packages are too lengthy to be

Preface xix

MAGPR 8/18/04 2:59 PM Page xix

included in a printed text. All of the models discussed in this book are available in
their entirety from the Free Model Foundry Web site (www.eda.org/fmf/). The full
source code for the IEEE packages discussed should have been provided with your
VHDL simulator. They may also be ordered from the IEEE at standards.ieee.org. Addi-
tional material may be found at www.mkp.com/companions/0125105819. Although
I have been careful to avoid errors in the example code, there may be some that I
have missed. I would be pleased to hear about them, so that I can correct them in
the online code and in future printings of this book. Errata and general comments
can be emailed to me at rick.munden@eda.org.

Acknowledgments

Very little in this book constitutes original thoughts on my part. I have merely
applied other people’s ideas. Russ Vreeland developed the concept of using VITAL
for component modeling. That idea has formed the basis for not just this book but
for the Free Model Foundry. Ray Steele took the idea, expanded it, and applied the
notion of a rigorously enforced style. Yuri Tatarnikov showed us the basics of how
to use VITAL to model complex components.

I would like to thank Peter Ashenden for publishing his VHDL Cookbook on the
Internet. It was my introduction to VHDL back when there was nothing else avail-
able. Larry Saunders taught the first actual VHDL class I attended. I hope I do not
ruin his reputation with this book.

Ray Ryan provided training on VITAL prior to it becoming a standard. His
material was often referred to during the course of writing this book. His classes
were instrumental in convincing Russ and I that VITAL would solve most of our
technical problems regarding component modeling.

David Lieby patiently reviewed the first drafts of the book and weeded out all
the really embarrassing errors. Additional valuable reviewers were Russ Vreeland,
Ray Steele, Hardy Pottinger, Predrag Markovic, Bogdan Bizic, Yuri Tatarnikov, Randy
Harr, and Larry Saunders.

Nate McFadden provided critical review of the logical structure of the text and
smoothed the rough edges of my prose.

Finally, I thank my loving wife Mary, who fervently hopes I will never do any-
thing like this again.

xx Preface

MAGPR 8/18/04 2:59 PM Page xx

Part I provides a brief introduction to the board-level verification of FPGAs. The
justification for the effort that goes into component modeling and the advantages
of board-level simulation are discussed. Ideas for reducing the effort involved
in component modeling are explored. In addition, we look at the different levels
of abstraction at which models are written and their impact on simulation
performance and accuracy.

Chapter 1 introduces board-level simulation. Component models are defined
and the effort required to create them justified. Hints are also given regarding how
to avoid having to create them all yourself. Technology-independent modeling is
described and why it belongs in your FPGA design flow.

Chapter 2 observes a simple nand gate as it slowly evolves from a small syn-
thesizable model to a full-fledged component model. It discusses the importance
of consistent formatting and style in component modeling and how they affect
maintenance. Basic concepts of modeling are introduced.

P

A

R

T I Introduction

This page intentionally left blank

1

3

C

H

A

P

T

E

R

Introduction to Board-Level
Verification

As large and complex as today’s FPGAs are, they always end up on a board. Though
it may be called a “system on a chip,” it is usually part of a larger system with other
chips. This chapter will introduce you to the concept of verifying the chip in the
system.

In this chapter we discuss the uses and benefits of modeling and define com-
ponent modeling. This is done in the context of verifying an ASIC or FPGA design.
We also provide some historical background and differentiate the types of models
used at different stages of digital design.

1.1 Why Models Are Needed

A critical step in the design of any electronic product is final verification. The
designer must take some action to assure the product, once in production, will
perform to its specification. There are two general ways to do this: prototyping and
simulation.

1.1.1 Prototyping

The most obvious and traditional method of design verification is prototyping. A
prototype is a physical approximation of the final product. The prototype is tested
through operation and measurement. It may contain additional instrumentation
to allow for diagnostics that will not be included in production. If the prototype
performs satisfactorily, it provides proof that the design can work in production.
If enough measurements are made, an analysis can be done that will provide
insight into the manufacturing yield.

If the prototype fails to meet specifications, it will usually be examined to
determine the source of its deficiency. Depending on the nature of the product,
this may be easy or prohibitively difficult to do. An electronic doorbell built from
off-the-shelf parts would lie on the easy end of the continuum; a high-end micro-
processor would be prohibitively difficult. Almost all products get prototyped at
least once during their design.

MAG01 8/18/04 3:02 PM Page 3

1.1.2 Simulation

The other method of design verification is simulation. Simulation attempts to create
a virtual prototype by collecting as much information as is known or considered
pertinent about the components used in the design and the way they are con-
nected. This information is put into an appropriate set of formats and becomes a
model of the board or system. Then, a program, the simulator, executes the model
and shows how the product should behave. The designer usually applies a stimu-
lus to the model and checks the results against the expected behavior. When dis-
crepancies are found, and they usually are, the simulation can be examined to
determine the source of the problem. The design is then changed and the simula-
tion run again. This is an iterative process, but eventually no more errors are found
and a prototype is built.

Simulation requires a large effort but in many situations it is worth the trouble
for one or more of the following reasons:

• Easier debugging It is easier to find the source of a problem in a virtual pro-
totype than in a physical prototype. In the model, all nodes are accessible.
The simulator does not suffer from physical limitations such as bandwidth.
Observing a node does not alter its behavior.

• Faster, cheaper iterations When a design error is identified, the model can
be quickly fixed. A physical prototype could require months to rebuild and
cost large sums of money.

• Virtual components can be used A virtual prototype can be constructed
using models of components that are not yet available as physical objects.

• Component and board process variations and physical tolerances can be
explored A physical prototype can embody only a single set of process vari-
ations. A virtual prototype can used to explore design behavior across a full
range of variations.

• Software development can begin sooner Diagnostic and embedded soft-
ware development can begin using the virtual prototype. The interplay
between hardware and software development often shows areas where the
design could be improved while there is still time to make changes.

For FPGA design, nearly everyone simulates the part they are designing. The
FPGA vendor provides models of simulation primitives (cell models), the lowest-level
structures in the design that the designer is able to manipulate. There are usually
between 100 and 300 of these relatively simple primitives in an FPGA library. The
silicon vendor supplies them because everyone agrees simulation is required and
it is a reasonably sized task.

Every FPGA eventually ends up on a board, but for board-level design only the
most dedicated design groups simulate. Most other groups would like to but it just
seems too difficult and time consuming. The problem is few component vendors

4 Chapter 1 Introduction to Board-Level Verification

MAG01 8/18/04 3:02 PM Page 4

provide simulation models (although the number is slowly growing). Design groups
must often write their own models. Unlike the FPGA primitives, each component
needs to be modeled, and these models can be very large. In the end, many
designers build prototypes. They then test them in the lab, as best they can, and
build new prototypes to correct the errors that are found rather than performing
the more rigorous simulations.

It has been said that the beauty of FPGAs is that you don’t have to get them
right the first time. This is true. However, you do have to get them right eventu-
ally. The iterative process of design and debug has a much faster cycle time when
it is simulation based rather than prototype based. Not just the prototyping time
is saved. The actual debug is much faster using a simulation than using a physical
board, as illustrated in Figure 1.1. This is becoming even more true as boards
incorporate larger, finer-pitched, ball grid array components.

1.2 Definition of a Model

For the purposes of this book, a model is a software representation of a circuit, a
circuit being either a physical electronic device or a portion of a device. This book
concentrates exclusively on models written in VHDL but it includes methods for
incorporating Verilog code in a mixed-language verification strategy.

In modeling, there are different levels of abstraction and there are different
types of models. The two are related but not quite the same thing. Think of a
design being conceived of at a level of abstraction and modeled using a particu-
lar model type. It is always easier to move from higher to lower levels of abstrac-
tion than to move up. Likewise, it is difficult to model a component using a
model type that is at a higher level than the data from which the model is being
created.

1.2 Definition of a Model 5

Design
1 Day

Simulation Cycle Time

Debug
1 Hour

Simulate
1 Hour

Design
1 Day

Prototype Cycle Time

Debug
1 Day

Prototype
1 Week

Figure 1.1 Relative iteration times

MAG01 8/18/04 3:02 PM Page 5

1.2.1 Levels of Abstraction

All digital circuits are composed primarily of transistors. Modern integrated circuits
contain millions and soon billions of these transistors. Transistors are analog
devices. In digital circuits they are used in a simplified manner, as switches. Still,
they must be designed and analyzed in the analog domain.

Analog simulation is very slow and computationaly intensive. To simulate mil-
lions of transistors in the analog domain would be exceedingly slow, complex, and
not economically practical. Therefore, like most complex problems, this one is attacked
hierarchically. Each level of hierarchy is a level of abstraction. Small groups of tran-
sistors are used to design simple digital circuits like gates and registers. These are small
enough to be easily simulated in the analog domain and measured in the lab. The
results of the analog simulations are used to assign overall properties, such as propa-
gation delays and timing constraints to the gates. This is referred to as characterization.

The characterized gates can then be used to design more complex circuits, coun-
ters, decoders, memories, and so on. Because the gates of which they are composed
are characterized, the underlying transistors can be largely ignored by the designer.

This process is extended so that still more complex products such as micro-
processors and MPEG decoders can be designed from counters and instruction
decoders. Computers and DVD players are then designed from microprocessors and
MPEG decoders. This hierarchical approach continues into the design of global
telecommunications networks and other planet-scale systems.

We will follow this process by discussing models starting at the gate level of com-
plexity and going up through some of the more complex single integrated circuits.

Gate Level

Gate-level models provide the greatest level of detail for simulation of digital cir-
cuits and are the lowest level of abstraction within the digital domain. Gate-level
simulation is usually a requirement in the ASIC design process. For FPGAs and
ASICs, the library of gate-level models is provided by the component vendor or
foundry. The gate-level netlist can be derived from schematics but more often is
synthesized from RTL code.

Because it includes so much detail, gate-level simulation tends to be slower than
register transfer level (RTL) or behavioral simulation. However, because gate-level
models are relatively simple, several EDA vendors have created hardware or soft-
ware tools for accelerating simulations beyond the speeds available from general-
purpose HDL simulators.

RTL

The most discussed and practiced form of HDL modeling is RTL. RTL is used for
designing chips such as ASICs and FPGAs. Its purpose is to describe design intent
at a level less detailed than the gate level but detailed enough to be understood by

6 Chapter 1 Introduction to Board-Level Verification

MAG01 8/18/04 3:02 PM Page 6

a synthesis engine. The synthesis engine then decomposes the RTL description to
a gate-level description that can be used to create an ASIC layout or to generate a
program for an FPGA.

The person writing the RTL description is concerned primarily with the circuit’s
interior function. He can specify details such as the type of carry chain used in an
adder or the encoding scheme used in a state machine. For the designer, the chip
is the top level of the design. When the RTL is used in simulation, it will usually
be the device under test (DUT).

RTL models can and should be simulated. This verifies the functionality of the
code. However, the RTL code, as written for synthesis, does not include any delay
or timing constraint information. Of course, delays could be included but until a
physical implementation has been determined the numbers would not be accurate.
Accurate timing comes from simulating the chip at the gate level.

Behavioral

In contrast to lower-level models, behavioral models provide the fewest details and
represent the highest level of abstraction discussed in this book. The purpose of a
behavioral model is to simulate what happens on the edge of a chip or cell. The user
wants to see what goes in and what comes out and does not care about how the work
is done inside. If delays are modeled, they are modeled as pin-to-pin delays.

The reduced level of detail allows behavioral models to generally run much faster
than either gate-level or RTL models. They are also much easier to write, assuming
a high-level description of the component is available.

Looking from this perspective, models of off-the-shelf components should be
written at the behavioral level whenever possible. Besides being faster to write and
faster to run, they give away little or no information about how a part is designed
and built. They are inherently nonsynthesizable and do not disclose intellectual
property (IP) beyond what is published in the component’s data sheet.

Bus Functional

Bus functional models (BFMs) are usually created for very complex parts for which
a full behavioral model would be too expensive to create or too slow to be of value.
BFMs attempt to model the component interface without modeling the component
function. They are not complete enough to simulate running software but they are
adequate for verifying that the component is correctly designed into the larger
system. Microprocessors and digital signal processors are candidates for bus
functional models.

1.2.2 Model Types

There are three types of HDL models in common use: cell, RTL, and behavioral.
Component models are usually a special case of behavioral models.

1.2 Definition of a Model 7

MAG01 8/18/04 3:02 PM Page 7

Cell

Cell models describe the functionality of the cells in the gate-level netlist. They
are provided in libraries by FPGA vendors and are usually specific to a particular
FPGA family. Cell models include propagation delays and timing constraints.
However, the actual delay and constraint values are not coded directly into the
models. Instead, these values are calculated by software usually provided by
the FPGA vendor. The calculated values are then written to an SDF file and
annotated into the simulation. Cell models are commonly of low to medium
complexity.

RTL

The RTL model is used to describe a digital circuit a designer intends to synthesize.
RTL models do not include timing. They are also used to simulate a design prior
to synthesis. RTL models contain no information regarding propagation delays or
timing constraints. A synthesis engine converts an RTL model into a gate-level
netlist for a targeted FPGA. The gate-level netlist then instantiates a number of
gates or cells and describes how they are connected to each other, as shown in
Figure 1.2.

Behavioral

Behavioral models describe what a circuit or system does without attempting to
explain how it does it. They are written with the fewest constraints: They may or
may not be synthesizable, they may or may not include timing, and they may
or may not be cycle accurate. They may be intended for use in architectural
exploration, performance modeling, or hardware/software codesign.

Behavioral model development is not limited to VHDL and Verilog. They may
be written in general computing languages such as C/C++ or any of the special
system-level languages, such as Esterel or Rosetta.

8 Chapter 1 Introduction to Board-Level Verification

CELLS

D0

RTL

IF CLK’EVENT AND CLK = ‘1’ THEN

 IF SEL = ‘0’ THEN

 Q <= DO;

 ELSE

 Q <= D1;

 END IF;

END IF;

D1

SEL

synthesis
CLK

Q

Figure 1.2 RTL produces cells

MAG01 8/18/04 3:02 PM Page 8

Component

Component models are models of off-the-shelf components used in board-level
design. They use the same techniques for describing propagation delays and timing
constraints as cell models. Models of simple components are constructed in the
same manner as models of simple gates. Components, however, can be much more
complex than gates. Complex components are modeled using a mixture of behav-
ioral, RTL, and gate-level techniques with the intent of including as little detail as
required to produce the correct behavior at the component interface. Sometimes,
only their interfaces are modeled, in which case they may be referred to as BFMs.

It is possible to create a component model for an FPGA by embedding an RTL
model in a wrapper that provides pin-to-pin propagation delays and timing con-
straint checks. Such a model can be used to accelerate the simulation of a board
or system containing one or more large, user-designed components. A model
constructed in this manner will provide much of the functionality of a gate-level
model but execute at the speed of a RTL model. Figure 1.3 illustrates how the RTL
code from Figure 1.2 might be incorporated into a component model.

1.2.3 Technology-Independent Models

Creating component models is work, and unless you work for a component vendor,
it may not be your primary responsibility. Most often, you would like to write as
few models as necessary to accomplish your verification goals. The best way
to reduce the number of models needed is to make them technology (timing)
independent.

The core concept is the separation of timing and behavior. In this method the
VHDL (or Verilog) model describes component behavior but contains no timing

1.2 Definition of a Model 9

Q

CLK INPUT DELAYS

SEL

TIMING
CONSTRAINT

CHECKS

OUTPUT
DELAYS

FUNCTIONALITY
BEHAVIORAL, RTL, or BFM

D1

D0

Figure 1.3 Component model of circuit from Figure 1.2

MAG01 8/18/04 3:02 PM Page 9

information. All timing values, for delays and constraints, reside in a separate ASCII
file. A single model may represent many parts that differ only in timing. A single
timing file contains all the different timings for that model. A tool is used to extract
the desired timing from all the timing files for all the models and generate an SDF
file for the entire design.

1.3 Design Methods and Models

There are many design methods that use the various type of models described here.
One such method is the classic top-down style. In this method, a behavioral model
of the system to be designed is written and simulated. It is modified until it ade-
quately describes the desired product. It then becomes an executable specification
for the design against which the design implementation can be compared. The
design is then partitioned into sections that will be custom built with ASICs and
FPGAs and sections that will be built with off-the-shelf (OTS) components (if any).
There may be trade-off studies done to determine the optimum partitioning
between custom and OTS hardware.

The custom section is further partitioned into as many different custom
components as required and each of those is coded at the register-transfer level and
synthesized to gates. The OTS section is designed using schematics. The custom
parts are added to the schematic and, if models are available of the OTS parts, the
system can be simulated to verify that all the components, including the custom
ones, are correctly connected and will perform the desired functions. This method
is shown in Figure 1.4.

The top-down method seems best suited for designs that have rigid performance
requirements. These designs could be for defense or commercial markets that are
performance driven and have very high volumes.

Another, more common approach may be called either bottom-up or outside-in.
In this method performance goals are tempered by cost considerations. Instead of
an executable specification, the design exploration may begin with the question,
“How good can we make it and still meet our cost goals?” In such environments,
custom components are designed only when they will be more cost effective than
off-the-shelf components. Component availability can strongly influence the
architecture of this type of product.

A representation of the bottom-up method is shown in Figure 1.5.
In both of the described methods, there is a point at which custom-designed

components, ASICs and FPGAs, must be integrated with off-the-shelf components.
Verifying correct integration is where component models come into the picture.

1.4 How Models Fit in the FPGA/ASIC Design Flow

Rarely does an FPGA become the only digital component in a product. Most have
to interface with other FPGAs or off-the-shelf parts. These may be memories, micro-
processors, digital signal processors, bus interface chips, or just glue logic. Although

10 Chapter 1 Introduction to Board-Level Verification

MAG01 8/18/04 3:02 PM Page 10

most of the verification effort goes into proving that the internal logic of the custom
part meets its specification, its interfaces with the rest of the system must be correct
for it to contribute to a working product. Simulating these interfaces is most easily
done by using models of the surrounding components.

Even when verifying the FPGA’s internal logic, external component models may
be used. A testbench may be more accurate and easier to construct if it incorpo-
rates models of peripheral components. These models can prove particularly helpful
in uncovering errors in power up, reset, and boundary conditions.

1.4.1 The Design/Verification Flow

For FPGA-on-board verification, FPGAs are designed in VHDL or Verilog. They can
be modeled at the behavioral level, RTL, or gate level. The boards they go into are
designed using a schematic capture system. Schematics are still used for board
design because they are a convenient and effective method of entering and con-
veying information about the logic and physical characteristics of a design. The

1.4 How Models Fit in the FPGA/ASIC Design Flow 11

Executable Specification

Custom
Components

OTS
Components

RTL

GATE

Schematic

Partitioning

trade-offs

Figure 1.4 Classic top-down design method

MAG01 8/18/04 3:02 PM Page 11

schematic tool generates a VHDL netlist and other files needed to interface with a
printed circuit board (PCB) layout tool. The components on the board are laid out
and the connections between them routed in the PCB tool.

At this point, the FPGA has a model, the other components on the board have
models, and the netlist describes how they are connected. All of these are fed to
the HDL analyzer/compiler.

In addition to models describing their logical operation, these components have
timing files. An SDF extraction tool reads the netlist and the timing files to create
an SDF file with timing for all the components that are in the netlist. The FPGA
may have its own SDF file, and still another SDF file can be generated by the PCB
layout tool, or a signal integrity tool, to describe the interconnect delays.

The SDF file(s) and the compiled models are read by the simulator. A testbench
provides the stimulus. The results are examined by the design engineer and the
necessary changes are made to the board and/or FPGA design. This process is
repeated until no more errors are found or it is otherwise determined to build the
first prototype. This, of course, does not mean there are no more errors, just that
you need to do something different to find them.

A diagram of this flow is shown in Figure 1.6. Keep it in mind as you learn to
create and use component models as part of your ASIC/FPGA system verification
strategy.

12 Chapter 1 Introduction to Board-Level Verification

Design Goals

Component Exploration

RTL

GATE

Schematic

Figure 1.5 The bottom-up flow

MAG01 8/18/04 3:02 PM Page 12

1.5 Where to Get Models

For a model to have maximum utility and portability, it must be available to the
engineer as source code. There are three places to get such models. Some com-
ponent vendors, mostly memory suppliers, provide source code models. Micron
Technology was one of the pioneers in providing simulation models to its cus-
tomers directly from its Web site. IDT and AMD memory divisions have both taken
up the challenge and provide models of the style presented in this book. Intel flash
memory division also offers some models. Although some of the models offered
are quite good, others seem to have been written for the purpose of simulating a
single, stand-alone part with no provision for verifying the component in a larger
design.

1.5 Where to Get Models 13

Board
Netlist

Results

Schematic
Tool

Compiler

PCB
Tool

SDF
Tool

Component
Timing Files

Component
Models

FPGA
Model

Simulator
FPGA
SDF
File

Component
SDF
File

Board-Level
Interconnect

SDF File

Figure 1.6 Simulation data flow

MAG01 8/18/04 3:02 PM Page 13

There are also some EDA vendors who offer models. These vary widely and may
be encrypted, requiring a license or special software, or they may be in source code
form. Cost and usability also vary. Most models from EDA vendors and component
vendors do not allow for backannotation of interconnect delays and may not allow
for SDF backannotation at all.

Writing your own models is, of course, an option. This book provides the guid-
ance you need to write complete and efficient models for use in ASIC/FPGA/board
verification. This book also demonstrates how to incorporate your RTL or gate-level
design into the board-level simulation. For the models you are able to find on the
World Wide Web, it provides insight into how the models are constructed and how
to use them.

In addition, as mentioned in the preface, another source of models is the Free
Model Foundry. If you do write your own models of off-the-shelf components, you
might consider sharing them with others. This can be done through the Free Model
Foundry.

1.6 Summary

The verification of an FPGA is not complete until it has been simulated as a com-
ponent at the board level. Doing this requires having models of the off-the-shelf
components to which it is connected. These component models are quite different
from the RTL models you write for synthesis. Some of them are available from
vendor Web sites (if not, always ask for them) or from the Free Model Foundry, and
others you will need to write yourself. Once you have the models, your FPGA design
can be simulated at the board level to verify correct interfaces and system
functionality.

The verification effort is worth the trouble because it can find errors that may
be difficult to uncover in a prototype. It can also find them before the prototype
is built, possibly saving board spins. Once a board-level model is available, it is
often possible to begin some types of software development and reduce overall
schedule.

14 Chapter 1 Introduction to Board-Level Verification

MAG01 8/18/04 3:02 PM Page 14

2

15

C

H

A

P

T

E

R

Tour of a Simple Model

In this chapter we examine a very basic component model, a 2-input nand gate,
in order to better understand the different goals of simulation and synthesis. This
simple model allows us to review the basic requirements of a component model
and see how such a model is different from the RTL models written for synthesis.
The reason for beginning with such a trivial model is that it allows us to concen-
trate on the new concepts normally present in a VITAL component model that are
not found in an RTL model. (Much more complex models will be discussed later
in the book.)

The synthesizable 2-input nand gate we are to examine is shown in Figure 2.1. It
is part of a larger synthesizable design. Written in VHDL code, the model has an
active low output and is designated as such by appending a “neg” to the end of its
name. (The reason for this particular convention is explained later.) This is a per-
fectly good model of a nand gate—if you are designing nand gates for synthesis only.
On the other hand, if your job is to create a nand gate model that will be used as an
FPGA simulation primitive or an off-the-shelf component to be used in a board-level
simulation, you might find this model has some deficiencies. Let’s look more closely
at this model to see how it can be enhanced with simulation in mind, our goal being
to create a VHDL model for the nand gate and the SDF to accompany it.

2.1 Formatting

Code formatting is often overlooked but it is one important way of improving any
model that will be reused. When you are writing the RTL code for your latest chip,
you may think no one else is going to spend much time trying to read your code.
Perhaps not even you. You may feel that how you format your code is between
you, your simulator, and your synthesis tool. Reuse is largely underexploited
because too much code is written under constraints that do not allow the extra
time to be taken to make it understandable and usable to other engineers. It is not
written with other readers in mind. But when you are writing a component model,
everybody wants to reuse your work. They just are not that excited about spend-
ing time modeling someone else’s design. So everyone is going to read your code.

MAG02 8/18/04 3:02 PM Page 15

Also, because the parts you model are likely to reappear again in your next design,
you are likely to read it too. Since you may also need to maintain it, you will want
do what you can to make the model easy to edit and to understand.

Uniformity is important. If all your models are written in the same style and
format, it becomes easy to navigate through them to find the section you want,
and it will be easier to understand them. When you have a large number of models
and a global change is required, having the models written in a consistent format
may mean they can be updated using a script in batch mode instead of you having
to plod through them one by one.

The first thing we can do is put a banner on the top so we can always see which
file we are editing or which model we have printed. Let us make this banner 80
characters wide because 80 columns print reasonably well and we can set our
window width to match the banner so we always know where to break a line.

-- File Name: ex2_nand.vhd

Next should come the library statements. Each model is standalone and in its own
file, so each one needs its own library clauses.

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

In the entity, we will use a separate line for each port. This takes up more space
but is more readable and accessible by scripts. Besides, lines are cheap.

PORT (

A : IN std_logic;

B : IN std_logic;

YNeg : OUT std_logic

);

Let’s add another banner to separate the entity and architecture sections.

-- ARCHITECTURE DECLARATION

Finally, we will capitalize key words and signal names so they stand out better. Some
people prefer to make key words lowercase and capitalize everything else. Some are
even passionate about whether key words are uppercase or lowercase. It is really
just an arbitrary decision. I have chosen to use uppercase key words because that is

16 Chapter 2 Tour of a Simple Model

entity nandgate is
 port (a, b : in std_logic; yneg : out std_logic);
end nandgate;
architecture ex1 of nandgate is
begin
 yneg <= a nand b;
end;

Figure 2.1 A synthesizable 2-input nand gate

MAG02 8/18/04 3:02 PM Page 16

how it is done in the Institute of Electrical and Electronics Engineers (IEEE) pack-
ages. Figure 2.2 shows the nand model with the added formatting.

2.2 Standard Interfaces

Multichip or board-level simulation involves more than just ones and zeros. Signals
can be strong or weak or high impedance. Drivers can have open collector outputs
and require pull-up resistors. Realistic simulations require at least the 9-state logic
found in the IEEE 1164 package, std_ulogic. For these reasons, except for mixed
signal models, ports will always be of type std_ulogic. The difference between
std_logic and std_ulogic types is that std_logic is a resolved subtype of
std_ulogic. Using std_ulogic provides a slight performance improvement
during simulation. Although the improvement is actually quite small, if there are
thousands of instantiations of the model (and there could be many thousands) it
could become significant. Vectored ports are not used because they would inhibit
backannotation of interconnect delays. Interconnect delays are discussed later in
this chapter.

It is good practice to explicitly specify default initial values for all ports. At the
board level, sometimes an input pin may be left unconnected. When the design is
netlisted, the unconnected pin is assigned to the key word OPEN. VHDL has a restric-
tion that in order to be assigned to OPEN, an input port must have an explicit default
value.

PORT (

A : IN std_ulogic := ‘U’;

B : IN std_ulogic := ‘U’;

YNeg : OUT std_ulogic := ‘U’

);

2.2 Standard Interfaces 17

--
-- File Name: ex2_nand.vhd
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

ENTITY nandgate IS
 PORT (
 A : IN std_logic;
 B : IN std_logic;
 YNeg : OUT std_logic
);
END nandgate;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE ex2 OF nandgate IS
BEGIN
 YNeg <= A nand B;
END;

Figure 2.2 Nand model with improved formatting

MAG02 8/18/04 3:02 PM Page 17

In most cases the default value should be ‘U’ for uninitialized, as shown. However,
some parts have inputs with internal pull up or pull down resistors so that unused
inputs will be pulled to a known state and may be left unconnected if not needed.
These pins are given initial values of ‘1’ or ‘0’ as appropriate.

There is at least one other case when an output is given an initial value other
than ‘U’. Some ECL logic parts have a VBB output. These pins are initialized to
‘W’ for reasons discussed in Chapter 16.

2.3 Model Delays

In Figure 2.2 we have a model that would function correctly as a nand gate but has
zero delay. All physical parts have some delay. Sometimes we rely on that delay,
other times we would like it to go away, but we always have to account for it. So
how do we add delays to our models?

The simplest way of expressing a delay in VHDL is with an AFTER clause:

YNeg <= A nand B AFTER 6 ns;

This is fine if the part you are modeling happens to switch in 6 nanoseconds, in
both directions, under all conditions. But then you would have to create another
model when the new 4 nanosecond (ns) part came out.

VHDL has a stock solution for such problems: generics. Generics are used to pass
information into a model. When a generic is used to pass information into a model,
it describes a constant and can only be read. A generic is declared in the model
entity and used in the architecture. Figure 2.3 shows our model with a generic
named delay.

18 Chapter 2 Tour of a Simple Model

--
-- File Name: ex3_nand.vhd
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

ENTITY nandgate IS
 GENERIC (
 delay : TIME := 10 ns
);
 PORT (
 A : IN std_ulogic := ‘U’;
 B : IN std_ulogic := ‘U’;
 YNeg : OUT std_ulogic := ‘U’
);
END nandgate;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE ex3 OF nandgate IS
BEGIN
 YNeg <= A nand B AFTER delay;
END;

Figure 2.3 Nand gate with delay generic

MAG02 8/18/04 3:02 PM Page 18

This is an improvement. Now only one model is needed to cover many possi-
ble nand gates. But the model still has symmetrical rise and fall delays that may
not match the part used in your design. Most non-CMOS components use a totem-
pole output structure that has different drive strengths depending on whether it is
driving high or low. This causes the effective pin delay to be different for a high
output than a low output.

2.4 VITAL Additions

The next several changes to the model are the addition of VITAL types, attributes,
primitives, processes, or methods. By using these VITAL features, we make our
models more uniform and improve their simulation performance. VITAL enables
the technology independence we need to reuse models rather than constantly
rewrite them.

2.4.1 VITAL Delay Types

Another deficiency in the model in Figure 2.3 is that the correct value for the delay
must be written into the netlist, which can be inconvenient. Although there are
many ways to overcome these limitations, in Figure 2.4 we use VITAL for pin-
to-pin (path) delays, which is an IEEE standard. VITAL path delay generics are
recognizable by their tpd prefix. There are a number of related changes made in
Figure 2.4, and as you can see, the model has grown somewhat.

On lines 2 and 3 of Figure 2.4 are two new USE clauses calling out two VITAL
packages. The first package contains the VITAL timing constraint and delay rou-
tines. The second package contains the VITAL accelerated primitives.

On lines 6 and 7 of Figure 2.4 are our delay generics. There is one for each input.
Path delay generics (tpd) in VITAL are formed using a standardized formula. The
names start with tpd and the names of the input port and output port are added
in that order, all separated by underscores. Thus, the name of the generic to hold
the value of the delay from pin A to pin YNeg is tpd_A_YNeg:

tpd_A_YNeg : VitalDelayType01 := (1 ns, 1 ns); -- 6

tpd_B_YNeg : VitalDelayType01 := (1 ns, 1 ns) -- 7

The type of these generics is VitalDelayType01. A generic of this type
is used for paths that can cause the output to transition only between low and
high. It takes two values, each is of type Time. The first is the delay for low
to high transitions (LH), the second for high to low transitions (HL). The VITAL
timing package also defines a type VitalDelayType01Z for paths that can cause
an output to go high impedance (‘Z’), and VitalDelayType01ZX for paths
that can cause the output to go to ‘X’, the unknown. VitalDelayType01 Z
takes 6 values: LH, HL, LZ, ZH, HZ, and ZL. VitalDelayType01ZX takes 12
values: LH, HL, LZ, ZH, HZ, ZL, LX, XH, HX, XL, XZ, and ZX. Definitions of the
IEEE std_logic_1164 logic values are given in the next chapter.

2.4 VITAL Additions 19

MAG02 8/18/04 3:02 PM Page 19

As mentioned earlier, the nand gate has an active low output, and we indicate
such by appending the Neg suffix to its name in accordance to Free Model Foundry
convention. Many people like to use other conventions, such as an _L suffix. We
cannot include underscores in port names in VITAL models because underscores
are used as delimiters in the generic names.

2.4.2 VITAL Attributes

Because our enhancements to the model as shown in Figure 2.4 have made this a
VITAL model, we need to notify the compiler of that fact. Line 14,

ATTRIBUTE VITAL_LEVEL0 of nandgate : ENTITY IS TRUE;

tells the compiler that the model is compliant with the level 0 VITAL specification.
Level 0 pertains primarily to the entity part of a model. Its purpose is to promote

20 Chapter 2 Tour of a Simple Model

-- File Name: ex4_nand.vhd

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; -- 1
 USE IEEE.VITAL_timing.ALL; -- 2
 USE IEEE.VITAL_primitives.ALL; -- 3

ENTITY nandgate IS -- 4
 GENERIC (-- 5
 tpd_A_YNeg : VitalDelayType01 := (1 ns, 1 ns); -- 6
 tpd_B_YNeg : VitalDelayType01 := (1 ns, 1 ns) -- 7
); -- 8
 PORT (-- 9
 A : IN std_ulogic := ‘U’; -- 10
 B : IN std_ulogic := ‘U’; -- 11
 YNeg : OUT std_ulogic := ‘U’ -- 12
); -- 13
 ATTRIBUTE VITAL_LEVEL0 of nandgate : ENTITY IS TRUE; -- 14
END nandgate; -- 15

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE ex4 OF nandgate IS -- 17
 ATTRIBUTE VITAL_LEVEL1 of ex4 : ARCHITECTURE IS TRUE; -- 18

BEGIN -- 20

 --
 -- Concurrent procedure calls
 --
 a_1: VitalNAND2 (-- 21
 q => YNeg, -- 22
 a => A, -- 23
 b => B, -- 24
 tpd_a_q => tpd_A_YNeg, -- 25
 tpd_b_q => tpd_B_YNeg -- 26
); -- 27
END; -- 28

Figure 2.4 Basic VITAL nand gate

MAG02 8/18/04 3:02 PM Page 20

the portability and interoperability of the model. It not only restricts the form and
semantic content of the entity, but also standardizes the specification and process-
ing of timing information. It enables the model to use the VITAL backannotation
and timing check routines. The simulator will be able to read an SDF file and match
it up with the model.

Line 18,

ATTRIBUTE VITAL_LEVEL1 of ex4 : ARCHITECTURE IS TRUE;

tells the compiler that we also claim VITAL level 1 compliance. Level 1 allows the
compiler to optimize the compiled model for faster setup and simulation. To do
this, we must restrict ourselves to certain VHDL constructs. We will discuss these
restrictions as we come to them.

Level 1 compliance makes the most sense for smaller models that are best
described in terms of gates. The execution speed of these models will be acceler-
ated by the use of VITAL level 1. Larger and more complex models are better
described in a behavioral style. They may not be practical or desirable to write at
the gate level and will run faster as behavioral models anyway. Level 1 compliance
is optional.

A brief comparison of the VITAL compliance levels is given in Table 2.1. More
details are provided in Chapters 3 and 5.

2.4.3 VITAL Primitive Call

Lines 21 through 27 of Figure 2.4,

a_1: VitalNAND2 (-- 21

q => YNeg, -- 22

a => A, -- 23

b => B, -- 24

tpd_a_q => tpd_A_YNeg, -- 25

tpd_b_q => tpd_B_YNeg -- 26

); -- 27

2.4 VITAL Additions 21

Table 2.1 Comparison of VITAL levels

VITAL Level 0 VITAL Level 1

Provides: SDF backannotation, negative acceleration of primitives and tables

timing constraints

Requires: level 0 attribute, std_ulogic and level 1 attribute, no shared variables,

std_logic_vector ports, no operators restricted to those in Standard

underscores in port names, and std_logic_1164, all outputs

special rules for timing generics must be driven by a VitalPathDelay or

a Vital primitive

MAG02 8/18/04 3:02 PM Page 21

are a concurrent procedure call to the VITAL primitive VitalNAND2. VITAL primi-
tives are accelerated by the compiler and simulator for better simulation perform-
ance. The ports are mapped by name. The last two arguments are the two delays,
one from each input to the output. Some components may specify identical delays
from each input and others may not. The VITAL primitives always require that
separate delays be specified. VITAL primitives do not offer as much flexibility in
handling delays as another procedure, the VitalPathDelay (VPD), but VPDs must
be called from within a process.

A further improved model incorporating a VITAL process is given in
Figure 2.5.

2.4.4 VITAL Processes

A VITAL process consists of the following three sections: timing constraint checks,
functionality, and path delays. The sections must be in the listed order. A more
complete description is found in Chapter 5.

On line 20 of Figure 2.4,

VITALBehavior : PROCESS (A, B)

we begin a VITAL process. The use of a VITAL process gives us control over a number
of behaviors that would be difficult to control otherwise. These will be pointed out
as we walk through the code. Line 21,

VARIABLE YNeg_zd : std_ulogic := ‘U’;

declares a functionality result variable. It will hold the zero delay result prior to it
being scheduled for output. It must be a variable rather than a signal for the model
to be level 1 compliant. The FMF convention, which follows examples given in the
VITAL standard document, is to create the name for this variable by taking the
name of the output port to which it refers and appending the characters _zd, for
zero delay.

The next line, 22,

VARIABLE YNeg_GlitchData : VitalGlitchDataType;

declares the glitch variable for YNeg. Glitches and glitch handling will be covered
in detail in the next chapter. For now, just be aware that a glitch variable is required
for a path delay statement to be used.

The statement on line 24,

YNeg_zd := VitalNAND2 (a => A, b => B);

is the one (and only) statement that actually describes the functional behavior
of the component being modeled. The description is in the form of a VITAL func-
tion. The variable YNeg_zd immediately gets the results of the VitalNAND2
function. The inputs are “A” and “B”. The VitalNAND2 function comes from the
VITAL_primitives package referenced on line 3.

22 Chapter 2 Tour of a Simple Model

MAG02 8/18/04 3:02 PM Page 22

2.4 VITAL Additions 23

--
-- File Name: ex5_nand.vhd
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; -- 1
 USE IEEE.VITAL_timing.ALL; -- 2
 USE IEEE.VITAL_primitives.ALL; -- 3

ENTITY nandgate IS -- 4
 GENERIC (-- 5
 tpd_A_YNeg : VitalDelayType01 := (1 ns, 1 ns); -- 6
 tpd_B_YNeg : VitalDelayType01 := (1 ns, 1 ns) -- 7
); -- 8
 PORT (-- 9
 A : IN std_ulogic := ‘U’; -- 10
 B : IN std_ulogic := ‘U’; -- 11
 YNeg : OUT std_ulogic := ‘U’ -- 12
); -- 13
 ATTRIBUTE VITAL_LEVEL0 of nandgate : ENTITY IS TRUE; -- 14
END nandgate; -- 15

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE ex5 OF nandgate IS -- 16
 ATTRIBUTE VITAL_LEVEL1 of ex5 : ARCHITECTURE IS TRUE; -- 17
BEGIN -- 18
 VITALBehavior : PROCESS (A, B) -- 20

 -- Functionality Results Variables
 VARIABLE YNeg_zd : std_ulogic := ‘U’; -- 21

 -- Output Glitch Detection Variables
 VARIABLE YNeg_GlitchData : VitalGlitchDataType; -- 22

 BEGIN -- 23
 YNeg_zd := VitalNAND2 (a => A, b => B); -- 24

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (-- 25
 OutSignal => YNeg, -- 26
 OutSignalName => “YNeg”, -- 27
 OutTemp => YNeg_zd, -- 28
 Paths => (-- 29
 0 => (InPutChangeTime => A’LAST_EVENT, -- 30
 PathDelay => tpd_A_YNeg, -- 31
 PathCondition => TRUE), -- 32
 1 => (InPutChangeTime => B’LAST_EVENT, -- 33
 PathDelay => tpd_B_YNeg, -- 34
 PathCondition => TRUE)), -- 35
 GlitchData => YNeg_GlitchData); -- 36
 END PROCESS; -- 37
END; -- 38

Figure 2.5 VITAL nand gate using VitalPathDelay

MAG02 8/18/04 3:02 PM Page 23

2.4.5 VitalPathDelays

For VITAL level 1 compliance, all output ports must be driven by a procedure call
to either a VitalPathDelay or a VITAL primitive.

YNeg_zd is not assigned directly to the output port. The assignment is
done through the VitalPathDelay01 procedure beginning on Figure 2.4,
line 25,

VitalPathDelay01 (

If there were more than one output port, this procedure would be called for each
2-state output port. Let us examine the call, line by line:

OutSignal => YNeg, -- 26

OutSignalName => “YNeg”, -- 27

OutTemp => YNeg_zd, -- 28

OutSignal gets the name of the port to which the result is ultimately assigned.
OutSignalName gets a string that is the name of the port as you would like it stated
in any error messages that may be generated by the procedure. OutTemp gets the
variable that holds the temporary result of the functional simulation. Despite its
name, remember it is an input to the procedure.

Line 29,

Paths => (-- 29

0 => (InPutChangeTime => A’LAST_EVENT, -- 30

PathDelay => tpd_A_YNeg, -- 31

PathCondition => TRUE), -- 32

1 => (InPutChangeTime => B’LAST_EVENT, -- 33

PathDelay => tpd_B_YNeg, -- 34

PathCondition => TRUE)), -- 35

is the beginning of the Paths section. For each possible path from each input to
the output there are three lines. The three lines constitute a VHDL record. The
records elements are:

InputChangeTime: The time of the last change on an input that may have
triggered the process we are in.

PathDelay: The set of delays to apply to the output, for this path.

PathCondition: The condition that must be met for this path to be considered
valid. It may be a boolean expression and must evaluate to true for this path to
be selected.

Together, all the paths become an array of records. The number at the beginning
of each path is its index number.

When the procedure is entered, all the paths are searched and the most valid is
selected. The most valid path will be one for which the PathCondition is true. If
there is more than one path for which the PathCondition is true, the one with
the most recent event will be chosen. If there were simultaneous events, the path

24 Chapter 2 Tour of a Simple Model

MAG02 8/18/04 3:02 PM Page 24

with the shortest delay will be chosen. (This may not always be what is desired.
VPDs will be covered in depth in Chapter 6.) In the event none of the paths are
valid, a default delay is applied. The default delay is zero but may be changed. This
is discussed further in the next chapter.

Finally, on line 36,

GlitchData => YNeg_GlitchData);

the GlitchData parameter is associated with its variable (discussed in Chapter 6).
There are three versions of the VitalPathDelay procedure. Each has more param-
eters available than were shown in our example. They are discussed in Chapters 3
and 6.

2.5 Interconnect Delays

Although the model is now much improved, there is still something missing. At
the board level, components are connected by copper printed circuit board traces.
Depending on their lengths and the design’s timing requirements, the delays intro-
duced by these traces can be significant. Therefore, they need to be accounted for
in the models.

Many PCB design tools and signal integrity analysis tools are capable of deter-
mining interconnect delays. The delay values can be exported to an SDF file that
most simulators can read.

VITAL provides a method for handling interconnect delays. The method uses
generics for holding the backannotated delay values and a WireDelay block for
applying the delays to the input signals. Our nand gate model, shown in Figure
2.6, incorporates this and some other new features.

The first addition we find in Figure 2.6 is on line 4,

LIBRARY FMF; USE FMF.gen_utils.ALL;

where we call out a new library and package. The library, named FMF, is from the
Free Model Foundry and the package is called gen_utils. The FMF library has
several packages that are discussed in Chapter 3. The gen_utils package is used
in this model to supply default values to some generics, as shown later.

Lines 7 and 8,

tipd_A : VitalDelayType01 := VitalZeroDelay01;

tipd_B : VitalDelayType01 := VitalZeroDelay01;

declare the tipd generics, which are the interconnect delays between components
on the PCB (or between boards). There should be one for each port of mode IN or
INOUT in the port list. They are given default delay values of zero. Delay values
for tipds must be nonnegative.

For each port with an associated tipd we declare a signal to hold the delayed
value of that port. On lines 23 and 24 we have

SIGNAL A_ipd : std_ulogic := ‘U’;

SIGNAL B_ipd : std_ulogic := ‘U’;

2.5 Interconnect Delays 25

MAG02 8/18/04 3:02 PM Page 25

--
-- File Name: ex6_nand.vhd
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; -- 1
 USE IEEE.VITAL_timing.ALL; -- 2
 USE IEEE.VITAL_primitives.ALL; -- 3
LIBRARY FMF; USE FMF.gen_utils.ALL; -- 4

ENTITY nandgate IS -- 5
 GENERIC (-- 6
 tipd_A : VitalDelayType01 := VitalZeroDelay01; -- 7
 tipd_B : VitalDelayType01 := VitalZeroDelay01; -- 8
 tpd_A_YNeg : VitalDelayType01 := UnitDelay01; -- 9
 tpd_B_YNeg : VitalDelayType01 := UnitDelay01; -- 10
 InstancePath : STRING := DefaultInstancePath; -- 11
 TimingModel : STRING := DefaultTimingModel -- 12
); -- 13
 PORT (-- 14
 A : IN std_ulogic := ‘U’; -- 15
 B : IN std_ulogic := ‘U’; -- 16
 YNeg : OUT std_ulogic := ‘U’ -- 17
); -- 18
 ATTRIBUTE VITAL_LEVEL0 of nandgate : ENTITY IS TRUE; -- 19
END nandgate; -- 20

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE ex6 OF nandgate IS -- 21
 ATTRIBUTE VITAL_LEVEL1 of ex6 : ARCHITECTURE IS TRUE; -- 22

 SIGNAL A_ipd : std_ulogic := ‘U’; -- 23
 SIGNAL B_ipd : std_ulogic := ‘U’; -- 24

BEGIN -- 25
 WireDelay : BLOCK -- 26
 BEGIN -- 27
 w_1: VitalWireDelay (A_ipd, A, tipd_A); -- 28
 w_2: VitalWireDelay (B_ipd, B, tipd_B); -- 29
 END BLOCK; -- 30

 VITALBehavior : PROCESS (A_ipd, B_ipd) -- 31
 -- Functionality Results Variables
 VARIABLE YNeg_zd : std_ulogic := ‘U’; -- 32

 -- Output Glitch Detection Variables
 VARIABLE YNeg_GlitchData : VitalGlitchDataType; -- 33

 BEGIN -- 34
 YNeg_zd := VitalNAND2 (a => A_ipd, b => B_ipd); -- 35

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (-- 36
 OutSignal => YNeg, -- 37
 OutSignalName => “YNeg”, -- 38
 OutTemp => YNeg_zd, -- 39
 Paths => (-- 40
 0 => (InPutChangeTime => A_ipd’LAST_EVENT, -- 41
 PathDelay => tpd_A_YNeg, -- 42
 PathCondition => TRUE), -- 43
 1 => (InPutChangeTime => B_ipd’LAST_EVENT, -- 44
 PathDelay => tpd_B_YNeg, -- 45
 PathCondition => TRUE)), -- 46
 GlitchData => YNeg_GlitchData); -- 47
 END PROCESS; -- 48
END; -- 49

Figure 2.6 VITAL nand gate model with interconnect delays

MAG02 8/18/04 3:02 PM Page 26

The names are the same as the two input port names with the _ipd (interconnect
path delay) suffix added. The _ipd suffix is an FMF convention. The signals must
be of type std_ulogic. We initialize them to ‘U’.

A WireDelay block begins on line 26:

WireDelay : BLOCK -- 26

BEGIN -- 27

w_1: VitalWireDelay (A_ipd, A, tipd_A); -- 28

w_2: VitalWireDelay (B_ipd, B, tipd_B); -- 29

END BLOCK; -- 30

The label WireDelay is mandatory for this block. The only thing allowed in a
WireDelay block is calls to the VitalWireDelay procedure. The VitalWire
Delay procedure delays an input by the delay value specified by its tipd_ generic
using a transport delay. A port with an associated wire delay should be read only
in the WireDelay block. Elsewhere in the model, only the delayed (_ipd) signal
should be read. It is recommended (another FMF convention) that each call to the
VitalWireDelay procedure be given a label beginning with w.

The VITALBehavior process beginning on line 31,

VITALBehavior : PROCESS (A_ipd, B_ipd) -- 31

has changed only in that whereas ports A and B were referenced in the prior
example, we now use the delayed signals A_ipd and B_ipd. This is a VITAL level
1 requirement. Otherwise, this process is the same as in Figure 2.4.

The default delays assigned on lines 9 and 10 of Figure 2.5,

tpd_A_YNeg : VitalDelayType01 := UnitDelay01; -- 9

tpd_B_YNeg : VitalDelayType01 := UnitDelay01; -- 10

are defined in the gen_utils package as 1 nanosecond for both rising and falling
outputs. If there is no timing backannotation to the netlist, all models will exhibit
a propagation delay of 1 nanosecond. It was originally assumed that a unit delay
simulation would run much faster than one with realistic timing. Experience has
shown this not to be the case. There is little to be gained from not using actual
delays.

The overall structure of a VITAL model can be seen in Chapter 5.

2.6 Finishing Touches

The examples so far have been for a generic nand gate. Now lets look at a model
for a real part family. We will use the 54/74xx01 family. Our models are technol-
ogy independent, so one model may represent any number of parts that have iden-
tical functionality but differ only in timing.

We call the model in Figure 2.7 STD01. STD01 is also a nand gate, but in this
case it has an open collector output. The example comes from the Free Model
Foundry library. Line numbers have been added for reference.

2.6 Finishing Touches 27

MAG02 8/18/04 3:02 PM Page 27

28 Chapter 2 Tour of a Simple Model

--
-- File Name: std01.vhd
--
-- Copyright (C) 1998 Free Model Foundry
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY:
--
-- version | author | mod date | changes made
-- V1.0 R. Munden 98 APR 02 Initial release
--
-- PART DESCRIPTION:
--
-- Library: STND
-- Technology: 54/74XXXX
-- Part: STD01
--
-- Description: 2-input positve-NAND gate with open-collector output
--

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; -- 1
 USE IEEE.VITAL_timing.ALL; -- 2
 USE IEEE.VITAL_primitives.ALL; -- 3
LIBRARY FMF; USE FMF.gen_utils.ALL; -- 4

--
-- ENTITY DECLARATION
--
ENTITY std01 IS -- 5
 GENERIC (-- 6
 -- tipd delays: interconnect path delays
 tipd_A : VitalDelayType01 := VitalZeroDelay01; -- 7
 tipd_B : VitalDelayType01 := VitalZeroDelay01; -- 8
 -- tpd delays
 tpd_A_YNeg : VitalDelayType01 := UnitDelay01; -- 9
 -- generic control parameters
 MsgOn : BOOLEAN := DefaultMsgOn; -- 10
 XOn : Boolean := DefaultXOn; -- 11
 InstancePath : STRING := DefaultInstancePath; -- 12
 -- For FMF SDF technology file usage
 TimingModel : STRING := DefaultTimingModel -- 13
); -- 14
 PORT (-- 15
 B : IN std_ulogic := ‘U’; -- 16
 A : IN std_ulogic := ‘U’; -- 17
 YNeg : OUT std_ulogic := ‘U’ -- 18
); -- 19
 ATTRIBUTE VITAL_LEVEL0 of std01 : ENTITY IS TRUE; -- 20
END std01; -- 21

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral of std01 IS -- 22
 ATTRIBUTE VITAL_LEVEL1 of vhdl_behavioral : ARCHITECTURE IS TRUE; -- 23

 SIGNAL B_ipd : std_ulogic := ‘U’; -- 24
 SIGNAL A_ipd : std_ulogic := ‘U’; -- 25

Figure 2.7 Complete VITAL model of a nand gate component

MAG02 8/18/04 3:02 PM Page 28

The first thing to note about the model in Figure 2.7 is that we have taken 114
lines to describe a simple nand gate for which a synthesizable model could have been
written in just one line. Of these 114 lines, only 53 are actual VHDL/VITAL code.
The rest are comments and white space. The different requirements of component
models and synthesis models justify this huge disparity. Lets look at all the details.

2.6 Finishing Touches 29

BEGIN -- 26
 --
 -- Wire Delays
 --
 WireDelay : BLOCK -- 27
 BEGIN -- 28

 w_1: VitalWireDelay (B_ipd, B, tipd_B); -- 29
 w_2: VitalWireDelay (A_ipd, A, tipd_A); -- 30

 END BLOCK; -- 31

 --
 -- VITALBehavior Process
 --
 VITALBehavior1 : PROCESS(A_ipd, B_ipd) -- 32

 -- Functionality Results Variables
 VARIABLE YNeg_zd : std_ulogic := ‘U’; -- 33

 -- Output Glitch Detection Variables
 VARIABLE Y_GlitchData : VitalGlitchDataType; -- 34
 BEGIN -- 35

 --
 -- Functionality Section
 --
 YNeg_zd := VitalNAND2(a=> A_ipd, b => B_ipd, -- 36
 Resultmap => STD_wired_and_rmap); -- 37

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (-- 38
 OutSignal => YNeg, -- 39
 OutSignalName => "YNeg", -- 40
 OutTemp => YNeg_zd, -- 41
 XOn => XOn, -- 42
 MsgOn => MsgOn, -- 43

 Paths => (-- 44
 0 => (InputChangeTime => A_ipd’LAST_EVENT, -- 45
 PathDelay => tpd_A_Yneg, -- 46
 PathCondition => TRUE), -- 47
 1 => (InputChangeTime => B_ipd’LAST_EVENT, -- 48
 PathDelay => tpd_A_Yneg, -- 49
 PathCondition => TRUE)), -- 50
 GlitchData => Y_GlitchData); -- 51

 END PROCESS; -- 52

END vhdl_behavioral; -- 53

Figure 2.7 Complete VITAL model of a nand gate component (continued)

MAG02 8/18/04 3:02 PM Page 29

The first 22 lines are comments. We start by documenting the name of the file
as discussed earlier. Then comes a copyright statement. You are going to want to
share your models and your coworkers are going to want to use them. The copy-
right states who owns the model and what rights are reserved. Even if you intend
to retain no rights at all to the model, you should explicitly say so here.

Models change over time. As with any other software, there needs to be a way
to determine the revision of a particular copy. It is also helpful to have some idea
what changed from one revision to the next. Therefore, in the header, we have a
MODIFICATION HISTORY block. This describes the version number, the author or
editor of that version, the release date, and a brief summary of the changes made.
If somebody contacts you about a problem with a model, the first thing you will
want to know is the version number.

FMF models track history through comments in the header. This is for docu-
mentation purposes only. During development, you could use a software revision
control system such as RCS or CVS to make it easier to record the actual code
changes. This could be particularly beneficial during the development of very large
models where there are multiple developers involved.

The part description section of the header states in which library the part has
been placed. It tries to indicate the technology, if relevant, and it gives the name
of the model. Finally, there is a one-line description of the part’s function.

Major sections of the model are separated by comment banners. These may be
indented but are extended to the full 80 character width of the format. As men-
tioned, models should always be limited to 80 characters in width to facilitate print-
ing and online viewing. The banners indicate the nature of the following section
of code. Indented comments describe subsections of code or groups of generics or
variables.

This model in Figure 2.6 has three lines of generic control parameters on lines
10, 11, and 12:

-- generic control parameters

MsgOn : BOOLEAN := DefaultMsgOn; -- 10

XOn : BOOLEAN := DefaultXOn; -- 11

InstancePath : STRING := DefaultInstancePath; -- 12

The generic MsgOn is a boolean that controls message generation should a glitch
be detected in the VitalPathDelay procedure. If there were timing constraint pro-
cedures, they would also read the value of MsgOn. Because a model may contain
several VitalPathDelay procedures, it is convenient to control all of them through
a generic.

The next generic, XOn, controls the generation of ‘X’s on the output if a glitch
is detected.

The last of the three generics, InstancePath, is a string that becomes part of
the warning or error message produced by a timing constraint procedure when a
violation is detected. Although this model does not have any timing constraints,
we still include the generic.

30 Chapter 2 Tour of a Simple Model

MAG02 8/18/04 3:02 PM Page 30

The last line in the generic list, 13,

-- For FMF SDF technology file usage

TimingModel : STRING := DefaultTimingModel -- 13

declares a very important generic. The TimingModel generic is used for selecting
the section of the timing file that corresponds to the part number used in the design
for each instance of each component. A TimingModel property or attribute is
attached to the component symbol in the schematic. The schematic’s VHDL net-
lister will copy the value of the attribute to the generic map of the instance in the
netlist. When the mk_sdf program (a free utility used to generate the SDF file,
described in more detail in Chapter 12) reads the netlist, it picks out the value
and uses it to match a section in the timing file for the model. It then uses the
information from the timing file to create an entry for the instance in the SDF
file for the design. We will look at SDF in Chapter 4 and the formats for timing
files Chapter 12.

Port, signal, and variable declarations are made one per line. Indentations are
set to four spaces. We always use spaces instead of tabs. Tabs may be set to any-
thing by the reader or printer. By using spaces, we can control the formatting and
be sure the model will print legibly.

Except for WireDelay blocks, always try to use named associations. For example,
on lines 36 and 37 we write

YNeg_zd:= VitalNAND2(a=> A_ipd, b => B_ipd, -- 36

Resultant => STD_wired_and_rmap); -- 37

in which we specify that A_ipd is associated with a, and so on. Although this makes
the model easier to understand, there is another important reason. Many of the
VITAL functions and procedures have default parameters set in them. Because not
all parameters always need to be passed during the call, named association is
required to ensure the values given are passed to the right parameters. In Figure
2.6, the VitalNAND2 function was called without the Resultmap parameter. The
function defaulted to outputting one of (‘U’, ‘X’, ‘0’, ‘1’), which is normal for
an output that can drive both high and low. In Figure 2.7, Resultmap gets
STD_wired_and_rmap from the FMF.gen_utils package and the output is
mapped to one of (‘U’, ‘X’, ‘0’, ‘Z’). This is correct for an open collector output
that can drive low but not high.

2.7 Summary

A component model is quite different than a synthesizable model. Component
behavior is modeled at as high a level of abstraction as practical. Formatting and
readability are more important in a component model because it is likely to see
wider circulation and have a longer useful life. The use of standard interfaces,
specifically std_ulogic, is required to ensure that all component models can easily
be integrated into board-level simulations.

2.7 Summary 31

MAG02 8/18/04 3:02 PM Page 31

Unlike synthesizable models, component models are used to verify timing. They
include the simulation of propagation delays and interconnect delays and the
checking of timing constraints. Taking advantage of the VITAL standard allows the
models to use generics to bring in the actual timing values through SDF files. By
maintaining all timing values external to a model, it can be technology independ-
ent. As processes evolve and new speed grades become available, the timing file can
be updated without the need to modify a tested model.

32 Chapter 2 Tour of a Simple Model

MAG02 8/18/04 3:02 PM Page 32

In Part II we examine the standards adhered to in component modeling and the
many supporting packages that make life easier for the component modeler. These
standards are from the IEEE. They include VHDL, VITAL, and SDF. The packages
covered are the IEEE VITAL packages and some packages written expressly for com-
ponent modeling from the Free Model Foundry.

Chapter 3 covers several IEEE and FMF packages that are used in writing com-
ponent models. The Standard Logic 1164 package is discussed. Particular attention
is given to the VITAL packages. These include VITAL Timing, VITAL Primitives, and
VITAL Memory. Four packages from FMF are also reviewed.

Chapter 4 provides a basic tutorial on the Standard Delay Format as it applies
to component modeling. The overall file format is described. The capabilities of
SDF and its syntax are explored.

Chapter 5 describes the organization and requirements of VITAL models. The
different requirements for level0 and level1 models are provided. The mapping of
SDF to VITAL generics is explained. The sections of a VITAL model are described
along with the order in which they must appear.

Chapter 6 is a detailed examination of modeling delays within and between com-
ponents. The use of VITAL path delay procedures is unraveled. Different delay
modes and how they relate to glitch detection are explained. The trade-offs between
distributed delays and pin-to-pin delays are discussed.

Chapter 7 discloses the truth behind VITAL truth tables and state tables and their
employment in component modeling. VITAL memory tables are not forgotten. This
chapter reveals the differences between truth tables and state tables, how to create
them, and when each is appropriate. It also touches on memory tables.

In Chapter 8, timing constraints are defined and the essentials of constraint
modeling are described. Each type of timing constraint is explained, along with its
usage.

P

A

R

T II Resources and Standards

MAG03 8/18/04 3:05 PM Page 33

This page intentionally left blank

3

35

C

H

A

P

T

E

R

VHDL Packages for Component
Models

VHDL packages are used to simplify models and facilitate code reuse. In this
chapter, we are going to take a brief look at eight packages from two libraries that
are frequently used in modeling board-level digital components.

A package is a design unit much like a model. The difference is a package con-
tains code intended for use in other models. Packages are organized and compiled
into libraries. One of the great strengths of VHDL is the way it works with libraries
and packages. The purpose of these packages is to make modeling faster and easier
by taking commonly used functions, procedures, and declarations and packaging
them so they may be referenced by many models rather than copied or reinvented.
Every model will require at least one of these packages. Few component models
will use less than four of them.

The first library we will look at is the IEEE library, and the packages are
std_logic_1164 and the three VITAL packages. All the packages in this library
are balloted standards of the IEEE. There are other IEEE packages that are not
described here because they have not been used in component models.

The second library is the FMF library from the Free Model Foundry. The four
packages we will explore are all written explicitly for component modeling. They
are not an official standard but are available for public use as open source under
the Free Software Foundation GPL.

Details of specific features of these packages will be given in later chapters as we
get to models that use them. The source code for the IEEE packages should be avail-
able in your simulator installation tree. The FMF packages are available from the
FMF Web site. You are encouraged to read the code in these packages for a better
understanding of how they work and how to use them.

3.1 STD_LOGIC_1164

The std_logic_1164 package, also called std_logic, is at the foundation of com-
ponent modeling and board-level simulation. Every model and every package we
write uses this package.

MAG03 8/18/04 3:05 PM Page 35

When the VHDL language was being written, the designers decided not to define
all the logic levels that would be needed for years to come. They took the approach
of allowing users to define the logic levels that met their needs. Although this allows
the maximum flexibility it also encourages the minimum interoperability, so an
IEEE committee created the std_logic_1164 standard to define a set of logic
values and functions that would work under most circumstances.

3.1.1 Type Declarations

The most used contribution of std_logic to the world of component modeling
and board-level simulation is the definition of the 9-value logic system called
std_logic. While inside your FPGA you maybe able to get by with type bit and
bit_vector, or maybe even signed and unsigned, on the outside you have to
deal with tri-state signals and resistive drivers.

std_logic’s 9 values are, in order,

‘U’, Uninitialized;

‘X’, Forcing Unknown;

‘0’, Forcing 0;

‘1’, Forcing 1;

‘Z’, High Impedance;

‘W’, Weak Unknown;

‘L’, Weak 0;

‘H’, Weak 1;

‘-’, don’t care.

There are two flavors of this system, std_logic and std_ulogic. std_logic is
a resolved type and std_ulogic is not. This means a signal of type std_logic
can have multiple drivers and a resulting signal value will be determined by a res-
olution function. For example, for a signal that has an open collector driver and a
pull-up resistor, the OC output can drive either a ‘Z’ or a ‘0’ and the pull-up
always drives an ‘H’. The resolution function in std_logic_1164 causes ‘Z’ and
‘H’ to resolve to ‘H’, ‘0’ and ‘H’ resolve to ‘0’.

It is worth noting here that although we can speak of a model driving a ‘Z’, it
represents no drive at all in a physical component. It is an output driver that is
turned off.

Every assignment of a value to a signal or variable of type std_logic results in
a call to the resolution function. To save this overhead, signals with a single driver
can be of type std_ulogic. std_ulogic has the same list of values as std_logic
but without resolution.

We usually represent bused signals as type std_logic_vector or
std_ulogic_vector. Many times we will have a signal that should never have a

36 Chapter 3 VHDL Packages for Component Models

MAG03 8/18/04 3:05 PM Page 36

weak value inside a model. We can write more compact and efficient code by typing
such a signal using one of the std_logic subtypes X01 or UX01. However, caution
must be exercised, as many VITAL functions and procedures expect arguments of
std_logic and some compilers will complain if a subtype is used instead.

3.1.2 Functions

The std_logic_1164 package also contains several functions. These are the ones
we will use most often in component modeling:

TO_X01 and TO_UX01 perform a type conversion from std_ulogic to either
type X01 or UX01. These functions will cause ‘H’ and ‘L’ values to be trans-
lated to ‘1’ and ‘0’.

RISING_EDGE detects a rising transition on a signal of type std_ulogic.

FALLING_EDGE likewise detects a falling transition.

IS_X detects a value of ‘U’, ‘X’, ‘Z’, ‘W’, or ‘-’ on a signal of type
std_ulogic or std_ulogic_vector.

The use of each of these functions is illustrated in later examples.

3.2 VITAL_Timing

The VITAL_Timing package is the root of the VITAL library. It is called by all the
other VITAL packages. It provides the facilities for specifying propagation delays
and timing constraints as well as SDF backannotation. Every VITAL model must
reference this package.

3.2.1 Declarations

The VITAL_Timing package declares many types that we will use extensively. Here
are the ones with which you will become most familiar:

VitalDelayType is a subtype of TIME. It is used to hold simple delays.

VitalDelayType01 is an array of TIME. It holds two values for rising (tr01)
and falling (tr10) transition delays. It is used to hold delays for 2-state outputs.

VitalDelayType01Z is an array of TIME. It holds six values for tr01, tr10,
tr0Z, trZ1, tr1Z, and trZ0 transitions, in that order. It is used to describe
delays through 3-state devices.

VitalDelayType01ZX is an array of TIME. It holds twelve values for tr01,
tr10, tr0Z, trZ1, tr1Z, trZ0, tr0X, trX1, tr1X, trX0, trXZ, and trZX tran-
sitions, in that order. It is used to describe output delays on a device that can
traverse an unknown state, such as many memory devices.

VitalResultMapType is an array (UX01) of std_ulogic. It is used to map the
outputs of VITAL primitives to other output strengths, such as open collector.

3.2 VITAL_Timing 37

MAG03 8/18/04 3:05 PM Page 37

VitalTableSymbolType is an enumerated list of symbols used to represent
signal transitions or steady state conditions. It is used in timing constraint pro-
cedures and in truth and state tables. The procedures for truth tables and state
tables are defined in the VITAL_Primitives package. The symbols are (in order
of enumeration) defined as follows:

‘/’—0 Æ 1
‘\’—1 Æ 0
‘P’—Union of ‘/’ and ‘^’ (any edge to 1)
‘N’—Union of ‘\’ and ‘v’ (any edge to 0)
‘r’—0 Æ X
‘f’—1 Æ X
‘p’—Union of ‘/’ and ‘r’ (any edge from 0)
‘n’—Union of ‘\’ and ‘f’ (and edge from 1)
‘R’—Union of ‘^’ and ‘p’ (any possible rising edge)
‘F’—Union of ‘v’ and ‘n’ (any possible falling edge)
‘^’—X Æ 1
‘v’—X Æ 0
‘E’—Union of ‘v’ and ‘^’ (any edge from X)
‘A’—Union of ‘r’ and ‘^’ (rising edge to or from X)
‘D’—Union of ‘f’ and ‘v’ (falling edge to or from X)
‘*’—Union of ‘R’ and ‘F’ (any edge)
‘X’—Unknown level
‘0’—low level
‘1’—high level
‘-’—don’t care
‘B’—0 or 1
‘Z’—high impedance
‘S’—steady value

The reader should note that this list contains both uppercase and lowercase char-
acters. As with any enumerated type, the values are case sensitive. Also note that
although some of the symbols are also used in the type std_logic, they do not
have the same meaning. Other types are also defined in this package and are
discussed as they are encountered in models.

3.2.2 Procedures

The VITAL_Timing package has a number of important procedures used for con-
trolling output delays and defining timing constraints. Here are some of the pro-
cedures you will call directly:

VitalPathDelay01 is used for assigning a delayed value to an output signal
that can only have a high or low value. It can take up to 13 parameters for pre-
cisely controlling its behavior.

38 Chapter 3 VHDL Packages for Component Models

MAG03 8/18/04 3:05 PM Page 38

VitalPathDelay01Z is like VitalPathDelay01 but is for outputs that can be
put in a high impedance state. Both these procedures will be explained in detail
in Chapter 6.

VitalWireDelay is used to delay an input signal to simulate interconnect
delays. Its use is detailed in Chapter 6.

VitalSignalDelay is used in models that have negative timing constraints.
The topic of negative timing constraints is taken up in Chapter 11.

VitalSetupHoldCheck detects a setup or hold violation. The test signal may
be either a scalar or a vector. It can take up to 22 arguments.

VitalRecoveryRemovalCheck detects the presence of a recovery or removal
violation. It has 21 parameters. Recovery and removal usually refer to asyn-
chronous signals such as the preset and clear functions on a 7474 flip-flop.

VitalPeriodPulseCheck is used to test for a minimum pulse width, either
high or low, and a maximum periodicity (1/freq.) of a signal. The types of signals
most commonly tested are clocks, resets, and write enables. This procedure can
accept up to 13 parameters.

VitalInPhaseSkewCheck detects an in-phase skew violation between two
input signals.

VitalOutPhaseSkewCheck detects an out-of-phase skew violation between
two signals. Each of the skew check procedures can take up to 18 parameters.

There are several more procedures in the VITAL_Timing package that are used
internal to the package and will not be discussed. All of the timing constraint pro-
cedures are examined in depth in Chapter 8.

3.3 VITAL_Primitives

Primitives are used in simulation languages to describe the most basic logical func-
tions. They are used in structural descriptions or netlists of logic designs. The phys-
ical implementation of these functions are called gates. These include the and, or,
invert, and buffer functions and their variations (nand, nor, etc.). Verilog defines 14
logical primitives along with 12 switches. The VHDL language does not define any
primitives. Switches are bidirectional primitives and have no corresponding ele-
ments in VHDL.

The primary purpose of the VITAL_Primitives package is to provide the prim-
itives that were not defined in the VHDL language and to accelerate the simulation
of ASIC gate-level netlists. It contains a set of functions and procedures that roughly
correspond to Verilog’s gate-level simulation primitives. It also contains the decla-
rations, functions, and procedures required to enable writing truth tables and state
tables similar to Verilog’s user-defined primitives (UDPs). Placing this code in an
IEEE standard package has enabled simulator developers to write compilers that can

3.3 VITAL_Primitives 39

MAG03 8/18/04 3:05 PM Page 39

better optimize their compiled code for efficient simulation. This generally means
smaller memory requirements and faster simulations.

3.3.1 Declarations

Few of the declarations made in this package are used outside the package in the
normal course of modeling. They will not be listed here.

3.3.2 Functions and Procedures

The first group of functions and procedures you will encounter in the VITAL_Prim-
itives package are the simulation primitives. Each primitive is provided as both
a function and a procedure. The functions are called from inside VHDL processes
where they will be executed serially. Their inputs will often be variables. The pro-
cedures are called from outside VHDL processes and are executed concurrently. The
procedures take only signals for their logical inputs. In addition to signals, they can
accept constants for specifying input to output delays. Both types of primitives
accept result maps to control the strengths of their output signals. VITAL outdid
Verilog in defining primitives. There are 39 primitives in the VITAL_Primitives
package. Their names are self-explanatory. The functionality of some of these prim-
itives goes well beyond single gates:

VitalIDENT

VitalBUF: VitalBUF, VitalBufIf0, VitalBufIf1

VitalINV: VitalINV, VitalInvIf0, VitalInvIf1

VitalAND: VitalAND, VitalAND2, VitalAND3, VitalAND4

VitalNAND: VitalNAND, VitalNAND2, VitalNAND3, VitalNAND4

VitalOR: VitalOR, VitalOR2, VitalOR3, VitalOR4

VitalNOR: VitalNOR, VitalNOR2, VitalNOR3, VitalNOR4

VitalXOR: VitalXOR, VitalXOR2, VitalXOR3, VitalXOR4

VitalXNOR: VitalXNOR, VitalXNOR2, VitalXNOR3, VitalXNOR4

VitalMux: VitalMux, VitalMux2, VitalMux3, VitalMux4

VitalDecoder: VitalDecoder, VitalDecoder2, VitalDecoder4,
VitalDecoder8

The VITAL_Primitives package defines the procedures for VitalTruthTables
and VitalStateTables. The primary input to one of these procedures is a con-
stant in the form of a table. Figure 3.1 is an example of a VitalStateTable
describing the functionality of D register.

Truth and state tables are worthy of their own chapter. They are explored in
more detail in Chapter 7.

40 Chapter 3 VHDL Packages for Component Models

MAG03 8/18/04 3:05 PM Page 40

3.4 VITAL_Memory

The VITAL_Memory package was added to the VITAL standard in the 2000 release.
It was created to support the modeling of static memory (SRAM) used in ASIC
designs. It is the largest of the VITAL packages, about the size of the VITAL_Timing
and VITAL_Primitives packages combined.

This package can be thought of as having three sections: memory functionality
procedures, memory timing specifications, and memory timing check procedures.
Parts of it can be used only in VITAL level 1 models.

3.4.1 Memory Functionality

The VITAL_Memory package provides one function and three procedures to aid in
the modeling of static memory.

VitalDeclareMemory is a function to declare and initialize memory. It estab-
lishes a storage mechanism that is very efficient but only for word sizes that are
multiples of eight bits. It can automatically initialize the contents of memory
from a file but only at simulation elaboration time.

VitalMemoryTable is a procedure to perform memory read, write, and cor-
ruption. It uses a compact, table-based approach to modeling similar to a state
table. Such tables encourage the creation of packages for reuse.

VitalMemoryCrossPorts is a procedure for implementing multiport con-
tention and crossport reads in multiport memories. Fortunately, it is rarely
needed for component modeling.

VitalMemoryViolation is a procedure supporting the modeling of memory
violation actions. It takes a table-based approach to memory corruption
policies.

3.4 VITAL_Memory 41

 -- Simple register without previous states

 CONSTANT DREG_tab : VitalStateTableType := (

 ----INPUTS-------|-OUTPUT--
 -- Viol CLK D | Qí --
 -----------------|---------
 (‘X’, ‘-’, ‘-’, ‘X’), -- timing violation
 (‘-’, ‘X’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘/’, ‘0’, ‘0’), -- active clock edge
 (‘-’, ‘/’, ‘1’, ‘1’), -- active clock edge
 (‘-’, ‘/’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 3.1 StateTable for a D register

MAG03 8/18/04 3:05 PM Page 41

3.4.2 Memory Timing Specification

The VITAL_Memory package timing section contains three procedures for specify-
ing propagation delays. The path delay procedures together support complex
output scheduling and include support of output retain specifications.

VitalMemoryInitPathDelay is used to initialize the data structure for the
output path delay schedule. It takes a maximum of three arguments.

VitalMemoryAddPathDelay is used to specify a delay path from an input to
an output port. While there is a maximum of only nine arguments to this pro-
cedure, it is overloaded 24 times, which can make it difficult to debug.

VitalMemorySchedulePathDelay schedules the functional output value on
the output port. It includes a particularly useful feature known as output reten-
tion that is explained in Chapter 14.

3.4.3 Memory Timing Checks

The VITAL_Memory package timing section contains two procedures for specifying
timing constraints.

VitalMemorySetupHoldCheck is similar to the VitalSetupHoldCheck pro-
cedure. It has two additional arguments for timing arcs and memory subword
size.

VitalMemoryPeriodPulseCheck detects periodicity and pulse width viola-
tions. It differs from the VitalPeriodPulseCheck procedure in that it can
check both minimum and maximum periods.

The VITAL_Memory package is given more attention in Chapter 7 and examples
are provided as we investigate memory modeling techniques in Chapter 14.

3.5 FMF Packages

The next few packages we will survey are from the Free Model Foundry. Although
not standards in the sense of IEEE standards, they have been written expressly for
use in modeling components for ASIC/FPGA and board-level design verification.
They are freely available from the FMF Web site.

Another difference is the FMF packages do not come precompiled with your sim-
ulator. To use these packages, you must create a library with the logical name FMF
someplace in your file system where they will be visible to any user who needs
them. Then compile all the packages into that library. Finally, your simulation tool
must be configured to know where to find the FMF library. How this is done is dif-
ferent for every simulator. Using Modelsim as an example, the system “model-
sim.ini” file should be edited to associate the FMF logical library with the location
in the file system where the FMF packages have been compiled.

42 Chapter 3 VHDL Packages for Component Models

MAG03 8/18/04 3:05 PM Page 42

3.5.1 FMF gen_utils and ecl_utils

The gen_utils package is the most used of the FMF packages. It contains a number
of declarations for constants and functions:

STD_wired_and_rmap is a constant of type VitalResultMapType. It is used
to map the outputs of VITAL primitives and path delay procedures to open col-
lector drive strengths (‘U’, ‘X’, ‘0’, ‘Z’).

diff_rec_tab is a constant of type VitalStateTableType. It is used to
convert a differential data input to a single-ended signal for use internal to the
model.

The constants UnitDelay, UnitDelay01, UnitDelay01Z, and UnitDelay01ZX
are all used to provide default timing values of 1 nanosecond to VITAL timing
generics.

GenParity is a function that will generate an odd or even parity bit for each
8 bits of a std_logic_vector and return it as the ninth bit.

CheckParity is a function that will check for correct parity in 9-bit words.

To_UXLHZ is a function that converts strong signal values to weak values. Its
primary application has been in writing VITAL wrappers for RTL models with
bidirectional ports.

The ecl_utils package is much like the gen_utils package except it is tai-
lored to modeling ECL components. It also has VitalStateTables and VitalTruth
Tables for reading differential inputs and BB outputs as described in Chapter 16.
Most of its contents are described here:

ECL_wired_or_rmap is a constant of type VitalResultMapType. It is used to
map the outputs of VITAL primitives and path delay procedures to open emitter
drive strengths (‘U’, ‘X’, ‘Z’, ‘1’).

The constants ECLUnitDelay, ECLUnitDelay01, and ECLUnitDelay01Z are all
used to provide default timing values of 1 nanosecond to VITAL timing generics.

ECLVbbValue is a constant of type std_logic. It used to set the value for ECL
VBB output pins. It is set to ‘W’.

The constant ECL_diff_mode_tab is a look-up table used to determine
whether an input pair is differential or single ended. It senses which, if either,
of the inputs is connected to the VBB output. This table’s output is used as an
input to another table that decodes the differential inputs.

The constant ECL_s_or_d_inputs_tab is another table for determining the
value of a nonclock differential input pair.

The constant ECL_clk_tab is the final table for computing a single signal from
a differential ECL clock pair. One of the inputs to this table is the output from
the ECL_diff_mode_tab table.

3.5 FMF Packages 43

MAG03 8/18/04 3:05 PM Page 43

3.5.2 FMF ff_package

The ff_package is the largest of the FMF packages. It contains VitalStateTables for
37 different types and configurations of latches and flip-flops. It is widely used, par-
ticularly in glue logic models. Should any new types of latches or flip-flops be dis-
covered, they will be added to this package.

Examples of how to use this package are given as we discuss VITAL state tables
in Chapter 7 and modeling register devices in Chapter 9.

44 Chapter 3 VHDL Packages for Component Models

Table 3.1 Supported conversion functions

From To Conversion

std_logic_vector natural to_nat

std_logic_vector integer to_int

std_logic_vector string to_time_str

std_logic_vector hex string to_hex_str

std_logic_vector decimal string to_int_str

std_logic_vector octal string to_oct_str

std_logic_vector binary string to_bin_str

std_logic natural to_nat

std_logic string to_time_str

std_logic binary string to_bin_str

natural std_logic_vector to_slv

natural std_logic to_sl

natural time to_time

natural string to_time_str

natural hex string to_hex_str

natural decimal string to_int_str

natural octal string to_oct_str

natural binary string to_bin_str

time natural to_nat

time string to_time_str

hex string std_logic_vector h

hex string natural h

decimal string std_logic_vector d

decimal string natural d

octal string std_logic_vector o

octal string natural o

binary string std_logic_vector b

binary string natural b

MAG03 8/18/04 3:05 PM Page 44

3.5.3 FMF Conversions

The conversions package was contributed to FMF by SEVA Technologies. It is used
in most complex models. It provides functions to perform type conversions
between various signal types (std_logic, std_logic_vector), the numeric type
NATURAL, TIME, and several string types (binary, octal, decimal, and hex). It is well
documented internally.

Table 3.1 shows the various supported conversions along with the name of the
function to use for each conversion.

The primary reason for creating this package was a proliferation of incompati-
ble arithmetic packages provide by simulator vendors. The use of any one of those
packages was likely to prevent a model from being used by any other brand of sim-
ulator. FMF has furnished the conversions package so that people may write
portable component models.

The problem of incompatible arithmetic packages has been somewhat alleviated
by the IEEE packages NUMERIC_STD and NUMERIC_BIT. However, both of these
packages are designed for use with synthesis tools. This may reduce simulation per-
formance. Perhaps more important, companies that provide models of their stan-
dard components usually prefer those models to be nonsynthesizable.

3.6 Summary

Packages contain proven code that can be used to make your models simpler and
more robust. They also make model development less work because they allow you
to incorporate functionality that others put much thought and effort into devis-
ing. The IEEE standard packages are usually precompiled and optimized by the tool
vendors to maximize simulation performance. However, the FMF packages must be
downloaded and compiled on your system and entered into the configuration of
your simulator.

3.6 Summary 45

MAG03 8/18/04 3:05 PM Page 45

This page intentionally left blank

4

47

C

H

A

P

T

E

R

An Introduction to SDF

SDF is a file format used to convey timing information to the simulator. Under-
standing it will help you write correct model entities. In this chapter we present the
basics of SDF as they apply to the verification of ASICs and FPGAs at the board level.

The Standard Delay Format is based on IEEE Standard 1497. [1] The specifica-
tion describes an ASCII file format that contains propagation and interconnect
delays and timing constraints. SDF can be read by a simulator to supply values for
propagation and interconnect delays and timing constraints. SDF is the standard
format for backannotating timing into a VHDL/VITAL or Verilog simulation. All
major simulators can read this format. When you simulate your ASIC or FPGA at
the gate level, you will usually read in an SDF file generated by your tool chain.
Likewise, SDF is generated and used to backannotate values for component delays,
interconnect delays, and timing constraints at the board level.

The component modeling method described in this book results in technology-
independent models. For example, a single model of a specific memory type can
be used for all speed grades of that memory without editing the model. This is pos-
sible because timing values are stored external to the model. The model expresses
only the behavior of the part. As speed grades are made available in the future, they
are added to the external timing file. Examples of timing files will be given in later
chapters. For now, all you need to know is that they are composed of sections of
SDF encapsulated in eXtensible Markup Language (XML).

4.1 Overview of an SDF File

Let’s look at the structure of an SDF file. At the top level, an SDF file can be divided
into two sections: a header and a cell list. A simple SDF file is presented in Figure
4.1. This SDF file is for a testbench referencing a single instance of an std646. The
timing is for an SN74BCT646NT. A simplified schematic of an std646 is shown in
Figure 4.2.

It is important to understand that an SDF file can only be created for a testbench
or netlist, never for a bare component model. This is because SDF backannotation
always applies timing values to instances:

MAG04 8/18/04 3:08 PM Page 47

(CELL

(CELLTYPE “std646”)

(INSTANCE std646_1)

A model does not contain an instance of itself, so backannotation is not possible.

4.1.1 Header

The first 12 lines in Figure 4.1 constitute the header:

(DELAYFILE

(SDFVERSION “3.0”)

(DESIGN “tbstd646”)

(DATE “Sun Feb 9 13:12:08 2003”)

(VENDOR “Free Model Foundry”)

(PROGRAM “SDF timing utility(tm)”)

(VERSION “2.0.3”)

48 Chapter 4 An Introduction to SDF

(DELAYFILE
 (SDFVERSION "3.0")
 (DESIGN "tbstd646")
 (DATE "Sun Feb 9 13:12:08 2003")
 (VENDOR "Free Model Foundry")
 (PROGRAM "SDF timing utility(tm)")
 (VERSION "2.0.3")
 (DIVIDER /)
 (VOLTAGE)
 (PROCESS)
 (TEMPERATURE)
 (TIMESCALE 1ns)
 (CELL
 (CELLTYPE "std646")
 (INSTANCE std646_1)
 (DELAY (ABSOLUTE
 (IOPATH A B (3.1:6:9.5) (3.7:6.8:10.5))
 (IOPATH SAB A (3.9:8.8:13.8) (3.3:8.3:912.9))
 (IOPATH CLKAB B (3.6:7:11.2) (3.9:7:10.6))
 (IOPATH DIR A () () (3.2:7.3:11.8) (2.8:7.8:13.1) (3.8:8.4:12.6) (3.8:8.9:14.6))
 (IOPATH OENEG A () () (3.4:7:10.5) (4:7.9:13.2) (4:7.2:10.9) (4.6:8.8:14.4))
))
 (TIMINGCHECK
 (SETUP A CLKAB (6:6:6))
 (SETUP B CLKBA (6:6:6))
 (HOLD A CLKAB (.5:.5:.5))
 (HOLD B CLKBA (.5:.5:.5))
 (WIDTH (posedge CLKAB) (6:6:6))
 (WIDTH (posedge CLKBA) (6:6:6))
 (WIDTH (negedge CLKAB) (6:6:6))
 (WIDTH (negedge CLKBA) (6:6:6))
 (PERIOD (posedge CLKAB) (12.1:12.1:12.1))
 (PERIOD (posedge CLKBA) (12.1:12.1:12.1))
)
)
)

Figure 4.1 Sample SDF file

MAG04 8/18/04 3:08 PM Page 48

(DIVIDER /)

(VOLTAGE)

(PROCESS)

(TEMPERATURE)

(TIMESCALE 1ns)

It begins with the key word DELAYFILE. After that there are fields specifying the
following:

SDFVERSION, which version of the SDF standard we are using. The current
version is 4.0. You should never see anything older than 2.1.

DESIGN, the name of the design for which the file is written. This field is optional
and for documentation purposes only.

DATE, when the file was created. An optional field for documentation purposes
only.

VENDOR, another optional field listing the name of the company manufacturing
the device (if the file is for an ASIC or FPGA) or the originator of the program
that created the file. In this case, the file was created by a perl script provided
by the Free Model Foundry.

4.1 Overview of an SDF File 49

B

A

SAB

SBA

CLKAB

CLKBA
DIR

QENEG

Figure 4.2 Simplified schematic of an STD646

MAG04 8/18/04 3:08 PM Page 49

PROGRAM, the name of the program that created the file. Small SDF files may
be created by hand but usually you will want to use a program. This field is
optional.

VERSION, the version of the program. Again, this field is optional.

DIVIDER, the hierarchy divider. It separates elements of the hierarchical path to
each cell. It can have one of two possible values: “.” or “/” (without the quotes).
It is an optional field. If omitted the separator defaults to “.”

VOLTAGE, PROCESS, and TEMPERATURE, optional fields that apply to ASICs but
not board-level netlists.

TIMESCALE, specifies the units for all time values in the SDF file. It is optional
and defaults to 1 nanosecond. For SDF files discussed in this book and files gen-
erated by FMF programs, we will always use 1 nanosecond as the unit for our
SDF files.

Because your SDF files will usually be generated by a program, you will rarely need
to create a header.

4.1.2 Cell

The rest of the SDF files is a list of cells. The cells need not be in any particular
order. However, a path will be given to each cell in the netlist.

(CELL

(CELLTYPE “std646”)

(INSTANCE std646_1)

For Figure 4.1, the cell elements are as follows:

CELL, the key word signifying the beginning of a cell entity. There will be a cell
for each component in the design for which you will backannotate timing
values.

CELLTYPE, the name of the component model as it appears in the HDL netlist.
It could also be the name of the hierarchical region if the netlist is
hierarchical.

INSTANCE, identifies the particular instance of the cell, including the hierarchi-
cal path. In our example, the cell is at the top level so there is no path. In a
more complex design it could look like “top/memory/idt7016_3.” If an instance
is not in the SDF file it will not be backannotated, but there will be no error.

4.1.3 Timing Specifications

Next come the timing specifications. They are divided into delays and
constraints.

50 Chapter 4 An Introduction to SDF

MAG04 8/18/04 3:08 PM Page 50

(DELAY (ABSOLUTE

(IOPATH A B (3.1:6:9.5) (3.7:6.8:10.5))

(IOPATH SAB A (3.9:8.8:13.8) (3.3:8.3:912.9))

(IOPATH CLKAB B (3.6:7:11.2) (3.9:7:10.6))

(IOPATH DIR A () () (3.2:7.3:11.8) (2.8:7.8:13.1) (3.8:8.4:12.6)

(3.8:8.9:14.6))

(IOPATH OENEG A () () (3.4:7:10.5) (4:7.9:13.2) (4:7.2:10.9)

(4.6:8.8:14.4))

))

(TIMINGCHECK

(SETUP A CLKAB (6:6:6))

(SETUP B CLKBA (6:6:6))

(HOLD A CLKAB (.5:.5:.5))

(HOLD B CLKBA (.5:.5:.5))

(WIDTH (posedge CLKAB) (6:6:6))

(WIDTH (posedge CLKBA) (6:6:6))

(WIDTH (negedge CLKAB) (6:6:6))

(WIDTH (negedge CLKBA) (6:6:6))

(PERIOD (posedge CLKAB) (12.1:12.1:12.1))

(PERIOD (posedge CLKBA) (12.1:12.1:12.1))

DELAY, the key word signaling the beginning of the delay section. There are four
delay types possible. They are PATHPULSE, PATHPULSEPERCENT, ABSOLUTE, and
INCREMENT. We are only concerned with ABSOLUTE in this book. See the IEEE-
1497 standards document for details on the others.

IOPATH, is an input–output path delay. It is followed by the names of the input
and output ports and an ordered list of delays. The name of the input can have
an optional edge identifier. The ordered list of delays consists of a number of
triplets. Each triplet specifies minimum, typical, and maximum values for its par-
ticular transition, as shown later. Ports A and B are tristate outputs. A can drive
B high or low. Therefore, there are two triplets: tr01 and tr10. However, OENEG
is an output enable. It can only cause A to switch between high impedance and
low impedance. It requires a set of six triplets: tr01, tr10, tr0Z, trZ1, tr1Z,
and trZ0. Because OENEG cannot cause a transition between high and low, the
first two triplets can be left empty.

(IOPATH A B (3.1:6:9.5) (3.7:6.8:10.5))

(IOPATH OENEG A () () (3.4:7:10.5) (4:7.9:13.2) (4:7.2:10.9) (4.6:8.8:14.4))

In the std646 model, the delays from A to B are the same as from B to A. There-
fore, a single generic is used for both paths and a single line in the SDF file
supplies the needed values. This is also true of other path delays.

TIMINGCHECK, the key word to signal the beginning of the timing constraint
section.

4.1 Overview of an SDF File 51

MAG04 8/18/04 3:08 PM Page 51

SETUP, specifies a setup constraint value. It is followed by the names of two
input ports. The first is the test port, usually address or data, and the second is
the reference port, usually a clock. Finally there is a triplet. Because we are only
interested in worst-case constraints, not min, typ, or max, the three values are
identical. Alternatively, only a single value could be supplied.

(SETUP A CLKAB (6:6:6))

HOLD, identical to SETUP except it specifies a hold constraint value.

(HOLD A CLKAB (.5:.5:.5))

WIDTH, defines a minimum pulse width value. A single port name is preceded
by an edge specifier. Finally the constraint value is given. The posedge specifi-
cation indicates the high phase of the pulse, negedge the low phase.

(WIDTH (posedge CLKAB) (6:6:6))

(WIDTH (negedge CLKAB) (6:6:6))

PERIOD, specifies the minimum value for a period constraint. A single port name
is preceded by an optional edge specifier. Finally the constraint value is given.

(PERIOD (posedge CLKAB) (12.1:12.1:12.1))

This was a relatively simple example. Next we will look at a wider range of what
is possible with SDF.

4.2 SDF Capabilities

SDF was originally intended for use in a chip design process. Things can be done
with it that are beyond those needed for board-level simulation. In this discussion
we will limit ourselves to those features that we know apply to component
modeling.

As we saw in our example, SDF includes constructs for modeling both circuit
delays and timing checks. All of the constructs we are about to examine have map-
pings to VITAL. Those mappings are shown in later chapters.

4.2.1 Circuit Delays

Circuit delays can be either interconnect delays or path delays. SDF files describing
interconnect delays are generated by (nearly all) vendor-supplied tools that gener-
ate interconnect information, such as printed circuit board layout tools or signal
integrity tools. We will not cover the interconnect portion of the SDF standard.

Path delays are delays within or through a component. In most cases we specify
pin-to-pin path delays, but in modeling some complex parts we must also model
internal delays deep inside the component.

Each delay definition we are about to study requires a set of delay values. The set
is formally referred to as a delval_list. That is to say it is a list of delval tokens.

52 Chapter 4 An Introduction to SDF

MAG04 8/18/04 3:08 PM Page 52

Each of these tokens consists of either one, two, or three real numbers. If the
token has one number it is simply interpreted as a delay. If it has two numbers,
they are taken as minimum and maximum delays. If there are three numbers, they
will represent minimum, typical, and maximum delays.

The formal syntax for delval_list is as follows:

delval_list ::=

delval

| delval delval

| delval delval delval

| delval delval delval delval delval delval

| delval delval delval delval delval delval delval delval delval delval

delval delval

The number of tokens in the delval_list can be one, two, three, six, or twelve.
For component modeling,

A single token is specified if a single value is sufficient for all transitions.

Two tokens are specified for 2-state drivers with 0 Æ 1, 1 Æ 0 transitions.

Three tokens are specified for 0 Æ 1, 1 Æ 0, ? Æ Z (1 or 0 to Z) transitions.

Six tokens are specified for normal 3-state drivers that have 0 Æ 1, 1 Æ 0, 0 Æ Z,
Z Æ 1, 1 Æ Z, and Z Æ 0 transitions.

Twelve tokens are specified for drivers that can drive low impedance with unknown
values. Memories often have this property. The transitions are 0 Æ 1, 1 Æ 0,
0 Æ Z, Z Æ 1, 1 Æ Z, Z Æ 0, 0 Æ X, X Æ 1, 1 Æ X, X Æ 0, X Æ Z, and Z Æ X.

The delay section of an SDF cell description begins with the key word DELAY.
Delays can be ABSOLUTE or INCREMENTAL. We will only need ABSOLUTE. A delay
section might look like this:

(DELAY (ABSOLUTE

(IOPATH A Y (.440:.620:.810) (.440:.620:.810))

))

After opening the absolute delay section we can list one or more delay defini-
tions. The most commonly used definition specifies a delay from an input pin
to an output pin. Its key word is IOPATH. The IOPATH key word must be fol-
lowed by the names of the two ports for which the delay is being given. The
order in which the ports are listed is input first then output. These are usually
followed by a list of delays, as shown. The formal syntax from the standard
document is

iopath_def ::=

(IOPATH port_spec port_instance { retain_def } deval_list)

retain_def ::=

(RETAIN retval_list)

4.2 SDF Capabilities 53

MAG04 8/18/04 3:08 PM Page 53

In this syntax,

IOPATH is the key word.

port_spec is the input port.

port_instance is the output port.

retain_def will be discussed shortly.

delval_list is the delay data.

In our definition, RETAIN specifies the time an output port retains its previous
logic value after a change at a related input, as shown in Figure 4.3.

(IOPATH ADDR0 DOUT0

(RETAIN (2:3:4) (3:4:5)) // RETAIN delays

(5:10:15) (6:12:18)) // IOPATH delays

The pin-to-pin delay through a component may vary depending on the state of
another pin. SDF accommodates this situation by providing the conditional path
delay. The formal syntax for conditional path delay is

cond_def ::=

(COND [qstring] conditional_port_expr iopath_def)

Here, the fields are interpreted as follows:

COND is the key word.

qstring is an optional symbolic name. Its mapping in VITAL is not well doc-
umented, so we shall avoid using it.

conditional_port_expr is the description of the state dependency of the
path delay. A particular conditional path delay will be used only if the condi-
tion is TRUE. Only expressions using ports are legal. VITAL offers additional,

54 Chapter 4 An Introduction to SDF

addr

dout

IOPATH delay

retain time

Figure 4.3 Retain time

MAG04 8/18/04 3:08 PM Page 54

more flexible methods of selecting among competing path delays. The mapping
of condition expressions will be covered in a later chapter.

iopath_def has the same meaning as described earlier.

Here is an example of conditional path delay excerpted from the timing file for a
74GTL1655:

(DELAY (ABSOLUTE

(COND VERC == 1 (IOPATH A0 B0 (3.0:4.5:5.1) (2.9:5.5:6.5)))

(COND VERC == 0 (IOPATH A0 B0 (2.3:3.3:4.3) (2.0:3.4:4.4)))

Sometimes we need to define a delay that is internal to a component and not
related to any port. This cannot be done with an IOPATH delay. For this situation
SDF provides a device delay.

Although the device delay was devised for gate-level models using distributed
timing, it is also applicable in component modeling for things like expressing the
refresh interval in a dynamic memory. There is an example of using device delays
in a model in Chapter 6.

The formal syntax for device delays is

device_def ::=

(DEVICE [port_instance] delval_list)

Where the fields mean

DEVICE is the key word.

port_instance is an optional field specifying the output port to which the
delay will be applied.

delval_list is the delay data.

Here is an example of a device delay used in a DRAM model:

(CELL (CELLTYPE “VITALbuf”)

(INSTANCE U1/REF) (DELAY (ABSOLUTE (DEVICE (15625))))

A complete explanation is given in Chapter 6.

4.2.2 Timing Checks

An important part of the board-level verification of your FPGA is ensuring that the
timing requirements of all the components with which it interfaces are met. To do
this we must build timing constraint checks into our component models. VITAL
provides us with the procedures for performing the constraint checks, but SDF gives
us the means to pass in the actual values.

4.2 SDF Capabilities 55

MAG04 8/18/04 3:08 PM Page 55

The formal syntax for an SDF timing specification is

tc_spec ::=

(TIMINGCHECK tchk_def { tchk_def })

where

TIMINGCHECK is the key word marking the beginning of the timing specification.

Any number of tchk_def constructs can be listed in a tc_spec.

The tchk_def syntax here is not a complete list of all the constructs available
in SDF, but it lists all the constructs used in component modeling:

tchk_def ::=

setup_timing_check

| hold_timing_check

| recovery_timing_check

| removal_timing_check

| skew_timing_check

| bidirectional_skew_timing_check

| width_timing_check

| period_timing_check

| nochange_timing_check

setup_timing_check :: =

(SETUP port_tchk port_tchk value)

hold_timing_check

(HOLD port_tchk port_tchk value)

recovery_timing_check

(RECOVERY port_tchk port_tchk value)

removal_timing_check

(REMOVAL port_tchk port_tchk value)

skew_timing_check

(SKEW port_tchk port_tchk value)

bidirectional_skew_timing_check

(BIDIRECTSKEW port_tchk port_tchk value value)

width_timing_check

(WIDTH port_tchk value)

period_timing_check

(PERIOD port_tchk value)

nochange_timing_check

(NOCHANGE port_tchk value)

Waveforms illustrating these constraint checks are provided in Chapter 8.

56 Chapter 4 An Introduction to SDF

MAG04 8/18/04 3:08 PM Page 56

Figure 4.4 shows how some of these constructs appear in an SDF file.
As you may have guessed, just as conditions can be applied to an IOPATH spec-

ification, so may they be applied to a timing constraint specification. The syntax
is similar:

port_tchk ::=

port_spec

| (COND [qstring] timing_check_condition port_spec)

where

COND is the key word

qstring is an optional symbolic name that we will not use.

timing_check_condition is the description of the state dependency of the
timing check.

conditionport_spec is the input port.

Here is an example of a conditional timing check taken from the STDH1655
timing file:

(SETUP (COND CLK = = 0 A0) LEAB (2.6))

(SETUP (COND CLK = = 1 A0) LEAB (2.8))

Any port_spec can be further qualified with an edge identifier:

port_spec ::=

port_instance

| port_edge

port_edge ::=

(edge_indentifier port instance)

A list of legal edge identifiers is given in Chapter 10. Because VITAL also pro-
vides the capability to specify edge conditions for timing checks, we really only
need to use edge identifiers in SDF to specify separate values for a constraint, as
illustrated here:

(WIDTH (posedge CLK) (3.0))

(WIDTH (negedge CLK) (3.5))

The subject of timing constraints in component models is discussed in greater
detail in Chapter 8.

4.2 SDF Capabilities 57

 (SETUP DQ0 CLK (1.0))
 (HOLD DQ0 CLK (1.0))
 (RECOVERY CLRNeg CLK (2.0))
 (WIDTH (posedge DQS) (2.6))
 (PERIOD (posedge CLK) (7.5))

Figure 4.4 Example usage of SDF constructs

MAG04 8/18/04 3:08 PM Page 57

4.3 Summary

SDF is a convenient way to annotate timing values into a simulation. It is supported
by both VHDL/VITAL and Verilog simulators. SDF has the capability to annotate
circuit delays as pin-to-pin delays or as device delays. It is also able to annotate
values for a variety of timing constraint checks. In both cases conditions can be
included to allow multiple values to be specified and have the correct value selected
by the simulator.

58 Chapter 4 An Introduction to SDF

MAG04 8/18/04 3:08 PM Page 58

5

59

C

H

A

P

T

E

R

Anatomy of a VITAL Model

VHDL component models used in FPGA and board-level verification are based on
the VITAL standard and methodology. This methodology can also be used to add
delays and timing constraints to your RTL models. In this chapter we examine the
architecture of a VITAL model.

VITAL provides two levels of support to better achieve its goals because ASIC
libraries, and more important to us, component libraries, must often accommodate
a wide range of models. VITAL level 0 facilitates portability and interoperability. It
also specifies the method for bringing timing information into the simulation.
VITAL level 1 defines a usage model for constructing complete cell (component)
models. It also facilitates compiler optimization and accelerated execution of the
models.

5.1 Level 0 Guidelines

VITAL level 0 compliance is a prerequisite for level 1 compliance. Both levels restrict
the form and semantic content of the model. The level 0 guidelines ensure that all
the functionality and timing semantics are defined only within the VHDL-1993
language. Foreign language interfaces and the use of vendor-supplied attributes are
prohibited, as are directives or metacomments that affect the behavior or timing
characteristics of a model. This is to ensure that models are interoperable across all
VITAL compliant simulators.

Level 0 provides a standard interface specification that addresses ports, generic
timing parameters, and types. In this way it guarantees that models will work
together and that backannotation using SDF can be done.

To accomplish its objectives, level 0 makes several restrictions. Most of the restric-
tions pertain to the model’s entity. Port names may not contain underscore (_) char-
acters. Ports may not be of mode linkage. Scalar ports must be of type std_ulogic
or a subtype. Vector ports, if needed, must be of type std_logic_vector.

VITAL timing generics must conform to a specific naming convention. A detailed
explanation will be given shortly. A set of control generics are provided. Other
generics may be defined without restriction.

MAG05 8/18/04 3:12 PM Page 59

A level 0 model must include a VITAL_Level0 attribute to facilitate compliance
checking.

ATTRIBUTE VITAL_LEVEL0 of ·VitalCompliantEntityÒ : ENTITY IS TRUE;

Level 0 compliance also places a few restrictions on the model’s architecture. All
functionality and timing must be expressed in VHDL. The VITAL_Level0 attrib-
ute must be present.

ATTRIBUTE VITAL_LEVEL0 of ·VitalCompliantArchitectureÒ : ARCHITECTURE IS TRUE;

Routines defined in the VITAL packages should be used where possible to improve
compiler optimization.

5.1.1 Backannotation

Backannotation is used to add timing information to a simulation. The information
may pertain to propagation delays and timing constraints. The simulator reads SDF
files to obtain timing information and modify the values of a model’s timing gener-
ics. Separate SDF files may be used to convey model delays and interconnect delays.
Additional SDF files may be used to convey FPGA timing information. It is also pos-
sible that all the timing information could be combined into a single SDF file.

In all cases, timing data are backannotated to instances in a testbench or a netlist.
They cannot be backannotated to a bare cell or model. Figure 5.1 illustrates how
the statements map to a netlist.

Delay calculations are performed external to the model and prior to simulation.
Backannotation occurs immediately after elaboration and just before negative con-
straint calculation (see Chapter 11). Once the timing generics have been updated
by backannotation, they remain constant during simulation.

5.1.2 Timing Generics

Timing backannotation to a VITAL model is performed through one or more timing
generics. For the SDF annotator to determine which generics are to receive which
values, VITAL timing generic names must be constrained by a predefined naming
convention. The declaration of a VITAL timing generic,

tpd_A_YNeg : VitalDelayType01 := UnitDelay01;

includes the predefined generic name, a VITAL-defined type, and an optional
default value. The generic name is composed of three parts:

Prefix, denotes the kind of parameter (propagation delay, setup time, etc.).

Signal(s), or path to which the timing value applies. VITAL requires the use of
actual port names.

Condition(s), and/or edge designation(s) associated with the indicated signal(s).

60 Chapter 5 Anatomy of a VITAL Model

MAG05 8/18/04 3:12 PM Page 60

For example,

tipd_A

tpd_OENeg_Y

tpw_CLK_posedge

Each generic to which timing information will be annotated is mapped to an SDF
key word, as shown in Table 5.1.

5.1.3 VitalDelayTypes

Each VITAL timing generic is declared to be of a particular VitalDelayType as
appropriate. VITAL defines an enumerated type to represent twelve possible types
of signal transitions:

TYPE VitalTransitionType IS (tr01, tr10, tr0z, trz1, tr1z, trz0, tr0X,

trx1, tr1x, trx0, trxz, trzx);

This type is used in all of the VITAL timing procedures. It is usually referenced
through one of the VITALDelayTypes.

There are four VITAL-defined scalar delay types:

VitalDelayType, a subtype of TIME used to specify a single delay value.

SUBTYPE VitalDelayType IS TIME;

5.1 Level 0 Guidelines 61

U1 U2

D Q
QYNeg

A

CLK

(DELAY (ABSOLUTE
 (INTERCONNECT u1.YNeg u2.D (0.01:0.02:0.03))
)
)

(DELAY (ABSOLUTE
 (INTERCONNECT u1.YNeg u2.D
(0.01:0.02:0.03))
)
)

 (CELL
 (CELLTYPE “inv”)
 (INSTANCE u1)
 (DELAY (ABSOLUTE
 (IOPATH A YNeg (1:3:6) (2:4:8))
))
)
 (CELL
 (CELLTYPE “dflop”)
 (INSTANCE u2)
 (DELAY (ABSOLUTE
 (IOPATH CLK Q (2:4:6) (2:4:6))
))
 (TIMINGCHECK
 (SETUP D CLK (.7))
 (HOLD D CLK (0))
 (WIDTH (posedge CLK) (7))
 (WIDTH (negedge CLK) (7))
 (PERIOD (posedge CLK) (15))
)
)

Figure 5.1 SDF to netlist mapping

MAG05 8/18/04 3:12 PM Page 61

VitalDelayType01, an array type used to specify two delay values (indexed by
tr01 and tr10). It is used with 2-state drivers.

TYPE VitalDelayType01 IS ARRAY (VitalTransitionType RANGE tr01 to tr10) OF

TIME;

VitalDelayType01Z, an array type used to specify six delays (indexed by tr01
through trz0). It is used with 3-state drivers.

TYPE VitalDelayType01Z IS ARRAY (VitalTransitionType RANGE tr01 to trz0) OF

TIME;

VitalDelayType01ZX, an array type used to specify 12 delays (indexed by tr01
through trzx). It is used with drivers that can have unknown states.

TYPE VitalDelayType01ZX IS ARRAY (VitalTransitionType RANGE tr01 to trzx)

OF TIME;

Timing constraints are specified with the simple VitalDelayType. Delays can
be specified with any of the delay types as required.

62 Chapter 5 Anatomy of a VITAL Model

Table 5.1 SDF key words and their corresponding VITAL prefixes

SDF Key word VITAL prefix Description

INTERCONNECT tipd interconnect path delay

delay between components

IOPATH tpd propagation delay

pin-to-pin delay within a component

DEVICE tdevice device delay

delay not associated with a pin pair

SETUP tsetup input setup time

HOLD thold input hold time

RECOVERY trecovery input recovery time

REMOVAL tremoval input removal time

NOCHANGE tncsetup no change setup time

tnchold no change hold time

SKEW tskew input skew time

BIDIRECTSKWEW tskew input skew time (1st generic)

tskew input skew time (2nd generic)

WIDTH tpw pulse width

PERIOD tperiod cycle period

tbpd biased propagation delay

tisd internal signal delay

ticd internal clock delay

MAG05 8/18/04 3:12 PM Page 62

5.2 Level 1 Guidelines

The intent of the level 0 specification is to enable portability and interoperability.
The intent of the level 1 specification is to facilitate optimization of compilation and
execution of the models, and allow higher levels of simulation performance. While
the level 0 guidelines focused on the model’s entity, level 1 focuses on its architecture.

Level 1 is more restrictive than level 0. As we examine the structural elements
of a level 1 architecture, keep in mind they are all available in a level 0 architec-
ture too. Indeed, most of the models you will create will be level 0.

Level 1 allows a model to have multiple processes. However, no two processes
may drive the same signal. The use of subprogram calls and operators in a level 1
model is limited to those declared in packages Standard, Std_Logic_1164, and
the VITAL packages.

In the declarative part of the architecture, the Vital_Level1 attribute must
appear:

ATTRIBUTE VITAL_LEVEL1 of ·VitalCompliantArchitectureÒ : ARCHITECTURE IS TRUE;

All signals declared must be of type std_ulogic, std_logic_vector, or a
subtype. Alias declarations may appear but no other declarations are allowed.

A diagram of the structure of a level 1 model (from the IEEE standard) is shown
in Figure 5.2. Although we are discussing level 1 models here, this general struc-
ture will also apply to level 0 models.

5.2.1 Wire Delay Block

Following the declarative portion of the model we come to the wire delay block.
Every model of a digital component should utilize this block. It is where the inter-
connect timing values are applied to the input signals. There may be at most one
wire delay block in a VITAL architecture, and it must have the label WireDelay. A
wire delay block is shown in Figure 5.3.

In the statement labeled w_1, the internal signal D1_ipd is driven to the value
of input port D1 after a delay of tipd_D1.

A wire delay block contains one or more calls to VitalWireDelay. This routine
may be called only once for each port of mode IN or INOUT. It is FMF’s conven-
tion to label each call to VitalWireDelay with a w_N label. The VitalWire-
Delay routine may not be called from anywhere in the model outside of this block.

A GENERATE statement may be used for vector ports. A wire delay block incor-
porating a GENERATE statement is show in Figure 5.4.

Before using vectored ports in a model, verify that the tool that will be gener-
ating your interconnect SDF files is compatible with such models.

A port read by the VitalWireDelay routine may not be read anywhere else in
the architecture. The output of the call must be an internal signal, not a port. The
author prefers to name such signals by appending _ipd to the port name, as shown
in Figure 5.4.

5.2 Level 1 Guidelines 63

MAG05 8/18/04 3:12 PM Page 63

64 Chapter 5 Anatomy of a VITAL Model

VITAL Level 0 Entity

VITAL Level 1 Architecture

VITAL Process

VITAL Primitive Concurrent Procedure Call

Cell Input Ports

Wire Delay Block

Negative Constraint Block

Sensitivity List

Timing Check Section

Functionality Section

Path Delay Section Delayed Outputs

Cell Output Ports

Input Signals Output Signals

Figure 5.2 Structure of a VITAL model

MAG05 8/18/04 3:12 PM Page 64

5.2.2 Negative Constraint Block

The negative constraint block is also called the signal delay block. It is used in
models with negative timing constraints. Because a component can have a nega-
tive timing constraint only if a signal has an internal delay, we can model such a
component by implementing a similar internal delay. This is done using calls to
VitalSignalDelay. A timing diagram illustrating negative setup and hold con-
straints is given in Chapter 11.

A schematic of a component that would have a VitalSignalDelay is shown
in Figure 5.5. There may be at most one signal delay block in a VITAL architec-
ture, and it must have the label SignalDelay. An example of a signal delay
block is shown in Figure 5.6. A signal delay block contains exactly one call to

5.2 Level 1 Guidelines 65

BEGIN

 --
 -- Wire Delays
 --
 WireDelay : BLOCK
 BEGIN

 w_1: VitalWireDelay (D1_ipd, D1, tipd_D1);
 w_2: VitalWireDelay (D0_ipd, D0, tipd_D0);

 END BLOCK;

Figure 5.3 Example wire delay block

 w_1 : VitalWireDelay (CLRNeg_ipd, CLRNeg, tipd_CLRNeg);
 w_2 : VitalWireDelay (OE1Neg_ipd, OE1Neg, tipd_OE1Neg);
 wdgen : FOR i IN 7 downto 0 GENERATE
 VitalWireDelay (IO_ipd(i), IO(i), tipd_IO(i));
 END GENERATE;

 END BLOCK;

 WireDelay : BLOCK
 BEGIN

Figure 5.4 Wire delay block with GENERATE statement

A QQD

CLK

CLK_ipd CLK_dly

ticd_CLK

Figure 5.5 Component with VitalSignalDelay

MAG05 8/18/04 3:12 PM Page 65

VitalSignalDelay for each timing generic representing an internal clock delay
or internal signal delay. Negative timing constraints are the topic of Chapter 11.

5.2.3 Processes

A VITAL model may contain as many processes as required. There are four possi-
ble sections in a VITAL process. Most are optional:

• Declarative section

• Timing check section

• Functionality section

• Path delay section

The sequence of the various sections in the process is significant. They must appear
in the order shown here.

All VITAL processes must have a sensitivity list. Each and every signal that is
read in the process must appear in the sensitivity list of that process. This is due to
the model’s tracking of timing for all its signals. If a signal were read in the process
without it being in the sensitivity list, the model could register the signal transi-
tion at the wrong time. Timing checks and delays based on the signal would become
inaccurate.

Declarative Section

The declarative section of a VITAL process may include constants, variables, aliases,
and attributes. In a level 1 model, variables must be of type std_ulogic,
std_logic_vector, boolean, time, or one of the VITAL internal (restricted)
types. Keep in mind most component models will not be level 1 models. Instead,
they will be behavioral models that are easier to write and faster to run.

The restricted types you will declare in a VITAL process and their uses are:

VitalGlitchDataType is used with VitalPathDelay procedures to store
timing data used for glitch detection.

VitalTimingDataType is used with VitalSetupHoldCheck and Vital-
RecoveryRemovalCheck procedures to store timing data used to detect timing
violations.

66 Chapter 5 Anatomy of a VITAL Model

 --
 -- Negative Timing Constraint Delays
 --
 SignalDelay : BLOCK
 BEGIN

 s_1: VitalSignalDelay (CLK_dly, CLK_ipd, ticd_CLK);

 END BLOCK;

Figure 5.6 Signal delay block

MAG05 8/18/04 3:12 PM Page 66

VitalPeriodPulseDataType is used with VitalPeriodPulseCheck proce-
dures to determines pulse widths and periods.

PreviousDataIn is of type std_logic_vector and is used with Vital-
StateTable calls to store previous state information.

VitalSkewDataType is used with VitalInPhaseSkewCheck and Vital-
OutPhaseSkewCheck procedures to store timing data used to detect skew
violations.

Variables of these restricted types are used to store persistent data for private use
by certain VITAL procedures. They may not be modified by the model itself. Figure
5.7 shows a VITAL process declarative section.

Timing Check Section

The timing check section performs timing constraint checks through predefined
timing check procedures. These procedures can generate timing violation messages
to the user and set violation flags that can be read by the functionality section of
the process. The predefined procedures available are as follows:

• VitalSetupHoldCheck

• VitalRecoveryRemovalCheck

• VitalInPhaseSkewCheck

5.2 Level 1 Guidelines 67

 --
 -- Main Behavior Process
 --
 VitalBehavior : PROCESS (CLKint, D_ipd, MR_ipd)

 -- Timing Check Variables
 VARIABLE Tviol_D_CLK : X01 := ‘0’;
 VARIABLE TD_D_CLK : VitalTimingDataType;

 VARIABLE Rviol_MR_CLK : X01 := ‘0’;
 VARIABLE TD_MR_CLK : VitalTimingDataType;

 VARIABLE Pviol_CLK : X01 := ‘0’;
 VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;

 VARIABLE Pviol_MR : X01 := ‘0’;
 VARIABLE PD_MR : VitalPeriodDataType := VitalPeriodDataInit;

 VARIABLE Violation : X01 := ‘0’;

 -- Functionality Results Variables
 VARIABLE Q_zd : std_ulogic;
 VARIABLE PrevData : std_logic_vector(0 to 3);

 -- Output Glitch Detection Variables
 VARIABLE Q_GlitchData : VitalGlitchDataType;

Figure 5.7 Example of VITAL process declarative section

MAG05 8/18/04 3:12 PM Page 67

• VitalOutphaseSkewCheck

• VitalPeriodPulseCheck

The timing check section is constructed of a single IF statement. The Timing-
ChecksOn generic must be used as the only condition. The timing check proce-
dures are called from within the IF statement. No ELSE or ELSIF clauses are
allowed:

BEGIN

-- Timing Check Section

IF (TimingChecksOn) THEN

-- as many calls to timing check procedures as required

...

END IF;

The timing check section only detects timing violations. The model must func-
tion correctly when TimingChecksOn is FALSE. Timing constraint violations may
be translated to ‘X’ outputs or corrupted memory locations in the functionality
section. Signal assignments may not be made in the timing check section. All
timing checks must be independent of one another. Details of the various timing
check procedures are given in Chapter 8.

Functionality Section

The function of a VITAL model may be coded by utilizing the VITAL functionality
section, concurrent procedure calls, or both. The functionality section defines the
logical function of the model. It computes new output values based on the input
values, but without timing.

The operation of a component is modeled in the VITAL level 1 process through
a sequence of variable assignments and/or calls to the VitalTruthTable or
VitalStateTable procedures. Right-hand-side expressions may include

• Function calls to VITAL primitives

• Operators and functions defined in the std_logic_1164 package

• Function calls to VitalTruthTables

• Concatenation and aggregate forms

• Variables, constants, signals (_ipd), and ports

The following are not allowed in a level 1 process (but are allowable in a level
0 process):

• IF, CASE, LOOP, NEXT, EXIT, and RETURN statements

• WAIT statements

68 Chapter 5 Anatomy of a VITAL Model

MAG05 8/18/04 3:12 PM Page 68

• Signal assignments

• Assertion statements

• Procedure calls to other than VITAL procedures

These restrictions limit the usefulness of level 1 processes to modeling relatively
simple components. The majority of models will be compliant with VITAL level 0.

A level 1 functionality section might look like this:

--

-- Functionality Section
--

Violation := Tviol_D_CLK OR Pviol_CLK OR Rviol_MR_CLK OR Pviol_MR;

VitalStateTable (

StateTable => DFFR_tab,

DataIn => (Violation, CLKint, D_ipd, MR_ipd),

Result => Q_zd,

PreviousDataIn => PrevData

);

We will see level 0 functionality sections in later chapters.

Path Delay Section

The path delay section receives the undelayed computed output values from the
functionality section and uses them to drive ports or internal signals after applying
the appropriate delays. It accomplishes this task through calls to the VitalPath-
Delay procedures. (A more in-depth discussion of path delays is given in Chapter
6.) Figure 5.8 shows the path delay section from the eclps151 model:

5.2 Level 1 Guidelines 69

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (
 OutSignal => Qint,
 OutSignalName => "Qint",
 OutTemp => Q_zd,
 GlitchData => Q_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK1_Q,
 PathCondition => TRUE),
 1 => (InputChangeTime => MR_ipd’LAST_EVENT,
 PathDelay => tpd_MR_Q,
 PathCondition => TRUE)
)
);

Figure 5.8 Example path delay

MAG05 8/18/04 3:12 PM Page 69

5.2.4 VITAL Primitives

The VITAL primitives afford a convenient and efficient method for coding a number
of simple logical functions. They provide the basic functional support for level 1
models but are also useful in level 0 models. In a process, they are called as func-
tions. For example,

Y_zd := VitalOR2 (a => D_ipd, b => ENeg_ipd, ResultMap => ECL_wired_or_rmap);

Y_zd, the zero delay output variable, receives the result of an OR operation between
D_ipd and ENeg_ipd, both delayed input signals. The output is further modified
by the result map. In this case, the output simulates an open emitter which can
drive a ‘1’ but not a ‘0’. It is always wise to call a primitive using named associ-
ation. Positional notation is difficult to maintain and is a common source of errors.
The 39 available primitives are listed in Chapter 3.

5.2.5 Concurrent Procedure Section

A concurrent procedure section may be placed after the delay block(s) and either
before or after the processes. This placement is a VITAL convention, not a VHDL
requirement. In a VITAL level 1 model, only procedure calls to VITAL primitives
are allowed. Other types of assignments are permitted in a level 0 model. Proce-
dure calls to VITAL primitives may include delay specifications, as show in Figure
5.9. It is preferred to use path delay procedure calls for reasons explained in Chapter
6. Providing a label for each VITAL primitive procedure call is recommended for
debug purposes.

5.3 Summary

The VITAL standard and its packages provide us with a uniform modeling method-
ology and a tool box of types, functions, and procedures. There are two levels of
VITAL compliance. Level 0 enables the use of path delays, timing constraints, and
the backannotation of timing values through SDF. It can be used for modeling
complex components at the behavioral level of abstraction. Level 0 primarily affects
the model entity.

Level 1 provides a set of simulation primitives that can be used for modeling
simple components at the gate level. It also allows compiler optimization for faster

70 Chapter 5 Anatomy of a VITAL Model

 a_7: VitalINV (
 q => DOUTNeg,
 a => DINint,
 tpd_a_q => tpd_DIN_DOUT,

 ResultMap => ECL_wired_or_rmap
);

Figure 5.9 Procedure call to VITAL primitive

MAG05 8/18/04 3:12 PM Page 70

simulation, but at the price of modeling restrictions. Level 1 primarily affects the
model architecture.

VITAL timing generics are named using a formula. There is a one-to-one mapping
between the VITAL generics and SDF statements that is required for backannotation.

VITAL compliant simulators can use VITAL procedures to enable negative timing
constraint checks. Values for the timing generics used for negative timing con-
straints are not backannotated but are calculated by the simulator prior to the start
of simulation.

A VITAL process must have a sensitivity list that includes every signal read within
the process. VITAL path delay procedures are used to add propagation delays to
output signals in a VITAL process.

5.3 Summary 71

MAG05 8/18/04 3:12 PM Page 71

This page intentionally left blank

6

73

C

H

A

P

T

E

R

Modeling Delays

Timing is an important aspect of system verification. Timing includes delays
through components and between components as well as timing constraints. In
this chapter we examine the ways delays within a component can be modeled. We
also discuss delays between components.

There are a number of ways in which component delays can be modeled. Delays
can be distributed among the various parts of the model. They can also be modeled
as pin-to-pin delays, or a combination of the two approaches can be taken.

6.1 Delay Types and Glitches

In a physical component, it takes a finite time for a transition on an input pin to
have an effect on an output pin. In modeling, this is called a path delay. It also
takes a finite time for the change on the output pin to be felt on the input pin of
the next component. This is called interconnect delay.

In VHDL, a signal is an object that consists of a list of values and the times at
which those values are scheduled to take effect. When a signal assignment state-
ment is executed in VHDL, it is scheduled to become effective at some time in the
future. The difference between the current time and the time the signal is sched-
uled to become effective is the delay.

6.1.1 Transport and Inertial Delays

There are two types of delays in VHDL and they correspond with two types of
digital circuits. Which one you use should depend on which logic family you are
modeling.

The simplest is transport delay. It is applicable to wire delays and to nonsaturat-
ing logic families such as emitter coupled logic (ECL). A feature of transport delay,
as illustrated in Figure 6.1, is that any signal transition on the input appears on the
output after a delay.

Most logic families do not behave this way. Most digital components use a
saturated transistor technology in which a gate capacitance must be charged or

MAG06 8/18/04 3:13 PM Page 73

discharged before the output begins to change. The output transistors are either
completely shut off or completely turned on (saturated). CMOS (Complimentary
Metal Oxide on Silicon) is the most common example of this today. In CMOS parts,
a resistance capacitance (RC) time constant of the drive circuit and the gate capac-
itance controls how fast an input can be charged or discharged. If an input pulse
is much longer than that time constant, the output switches as expected. If the
pulse is much shorter than the time constant, the output is unaffected because
before the input gate can be charged up enough to begin switching the output, it
is discharged again. If an input pulse is of an intermediate duration, the result is
uncertain. This type of propagation delay is called inertial delay and is illustrated
in Figure 6.2.

6.1.2 Glitches

The short pulses that do not result in an output transition are referred to as
glitches. Very short glitches are “swallowed” by the input circuit without affect-
ing the output. However, because it is not known exactly how long a glitch
must be to produce an event on the output, the effect of any input pulse
shorter than the propagation delay is conservatively regarded as indeterminate.
Under such conditions it is often prudent to have the model output an ‘X’. The
VITAL path delay procedures provide a means of specifying and controlling such
behavior.

74 Chapter 6 Modeling Delays

A
A

5 8 10 25 28 30

Y

15 18 20 35 38 40

delay � 10 nanosecond

Y �� transport A after 10 nanosecond;

Y

Figure 6.1 Transport delay

A
A

5 8 10 25 28 30

Y

20 40

delay � 10 nanosecond

Y �� A after 10 nanosecond;

Y

Figure 6.2 Inertial delay

MAG06 8/18/04 3:13 PM Page 74

6.2 Distributed Delays

Just as your FPGA can be viewed as being composed of a number of connected com-
ponents, each with its own delays, so too can other board-level digital parts. The
data sheets for many 7400 devices include schematics depicting their logical con-
struction. It is easy to model such a part as a netlist of VITAL primitives (but beware,
these schematics are often inaccurate).

The schematic of one section of a SN74LS245 as shown in a 1988 Texas Instru-
ments data book [2] is presented in Figure 6.3. One way to describe the timing
of this device would be to assign a delay to each gate. This is similar to the way
delays are modeled in a gate-level netlist. Each gate would be coded as a VITAL
concurrent primitive procedure call with a delay parameter. Delays would be read
from SDF DEVICE statements or IOPATH statements into VITAL tdevice or
tpd generics. Separate generics would be required for U1, U2, U3, and U4. In
Figure 6.3, the propagation delay from G# to B1 would be the sum of the delays
through U1 and U3.

Such an approach has several drawbacks. The most significant is that the model
must effectively be a gate-level netlist. Modeling at that level is about as much work
as designing the device in the first place, and simulation speed is poor. The
schematic provided in a component’s data sheet is frequently inaccurate. It may
not be possible to achieve correct timing with a gate-level model based on such a
schematic. It may also be difficult or impossible to determine the gate-level delays
because the component’s timing is usually specified on a pin-to-pin basis.

6.3 Pin-to-Pin Delays

Modeling delays as pin-to-pin delays is much less work. It is also more consistent
with the way IC vendors characterize their products. Because the model can be

6.3 Pin-to-Pin Delays 75

DIR

A1

G#

B1

U1

U3

U4

U2

Figure 6.3 Schematic of 74LS245 section

MAG06 8/18/04 3:13 PM Page 75

written at a higher level of abstraction, it is less tedious to code and has better
simulation performance. The component functionality is modeled without delays.
Delays are added using calls to VITAL path delay procedures. IOPATH statements
in SDF would be mapped to VITAL tpd generics in the model.

Besides being easier to understand, the behavioral model with pin-to-pin delays
is more flexible and better lends itself to technology independence or, more pre-
cisely, to timing independence. A greater degree of control over delay issues is avail-
able when a model is written using the VITAL path delay procedures.

Yet another advantage of modeling with pin-to-pin delays is independence
between timing and functionality implementation. In a gate-level model with dis-
tributed timing, a change to the netlist, perhaps to make a correction, is likely to
change the timing and necessitate and modification to the timing file. In the model
incorporating pin-to-pin delays, the delay timing and the functionality are largely
separate. One can be changed with minimal impact on the other.

Even in cases in which a gate-level representation of functionality makes sense,
pin-to-pin delays are effective. Figure 6.4 presents the behavior process from the
Free Model Foundry model of the 74LS245.

6.4 Path Delay Procedures

The VitalPathDelay procedure comes in three flavors: VitalPathDelay,
VitalPathDelay01, and VitalPathDelay01 Z. Each supports

• Transition-dependent delays

• Path delay selection

• User-controlled glitch detection

• User-controlled ‘X’ generation

• User-controlled error reporting

• Output signal scheduling

• and more

Of the three varieties of VPDs, VitalPathDelay is for simple path delays of type
VitalDelayType that are not transition dependent. The VitalPathDelay01 pro-
cedure is for delays of type VitalDelayType01 that require different rise/fall tran-
sition delay values. Finally, VitalPathDelay01Z is for scheduling path delays on
signals for which there is a transition to ‘Z’. All three procedures take the same
set of parameters,

OutSignal, output port or internal signal to be driven. Type std_logic.

OutSignalName, name of OutSignal to use when generating messages. Type string

OutTemp, the value to be applied to the output; computed in the functionality
section (_zd). This is an input of type std_ulogic.

76 Chapter 6 Modeling Delays

MAG06 8/18/04 3:13 PM Page 76

6.4 Path Delay Procedures 77

 --
 -- VITALBehavior Process
 --
 VITALBehavior1 : PROCESS(A_ipd, B_ipd, DIR_ipd, ENeg_ipd)

 -- Functionality Results Variables
 VARIABLE A_zd : std_ulogic := ‘X’;
 VARIABLE B_zd : std_ulogic := ‘X’;
 VARIABLE Aen_int : std_ulogic := ‘X’;
 VARIABLE Ben_int : std_ulogic := ‘X’;

 -- Output Glitch Detection Variables
 VARIABLE A_GlitchData : VitalGlitchDataType;
 VARIABLE B_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 Aen_int := VitalAND2(a=> NOT(DIR_ipd), b => NOT(ENeg_ipd));
 Ben_int := VitalAND2(a=> DIR_ipd, b => NOT(ENeg_ipd));

 A_zd := VitalBUFIF1 (data => B_ipd, enable => Aen_int);
 B_zd := VitalBUFIF1 (data => A_ipd, enable => Ben_int);

 --
 -- Path Delay Section
 --
 VitalPathDelay01Z (
 OutSignal => A,
 OutSignalName => "A",
 OutTemp => A_zd,
 Paths => (
 0 => (InputChangeTime => B_ipd’LAST_EVENT,
 PathDelay => VitalExtendToFillDelay(tpd_B_A),
 PathCondition => (Aen_int = ‘1’)),
 1 => (InputChangeTime => DIR_ipd’LAST_EVENT,
 PathDelay => tpd_DIR_A,
 PathCondition => TRUE),
 2 => (InputChangeTime => ENeg_ipd’LAST_EVENT,
 PathDelay => tpd_ENeg_A,
 PathCondition => TRUE)),
 GlitchData => A_GlitchData);

 VitalPathDelay01Z (
 OutSignal => B,
 OutSignalName => "B",
 OutTemp => B_zd,
 Paths => (
 0 => (InputChangeTime => A_ipd’LAST_EVENT,
 PathDelay => VitalExtendToFillDelay(tpd_A_B),
 PathCondition => (Ben_int = ‘1’)),
 1 => (InputChangeTime => DIR_ipd’LAST_EVENT,
 PathDelay => tpd_DIR_B,
 PathCondition => TRUE),
 2 => (InputChangeTime => ENeg_ipd’LAST_EVENT,
 PathDelay => tpd_ENeg_B,
 PathCondition => TRUE)),
 GlitchData => B_GlitchData);

 END PROCESS;

Figure 6.4 Behavioral process for 74LS245

MAG06 8/18/04 3:13 PM Page 77

Paths, a list of paths of VitalPathArrayType. Each path gives the delays and
conditions for driving the output.

DefaultDelay, delay used when no delay path applies. If absent, defaults to
zero.

IgnoreDefualtDelay, a boolean. If FALSE, the default delay will be used. If
TRUE, no event will be visible if no paths are selected. If absent, defaults to
FALSE.

GlitchData, a variable (local to the behavior process) used by the VPD to store
data required for glitch detection. Must not be referenced elsewhere.

MsgOn, control for message generation on glitch detection. When TRUE, glitches
are reported. Defaults to TRUE.

MsgSeverity, the severity level at which the message is reported.

XOn, glitch ‘X’ generation control. When TRUE, ‘X’s are scheduled for glitches.
If absent, defaults to TRUE.

Mode, selects the type of glitch detection. Value should be one of OnEvent
(default), OnDetect, VitalInertial, on VitalTransport (described later in
this chapter).

OutputMap, an array that allows mapping of output strength. For Vital-
PathDelay01Z only.

NegPreemptOn, if TRUE, enables negative preemptive glitch handling.

RejectFastPath, if TRUE, enables rejection of fast signal path.

Some of the parameters listed require further explanation and are covered in later
sections.

Paths

The Paths parameter is an array of records. There may be one or more elements
in the array. The order of the elements is not significant. Each record is made up
of three elements:

InputChangeTime, the amount of time since the input changed. This should
be of the form <signal>‘LAST_EVENT.

PathDelay, a VitalDelayType, VitalDelayType01, or VitalDelayType01Z
value specifying the delay time (from a specific input). Most often, this will be
a tpd generic.

Condition, a boolean expression controlling whether this delay path is to be
considered.

Three examples of paths taken from three FMF models are displayed in Figure 6.5.
The VitalDelayType in the PathDelay element of the record must be consis-

tent with the VITAL path delay procedure call. However, when using Vital-

78 Chapter 6 Modeling Delays

MAG06 8/18/04 3:13 PM Page 78

PathDelay01Z, the function VitalExtendtoFillDelay may be employed to
extend a constant of VitalDelayType or VitalDelayType01 to VitalDelay-
Type01Z, as demonstrated in the third example.

DefaultDelay

If none of the paths are selected and IgnoreDefaultDelay is FALSE, the
DefaultDelay is used for the output delay. If no default value is supplied by the
model, a zero delay will be used. In a properly written model, every path and con-
dition is anticipated, so use of the DefaultDelay should never happen. However,
when testing a model, a zero delay can be very handy because it signals that no
path was selected and an unanticipated condition occurred, an indication that the
model is not yet perfected.

IgnoreDefualtDelay

If IgnoreDefualtDelay is set to TRUE and no path is selected, the output event
is scheduled for TIME’HIGH. From a simulation perspective, this is the end of time.
If there is a requirement that transitions not covered by any of the paths never
reach the output port, this is the way to do it.

MsgOn

The MsgOn parameter controls the emission of messages in the event of a glitch
detection. In most cases you will want to see these messages. However, should you
prefer to ignore them, the value of this parameter can be set through generics and
controlled on an instance-by-instance basis or for the entire schematic.

MsgSeverity

Messages emitted by the VPD have a severity level. Most simulators can be config-
ured to pause or abort a simulation based on the severity level of a message.

6.4 Path Delay Procedures 79

 1 => (InputChangeTime => CLKIn’LAST_EVENT,
 PathDelay => tpd_CLK_DQ2,
 PathCondition => CAS_Lat = 2),
 2 => (InputChangeTime => CLKIn’LAST_EVENT,
 PathDelay => tpd_CLK_DQ3,
 PathCondition => CAS_Lat = 3)

 0 => (InputChangeTime => CLK_ipd’LAST_EVENT,
 PathDelay => tpd_CLK_Q,
 PathCondition => ((CLRint = ‘0’) AND (PREint = ‘0’))),

 0 => (InputChangeTime => A_ipd’LAST_EVENT,
 PathDelay => VitalExtendToFillDelay(tpd_A_Y),
 PathCondition => TRUE),

Figure 6.5 Example path parameters

MAG06 8/18/04 3:13 PM Page 79

Alternatively, most simulators can be configured to hide messages of low severity.
The MsgSeverity parameter allows the user to set the severity level of messages
emitted upon glitch detection. The value must be note, warning, error, or
failure. If no value is supplied, the value will default to warning.

XOn

If a glitch occurs on an input, the VPD will, by default, schedule an ‘X’ on the
output. Although this may be a good thing for regression tests, the ‘X’ propaga-
tion can be inconvenient during initial debug. Fortunately, it is easy to control
through the XOn generic routinely included in your model entity.

Mode

Given that a glitch is detected and XOn is TRUE, there are four modes for propa-
gating the ‘X’: VitalInertial, VitalTransport, OnEvent, and OnDetect.
They are shown in Figure 6.6.

80 Chapter 6 Modeling Delays

in

in

out(VitalInertial)

out(VitalTransport)

out(OnEvent)

out(OnDetect)

A

1 2 9

85 13 19 20

Negative Preemptive
Behavior

Positive Preemptive
Behavior

14 15

B AB

out

tr�4, tf�6

Figure 6.6 The four glitch propagation types

MAG06 8/18/04 3:13 PM Page 80

VitalInertial and VitalTransport are identical to VHDL inertial and trans-
port modes. If either of these modes is selected, glitches will not be detected. Oth-
erwise if the duration of an input pulse is less than the propagation delay for that
pulse, a glitch is detected at the end of the pulse. OnEvent and OnDetect are special
glitch handling modes. OnEvent outputs ‘X’ from the time an output event is
scheduled. OnDetect mode outputs ‘X’ from the time the glitch is detected (when
the glitch ends). “A” is the first scheduled event, “B” is the second scheduled event.

NegPreemptOn

In Figure 6.6, the buffer has a longer delay for a falling output than for a rising
one. Therefore, the first positive going glitch has its pulse width extended. The
second glitch shown, with its negative going pulse, would normally produce no
output. This is because the shorter delay of the rising edge would preempt and thus
cancel the falling edge. That is positive preemption. If we are concerned with such
pulses and want them to cause ‘X’ outputs, we can set the NegPreemptOn param-
eter to TRUE in the VitalPathDelay procedure call.

RejectFastPath

In the component illustrated in Figure 6.7, both the clock and the output enable
are causing a ‘1’ to be scheduled on pin Q. However, the propagation delay for
the output enable, OE, is longer than the delay for the clock. If RejectFastPath
is FALSE, Q will transition from ‘Z’ to ‘1’ after a delay of 4. If RejectFastPath
is TRUE, Q will transition from ‘Z’ to ‘1’ after a delay of 8. In most cases, 8 more
closely models the actual component. It is important to note that RejectFast-
Path does not work with simultaneous inputs.

OutputMap

The output type of a VPD is std_logic. The part you are modeling may not be
capable of driving the full range of values supported by std_logic. For example,
the component being modeled may have an open collector output. In such a case
the OutputMap parameter can be used to modify an output value before scheduling.

OutputMap => “UX0ZZWLZ-”;

This statement will cause any ‘1’ or ‘H’ computed result to be transformed to
‘Z’. This is done by a simple positional mapping between the VitalDefault-
OutputMap and the user-defined map:

UX01ZWLH- --VitalDefaultOutputMap

UX0ZZWLZ- --user defined map

Note that the OutputMap parameter is available only in the VitalPathDelay01Z
procedure. Also note that because the transformation takes place before

6.4 Path Delay Procedures 81

MAG06 8/18/04 3:13 PM Page 81

scheduling, the delay chosen is based on the new transition values, in this case
0 -> Z rather than 0 -> 1.

6.5 Using VPDs

The VitalPathDelay procedures are usually called from within the behavioral
process that is computing the output values. Before they can be used, some vari-
ables must be declared. These are the temporary or zero delay result variable and
the glitch variable.

-- Functionality Results Variables

VARIABLE ECLKOUT_zd : std_ulogic;

-- Output Glitch Detection Variables

VARIABLE ECLKOUT_GlitchData : VitalGlitchDataType;

The result variable must be of type std_ulogic. The glitch variable is of type
VitalGlitchDataType. The glitch variable has a local scope, and although it must
always be declared, it must never be used outside the VPD call.

In the functionality section, results are assigned to the temporary variable.

82 Chapter 6 Modeling Delays

delay�4

CLK

OE

Q

Q

RejectFastPath � FALSE

RejectFastPath � TRUE

delay�8

‘1’

‘1’

OE

D Q

Figure 6.7 Fast path

MAG06 8/18/04 3:13 PM Page 82

ECLKOUT_zd := ECLKIN;

The delay section is at the end of the process.

--
-- Path Delay Section
--

VitalPathDelay01 (

OutSignal => ECLK_int,

OutSignalName => “ECLKOUT”,

OutTemp => ECLKOUT_zd,

GlitchData => ECLKOUT_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => ECLKIN’LAST_EVENT,

PathDelay => tpd_ECLKIN_ECLKOUT,

PathCondition => TRUE)

)

);

END PROCESS ECLK;

In most cases, each output port will have its own VPD call. However, for com-
ponents with duplicated outputs, such as clock drivers, this may not be necessary.
Instead, a single VPD can be used to drive an internal signal and VITAL concurrent
procedure calls or simple signal assignments used to drive all the ports (see the
fct807 model in Figure 6.8).

Note in Figure 6.8 that the one VPD updates an internal signal. That delayed
internal signal then triggers and provides the value to 10 concurrent procedure
calls.

6.6 Generates and VPDs

Having the VPDs in the same process that is computing the output values is sim-
plest and most flexible. In the case of working with large output buses, writing a
separate VPD for each bit of the bus takes too long and makes the model too
verbose. At the expense of Vital_Level1 compliance, a VPD can be placed in its
own process inside a generate statement. A VitalPathDelay nested inside a gener-
ate is shown in Figure 6.9. Because this technique requires interprocess communi-
cations, the zero delay output must be a signal rather than a variable.

6.7 Device Delays

Sometimes there is a need to backannotate into a model a timing value that is
internal to the model and not associated with any port. An example is the refresh

6.7 Device Delays 83

MAG06 8/18/04 3:13 PM Page 83

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
 USE IEEE.VITAL_timing.ALL;
 USE IEEE.VITAL_primitives.ALL;
LIBRARY FMF; USE FMF.gen_utils.ALL;

--
-- ENTITY DECLARATION
--
ENTITY fct807 IS
 GENERIC (
 -- tipd delays: interconnect path delays
 tipd_A : VitalDelayType01 := VitalZeroDelay01;
 -- tpd delays
 tpd_A_Y1 : VitalDelayType01 := UnitDelay01;
 -- generic control parameters
 MsgOn : BOOLEAN := DefaultMsgOn;
 XOn : Boolean := DefaultXOn;
 InstancePath : STRING := DefaultInstancePath;
 -- For FMF SDF techonology file usage
 TimingModel : STRING := DefaultTimingModel
);
 PORT (
 A : IN std_ulogic := ‘U’;
 Y1 : OUT std_ulogic := ‘U’;
 Y2 : OUT std_ulogic := ‘U’;
 Y3 : OUT std_ulogic := ‘U’;
 Y4 : OUT std_ulogic := ‘U’;
 Y5 : OUT std_ulogic := ‘U’;
 Y6 : OUT std_ulogic := ‘U’;
 Y7 : OUT std_ulogic := ‘U’;
 Y8 : OUT std_ulogic := ‘U’;
 Y9 : OUT std_ulogic := ‘U’;
 Y10 : OUT std_ulogic := ‘U’
);
 ATTRIBUTE VITAL_LEVEL0 of fct807 : ENTITY IS TRUE;
END fct807;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral of fct807 IS
 ATTRIBUTE VITAL_LEVEL1 of vhdl_behavioral : ARCHITECTURE IS TRUE;

 CONSTANT partID : STRING := "FCT807";

 SIGNAL A_ipd : std_ulogic := ‘U’;
 SIGNAL Y : std_logic := ‘U’;

--
-- File Name: fct807.vhd
--
-- Copyright (C) 2001, 2003 Free Model Foundry; http://eda.org/fmf/
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY:
--
-- version | author | mod date | changes made
-- V1.0 R. Munden 01 FEB 16 Initial release
-- V2.0 R. Munden 03 JAN 22 Flattened model to match customer usage
--
-- PART DESCRIPTION:
--
-- Library: CLOCK
-- Technology: CMOS
-- Part: FCT807
--
-- Description: 1 to 10 Clock Driver
--

Figure 6.8 Model with duplicated outputs

MAG06 8/18/04 3:13 PM Page 84

6.7 Device Delays 85

BEGIN
 --
 -- Wire Delays
 --
 WireDelay : BLOCK
 BEGIN

 w_1: VitalWireDelay (A_ipd, A, tipd_A);

 END BLOCK;

 --
 -- Concurrent procedure calls
 --
 a_1 : VitalBuf (q => Y1, a => Y);
 a_2 : VitalBuf (q => Y2, a => Y);
 a_3 : VitalBuf (q => Y3, a => Y);
 a_4 : VitalBuf (q => Y4, a => Y);
 a_5 : VitalBuf (q => Y5, a => Y);
 a_6 : VitalBuf (q => Y6, a => Y);
 a_7 : VitalBuf (q => Y7, a => Y);
 a_8 : VitalBuf (q => Y8, a => Y);
 a_9 : VitalBuf (q => Y9, a => Y);
 a_10 : VitalBuf (q => Y10, a => Y);

 --
 -- VITALBehavior Process
 --
 VITALBehavior : PROCESS(A_ipd)

 -- Functionality Results Variables
 VARIABLE Y_zd : std_ulogic := ‘U’;

 -- Output Glitch Detection Variables
 VARIABLE Y_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 Y_zd := VitalBUF(data=> A_ipd);

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (
 OutSignal => Y,
 OutSignalName => "Y",
 OutTemp => Y_zd,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => A_ipd’LAST_EVENT,
 PathDelay => tpd_A_Y1,
 PathCondition => TRUE)),
 GlitchData => Y_GlitchData);

 END PROCESS;

END vhdl_behavioral;

Figure 6.8 Model with duplicated outputs (continued)

MAG06 8/18/04 3:13 PM Page 85

interval for a dynamic memory. In such cases device delays can be used. The generic
prefix for this type of delay is tdevice.

-- tdevice values: values for internal delays

tdevice_REF : VitalDelayType := 15_625 ns;

A reasonable default value should be assigned. Otherwise the model might be
unusable should the user decide not to backannotate timing. If the value is con-
stant across vendors and speed grades of this component, it may be left out of the
SDF file.

Because the suffix of the tdevice generic is expected to match the label of a
VITAL primitive concurrent procedure call, the generic must be used with a VITAL
primitive.

--
-- Internal Delays
--

– Artificial VITAL primitives to incorporate internal delays

REF : VitalBuf (refreshed_out, refreshed_in, (UnitDelay, tdevice_REF));

86 Chapter 6 Modeling Delays

 SIGNAL D_zd : std_logic_vector(HiDbit DOWNTO 0);
...
 D_zd <= DataDrive;
...
 --
 -- Path Delay Processes generated as a function of data width
 --
 DataOut_Width : FOR i IN HiDbit DOWNTO 0 GENERATE
 DataOut_Delay : PROCESS (D_zd(i))
 VARIABLE D_GlitchData:VitalGlitchDataArrayType(HiDbit Downto 0);
 BEGIN
 VitalPathDelay01Z (
 OutSignal => DataOut(i),
 OutSignalName => "Data",
 OutTemp => D_zd(i),
 Mode => OnEvent,
 GlitchData => D_GlitchData(i),
 Paths => (
 0 => (InputChangeTime => OENeg_ipd’LAST_EVENT,
 PathDelay => tpd_OENeg_D0,
 PathCondition => TRUE),
 1 => (InputChangeTime => CENeg_ipd’LAST_EVENT,
 PathDelay => tpd_CENeg_D0,
 PathCondition => TRUE),
 2 => (InputChangeTime => AddressIn’LAST_EVENT,
 PathDelay => VitalExtendToFillDelay(tpd_A0_D0),
 PathCondition => TRUE)
)
);

 END PROCESS;
 END GENERATE;

Figure 6.9 VPD inside a generate statement

MAG06 8/18/04 3:13 PM Page 86

Please note, however, that although the generic must be used with a VITAL prim-
itive, it may also be used elsewhere in the model.

IF (NOW > Next_Ref AND PoweredUp AND Ref_Cnt > 0) THEN

Ref_Cnt := Ref_Cnt - 1;

Next_Ref := NOW + tdevice_REF;

END IF;

In other cases, the tdevice generic may be used to control the pulse width of an
internal signal. In the following example, a flash memory is designed to time out
if an erase command sequence is not completed in a certain amount of time after
it is initiated.

First, the generic is declared and given a default value:

--sector erase command sequence timeout

tdevice_CTMOUT : VitalDelayType := 50 us;

Input and output signals are declared:

SIGNAL CTMOUT : std_ulogic := ‘0’; –Sector Erase TimeOut

SIGNAL CTMOUT_in : std_ulogic := ‘0’;

Than a VitalBuf is instantiated using the signals and the generic:

TCTMOUT :VitalBuf(CTMOUT, CTMOUT_in, (tdevice_CTMOUT ,UnitDelay));

Now, whenever CTMOUT_in is driven high, CTMOUT will follow after 50 us. In the
model’s state machine, in a process sensitive to CTMOUT,

ELSIF DataLo=16#30# THEN

--put selected sector to sec. ers. queue

--start timeout

Ers_Queue <= (OTHERS => ‘0’);

Ers_Queue(SecAddr) <= ‘1’;

CTMOUT_in <= ‘1’;

Then CTMOUT is monitored:

WHEN SERS =>

IF CTMOUT = ‘1’ THEN

CTMOUT_in <= ‘0’;

START_T1_in <= ‘0’;

ESTART <= ‘1’, ‘0’ AFTER 1 ns;

ESUSP <= ‘0’;

ERES <= ‘0’;

If CTMOUT goes high before the state machine moves to the next state, the opera-
tion is aborted and CTMOUT_in is reset to ‘0’.

6.7 Device Delays 87

MAG06 8/18/04 3:13 PM Page 87

There are many other way the tdevice generic might be used. They are limited
only by your need and your imagination.

6.8 Backannotating Path Delays

The VITAL standard is strict regarding how timing generics are named but more
relaxed about how they are used. Taking advantage of this can result in some
economies in certain types of models and provide utility in others.

Most components can have multiple delay paths described by a single timing
specification. The data sheet for a 2-input nand gate will usually state the same
delay from either input to the output. There is no need to write separate generics
for each input and then backannotate identical values to both of them. A single
generic will do. This is all the more true for a model with a single clock and a
16-bit output bus. If all bits have the same delay specification, a single generic
will do.

A more interesting case is when a component exhibits different delays based on
an internal state. This frequently is true for synchronous DRAMs, which can be pro-
grammed for different CAS latencies. A CAS latency of 3 provides an output with
a shorter delay relative to the clock than a CAS latency of 2, but with a three-clock-
cycle latency. A CAS latency of 2 means there will be a longer delay relative to the
clock but only a two-clock-cycle latency.

In the km432s2030 model, the two sets of delays are brought in using two tpd
generics:

-- tpd delays

tpd_CLK_DQ2 : VitalDelayType01Z := UnitDelay01Z;

tpd_CLK_DQ3 : VitalDelayType01Z := UnitDelay01Z;

They are backannotated from two SDF IOPATH statements:

(DELAY (ABSOLUTE

(IOPATH CLK DQ2 (3:6:8) (3:6:8) (3:6:8) (3:6:8) (3:6:8) (3:6:8))

(IOPATH CLK DQ3 (2:4:6) (2:4:6) (2:4:6) (2:4:6) (2:4:6) (2:4:6))

))

Any of the DQ ports could have been used in the generics and SDF, but it is easy
to remember DQ2 and DQ3 are for CAS latencies of 2 and 3.

The model incorporates a signal called CAS_Lat that gets its value from a pro-
grammable register. The user (of the component or the model) configures the
memory by programming this and other registers. In the model, the VPD uses
CAS_Lat as a condition in selecting the path delays for the output bus.

A path delay procedure call that uses the value of an internal register to select
a path is shown in Figure 6.10.

If you are trying to write compatible VHDL and Verilog models of components,
be warned that these tricks will not translate to Verilog. The specification of
multiple path delay values in Verilog requires the use of conditional path delay

88 Chapter 6 Modeling Delays

MAG06 8/18/04 3:13 PM Page 88

generics (described in Chapter 10). However, those may not depend on internal
states so they will not work for this example.

6.9 Interconnect Delays

Interconnect delays represent the time it takes a signal transition to propagate from
one component to another through the copper traces on a printed circuit board or
through other media. As components get faster and clock cycle times get shorter,
these interconnect delays become more important to the correct timing of our
designs.

On a PCB, the delay is dependent on the length of the trace between the driving
and receiving pins, the construction of the board, the materials from which it is
built, and the signaling system employed. As a board is designed, progressively
more accurate delay values can be extracted. Before component placement, zero
delays are assumed. After component placement, delays can estimated based on
manhattan distances. After routing the board, delays can be estimated based on the
actual length of the interconnect. For the most accurate analysis, a signal integrity
analyzer in employed. It uses analog models of the drivers and receivers as well as
any terminators to determine the time from when a driver begins to change state
to when the receiver switches. It can take into account capacitive loads, transmis-
sion line reflections, and series and parallel terminations.

Any good PCB layout or signal integrity tool should be capable of extracting
interconnect delays and writing them to an SDF file. In the SDF file they will be

6.9 Interconnect Delays 89

 --
 -- Path Delay Process
 --
 DataOutBlk : FOR i IN 31 DOWNTO 0 GENERATE
 DataOut_Delay : PROCESS (D_zd(i))
 VARIABLE D_GlitchData:VitalGlitchDataArrayType(31 Downto 0);
 BEGIN
 VitalPathDelay01Z (
 OutSignal => DataOut(i),
 OutSignalName => "Data",
 OutTemp => D_zd(i),
 Mode => OnEvent,
 GlitchData => D_GlitchData(i),
 Paths => (
 1 => (InputChangeTime => CLKIn’LAST_EVENT,
 PathDelay => tpd_CLK_DQ2,
 PathCondition => CAS_Lat = 2),
 2 => (InputChangeTime => CLKIn’LAST_EVENT,
 PathDelay => tpd_CLK_DQ3,
 PathCondition => CAS_Lat = 3)
)
);

 END PROCESS;
 END GENERATE;

Figure 6.10 Selecting a path delay with an internal register

MAG06 8/18/04 3:13 PM Page 89

expressed in an INTERCONNECT statement. In VITAL it is mapped to a tipd generic.
As seen in Chapter 5, the delay is applied to an input pin. It must be applied to an
input because VHDL (or Verilog for that matter) has no way to simulate a wire. A
WireDelay block delays the input signal by the value in the tipd generic and
updates a new internal (_ipd) signal for use throughout the model.

As long as there is only one driver on a net, there can be any number of receivers,
and interconnect delays remain straightforward. However, when there is more than
one driver on a net, the situation becomes more complex. This is called a multi-
source interconnect delay. SDF has no difficulty expressing independent delays
from multiple drivers to multiple receivers.

VITAL defines two mechanisms for dealing with multisource delays. In one sce-
nario, the simulator’s SDF annotator picks one of the delay values. The simulator
may allow the user to select the minimum, maximum, or last delay in the list. In
the other scenario, the simulator accepts all the delays and puts them into an array.
Each time an event is detected at an input port, the simulator determines the source
driver. It then applies the correct delay for that driver through the WireDelay
block.

Which capabilities you get depends on which simulator you buy. Read your
manuals for instructions on how to control backannotation of multisource inter-
connect delays.

6.10 Summary

There are two methods of delay modeling in VITAL. They are distributed delays and
pin-to-pin delays. For most models, pin-to-pin delays are preferred because they
are easier, more flexible, and allow greater control over glitch handling and path
selection.

The VITAL path delay procedures are used to implement output delays. They are
usually called from within the process that computes the output values whenever
practical. In most cases, using VPDs is preferred over modeling with distributed
delays. For modeling components with buses they may be embedded in a generate
statement. Multiple VPDs may read the same path delay generic, reducing the size
of the timing and SDF files required.

Signal assignments or concurrent VITAL procedure calls may be used to drive
multiple identical outputs from a single VitalPathDelay procedure call. VITAL
models may use an internal signal or variable in the selection of a path delay.

Interconnect delays are the physical delay associated with a printed circuit board
(or other) implementation. Most PCB tools provide some means of generating an
SDF file for backannotation.

Whenever a model requires a timing value that is not directly associated with a
pin pair, a device delay may be used. They are very flexible and can be fit to almost
any need.

90 Chapter 6 Modeling Delays

MAG06 8/18/04 3:13 PM Page 90

7

91

C

H

A

P

T

E

R

VITAL Tables

One of the strengths of Verilog is its user-defined primitives. The VITAL standard
brings similar capability to VHDL. VITAL tables can be used to model a variety of
combinatorial and state-dependent behaviors.

In the early 1990s, the VITAL team was formed and tasked with finding a way
to improve the gate-level simulation performance of VHDL so it could compete
with Verilog. In performing this mandate, they were not shy about borrowing from
Verilog’s strengths. One of the features they borrowed was Verilog’s UDPs. The
UDP has been a useful tool for Verilog model writers since its inception because
it gives the writer the ability to concisely define the behavior of small digital cir-
cuits such as gates, multiplexers, decoders, and counters. The result was VITAL truth
tables and VITAL state tables. Truth tables and state tables are defined in the
VITAL_Primitives package.

In the VITAL2000 revision, the use of tables has been extended to include mod-
eling static memories.

7.1 Advantages of Truth and State Tables

The difference between truth tables and state tables is truth tables work with a
current stimulus and state tables can store a previous condition. Truth tables and
state tables offer a concise means of representing complex combinatorial and
sequential logic. Commonly used operations, such as decoders and flip-flops, can
be written as truth and state tables. Because truth and state tables are either func-
tions or procedures, it is convenient to put them in packages where they can be
used by many models. The Free Model Foundry ff_package contains 37 varieties of
latch and flip-flop state tables that can be instantiated in your models or used as
examples for creating something new.

Because VITAL tables are accelerated, they may execute faster than other
methods of encoding low-level functions. Their table format also makes them easy
to read and comprehend.

MAG07 8/18/04 3:13 PM Page 91

7.2 Truth Tables

Truth tables are used for modeling combinatorial logic such as decoders. Inputs
consist entirely of asynchronous signals. They have no states.

7.2.1 Truth Table Construction

Truth tables are constructed of a set of input patterns and an associated set of output
values. Wildcard characters can be used in the input patterns to reduce the table
size and improve readability. Figure 7.1 is a truth table for the function (A OR B)
and not (C). VITAL truth tables are two-dimensional arrays or type Vital-
TruthTableType. The first dimension (rows) is the number of patterns. The second
dimension (columns) is the total number of inputs and outputs. “-” means don’t
care.

The VITAL truth table for a 74139, 2 to 4 decoder, is shown in Figure 7.2. In this
case the array is of size (0 to 4, 0 to 6).

7.2.2 VITAL Table Symbols

There are 23 symbols available for constructing VITAL truth tables and state tables.
Figure 7.3 presents the declaration of the VitalTableSymbolType taken from the
VITAL_Timing package. The table symbols are enumeration literals. This means
they are case sensitive. The levels and edge transitions corresponding to the ele-
ments of VitalTableSymbolType are shown in Table 7.1

92 Chapter 7 VITAL Tables

A B C Q QN

- - 1 0 1

0 0 - 0 1

1 - 0 1 0

- 1 0 1 0

Figure 7.1 Example truth table

 CONSTANT std139_tab : VitalTruthTableType := (

 -----INPUTS---|-------OUTPUTS------
 --G B A | Y0 Y1 Y2 Y3

 (‘1’, ‘-’, ‘-’, ‘1’, ‘1’, ‘1’, ‘1’),
 (‘0’, ‘0’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’),
 (‘0’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’),
 (‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’),
 (‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’)
);

Figure 7.2 74139 decoder truth table

MAG07 8/18/04 3:13 PM Page 92

7.2 Truth Tables 93

 TYPE VitalTableSymbolType IS (
 ‘/’, -- 0 -> 1
 ‘\’, -- 1 -> 0
 ‘P’, -- Union of ‘/’ and ‘^’ (any edge to 1)
 ‘N’, -- Union of ‘” and ‘v’ (any edge to 0)
 ‘r’, -- 0 -> X
 ‘f’, -- 1 -> X
 ‘p’, -- Union of ‘/’ and ‘r’ (any edge from 0)
 ‘n’, -- Union of ‘” and ‘f’ (any edge from 1)
 ‘R’, -- Union of ‘^’ and ‘p’ (any possible rising edge)
 ‘F’, -- Union of ‘v’ and ‘n’ (any possible falling edge)
 ‘^’, -- X -> 1
 ‘v’, -- X -> 0
 ‘E’, -- Union of ‘v’ and ‘^’ (any edge from X)
 ‘A’, -- Union of ‘r’ and ‘^’ (rising edge to or from ‘X’)
 ‘D’, -- Union of ‘f’ and ‘v’ (falling edge to or from ‘X’)
 ‘*’, -- Union of ‘R’ and ‘F’ (any edge)
 ‘X’, -- Unknown level
 ‘0’, -- low level
 ‘1’, -- high level
 ‘-’, -- don’t care
 ‘B’, -- 0 or 1
 ‘Z’, -- High Impedance
 ‘S’ -- steady value
);

Figure 7.3 VitalTableSymbolType

VITAL state tables utilize the entire symbol set. VITAL truth tables use a subset of
VitalTableSymbolType in the range of ‘X’ to ‘Z’. A truth table is divided into
Input Pattern and Response sections. Valid symbols for the stimulus section of a
VITAL truth table are limited to ‘X’, ‘0’, ‘1’, ‘-’, and ‘B’. Valid symbols for the
results section of a truth table are ‘X’, ‘0’, ‘1’, and ‘Z’. The symbol ‘B’ matches
any non-‘X’ value. The symbol ‘-’ is a “don’t care” symbol that matches any value.

State tables use more complex transition symbols. For example, an ‘R’ is used
to indicate “all rising transitions,” including 0 to X, X to 1, and 0 to 1.

Symbol Matching

During truth table and state table processing, input data are automatically con-
verted using the std_logic function To_X01. The resulting values are then com-
pared to the stimulus portion of the table using the matching rules in Table 7.2.

7.2.3 Truth Table Usage

Truth tables are usually collected in a package but may be included in a model. The
function version of the VitalTruthTable is used inside a process. The procedure
version is used in a concurrent procedure call. The function version is more com-
monly employed in component models.

Using the FMF std138 model as an example of how to use a truth table, we see
the first step is declaring the table as a constant:

MAG07 8/18/04 3:13 PM Page 93

94 Chapter 7 VITAL Tables

Table 7.2 Symbol matching rules

Table Stimulus DataInX01 :=
Portion To_X01 (DataIn) Result of Comparison

‘X’ ‘X’ ‘X’ only matches with ‘X’

‘0’ ‘0’ ‘0’ only matches with ‘0’

‘1’ ‘1’ ‘1’ only matches with ‘1’

‘-’ ‘X’, ‘0’, ‘1’ ‘-’ matches with any value of DataInX01

‘B’ ‘0’, ‘1’ ‘B’ only matches with ‘0’ or ‘1’

Table 7.1 Truth table and state table symbol semantics

0 Æ 0 1 Æ 0 X Æ 0 1 Æ 1 0 Æ 1 X Æ 1 0 Æ X 1 Æ X X Æ X

‘/’ *

‘\’ *

‘P’ * *

‘N’ * *

‘r’ *

‘f’ *

‘p’ * *

‘n’ * *

‘R’ * * *

‘F’ * *

‘^’ *

‘v’ *

‘E’ * *

‘A’ * *

‘D’ * *

‘*’ * * * * * *

‘X’ * * *

‘0’ * * *

‘1’ * * *

‘-’ * * * * * * * * *

‘B’ * * * * * *

‘Z’

‘S’ * *

MAG07 8/18/04 3:13 PM Page 94

--
-- Decode Process
--

Decode : PROCESS (G1_ipd, G2int, C_ipd, B_ipd, A_ipd)

CONSTANT std138_tab : VitalTruthTableType := (

---------INPUTS--------- | ----------------OUTPUTS----------------

--G1 G2 C B A | Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
--

(‘-’, ‘1’, ‘-’, ‘-’, ‘-’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘0’, ‘-’, ‘-’, ‘-’, ‘-’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘0’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’),

(‘1’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’),

(‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’)

);

This table functions as a 3 to 8 decoder. It has two enable inputs, one active high,
the other active low. The outputs are active low. When the table is searched, the
enables will be checked first. If both are active, the input to be decoded is selected.
In the first two rows, if either enable is inactive, it does not matter what values are
on the other inputs. That is why ‘-’s are used.

When a call is made to a VitalTruthTable primitive, the stimulus, DataIn, is
compared with the input pattern of each row, starting with the top row. The com-
parison stops with the first matching entry. The outputs of the matching row are
converted to std_logic X01Z. If no match is found, ‘X’s are returned.

Because tables are searched from top to bottom and the search stops at the
match, the order of the rows can be important. Although this example does not
illustrate it, some tables will produce incorrect results if the rows are not ordered
correctly. This is particularly true for state tables.

Next, the required variables are declared:

-- Functionality Results Variables

VARIABLE YData : std_logic_vector(0 to 7);

ALIAS Y0_zd : std_ulogic IS YData(0);

ALIAS Y1_zd : std_ulogic IS YData(1);

ALIAS Y2_zd : std_ulogic IS YData(2);

ALIAS Y3_zd : std_ulogic IS YData(3);

ALIAS Y4_zd : std_ulogic IS YData(4);

ALIAS Y5_zd : std_ulogic IS YData(5);

ALIAS Y6_zd : std_ulogic IS YData(6);

ALIAS Y7_zd : std_ulogic IS YData(7);

7.2 Truth Tables 95

MAG07 8/18/04 3:13 PM Page 95

-- Output Glitch Detection Variables

VARIABLE Y0_GlitchData : VitalGlitchDataType;

VARIABLE Y1_GlitchData : VitalGlitchDataType;

VARIABLE Y2_GlitchData : VitalGlitchDataType;

VARIABLE Y3_GlitchData : VitalGlitchDataType;

VARIABLE Y4_GlitchData : VitalGlitchDataType;

VARIABLE Y5_GlitchData : VitalGlitchDataType;

VARIABLE Y6_GlitchData : VitalGlitchDataType;

VARIABLE Y7_GlitchData : VitalGlitchDataType;

The first variable, YData, will get the results of the truth table call. The aliases will
be used to transfer the results to the path delay procedures. The GlitchData vari-
ables are also for use in the path delay procedures.

The call to the VitalTruthTable function is in the functionality section of the
process (by FMF convention):

BEGIN

--
-- Functionality Section
--

Ydata := VitalTruthTable (

TruthTable => std138_tab,

DataIn => (G1_ipd, G2int, C_ipd, B_ipd, A_ipd)

) ;

It is a simple function call, with YData getting the results. The two arguments
to the call are the name of the truth table and a list of the inputs. The inputs make
up an array and must be listed in the same order in which they appear in the table.

Finally, the results are sent to a VPD so they can be delayed by an appropriate
time before being assigned to the output ports.

--
-- Path Delay Section
--

VitalPathDelay01 (

OutSignal => Y0Neg,

OutSignalName => “Y0Neg”,

OutTemp => Y0_zd,

GlitchData => Y0_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (

InputChangeTime => G1_ipd’LAST_EVENT,

PathDelay => tpd_G1_Y0Neg,

PathCondition => TRUE),

96 Chapter 7 VITAL Tables

MAG07 8/18/04 3:13 PM Page 96

1 => (

InputChangeTime => G2int’LAST_EVENT,

PathDelay => tpd_G2ANeg_Y0Neg,

PathCondition => TRUE),

2 => (

InputChangeTime => A_ipd’LAST_EVENT,

PathDelay => tpd_A_Y0Neg,

PathCondition => ((G1_ipd = ‘1’) AND G2int = ‘1’)),

3 => (

InputChangeTime => B_ipd’LAST_EVENT,

PathDelay => tpd_A_Y0Neg,

PathCondition => ((G1_ipd = ‘1’) AND G2int = ‘1’)),

4 => (

InputChangeTime => C_ipd’LAST_EVENT,

PathDelay => tpd_A_Y0Neg,

PathCondition => ((G1_ipd = ‘1’) AND G2int = ‘1’)))

);

Because there were five inputs to the function, we need five paths to analyze to
determine the correct delay. Only one VPD is shown here. There are seven more
like it in the model.

7.3 State Tables

State tables are similar to truth tables but are used for describing behavior that
includes an internal state. A state table defines a transition from the present state
and present inputs to the next state and its outputs. Unlike the VitalTruthTable,
the VitalStateTable has only versions that are used as procedures. One version
accepts variable inputs for use in sequential processes and the other version accepts
signal inputs for use as a concurrent statement outside of any process. For compo-
nent modeling, the sequential version will most often be used.

7.3.1 State Table Symbols

State tables can use the full set of symbols shown in Figure 7.3 including all the
edge transition symbols. Indeed, it is the use of edge transition symbols that makes
state tables suitable for modeling synchronous behavior.

7.3.2 State Table Construction

State tables are a bit more complicated to construct than truth tables. Although
they can still be divided into stimulus and response sections, the stimulus section
consists of columns for all the inputs followed by columns for each of the previ-
ous outputs. The response section will have a column for each output. The ordering

7.3 State Tables 97

MAG07 8/18/04 3:13 PM Page 97

of the columns for the previous outputs must match the ordering of the subsequent
columns for outputs.

A state table for an oversimplified D flip-flop is presented in Figure 7.4. In the
table, when there is a rising edge (0 to 1) on CLK, ‘Q’ takes the value of D. At all
other times, the output is stable.

7.3.3 State Table Usage

To use a state table we must first declare some variables. The code in this example
is taken from the FMF std273 model:

-- Main Behavior Process

VitalBehavior : PROCESS (CLK_ipd, D_ipd, CLRint)

-- Timing Check Variables

...

VARIABLE Violation : X01 := ‘0’;

-- Functionality Results Variables

VARIABLE Q_zd : std_ulogic;

VARIABLE PrevData : std_logic_vector (0 to 3);

Here, Q_zd is the temporary output variable. PrevData is an array for storing the
previous state of the state table. The range of this array should begin at zero. The
variable Violation takes the combined output of the timing checks (not shown).
If there is a timing violation, its value will be ‘X’. Otherwise, its value will be ‘0’.

The VitalStateTable procedure call is in the functionality section of the process:

VitalStateTable (

StateTable => DFFR_tab,

DataIn => (Violation, CLK_ipd, D_ipd, CLRint),

Result => Q_zd,

PreviousDataIn => PrevData

) ;

98 Chapter 7 VITAL Tables

 CONSTANT DFF_tab : VitalStateTableType := (

 ----INPUTS--|PREV|-OUTPUT--
 -- CLK D | QI | Q’ --
 -----------------|-----|---------
 (‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 7.4 An oversimplified D flip-flop

MAG07 8/18/04 3:13 PM Page 98

Where

StateTable takes the name of a previously defined state table. In this model,
the state table definition resides in a separate package. The state table is

--
-- D-flip/flop with Reset active high
--

CONSTANT DFFR_tab : VitalStateTableType := (

------- INPUTS ------- |PREV- |-OUTPUT--

-- Viol CLK D R | QI | Q’ --

--------------------- |----- |---------

(‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’), -- timing violation

(‘-’, ‘B’, ‘-’, ‘X’, ‘0’, ‘0’), -- reset unknown

(‘-’, ‘/’, ‘0’, ‘X’, ‘0’, ‘0’), -- reset unknown

(‘-’, ‘-’, ‘-’, ‘X’, ‘-’, ‘X’), -- reset unknown

(‘-’, ‘-’, ‘-’, ‘1’, ‘-’, ‘0’), -- reset asserted

(‘-’, ‘X’, ‘0’, ‘0’, ‘0’, ‘0’), -- clk unknown

(‘-’, ‘X’, ‘1’, ‘0’, ‘1’, ‘1’), -- clk unknown

(‘-’, ‘X’, ‘-’, ‘0’, ‘-’, ‘X’), -- clk unknown

(‘-’, ‘/’, ‘0’, ‘0’, ‘-’, ‘0’), -- active clock edge

(‘-’, ‘/’, ‘1’, ‘0’, ‘-’, ‘1’), -- active clock edge

(‘-’, ‘/’, ‘-’, ‘0’, ‘-’, ‘X’), -- active clock edge

(‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default

) ; -- end of VitalStateTableType definition

DataIn takes an array of input values. These are the present inputs. Result is
of mode INOUT. It returns the output values and is read as the previous state.

PreviousDataIn is of mode INOUT. It holds the previous DataIn values and
saves the present inputs for use in the table’s next call.
The Q_zd output is used to supply an input value to a VitalPathDelay

procedure.

7.3.4 State Table Algorithm

When the VitalStateTable procedure is called, the state table is searched, row
by row, until an entry matching the current input transitions (edges and steady
values) and state values is found. If a match is found, the output and next state
values corresponding to the match are returned. If no match is found, the result is
set to all ‘X’ values. The PreviousDataIn vector is updated automatically.

It is important to remember that the row-by-row traversal algorithm results in a
priority equivalent to an IF / ELSIF / ELSE expression in a program. It also means
that asynchronous inputs should be handled by placing their entries near the top of
the table. Also each table should have at least one row with an ‘S’ or a ‘-’ in the
clock column to account for the table being entered when there is no clock transition.

7.3 State Tables 99

MAG07 8/18/04 3:13 PM Page 99

7.4 Reducing Pessimism

The construction of a state table should be carefully thought out. Although it may
not be difficult to design a table to match the way a component is specified to work
under proper conditions, it takes more consideration to envision how it will work
under all possible conditions.

The state table in Figure 7.4 describes a D flip-flop the way a data sheet might.
But how will the circuit behave if D is unknown? Figure 7.5 adds a row to cover
that condition. This is an improvement over our first try.

Next, consider how the circuit responds to an unknown clock input. Figure 7.6
covers the basic case of an unknown clock but is needlessly pessimistic. If D has the
same value as Q, then the output will remain stable regardless of the clock input.
This is reflected in the next version of the state table in Figure 7.7. If having an
unknown clock is an event that should cause user notification, that could be done
using an assertion statement, as described in Chapter 16.

A model that is overly pessimistic will output ‘X’s under conditions in which
the actual component performs satisfactorily. This will either cause the designer to
waste time trying to fix nonexistent problems or make the simulation output more
laborious to interpret. The state table in Figure 7.7 accounts for all the possible
inputs. However, because a flip-flop is a synchronous circuit, it should also consider
the effect of timing violations.

100 Chapter 7 VITAL Tables

 ----INPUTS--|PREV-|-OUTPUT--
 -- CLK D | QI | Q’ --
 -----------------|-----|---------
 (‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘/’, ‘-’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

CONSTANT DFF_tab : VitalStateTableType := (

Figure 7.5 D flip-flop with unknown D added

CONSTANT DFF_tab : VitalStateTableType := (

 ----INPUTS--|PREV-|-OUTPUT--
 -- CLK D | QI | Q’ --
 -----------------|-----|---------
 (‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘/’, ‘-’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 7.6 D flip-flop with unknown CLK added

MAG07 8/18/04 3:13 PM Page 100

Because in the event of a timing violation circuit behavior is unknown, the table
will specify an ‘X’ in that situation, as shown in Figure 7.8. Now the table is com-
plete. Although the data sheet may have described the part with a table of 3 or 4
rows, the state table for our model has 8 rows in order to correctly cover all the
nonspecified conditions and to avoid excess pessimism.

7.5 Memory Tables

The 2000 revision of the VITAL standard added the VITALMemory package, which
includes the VitalMemoryTable procedure. It can be thought of as an extension
of the VitalStateTable that has been specialized for describing static memories.
VITAL memory tables can be used to model memories in much the same manner
as VITAL state tables are used to model flip-flops and latches.

7.5.1 Memory Table Symbols

The VitalMemorySymbolType enumerates the symbols that may be used in a
memory table. They are listed with explanation in Figure 7.9.

7.5 Memory Tables 101

CONSTANT DFF_tab : VitalStateTableType := (

 ----INPUTS--|PREV-|-OUTPUT--
 -- CLK D | QI | Q’ --
 -----------------|-----|---------
 (‘X’, ‘0’, ‘0’, ‘0’), -- clk unknown
 (‘X’, ‘1’, ‘1’, ‘1’), -- clk unknown
 (‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘/’, ‘-’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 7.7 D flip-flop with pessimism removed

CONSTANT DFF_tab : VitalStateTableType := (

 ----INPUTS-------|PREV-|-OUTPUT--
 -- Viol CLK D | QI | Q’ --
 -----------------|-----|---------
 (‘X’, ‘-’, ‘-’, ‘-’, ‘X’), -- timing violation
 (‘-’, ‘X’, ‘0’, ‘0’, ‘0’), -- clk unknown
 (‘-’, ‘X’, ‘1’, ‘1’, ‘1’), -- clk unknown
 (‘-’, ‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘-’, ‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘-’, ‘/’, ‘-’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 7.8 D flip-flop with timing violation added

MAG07 8/18/04 3:13 PM Page 101

The symbols shown in Figure 7.9 are divided into three groups. The first group
is identical to the VitalTableSymbolType shown in Figure 7.3. These symbols
retain the semantics given in Table 7.1. Their use, as before, is limited to scalar
signals. The next two groups are unique to the VitalMemorySymbolType. Symbols
‘g’ through ‘I’ are for use with address and data vectored inputs. Symbols ‘w’
through ‘t’ define memory table results.

7.5.2 Memory Table Construction

VITAL memory tables are intended for modeling the functionality of static memo-
ries. They work in a manner similar to VITAL truth tables but at a somewhat higher
level of complexity.

102 Chapter 7 VITAL Tables

TYPE VitalMemorySymbolType IS (
 ‘/’, -- 0 -> 1
 ‘”, -- 1 -> 0
 ‘P’, -- Union of ‘/’ and ‘^’ (any edge to 1)
 ‘N’, -- Union of ‘” and ‘v’ (any edge to 0)
 ‘r’, -- 0 -> X
 ‘f’, -- 1 -> X
 ‘p’, -- Union of ‘/’ and ‘r’ (any edge from 0)
 ‘n’, -- Union of ‘” and ‘f’ (any edge from 1)
 ‘R’, -- Union of ‘^’ and ‘p’ (any possible rising edge)
 ‘F’, -- Union of ‘v’ and ‘n’ (any possible falling edge)
 ‘^’, -- X -> 1
 ‘v’, -- X -> 0
 ‘E’, -- Union of ‘v’ and ‘^’ (any edge from X)
 ‘A’, -- Union of ‘r’ and ‘^’ (rising edge to or from ‘X’)
 ‘D’, -- Union of ‘f’ and ‘v’ (falling edge to or from ‘X’)
 ‘*’, -- Union of ‘R’ and ‘F’ (any edge)
 ‘X’, -- Unknown level
 ‘0’, -- low level
 ‘1’, -- high level
 ‘-’, -- don’t care
 ‘B’, -- 0 or 1
 ‘Z’, -- High Impedance
 ‘S’, -- steady value

 ‘g’, -- Good address or data (no transition)
 ‘u’, -- Unknown address or data (no transition)
 ‘i’, -- Invalid address or data (no transition)
 ‘G’, -- Good address or data (with transition)
 ‘U’, -- Unknown address or data (with transition)
 ‘I’, -- Invalid address or data (with transition)

 ‘w’, -- Write data to memory
 ‘s’, -- Retain previous memory contents
 ‘c’, -- Corrupt entire memory with ‘X’
 ‘l’, -- Corrupt a word in memory with ‘X’
 ‘d’, -- Corrupt a single bit in memory with ‘X’
 ‘e’, -- Corrupt a word with ‘X’ based on data in
 ‘C’, -- Corrupt a sub-word entire memory with ‘X’
 ‘L’, -- Corrupt a sub-word in memory with ‘X’
 ‘M’, -- Implicit read data from memory
 ‘m’, -- Read data from memory
 ‘t’ -- Immediate assign/transfer data in
);

Figure 7.9 VITALMemory table symbols

MAG07 8/18/04 3:13 PM Page 102

Memory tables can be broken down into three sections: direct input columns,
interpreted input columns, and result columns. The direct inputs are scalar signals
such as clocks and enables. The interpreted inputs are vectored signals that corre-
spond to EnableBus, AddressBus, and DataInBus. Results include the action to
perform on the memory array and the output bus. The EnableBus column is used
only when modeling memories that are subword addressable. The three sets of
columns must be written in the order listed.

Each section of the table may use only a subset of the symbols enumer-
ated in the VitalMemorySymbolType. Which symbols are allowed in which
columns is shown in Table 7.3. A memory table for a simple SRAM is shown in
Figure 7.10.

7.5.3 Memory Table Usage

As with state tables, using memory tables requires the declaration of some variables.
The code in the following examples is from the FMF cy7c185 model.

-- VITAL Memory Declaration

VARIABLE Memdat : VitalMemoryDataType :=

VitalDeclareMemory (

NoOfWords => TotalLOC,

NoOfBitsPerWord => DataWidth,

NoOfBitsPerSubWord => DataWidth,

MemoryLoadFile => MemLoadFileName,

BinaryLoadFile => FALSE

) ;

The first declaration creates the memory array. VITAL memory tables work only
with memory arrays of VitalMemoryDataType.

7.5 Memory Tables 103

Table 7.3 Allowed symbols for memory tables

Section of Table Allowed Symbols

Direct Inputs ‘/’, ‘\’, ‘P’, ‘N’, ‘r’, ‘f’, ‘p’, ‘n’, ‘R’, ‘F’, ‘^’,

‘v’, ‘E’, ‘A’, ‘D’, ‘*’, ‘X’, ‘0’, ‘1’, ‘-’, ‘B’, ‘S’

EnableBus Interpreted Input ‘/’, ‘\’, ‘P’, ‘N’, ‘r’, ‘f’, ‘p’, ‘n’, ‘R’, ‘F’, ‘^’,

‘v’, ‘E’, ‘A’, ‘D’,‘*’, ‘X’, ‘0’, ‘1’, ‘-’, ‘B’, ‘S’

AddressBus Interpreted Input ‘g’, ‘u’, ‘i’, ‘G’, ‘U’, ‘I’, ‘*’, ‘-’, ‘S’

DataInBus Interpreted Input ‘g’, ‘u’, ‘G’, ‘U’, ‘*’, ‘-’, ‘S’

Memory Action ‘0’, ‘1’, ‘w’, ‘s’, ‘c’, ‘l’, ‘d’, ‘e’, ‘C’, ‘D’, ‘E’, ‘L’

Output Action ‘0’, ‘1’, ‘Z’, ‘l’, ‘d’, ‘e’, ‘C’, ‘D’, ‘E’, ‘L’, ‘M’,

‘m’, ‘t’, ‘S’

MAG07 8/18/04 3:13 PM Page 103

The following variables are required for exclusive use by the VitalMemoryTable
procedure:

VARIABLE Prevcntls : std_logic_vector(0 to 3);

VARIABLE PrevData : std_logic_vector(HiDbit downto 0);

VARIABLE Prevaddr : std_logic_vector(HiAbit downto 0);

VARIABLE PFlag : VitalPortFlagVectorType(0 downto 0);

VARIABLE Addrvalue : VitalAddressValueType;

They are described in Table 7.4.
The VitalMemoryTable procedure call from the cy7c185 model is

VitalMemoryTable (

DataOutBus => D_zd,

MemoryData => Memdat,

104 Chapter 7 VITAL Tables

 --
 -- Asynchronous SRAM with low chip enable and write enable
 --
 CONSTANT Table_2_cntrl_sram : VitalMemoryTableType := (

 -- --
 -- CEN, WEN, Addr, DI, act, DO
 -- --
 -- Address initiated read
 (‘0’, ‘1’, ‘G’, ‘-’, ‘s’, ‘m’),
 (‘0’, ‘1’, ‘U’, ‘-’, ‘s’, ‘l’),

 -- CEN initiated read
 (‘N’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),
 (‘N’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

 -- Write Enable initiated Write
 (‘0’, ‘P’, ‘g’, ‘-’, ‘w’, ‘m’),
 (‘0’, ‘N’, ‘-’, ‘-’, ‘s’, ‘Z’),

 -- CEN initiated Write
 (‘P’, ‘0’, ‘g’, ‘-’, ‘w’, ‘Z’),
 (‘N’, ‘0’, ‘-’, ‘-’, ‘s’, ‘Z’),

 -- Address change during write
 (‘0’, ‘0’, ‘*’, ‘-’, ‘c’, ‘Z’),
 (‘0’, ‘X’, ‘*’, ‘-’, ‘c’, ‘Z’),

 -- if WEN is X
 (‘0’, ‘X’, ‘g’, ‘*’, ‘e’, ‘e’),
 (‘0’, ‘X’, ‘u’, ‘*’, ‘c’, ‘l’),

 -- CEN is unasserted
 (‘X’, ‘0’, ‘G’, ‘-’, ‘e’, ‘Z’),
 (‘X’, ‘0’, ‘u’, ‘-’, ‘c’, ‘Z’),
 (‘X’, ‘1’, ‘-’, ‘-’, ‘s’, ‘l’),
 (‘1’, ‘-’, ‘-’, ‘-’, ‘s’, ‘Z’)

); -- end of VitalMemoryTableType definition

Figure 7.10 Memory table for simple SRAM

MAG07 8/18/04 3:13 PM Page 104

PrevControls => Prevcntls,

PrevDataInBus => Prevdata,

PrevAddressBus => Prevaddr,

PortFlag => PFlag,

Controls => (CE2In, CE1NegIn, OENegIn, WENegIn),

DataInBus => DataIn,

AddressBus => AddressIn,

AddressValue => Addrvalue,

MemoryTable => Table_generic_sram

);

All the possible arguments for the procedure call and their descriptions are listed
in Table 7.4.

7.6 Summary 105

Table 7.4 Arguments for VitalMemoryTable

Argument

Name Type Description

DataOutBus STD_LOGIC_VECTOR Variable for functional output data

MemoryData VitalMemoryDataType Pointer to VITAL memory data object

PrevControls STD_LOGIC_VECTOR Previous state values of Controls

parameter

PrevEnableBus STD_LOGIC_VECTOR Previous state values of PrevEnableBus

parameter

PrevDataInBus STD_LOGIC_VECTOR Previous DataInBus for edge detection

PrevAddressBus STD_LOGIC_VECTOR Previous address bus for edge detection

PortFlag VitalPortFlagType Indicates operating mode of the port in a

single process execution. Possible values

are READ, WRITE, CORRUPT, NOCHANGE

PortFlagArray VitalPortFlagVectorType Vector form of PortFlag for subword

addressable memories. Used in

overloaded version

Controls STD_LOGIC_VECTOR Aggregate of scalar memory control inputs

EnableBus STD_LOGIC_VECTOR Concatenation of vector control inputs

DataInBus STD_LOGIC_VECTOR Memory data in bus inputs

AddressBus STD_LOGIC_VECTOR Memory address bus inputs

AddressValue VitalAddressValueType Decoded integer value of the AddressBus

MemoryTable VitalMemoryTableType Memory function table

PortType VitalPortType The base type of port (one of READ,

WRITE, RDNWR)

PortName STRING Port name string for messages

HeaderMsg STRING Header string for messages

MsgOn BOOLEAN Reporting control of message generation

MsgSeverity SEVERITY_LEVEL Severity control of message generation

MAG07 8/18/04 3:13 PM Page 105

7.6 Summary

VITAL truth tables may be used to describe combinatorial logic. VITAL state tables
may be used to describe synchronous logic. Many complex combinatorial and
sequential functions can be written more easily using truth or state tables than by
other means.

Tables are constants written as two-dimensional arrays of type Vital-
TruthTableType or VitalStateTableType. Tables are searched row by row, thus
earlier rows have a higher priority than later rows. When writing state tables it is
important to consider the effect of unknown values on each input and the effect
of timing violations.

VITAL2000 introduced memory tables. These can be thought of as a specialized
extension of state tables. They are designed for modeling the functionality of static
memories. They are more complex than state tables and use an extended set of
symbols.

106 Chapter 7 VITAL Tables

MAG07 8/18/04 3:13 PM Page 106

8

107

C

H

A

P

T

E

R

Timing Constraints

It has been said in more than one profession that “timing is everything.” This is
particularly true when you are trying to interface your new ASIC or FPGA design
with the other components on the board.

Most modern digital designs are synchronous. The use of synchronous design
methods requires that data be stable before and after the clock, resulting in timing
constraints. An important part of digital simulation is checking that those timing
constraints are met. The VITAL_Timing package provides a number of routines for
use in performing those checks. This chapter explains what they are and how to
use them.

8.1 The Purpose of Timing Constraint Checks

The synchronous circuits that compose most digital designs require that certain
timing constraints be met in order to guarantee correct operation. Registers require
that data be present and stable for a period of time before and after the active tran-
sition of the control input (clock). There are further requirements for pulses to be
of at least some minimum duration. When these requirements are not met, circuit
operation becomes unpredictable.

A significant part of the effort that goes into the design of a new digital product
is determining the timing requirements of all the circuits and then ensuring those
requirements are met. Some engineers still analyze a design for timing by building
spreadsheets. Such spreadsheets were once an effective tool, but many of today’s
components have 20 or more timing parameters. Having to deal with so many
parameters makes the spreadsheet approach impractical for many designs. By
including timing constraint checks in simulation models, we allow for verification
that timing requirements are met during logic simulation, at least for the stimulus
provided. Dynamic simulation cannot practically cover all cases. For that, static
timing is the correct solution.

MAG08 8/18/04 3:01 PM Page 107

8.2 Using Timing Constraint Checks in VITAL Models

Adding timing constraint checks to VITAL models is a straightforward process. It
begins with adding the timing generics that are needed for the particular model to
the entity. Generic names are based on the formulae given in Chapter 5.

Timing checks are always called from within a process. Any signal referenced by
a timing check must appear in the sensitivity list of that process. Most compilers
will check this for you, but if somehow a signal is missed, incorrect results are likely
to be given. Within the process certain variables must be declared, depending on
which timing checks are being used. Those variables will be described later, along
with the timing check procedure calls.

Timing checks have their own section within a VITAL process. They come after
the declaration of variables but before any functional description. Each process may
have its own timing check section. This section exists entirely within an IF clause:

IF (TimingChecksOn) THEN

...

-- All timing check code

...

END IF;

The execution of all the timing checks may be controlled through the
TimingChecksOn generic. Its value can, if desired, be set on an instance-by-
instance basis for a design being simulated. This could be useful if you are con-
centrating on a section of your design and would like to reduce the number of
messages from the simulator regarding other sections.

In Free Model Foundry models, the TimingChecksOn generic defaults to FALSE.
This is because most designs are first simulated without timing to detect basic errors
in logic, then simulated with timing to look for more subtle errors. Defaulting to
FALSE means the value must be changed once during the design cycle rather than
twice. Each timing check procedure performs its specified check and returns a
parameter value indicating whether a constraint violation occurred. These values
are the only output of the timing section. It is common practice to OR the various
outputs together into a single term.

VARIABLE Violation : X01 := ‘0’;

...

Violation := Tviol_D_CLK OR Pviol_CLK OR Pviol_CLRint;

The violation variable may then be used elsewhere with the model.
There are four types of timing constraint checks in VITAL2000: setup/hold,

period/pulsewidth, recovery/removal, and skew checks.

8.2.1 Setup/Hold Checks

The VitalSetupHoldCheck procedure checks that its TestSignal (data) is stable
during a specified period before and after the active transition of its RefSignal

108 Chapter 8 Timing Constraints

MAG08 8/18/04 3:01 PM Page 108

(clock), as illustrated in Figure 8.1. The timing constraint values are specified
through generics. This check is usually required for any component model with
registered or latched inputs. Real components can produce unpredictable outputs
when setup and hold requirements are not met. A good simulation model will warn
the user if a hazard exists.

Use of the VitalSetupHoldCheck procedure requires the declaration of two
variables for each time it is referenced. The variables are used for timing data storage
and for the violation flag output.

-- Timing Check Variables

VARIABLE Tviol_D_CLK : X01 := ‘0’;

VARIABLE TD_D_CLK : VitalTimingDataType;

A VitalSetupHoldCheck procedure call appears in Figure 8.2.
The procedure call in Figure 8.2 will test that D_ipd, the delayed data signal, is

stable for the period tsetup_D_CLK before the rising edge of CLK_ipd, the delayed
clock signal, and for the period thold_D_CLK after the rising edge of CLK_ipd. In the
example,

CheckEnabled => TRUE,

8.2 Using Timing Constraint Checks in VITAL Models 109

error region

tsetup thold

TestSignal

RefSignal

Figure 8.1 Setup/hold check

 VitalSetupHoldCheck (
 TestSignal => D_ipd,
 TestSignalName => “D_ipd”,
 RefSignal => CLK_ipd,
 RefSignalName => “CLK_ipd”,
 SetupHigh => tsetup_D_CLK,
 SetupLow => tsetup_D_CLK,
 HoldHigh => thold_D_CLK,
 HoldLow => thold_D_CLK,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/std534”,
 TimingData => TD_D_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_D_CLK
);

Figure 8.2 Example of a VitalSetupHoldCheck call

MAG08 8/18/04 3:01 PM Page 109

causes this check to always be enabled. Otherwise, an expression could be used to
cause execution of the check to depend on some dynamic condition. One common
condition under which timing checks are disabled is an inactive chip enable.

The parameters to the VitalSetupHoldCheck procedure are as follows:

Parameters of Mode IN

TestSignal, the value of the test signal. The procedure is overloaded for TestSignal
to be either std_logic or std_logic_vector. It should be a delayed input signal.

TestSignalName, the name of the test signal. It is of type STRING and will be
used in any messages generated by the procedure. You should supply a name
the user will recognize.

TestDelay, not shown. This is the model’s internal delay associated with
TestSignal. It is used only in models having negative timing constraints. It is
of type TIME. If a value is not provided, it defaults to zero.

RefSignal, the value of the reference signal. It is of type std_logic. It should
be a delayed input signal.

RefSignalName, the name of the reference signal. It is of type STRING and will
be used in any messages generated by the procedure. You should supply a name
the user will recognize.

RefDelay, not shown. This is the model’s internal delay associated with
RefSignal. It is used only in models having negative timing constraints. It is
of type TIME. If a value is not provided, it defaults to zero.

SetupHigh, the minimum time duration before the active transition of
RefSignal for which transitions of TestSignal are allowed to proceed to the
“1” state without causing a setup violation. It is of type TIME and usually gets
its value from a tsetup generic. If a value is not provided, it defaults to zero.

SetupLow, the minimum time duration before the active transition of Ref-
Signal for which transitions of TestSignal are allowed to proceed to the “0”
state without causing a setup violation. It is of type TIME and usually gets its
value from a tsetup generic. If a value is not provided, it defaults to zero.
Because some components may have asymterical setup constraints, separate
SetupHigh and SetupLow parameters are provided.

HoldHigh, the minimum time duration after the active transition of Ref-
Signal for which transitions of TestSignal are allowed to proceed to the “1”
state without causing a setup violation. It is of type TIME and usually gets its
value from a thold generic. If a value is not provided, it defaults to zero.

HoldLow, the minimum time duration after the active transition of RefSignal
for which transitions of TestSignal are allowed to proceed to the “0” state

110 Chapter 8 Timing Constraints

MAG08 8/18/04 3:01 PM Page 110

without causing a setup violation. It is of type TIME and usually gets its value
from a thold generic. If a value is not provided, it defaults to zero. Because some
components may have asymterical hold constraints, separate HoldHigh and
HoldLow parameters are provided.

CheckEnabled, an expression of type BOOLEAN. A check is performed if TRUE.
If a value is not provided, it defaults to TRUE. This parameter enables or disables
the entire procedure call. Expressions may be used to make execution of the
procedure dependent on the state of one or more pins, internal registers, or
states.

RefTransition, the active transition of RefSignal. It is of type VitalEdge-
SymbolType.

HeaderMsg, text that will accompany any assertion messages produced. It is of
type STRING. It should, at a minimum, help the user determine the origin of
the message. Additional information may be added.

XOn, a BOOLEAN that controls the violation output parameter. If TRUE, the
output parameter is set to ‘X’ in the event of a violation. Otherwise, violation
is always ‘0’. If a value is not provided, it defaults to TRUE. This parameter could
be used to allow execution of the procedure while disabling the Violation
output.

MsgOn, a BOOLEAN that controls the emission of violation messages. If TRUE,
setup and hold violation messages will be generated. Otherwise no messages are
generated, even upon violations. If a value is not provided, it defaults to TRUE.

MsgSeverity, not shown. Severity level for the assertion. It is of type SEVER-
ITY_LEVEL. It can be used to control message display and simulation execution.
If a value is not provided, it defaults to WARNING. The simulator may allow
masking of low-severity messages or pausing or aborting simulation in the event
of a high-severity message.

EnableSetupOnTest, not shown. If FALSE at the time that the TestSignal
signal changes, no setup check will be performed. It is of type BOOLEAN. If a
value is not provided, it defaults to TRUE.

EnableSetupOnRef, not shown. If FALSE at the time that the RefSignal signal
changes, no setup check will be performed. It is of type BOOLEAN. If a value is
not provided, it defaults to TRUE.

EnableHoldOnTest, not shown. If FALSE at the time that the TestSignal
signal changes, no hold check will be performed. It is of type BOOLEAN. If a value
is not provided, it defaults to TRUE.

EnableHoldOnRef, not shown. If FALSE at the time that the RefSignal signal
changes, no hold check will be performed. It is of type BOOLEAN. If a value is
not provided, it defaults to TRUE.

8.2 Using Timing Constraint Checks in VITAL Models 111

MAG08 8/18/04 3:01 PM Page 111

Parameters of Mode INOUT

TimingData, an information storage area for the procedure. It is used internally
to detect reference edges and record the time of the last edge. It is of type
VitalTimingDataType. It must be declared but must not be used outside the
procedure.

Parameters of Mode OUT

Violation, the violation flag returned. It is of type X01.

In this list, note that CheckEnabled enables or disables the entire procedure.
In VITAL2000, the parameters EnableSetupOnTest, EnableSetupOnRef,
EnableHoldOnRef, and EnableHoldOnTest were added to allow more precise
control over which checks are performed and when. They can all take their values
from expressions based on control signals, state, or register values.

8.2.2 Period/Pulsewidth Checks

The VitalPeriodPulseCheck procedure has two functions. It tests the TestSig-
nal for maximum periodicity (1/frequency) and for minimum pulse width for ‘0’
and ‘1’ values. It is illustrated in Figure 8.3.

Use of the VitalPeriodPulseCheck procedure requires the declaration of two
variables for each use of the procedure. The variables are used for timing data
storage and for the violation flag output.

VARIABLE Pviol_CLK : X01 := ‘0’;

VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;

A VitalPeriodPulseCheck procedure call appears in Figure 8.4.
The procedure call in Figure 8.4 will test that CLK_ipd has a minimum period

of tperiod_CLK_posedge, during which it is high for at least tpw_CLK_posedge
and low for at least tpw_CLK_negedge. This check as shown is always enabled.

This procedure uses several of the same parameter names and type as the Vital-
SetupHoldCheck procedure, plus some new ones. Together, they are as follows:

112 Chapter 8 Timing Constraints

tpw_hi

tperiod

tpw_low

TestSignal

Figure 8.3 Period/pulsewidth check

MAG08 8/18/04 3:01 PM Page 112

Parameters of Mode IN

TestSignal, the value of the test signal. For this procedure TestSignal must
be std_logic. It should be a delayed input signal.

TestSignalName, the name of the test signal. It is of type STRING and will be
used in any messages generated by the procedure. You should supply a name
the user will recognize.

TestDelay, not shown. This is the model’s internal delay associated with
TestSignal. It is used only in models having negative timing constraints. It is of
type TIME. If a value is not provided, it defaults to zero.

Period, the minimum period allowed between consecutive rising (‘P’) or
falling (‘F’) transitions. It is of type TIME. If a value is not provided, it defaults
to zero.

PulseWidthHigh, the minimum time allowed for a high (‘1’ or ‘H’) pulse. It
is of type TIME. If a value is not provided, it defaults to zero.

PulseWidthLow, the minimum time allowed for a low (‘0’ or ‘L’) pulse. It is
of type TIME. If a value is not provided, it defaults to zero.

CheckEnabled, an expression of type BOOLEAN. A check is performed if TRUE.
If a value is not provided, it defaults to TRUE. This parameter enables or disables
the entire procedure call. Expressions may be used to make execution of the pro-
cedure dependent on the state of one or more pins, internal registers, or states.

HeaderMsg, text that will accompany any assertion messages produced. It is of
type STRING. It should, at a minimum, help the user determine the origin of
the messsage. Additional information may be supplied.

XOn, a BOOLEAN that controls the violation output parameter. If TRUE, the output
parameter is set to ‘X’ in the event of a violation. Otherwise, violation is always
‘0’. If a value is not provided, it defaults to TRUE. This parameter could be used
to allow execution of the procedure while disabling the Violation output.

8.2 Using Timing Constraint Checks in VITAL Models 113

 VitalPeriodPulseCheck (
 TestSignal => CLK_ipd,
 TestSignalName => “CLK_ipd”,
 Period => tperiod_CLK_posedge,
 PulseWidthHigh => tpw_CLK_posedge,
 PulseWidthLow => tpw_CLK_negedge,
 CheckEnabled => TRUE,
 HeaderMsg => InstancePath & “/std534”,
 PeriodData => PD_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Pviol_CLK
);

Figure 8.4 Example VitalPeriodPulseCheck call

MAG08 8/18/04 3:01 PM Page 113

MsgOn, a BOOLEAN that controls the emission of violation messages. If TRUE,
setup and hold violation messages will be generated. Otherwise no messages are
generated, even upon detection of violations. If a value is not provided, it defaults
to TRUE.

MsgSeverity, not shown. It is the severity level for the assertion. It is of type
SEVERITY_LEVEL. It can be used to control message display and simulation exe-
cution. If a value is not provided, it defaults to WARNING. The simulator may
allow masking of low-severity messages or pausing or aborting simulation in the
event of a high-severity message.

Parameters of Mode INOUT

PeriodData, an information storage area for the procedure. It is used internally
to detect reference edges and record the pulse and period times. It is of type
VitalPeriodDataType. It must be declared and initialized to VitalPeriod-
DataInit but must not be used outside this procedure.

Parameters of Mode OUT

Violation, the violation flag returned. It is of type X01.

Period is the minimum allowed time for a full cycle of the TestSignal. It cor-
responds to tperiod in Figure 8.2 and is used when TestSignal is a clock or
other periodic signal. For nonperiodic signals, such as reset, Period is omitted.

PulseWidthHigh and PulseWidthLow correspond to tpw_hi and tpw_low
in Figure 8.3. They represent the minimum allowed time for a high or low pulse,
respectively.

8.2.3 Recovery/Removal Checks

The VitalRecoveryRemovalCheck procedure is used to test for the presence of a
recovery or removal violation on the TestSignal with respect to the correspond-

114 Chapter 8 Timing Constraints

active

trecovery tremoval

inactive
TestSignal

RefSignal

Figure 8.5 Recovery/removal check

MAG08 8/18/04 3:01 PM Page 114

ing RefSignal, as illustrated in Figure 8.5. The most common use for this is to
check for the timely deassertion of the Clear signal prior to arrival of a Clock edge
on a resetable flip-flop.

As always, the use of the VitalRecoveryRemovalCheck procedure requires the
declaration of two variables for each reference. The variables are used for timing
data storage and for the violation flag output.

VARIABLE Rviol_CLRNeg_CLK : X01 := ‘0’;

VARIABLE TD_CLRNeg_CLK : VitalTimingDataType;

A VitalRecoveryRemovalCheck procedure call appears in Figure 8.6.
The procedure call in Figure 8.6 will test that CLRint is inactive for the period

trecovery_CLRNeg_CLK before the active edge of CLK_ipd. This check, as written,
is always enabled.

The parameters to the VitalRecoveryRemovalCheck procedure are as follows:

Parameters of Mode IN

TestSignal, the value of the test signal. The procedure is overloaded for Test-
Signal to be either std_logic or std_logic_vector. It should be a delayed
input signal (_ipd).

TestSignalName, the name of the test signal. It is of type STRING and will be
used in any messages generated by the procedure. You should supply a name
the user will recognize.

TestDelay, not shown. This is the model’s internal delay associated with
TestSignal. It is only used in models having negative timing constraints. It is of
type TIME. If a value is not provided, it defaults to zero.

RefSignal, the value of the reference signal. It is of type std_logic. It should
be a delayed input signal.

8.2 Using Timing Constraint Checks in VITAL Models 115

 VitalRecoveryRemovalCheck (
 TestSignal => CLRint,
 TestSignalName => “CLRint”,
 RefSignal => CLK_ipd,
 RefSignalName => “CLK_ipd”,
 Recovery => trecovery_CLRNeg_CLK,
 ActiveLow => TRUE,
 CheckEnabled => TRUE,
 RefTransition => ‘\’,
 HeaderMsg => InstancePath & “/std174”,
 TimingData => TD_CLRNeg_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Rviol_CLRNeg_CLK
);

Figure 8.6 Example VitalRecoveryRemovalCheck call

MAG08 8/18/04 3:01 PM Page 115

RefSignalName, the name of the reference signal. It is of type STRING and will
be used in any messages generated by the procedure. You should supply a name
the user will recognize.

RefDelay, not shown. This is the model’s internal delay associated with
RefSignal. It is used only in models having negative timing constraints. It is
of type TIME. If a value is not provided, it defaults to zero.

Recovery, the minimum time the asynchronous TestSignal must be not
asserted prior to a reference edge on RefSignal. It is of type TIME and if not
provided, defaults to zero.

Removal, not shown. This is the minimum time the asynchronous TestSig-
nal, if already asserted, must remain asserted after a reference edge on RefSig-
nal. It is of type TIME and if not provided, defaults to zero.

ActiveLow, a flag to indicate if TestSignal is asserted when low (‘0’). FALSE
indicates that TestSignal is asserted when it has a value ‘1’. It is of type
BOOLEAN. If a value is not provided, it defaults to TRUE.

CheckEnabled, an expression of type BOOLEAN. A check is performed if TRUE.
If a value is not provided, it defaults to TRUE. This parameter enables or disables
the entire procedure call. Expressions may be used to make execution of the
procedure dependent on the state of one or more pins, internal registers, or
states.

RefTransition, the active transition of RefSignal. It is of type VitalEdge-
SymbolType.

HeaderMsg, text that will accompany any assertion messages produced. It is of
type STRING. It should, at a minimum, help the user determine the origin of
the messsage. Additional information may be supplied.

XOn, a BOOLEAN that controls the violation output parameter. If TRUE, the output
parameter is set to ‘X’ in the event of a violation. Otherwise, violation is always
‘0’. If a value is not provided, it defaults to TRUE.

MsgOn, a BOOLEAN that controls the emission of violation messages. If TRUE,
setup and hold violation messages will be generated. Otherwise no messages are
generated, even upon violations. If a value is not provided, it defaults to TRUE.
This parameter could be used to allow execution of the procedure while disabling
the Violation output.

MsgSeverity, not shown. It is the severity level for the assertion. It is of type
SEVERITY_LEVEL. MsgSeverity can be used to control message display and
simulation execution. If a value is not provided, it defaults to WARNING. The sim-
ulator may allow masking of low-severity messages or pausing or aborting sim-
ulation in the event of a high-severity message.

116 Chapter 8 Timing Constraints

MAG08 8/18/04 3:01 PM Page 116

EnableSetupOnTest, not shown. If FALSE at the time that the TestSignal
signal changes, no setup check will be performed. It is of type BOOLEAN. If a
value is not provided, it defaults to TRUE.

EnableSetupOnRef, not shown. If FALSE at the time that the RefSignal signal
changes, no setup check will be performed. It is of type BOOLEAN. If a value is
not provided, it defaults to TRUE.

EnableHoldOnTest, not shown. If FALSE at the time that the TestSignal
signal changes, no hold check will be performed. It is of type BOOLEAN. If a value
is not provided, it defaults to TRUE.

EnableHoldOnRef, not shown. If FALSE at the time that the RefSignal signal
changes, no hold check will be performed. It is of type BOOLEAN. If a value is
not provided, it defaults to TRUE.

Parameters of Mode OUT

Violation, the violation flag returned. It is of type X01.

To utilize the Removal check, you must use SDF 3.0 or above. The REMOVAL key
word is not present in earlier versions.

8.2.4 Skew Checks

The VITAL skew timing checks detect a skew violation between two signals,
Signal1 and Signal2, in any direction. There are two skew check procedures. The
VitalInPhaseSkewCheck procedure is used for testing in-phase signals, as shown
in Figure 8.7.

The VitalOutPhaseSkewCheck procedure is used for testing out-of-phase
signals, as illustrated in Figure 8.8.

8.2 Using Timing Constraint Checks in VITAL Models 117

Signal1

tskew

Signal2

Signal2 should
fall in this region

Figure 8.7 In-phase skew check

MAG08 8/18/04 3:01 PM Page 117

Using either skew check procedure requires the declaration of a trigger signal
and two variables for each reference. The trigger signal must be declared outside
the process and must be in the process’s sensitivity list.

SIGNAL CKSKWtrg : std_ulogic := ‘0’;

...

DLL: PROCESS(CLKcomb, CLKIn, CLKNegIn, CKSKWtrg)

The variables are used for timing data storage and for the violation flag output.

VARIABLE Sviol_CLK_CLKNeg : X01 := ‘0’;

VARIABLE SD_CLK_CLKNeg : VitalSkewDataType := VitalSkewDataInit;

A VitalOutPhaseSkewCheck procedure call appears in Figure 8.9.
The procedure call in Figure 8.9 will test that CLKIn and CLKNegIn remain out

of phase and any transition on one of them will be followed by a transition to the
opposite state on the other within the period tskew_CLK_CLKNeg.

118 Chapter 8 Timing Constraints

Signal1

tskew

Signal2

Signal2 should
rise in this region

Figure 8.8 Out-of-phase skew check

 VitalOutPhaseSkewCheck (
 Signal1 => CLKIn,
 Signal1Name => “CLK”,
 Signal2 => CLKNegIn,
 Signal2Name => “CLKNeg”,
 SkewS1S2RiseFall => tskew_CLK_CLKNeg,
 SkewS2S1RiseFall => tskew_CLK_CLKNeg,
 SkewS1S2FallRise => tskew_CLK_CLKNeg,
 SkewS2S1FallRise => tskew_CLK_CLKNeg,
 CheckEnabled => TRUE,
 HeaderMsg => InstancePath & PartID,
 SkewData => SD_CLK_CLKNeg,
 Trigger => CKSKWtrg,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Sviol_CLK_CLKNeg);

Figure 8.9 Example VitalOutPhaseSkewCheck call

MAG08 8/18/04 3:01 PM Page 118

The parameters for VitalInPhaseSkewCheck and VitalOutPhaseSkewCheck
are almost the same. For VitalInPhaseSkewCheck they are as follows:

Parameters of Mode IN

Signal1, the value of the first signal. It is of type std_ulogic. It should be a
delayed input signal.

Signal1Name, the name of the first signal. It is of type STRING and will be used
in any messages generated by the procedure.

Signal1Delay, not shown. This is the model’s internal delay associated with
Signal1. It is used only in models having negative timing constraints. It is of
type TIME. If a value is not provided, it defaults to zero.

Signal2, the value of the second signal. It is of type std_ulogic. It should be
a delayed input signal.

Signal2Name, the name of the second signal. It is of type STRING and will be
used in any messages generated by the procedure.

Signal2Delay, not shown. This is the model’s internal delay associated with
Signal2. It is used only in models having negative timing constraints. It is of
type TIME. If a value is not provided, it defaults to zero.

SkewS1S2RiseRise, the maximum time duration Signal2 can remain at 0
after Signal1 goes to the 1 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

SkewS2S1RiseRise, the maximum time duration Signal1 can remain at 0
after Signal2 goes to the 1 state, without causing a skew violation. It is of type
TIME. If not provided it defaults to TIME’HIGH (the end of time).

SkewS1S2FallFall, the maximum time duration Signal2 can remain at 1
after Signal1 goes to the 0 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

SkewS2S1FallFall, the maximum time duration Signal1 can remain at 1
after Signal2 goes to the 0 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

CheckEnabled, an expression of type BOOLEAN. A check is performed if TRUE.
If a value is not provided, it defaults to TRUE. This parameter enables or disables
the entire procedure call. Expressions may be used to make execution of the pro-
cedure dependent on the state of one or more pins, internal registers, or states.

HeaderMsg, the text that will accompany any assertion messages produced. It
is of type STRING. It should, at a minimum, help the user determine the origin
of the messsage. Additional information may be supplied.

8.2 Using Timing Constraint Checks in VITAL Models 119

MAG08 8/18/04 3:01 PM Page 119

XOn, a BOOLEAN that controls the violation output parameter. If TRUE, the
output parameter is set to ‘X’ in the event of a violation. Otherwise, violation
is always ‘0’. If a value is not provided, it defaults to TRUE. This parameter could
be used to allow execution of the procedure while disabling the Violation
output.

MsgOn, a BOOLEAN that controls the emission of violation messages. If TRUE,
setup and hold violation messages will be generated. Otherwise no messages are
generated, even upon detection of violations. If a value is not provided, it
defaults to TRUE.

MsgSeverity, not shown. This is the severity level for the assertion. It is of
type SEVERITY_LEVEL. MsgSeverity can be used to control message display
and simulation execution. If a value is not provided, it defaults to WARNING. The
simulator may allow masking of low-severity messages or pausing or aborting
simulation in the event of a high-severity message.

Parameters of Mode INOUT

SkewData, an information storage area for the procedure. It is used internally
to detect signal edges and record the time of the last edge. It is of type
VitalSkewDataType. It must be declared and initialized to VitalSkew-
DataInit but must not be used outside this procedure.

Trigger, a signal used to trigger the process in which the timing check
occurs upon expiration of the skew interval. It must be declared and must
appear in the process sensitivity list but must not be written to outside this
procedure.

Parameters of Mode OUT

Violation, the violation flag returned. It is of type X01.

The VitalOutPhaseSkewCheck procedure has the same parameters except for
the four timing parameters. They are replaced by the following:

SkewS1S2RiseFall, the maximum time duration Signal2 can remain at 1
after Signal1 goes to the 1 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

SkewS2S1RiseFall, the maximum time duration Signal1 can remain at 1
after Signal2 goes to the 1 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

SkewS1S2FallRise, the maximum time duration Signal2 can remain at 0
after Signal1 goes to the 0 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

120 Chapter 8 Timing Constraints

MAG08 8/18/04 3:01 PM Page 120

SkewS2S1FallRise, the maximum time duration Signal1 can remain at 0
after Signal2 goes to the 0 state, without causing a skew violation. It is of type
TIME. If a value is not provided, it defaults to TIME’HIGH (the end of time).

The VITAL skew check procedures would seem to be a requirement for any model
with differential inputs. However, in practice their use is hampered by the lack of
any skew specification in most component data sheets. A more likely use is in
models with multiple clock inputs, such as multiport memories and FIFOs.

8.3 Violations

Violation flags take the value ‘X’ when a violation occurs and ‘0’ at all other
times. When a timing violation is detected, the user will be notified through the
simulator interface or log file. In many cases, some additional action should be
taken. What action is appropriate depends on the component being modeled and,
possibly, the nature of the violation. Sometimes the violation flags are ORed
together and the result used as input to a state table.

Violation := Tviol_D_CLK OR Pviol_CLK;

VitalStateTable (

StateTable => DFFQN_tab,

DataIn => (Violation, CLK_ipd, D_ipd),

Result => Qint,

PreviousDataIn => PrevData

);

This can be used to cause the state table to output ‘X’s or modify its behavior in
some other way. Other models have used the violation flag to warn the user there
is a problem.

Violation := Pviol_WENeg OR Tviol_D0_WENeg OR Tviol_D0_CENeg;

ASSERT Violation = ‘0’

REPORT InstancePath & partID & “: simulation may be” &

“inaccurate due to timing violations”

SEVERITY SeverityMode;

Some memory models use the violation flag to corrupt the memory location being
written when the violation occurred.

IF Violation = ‘X’ THEN

MemDataA(MemAddr1) := -1;

ELSE

MemDataA(MemAddr1) := to_nat(DatAIn);

END IF;

When you write a component model think about what the model should do in
the event of a timing violation.

8.3 Violations 121

MAG08 8/18/04 3:01 PM Page 121

8.4 Summary

Meeting timing constraints is an important part of synchronous digital design.
Embedding timing checks into component models can help you find timing vio-
lations in your design. The execution of timing checks can be controlled through
generics enabling or disabling checks for a specific instance or for the entire design.

VITAL2000 provides procedures for four type of timing checks: setup/hold,
period/pulsewidth, recovery/removal, and skew checks. Using any of these proce-
dures requires the declaration of variables specific to each procedure type for each
procedure call. In addition, the skew check procedure requires the declaration of a
trigger signal and its inclusion in the process sensitivity list.

The violation flag outputs of the timing checks may be used in a number of ways
depending on the component being modeled.

122 Chapter 8 Timing Constraints

MAG08 8/18/04 3:01 PM Page 122

Parts I and II covered the construction of basic models of simple components with
a focus on using various packages as resources. In Part III we build on this foun-
dation by demonstrating how to write complete models for small- and medium-
scale integrated circuits. Components with registers are the primary focus: With
registers come additional constraint requirements, such as conditional timings
and negative timing constraints. The structure and syntax of timing files are also
covered.

Chapter 9 explores the requirements for modeling devices containing latches
and registers. New generics and their associated timing checks are introduced. The
use of state tables is illustrated.

Chapter 10 discusses how to work with conditional delays and conditional con-
straints. Alternative methods are examined. The mapping of conditional statements
from SDF to VITAL is also covered.

Chapter 11 explains how negative timing constraints arise and how they are
modeled. It discusses how VITAL compliant simulators handle negative constraints
and the implications for model functionality.

Chapter 12 covers the structure and syntax of timing files and an available tool
to aid in their creation. It discusses how timing files are used to generate SDF files.
How to apply SDF files to backannotate hierarchical designs is demonstrated.

P

A

R

T III Modeling Basics

MAG09 8/18/04 3:12 PM Page 123

This page intentionally left blank

9

125

C

H

A

P

T

E

R

Modeling Components
with Registers

In the world of synchronous design, most components have registers. Modeling
registers is a basic skill for anyone creating models for board-level simulation. This
chapter, by pulling together the techniques and concepts covered in earlier chap-
ters, enables us to move to the next level of complexity: modeling simple latches
and registers.

We start by modeling a component containing simple flip-flops. We examine
the new generics required in the model’s entity and how they are used in the
model’s timing check section. The flip-flops are modeled using VITAL state tables,
and the outputs are described in VitalPathDelay procedures. Similar treatment
is given to modeling a component containing latches.

9.1 Anatomy of a Flip-Flop

The flip-flop example that follows is a model of a 74xx952 registered transceiver
with 3-state outputs. It is a component that might be used to control bidirectional
data flow between two buses. Each section of the component contains two D flip-
flops for temporary storage of data flowing in either direction.

The Texas Instruments data sheet for the 74ABT16952 [3] offers a schematic
similar to Figure 9.1. The flip-flops are active on the rising edge of their respective
clocks. They each have a clock enable. The A and B pins are 3-state and bidirec-
tional. This part is available as a 74ABT16952, a 74ACT16952, and possibly others.
The component is modeled in a technology-independent fashion, so a single model
is sufficient to cover any technology.

9.1.1 The Entity

We first examine the model entity in three sections. The top model has the copy-
right, revision data, and description.

-- File Name: std952.vhd

-- Copyright (C) 1997, 2003 Free Model Foundry; http://eda.org/fmf/

--

MAG09 8/18/04 3:12 PM Page 125

-- This program is free software; you can redistribute it and/or modify

-- it under the terms of the GNU General Public License version 2 as

-- published by the Free Software Foundation.

--

-- MODIFICATION HISTORY:

--

-- version: | author: | mod date: | changes made:

-- V1.0 R. Munden 97 AUG 14 Conformed to style guide

-- V1.1 R. Munden 03 MAR 25 Updated style

-- V1.2 R. Munden 03 OCT 11 Fix bug in clock enable

--

-- PART DESCRIPTION:

--

-- Library: STD

-- Technology: 54/74XXXX

-- Part: STD952

--

-- Desciption: Registered Transceiver with 3-State Output

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL; -- 1

USE IEEE.VITAL_timing.ALL; -- 2

USE IEEE.VITAL_primitives.ALL; -- 3

LIBRARY FMF; USE FMF.gen_utils.ALL; -- 4

USE FMF.ff_package.ALL; -- 5

126 Chapter 9 Modeling Components with Registers

CLKENABNeg

OEBANeg

One of Eight
Channels

CLKAB

CLKENBANeg

OEABNeg

B

C1
CE

1D

To Seven Other Channels

C1
CE

1DA

CLKBA

Figure 9.1 74xx952 schematic

MAG09 8/18/04 3:12 PM Page 126

Following that, the first five lines of code declare the libraries and packages to
be used. This is a VITAL model so the VITAL timing and primitives packages are
needed along with std_logic_1164. From the FMF library this model will use the
gen_utils package for a number of predeclared constants and the ff_package
for the state tables that define the component’s flip-flops.

Lines 7 through 33 declare the generics:

-- ENTITY DECLARATION

ENTITY std952 IS -- 6

GENERIC (-- 7

-- tipd delays: interconnect path delays

tipd_CLKENABNeg : VitalDelayType01 := VitalZeroDelay01; -- 8

tipd_CLKAB : VitalDelayType01 := VitalZeroDelay01; -- 9

tipd_OEABNeg : VitalDelayType01 := VitalZeroDelay01; -- 10

tipd_A : VitalDelayType01 := VitalZeroDelay01; -- 11

tipd_CLKENBANeg : VitalDelayType01 := VitalZeroDelay01; -- 12

tipd_CLKBA : VitalDelayType01 := VitalZeroDelay01; -- 13

tipd_OEBANeg : VitalDelayType01 := VitalZeroDelay01; -- 14

tipd_B : VitalDelayType01 := VitalZeroDelay01; -- 15

-- tpd delays

tpd_CLKAB_B : VitalDelayType01 := UnitDelay01; -- 16

tpd_OEBANeg_A : VitalDelayType01Z := UnitDelay01Z; -- 17

-- tsetup values: setup times

tsetup_A_CLKAB : VitalDelayType := UnitDelay; -- 18

tsetup_B_CLKBA : VitalDelayType := UnitDelay; -- 19

tsetup_CLKENABNeg_CLKAB : VitalDelayType := UnitDelay; -- 20

tsetup_CLKENBANeg_CLKBA : VitalDelayType := UnitDelay; -- 21

-- thold values: hold times

thold_A_CLKAB : VitalDelayType := UnitDelay; -- 22

thold_B_CLKBA : VitalDelayType := UnitDelay; -- 23

thold_CLKENABNeg_CLKAB : VitalDelayType := UnitDelay; -- 24

thold_CLKENBANeg_CLKBA : VitalDelayType := UnitDelay; -- 25

-- tpw values: pulse widths

tpw_CLKAB_posedge : VitalDelayType := UnitDelay; -- 26

tpw_CLKBA_posedge : VitalDelayType := UnitDelay; -- 27

-- generic control parameters

InstancePath : STRING := DefaultInstancePath; -- 28

TimingChecksOn : BOOLEAN := DefaultTimingChecks; -- 29

MsgOn : BOOLEAN := DefaultMsgOn; -- 30

XOn : BOOLEAN := DefaultXon; -- 31

-- For FMF SDF technology file usage

TimingModel : STRING := DefaultTimingModel -- 32

); -- 33

9.1 Anatomy of a Flip-Flop 127

MAG09 8/18/04 3:12 PM Page 127

Lines 8 through 15 give the interconnect path delay generics (tipd_). A tipd
generic is declared for every port of mode IN or INOUT. They are all of type
VitalDelayType01 and are given default values of VitalZeroDelay01. This way,
if there are no values backannotated, the delays will be zero.

Lines 16 and 17 give the path delay generics. This component is symmetric in that
it has the same delays on each side, so it is not necessary to have separate generics for the
A and B ports. Line 16 has the clock to output generic tpd_CLKAB_B. The clock can cause
the output to go either high or low, so the generic is of type VitalDelayType01. Line
17 has the generic for the output enables tpd_OEBANeg_A. The enables can cause the
output to switch between high impedance and low impedance, so its type is Vital-
DelayType01 Z. The two generics get default values of UnitDelay01 and Unit-
Delay01Z. These two constants are defined as 1 nanosecond in the FMF gen_utils
package. If no values are backannotated, the delays will each be 1 nanosecond.

Lines 18 through 25 have the setup and hold generics. Here separate generics
are declared for each flip-flop. Because, as previously stated, the part has symmet-
ric timing, these could have been reduced to a single set of generics and shared by
the two flip-flops. Each flip-flop has timing constraints for data to clock setup and
hold and clock enable to clock setup and hold.

Lines 26 and 27 hold the values for the minimum pulse width constraints for
the clocks. There are separate generics for the two flip-flops but the same generic
will be used for both high and low pulses.

Lines 28 through 31 hold the control generics. They are all given default values
defined in the FMF.gen_utils package. InstancePath provides a string for use
in messages from the timing constraint procedures. The default value given is *.
TimingChecksOn controls the execution of those procedures. It is given a default
value of FALSE. MsgOn controls the emission of messages from the timing checks
should a violation be detected. Its default value is TRUE. The value of XOn deter-
mines whether or not the violation flags are driven to ‘X’ if a violation is detected.
The default value from the gen_utils package is TRUE. All of these generics may
be set on a per-instance basis for the entire design by providing values at a higher
level or through a configuration specification.

The entity ends with the port declaration and VITAL attribute:

PORT (-- 34

CLKENABNeg : IN std_ulogic := ‘U’; -- 35

CLKAB : IN std_ulogic := ‘U’; -- 36

OEABNeg : IN std_ulogic := ‘U’; -- 37

A : INOUT std_ulogic := ‘U’; -- 38

CLKENBANeg : IN std_ulogic := ‘U’; -- 39

CLKBA : IN std_ulogic := ‘U’; -- 40

OEBANeg : IN std_ulogic := ‘U’; -- 41

B : INOUT std_ulogic := ‘U’ -- 42

); -- 43

ATTRIBUTE VITAL_LEVEL0 of std952 : ENTITY IS TRUE; -- 44

END std952; -- 45

128 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 128

The ports on this model are all scalar and are of modes IN and INOUT. They are all
of type std_ulogic. This is the preferred type for model ports. The ports will all
connect to signals of type std_logic in the netlist. In this model, all ports are ini-
tialized to ‘U’. Should we need to leave any port unconnected in the netlist
(perhaps not a good idea in this case), we would be unable to do so without pro-
viding an explicit default value. VHDL requires that unconnected inputs be ini-
tialized if they are to be associated with the key word OPEN.

This is a VITAL model so the VITAL_LEVEL0 attribute is required for compiler
checking and code optimization.

This model simulates one slice or channel of a std952-type component. A
74ABT952 has eight channels. A 74ACT16952 has two separate circuits with eight
channels each. We rely on the user’s schematic capture system and VHDL netlister
to instantiate as many channels as required to simulate the number of specific com-
ponents in the design. There is an example of this in Chapter 15. This strategy is
useful for most small- and medium-size components.

9.1.2 The Architecture

The architecture unit of the model begins with the VITAL_LEVEL1 attribute:

-- ARCHITECTURE DECLARATION

ARCHITECTURE vhdl_behavioral of std952 IS -- 46

ATTRIBUTE VITAL_LEVEL1 of vhdl_behavioral : ARCHITECTURE IS TRUE; -- 47

This is a level 1 model and its level of abstraction is gate level. By supplying the
VITAL_LEVEL1 attribute we allow the compiler to further optimize its output for
better memory usage and faster execution.

The first part of a VHDL architecture is signal declarations. Here we declare the
delayed input signals and any internal signals that will be needed in the model:

SIGNAL CLKENABNeg_ipd : std_ulogic := ‘U’; -- 48

SIGNAL CLKAB_ipd : std_ulogic := ‘U’; -- 49

SIGNAL OEABNeg_ipd : std_ulogic := ‘U’; -- 50

SIGNAL CLKENBANeg_ipd : std_ulogic := ‘U’; -- 51

SIGNAL CLKBA_ipd : std_ulogic := ‘U’; -- 52

SIGNAL OEBANeg_ipd : std_ulogic := ‘U’; -- 53

SIGNAL A_ipd : std_ulogic := ‘U’; -- 54

SIGNAL B_ipd : std_ulogic := ‘U’; -- 55

SIGNAL Aint : std_ulogic := ‘U’; -- 56

SIGNAL Bint : std_ulogic := ‘U’; -- 57

In this case all the signals are of type std_ulogic.
That job out of the way, the model can begin. VITAL models always begin with

a WireDelay block. The block must carry the label WireDelay. This is where the
interconnect delays are applied to the input signals:

9.1 Anatomy of a Flip-Flop 129

MAG09 8/18/04 3:12 PM Page 129

BEGIN -- 58
--
-- Wire Delays
--

WireDelay : BLOCK -- 59

BEGIN -- 60

w_1 : VitalWireDelay (CLKENABNeg_ipd, CLKENABNeg, tipd_CLKENABNeg); -- 61

w_2 : VitalWireDelay (CLKAB_ipd, CLKAB, tipd_CLKAB); -- 62

w_3 : VitalWireDelay (OEABNeg_ipd, OEABNeg, tipd_OEABNeg); -- 63

w_4 : VitalWireDelay (B_ipd, B, tipd_B); -- 64

w_5 : VitalWireDelay (CLKENBANeg_ipd, CLKENBANeg, tipd_CLKENBANeg); -- 65

w_6 : VitalWireDelay (CLKBA_ipd, CLKBA, tipd_CLKBA); -- 66

w_7 : VitalWireDelay (OEBANeg_ipd, OEBANeg, tipd_OEBANeg); -- 67

w_8 : VitalWireDelay (A_ipd, A, tipd_A); -- 68

END BLOCK; -- 69

Although not required, it is good practice to label each VitalWireDelay pro-
cedure call. In general labels are an aid to debugging either the model or the design
the model is in. When running a simulation interactively, the simulator’s graphi-
cal interface will usually make labels visible, improving the accessibility of the
objects to which they are attached.

Following the WireDelay block is a concurrent procedure calls section. In this
section are two VITAL primitive procedure calls:

-- Concurrent procedure calls

a_1: VitalBUFIF0 (-- 70

q => A, -- 71

data => Arint, -- 72

Enable => OEBANeg_ipd, -- 73

tpd_enable_q => tpd_OEBANeg_A); -- 74

a_2: VitalBUFIF0 (-- 75

q => B, -- 76

data => Bint, -- 77

Enable => OEABNeg_ipd, -- 78

tpd_enable_q => tpd_OEBANeg_A); -- 79

In this model, VitalBUFIF0 primitives are employed to model the 3-state
behavior of the two data ports. Each primitive will drive an output port with
a signal delayed by tpd_OEBANeg_A. The input signals Aint and Bint are already
delayed by path delay procedures. However, the generic tpd_OEBANeg_A has
null values for the 0 Æ 1 and 1 Æ 0 transitions. Thus, the delays will not be
additive.

This model could be written without these VITAL primitive calls. The 3-state
control could be included in the processes that follow. In this case, taking 3-state

130 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 130

control out of the processes and making it separate might make the model easier
to understand. You be the judge.

9.1.3 A VITAL Process

Most of the behavior of this model is described in two VITAL processes. One models
the data flow from the A port to the B port, the other from B to A. Each has its
own timing checks and path delay sections. We will call this process the “A” side,
and the other the “B” side of the component.

The process begins with a process statement. It is good practice to label each
process. The sensitivity list must include every signal that is read inside the process.
The first part of any process is the declarative section:

-- Main Behavior Process

VitalBehavior1 : PROCESS (CLKAB_ipd, CLKENABNeg_ipd, A_ipd) -- 80

-- Timing Check Variables

VARIABLE Tviol_A_CLKAB : X01 := ‘0’; -- 81

VARIABLE TD_A_CLKAB : VitalTimingDataType; -- 82

VARIABLE Tviol_CLKENABNeg_CLKAB : X01 := ‘0’; -- 83

VARIABLE TD_CLKENABNeg_CLKAB : VitalTimingDataType; -- 84

VARIABLE Pviol_CLKAB : X01 := ‘0’; -- 85

VARIABLE PD_CLKAB : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Violation : X01 := ‘0’; -- 87

-- Functionality Results Variables

VARIABLE Q_zd : std_ulogic; -- 88

VARIABLE PrevData : std_logic_vector(0 to 3); -- 89

-- Output Glitch Detection Variables

VARIABLE Q_GlitchData : VitalGlitchDataType; -- 90

Timing check variables are declared for each timing check in the process. The
functionality result variables that are declared include the zero delay result
variable, Q_zd, and the PrevData array that stores the previous state for the
state table that describes the D flip-flop in this process. There is also a declaration
for the glitch detection variable, Q_GlitchData that is used in the path delay
procedure.

The next section in the process is the timing check section. The timing checks
are all inside an IF statement controlled by the TimingChecksOn generic. There
are three timing checks. The first is a VitalSetupHoldCheck to check the clock
enable:

9.1 Anatomy of a Flip-Flop 131

MAG09 8/18/04 3:12 PM Page 131

BEGIN -- 91

-- Timing Check Section

IF (TimingChecksOn) THEN -- 92

VitalSetupHoldCheck (-- 93

TestSignal => CLKENABNeg_ipd, -- 94

TestSignalName => “CLKENABNeg_ipd”, -- 95

RefSignal => CLKAB_ipd, -- 96

RefSignalName => “CLKAB_ipd”, -- 97

SetupHigh => tsetup_CLKENABNeg_CLKAB, -- 98

SetupLow => tsetup_CLKENABNeg_CLKAB, -- 99

HoldHigh => thold_CLKENABNeg_CLKAB, -- 100

HoldLow => thold_CLKENABNeg_CLKAB, -- 101

CheckEnabled => TRUE, -- 102

RefTransition => ‘/’, -- 103

HeaderMsg => InstancePath & “/std952”, -- 104

TimingData => TD_CLKENABNeg_CLKAB, -- 105

XOn => XOn, -- 106

MsgOn => MsgOn, -- 107

Violation => Tviol_CLKENABNeg_CLKAB -- 108

); -- 109

All the signals read by the procedure are delayed (_ipd) signals. The check is always
enabled on line 102, although the procedure will not be executed if Tim-
ingChecksOn is FALSE. Line 103 says we are performing the check against the time
of the rising edge (‘/’) of the clock, CLKAB_ipd.

The second constraint check checks the setup and hold times of the “A” port
relative to its clock, CLKAB_ipd:

VitalSetupHoldCheck (-- 110

TestSignal => A_ipd, -- 111

TestSignalName => “A_ipd”, -- 112

RefSignal => CLKAB_ipd, -- 113

RefSignalName => “CLKAB_ipd”, -- 114

SetupHigh => tsetup_A_CLKAB, -- 115

SetupLow => tsetup_A_CLKAB, -- 116

HoldHigh => thold_A_CLKAB, -- 117

HoldLow => thold_A_CLKAB, -- 118

CheckEnabled => CLKENABNeg_ipd = ‘0’, -- 119

RefTransition => ‘/’, -- 120

HeaderMsg => InstancePath & “/std952”, -- 121

TimingData => TD_A_CLKAB, -- 122

XOn => XOn, -- 123

MsgOn => MsgOn, -- 124

Violation => Tviol_A_CLKAB -- 125

); -- 126

132 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 132

In this procedure call and the next, the check is enabled only when CLKENAB-
Neg_ipd is low.

The third timing check in this process is VitalPeriodPulseCheck:

VitalPeriodPulseCheck (-- 127

TestSignal => CLKAB_ipd, -- 128

TestSignalName => “CLKAB_ipd”, -- 129

PulseWidthHigh => tpw_CLKAB_posedge, -- 130

PulseWidthLow => tpw_CLKAB_posedge, -- 131

CheckEnabled => CLKENABNeg_ipd = ‘0’, -- 132

HeaderMsg => InstancePath & “/std952”, -- 133

PeriodData => PD_CLKAB, -- 134

XOn => XOn, -- 135

MsgOn => MsgOn, -- 136

Violation => Pviol_CLKAB -- 137

); -- 138

END IF; -- 139

It checks the pulse width, high and low, of the clock.
Finally, after the end of the IF statement, the violation flags are ORed together

and the timing check section is closed with:

Violation := Tviol_A_CLKAB OR Tviol_CLKENABNeg_CLKAB OR Pviol_CLKAB;

Although it would seem to make sense to combine the violation flags inside the IF
statement, a strict VITAL compiler would consider it an error.

9.1.4 Functionality Section

The functionality section holds the functional behavior of the process. In this
process it consists entirely of a call to a VITAL state table.

-- Functionality Section

VitalStateTable (-- 141

StateTable => DFFCEN_tab, -- 142

DataIn => (Violation,CLKENABNeg_ipd, -- 143

CLKAB_ipd, -- 144

A_ipd), -- 145

Result => Q_zd, -- 146

PreviousDataIn => PrevData -- 147

); -- 148

Line 142 provides the name of the state table. The table itself is shown in Figure
9.2. Lines 143, 144, and 145 give the four elements of the input array. The state
table models a D flip-flop with active-low clock enable. The output of the state table
is assigned to Q_zd. The array PrevData stores the inputs for use with the next
call to the state table.

9.1 Anatomy of a Flip-Flop 133

MAG09 8/18/04 3:12 PM Page 133

9.1.5 Path Delay

This process ends with a path delay section containing a single call to the Vital-
PathDelay01 procedure:

-- Path Delay Section

VitalPathDelay01 (-- 149

OutSignal => Bint, -- 150

OutSignalName => “Bint”, -- 151

OutTemp => Q_zd, -- 152

GlitchData => Q_GlitchData, -- 153

XOn => XOn, -- 154

MsgOn => MsgOn, -- 155

Paths => (-- 156

0 => (InputChangeTime => CLKAB_ipd’LAST_EVENT, -- 157

PathDelay => tpd_CLKAB_B, -- 158

PathCondition => CLKENABNeg_ipd = ‘0’) -- 159

) -- 160

); -- 161

END PROCESS; -- 162

The output of the procedure is written to an internal signal rather than directly to
a port. Only one path is listed but it has the path condition CLKENABNeg_ipd =
‘0’ on line 159. This condition would seem unnecessary but harmless. However,
when writing a component model the author should consider all the conditions

134 Chapter 9 Modeling Components with Registers

 -- D-flip/flop with active low clock enable

 CONSTANT DFFCEN_tab : VitalStateTableType := (

 ----INPUTS------------|PREV-|-OUTPUT--
 -- Viol CEN CLK D | QI | Q’ --
 ----------------------|-----|---------
 (‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’), -- timing violation
 (‘-’, ‘-’, ‘X’, ‘0’, ‘0’, ‘0’), -- clk unknown
 (‘-’, ‘-’, ‘X’, ‘1’, ‘1’, ‘1’), -- clk unknown
 (‘-’, ‘-’, ‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘X’, ‘-’, ‘0’, ‘0’, ‘0’), -- clken unknown
 (‘-’, ‘X’, ‘-’, ‘1’, ‘1’, ‘1’), -- clken unknown
 (‘-’, ‘X’, ‘-’, ‘-’, ‘-’, ‘X’), -- clken unknown
 (‘-’, ‘0’, ‘/’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘-’, ‘0’, ‘/’, ‘1’, ‘-’, ‘1’), -- active clock edge
 (‘-’, ‘0’, ‘/’, ‘-’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 9.2 DFFCEN state table

MAG09 8/18/04 3:12 PM Page 134

the model might encounter. In this case consider what would happen if the user
tied the clock enable to ground through a resistor. The signal CLKENABNeg_ipd
would have a constant value of ‘L’ rather than ‘0’. The state table would func-
tion correctly but the only path in the path delay procedure would be disqualified.
If the user was simulating a 74ACT16952 part with maximum delays, the
tpd_CLKAB_B would be 10.7 nanoseconds, but with no qualified path the Vital-
PathDelay01 procedure would use the default delay. Unless otherwise specified,
the default delay is 0 nanoseconds. This would likely cause timing errors elsewhere
in the simulation without an obvious indication of the actual source of the error.
So in this case, the path condition may not add any value but can cause serious
but subtle errors. It would be better if the PathCondition was:

PathCondition => (CLKENABNeg_ipd = ‘0’ OR CLKENABNeg_ipd = ‘L’))

9.1.6 The “B” Side

The other half of the model, modeling the port B to A data flow, differs from what
has been shown only in its signal names:

VitalBehavior2 : PROCESS (CLKBA_ipd, CLKENBANeg_ipd, B_ipd)

-- Timing Check Variables

VARIABLE Tviol_B_CLKBA : X01 := ‘0’;

VARIABLE TD_B_CLKBA : VitalTimingDataType;

VARIABLE Tviol_CLKENBANeg_CLKBA : X01 := ‘0’;

VARIABLE TD_CLKENBANeg_CLKBA : VitalTimingDataType;

VARIABLE Pviol_CLKBA : X01 := ‘0’;

VARIABLE PD_CLKBA : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Violation : X01 := ‘0’;

-- Functionality Results Variables

VARIABLE Q_zd : std_ulogic;

VARIABLE PrevData : std_logic_vector(0 to 3);

-- Output Glitch Detection Variables

VARIABLE Q_GlitchData : VitalGlitchDataType;

BEGIN

--
-- Timing Check Section
--

IF (TimingChecksOn) THEN

VitalSetupHoldCheck (

TestSignal => CLKENBANeg_ipd,

TestSignalName => “CLKENBANeg_ipd”,

9.1 Anatomy of a Flip-Flop 135

MAG09 8/18/04 3:12 PM Page 135

RefSignal => CLKBA_ipd,

RefSignalName => “CLKBA_ipd”,

SetupHigh => tsetup_CLKENBANeg_CLKBA,

SetupLow => tsetup_CLKENBANeg_CLKBA,

HoldHigh => thold_CLKENBANeg_CLKBA,

HoldLow => thold_CLKENBANeg_CLKBA,

CheckEnabled => TRUE,

RefTransition => ‘/’,

HeaderMsg => InstancePath & “/std952”,

TimingData => TD_CLKENBANeg_CLKBA,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_CLKENBANeg_CLKBA

);

VitalSetupHoldCheck (

TestSignal => B_ipd,

TestSignalName => “B_ipd”,

RefSignal => CLKBA_ipd,

RefSignalName => “CLKBA_ipd”,

SetupHigh => tsetup_B_CLKBA,

SetupLow => tsetup_B_CLKBA,

HoldHigh => thold_B_CLKBA,

HoldLow => thold_B_CLKBA,

CheckEnabled => CLKENBANeg_ipd = ‘0’,

RefTransition => ‘/’,

HeaderMsg => InstancePath & “/std952”,

TimingData => TD_B_CLKBA,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_B_CLKBA

);

VitalPeriodPulseCheck (

TestSignal => CLKBA_ipd,

TestSignalName => “CLKBA_ipd”,

PulseWidthHigh => tpw_CLKBA_posedge,

CheckEnabled => CLKENBANeg_ipd = ‘0’,

HeaderMsg => InstancePath & “/std952”,

PeriodData => PD_CLKBA,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLKBA

);

END IF;

136 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 136

Violation := Tviol_B_CLKBA OR Tviol_CLKENBANeg_CLKBA OR Pviol_CLKBA;

--
-- Functionality Section
--

VitalStateTable (

StateTable => DFFCEN_tab,

DataIn => (Violation,CLKENBANeg_ipd,

CLKBA_ipd,

B_ipd),

Result => Q_zd,

PreviousDataIn => PrevData

);

--
-- Path Delay Section
--

VitalPathDelay01 (

OutSignal => Aint,

OutSignalName => “Aint”,

OutTemp => Q_zd,

GlitchData => Q_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => CLKBA_ipd’LAST_EVENT,

PathDelay => tpd_CLKAB_B,

PathCondition => CLKENBANeg_ipd = ‘0’)

)

);

END PROCESS;

END vhdl_behavioral;

Although this model has been used for several years without negative comment, it
has some shortcomings. It was in use for six years before a flaw regarding the clock
enable was noticed and the state table changed to correct it. The path conditions
still need to be changed to accommodate for weak inputs. All this says that although
the model is imperfect, it has still been useful.

9.2 Anatomy of a Latch

This is a model of a 74xx16334 16-bit universal bus driver with 3-state outputs. As
in the previous model, this model is of a single bit. This component is unidirec-
tional. It operates according to the function table in Table 9.1, which is based on
the Texas Instruments SN74ALVC162334 data sheet [4].

When the latch enable pin, LENeg, is low, the component is in transparent
mode. Any input to A appears on Y, assuming the output enable pin, OENeg, is low.

9.2 Anatomy of a Latch 137

MAG09 8/18/04 3:12 PM Page 137

When LENeg is high, the component acts as a D flip-flop and data are clocked from
A to Y on the rising edge of CLK.

9.2.1 The Entity

The entity begins with the copyright, revision history, and description:

-- File Name: std16334.vhd

-- Copyright (C) 2002 Free Model Foundry; http://eda.org/fmf/

--

-- This program is free software; you can redistribute it and/or modify

-- it under the terms of the GNU General Public License version 2 as

-- published by the Free Software Foundation.

--

-- MODIFICATION HISTORY:

--

-- version: | author: | mod date: | changes made:

-- V1.0 R. Munden 02 OCT 11 Initial release

--

-- PART DESCRIPTION:

--

-- Library: STND

-- Technology: 74XXXX

-- Part: std16334

--

-- Description: 16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

USE IEEE.VITAL_timing.ALL;

USE IEEE.VITAL_primitives.ALL;

138 Chapter 9 Modeling Components with Registers

Table 9.1 Function table

INPUTS
OUTPUT

OENeg LENeg CLK A Y

H X X X Z

L L X L L

L L X H H

L H / L L

L H / H H

L H L or H X Y0

MAG09 8/18/04 3:12 PM Page 138

LIBRARY FMF; USE FMF.gen_utils.ALL;

USE FMF.ff_package.ALL;

The library clauses are the same as for the previous model. The ff_package is used
again, so the model can utilize a state table defined in that package.

The generics section has some notable items:

-- ENTITY DECLARATION

ENTITY std16334 IS

GENERIC (

-- tipd delays: interconnect path delays

tipd_CLK : VitalDelayType01 := VitalZeroDelay01;

tipd_OENeg : VitalDelayType01 := VitalZeroDelay01;

tipd_LENeg : VitalDelayType01 := VitalZeroDelay01;

tipd_A : VitalDelayType01 := VitalZeroDelay01;

-- tpd delays

tpd_A_Y : VitalDelayType01 := UnitDelay01; --tPLH, tPHL

tpd_LENeg_ : VitalDelayType01 := UnitDelay01; --tPLH, tPHL

tpd_CLK_Y : VitalDelayType01 := UnitDelay01; --tPLH, tPHL

tpd_OENeg_Y : VitalDelayType01Z := UnitDelay01Z; --tPZH, tPZL,

-- tsetup values: setup times

tsetup_A_CLK : VitalDelayType := UnitDelay; --tSU

tsetup_A_LENeg_CLK_EQ_1 : VitalDelayType := UnitDelay; --tSU,

-- CLK-HIGH

tsetup_A_LENeg_CLK_EQ_0 : VitalDelayType := UnitDelay; --tSU,

-- CLK-LOW

-- thold values: hold times

thold_A_CLK : VitalDelayType := UnitDelay; --tSU

thold_A_LENeg : VitalDelayType := UnitDelay; --tSU,

--CLK-HIGH i CLK-LOW

-- tpw values: pulse widths

tpw_LENeg_negedge : VitalDelayType := UnitDelay; --tW Low

tpw_CLK_posedge : VitalDelayType := UnitDelay; --tW(H),

--tW(L)

-- tperiod_min: minimum clock period = 1/max freq

tperiod_CLK_posedge : VitalDelayType := UnitDelay;

-- generic control parameters

InstancePath : STRING := DefaultInstancePath;

TimingChecksOn : BOOLEAN := DefaultTimingChecks;

MsgOn : BOOLEAN := DefaultMsgOn;

XOn : BOOLEAN := DefaultXon;

--For FMF SDF technology file usage

TimingModel : STRING := DefaultTimingModel

);

9.2 Anatomy of a Latch 139

MAG09 8/18/04 3:12 PM Page 139

The path delay and timing constraint generics are commented with the parame-
ter names from the data sheet. This facilitates the addition of new component
timings in the timing file by stating which data sheet parameter is mapped to each
timing generic. This is particularly helpful if the new timings are being added by
someone other than the original author of the model. Timing files are discussed in
Chapter 12.

It is of note that the data sheet defines different setup times for A relative to
LENeg for CLK high and low. Therefore, there are two generics for this constraint:
tsetup_A_LENeg_CLK_EQ_1 and tsetup_A_LENeg_CLK_EQ_0. These are condi-
tional generics, as discussed in Chapters 4 and 10.

The entity ends with the port list and VITAL_LEVEL0 attribute.

PORT (

A : IN std_ulogic := U’;

OENeg : IN std_ulogic := ‘U’;

CLK : IN std_ulogic := ‘U’;

LENeg : IN std_ulogic := ‘U’;

Y : OUT std_ulogic := ‘U’

);

ATTRIBUTE VITAL_LEVEL0 of std16334 : ENTITY IS TRUE;

END std16334;

This model has ports of modes IN and OUT.

9.2.2 The Architecture

The architecture begins with a VITAL attribute. This is a VITAL_LEVEL0 model. It
will not be optimized as much by the compiler, but is written at a slightly higher
level of abstraction that may make up for that. It is important to note that declar-
ing VITAL_LEVEL1 FALSE may not give the same results as VITAL_LEVEL0 TRUE.
This is because declaring VITAL_LEVEL1 FALSE should (but is not guaranteed to)
have the same interpretation as no declaration at all.

-- ARCHITECTURE DECLARATION

ARCHITECTURE vhdl_behavioral of std16334 IS

ATTRIBUTE VITAL_LEVEL0 of vhdl_behavioral : ARCHITECTURE IS TRUE;

CONSTANT partID : STRING := “std16334”;

SIGNAL OENeg_ipd : std_ulogic := ‘U’;

SIGNAL CLK_ipd : std_ulogic := ‘U’;

SIGNAL LENeg_ipd : std_ulogic := ‘U’;

SIGNAL A_ipd : std_ulogic := ‘U’;

BEGIN

140 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 140

-- Wire Delays

WireDelay : BLOCK

BEGIN

w_1 : VitalWireDelay (OENeg_ipd, OENeg, tipd_OENeg);

w_2 : VitalWireDelay (CLK_ipd, CLK, tipd_CLK);

w_3 : VitalWireDelay (LENeg_ipd, LENeg, tipd_LENeg);

w_4 : VitalWireDelay (A_ipd, A, tipd_A);

END BLOCK;

There is a new constant declared, partID. It is assigned the string that will be used
for the HeaderMsg parameter in the timing checks. Using a constant makes it easier
to write new models by cutting and pasting from old ones. The signal declarations
and WireDelay block contain nothing we haven’t seen before. The behavior
process does have a few things that deserve closer examination:

-- Behavior Process

VitalBehavior : PROCESS (OENeg_IPD, CLK_ipd, LENeg_ipd, A_ipd)

-- Timing Check Variables

VARIABLE Tviol_A_CLK : X01 := ‘0’;

VARIABLE TD_A_CLK : VitalTimingDataType;

VARIABLE Tviol_A_LENeg_CLKhigh : X01 := ‘0’;

VARIABLE TD_A_LENeg_CLKhigh : VitalTimingDataType;

VARIABLE Tviol_A_LENeg_CLKlow : X01 := ‘0’;

VARIABLE TD_A_LENeg_CLKlow : VitalTimingDataType;

VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Pviol_CLK : X01 := ‘0’;

VARIABLE PD_LENeg : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Pviol_LENeg : X01 := ‘0’;

VARIABLE Violation : X01 := ‘0’;

-- Functionality Results Variables

VARIABLE Y_zd : std_ulogic;

VARIABLE LENeg_inv : std_ulogic;

-- Temporary Variables for tri state out

VARIABLE QA_int : std_ulogic := ‘U’;

-- Prevdata for LATNDFF tab

VARIABLE PrevData0 : std_logic_vector(0 to 3);

9.2 Anatomy of a Latch 141

MAG09 8/18/04 3:12 PM Page 141

-- Output Glitch Detection Variables

VARIABLE Y_GlitchData : VitalGlitchDataType;

-- No Weak Values Variables

VARIABLE CLK_nwv : UX01 := ‘X’;

VARIABLE OENeg_nwv : UX01 := ‘X’;

VARIABLE LENeg_nwv : UX01 := ‘X’;

BEGIN

CLK_nwv := To_UX01 (s => CLK_ipd);

OENeg_nwv := To_UX01 (s => OENeg_ipd);

LENeg_nwv := To_UX01 (s => LENeg_ipd);

The new items in this section are additional variables for internal nets, LENeg_inv,
and QA_int, and three “no weak values” (_nwv) variables, CLK_nwv, OENeg_nwv,
and LENeg_nwv. Each of these_nwv variables is assigned a version of its named
signal through a To_UX01 transformation. The purpose of the transformation is to
change ‘L’s to ‘0’s and ‘H’s to ‘1’s. That allows us to simplify IF statements
and other tests. Instead of writing

IF (OENeg_ipd = ‘H’ OR OENeg_ipd = ‘1’) THEN

We can write

IF (OENeg_nwv = ‘1’) THEN

This is more efficient and easier to write if a signal is going to be tested in many
places in the process. The first use of a no weak value variable occurs in the timing
section. Placing the To_UX01 conversions ahead of the timing checks is what pre-
vents this model from being compiled as VITAL_LEVEL1.

-- Timing Check Section

IF (TimingChecksOn) THEN

VitalSetupHoldCheck (

TestSignal => A_ipd,

TestSignalName => “A_ipd”,

RefSignal => CLK_ipd,

RefSignalName => “CLK_ipd”,

SetupHigh => tsetup_A_CLK,

SetupLow => tsetup_A_CLK,

HoldHigh => thold_A_CLK,

HoldLow => thold_A_CLK,

CheckEnabled => TRUE,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_A_CLK,

142 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 142

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_A_CLK

);

VitalSetupHoldCheck (

TestSignal => A_ipd,

TestSignalName => “A_ipd”,

RefSignal => LENeg_ipd,

RefSignalName => “LENeg_ipd”,

SetupHigh => tsetup_A_LENeg_CLK_EQ_0,

SetupLow => tsetup_A_LENeg_CLK_EQ_0,

HoldHigh => thold_A_LENeg,

HoldLow => thold_A_LENeg,

CheckEnabled => CLK_nwv = ‘0’,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_A_LENeg_CLKLow,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_A_LENeg_CLKLow

);

VitalSetupHoldCheck (

TestSignal => A_ipd,

TestSignalName => “A_ipd”,

RefSignal => LENeg_ipd,

RefSignalName => “LENeg_ipd”,

SetupHigh => tsetup_A_LENeg_CLK_EQ_1,

SetupLow => tsetup_A_LENeg_CLK_EQ_1,

HoldHigh => thold_A_LENeg,

HoldLow => thold_A_LENeg,

CheckEnabled => CLK_nwv = ‘1’,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_A_LENeg_CLKhigh,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_A_LENeg_CLKhigh

);

VitalPeriodPulseCheck (

TestSignal => CLK_ipd,

TestSignalName => “CLK_ipd”,

Period => tperiod_CLK_posedge,

PulseWidthHigh => tpw_CLK_posedge,

9.2 Anatomy of a Latch 143

MAG09 8/18/04 3:12 PM Page 143

PulseWidthlow => tpw_CLK_posedge,

CheckEnabled => TRUE,

HeaderMsg => InstancePath & partID,

PeriodData => PD_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLK

);

VitalPeriodPulseCheck (

TestSignal => LENeg_ipd,

TestSignalName => “LENeg_ipd”,

PulseWidthlow => tpw_LENeg_negedge,

CheckEnabled => TRUE,

HeaderMsg => InstancePath & partID,

PeriodData => PD_LENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_LENeg

);

END IF;

Note that there are separate VitalSetupHoldCheck procedure calls for checking
A_ipd relative to LENeg_ipd. One or the other will be enabled depending on the
value of CLK_nwv.

In this model, the violation flags are combined in the functionality section:

-- Functionality Section

Violation := Tviol_A_CLK OR

Tviol_A_LENeg_CLKHigh OR

Tviol_A_LENeg_CLKLow OR

Pviol_LENeg OR

Pviol_CLK;

LENeg_inv := VitalINV (Data => LENeg_ipd);

VitalStateTable (

StateTable => LATNDFF_tab,

DataIn => (Violation, LENeg_inv, CLK_ipd, A_ipd),

Result => QA_int,

PreviousDataIn => PrevData0

);

Y_zd := VitalBUFIF0 (data => QA_int,

nable => OENeg_ipd);

It might seem be more logical to do that in the timing checks section. If timing checks
are disabled by TimingChecksOn being set FALSE, there is no point in combining the

144 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 144

violation flags. However, the VITAL specification prohibits anything other than calls
to the timing check procedures from being placed in the timing check section.

The behavior of this component is modeled using two VITAL primitive function
calls as well as a VitalStateTable procedure call. The first function call inverts
the value of the latch enable, LENeg, so it will have the correct polarity for the state
table. The second function call drives the output to high impedance if the output
enable, OENeg, is high. The state table LATNDFF_tab in the FMF ff_package
describes the behavior of the latch itself, as shown in Figure 9.3.

The model ends with the path delay section:

-- Path Delay Section

VitalPathDelay01Z (

OutSignal => Y,

OutSignalName => “Y”,

OutTemp => Y_zd,

GlitchData => Y_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => CLK_ipd’LAST_EVENT,

PathDelay => VitalExtendToFillDelay(tpd_CLK_Y),

PathCondition => (OENeg_nwv = ‘0’

AND LENeg_nwv = ‘1’)),

9.2 Anatomy of a Latch 145

 -- Latch/D-flip/flop with LEN transparent high and active high clock

 CONSTANT LATNDFF_tab : VitalStateTableType := (

 ----INPUTS-----------|PREV-|-OUTPUT--
 -- Viol LEN CLK D | QI | Q’ --
 ---------------------|-----|---------
 (‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’), -- timing violation
 (‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘0’), -- len and clk unknown
 (‘-’, ‘X’, ‘X’, ‘1’, ‘1’, ‘1’), -- len and clk unknown
 (‘-’, ‘X’, ‘-’, ‘-’, ‘-’, ‘X’), -- len unknown
 (‘-’, ‘0’, ‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘1’, ‘-’, ‘0’, ‘-’, ‘0’), -- Latch transparent
 (‘-’, ‘1’, ‘-’, ‘1’, ‘-’, ‘1’), -- Latch transparent
 (‘-’, ‘1’, ‘-’, ‘-’, ‘-’, ‘X’), -- Latch transparent unknown D
 (‘-’, ‘0’, ‘X’, ‘0’, ‘0’, ‘0’), -- clk unknown
 (‘-’, ‘0’, ‘X’, ‘1’, ‘1’, ‘1’), -- clk unknown
 (‘-’, ‘0’, ‘X’, ‘-’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘0’, ‘/’, ‘0’, ‘-’, ‘0’), -- ff active clock edge
 (‘-’, ‘0’, ‘/’, ‘1’, ‘-’, ‘1’), -- ff active clock edge
 (‘-’, ‘0’, ‘/’, ‘-’, ‘-’, ‘X’), -- ff active clock edge unknown D
 (‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 9.3 LATNDFF state table

MAG09 8/18/04 3:12 PM Page 145

1 => (InputChangeTime => OENeg_ipd’LAST_EVENT,

PathDelay => tpd_OENeg_Y,

PathCondition => TRUE),

2 => (InputChangeTime => LENeg_ipd’LAST_EVENT,

PathDelay => VitalExtendToFillDelay(tpd_LENeg_Y),

PathCondition => OENeg_nwv = ‘0’),

3 => (InputChangeTime => A_ipd’LAST_EVENT,

PathDelay => VitalExtendToFillDelay(tpd_A_Y),

PathCondition => (LENeg_nwv = ‘0’ AND

OENeg_nwv = ‘0’))

)

);

END PROCESS;

END vhdl_behavioral;

Because the output can be driven to ‘Z’, the model uses the VitalPathDelay01Z
path delay procedure. There are four paths defined in this procedure call. Three of
them have expressions for the PathCondition parameters. In this model, the path
delay procedure call drives the output port directly.

The PathDelay parameter in a VitalPathDelay01Z procedure call must have
six values. A generic of type VitalDelayType01 Z has six values, but a generic of
type VitalDelayType01 has only two. This can be remedied by using the func-
tion VitalExtendToFillDelay. This function will assign the two supplied values
to the four missing elements and return an array of type VitalDelayType01Z. The
four padded elements will never be needed during simulation but are required to
satisfy the procedure call.

9.3 Summary

Registers, latches, and flip-flops are common in glue logic and as elements in more
complex components. The definitions of latches and flip-flops can be stored in
packages as VITAL state tables and reused by other models.

Whenever there is a register in a model, there are setup/hold and period/
pulsewidth timing checks. The timing values for these timing constraint checks, as
well as for the path delays, should not be hard coded into the model, but should
be annotated through SDF and timing generics.

All ports in a model should have explicit initialization so if some ports are left
unconnected a legal netlist may still be generated.

When testing port values, it should be considered that an input port might be
assigned a weak value, ‘L’ or ‘H’. Otherwise, incorrect behavior could result under
some conditions. Creating a no weak value variable or signal and using it in tests
can help.

146 Chapter 9 Modeling Components with Registers

MAG09 8/18/04 3:12 PM Page 146

10

147

C

H

A

P

T

E

R

Conditional Delays and Timing
Constraints

Delay and constraint timing values can be selected based on conditions. However,
to make use of this capability you must know how conditional statements are
mapped between SDF and VITAL.

We have seen in previous chapters the selection of a delay from multiple can-
didates based on path, but sometimes the propagation delay from an input to an
output depends on the state of one or more other pins. We call that a conditional
delay. It usually requires two or more path delay generics. Part of the data sheet for
a TI SN74GTL1655 (Figure 10.1) illustrates a conditional delay. Both SDF and VITAL
have sufficient syntax to describe conditional timing and there is a prescribed
mapping between them. This chapter discusses the implementation of conditional
timing in SDF and in VITAL.

10.1 Conditional Delays in VITAL

VITAL path delay generics are constructed by a formula:

<tpd_generic> [condition]

For example, the generic for the path delay from port A to port Y would be

tpd_A_Y

Now let us suppose the delay is dependent on the value of a third port S. Two
generics are required:

tpd_A_Y_S_EQ_0

for when S is low, and

tpd_A_Y_S_EQ_1

for when S is high.

MAG10 8/18/04 3:10 PM Page 147

Conditional delays can be more complex. They may involve multiple ports. If
there is one delay when both S and M are high and another if either is low, the
generics could be written as

tpd_A_Y_S_EQ_1_AN_M_EQ_1

for the first case, and

tpd_A_Y_S_EQ_0_OR_M_EQ_0

for the second.
Although the generics seem to have their own logic, for VHDL models they are

really just useful mnemonics. Their purpose is to allow additional unique generics
to which more complex timing can be backannotated. Although the generic may
describe the conditions, the VitalPathDelay procedure call must specify the con-
ditions in the PathCondition parameter.

The FMF stdh1655 model has a number of conditional delays. Let’s look at the
port A0 to port B0 delays:

-- tpd delays

tpd_A0_B0_VERC_EQ_0 : VitalDelayType01 := UnitDelay01;

tpd_A0_B0_VERC_EQ_1 : VitalDelayType01 := UnitDelay01;

148 Chapter 10 Conditional Delays and Timing Constraints

PARAMETER UNIT
MIN MAX MIN MAX

160 160

3.1

2.6

3.4

2.4

3.5

2.6

3.3

2.7

2.3

1.9

2.7

1.8

2.8

2

2.5

2

B

B

B

B

B

B

B

B

ns

ns

ns

ns

ns

ns

ns

ns

tmax

tPLH

tPHL

tPLH

tPHL

tPLH

tPHL

ten

tdls

tPLH

tPHL

tPLH

tPHL

tPLH

tPHL

ten

tdls

5.2

6.2

5.5

5.8

5.8

6.4

5.4

5.9

4.3

4.3

4.8

4.3

4.9

4.8

4.5

4.2

3.1

2.6

3.4

2.4

3.5

2.6

3.3

2.7

2.3

1.9

2.7

1.8

2.8

2

2.5

2

5.2

6.2

5.5

5.8

5.8

6.4

5.4

5.9

4.3

4.3

4.8

4.3

4.9

4.8

4.5

4.2

MHz

FROM
(INPUT)

A
VERC�VCC

CLK
VERC�VCC

LEAB
VERC�VCC

OEAB or OE
VERC�VCC

OEAB or OE
VERC�GND

A
VERC�GND

CLK
VERC�GND

LEAB
VERC�GND

TO
(OUTPUT)

SN54GTL1655 SN74GTL1655

Figure 10.1 Timing table for part with conditional delays

MAG10 8/18/04 3:10 PM Page 148

In the Paths section of the VitalPathDelay01Z procedure call, the selection is
made in the following two paths:

Paths => (

0 => (InputChangeTime => B0int’LAST_EVENT,

PathDelay =>

VitalExtendToFillDelay(tpd_A0_B0_VERC_EQ_0),

PathCondition => (Benable = ‘1’ AND VERC_ipd = ‘0’)),

1 => (InputChangeTime => B0int’LAST_EVENT,

PathDelay =>

VitalExtendToFillDelay(tpd_A0_B0_VERC_EQ_1),

PathCondition => (Benable = ‘1’ AND VERC_ipd = ‘1’)),

Again, note that it is the PathCondition and not the generic name that selects
the correct delay. Using the long generic name is still good practice because it
documents the purpose of each generic. This code also includes another example
of using the VitalExtendToFillDelay function to expand a generic of type
VitalDelayType01 so it can be used where a generic of type VitalDelayType01Z
is expected.

10.2 Conditional Delays in SDF

In SDF, a conditional path delay consists of a condition applied to a path delay
(iopath_def). To review, an iopath_def is defined as

iopath_def ::=

(IOPATH port_spec port_instance { retain_def } deval_list)

retain_def ::=

(RETAIN retval_list)

where

IOPATH is the key word.

port_spec is the input port.

port_instance is the output port.

retain_def will be discussed shortly.

delval_list is the delay data.

As shown in Chapter 4, the formal syntax for conditional path delay is

cond_def ::=

(COND [qstring] conditional_port_expr iopath_def)

where

COND is the key word.

qstring is an optional symbolic name. Its mapping in VITAL is not well
documented, so we shall avoid using it.

10.2 Conditional Delays in SDF 149

MAG10 8/18/04 3:10 PM Page 149

conditional_port_expr is the description of the state dependency of the
path delay. A particular conditional path delay will be used only if the condi-
tion is TRUE. Only expressions using ports are legal.

iopath_def has the same meaning as described earlier.

The conditional_port_expr is an expression constructed of port names, the
constants 0 and 1, and operators. For the conditional path delay generics shown
earlier, the corresponding SDF expression is

(COND VERC == 0 (IOPATH A0 B0 (1.5:3.8:4.5) (1.5:3.8:4.5)))

(COND VERC == 1 (IOPATH A0 B0 (1.5:4.5:5.5) (1.5:4.5:5.5)))

This provides one set of delays when VERC is low and another when VERC is high.
Table 10.1 shows the operators available for constructing conditional expressions

in SDF for both delays and timing checks. Although the range of possible expres-
sions is vast, simple expressions are usually sufficient.

10.3 Conditional Delay Alternatives

It is not uncommon for a delay value to be based on an internal condition rather
than the state of a port. In such a case a different approach must be used. In
the following VPD call, the delay selection is based on the value on an internal
signal:

-- tpd delays

tpd_CLK_DQ2 : VitalDelayType01Z := UnitDelay01Z;

tpd_CLK_DQ3 : VitalDelayType01Z := UnitDelay01Z;

VitalPathDelay01Z (

OutSignal => DataOut(i),

OutSignalName => “Data”,

OutTemp => D_zd(i),

Mode => OnEvent,

GlitchData => D_GlitchData(i),

Paths => (

1 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_DQ2,

PathCondition => CAS_Lat = 2),

2 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_DQ3,

PathCondition => CAS_Lat = 3)

)

);

In this case CAS_Lat is an internal signal signifying the CAS latency of an SDRAM.
SDF and VITAL do not provide a means of supplying a discriptive generic name
here so we do the best we can while still writing legal VITAL code.

150 Chapter 10 Conditional Delays and Timing Constraints

MAG10 8/18/04 3:10 PM Page 150

Table 10.1 Operators for expressions in SDF

unary operators expression

+ arithmetic identity

- arithmetic negation

! logical negation

~ bit-wise unary negation

& reduction unary AND

~& reduction unary NAND

| reduction unary OR

~| reduction unary NOR

^ reduction unary XOR

^~ reduction unary XNOR

~^ reduction unary XNOR

inversion operators expression

! logical negation

~ bit-wise unary negation

binary operators expression

+ arithmetic sum

- arithmetic difference

* arithmetic product

/ arithmetic quotient

% modulus

== logical equality

!= logical inequality

=== case equality

!== case inequality

&& logical AND

|| logical OR

< relational

<= relational

> relational

>= relational

& bit-wise binary AND

| bit-wise binary inclusive OR

^ bit-wise binary exclusive OR

^~ bit-wise binary equivalence

~^ bit-wise binary equivalence

>> right shift

<< left shift

equality operators expression

== logical equality

!= logical inequality

=== case equality

!== case inequality

MAG10 8/18/04 3:10 PM Page 151

It is also possible to calculate a delay value (even in a VITAL_level1 model).
Modeling some parts requires delaying an output by a time that is dependent on
the frequency of an external clock or an internal phase locked loop. The following
code is from a DSP model:

0 => (InputChangeTime => ECLK_int’LAST_EVENT,

PathDelay => tpd_ECLKIN_BUSREQ,

PathCondition => RESET_int = ‘1’),

1 => (InputChangeTime => RESETNeg’LAST_EVENT,

PathDelay => VitalExtendToFillDelay

(4 * PERIOD + 3 * EPERIOD),

PathCondition => RESETNeg = ‘0’),

2 => (InputChangeTime => RESETNeg’LAST_EVENT,

PathDelay => VitalExtendToFillDelay

(6 * PERIOD + 4 * EPERIOD),

PathCondition => RESETNeg = ‘1’)

)

Paths 1 and 2 have delays based on the signals PERIOD and EPERIOD. These signals
are of type TIME and their values are computed by measuring the periods of two
input clocks.

10.4 Mapping SDF to VITAL

SDF was originally developed for use with Verilog. When VITAL was developed, it
made more sense to reuse SDF than to develop a new language from scratch.
However, the reuse of SDF comes with the cost of having to map the SDF repre-
sentation into VITAL.

The mapping is done per character or per operator and is shown in Table 10.2.
Underscores are used to separate elements.

Using Table 10.2, we can see that the SDF entry

(COND RESET == 1 && CLK == 1 (IOPATH A Y (10) (20)))

maps to the VITAL generic

tpd_A_Y_RESET_EQ_1_AN_CLK_EQ_1

and

(COND PIPER == 0 (IOPATH CLKR IOR0 (5:10:15) (5:10:15) (1:2:3) (1:2:3)

(1:2:3) (1:2:3)))

maps to the VITAL generic:

tpd_CLKR_IOR0_PIPER_EQ_0

152 Chapter 10 Conditional Delays and Timing Constraints

MAG10 8/18/04 3:10 PM Page 152

10.5 Conditional Timing Checks in VITAL

Just as delays can be conditional, so can timing checks. The same general rules
apply. SDF statements can be built to provide multiple values for timing checks.
The mapping described earlier can be used to construct the corresponding VITAL
generics. The actual selection of timing values must be done in the VITAL timing
check procedure calls.

For example, the IDT709079 is a synchronous pipelined dual-port SRAM. The
timing file for this part has the following SDF statements:

(WIDTH (COND PIPER_EQ_0_negedge CLKR) (6.5))

(WIDTH (COND PIPER_EQ_0_posedge CLKR) (6.5))

(WIDTH (COND PIPER_EQ_1_negedge CLKR) (4))

(WIDTH (COND PIPER_EQ_1_posedge CLKR) (4))

(PERIOD (COND PIPER_EQ_0_posedge CLKR) (19))

(PERIOD (COND PIPER_EQ_1_posedge CLKR) (10))

This has one set of values to apply when PIPER is high and another when it is low.
Separate values are given for positive and negative pulse widths of CLKR. This is
not necessary for the clock period. In the model for the IDT709079 the generics
that map to the earlier SDF are

10.5 Conditional Timing Checks in VITAL 153

Table 10.2 SDF to VITAL symbol mapping

SDF VITAL

(OP

) CP

{ OB

} CB

[OSB

] CSB

, CM

? QM

: CLN

+ PL

- MI

* MU

/ DI

% MOD

== EQ

!= NE

=== EQ3

!== NE3

SDF

VITAL

&& AN

|| OR

< LT

<= LE

> GT

>= GE

& ANB

| ORB

^ XOB

^~ XNB

~^ XNB

>> RS

<< LS

! NT

~ NTB

~& NA

~| NO

MAG10 8/18/04 3:10 PM Page 153

-- tpw values: pulse widths

-- tLC1

tpw_CLKR_PIPER_EQ_0_negedge : VitalDelayType := UnitDelay;

-- tHC1

tpw_CLKR_PIPER_EQ_0_posedge : VitalDelayType := UnitDelay;

-- tLC2

tpw_CLKR_PIPER_EQ_1_negedge : VitalDelayType := UnitDelay;

-- tHC2

tpw_CLKR_PIPER_EQ_1_posedge : VitalDelayType := UnitDelay;

-- tperiod_min: minimum clock period = 1/max freq

-- tCYC1

tperiod_CLKR_PIPER_EQ_0_posedge : VitalDelayType := UnitDelay;

-- tCYC2

tperiod_CLKR_PIPER_EQ_1_posedge : VitalDelayType := UnitDelay;

Using these two sets of generics require the following two VitalPeriod-
PulseCheck procedure calls.

VitalPeriodPulseCheck (

TestSignal => CLKRIn,

TestSignalName => “CLKR”,

Period => tperiod_CLKR_PIPER_EQ_1_posedge,

PulseWidthLow => tpw_CLKR_PIPER_EQ_1_negedge,

PulseWidthHigh => tpw_CLKR_PIPER_EQ_1_posedge,

PeriodData => TD_CLKRIn,

XOn => XOn,

MsgOn => MsgOn,

HeaderMsg => InstancePath & PartID,

CheckEnabled => (PIPER_nwv = ‘1’),

Violation => Pviol_CLKRIn);

VitalPeriodPulseCheck (

TestSignal => CLKRIn,

TestSignalName => “CLKR”,

Period => tperiod_CLKR_PIPER_EQ_0_posedge,

PulseWidthLow => tpw_CLKR_PIPER_EQ_0_negedge,

PulseWidthHigh => tpw_CLKR_PIPER_EQ_0_posedge,

PeriodData => TD_CLKRIn,

XOn => XOn,

MsgOn => MsgOn,

HeaderMsg => InstancePath & PartID,

CheckEnabled => (PIPER_nwv = ‘0’),

Violation => Pviol_CLKRIn);

The selection of which VitalPeriodPulseCheck is executed is determined by
the CheckEnabled parameters. To simplify the CheckEnabled parameters, the

154 Chapter 10 Conditional Delays and Timing Constraints

MAG10 8/18/04 3:10 PM Page 154

variable PIPER_nwv is used. PIPER_nwv is PIPER stripped of weak values by means
of a To_UX01 function call. As a matter of style, all such variables are recognizable
by the _nwv suffix.

A slightly more complex example comes from the model of a 54AS869 syn-
chronous 8-bit up/down counter. The timing check section of the timing file has
the following SDF code:

(TIMINGCHECK

(SETUP (COND S0 == 0 && S1 == 0 S0) CLK (13:13:13))

(SETUP (COND S0 == 1 && S1 == 0 S0) CLK (52:52:52))

(SETUP (COND S0 == 0 && S1 == 1 S0) CLK (13:13:13))

(SETUP (COND S0 == 1 && S1 == 1 S0) CLK (52:52:52))

The corresponding VITAL generics in the model are

-- tsetup values: setup times

tsetup_S0_CLK_S0_EQ_0_AN_S1_EQ_0 : VitalDelayType := UnitDelay;

tsetup_S0_CLK_S0_EQ_1_AN_S1_EQ_0 : VitalDelayType := UnitDelay;

tsetup_S0_CLK_S0_EQ_0_AN_S1_EQ_1 : VitalDelayType := UnitDelay;

tsetup_S0_CLK_S0_EQ_1_AN_S1_EQ_1 : VitalDelayType := UnitDelay;

The VitalSetupHoldCheck procedure calls are

VitalSetupHoldCheck (

TestSignal => S0_ipd,1

TestSignalName => “S0_ipd”,

RefSignal => CLK_ipd,

RefSignalName => “CLK_ipd”,

SetupHigh => tsetup_S0_CLK_S0_EQ_1_AN_S1_EQ_0,

SetupLow => tsetup_S0_CLK_S0_EQ_0_AN_S1_EQ_0,

HoldHigh => thold_S0_CLK,

HoldLow => thold_S0_CLK,

CheckEnabled => (S1nwv = ‘0’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & “/std869”,

TimingData => TD_S0_CLK_S1_EQ_0,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_S0_CLK_S1_EQ_0);

VitalSetupHoldCheck (

TestSignal => S0_ipd,

TestSignalName => “S0_ipd”,

RefSignal => CLK_ipd,

RefSignalName => “CLK_ipd”,

SetupHigh => tsetup_S0_CLK_S0_EQ_1_AN_S1_EQ_1,

SetupLow => tsetup_S0_CLK_S0_EQ_0_AN_S1_EQ_1,

10.5 Conditional Timing Checks in VITAL 155

MAG10 8/18/04 3:10 PM Page 155

HoldHigh => thold_S0_CLK,

HoldLow => thold_S0_CLK,

CheckEnabled => (S1nwv = ‘1’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & “/std869”,

TimingData => TD_S0_CLK_S1_EQ_1,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_S0_CLK_S1_EQ_1);

In this case, are there two levels of selection. The first is controlled by the Check-
Enabled parameter. It is based on the value of S1nwv and determines which pro-
cedure call is executed. Next, within each procedure call distinct setup constraint
values are selected for the case where S0_ipd is high and S0_ipd is low. This is
done through the SetupHigh and SetupLow parameters.

10.6 Summary

There are many situations where multiple sets of values for propagation delays and
timing constraints are available, each set corresponding to particular conditions or
states. Conditional delay statements and conditional timing statements can be con-
structed in SDF to satisfy such situations. These statements can be mapped to VITAL
generics through well-defined transformations with elements separated by under-
scores. The actual selection of which timing values are used is determined within
the VHDL/VITAL model.

156 Chapter 10 Conditional Delays and Timing Constraints

MAG10 8/18/04 3:10 PM Page 156

11

157

C

H

A

P

T

E

R

Negative Timing Constraints

Occasionally you will need to model a component with a negative timing con-
straint. Perhaps a negative hold time is specified. If this is your first experience
designing with a component that has a negative hold time, you may be suspicious
about how a signal can be clocked into a part if the clock arrives after the signal
has already changed or, in the case of a negative setup time, the clock arrives before
the signal is stable. These conditions are illustrated in Figure 11.1.

What causes this condition, which seems like an aberration, is simply internal
delay. For components with negative hold times, the TestSignal is delayed prior
to reaching the register. For parts with negative setup times, it is the clock that is
internally delayed. A component can never have both negative setup and negative
hold constraints. If a part with negative constraints was modeled without taking
those constraints into account, it could display incorrect behavior beyond just
reporting incorrect timing violations.

To model a component with negative constraints, we must also model the internal
delays. Determining just how much to delay an internal signal could be a problem.

Fortunately, VITAL can do that for you.

11.1 How Negative Constraints Work

Negative constraints are an indication that some inputs to a device have more delay
than others. The model must compensate for the imbalanced delays not just to cor-
rectly model setup and hold constraints, but usually to get accurate behavior. If a
component has a slow data path, changes in the data signal can lead the clock by some
amount and the component will still function correctly. In order to see that same
behavior in the model, the clock must be delayed to bring the two signals back into align-
ment, as they are inside the component. The VITAL signal delay block does just that.

Now, you should be wondering, how much delay should be applied to the fast
signal and how that value gets into the model. With a correctly written model, the
simulator does it for you, but only if you are using a VITAL-compliant simulator.

MAG11 8/18/04 3:11 PM Page 157

When a VITAL model is written for negative constraints, generics are included
to hold the delay values. After SDF backannotation, the correct delay values are cal-
culated based on the negative constraint values. The fast signal is delayed. Every-
where in the model the delayed signal is used rather than the actual input signal.
This ensures correct operation. The path delay generics are adjusted by the simu-
lator to compensate for the delayed signals. When the output delays are added, the
total delay from input to output comes out correct. In the sections that follow, we
will see how this is done.

11.2 Modeling Negative Constraints

The first condition for modeling negative constraints is recognizing they exist in a
component. Figure 11.2 is an excerpt from the ON semiconductor data sheet for the
MC100E445 [5]. For this component, the setup time given for signals SINA and
SINB are always negative numbers. This means you must model the component
using negative constraints.

The VITALTiming package has a special procedure named VitalSignalDelay.
It works something like VitalWireDelay but is specifically designed for delaying
signals to accommodate negative timing constraints.

The modeling of negative timing constraints begins with the declaration of some
special generics. For each clock (RefSignal) associated with a negative setup or
recovery constraint, an internal clock delay generic must be declared. These gener-
ics require the prefix ticd:

158 Chapter 11 Negative Timing Constraints

thold
tsetup

Stable Region

TestSignal

RefSignal

Negative Hold Constraint

Stable Region
TestSignal

tsetup

thold

RefSignal

Negative Setup Constraint

Figure 11.1 Negative setup/hold constraints

MAG11 8/18/04 3:11 PM Page 158

-- ticd values: delayed clocks for negative constraint calculation

ticd_CLK1 : VitalDelayType := VitalZeroDelay;

ticd_CLK2 : VitalDelayType := VitalZeroDelay;

For each data signal (TestSignal) associated with a negative hold or removal con-
straint, an internal signal delay generic must be declared. These generics require
the prefix tisd:

-- tisd values: delayed signals for negative constraint calculation

tisd_SEL_CLK1 : VitalDelayType := VitalZeroDelay;

If the model contained paths that were dependent upon multiple clocks, it would
be necessary to declare a biased propagation delay generic. The prefix for such a
generic is tbpd. (The author has not yet modeled a component requiring the use
of this generic.)

The ticd and tisd generics are used in a signal delay block, but first the delayed
signals must be declared:

SIGNAL CLK1_dly : std_ulogic := ‘X’;

SIGNAL CLK2_dly : std_ulogic := ‘X’;

SIGNAL SEL_dly : std_ulogic := ‘X’;

Then, after the wire delay block, comes the signal delay block:

-- Negative Timing Constraint Delays

SignalDelay : BLOCK

BEGIN

s_1: VitalSignalDelay (CLK1_dly, CLK1_ipd, ticd_CLK1);

s_2: VitalSignalDelay (CLK2_dly, CLK2_ipd, ticd_CLK2);

s_3: VitalSignalDelay (SEL_dly, SEL_ipd, tisd_SEL_CLK1);

END BLOCK;

11.2 Modeling Negative Constraints 159

Symbol Characteristic Min MaxTyp

0°C

Min MaxTyp

25°C

Min Max UnitTyp

85°C

Maximum Conversion FrequencytMAX 2.0 2.0 2.0 Gb/s
NRZ

Propagation Delay to Output
CLK to Q. Reset to Q

CLK to SOUT (Diff)
CLK to CL/4 (Diff)
CLK to CL/S (Diff)

SINA SINB
SEL

SINA, SINB, SEL

1500
800
1100
1100

-100
0

450

1900
975
1325
1325

-250
-200

300

1500
800
1100
1100

2100
1150
1550
1550

-100
0

450

1900
975

1325
1325

-250
-200

300

1500
800
1100
1100

2100
1150
1550
1550

1900
975

1325
1325

-250
-200

300

2100
1150
1550
1550

-100
0

450

lPLH
lPHL

ps

Setup TimelS ps

Hold Timelh ps

Figure 11.2 Negative setup timing characteristics

MAG11 8/18/04 3:11 PM Page 159

Only one signal delay block is allowed and it is required to carry the label Sig-
nalDelay. After this point it is usually necessary to use the delayed (_dly) signal
versions throughout the model in order to achieve correct behavior. However, using
nondelayed signals is not prohibited.

The timing check procedure calls are written as usual, with the following excep-
tions: The delayed signals are used and the RefDelay or TestDelay parameters
are supplied and associated with the ticd or tisd generics. In Figure 11.3 the signal
CLKint has been derived from the signals CLK1_dly and CLK2_dly.

To put all this in context, let us take a close look at a component that has a
negative setup constraint. The component is an MC100E445 ECL 4-bit serial-to-
parallel converter. Figure 11.4 is a schematic of the portion of the component
that introduces the negative constraint.

The component contains a D flip-flop with a mux in series with its data input.
The added delay of the mux relative to the clock causes the negative setup con-
straint. The full model for this component is given in Figure 11.5. The code per-
taining specifically to negative constraints is explained after the model.

Because the data signal is delayed by the mux, causing the negative setup con-
straint, the simulator must delay the clock to bring the two signals back into align-
ment. To enable it to do so, internal clock delay (icd) generics must be declared:

-- ticd values: delayed clock times for negative timing constraints

ticd_CLK : VitalDelayType := VitalZeroDelay;

ticd_CLKNeg : VitalDelayType := VitalZeroDelay;

The ticd generics will be annotated by the simulator during a special calculation
phase described in the next section. They are not backannotated from an SDF file.

The annotated delays are applied to the clock signals in the signal delay block:

-- Negative Timing Constraint Delays

SignalDelay : BLOCK

BEGIN

s_1: VitalSignalDelay (CLK_dly, CLK_ipd, ticd_CLK);

s_2: VitalSignalDelay (CLKNeg_dly, CLKNeg_ipd, ticd_CLKNeg);

END BLOCK;

The delayed differential clock signals are used to generate a delayed single-ended
clock:

-- ECL Clock Process

ECLClock : PROCESS (CLK_dly, CLKNeg_dly)

This is a two-step process. First, the model determines whether the clock inputs are
indeed connected to a differential driver, or if one input is connected to VBB and

160 Chapter 11 Negative Timing Constraints

MAG11 8/18/04 3:11 PM Page 160

11.2 Modeling Negative Constraints 161

 VitalSetupHoldCheck (
 TestSignal => Dint,
 TestSignalName => “Dint”,
 RefSignal => CLKint,
 RefSignalName => “CLKint”,
 RefDelay => ticd_CLK1,
 SetupHigh => tsetup_D_CLK1,
 SetupLow => tsetup_D_CLK1,
 HoldHigh => thold_D_CLK1,
 HoldLow => thold_D_CLK1,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/eclps143”,
 TimingData => TD_D_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_D_CLK
);

 VitalSetupHoldCheck (
 TestSignal => SEL_dly,
 TestSignalName => “SEL_ipd”,
 TestDelay => tisd_SEL_CLK1,
 RefSignal => CLKint,
 RefSignalName => “CLKint”,
 RefDelay => ticd_CLK1,
 SetupHigh => tsetup_SEL_CLK1,
 SetupLow => tsetup_SEL_CLK1,
 HoldHigh => thold_SEL_CLK1,
 HoldLow => thold_SEL_CLK1,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/eclps143”,
 TimingData => TD_SEL_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_SEL_CLK
);

 VitalRecoveryRemovalCheck (
 TestSignal => MR_ipd,
 TestSignalName => “MR_ipd”,
 RefSignal => CLKint,
 RefSignalName => “CLKint”,
 RefDelay => ticd_CLK1,
 Recovery => trecovery_MR_CLK1,
 ActiveLow => FALSE,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/eclps143”,
 TimingData => TD_MR_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Rviol_MR_CLK
);

Figure 11.3 SetupHold and RecoveryRemoval checks with negative constraints

MAG11 8/18/04 3:11 PM Page 161

162 Chapter 11 Negative Timing Constraints

SINB

SINBNEG

SINA
D Q

SINANEG

CLK

CLKNEG

SEL

Figure 11.4 Partial schematic of an MC100E445

--
-- File Name : eclps445.vhd
--
-- Copyright (C) 1997, 2002 Free Model Foundry; http://eda.org/fmf/
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms og the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY :
--
-- version: | author: | mod date: | changes made:
-- V2.0 rev3 96 MAR 22 Conformed to style guide,
-- New ecl_utils package with more constants
-- V2.1 R. Munden 96 MAY 19 Changed tpd’s for VITAL compliance
-- V2.2 R. Steele 96 SEP 18 Change trelease to trecovery
-- V2.3 R. Steele 96 OCT 11 Updated timing generics, clock process
-- V2.4 R. Munden 97 MAR 01 Changed XGenerationOn to XOn, added MsgOn,
-- and updated TimingChecks & PathDelays
-- V2.5 R. Steele 97 JUN 30 Made PathCondition true for Q0
-- V2.6 R. Munden 98 APR 04 Modified for VITAL NTC
-- V2.7 R. Munden 98 OCT 14 Changed from inertial delay to transport
-- and added period checks
-- V2.8 R. Munden 02 APR 24 Fixed Dummy VPD
-- V2.9 R. Munden 03 OCT 28 Corrected NTC behavior
--
-- PART DESCRIPTION :
--
-- Library: ECLPS
-- Technology: ECL
-- Part: ECLPS445
--

Figure 11.5 Models of component with negative constraints

MAG11 8/18/04 3:11 PM Page 162

11.2 Modeling Negative Constraints 163

-- Description: 4-Bit Serial/Parallel Converter
--
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
 USE IEEE.VITAL_timing.ALL;
 USE IEEE.VITAL_primitives.ALL;
LIBRARY FMF; USE FMF.ecl_utils.ALL;
 USE FMF.ff_package.ALL;

--
-- ENTITY DECLARATION
--
ENTITY eclps445 IS
 GENERIC (
 -- tipd delays: interconnect path delays
 tipd_SINA : VitalDelayType01 := VitalZeroDelay01;
 tipd_SINANeg : VitalDelayType01 := VitalZeroDelay01;
 tipd_SINB : VitalDelayType01 := VitalZeroDelay01;
 tipd_SINBNeg : VitalDelayType01 := VitalZeroDelay01;
 tipd_SEL : VitalDelayType01 := VitalZeroDelay01;
 tipd_CLK : VitalDelayType01 := VitalZeroDelay01;
 tipd_CLKNeg : VitalDelayType01 := VitalZeroDelay01;
 tipd_MODE : VitalDelayType01 := VitalZeroDelay01;
 tipd_SYNC : VitalDelayType01 := VitalZeroDelay01;
 tipd_RESET : VitalDelayType01 := VitalZeroDelay01;
 -- ticd values: delayed clock times for negative timing constraints
 ticd_CLK : VitalDelayType := VitalZeroDelay;
 ticd_CLKNeg : VitalDelayType := VitalZeroDelay;
 -- tpd delays: propagation delays
 tpd_CLK_Q0 : VitalDelayType01 := ECLUnitDelay01;
 tpd_CLK_SOUT : VitalDelayType01 := ECLUnitDelay01;
 tpd_CLK_CL4 : VitalDelayType01 := ECLUnitDelay01;
 tpd_CLK_CL8 : VitalDelayType01 := ECLUnitDelay01;
 tpd_RESET_CL4 : VitalDelayType01 := ECLUnitDelay01;
 -- tsetup values: setup times
 tsetup_SINA_CLK : VitalDelayType := ECLUnitDelay;
 tsetup_SINA_CLKNeg : VitalDelayType := ECLUnitDelay;
 tsetup_SEL_CLK : VitalDelayType := ECLUnitDelay;
 -- thold values: hold times
 thold_SINA_CLK : VitalDelayType := ECLUnitDelay;
 thold_SINA_CLKNeg : VitalDelayType := ECLUnitDelay;
 thold_SEL_CLK : VitalDelayType := ECLUnitDelay;
 -- trecovery values: release times
 trecovery_RESET_CLK : VitalDelayType := ECLUnitDelay;
 -- tpw values: pulse widths
 tpw_CLK_posedge : VitalDelayType := ECLUnitDelay;
 tpw_CLK_negedge : VitalDelayType := ECLUnitDelay;
 tpw_RESET_posedge : VitalDelayType := ECLUnitDelay;
 -- tperiod_min: minimum clock period = 1/max freq
 tperiod_CLK_posedge : VitalDelayType := ECLUnitDelay;
 -- generic control parameters
 InstancePath : STRING := DefaultECLInstancePath;
 TimingChecksOn : Boolean := DefaultECLTimingChecks;
 MsgOn : BOOLEAN := DefaultECLMsgOn;
 XOn : Boolean := DefaultECLXOn;
 -- For FMF SDF technology file usage
 TimingModel : STRING := DefaultECLTimingModel
);

Figure 11.5 Models of component with negative constraints (continued)

MAG11 8/18/04 3:11 PM Page 163

164 Chapter 11 Negative Timing Constraints

Figure 11.5 Models of component with negative constraints (continued)

 PORT (
 -- 0 denotes internal pull-down resistor
 SINA : IN std_ulogic := ‘0’;
 SINANeg : IN std_ulogic := ‘0’;
 SINB : IN std_ulogic := ‘0’;
 SINBNeg : IN std_ulogic := ‘0’;
 SEL : IN std_ulogic := ‘0’;
 CLK : IN std_ulogic := ‘0’;
 CLKNeg : IN std_ulogic := ‘0’;
 MODE : IN std_ulogic := ‘0’;
 SYNC : IN std_ulogic := ‘0’;
 RESET : IN std_ulogic := ‘0’;
 Q0 : OUT std_ulogic := ‘U’;
 Q1 : OUT std_ulogic := ‘U’;
 Q2 : OUT std_ulogic := ‘U’;
 Q3 : OUT std_ulogic := ‘U’;
 SOUT : OUT std_ulogic := ‘U’;
 SOUTNeg : OUT std_ulogic := ‘U’;
 CL4 : OUT std_ulogic := ‘U’;
 CL4Neg : OUT std_ulogic := ‘U’;
 CL8 : OUT std_ulogic := ‘U’;
 CL8Neg : OUT std_ulogic := ‘U’;
 VBB : OUT std_ulogic := ECLVbbValue
);
 ATTRIBUTE VITAL_level0 OF eclps445 : ENTITY IS TRUE;
END eclps445;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral OF eclps445 IS
 ATTRIBUTE VITAL_level1 OF vhdl_behavioral : ARCHITECTURE IS TRUE;

 SIGNAL SINA_ipd : std_ulogic := ‘X’;
 SIGNAL SINANeg_ipd : std_ulogic := ‘X’;
 SIGNAL SINB_ipd : std_ulogic := ‘X’;
 SIGNAL SINBNeg_ipd : std_ulogic := ‘X’;
 SIGNAL SEL_ipd : std_ulogic := ‘X’;
 SIGNAL CLK_ipd : std_ulogic := ‘X’;
 SIGNAL CLKNeg_ipd : std_ulogic := ‘X’;
 SIGNAL CLK_dly : std_ulogic := ‘X’;
 SIGNAL CLKNeg_dly : std_ulogic := ‘X’;
 SIGNAL MODE_ipd : std_ulogic := ‘X’;
 SIGNAL SYNC_ipd : std_ulogic := ‘X’;
 SIGNAL RESET_ipd : std_ulogic := ‘X’;
 SIGNAL SINAint : std_ulogic := ‘X’;
 SIGNAL SINBint : std_ulogic := ‘X’;
 SIGNAL SINint : std_ulogic := ‘X’;
 SIGNAL CLKint : std_ulogic := ‘X’;
 SIGNAL Q0int : std_ulogic := ‘X’;
 SIGNAL Q1int : std_ulogic := ‘X’;
 SIGNAL Q2int : std_ulogic := ‘X’;
 SIGNAL Q3int : std_ulogic := ‘X’;
 SIGNAL SOUTint : std_ulogic := ‘X’;
 SIGNAL CL4int : std_ulogic := ‘X’;
 SIGNAL CL8int : std_ulogic := ‘X’;

MAG11 8/18/04 3:11 PM Page 164

11.2 Modeling Negative Constraints 165

Figure 11.5 Models of component with negative constraints (continued)

BEGIN

 --
 -- Wire Delays
 --
 WireDelay : BLOCK
 BEGIN

 w_1: VitalWireDelay (SINA_ipd, SINA, tipd_SINA);
 w_2: VitalWireDelay (SINANeg_ipd, SINANeg, tipd_SINANeg);
 w_3: VitalWireDelay (SINB_ipd, SINB, tipd_SINB);
 w_4: VitalWireDelay (SINBNeg_ipd, SINBNeg, tipd_SINBNeg);
 w_5: VitalWireDelay (SEL_ipd, SEL, tipd_SEL);
 w_6: VitalWireDelay (CLK_ipd, CLK, tipd_CLK);
 w_7: VitalWireDelay (CLKNeg_ipd, CLKNeg, tipd_CLKNeg);
 w_8: VitalWireDelay (MODE_ipd, MODE, tipd_MODE);
 w_9: VitalWireDelay (SYNC_ipd, SYNC, tipd_SYNC);
 w_10: VitalWireDelay (RESET_ipd, RESET, tipd_RESET);

 END BLOCK;

 --
 -- Negative Timing Constraint Delays
 --
 SignalDelay : BLOCK
 BEGIN

 s_1: VitalSignalDelay (CLK_dly, CLK_ipd, ticd_CLK);
 s_2: VitalSignalDelay (CLKNeg_dly, CLKNeg_ipd, ticd_CLKNeg);

 END BLOCK;

 --
 -- Concurrent Procedures
 --
 a_1: VitalMUX2 (q => SINint, d0 => SINBint, d1 => SINAint, dsel => SEL_ipd);
 a_2: VitalBUF (q => SOUT, a => SOUTint, ResultMap => ECL_wired_or_rmap);
 a_3: VitalINV (q => SOUTNeg, a => SOUTint, ResultMap => ECL_wired_or_rmap);
 a_4: VitalBUF (q => CL4, a => CL4int, ResultMap => ECL_wired_or_rmap);
 a_5: VitalINV (q => CL4Neg, a => CL4int, ResultMap => ECL_wired_or_rmap);
 a_6: VitalBUF (q => CL8, a => CL8int, ResultMap => ECL_wired_or_rmap);
 a_7: VitalINV (q => CL8Neg, a => CL8int, ResultMap => ECL_wired_or_rmap);
 a_8: VitalBUF (q => Q0, a => Q0int, ResultMap => ECL_wired_or_rmap);
 a_9: VitalBUF (q => Q1, a => Q1int, ResultMap => ECL_wired_or_rmap);
 a_10: VitalBUF (q => Q2, a => Q2int, ResultMap => ECL_wired_or_rmap);
 a_11: VitalBUF (q => Q3, a => Q3int, ResultMap => ECL_wired_or_rmap);

 --
 -- SINA inputs Process
 --
 SINA_inputs : PROCESS (SINA_ipd, SINANeg_ipd)

 -- Functionality Results Variables
 VARIABLE SINAint_zd : std_ulogic;

 -- Output Glitch Detection Variables
 VARIABLE SINA_GlitchData : VitalGlitchDataType;

MAG11 8/18/04 3:11 PM Page 165

166 Chapter 11 Negative Timing Constraints

 --
 VitalPathDelay (
 OutSignal => SINBint,
 OutSignalName => “SINBint”,
 OutTemp => SINBint_zd,
 GlitchData => SINB_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => SINB_ipd’LAST_EVENT,
 PathDelay => VitalZeroDelay,
 PathCondition => FALSE))
);

 END PROCESS;

Figure 11.5 Models of component with negative constraints (continued)

 BEGIN

 --
 -- Functionality Section
 --
 SINAint_zd := ECL_s_or_d_inputs_tab (SINA_ipd, SINANeg_ipd);

 --
 -- (Dummy) Path Delay Section
 --
 VitalPathDelay (
 OutSignal => SINAint,
 OutSignalName => “SINAint”,
 OutTemp => SINAint_zd,
 GlitchData => SINA_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => SINA_ipd’LAST_EVENT,
 PathDelay => VitalZeroDelay,
 PathCondition => FALSE))
);

 END PROCESS;

 --
 -- SINB inputs Process
 --
 SINB_inputs : PROCESS (SINB_ipd, SINBNeg_ipd)

 -- Functionality Results Variables
 VARIABLE SINBint_zd : std_ulogic;

 -- Output Glitch Detection Variables
 VARIABLE SINB_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 SINBint_zd := ECL_s_or_d_inputs_tab (SINB_ipd, SINBNeg_ipd);

 --
 -- (Dummy) Path Delay Section

MAG11 8/18/04 3:11 PM Page 166

11.2 Modeling Negative Constraints 167

Figure 11.5 Models of component with negative constraints (continued)

 --
 -- ECL Clock Process
 --
 ECLClock : PROCESS (CLK_dly, CLKNeg_dly)

 -- Functionality Results Variables
 VARIABLE Mode1 : X01;
 VARIABLE CLKint_zd : std_ulogic;
 VARIABLE PrevData : std_logic_vector(0 to 2);

 -- Glitch Detection Variables
 VARIABLE CLK_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 Mode1 := ECL_diff_mode_tab (CLK_dly, CLKNeg_dly);

 VitalStateTable (
 StateTable => ECL_clk_tab,
 DataIn => (CLK_dly, CLKNeg_dly, Mode1),
 Result => CLKint_zd,
 PreviousDataIn => PrevData
);

 --
 -- (Dummy) Path Delay Section
 --
 VitalPathDelay (
 OutSignal => CLKint,
 OutSignalName => “CLKint”,
 OutTemp => CLKint_zd,
 GlitchData => CLK_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLK_dly’LAST_EVENT,
 PathDelay => VitalZeroDelay,
 PathCondition => FALSE))
);

 END PROCESS;

 --
 -- Main Behavior Process
 --
 VitalBehavior : PROCESS (CLKint, RESET_ipd, SEL_ipd, MODE_ipd,
 SYNC_ipd, SINint)

 CONSTANT clkdiv_4_tab : VitalStateTableType := (

MAG11 8/18/04 3:11 PM Page 167

168 Chapter 11 Negative Timing Constraints

 -----INPUTS----------|-PREV-------------|--OUTPUTS------------------
 -- Viol CLK Rst Sync | Sv1 Sv0 Sd S2d | Sv1’ Sv0’ Sd’ S2d’ CL4 --
 ---------------------|------------------|---------------------------
 -- Violation Reset unknown - need reset
 --
 (‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘X’),
 (‘-’, ‘-’, ‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘X’),
 --
 -- Reset
 --
 (‘-’, ‘-’, ‘1’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’),
 --
 -- CLK unknown, unknown states - need reset
 --
 (‘-’, ‘X’, ‘0’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘X’),
 (‘-’, ‘/’, ‘0’, ‘-’, ‘X’, ‘-’, ‘-’, ‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘X’),
 (‘-’, ‘/’, ‘0’, ‘-’, ‘-’, ‘X’, ‘-’, ‘-’, ‘X’, ‘X’, ‘0’, ‘0’, ‘X’),
 --
 -- 1st clock: state 0->1 no sync, 1st sync clk, 3rd or more sync clks
 --
 (‘-’, ‘/’, ‘0’, ‘0’, ‘0’, ‘0’, ‘-’, ‘-’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘0’, ‘0’, ‘-’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘0’, ‘-’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’),
 --
 -- 2nd clock: state 1->2 no sync, 1st sync clk, 3rd or more sync clks
 --
 (‘-’, ‘/’, ‘0’, ‘0’, ‘0’, ‘1’, ‘-’, ‘-’, ‘1’, ‘0’, ‘0’, ‘0’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘1’, ‘0’, ‘-’, ‘1’, ‘0’, ‘1’, ‘0’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘1’, ‘-’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’),
 --
 -- 3rd clock: state 2->3 no sync, 1st sync clk, 3rd or more sync clks
 --
 (‘-’, ‘/’, ‘0’, ‘0’, ‘1’, ‘0’, ‘-’, ‘-’, ‘1’, ‘1’, ‘0’, ‘0’, ‘0’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘0’, ‘0’, ‘-’, ‘1’, ‘1’, ‘1’, ‘0’, ‘0’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘0’, ‘-’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’),
 --
 -- 4th clock: state 3->0 no sync, 1st sync clk, 3rd or more sync clks
 --
 (‘-’, ‘/’, ‘0’, ‘0’, ‘1’, ‘1’, ‘-’, ‘-’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘-’, ‘0’, ‘0’, ‘1’, ‘0’, ‘0’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘1’, ‘-’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘0’),
 --
 -- 2nd sync clock: present state repeated
 --
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘0’, ‘0’, ‘0’, ‘1’, ‘1’, ‘0’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’),
 (‘-’, ‘/’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘0’),
 --
 -- default
 --
 (‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘S’, ‘S’, ‘S’, ‘S’, ‘S’)

); --end of VitalStateTable definition

 -- Timing Check Variables
 VARIABLE Tviol_SEL_CLK : X01 := ‘0’;
 VARIABLE TD_SEL_CLK : VitalTimingDataType;

 VARIABLE Tviol_SIN_CLK : X01 := ‘0’;
 VARIABLE TD_SIN_CLK : VitalTimingDataType;

 VARIABLE Rviol_RESET_CLK : X01 := ‘0’;
 VARIABLE TD_RESET_CLK : VitalTimingDataType;

Figure 11.5 Models of component with negative constraints (continued)

MAG11 8/18/04 3:11 PM Page 168

11.2 Modeling Negative Constraints 169

 VARIABLE Pviol_RESET : X01 := ‘0’;
 VARIABLE PD_RESET : VitalPeriodDataType := VitalPeriodDataInit;
 VARIABLE Pviol_CLK : X01 := ‘0’;
 VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;

 VARIABLE ViolationA : X01 := ‘0’;
 VARIABLE ViolationB : X01 := ‘0’;

 -- Functionality Results Variables
 VARIABLE PrevData1 : std_logic_vector(0 to 3);
 VARIABLE PrevData2 : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ0a : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ1a : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ2a : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ3a : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ0b : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ1b : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ2b : std_logic_vector(0 to 2);
 VARIABLE PrevDataQ3b : std_logic_vector(0 to 2);

 VARIABLE CL4_result : std_logic_vector(1 to 5);
 ALIAS CL4_zd : std_ulogic IS CL4_result(5);

 VARIABLE CL8_zd : std_ulogic;

 VARIABLE Clk_div : std_ulogic;

 VARIABLE Q0_zd : std_ulogic;
 VARIABLE Q1_zd : std_ulogic;
 VARIABLE Q2_zd : std_ulogic;
 VARIABLE Q3_zd : std_ulogic;
 VARIABLE Q0int_zd : std_ulogic;
 VARIABLE Q1int_zd : std_ulogic;
 VARIABLE Q2int_zd : std_ulogic;
 VARIABLE Q3int_zd : std_ulogic;

 VARIABLE BLANK : std_ulogic := ‘0’;

 -- Output Glitch Detection Variables
 VARIABLE Q0_GlitchData : VitalGlitchDataType;
 VARIABLE Q1_GlitchData : VitalGlitchDataType;
 VARIABLE Q2_GlitchData : VitalGlitchDataType;
 VARIABLE Q3_GlitchData : VitalGlitchDataType;
 VARIABLE SOUT_GlitchData : VitalGlitchDataType;
 VARIABLE CL4_GlitchData : VitalGlitchDataType;
 VARIABLE CL8_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Timing Check Section
 --
 IF (TimingChecksOn) THEN

 VitalSetupHoldCheck (
 TestSignal => SEL_ipd,
 TestSignalName => "SEL_ipd",
 RefSignal => CLKint,
 RefSignalName => "CLKint",
 RefDelay => ticd_CLK,
 SetupHigh => tsetup_SEL_CLK,
 SetupLow => tsetup_SEL_CLK,

Figure 11.5 Models of component with negative constraints (continued)

MAG11 8/18/04 3:11 PM Page 169

170 Chapter 11 Negative Timing Constraints

 HoldHigh => thold_SEL_CLK,
 HoldLow => thold_SEL_CLK,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & "/eclps445",
 TimingData => TD_SEL_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_SEL_CLK
);

 VitalSetupHoldCheck (
 TestSignal => SINint,
 TestSignalName => “SINint”,
 RefSignal => CLKint,
 RefSignalName => “CLKint”,
 RefDelay => ticd_CLK,
 SetupHigh => tsetup_SINA_CLK,
 SetupLow => tsetup_SINA_CLK,
 HoldHigh => thold_SINA_CLK,
 HoldLow => thold_SINA_CLK,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/eclps445”,
 TimingData => TD_SIN_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_SIN_CLK
);

 VitalRecoveryRemovalCheck (
 TestSignal => RESET_ipd,
 TestSignalName => “RESET_ipd”,
 RefSignal => CLKint,
 RefSignalName => “CLKint”,
 RefDelay => ticd_CLK,
 Recovery => trecovery_RESET_CLK,
 ActiveLow => FALSE,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & “/eclps445”,
 TimingData => TD_RESET_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Rviol_RESET_CLK
);

 VitalPeriodPulseCheck (
 TestSignal => CLKint,
 TestSignalName => “CLKint”,
 Period => tperiod_CLK_posedge,
 PulseWidthHigh => tpw_CLK_posedge,
 PulseWidthLow => tpw_CLK_negedge,
 HeaderMsg => InstancePath & “/eclps445”,
 CheckEnabled => TRUE,
 PeriodData => PD_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Pviol_CLK
);

Figure 11.5 Models of component with negative constraints (continued)

MAG11 8/18/04 3:11 PM Page 170

11.2 Modeling Negative Constraints 171

Figure 11.5 Models of component with negative constraints (continued)

 VitalPeriodPulseCheck (
 TestSignal => RESET_ipd,
 TestSignalName => “RESET_ipd”,
 PulseWidthHigh => tpw_RESET_posedge,
 HeaderMsg => InstancePath & “/eclps445”,
 CheckEnabled => TRUE,
 PeriodData => PD_RESET,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Pviol_RESET
);

 END IF;

 --
 -- Functionality Section
 --
 ViolationA := Pviol_RESET OR Pviol_CLK OR Rviol_RESET_CLK;

 ViolationB := Tviol_SEL_CLK OR Tviol_SIN_CLK OR Pviol_CLK;

 VitalStateTable (
 StateTable => clkdiv_4_tab,
 DataIn => (ViolationA, CLKint, RESET_ipd, Sync_ipd),
 NumStates => 4,
 Result => CL4_result, --> CL4_zd is CL4_result(5)
 PreviousDataIn => PrevData1
);

 VitalStateTable (
 StateTable => TFFR_tab,
 DataIn => (ViolationA, CL4_zd, RESET_ipd),
 Result => CL8_zd,
 PreviousDataIn => PrevData2
);

 CLK_div := VitalMux2 (
 data0 => CL4_zd,
 data1 => CL8_zd,
 dselect => MODE_ipd
);

 -- Input flip/flops first (logic diagram is misleading - Q0 and SOUT
 -- switch simultaneously), so reverse normal order of VHDL variable
 -- assignment to make it work according to the Timing Diagram.
 -- This in effect mimics a delay in the clock CLK_div to the output
 -- f/fs implied in the prop delays for CLK -> outputs.

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (Pviol_CLK, CLKint, Q1int_zd),
 Result => Q0int_zd,
 PreviousDataIn => PrevDataQ0a
);

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (Pviol_CLK, CLKint, Q2int_zd),
 Result => Q1int_zd,
 PreviousDataIn => PrevDataQ1a
);

MAG11 8/18/04 3:11 PM Page 171

172 Chapter 11 Negative Timing Constraints

Figure 11.5 Models of component with negative constraints (continued)

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (Pviol_CLK, CLKint, Q3int_zd),
 Result => Q2int_zd,
 PreviousDataIn => PrevDataQ2a
);

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (ViolationB, CLKint, SINint),
 Result => Q3int_zd,
 PreviousDataIn => PrevDataQ3a
);

 -- Output flip/flops

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (BLANK, CLK_div, Q3int_zd),
 Result => Q3_zd,
 PreviousDataIn => PrevDataQ3b
);

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (BLANK, CLK_div, Q2int_zd),
 Result => Q2_zd,
 PreviousDataIn => PrevDataQ2b
);

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (BLANK, CLK_div, Q1int_zd),
 Result => Q1_zd,
 PreviousDataIn => PrevDataQ1b
);

 VitalStateTable (
 StateTable => DFF_tab,
 DataIn => (BLANK, CLK_div, Q0int_zd),
 Result => Q0_zd,
 PreviousDataIn => PrevDataQ0b
);

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (
 OutSignal => Q0int,
 OutSignalName => “Q0int”,
 OutTemp => Q0_zd,
 Mode => VitalTransport,
 GlitchData => Q0_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_Q0,
 PathCondition => TRUE)
)
);

MAG11 8/18/04 3:11 PM Page 172

11.2 Modeling Negative Constraints 173

Figure 11.5 Models of component with negative constraints (continued)

 VitalPathDelay01 (
 OutSignal => Q1int,
 OutSignalName => “Q1int”,
 OutTemp => Q1_zd,
 Mode => VitalTransport,
 GlitchData => Q1_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_Q0,
 PathCondition => TRUE)
)
);

 VitalPathDelay01 (
 OutSignal => Q2int,
 OutSignalName => “Q2int”,
 OutTemp => Q2_zd,
 Mode => VitalTransport,
 GlitchData => Q2_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_Q0,
 PathCondition => TRUE)
)
);

 VitalPathDelay01 (
 OutSignal => Q3int,
 OutSignalName => “Q3int”,
 OutTemp => Q3_zd,
 Mode => VitalTransport,
 GlitchData => Q3_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_Q0,
 PathCondition => TRUE)
)
);

 VitalPathDelay01 (
 OutSignal => SOUTint,
 OutSignalName => “SOUTint”,
 OutTemp => Q0int_zd,
 Mode => VitalTransport,
 GlitchData => SOUT_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_SOUT,
 PathCondition => TRUE)
)
);

MAG11 8/18/04 3:11 PM Page 173

174 Chapter 11 Negative Timing Constraints

Figure 11.5 Models of component with negative constraints (continued)

the other input is driving in single-ended mode. This is done using a table from
the FMF.ecl_utils package, ECL_diff_mode_tab.

Mode1 := ECL_diff_mode_tab (CLK_dly, CLKNeg_dly);

Then, a VITAL state table, ECL_clk_tab, also defined in the FMF.ecl_utils
package, reads the mode and the two clock signals and outputs a signal delayed clock:

VitalStateTable (

StateTable => ECL_clk_tab,

DataIn => (CLK_dly, CLKNeg_dly, Mode1),

Result => CLKint_zd,

PreviousDataIn => PrevData

);

 VitalPathDelay01 (
 OutSignal => CL4int,
 OutSignalName => “CL4int”,
 OutTemp => CL4_zd,
 Mode => VitalTransport,
 GlitchData => CL4_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_CL4,
 PathCondition => TRUE),
 1 => (InputChangeTime => RESET_ipd’LAST_EVENT,
 PathDelay => tpd_RESET_CL4,
 PathCondition => TRUE)
)
);

 VitalPathDelay01 (
 OutSignal => CL8int,
 OutSignalName => “CL8int”,
 OutTemp => CL8_zd,
 Mode => VitalTransport,
 GlitchData => CL8_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_CL8,
 PathCondition => TRUE),
 1 => (InputChangeTime => RESET_ipd’LAST_EVENT,
 PathDelay => tpd_RESET_CL4,
 PathCondition => TRUE)
)
);

 END PROCESS;

END vhdl_behavioral;

MAG11 8/18/04 3:11 PM Page 174

11.2 Modeling Negative Constraints 175

However, the result of a state table can only be a variable and a signal is needed.
Because this is a VITAL_Level1 model, a direct signal assignment is not permit-
ted. Therefore, a VitalPathDelay procedure is used to make the assignment from
CLKint_zd to CLKint.

-- (Dummy) Path Delay Section

VitalPathDelay (

OutSignal => CLKint,

OutSignalName => “CLKint”,

OutTemp => CLKint_zd,

GlitchData => CLK_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => CLK_dly’LAST_EVENT,

PathDelay => VitalZeroDelay,

PathCondition => FALSE))

);

Because the intent is to make the assignment with zero delay, the FMF convention
is to comment this as a “Dummy” path delay. From this point on, the only clock
signal referenced is CLKint.

The Setup/Hold check,

VitalSetupHoldCheck (

TestSignal => SINint,

TestSignalName => “SINint”,

RefSignal => CLKint,

RefSignalName => “CLK”,

RefDelay => ticd_CLK,

SetupHigh => tsetup_SINA_CLK,

SetupLow => tsetup_SINA_CLK,

HoldHigh => thold_SINA_CLK,

HoldLow => thold_SINA_CLK,

CheckEnabled => TRUE,

RefTransition => ‘/’,

HeaderMsg => InstancePath & “/eclps445”,

TimingData => TD_SIN_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_SIN_CLK

);

includes the RefDelay parameter:

RefDelay => ticd_CLK

MAG11 8/18/04 3:11 PM Page 175

If this parameter were to be omitted, the constraint check would still correctly
detect violations. However, the error messages generated would state an incorrect
time of occurrence of the violations.

The VITAL state tables that model the internal flip-flops in the component must
read the delayed clock.

VitalStateTable (

StateTable => DFF_tab,

DataIn => (Pviol_CLK, CLKint, Q1int_zd),

Result => Q0int_zd,

PreviousDataIn => PrevDataQ0a

);

If the nondelayed clock was used, incorrect operation would result when the data
input changed within the negative setup time of the clock.

Finally, the path delay procedure calls must also use the delayed clock.

VitalPathDelay01 (

OutSignal => Q0int,

OutSignalName => “Q0int”,

OutTemp => Q0_zd,

Mode => VitalTransport,

GlitchData => Q0_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => CLKint’LAST_EVENT,

PathDelay => tpd_CLK_Q0,

PathCondition => TRUE)

)

);

The simulator expects the InputChangeTime to be based on the delayed clock
and adjusts the value of tpd_CLK_Q0 to compensate.

11.3 How Simulators Handle Negative Constraints

Everything else we have discussed regarding VITAL has been based on the VITAL
packages. The source code for these packages is included with most VHDL simula-
tors and you can read it to understand how it works. This is not the case with neg-
ative constraints. For negative constraints to work special features must be built
into the simulator.

The values of the ticd and tisd generics are not passed into the model during
backannotation. In fact, they are not even in the SDF file. Negative constraint delays
are computed by the VITAL compliant simulator during a special negative con-
straint calculation phase. This phase runs after the VITAL backannotation and

176 Chapter 11 Negative Timing Constraints

MAG11 8/18/04 3:11 PM Page 176

11.4 Ramifications 177

before the normal VHDL initialization. It is referred to as the Negative Constraint
Calculation (NCC) phase.

For each level 0 instance found in the design netlist that defines a negative con-
straint timing generic, negative constraint calculations are performed. The values
of some timing generics are computed and set and the values of others are adjusted.
This is an iterative algorithm that uses the generic values set during previous steps.

Negative constraint calculation is performed in the following sequence:

1. Calculate internal clock delays

2. Calculate internal signal delays

3. Calculate biased propagation delays

4. Adjust propagation delays

5. Adjust timing constraint values for setup, hold, recovery, and removal

Although negative values may have been read in from the SDF file, at the end of
the NCC phase all timing generics will have positive values.

In the case of the eclps445 model, the timing generics values change, as shown
in Table 11.1.

11.4 Ramifications

Correct simulation of negative constraints depends on code built into the VITAL
compliant simulator. If a model with negative constraints is run on a non-VITAL
compliant simulator, both timing constraint checks and model functionality may
be inaccurate. For example, if a model has negative setup constraints, the clock
signal must have an internal delay. If the simulator does not supply that delay, a
clock transition could register previous data instead of the correct data. In addition,
if such a model is compiled with VITAL acceleration disabled, incorrect operation
may result when simulated using a VITAL compliant simulator.

When developing VITAL models it is common practice to compile with VITAL
acceleration disabled. Otherwise, the models are difficult to debug because the sim-
ulator cannot show line-by-line execution. Therefore, it is important to remember

Table 11.1 Timing values before and after NCC

Timing Generic Before NCC After NCC

ticd_CLK 0ps 100ps

tsetup_SINA_CLK -100ps 0ps

thold_SINA_CLK 450ps 350ps

tpd_CLK_Q0 2100ps 2000ps

tpd_CLK_SOUT 1150ps 1050ps

MAG11 8/18/04 3:11 PM Page 177

to recompile and reverify your models after completion. This is a good practice for
all VITAL models, whether or not they have negative constraints.

11.5 Summary

Due to internal delays, real components may have negative timing constraints.
They can be modeled accurately by accounting for the internal delays. VITAL com-
pliant simulators have features that calculate values for the internal delays and
apply them to special generics. The delay values are added to clocks and signals
using a SignalDelay block and VitalSignalDelay procedure calls. Subsequent
code should reference the delayed signals.

Models with negative constraints may not simulate correctly if the simulator
does not run a VITAL_Level1 Negative Constraint Calculation phase.

178 Chapter 11 Negative Timing Constraints

MAG11 8/18/04 3:11 PM Page 178

12

179

C

H

A

P

T

E

R

Timing Files and Backannotation

The technology-independent VITAL models upon which this book is based contain
no timing values. To run an accurate simulation with timing we must have three
things: a timing file, a way to extract from it the correct timing values and format
them into SDF, and a way to backannotate those values into the simulation. In this
chapter we look at how the timing values for a real component can be applied to
a model in simulation.

12.1 Anatomy of a Timing File

Although there are many ways timing files can be written, we will look at the way
the Free Model Foundry has chosen to write them. The format is simple and
straightforward and based entirely on existing standards.

Figure 12.1 shows the FMF timing file for the STD01 model 2-input positive-
NAND gate with open-collector output. The file utilizes XML, a small subset of
Standard Generalized Markup Language (SGML) (ISO 8879). SDF code is embedded
in this XML wrapper. The result is a file that can be easily parsed or written by
either a computer or a human.

The timing file in Figure 12.1 provides timing values for four part numbers from
Texas Instruments. There are values for two package types of SN7401 and two
package types of SN74LS01. In the case of these parts, package type does not have
an impact on the timing values. That is not always the case. Let us dissect this
timing file section by section to understand what it means and why it is written
this way.

12.1.1 Header

The first line,

<!DOCTYPE FTML SYSTEM “ftml.dtd”>

MAG12 8/18/04 3:09 PM Page 179

is a standard SGML header naming the format of the file and its document type
definition. From a practical perspective, this line is a formality of little consequence.
Existing tools ignore it, but it could be read by some future software.

The next line

<FTML><HEAD><TITLE>FMF Timing for STD01 Parts</TITLE>

contains the opening tags and the title of the file. If it looks a bit like HTML, that
is not a coincidence. HTML is another subset of SGML. The FTML tag opens the
file. An FTML timing file has two primary sections, a HEAD and a BODY. The HEAD
contains the title and the REVISION.HISTORY.

<REVISION.HISTORY>

version: | author: | mod date: | changes made:

V1.0 R. Munden 99 APR 04 Initial release

The revision history supplies the same type of version, author, date, and change
list data found in the model header. Timing files may change over time, timing
values for a new part number might be added, and sometimes a change to a model
requires a corresponding modification to the model’s timing file. The revision
history tracks these changes.

180 Chapter 12 Timing Files and Backannotation

 <!DOCTYPE FTML SYSTEM “ftml.dtd”>
 <FTML><HEAD><TITLE>FMF Timing for STD01 Parts</TITLE>
 <REVISION.HISTORY>
 version: | author: | mod date: | changes made:
 V1.0 R. Munden 99 APR 04 Initial release
 </REVISION.HISTORY>
 </HEAD>
 <BODY>
 <TIMESCALE>1ns</TIMESCALE>
 <MODEL>STD01
 <FMFTIME>
 SN7401D<SOURCE>Texas Instruments SDLS026-Revised March 1988</SOURCE>
 SN7401N<SOURCE>Texas Instruments SDLS026-Revised March 1988</SOURCE>
 <COMMENT>The Values listed are for VCC=5V, CL=15pF, Ta=+25 Celsius</COMMENT>
 <COMMENT>Min values are derived</COMMENT>
 <TIMING>
 (DELAY (ABSOLUTE
 (IOPATH A YNeg (18:35:55) (4:8:15))
))
 </TIMING></FMFTIME>
 <FMFTIME>
 SN74LS01D<SOURCE>Texas Instruments SDLS026-Revised March 1988</SOURCE>
 SN74LS01N<SOURCE>Texas Instruments SDLS026-Revised March 1988</SOURCE>
 <COMMENT>The Values listed are for VCC=5V, CL=15pF, Ta=+25 Celsius</COMMENT>
 <COMMENT>Min values are derived</COMMENT>
 <TIMING>
 (DELAY (ABSOLUTE
 (IOPATH A YNeg (8:17:32) (7:15:28))
))
 </TIMING></FMFTIME>
 </BODY></FTML>

Figure 12.1 Timing file for STD01 model

MAG12 8/18/04 3:09 PM Page 180

These tags

</REVISION.HISTORY>

</HEAD>

close those sections of the file.

12.1.2 Body

The next tag

<BODY>

opens the body section. The first line in the body section:

<TIMESCALE>1ns</TIMESCALE>

provides the timescale for the file. This corresponds to the timescale directive in an
SDF file. Because software written to date assumes the timescale is 1 nanosecond
without actually reading it, it is advisable to always use a timescale of 1 nanosecond.
Timing values of less than 1ns are written as decimals. Large values can be written
as exponents. One second is 1E9.

The <MODEL> tag precedes the name of the model for which this file provides
timing values.

12.1.3 FMFTIME

The next section, bracketed between the tags <FMFTIME> and </FMFTIME>, is the
heart of the timing file. This section may appear one or more times in any file. In
each appearance it will contain one or more lines listing a part number and the
source of the data for that part number:

SN7401D<SOURCE>Texas Instruments SDLS026-Revised March 1988</SOURCE>

The part number is not necessarily the complete ordering number. It usually
includes package type and timing but not temperature or packing (i.e., trays or tape
and reel). Each of the consecutive part numbers must represent parts with identi-
cal timing. These parts may be different packages for similar parts from the same
vendor or they may be parts from multiple vendors with identical timing specifi-
cations. The part numbers are used to select the timing values that are correct for
each component instantiated in the netlist that is being backannotated.

Following the list of part numbers are optional comments regarding the test con-
ditions under which the vendor supplied the timing values:

<COMMENT>The Values listed are for VCC=5V, CL=15pF, Ta=+25 Celsius</COMMENT>

<COMMENT>Min values are derived</COMMENT>

Comments are valuable for documentation but are not required to generate a usable
SDF file. The comments often include disclaimers about data that had to be esti-
mated because the vendor did not supply values.

12.1 Anatomy of a Timing File 181

MAG12 8/18/04 3:09 PM Page 181

Embedded within the <FMFTIME> tags is a single instance of the <TIMING> tag.
Between the <TIMING> and </TIMING> tags resides the timing information for the
listed part number(s) in SDF format.

<TIMING>

(DELAY (ABSOLUTE

(IOPATH A YNeg (18:35:55) (4:8:15))

))

</TIMING>

The SDF data are copied without modification and inserted into the SDF file that
is applied to the netlist.

The file ends with a series of closing tags: </FMFTIME></BODY></FTML>.

12.2 Separate Timing Specifications

If the vendor provides separate timing specifications for the part under different
test conditions, the part’s timing file may include several entries for the same part
number. For example, some technologies in the 7400 series are specified at two or
more operating voltages. Such parts would have multiple sections in their timing
files, as shown in Figure 12.2. In this case, the primary operating voltage is
appended to the part number to aid in selecting the correct set of values.

182 Chapter 12 Timing Files and Backannotation

 <FMFTIME>
 74AHC244D_3V3<SOURCE>Philips Semiconductors Data Sheet 1999 Sep 28</SOURCE>
 74AHC244PW_3V3<SOURCE>Philips Semiconductors Data Sheet 1999 Sep 28</SOURCE>
 <COMMENT>The Values listed are for VCC=3.0V-3.6V, CL=50pF, Ta=-40 to +85 Celsius
 </COMMENT>
 <COMMENT>Typical values are at Ta=25C</COMMENT>
 <TIMING>
 (DELAY (ABSOLUTE
 (IOPATH A Y (1.0:7.0:13.5) (1.0:7.0:13.5))
 (IOPATH OENeg Y () () (1.0:10.0:16.0) (1.0:7.5:16.0) (1.0:10.0:16.0)
(1.0:7.5:16.0))
))
 </TIMING></FMFTIME>
 <FMFTIME>
 74AHC244D_5V<SOURCE>Philips Semiconductors Data Sheet 1999 Sep 28</SOURCE>
 74AHC244PW_5V<SOURCE>Philips Semiconductors Data Sheet 1999 Sep 28</SOURCE>
 <COMMENT>The Values listed are for VCC=4.5V-5.5V, CL=50pF, Ta=-40 to +85 Celsius
 </COMMENT>
 <COMMENT>Typical values are at Ta=25C</COMMENT>
 <TIMING>
 (DELAY (ABSOLUTE
 (IOPATH A Y (1.0:5.0:8.5) (1.0:5.0:8.5))
 (IOPATH OENeg Y () () (1.0:7.0:10.5) (1.0:5.5:10.5) (1.0:7.0:10.5)
(1.0:5.5:10.5))
))
 </TIMING></FMFTIME>

Figure 12.2 Timing file for part with voltage-dependent timing

MAG12 8/18/04 3:09 PM Page 182

12.3 Importing Timing Values

Some complex models use tdevice generics to import a timing value that is not
directly related to a port. In the SDF file, the delays associated with these generics
look as though they are being applied to a device (cell) within the model. They
each have their own instance name and path. Because the path is not known at
the time the timing file is created, a special variable %LABEL% is used. The mk_sdf
script, discussed in the next section, substitutes the correct path for the variable
when it generates the SDF file. Figure 12.3 shows a timing file for a FIFO model
that uses tdevice generics.

12.4 Custom Timing Sections

It is also useful to create custom timing sections to provide a set of timing values
that reflects the range of components that are allowed to be used in the manufac-
ture of a product. Many companies require their engineers to select components
available from two or more sources for each function in a design. The components

12.4 Custom Timing Sections 183

 <MODEL>IDT72V241
 <FMFTIME>
 IDT72V241L10J<SOURCE>IDT data sheet February 1999</SOURCE>
 IDT72V241L10PF<SOURCE>IDT data sheet February 1999</SOURCE>
 <COMMENT>The Values listed are for VCC=3.0V to 3.6V, CL=30pF, Ta=0 to 70 Celsius
 </COMMENT>
 <COMMENT>Typical values are derived</COMMENT>
 <TIMING>
 (DELAY (ABSOLUTE
 (IOPATH RCLK Q0 (2:5:6.5) (2:5:6.5) (2:5:6.5) (0:5:6.5) (2:5:6.5)
(0:5:6.5))
 (IOPATH RSNeg Q0 (2:7:10) (2:7:10) (2:7:10) (2:7:10) (2:7:10) (2:7:10))
 (IOPATH RSNeg EFNeg (2:7:10) (2:7:10))
 (IOPATH OENeg Q0 () () (3:6:9) (0:6:9) (3:6:9) (0:6:9))
 (IOPATH WCLK FFNeg (2:4:6.5) (2:4:6.5))
 (IOPATH RCLK EFNeg (2:4:6.5) (2:4:6.5))
 (IOPATH RCLK PAENeg (2:4:6.5) (2:4:6.5))
 (IOPATH WCLK PAFNeg (2:4:6.5) (2:4:6.5))
))
 (TIMINGCHECK
 (PERIOD (posedge RCLK) (10))
 (PERIOD (posedge WCLK) (10))
 (WIDTH (posedge RCLK) (4.5))
 (WIDTH (negedge RCLK) (4.5))
 (SETUPHOLD D0 WCLK (3) (0.5))
 (SETUPHOLD REN1Neg RCLK (3) (0.5))
 (WIDTH (negedge RSNeg) (10))
 (SETUP REN1Neg RSNeg (8))
 (RECOVERY REN1Neg RSNeg (8))
))
 (CELL (CELLTYPE “VITALbuf”)
 (INSTANCE %LABEL%/SKEW1) (DELAY (ABSOLUTE (DEVICE (5)))))
 (CELL (CELLTYPE “VITALbuf”)
 (INSTANCE %LABEL%/SKEW2) (DELAY (ABSOLUTE (DEVICE (14))))
 </TIMING></FMFTIME>

Figure 12.3 Timing file with tdevice cells

MAG12 8/18/04 3:09 PM Page 183

available from alternate sources frequently have slightly different timing specifica-
tions. It is common to place a custom entry in the timing file that represents the
full range of timings that are specified across all vendors. Such an entry would
include the fastest minimum propagation delays and the slowest maximum delays,
along with the worst-case setup, hold, and pulsewidth requirements. If the design
simulates without errors with those timing values, it is likely to work when built
with any combination of component sources.

12.5 Generating Timing Files

A tcl/tk script named vhd2ftm (available for free download from the FMF Web
site) is an example of a tool that can aid in the generation of timing files. The script
reads a VHDL/VITAL model and produces a form on the screen that can be filled
in. A screen shot of vhd2ftm using the eclps445 model from Chapter 11 is shown
in Figure 12.4. Once the form is filled, clicking the generate button writes two files.
One has the timing file boilerplate and the other has the SDF data and the sur-
rounding XML tags. It also clears the form, making it ready to enter another set of
timing values for the same model.

12.6 Generating SDF Files

A single model may be interesting, but by itself is of limited utility. To be truly
useful, models must be connected together in a netlist that represents a design.
Netlists can be written by hand using a text editor. However, most people design
boards by drawing schematics. They usually find it easier to netlist their schematic
to VHDL than to write the netlist by hand. Although correct netlisting from a
schematic requires integrating the models into the schematic system’s library, most
schematic tool vendors support this methodology.

When a component model is instantiated in a netlist, the value of its Timing-
Model generic is set to match a part number in the model’s timing file. It can be
set by hand or, better yet, the value can be passed through from the schematic by
the netlister.

Once a correct netlist has been created, the SDF file can be generated. Once again,
this task could be done by hand, copying the appropriate sections from the model
timing files into a file with the proper SDF header and references to each instance.
Or you can run the perl script mk_sdf, which is also freely available on the FMF
Web site. Some configuration is required to run mk_sdf, but documentation can
be downloaded with the script. The configuration is primarily concerned with
where in your file system you keep the timing files and how the tool can find them.

The mk_sdf script reads a board-level netlist and extracts the values of the
TimingModel generics instance by instance. It then searches the timing files for
part numbers that match those values. If it finds them, it copies the SDF code for
those part numbers into an SDF file that correctly maps to each instance in the
netlist. Instructions for using the mk_sdf script can be found in Chapter 15.

184 Chapter 12 Timing Files and Backannotation

MAG12 8/18/04 3:09 PM Page 184

12.7 Backannotation and Hierarchy

The exact method of backannotation will depend on your simulator. However,
some considerations will be common. The contents of an SDF file are hierarchical
and based on a starting point. That starting point is the top level of the object for
which the SDF file is written. For example, if you ran mk_sdf on a netlist, the SDF
file starts at the point the netlist is instantiated in the testbench.

If there is a gate-level FPGA model in the netlist and it has its own SDF file, that
file starts at the instantiation of the FPGA. Gate-level FPGA and ASIC netlists are
generated by synthesis tools. An associated SDF file can be generated at the same
time.

When you tell your simulator to read an SDF file, you must also specify where
in the design the file is to be applied. In Figure 12.5 we see a typical design

12.7 Backannotation and Hierarchy 185

Timing Generation Utility

GENERATEPARTS: SAVE EXIT

tpd_CLK_QO

tpd_CLK_SOUT

tpd_CLK_CL4

tpd_CLK_CL8

tpd_RESET_CL4

tsetup_SINA_CLK

tsetup_SINA_CLKNeg

tsetup_SEL_CLK

thold_SINA_CLK

thold_SINA_CLKNeg

thold_SEL_CLK

trecovery_RESET_CLK

tpw_CLK_posedge

tpw_CLK_negedge

tpw_RESET_posedge

tperiod_CLK-posedge

LH

LH

LH

LH

LH

HL

HL

HL

HL

HL

MIN TYP MAX MIN TYP MAX MIN TYP MAXTiming_Generics

Figure 12.4 vhd2ftm screen shot

MAG12 8/18/04 3:09 PM Page 185

hierarchy. There is a testbench that instantiates a board design named MyBoard.
The board is the Unit Under Test (in the testbench labeled UUT). The mk_sdf
script has been run on the board netlist and has created an SDF file named
myboard.sdf. In the board design is, among other parts, an FPGA name MyFPGA.
It is instantiated with the label U26. In this case we are using a gate-level model of
the FPGA. The vendor tool that output the gate-level model also output an SDF file
named myfpga.sdf.

Let us assume the simulator being used is ModelSim. To start a simulation
without timing (from the command line), we would issue the command

vsim testbench

The command vsim starts the simulator. The argument testbench specifies the
design unit to simulate.

To simulate with SDF backannotation, a command line option is used. If we
want typical timing for the components in board (other than the FPGA, which has
its own SDF file), we use the command

vsim -sdftyp testbench/uut=myboard.sdf testbench

Here the option -sdftyp tells the simulator to perform a SDF backannotation using
typical timing. The next argument tells it the backannotation is for instance UUT
in the testbench and myboard.sdf is the name of the SDF file to be used.

186 Chapter 12 Timing Files and Backannotation

U26: My FPGA

UUT: MyBoard

TestBench

Figure 12.5 Design hierarchy

MAG12 8/18/04 3:09 PM Page 186

To add backannotation of the FPGA with maximum timing values, the command
is expanded to

vsim -sdftyp testbench/uut=myboard.sdf -sdfmax testbench/uut/u26=myfpga.sdf

testbench

The added option -sdfmax tells the simulator to perform another backannotation
using maximum timing values. This backannotation is to be applied to instance
u26 in UUT (in the testbench). The SDF file to use is named myfpga.sdf.

More than one SDF file can be backannotated to a single object. If we had an
SDF file with the interconnect delays for the board, it could also be applied to test-
bench/UUT.

12.8 Summary

External timing files allow us to write technology-independent (timing) models. We
use this modeling methodology because it reduces the number of models that must
be written and maintained. There are many ways timing files could be written. This
book shows the method developed by the Free Model Foundry. This method can
be simply described as SDF embedded in an XML wrapper. Writing timing files can
be made less tedious by using a tcl/tk program called vhd2ftm.

The external timing files are used to create an SDF file that can be read by a
simulator. The preferred means of creating the SDF file is by running a perl script
named mk_sdf.

If a simulation uses a backannotation file, the path to the instance being back-
annotated must be supplied.

12.8 Summary 187

MAG12 8/18/04 3:09 PM Page 187

This page intentionally left blank

Part IV takes the modeling basics learned in the previous chapters and applies them
to modeling the more interesting and complex components that you will find in
your board designs. In this final part we look at modeling several specific types of
components, including memories and components with special features such as
PLLs and bus-hold.

This part also applies what you learned about timing and generics and shows
you how to use it in your FPGA RTL code. By doing this you can run board-level
simulations with timing without resorting to the use of the gate-level representa-
tion of your FPGA design. Simulating can therefore be much faster than using the
gate-level netlist.

Chapter 13 shows how to instantiate your FPGA RTL model in a VITAL wrapper
that will add delays and timing constraints. This technique will work even if your
RTL code is in Verilog.

Chapter 14 covers the issues specific to modeling memory components, includ-
ing storage arrays. It looks at several techniques and shows the advantages and dis-
advantages of each. It also shows how to take advantage of certain features in the
VITAL2000 memory package that make behavior modeling output retention easier.

Chapter 15 investigates the integration of component simulation models into
the schematic capture environment. It discusses requirements for netlisting and for
passing generic values from the schematic to the model. The examples here are
vendor-specific but will help you understand whatever system you use.

In Chapter 16 the modeling of specific component features is discussed. The fea-
tures include differential inputs, bus-hold, PLLs, and state machines. It also dis-
cusses how to use assertion statements in component models and how to modify
model behavior with the TimingModel generic. It concludes with a discussion of
modeling mixed-signal devices.

Chapter 17 covers writing testbenches for debugging and verifying your com-
ponent models. It includes material on assertions and transactors.

P

A

R

T IV Advanced Modeling

MAG13 8/18/04 3:08 PM Page 189

This page intentionally left blank

13

191

C

H

A

P

T

E

R

Adding Timing to Your RTL Code

Now that you know how to model with timing and simulate all the off-the-shelf
components on your board, wouldn’t it be nice to add delays and timing constraints
to the RTL model of your ASIC or FPGA rather than use the gate-level model?

These days, boards and systems are designed using schematics, and chips, ASICs,
and FPGAs are designed using HDLs, usually VHDL or Verilog. From the schematic,
a VHDL netlist can be generated. VHDL behavioral models of off-the-shelf compo-
nents can be written based on the vendors’ data sheets. If you started your chip
design by writing a behavioral model, that could also be included and you could
perform early simulation to test the correctness of your design specification.
However, most engineers get their design specs from a text document. They start
their chip designs by writing and simulating RTL code. The RTL code could be used
in the board-level simulation, but without timing it might not behave in a manner
indicative of the hardware you intend to build and would not accurately verify its
interfaces to other components. This chapter demonstrates a technique for adding
timing to your RTL code that is compatible with the other models you have created.

13.1 Using VITAL to Simulate Your RTL

Unless you have written a behavioral model of your FPGA, your only choices for
board-level verification are gate level and RTL. Gate level is the most accurate, but
you cannot get a gate-level model until you have completed the RTL model suffi-
ciently to synthesize and run the vendor’s place and route tool. Then, you will find
that gate-level simulation is also the slowest and most memory-intensive way to
verify an ASIC or FPGA.

RTL is much faster and uses much less memory than gate level. However, the
RTL model has no timing information. It may not accurately describe board-level
interfaces, such as differential inputs and outputs. Fortunately, you can embed the
RTL in a VITAL wrapper and have the best of both worlds: RTL speed plus full
timing. You can even start your simulations with the timing constraints you intend
to use for synthesis to verify you are not overconstraining or underconstraining
synthesis. After place and route, you can substitute timing values from the vendor’s
timing analyzer to reverify with realized timing.

MAG13 8/18/04 3:08 PM Page 191

There are other advantages to performing board-level simulation using the RTL
model of your chip design:

• The interfaces between your design and the other components on the board
become better understood.

• The chip design is verified earlier and without spending time on synthesis
and place and route.

• The board design is verified earlier and can be released to layout sooner and
with a higher degree of confidence.

• Onboard diagnostics can be developed and verified earlier in the design cycle.

Although writing a VITAL wrapper for a complex ASIC or FPGA design is not
trivial, it can to some extent be automated. The bilingual capabilities of today’s
simulators allow this strategy to work whether the RTL code is written in VHDL or
Verilog.

13.2 The Basic Wrapper

The RTL code used for synthesis describes the behavior of the component being
designed but does not describe the timing. The timing is necessary to ensure the
chip interfaces correctly with the rest of the system. We can add propagation delays
and timing constraint checks to the RTL without changing it by instantiating it in
a higher-level component. We call this higher-level component a wrapper because
it does not change the functionality of the RTL model, it just wraps it in a set of
path delay and timing check procedures. Figure 13.1 shows the overall structure of
a VITAL wrapper.

As an example of how to create a timing wrapper, let us begin with a fictitious
design named FPGA299. It is based on the 74AC299 8-bit universal shift register. This
design is much smaller than a real-life FPGA but will illustrate most of the concepts.
To better understand the design, a pin description list is shown in Table 13.1.

192 Chapter 13 Adding Timing to Your RTL Code

Table 13.1 FPGA299 pin description

Pin Names Description

CLK Clock Pulse Input (Active Edge Rising)

SR Serial Data Input for Right Shift

SL Serial Data Input for Left Shift

S0, S1 Mode Select Inputs

CLR_L Asynchronous Master Reset Input (Active Low)

OE1_L, OE2_L 3-State Output Enable Inputs (Active Low)

IO 8-Bit Parallel Data Inputs or 3-State Parallel Outputs

Q0, Q7 Serial Outputs

MAG13 8/18/04 3:08 PM Page 192

We first look at a VHDL version of the design. The entity is

ENTITY fpga299 IS

PORT (

CLR_L : IN std_logic;

OE1_L : IN std_logic;

OE2_L : IN std_logic;

S0 : IN std_logic;

S1 : IN std_logic;

CLK : IN std_logic;

IO : INOUT std_logic_vector(7 downto 0)

Q0 : OUT std_logic;

Q7 : OUT std_logic;

SL : IN std_logic;

SR : IN std_logic

);

END fpga299;

In order to avoid naming conflicts, at the board level (in the schematic) we will
call this component chip299.

We begin by writing an entity that will be compatible with the schematic symbol
that represents our FPGA design at the board level. The wrapper will be a non-
compliant VITAL model, so the file begins with LIBRARY and USE clauses that
include the following VITAL packages:

13.2 The Basic Wrapper 193

Inputs Outputs
Entity

WireDelay Block

Timing Checkers

Path DelaysRTL Model

Figure 13.1 Structural view of a wrapper

MAG13 8/18/04 3:08 PM Page 193

-- File Name: chip299.vhd

-- Description: Timing wrapper for fpga299

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

USE IEEE.VITAL_timing.ALL;

USE IEEE.VITAL_primitives.ALL;

LIBRARY FMF; USE FMF.gen_utils.ALL;

-- ENTITY DECLARATION

ENTITY chip299 IS

GENERIC (

-- tipd delays: interconnect path delays

tipd_CLRNeg : VitalDelayType01 := VitalZeroDelay01;

tipd_OE1Neg : VitalDelayType01 := VitalZeroDelay01;

tipd_OE2Neg : VitalDelayType01 := VitalZeroDelay01;

tipd_S0 : VitalDelayType01 := VitalZeroDelay01;

tipd_S1 : VitalDelayType01 := VitalZeroDelay01;

tipd_CLK : VitalDelayType01 := VitalZeroDelay01;

tipd_IO0 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO1 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO2 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO3 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO4 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO5 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO6 : VitalDelayType01 := VitalZeroDelay01;

tipd_IO7 : VitalDelayType01 := VitalZeroDelay01;

tipd_SL : VitalDelayType01 := VitalZeroDelay01;

tipd_SR : VitalDelayType01 := VitalZeroDelay01;

The GENERIC list starts with the tipd generics for the interconnect delays. This
allows us to backannotate the PCB wire delays. These delays are particularly impor-
tant for designs that incorporate an internal phase locked loop with a feedback path
that is on the board.

Next come the rest of the timing generics for pin-to-pin delays, setup, hold,
pulsewidth, and any other timing constraints, along with the control parameters:

-- tpd delays

tpd_CLRNeg_IO0 : VitalDelayType01 := UnitDelay01;

tpd_CLRNeg_Q0 : VitalDelayType01 := UnitDelay01;

tpd_OE1Neg_IO0 : VitalDelayType01Z := UnitDelay01Z;

tpd_S0_IO0 : VitalDelayType01Z := UnitDelay01Z;

tpd_CLK_IO0 : VitalDelayType01 := UnitDelay01;

tpd_CLK_Q0 : VitalDelayType01 := UnitDelay01;

194 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 194

-- tsetup values: setup times

tsetup_S0_CLK : VitalDelayType := UnitDelay;

tsetup_SL_CLK : VitalDelayType := UnitDelay;

tsetup_IO0_CLK : VitalDelayType := UnitDelay;

-- thold values: hold times

thold_S0_CLK : VitalDelayType := UnitDelay;

thold_SL_CLK : VitalDelayType := UnitDelay;

thold_IO0_CLK : VitalDelayType := UnitDelay;

-- trecovery values: release times

trecovery_CLRNeg_CLK : VitalDelayType := UnitDelay;

-- tpw values: pulse widths

tpw_CLK_posedge : VitalDelayType := UnitDelay;

tpw_CLK_negedge : VitalDelayType := UnitDelay;

tpw_CLRNeg_negedge : VitalDelayType := UnitDelay;

-- tperiod_min: minimum clock period = 1/max freq

tperiod_CLK_posedge : VitalDelayType := UnitDelay;

-- generic control parameters

InstancePath : STRING := DefaultInstancePath;

TimingChecksOn : BOOLEAN := DefaultTimingChecks;

MsgOn : BOOLEAN := DefaultMsgOn;

XOn : BOOLEAN := DefaultXon;

-- For FMF SDF technology file usage

TimingModel : STRING := DefaultTimingModel

);

The generics and port list, indeed the entity, are written as if this was a model
of an off-the-shelf component.

PORT (

CLRNeg : IN std_ulogic := ‘U’;

OE1Neg : IN std_ulogic := ‘U’;

OE2Neg : IN std_ulogic := ‘U’;

S0 : IN std_ulogic := ‘U’;

S1 : IN std_ulogic := ‘U’;

CLK : IN std_ulogic := ‘U’;

IO0 : INOUT std_ulogic := ‘U’;

IO1 : INOUT std_ulogic := ‘U’;

IO2 : INOUT std_ulogic := ‘U’;

IO3 : INOUT std_ulogic := ‘U’;

IO4 : INOUT std_ulogic := ‘U’;

IO5 : INOUT std_ulogic := ‘U’;

IO6 : INOUT std_ulogic := ‘U’;

IO7 : INOUT std_ulogic := ‘U’;

Q0 : OUT std_ulogic := ‘U’;

Q7 : OUT std_ulogic := ‘U’;

13.2 The Basic Wrapper 195

MAG13 8/18/04 3:08 PM Page 195

SL : IN std_ulogic := ‘U’;

SR : IN std_ulogic := ‘U’

);

ATTRIBUTE VITAL_LEVEL0 of chip299 : ENTITY IS TRUE;

END chip299;

The entity has a VITAL_LEVEL0 attribute set to TRUE.
Note that the FPGA has eight pins of mode INOUT. These present a special

challenge. They are not a problem in a component model because the control logic
that determines whether they are acting as drivers or receivers is in the model. But
in a wrapper, that control logic is in the instantiated RTL and is not visible to
the wrapper. A method for overcoming this obstacle of unknown directionality
uses the std_logic_1164 resolution function and will be explained as we progress
through the code.

The architecture of the wrapper is not VITAL compliant. Therefore, the VITAL
attribute is omitted.

-- ARCHITECTURE DECLARATION

ARCHITECTURE vhdl_behavioral of chip299 IS

CONSTANT partID : STRING := “chip299”;

COMPONENT fpga299

PORT (

CLR_L : IN std_logic;

OE1_L : IN std_logic;

OE2_L : IN std_logic;

S0 : IN std_logic;

S1 : IN std_logic;

CLK : IN std_logic;

IO : INOUT std_logic_vector(7 downto 0);

Q0 : OUT std_logic;

Q7 : OUT std_logic;

SL : IN std_logic;

SR : IN std_logic

);

END COMPONENT;

The RTL model is declared as a component that will be instantiated further down
in the wrapper. Then signals are declared:

SIGNAL CLRNeg_ipd : std_ulogic := ‘U’;

SIGNAL OE1Neg_ipd : std_ulogic := ‘U’;

SIGNAL OE2Neg_ipd : std_ulogic := ‘U’;

SIGNAL S0_ipd : std_ulogic := ‘U’;

SIGNAL S1_ipd : std_ulogic := ‘U’;

196 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 196

SIGNAL CLK_ipd : std_ulogic := ‘U’;

SIGNAL IO0_ipd : std_ulogic := ‘U’;

SIGNAL IO1_ipd : std_ulogic := ‘U’;

SIGNAL IO2_ipd : std_ulogic := ‘U’;

SIGNAL IO3_ipd : std_ulogic := ‘U’;

SIGNAL IO4_ipd : std_ulogic := ‘U’;

SIGNAL IO5_ipd : std_ulogic := ‘U’;

SIGNAL IO6_ipd : std_ulogic := ‘U’;

SIGNAL IO7_ipd : std_ulogic := ‘U’;

SIGNAL SL_ipd : std_ulogic := ‘U’;

SIGNAL SR_ipd : std_ulogic := ‘U’;

SIGNAL IO_w : std_logic_vector(7 downto 0) := (others => ‘Z’);

A configuration specification is required and supplied:

FOR ALL : fpga299 USE ENTITY work.fpga299(rtl);

The standard wire delay block is employed to apply interconnect delays to the input
pins.

BEGIN

-- Wire Delays

WireDelay : BLOCK

BEGIN

w_1 : VitalWireDelay (CLRNeg_ipd, CLRNeg, tipd_CLRNeg);

w_2 : VitalWireDelay (OE1Neg_ipd, OE1Neg, tipd_OE1Neg);

w_3 : VitalWireDelay (OE2Neg_ipd, OE2Neg, tipd_OE2Neg);

w_4 : VitalWireDelay (S0_ipd, S0, tipd_S0);

w_5 : VitalWireDelay (S1_ipd, S1, tipd_S1);

w_6 : VitalWireDelay (CLK_ipd, CLK, tipd_CLK);

w_8 : VitalWireDelay (IO0_ipd, IO0, tipd_IO0);

w_9 : VitalWireDelay (IO1_ipd, IO1, tipd_IO1);

w_10 : VitalWireDelay (IO2_ipd, IO2, tipd_IO2);

w_11 : VitalWireDelay (IO3_ipd, IO3, tipd_IO3);

w_12 : VitalWireDelay (IO4_ipd, IO4, tipd_IO4);

w_13 : VitalWireDelay (IO5_ipd, IO5, tipd_IO5);

w_14 : VitalWireDelay (IO6_ipd, IO6, tipd_IO6);

w_15 : VitalWireDelay (IO7_ipd, IO7, tipd_IO7);

w_18 : VitalWireDelay (SL_ipd, SL, tipd_SL);

w_19 : VitalWireDelay (SR_ipd, SR, tipd_SR);

END BLOCK;

Getting back to the unknown directionality problem of the INOUT ports, we need
a way to tell whether the port is being driven from the RTL model or an external

13.2 The Basic Wrapper 197

MAG13 8/18/04 3:08 PM Page 197

device. We know the RTL model will only output strong signals, ‘0’, ‘1’, and ‘Z’.
So the next group of assignments takes the external inputs and converts them to
weak signals, ‘L’, ‘H’, and ‘Z’.

IO_w(0) <= To_UXLHZ(IO0_ipd);

IO_w(1) <= To_UXLHZ(IO1_ipd);

IO_w(2) <= To_UXLHZ(IO2_ipd);

IO_w(3) <= To_UXLHZ(IO3_ipd);

IO_w(4) <= To_UXLHZ(IO4_ipd);

IO_w(5) <= To_UXLHZ(IO5_ipd);

IO_w(6) <= To_UXLHZ(IO6_ipd);

IO_w(7) <= To_UXLHZ(IO7_ipd);

The assignments use a function found in the FMF.gen_utils package named
To_UXLHZ. These function calls result in the assignment of weak signal values to
each bit of the signal IO_w.

The RTL model has a vectored port. Most FPGA and ASIC models will have
several vectored ports. However, at the board level the wrapper has scalar ports. A
block statement is used to make the scalar-to-vector conversion that enables the
advantageous use of vectored signals:

-- Main Behavior Block

Behavior : BLOCK

PORT(

CLRIn : IN std_logic;

OE1In : IN std_logic;

OE2In : IN std_logic;

S0In : IN std_logic;

S1In : IN std_logic;

CLkIn : IN std_logic;

IOIn : IN std_logic_vector(7 downto 0);

IOOut : OUT std_logic_vector(7 downto 0);

Q0Out : OUT std_logic;

Q7Out : OUT std_logic;

SLIn : IN std_logic;

SRIn : IN std_logic

);

PORT MAP (

CLRIn => CLRNeg_ipd,

OE1In => OE1Neg_ipd,

OE2In => OE2Neg_ipd,

S0In => S0_ipd,

S1In => S1_ipd,

CLKIn => CLK_ipd,

198 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 198

IOIn => IO_w,

IOOut(0) => IO0,

IOOut(1) => IO1,

IOOut(2) => IO2,

IOOut(3) => IO3,

IOOut(4) => IO4,

IOOut(5) => IO5,

IOOut(6) => IO6,

IOOut(7) => IO7,

Q0Out => Q0,

Q7Out => Q7,

SLIn => SL_ipd,

SRIn => SR_ipd

);

Within the block, all INOUT ports are split into separate IN and OUT ports. This pro-
vides some simplification.

The zero delay signals are declared:

SIGNAL IO_zd : std_logic_vector(7 downto 0);

SIGNAL Q0_zd : std_ulogic;

SIGNAL Q7_zd : std_ulogic;

Because they are used both inside and outside the timing process, they are declared
as signals in a wrapper instead of as variables, as would usually be the case in a
component model.

Once all the declarations are completed the RTL model is instantiated:

BEGIN

-- connect VHDL RTL model

fpga299_1 : fpga299

PORT MAP(

CLR_L => CLRIn,

OE1_L => OE1In,

OE2_L => OE2In,

S0 => S0In,

S1 => S1In,

CLK => CLKIn,

IO => IO_w,

Q0 => Q0_zd,

Q7 => Q7_zd,

SL => SLIn,

SR => SRIn

);

Input ports are mapped to the block IN ports and outputs are mapped to the block
OUT ports. The IO port, of mode INOUT in the RTL model, is mapped to the IO_w

13.2 The Basic Wrapper 199

MAG13 8/18/04 3:08 PM Page 199

signal created earlier. Values being read from the outside on this signal will always
be weak, and values being driven from the RTL will always be strong. Therefore,
any value originating from the RTL model will override the value coming from
outside, unless the RTL model is driving ‘Z’. This is an important characteristic
and will be exploited further down the code.

Now comes the main process. In a model this would be the behavioral process.
In a wrapper, all the behavior is described in the RTL model, so there is little left
for this process other than timing constraints and path delays.

As always, the process begins with a sensitivity list and variable declarations:

-- Main Behavior Process

TIMING : PROCESS (CLKIn, CLRIn, OE1In, OE2In, S0In, S1In, IO_w, SLIn, SRIn)

-- Timing Check Variables

VARIABLE Tviol_SL_CLK : X01 := ‘0’;

VARIABLE TD_SL_CLK : VitalTimingDataType;

VARIABLE Tviol_SR_CLK : X01 := ‘0’;

VARIABLE TD_SR_CLK : VitalTimingDataType;

VARIABLE Tviol_S0_CLK : X01 := ‘0’;

VARIABLE TD_S0_CLK : VitalTimingDataType;

VARIABLE Tviol_S1_CLK : X01 := ‘0’;

VARIABLE TD_S1_CLK : VitalTimingDataType;

VARIABLE Tviol_IO_CLK : X01 := ‘0’;

VARIABLE TD_IO_CLK : VitalTimingDataType;

VARIABLE Rviol_CLRNeg_CLK : X01 := ‘0’;

VARIABLE TD_CLRNeg_CLK : VitalTimingDataType;

VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Pviol_CLK : X01 := ‘0’;

VARIABLE PD_CLRNeg : VitalPeriodDataType := VitalPeriodDataInit;

VARIABLE Pviol_CLRNeg : X01 := ‘0’;

VARIABLE Violation : X01 := ‘0’;

-- Output Glitch Detection Variables

VARIABLE Q0_GlitchData : VitalGlitchDataType;

VARIABLE Q7_GlitchData : VitalGlitchDataType;

They are followed by the timing check section with its constraint procedure calls:

BEGIN

-- Timing Check Section

IF (TimingChecksOn) THEN

200 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 200

VitalSetupHoldCheck (

TestSignal => S0In,

TestSignalName => “S0”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

SetupHigh => tsetup_S0_CLK,

SetupLow => tsetup_S0_CLK,

HoldHigh => thold_S0_CLK,

HoldLow => thold_S0_CLK,

CheckEnabled => true,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_S0_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_S0_CLK

);

VitalSetupHoldCheck (

TestSignal => S1In,

TestSignalName => “S1”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

SetupHigh => tsetup_S0_CLK,

SetupLow => tsetup_S0_CLK,

HoldHigh => thold_S0_CLK,

HoldLow => thold_S0_CLK,

CheckEnabled => true,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_S1_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_S1_CLK

);

VitalSetupHoldCheck (

TestSignal => SLIn,

TestSignalName => “SL”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

SetupHigh => tsetup_SL_CLK,

SetupLow => tsetup_SL_CLK,

HoldHigh => thold_SL_CLK,

HoldLow => thold_SL_CLK,

13.2 The Basic Wrapper 201

MAG13 8/18/04 3:08 PM Page 201

CheckEnabled => true,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_SL_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_SL_CLK

);

VitalSetupHoldCheck (

TestSignal => SRIn,

TestSignalName => “SR”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

SetupHigh => tsetup_SL_CLK,

SetupLow => tsetup_SL_CLK,

HoldHigh => thold_SL_CLK,

HoldLow => thold_SL_CLK,

CheckEnabled => true,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_SR_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_SR_CLK

);

VitalSetupHoldCheck (

TestSignal => IO_w,

TestSignalName => “IO”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

SetupHigh => tsetup_IO0_CLK,

SetupLow => tsetup_IO0_CLK,

HoldHigh => thold_IO0_CLK,

HoldLow => thold_IO0_CLK,

CheckEnabled => true,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_IO_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_IO_CLK

);

202 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 202

VitalRecoveryRemovalCheck (

TestSignal => CLRIn,

TestSignalName => “CLRNeg”,

RefSignal => CLKIn,

RefSignalName => “CLK”,

Recovery => trecovery_CLRNeg_CLK,

ActiveLow => TRUE,

CheckEnabled => TRUE,

RefTransition => ‘/’,

HeaderMsg => InstancePath & partID,

TimingData => TD_CLRNeg_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Rviol_CLRNeg_CLK

);

VitalPeriodPulseCheck (

TestSignal => CLKIn,

TestSignalName => “CLK_ipd”,

Period => tperiod_CLK_posedge,

PulseWidthHigh => tpw_CLK_posedge,

PulseWidthLow => tpw_CLK_negedge,

CheckEnabled => TRUE,

HeaderMsg => InstancePath & partID,

PeriodData => PD_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLK

);

VitalPeriodPulseCheck (

TestSignal => CLRIn,

TestSignalName => “CLRNeg”,

PulseWidthLow => tpw_CLRNeg_negedge,

CheckEnabled => TRUE,

HeaderMsg => InstancePath & partID,

PeriodData => PD_CLRNeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLRNeg

);

END IF;

Because IO_w was used in its vector form in its setup/hold check, only one proce-
dure call was required, rather than eight.

13.2 The Basic Wrapper 203

MAG13 8/18/04 3:08 PM Page 203

The final element in supporting the IO bus is the loop:

FOR i IN IO_w’range LOOP

IF IO_w(i) = ‘1’ OR IO_w(i) = ‘0’ THEN

IO_zd(i) <= IO_w(i);

ELSE

IO_zd(i) <= ‘Z’;

END IF;

END LOOP;

In the loop the strength of each bit in IO_w is tested. If the bit has a strong value
it must be coming from the RTL model, so it is assigned to IO_zd. If it has a weak
value the RTL model is driving ‘Z’, so IO_zd gets ‘Z’.

What remains of the wrapper is the path delays. The two scalar outputs have
their path delay procedure calls within the timing process:

-- Path Delay Section

VitalPathDelay01 (

OutSignal => Q0Out,

OutSignalName => “Q0”,

OutTemp => Q0_zd,

Paths => (

0 => (InputChangeTime => CLRIn’LAST_EVENT,

PathDelay => tpd_CLRNeg_Q0,

PathCondition => true),

1 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_Q0,

PathCondition => true)),

GlitchData => Q0_GlitchData);

VitalPathDelay01 (

OutSignal => Q7Out,

OutSignalName => “Q7”,

OutTemp => Q7_zd,

Paths => (

0 => (InputChangeTime => CLRIn’LAST_EVENT,

PathDelay => tpd_CLRNeg_Q0,

PathCondition => true),

1 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_Q0,

PathCondition => true)),

GlitchData => Q7_GlitchData);

END PROCESS;

204 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 204

In order to reduce the code size, the IO bus has its path delay in a generate state-
ment outside the process:

IO_OUT : FOR i IN IO_zd’range GENERATE

PROCESS(IO_zd(i))

VARIABLE IO_GlitchData : VitalGlitchDataType;

BEGIN

VitalPathDelay01Z (

OutSignal => IOOut(i),

OutSignalName => “IO”,

OutTemp => IO_zd(i),

Paths => (

0 => (InputChangeTime => CLRIn’LAST_EVENT,

PathDelay =>

VitalExtendToFillDelay(tpd_CLRNeg_IO0),

PathCondition => true),

1 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay =>

VitalExtendToFillDelay(tpd_CLK_IO0),

PathCondition => true),

2 => (InputChangeTime => OE1In’LAST_EVENT,

PathDelay => tpd_OE1Neg_IO0,

PathCondition => true),

3 => (InputChangeTime => OE2In’LAST_EVENT,

PathDelay => tpd_OE1Neg_IO0,

PathCondition => true),

4 => (InputChangeTime => S0In’LAST_EVENT,

PathDelay => tpd_S0_IO0,

PathCondition => true),

5 => (InputChangeTime => S1In’LAST_EVENT,

PathDelay => tpd_S0_IO0,

PathCondition => true)),

GlitchData => IO_GlitchData);

END PROCESS;

END GENERATE IO_OUT;

END BLOCK;

END vhdl_behavioral;

This is a relatively simple wrapper for a very small FPGA. Still, it came to 480
lines. Do not despair, as most of it can be generated by a perl script or can be cut
and pasted from other models.

13.2 The Basic Wrapper 205

MAG13 8/18/04 3:08 PM Page 205

13.3 A Wrapper for Verilog RTL

It is possible your RTL model is written in Verilog. Verilog works fine for synthesis,
but you may find VHDL is better supported for board-level verification. If so, don’t
worry. The exact same wrapper will work for Verilog RTL. As long as you have a
bilingual simulator and you make the port names in the component declaration
match those in your Verilog module, there is no difference:

COMPONENT fpga299

PORT (

CLR_L : IN std_logic;

OE1_L : IN std_logic;

OE2_L : IN std_logic;

S0 : IN std_logic;

S1 : IN std_logic;

CLK : IN std_logic;

IO : INOUT std_logic_vector(7 downto 0);

Q0 : OUT std_logic;

Q7 : OUT std_logic;

SL : IN std_logic;

SR : IN std_logic

);

END COMPONENT;

Just make sure to compile the Verilog into the same work library as the wrapper.
Some simulation packages have utilities to make the job easier. ModelSim, for

example, has a utility called vgencomp that will read your compiled Verilog model
and generate a matching VHDL component declaration.

13.4 Modeling Delays in Designs with Internal Clocks

In the example wrapper, all path delays were timed to a transition on an input port.
This will not work for many modern ASIC/FPGA designs. Many designs today take
advantage of internal DLLs, PLLs, or clock multipliers. If an output is clocked by
an internally generated signal, another strategy is needed for correctly delaying the
output signals.

In most cases the FPGA timing tool will report the delay of a signal relative to
some input. However, that input may not be the signal that actually clocks the
output. The following code is from the tco section of a timing results file (.tao)
file from an Altera design:

Path Number : 175

Slack : 0.008ns

Required tco : 4.000ns

Actual tco : 3.992ns

206 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 206

Source Name : mDFB:DFB|mDRAM80:mDFBMem|mDRAM80IO:mDRAM80IO|cke

Destination Name : dfb_cke

Source Clock Name : acqdet_clkin

Although the source clock is said to be acqdet_clkin, in this design it is really a
PLL-generated clock based on acqdet_clkin but running at twice the frequency.

Because an RTL model has no internal delays, that delay value can be applied
to the signal referencing only itself. The following code shows a path delay state-
ment that references a single signal:

VitalPathDelay01 (

OutSignal => DFBCKE0,

OutSignalName => “DFBCKE0”,

OutTemp => DFBCKE0_zd,

GlitchData => DFBCKE0_GlitchData,

XOn => XOn,

MsgOn => MsgOn,

Paths => (

0 => (InputChangeTime => DFBCKE0_zd’LAST_EVENT,

PathDelay => tpd_ACQDETCLKIN_DFBCKE0,

PathCondition => TRUE)

)

);

In this procedure call, DFBCKE0_zd is the input signal and the event on which
the delay will be based. If the InputChangeTime was specified as
ACQDETCLKIN¢LAST_ EVENT, incorrect outputs would result.

The generic tpd_ACQDETCLKIN_DFBCKE0 is backannotated through SDF with a
value of 3.992ns. It is not possible to use internal states to control path selection
in a wrapper.

13.5 Caveats

The implementation of timing constraints in a wrapper is subject to some restric-
tions. First, internal state cannot be used to enable or disable timing checks. They
also may not be used in the selection of timing paths. Likewise, internal signals are
not accessible for use in timing checks or path selection.

In many models it is possible to use the violation flags to control some aspect
of a model’s behavior, such as corrupting memory if there is a violation during a
write cycle. Similar opportunities may not exist in a wrapper.

In ASIC/FPGA design, it is common that differential inputs and/or outputs are
handled by I/O cell selection. The differential signals do not appear as ports in the
RTL model. However, the differential I/O will be included in the schematic. In such
cases the wrapper must serve as a mediator between the schematic and the RTL
model.

13.5 Caveats 207

MAG13 8/18/04 3:08 PM Page 207

For differential outputs the solution is as simple as generating the compliment
through inversion:

DFBCK1N_zd <= not(DFBCK1int);

DFBCK1_zd <= DFBCK1int;

DFBCK0N_zd <= not(DFBCK0int);

DFBCK0_zd <= DFBCK0int;

The solutions range from just passing through one of the two signals to more
complex schemes that check that both signals are active and compliment each
other. The best solution depends on the design and verification requirements.

13.6 Summary

The complexity of the interfaces of today’s ASICs and FPGAs make board-level
simulation desirable if not a necessity. Gate-level simulation is too slow and occurs
too late in the design process to fill this need. In this chapter, a method has been
presented that allows timing constraints and propagation delays to be wrapped
around the RTL code of an ASIC/FPGA so they may be used in board-level verifi-
cation before chip-level place and route has been performed.

The method closely resembles the modeling of an off-the-shelf component,
except the RTL model is instantiated instead of coding a behavioral model. Special
care must be taken in dealing with ports of mode INOUT and with outputs clocked
by internally generated signals.

208 Chapter 13 Adding Timing to Your RTL Code

MAG13 8/18/04 3:08 PM Page 208

14

209

C

H

A

P

T

E

R

Modeling Memories

Memories are among the most frequently modeled components. How they are
modeled can determine not just the performance, but the very practicality of board-
level simulation.

Many boards have memory on them, and FPGA designs frequently interface to
one or more types of memory. These are not the old asynchronous static RAMs of
more innocent times. These memories are pipelined Zero Bus Turnaround (ZBT)
synchronous static RAMs (SSRAM), multibanked Synchronous Dynamic RAMs
(SDRAM), or Double Data Rate (DDR) DRAMs. The list goes on and complexities
go up. Verify the interfaces or face the consequences.

Just as the memories have become complex, so have the models. There are
several issues specific to memory models. How they are dealt with will determine
the accuracy, performance, and resource requirements of the models.

14.1 Memory Arrays

There are a number of ways memory arrays can be modeled. The most obvious
and commonly used is an array of bits. This is the method that most closely resem-
bles the way a memory component is constructed. Because the model’s ports are
of type std_ulogic, we can create an array of type std_logic_vector for our
memory:

TYPE MemStore IS ARRAY (0 to 255) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

This has the advantage of allowing reads and writes to the array without any type
conversions.

However, using an std_logic_vector array is expensive in terms of simula-
tion memory. Std_logic is a 9-value type, which is more values than we need or
can use. A typical VHDL simulator will use 1B of simulation memory for each
std_logic bit. A 1 megabit memory array will consume about 1MB of computer
memory. At that rate, the amount of memory in a design can be too large to
simulate.

In real hardware, memory can contain only 1s and 0s. That might suggest the
use of type bit_vector, but the point of simulation is to debug and verify a design

MAG14 8/18/04 3:06 PM Page 209

210 Chapter 14 Modeling Memories

in an environment that makes it easier than debugging real hardware. It is useful
if a read from a memory location that has never been written to gives a unique
result. Although real hardware may contain random values, ‘U’s are more inform-
ative for simulation because they make it easy to see that an uninitialized location
has been accessed. Likewise, if a timing violation occurs during a memory write,
the simulation model usually emits a warning message. Ideally that location should
also contain an invalid word that is recognizable as such. On reading that corrupt
location, the user should see ‘X’s.

So it seems type UX01 would provide all the values required. We could declare
our memory array:

TYPE MemStore IS ARRAY (0 to 255) OF UX01_VECTOR(7 DOWNTO 0);

Unfortunately, because UX01 is a subtype of std_logic, most simulators use the
same amount of space to store type UX01 as they do to store std_logic.

14.1.1 The Shelor Method

One option for modeling memories is the Shelor Method. In 1996, Charles
Shelor wrote an article in the VHDL Times as part of his VHDL Designer column
[7], in which he discussed the problem of modeling large memories. He described
several possible storage mechanisms. The method presented here is the one he
favored.

Shelor noted that by converting the vector to a number of type natural we
can store values in much less space. Of course, there are limitations. The largest
integer guaranteed by the VHDL standard is 231 - 1, meaning a 30-bit word is
the most you can safely model. It turns out this is not a problem. Few memory
components use word sizes larger than 18 bits and most are either 8 or 9 bits
wide.

So a range of 0 to 255 is sufficient for an 8-bit word, but that assumes every bit
is either a 1 or a 0. It would be good to also allow words to be uninitialized or
corrupted. To do so, just extend the range down to -2.

A generic memory array declaration is

-- Memory array declaration

TYPE MemStore IS ARRAY (0 to TotalLOC) OF INTEGER

RANGE -2 TO MaxData;

where -2 is an uninitialized word, -1 is a corrupt word, and 0 to MaxData are valid
data. This method does not lend itself to manipulation of individual bits, but that
is rarely called for in a component model.

Simulators tested store integers in 4B, so each word of memory, up to 18 bits,
will occupy 4B of simulator memory. This is a considerable improvement over using
arrays of std_logic_vector.

MAG14 8/18/04 3:06 PM Page 210

14.1.2 The VITAL_Memory Package

Another option is to use the VITAL_Memory package released with VITAL2000.
This package has an extensive array of features specific to memory modeling,
including a method of declaring a memory array that results in a specific form of
storage. In Figure 14.1, a memory array using the VITAL2000 memory package is
declared.

In Figure 14.1 a procedure call is used to create the memory array.
The storage efficiency is very good, a 1B word occupies only 2B of memory, but

this holds true only for 8-bit words. A 9-bit word occupies 4B of memory, which
is the same as the Shelor method.

14.2 Modeling Memory Functionality

There are two distinct ways of modeling memory functionality. One is to use stan-
dard VHDL behavioral modeling methods. The other is to use the VITAL2000
memory package. Some features of the memory package can be used in behavioral
models.

Let us look at how to model a generic SRAM using each method. The compo-
nent modeled is a 4MB SRAM with an 8-bit word width.

14.2.1 Using the Behavioral (Shelor) Method

The model entity has the same general features as previous models. It begins with
copyright, history, description, and library declarations:

-- File Name: sram4m8.vhd

-- Copyright (C) 2001 Free Model Foundry; http://vhdl.org/fmf/

--

-- This program is free software; you can redistribute it and/or modify

-- it under the terms of the GNU General Public License version 2 as

14.2 Modeling Memory Functionality 211

 -- VITAL Memory Declaration
 VARIABLE Memdat : VitalMemoryDataType :=
 VitalDeclareMemory (
 NoOfWords => TotalLOC,
 NoOfBitsPerWord => DataWidth,
 NoOfBitsPerSubWord => DataWidth,
 MemoryLoadFile => MemLoadFileName,
 BinaryLoadFile => FALSE
);

Figure 14.1 VITAL2000 memory array declaration

MAG14 8/18/04 3:06 PM Page 211

212 Chapter 14 Modeling Memories

-- published by the Free Software Foundation.

--

-- MODIFICATION HISTORY:

--

-- version: | author: | mod date: | changes made:

-- V1.0 R. Munden 01 MAY 27 Initial release

--

-- PART DESCRIPTION:

--

-- Library: MEM

-- Technology: not ECL

-- Part: SRAM4M8

--

-- Description: 4M X 8 SRAM

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;

USE IEEE.VITAL_timing.ALL;

USE IEEE.VITAL_primitives.ALL;

LIBRARY FMF; USE FMF.gen_utils.ALL;

USE FMF.conversions.ALL;

The library declarations include the FMF conversions library. It is needed for con-
verting between std_logic_vector and integer types.

The generic declarations contain the usual interconnect, path delay, setup and
hold, and pulse width generics, as well as the usual control parameters:

-- ENTITY DECLARATION

ENTITY sram4m8 IS

GENERIC (

-- tipd delays: interconnect path delays

tipd_OENeg : VitalDelayType01 := VitalZeroDelay01;

tipd_WENeg : VitalDelayType01 := VitalZeroDelay01;

tipd_CENeg : VitalDelayType01 := VitalZeroDelay01;

tipd_CE : VitalDelayType01 := VitalZeroDelay01;

tipd_D0 : VitalDelayType01 := VitalZeroDelay01;

tipd_D1 : VitalDelayType01 := VitalZeroDelay01;

tipd_D2 : VitalDelayType01 := VitalZeroDelay01;

tipd_D3 : VitalDelayType01 := VitalZeroDelay01;

tipd_D4 : VitalDelayType01 := VitalZeroDelay01;

tipd_D5 : VitalDelayType01 := VitalZeroDelay01;

tipd_D6 : VitalDelayType01 := VitalZeroDelay01;

tipd_D7 : VitalDelayType01 := VitalZeroDelay01;

MAG14 8/18/04 3:06 PM Page 212

tipd_A0 : VitalDelayType01 := VitalZeroDelay01;

tipd_A1 : VitalDelayType01 := VitalZeroDelay01;

tipd_A2 : VitalDelayType01 := VitalZeroDelay01;

tipd_A3 : VitalDelayType01 := VitalZeroDelay01;

tipd_A4 : VitalDelayType01 := VitalZeroDelay01;

tipd_A5 : VitalDelayType01 := VitalZeroDelay01;

tipd_A6 : VitalDelayType01 := VitalZeroDelay01;

tipd_A7 : VitalDelayType01 := VitalZeroDelay01;

tipd_A8 : VitalDelayType01 := VitalZeroDelay01;

tipd_A9 : VitalDelayType01 := VitalZeroDelay01;

tipd_A10 : VitalDelayType01 := VitalZeroDelay01;

tipd_A11 : VitalDelayType01 := VitalZeroDelay01;

tipd_A12 : VitalDelayType01 := VitalZeroDelay01;

tipd_A13 : VitalDelayType01 := VitalZeroDelay01;

tipd_A14 : VitalDelayType01 := VitalZeroDelay01;

tipd_A15 : VitalDelayType01 := VitalZeroDelay01;

tipd_A16 : VitalDelayType01 := VitalZeroDelay01;

tipd_A17 : VitalDelayType01 := VitalZeroDelay01;

tipd_A18 : VitalDelayType01 := VitalZeroDelay01;

tipd_A19 : VitalDelayType01 := VitalZeroDelay01;

tipd_A20 : VitalDelayType01 := VitalZeroDelay01;

tipd_A21 : VitalDelayType01 := VitalZeroDelay01;

-- tpd delays

tpd_OENeg_D0 : VitalDelayType01Z := UnitDelay01Z;

tpd_CENeg_D0 : VitalDelayType01Z := UnitDelay01Z;

tpd_A0_D0 : VitalDelayType01 := UnitDelay01;

-- tpw values: pulse widths

tpw_WENeg_negedge : VitalDelayType := UnitDelay;

tpw_WENeg_posedge : VitalDelayType := UnitDelay;

-- tsetup values: setup times

tsetup_D0_WENeg : VitalDelayType := UnitDelay;

tsetup_D0_CENeg : VitalDelayType := UnitDelay;

-- thold values: hold times

thold_D0_WENeg : VitalDelayType := UnitDelay;

thold_D0_CENeg : VitalDelayType := UnitDelay;

-- generic control parameters

InstancePath : STRING := DefaultInstancePath;

TimingChecksOn : BOOLEAN := DefaultTimingChecks;

MsgOn : BOOLEAN := DefaultMsgOn;

XOn : BOOLEAN := DefaultXOn;

SeverityMode : SEVERITY_LEVEL := WARNING;

-- For FMF SDF technology file usage

TimingModel : STRING := DefaultTimingModel

);

14.2 Modeling Memory Functionality 213

MAG14 8/18/04 3:06 PM Page 213

214 Chapter 14 Modeling Memories

The port declarations are equally straightforward:

PORT (

A0 : IN std_ulogic := ‘X’;

A1 : IN std_ulogic := ‘X’;

A2 : IN std_ulogic := ‘X’;

A3 : IN std_ulogic := ‘X’;

A4 : IN std_ulogic := ‘X’;

A5 : IN std_ulogic := ‘X’;

A6 : IN std_ulogic := ‘X’;

A7 : IN std_ulogic := ‘X’;

A8 : IN std_ulogic := ‘X’;

A9 : IN std_ulogic := ‘X’;

A10 : IN std_ulogic := ‘X’;

A11 : IN std_ulogic := ‘X’;

A12 : IN std_ulogic := ‘X’;

A13 : IN std_ulogic := ‘X’;

A14 : IN std_ulogic := ‘X’;

A15 : IN std_ulogic := ‘X’;

A16 : IN std_ulogic := ‘X’;

A17 : IN std_ulogic := ‘X’;

A18 : IN std_ulogic := ‘X’;

A19 : IN std_ulogic := ‘X’;

A20 : IN std_ulogic := ‘X’;

A21 : IN std_ulogic := ‘X’;

D0 : INOUT std_ulogic := ‘X’;

D1 : INOUT std_ulogic := ‘X’;

D2 : INOUT std_ulogic := ‘X’;

D3 : INOUT std_ulogic := ‘X’;

D4 : INOUT std_ulogic := ‘X’;

D5 : INOUT std_ulogic := ‘X’;

D6 : INOUT std_ulogic := ‘X’;

D7 : INOUT std_ulogic := ‘X’;

OENeg : IN std_ulogic := ‘X’;

WENeg : IN std_ulogic := ‘X’;

CENeg : IN std_ulogic := ‘X’;

CE : IN std_ulogic := ‘X’

);

ATTRIBUTE VITAL_LEVEL0 of sram4m8 : ENTITY IS TRUE;

END sram4m8;

Up to this point, the behavioral model and the VITAL2000 model are identical.
Next comes the VITAL_LEVEL0 architecture, beginning with the constant and

signal declarations:

MAG14 8/18/04 3:06 PM Page 214

-- ARCHITECTURE DECLARATION

ARCHITECTURE vhdl_behavioral of sram4m8 IS

ATTRIBUTE VITAL_LEVEL0 of vhdl_behavioral : ARCHITECTURE IS TRUE;

--
-- Note that this model uses the Shelor method of modeling large memory

-- arrays. Data is stored as type INTEGER with the value -2 representing

-- an uninitialized location and the value -1 representing a corrupted

-- location.
--

CONSTANT partID : STRING := “SRAM 4M X 8”;

CONSTANT MaxData : NATURAL := 255;

CONSTANT TotalLOC : NATURAL := 4194303;

CONSTANT HiAbit : NATURAL := 21;

CONSTANT HiDbit : NATURAL := 7;

CONSTANT DataWidth : NATURAL := 8;

SIGNAL D0_ipd : std_ulogic := ‘U’;

SIGNAL D1_ipd : std_ulogic := ‘U’;

SIGNAL D2_ipd : std_ulogic := ‘U’;

SIGNAL D3_ipd : std_ulogic := ‘U’;

SIGNAL D4_ipd : std_ulogic := ‘U’;

SIGNAL D5_ipd : std_ulogic := ‘U’;

SIGNAL D6_ipd : std_ulogic := ‘U’;

SIGNAL D7_ipd : std_ulogic := ‘U’;

SIGNAL D8_ipd : std_ulogic := ‘U’;

SIGNAL A0_ipd : std_ulogic := ‘U’;

SIGNAL A1_ipd : std_ulogic := ‘U’;

SIGNAL A2_ipd : std_ulogic := ‘U’;

SIGNAL A3_ipd : std_ulogic := ‘U’;

SIGNAL A4_ipd : std_ulogic := ‘U’;

SIGNAL A5_ipd : std_ulogic := ‘U’;

SIGNAL A6_ipd : std_ulogic := ‘U’;

SIGNAL A7_ipd : std_ulogic := ‘U’;

SIGNAL A8_ipd : std_ulogic := ‘U’;

SIGNAL A9_ipd : std_ulogic := ‘U’;

SIGNAL A10_ipd : std_ulogic := ‘U’;

SIGNAL A11_ipd : std_ulogic := ‘U’;

SIGNAL A12_ipd : std_ulogic := ‘U’;

SIGNAL A13_ipd : std_ulogic := ‘U’;

SIGNAL A14_ipd : std_ulogic := ‘U’;

SIGNAL A15_ipd : std_ulogic := ‘U’;

SIGNAL A16_ipd : std_ulogic := ‘U’;

14.2 Modeling Memory Functionality 215

MAG14 8/18/04 3:06 PM Page 215

216 Chapter 14 Modeling Memories

SIGNAL A17_ipd : std_ulogic := ‘U’;

SIGNAL A18_ipd : std_ulogic := ‘U’;

SIGNAL A19_ipd : std_ulogic := ‘U’;

SIGNAL A20_ipd : std_ulogic := ‘U’;

SIGNAL A21_ipd : std_ulogic := ‘U’;

SIGNAL OENeg_ipd : std_ulogic := ‘U’;

SIGNAL WENeg_ipd : std_ulogic := ‘U’;

SIGNAL CENeg_ipd : std_ulogic := ‘U’;

SIGNAL CE_ipd : std_ulogic := ‘U’;

Manufacturers design memories in families, with the members differing only in
depth and width. The constants declared here are used to enable the creation of
models of memories within a family with a minimum amount of editing.

After the declarations, the architecture begins with the wire delay block:

BEGIN
--
-- Wire Delays
--
WireDelay : BLOCK

BEGIN

w_1: VitalWireDelay (OENeg_ipd, OENeg, tipd_OENeg);

w_2: VitalWireDelay (WENeg_ipd, WENeg, tipd_WENeg);

w_3: VitalWireDelay (CENeg_ipd, CENeg, tipd_CENeg);

w_4: VitalWireDelay (CE_ipd, CE, tipd_CE);

w_5: VitalWireDelay (D0_ipd, D0, tipd_D0);

w_6: VitalWireDelay (D1_ipd, D1, tipd_D1);

w_7: VitalWireDelay (D2_ipd, D2, tipd_D2);

w_8: VitalWireDelay (D3_ipd, D3, tipd_D3);

w_9: VitalWireDelay (D4_ipd, D4, tipd_D4);

w_10: VitalWireDelay (D5_ipd, D5, tipd_D5);

w_11: VitalWireDelay (D6_ipd, D6, tipd_D6);

w_12: VitalWireDelay (D7_ipd, D7, tipd_D7);

w_13: VitalWireDelay (A0_ipd, A0, tipd_A0);

w_14: VitalWireDelay (A1_ipd, A1, tipd_A1);

w_15: VitalWireDelay (A2_ipd, A2, tipd_A2);

w_16: VitalWireDelay (A3_ipd, A3, tipd_A3);

w_17: VitalWireDelay (A4_ipd, A4, tipd_A4);

w_18: VitalWireDelay (A5_ipd, A5, tipd_A5);

w_19: VitalWireDelay (A6_ipd, A6, tipd_A6);

w_20: VitalWireDelay (A7_ipd, A7, tipd_A7);

w_21: VitalWireDelay (A8_ipd, A8, tipd_A8);

w_22: VitalWireDelay (A9_ipd, A9, tipd_A9);

w_23: VitalWireDelay (A10_ipd, A10, tipd_A10);

w_24: VitalWireDelay (A11_ipd, A11, tipd_A11);

MAG14 8/18/04 3:06 PM Page 216

w_25: VitalWireDelay (A12_ipd, A12, tipd_A12);

w_26: VitalWireDelay (A13_ipd, A13, tipd_A13);

w_27: VitalWireDelay (A14_ipd, A14, tipd_A14);

w_28: VitalWireDelay (A15_ipd, A15, tipd_A15);

w_29: VitalWireDelay (A16_ipd, A16, tipd_A16);

w_30: VitalWireDelay (A17_ipd, A17, tipd_A17);

w_31: VitalWireDelay (A18_ipd, A18, tipd_A18);

w_32: VitalWireDelay (A19_ipd, A19, tipd_A19);

w_33: VitalWireDelay (A20_ipd, A20, tipd_A20);

w_34: VitalWireDelay (A21_ipd, A21, tipd_A21);

END BLOCK;

The model’s ports have been declared as scalars to facilitate the model’s use in a
schematic capture environment and to provide a means of backannotating indi-
vidual interconnect delays. However, in modeling the function of the memory it
is more convenient to use vectors. The mapping from scalar to vector and back is
best done within a block.

The block opens with a set of port declarations:

-- Main Behavior Block

Behavior: BLOCK

PORT (

AddressIn : IN std_logic_vector(HiAbit downto 0);

DataIn : IN std_logic_vector(HiDbit downto 0);

DataOut : OUT std_logic_vector(HiDbit downto 0);

OENegIn : IN std_ulogic := ‘U’;

WENegIn : IN std_ulogic := ‘U’;

CENegIn : IN std_ulogic := ‘U’;

CEIn : IN std_ulogic := ‘U’

);

Note that the data ports that were of type INOUT in the entity are split into sepa-
rate ports of type IN and type OUT in the block. Also note that the address and data
buses are sized using the constants declared at the top of the architecture.

The next step is the port map:

PORT MAP (

DataOut(0) => D0,

DataOut(1) => D1,

DataOut(2) => D2,

DataOut(3) => D3,

DataOut(4) => D4,

DataOut(5) => D5,

DataOut(6) => D6,

14.2 Modeling Memory Functionality 217

MAG14 8/18/04 3:06 PM Page 217

218 Chapter 14 Modeling Memories

DataOut(7) => D7,

DataIn(0) => D0_ipd,

DataIn(1) => D1_ipd,

DataIn(2) => D2_ipd,

DataIn(3) => D3_ipd,

DataIn(4) => D4_ipd,

DataIn(5) => D5_ipd,

DataIn(6) => D6_ipd,

DataIn(7) => D7_ipd,

AddressIn(0) => A0_ipd,

AddressIn(1) => A1_ipd,

AddressIn(2) => A2_ipd,

AddressIn(3) => A3_ipd,

AddressIn(4) => A4_ipd,

AddressIn(5) => A5_ipd,

AddressIn(6) => A6_ipd,

AddressIn(7) => A7_ipd,

AddressIn(8) => A8_ipd,

AddressIn(9) => A9_ipd,

AddressIn(10) => A10_ipd,

AddressIn(11) => A11_ipd,

AddressIn(12) => A12_ipd,

AddressIn(13) => A13_ipd,

AddressIn(14) => A14_ipd,

AddressIn(15) => A15_ipd,

AddressIn(16) => A16_ipd,

AddressIn(17) => A17_ipd,

AddressIn(18) => A18_ipd,

AddressIn(19) => A19_ipd,

AddressIn(20) => A20_ipd,

AddressIn(21) => A21_ipd,

OENegIn => OENeg_ipd,

WENegIn => WENeg_ipd,

CENegIn => CENeg_ipd,

CEIn => CE_ipd

);

In the port map, inputs to the block are associated with the delayed versions of the
model’s input ports. The block outputs are associated directly with the model’s
output ports. There is only one signal declaration in this block:

SIGNAL D_zd : std_logic_vector(HiDbit DOWNTO 0);

It is the zero delay data output.
The behavioral section of the model consists of a process. The process’s sensi-

tivity list includes all the input signals declared in the block:

MAG14 8/18/04 3:06 PM Page 218

BEGIN
--
-- Behavior Process
--
Behavior : PROCESS (OENegIn, WENegIn, CENegIn, CEIn, AddressIn, DataIn)

-- Timing Check Variables

VARIABLE Tviol_D0_WENeg : X01 := ‘0’;

VARIABLE TD_D0_WENeg : VitalTimingDataType;

VARIABLE Tviol_D0_CENeg : X01 := ‘0’;

VARIABLE TD_D0_CENeg : VitalTimingDataType;

VARIABLE Pviol_WENeg : X01 := ‘0’;

VARIABLE PD_WENeg : VitalPeriodDataType := VitalPeriodDataInit;

It is followed by the declarations for the timing check variables.
The memory array and functionality results variables are declared as follows:

-- Memory array declaration

TYPE MemStore IS ARRAY (0 to TotalLOC) OF INTEGER

RANGE -2 TO MaxData;

-- Functionality Results Variables

VARIABLE Violation : X01 := ‘0’;

VARIABLE DataDrive : std_logic_vector(HiDbit DOWNTO 0)

:= (OTHERS => ‘X’);

VARIABLE DataTemp : INTEGER RANGE -2 TO MaxData := -2;

VARIABLE Location : NATURAL RANGE 0 TO TotalLOC := 0;

VARIABLE MemData : MemStore;

Again, these take advantage of the constants declared at the top of the
architecture.

To avoid the need to test the control inputs for weak signals (‘L’ and ‘H’), “no
weak value” variables are declared for them:

-- No Weak Values Variables

VARIABLE OENeg_nwv : UX01 := ‘U’;

VARIABLE WENeg_nwv : UX01 := ‘U’;

VARIABLE CENeg_nwv : UX01 := ‘U’;

VARIABLE CE_nwv : UX01 := ‘U’;

and they are converted at the beginning of the process body:

BEGIN

OENeg_nwv := To_UX01 (s => OENegIn);

WENeg_nwv := To_UX01 (s => WENegIn);

CENeg_nwv := To_UX01 (s => CENegIn);

CE_nwv := To_UX01 (s => CEIn);

The timing check section comes near the top of the process body, as usual:

14.2 Modeling Memory Functionality 219

MAG14 8/18/04 3:06 PM Page 219

220 Chapter 14 Modeling Memories

-- Timing Check Section

IF (TimingChecksOn) THEN

VitalSetupHoldCheck (

TestSignal => DataIn,

TestSignalName => “Data”,

RefSignal => WENeg,

RefSignalName => “WENeg”,

SetupHigh => tsetup_D0_WENeg,

SetupLow => tsetup_D0_WENeg,

HoldHigh => thold_D0_WENeg,

HoldLow => thold_D0_WENeg,

CheckEnabled => (CENeg =‘0’ and CE =‘1’and OENeg =‘1’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & PartID,

TimingData => TD_D0_WENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_D0_WENeg);

VitalSetupHoldCheck (

TestSignal => DataIn,

TestSignalName => “Data”,

RefSignal => CENeg,

RefSignalName => “CENeg”,

SetupHigh => tsetup_D0_CENeg,

SetupLow => tsetup_D0_CENeg,

HoldHigh => thold_D0_CENeg,

HoldLow => thold_D0_CENeg,

CheckEnabled => (WENeg =‘0’ and OENeg =‘1’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & PartID,

TimingData => TD_D0_CENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_D0_CENeg);

VitalPeriodPulseCheck (

TestSignal => WENegIn,

TestSignalName => “WENeg”,

PulseWidthLow => tpw_WENeg_negedge,

PeriodData => PD_WENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_WENeg,

HeaderMsg => InstancePath & PartID,

CheckEnabled => TRUE);

MAG14 8/18/04 3:06 PM Page 220

Violation := Pviol_WENeg OR Tviol_D0_WENeg OR Tviol_D0_CENeg;

ASSERT Violation = ‘0’

REPORT InstancePath & partID & “: simulation may be” &

“ inaccurate due to timing violations”

SEVERITY SeverityMode;

END IF; -- Timing Check Section

This section is much shorter than it would have been if scalar signals had been used
for the data bus instead of vectored signals.

An assertion statement is used to warn the user whenever a timing violation
occurs. Corrupt data will also be written to memory when this happens, but
the user could find it difficult to determine the source of the corruption without
the assertion statement. The model’s logic is in the functional section. The
section begins by setting DataDrive, the output variable, to high impedance.
Then, if the component is selected for either a read or a write operation the
value of the address bus is translated to a natural and assigned to the variable
Location:

-- Functional Section

DataDrive := (OTHERS => ‘Z’);

IF (CE_nwv = ‘1’ AND CENeg_nwv = ‘0’) THEN

IF (OENeg_nwv = ‘0’ OR WENeg_nwv = ‘0’) THEN

Location := To_Nat(AddressIn);

IF (OENeg_nwv = ‘0’ AND WENeg_nwv = ‘1’) THEN

DataTemp := MemData(Location);

IF DataTemp >= 0 THEN

DataDrive := To_slv(DataTemp, DataWidth);

ELSIF DataTemp = -2 THEN

DataDrive := (OTHERS => ‘U’);

ELSE

DataDrive := (OTHERS => ‘X’);

END IF;

ELSIF (WENeg_nwv = ‘0’) THEN

IF Violation = ‘0’ THEN

DataTemp := To_Nat(DataIn);

ELSE

DataTemp := -1;

END IF;

MemData(Location) := DataTemp;

END IF;

END IF;

END IF;

14.2 Modeling Memory Functionality 221

MAG14 8/18/04 3:06 PM Page 221

222 Chapter 14 Modeling Memories

If the operation is a read, the Location variable is used as an index to the memory
array and the contents of that location assigned to DataTemp. DataTemp is tested
to see if it contains a nonnegative number. If so, it is valid and assigned to
DataDrive. If not, a -2 indicates the location is uninitialized and ‘U’s are assigned
to DataDrive. Anything else (-1) causes ‘X’s to be assigned.

If the operation is a write and there is no timing violation, the value of the data
bus is converted to a natural and assigned to DataTemp. If there is a timing viola-
tion, DataTemp is assigned a -1.

Finally, the element of the memory array indexed by Location is assigned the
value of DataTemp.

At the end of the process, the zero delay signal gets the value of DataDrive:

--
-- Output Section
--
D_zd <= DataDrive;

END PROCESS;

The model concludes with the output path delay. Because the output is a bus
(within the block), a generate statement is used to shorten the model:

-- Path Delay Processes generated as a function of data width

DataOut_Width : FOR i IN HiDbit DOWNTO 0 GENERATE

DataOut_Delay : PROCESS (D_zd(i))

VARIABLE D_GlitchData:VitalGlitchDataArrayType(HiDbit Downto 0);

BEGIN

VitalPathDelay01Z (

OutSignal => DataOut(i),

OutSignalName => “Data”,

OutTemp => D_zd(i),

Mode => OnEvent,

GlitchData => D_GlitchData(i),

Paths => (

0 => (InputChangeTime => OENeg_ipd’LAST_EVENT,

PathDelay => tpd_OENeg_D0,

PathCondition => TRUE),

1 => (InputChangeTime => CENeg_ipd’LAST_EVENT,

PathDelay => tpd_CENeg_D0,

PathCondition => TRUE),

2 => (InputChangeTime => AddressIn’LAST_EVENT,

PathDelay => VitalExtendToFillDelay(tpd_A0_D0),

PathCondition => TRUE)

)

);

MAG14 8/18/04 3:06 PM Page 222

END PROCESS;

END GENERATE;

END BLOCK;

END vhdl_behavioral;

Once again, one of the constants from the beginning of the architecture is used to
control the size of the generate. Using a generate statement requires a separate
process for the path delays, because although a process may reside within a gener-
ate, a generate statement may not be placed within a process.

14.2.2 Using the VITAL2000 Method

The VITAL2000 style memory model uses the same entity as the behavioral model,
so the entity will not be repeated here. The first difference is the VITAL attribute
in the architecture:

-- ARCHITECTURE DECLARATION

ARCHITECTURE vhdl_behavioral of sram4m8v2 IS

ATTRIBUTE VITAL_LEVEL1_MEMORY of vhdl_behavioral : ARCHITECTURE IS TRUE;

--
-- Note that this model uses the VITAL2000 method of modeling large memory
-- arrays.
--

Here the attribute is VITAL_LEVEL1_MEMORY. It is required to get the full compiler
benefits of a VITAL memory model.

From here the architecture is identical to the behavioral model for a while. The
same constants and signals are declared. The wire delay block is the same. The
behavior block is declared with the same ports and same port map. But the behav-
ior process is completely different. It begins with the process declaration and sen-
sitivity list:

BEGIN

--
-- Behavior Process
--

MemoryBehavior : PROCESS (OENegIn, WENegIn, CENegIn, CEIn, AddressIn,

DataIn)

Then comes the declaration of a constant of type VitalMemoryTableType:

CONSTANT Table_generic_sram : VitalMemoryTableType := (

-- --
-- CE, CEN, OEN, WEN, Addr, DI, act, DO
-- --
-- Address initiated read

(‘1’, ‘0’, ‘0’, ‘1’, ‘G’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘U’, ‘-’, ‘s’, ‘l’),

14.2 Modeling Memory Functionality 223

MAG14 8/18/04 3:06 PM Page 223

224 Chapter 14 Modeling Memories

-- Output Enable initiated read

(‘1’, ‘0’, ‘N’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘0’, ‘N’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

-- CE initiated read

(‘P’, ‘0’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘P’, ‘0’, ‘0’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

-- CEN initiated read

(‘1’, ‘N’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘N’, ‘0’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

-- Write Enable Implicit Read

(‘1’, ‘0’, ‘0’, ‘P’, ‘-’, ‘-’, ‘s’, ‘M’),

-- Write Enable initiated Write

(‘1’, ‘0’, ‘1’, ‘N’, ‘g’, ‘-’, ‘w’, ‘S’),

(‘1’, ‘0’, ‘1’, ‘N’, ‘u’, ‘-’, ‘c’, ‘S’),

-- CE initiated Write

(‘P’, ‘0’, ‘1’, ‘0’, ‘g’, ‘-’, ‘w’, ‘S’),

(‘P’, ‘0’, ‘1’, ‘0’, ‘u’, ‘-’, ‘c’, ‘S’),

-- CEN initiated Write

(‘1’, ‘N’, ‘1’, ‘0’, ‘g’, ‘-’, ‘w’, ‘Z’),

(‘1’, ‘N’, ‘1’, ‘0’, ‘u’, ‘-’, ‘c’, ‘Z’),

-- Address change during write

(‘1’, ‘0’, ‘1’, ‘0’, ‘*’, ‘-’, ‘c’, ‘Z’),

(‘1’, ‘0’, ‘1’, ‘X’, ‘*’, ‘-’, ‘c’, ‘Z’),

-- data initiated Write

(‘1’, ‘0’, ‘1’, ‘0’, ‘g’, ‘*’, ‘w’, ‘Z’),

(‘1’, ‘0’, ‘1’, ‘0’, ‘u’, ‘-’, ‘c’, ‘Z’),

(‘1’, ‘0’, ‘-’, ‘X’, ‘g’, ‘*’, ‘e’, ‘e’),

(‘1’, ‘0’, ‘-’, ‘X’, ‘u’, ‘*’, ‘c’, ‘S’),

-- if WEN is X

(‘1’, ‘0’, ‘1’, ‘r’, ‘g’, ‘*’, ‘e’, ‘e’),

(‘1’, ‘0’, ‘1’, ‘r’, ‘u’, ‘*’, ‘c’, ‘l’),

(‘1’, ‘0’, ‘-’, ‘r’, ‘g’, ‘*’, ‘e’, ‘S’),

(‘1’, ‘0’, ‘-’, ‘r’, ‘u’, ‘*’, ‘c’, ‘S’),

(‘1’, ‘0’, ‘1’, ‘f’, ‘g’, ‘*’, ‘e’, ‘e’),

(‘1’, ‘0’, ‘1’, ‘f’, ‘u’, ‘*’, ‘c’, ‘l’),

(‘1’, ‘0’, ‘-’, ‘f’, ‘g’, ‘*’, ‘e’, ‘S’),

(‘1’, ‘0’, ‘-’, ‘f’, ‘u’, ‘*’, ‘c’, ‘S’),

MAG14 8/18/04 3:06 PM Page 224

-- OEN is unasserted

(‘-’, ‘-’, ‘1’, ‘-’, ‘-’, ‘-’, ‘s’, ‘Z’),

(‘1’, ‘0’, ‘P’, ‘-’, ‘-’, ‘-’, ‘s’, ‘Z’),

(‘1’, ‘0’, ‘r’, ‘-’, ‘-’, ‘-’, ‘s’, ‘l’),

(‘1’, ‘0’, ‘f’, ‘-’, ‘-’, ‘-’, ‘s’, ‘l’),

(‘1’, ‘0’, ‘1’, ‘-’, ‘-’, ‘-’, ‘s’, ‘Z’)

);

This table entirely defines the function of the memory model. The mechanics of a
VITAL memory table are described in Chapter 7, but let us look at the table and
see how it compares to the code in the behavioral model.

Columns CE, CEN, OEN, and WEN are the direct inputs. They are the control
signals. Columns Addr and DI are the interpreted inputs. They represent the
address and data buses, respectively. The act column specifies the memory action
and the DO column specifies the output action. The table is searched from top to
bottom until a match is found.

In the first section, an address initiated read is described:

-- --
-- CE, CEN, OEN, WEN, Addr, DI, act, DO
-- --
-- Address initiated read

(‘1’, ‘0’, ‘0’, ‘1’, ‘G’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘U’, ‘-’, ‘s’, ‘l’),

For either line to be selected, CE and WEN, the chip enable and write enable, must
be high. Write enable is an active low signal. In addition, CEN and OEN, also active
low signals, must be low. If the address bus transitions to any good value (no ‘X’s),
the memory location indexed by the address bus retains its previous value and the
output bus gets the value of the memory location. Otherwise, if the address bus
transitions to any unknown value (any bit is ‘X’), the output gets a corrupt (‘X’)
value.

If there is no match in the first section, the next section, describing an output
enable initiated read, is searched:

-- --
-- CE, CEN, OEN, WEN, Addr, DI, act, DO
-- --
-- Output Enable initiated read

(‘1’, ‘0’, ‘N’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘0’, ‘N’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

(‘1’, ‘0’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

The two chip enables, CE and CEN, must be active and WEN inactive. If there is a
falling edge or a low on OEN (1st and 3d lines) and the address bus has a good and
steady (no transition) value, the value of the memory location is placed on the
output. Otherwise, if OEN is falling (but steady) and the address is unknown (2nd
line), the output is corrupted.

14.2 Modeling Memory Functionality 225

MAG14 8/18/04 3:06 PM Page 225

226 Chapter 14 Modeling Memories

If there is no match in the previous sections, the next section, describing a chip
enable initiated read is searched:

-- --
-- CE, CEN, OEN, WEN, Addr, DI, act, DO
-- --
-- CE initiated read

(‘P’, ‘0’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘P’, ‘0’, ‘0’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

CEN and OEN must be active and WEN inactive. If there is a rising edge on CE and
the address bus has a good and steady (no transition) value, the value of the
memory location is placed on the output. Otherwise, if the address is unknown
(but steady), the output is corrupted.

If there is no match in the previous sections, the next section, describing a chip
enable initiated read is searched:

-- --
-- CE, CEN, OEN, WEN, Addr, DI, act, DO
-- --
-- CEN initiated read

(‘1’, ‘N’, ‘0’, ‘1’, ‘g’, ‘-’, ‘s’, ‘m’),

(‘1’, ‘N’, ‘0’, ‘1’, ‘u’, ‘-’, ‘s’, ‘l’),

CE and OEN must be active and WEN inactive. If there is a falling edge on CEN and
the address bus has a good and steady (no transition) value, the value of the
memory location is placed on the output. Otherwise, if the address is unknown
(but steady), the output is corrupted.

The sections of the table just described correspond to the following lines of the
behavioral model:

IF (CE_nwv = ‘1’ AND CENeg_nwv = ‘0’) THEN

IF (OENeg_nwv = ‘0’ OR WENeg_nwv = ‘0’) THEN

Location := To_Nat(AddressIn);

IF (OENeg_nwv = ‘0’ AND WENeg_nwv = ‘1’) THEN

DataTemp := MemData(Location);

IF DataTemp >= 0 THEN

DataDrive := To_slv(DataTemp, DataWidth);

ELSIF DataTemp = -2 THEN

DataDrive := (OTHERS => ‘U’);

ELSE

DataDrive := (OTHERS => ‘X’);

END IF;

There are some differences. Although the VITAL model appears to be more
complex, it does not require type conversions or special handling of uninitialized
or corrupt locations. If a timing violation occurs during a read, the VITAL model
will output ‘X’s. The behavioral model will send a warning message to the user

MAG14 8/18/04 3:06 PM Page 226

but place valid data on the output bus. The VITAL modeling method provides more
precise control of model behavior. How often that level of precision is required
remains to be seen.

Continuing with the rest of the VITAL model process declarations, we have the
following:

CONSTANT OENeg_D_Delay : VitalDelayArrayType01Z (HiDbit downto 0) :=

(OTHERS => tpd_OENeg_D0);

CONSTANT CENeg_D_Delay : VitalDelayArrayType01Z (HiDbit downto 0) :=

(OTHERS => tpd_CENeg_D0);

CONSTANT Addr_D_Delay : VitalDelayArrayType01 (175 downto 0) :=

(OTHERS => tpd_A0_D0);

These constants are arrays of delays. A different delay could be assigned to every
path from each input to each output. For the address to data out path, there are
22 inputs and 8 outputs. This method allows the assignment of 176 different delay
values for address to data out. Of course, the same thing is possible in a behavior
model; it would just take much more code. Although such detailed timing may be
useful for memory embedded in an ASIC, the intended target of the VITAL_Memory
package, it is rarely, if ever, required in component modeling.

The declaration for the timing check variables is the same as in the behavioral
model:

-- Timing Check Variables

VARIABLE Tviol_D0_WENeg : X01 := ‘0’;

VARIABLE TD_D0_WENeg : VitalTimingDataType;

VARIABLE Tviol_D0_CENeg : X01 := ‘0’;

VARIABLE TD_D0_CENeg : VitalTimingDataType;

VARIABLE Pviol_WENeg : X01 := ‘0’;

VARIABLE PD_WENeg : VitalPeriodDataType := VitalPeriodDataInit;

Although the VITAL_Memory package has its own set of timing check procedures,
they are not used in this model. The more generic procedures are adequate in this
case and easier to work with.

The memory declaration follows:

-- VITAL Memory Declaration

VARIABLE Memdat : VitalMemoryDataType :=

VitalDeclareMemory (

NoOfWords => TotalLOC,

NoOfBitsPerWord => DataWidth,

NoOfBitsPerSubWord => DataWidth,

-- MemoryLoadFile => MemLoadFileName,

BinaryLoadFile => FALSE

);

14.2 Modeling Memory Functionality 227

MAG14 8/18/04 3:06 PM Page 227

228 Chapter 14 Modeling Memories

The VITAL_Memory package uses a procedure call for the memory array declara-
tion. Included in the procedure is the ability to preload part or all of the memory
array from a binary or ASCII file. Preloading memories is discussed later in this
chapter.

The functionality results variables

-- Functionality Results Variables

VARIABLE Violation : X01 := ‘0’;

VARIABLE D_zd : std_logic_vector(HiDbit DOWNTO 0);

VARIABLE Prevcntls : std_logic_vector(0 to 3);

VARIABLE PrevData : std_logic_vector(HiDbit downto 0);

VARIABLE Prevaddr : std_logic_vector(HiAbit downto 0);

VARIABLE PFlag : VitalPortFlagVectorType(0 downto 0);

VARIABLE Addrvalue : VitalAddressValueType;

VARIABLE OENegChange : TIME := 0 ns;

VARIABLE CENegChange : TIME := 0 ns;

VARIABLE AddrChangeArray : VitalTimeArrayT(HiAbit downto 0);

VARIABLE D_GlitchData : VitalGlitchDataArrayType(HiDbit Downto 0);

VARIABLE DSchedData : VitalMemoryScheduleDataVectorType

(HiDbit Downto 0);

include several that are specific to VITAL_Memory models, as discussed in Chapter 7.
The process begins with a timing check section similar to the one in the behav-

ior model:

BEGIN

--
-- Timing Check Section
--

IF (TimingChecksOn) THEN

VitalSetupHoldCheck (

TestSignal => DataIn,

TestSignalName => “Data”,

RefSignal => WENeg,

RefSignalName => “WENeg”,

SetupHigh => tsetup_D0_WENeg,

SetupLow => tsetup_D0_WENeg,

HoldHigh => thold_D0_WENeg,

HoldLow => thold_D0_WENeg,

CheckEnabled => (CENeg = ‘0’ and CE = ‘1’and OENeg = ‘1’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & PartID,

TimingData => TD_D0_WENeg,

XOn => XOn,

MAG14 8/18/04 3:06 PM Page 228

MsgOn => MsgOn,

Violation => Tviol_D0_WENeg);

VitalSetupHoldCheck (

TestSignal => DataIn,

TestSignalName => “Data”,

RefSignal => CENeg,

RefSignalName => “CENeg”,

SetupHigh => tsetup_D0_CENeg,

SetupLow => tsetup_D0_CENeg,

HoldHigh => thold_D0_CENeg,

HoldLow => thold_D0_CENeg,

CheckEnabled => (WENeg = ‘0’ and OENeg = ‘1’),

RefTransition => ‘/’,

HeaderMsg => InstancePath & PartID,

TimingData => TD_D0_CENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Tviol_D0_CENeg);

VitalPeriodPulseCheck (

TestSignal => WENegIn,

TestSignalName => “WENeg”,

PulseWidthLow => tpw_WENeg_negedge,

PeriodData => PD_WENeg,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_WENeg,

HeaderMsg => InstancePath & PartID,

CheckEnabled => TRUE);

Violation := Pviol_WENeg OR Tviol_D0_WENeg OR Tviol_D0_CENeg;

ASSERT Violation = ‘0’

REPORT InstancePath & partID & “: simulation may be” &

“ inaccurate due to timing violations”

SEVERITY SeverityMode;

END IF; -- Timing Check Section

The functionality section contains only a single call to the VitalMemoryTable
procedure:

-- Functional Section

VitalMemoryTable (

DataOutBus => D_zd,

14.2 Modeling Memory Functionality 229

MAG14 8/18/04 3:06 PM Page 229

230 Chapter 14 Modeling Memories

MemoryData => Memdat,

PrevControls => Prevcntls,

PrevDataInBus => Prevdata,

PrevAddressBus => Prevaddr,

PortFlag => PFlag,

Controls => (CEIn, CENegIn, OENegIn, WENegIn),

DataInBus => DataIn,

AddressBus => AddressIn,

AddressValue => Addrvalue,

MemoryTable => Table_generic_sram

);

The model concludes with the output section. There are procedure calls to three
different VITAL_Memory procedures in this section, which are the subject of the
next section of this chapter:

--
-- Output Section
--

VitalMemoryInitPathDelay (

ScheduleDataArray => DSchedData,

OutputDataArray => D_zd

);

VitalMemoryAddPathDelay (-- #11

ScheduleDataArray => DSchedData,

InputSignal => AddressIn,

OutputSignalName => “D”,

InputChangeTimeArray => AddrChangeArray,

PathDelayArray => Addr_D_Delay,

ArcType => CrossArc,

PathCondition => true

);

VitalMemoryAddPathDelay (-- #14

ScheduleDataArray => DSchedData,

InputSignal => OENegIn,

OutputSignalName => “D”,

InputChangeTime => OENegChange,

PathDelayArray => OENeg_D_Delay,

ArcType => CrossArc,

PathCondition => true,

OutputRetainFlag => false

);

VitalMemoryAddPathDelay (-- #14

ScheduleDataArray => DSchedData,

MAG14 8/18/04 3:06 PM Page 230

InputSignal => CENegIn,

OutputSignalName => “D”,

InputChangeTime => CENegChange,

PathDelayArray => CENeg_D_Delay,

ArcType => CrossArc,

PathCondition => true,

OutputRetainFlag => false

);

VitalMemorySchedulePathDelay (

OutSignal => DataOut,

OutputSignalName => “D”,

ScheduleDataArray => DSchedData

);

END PROCESS;

END BLOCK;

END vhdl_behavioral;

The comment #14 is to remind the author and anyone who has to maintain the model
which overloading of the VitalMemoryAddPathDelay procedure is being called.

14.3 VITAL_Memory Path Delays

As mentioned in Chapter 3, the VITAL_Memory package has its own set of path
delay procedures. There are three procedures that replace the VitalPathDelay01Z,
and all three must be presented in the order shown.

The first is the VitalMemoryInitPathDelay. It is used to initialize the output
delay data structure. It is called exactly once per output port. Output ports may be
vectored. Outputs may also be internal signals rather than ports. The possible argu-
ments to this procedure are shown in Table 14.1.

The second is the VitalMemoryAddPathDelay. It is used to add a delay path
from an input to an output. There is one call to this procedure for each input to
output path. Use of this procedure is analogous to the Paths parameter of the
VitalPathDelay procedure. It is used for selecting candidate paths based on the
PathCondition parameter. The procedure then updates the ScheduleDataArray
structure.

Table 14.2 shows the possible arguments to the VitalMemoryAddPathDelay
procedure. The VitalMemoryAddPathDelay procedure is overloaded 24 ways.
However, there are 64 possible parameter combinations, of which 40 will result in
compiler errors that may or may not be informative. Therefore, it is recommended
that you print out and read a copy of memory_p_2000.vhd if you intend to use
this method. It will help in debugging your models.

The third procedure is VitalMemorySchedulePathDelay. It is used to
schedule the functional output value on the output signal using the selected

14.3 VITAL_Memory Path Delays 231

MAG14 8/18/04 3:06 PM Page 231

232 Chapter 14 Modeling Memories

propagation delay. This procedure is overloaded for scalar and vector outputs. It
can also be used to perform result mapping of the output value using the Output-
Map parameter. The possible arguments to the VitalMemorySchedulePathDelay
are given in Table 14.3.

One of the most desirable features of the VITAL_Memory modeling path delay
procedures is their support of output-retain behavior. Many memory components
exhibit an output hold time that is greater than zero but less than the new output
delay. This is shown in data sheets as a waveform similar to that in Figure 14.2.
This behavior can be modeled using the behavioral style, but it is a nuisance to do
so. The good news is that the VITAL_Memory path delay procedures can be used
in a behavioral model to take advantage of this capability without requiring the
use of other features of the package. They will work in a VITAL level 0 architecture.

14.4 VITAL_Memory Timing Constraints

The VITAL_Memory package has its own versions of two timing constraint check-
ers: VitalMemorySetupHoldCheck and VitalMemoryPeriodPulseCheck. The
VitalMemorySetupHoldCheck procedure performs the same function as the
VitalSetupHoldCheck procedure, with the following enhancements:

Table 14.1 Arguments for VitalMemoryInitPathDelay

Description

Name Type For Scalar Ports

ScheduleData VitalMemorySchedule- Scalar form of the data structure

DataType used by VITAL_Memory

path delay procedures to store

persistent information for the

path delay scheduling.

OutputData STD_ULOGIC Scalar form of the functional

output value to be scheduled.

For Vectored Ports

ScheduleDataArray VitalMemoryScheduleData- Vector form of the data structure

VectorType used by VITAL_Memory

path delay procedures to store

persistent information for the

path delay scheduling.

NumBitsPerSubWord POSITIVE Number of bits per memory

subword. Optional.

OutputDataArray STD_LOGIC_VECTOR Vector form of the functional

output value to be scheduled.

MAG14 8/18/04 3:06 PM Page 232

14.4 VITAL_Memory Timing Constraints 233

Table 14.2 Arguments for VitalMemoryAddPathDelay

Name Type Description

ScheduleData VitalMemorySchedule- Scalar form of the data structure

DataType used by VITAL_Memory path

delay procedures to store

persistent information for the

path delay scheduling.

ScheduleDataArray VitalMemoryScheduleData Vector form of the data structure

VectorType used by VITAL_Memory path

delay procedures to store

persistent information for the

path delay scheduling.

InputSignal STD_ULOGIC or Scalar or vector input.

STD_LOGIC_VECTOR

OutputSignalName STRING Name of output signal for use

in messages.

InputChangeTime TIME Time since the last input change

occurred.

PathDelay VitalDelayType(01Z) Path delay values used to delay the

output values for scalar outputs.

PathDelayArray VitalDelayArray- Array of path delay values used to

Type(01ZX) delay the output values for vector

outputs.

ArcType VitalMemoryArcType Delay arc type between input and

output.

PathCondition BOOLEAN Condition under which the delay

path is considered to be one of the

candidate paths for propagation

delay selection.

PathConditionArray VitalBoolArrayT Array of conditions under which

the delay path is considered to be

one of the candidate paths for

propagation delay selection.

OutputRetainFlag BOOLEAN If TRUE, output retain (hold)

behavior is enabled.

OutputRetain- OutputRetainBehavior- If value is BitCorrupt, output

Behavior Type will be set to ‘X’ on a bit-by-

bit basis. If WordCorrupt,

entire word will be ‘X’.

MAG14 8/18/04 3:06 PM Page 233

234 Chapter 14 Modeling Memories

Finer control over condition checking.

• Support for CrossArc, ParellelArc, and Subword timing relationships
between the test signal and reference signal.

• Support for vector violation flags.

• Support for scalar and vector forms of condition in timing checks using
CheckEnabled.

• Support of MsgFormat parameter to control the format of test/reference
signals in the message.

Table 14.3 Arguments for VitalMemorySchedulePathDelay

Name Type Description

ScheduleData VitalMemoryScheduleDataType Scalar form of the data structure

used by VITAL_Memory

path delay procedures to

store persistent information

for the path delay scheduling.

ScheduleDataArray VitalMemoryScheduleData- Vector form of the data

TypeVector structure used by VITAL_

Memory path delay procedures

to store persistent

information for the path

delay scheduling.

OutputSignal STD_ULOGIC or Scalar or vector output.

STD_LOGIC_VECTOR

OutputSignalName STRING Name of output signal for

use in messages.

OutputMap VitalOutputMapType Strength mapping of output

values.

Trigger Signal

Old Out Value New Out Value

Propagation Delay

Output Retain Time

Figure 14.2 Output-retain waveform

MAG14 8/18/04 3:06 PM Page 234

• The VitalMemoryPeriodPulseCheck procedure is also similar to the
VitalPeriodPulseCheck procedure, with the following differences:

• TestSignal is a vector rather than a scalar.

• The violation flag may be either a scalar or a vector.

• The MsgFormat parameter may be used to control the format of messages.

Although both of these procedures are required for accurate modeling of mem-
ories in an ASIC library environment, they are less useful for modeling off-the-shelf
memory components. The VitalMemoryPeriodPulseCheck could be valuable
should there be specification for minimum pulse width on an address bus. You will
probably not find a need for the VitalMemorySetupHoldCheck procedure when
writing a component model.

14.5 Preloading Memories

During system verification it is often desirable to be able to load the contents of a
memory from an external file without going through the normal memory write
process. Verilog has a system task, $readmemh, that can load a memory from a spec-
ified file at any time. It can be executed from the testbench if desired.

VHDL does not have an equivalent capability. However, that does not mean a
memory cannot be preloaded in VHDL; it just takes a little more code. How it is
done depends on the memory modeling style employed.

14.5.1 Behavioral Memory Preload

There must be a file to read. In a simple example, it may have the following format:

//format : @address

// data -> address

// data -> address+1

@1

1234

1235

@A

55AA

Lines beginning with / are comments and are ignored. A line beginning with @
indicates a new address. The following lines will contain the data starting at that
address and incrementing the address with each new line. Address and data do not
appear on the same line. For simple cases like this one, the format is compatible
with that used by the Verilog $readmemh task.

Upon a triggering event, usually time zero, and assuming the feature is enabled,
a file like that in the example is read and its contents loaded into the memory array
as specified in the file. In a model, it all starts with the declaration of a generic:

14.5 Preloading Memories 235

MAG14 8/18/04 3:06 PM Page 235

236 Chapter 14 Modeling Memories

-- memory file to be loaded

mem_file_name : STRING := “km416s4030.mem”;

The value of the generic could be passed in from the schematic or the testbench.
It will specify the name of the file to read for that particular instance of the
model.

Further down in the model the line

FILE mem_file : text IS mem_file_name;

is required to declare that mem_file is an object of type FILE. Then somewhere in
the same process that defines the memory array, the preload code is placed. The
following is an example of some simple memory preload code:

-- File Read Section

IF PoweredUp’EVENT and PoweredUp and (mem_file_name /= “none”) THEN

ind := 0;

WHILE (not ENDFILE (mem_file)) LOOP

READLINE (mem_file, buf);

IF buf(1) = ‘/’ THEN

NEXT;

ELSIF buf(1) = ‘@’ THEN

ind := h(buf(2 to 5));

ELSE

MemData(ind) := h(buf(1 to 4));

ind := ind + 1;

END IF;

END LOOP;

END IF;

This code waits for the triggering action, in this case an event on the signal
PoweredUp. If the name of the memory load file is set to anything other than
none, the memory preload code executes. It begins by initializing the index
variable ind. Then it goes into a loop that will run until it reaches the end of the
input file.

In this loop a line is read. If the line begins with the comment character (/) it
is discarded and the next line is read. If the line begins with @ the following four
characters, a hexadecimal number, are converted to a natural and assigned to ind,
the array index. Otherwise, the first four characters on the line are converted to a
natural and read into the memory array at the location indicated by ind, and then
ind is incremented and the next line is read.

Memories with multiple words or multiple banks may be modeled. These may
require slightly more complex memory preload files and file read sections. The
model of a component that has four banks and is four words wide (32 bits) might
have the following file read section shown in Figure 14.3.

MAG14 8/18/04 3:06 PM Page 236

The corresponding preload file would have the following format:

// lines beginning with / are comments

// lines beginning with @ set bank (0 to 3) and starting address

// other lines contain hex data values a 32-bit value

AAAAAAAA

55555555

00030003

@1 40000

FFFF2001

FFFE2001

FFFD2003

FFFC2003

@2 00000

2000FFFF

20012001

20022001

20032001

This format is not compatible with that of the Verilog $readmemh task because it
includes a method for selecting memory banks. Verilog would require a separate
file and a separate call to the system task for each bank.

14.5.2 VITAL_Memory Preload

The VitalDeclareMemory function, if given a file name for the MemoryLoadFile
parameter, will cause the declared memory array to be initialized during elaboration.

14.5 Preloading Memories 237

 --
 -- File Read Section
 --
 IF PoweredUp’EVENT and PoweredUp and (mem_file_name /= “none”) THEN
 ind := 0;
 WHILE (not ENDFILE (mem_file)) LOOP
 READLINE (mem_file, buf);
 IF buf(1) = ‘/’ THEN
 NEXT;
 ELSIF buf(1) = ‘@’ THEN
 file_bank := h(buf(2 to 2));
 ind := h(buf(4 to 8));
 ELSE
 MemData3(file_bank)(ind) := h(buf(1 to 2));
 MemData2(file_bank)(ind) := h(buf(3 to 4));
 MemData1(file_bank)(ind) := h(buf(5 to 6));
 MemData0(file_bank)(ind) := h(buf(7 to 8));
 ind := ind + 1;
 END IF;
 END LOOP;
 END IF;

Figure 14.3 Memory preload for 4 bank memory

MAG14 8/18/04 3:06 PM Page 237

238 Chapter 14 Modeling Memories

It requires no additional code in the model. It is the only way to preload a
VITAL_LEVEL1_MEMORY model. The preload file has the following format:

@8 aa

a5

bf

@a 00

01

02

The VITAL preload format does not allow comments. Address and data may be
on the same line. A file may contain data in either binary or hexadecimal but not
both. The address must always be in hex.

Although it is easy to implement, it has two drawbacks. Memory can be initial-
ized only during elaboration. In some behavioral models, memory has been ini-
tialized by a reset signal improving verification efficiency.

If multiple memory arrays are declared, each must have its own preload file. In
models of memories with multiple banks, it may be necessary to manage multiple
preload files.

14.6 Modeling Other Memory Types

So far our discussion of memory models has centered around SRAMs. This is because
SRAMs are the simplest type of memories to model. Now we will look at some more
complex memory types. These models tend to be rather long, 2,000 to 4,000 lines
each, so instead of presenting the entire models, only their defining features will be
discussed. The complete models can be found on the Free Model Foundry Web site.

14.6.1 Synchronous Static RAM

The first model we will examine is for a pipelined zero bus turnaround SSRAM. Its
IDT part number is IDT71V65803. Compatible parts are made by Micron and
Cypress. This memory type is distinguished by its fast read-to-write turnaround
time. This component has two 9-bit-wide bidirectional data buses with separate
write enables and a common asynchronous output enable. Memory is modeled as
two arrays, each holding 9 bits of data. They are 512K words deep.

The model includes three processes. The first is used for setup and runs only
once, at time zero. The second describes the functionality of the component. The
third contains a generate statement that generates the required number of Vital-
PathDelay calls to drive the output ports.

The first distinguishing feature we find in this model is a generic:

SeverityMode : SEVERITY_LEVEL := WARNING;

It is used to control the severity of some assertion statements.
This model contains a state machine with five states. They are chip deselect

(desel), begin read (begin_rd), begin write (begin_wr), burst read (burst_rd),
and burst write (burst_wr):

MAG14 8/18/04 3:06 PM Page 238

-- Type definition for state machine

TYPE mem_state IS (desel,

begin_rd,

begin_wr,

burst_rd,

burst_wr

);

SIGNAL state : mem_state;

In burst mode, reads and writes may be either sequential or interleaved. The
interleaved order is defined by a table:

TYPE sequence IS ARRAY (0 to 3) OF INTEGER RANGE -3 to 3;

TYPE seqtab IS ARRAY (0 to 3) OF sequence;

CONSTANT il0 : sequence := (0, 1, 2, 3);

CONSTANT il1 : sequence := (0, -1, 2, -1);

CONSTANT il2 : sequence := (0, 1, -2, -1);

CONSTANT il3 : sequence := (0, -1, -2, -3);

CONSTANT il : seqtab := (il0, il1, il2, il3);

CONSTANT ln0 : sequence := (0, 1, 2, 3);

CONSTANT ln1 : sequence := (0, 1, 2, -1);

CONSTANT ln2 : sequence := (0, 1, -2, -1);

CONSTANT ln3 : sequence := (0, -3, -2, -1);

CONSTANT ln : seqtab := (ln0, ln1, ln2, ln3);

SIGNAL Burst_Seq : seqtab;

The il constants are for the interleaved burst sequences. The ln constants are for
the sequential (linear) bursts.

The burst mode for this component can be set only at power-up time. A special
process is used to initialized the burst sequence:

Burst_Setup : PROCESS

BEGIN

IF (LBONegIn = ‘1’) THEN

Burst_Seq <= il;

ELSE

Burst_Seq <= ln;

END IF;

WAIT; -- Mode can be set only during power up

END PROCESS Burst_Setup;

It is run once at time zero.
This component defines four commands. They are declared in the main behav-

ior process:

14.6 Modeling Other Memory Types 239

MAG14 8/18/04 3:06 PM Page 239

240 Chapter 14 Modeling Memories

-- Type definition for commands

TYPE command_type is (ds,

burst,

read,

write

);

On the rising edge of the clock, when the component is active

IF (rising_edge(CLKIn) AND CKENIn = ‘0’ AND ZZIn = ‘0’) THEN

each control input is checked for a valid value:

ASSERT (not(Is_X(RIn)))

REPORT InstancePath & partID & “: Unusable value for R”

SEVERITY SeverityMode;

If an invalid value is found the user is notified. Depending on how the user has
modified the value of SeverityMode, the assertion might stop simulation. Assum-
ing all the control inputs are valid, the command is decoded with an IF–ELSIF
statement:

-- Command Decode

IF ((ADVIn = ‘0’) AND (CE1NegIn = ‘1’ OR CE2NegIn = ‘1’ OR

CE2In = ‘0’)) THEN

command := ds;

ELSIF (CE1NegIn = ‘0’ AND CE2NegIn = ‘0’ AND CE2In = ‘1’ AND

ADVIn = ‘0’) THEN

IF (RIn = ‘1’) THEN

command := read;

ELSE

command := write;

END IF;

ELSIF (ADVIn = ‘1’) AND (CE1NegIn = ‘0’ AND CE2NegIn = ‘0’ AND

CE2In = ‘1’) THEN

command := burst;

ELSE

ASSERT false

REPORT InstancePath & partID & “: Could not decode ”

& “command.”

SEVERITY SeverityMode;

END IF;

Model behavior is controlled by the state machine. The state machine is built
using a two-deep nesting of CASE statements:

MAG14 8/18/04 3:06 PM Page 240

-- The State Machine

CASE state IS

WHEN desel =>

CASE command IS

WHEN ds =>

OBuf1 := (others => ‘Z’);

WHEN read =>

...

WHEN write =>

...

WHEN burst =>

...

END CASE;

WHEN begin_rd =>

Burst_Cnt := 0;

CASE command IS

WHEN ds =>

...

WHEN read =>

...

The outer CASE statement uses the current state value. The inner CASE statement
uses the current decoded command. The appropriate action is then taken.

Pipelining is affected using chained registers. For example, on the first clock of a read,

OBuf1(8 downto 0) := to_slv(MemDataA(MemAddr),9);

will execute. On the second clock,

OBuf2 := OBuf1;

and finally,

IF (OENegIn = ‘0’) THEN

D_zd <= (others => ‘Z’), OBuf2 AFTER 1 ns;

END IF;

puts the output value on the zero delay output bus, ready to be used by the Vital-
PathDelay01Z procedure.

14.6.2 DRAM

DRAMs can be built with higher density and lower cost than SRAMs. That has made
them very popular for use in computers and other memory-intensive devices. Their
primary drawback is their inability to store data for more than a few tens of mil-
liseconds without being refreshed. The refresh requirement makes them more
complex than SRAM, both in their construction and their use.

14.6 Modeling Other Memory Types 241

MAG14 8/18/04 3:06 PM Page 241

242 Chapter 14 Modeling Memories

The DRAM model we examine here is for Micron part number MT4LC4M16R6. It
is also sourced by OKI and Samsung. This component is 64Mb memory organized as
4M words with a 16-bit-wide data bus. However, the data are also accessible as 8-bit
bytes for both reads and writes. The memory is modeled as two arrays of 8-bit words.

The model includes three processes. The first describes the functionality of the
component. The other two contain generate statements for generating the required
VitalPathDelay calls.

The distinguishing features of this model begin with its generics. The compo-
nent has a constraint for maximum time between refresh cycles. Because this time
is not related to any ports, a tdevice generic is employed:

-- time between refresh

tdevice_REF : VitalDelayType := 15_625 ns;

It is important to initialize the generic to a reasonable default value so the model
can be used without backannotation.

The next generic is for power-up initialization time. The component may not
be written to until a period of time has passed after power is applied.

-- tpowerup: Power up initialization time. Data sheets say 100-200 us.

-- May be shortened during simulation debug.

tpowerup : TIME := 100 us;

By using a generic for this parameter, we allow the user to shorten the time
during early phases of design debug.

Because a tdevice generic is used, there must be a VITAL_Primitive associ-
ated with it:

-- Artificial VITAL primitives to incorporate internal delays

REF : VitalBuf (refreshed_out, refreshed_in, (UnitDelay, tdevice_REF));

Even though this primitive is not actually used in the model, it must be present to
satisfy the VITAL_Level1 requirements. In this model, tdevice_REF is used
directly to time the rate of refresh cycles:

IF (NOW > Next_Ref AND PoweredUp = true AND Ref_Cnt > 0) THEN

Ref_Cnt := Ref_Cnt - 1;

Next_Ref := NOW + tdevice_REF;

END IF;

The component requires there be 4,096 refresh cycles in any 64ms period. Every
15,625 nanosecond, the code decrements the value of the variable Ref_Cnt. Each
time a refresh cycle occurs, the value of Ref_Cnt is incremented:

IF (falling_edge(RASNegIn)) THEN

IF (CASHIn = ‘0’ AND CASLIn = ‘0’) THEN

IF (WENegIn = ‘1’) THEN

CBR := TRUE;

Ref_Cnt := Ref_Cnt + 1;

MAG14 8/18/04 3:06 PM Page 242

Should the value of Ref_Cnt ever reach zero,

-- Check Refresh Status

IF (written = true) THEN

ASSERT Ref_Cnt > 0

REPORT InstancePath & partID &

“: memory not refreshed (by ref_cnt)”

SEVERITY SeverityMode;

IF (Ref_Cnt < 1) THEN

ready := FALSE;

END IF;

END IF;

a message is sent to the user and a flag, ready, is set to false. This flag will con-
tinue to warn the user if further attempts are made to store data in the component:

-- Early Write Cycle

ELSE

ASSERT ready

REPORT InstancePath & partID & “: memory is not ready for”

& “ use - must be powered up and refreshed”

SEVERITY SeverityMode;

Another interesting aspect of DRAMs is that they usually have multiplexed
address buses. For this component there is an 12-bit column address and an 10-bit
row address, but only a single 12-bit external address bus. Our memory is modeled
as two linear arrays of naturals,

-- Memory array declaration

TYPE MemStore IS ARRAY (0 to 4194303) OF NATURAL

RANGE 0 TO 255;

VARIABLE MemH : MemStore;

VARIABLE MemL : MemStore;

one for the high byte and one for the low byte.
The internal address bus is viewed as being 22 bits wide to accommodate both

the row and column addresses. However, the index into the memory arrays is
defined as a natural:

VARIABLE MemAddr : std_logic_vector(21 DOWNTO 0)

:= (OTHERS => ‘X’);

VARIABLE Location : NATURAL RANGE 0 TO 4194303 := 0;

The row and column addresses must be read separately:

MemAddr(21 downto 10) := AddressIn;

...

MemAddr(9 downto 0) := AddressIn(9 downto 0);

14.6 Modeling Other Memory Types 243

MAG14 8/18/04 3:06 PM Page 243

244 Chapter 14 Modeling Memories

then converted to a natural for use as an array index:

Location := to_nat(MemAddr);

14.6.3 SDRAM

SDRAMs are DRAMs with a synchronous interface. They often include pipelining
as a means of improving their bandwidth. Refresh requirements are the same as for
ordinary DRAMs.

The model we examine here covers the KM432S2030 SDRAM from Samsung.
The equivalent Micron part is numbered MT48LC2M32B2. This component fea-
tures all synchronous inputs, programmable burst lengths, and selectable CAS laten-
cies. It is organized as 512K words, 32 bits wide. Internal memory is divided into
four addressable banks. The 32-bit output is divided into four 8-bit words that can
be individually masked during read and write cycles.

To accommodate the byte masking, each memory bank is modeled as an array
of four 8-bit-wide memories. This makes byte access considerably simpler than
using a single 32-bit memory array. It also solves the problem of having to deal
with 32-bit integers on a 32-bit machine.

This SDRAM model is composed of two processes. One models the component
functionality, the other generates the VitalPathDelay calls.

Distinguishing features of this model begin with its generics. This component
has selectable CAS latency. This means the clock-to-output delays will depend on
an internal register value. To annotate two sets of delays, two generics are needed:

-- tpd delays

tpd_CLK_DQ2 : VitalDelayType01Z := UnitDelay01Z;

tpd_CLK_DQ3 : VitalDelayType01Z := UnitDelay01Z;

The two CAS latencies also affect the maximum clock speed of the component.
Therefore, there must be two values annotated for period constraint checking:

-- CAS latency = 2

tperiod_CLK_posedge : VitalDelayType := UnitDelay;

-- CAS latency = 3

tperiod_CLK_negedge : VitalDelayType := UnitDelay;

In either of these cases the requirements could not have been met using condi-
tional delay and constraint generics (discussed in Chapter 10).

The SDRAM has a somewhat more complex state machine than the DRAM. In this
case there are 16 states described in the data sheet. The state names are as follows:

-- Type definition for state machine

TYPE mem_state IS (pwron,

precharge,

idle,

mode_set,

MAG14 8/18/04 3:06 PM Page 244

self_refresh,

self_refresh_rec,

auto_refresh,

pwrdwn,

bank_act,

bank_act_pwrdwn,

write,

write_suspend,

read,

read_suspend,

write_auto_pre,

read_auto_pre

);

On careful examination of the data sheets from all the vendors, it becomes
apparent that each bank has its own state machine. To reduce the amount of code
in the model, it was decided to treat them as an array:

TYPE statebanktype IS array (hi_bank downto 0) of mem_state;

SIGNAL statebank : statebanktype;

It was decided to make statebank a signal rather than a variable. The reason was
to delay any change of state till the next delta cycle. Had a variable been used, all
state changes would be instantaneous.

In modeling a component as complex as this one, it is helpful to look at the
data sheets from all the vendors producing compatible products. In the case of this
component, one of four vendors studied, NEC, included a state diagram in their
data sheet [8]. It is shown in Figure 14.4. Having an accurate state diagram greatly
facilitates modeling a complex state machine.

A signal is needed for tracking the CAS latency:

SIGNAL CAS_Lat : NATURAL RANGE 0 to 3 := 0;

Like the DRAM, the SDRAM excepts a number of commands. An enumerated
type is defined for them:

-- Type definition for commands

TYPE command_type is (desl,

nop,

bst,

read,

writ,

act,

pre,

mrs,

ref

);

14.6 Modeling Other Memory Types 245

MAG14 8/18/04 3:06 PM Page 245

Mode
Register

Set
DLE

A
C

T
P

R
E

Self
Refresh

Power
Down

Active
Power
Down

ROW
ACTIVE

Precharge

Automatic sequence

Manual input

POWER
ON

Precharge

OER
Refresh

MRS

3. Simplified State Diagram

mPD4564441,4564841,4564163

REF

CKE

CKEØ

CKE

CKEØ

CKE

CKEØ

CKE

CKEØ

SELF ext
SELF

WRITE
SUSPEND

Write

Write

PR
E

(Precharge term
ination)

PR
E

(P
re

ch
ar

ge
 te

rm
in

at
io

n)

Read
WRITE READ

Read

BSTBST
ReadWrite

 R
ead w

ith

A
uto precharge

W
rit

e
w

ith
A

ut
o

pr
ec

ha
rg

e

READ
SUSPEND

CKE

CKEØ

CKE

CKEØ
WRITEA

SUSPEND WRITEA READA
READA

SUSPEND

Figure 14.4 State diagram for SDRAM state machine

MAG14 8/18/04 3:06 PM Page 246

Memory arrays are declared in the behavior process:

-- Memory array declaration

TYPE MemStore IS ARRAY (0 to depth) OF INTEGER

RANGE -2 TO 255;

TYPE MemBlock IS ARRAY (0 to 3) OF MemStore;

FILE mem_file : text IS mem_file_name;

VARIABLE MemData0 : MemBlock;

VARIABLE MemData1 : MemBlock;

VARIABLE MemData2 : MemBlock;

VARIABLE MemData3 : MemBlock;

There is a separate array of four memories for each bank.
This is a programmable component. It contains a mode register that controls

aspects of its behavior, such as CAS latency, burst length, and burst type:

VARIABLE ModeReg : std_logic_vector(10 DOWNTO 0)

:= (OTHERS => ‘X’);

As mentioned, the minimum clock period of this component varies with CAS
latency. Two VitalPeriodPulseCheck calls are made. Only one is enabled at any time:

VitalPeriodPulseCheck (

TestSignal => CLKIn,

TestSignalName => “CLK”,

Period => tperiod_CLK_posedge,

PulseWidthLow => tpw_CLK_negedge,

PulseWidthHigh => tpw_CLK_posedge,

PeriodData => PD_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLK,

HeaderMsg => InstancePath & PartID,

CheckEnabled => CAS_Lat = 2);

VitalPeriodPulseCheck (

TestSignal => CLKIn,

TestSignalName => “CLK”,

Period => tperiod_CLK_negedge,

PulseWidthLow => tpw_CLK_negedge,

PulseWidthHigh => tpw_CLK_posedge,

PeriodData => PD_CLK,

XOn => XOn,

MsgOn => MsgOn,

Violation => Pviol_CLK,

HeaderMsg => InstancePath & PartID,

CheckEnabled => CAS_Lat = 3);

14.6 Modeling Other Memory Types 247

MAG14 8/18/04 3:06 PM Page 247

248 Chapter 14 Modeling Memories

After the command is decoded (as in the DRAM), which bank it applies to must be
determined. This is done with a CASE statement:

-- Bank Decode

CASE BAIn IS

WHEN “00” => cur_bank := 0; BankString := “ Bank-0 ”;

WHEN “01” => cur_bank := 1; BankString := “ Bank-1 ”;

WHEN “10” => cur_bank := 2; BankString := “ Bank-2 ”;

WHEN “11” => cur_bank := 3; BankString := “ Bank-3 ”;

WHEN others =>

ASSERT false

REPORT InstancePath & partID & “: Could not decode bank”

& “ selection - results may be incorrect.”

SEVERITY SeverityMode;

END CASE;

Next comes the state machine itself:

-- The Big State Machine

IF (rising_edge(CLKIn) AND CKEreg = ‘1’) THEN

It contains a FOR loop that causes four passes through the state machine code for
each active clock. That is one pass for each bank:

banks : FOR bank IN 0 TO hi_bank LOOP

CASE statebank(bank) IS

WHEN pwron =>

...

IF (command = bst) THEN

statebank(bank) <= bank_act;

Burst_Cnt(bank) := 0;

The state machine code is over 800 lines. The complete model may be found and
downloaded from the FMF Web site.

Finally, the output delay is determined by CAS latency:

VitalPathDelay01Z (

OutSignal => DataOut(i),

OutSignalName => “Data”,

OutTemp => D_zd(i),

Mode => OnEvent,

GlitchData => D_GlitchData(i),

Paths => (

1 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_DQ2,

PathCondition => CAS_Lat = 2),

MAG14 8/18/04 3:06 PM Page 248

2 => (InputChangeTime => CLKIn’LAST_EVENT,

PathDelay => tpd_CLK_DQ3,

PathCondition => CAS_Lat = 3)

)

);

14.7 Summary

The efficiency with which memory is modeled can determine whether or not a
board simulation is possible within the memory resources of your workstation. The
most efficient ways of modeling large memories are the Shelor method and the
VITAL_memory package’s VitalDeclareMemory function.

Functionality may be modeled using the behavioral method or the VITAL2000
method. Which you choose will depend on the complexity of the model and how
comfortable you are writing tables. Some functionality may be easier to describe
with one method or the other.

Path delays in memory models may be written using the path delay procedures
provided by the VITAL_Timing package or the those provided by the VITAL2000
memory package. If the part being modeled has output-retain behavior, the added
complexity of the memory package procedures may be worth the effort. Otherwise,
you will want to use the procedures from the timing package.

The VITAL2000 memory package has its own setuphold and periodpulsewidth
checks. They are of limited value for component modeling.

Adding preload capability to a memory model is not difficult and well worth the
additional effort required in a behavioral model. In a VITAL2000 model the capa-
bility, though somewhat restricted, comes for free.

14.7 Summary 249

MAG14 8/18/04 3:06 PM Page 249

This page intentionally left blank

15

251

C

H

A

P

T

E

R

Considerations for Component
Modeling

The way a model is written is influenced by the perspective of the model’s author
and by how he or she thinks the model will be used. Someone with a background
in chip design but has never designed a board is likely to write a model that would
be very good at verifying the component but unsuitable for verifying that the com-
ponent is correctly designed into the system.

The key to understanding component modeling is to understand how the
models will be used. The purpose of component models is not to verify compo-
nents, but to verify systems.

15.1 Component Models and Netlisters

Simulation models are of little use individually. Their value comes from connect-
ing them together in a netlist and seeing how they interact. Although one could
write a netlist by hand, it would not be interesting work. It would also be prone to
errors and frequent revisions.

Most vendors of schematic capture software offer tools to netlist their schemat-
ics in VHDL. These tools may be included with the schematic capture systems or
may be purchased separately. In either case, the ideal is to generate a VHDL netlist
from the same schematic that will be used to generate the PCB netlist. Doing this
requires matching the simulation models to the requirements of the schematic
capture system and its VHDL netlister.

One consideration is matching the ports in the model to the pins on the
schematic symbol. It is usually permissible for the symbol to have pins that are
not represented in the model. Power, ground, and voltage references are all pins
that may not be needed for simulation but are required to design a printed
circuit board. It is never permitted to have ports on the model that do not
have corresponding pins on the schematic symbol. In other words, it is per-
mitted to lose pins as you traverse down into the hierarchy but not as you push
up through it.

MAG15 8/18/04 3:03 PM Page 251

Going from schematic to netlist, the facilities of the schematic capture system
and netlister may be used to map unmodeled pins on the symbol to the VHDL key
word OPEN. There can be no such mapping for unused ports.

A simulation model should try to be true to the logic of a component, not its
physical characteristics. A 7400 NAND gate comes packaged as four gates in a 14-
pin DIP (dual in-line package). A simulation model of a 7400 should contain only
one NAND gate because (in most cases) a schematic symbol of a 7400 will be a
single NAND gate. On the opposite end of the spectrum, a DSP (digital signal
processor) model should include all the functionality of the part in a single instance
because that is the way it is drawn on a schematic. However, in between there is a
lot of gray area. Beginning with a 74244 tri-state buffer, decisions based on judge-
ment and local usage are required. The 74244 can be, and usually is, drawn two
different ways, as shown in Figure 15.1. One way is a single buffer with three pins.
The other is a quad buffer with 9 pins. The 244 is most often placed in a schematic
using the quad representation. It could be modeled that way, but if the single-buffer
representation will ever be used, it must be modeled as a single buffer. Always keep
in mind that it is easy to use the simple model with the more complex symbol, but
it is difficult to use the complex model with the simple symbol.

Most netlisters will allow the value of a model generic to be inherited from a
property or attribute of the same name attached to its schematic symbol. The inher-
itance is done on a per-instance basis. The generic of most importance for FMF-
style models is TimingModel. It gets a value of type STRING that corresponds to a
part number in the model’s timing file. This part number may be the manufac-
turer’s part number, a corporate part number, or anything else, as long as it is listed
in the timing file. The TimingModel value is passed into the instance of the com-
ponent in the netlist. The mk_sdf script, described in Chapter 12 and later in this
chapter, reads the value and matches it to a part number in the timing file. It uses
that part number to select the desired timing from the timing file and put it in the
SDF file for the netlist. The TimingModel generic may also be used to control
certain types of behavior in the model. An example of using TimingModel to
change the functionality of a flash memory is given in Chapter 16.

252 Chapter 15 Considerations for Component Modeling

U1

A Y

OE

ACT244
SO

U2
ACT244
SO

Figure 15.1 Two symbols for a 74244

MAG15 8/18/04 3:03 PM Page 252

15.2 File Contents

Each component in a VHDL netlist must be declared and instantiated. To do this,
the netlister needs to read the entity of each model while generating a VHDL netlist
from a schematic. The schematic capture tool’s library must be organized so the
netlister knows where to look for the model associated with each symbol. The details
of how this is done will vary from tool to tool. An example for Cadence’s Con-
ceptHDL tool is given in Section 15.4. When the netlister finds and reads the model
file, it expects that the first thing it comes to at the top of the file is the model’s entity.
Libraries, packages, and so on must not be placed ahead of the model entity.

Although VHDL is quite happy with multiple models being placed in a single
file, schematic netlisters are usually less sympathetic. Include only one entity per
file if you plan to netlist. Of course, there is no reason that file should not also
contain the model’s architecture(s).

15.3 Generics Passed from the Schematic

It is the ability to pass generics from the schematic to the model instance that makes
technology-independent libraries and models possible. It also allows much smaller
but richer schematic symbol and model libraries. There are two classes of generics
that we are interested in passing from the schematic to the component models:
timing generics and control generics.

15.3.1 Timing Generics

Most timing generics get their values from SDF backannotation. However, there are
some that may be passed in through the netlister. One that is common is found in
DRAMs and is usually named tpowerup. It is used to control how long the simu-
lation must wait before beginning to issue commands to the memory. The model
contains a default value that comes from the data sheet. This is usually a large value,
on the order of 200 microseconds. The engineer has the option of adding a
tpowerup attribute to the symbol in the schematic and setting its value to some-
thing smaller, such as 2 microseconds, while debugging a design.

15.3.2 Control Generics

Other generics have control functions. A popular generic for memory models is
mem_file, mentioned in Chapter 14. It is attached to a symbol instance and passed
into the netlist. It takes a string value that is the name of a file that contains data
to be preloaded into a memory instance. At power up, or possibly at some other
time, the model reads the external text file and loads the data into its memory
array(s).

The most important control generic for technology-independent models is
TimingModel. Its primary purpose is to control which of many possible sets of

15.3 Generics Passed from the Schematic 253

MAG15 8/18/04 3:03 PM Page 253

timing parameters for a model is selected and written into the design’s SDF file. In
some cases it can also be used to configure a model that represents a component
with hardwired configurations. An example is a flash memory that may be pur-
chased with a protected area at either the top or the bottom of its address range.

Many netlisters will find an attribute attached to some special object in the
schematic, such as the schematic border, and annotate its value to every generic
with the same name throughout the design. There are some control generics for
which this may be a desirable feature. The following four generics may be updated
either on an instance-by-instance basis or for the entire design. They may also be
updated through the simulator.

• The TimingChecksOn generic controls whether timing constraint checks are
performed. During the early phases of board-level verification, it may be
desirable to disable timing checks while other issues are being worked on.

• The MsgOn generic controls the emission of text messages when a timing
violation is detected. Large numbers of these messages can slow down a
simulation and mask other messages that might be more useful.

• The XOn generic controls the generation of ‘X’ values driving the violation
flags. The violation flags in turn may control some aspect of the model’s
behavior, such as the corruption of memory locations. XOn can be set to
FALSE to disable such behavior.

• The SeverityMode generic can be used to control the severity level of
messages issued by procedures using it. These messages can then be used to
warn the user or even stop the simulation. The effect of messages of varying
severity levels is controlled directly in the simulator.

15.4 Integrating Models into a Schematic Capture System

The payoff for writing component simulation models comes when they are inte-
grated into a schematic capture system and used for board-level verification. What
follows is an example of how component models can be integrated and used with
one particular schematic capture system, Cadence’s ConceptHDL. In the example
it is assumed that Cadence’s Allegro is used for PCB layout and Mentor’s ModelSim
is used for simulation. Although there are many other tools available and they have
many differences, the basic principles are the same for all the tools. Only the details
of implementation will vary.

15.4.1 Library Structure

The heart of every Computer Aided Engineering (CAE) system is its libraries. This
is particularly true for board design and simulation. A library is, for our purposes,
a collection of data and information regarding one or more electronic components.
There are libraries of schematic symbols, PCB footprints, simulation models, and

254 Chapter 15 Considerations for Component Modeling

MAG15 8/18/04 3:03 PM Page 254

so on. Some libraries are collections of other libraries. Although the schematic
libraries described in this chapter have been optimized for VHDL simulation, you
can still use the Verilog RTL models of your FPGAs in board-level simulations, as
described in Chapter 13.

15.4.2 Technology Independence

A key feature of a well-designed CAE library is the separation of functionality from
timing. This allows for technology independence and significantly reduces the total
number of schematic symbols (and models) in the library. The saving varies with
the part family: for the 7400 series, the savings can be huge; for more specialized
components, it may be minimal. In all cases it allows for timing customization
without requiring changes to a proven model or the addittion of a copy of a
schematic symbol.

15.4.3 Directories

The directory structure for our simulation-enabled CAE library starts out looking
very similar to the standard ConceptHDL library, as shown in Figure 15.2. For each
component library, there must also be a corresponding VHDL library (this is the
ConceptHDL standard and may not be required for other systems). The VHDL
libraries have three additional directories: src, TimingModel, and work. The src

15.4 Integrating Models into a Schematic Capture System 255

 vhdl_behavioral

clock

std00 std02stnd.cat

chips entity vhdl_behavioralpart_table

symbol.ppt vhdl.map

entity

vhdl.vhd@ vhdl.vhd@

std00 std02

std02.vhd

TimingModels work

std00.ftm std02.ftm

src

stnd fifo

lib

clock_vhdl stnd_vhdl fifo_vhdl

Figure 15.2 Library directory structure for ConceptHDL

MAG15 8/18/04 3:03 PM Page 255

directory contains the VHDL model source code. The TimingModels directory
contains the timing (.ftm) files. The work directory contains the compiled VHDL
models.

It should be pointed out here that the directories found in the component library
are based on the part body names but the directories found in the VHDL library
are based on the model names. There is not a one-to-one mapping between the
body names in the component library and the model names in the corresponding
VHDL library. The mapping between the two libraries is controlled by each part’s
vhdl.map file.

Within the entity and vhdl_behavioral directories (in the lib_vhdl) there
are links named vhdl.vhd. They point back to the model source in the src direc-
tory. These links are required for the netlister to work.

15.4.4 Map Files

Map files are required to map pin names from ConceptHDL chips.prt files to the
VHDL port names listed in the entity. On a good day, they perform a simple func-
tion simply. On a bad day, it can take a lot of trial and error to figure out how they
work. An example is shown in Figure 15.3.

The pin_map section of the file contains a mapping from each pin name listed
in the chips.prt file to the corresponding port name in the VHDL model entity.
Should there be no corresponding port in the entity, the pin is mapped to the key
word OPEN:

‘VCC’ = ‘(OPEN)’;

Map files are explained in greater detail in the “Concept-HDL Digital Simulation
User Guide” in cdsdoc, the Cadence online documentation library.

15.5 Using Models in the Design Process

What follows is the general design process through simulation and analysis. It dis-
cusses the various tools and the order in which they are used. This particular process
is specific to the author. Your process will depend on the tools you choose but will

256 Chapter 15 Considerations for Component Modeling

FILE_TYPE = VHDL_MAP;
PRIMITIVE ‘ACT04_DP’,‘ACT04_SO’;
 DEFAULT_MODEL = ‘STD04’;
 MODEL ‘STD04’;
 PIN_MAP
 ‘A’<0> = ‘(A)’;
 ‘-Y’<0> = ‘(YNeg)’;
 END_PIN;
 END_MODEL;
END_PRIMITIVE;
END.

Figure 15.3 Sample vhdl_map file

MAG15 8/18/04 3:03 PM Page 256

probably be similar to the one described. A diagram of this process is shown in
Figure 15.4.

15.5.1 VHDL Libraries

It is assumed at this point that the VHDL libraries are in place and are precompiled
for the user. This would normally be done by the CAE librarian if your company
employs one; however, the user may be responsible for setting up any verilog FPGA
or ASIC models in the design, as described earlier. The component libraries are tech-
nology independent and utilize the FMF-style simulation models described in this
book. This reduces the effort required for library development and maintenance.

15.5.2 Schematic Entry

Schematics are drawn in ConceptHDL as they would be for any board design (with
some caveats to be discussed later). The schematics may be either hierarchical or
flat. Because the schematic libraries use FMF technology-independent model
libraries, components must be added to the schematics using the component
browser set to physical mode. Selecting parts this way causes properties to be added

15.5 Using Models in the Design Process 257

Component
Modeling

Schematic
Capture

FPGA
Design

SDF
Generation

Simulation
Timing

Backannotation
Interconnect

SDF

Component
SDF

VHDL

Netlist

Netlist

VHDL
Model

Timing
Files

Physical
Netlist

VHDL

VHDL

Models

PCB
Layout

VHDL
Compilation

Figure 15.4 Design simulation flow

MAG15 8/18/04 3:03 PM Page 257

to the schematics that are later used to select the correct timing for each compo-
nent. Other schematic capture tools have similar capabilities to the ConceptHDL
component browser. Mentor’s DxDesigner, for instance, has DxDataBook.

Remove Attribute

Some parts in the design are best left out of the simulation. Decoupling capacitors,
for example, will add nothing to the functionality. They will just make the netlist
longer. Series termination resistors also will just add clutter to your simulation, but
the pull-up and pull-down resistors should stay.

ConceptHDL has an attribute that can help, called REMOVE. There are four pos-
sible values. The two most useful are LINK and EXCLUDE. If a body has REMOVE=
EXCLUDE attached to it, the netlister will remove that component from the netlist
all together. This is good for all those decoupling caps. If a body has REMOVE=
LINK, the two nets attached (this should be used only on discrete components) will
be aliased, in effect shorting them together. This is good for series terminating
resistors. Be aware that aliases can have side effects in a hierarchical design if
one of the nets is a port on the block.

Hierarchical Bodies

In a hierarchical design each block becomes a subdesign in the netlist. As such, it
has its own entity and port list. In the ConceptHDL environment, the direction of
the ports is determined by the file <block_name>/entity/vhdl.vhd. This file is
created and/or modified each time the body of the block is written. If the ports
don’t come out with the intended direction automatically, the easiest thing to do
is simply edit that file by hand. Other tools may have better ways of controlling
block entities.

15.5.3 Netlisting the Design

Data are passed from schematic capture to simulation through a VHDL netlist.
Depending on your tool supplier, the netlisting tool may be bundled with the
schematic capture system or it may be a separate tool.

Setting Up the Netlister

Before netlisting in ConceptHDL, a number of setup steps are required:

• Ensure that for every component library in your design you also reference
the corresponding VHDL library.

• Under setup -> tools -> simulation, select the simulator type that is correct
for your site. If you are not using Cadence’s simulator, select “Third Party
VHDL.” Then click on “Setup.”

258 Chapter 15 Considerations for Component Modeling

MAG15 8/18/04 3:03 PM Page 258

• Enter the VHDL package libraries you will be using. If you use FMF models
you will enter “IEEE” and “FMF.”

• Enter the packages you will use from the libraries. For FMF models they are
IEEE.std_logic_1164.all, IEEE.VITAL_TIMING.ALL, IEEE.VITAL_
PRIMITIVES.ALL, and FMF.gen_utils.all.

• If you have turned off “Create Netlist” in ConceptHDL, turn it on and check
VHDL. Write all pages of your design.

Running the Netlister

Using the graphical user interface is recommended:

• From the tools menu in either ConceptHDL or the Project Manager, select
“simulate.”

• From the popup window that appears, enter the path to where you want the
VHDL netlist and log files to go.

• Click on “Run.”

Eventually, a popup will appear to tell you that netlisting was successful, or not. If
it was not successful, a markers file may have been created that you can use in Con-
ceptHDL to find where in your schematic the error occurred. However, it may be
easier to read the netassembler.log file that was placed in the same directory you
specified for the netlist. The most likely errors to be reported are port mismatches.

15.5.4 VHDL Compilation

Having produced a VHDL netlist, the next step is to compile it. For ModelSim, the
compiler is called vcom and the command is vcom <filename>. Before the netlist
can be compiled the first time, a work directory must be established to receive the
compilation results. This is done with the command vlib work. If there are com-
piler errors, they will be written to stdout.

15.5.5 SDF Generation

Each FMF-style model has an associated timing file that describes the internal delays
of a component with any required timing constraints. Some of the benefits of exter-
nal timing files are reduced number of models to write and maintain and flexibil-
ity in exploring timing differences for a number of component suppliers.

SDF generation produces a file in SDF that may be used by the simulator to
provide accurate timing for the simulation. Initial simulation runs may not require
timing and can skip this step. Without SDF annotation, FMF-style models default
to unit delays. However, some models, such as certain memories, may give mis-
leading results when run with unit delays.

15.5 Using Models in the Design Process 259

MAG15 8/18/04 3:03 PM Page 259

Although SDF files may be created by hand, such work is tedious. Therefore, a
tool has been created to automate the task. The SDF tool is called mk_sdf and may
be obtained as a perl script from the Free Model Foundry (at no cost). It uses a
command file named mk_sdf.cmd, which should reside in the working directory
(a sample mk_sdf.cmd file is given in Figure 15.5). This tool reads the design’s
VHDL netlist or testbench (note that it does not work with uninstantiated models).
It uses VHDL configuration statements, such as

for all : CDC339 use entity CLOCK.cdc339(VHDL_BEHAVIORAL);

to determine which library to search in for the timing file for each model. It also
reads the TimingModel generic for each instantiation,

TIMINGMODEL => “CDC339DB”

and uses the value it finds to search the timing file for the correct section. Here
CDC339DB is the real part number and is listed in the timing file cdc339.ftm. The
timing file may contain timings for many parts. The timing you want to use is
specified by the TimingModel generic.

The instance names in the netlist,

I3P_S4 : CDC339

are extracted for use in the SDF file.
The configuration file, called mk_sdf.cmd, provides the tool with information

about its environment. The mk_sdf script is invoked with the command

mk_sdf [netlist_name] [sdf_file_name]

The mk_sdf.cmd file contains a number of set directives. Here are the commands
available in version 2.0, the first perl version. Directives may be in any order. Except
for one, diagnostics, they have no default values:

SET sdffile_suffix <.suffix> The SDF file produced will have the same name as
the VHDL file read, except the suffix will be changed to whatever you specify in
this command. Alternatively, the name of the SDF file may be entered as the
second argument on the command line.

260 Chapter 15 Considerations for Component Modeling

SET sdffile_suffix .sdf
SET use_global_timing_dir false
SET timingfile_dir TimingModels
SET timingfile_suffix .ftm
SET time_scale 1ns
SET local_path .
SET diagnostics off
SET vhdl_file vhdllink.vhd
SET lwb off

Figure 15.5 Sample mk_sdf.cmd file

MAG15 8/18/04 3:03 PM Page 260

SET use_global_timing_dir <true | false> Timing files may be distributed
among the CAE symbol libraries or they may all be kept in a single directory. If
they are distributed it is assumed they are in a directory structure parallel to the
compiled models. This directive may be set to true or false.

SET timingfile_dir <directory_name> The timing files will be kept in one or
more directories. This directive gives the name of the directories.

SET vendor <modeltech | cadence> If use_global_timing_dir is false,
mk_sdf will try to find the paths of the libraries. If vendor is set to modeltech,
it will try to read the global and local modelsim.ini files. If vendor is set to
cadence, it will try to read the global and local cds.lib files.

SET vhdl_file <file_name> The vhdl_file is the name of the netlist. It may also
be entered as the first argument on the command line.

SET diagnostics <on | off> Diagnostics may be set on or off. The default is
off. If set on, the program will write voluminous messages informing you in
detail of its progress. This should be useful in debugging problems in the envi-
ronment or with unexpected formatting in netlists. If even more detail is
required in diagnosing problems, use the perl -d (for debug) option on the first
line on the program.

Any line in the command file may be overridden from the command line. If the
command file is fully and correctly set, execution may be accomplished by simply
executing mk_sdf without any arguments.

15.5.6 Simulation

The ModelSim simulator is invoked from the command line with arguments for
SDF backannotation, the name of the SDF file, and the design name: vsim -sdfmax
mydesign.sdf mydesign. If timing is not required, the -sdfmax mydesign.sdf
argument may be omitted for unit delay simulation. Alternatively, multiple
SDF files may be read to include interconnect delays from the PCB layout tool,
timing files for ASICs and FPGAs, and so on. Based on the results of the simula-
tion, there may be a loop back to schematic capture from this point to refine the
design.

15.5.7 Layout

After satisfactory simulation results are obtained, the design goes to PCB layout. If
timing margins were determined to be tight, anticipated interconnect delays based
on manhattan distances between pins may be computed and backannotated
through SDF to check if timing constraints are likely to be met by the proposed
layout.

15.5 Using Models in the Design Process 261

MAG15 8/18/04 3:03 PM Page 261

15.5.8 Signal Analysis

Subsequent to layout and routing of the PCB, signal integrity analysis may be per-
formed. A well-designed library will provide the names of the signal integrity
models to be used in an SI tool, such as SpecctraQuest or HyperLynx. These tools
are capable of computing values for various physical effects, such as crosstalk and
noise margins. They can also compute accurate interconnect delays based on the
characteristics of a driver’s output buffer, receiver thresholds, propagation delays
calculated for the board stackup, and transmission line analysis of the traces.

15.5.9 Timing Backannotation

Accurate interconnect delays, including transmission line effects, can be extracted
from Allegro, the Cadence PCB layout tool, with the writesdf utility. Instructions
for running writesdf appear on the popup informing you of successful netlisting.

15.5.10 Timing Analysis

Once the interconnect SDF file is generated, a final full timing simulation can be
run. It would be more efficient at this point to run a static timing analyzer such as
Blast or TAU from Mentor. All the data needed appear to be in the SDF files, but
the few static timing analyzers available read only proprietary model formats. If
your organization can support one of these tools, by all means use it. Otherwise,
dynamic simulation with full timing backannotation is your best bet for timing
verification.

15.6 Special Considerations

While the design-to-simulation process described here should be relatively easy and
straightforward, it is possible to make it difficult. What follows are some techniques
and caveats to keep in mind to avoid unnecessary complications.

15.6.1 Schematic Considerations

Schematics are the primary means of capturing board-design intent. Minor details
in schematics can have substantial downstream effects.

Net Names

Try to use legal VHDL names for all nets. Names that are not legal VHDL will be
changed by the netlister into legal but less readable names.

Unused Bits

Some people like to run busses into hierarchical blocks but not connect all bits of
the bus inside the block. The netlister may have difficulties with this. Either connect

262 Chapter 15 Considerations for Component Modeling

MAG15 8/18/04 3:03 PM Page 262

to the block only the number of bits actually used or, for ConceptHDL users, attach
a port body to each unconnected net inside the block. Other options may be avail-
able to users of other schematic tools.

Mixed Busses

Sometimes an engineer will create a bus for which some bits are inputs to a block
and other bits are outputs from the block. Doing this will successfully prevent
netlisting. All bits on a bus must go in the same direction. They can be inputs to
the block, outputs, or bidirectional, but they must all be the same. The author does
not know of any way to work around this restriction.

Port Bodies

The ConceptHDL netlister occasionally has difficulty determining the correct mode
of a port on a hierarchical body. Usually the port mode can be forced to the correct
value by attaching the appropriate port body to the net inside the block and/or
manually editing the entity/vhdl.vhd file for the block. There are three usable
port bodies: INPORT, OUTPORT, and IOPORT. They create ports of types IN, OUT,
and INOUT, respectively.

15.6.2 Model Considerations

As noted earlier, small components that come as multiple units per package should
be modeled at the lowest level they appear as schematic symbols. For example, in
Figure 15.6 we have a schematic. The only components in this schematic are
74LVC2244s. There are three instances of this component. Two instances are rep-
resented as single gates. The third instance is of four gates and their common
enable. This component is modeled as a single gate. When the netlister encounters
the single-gate representation in the schematic, it of course adds a single instance
to the netlist. When the four-gate symbol is encountered, it adds four instances to
the netlist. The following shows a portion of the netlist from the schematic in
Figure 15.6.

BEGIN

--- Component instances

page1_I2_S1: std244

GENERIC MAP (

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

15.6 Special Considerations 263

MAG15 8/18/04 3:03 PM Page 263

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => open ,

OENeg => BEN ,

Y => open

);

page1_I2_S2: std244

GENERIC MAP (

264 Chapter 15 Considerations for Component Modeling

BIN�1 . . 0�

BOUT�1 . . 0�

AOUT�1 . . 0�

1
0

1
0

A

BEN

AEN

Y

OE

?
LVC2244A
SS

AIN�1 . . 0�

1 1
?

LVC2244A
SS

?

LVC2244A
SS

0 0

Figure 15.6 Different representations of a 74244

MAG15 8/18/04 3:03 PM Page 264

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => open ,

OENeg => BEN ,

Y => open

);

page1_I2_S3: std244

GENERIC MAP (

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => BIN (1),

OENeg => BEN ,

Y => BOUT (1)

);

page1_I2_S4: std244

GENERIC MAP (

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => BIN (0),

OENeg => BEN ,

Y => BOUT (0)

);

15.6 Special Considerations 265

MAG15 8/18/04 3:03 PM Page 265

page1_I3: std244

GENERIC MAP (

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => AIN (0),

OENeg => AEN ,

Y => AOUT (0)

);

page1_I4: std244

GENERIC MAP (

tipd_Y => VitalZeroDelay01,

tipd_A => VitalZeroDelay01,

tipd_OENeg => VitalZeroDelay01,

tpd_A_Y => UnitDelay01,

tpd_OENeg_Y => UnitDelay01Z,

InstancePath => “DefaultInstancePath”,

TimingModel => “LVC2244A”

)

PORT MAP (

A => AIN (1),

OENeg => AEN ,

Y => AOUT (1)

);

As you can see, there are six instances of the std244 model in the netlist. Two
of those instances have ports mapped to OPEN. The netlister was able to read a
single schematic symbol and translate it to four component instantiations in the
netlist.

15.7 Summary

Boards are usually designed using schematics. Board-level verification begins with
the schematic-derived VHDL netlist. A component model should be tailored to
work with the component’s schematic representation. Every port on the model
must be shown on the schematic symbol.

Model generics may be modified by attaching attributes to the symbols in the
schematic. For models of the timing-independent style described in this book, the

266 Chapter 15 Considerations for Component Modeling

MAG15 8/18/04 3:03 PM Page 266

most important attribute is TimingModel. Other useful attributes vary by model
type. To be passed from schematic to netlist the attribute name must match the
generic name.

The details of how to integrate component models into a schematic capture
system vary from system to system. They usually involve a mechanism to map
schematic pin names to model port names and a way for the netlister to find the
model entities.

After netlisting, an SDF file can be generated by running the mk_sdf script. The
mk_sdf.cmd file can customize the behavior of mk_sdf to different design
environments.

15.7 Summary 267

MAG15 8/18/04 3:03 PM Page 267

This page intentionally left blank

16

269

C

H

A

P

T

E

R

Modeling Component-Centric
Features

There is always a new odd part to model. The semiconductor industry has produced
an astounding variety of electronic devices. Just when you think you know how to
model any part built, another one comes along that provides new challenges. This
chapter presents just a few of the challenges you are likely to run into, and their
solutions.

16.1 Differential Inputs

An increasing number of new components fall into the category of high-speed
devices. One thing that characterizes many high-speed devices is differential inputs.
There are several strategies for modeling differential inputs, depending on how they
are used and what types of errors you would like to detect during simulation.

The simplest and least satisfying way of dealing with a differential input is to
just throw away one phase and treat the other as a single-ended input. This method
will fail to catch any errors related to the input’s differential nature and, for that
reason, is discouraged.

The next step up is to use both phases to generate a single internal signal through
the use of an AND function such as

CLKcomb <= CLKIn AND not(CLKNegIn);

This requires that both phases be connected and toggled, but it can cause timing
distortions under some circumstances.

A skew check, such as the one in Figure 16.1, can be used to check that the two
phases of a clock or other differential signal are properly aligned:

With this, the user can be warned if the timing distortion exceeds a certain value.
It would be nice to have a skew check for every differential input. Unfortunately,
most data sheets do not define maximum allowable skew, so any value used in the
skew check would be a guess.

Components such as differential receivers require more care in the preservation
of timing in order to accurately simulate downstream circuitry. The Free Model
Foundry IF490 model uses a state table for converting differential input to a single-
ended signal:

MAG16 8/18/04 3:02 PM Page 269

-- Functionality Section

VitalStateTable (

StateTable => diff_rec_tab,

DataIn => (RIN_ipd, RINNeg_ipd),

Result => R_zd,

PreviousDataIn => PrevData

);

The state table itself is defined in the FMF gen_utils library and is shown in Figure
16.2.

First the inputs are checked for unknowns. An unknown on an input always
results in an unknown output. Next, to recover from a previous known output, the
A input is checked for a ‘1’ or a ‘0’. If either value is found, it is applied to the
output. If neither of the previous conditions exist, the inputs are checked for an
edge on one input and an opposite value on the other. Should such values be found,
a ‘1’ or a ‘0’ is output as appropriate. If none of the aforementioned situations
apply, the output is left unchanged.

This state table should be a safe bet for converting a differential input to single
ended in most non-ECL models. It works by watching both inputs for transitions.
Only when the two inputs are of opposite polarity and have changed from their
previous state does the table output a new value.

ECL models provide some of the most interesting examples of differential inputs.
One feature that makes them interesting is they often can be made to behave as
single-ended inputs by connecting one pin to a special output called vbb. vbb is a
constant intermediate voltage. When tied to one pin of a differential pair, the other
pin can be driven as a single-ended input. To model a component with this feature
correctly requires the detection of the special voltage level. VHDL, being a digital

270 Chapter 16 Modeling Component-Centric Features

 VitalOutPhaseSkewCheck (
 Signal1 => CLKIn,
 Signal1Name => “CLK”,
 Signal2 => CLKNegIn,
 Signal2Name => “CLKNeg”,
 SkewS1S2RiseFall => tskew_CLK_CLKNeg,
 SkewS2S1RiseFall => tskew_CLK_CLKNeg,
 SkewS1S2FallRise => tskew_CLK_CLKNeg,
 SkewS2S1FallRise => tskew_CLK_CLKNeg,
 CheckEnabled => TRUE,
 HeaderMsg => InstancePath & PartID,
 SkewData => SD_CLK_CLKNeg,
 Trigger => CKSKWtrg,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Sviol_CLK_CLKNeg);

Figure 16.1 Skew check for differential clock

MAG16 8/18/04 3:02 PM Page 270

hardware description language, is usually ill suited to such a task. However, this
time we are lucky.

The std_logic_1164 package defines a signal strength ‘W’ that is rarely used
in board-level simulation. Component models can use the ‘W’ value for the ECL
vbb output. Because there will be nothing else that ever drives a ‘W’, its presence
on an input will be a sure indication that the pin is tied to vbb. The FMF ecl_utils
package contains all the required declarations for modeling ECL components.

A slightly abbreviated ECL model that illustrates this is shown in Figure 16.3, a
model of a D flip-flop with differential D and CLK inputs.

The first section of interest in Figure 16.3 is the port list.

-- 0 denotes internal pull-down resistor, 1 pull-up

-- (actually clamp circuit)

PORT (

CLK : IN std_ulogic := ‘0’;

CLKNeg : IN std_ulogic := ‘1’;

R : IN std_ulogic := ‘0’;

S : IN std_ulogic := ‘0’;

D : IN std_ulogic := ‘0’;

DNeg : IN std_ulogic := ‘1’;

Q : OUT std_ulogic := ‘U’;

QNeg : OUT std_ulogic := ‘U’ ;

VBB : OUT std_ulogic := ECLVbbValue

);

The component has internal pull-up and pull-down resistors. They are reflected
in the model by initializing certain ports to ‘1’ or ‘0’. If those ports are left

16.1 Differential Inputs 271

 --
 -- Table for computing a single signal from a differential receiver input
 -- pair.
 --
 CONSTANT diff_rec_tab : VitalStateTableType := (

 ------INPUTS--|-PREV-|-OUTPUT----
 -- A ANeg | Aint | Aint’ --
 --------------|------|-----------
 (‘X’, ‘-’, ‘-’, ‘X’), -- A unknown
 (‘-’, ‘X’, ‘-’, ‘X’), -- A unknown
 (‘1’, ‘-’, ‘X’, ‘1’), -- Recover from ‘X’
 (‘0’, ‘-’, ‘X’, ‘0’), -- Recover from ‘X’
 (‘/’, ‘0’, ‘0’, ‘1’), -- valid diff. rising edge
 (‘1’, ‘\’, ‘0’, ‘1’), -- valid diff. rising edge
 (‘\’, ‘1’, ‘1’, ‘0’), -- valid diff. falling edge
 (‘0’, ‘/’, ‘1’, ‘0’), -- valid diff. falling edge
 (‘-’, ‘-’, ‘-’, ‘S’) -- default
); -- end of VitalStateTableType definition

Figure 16.2 Differential receiver state table

MAG16 8/18/04 3:02 PM Page 271

272 Chapter 16 Modeling Component-Centric Features

--
-- File name : eclpsl29.vhd
--
-- Copyright (C) 1999, 2002 Free Model Foundry; http://eda.org/fmf/
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY :
--
-- version: | author: | mod date: | changes made:
-- V1.0 M. Li 99 DEC 02 initial release
-- V1.1 R. Munden 02 APR 24 Fixed Dummy VPDs
--
-- PART DESCRIPTION :
--
-- Library: ECLPS
-- Technology: ECL
-- Part: ECLPSL29
--
-- Description: Differential data and clock D Flip-Flop with Set and Reset
--
--
LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
 USE IEEE.VITAL_primitives.ALL;
 USE IEEE.VITAL_timing.ALL;
LIBRARY FMF; USE FMF.ecl_utils.ALL;
 USE FMF.ff_package.ALL;

--
-- ENTITY DECLARATION
--
ENTITY eclpsl29 IS
 GENERIC (
 -- tipd delays: interconnect path delays
 tipd_R : VitalDelayType01 := VitalZeroDelay01;
 tipd_S : VitalDelayType01 := VitalZeroDelay01;
 tipd_CLK : VitalDelayType01 := VitalZeroDelay01;
 tipd_CLKNeg : VitalDelayType01 := VitalZeroDelay01;
 tipd_D : VitalDelayType01 := VitalZeroDelay01;
 tipd_DNeg : VitalDelayType01 := VitalZeroDelay01;
 -- tpd delays: propagation delays
 tpd_CLK_Q : VitalDelayType01 := ECLUnitDelay01;
 tpd_R_Q : VitalDelayType01 := ECLUnitDelay01;
 tpd_S_Q : VitalDelayType01 := ECLUnitDelay01;
 -- tsetup values: setup times
 tsetup_D_CLK : VitalDelayType := ECLUnitDelay;
 -- thold values: hold times
 thold_D_CLK : VitalDelayType := ECLUnitDelay;
 -- trecovery values: release times
 trecovery_R_CLK : VitalDelayType := ECLUnitDelay;
 trecovery_S_CLK : VitalDelayType := ECLUnitDelay;
 -- tpw values: pulse widths
 tpw_R_posedge : VitalDelayType := ECLUnitDelay;
 tpw_S_posedge : VitalDelayType := ECLUnitDelay;
 tpw_CLK_posedge : VitalDelayType := ECLUnitDelay;
 tpw_CLK_negedge : VitalDelayType := ECLUnitDelay;
 -- generic control parameters
 InstancePath : STRING := DefaultECLInstancePath;
 TimingChecksOn : BOOLEAN := DefaultECLTimingChecks;
 MsgOn : BOOLEAN := DefaultECLMsgOn;
 XOn : BOOLEAN := DefaultECLXOn;
 -- For FMF SDF technology file usage
 TimingModel : STRING := DefaultECLTimingModel
);

Figure 16.3 ECL model with differential inputs

MAG16 8/18/04 3:02 PM Page 272

16.1 Differential Inputs 273

 -- 0 denotes internal pull-down resistor, 1 pull-up
 -- (actually clamp circuit)
 PORT (
 CLK : IN std_ulogic := ‘0’;
 CLKNeg : IN std_ulogic := ‘1’;
 R : IN std_ulogic := ‘0’;
 S : IN std_ulogic := ‘0’;
 D : IN std_ulogic := ‘0’;
 DNeg : IN std_ulogic := ‘1’;
 Q : OUT std_ulogic := ‘U’;
 QNeg : OUT std_ulogic := ‘U’ ;
 VBB : OUT std_ulogic := ECLVbbValue
);
 ATTRIBUTE VITAL_level0 of eclpsl29 : ENTITY IS TRUE;
END eclpsl29;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral OF eclpsl29 IS
 ATTRIBUTE VITAL_level1 OF vhdl_behavioral : ARCHITECTURE IS TRUE;

 SIGNAL CLK_ipd : std_ulogic := ‘X’;
 SIGNAL CLKNeg_ipd : std_ulogic := ‘X’;
 SIGNAL R_ipd : std_ulogic := ‘X’;
 SIGNAL S_ipd : std_ulogic := ‘X’;
 SIGNAL D_ipd : std_ulogic := ‘X’;
 SIGNAL DNeg_ipd : std_ulogic := ‘X’;
 SIGNAL CLKint : std_ulogic := ‘X’;
 SIGNAL Dint : std_ulogic := ‘X’;
 SIGNAL Qint : std_ulogic := ‘X’;

BEGIN

 --
 -- Wire Delays
 --

-- wire delay block ommitted
 --
 -- Concurrent Procedures
 --
 a_1: VitalBUF (q => Q, a => Qint, ResultMap => ECL_wired_or_rmap);
 a_2: VitalINV (q => QNeg, a => Qint, ResultMap => ECL_wired_or_rmap);

 --
 -- D inputs Process
 --
 Dinputs : PROCESS (D_ipd, DNeg_ipd)

 -- Functionality Results Variables
 VARIABLE Dint_zd : X01;

 -- Output Glitch Detection Variables
 VARIABLE D_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 Dint_zd := ECL_s_or_d_inputs_tab (D_ipd, DNeg_ipd);

Figure 16.3 ECL model with differential inputs (continued)

MAG16 8/18/04 3:02 PM Page 273

274 Chapter 16 Modeling Component-Centric Features

 --
 -- (Dummy) Path Delay Section
 --
 VitalPathDelay (
 OutSignal => Dint,
 OutSignalName => “Dint”,
 OutTemp => Dint_zd,
 GlitchData => D_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => D_ipd’LAST_EVENT,
 PathDelay => VitalZeroDelay,
 PathCondition => FALSE))

);

 END PROCESS;

 --
 -- ECL Clock Process
 --
 ECLClock : PROCESS (CLK_ipd, CLKNeg_ipd)

 -- Functionality Results Variables
 VARIABLE Mode : X01;
 VARIABLE CLKint_zd : std_ulogic;
 VARIABLE PrevData : std_logic_vector(0 to 2);

 -- Output Glitch Detection Variables
 VARIABLE CLK_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Functionality Section
 --
 Mode := ECL_diff_mode_tab(CLK_ipd, CLKNeg_ipd);

 VitalStateTable (
 StateTable => ECL_clk_tab,
 DataIn => (CLK_ipd, CLKNeg_ipd, Mode),
 Result => CLKint_zd,
 PreviousDataIn => PrevData
);

 --
 -- (Dummy) Path Delay Section
 --
 VitalPathDelay (
 OutSignal => CLKint,
 OutSignalName => “CLKint”,
 OutTemp => CLKint_zd,
 GlitchData => CLK_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLK_ipd’LAST_EVENT,
 PathDelay => VitalZeroDelay,
 PathCondition => FALSE))
);

Figure 16.3 ECL model with differential inputs (continued)

MAG16 8/18/04 3:02 PM Page 274

 END PROCESS;
 --
 -- Main Behavior Process
 --
 VitalBehavior : PROCESS (CLKint, Dint, S_ipd, R_ipd)

 -- Timing Check Variables

-- timingcheck variables ommitted

 VARIABLE Violation : X01 := ‘0’;

 -- Functionality Results Variables
 VARIABLE Q_zd : std_ulogic;
 VARIABLE PrevData : std_logic_vector(0 to 4);

 -- Output Glitch Detection Variables
 VARIABLE Q_GlitchData : VitalGlitchDataType;

 BEGIN

 --
 -- Timing Check Section
 --
 IF (TimingChecksOn) THEN

-- timingchecks ommitted

 END IF;

 --
 -- Functionality Section
 --
 Violation := Tviol_D_CLKint OR Pviol_CLKint OR
 Rviol_R_CLKint OR Pviol_R OR
 Sviol_S_CLKint OR Pviol_S;

 VitalStateTable (
 StateTable => DFFSR_tab,
 DataIn => (Violation, CLKint, Dint, S_ipd, R_ipd),
 Result => Q_zd,
 PreviousDataIn => PrevData
);

 --
 -- Path Delay Section
 --
 VitalPathDelay01 (
 OutSignal => Qint,
 OutSignalName => “Qint”,
 OutTemp => Q_zd,
 GlitchData => Q_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLKint’LAST_EVENT,
 PathDelay => tpd_CLK_Q,
 PathCondition => TRUE),
 1 => (InputChangeTime => R_ipd’LAST_EVENT,
 PathDelay => tpd_R_Q,
 PathCondition => TRUE),
 2 => (InputChangeTime => S_ipd’LAST_EVENT,
 PathDelay => tpd_S_Q,
 PathCondition => TRUE)
)
);

 END PROCESS;
END vhdl_behavioral;

Figure 16.3 ECL model with differential inputs (continued)

MAG16 8/18/04 3:02 PM Page 275

unconnected in the netlist, they will retain their initial values. The internal pull-
up and pull-down resistors in the component are designed to work only in the case
of open inputs. Likewise, initializing the ports to ‘1’ and ‘0’ in the model works
only for open inputs.

The next section of interest is the concurrent procedures:

-- Concurrent Procedures

a_1: VitalBUF (q => Q, a => Qint, ResultMap => ECL_wired_or_rmap);

a_2: VitalINV (q => QNeg, a => Qint, ResultMap => ECL_wired_or_rmap);

These serve two functions. They take a single internal result, Qint, and use it to drive
the differential outputs Q and QNeg. They also map the internal result to the ECL logic
levels ‘Z’ and ‘1’ by calling the ECL_wired_or_rmap result map in the FMF
ecl_utilspackage. ECL outputs are open emitter, so they cannot drive a ‘0’output.

Each of the differential pair inputs are read in their own process. The first
one is for the D inputs, while includes a function call to a table called
ECL_s_or_d_inputs_tab that is defined in the ecl_utils package and is listed
in Figure 16.4.

The table is called and the results assigned to Dint_zd.

Dint_zd := ECL_s_or_d_inputs_tab (D_ipd, DNeg_ipd);

The result, Dint_zd, is assigned to an internal signal, Dint, through a zero delay
VitalPathDelay procedure. The VPD is required for the model to qualify as a
VITAL_Level1 model.

276 Chapter 16 Modeling Component-Centric Features

 CONSTANT ECL_s_or_d_inputs_tab : eclstdlogic_table := (
 --
 -- For the case, ECLVbbValue = ‘W’, table looks like this:

 ----| U X 0 1 Z W L H - | |

 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’), -- | U |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’), -- | X |
 -- (‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘0’, ‘X’, ‘0’, ‘X’), -- | 0 |
 -- (‘X’, ‘X’, ‘1’, ‘X’, ‘X’, ‘1’, ‘1’, ‘X’, ‘X’), -- | 1 |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’), -- | Z |
 -- (‘X’, ‘X’, ‘1’, ‘0’, ‘X’, ‘X’, ‘1’, ‘0’, ‘X’), -- | W |
 -- (‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘0’, ‘X’, ‘0’, ‘X’), -- | L |
 -- (‘X’, ‘X’, ‘1’, ‘X’, ‘X’, ‘1’, ‘1’, ‘X’, ‘X’), -- | H |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’) -- | - |
 --);

 ‘0’ => (’1’ => ‘0’, ‘H’ => ‘0’, ECLVbbValue => ‘0’, OTHERS => ‘X’),
 ‘L’ => (’1’ => ‘0’, ‘H’ => ‘0’, ECLVbbValue => ‘0’, OTHERS => ‘X’),
 ‘1’ => (’0’ => ‘1’, ‘L’ => ‘1’, ECLVbbValue => ‘1’, OTHERS => ‘X’),
 ‘H’ => (’0’ => ‘1’, ‘L’ => ‘1’, ECLVbbValue => ‘1’, OTHERS => ‘X’),
 ECLVbbValue => (’0’ => ‘1’, ‘L’ => ‘1’, ‘1’ => ‘0’, ‘H’ => ‘0’,
 OTHERS => ‘X’),
 OTHERS => (OTHERS => ‘X’)
);

Figure 16.4 ECL_s_or_d_inputs_tab

MAG16 8/18/04 3:02 PM Page 276

The next process reads the input clock pair. First the input mode must be deter-
mined. Depending on if or how vbb is connected, either input could be a single-
ended input or they could be a differential pair. Actual use is determined by a call
to ECL_diff_mode_tab which is listed in Figure 16.5.

The table is called and the results assigned to Mode.

Mode := ECL_diff_mode_tab(CLK_ipd, CLKNeg_ipd);

The result, Mode, can be ‘0’, ‘1’, or ‘X’. Values ‘0’ or ‘1’ indicate which
input is active as a single-ended input. If the value is ‘X’, the inputs are being
driven as a differential pair. This is an input to the ECL_clk_tab VITAL state table
(listed in Figure 16.6) that reads the inputs and outputs an internal clock variable.

VitalStateTable (

StateTable => ECL_clk_tab,

DataIn => (CLK_ipd, CLKNeg_ipd, Mode),

Result => CLKint_zd,

PreviousDataIn => PrevData

);

Once again, a VitalPathDelay procedure is used to assign the result to an
internal signal.

The component functionality is modeled with a call to another VITAL state table
that resides in the FMF ff_package and is listed in Figure 16.7.

16.1 Differential Inputs 277

 -- Table for determining whether input pair is differential or
 -- single-ended. There are 3 values:
 -- input, input_bar neither or both Vbb, mode => ‘X’
 -- input_bar = Vbb, mode => ‘0’
 -- input = Vbb, mode => ‘1’
 -- Used as input to ECL_clk_tab: return value name convention is ‘Mode’
 -- Type of ‘Mode’ is X01

 CONSTANT ECL_diff_mode_tab : eclstdlogic_table := (
 --
 -- For the case, ECLVbbValue = ‘W’, table looks like this:

 ----| U X 0 1 Z W L H - | |

 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | U |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | X |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | 0 |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | 1 |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | Z |
 -- (‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘X’, ‘1’, ‘1’, ‘1’), -- | W |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | L |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’), -- | H |
 -- (‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘0’, ‘X’, ‘X’, ‘X’) -- | - |
 --);

 ECLVbbValue => (ECLVbbValue => ‘X’, OTHERS => ‘1’),
 OTHERS => (ECLVbbValue => ‘0’, OTHERS => ‘X’)

Figure 16.5 ECL_diff_mode_tab

MAG16 8/18/04 3:02 PM Page 277

278 Chapter 16 Modeling Component-Centric Features

 -- Table for computing a single signal from a differential ECL clock
 -- pair. Mode is ‘1’ or ‘0’ when the signal is single-ended. The rest of
 -- the table is self-explanatory :)

 CONSTANT ECL_clk_tab : VitalStateTableType := (

 ------INPUTS-------|-PREV---|-OUTPUT----
 -- CLK CLKNeg Mode | CLKint | CLKint’ --
 -------------------|--------|-----------
 (‘-’, ‘X’, ‘1’, ‘-’, ‘X’), -- Single-ended, Vbb on CLK
 (‘-’, ‘0’, ‘1’, ‘-’, ‘1’), -- Single-ended, Vbb on CLK
 (‘-’, ‘1’, ‘1’, ‘-’, ‘0’), -- Single-ended, Vbb on CLK
 (‘X’, ‘-’, ‘0’, ‘-’, ‘X’), -- Single-ended, Vbb on CLK_N
 (‘0’, ‘-’, ‘0’, ‘-’, ‘0’), -- Single-ended, Vbb on CLK_N
 (‘1’, ‘-’, ‘0’, ‘-’, ‘1’), -- Single-ended, Vbb on CLK_N
 -- Below are differential input possibilities only
 (‘X’, ‘-’, ‘X’, ‘-’, ‘X’), -- CLK unknown
 (‘-’, ‘X’, ‘X’, ‘-’, ‘X’), -- CLK unknown
 (‘1’, ‘-’, ‘X’, ‘X’, ‘1’), -- Recover from ‘X’
 (‘0’, ‘-’, ‘X’, ‘X’, ‘0’), -- Recover from ‘X’
 (‘/’, ‘0’, ‘X’, ‘0’, ‘1’), -- valid ECL rising edge
 (‘1’, ‘”, ‘X’, ‘0’, ‘1’), -- valid ECL rising edge
 (‘”, ‘1’, ‘X’, ‘1’, ‘0’), -- valid ECL falling edge
 (‘0’, ‘/’, ‘X’, ‘1’, ‘0’), -- valid ECL falling edge
 (‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default
); -- end of VitalStateTableType definition

Figure 16.6 ECL_clk_tab

 -- D-flip/flop with Set and Reset both active high

 CONSTANT DFFSR_tab : VitalStateTableType := (

 -- -------INPUTS-----------|PREV-|-OUTPUT--
 -- Viol CLK D S R | QI | Q’ --
 ---------------------------|-----|---------
 (‘X’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘X’), -- timing violation
 (‘-’, ‘B’, ‘-’, ‘X’, ‘0’, ‘1’, ‘1’), -- set unknown
 (‘-’, ‘/’, ‘1’, ‘X’, ‘0’, ‘1’, ‘1’), -- set unknown
 (‘-’, ‘-’, ‘-’, ‘X’, ‘-’, ‘-’, ‘X’), -- set unknown
 (‘-’, ‘B’, ‘-’, ‘0’, ‘X’, ‘0’, ‘0’), -- reset unknown
 (‘-’, ‘/’, ‘0’, ‘0’, ‘X’, ‘0’, ‘0’), -- reset unknown
 (‘-’, ‘-’, ‘-’, ‘-’, ‘X’, ‘-’, ‘X’), -- reset unknown
 (‘-’, ‘-’, ‘-’, ‘1’, ‘1’, ‘-’, ‘X’), -- both asserted
 (‘-’, ‘-’, ‘-’, ‘1’, ‘0’, ‘-’, ‘1’), -- set asserted
 (‘-’, ‘-’, ‘-’, ‘0’, ‘1’, ‘-’, ‘0’), -- reset asserted
 (‘-’, ‘X’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’), -- clk unknown
 (‘-’, ‘X’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’), -- clk unknown
 (‘-’, ‘X’, ‘-’, ‘0’, ‘0’, ‘-’, ‘X’), -- clk unknown
 (‘-’, ‘/’, ‘0’, ‘0’, ‘0’, ‘-’, ‘0’), -- active clock edge
 (‘-’, ‘/’, ‘1’, ‘0’, ‘0’, ‘-’, ‘1’), -- active clock edge
 (‘-’, ‘/’, ‘-’, ‘0’, ‘0’, ‘-’, ‘X’), -- active clock edge
 (‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘-’, ‘S’) -- default

); -- end of VitalStateTableType definition

Figure 16.7 DFFSR_tab

MAG16 8/18/04 3:02 PM Page 278

VitalStateTable (

StateTable => DFFSR_tab,

DataIn => (Violation, CLKint, Dint, S_ipd, R_ipd),

Result => Q_zd,

PreviousDataIn => PrevData

);

The result, Q_zd, drives the concurrent procedure calls already examined.

16.2 Bus Hold

Bus hold is a component feature that allows an input to retain its previous
value when its driver switches to high impedance. Bus hold devices incorporate a
weak positive feedback buffer to maintain an input state. This buffer is connected
directly to the input pin and can, in theory, hold the state of the bus for other
devices connected to it. A schematic of the circuit used is shown on the left in
Figure 16.8.

Modeling a bus hold circuit as shown on the left would have some disadvan-
tages. It would require the input port to be modeled as an INOUT port. That would
complicate netlisting because the schematic capture system would show the port
as an input. Also, although in theory the bus hold circuit in one device might hold
an entire bus, component vendors do not specify how much drive is available from
one of these circuits. Therefore, it cannot be determined (from the data sheets),
what will happen if one device on a multidrop bus has bus hold and the others
do not.

The conservative approach (and the easy way out), is to model the bus hold
circuit as not propagating back to the bus but holding only the input of which it
is a part. An equivalent circuit is shown on the right side of Figure 16.8.

A model of a simple component with bus hold, the stdh125, is shown in Figure
16.9.

All of the bus hold functionality resides in the concurrent procedure calls.
The signal Aint must be of type std_logic rather than the usual std_ulogic

16.2 Bus Hold 279

INPUT_PIN DEVICE

Bus Hold circuit as built

A_IPD A_1

A_2
A_3

AINTNEG

AINT

Bus Hold circuit as modeled

Figure 16.8 Bus hold circuit

MAG16 8/18/04 3:02 PM Page 279

280 Chapter 16 Modeling Component-Centric Features

--
-- File Name: sdth125.vhd
--
-- Copyright (C) 2001 Free Model Foundry; http://vhdl.org/fmf/
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY:
--
-- version: | author: | mod date: | changes made:
-- V1.0 R. Munden 01 MAR 17 initial release
--
--
-- PART DESCRIPTION:
--
-- Library: STNDH
-- Technology: 54/74XXXX
-- Part: STDH125
--
-- Description: Line driver w/ 3-state output and bus hold
--

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
 USE IEEE.VITAL_timing.ALL;
 USE IEEE.VITAL_primitives.ALL;
LIBRARY FMF; USE FMF.gen_utils.ALL;

--
-- ENTITY DECLARATION
--
ENTITY sdth125 IS
 GENERIC (
 -- tipd delays: interconnect path delays
 tipd_Y : VitalDelayType01 := VitalZeroDelay01;
 tipd_A : VitalDelayType01 := VitalZeroDelay01;
 tipd_OENeg : VitalDelayType01 := VitalZeroDelay01;
 -- tpd delays
 tpd_A_Y : VitalDelayType01 := UnitDelay01;
 tpd_OENeg_Y : VitalDelayType01Z := UnitDelay01Z;
 -- generic control parameters
 InstancePath : STRING := DefaultInstancePath;
 -- For FMF SDF technology file usage
 TimingModel : STRING := DefaultTimingModel
);
 PORT (
 Y : OUT std_logic := ‘U’;
 A : IN std_logic := ‘U’;
 OENeg : IN std_logic := ‘U’
);
 ATTRIBUTE VITAL_LEVEL0 of sdth125 : ENTITY IS TRUE;
END sdth125;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral of sdth125 IS
 ATTRIBUTE VITAL_LEVEL0 of vhdl_behavioral : ARCHITECTURE IS TRUE;

 SIGNAL A_ipd : std_ulogic := ‘U’;
 SIGNAL Aint : std_logic := ‘U’;
 SIGNAL AintNeg : std_ulogic := ‘U’;
 SIGNAL OENeg_ipd : std_ulogic := ‘U’;

Figure 16.9 STDH125 driver with bus hold

MAG16 8/18/04 3:02 PM Page 280

16.2 Bus Hold 281

BEGIN

 --
 -- Wire Delays
 --

 WireDelay : BLOCK
 BEGIN

 w_1 : VitalWireDelay (A_ipd, A, tipd_A);
 w_2 : VitalWireDelay (OENeg_ipd, OENeg, tipd_OENeg);

 END BLOCK;

 --
 -- Concurrent procedure calls
 --
 a_1: VitalBUF (q => Aint, a => A_ipd, ResultMap => (‘U’, ‘Z’, ‘0’, ‘1’));
 a_2: VitalINV (q => AintNeg, a => Aint);
 a_3: VitalINV (q => Aint, a => AintNeg, ResultMap => (‘Z’, ‘Z’, ‘0’, ‘1’));

 --
 -- Main Behavior Process
 --
 VitalBehavior : PROCESS (Aint, OENeg_ipd)

 -- Functionality Results Variables
 VARIABLE Y_zd : std_ulogic;

 -- Output Glitch Detection Variables
 VARIABLE Y_GlitchData : VitalGlitchDataType;

 BEGIN
 --
 -- Functionality Section
 --
 Y_zd := VitalBUFIF0 (data => Aint, enable => OENeg_ipd);

 --
 -- Path Delay Section
 --
 VitalPathDelay01Z (
 OutSignal => Y,
 OutSignalName => “Y”,
 OutTemp => Y_zd,
 GlitchData => Y_GlitchData,
 Paths => (
 0 => (InputChangeTime => Aint’LAST_EVENT,
 PathDelay => VitalExtendToFillDelay(tpd_A_Y),
 PathCondition => TRUE),
 1 => (InputChangeTime => OENeg_ipd’LAST_EVENT,
 PathDelay => tpd_OENeg_Y,
 PathCondition => TRUE))
);

 END PROCESS;

END vhdl_behavioral;

Figure 16.9 STDH125 driver with bus hold (continued)

MAG16 8/18/04 3:02 PM Page 281

because it has more than one driver and must be resolved. The combination of the
result maps in a_1 and a_3 and the std_logic resolution table enable the posi-
tive feedback loop to be overridden by any new value (other than ‘Z’) placed on
the input.

There should be some delay that requires an input pulse to exceed a certain pulse
width in order to cause the bus hold to flip to a different state. However, compo-
nent vendors are not supplying the value for that delay.

16.3 PLLs and DLLs

Many types of components now include phase locked loops (PLLs) or delay
locked loops (DLLs) in their clock circuitry. These range from clock drivers through
digital signal processors. Even memories may now include PLLs. These PLLs
function as oscillators that lock to the frequency and phase of an external clock
signal.

The characteristics of a PLL that need to be considered in a model are lock time,
skew, and jitter. Lock time is the time required for the PLL to adjust itself to the
input frequency and phase. Skew is the time or phase difference between the input
and the PLL output. Jitter is the frequency stability of the PLL output. PLLs are
often modeled as two processes. A typical implementation is given in Figure 16.10.

The second process here, the PLL process, behaves like an oscillator. Whenever
the value of pll_out changes, the process is triggered and another change of
pll_out is scheduled after a delay.

The first process here, the ADJ process, compares the period of CLK_ipd with
the period of FBIN_ipd. FBIN_ipd is connected to pll_out external to these
processes and may be delayed. During the time the period of FBIN_ipd is greater
than that of CLK_ipd, the value of half_per is decreased. This makes pll_out
oscillate faster. Should the period of FBIN_ipd become less than that of CLK_ipd,
the value of half_per will be increased, making pll_out oscillate more slowly. It
is important that the amount of increase be different than the amount of decrease.
Otherwise, the two periods might never become equal.

Once the two periods are matched, vco_lock is set to true. The signal half_per
will remain unchanged. The next step is to bring the two signals into phase align-
ment. This is accomplished by adding a small delay to pll_out every other cycle.
The constant values chosen in the lines

half_per <= half_per - 50 ps;

half_per <= half_per + 60 ps;

determine how long the PLL model will take to match the frequency of pll_out
to that of CLK_ipd. The constant value in the line

pll_delay <= 30 ps;

will determine how long it takes to achieve phase alignment. The constant value
in the line

282 Chapter 16 Modeling Component-Centric Features

MAG16 8/18/04 3:02 PM Page 282

 --
 -- ADJ Process
 --
 ADJ : PROCESS (FBIN_ipd, CLK_ipd)

 VARIABLE fbi_period : time := 0 ns;
 VARIABLE clk_period : time := 0 ns;
 VARIABLE prev_clk : time := 0 ns;
 VARIABLE prev_fbi : time := 0 ns;
 VARIABLE toggle1 : boolean;
 VARIABLE toggle2 : boolean;

 BEGIN
 --
 -- Functionality Section
 --
 IF rising_edge(CLK_ipd) THEN
 clk_period := NOW - prev_clk;
 prev_clk := NOW;
 IF FBIN_ipd = ‘X’ THEN
 rst_int <= ‘1’, ‘0’ AFTER 5 ns;
 END IF;
 END IF;

 IF (FBIN_ipd’event AND FBIN_ipd = ‘0’) THEN
 rst_int <= ‘0’;
 fbi_period := NOW - prev_fbi;
 prev_fbi := NOW;

 IF toggle1 AND toggle2 THEN
 IF fbi_period > clk_period THEN
 half_per <= half_per - 50 ps;
 vco_lock <= false;
 ELSIF fbi_period < clk_period THEN
 half_per <= half_per + 60 ps;
 vco_lock <= false;
 ELSE
 vco_lock <= true;
 END IF;
 END IF;
 toggle1 := not toggle1;
 IF toggle1 THEN
 toggle2 := not toggle2;
 ELSE
 pll_delay <= 0 ps;
 END IF;
 END IF;

 IF rising_edge(FBIN_ipd) AND vco_lock AND toggle1 AND toggle2 THEN
 IF (prev_clk + 150 ps) < NOW THEN
 IF pll_delay < clk_period THEN
 pll_delay <= 30 ps;
 END IF;
 END IF;
 END IF;

 END PROCESS ADJ;

 --
 -- PLL Process
 --
 PLL : PROCESS (pll_out)

 BEGIN

 pll_out <= TRANSPORT not pll_out AFTER pll_delay + half_per;

 END PROCESS PLL;

Figure 16.10 PLL model

MAG16 8/18/04 3:02 PM Page 283

IF (prev_clk + 150 ps) < NOW THEN

will determine the accuracy of the phase alignment, also known as the skew.
This example does not attempt to introduce jitter. It approximates the behavior

of a real PLL in that it takes some time to match the input clock frequency
and phase. There are other PLLs in other components with different significant
characteristics. The code here provides a reasonable starting point for writing
PLLs.

16.4 Assertions

Assertion statements are a useful method for communicating the significant events
occurring within a model to the user. They are not closely tied to modeling any
particular type of component, but may be used in a variety of situations. The syntax
for assertion statements is as follows:

[label :] assert boolean_expression

[report expression] [severity expression];

If the boolean expression evaluates to false, the report expression is printed and
given a severity level determined by the severity expression.

The two primary reasons for using assertion statements are to communicate error
messages and progress events. An example of an error is this:

ASSERT (not(Is_X(AddressIn)))

REPORT InstancePath & partID & “: Unusable value for address”

SEVERITY SeverityMode;

In this code, the address bus of a memory is tested for unknown values. If an
unknown value is found, a message is reported to the simulator and is assigned the
severity level that corresponds to the variable SeverityMode. The severity level
may be used to pause or abort the simulation.

Assertion statements may also be used to inform the user of events occurring
within the model that are not errors. For example, the DLL within a QDR SRAM,
once locked, will continue running at the same frequency until the input clock
period slows to 30 nanoseconds:

IF CIn_period > 30 ns THEN

dll_lock := false;

ASSERT false

REPORT “C mode DLL reseting”

SEVERITY note;

END IF;

This code informs the user if that happens. The severity level is set to note. This
allows the user to mask the message if he or she prefers not to see it.

Here are two more examples from a DSP model:

284 Chapter 16 Modeling Component-Centric Features

MAG16 8/18/04 3:02 PM Page 284

IF xsum = configbuf(13) THEN -- if xsum is OK initialize

...

ASSERT false

REPORT “PCI initialized from eeprom”

SEVERITY note;

ELSE -- xsum is not OK

...

ASSERT false

REPORT “wrong checksum - PCI not initialized from eeprom”

SEVERITY warning;

These examples illustrate setting the severity level to different values for different
types of messages.

Assertion statements are of particular value in testbenches, as shown in Chapter 17.

16.5 Modifying Behavior with the TimingModel Generic

The TimingModel generic is used in FMF-style models as a means of specifying to
an external program a particular set of timing values to be annotated to a model
instance. However, in a few cases it has also been used to specify a variant of com-
ponent behavior. For example, a flash memory may be produced with a protected
area at the top of its address range. Another otherwise identical component is sold
with a protected area at the bottom of its address range. You could write, test, and
maintain two models, one for each part, or you could write one model that could
be used to simulate either part.

In the case of the flash memory, the eleventh character of the part number indi-
cates whether the part has a boot sector at the top (AM29LV160DT-70EC) or bottom
(AM29LV160DB-70EC) of its address space. Knowing that, it is easy to write a single
model that reads its TimingModel generic and behaves accordingly:

-- VarSect

VarSect <= SecNum WHEN TimingModel(1 to 11) =”am29lv160mt” ELSE

0;--WHEN TimingModel = “AM29LV160DB”

vs <= 1 WHEN TimingModel(1 to 11)=”am29lv160mt” ELSE

0;

16.6 State Machines

Many types of components incorporate state machines. They are found in DRAMs,
FIFOs, flash memories, and processors. Writing state machines in VHDL is no
problem.

State machines are usually written using CASE statements and enumerated types.
For example, a state machine for a JTAG controller would begin with the follow-
ing type and variable declarations:

16.6 State Machines 285

MAG16 8/18/04 3:02 PM Page 285

TYPE tap_state_type IS (Test_Logic_Reset,

Run_Test_Idle,

Select_DR_Scan,

Capture_DR,

Shift_DR,

Exit1_DR,

Pause_DR,

Exit2_DR,

Update_DR,

Select_IR_Scan,

Capture_IR,

Shift_IR,

Exit1_IR,

Pause_IR,

Exit2_IR,

Update_IR

);

VARIABLE TAP_state : tap_state_type;

VARIABLE prev_state : tap_state_type;

This is a behavioral model, so there is no need to think about state encoding. State
names are all that are required. Using descriptive state names makes debugging and
using the model much more pleasant. The state variables could be signals if they
need to be used in multiple processes.

There must be a clock or some other signal to activate the state machine. It may
just be in the sensitivity list or it may be explicit as shown later. Then there is the
CASE statement itself:

ELSIF rising_edge(TCKIn) THEN

CASE TAP_state IS

WHEN Test_Logic_Reset =>

IF TMS_nwv = ‘0’ THEN

TAP_state := Run_Test_Idle;

END IF;

WHEN Run_Test_Idle =>

IF TMS_nwv = ‘1’ THEN

TAP_state := Select_DR_Scan;

END IF;

WHEN Select_DR_Scan =>

IF TMS_nwv = ‘0’ THEN

TAP_state := Capture_DR;

ELSIF TMS_nwv = ‘1’ THEN

TAP_state := Select_IR_Scan;

END IF;

prev_state := Select_DR_Scan;

...

286 Chapter 16 Modeling Component-Centric Features

MAG16 8/18/04 3:02 PM Page 286

Each WHEN acts to select the current state. Frequently, a condition within the
WHEN clause will assign the next state. Complex activity can occur within a WHEN
clause:

WHEN Shift_DR =>

IF instruction = bypass OR instruction = highz THEN

bpr := TDI_nwv;

ELSIF instruction = idcode THEN

FOR i IN 1 TO 31 LOOP

IDreg(i - 1) := IDreg(i);

END LOOP;

IDreg(31) := TDI_nwv;

ELSIF instruction = sample_preload OR

instruction = extest THEN

FOR i IN 1 TO bsr_size - 1 LOOP

bsr(i - 1) <= bsr(i);

END LOOP;

bsr(bsr_size - 1) <= TDI_nwv;

END IF;

IF TMS_nwv = ‘1’ THEN

TAP_state := Exit1_DR;

END IF;

Components that have state machines often have more than one. Sometimes each
state machine is unique within the component, but sometimes they are duplicates.
DRAMs are examples of components with multiple (usually two or four) copies of
a state machine. To reduce the code size and guarantee they are identical, these
state machines can be modeled in arrays.

Here are the state machine declarations from an SDRAM model:

-- Type definition for state machine

TYPE mem_state IS (pwron,

precharge,

idle,

mode_set,

self_refresh,

self_refresh_rec,

auto_refresh,

pwrdwn,

bank_act,

bank_act_pwrdwn,

write,

write_suspend,

read,

read_suspend,

write_auto_pre,

16.6 State Machines 287

MAG16 8/18/04 3:02 PM Page 287

read_auto_pre

);

TYPE statebanktype IS array (hi_bank downto 0) of mem_state;

SIGNAL statebank : statebanktype;

In this model, the signal statebank holds the state of four state machines. On each
triggering event, all state machines are examined and updated in a FOR LOOP, as
shown in the following code snippets:

-- The Big State Machine

IF (rising_edge(CLKIn) AND CKEreg = ‘1’) THEN

...

banks : FOR bank IN 0 TO hi_bank LOOP

CASE statebank(bank) IS

WHEN pwron =>

...

WHEN write =>

IF (command = bst) THEN

statebank(bank) <= bank_act;

...

Although the four state machines are each updated at each clock rising edge, they
need not be in the same state.

16.7 Mixed Signal Devices

Many designs operate in both the digital and analog domains. Eventually it may
be practical to simulate those designs in VHDL-AMS (analog mixed signal). Until
then, it is possible to push out simulation to include many of the mixed signal
components on the dividing lines between the analog and digital areas of design.
These component are primarily digital-to-analog and analog-to-digital converters,
but may include other mixed signal components as well.

The strategy for modeling mixed signal components is to represent analog ports
as type real. Although this does not allow complete modeling of the analog char-
acteristics of these ports, such as impedance and leakage, it is sufficient to provide
a first-order approximation of the behavior of analog portions of the mixed signal
components. This method does provide a good means of verifying the digital
portion of the design.

An example of an analog-to-digital converter is given in Figure 16.11 with com-
mentary to follow.

For more detail, let us begin with a comment line in the model header:

-- Must be compiled with VITAL compliance checking off

Although this model uses the VITAL packages for timing and SDF backannotation,
it is not VITAL compliant. VITAL compliance checking must be turned off or the
model will not compile.

288 Chapter 16 Modeling Component-Centric Features

MAG16 8/18/04 3:02 PM Page 288

16.7 Mixed Signal Devices 289

--
-- File Name: ads1286.vhd
--
-- Copyright (C) 2003 Free Model Foundry; http://eda.org/fmf/
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License version 2 as
-- published by the Free Software Foundation.
--
-- MODIFICATION HISTORY:
--
-- version: | author: | mod date: | changes made:
-- V1.0 R. Munden 03 Jan 10 Initial release
--
-- Must be compiled with VITAL compliance checking off
--
-- PART DESCRIPTION:
--
-- Library: CONVERTERS_VHDL
-- Technology: MIXED
-- Part: ADS1286
--
-- Description: Sampling 12-Bit A/D Converter
--

LIBRARY IEEE; USE IEEE.std_logic_1164.ALL;
 USE IEEE.VITAL_timing.ALL;
 USE IEEE.VITAL_primitives.ALL;
LIBRARY FMF; USE FMF.gen_utils.ALL;

--
-- ENTITY DECLARATION
--
ENTITY ads1286 IS
 GENERIC (
 -- tipd delays: interconnect path delays
 tipd_CLK : VitalDelayType01 := VitalZeroDelay01;
 tipd_CSNeg : VitalDelayType01 := VitalZeroDelay01;
 -- tpd delays
 tpd_CLK_DOUT : VitalDelayType01Z := UnitDelay01Z;
 tpd_CSNeg_DOUT : VitalDelayType01Z := UnitDelay01Z;
 -- tsetup values: setup times
 tsetup_CSNeg_CLK : VitalDelayType := UnitDelay;
 -- tpw values: pulse widths
 tpw_CLK_posedge : VitalDelayType := UnitDelay;
 tpw_CLK_negedge : VitalDelayType := UnitDelay;
 tpw_CSNeg_posedge : VitalDelayType := UnitDelay;
 tpw_CSNeg_negedge : VitalDelayType := UnitDelay;
 -- tperiod_min: minimum clock period = 1/max freq
 tperiod_CLK_posedge : VitalDelayType := UnitDelay;
 -- analog generics
 -- value of Vref input In Volts
 Vref : real := 5.00;
 -- generic control parameters
 InstancePath : STRING := DefaultInstancePath;
 TimingChecksOn : BOOLEAN := DefaultTimingChecks;
 MsgOn : BOOLEAN := DefaultMsgOn;
 XOn : BOOLEAN := DefaultXon;
 -- For FMF SDF technology file usage
 TimingModel : STRING := DefaultTimingModel
);

Figure 16.11 Serial sampling 12-bit A/D converter

MAG16 8/18/04 3:02 PM Page 289

 PORT (
 CLK : IN std_ulogic := ‘U’;
 DOUT : OUT std_ulogic := ‘U’;
 INP : IN real := 0.0;
 INN : IN real := 0.0;
 CSNeg : IN std_ulogic := ‘U’
);
 ATTRIBUTE VITAL_LEVEL0 of ads1286 : ENTITY IS TRUE;
END ads1286;

--
-- ARCHITECTURE DECLARATION
--
ARCHITECTURE vhdl_behavioral of ads1286 IS
 ATTRIBUTE VITAL_LEVEL0 of vhdl_behavioral : ARCHITECTURE IS TRUE;

 CONSTANT partID : STRING := "ads1286";

 SIGNAL CLK_ipd : std_ulogic := ‘U’;
 SIGNAL CSNeg_ipd : std_ulogic := ‘U’;

BEGIN

 --
 -- Wire Delays
 --
 WireDelay : BLOCK
 BEGIN

 w_1 : VitalWireDelay (CLK_ipd, CLK, tipd_CLK);
 w_2 : VitalWireDelay (CSNeg_ipd, CSNeg, tipd_CSNeg);

 END BLOCK;

 --
 -- Behavior Process
 --
 convert : PROCESS (CSNeg_ipd, CLK_ipd)

 -- Timing Check Variables
 VARIABLE Tviol_CSNeg_CLK : X01 := ‘0’;
 VARIABLE TD_CSNeg_CLK : VitalTimingDataType;

 VARIABLE PD_CLK : VitalPeriodDataType := VitalPeriodDataInit;
 VARIABLE Pviol_CLK : X01 := ‘0’;

 VARIABLE PD_CSNeg : VitalPeriodDataType := VitalPeriodDataInit;
 VARIABLE Pviol_CSNeg : X01 := ‘0’;
 VARIABLE Violation : X01 := ‘0’;

 TYPE cntdir_type IS (up, down, stop);

 CONSTANT res : natural := 12; -- resolution in bits
 VARIABLE bitcnt : natural := 13; -- data bit cntr
 VARIABLE reg : std_logic_vector(res + 1 DOWNTO 0) := (others => ‘0’);
 VARIABLE D_zd : std_ulogic := ‘Z’;
 VARIABLE sample : real;
 VARIABLE tmpref : real;
 VARIABLE pwrdn : boolean := true;
 VARIABLE reset : boolean := false;
 VARIABLE convert : boolean := false;
 VARIABLE cntdir : cntdir_type;

 -- Output Glitch Detection Variables
 VARIABLE D_GlitchData : VitalGlitchDataType;

Figure 16.11 Serial sampling 12-bit A/D converter (continued)

MAG16 8/18/04 3:02 PM Page 290

16.7 Mixed Signal Devices 291

 BEGIN
 --
 -- Timing Check Section
 --
 IF (TimingChecksOn) THEN
 VitalSetupHoldCheck (
 TestSignal => CSNeg_ipd,
 TestSignalName => “CSNeg”,
 RefSignal => CLK_ipd,
 RefSignalName => “CLK”,
 SetupLow => tsetup_CSNeg_CLK,
 CheckEnabled => TRUE,
 RefTransition => ‘/’,
 HeaderMsg => InstancePath & partID,
 TimingData => TD_CSNeg_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Tviol_CSNeg_CLK
);

 VitalPeriodPulseCheck (
 TestSignal => CLK_ipd,
 TestSignalName => “CLK”,
 Period => tperiod_CLK_posedge,
 PulseWidthHigh => tpw_CLK_posedge,
 PulseWidthLow => tpw_CLK_negedge,
 HeaderMsg => InstancePath & partID,
 CheckEnabled => TRUE,
 PeriodData => PD_CLK,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Pviol_CLK
);

 VitalPeriodPulseCheck (
 TestSignal => CSNeg_ipd,
 TestSignalName => “CSNeg”,
 PulseWidthHigh => tpw_CSNeg_posedge,
 PulseWidthLow => tpw_CSNeg_negedge,
 HeaderMsg => InstancePath & partID,
 CheckEnabled => TRUE,
 PeriodData => PD_CSNeg,
 XOn => XOn,
 MsgOn => MsgOn,
 Violation => Pviol_CSNeg
);

 Violation := Tviol_CSNeg_CLK OR Pviol_CLK OR Pviol_CSNeg;
 END IF;

 --
 -- Functionality Section
 --
 IF falling_edge(CSNeg_ipd) THEN -- sample input
 reset := true;
 sample := INP - INN;
 ELSIF rising_edge(CSNeg_ipd) THEN -- power down
 D_zd := ‘Z’;
 pwrdn := true;
 bitcnt := res + 1;
 END IF;

Figure 16.11 Serial sampling 12-bit A/D converter (continued)

MAG16 8/18/04 3:02 PM Page 291

292 Chapter 16 Modeling Component-Centric Features

 IF to_UX01(CSNeg_ipd) = ‘0’ THEN
 IF rising_edge(CLK_ipd) THEN
 IF pwrdn AND bitcnt = res + 1 THEN -- begin
 convert := true;
 reset := false;
 pwrdn := false;
 cntdir := down;
 END IF;
 ELSIF falling_edge(CLK_ipd) THEN
 IF not pwrdn THEN
 IF bitcnt > 12 THEN
 D_zd := ‘Z’;
 ELSE
 D_zd := reg(bitcnt); -- output data
 END IF;
 IF cntdir = down AND not convert THEN
 bitcnt := bitcnt - 1;
 IF bitcnt = 0 THEN
 cntdir := up;
 END IF;
 ELSIF cntdir = up THEN
 bitcnt := bitcnt + 1;
 IF bitcnt = res THEN
 cntdir := stop;
 END IF;
 END IF;
 END IF;
 END IF;
 END IF;

 IF convert THEN
 tmpref := Vref/2.0;
 FOR b IN (res - 1) DOWNTO 0 LOOP
 IF sample >= tmpref THEN
 reg(b) := ‘1’;
 tmpref := tmpref + tmpref/2.0;
 ELSE
 reg(b) := ‘0’;
 tmpref := tmpref/2.0;
 END IF;
 END LOOP;
 convert := false;
 END IF;

 --
 -- Path Delay Section
 --
 VitalPathDelay01Z (
 OutSignal => DOUT,
 OutSignalName => “DOUT”,
 OutTemp => D_zd,
 GlitchData => D_GlitchData,
 XOn => XOn,
 MsgOn => MsgOn,
 Paths => (
 0 => (InputChangeTime => CLK_ipd’LAST_EVENT,
 PathDelay => tpd_CLK_DOUT,
 PathCondition => TRUE),
 1 => (InputChangeTime => CSNeg_ipd’LAST_EVENT,
 PathDelay => tpd_CSNeg_DOUT,
 PathCondition => TRUE)
)
);

 END PROCESS convert;
END vhdl_behavioral;

Figure 16.11 Serial sampling 12-bit A/D converter (continued)

MAG16 8/18/04 3:02 PM Page 292

In the generics section, there is a value set for the reference voltage:

-- analog generics

-- value of Vref input In Volts

Vref : real := 5.00;

In a true analog model, this value would be measured on a pin. In a digital model,
it is far easier to set it with a generic, as it should not change during the course of
the simulation.

The port list shows the two analog ports as mode IN and type real:

PORT (

CLK : IN std_ulogic := ‘U’;

DOUT : OUT std_ulogic := ‘U’;

INP : IN real := 0.0;

INN : IN real := 0.0;

CSNeg : IN std_ulogic := ‘U’

);

ATTRIBUTE VITAL_LEVEL0 of ads1286 : ENTITY IS TRUE;

END ads1286;

Also note that the model takes advantage of the VITAL_Level0 capabilities of the
simulator. These capabilities include SDF backannotation. The model also has a full
set of timing constraint checks.

The digital part of the functionality section is straightforward. The analog
section is an area of interest:

IF convert THEN

tmpref := Vref/2.0;

FOR b IN (res - 1) DOWNTO 0 LOOP

IF sample >= tmpref THEN

reg(b) := ‘1’;

tmpref := tmpref + tmpref/2.0;

ELSE

reg(b) := ‘0’;

tmpref := tmpref/2.0;

END IF;

END LOOP;

convert := false;

END IF;

Conversions are performed by successive approximation. Each pass through the
loop determines the value of one bit, beginning with the most significant bit. It
starts by setting tmpref to one-half the full range voltage. If the sample voltage
exceeds tmpref, the first bit (msb) is set to ‘1’, otherwise it is set to ‘0’. The value
of tmpref is then halved and the value of the second bit is determined. The process

16.7 Mixed Signal Devices 293

MAG16 8/18/04 3:02 PM Page 293

continues until all 12 bits have been set. In a model such as this, the analog (real)
inputs would probably be supplied directly from the testbench.

16.8 Summary

There always seems to be another odd feature to learn how to model. Most of them
seem to be cases of an analog circuit that found its way into a digital component.
With a little imagination, methods can be devised for modeling them.

Differential inputs can be modeled using tables to detect changes on each input
and determine the correct output. Bus hold inputs can be modeled by incorporat-
ing weak positive feedback loops, although each model will hold only its own
inputs. PLLs and DLLs are both modeled as synchronizing oscillators. Mixed signal
devices are modeled using ports of type real. Should VHDL-AMS become more
popular, more complete modeling of the analog portions of these devices will
become practical.

It is sometimes practical to use the TimingModel generic to configure a model
to simulate specific members of a component family.

New modeling challenges are certain to present themselves to the intrepid
modeler.

294 Chapter 16 Modeling Component-Centric Features

MAG16 8/18/04 3:02 PM Page 294

17

295

C

H

A

P

T

E

R

Testbenches for
Component Models

At least half the work of creating a component model is in the verification. The
purpose of component models is the verification of board- or system-level designs,
but the component models must first be verified themselves. This is done using a
testbench. Writing the testbench is often as much work as writing the model, some-
times even more. The quality of the testbench may determine the quality of the
model.

The topic of testbenches is a large one. Books have been devoted to it. This
chapter will discuss only a few aspects of particular interest to those modeling
components.

17.1 About Testbenches

The purpose of a testbench is to exercise a model and test it for correct operation.
It exercises the model by applying stimuli to its inputs and tests it by reading its
outputs and comparing them to the known correct responses.

17.1.1 Tools

A testbench contains a significant amount of boilerplate code. This is code that is
predetermined based on the component entity and requires no thought or cre-
ativity to write. The testbench for a 3-port gate model has about 80 lines of such
code. For a 54-port device, the line count exceeds 400 just to declare and instanti-
ate the device under test. Rather than bear the tedium of writing such boilerplate,
use a perl script to do it for you. You can write your own or download one called
mktb from the Free Model Foundry Web site.

A testbench generator should read the model and write a testbench that includes
an empty entity, a component declaration, a configuration statement, a signal dec-
laration for every port in the model, and a component instantiation. Once the boil-
erplate has been generated, you can concentrate on the creative side of testbench
writing.

MAG17 8/18/04 3:01 PM Page 295

17.2 Testbench Styles

Testbenches serve not only as a means to verify models, but also as an aid to their
development. The range of complexity of testbenches parallels the range of com-
plexity of the models they test. Even the most basic model should have a testbench.
In the sections that follow we examine the various testbench styles and the differ-
ent types of component models they are best suited for.

17.2.1 The Empty Testbench

Even the simplest model should have a testbench. An empty testbench merely
instantiates the device under test. It is useful for testing backannotation and veri-
fying that the timing file matches the component entity. At a minimum you can
drive the model’s input(s) using the force commands in the simulator, and manu-
ally inspect the resulting waveform for correct operation.

To use such a testbench, all that is required is to automatically generate the test-
bench, set the TimingModel generic in the component instantiation, run mk_sdf
(the SDF generator discussed in Chapter 12) against the testbench, and start the
simulator and backannotate the generated SDF file. If backannotation is successful,
everything in the timing file matches the model.

17.2.2 The Linear Testbench

The linear testbench is characterized by its uninterrupted start-to-finish flow. It
assigns values to interface signals, waits, and then checks for correct results. An
example testbench process for an open collector nand gate is given in Figure 17.1.

There are two key items to note about this code: The time delays should be long
enough to work with the slowest timing that will be simulated (or use a generic
instead of a hard-coded value), and testbenches should always be self-checking. Self-
checking is implemented by using assertion statements, covered in detail later in
this chapter.

The self-checking feature may seem unimportant in a short testbench like that
shown here, but as models get more complex and their testbenches get longer, self-
checking becomes indispensable. Without it, a change made to a model to correct
an error in one test might create an error in a previous test that would go unno-
ticed. It is not practical to verify a complex model merely by examining the simu-
lator waveform output.

17.2.3 The Transactor Testbench

Most components of interest have buses and operate on bus cycles. Bus cycles often
require controlling several signals in a specific sequence. Rather than the linear
coding style, procedure calls are used. Each procedure call results in a transaction
on the bus. The main stimulus process becomes much shorter and more readable:

296 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 296

test <= write;

Command(Instruct => write, length => 4);

Command(Instruct => write, length => 4, bsel0 => false,

wr_addr_strt => 4, data3_strt => 13);

test <= cmode_rd;

Command(Instruct => rd, length => 4);

In this code there is a signal, named test. Test is of an enumerated type and the
value it is assigned is the name of the test that is being started. When viewing a
waveform, a glance at the current value of test tells you where you are in the
simulation.

The procedure Command is defined in the testbench. More on writing
transactor-based testbenches is provided in Section 17.4.

17.3 Using Assertions

One of the most effective means of comparing an actual output to an expected
output is the assertion statement. The assertion statement allows a testbench to be
self-checking, which is essential. The formal syntax for an assertion statement is as
follows:

17.3 Using Assertions 297

 Stim : PROCESS
 BEGIN
 T_A <= ‘0’;
 T_B <= ‘0’;
 WAIT for 50 ns;
 ASSERT (T_YNeg = ‘Z’)
 REPORT “YNeg is ” & to_bin_str(T_YNeg) & “should be Z”
 SEVERITY ERROR;
 T_A <= ‘1’;
 T_B <= ‘0’;
 WAIT for 50 ns;
 ASSERT T_YNeg = ‘Z’
 REPORT “YNeg is ” & to_bin_str(T_YNeg) & “should be Z”
 SEVERITY ERROR;
 T_A <= ‘1’;
 T_B <= ‘1’;
 WAIT for 50 ns;
 ASSERT T_YNeg = ‘0’
 REPORT “YNeg is ” & to_bin_str(T_YNeg) & “should be 0”
 SEVERITY ERROR;
 T_A <= ‘0’;
 T_B <= ‘1’;
 WAIT for 50 ns;
 ASSERT T_YNeg = ‘Z’
 REPORT “YNeg is ” & to_bin_str(T_YNeg) & “should be Z”
 SEVERITY ERROR;
 WAIT;
 END PROCESS Stim;

Figure 17.1 Linear-style testbench code

MAG17 8/18/04 3:01 PM Page 297

[label :] assert boolean_expression

[report expression]

[severity expression] ;

Assertion statements may be placed in either concurrent or sequential code.
When encountered, the boolean expression is evaluated. If it evaluates to TRUE, the
simulator moves to the next statement. If it evaluates to FALSE, the simulator
reports the fact. If there is a report clause, it will be included in the report. If there
is a severity clause, it will set the severity of the assertion. Without a severity clause
the severity level will be error. Although both the report and severity clauses are
optional, report should always be used and severity, for reasons of clarity, should
be explicitly given.

Unlike the rest of VHDL, the report clause in an assertion statement is sensitive
to carriage returns. The lines in multiline reports must be linked with &s. Other-
wise, a newline character indicates the end of the report clause.

An example assertion is as follows:

ASSERT (T_B = ‘0’)

REPORT “B is ” & to_bin_str(T_B) & “should be 0”

SEVERITY ERROR;

Here we are checking that T_B is ‘0’. If it is not, we report what its value is and
what it should be and say it is an error.

Most simulators will allow suppressing assertions below a specified severity. For
example, the assertion

ASSERT to_nat(DQ(7 downto 0)) /= D_lo

REPORT “READ: OK - “&

to_int_str(DQ(7 downto 0))

SEVERITY note;

will emit an assert message every time it encounters a correct result. This could be
useful at some point in the design process but annoying at others. By setting the
severity to note, the message can be masked by the simulator while more severe
assertions are still reported.

Assertion statements can use boolean expressions of arbitrary complexity. It is
sometimes useful to use a generic to set the severity level.

17.4 Using Transactors

Transactor-style testbenches are used with any component that requires several
signals to work together in a coordinated fashion. SDRAMs, processors, and flash
memories are examples of such components.

Although they may vary greatly from one testbench to another, transactors are
built as procedures. These procedures are usually in the testbench file but may be
placed in a separate package so they can be used with multiple testbenches.

298 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 298

However, if a procedure is placed in a separate package, it will not be able to directly
assign any signals.

The procedures can span the full range of complexity. For starters, let us begin
with a simple one shown in Figure 17.2.

This procedure is from the testbench of a component with a serial interface.
Each transaction requires clocking in 4 bits of address followed by 8 bits of data
followed by a load strobe. The procedure is called from an otherwise linear flow
testbench:

sl(addrin => 1, datain => 128);

WAIT FOR 10 ns;

sl(addrin => 2, datain => 0);

Each time sl is called it executes the equivalent of 64 statements of linear con-
current code.

A more common scenario involves testing a model of a component that accepts
specific instructions on its input bus. In this case it is convenient to be able to issue
instructions by name, so a procedure is developed to enable that.

The code in Figure 17.3 is from the testbench for a JPEG CODEC.
In this code relatively simple bus cycles are generated by calling the procedure

Host with the name of an instruction. Data required for the instruction are passed
implicitly by setting variables prior to the procedure call. In the code in Figure 17.3,
the lines

17.4 Using Transactors 299

Stim: PROCESS

 VARIABLE datain : NATURAL;
 VARIABLE addrin : NATURAL;
 VARIABLE outreg : std_logic_vector(11 DOWNTO 0);

 PROCEDURE sl
 (datain : IN NATURAL := 0;
 addrin : IN NATURAL := 0)
 IS
 BEGIN
 outreg(11 DOWNTO 8) := to_slv(addrin, 4);
 outreg(7 DOWNTO 0) := to_slv(datain, 8);
 FOR i IN 11 DOWNTO 0 LOOP
 T_SDI <= outreg(i);
 WAIT FOR 50 ns;
 T_CLK <= ‘H’;
 WAIT FOR 50 ns;
 T_CLK <= ‘L’;
 END LOOP;
 WAIT FOR 10 ns;
 T_LD <= ‘H’;
 WAIT FOR 90 ns;
 T_LD <= ‘L’;

 END sl;

Figure 17.2 Simple transactor process

MAG17 8/18/04 3:01 PM Page 299

300 Chapter 17 Testbenches for Component Models

 Stim : PROCESS

 -- Type Definitions
 TYPE Instruction IS (START,
 RESET,
 Idle,
 ISR,
 READ,
 LOAD,
 SLEEP
);

 VARIABLE Instruct : Instruction;
 VARIABLE ADDRint : std_logic_vector(1 downto 0);
 VARIABLE DATAint : std_logic_vector(7 downto 0);

 PROCEDURE Host
 (Instruct : IN Instruction)
 IS
 BEGIN
 CASE Instruct IS
 WHEN ISR =>
 T_CSNeg <= ‘0’, ‘1’ AFTER 360 ns;
 T_WRNeg <= ‘0’ AFTER 6 ns, ‘1’ AFTER 130 ns;
 T_ADDR <= “10”, “11” AFTER 130 ns, “ZZ” AFTER 350 ns;
 T_Data <= “00001000”, “ZZZZZZZZ” AFTER 130 ns;
 T_RDNeg <= ‘0’ AFTER 170 ns, ‘1’ AFTER 350 ns;
 WHEN Read =>
 T_CSNeg <= ‘0’, ‘1’ AFTER 190 ns;
 T_RDNeg <= ‘0’ AFTER 6 ns, ‘1’ AFTER 180 ns;
 T_ADDR <= “11”, “ZZ” AFTER 180 ns;
 WHEN Load =>
 T_CSNeg <= ‘0’, ‘1’ AFTER 140 ns;
 T_WRNeg <= ‘0’ AFTER 6 ns, ‘1’ AFTER 120 ns;
 T_ADDR <= ADDRint, “ZZ” AFTER 130 ns;
 T_Data <= Dataint, “ZZZZZZZZ” AFTER 130 ns;
 WHEN Reset =>
 T_RESETNeg <= ‘0’, ‘1’ AFTER 600 ns;
 WHEN Sleep =>
 T_SLEEPNeg <= ‘0’, ‘1’ AFTER 600 ns;
 WHEN Others => NULL;
 END CASE;

 END Host;

 BEGIN
 WAIT FOR 200 ns;
 Host(RESET);
 WAIT UNTIL T_RESETNeg = ‘1’;
 WAIT FOR 400 ns;
 Host(Sleep);
 WAIT UNTIL T_SLEEPNeg = ‘1’;
 WAIT FOR 3700 ns;
 -- Load Register 2 Code Interface
 DATAint := “00000000”; ADDRint := “01”;
 Host(Load);
 WAIT FOR 150 ns;
 DATAint := “00000010”; ADDRint := “10”;
 Host(Load);
 WAIT FOR 150 ns;
 DATAint := “00000001”; ADDRint := “11”;
 Host(Load);
 WAIT FOR 150 ns;
...

Figure 17.3 Instruction-based transactor

MAG17 8/18/04 3:01 PM Page 300

DATAint := “00000000”; ADDRint := “01”;

Host(Load);

WAIT FOR 150 ns;

DATAint := “00000010”; ADDRint := “10”;

Host(Load);

produce the stimulus shown in Figure 17.4.

17.5 Testing Memory Models

The two things that set memory models and their testbenches apart from most
other models is their complexity and their need for (sometimes large amounts of)
data storage. The following code is from the testbench for a dual-port synchronous
SRAM. The memory-specific code begins with the process declarations:

Stim: PROCESS

-- Memory array declaration

TYPE MemStore IS ARRAY (0 to 32767) OF INTEGER

RANGE -2 TO 255;

17.5 Testing Memory Models 301

 -- Read Register 1
 DATAint := “00000001”; ADDRint := “10”;
 Host(Load);
 WAIT FOR 150 ns;
 T_CBUSYNeg <= ‘1’;
 BusyLoop : WHILE T_DATA(7) /= ‘0’ LOOP
 Host(Read);
 WAIT UNTIL T_ACKNeg = ‘0’;
 IF T_DATA(7) = ‘0’ THEN
 LoadComplete <= ‘1’;
 EXIT BusyLoop;
 END IF;
 WAIT FOR 500 ns;
 END LOOP BusyLoop;
 T_PVALID <= ‘1’;
 WAIT FOR 800 ns;
...

Figure 17.3 Instruction-based transactor (continued)

t_addr
t_rdneg
t_wrneg
t_csneg

t_data
t_ackneg

01 10

0200 FF FF

Figure 17.4 Transactor-produced stimulus

MAG17 8/18/04 3:01 PM Page 301

TYPE Instruction IS (rdLa, -- read left port using address bus

wrtLa, -- write left port using address bus

wrtLc, -- write left port using counter

rdLc, -- read left port using counter

rdRpa, -- read right port pipeline address

rdRpc, -- read right port pipeline counter

rdRfa, -- read right port FT address

rdRfc, -- read right port FT counter

wrtRa, -- write right port using address bus

wrtRpa, -- wrt rt port pipeline using address bus

matchwr, -- wrt lt port rd rt port FT using address bus

desel

);

VARIABLE data : NATURAL;

VARIABLE datain : NATURAL;

VARIABLE MemData : MemStore;

The first type declaration is for a testbench storage array that will mirror the
memory storage array in the model. That is followed by another type declaration
that enumerates the instructions that will be issued to the model.

Next is the definition of the procedure Command. It begins with a declaration of
its interface:

PROCEDURE Command

(Instruct : IN Instruction;

length : IN NATURAL := 0;

addr_strt : IN NATURAL := 0;

data_strt : IN NATURAL := 0)

IS

It can accept up to four arguments. Instruct is the name of the instruction to
execute, length is the number of times to loop within the instruction, addr_strt
is a starting address, and data_strt is a starting data value.

The first instruction defined is an address-controlled write to the left side of the
dual-port memory:

BEGIN

CASE Instruct IS

WHEN wrtLa =>

data := data_strt;

T_RWL <= ‘0’;

WAIT FOR 30 ns;

T_ADSLNeg <= ‘0’;

FOR i IN addr_strt TO addr_strt + length LOOP

T_AL <= To_slv(i,15);

T_IOL <= To_slv(data,8);

302 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 302

MemData(i) := data;

data := data + 1;

WAIT FOR 30 ns;

END LOOP;

T_IOL <= (others => ‘Z’);

During this instruction, every time data are written to the memory model a copy
is also written to the same location in the testbench memory. The two memory
arrays should always have the same contents.

The next instruction is an address-controlled read from the left side of the
memory:

WHEN rdLa =>

T_RWL <= ‘1’;

T_ADSLNeg <= ‘0’;

FOR i IN addr_strt TO addr_strt + length LOOP

T_AL <= To_slv(i,15);

WAIT FOR 30 ns;

IF (i > addr_strt) THEN

datain := To_Nat(T_IOL);

ASSERT MemData(i - 1) = datain

REPORT “expected IOL = “ & to_hex_str(MemData(i - 1))

& “ got ” & to_hex_str(datain)

SEVERITY error;

END IF;

END LOOP;

Here, every time data are read from a location in the model memory, the data are
compared to the same location in the testbench memory. The comparison is done
using an assertion statement. If the two do not match, a message is emitted giving
the expected and received values.

The Command procedure is called from the main body of the testbench with
arguments:

Test <= WrLa;

Command(Instruct => wrtLa, addr_strt => 0, data_strt => 8,

length => 16);

Test <= RdLPa;

Command(Instruct => rdLa, addr_strt => 0, length => 16);

In this code fragment a command is issued to write to the left side of the memory
using address control. The start address is 0, the starting data value is 8, and the
number of consecutive locations to be written is 16. The following command is a
read back from the same 16 locations.

A less complex but more tedious method simplifies the Command procedure at
the expense of the main body. The following is from a testbench for an SDRAM model:

17.5 Testing Memory Models 303

MAG17 8/18/04 3:01 PM Page 303

Stim : PROCESS

TYPE Instruction IS (nop,

act,

read,

writ,

bst,

pre,

mrs,

ref

);

PROCEDURE Command

(Instruct : IN Instruction)

IS

BEGIN

CASE Instruct IS

WHEN nop =>

T_CSNeg <= ‘1’;

WHEN act =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘1’, ‘1’ AFTER 30 ns;

WHEN read =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘1’, ‘1’ AFTER 30 ns;

WHEN writ =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘0’, ‘1’ AFTER 30 ns;

WHEN bst =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘0’, ‘1’ AFTER 30 ns;

WHEN pre =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘1’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘0’, ‘1’ AFTER 30 ns;

WHEN ref =>

304 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 304

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘1’, ‘1’ AFTER 30 ns;

WHEN mrs =>

T_CSNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_RASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_CASNeg <= ‘0’, ‘1’ AFTER 30 ns;

T_WENeg <= ‘0’, ‘1’ AFTER 30 ns;

END CASE;

END Command;

Here the Command procedure is very clean and understandable. However, the main
body of the testbench has become much less readable:

Test <= reg_set; -- burst = 4; sequential; CAS Lat = 2;

T_A0 <= ‘L’;

T_A1 <= ‘H’;

T_A2 <= ‘L’;

T_A3 <= ‘L’;

T_A4 <= ‘L’;

T_A5 <= ‘H’;

T_A6 <= ‘L’;

T_A7 <= ‘L’;

T_A8 <= ‘L’;

T_A9 <= ‘L’;

T_A10 <= ‘L’;

T_A11 <= ‘L’;

T_A12 <= ‘L’;

Command(mrs); -- 110400

WAIT FOR 40 ns;

Command(nop);

WAIT FOR 80 ns;

Test <= bank_sel; -- bank 0

T_A0 <= ‘L’;

T_A1 <= ‘L’;

T_A2 <= ‘L’;

T_A3 <= ‘L’;

T_A4 <= ‘L’;

T_A5 <= ‘L’;

T_A6 <= ‘L’;

T_A7 <= ‘L’;

T_A8 <= ‘L’;

T_A9 <= ‘L’;

17.5 Testing Memory Models 305

MAG17 8/18/04 3:01 PM Page 305

T_A10 <= ‘L’;

T_A11 <= ‘L’;

T_A12 <= ‘L’;

T_DM <= ‘L’;

Command(act); --

WAIT FOR 65 ns;

Test <= write; -- burst = 4

T_A0 <= ‘L’;

T_A1 <= ‘L’;

T_A2 <= ‘L’;

T_A3 <= ‘H’;

T_A4 <= ‘L’;

T_A5 <= ‘L’;

T_A6 <= ‘L’;

T_A7 <= ‘L’;

T_A8 <= ‘L’;

T_A9 <= ‘L’;

T_A10 <= ‘L’;

T_A11 <= ‘L’;

T_A12 <= ‘L’;

WAIT FOR 10 ns;

Command(writ); --

T_DQS <= ‘0’;

WAIT FOR 52 ns;

T_DQ <= “01010101”; -- 85

WAIT FOR 2 ns;

T_DQS <= ‘1’;

WAIT FOR 20 ns;

T_DQ <= “01010000”; --

--WAIT FOR 2 ns;

T_DQS <= ‘0’;

WAIT FOR 15 ns;

T_DQ <= “00010101”; --

WAIT FOR 5 ns;

T_DQS <= ‘1’;

WAIT FOR 15 ns;

T_DQ <= “01011000”; --

WAIT FOR 5 ns;

T_DQS <= ‘0’;

WAIT FOR 20 ns;

T_DQ <= “ZZZZZZZZ”;

T_DQS <= ‘Z’;

Command(nop);

306 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 306

WAIT FOR 70 ns;

Command(nop);

Test <= read; -- burst = 4

T_A0 <= ‘L’;

T_A1 <= ‘L’;

T_A2 <= ‘L’;

T_A3 <= ‘H’;

T_A4 <= ‘L’;

T_A5 <= ‘L’;

T_A6 <= ‘L’;

T_A7 <= ‘L’;

T_A8 <= ‘L’;

T_A9 <= ‘L’;

T_A10 <= ‘L’;

T_A11 <= ‘L’;

Command(read); --

WAIT FOR 40 ns;

Command(nop);

WAIT UNTIL rising_edge(T_DQS);

WAIT FOR 1 ns;

ASSERT (T_DQ = “01010101”)

REPORT “expected data = “ & to_int_str(“01010101”) &

“ got ” & to_int_str(T_DQ)

SEVERITY error;

WAIT FOR 20 ns;

ASSERT (T_DQ = “01010000”)

REPORT “expected data = “ & to_int_str(“01010000”) &

“ got ” & to_int_str(T_DQ)

SEVERITY error;

WAIT FOR 20 ns;

ASSERT (T_DQ = “00010101”)

REPORT “expected data = “ & to_int_str(“00010101”) &

“ got ” & to_int_str(T_DQ)

SEVERITY error;

WAIT FOR 20 ns;

ASSERT (T_DQ = “01011000”)

REPORT “expected data = “ & to_int_str(“01011000”) &

“ got ” & to_int_str(T_DQ)

SEVERITY error;

WAIT FOR 75 ns;

Although the Command procedure is driving the control pins to send instructions
to the model under test, all the addresses and data are being set in the main body.
Also, all the results checking is done in the main body. The advantage of this

17.5 Testing Memory Models 307

MAG17 8/18/04 3:01 PM Page 307

method is that it is faster and less work to write enough code to begin testing the
model. However, that must be balanced against the increased difficulty of debug-
ging and maintaining the testbench over time.

17.6 Summary

Testbenches are an integral part of model development and a significant portion of
the total effort. Certain parts of the testbench are boilerplate and should be gener-
ated programmatically rather than manually.

There are different styles of testbenches that lend themselves to different type
of component models. All testbenches should be self-checking. As you write your
testbench, keep in mind that it will not be done as quickly as you estimated and
you are likely to want to reuse it in the future. A little extra effort in the beginning
will yield large dividends later on.

Books have been published on the subject of testbenches. Although they are
usually oriented to RTL design, they are worth reading even if you are only writing
component models.

308 Chapter 17 Testbenches for Component Models

MAG17 8/18/04 3:01 PM Page 308

models fit in FPGA/ASIC design flow, 10–13
need for models, 3–5

bus functional models (BFMs), 7
bus hold, 279–282

CAE (Computer Aided Engineering), 254–255
calls

procedure, 70
VITAL primitive, 21–22
VitalOutPhaseSkewCheck, 118
VitalOutPhaseSkewCheck procedure, 118
VitalPeriodPulseCheck, 113
VitalPeriodPulseCheck procedure, 112
VitalRecoveryRemovalCheck, 115
VitalRecoveryRemovalCheck procedure,

115
VitalSetupHoldCheck, 109
VitalSetupHoldCheck procedure, 109

calls, VitalPeriodPulseCheck procedure
parameters of Mode IN, 113–114
parameters of Mode INOUT, 114
parameters of Mode OUT, 114

cells, 50
RTL produces, 8

characteristics, negative setup timing, 159
checks

conditional timing, 153–156
in-phase skew, 117
memory timing, 42
out-of-phase skew, 118
purpose of timing constraint, 107
recovery/removal, 114–117
RecoveryRemoval, 161
setup/hold, 108–112
SetupHold, 161
skew, 117–121
timing, 55–57

circuit delays, 52–55
clocks, modeling delays in designs with internal,

206–207
CMOS (Complimentary Metal Oxide on Silicon),

74
code, adding timing to RTL, 191–208
compilation, VHDL, 259

INDEX

309

2-input nand gate, synthesizable, 16
12-bit A/D converter, serial sampling, 289–292

A/D converter, serial sampling 12-bit,
289–292

abstraction, levels of, 6–7
adding timing to RTL code, 191–208
additions, VITAL, 19–25
algorithms, state table, 99
alternatives, conditional delay, 150–152
analyses

signal, 262
timing, 262

annotation. See Backannotation
arguments for VitalMemoryTable, 105
arrays, memory, 209–211
ASIC design flow. See FPGA/ASIC design flow
assertions, 284–285, 297–298
attributes, VITAL, 20–21

backannotating path delays, 88–89
backannotation, 60

and hierarchy, 185–187
backannotation, timing, 262
backannotation, timing files and, 179–187

anatomy of timing files, 179–182
backannotation and hierarchy, 185–187
custom timing sections, 183–184
generating SDF files, 184–185
generating timing files, 184
importing timing values, 183

behavior, modifying with TimingModel generic,
285

behavioral memory preload, 235–237
behavioral (Shelor) method, 211–223
BFMs (bus functional models), 7
blocks

negative constraint, 65
signal delay, 66
wire delay, 63–65

board-level verification, 3–14
definition of model, 5–10
design methods and models, 10
getting models, 13–14

MAGINDEX 8/20/04 12:52 PM Page 309

component-centric features, modeling, 269–294
assertions, 284–285
bus hold, 279–282
differential inputs, 269–279
mixed signal devices, 288–294
modifying behavior with TimingModel generic,

285
PLLs and DLLs, 282–284
state machines, 285–288

component modeling, considerations for,
251–267

component models and netlisters, 251–252
file contents, 253
generics passed from schematic, 253–254
integrating models into schematic capture

system, 254–256
model considerations, 263–266
schematic considerations, 262–263
special considerations, 262–266
using models in design process, 256–262

component models
and netlisters, 251–252
VHDL packages for, 35–45

component models, testbenches for, 295–308
about testbenches, 295
assertions, 297–298
testbench styles, 296–297
testing memory models, 301–308
transactors, 298–301

components
modeling, 125–146
VITAL model of nand gate, 28–29

Computer Aided Engineering (CAE), 254–255
concurrent procedure section, 70
conditional delays

alternatives, 150–152
in SDF, 149–150
timing table for part with, 148

conditional delays and timing constraints,
147–156

conditional delay alternatives, 150–152
conditional delays in SDF, 149–150
conditional delays in VITAL, 147–149
conditional timing checks in VITAL, 153–156
mapping SDF to VITAL, 152–153

conditional timing checks in VITAL, 153–156
constraint checks, purpose of timing, 107
constraints

conditional delays and timing, 147–156
how simulators handle negative, 176–177
modeling negative, 158–176
models of component negative, 162–174
negative setup/hold, 158
negative timing, 157–178
RecoveryRemoval checks with negative, 161
SetupHold checks with negative, 161
timing, 107–122
VITAL_Memory timing, 232–235
workings of negative, 157–158

construction
memory table, 102–103
state table, 97–98
truth table, 92

constructs, example usage of, 57
control generics, 253–254

310 Index

conversions, FMF, 45
converter, serial sampling 12-bit A/D, 289–292

D flip-flops, 98, 100, 101
D register, StateTable for, 41
data flow, simulation, 13
DDR (Double Data Rate) DRAMs, 209
declarations, 36–37, 37–38, 40
declarative section, 66–67
delay alternatives, conditional, 150–152
delay blocks

signal, 66
wire, 63–65

delay generic, nand gate with, 18
delay locked loops (DLLs), 282
delay procedures, path, 76–82
delay sections, path, 69
delay types

and glitches, 73–74
VITAL, 19–20

delays
backannotating path, 88–89
circuit, 52–55
conditional, 147–156, 149–150
device, 83–88
distributed, 75
interconnect, 25–27, 89–90
model, 18–19
pin-to-pin, 75–76
timing table for part with conditional, 148
transport and inertial, 73–74
VITAL nand gate model with interconnect, 26
VITAL_Memory path, 231–232

delays, modeling, 73–90, 206–207
backannotating path delays, 88–89
delay types and glitches, 73–74
device delays, 83–88
distributed delays, 75
generates and VPDs, 83
interconnect delays, 89–90
path delay procedures, 76–82
pin-to-pin delays, 75–76
VPDs, 82–83

design flow, models fit in FPGA/ASIC, 10–13
design methods and models, 10
design, netlisting, 258–259
design processes, using models in, 256–262

layout, 261
netlisting design, 258–259
schematic entry, 257–258
SDF generation, 259–261
signal analysis, 262
simulation, 261
timing analysis, 262
timing backannotation, 262
VHDL compilation, 259
VHDL libraries, 257

design/verification flow, 11–13
designs with internal clocks, modeling delays in,

206–207
device delays, 83–88
device under test (DUT), 7
devices, mixed signal, 288–294
DFFCEN state table, 134
differential inputs, 269–279

MAGINDEX 8/20/04 12:52 PM Page 310

ECL model with, 272–275
directories, 255–256
distributed delays, 75
DLLs (delay locked loops), 282
DLLs, PLLs and, 282–284
DRAMs, 241–244
DRAMs, DDR (Double Data Rate), 209
duplicated outputs, models with, 84–85
DUT (device under test), 7

ECL model with differential inputs, 272–275
empty testbench, 296
entry, schematic, 257–258
expressions in SDF, operators for, 151
eXtensible Markup Language (XML), 47

features, modeling component-centric, 269–294
files

generating SDF, 184–185
generating timing, 184
map, 256
sample SDF, 48
sample vhdl_map, 256
timing, 179–187

files, anatomy of timing, 179–182
body, 181
FMFTIME, 181–182
header, 179–181
separate timing specifications, 182

files, SDF, 47–52
cells, 50
headers, 48–50
timing specifications, 50–52

flip-flops, anatomy of, 125–137
architecture, 129–131
B side, 135–137
entity, 125–129
functionality section, 133–134
path delay, 134–135
VITAL process, 131–133

flip-flops, oversimplified D, 98
flow

design/verification, 11–13
simulation data, 13

FMF (Free Model Foundry), 42
conversions, 45
ff_package, 44
gen_utils and ecl_utils, 43
packages, 42–45

FMFTIME, 181–182
formatting, nand model with improved, 17
FPGA/ASIC design flow, models fit in, 10–13
FPGA/ASIC design flow, models fitting in,

design/verification flow, 11–13
Free Model Foundry (FMF), 42
functionality

memory, 41
modeling memory, 211–231
section, 68–69

functions, 37
and procedures, 40–41

gate component, VITAL model of nand, 28–29
gate model, VITAL nand, 26
gates, 39

Index 311

basic VITAL nand, 20
nand, 18
synthesizable 2-input nand, 16
VITAL nand, 23

generate statement, VPD inside, 86
generating

SDF files, 184–185
timing files, 184

generation, SDF, 259–261
generics

control, 253–254
modifying behavior with TimingModel, 285
nand gates with delay, 18
timing, 253

generics passed from schematic, 253–254
control generics, 253–254
map files, 256
timing generics, 253

glitches, delay types and, 73–74

headers, 48–50
hierarchy, backannotation and, 185–187
HL (high to low transitions), 20
hold, bus, 279–282
hold checks. See Setup/hold checks
hold constraints. See Negative setup/hold

constraints

improved formatting, nand model with, 17
in-phase skew check, 117
independence, technology, 255
inertial delays, transport and, 73–74
inputs

differential, 269–279
ECL model with differential, 272–275

instruction based transactor, 300–301
integrating models into schematic capture system,

254–256
directories, 255–256
library structure, 254–255
technology independence, 255

interconnect delays, 25–27, 89–90
interfaces, standard, 17–18
internal clocks, modeling delays in designs with,

206–207
iteration times, relative, 5

keywords, SDF, 62

latches, anatomy of, 137–146
architecture, 140–146
entity, 138–140

LATNDFF state table, 145
level 0 guidelines, 59–62
levels, comparison of VITAL, 21
LH (low to high transitions), 20
libraries, VHDL, 257
library structure, 254–255
linear testbench, 296

machines, state, 285–288
map files, 256
mapping

SDF to netlist, 61
SDF to VITAL, 152–153

MAGINDEX 8/20/04 12:52 PM Page 311

mapping (continued)
SDF to VITAL symbol, 153

memories, modeling, 209–249
memory arrays, 209–211
modeling memory functionality, 211–231
modeling miscellaneous memory types, 238–249
preloading memories, 235–238
VITAL_Memory path delays, 231–232
VITAL_Memory timing constraints, 232–235

memories, preloading, 235–238
behavioral memory preload, 235–237
VITAL_Memory preload, 237–238

memory arrays, 209–211
Shelor Method, 210
VITAL_Memory package, 210–211

memory functionality, 41
memory functionality, modeling, 211–231

behavioral (Shelor) method, 211–223
Shelor Method, 211–223
VITAL2000 method, 223–231

memory models, testing, 301–308
memory preload, behavioral, 235–237
memory tables, 101–105

allowed symbols for, 103
construction, 102–103
memory table construction, 102–103
memory table symbols, 101–102
memory table usage, 103–105
for simple SRAMs, 104
symbols, 101–102
usage, 103–105

memory timing
checks, 42
specification, 42

memory types, modeling miscellaneous, 238–249
DRAMs, 241–244
SDRAMs, 244–249
synchronous static RAM, 238–241

method, behavioral (Shelor), 211–223
methods

design, 10
VITAL2000, 223–231

Methods, Shelor, 210, 211–223
mixed signal devices, 288–294
model delays, 18–19
modeling

memories, 209–249
memory functionality, 211–231
negative constraints, 158–176

modeling components with registers, 125–146
anatomy of flip-flop, 125–137
anatomy of latch, 137–146

modeling, considerations for component, 251–267
component models and netlisters, 251–252
file contents, 253
generics passed from schematic, 253–254
integrating models into schematic capture

system, 254–256
model considerations, 263–266
schematic considerations, 262–263
special considerations, 262–266
using models in design process, 256–262

modeling delays, 73–90
backannotating path delays, 88–89
delay types and glitches, 73–74

312 Index

in designs with internal clocks, 206–207
device delays, 83–88
distributed delays, 75
generates and VPDs, 83
interconnect delays, 89–90
path delay procedures, 76–82
pin-to-pin delays, 75–76
VPDs, 82–83

models
anatomies of VITAL, 59–71
component, 251–252
design methods and, 10
with duplicated outputs, 84–85
ECL, 272–275
fit in FPGA/ASIC design flow, 10–13
getting, 13–14
integrating, 254–256
nand, 17
structure of VITAL, 64
testing memory, 301–308
VHDL packages for component, 35–45
VITAL, 28–29
VITAL nand gate, 26

models, definitions of, 5–10
levels of abstraction, 6–7
model types, 7–9
technology-independent models, 9–10

models, need for, 3–5
prototyping, 3
simulation, 4–5

models, technology-independent, 9–10
models, testbenches for component, 295–308

about testbenches, 295
assertions, 297–298
testbench styles, 296–297
testing memory models, 301–308
transactors, 298–301

models, tour of simple, 15–32
finishing touches, 27–31
formatting, 15–17
interconnect delays, 25–27
model delays, 18–19
standard interfaces, 17–18
VITAL additions, 19–25

models, using in design process, 256–262
layout, 261
netlisting design, 258–259
schematic entry, 257–258
SDF generation, 259–261
signal analysis, 262
simulation, 261
timing analysis, 262
timing backannotation, 262
VHDL compilation, 259
VHDL libraries, 257

models, using timing constraint checks in VITAL,
108–121

nand gate component, VITAL model of, 28–29
nand gate model, VITAL, 26
nand gates

basic VITAL, 20
with delay generic, 18
synthesizable 2-input, 16
VITAL, 23

MAGINDEX 8/20/04 12:52 PM Page 312

nand models with improved formatting, 17
NCC (Negative Constraint Calculation), 177
NCC, timing values before and after, 177
negative constraint block, 65
Negative Constraint Calculation (NCC), 177
negative constraints

how simulators handle, 176–177
modeling, 158–176
models of component, 162–174
RecoveryRemoval checks with, 161
SetupHold checks with, 161
workings of, 157–158

negative setup/hold constraints, 158
negative setup timing characteristics, 159
negative timing constraints, 157–178

how simulators handle negative constraints,
176–177

modeling negative constraints, 158–176
ramifications, 177–178
workings of negative constraints, 157–158

netlist mapping, SDF to, 61
netlisters, component models and, 251–252
netlisting design, 258–259

off-the-shelf (OTS), 10
operators for expressions in SDF, 151
OTS (off-the-shelf), 10
out-of-phase skew check, 118
outputs, model with duplicated, 84–85

packages
FMF, 42–45
VHDL, 35–45
VITAL_Memory, 210–211

parameters for VitalInPhaseSkewCheck, 119
parameters of Mode IN, 119–120
parameters of Mode INOUT, 120
parameters of Mode OUT, 120–121

parameters to VitalRecoveryRemovalCheck
procedure, 115–117

parameters of Mode IN, 115–117
parameters of Mode OUT, 117

parameters to VitalSetupHoldCheck procedure,
110

parameters of Mode IN, 110–111
parameters of Mode INOUT, 112
parameters of Mode OUT, 112

path delays
backannotating, 88–89
procedures, 76–82
sections, 69
VITAL_Memory, 231–232

PCB (printed circuit board), 12
period/pulsewidth checks, 112–114
pessimism, reducing, 100–101
phase locked loops (PLLs), 282
pin-to-pin delays, 75–76
PLLs and DLLs, 282–284
PLLs (phase locked loops), 282
prefixes, VITAL, 62
preload

behavioral memory, 235–237
VITAL_Memory, 237–238

preloading memories, 235–238
primitive call, VITAL, 21–22

Index 313

primitives
procedure calls to VITAL, 70
user-defined, 39
VITAL, 70

printed circuit board (PCB), 12
procedure calls

to VITAL primitives, 70
VitalOutPhaseSkewCheck, 118
VitalRecoveryRemovalCheck, 115
VitalSetupHoldCheck, 109

procedure calls, VitalPeriodPulseCheck, 112
parameters of Mode IN, 113–114
parameters of Mode INOUT, 114
parameters of Mode OUT, 114

procedures, 38–39
functions and, 40–41
VitalRecoveryRemovalCheck, 114
VitalSetupHoldCheck, 108

procedures, parameters to
VitalRecoveryRemovalCheck, 115–117

parameters of Mode IN, 115–117
parameters of Mode OUT, 117

procedures, parameters to
VitalSetupHoldCheck, 110

parameters of Mode IN, 110–111
parameters of Mode INOUT, 112
parameters of Mode OUT, 112

processes, VITAL, 22–23
prototyping, 3
pulsewidth checks. See Period/pulsewidth

checks

RAM, synchronous static, 238–241
RC (resistance capacitance), 74
recovery/removal checks, 114–117
RecoveryRemoval checks with negative

constraints, 161
register transfer level (RTL), 6
registers, modeling components with, 125–146

anatomy of flip-flop, 125–137
anatomy of latch, 137–146

registers, StateTable for D, 41
removal checks. See Recovery/removal checks
RTL code, adding timing to, 191–208

basic wrapper, 192–205
caveats, 207–208
modeling delays in designs with internal clocks,

206–207
using VITAL to simulate RTL, 191–192
wrapper for Verilog RTL, 206

RTL (register transfer level), 6
produces cells, 8
using VITAL to simulate, 191–192
wrapper for Verilog, 206

schematic capture system, integrating models
into, 254–256

directories, 255–256
library structure, 254–255
technology independence, 255

schematic entry, 257–258
schematics, generics passed from, 253–254

control generics, 253–254
map files, 256
timing generics, 253

MAGINDEX 8/20/04 12:52 PM Page 313

SDF
conditional delays in, 149–150
generation, 259–261
keywords, 62
mapping to VITAL, 152–153
to netlist mapping, 61
operators for expressions in, 151
to VITAL symbol mapping, 153

SDF capabilities, 52–57
circuit delays, 52–55
timing checks, 55–57

SDF constructs, example usage of, 57
SDF files, 47–52

cells, 50
generating, 184–185
headers, 48–50
sample, 48
timing specifications, 50–52

SDF, introduction to, 47–58
SDF capabilities, 52–57
SDF files, 47–52

SDRAMs (Synchronous Dynamic RAMs), 209,
244–249

sections
concurrent procedure, 70
declarative, 66–67
example of VITAL process declarative, 67
functionality, 68–69
path delay, 69
timing check, 67–68

serial sampling 12-bit A/D converter, 289–292
setup/hold checks, 108–112
SetupHold checks with negative constraints, 161
SGML (Standard Generalized Markup Language),

179
Shelor Method, 210, 211–223
signal analysis, 262
signal delay blocks, 66
signal devices, mixed, 288–294
simple model, tour of, 15–32
simple SRAMs, memory tables for, 104
simulation, 4–5

data flow, 13
simulators, how they handle negative constraints,

176–177
skew checks, 117–121

in-phase, 117
out-of-phase, 118

specifications
memory timing, 42
separate timing, 182
timing, 50–52

SRAMs, memory tables for simple, 104
SSRAMs (synchronous static RAMs), 209
Standard Generalized Markup Language (SGML),

179
standard interfaces, 17–18
state machines, 285–288
state tables, 97–99

advantages of truth and, 91
algorithms, 99
construction, 97–98
DFFCEN, 134
LATNDFF, 145
state table algorithm, 99

314 Index

state table construction, 97–98
state table symbols, 97
state table usage, 98–99
symbols, 97
usage, 98–99

statements, VPD inside generate, 86
StateTable for D register, 41
Static RAM, synchronous, 238–241
STD_LOGIC_1164, 35–37

functions, 37
type declarations, 36–37

structures, library, 254–255
styles, testbench, 296–297
symbol mapping, SDF to VITAL, 153
symbols

allowed for memory tables, 103
memory table, 101–102
state table, 97
VITAL table, 92–93
VITALMemory table, 102

Synchronous Dynamic RAMs (SDRAMs), 209,
244–249

synchronous static RAMs (SSRAMs), 238–241
system, integrating models into schematic

capture, 254–256

table symbols
VITAL, 92–93
VITALMemory, 102

tables
advantages of truth and state, 91
allowed symbols for memory, 103
DFFCEN state, 134
LATNDFF state, 145
timing, 148

tables, memory, 101–105
memory table construction, 102–103
memory table symbols, 101–102
memory table usage, 103–105

tables, state, 97–99
state table algorithm, 99
state table construction, 97–98
state table symbols, 97
state table usage, 98–99

tables, truth, 92–97
truth table construction, 92
truth table usage, 93–97
VITAL table symbols, 92–93

tables, vital, 91–106
advantages of truth and state tables, 91
memory tables, 101–105
reducing pessimism, 100–101
state tables, 97–99
truth tables, 92–97

technology independence, 255
technology-independent models, 9–10
testbench styles, 296–297

empty testbench, 296
linear testbench, 296
transactor testbench, 296–297

testbenches
empty, 296
linear, 296
transactor, 296–297

testbenches, about, 295

MAGINDEX 8/20/04 12:52 PM Page 314

tools, 295
testbenches for component models, 295–308

about testbenches, 295
assertions, 297–298
testbench styles, 296–297
testing memory models, 301–308
transactors, 298–301

timing
analysis, 262
backannotation, 262

timing, adding to RTL code, 191–208
basic wrapper, 192–205
caveats, 207–208
modeling delays in designs with internal clocks,

206–207
using VITAL to simulate RTL, 191–192
wrapper for Verilog RTL, 206

timing characteristics, negative setup, 159
timing check section, 67–68
timing checks, 55–57

conditional, 153–156
memory, 42

timing constraint checks in VITAL models, using,
108–121

period/pulsewidth checks, 112–114
recovery/removal checks, 114–117
setup/hold checks, 108–112
skew checks, 117–121

timing constraint checks, purpose of, 107
timing constraints, 107–122

purpose of timing constraint checks, 107
using timing constraint checks in VITAL

models, 108–121
violations, 121
VITAL_Memory, 232–235

timing constraints, conditional delays and,
147–156

conditional delay alternatives, 150–152
conditional delays in SDF, 149–150
conditional delays in VITAL, 147–149
conditional timing checks in VITAL, 153–156
mapping SDF to VITAL, 152–153

timing constraints, negative, 157–178
how simulators handle negative constraints,

176–177
modeling negative constraints, 158–176
ramifications, 177–178
workings of negative constraints, 157–158

timing files, anatomy of, 179–182
body, 181
FMFTIME, 181–182
header, 179–181
separate timing specifications, 182

timing files and backannotation, 179–187
anatomy of timing files, 179–182
backannotation and hierarchy, 185–187
custom timing sections, 183–184
generating SDF files, 184–185
generating timing files, 184
importing timing values, 183

timing files, generating, 184
timing generics, 60–61, 253
timing sections, custom, 183–184
timing specifications, 50–52

memory, 42

Index 315

separate, 182
timing table for part with conditional delays, 148
timing values

before and after NCC, 177
importing, 183

TimingModel generic, modifying behavior with,
285

transactor testbenches, 296–297
transactors, 298–301

instruction based, 300–301
transport and inertial delays, 73–74
truth and state tables, advantages of, 91
truth tables, 92–97

construction, 92
truth table construction, 92
truth table usage, 93–97
usage, 93–97
VITAL table symbols, 92–93

type declarations, 36–37
types

delay, 73–74
VITAL delay, 19–20

UDPs (user-defined primitives), 39
Unit Under Test (UUT), 186
usage

memory table, 103–105
state table, 98–99
truth table, 93–97

user-defined primitives (UDPs), 39
UUT (Unit Under Test), 186

values, importing timing, 183
verification, board-level, 3–14
verification flow. See Design/verification flow
Verilog RTL, wrapper for, 206
VHDL compilation, 259
VHDL libraries, 257
VHDL packages for component models, 35–45

FMF packages, 42–45
STD_LOGIC_1164, 35–37
VITAL_Primitives, 39–41
VITAL_Timing, 37–39

violations, 121
VITAL

attributes, 20–21
conditional delays in, 147–149
conditional timing checks in, 153–156
delay types, 19–20
mapping SDF to, 152–153

VITAL additions, 19–25
VITAL attributes, 20–21
VITAL delay types, 19–20
VITAL primitive call, 21–22
VITAL processes, 22–23
VitalPathDelays, 24–25

VITAL levels, comparison of, 21
VITAL models

of nand gate component, 28–29
structure of, 64

VITAL models, anatomy of, 59–71
backannotation, 60
concurrent procedure section, 70
declarative section, 66–67
functionality section, 68–69

MAGINDEX 8/20/04 12:52 PM Page 315

VITAL models, anatomy of (continued)
level 0 guidelines, 59–62
level 1 guidelines, 63–70
negative constraint block, 65
path delay section, 69
processes, 65–69
timing check section, 67–68
timing generics, 60–61
VITAL primitives, 70
VitalDelayTypes, 61–62
wire delay block, 63–65

VITAL models, using timing constraint checks in,
108–121

period/pulsewidth checks, 112–114
recovery/removal checks, 114–117
setup/hold checks, 108–112
skew checks, 117–121

VITAL nand gate
basic, 20
model with interconnect delays, 26
using VitalPathDelay, 23

VITAL prefixes, 62
VITAL primitives, 70

calls, 21–22
procedure calls to, 70

VITAL process declarative section, example of,
67

VITAL processes, 22–23
VITAL symbol mapping, SDF to, 153
VITAL table symbols, 92–93
VITAL tables, 91–106

advantages of truth and state tables, 91
memory tables, 101–105
reducing pessimism, 100–101
state tables, 97–99
truth tables, 92–97

VITAL, using to simulate RTL, 191–192
VITAL2000 method, 223–231
VitalDelayTypes, 61–62
VitalInPhaseSkewCheck, parameters for, 119,

119–120
parameters of Mode IN, 119–120
parameters of Mode INOUT, 120
parameters of Mode OUT, 120–121

VITAL_Memory, 41–42
package, 210–211

316 Index

path delays, 231–232
preload, 237–238
timing constraints, 232–235

VITALMemory table symbols, 102
VitalMemoryTable, arguments for, 105
VitalOutPhaseSkewCheck

call, 118
procedure call, 118

VitalPathDelay, VITAL nand gate using, 23
VitalPathDelay (VPD), 24–25, 82–83
VitalPeriodPulseCheck

call, 113
procedure call, 112

VitalPeriodPulseCheck procedure call
parameters of Mode IN, 113–114
parameters of Mode INOUT, 114
parameters of Mode OUT, 114

VITAL_Primitives, 39–41
VitalRecoveryRemovalCheck

call, 115
procedure, 114

VitalRecoveryRemovalCheck procedure,
parameters to, 115–117

parameters of Mode IN, 115–117
parameters of Mode OUT, 117

VitalSetupHoldCheck
procedure, 108
procedure call, 109

VitalSetupHoldCheck procedure, parameters to,
110

parameters of Mode IN, 110–111
parameters of Mode INOUT, 112
parameters of Mode OUT, 112

VITALSignalDelay, component with, 66
VITAL_Timing, 37–39
VPD inside generate statement, 86
VPD (VitalPathDelay), 22, 24–25, 82–83

wire delay block, 63–65
wrappers

basic, 192–205
for Verilog RTL, 206

XML (eXtensible Markup Language), 47

ZBT (Zero Bus Turnaround), 209

MAGINDEX 8/20/04 12:52 PM Page 316

	TeamLiB
	Cover
	Contents
	Preface
	PART I INTRODUCTION
	CHAPTER 1 INTRODUCTION TO BOARD-LEVEL VERIFICATION
	1.1 Why Models are Needed
	1.2 Definition of a Model
	1.3 Design Methods and Models
	1.4 How Models Fit in the FPGA/ASIC Design Flow
	1.5 Where to Get Models
	1.6 Summary

	CHAPTER 2 TOUR OF A SIMPLE MODEL
	2.1 Formatting
	2.2 Standard Interfaces
	2.3 Model Delays
	2.4 VITAL Additions
	2.5 Interconnect Delays
	2.6 Finishing Touches
	2.7 Summary

	PART II RESOURCES AND STANDARDS
	CHAPTER 3 VHDL PACKAGES FOR COMPONENT MODELS
	3.1 STD_LOGIC_1164
	3.2 VITAL_Timing
	3.3 VITAL_Primitives
	3.4 VITAL_Memory
	3.5 FMF Packages
	3.6 Summary

	CHAPTER 4 AN INTRODUCTION TO SDF
	4.1 Overview of an SDF File
	4.2 SDF Capabilities
	4.3 Summary

	CHAPTER 5 ANATOMY OF A VITAL MODEL
	5.1 Level 0 Guidelines
	5.2 Level 1 Guidelines
	5.3 Summary

	CHAPTER 6 MODELING DELAYS
	6.1 Delay Types and Glitches
	6.2 Distributed Delays
	6.3 Pin-to-Pin Delays
	6.4 Path Delay Procedures
	6.5 Using VPDs
	6.6 Generates and VPDs
	6.7 Device Delays
	6.8 Backannotating Path Delays
	6.9 Interconnect Delays
	6.10 Summary

	CHAPTER 7 VITAL TABLES
	7.1 Advantages of Truth and State Tables
	7.2 Truth Tables
	7.3 State Tables
	7.4 Reducing Pessimism
	7.5 Memory Tables
	7.6 Summary

	CHAPTER 8 TIMING CONSTRAINTS
	8.1 The Purpose of Timing Constraint Checks
	8.2 Using Timing Constraint Checks in VITAL Models
	8.3 Violations
	8.4 Summary

	PART III MODELING BASICS
	CHAPTER 9 MODELING COMPONENTS WITH REGISTERS
	9.1 Anatomy of a Flip-Flop
	9.2 Anatomy of a Latch
	9.3 Summary

	CHAPTER 10 CONDITIONAL DELAYS AND TIMING CONSTRAINTS
	10.1 Conditional Delays in VITAL
	10.2 Conditional Delays in SDF
	10.3 Conditional Delay Alternatives
	10.4 Mapping SDF to VITAL
	10.5 Conditional Timing Checks in VITAL
	10.6 Summary

	CHAPTER 11 NEGATIVE TIMING CONSTRAINTS
	11.1 How Negative Constraints Work
	11.2 Modeling Negative Constraints
	11.3 How Simulators Handle Negative Constraints
	11.4 Ramifications
	11.5 Summary

	CHAPTER 12 TIMING FILES AND BACKANNOTATION
	12.1 Anatomy of a Timing File
	12.2 Separate Timing Specifications
	12.3 Importing Timing Values
	12.4 Custom Timing Sections
	12.5 Generating Timing Files
	12.6 Generating SDF Files
	12.7 Backannotation and Hierarchy
	12.8 Summary

	PART IV ADVANCED MODELING
	CHAPTER 13 ADDING TIMING TO YOUR RTL CODE
	13.1 Using VITAL to Simulate Your RTL
	13.2 The Basic Wrapper
	13.3 A Wrapper for Verilog RTL
	13.4 Modeling Delays in Designs with Internal Clocks
	13.5 Caveats
	13.6 Summary

	CHAPTER 14 MODELING MEMORIES
	14.1 Memory Arrays
	14.2 Modeling Memory Functionality
	14.3 VITAL_Memory Path Delays
	14.4 VITAL_Memory Timing Constraints
	14.5 PreLoading Memories
	14.6 Modeling Other Memory Types
	14.7 Summary

	CHAPTER 15 CONSIDERATIONS FOR COMPONENT MODELING
	15.1 Component Models and Netlisters
	15.2 File Contents
	15.3 Generics Passed from the Schematic
	15.4 Integrating Models into a Schematic Capture System
	15.5 Using Models in the Design Process
	15.6 Special Considerations
	15.7 Summary

	CHAPTER 16 MODELING COMPONENT-CENTRIC FEATURES
	16.1 Differential Inputs
	16.2 Bus Hold
	16.3 PLLs and DLLs
	16.4 Assertions
	16.5 Modifying Behavior with the TimingModel Generic
	16.6 State Machines
	16.7 Mixed Signal Devices
	16.8 Summary

	CHAPTER 17 TESTBENCHES FOR COMPONENT MODELS
	17.1 About Testbenches
	17.2 Testbench Styles
	17.3 Using Assertions
	17.4 Using Transactors
	17.5 Testing Memory Models
	17.6 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

