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1
Introduction

‘Where shall I begin, please your Majesty?’ he asked.

‘Begin at the beginning,’ the King said, gravely,

‘and go on till you come to the end: then stop.’

Lewis Carroll

1.1 MOTIVATION

Humans are highly visual creatures. Evolution has invested a large part of our

neurological resources in visual perception. We are experts at grasping visual

environments in a fraction of a second and rely on visual information for

many of our day-to-day activities. It is not surprising that, as our world is

becoming more digital every day, digital images and digital video are

becoming ubiquitous.

In light of this development, optimizing the performance of digital

imaging systems with respect to the capture, display, storage and transmis-

sion of visual information is one of the most important challenges in this

domain. Video compression schemes should reduce the visibility of the

introduced artifacts, watermarking schemes should hide information more

effectively in images, printers should use the best half-toning patterns, and so

on. In all these applications, the limitations of the human visual system

(HVS) can be exploited to maximize the visual quality of the output. To do

this, it is necessary to build computational models of the HVS and integrate

them in tools for perceptual quality assessment.

Digital Video Quality - Vision Models and Metrics Stefan Winkler
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The need for accurate vision models and quality metrics has been

increasing as the borderline between analog and digital processing of visual

information is moving closer to the consumer. This is particularly evident in

the field of television. While traditional analog systems still represent the

majority of television sets today, production studios, broadcasters and net-

work providers have been installing digital video equipment at an ever-

increasing rate. Digital satellite and cable services have been available for

quite some time, and terrestrial digital TV broadcast has been introduced in a

number of locations around the world. A similar development can be

observed in photography, where digital cameras have become hugely

popular.

The advent of digital imaging systems has exposed the limitations of the

techniques traditionally used for quality assessment and control. For con-

ventional analog systems there are well-established performance standards.

They rely on special test signals and measurement procedures to determine

signal parameters that can be related to perceived quality with relatively high

accuracy. While these parameters are still useful today, their connection with

perceived quality has become much more tenuous. Because of compression,

digital imaging systems exhibit artifacts that are fundamentally different

from analog systems. The amount and visibility of these distortions strongly

depend on the actual image content. Therefore, traditional measurements are

inadequate for the evaluation of these artifacts.

Given these limitations, researchers have had to resort to subjective

viewing experiments in order to obtain reliable ratings for the quality of

digital images or video. While these tests are the best way to measure ‘true’

perceived quality, they are complex, time-consuming and consequently

expensive. Hence, they are often impractical or not feasible at all, for

example when real-time online quality monitoring of several video channels

is desired.

Looking for faster alternatives, the designers of digital imaging systems

have turned to simple error measures such as mean squared error (MSE) or

peak signal-to-noise ratio (PSNR), suggesting that they would be equally

valid. However, these simple measures operate solely on a pixel-by-pixel

basis and neglect the important influence of image content and viewing

conditions on the actual visibility of artifacts. Therefore, their predictions

often do not agree well with actual perceived quality.

These problems have prompted the intensified study of vision models and

visual quality metrics in recent years. Approaches based on HVS-models are

slowly replacing classical schemes, in which the quality metric consists of an

MSE- or PSNR-measure. The quality improvement that can be achieved
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using an HVS-based approach instead is significant and applies to a large

variety of image processing applications. However, the human visual system

is extremely complex, and many of its properties are not well understood

even today. Significant advancements of the current state of the art will

require an in-depth understanding of human vision for the design of reliable

models.

The purpose of this book is to provide an introduction to vision modeling

in the framework of video quality assessment. We will discuss the design of

models and metrics and show examples of their utilization. The models

presented are quite general and may be useful in a variety of image and video

processing applications.

1.2 OUTLINE

Chapter 2 gives an overview of the human visual system. It looks at the

anatomy and physiology of its components, explaining the processing of

visual information in the brain together with the resulting perceptual

phenomena.

Chapter 3 outlines the main aspects of visual quality with a special focus

on digital video. It briefly introduces video coding techniques and explores

the effects that lossy compression or transmission errors have on quality. We

take a closer look at factors that can influence subjective quality and describe

procedures for its measurement. Then we review the history and state of

the art of video quality metrics and discuss the evaluation of their prediction

performance.

Chapter 4 presents tools for vision modeling and quality measurement.

The first is a unique measure of isotropic local contrast based on analytic

directional filters. It agrees well with perceived contrast and is used later

in conjunction with quality assessment. The second tool is a perceptual

distortion metric (PDM) for the evaluation of video quality. It is based on

a model of the human visual system that takes into account color

perception, the multi-channel architecture of temporal and spatial mechan-

isms, spatio-temporal contrast sensitivity, pattern masking and channel

interactions.

Chapter 5 is devoted to the evaluation of the prediction performance of the

PDM as well as a comparison with competing metrics. This is achieved with

the help of extensive data from subjective experiments. Furthermore, the

design choices for the different components of the PDM are analyzed with

respect to their influence on prediction performance.
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Chapter 6 investigates a number of extensions of the perceptual distortion

metric. These include modifications of the PDM for the prediction of

perceived blocking distortions and for the support of object segmentation.

Furthermore, attributes of image appeal are integrated in the PDM in the

form of sharpness and colorfulness ratings derived from the video. Addi-

tional data from subjective experiments are used in each case for the

evaluation of prediction performance.

Finally, Chapter 7 concludes the book with an outlook on promising

developments in the field of video quality assessment.
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2
Vision

Seeing is believing.

English proverb

Vision is the most essential of our senses; 80–90% of all neurons in the

human brain are estimated to be involved in visual perception (Young, 1991).

This is already an indication of the enormous complexity of the human visual

system. The discussions in this chapter are necessarily limited in scope and

focus mostly on aspects relevant to image and video processing. For a more

detailed overview of vision, the reader is referred to the abundant literature,

e.g. the excellent book by Wandell (1995).

The human visual system can be subdivided into two major components:

the eyes, which capture light and convert it into signals that can be under-

stood by the nervous system, and the visual pathways in the brain, along

which these signals are transmitted and processed. This chapter discusses the

anatomy and physiology of these components as well as a number of

phenomena of visual perception that are of particular relevance to the models

and metrics discussed in this book.

2.1 EYE

2.1.1 Physical Principles

From an optical point of view, the eye is the equivalent of a photographic

camera. It comprises a system of lenses and a variable aperture to focus

Digital Video Quality - Vision Models and Metrics Stefan Winkler
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images on the light-sensitive retina. This section summarizes the basics of

the optical principles of image formation (Bass et al., 1995; Hecht, 1997).

The optics of the eye rely on the physical principles of refraction.

Refraction is the bending of light rays at the angulated interface of two

transparent media with different refractive indices. The refractive index n of

a material is the ratio of the speed of light in vacuum c0 to the speed of light

in this material c: n ¼ C0=c. The degree of refraction depends on the ratio of

the refractive indices of the two media as well as the angle � between the

incident light ray and the interface normal: n1 sin�1 ¼ n2 sin�2. This is

known as Snell’s law.

Lenses exploit refraction to converge or diverge light, depending on their

shape. Parallel rays of light are bent outwards when passing through a

concave lens and inwards when passing through a convex lens. These

focusing properties of a convex lens can be used for image formation. Due

to the nature of the projection, the image produced by the lens is reversed,

i.e. rotated 180� about the optical axis.

Objects at different distances from a convex lens are focused at different

distances behind the lens. In a first approximation, this is described by the

Gaussian lens formula:

1

ds
þ 1

di
¼ 1

f
; ð2:1Þ

where ds is the distance between the source and the lens, di is the distance

between the image and the lens, and f is the focal length of the lens. An

infinitely distant object is focused at focal length, di ¼ f . The reciprocal of

the focal length is a measure of the optical power of a lens, i.e. how strongly

incoming rays are bent. The optical power is defined as 1m=f and is specified
in diopters.

A variable aperture is added to most optical imaging systems in order to

adapt to different light levels. Apart from limiting the amount of light entering

the system, the aperture size also influences the depth of field, i.e. the range

of distances over which objects will appear in focus on the imaging plane. A

small aperture produces images with a large depth of field, and vice versa.

Another side-effect of an aperture is diffraction. Diffraction is the scatter-

ing of light that occurs when the extent of a light wave is limited. The result

is a blurred image. The amount of blurring depends on the dimensions of the

aperture in relation to the wavelength of the light.

A final note regarding notation: distance-independent specifications of

images are often used in optics. The size is measured in terms of visual angle
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� ¼ atanðs=2DÞ covered by an image of size s at distance D. Accordingly,

spatial frequencies are measured in cycles per degree (cpd) of visual angle.

2.1.2 Optics of the Eye

Making general statements about the eye’s optical characteristics is compli-

cated by the fact that there are considerable variations between individuals.

Furthermore, its components undergo continuous changes throughout life.

Therefore, the figures given in the following should be considered approx-

imate.

The optical system of the human eye is composed of the cornea, the

aqueous humor, the lens, and the vitreous humor, as illustrated in Figure 2.1.

The refractive indices of these four components are 1.38, 1.33, 1.40, and

1.34, respectively (Guyton, 1991). The total optical power of the eye is

approximately 60 diopters. Most of it is provided by the air–cornea transi-

tion, because this is where the largest difference in refractive indices occurs

(the refractive index of air is close to 1). The lens itself provides only a third

of the total refractive power due to the optically similar characteristics of the

surrounding elements.

The importance of the lens is that its curvature and thus its optical power

can be voluntarily increased by contracting muscles attached to it. This

process is called accommodation. Accommodation is essential to bring

objects at different distances into focus on the retina. In young children,

the optical power of the lens can be increased from 20 to 34 diopters.

Iris

Cornea

Lens

Fovea

Retina

Optic
nerve

Sclera

Choroid

Optic disc
(blind spot)

Vitreous
humor

Aqueous
humor

Figure 2.1 The human eye (transverse section of the left eye).
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However, accommodation ability decreases gradually with age until it is lost

almost completely, a condition known as presbyopia.

Just before entering the lens, the light passes the pupil, the eye’s aperture.

The pupil is the circular opening inside the iris, a set of muscles that control

its size and thus the amount of light entering the eye depending on the

exterior light levels. Incidentally, the pigmentation of the iris is also

responsible for the color of our eyes. The diameter of the pupillary aperture

can be varied between 1.5 and 8 mm, corresponding to a 30-fold change of

the quantity of light entering the eye. The pupil is thus one of the mechanisms

of the human visual system for light adaptation (cf. section 2.4.1).

2.1.3 Optical Quality

The physical principles described in section 2.1.1 pertain to an ideal optical

system, whose resolution is only limited by diffraction. While the parameters

of an individual healthy eye are usually correlated in such a way that the eye

can produce a sharp image of a distant object on the retina (Charman, 1995),

imperfections in the lens system can introduce additional distortions that

affect image quality. In general, the optical quality of the eye deteriorates

with increasing distance from the optical axis (Liang and Westheimer, 1995).

This is not a severe problem, however, because visual acuity also decreases

there, as will be discussed in section 2.2.

To determine the optical quality of the eye, the reflection of a visual

stimulus projected onto the retina can be measured (Campbell and Gubisch,

1966).{ The retinal image turns out to be a distorted version of the input, the

most noticeable distortion being blur. To quantify the amount of blurring, a

point or a thin line is used as the input image, and the resulting retinal image

is called the point spread function or line spread function of the eye; its

Fourier transform is the modulation transfer function. A simple approxima-

tion of the foveal point spread function of the human eye according to

Westheimer (1986) is shown in Figure 2.2 for a pupil diameter of 3 mm. The

amount of blurring depends on the pupil size: for small pupil diameters up to

3–4 mm, the optical blurring is close to the diffraction limit; as the pupil

diameter increases (for lower ambient light levels), the width of the point

spread function increases as well, because the distortions due to cornea and

lens imperfections become large compared to diffraction effects (Campbell

and Gubisch, 1966; Rovamo et al., 1998). The pupil size also influences the

depth of field, as mentioned before.

{An alternative method to determine the optical quality of the eye is based on interferometric

measurements. A comparison of these two methods is given by Williams et al. (1994).
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Because the cornea is not perfectly symmetric, the optical properties of the

eye are orientation-dependent. Therefore it is impossible to perfectly focus

stimuli of all orientations simultaneously, a condition known as astigmatism.

This results in a point spread function that is not circularly symmetric.

Astigmatism can be severe enough to interfere with perception, in which case

it has to be corrected by compensatory glasses.

The properties of the eye’s optics, most importantly the refractive indices

of the optical elements, also vary with wavelength. This means that it

is impossible to focus all wavelengths simultaneously, an effect known as

chromatic aberration. The point spread function thus changes with wave-

length. Chromatic aberration can be quantified by determining the modula-

tion transfer function of the human eye for different wavelengths. This is

shown in Figure 2.3 for a human eye model with a pupil diameter of 3 mm

and in focus at 580 nm (Marimont and Wandell, 1994).

It is evident that the retinal image contains only poor spatial detail at

wavelengths far from the in-focus wavelength (note the sharp cutoff going

down to a few cycles per degree at short wavelengths). This tendency

towards monochromaticity becomes even more pronounced with increasing

pupil aperture.

2.1.4 Eye Movements

The eye is attached to the head by three pairs of muscles that provide for

rotation around its three axes. Several different types of eye movements can

be distinguished (Carpenter, 1988). Fixation movements are perhaps the most
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Figure 2.2 Point spread function of the human eye as a function of visual angle

(Westheimer, 1986).
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important. The voluntary fixation mechanism allows us to direct the eyes

towards an object of interest. This is achieved by means of saccades, high-

speed movements steering the eyes to the new position. Saccades occur at a

rate of 2–3 per second and are also used to scan a scene by fixating on one

highlight after the other. One is unaware of these movements because the

visual image is suppressed during saccades. The involuntary fixation

mechanism locks the eyes on the object of interest once it has been found.

It involves so-called micro-saccades that counter the tremor and slow drift of

the eye muscles. As soon as the target leaves the fovea, it is re-centered with

the help of these small flicking movements. The same mechanism also

compensates for head movements or vibrations.

Additionally, the eyes can track an object that is moving across the scene.

These so-called pursuit movements can adapt to object trajectories with great

accuracy. Smooth pursuit works well even for high velocities, but it is

impeded by large accelerations and unpredictable motion (Eckert and

Buchsbaum, 1993; Hearty, 1993).

2.2 RETINA

The optics of the eye project images of the outside world onto the retina, the

neural tissue at the back of the eye. The functional components of the retina
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Figure 2.3 Variation of the modulation transfer function of a human eye model with

wavelength (Marimont and Wandell, 1994).
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are illustrated in Figure 2.4. Light entering the retina has to traverse several

layers of neurons before it reaches the light-sensitive layer of photoreceptors

and is finally absorbed in the pigment layer. The anatomy and physiology of

the photoreceptors and the retinal neurons is discussed in more detail here.

2.2.1 Photoreceptors

The photoreceptors are specialized neurons that make use of light-sensitive

photochemicals to convert the incident light energy into signals that can be

interpreted by the brain. There are two different types of photoreceptors,

namely rods and cones. The names are derived from the physical appearance

of their light-sensitive outer segments. Rods are responsible for scotopic

vision at low light levels, while cones are responsible for photopic vision at

high light levels.

Rods are very sensitive light detectors. With the help of the photochemical

rhodopsin they can generate a photocurrent response from the absorption of

only a single photon (Hecht et al., 1942; Baylor, 1987). However, visual

acuity under scotopic conditions is poor, even though rods sample the retina

very finely. This is due to the fact that signals from many rods converge onto

a single neuron, which improves sensitivity but reduces resolution.

The opposite is true for the cones. Several neurons encode the signal from

each cone, which already suggests that cones are important components of

Light

Ganglion cell Bipolar cell

Amacrine cell

Horizontal cell
Pigment layer

Rod Cone

Figure 2.4 Anatomy of the retina.
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visual processing. There are three different types of cones, which can be

classified according to the spectral sensitivity of their photochemicals. These

three types are referred to as L-cones, M-cones, and S-cones, according to

their sensitivity to long, medium, and short wavelengths, respectively.{ They

form the basis of color perception. Recent estimates of the absorption spectra

of the three cone types are shown in Figure 2.5.

The peak sensitivities occur around 440 nm, 540 nm, and 570 nm. As can

be seen, the absorption spectra of the L- and M-cones are very similar,

whereas the S-cones exhibit a significantly different sensitivity curve. The

overlap of the spectra is essential to fine color discrimination. Color

perception is discussed in more detail in section 2.5.

There are approximately 5 million cones and 100 million rods in each eye.

Their density varies greatly across the retina, as is evident from Figure 2.6

(Curcio et al., 1990). There is also a large variability between individuals.

Cones are concentrated in the fovea, a small area near the center of the retina,

where they can reach a peak density of up to 300 000/mm2 (Ahnelt, 1998).

Throughout the retina, L- and M-cones are in the majority; S-cones are much

{Sometimes they are also referred to as red, green, and blue cones, respectively.
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Figure 2.5 Normalized absorption spectra of the three cone types: L-cones (solid),

M-cones (dashed), and S-cones (dot-dashed) (Stockman et al., 1999; Stockman and

Sharpe, 2000).
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more sparse and account for less than 10% of the total number of cones

(Curcio et al., 1991). Rods dominate outside of the fovea, which explains

why it is easier to see very dim objects (e.g. stars) when they are in the

peripheral field of vision than when looking straight at them. The central

fovea contains no rods at all. The highest rod densities (up to 200 000/mm2)

are found along an elliptical ring near the eccentricity of the optic disc. The

blind spot around the optic disc, where the optic nerve exits the eye, is

completely void of photoreceptors.

The spatial sampling of the retina by the photoreceptors is illustrated in

Figure 2.7. In the fovea the cones are tightly packed and form a very regular

hexagonal sampling array. In the periphery the sampling grid becomes more

irregular; the separation between the cones grows, and rods fill in the spaces.

Also note the size differences: the cones in the fovea have a diameter of

1–3 mm; in the periphery, their diameter increases to 5–10 mm. The diameter

of the rods varies between 1 and 5 mm.

The size and spacing of the photoreceptors determine the maximum spatial

resolution of the human visual system. Assuming an optical power of 60

diopters and thus a focal length of approximately 17 mm for the eye,
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Figure 2.6 The distribution of photoreceptors on the retina. Cones are concentrated in

the fovea at the center of the retina, whereas rods dominate in the periphery. The gap

around 4 mm eccentricity represents the optic disc, where no receptors are present

(Adapted from C. A. Curcio et al., (1990), Human photoreceptor topography, Journal of

Comparative Neurology 292: 497–523. Copyright # 1990 John Wiley & Sons. The

material is used by permission of Wiley-Liss, Inc., a Subsidiary of John Wiley & Sons, Inc.).
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distances on the retina can be expressed in terms of visual angle using simple

trigonometry. The entire fovea covers approximately 2� of visual angle. The
L- and M-cones in the fovea are spaced approximately 2.5 mm apart, which

corresponds to 30 arc seconds of visual angle. The maximum resolution of

around 60 cpd attained here is high enough to capture all of the spatial

variation after the blurring by the eye’s optics. S-cones are spaced approxi-

mately 50 mm or 10 minutes of arc apart on average, resulting in a maximum

resolution of only 3 cpd (Curcio et al., 1991). This is consistent with the

strong defocus of short-wavelength light due to the axial chromatic aberra-

tion of the eye’s optics (see Figure 2.3). Thus the properties of different

components of the visual system fit together nicely, as can be expected from

an evolutionary system. The optics of the eye set limits on the maximum

visual acuity, and the arrangements of the mosaic of the S-cones as well as

the L- and M-cones can be understood as a consequence of the optical

limitations (and vice versa).

2.2.2 Retinal Neurons

The retinal neurons process the photoreceptor signals. The anatomical

connections and neural specializations within the retina combine to commu-

nicate different types of information about the visual input to the brain. As

shown in Figure 2.4, a variety of different neurons can be distinguished in the

retina (Young, 1991):

Figure 2.7 The photoreceptor mosaic on the retina. In the fovea (a) the cones are

densely packed on a hexagonal sampling array. In the periphery (b) their size and

separation grows, and rods fill in the spaces. Each image shows an area of 35� 25 mm2

(Adapted from C. A. Curcio et al., (1990), Human photoreceptor topography, Journal of

Comparative Neurology 292: 497–523. Copyright # 1990 John Wiley & Sons. The

material is used by permission of Wiley-Liss, Inc., a Subsidiary of John Wiley & Sons, Inc.).
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� Horizontal cells connect the synaptic nodes of neighboring rods and cones.

They have an inhibitory effect on bipolar cells.

� Bipolar cells connect horizontal cells, rods and cones with ganglion cells.

Bipolar cells can have either excitatory or inhibitory outputs.

� Amacrine cells transmit signals from bipolar cells to ganglion cells or

laterally between different neurons. About 30 types of amacrine cells with

different functions have been identified.

� Ganglion cells collect information from bipolar and amacrine cells.

There are about 1.6 million ganglion cells in the retina. Their axons form

the optic nerve that leaves the eye through the optic disc and carries the

output signal of the retina to other processing centers in the brain (see

section 2.3).

The interconnections between these cells give rise to an important concept in

visual perception, the receptive field. The visual receptive field of a neuron is

defined as the retinal area in which light influences the neuron’s response. It

is not limited to cells in the retina; many neurons in later stages of the visual

pathways can also be described by means of their receptive fields (see section

2.3.2).

The ganglion cells in the retina have a characteristic center–surround

receptive field, which is nearly circularly symmetric, as shown in Figure 2.8

(Kuffler, 1953). Light falling directly on the center of a ganglion cell’s

receptive field may either excite or inhibit the cell. In the surrounding region,

light has the opposite effect. Between center and surround, there is a small

area with a mixed response. About half of the retinal ganglion cells have an

on-center, off-surround receptive field, i.e. they are excited by light on their

mixed response

off-surround

on-center

mixed response

on-surround

off-center

(a) on-center, off-surround (b) off-center, on-surround

Figure 2.8 Center–surround organization of the receptive field of retinal ganglion cells.

Light falling on the center of a ganglion cell’s receptive field may either excite (a) or

inhibit (b) the cell. In the surrounding region, light has the opposite effect. Between center

and surround, there is a small area with a mixed response.
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center, and the other half have an off-center, on-surround receptive field with

the opposite reaction.

This receptive field organization is mainly due to lateral inhibition from

horizontal cells. The consequence is that excitatory and inhibitory signals

basically neutralize each other when the stimulus is uniform, but when

contours or edges come to lie over such a cell’s receptive field, its response is

amplified. In other words, retinal neurons implement a mechanism of

contrast computation. Ganglion cells can be further classified in two main

groups (Sekuler and Blake, 1990):

� P-cells constitute the large majority (nearly 90%) of ganglion cells. They

have very small receptive fields, i.e. they receive inputs only from a small

area of the retina (only a single cone in the fovea) and can thus encode fine

image details. Furthermore, P-cells encode most of the chromatic infor-

mation as different P-cells respond to different colors.

� M-cells constitute only 5–10% of ganglion cells. At any given eccentricity,

their receptive fields are several times larger than those of P-cells. They

also have thicker axons, which means that their output signals travel at

higher speeds. M-cells respond to motion or small differences in light

level, but are insensitive to color. They are responsible for rapidly alerting

the visual system to changes in the image.

These two types of ganglion cells represent the origins of two separate visual

streams in the brain, the so-called magnocellular and parvocellular pathways

(see section 2.3.1).

As becomes evident from this intricate arrangement of neurons, the retina

is much more than a device to convert light to neural signals; the visual

information is thoroughly pre-processed here before it is passed on to other

parts of the brain.

2.3 VISUAL PATHWAYS

The optic nerve leaves the eye to carry the visual information from the

ganglion cells of the retina to various processing centers in the brain. These

visual pathways are illustrated in Figure 2.9. The optic nerves from the two

eyes meet at the optic chiasm, where the fibers are rearranged. All the fibers

from the nasal halves of each retina cross to the opposite side, where they

join the fibers from the temporal halves of the opposite retinas to form the

optic tracts. Since the retinal images are reversed by the optics, the left visual

field is thus processed in the right hemisphere, and the right visual field is
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processed in the left hemisphere. Most of the fibers from each optic tract

synapse in the lateral geniculate nucleus (see section 2.3.1). From there

fibers pass by way of the optic radiation to the visual cortex (see section

2.3.2). Throughout these visual pathways, the neighborhood relations of the

retina are preserved, i.e. the input from a certain small part of the retina is

processed in a particular area of the LGN and of the primary visual cortex.

This property is known as retinotopic mapping.

There are a number of additional destinations for visual information in the

brain apart from the major visual pathways listed above. These brain areas

are responsible mainly for behavioral or reflex responses. One particular

example is the superior colliculus, which seems to be involved in controlling

eye movements in response to certain stimuli in the periphery.

2.3.1 Lateral Geniculate Nucleus

The lateral geniculate nucleus (LGN) comprises approximately one million

neurons in six layers. The two inner layers, the magnocellular layers, receive

input almost exclusively from M-type ganglion cells. The four outer layers,

the parvocellular layers, receive input mainly from P-type ganglion cells. As

mentioned in section 2.2.2, the M- and P-cells respond to different types of

stimuli, namely motion and spatial detail, respectively. This functional

Visual cortexOptic nerve

Optic tract

Lateral geniculate nucleus

Optic radiation

Optic chiasm

Figure 2.9 Visual pathways in the human brain (transverse section). The signals travel

from the eyes through the optic nerves. They meet at the optic chiasm, where the fibers

from the nasal halves of each retina cross to the opposite side to join the fibers from the

temporal halves of the opposite retinas. From there, the optic tracts lead the signals to the

lateral geniculate nuclei and on to the visual cortex.
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specialization continues in the LGN and the visual cortex, which suggests the

existence of separate magnocellular and parvocellular pathways in the visual

system.

The specialization of cells in the LGN is similar to the ganglion cells in the

retina. The cells in the magnocellular layers are effectively color-blind and

have larger receptive fields. They respond vigorously to moving contours.

The cells in the parvocellular layers have rather small receptive fields and are

differentially sensitive to color (De Valois et al., 1958). They are excited if a

particular color illuminates the center of their receptive field and inhibited if

another color illuminates the surround. Only two color pairings are found,

namely red-green and blue-yellow. These opponent colors form the basis of

color perception in the human visual system and will be discussed in more

detail in section 2.5.2.

The LGN serves not only as a relay station for signals from the retina to

the visual cortex, but it also controls how much of the information is allowed

to pass. This gating operation is controlled by extensive feedback signals

from the primary visual cortex as well as input from the reticular activating

system in the brain stem, which governs our general level of arousal.

2.3.2 Visual Cortex

The visual cortex is located at the back of the cerebral hemispheres (see

section 2.3). It is responsible for all higher-level aspects of vision. The signals

from the lateral geniculate nucleus arrive at an area called the primary visual

cortex (also known as area V1, Brodmann area 17, or striate cortex), which

makes up the largest part of the human visual system. In addition to the

primary visual cortex, more than 20 other cortical areas receiving strong

visual input have been discovered. Little is known about their exact

functionalities, however.

There is an enormous variety of cells in the visual cortex. Neurons in the

first stage of the primary visual cortex have center–surround receptive fields

similar to cells in the retina and in the lateral geniculate nucleus. A recurring

property of many cells in the subsequent stages of the visual cortex is their

selective sensitivity to certain types of information. A particular cell may

respond strongly to patterns of a certain orientation or to motion in a certain

direction. Similarly, there are cells tuned to particular frequencies, colors,

velocities, etc. This neuronal selectivity is thought to be at the heart of the

multi-channel organization of human vision (see section 2.7).

The foundations of our knowledge about cortical receptive fields were laid

by Hubel and Wiesel (1959, 1962, 1968, 1977). In their physiological studies
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of cells in the primary visual cortex, they were able to identify several classes

of neurons with different specializations. Simple cells behave in an approxi-

mately linear fashion, i.e. their responses to complicated shapes can be

predicted from their responses to small-spot stimuli. They have receptive

fields composed of several parallel elongated excitatory and inhibitory

regions, as illustrated in Figure 2.10. In fact, their receptive fields resemble

Gabor patterns (Daugman, 1980). Hence, simple cells can be characterized

by a particular spatial frequency, orientation, and phase. Serving as an

oriented band-pass filter, a simple cell thus responds to a certain range of

spatial frequencies and orientations about its center values.

Complex cells are the most common cells in the primary visual cortex.

Like simple cells, they are also orientation-selective, but their receptive field

does not exhibit the on- and off-regions of a simple cell; instead, they

respond to a properly oriented stimulus anywhere in their receptive field.

A small percentage of complex cells respond well only when a stimulus

(still with the proper orientation) moves across their receptive field in a

certain direction. These direction-selective cells receive input mainly from

the magnocellular pathway and probably play an important role in motion

perception. Some cells respond only to oriented stimuli of a certain size.

They are referred to as end-stopped cells. They are sensitive to corners,

curvature or sudden breaks in lines. Both simple and complex cells can also

be end-stopped. Furthermore, the primary visual cortex is the first stage in the

Figure 2.10 Idealized receptive field of a simple cell in the primary visual cortex. Light

and dark shades denote excitatory and inhibitory regions, respectively.
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visual pathways where individual neurons have binocular receptive fields, i.e.

they receive inputs from both eyes, thereby forming the basis for stereopsis

and depth perception (Hubel, 1995).

2.4 SENSITIVITY TO LIGHT

2.4.1 Light Adaptation

The human visual system is capable of adapting to an enormous range of

light intensities. Light adaptation allows us to better discriminate relative

luminance variations at every light level. Scotopic and photopic vision

together cover 12 orders of magnitude in intensity, from a few photons to

bright sunlight (Hood and Finkelstein, 1986). However, at any given level of

adaptation we can only discriminate within an intensity range of 2–3 orders

of magnitude (Rogowitz, 1983).

Three mechanisms for light adaptation can be distinguished in the human

visual system (Guyton, 1991):

� The mechanical variation of the pupillary aperture. As discussed in section

2.1.2, this is controlled by the iris. The pupil diameter can be varied

between 1.5 and 8 mm, which corresponds to a 30-fold change of the

quantity of light entering the eye. This adaptation mechanism responds in

a matter of seconds.

� The chemical processes in the photoreceptors. This adaptation mechanism

exists in both rods and cones. In bright light, the concentration of

photochemicals in the receptors decreases, thereby reducing their sensi-

tivity. On the other hand, when the light intensity is reduced, the

production of photochemicals and thus the receptor sensitivity is

increased. While this chemical adaptation mechanism is very powerful

(it covers 5–6 orders of magnitude), it is rather slow; complete dark

adaptation in particular can take up to an hour.

� Adaptation at the neural level. This mechanism involves the neurons in all

layers of the retina, which adapt to changing light intensities by increasing

or decreasing their signal output accordingly. Neural adaptation is less

powerful, but faster than the chemical adaptation in the photoreceptors.

2.4.2 Contrast Sensitivity

The response of the human visual system depends much less on the absolute

luminance than on the relation of its local variations to the surrounding
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luminance. This property is known as the Weber–Fechner law. Contrast is a

measure of this relative variation of luminance. Mathematically, Weber

contrast can be expressed as

CW ¼ �L

L
: ð2:2Þ

This definition is most appropriate for patterns consisting of a single

increment or decrement �L to an otherwise uniform background luminance.

The threshold contrast, i.e. the minimum contrast necessary for an

observer to detect a change in intensity, is shown as a function of background

luminance in Figure 2.11. As can be seen, it remains nearly constant over an

important range of intensities (from faint lighting to daylight) due to the

adaptation capabilities of the human visual system, i.e. the Weber–Fechner

law holds in this range. This is indeed the luminance range typically

encountered in most image processing applications. Outside of this range,

our intensity discrimination ability deteriorates. Evidently, the Weber–Fech-

ner law is only an approximation of the actual sensory perception, but

contrast measures based on this concept are widely used in vision science.

Under optimal conditions, the threshold contrast can be less than 1%

(Hood and Finkelstein, 1986). The exact figure depends to a great extent on

the stimulus characteristics, most importantly its color as well as its spatial

and temporal frequency. Contrast sensitivity functions (CSFs) are generally

used to quantify these dependencies. Contrast sensitivity is defined as the

inverse of the contrast threshold.
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Figure 2.11 Illustration of the Weber–Fechner law. The threshold contrast remains

nearly constant over a wide range of intensities.
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In measurements of the CSF, the contrast of periodic (often sinusoidal)

stimuli with varying frequencies is defined as the Michelson contrast

(Michelson, 1927):

CM ¼ Lmax � Lmin

Lmax þ Lmin

; ð2:3Þ

where Lmin and Lmax are the luminance extrema of the pattern. Figure 2.12,

the so-called Campbell–Robson chart{ (Campbell and Robson, 1968),

demonstrates the shape of the spatial contrast sensitivity function in a very

intuitive manner. The luminance of pixels is modulated sinusoidally along

the horizontal dimension. The frequency of modulation increases exponen-

tially from left to right, while the contrast decreases exponentially from

100% to about 0.5% from bottom to top. The minimum and maximum

luminance remain constant along any given horizontal line through the

image. Therefore, if the detection of contrast were dictated solely by

Figure 2.12 Campbell–Robson contrast sensitivity chart (Campbell and Robson, 1968).

The spatial CSF appears as the envelope of visibility of the modulated pattern.

{Several renditions of this chart are available at http://www.bpe.es.osaka-u.ac.jp/ohzawa-lab/izumi/

CSF/A_JG_RobsonCSFchart.html
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image contrast, the alternating bright and dark bars should appear to have

equal height everywhere in the image. However, the bars appear taller in

the middle of the image than at the sides. This inverted U-shape of the

envelope of visibility is the spatial contrast sensitivity function for sinusoidal

stimuli. The location of its peak depends on the viewing distance.

Spatio-temporal CSF approximations are shown in Figure 2.13. Achro-

matic contrast sensitivity is generally higher than chromatic, especially for

high spatio-temporal frequencies. The chromatic CSFs for red-green and

blue-yellow stimuli are very similar in shape; however, the blue-yellow

sensitivity is somewhat lower overall, and its high-frequency decline sets in

earlier. Hence, the full range of colors is perceived only at low frequencies.

As spatio-temporal frequencies increase, blue-yellow sensitivity declines

first. At even higher frequencies, red-green sensitivity diminishes as well,

and perception becomes achromatic. On the other hand, achromatic sensi-

tivity decreases at low spatio-temporal frequencies (albeit to a lesser extent),

whereas chromatic sensitivity does not. However, this apparent attenuation of

sensitivity towards low frequencies may be attributed to implicit masking,

i.e. masking by the spectrum of the window within which the test gratings are

presented (Yang and Makous, 1997).

There has been some debate about the space–time separability of the

spatio-temporal CSF. This property is of interest in vision modeling because

a CSF that could be expressed as a product of spatial and temporal

components would simplify modeling. Early studies concluded that the

spatio-temporal CSF was not space–time separable at lower frequencies

(Robson, 1966; Koenderink and van Doorn, 1979). Kelly (1979a) measured

contrast sensitivity under stabilized conditions (i.e. the stimuli were stabi-

lized on the retina by compensating for the observers’ eye movements). Kelly

(1979b) fit an analytic function to his measurements, which yields a very

close approximation of the spatio-temporal CSF for counterphase flicker.

Burbeck and Kelly (1980) found that this CSF can be approximated by

linear combinations of two space–time separable components termed

excitatory and inhibitory CSFs. The same holds for the chromatic CSF

(Kelly, 1983).

Yang and Makous (1994) measured the spatio-temporal CSF for both in-

phase and conventional counterphase modulation. Their results suggest that

the underlying filters are indeed spatio-temporally separable and have the

shape of low-pass exponentials. The spatio-temporal interactions observed

for counterphase modulation may be explained as a product of masking by

the zero-frequency component of the gratings.
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2.5 COLOR PERCEPTION

In its most general form, light can be described by its spectral power

distribution. The human visual system, however, uses a much more compact

representation of color, which will be discussed in this section.

2.5.1 Color Matching

Color perception can be studied by the color-matching experiment (Brainard,

1995). It is the foundation of color science and has many applications. In the

color-matching experiment, the observer views a bipartite field, half of which

is illuminated by a test light, the other half by an additive mixture of a certain

number of primary lights. The observer is asked to adjust the intensities of

the primary lights to match the appearance of the test light.

It is not a priori clear that it will be possible for the observer to make a

match when the number of primaries is small. In general, however, observers

are able to establish a match using only three primary lights. This is referred

to as the trichromacy of human color vision.{ Trichromacy implies that there

exist lights with different spectral power distributions that cannot be

distinguished by a human observer. Such physically different lights that

produce identical color appearance are called metamers.

As was first established by Grassmann (1853), photopic color matching

satisfies homogeneity and superposition and can thus be analyzed using

linear systems theory. Assume the test light is known by N samples of its

spectral distribution, expressed as vector x. The color-matching experiment

can then be described by

t ¼ Cx; ð2:4Þ
where t is a three-dimensional vector whose coefficients are the intensities of

the three primary lights found by the observer to visually match x. They are

also referred to as the tristimulus coordinates of the test light. The rows of

matrix C are made up of N samples of the so-called color-matching functions

of the three primaries; they do not represent spectral power distributions,

however.

{There are certain qualifications to the empirical generalization that three primaries are sufficient to

match any test light. The primary lights must be chosen so that they are visually independent, i.e. no

additive mixture of any two of the primary lights should be a match to the third. Also, ‘negative’

intensities of a primary must be allowed, which is just a mathematical convention of saying that a

primary can be added to the test light instead of to the other primaries.
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The mechanistic explanation of the color-matching experiment is that

two lights match if they produce the same absorption rates in the L-, M-,

and S-cones. If the spectral sensitivities of the three cone types (see

Figure 2.5) are represented by the rows of a matrix R, the absorption rates

of the cones in response to a test light with spectral power distribution x are

given by r ¼ Rx. To relate these cone absorption rates to the tristimulus

coordinates of the test light, we perform a color-matching experiment with

primaries P, whose columns contain N samples of the spectral power

distribution of the three primaries. It turns out that the cone absorption

rates r are related to the tristimulus coordinates t of the test light by a linear

transformation,

r ¼ Mt; ð2:5Þ

where M ¼ RP is a 3�3 matrix. This also implies that the color-matching

functions are determined by the cone sensitivities up to a linear transforma-

tion, which was first verified empirically by Baylor (1987). The spectral

sensitivities of the three cone types thus provide a satisfactory explanation of

the color-matching experiment.

2.5.2 Opponent Colors

Hering (1878) was the first to point out that some pairs of hues can coexist in

a single color sensation (e.g. a reddish yellow is perceived as orange), while

others cannot (we never perceive a reddish green, for instance). This led him

to the conclusion that the sensations of red and green as well as blue and

yellow are encoded as color difference signals in separate visual pathways,

which is commonly referred to as the theory of opponent colors.

Empirical evidence in support of this theory came from a behavioral

experiment designed to quantify opponent colors, the so-called hue-cancel-

lation experiment (Jameson and Hurvich, 1955; Hurvich and Jameson, 1957).

In the hue-cancellation experiment, observers are able to cancel, for example,

the reddish appearance of a test light by adding certain amounts of green

light. Thus the red-green or blue-yellow appearance of monochromatic lights

can be measured.

Physiological experiments revealed the existence of opponent signals in

the visual pathways (Svaetichin, 1956; De Valois et al., 1958). They

demonstrated that cones may have an excitatory or an inhibitory effect on

ganglion cells in the retina and on cells in the lateral geniculate nucleus.

Depending on the cone types, certain excitation/inhibition pairings occur
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much more often than others: neurons excited by ‘red’ L-cones are usually

inhibited by ‘green’ M-cones, and neurons excited by ‘blue’ S-cones are

often inhibited by a combination of L- and M-cones. Hence, the receptive

fields of these neurons suggest a connection between neural signals and

perceptual opponent colors.

The decorrelation of cone signals achieved by the opponent-signal repre-

sentation of color information in the human visual system improves the

coding efficiency of the visual pathways. In fact, this representation may

be the result of the properties of natural spectra (Lee et al., 2002). The

precise opponent-color directions are still subject to debate, however. As an

example, the spectral sensitivities of an opponent color space derived by

Poirson and Wandell (1993) are shown in Figure 2.14. The principal

components are white-black (W-B), red-green (R-G) and blue-yellow

(B-Y) differences. As can be seen, the W-B channel, which encodes lumin-

ance information, is determined mainly by medium to long wavelengths. The

R-G channel discriminates between medium and long wavelengths, while the

B-Y channel discriminates between short and medium wavelengths.
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Figure 2.14 Normalized spectral sensitivities of the three components white-black

(solid), red-green (dashed), and blue-yellow (dot-dashed) of the opponent color space

derived by Poirson and Wandell (1993).
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2.6 MASKING AND ADAPTATION

2.6.1 Spatial Masking

Masking and adaptation are very important phenomena in vision in general

and in image processing in particular as they describe interactions between

stimuli. Results from masking and adaptation experiments were also the

major motivation for developing a multi-channel theory of vision (see

section 2.7).

Masking occurs when a stimulus that is visible by itself cannot be detected

due to the presence of another. Spatial masking effects are usually quantified

by measuring the detection threshold for a target stimulus when it is super-

imposed on a masker with varying contrast (Legge and Foley, 1980).

Figure 2.15 shows an example of curves approximating the data typically

resulting from such experiments. The horizontal axis shows the log of the

masker contrast CM, and the vertical axis the log of the target contrast CT at

detection threshold. The detection threshold for the target stimulus without

any masker is indicated by CT0. For contrast values of the masker larger than

CM0
, the detection threshold grows with increasing masker contrast.
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Figure 2.15 Illustration of typical masking curves. For stimuli with different

characteristics, masking is the dominant effect (case A). Facilitation occurs for stimuli

with similar characteristics (case B).
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Two cases can be distinguished in Figure 2.15. In case A, there is a gradual

transition from the threshold range to the masking range. Typically this

occurs when masker and target have different characteristics. For case B, the

detection threshold for the target decreases when the masker contrast is

close to CM0
, which implies that the target is easier to perceive due to the pre-

sence of the masker in this contrast range. This effect is known as facilitation

and occurs mainly when target and masker have very similar properties.

Masking is strongest when the interacting stimuli have similar character-

istics, i.e. similar frequencies, orientations, colors, etc. Masking also occurs

between stimuli of different orientation (Foley, 1994) between stimuli of

different spatial frequency (Foley and Yang, 1991), and between chromatic

and achromatic stimuli (Switkes et al., 1988; Cole et al., 1990; Losada and

Mullen, 1994), although it is generally weaker.

Within the framework of image processing it is helpful to think of the

distortion or coding noise being masked (or facilitated) by the original image

or sequence acting as background. Spatial masking explains why similar

artifacts are disturbing in certain regions of an image while they are hardly

noticeable elsewhere, as demonstrated in Figure 2.16. In this case, however,

Figure 2.16 Demonstration of masking. Starting from the original image on the left, the

same rectangular noise patch was added to regions at the top (center image) and at the

bottom (right image). The noise is clearly visible in the sky, whereas it is much harder to

see on the rocks and in the water due to the strong masking by these textured regions.
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the stimuli are much more complex than those typically used in visual

experiments. Because the observer is not familiar with the patterns, uncer-

tainty effects become more important, and masking can be much larger. To

account for these effects, a number of different masking mechanisms have

been proposed depending on the nature of the masker (Klein et al., 1997;

Watson et al., 1997).

2.6.2 Temporal Masking

Temporal masking is an elevation of visibility thresholds due to temporal

discontinuities in intensity, for example scene cuts. Within the framework of

television, it was first studied by Seyler and Budrikis (1959, 1965), who

concluded that the threshold elevation may last up to a few hundred

milliseconds after a transition from dark to bright or from bright to dark.

More recently, Tam et al. (1995) investigated the visibility of MPEG-2

coding artifacts after a scene cut and found significant visual masking effects

only in the first subsequent frame. Carney et al. (1996) noticed a strong

dependence on stimulus polarity, with the masking effect being much more

pronounced when target and masker match in polarity. They also found

masking to be greatest for local spatial configurations.

Interestingly, temporal masking can occur not only after a discontinuity

(‘forward masking’), but also before (Breitmeyer and Ogmen, 2000). This

‘backward masking’ may be explained as the result of the variation in the

latency of the neural signals in the visual system as a function of their

intensity (Ahumada et al. 1998). The opposite of temporal masking, temporal

facilitation, can occur at low-contrast discontinuities (Girod, 1989).

2.6.3 Pattern Adaptation

Pattern adaptation adjusts the sensitivity of the visual system in response to

the prevalent stimulation patterns. For example, adaptation to patterns of a

certain frequency can lead to a noticeable decrease of contrast sensitivity

around this frequency (Blakemore and Campbell, 1969; Greenlee and

Thomas, 1992; Wilson and Humanski, 1993; Snowden and Hammett, 1996).

An interesting study in this respect was carried out by Webster and

Miyahara (1997). They used natural images of outdoor scenes (both distant

views and close-ups) as adapting stimuli. It was found that exposure to such

stimuli induces pronounced changes in contrast sensitivity. The effects can be

characterized by selective losses in sensitivity at lower to medium spatial

frequencies. This is consistent with the characteristic amplitude spectra of

natural images, which decrease with frequency approximately as 1/f.
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Likewise, Webster and Mollon (1997) examined how color sensitivity and

appearance might be influenced by adaptation to the color distributions of

images. They found that natural scenes exhibit a limited range of chromatic

distributions, so that the range of adaptation states is normally limited as

well. However, the variability is large enough for different adaptation effects

to occur for individual scenes or for different viewing conditions.

2.7 MULTI-CHANNEL ORGANIZATION

Electrophysiological measurements of the receptive fields of neurons in the

lateral geniculate nucleus and in the primary visual cortex (see section 2.3.2)

revealed that many of these cells are tuned to certain types of visual

information such as color, frequency, and orientation. Data from experiments

on pattern discrimination, masking, and adaptation (see section 2.6) yielded

further evidence that these stimulus characteristics are processed in different

channels in the human visual system. This empirical evidence motivated the

multi-channel theory of human vision (Braddick et al., 1978). While this

theory is challenged by certain other experiments (Wandell, 1995), it

provides an important framework for understanding and modeling pattern

sensitivity.

2.7.1 Spatial Mechanisms

As discussed in section 2.3.2, a large number of neurons in the primary visual

cortex have receptive fields that resemble Gabor patterns (see Figure 2.10).

Hence they can be characterized by a particular spatial frequency and

orientation and essentially represent oriented band-pass filters. With a

sufficient number of appropriately tuned cells, all orientations and frequen-

cies in the sensitivity range of the visual system can be covered.

There is still a lot of discussion about the exact tuning shape and

bandwidth, and different experiments have led to different results. For the

achromatic visual pathways, most studies give estimates of 1–2 octaves for

the spatial frequency bandwidth and 20–60 degrees for the orientation

bandwidth, varying with spatial frequency (De Valois et al., 1982a,b; Phillips

and Wilson, 1984). These results are confirmed by psychophysical evidence

from studies of discrimination and interaction phenomena (Olzak and

Thomas, 1986). Interestingly, these cell properties can also be related with

and even derived from the statistics of natural images (Field, 1987; van

Hateren and van der Schaaf, 1998). Fewer empirical data are available for the
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chromatic pathways. They probably have similar spatial frequency band-

widths (Webster et al., 1990; Losada and Mullen, 1994, 1995), whereas their

orientation bandwidths have been found to be significantly larger, ranging

from 60 to 130 degrees (Vimal, 1997).

2.7.2 Temporal Mechanisms

Temporal mechanisms have been studied as well, but there is less agreement

about their characteristics than for spatial mechanisms. While some studies

concluded that there are a large number of narrowly tuned mechanisms

(Lehky, 1985), it is now believed that there is just one low-pass and one

band-pass mechanism (Watson, 1986; Hess and Snowden, 1992; Frederick-

sen and Hess, 1998), which are generally referred to as sustained and

transient channel, respectively. An additional third channel was proposed

(Mandler and Makous, 1984; Hess and Snowden, 1992; Ascher and Gryz-

wacz, 2000), but has been called in question by other studies (Hammett and

Smith, 1992; Fredericksen and Hess, 1998). Fredericksen and Hess (1998)

were able to achieve a very good fit to a large set of psychophysical data

using one sustained and one transient mechanism. The frequency responses

of the corresponding channels are shown in Figure 2.17.

Physiological experiments confirm these findings to the extent that low-

pass and band-pass mechanisms have been discovered (Foster et al., 1985),
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Figure 2.17 Temporal frequency responses of sustained (low-pass) and transient (band-

pass) mechanisms of vision based on a model by Fredericksen and Hess (1997, 1998).
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but neurons with band-pass properties exhibit a wide range of peak

frequencies. Recent results also indicate that the peak frequency and

bandwidth of the channels change considerably with stimulus energy

(Fredericksen and Hess, 1997).

2.8 SUMMARY

Several important concepts of vision were presented. The major points can

be summarized as follows:

� The human visual system is extremely complex. Our current knowledge is

limited mainly to low-level processes.

� While the visual system is highly adaptive, it is not equally sensitive to all

stimuli. There are a number of inherent limitations with respect to the

visibility of stimuli.

� The response of the visual system depends much more on the contrast of

patterns than on their absolute light levels.

� Visual information is processed in different pathways and channels in the

visual system depending on its characteristics such as color, spatial and

temporal frequency, orientation, phase, direction of motion, etc. These

channels play an important role in explaining interactions between stimuli.

� Color perception is based on the different spectral sensitivities of photo-

receptors and the decorrelation of their absorption rates into opponent

colors.

These characteristics of the human visual system will be used in the design

of vision models and quality metrics.
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3
Video Quality

Beauty in things exists in the mind which contemplates them.

David Hume

The moving picture in all its incarnations (cinema, television, video, etc.) is

one of the most widespread and most successful inventions of the twentieth

century. In recent years, the development of powerful compression algo-

rithms and video processing equipment has facilitated the move from the

analog to the digital domain. Today, this move has already been completed in

many stages of the video production and distribution chain. Reducing the

bandwidth and storage requirements while maintaining a quality superior to

that of analog video has been the priority in designing the new digital video

systems, and guaranteeing a certain level of quality has become an important

concern for content providers.

This chapter starts with an overview of video essentials, today’s compres-

sion methods and standards. Compression and transmission of digital video

entail a variety of characteristic artifacts and distortions, the most common of

which are discussed here. Then we attempt to define and quantify visual

quality from an observer’s point of view and examine procedures for

subjective quality assessment tests. Finally, we review the history and

the state of the art of visual quality metrics, from simple pixel-based metrics

such as MSE and PSNR to advanced vision-based metrics proposed in recent

years.

Digital Video Quality - Vision Models and Metrics Stefan Winkler
# 2005 John Wiley & Sons, Ltd ISBN: 0-470-02404-6



3.1 VIDEO CODING AND COMPRESSION

Visual data in general and video in particular require large amounts of

bandwidth and storage space. Uncompressed video at TV-resolution has

typical data rates of a few hundred Mb/s, for example; for HDTV this goes

up into the Gb/s range. Evidently, effective compression methods are vital to

facilitate handling such data rates.

Compression is the reduction of redundancy in data. Generic lossless

compression algorithms, which assure the perfect reconstruction of the initial

data, could be used for images and video. However, these algorithms only

achieve a data reduction of about 2:1 on average, which is not enough. When

compressing video, two special types of redundancy can be exploited:

� Spatio-temporal redundancy: Typically, pixel values are correlated with

their neighbors, both within the same frame and across frames.

� Psychovisual redundancy: The human visual system is not equally

sensitive to all patterns (see Chapter 2). Therefore, the compression

algorithm can discard information that is not visible to the observer.

This is referred to as lossy compression.

In analog video, these two types of redundancies are exploited through

vision-based color coding and interlacing techniques. Digital video offers

additional compression methods, which are discussed afterwards.

3.1.1 Color Coding

Many compression schemes and video standards such as PAL, NTSC, or

MPEG, are already based on human vision in the way that color information

is processed. In particular, they take into account the nonlinear perception of

lightness, the organization of color channels, and the low chromatic acuity of

the human visual system (see Chapter 2).

Conventional television cathode ray tube (CRT) displays have a nonlinear,

roughly exponential relationship between frame buffer RGB values or signal

voltage and displayed intensity. In order to compensate for this, gamma

correction is applied to the intensity values before coding. It so happens that

the human visual system has an approximately logarithmic response to

intensity, which is very nearly the inverse of the CRT nonlinearity (Poynton,

1998). Therefore, coding visual information in the gamma-corrected domain

not only compensates for CRT behavior, but is also more meaningful

perceptually.
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The theory of opponent colors states that the human visual system

decorrelates its input into white-black, red-green and blue-yellow difference

signals, which are processed in separate visual channels (see section 2.5.2).

Furthermore, chromatic visual acuity is significantly lower than achromatic

acuity, as pointed out in section 2.4.2. In order to take advantage of this

behavior, the color primaries red, green, and blue are rarely used for coding

directly. Instead, color difference (chroma) signals similar to the ones just

mentioned are computed. In component video, for example, the resulting

color space is referred to as YUVor YCBCR, where Y encodes luminance, U or

CB the difference between the blue primary and luminance, and V or CR the

difference between the red primary and luminance.

The low chromatic acuity now permits a significant data reduction of the

color difference signals. In digital video, this is achieved by chroma sub-

sampling. The notation commonly used is as follows:

� 4:4:4 denotes no chroma subsampling.

� 4:2:2 denotes chroma subsampling by a factor of 2 horizontally; this

sampling format is used in the standard for studio-quality component

digital video as defined by ITU-R Rec. BT.601-5 (1995), for example.

� 4:2:0 denotes chroma subsampling by a factor of 2 both horizontally and

vertically; it is probably the closest approximation of human visual color

acuity achievable by chroma subsampling alone. This sampling format is

the most common in JPEG or MPEG, e.g. for distribution-quality video.

� 4:1:1 denotes chroma subsampling by a factor of 4 horizontally.

3.1.2 Interlacing

As analog television was developed, it was noted that flicker could be

perceived at certain frame rates, and that the magnitude of the flicker was a

function of screen brightness and surrounding lighting conditions. A motion

picture displayed in the theater at relatively low light levels can be displayed

at a frame rate of 24 Hz. A bright CRT display requires a refresh rate of more

than 50 Hz for flicker to disappear. The drawback of such a high frame rate is

that the bandwidth of the signal becomes very large. On the other hand, the

spatial resolution of the visual system decreases significantly at such

temporal frequencies (this is the sharp fall-off range of the CSF in the

high spatio-temporal frequency range, cf. Figure 2.13). These two properties

combined gave rise to the technique referred to as interlacing.

The concept of interlacing is illustrated in Figure 3.1. Interlacing trades off

vertical resolution against temporal resolution. Instead of sampling the video
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signal at 25 (PAL) or 30 (NTSC) frames per second, the sequence is shot at a

frequency of 50 or 60 interleaved fields per second. A field corresponds to

either the odd or the even lines of a frame, which are sampled at different

time instants and displayed alternately. Thus the required bandwidth of the

signal can be reduced by a factor of 2, while the full horizontal and vertical

resolution is maintained for stationary image regions, and the refresh rate for

objects larger than one scanline is still sufficiently high.

Interlacing is well suited to CRT display technology; LCD or plasma

displays, however, are inherently progressive and require additional proces-

sing to handle interlaced material (de Haan and Bellers, 1998).

3.1.3 Compression Methods

As mentioned at the beginning of this section, digital video is amenable to

special compression methods. They can be roughly classified into model-

based methods, e.g. fractal compression, and waveform-based methods, e.g.

DCT or wavelet compression. Most of today’s video codecs and standards

belong to the latter category and comprise the following stages (Tudor, 1995):

1/2f

1/f

Figure 3.1 Illustration of interlacing. The top sequence is progressive: all lines of each

frame are transmitted at the frame rate f. The bottom sequence is interlaced: each frame is

split into two fields containing the odd and the even lines, respectively. These fields (bold

lines) are transmitted alternately at twice the original frame rate (from S. Winkler et al.

(2001), Vision and video: Models and applications, in C. J. van den Branden Lambrecht

(ed.), Vision Models and Applications to Image and Video Processing, chap. 10, Kluwer

Academic Publishers. Copyright # 2001 Springer. Used with permission.).
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� Transformation: To facilitate exploiting psychovisual redundancies, the

pictures are transformed to a domain where different frequency ranges

with varying sensitivities of the human visual system can be separated.

This can be achieved by the discrete cosine transform (DCT) or the

wavelet transform, for example. This step is reversible, i.e. no information

is lost.

� Quantization: After the transformation, the numerical precision of the

transform coefficients is reduced in order to decrease the number of bits in

the stream. The degree of quantization applied to each coefficient is

usually determined by the visibility of the resulting distortion to a human

observer; high-frequency coefficients can be more coarsely quantized than

low-frequency coefficients, for example. Quantization is the stage that is

responsible for the ‘lossy’ part of compression.

� Coding: After the data has been quantized into a finite set of values, it can

be encoded losslessly by exploiting the redundancy between the quantized

coefficients in the bitstream. Entropy coding, which relies on the fact that

certain symbols occur much more frequently than others, is often used for

this process. Two of the most popular entropy coding schemes are

Huffman coding and arithmetic coding (Sayood, 2000).

A key aspect of digital video compression is exploiting the similarity

between successive frames in a sequence instead of coding each picture

separately. While this temporal redundancy could be taken care of by a

spatio-temporal transformation, a hybrid spatial- and transform-domain

approach is often adopted instead for reasons of implementation efficiency.

A simple method for temporal compression is frame differencing, where only

the pixel-wise differences between successive frames are coded. Higher

compression can be achieved using motion estimation, a technique for

describing a frame based on the content of nearby frames with the help of

motion vectors. By compensating for the movements of objects in this

manner, the differences between frames can be further reduced.

3.1.4 Standards

The Moving Picture Experts Group (MPEG){ is a working group of ISO/IEC

in charge of developing international standards for the compression, decom-

pression, processing, and coded representation of moving pictures, audio,

and their combination. MPEG comprises some of the most popular and

ySee http://www.chiariglione.org/mpeg/ for an overview of its activities.
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widespread standards for video coding. The group was established in January

1988, and since then it has produced:

� MPEG-1, a standard for storage and retrieval of moving pictures and

audio, which was approved in 1992. MPEG-1 defines a block-based hybrid

DCT/DPCM coding scheme with prediction and motion compensation. It

also provides functionality for random access in digital storage media.

� MPEG-2, a standard for digital television, which was approved in 1994.

The video coding scheme of MPEG-2 is a refinement of MPEG-1. Special

consideration is given to interlaced sources. Furthermore, many function-

alities such as scalability were introduced. In order to keep implementa-

tion complexity low for products not requiring all video formats supported

by the standard, so-called ‘Profiles’, describing functionalities, and

‘Levels’, describing parameter constraints such as resolutions and bitrates,

were defined to provide separate MPEG-2 conformance levels.

� MPEG-4, a standard for multimedia applications, whose parts one and two

(video and systems) were approved in 1998. MPEG-4 addresses the need

for robustness in error-prone environments, interactive functionality for

content-based access and manipulation, and a high compression efficiency

at very low bitrates. MPEG-4 achieves these goals by means of an object-

oriented coding scheme using so-called ‘audio-visual objects’, for exam-

ple a fixed background, the picture of a person in front of that background,

the voice associated with that person etc.

� MPEG-4 part 10, Advanced Video Coding (AVC), also known as ITU-T

Rec. H.264 (2003).{ This latest standard is designed for a wide range of

applications, ranging from from mobile video to HDTV. It is based on the

same general block-based hybrid coding approach as the other MPEG

standards. The new features include smaller block sizes, more flexible

prediction both temporally (inter-frame) and spatially (intra-frame), an in-

loop deblocking filter to reduce the visibility of the characteristic blocking

artifacts, and further improved error resilience. All these incremental

improvements together result in an approximately two times higher coding

efficiency compared to previous standards.

The two other standards in this family, MPEG-7 and MPEG-21, are not

about codecs and are thus of less interest here. MPEG-7 is a standard for

content description in the context of audio-visual information indexing,

search and retrieval, and was approved in 2001. MPEG-21 is concerned

{In older documents it is sometimes referred to as H.26L or JVT codec.
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with interoperability between the elements of a multimedia application

infrastructure (mainly devices and content) and defines how they should

relate, integrate, and interact; its different parts will be standardized from

2004 onwards.

MPEG coding standards are intended to be generic, i.e. only the bitstream

syntax is defined, and therefore mainly the decoding scheme is standardized.

The design of the encoder is left up to the implementor.

MPEG-2 is one of the most widespread standards in commercial use today.

It is used on DVDs as well as for digital TV and HDTV broadcast. We will

therefore look at MPEG-2 video compression a bit more closely. The

essentials are quite similar for the other MPEG video standards.

An MPEG-2 video stream is hierarchically structured, as illustrated in

Figure 3.2 (Tudor, 1995). The sequence is composed of three types of frames,

namely intra-coded (I), forward predicted (P), and bidirectionally predicted

(B) frames. Each frame is subdivided into slices, which are a collection of

consecutive macroblocks. Each macroblock in turn contains four blocks

of 8�8 pixels each. The DCT is computed on these blocks, while motion

estimation is performed on macroblocks. The resulting DCT coefficients are

quantized and variable-length coded.

Figure 3.2 Elements of an MPEG-2 video sequence (from S. Winkler et al. (2001),

Vision and video: Models and applications, in C. J. van den Branden Lambrecht (ed.),

Vision Models and Applications to Image and Video Processing, chap. 10, Kluwer

Academic Publishers. Copyright # 2001 Springer. Used with permission.).
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The MPEG-2 system specification defines a multiplexed structure for com-

bining audio and video data as well as timing information for transmission

over a communication channel. It is based on two levels of packetization.

First, the compressed bitstreams or elementary streams (audio or video)

are packetized. Subsequently, the packetized elementary streams are multi-

plexed together to create the transport stream, which can carry multiple

audio and video programs.{ It consists of fixed-size packets of 188 bytes

each; their headers contain synchronization and timing information. Finally,

the transport stream is encapsulated in real-time protocol (RTP) packets for

transmission.

Other standards being used commercially today are MPEG-1 (on VCDs)

and ITU-T Rec. H.263 (1998) (for video conferencing). Third-generation

(3G) mobile video phones will rely mainly on MPEG-4 and H.263 codecs.

Digital video camcorders use DV, an intra-frame block-DCT based coding

scheme (similar to Motion-JPEG); it is an IEC and SMPTE standard.

The recent surge of multimedia applications has led to the development of

a large variety of additional compression/decompression methods; Real

Media Videoz and Windows Media Video§ are among the best-known.

These codecs are based on the discrete cosine transform, the wavelet

transform, vector quantization, or combinations thereof. In contrast to

MPEG, however, most of them are proprietary.

For a more detailed overview of video compression technologies the

reader is referred to Symes (2003).

3.2 ARTIFACTS

3.2.1 Compression Artifacts

As pointed out in section 3.1.4, the compression algorithms used in various

video coding standards are quite similar. Most of them rely on motion

compensation and block-based DCT with subsequent quantization of the

coefficients. In such coding schemes, compression distortions are caused by

only one operation, namely the quantization of the transform coefficients.

Although other factors affect the visual quality of the stream, such as motion

prediction or decoding buffer size, they do not introduce any distortion per

se, but affect the encoding process indirectly.

{In error-free environments, a program stream (without additional packetization) may be used instead.
zhttp://www.realnetworks.com/products/codecs/realvideo.html
§http://www.microsoft.com/windows/windowsmedia/9series/codecs/video.aspx
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A variety of artifacts can be distinguished in a compressed video sequence

(Yuen and Wu, 1998):

� The blocking effect or blockiness refers to a block pattern in the

compressed sequence. It is due to the independent quantization of

individual blocks (usually of 8� 8 pixels in size) in block-based DCT

coding schemes, leading to discontinuities at the boundaries of adjacent

blocks. The blocking effect is often the most prominent visual distortion in

a compressed sequence due to the regularity and extent of the pattern (see

Figure 3.3(b)). Recent codecs such as H.264 employ a deblocking filter to

reduce the visibility of this artifact.

Figure 3.3 Illustration of typical compression artifacts for block-DCT based methods

(b) and wavelet-based methods (c). The blocking effect and DCT basis images are clearly

visible in the bottom part of (b); the staircase effect can be seen around the white slanted

edge of the lighthouse in (b). Blur is evident in both compressed images; ringing can be

observed around contours and edges.
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� Blur manifests itself as a loss of spatial detail and a reduction of edge

sharpness. It is due to the suppression of the high-frequency coefficients

by coarse quantization (see Figure 3.3).

� Color bleeding is the smearing of colors between areas of strongly

differing chrominance. It results from the suppression of high-frequency

coefficients of the chroma components. Due to chroma subsampling, color

bleeding extends over an entire macroblock.

� The DCT basis image effect is prominent when a single DCT coefficient is

dominant in a block. At coarse quantization levels, this results in an

emphasis of the dominant basis image and the reduction of all other basis

images (see Figure 3.3(b)).

� Slanted lines often exhibit the staircase effect. It is due to the fact that

DCT basis images are best suited to the representation of horizontal and

vertical lines, whereas lines with other orientations require higher-frequency

DCT coefficients for accurate reconstruction. The typically strong quantization

of these coefficients causes slanted lines to appear jagged (see Figure 3.3(b)).

� Ringing is fundamentally associated with Gibbs’ phenomenon and is thus

most evident along high-contrast edges in otherwise smooth areas. It is a

direct result of quantization leading to high-frequency irregularities in the

reconstruction. Ringing occurs with both luminance and chroma compo-

nents (see Figure 3.3).

� False edges are a consequence of the transfer of block-boundary disconti-

nuities (due to the blocking effect) from reference frames into the

predicted frame by motion compensation.

� Jagged motion can be due to poor performance of the motion estimation.

Block-based motion estimation works best when the movement of all

pixels in a macroblock is identical. When the residual error of motion

prediction is large, it is coarsely quantized.

� Motion estimation is often conducted with the luminance component only,

yet the same motion vector is used for the chroma components. This can

result in chrominance mismatch for a macroblock.

� Mosquito noise is a temporal artifact seen mainly in smoothly textured

regions as luminance/chrominance fluctuations around high-contrast edges

or moving objects. It is a consequence of the coding differences for the

same area of a scene in consecutive frames of a sequence.

� Flickering appears when a scene has high texture content. Texture blocks

are compressed with varying quantization factors over time, which results

in a visible flickering effect.

� Aliasing can be noticed when the content of the scene is above the Nyquist

rate, either spatially or temporally.
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While some of these effects are unique to block-based coding schemes,

many of them are observed with other compression algorithms as well. In

wavelet-based compression, for example, the transform is applied to the

entire image, therefore none of the block-related artifacts occur. Instead, blur

and ringing are the most prominent distortions (see Figure 3.3(c)).

3.2.2 Transmission Errors

An important and often overlooked source of impairments is the transmission

of the bitstream over a noisy channel. Digitally compressed video is typically

transferred over a packet-switched network. The physical transport can take

place over a wire or wireless, where some transport protocol such as ATM or

TCP/IP ensures the transport of the bitstream. The bitstream is transported in

packets whose headers contain sequencing and timing information. This

process is illustrated in Figure 3.4. Streams can carry additional signaling

information at the session level. A variety of protocols are used to transport

the audio-visual information, synchronize the actual media and add timing

information. Most applications require the streaming of video, i.e. it must be

possible to decode and display the bitstream in real time as it arrives.

Two different types of impairments can occur when transporting media

over noisy channels. Packets may be corrupted and thus discarded, or they

Encoder

Bitstream

Video Sequence

Network
Adaptation

Layer Payload

Header

Network

Bitstream

Packetized Bitstream

Figure 3.4 Illustration of a video transmission system. The video sequence is first

compressed by the encoder. The resulting bitstream is packetized in the network

adaptation layer, where a header containing sequencing and synchronization data is added

to each packet. The packets are then sent over the network (from S. Winkler et al. (2001),

Vision and video: Models and applications, in C. J. van den Branden Lambrecht (ed.),

Vision Models and Applications to Image and Video Processing, chap. 10, Kluwer

Academic Publishers. Copyright # 2001 Springer. Used with permission.).
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may be delayed to the point where they are not received in time for decoding.

The latter is due to the packet routing and queuing algorithms in routers and

switches. To the application, both have the same effect: part of the media

stream is not available, thus packets are missing when they are needed for

decoding.

Such losses can affect both the semantics and the syntax of the media

stream. When the losses affect syntactic information, not only the data

relevant to the lost block are corrupted, but also any other data that depend on

this syntactic information. For example, an MPEG macroblock that is

damaged through the loss of packets corrupts all following macroblocks

until an end of slice is encountered, where the decoder can resynchronize.

This spatial loss propagation is due to the fact that the DC coefficient of a

macroblock is differentially predicted between macroblocks and reset at the

beginning of a slice. Furthermore, for each of these corrupted macroblocks,

all blocks that are predicted from them by motion estimation will be

damaged as well, which is referred to as temporal loss propagation. Hence

the loss of a single macroblock can affect the stream up to the next intra-

coded frame. These loss propagation phenomena are illustrated in Figure 3.5.

H.264 introduces flexible macroblock ordering to alleviate this problem: the

Figure 3.5 Spatial and temporal propagation of losses in an MPEG-compressed video

sequence. The loss of a single macroblock causes the inability to decode the data up to the

end of the slice. Macroblocks in neighboring frames that are predicted from the damaged

area are corrupted as well (from S. Winkler et al. (2001), Vision and video: Models and

applications, in C. J. van den Branden Lambrecht (ed.), Vision Models and Applications to

Image and Video Processing, chap. 10, Kluwer Academic Publishers. Copyright # 2001

Springer. Used with permission.).
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encoded bits describing neighboring macroblocks in the video can be put in

different parts of the bitstream, thus spreading the errors more evenly across

the frame or video.

The effect can be even more damaging when global data are corrupted. An

example of this is the timing information in an MPEG stream. The system

layer specification of MPEG imposes that the decoder clock be synchronized

with the encoder clock via periodic refresh of the program clock reference

sent in some packet. Too much jitter on packet arrival can corrupt the syn-

chronization of the decoder clock, which can result in highly noticeable

impairments.

The visual effects of such losses vary significantly between decoders

depending on their ability to deal with corrupted streams. Some decoders never

recover from certain errors, while others apply concealment techniques such

as early synchronization or spatial and temporal interpolation in order to

minimize these effects (Wang and Zhu, 1998).

3.2.3 Other Impairments

Aside from compression artifacts and transmission errors, the quality of

digital video sequences can be affected by any pre- or post-processing stage

in the system. These include:

� conversions between the digital and the analog domain;

� chroma subsampling (discussed in section 3.1.1);

� frame rate conversion between different display formats;

� de-interlacing, i.e. the process of creating a progressive sequence from an

interlaced one (de Haan and Bellers, 1998; Thomas, 1998).

One particular example is the so-called 3:2 pulldown, which denotes the

standard way to convert progressive film sequences shot at 24 frames per

second to interlaced video at 60 fields per second.

3.3 VISUAL QUALITY

3.3.1 Viewing Distance

For studying visual quality, it is helpful to relate system and setup parameters

to the human visual system. For instance, it is very popular in the video

community to specify viewing distance in terms of display size, i.e. in

multiples of screen height. There are two reasons for this: first, it was

assumed for quite some time that the ratio of preferred viewing distance to
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screen height is constant (Lund, 1993). However, more recent experiments

with larger displays have shown that this is not the case. While the preferred

viewing distance is indeed around 6–7 screen heights or more for smaller

displays, it approaches 3–4 screen heights with increasing display size

(Ardito et al., 1996; Lund, 1993). Incidentally, typical home viewing

distances are far from ideal in this respect (Alpert, 1996). The second reason

was the implicit assumption of a certain display resolution (a certain number

of scan lines), which is usually fixed for a given television standard.

In the context of vision modeling, the size and resolution of the image

projected onto the retina are more adequate specifications (see section 2.1.1).

For a given screen height H and viewing distance D, the size is measured in

degrees of visual angle �:

� ¼ 2 atan ðH=2DÞ: ð3:1Þ
The resolution or maximum spatial frequency fmax is measured in cycles per

degree of visual angle (cpd). It is computed from the number of scan lines L

according to the Nyquist sampling theorem:

fmax ¼ L=2� ½cpd�: ð3:2Þ
The size and resolution of the image that popular video formats produce on

the retina are shown in Figure 3.6 for a typical range of viewing distances

and screen heights. It is instructive to compare them to the corresponding

‘specifications’ of the human visual system mentioned in Chapter 2.

For example, from the contrast sensitivity functions shown in Figure 2.13

it is evident that the scan lines of PAL and NTSC systems at viewing

distances below 3–4 screen heights (fmax � 15 cpd) can easily be resolved by

the viewer. HDTV provides approximately twice the resolution and is thus

better suited for close viewing and large screens.

3.3.2 Subjective Quality Factors

In order to be able to design reliable visual quality metrics, it is necessary to

understand what ‘quality’ means to the viewer (Ahumada and Null, 1993;

Klein, 1993; Savakis et al., 2000). Viewers’ enjoyment when watching a

video depends on many factors:

� Individual interests and expectations: Everyone has their favorite pro-

grams, which implies that a football fan who attentively follows a game

may have very different quality requirements than someone who is only

marginally interested in the sport. We have also come to expect different
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qualities in different situations, e.g. the quality of watching a feature film

at the cinema versus a short clip on a mobile phone. At the same time,

advances in technology such as the DVD have raised the quality bar – a

VHS recording that nobody would have objected to a few years ago is now

considered inferior quality by everyone who has a DVD player at home.

� Display type and properties: There is a wide variety of displays available

today – traditional CRT screens, LCDs, plasma displays, front and back
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Figure 3.6 Size and resolution of the image that popular video formats produce on the

retina as a function of viewing distance D in multiples of screen height H.
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projection technologies. They have different characteristics in terms of

brightness, contrast, color rendition, response time etc., which determine

the quality of video rendition. Compression artifacts (especially blocki-

ness) are more visible on non-CRT displays, for example (EBU BTMC,

2002; Pinson and Wolf, 2004). As already discussed in section 3.3.1,

display resolution and size (together with the viewing distance) also

influence perceived quality (Westerink and Roufs, 1989; Lund, 1993).

� Viewing conditions: Aside from the viewing distance, the ambient light

affects our perception to a great extent. Even though we are able to adapt

to a wide range of light levels and to discount the color of the illumination,

high ambient light levels decrease our sensitivity to small contrast

variations. Furthermore, exterior light can lead to veiling glare due to

reflections on the screen that again reduce the visible luminance and

contrast range (Süsstrunk and Winkler, 2004).

� The fidelity of the reproduction. On the one hand, we want the ‘original’

video to arrive at the end-user with a minimum of distortions introduced

along the way. On the other hand, video is not necessarily about capturing

and reproducing a scene as naturally as possible – think of animations,

special effects or artistic ‘enhancements’. For example, sharp images with

high contrast are usually more appealing to the average viewer (Roufs,

1989). Likewise, subjects prefer slightly more colorful and saturated

images despite realizing that they look somewhat unnatural (de Ridder

et al., 1995; Fedorovskaya et al., 1997; Yendrikhovskij et al., 1998). These

phenomena are well understood and utilized by professional photogra-

phers (Andrei, 1998, personal communication; Marchand, 1999, personal

communication).

� Finally, the accompanying soundtrack has a great influence on perceived

quality of the viewing experience (Beerends and de Caluwe, 1999; Joly

et al., 2001; Winkler and Faller, 2005). Subjective quality ratings are

generally higher when the test scenes are accompanied by good quality

sound (Rihs, 1996). Furthermore, it is important that the sound be

synchronized with the video. This is most noticeable for speech and lip

synchronization, for which time lags of more than approximately 100 ms

are considered very annoying (Steinmetz, 1996).

Unfortunately, subjective quality cannot be represented by an exact figure;

due to its inherent subjectivity, it can only be described statistically. Even in

psychophysical threshold experiments, where the task of the observer is just

to give a yes/no answer, there exists a significant variation in contrast

sensitivity functions and other critical low-level visual parameters between
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different observers. When the artifacts become supra-threshold, the observers

are bound to apply different weightings to each of them. Deffner et al. (1994)

showed that experts and non-experts (with respect to image quality)

examine different critical image characteristics to form their opinion. With

all these caveats in mind, testing procedures for subjective quality assessment

are discussed next.

3.3.3 Testing Procedures

Subjective experiments represent the benchmark for vision models in general

and quality metrics in particular. However, different applications require

different testing procedures. Psychophysics provides the tools for measuring

the perceptual performance of subjects (Gescheider, 1997; Engeldrum,

2000).

Two kinds of decision tasks can be distinguished, namely adjustment and

judgment (Pelli and Farell, 1995). In the former, the observer is given a

classification and provides a stimulus, while in the latter, the observer is

given a stimulus and provides a classification. Adjustment tasks include

setting the threshold amplitude of a stimulus, cancelling a distortion, or

matching a stimulus to a given one. Judgment tasks on the other hand include

yes/no decisions, forced choices between two alternatives, and magnitude

estimation on a rating scale.

It is evident from this list of adjustment and judgment tasks that most of

them focus on threshold measurements. Traditionally, the concept of thresh-

old has played an important role in psychophysics. This has been motivated

by the desire to minimize the influence of perception and cognition by using

simple criteria and tasks. Signal detection theory has provided the statistical

framework for such measurements (Green and Swets, 1966). While such

threshold detection experiments are well suited to the investigation of low-

level sensory mechanisms, a simple yes/no answer is not sufficient to capture

the observer’s experience in many cases, including visual quality assessment.

This has stimulated a great deal of experimentation with supra-threshold

stimuli and non-detection tasks.

Subjective testing for visual quality assessment has been formalized in

ITU-R Rec. BT.500-11 (2002) and ITU-T Rec. P.910 (1999), which suggest

standard viewing conditions, criteria for the selection of observers and test

material, assessment procedures, and data analysis methods. ITU-R Rec.

BT.500-11 (2002) has a longer history and was written with television

applications in mind, whereas ITU-T Rec. P.910 (1999) is intended for

multimedia applications. Naturally, the experimental setup and viewing
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conditions differ in the two recommendations, but the procedures from both

should be considered for any experiment.

The three most commonly used procedures from ITU-R Rec. BT.500-11

(2002) are the following:

� Double Stimulus Continuous Quality Scale (DSCQS). The presentation

sequence for a DSCQS trial is illustrated in Figure 3.7(a). Viewers are

shown multiple sequence pairs consisting of a ‘reference’ and a ‘test’

sequence, which are rather short (typically 10 seconds). The reference and

test sequence are presented twice in alternating fashion, with the order of

the two chosen randomly for each trial. Subjects are not informed which

is the reference and which is the test sequence. They rate each of the two

separately on a continuous quality scale ranging from ‘bad’ to ‘excellent’

as shown in Figure 3.7(b). Analysis is based on the difference in rating for

each pair, which is calculated from an equivalent numerical scale from 0

to 100. This differencing helps reduce the subjectivity with respect to

scene content and experience. DSCQS is the preferred method when the

quality of test and reference sequence are similar, because it is quite

sensitive to small differences in quality.

� Double Stimulus Impairment Scale (DSIS). The presentation sequence for

a DSIS trial is illustrated in Figure 3.8(a). As opposed to the DSCQS

method, the reference is always shown before the test sequence, and

A B A B Vote

Excellent

Good

Fair

Poor

Bad

A B
100

0

(a) Presentation sequence (b) Rating scale

Figure 3.7 DSCQS method. The reference and the test sequence are presented twice in

alternating fashion (a). The order of the two is chosen randomly for each trial, and

subjects are not informed which is which. They rate each of the two separately on a

continuous quality scale ranging from ‘bad’ to ‘excellent’ (b).
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neither is repeated. Subjects rate the amount of impairment in the test

sequence on a discrete five-level scale ranging from ‘very annoying’ to

‘imperceptible’ as shown in Figure 3.8(b). The DSIS method is well suited

for evaluating clearly visible impairments such as artifacts caused by

transmission errors.

� Single Stimulus Continuous Quality Evaluation (SSCQE) (MOSAIC,

1996). Instead of seeing separate short sequence pairs, viewers watch a

program of typically 20–30 minutes’ duration which has been processed

by the system under test; the reference is not shown. Using a slider, the

subjects continuously rate the instantaneously perceived quality on the

DSCQS scale from ‘bad’ to ‘excellent’.

ITU-T Rec. P.910 (1999) defines the following testing procedures:

� Absolute Category Rating (ACR). This is a single stimulus method;

viewers only see the video under test, without the reference. They give

one rating for its overall quality using a discrete five-level scale from ‘bad’

to ‘excellent’. The fact that the reference is not shown with every test clip

makes ACR a very efficient method compared to DSIS or DSCQS, which

take almost 2 or 4 times as long, respectively.

� Degradation Category Rating (DCR), which is identical to DSIS.

� Pair Comparison (PC). For this method, test clips from the same scene but

different conditions are paired in all possible combinations, and viewers

make a preference judgment for each pair. This allows very fine quality

discrimination between clips.

Ref. Test Vote

(a) Presentation sequence (b) Rating scale

Imperceptible

Perceptible
but not annoying

Slightly annoying

Annoying

Very annoying

Figure 3.8 DSIS method. The reference and the test sequence are shown only once (a).

Subjects rate the amount of impairment in the test sequence on a discrete five-level scale

ranging from ‘very annoying’ to ‘imperceptible’ (b)
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For all of these methods, the ratings from all observers (a minimum of 15

is recommended) are then averaged into a Mean Opinion Score (MOS),{

which represents the subjective quality of a given clip.

The testing procedures mentioned above generally have different applica-

tions. All single-rating methods (DSCQS, DSIS, ACR, DCR, PC) share a

common drawback, however: changes in scene complexity, statistical multi-

plexing or transmission errors can produce substantial quality variations that

are not evenly distributed over time; severe degradations may appear only

once every few minutes. Single-rating methods are not suited to the

evaluation of such long sequences because of the recency effect, a bias in

the ratings toward the final 10–20 seconds due to limitations of human

working memory (Aldridge et al., 1995). Furthermore, it has been argued

that the presentation of a reference or the repetition of the sequences in the

DSCQS method puts the subjects in a situation too removed from the home

viewing environment by allowing them to become familiar with the material

under investigation (Lodge, 1996). SSCQE has been designed with these

problems in mind, as it relates well to the time-varying quality of today’s

compressed digital video systems (MOSAIC, 1996). On the other hand,

program content tends to have an influence on SSCQE scores. Also, SSCQE

ratings are more difficult to handle in the analysis because of the potential

differences in viewer reaction times and the inherent autocorrelation of time-

series data.

3.4 QUALITY METRICS

3.4.1 Pixel-based Metrics

The mean squared error (MSE) and the peak signal-to-noise ratio (PSNR) are

the most popular difference metrics in image and video processing. The MSE

is the mean of the squared differences between the gray-level values of pixels

in two pictures or sequences I and ~II:

MSE ¼ 1

TXY

X
t

X
x

X
y

½Iðt; x; yÞ � ~IIðt; x; yÞ�2 ð3:3Þ

for pictures of size X � Y and T frames in the sequence. The root mean

squared error is simply RMSE ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
.

{Differential Mean Opinion Score (DMOS) in the case of DSCQS.
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The PSNR in decibels is defined as:

PSNR ¼ 10 log
m2

MSE
; ð3:4Þ

where m is the maximum value that a pixel can take (e.g. 255 for 8-bit

images). Note that MSE and PSNR are well defined only for luminance

information; once color comes into play, there is no agreement on the

computation of these measures.

Technically, MSE measures image difference, whereas PSNR measures

image fidelity, i.e. how closely an image resembles a reference image,

usually the uncorrupted original. The popularity of these two metrics is

rooted in the fact that minimizing the MSE is equivalent to least-squares

optimization in a minimum energy sense, for which well-known mathema-

tical tools are readily available. Besides, computing MSE and PSNR is very

easy and fast. Because they are based on a pixel-by-pixel comparison of

images, however, they only have a limited, approximate relationship with the

distortion or quality perceived by the human visual system. In certain

situations the subjective image quality can be improved by adding noise

and thereby reducing the PSNR. Dithering of color images with reduced

color depth, which adds noise to the image to remove the perceived banding

caused by the color quantization, is a common example of this. Furthermore,

the visibility of distortions depends to a great extent on the image back-

ground, a property known as masking (see section 2.6.1). Distortions are

often much more disturbing in relatively smooth areas of an image than in

texture regions with a lot of activity, an effect not taken into account by pixel-

based metrics. Therefore the perceived quality of images with the same

PSNR can actually be very different. An example of the problems with using

PSNR as a quality indicator is shown in Figure 3.9.

A number of additional pixel-based metrics are discussed by Eskicioglu

and Fisher (1995). They found that although some of these metrics can

predict subjective ratings quite successfully for a given compression tech-

nique or type of distortion, they are not reliable for evaluations across

techniques. Another study by Marmolin (1986) concluded that even percep-

tual weighting of MSE does not give consistently reliable predictions of

visual quality for different pictures and scenes. These results indicate that

pixel-based error measures are not accurate for quality evaluations across

different scenes or distortion types. Therefore it is imperative for reliable

quality metrics to consider the way the human visual system processes visual

information.
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In the following, the implementation and performance of a variety of

quality metrics are discussed. Because of the abundance of quality metrics

described in the literature, only a limited number have been selected for this

review. In particular, we focus on single- and multi-channel models of vision.

A generic block diagram that applies to most of the metrics discussed here is

shown in Figure 3.10 (of course, not all blocks are implemented by all

metrics). The characteristics of these and a few other quality metrics are

summarized at the end of the section in Table 3.1. The modeling details of

the different metric components will be discussed later in Chapter 4.

3.4.2 Single-channel Models

The first models of human vision adopted a single-channel approach. Single-

channel models regard the human visual system as a single spatial filter,

Figure 3.9 The same amount of noise was inserted into images (b) and (c) such that

their PSNR with respect to the original (a) is identical. Band-pass filtered noise was

inserted into the top region of image (b), whereas high-frequency noise was inserted into

the bottom region of image (c). Our sensitivity to the structured (low-frequency) noise in

image (b) is already quite high, and it is clearly visible on the smooth sky background.

The noise in image (c) is hardly detectable due to our low sensitivity for high-frequency

stimuli and the strong masking by highly textured content in the bottom region. PSNR is

oblivious to both of these effects.
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whose characteristics are defined by the contrast sensitivity function. The

output of such a system is the filtered version of the input stimulus, and

detectability depends on a threshold criterion.

The first computational model of vision was designed by Schade (1956) to

predict pattern sensitivity for foveal vision. It is based on the assumption that

the cortical representation is a shift-invariant transformation of the retinal

image and can thus be expressed as a convolution. In order to determine the

convolution kernel of this transformation, Schade carried out psychophysical

experiments to measure the sensitivity to harmonic contrast patterns. From

this CSF, the convolution kernel for the model can be computed, which is an

estimate of the psychophysical line spread function (see section 2.1.3).

Schade’s model was able to predict the visibility of simple stimuli but failed

as the complexity of the patterns increased.

The first image quality metric for luminance images was developed by

Mannos and Sakrison (1974). They realized that simple pixel-based distor-

tion measures were not able to accurately predict the quality differences

perceived by observers. On the basis of psychophysical experiments on the

visibility of gratings, they inferred some properties of the human visual

system and came up with a closed-form expression for contrast sensitivity as

a function of spatial frequency, which is still widely used in HVS-models.

The input images are filtered with this CSF after a lightness nonlinearity.

The squared difference between the filter output for the two images is the

distortion measure. It was shown to correlate quite well with subjective

ranking data. Albeit simple, this metric was one of the first works in

engineering to recognize the importance of applying vision science to

image processing.

The first color image quality metric was proposed by Faugeras (1979). His

model computes the cone absorption rates and applies a logarithmic

nonlinearity to obtain the cone responses. One achromatic and two chromatic

Channel
Decomposition

Contrast
Sensitivity

Color
Processing

Pattern
Masking

Pooling

Figure 3.10 Generic block diagram of a vision-based quality metric. The input image or

video typically undergoes color processing, which may include color space conversion

and lightness transformations, a decomposition into a number of visual channels (for

multi-channel models), application of the contrast sensitivity function, a model of pattern

masking, and pooling of the data from the different channels and locations.
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color difference components are calculated from linear combinations of the

cone responses to account for the opponent-color processes in the human

visual system. These opponent-color signals go through individual filtering

stages with the corresponding CSFs. The squared differences between the

resulting filtered components for the reference image and the distorted image

are the basis for an estimate of image distortion.

The first video quality metric was developed by Lukas and Budrikis

(1982). It is based on a spatio-temporal model of the contrast sensitivity

function using an excitatory and an inhibitory path. The two paths are

combined in a nonlinear way, enabling the model to adapt to changes in the

level of background luminance. Masking is also incorporated in the model by

means of a weighting function derived from the spatial and temporal activity

in the reference sequence. In the final stage of the metric, an Lp-norm of the

masked error signal is computed over blocks in the frame whose size is

chosen such that each block covers the size of the foveal field of vision. The

resulting distortion measure was shown to outperform MSE as a predictor of

perceived quality.

Tong et al. (1999) proposed an interesting single-channel video quality

metric called ST-CIELAB (spatio-temporal CIELAB). ST-CIELAB is an

extension of the spatial CIELAB (S-CIELAB) image quality metric (Zhang

and Wandell, 1996). Both are backward compatible to the CIELAB standard,

i.e. they reduce to CIE L�a�b� (see Appendix) for uniform color fields. The

ST-CIELAB metric is based on a spatial, temporal, and chromatic model of

human contrast sensitivity in an opponent color space. The outputs of this

model are transformed to CIE L�a�b� space, whose �E difference formula

(equation (A.6)) is then used for pooling.

Single-channel models and metrics are still in use because of their relative

simplicity and computational efficiency, and a variety of extensions and

improvements have been proposed. However, they are intrinsically limited in

prediction accuracy. They are unable to cope with more complex patterns and

cannot account for empirical data from masking and pattern adaptation

experiments (see section 2.6). These data can be explained quite successfully

by a multi-channel theory of vision, which assumes a whole set of different

channels instead of just one. The corresponding multi-channel models and

metrics are discussed in the next section.

3.4.3 Multi-channel Models

Multi-channel models assume that each band of spatial frequencies is dealt

with by a separate channel (see section 2.7). The CSF is essentially the
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envelope of the sensitivities of these channels. Detection occurs indepen-

dently in any channel when the signal in that band reaches a threshold.

Watson (1987a) introduced the cortex transform, a multi-resolution pyr-

amid that simulates the spatial-frequency and orientation tuning of simple

cells in the primary visual cortex (see section 2.3.2). It is appealing because

of its flexibility: spatial frequency selectivity and orientation selectivity

are modeled separately, the filter bandwidths can be adjusted within

a broad range, and the transform is easily invertible. Watson and Ahumada

(1989) later proposed an orthogonal-oriented pyramid operating on a

hexagonal lattice as an alternative decomposition tool.

Watson (1987b) used the cortex transform in a spatial model for luminance

image coding, where it serves as the first analysis and decomposition stage.

Pattern sensitivity is then modeled with a contrast sensitivity function and

intra-channel masking. A perceptual quantizer is used to compress the

filtered signals for minimum perceptual error.

Watson (1990) was also the first to outline the architecture of a multi-

channel vision model for video coding. It is a straightforward extension of

the above-mentioned spatial model for still images (Watson, 1987b). The

model partitions the input into achromatic and chromatic opponent-color

channels, into static and motion channels, and further into channels of

particular frequencies and orientations. Bits are then allocated to each

band taking into account human visual sensitivity to that band as well as

visual masking effects. In contrast to the spatial model for images, it has

never been implemented and tested, however.

Daly (1993) proposed the Visual Differences Predictor (VDP), a rather

well-known image distortion metric. The underlying vision model includes

an amplitude nonlinearity to account for the adaptation of the visual system

to different light levels, an orientation-dependent two-dimensional CSF, and

a hierarchy of detection mechanisms. These mechanisms involve a decom-

position similar to the above-mentioned cortex transform and a simple intra-

channel masking function. The responses in the different channels are

converted to detection probabilities by means of a psychometric function

and finally combined according to rules of probability summation. The

resulting output of the VDP is a visibility map indicating the areas where

two images differ in a perceptual sense.

Lubin (1995) designed the Sarnoff Visual Discrimination Model (VDM)

for measuring still image fidelity. First the input images are convolved with

an approximation of the point spread function of the eye’s optics. Then the

sampling by the cone mosaic on the retina is simulated. The decomposition

stage implements a Laplacian pyramid for spatial frequency separation, local
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contrast computation, and directional filtering, from which a contrast energy

measure is calculated. It is subjected to a masking stage, which comprises a

normalization process and a sigmoid nonlinearity. Finally, a distance mea-

sure or JND (just noticeable difference) map is computed as the Lp-norm of

the masked responses. The VDM is one of the few models that take into

account the eccentricity of the images in the observer’s visual field. It was later

modified to the Sarnoff JND metric for color video (Lubin and Fibush, 1997).

Another interesting distortion metric for still images was presented by Teo

and Heeger (1994a,b). It is based on the response properties of neurons in

the primary visual cortex and the psychophysics of spatial pattern detection.

The model was inspired by analyses of the responses of single neurons in the

visual cortex of the cat (Albrecht and Geisler, 1991; Heeger, 1992a,b), where

a so-called contrast gain control mechanism keeps neural responses within

the permissible dynamic range while at the same time retaining global

pattern information (see section 4.2.4). In the metric, contrast gain control is

realized by an excitatory nonlinearity that is inhibited divisively by a pool of

responses from other neurons. The distortion measure is then computed from

the resulting normalized responses by a simple squared-error norm. Contrast

gain control models have become quite popular and have been generalized

during recent years (Watson and Solomon, 1997; D’Zmura et al., 1998;

Graham and Sutter, 2000; Meese and Holmes, 2002).

Van den Branden Lambrecht (1996b) proposed a number of video quality

metrics based on multi-channel vision models. The Moving Picture Quality

Metric (MPQM) is based on a local contrast definition and Gabor-related

filters for the spatial decomposition, two temporal mechanisms, as well as a

spatio-temporal contrast sensitivity function and a simple intra-channel

model of contrast masking (van den Branden Lambrecht and Verscheure,

1996). A color version of the MPQM based on an opponent color space was

presented as well as a variety of applications and extensions of the MPQM

(van den Branden Lambrecht, 1996a), for example, for assessing the quality

of certain image features such as contours, textures, and blocking artifacts, or

for the study of motion rendition (van den Branden Lambrecht et al., 1999).

Due to the MPQM’s purely frequency-domain implementation of the spatio-

temporal filtering process and the resulting huge memory requirements, it is

not practical for measuring the quality of sequences with a duration of more

than a few seconds, however. The Normalization Video Fidelity Metric

(NVFM) by Lindh and van den Branden Lambrecht (1996) avoids this

shortcoming by using a steerable pyramid transform for spatial filtering and

discrete time-domain filter approximations of the temporal mechanisms. It is

a spatio-temporal extension of Teo and Heeger’s above-mentioned image
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distortion metric and implements inter-channel masking through an early

model of contrast gain control. Both the MPQM and the NVFM are of

particular relevance here because their implementations are used as the basis

for the metrics presented in the following chapters of this book.

Recently, Masry and Hemami (2004) designed a metric for continuous

video quality evaluation (CVQE) of low bitrate video. The metric works with

luminance information only. It uses temporal filters and a wavelet transform

for the perceptual decomposition, followed by CSF-weighting of the differ-

ent bands, a gain control model, and pooling by means of two Lp-norms.

Recursive temporal summation takes care of the low-pass nature of sub-

jective quality ratings. The CVQE is one of the few vision-model based video

quality metrics designed for and tested with low bitrate video.

3.4.4 Specialized Metrics

Metrics based on multi-channel vision models such as the ones presented

above are the most general and potentially the most accurate ones (Winkler,

1999a). However, quality metrics need not necessarily rely on sophisticated

general models of the human visual system; they can exploit a priori

knowledge about the compression algorithm and the pertinent types of

artifacts (see section 3.2) using ad hoc techniques or specialized vision

models. While such metrics are not as versatile, they normally perform well

in a given application area. Their main advantage lies in the fact that they

often permit a computationally more efficient implementation. Since these

artifact-based metrics are not the primary focus of this book, only a few are

mentioned here.

One example of such specialized metrics is DCTune,{ a method for

optimizing JPEG image compression that was developed by Watson (1995,

1997). DCTune computes the JPEG quantization matrices that achieve the

maximum compression for a specified perceptual distortion given a particular

image and a particular set of viewing conditions. It considers visual masking

by luminance and contrast techniques. DCTune can also compute the

perceptual difference between two images.

Watson (1998) later extended the DCTune metric to video. In addition to

the spatial sensitivity and masking effects considered in DCTune, this so-

called Digital Video Quality (DVQ) metric relies on measurements of the

visibility thresholds for temporally varyingDCTquantization noise. It alsomodels

temporal forward masking effects by means of a masking sequence, which is

{A demonstration version of DCTune can be downloaded from http://vision.arc.nasa.gov/dctune/
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produced by passing the reference through a temporal low-pass filter. A

report of the DVQ metric’s performance is given by Watson et al. (1999).

Wolf and Pinson (1999) developed another video quality metric (VQM)

that uses reduced reference information in the form of low-level features

extracted from spatio-temporal blocks of the sequences. These features were

selected empirically from a number of candidates so as to yield the best

correlation with subjective data. First, horizontal and vertical edge enhance-

ment filters are applied to facilitate gradient computation in the feature

extraction stage. The resulting sequences are divided into spatio-temporal

blocks. A number of features measuring the amount and orientation of

activity in each of these blocks are then computed from the spatial luminance

gradient. To measure the distortion, the features from the reference and the

distorted sequence are compared using a process similar to masking. This

metric was one of the best performers in the latest VQEG FR-TV Phase II

evaluation (see section 3.5.3).

Finally, Tan et al. (1998) presented a measurement tool for MPEG video

quality. It first computes the perceptual impairment in each frame based on

contrast sensitivity and masking with the help of spatial filtering and Sobel-

operators, respectively. Then the PSNR of the masked error signal is

calculated and normalized. The interesting part of this metric is its second

stage, a cognitive emulator, that simulates higher-level aspects of perception.

This includes the delay and temporal smoothing effect of observer responses,

the nonlinear saturation of perceived quality, and the asymmetric behavior

with respect to quality changes from bad to good and vice versa. This metric

is one of the few models targeted at measuring the temporally varying quality

of video sequences. While it still requires the reference as input, the

cognitive emulator was shown to improve the predictions of subjective

SSCQE MOS data.

3.5 METRIC EVALUATION

3.5.1 Performance Attributes

Quality as it is perceived by a panel of human observers (i.e. MOS) is the

benchmark for any visual quality metric. There are a number of attributes

that can be used to characterize a quality metric in terms of its prediction

performance with respect to subjective ratings:{

{See the VQEG objective test plan at http://www.vqeg.org/ for details.
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� Accuracy is the ability of a metric to predict subjective ratings with

minimum average error and can be determined by means of the Pearson

linear correlation coefficient; for a set of N data pairs ðxi; yiÞ, it is defined
as follows:

rP ¼
Pðxi � �xxÞðyi � �yyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðxi � �xxÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðyi � �yyÞ2
q ; ð3:5Þ

where �xx and �yy are the means of the respective data sets. This assumes a

linear relation between the data sets. If this is not the case, nonlinear

correlation coefficients may be computed using equation (3.5) after

applying a mapping function to one of the data sets, i.e. �yyi ¼ f ðyiÞ. This
helps to take into account saturation effects, for example. While nonlinear

correlations are normally higher in absolute terms, the relations between

them for different sets generally remain the same. Therefore, unless noted

otherwise, only the linear correlations are used for analysis in this book,

because our main interest lies in relative comparisons.

� Monotonicity measures if increases (decreases) in one variable are

associated with increases (decreases) in the other variable, independently

of the magnitude of the increase (decrease). Ideally, differences of a

metric’s rating between two sequences should always have the same sign

as the differences between the corresponding subjective ratings. The

degree of monotonicity can be quantified by the Spearman rank-order

correlation coefficient, which is defined as follows:

rS ¼
Pð�i � ���Þð�i � ���ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPð�� ���Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPð�i � ���Þ2
q ; ð3:6Þ

where �i is the rank of xi and �i is the rank of yi in the ordered data series;

��� and ��� are the respective midranks. The Spearman rank-order correlation

is nonparametric, i.e. it makes no assumptions about the shape of the

relationship between the xi and yi.

� The consistency of a metric’s predictions can be evaluated by measuring

the number of outliers. An outlier is defined as a data point ðxi; yiÞ for

which the prediction error is greater than a certain threshold, for example

twice the standard deviation �yi of the subjective rating differences for this

data point, as proposed by VQEG (2000):

xi � yij j > 2�yi : ð3:7Þ
The outlier ratio is then simply defined as the number of outliers

determined in this fashion in relation to the total number of data
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points:

rO ¼ NO=N: ð3:8Þ
Evidently, the lower this outlier ratio, the better.

3.5.2 Metric Comparisons

While quality metric designs and implementations abound, only a handful of

comparative studies exist that have investigated the prediction performance

of metrics in relation to others.

Ahumada (1993) reviewed more than 30 visual discrimination models for

still images from the application areas of image quality assessment, image

compression, and halftoning. However, only a comparison table of the computa-

tional models is given; the performance of the metrics is not evaluated.

Comparisons of several image quality metrics with respect to their

prediction performance were carried out by Fuhrmann et al. (1995), Jacobson

(1995), Eriksson et al. (1998), Li et al. (1998), Martens and Meesters (1998),

Mayache et al. (1998), and Avcibas˛ et al. (2002). These studies consider

various pixel-based metrics as well as a number of single-channel and multi-

channel models from the literature. Summarizing their findings and drawing

overall conclusions is made difficult by the fact that test images, testing

procedures, and applications differ greatly between studies. It can be noted

that certain pixel-based metrics in the evaluations correlate quite well with

subjective ratings for some test sets, especially for a given type of distortion

or scene. They can be outperformed by vision-based metrics, where more

complexity usually means more generality and accuracy. The observed gains

are often so small, however, that the computational overhead does not seem

justified.

Several measures of MPEG video quality were validated by Cermak et al.

(1998). This comparison does not consider entire video quality metrics, but

only a number of low-level features such as edge energy or motion energy

and combinations thereof.

3.5.3 Video Quality Experts Group

The most ambitious performance evaluation of video quality metrics to date

was undertaken by the Video Quality Experts Group (VQEG).{ The group is

composed of experts in the field of video quality assessment from industry,

universities, and international organizations. VQEG was formed in 1997 with

{See http://www.vqeg.org/ for an overview of its activities.
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the objective of collecting reliable subjective ratings for a well-defined set of

test sequences and evaluating the performance of different video quality

assessment systems with respect to these sequences.

In the first phase, the emphasis was on out-of-service testing (i.e. full-

reference metrics) for production- and distribution-class video (‘FR-TV’).

Accordingly, the test conditions comprised mainly MPEG-2 encoded

sequences with different profiles, different levels, and other parameter

variations, including encoder concatenation, conversions between analog

and digital video, and transmission errors. A set of 8-second scenes with

different characteristics (e.g. spatial detail, color, motion) was selected by

independent labs; the scenes were disclosed to the proponents only after the

submission of their metrics. In total, 20 scenes were encoded for 16 test

conditions each. Subjective ratings for these sequences were collected in

large-scale experiments using the DSCQS method (see section 3.3.3). The

VQEG test sequences and subjective experiments are described in more

detail in sections 5.2.1 and 5.2.2.

The proponents of video quality metrics in this first phase were CPqD

(Brazil), EPFL (Switzerland),{ KDD (Japan), KPN Research/Swisscom (the

Netherlands/Switzerland), NASA (USA), NHK/Mitsubishi (Japan), NTIA/

ITS (USA), TAPESTRIES (EU), Technische Universität Braunschweig

(Germany), and Tektronix/Sarnoff (USA).

The prediction performance of the metrics was evaluated with respect to

the attributes listed in section 3.5.1. The statistical methods used for the

analysis of these attributes were variance-weighted regression, nonlinear

regression, Spearman rank-order correlation, and outlier ratio. The results of

the data analysis showed that the performance of most models as well as

PSNR are statistically equivalent for all four criteria, leading to the conclu-

sion that no single model outperforms the others in all cases and for the entire

range of test sequences (see also Figure 5.11). Furthermore, none of the

metrics achieved an accuracy comparable to the agreement between different

subject groups. The findings are described in detail in the final report

(VQEG, 2000) and by Rohaly et al. (2000).

As a follow-up to this first phase, VQEG carried out a second round of

tests for full-reference metrics (‘FR-TV Phase II’); the final report was

finished recently (VQEG, 2003). In order to obtain more discriminating

results, this second phase was designed with a stronger focus on secondary

distribution of digitally encoded television quality video and a wider range of

distortions. New source sequences and test conditions were defined, and a

{This is the PDM described in section 4.2.
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total of 128 test sequences were produced. Subjective ratings for these

sequences were again collected using the DSCQS method. Unfortunately, the

test sequences of the second phase are not public.

The proponents in this second phase were British Telecom (UK), Chiba

University (Japan), CPqD (Brazil), NASA (USA), NTIA/ITS (USA), and

Yonsei University (Korea). In contrast to the first phase, registration and

calibration with the reference video had to be performed by each metric

individually. Seven statistical criteria were defined to analyze the prediction

performance of the metrics. These criteria all produced the same ranking of

metrics, therefore only correlations are quoted here. The best metrics in the

test achieved correlations as high as 94% with MOS, thus significantly

outperforming PSNR, which had a correlation of about 70%. The results of

this VQEG test are the basis for ITU-T Rec. J.144 (2004) and ITU-R Rec.

BT.1683 (2004).

VQEG is currently working on an evaluation of reduced- and no-reference

metrics for television (‘RR/NR-TV’), for which results are expected by 2005,

as well as an evaluation of metrics in a ‘multimedia’ scenario targeted at

Internet and mobile video applications with the appropriate codecs, bitrates

and frame sizes.

3.5.4 Limits of Prediction Performance

Perceived visual quality is an inherently subjective measure and can only be

described statistically, i.e. by averaging over the opinions of a sufficiently

large number of observers. Therefore the question is also how well subjects

agree on the quality of a given image or video. In the first phase of VQEG

tests, the correlations obtained between the average ratings of viewer groups

from different labs are in the range of 90–95% for the most part (see

Figure 3.11(a)). While the exact values certainly vary depending on the

application and the quality range of the test set, this gives an indication of

the limits on the prediction performance for video quality metrics. In the

same study, the best-performing metrics only achieved correlations in the

range of 80–85%, which is significantly lower than the inter-lab correspon-

dences.

Nevertheless, it also becomes evident from Figure 3.11(b) that the DMOS

values vary significantly between labs, especially for the low-quality test

sequences, which was confirmed by an analysis of variance (ANOVA)

carried out by VQEG (2000). The systematic offsets in DMOS observed

between labs are quite small, but the slopes of the regression lines often

deviate substantially from 1, which means that viewers in different labs had

differing opinions about the quality range of the sequences (up to a factor
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of 2). On the other hand, the high inter-lab correlations indicate that ratings

vary in a similar manner across labs and test conditions. In any case, the aim

was to use the data from all subjects to compute global quality ratings for the

various test conditions.

In the FR-TV Phase II tests (see section 3.5.3 above), a more rigorous test

was used for studying the absolute performance limits of quality metrics. A

statistically optimal model was defined on the basis of the subjective data to

provide a quantitative upper limit on prediction performance (VQEG, 2003).
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Figure 3.11 Inter-lab DMOS correlations (a) and parameters of the corresponding linear

regressions (b).

METRIC EVALUATION 69



The assumption is that an optimal model would predict every MOS value

exactly; however, the differences between the ratings of individual subjects

for a given test clip cannot be predicted by an objective metric – it makes one

prediction per clip, yet there are a number of different subjective ratings for

that clip. These individual differences represent the residual variance of the

optimal model, i.e. the minimum variance that can be achieved. For a given

metric, the variance with respect to the individual subjective ratings is

computed and compared against the residual variance of the optimal

model using an F-test (see the VQEG final report for details). Despite the

generally good performance of metrics in this test, none of the submitted

metrics achieved a prediction performance that was statistically equivalent to

the optimal model.

3.6 SUMMARY

The foundations of digital video and its visual quality were discussed. The

major points of this chapter can be summarized as follows:

� Digital video systems are becoming increasingly widespread, be it in the

form of digital TV and DVDs, in camcorders, on desktop computers or

mobile devices. Guaranteeing a certain level of quality has thus become an

important concern for content providers.

� Both analog and digital video coding standards exploit certain properties

of the human visual system to reduce bandwidth and storage requirements.

This compression as well as errors during transmission lead to artifacts

and distortions affecting video quality.

� Subjective quality is a function of several different factors; it depends on

the situation as well as the individual observer and can only be described

statistically. Standardized testing procedures have been defined for gather-

ing subjective quality data.

� Existing visual quality metrics were reviewed and compared. Pixel-based

metrics such as MSE and PSNR are still popular despite their inability to

reliably predict perceived quality across different scenes and distortion

types. Many vision-based quality metrics have been developed that out-

perform PSNR. Nonetheless, no general-purpose metric has yet been

found that is able to replace subjective testing.

With these facts in mind, we will now study vision models for quality

metrics.
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4
Models and Metrics

A theory has only the alternative of being right or wrong.

A model has a third possibility: it may be right, but irrelevant.

Manfred Eigen

Computational vision modeling is at the heart of this chapter. While the

human visual system is extremely complex and many of its properties are

still not well understood, models of human vision are the foundation for

accurate general-purpose metrics of visual quality and have applications in

many other fields of image processing. This chapter presents two concrete

examples of vision models and quality metrics.

First, an isotropic measure of local contrast is described. It is based on the

combination of directional analytic filters and is unique in that it permits the

computation of an orientation- and phase-independent contrast for natural

images. The design of the corresponding filters is discussed.

Second, a comprehensive perceptual distortion metric (PDM) for color

images and color video is presented. It comprises several stages for modeling

different aspects of the human visual system. Their design is explained in

detail here. The underlying vision model is shown to achieve a very good fit

to data from a variety of psychophysical experiments. A demonstration of the

internal processing in this metric is also given.

Digital Video Quality - Vision Models and Metrics Stefan Winkler
# 2005 John Wiley & Sons, Ltd ISBN: 0-470-02404-6



4.1 ISOTROPIC CONTRAST

4.1.1 Contrast Definitions

As discussed in section 2.4.2, the response of the human visual system

depends much less on the absolute luminance than on the relation of its local

variations with respect to the surrounding luminance. This property is known

as the Weber–Fechner law. Contrast is a measure of this relative variation of

luminance.

Working with contrast instead of luminance can facilitate numerous image

processing and analysis tasks. Unfortunately, a common definition of contrast

suitable for all situations does not exist. This section reviews existing

contrast definitions for artificial stimuli and presents a new isotropic measure

of local contrast for natural images, which is computed from analytic filters

(Winkler and Vandergheynst, 1999).

Mathematically, Weber’s law can be formalized by Weber contrast:

CW ¼ �L=L: ð4:1Þ
This definition is often used for stimuli consisting of small patches with a

luminance offset �L on a uniform background of luminance L. In the case of

sinusoids or other periodic patterns with symmetrical deviations ranging

from Lmin to Lmax, which are also very popular in vision experiments,

Michelson contrast (Michelson, 1927) is generally used:

CM ¼ Lmax � Lmin

Lmax þ Lmin

: ð4:2Þ

These two definitions are not equivalent and do not even share a common range

of values: Michelson contrast can range from 0 to 1, whereas Weber contrast

can range from to �1 to 1. While they are good predictors of perceived

contrast for simple stimuli, they fail when stimuli become more complex

and cover a wider frequency range, for example Gabor patches (Peli, 1997).

It is also evident that none of these simple global definitions is appropriate

for measuring contrast in natural images. This is because a few very bright or

very dark points would determine the contrast of the whole image, whereas

actual human contrast perception varies with the local average luminance.

In order to address these issues, Peli (1990) proposed a local band-limited

contrast:

CP
j ðx; yÞ ¼

 j � Iðx; yÞ
�j � Iðx; yÞ ; ð4:3Þ
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where  j is a band-pass filter at level j of a filter bank, and �j is the

corresponding low-pass filter. An important point is that this contrast

measure is well defined if certain conditions are imposed on the filter

kernels. Assuming that the image and � are positive real-valued integrable

functions and  is integrable, CP
j ðx; yÞ is a well defined quantity provided that

the (essential) support of  is included in the (essential) support of �. In this

case �j � Iðx; yÞ ¼ 0 implies CP
j ðx; yÞ ¼ 0.

Using the band-pass filters of a pyramid transform, which can also be

computed as the difference of two neighboring low-pass filters, equation

(4.3) can be rewritten as

CP
j ðx; yÞ ¼

ð�j � �jþ1Þ � Iðx; yÞ
�jþ1 � Iðx; yÞ ¼ �j � Iðx; yÞ

�jþ1 � Iðx; yÞ � 1: ð4:4Þ

Lubin (1995) used the following modification of Peli’s contrast definition in

an image quality metric based on a multi-channel model of the human visual

system:

CL
j ðx; yÞ ¼

ð�j � �jþ1Þ � Iðx; yÞ
�jþ2 � Iðx; yÞ : ð4:5Þ

Here, the averaging low-pass filter has moved down one level. This particular

local band-limited contrast definition has been found to be in good agreement

with psychophysical contrast-matching experiments using Gabor patches

(Peli, 1997).

The differences between CP and CL are most pronounced for higher-

frequency bands. The lower one goes in frequency, the more spatially

uniform the low-pass band in the denominator will become in both measures,

finally approaching the overall luminance mean of the image. Peli’s defini-

tion exhibits relatively high overshoots in certain image regions. This is

mainly due to the spectral proximity of the band-pass and low-pass filters.

4.1.2 In-phase and Quadrature Mechanisms

Local contrast as defined above measures contrast only as incremental or

decremental changes with respect to the local background. This is analogous

to the symmetric (in-phase) responses of vision mechanisms. However, a

complete description of contrast for complex stimuli has to include the anti-

symmetric (quadrature) responses as well (Stromeyer and Klein, 1975;

Daugman, 1985).
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This issue is demonstrated in Figure 4.1, which shows the contrast CP

computed with an isotropic band-pass filter for the lena image. It can be

observed that CP does not predict perceived contrast well due to its phase

dependence: CP varies between positive and negative values of similar

amplitude at the border between bright and dark regions and exhibits zero-

crossings right where the perceived contrast is actually highest (note the

corresponding oscillations of the magnitude).

This behavior can be understood when CP is computed for one-dimen-

sional sinusoids with a constant CM , as shown in Figure 4.2. The contrast

computed using only a symmetric filter actually oscillates between �CM

with the same frequency as the underlying sinusoid, which is counter-

intuitive to the concept of contrast.

These examples underline the need for taking into account both the in-

phase and the quadrature component in order to be able to relate a general-

ized definition of contrast to the Michelson contrast of a sinusoidal grating.

Analytic filters represent an elegant way to achieve this: the magnitude of

the analytic filter response, which is the sum of the energy responses of

in-phase and quadrature components, exhibits the desired behavior in that it

gives a constant response to sinusoidal gratings. This is demonstrated in

Figure 4.2(c).

While the implementation of analytic filters in the one-dimensional case is

straightforward, the design of general two-dimensional analytic filters is less

obvious because of the difficulties involved when extending the Hilbert

transform to two dimensions (Stein and Weiss, 1971). This problem is

addressed in section 4.1.3 below.

Figure 4.1 Peli’s local contrast from equation (4.3) and its magnitude computed for the

lena image.
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underlying sinusoid (b). Only the sum of the corresponding normalized energy responses

is constant and equal to the grating’s Michelson contrast (c).
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Oriented measures of contrast can still be computed, because the Hilbert

transform is well defined for filters whose angular support is smaller than �.
Such contrast measures are useful for many image processing tasks. They

can implement a multi-channel representation of low-level vision in accor-

dance with the orientation selectivity of the human visual system and

facilitate modeling aspects such as contrast sensitivity and pattern masking.

They are in many vision models and their applications, for example in

perceptual quality assessment of images and video (see sections 3.4.3 and

4.2). Contrast pyramids have also been found to reduce the dynamic range in

the transform domain, which may find interesting applications in image

compression (Vandergheynst and Gerek, 1999).

Lubin (1995), for example, applies oriented filtering to CL
j from equation

(4.5) and sums the squares of the in-phase and quadrature responses for each

channel to obtain a phase-independent oriented measure of contrast energy.

Using analytic orientation-selective filters �kðx; yÞ, this oriented contrast can

be expressed as

CL
jkðx; yÞ ¼ �k � CL

j ðx; yÞ
���

���: ð4:6Þ

Alternatively, an oriented pyramid decomposition can be computed first, and

contrast can be defined by normalizing the oriented sub-bands with a low-

pass band:

CO
jkðx; yÞ ¼

 j � �k � Iðx; yÞ
�� ��
�jþ2 � Iðx; yÞ ð4:7Þ

Both of these approaches yield similar results in the decomposition of natural

images. However, some noticeable differences occur around edges of high

contrast.

4.1.3 Isotropic Local Contrast

The main problem in defining an isotropic contrast measure based on filtering

operations is that if a flat response to a sinusoidal grating as with Michelson’s

definition is desired, 2-D analytic filters must be used. This requirement rules

out the use of a single isotropic filter. As stated in the previous section, the

main difficulty in designing 2-D analytic filters is the lack of a Hilbert

transform in two dimensions. Instead, one must use the so-called Riesz

transforms (Stein and Weiss, 1971), a series of transforms that are quite

difficult to handle in practice.

76 MODELS AND METRICS



In order to circumvent these problems, we describe an approach using a

class of non-separable filters that generalize the properties of analytic

functions in 2-D (Winkler and Vandergheynst, 1999). These filters are

actually directional wavelets as defined by Antoine et al. (1999), which

are square-integrable functions whose Fourier transform is strictly supported

in a convex cone with the apex at the origin. It can be shown that these

functions admit a holomorphic continuation in the domain R2 þ jV , where V

is the cone defining the support of the function. This is a genuine general-

ization of the Paley–Wiener theorem for analytic functions in one dimension.

Furthermore, if we require that these filters have a flat response to sinusoidal

stimuli, it suffices to impose that the opening of the cone V be strictly smaller

than �, as illustrated in Figure 4.3. This means that at least three such filters

are required to cover all possible orientations uniformly, but otherwise any

number of filters is possible. Using a technique described below in section

4.1.4, such filters can be designed in a very simple and straightforward way;

it is even possible to obtain dyadic oriented decompositions that can be

implemented using a filter bank algorithm.

Working in polar coordinates ðr; ’Þ in the Fourier domain, assume K

directional wavelets �̂�ðr; ’Þ satisfying the above requirements and

XK�1

k¼0

�̂�ðr; ’� 2�k=KÞ�� ��2¼  ̂ ðrÞ�� ��2; ð4:8Þ

(a) Sinusoidal grating (b) Isotropic filter (c) Analytic filters

Figure 4.3 Computing the contrast of a two-dimensional sinusoidal grating (a): Using

an isotropic band-pass filter, in-phase and quadrature components of the grating (dots)

interfere within the same filter (b). This can be avoided using several analytic directional

band-pass filters whose support covers an angle smaller than � (c).
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where  ̂ ðrÞ is the Fourier transform of an isotropic dyadic wavelet, i.e.

X1
j¼�1

 ̂ ð2jrÞ�� ��2¼ 1 ð4:9Þ

and

X1
j¼�J

 ̂ ð2jrÞ�� ��2¼ �̂�ð2JrÞ�� ��2: ð4:10Þ

where � is the associated 2-D scaling function (Mallat and Zhong, 1992).

Now it is possible to construct an isotropic contrast measure CI
j as the

square root of the energy sum of these oriented filter responses, normalized

as before by a low-pass band:

CI
j ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P

k j�jk � Iðx; yÞj2
q

�j � Iðx; yÞ ; ð4:11Þ

where I is the input image, and �jk denotes the wavelet dilated by 2�j and

rotated by 2�k=K. If the directional wavelet � is in L1ðR2Þ \ L2ðR2Þ, the
convolution in the numerator of equation (4.11) is again a square-integrable

function, and equation (4.8) shows that its L2-norm is exactly what would

have been obtained using the isotropic wavelet  . As can be seen in Fig-

ure 4.5, CI
j is thus an orientation- and phase-independent quantity, but being

defined by means of analytic filters it behaves as prescribed with respect to

sinusoidal gratings (i.e. CI
j ðx; yÞ � CM in this case).

Figure 4.4 shows an example of the pertinent decomposition for the lena

image at three pyramid levels using K ¼ 8 different orientations (the specific

filters used in this example are described in section 4.1.4). The feature

selection achieved by each directional filter is evident. The resulting isotropic

contrast computed for the lena image at the three different levels is shown in

Figure 4.5.

The figures clearly illustrate that CI exhibits the desired omnidirectional

and phase-independent properties. Comparing this contrast pyramid to the

original image in Figure 4.1(a), it can be seen that the contrast features

obtained with equation (4.11) correspond very well to the perceived contrast.

Its localization properties obviously depend on the chosen pyramid level.

The combination of the analytic oriented filter responses thus produces a
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meaningful phase-independent measure of isotropic contrast. The examples

show that it is a very natural measure of local contrast in an image. Isotropy

is particularly important for applications where non-directional signals in

an image are considered, e.g. spread-spectrum watermarking (Kutter and

Winkler, 2002).

Figure 4.4 Filters used in the computation of isotropic local contrast (left column) and

their responses for three different levels.
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4.1.4 Filter Design

As discussed in section 4.1.3, the computation of a robust isotropic contrast

measure requires the use of a translation-invariant multi-resolution repre-

sentation based on 2-D analytic filters. This can be achieved by designing a

special Dyadic Wavelet Transform (DWT) using 2-D non-separable frames.

The very weak design constraints of these frames permit the use of analytic

wavelets, for which condition (4.8) can easily be fulfilled. This construction

yields the following integrated wavelet packet (Vandergheynst et al., 2000):

�̂�ð~!!Þ�� 2¼
ð1
1=2

 ̂ ða~!!Þ�� 2 da

a
: ð4:12Þ

Since the construction mainly works in the Fourier domain, it is very easy to

add directional sensitivity by multiplying all Fourier transforms with a

suitable angular window:

�̂�ðr; ’Þ ¼ �̂�ðrÞ � �̂�ð’Þ: ð4:13Þ

For this purpose, we introduce an infinitely differentiable, compactly

supported function �̂�ð’Þ such that

XK�1

k¼0

�̂�ð’� 2�k=KÞj j2¼ 1 8’ 2 ½0; 2�� ð4:14Þ

in order to satisfy condition (4.8).

Figure 4.5 Three levels of isotropic local contrast CI
j ðx; yÞ as given by equation (4.11)

for the lena image.
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This construction allows us to build oriented pyramids using a very wide

class of dyadic wavelet decompositions. The properties of the filters involved

in this decomposition can then be tailored to specific applications. The filters

shown in Figure 4.5 are examples for K ¼ 8 orientations.

The main drawback of this technique is the lack of fast algorithms. In

particular, one would appreciate the existence of a pyramidal algorithm

(Mallat, 1998), which is not guaranteed here because integrated wavelets and

scaling functions are not necessarily related by a two-scale equation. On the

other hand, it has been demonstrated that one can find quadrature filter

approximations that achieve a fast implementation of the DWT while

maintaining very accurate results (Gobbers and Vandergheynst, 2002;

Muschietti and Torrésani, 1995). Once again, the advantage here is that it

leaves us free to design our own dyadic frame.

In the examples presented above and in the applications proposed in other

parts of this book, directional wavelet frames as described by Gobbers and

Vandergheynst (2002) based on the PLog wavelet are used for the computa-

tion of isotropic local contrast according to equation (4.11). The PLog

wavelet is defined as follows:

 �ð~xxÞ ¼ 1

�
~  �

~xxffiffiffi
�

p
� �

; ð4:15Þ

where

~  �ðx; yÞ ¼ ð�1Þ�
2��1ð� � 1Þ!

@2

@x2
þ @2

@y2

� ��

e�
x2þy2

2 : ð4:16Þ

The integer parameter � controls the number of vanishing moments and thus

the shape of the wavelet. The filter response in the frequency domain

broadens with decreasing � . Several experiments were conducted to evaluate

the impact of this parameter. The tests showed that values of � > 2 have to be

avoided, because the filter selectivity becomes too low. Setting � ¼ 1 has

been found to be an appropriate value for our applications. The correspond-

ing wavelet is also known as the Log wavelet or Mexican hat wavelet, i.e. the

Laplacian of a Gaussian. Its frequency response is given by:

 ̂ ðrÞ ¼ r2 e�
r2

2 : ð4:17Þ
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For the directional separation of this isotropic wavelet, it is shaped in angular

direction in the frequency domain:

 ̂ jkðr; ’Þ ¼  ̂ jðrÞ � �̂�kð’Þ: ð4:18Þ

The shaping function �̂�kð’Þ used here is based on a combination of normal-

ized Schwarz functions as defined by Gobbers and Vandergheynst (2002) that

satisfies equation (4.14).

The number of filter orientations K is the parameter. The minimum number

required by the analytic filter constraints, i.e. an angular support smaller than

�, is three orientations. The human visual system emphasizes horizontal and

vertical directions, so four orientations should be used as a practical

minimum. To give additional weight to diagonal structures, eight orientations

may be preferred (cf. Figure 4.4). Although using even more filters might

result in a better analysis of the local neighborhood, our experiments indicate

that there is no apparent improvement when using more than eight orienta-

tions, and the additional computational load outweighs potential benefits.

4.2 PERCEPTUAL DISTORTION METRIC

4.2.1 Metric Design

The perceptual distortion metric (PDM) is based on a contrast gain control

model of the human visual system that incorporates spatial and temporal

aspects of vision as well as color perception (Winkler, 1999b, 2000). It is

based on a metric developed by Lindh and van den Branden Lambrecht

(1996). The underlying vision model, an extension of a model for still images

(Winkler, 1998), focuses on the following aspects of human vision:

� color perception, in particular the theory of opponent colors;

� the multi-channel representation of temporal and spatial mechanisms;

� spatio-temporal contrast sensitivity and pattern masking;

� the response properties of neurons in the primary visual cortex.

These visual aspects were already discussed in Chapter 2. Their implementa-

tion in the context of a perceptual distortion metric is explained in detail

in the following sections.

A block diagram of the perceptual distortion metric is shown in Figure 4.6.

The metric requires both the reference sequence and the distorted sequence
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as inputs. After their conversion to the appropriate perceptual color space,

each of the resulting three components is subjected to a spatio-temporal filter

bank decomposition, yielding a number of perceptual channels. They are

weighted according to contrast sensitivity data and subsequently undergo

contrast gain control for pattern masking. Finally, the sensor differences are

combined into a distortion measure.

4.2.2 Color Space Conversion

The color spaces used in many standards for coding visual information, e.g.

PAL, NTSC, JPEG or MPEG, already take into account certain properties of

the human visual system by coding nonlinear color difference components

instead of linear RGB color primaries. Digital video is usually coded in

Y 0C0
BC

0
R space, where Y 0 encodes luminance, C0

B the difference between the

blue primary and luminance, and C0
R the difference between the red primary

and luminance. The PDM on the other hand relies on the theory of opponent

colors for color processing, which states that the color information received

by the cones is encoded as white-black, red-green and blue-yellow color

difference signals (see section 2.5.2).

Conversion from Y 0C0
BC

0
R to opponent color space requires a series of

transformations as illustrated in Figure 4.7. Y 0C0
BC

0
R color space is defined in

ITU-R Rec. BT.601-5. Using 8 bits for each component, Y 0 is coded with an

offset of 16 and an amplitude range of 219, while C0
B and C0

R are coded with

an offset of 128 and an amplitude range of �112. The extremes of the coding

range are reserved for synchronization and signal processing headroom,

which requires clipping prior to conversion. Nonlinear R0G0B0 values in the

range [0,1] are then computed from 8-bit Y 0C0
BC

0
R as follows (Poynton, 1996):

R0

G0

B0

2
4

3
5 ¼ 1

219

1 0 1:371
1 �0:336 �0:698
1 1:732 0

2
4

3
5 �

Y 0

C0
B

C0
R

2
4

3
5�

16

128

128

2
4

3
5

0
@

1
A: ð4:19Þ
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Figure 4.7 Color space conversion from component video Y 0C0
BC

0
R to opponent color

space.
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Each of the resulting three components undergoes a power-law nonlinearity

of the form x� with � � 2:5 to produce linear RGB values. This is required to

counter the gamma correction used in nonlinear R0G0B0 space to compensate

for the behavior of a conventional CRT display (cf. section 3.1.1).

RGB space further assumes a particular display device, or to be more

exact, a particular spectral power distribution of the light emitted from

the display phosphors. Once the phosphor spectra of the monitor of interest

have been determined, the device-independent CIE XYZ tristimulus values

can be calculated. The primaries of contemporary monitors are closely

approximated by the following transformation defined in ITU-R Rec.

BT.709-5 (2002):

X

Y

Z

2
4

3
5 ¼

0:412 0:358 0:180
0:213 0:715 0:072
0:019 0:119 0:950

2
4

3
5 �

R

G

B

2
4

3
5: ð4:20Þ

The CIE XYZ tristimulus values form the basis for conversion to an HVS-

related color space. First, the responses of the L-, M-, and S-cones on the

human retina (see section 2.2.1) are computed as follows (Hunt, 1995):

L

M

S

2
4

3
5 ¼

0:240 0:854 �0:044
�0:389 1:160 0:085
�0:001 0:002 0:573

2
4

3
5 �

X

Y

Z

2
4

3
5: ð4:21Þ

The LMS values can now be converted to an opponent color space. A variety

of opponent color spaces have been proposed, which use different ways to

combine the cone responses. The PDM relies on a recent opponent color

model by Poirson and Wandell (1993, 1996). This particular opponent color

space has been designed for maximum pattern-color separability, which has

the advantage that color perception and pattern sensitivity can be decoupled

and treated in separate stages in the metric. The spectral sensitivities of its

W-B, R-G and B-Y components are shown in Figure 2.14. These components

are computed from LMS values via the following transformation (Poirson

and Wandell, 1993):

W � B

R� G

B� Y

2
4

3
5 ¼

0:990 �0:106 �0:094
�0:669 0:742 �0:027
�0:212 �0:354 0:911

2
4

3
5 �

L

M

S

2
4

3
5: ð4:22Þ
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4.2.3 Perceptual Decomposition

As discussed in sections 2.3.2 and 2.7, many cells in the human visual system

are selectively sensitive to certain types of signals, such as patterns of a

particular frequency or orientation. This multi-channel theory of vision has

proven successful in explaining a wide variety of perceptual phenomena.

Therefore, the PDM implements a decomposition of the input into a number

of channels based on the spatio-temporal mechanisms in the visual system.

This perceptual decomposition is performed first in the temporal and then in

the spatial domain. As discussed in section 2.4.2, this separation is not

entirely unproblematic, but it greatly facilitates the implementation of the

decomposition. Besides, these two domains can be consolidated in the fitting

process as described in section 4.2.6.

4.2.3.1 Temporal Mechanisms

The characteristics of the temporal mechanisms in the human visual system

were described in section 2.7.2. The temporal filters used in the PDM are

based on the work by Fredericksen and Hess (1997, 1998), who model

temporal mechanisms using derivatives of the following impulse response

function:

hðtÞ ¼ e�
lnðt=�Þ
�ð Þ2 : ð4:23Þ

They achieve a very good fit to their experimental data using only this

function and its second derivative, corresponding to one sustained and one

transient mechanism, respectively. For a typical choice of parameters

� ¼ 160ms and � ¼ 0:2, the frequency responses of the two mechanisms

are shown in Figure 4.8(a), and the corresponding impulse responses are

shown in Figure 4.8(b).

For use in the PDM, the temporal mechanisms have to be approximated by

digital filters. The primary design goal for these filters is to keep the delay to

a minimum, because in some applications of distortion metrics such as

monitoring and control, a short response time is crucial. This fact together

with limitations of memory and computing power favor time-domain

implementations of the temporal filters over frequency-domain implementa-

tions. A trade-off has to be found between an acceptable delay and the

accuracy with which the temporal mechanisms ought to be approximated.

Two digital filter types are investigated for modeling the temporal

mechanisms, namely recursive infinite impulse response (IIR) filters and
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nonrecursive finite impulse response (FIR) filters with linear phase. The

filters are computed by means of a least-squares fit to the normalized

frequency magnitude response of the corresponding mechanism as given

by the Fourier transforms of hðtÞ and h00ðtÞ from equation (4.23).

Figures 4.9 and 4.10 show the resulting IIR and FIR filter approxima-

tions for a sampling frequency of 50 Hz. Excellent fits to the frequency
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Figure 4.8 Frequency responses (a) and impulse response functions (b) of sustained

(solid) and transient (dashed) mechanisms of vision (Fredericksen and Hess, 1997, 1998).
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responses are obtained with both filter types. An IIR filter with 2 poles and

2 zeros is fitted to the sustained mechanism, and an IIR filter with 5 poles and

5 zeros is fitted to the transient mechanism. For FIR filters, a filter length of 9

taps is entirely sufficient for both mechanisms. These settings have been

found to yield acceptable delays while maintaining a good approximation of

the temporal mechanisms.
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Figure 4.9 IIR filter approximations (solid) of sustained and transient mechanisms of

vision (dotted) for a sampling frequency of 50 Hz.
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The impulse responses of the IIR and FIR filters are shown in Figures

4.9(b) and 4.10(b), respectively. It can be seen that all of them are nearly zero

after 7 to 8 time samples. For television frame rates, this corresponds to a

delay of approximately 150 ms in the metric. Due to the symmetry restric-

tions imposed on the impulse response of linear-phase FIR filters, their

approximation of the impulse response cannot be as good as with IIR filters.
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Figure 4.10 FIR filter approximations (solid) of sustained and transient mechanisms of

vision (dotted) for a sampling frequency of 50 Hz.
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On the other hand, linear phase can be important for video processing

applications, as the delay introduced is the same for all frequencies.

In the present implementation, the temporal low-pass filter is applied to all

three color channels, while the band-pass filter is applied only to the

luminance channel in order to reduce computing time. This simplification

is based on the fact that our sensitivity to color contrast is reduced for high

frequencies (see section 2.4.2).

4.2.3.2 Spatial Mechanisms

The characteristics of the spatial mechanisms in the human visual system

were discussed in section 2.7.1. Given the bandwidths mentioned there, and

considering the decrease in contrast sensitivity at high spatial frequencies

(see section 2.4.2), the spatial frequency plane for the achromatic channel

can be covered by 4–6 spatial frequency-selective and 4–8 orientation-

selective mechanisms. A further reduction of orientation selectivity can

affect modeling accuracy, as was reported in a comparison of two models

with 3 and 6 orientation-selective mechanisms (Teo and Heeger, 1994a,b).

Taking into account the larger orientation bandwidths of the chromatic

channels, 2–3 orientation-selective mechanisms may suffice there. Chro-

matic sensitivity remains high down to very low spatial frequencies, which

necessitates a low-pass mechanism and possibly additional spatial frequency-

selective mechanisms at this end. For reasons of implementation simplicity,

the same decomposition filters are used for chromatic and achromatic

channels.

Many different filters have been proposed as approximations to the multi-

channel representation of visual information in the human visual system.

These include Gabor filters, the cortex transform (Watson, 1987a), and

wavelets. We have found that the exact shape of the filters is not of

paramount importance, but our goal here is also to obtain a good trade-off

between implementation complexity, flexibility, and prediction accuracy.

In the PDM, therefore, the decomposition in the spatial domain is carried

out by means of the steerable pyramid transform proposed by Simoncelli

et al. (1992).{ This transform decomposes an image into a number of spatial

frequency and orientation bands. Its basis functions are directional derivative

operators. For use within a vision model, the steerable pyramid transform has

the advantage of being rotation-invariant and self-inverting while minimizing

{The source code for the steerable pyramid transform is available at http://www.cis.upenn.edu/	eero/

steerpyr.html

90 MODELS AND METRICS



the amount of aliasing in the sub-bands. In the present implementation, the basis

filters have octave bandwidth and octave spacing. Five sub-band levels with

four orientation bands each plus one low-pass band are computed; the bands at

each level are tuned to orientations of 0, 45, 90 and 135 degrees (Figure 4.11).

The same decomposition is used for the W-B, R-G and B-Y channels.

4.2.3.3 Contrast Sensitivity

After the temporal and spatial decomposition, each channel is weighted such

that the ensemble of all filters approximates the spatio-temporal contrast

sensitivity of the human visual system. While this approach is less accurate

than pre-filtering the W-B, R-G and B-Y channels with their respective

contrast sensitivity functions, it is easier to implement and saves computing

time. The resulting approximation accuracy is still very good, as will be

shown in section 4.2.6.

4.2.4 Contrast Gain Control

Modeling pattern masking is one of the most critical components of video

quality assessment because the visibility of distortions is highly dependent on

Figure 4.11 Illustration of the partitioning of the spatial frequency plane by the

steerable pyramid transform (Simoncelli et al., 1992). Three levels plus one (isotropic)

low-pass filter are shown (a). The shaded region indicates the spectral support of a single

sub-band, whose actual frequency response is plotted (b) (from S. Winkler et al. (2001),

Vision and video: Models and applications, in C. J. van den Branden Lambrecht (ed.),

Vision Models and Applications to Image and Video Processing, chap. 10, Kluwer

Academic Publishers. Copyright # 2001 Springer. Used with permission.).
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the local background. As discussed in section 2.6.1, masking occurs when a

stimulus that is visible by itself cannot be detected due to the presence of

another. Within the framework of quality assessment it is helpful to think of

the distortion or the coding noise as being masked by the original image

or sequence acting as background. Masking explains why similar coding

artifacts are disturbing in certain regions of an image while they are hardly

noticeable in others.

Masking is strongest between stimuli located in the same perceptual

channel, and many vision models are limited to this intra-channel masking.

However, psychophysical experiments show that masking also occurs

between channels of different orientations (Foley, 1994), between channels

of different spatial frequency, and between chrominance and luminance

channels (Switkes et al., 1988; Cole et al., 1990; Losada and Mullen, 1994),

albeit to a lesser extent.

Models have been proposed which explain a wide variety of empirical

contrast masking data within a process of contrast gain control. These models

were inspired by analyses of the responses of single neurons in the visual

cortex of the cat (Albrecht and Geisler, 1991; Heeger, 1992a,b), where

contrast gain control serves as a mechanism to keep neural responses within

the permissible dynamic range while at the same time retaining global

pattern information.

Contrast gain control can be modeled by an excitatory nonlinearity that is

inhibited divisively by a pool of responses from other neurons. Masking

occurs through the inhibitory effect of the normalizing pool (Foley, 1994;

Teo and Heeger, 1994a). Watson and Solomon (1997) presented an elegant

generalization of these models that facilitates the integration of many kinds

of channel interactions as well as spatial pooling. Introduced for luminance

images, this contrast gain control model is now extended to color and to

sequences as follows: let a ¼ aðt; c; f ; ’; x; yÞ be a coefficient of the percep-

tual decomposition in temporal channel t, color channel c, frequency band f,

orientation band ’, at location x; y. Then the corresponding sensor output

s ¼ sðt; c; f ; ’; x; yÞ is computed as

s ¼ k
ap

b2 þ h � aq : ð4:24Þ

The excitatory path in the numerator consists of a power-law nonlinearity

with exponent p. Its gain is controlled by the inhibitory path in the

denominator, which comprises a nonlinearity with a possibly different

exponent q and a saturation constant b to prevent division by zero. The
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factor k is used to adjust the overall gain of the mechanism. The effects of

these parameters are visualized in Figure 4.12.

In the implementation of Teo and Heeger (1994a,b), which is based on a

direct model of neural cell responses (Heeger, 1992b), the exponents of both

the excitatory and inhibitory nonlinearity are fixed at p ¼ q ¼ 2 so as to be

able to work with local energy measures. However, this procedure rapidly

saturates the sensor outputs (see top curve in Figure 4.12), which necessitates

multiple contrast bands (i.e. several different k’s and b’s) for all coefficients

in order to cover the full range of contrasts. Watson and Solomon (1997)

showed that the same effect can be achieved with a single contrast band when

p > q. This approach reduces the number of model parameters considerably

and simplifies the fitting process, which is why it is used in the PDM. The

fitting procedure for the contrast gain control stage and its results are

discussed in more detail in section 4.2.6 below.

In the inhibitory path, filter responses are pooled over different channels by

means of a convolution with the pooling function h ¼ hðt; c; f ; ’; x; yÞ. In its

most general form, the pooling operation in the inhibitory path may combine

coefficients from the dimensions of time, color, temporal frequency, spatial

frequency, orientation, space, and phase. In the present implementation of the

distortion metric, it is limited to orientation. A Gaussian pooling kernel is

used for the orientation dimension as a first approximation to channel

interactions.

10–3
10–3

10–2

10–1

100

10–2 10–1 100

a

s

Figure 4.12 Illustration of contrast gain control as given by equation (4.24). The sensor

output s is plotted as a function of the normalized input a for q ¼ 2, k ¼ 1, and no

pooling. Solid line: p ¼ 2:4, b2 ¼ 10�4. Dashed lines from left to right: p ¼ 2:0;
2:2; 2:6; 2:8. Dotted lines from left to right: b2 ¼ 10�5; 10�3; 10�2; 10�1.
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4.2.5 Detection and Pooling

It is believed that the information represented in various channels within the

primary visual cortex is integrated in the subsequent brain areas. This process

can be simulated by gathering the data from these channels according to rules

of probability or vector summation, also known as pooling. However, little

is known about the nature of the actual integration taking place in the brain.

There is no firm experimental evidence that the mathematical assumptions

and equations presented below are a good description of the pooling

mechanism in the human visual system (Quick, 1974; Fredericksen and

Hess, 1998; Meese and Williams, 2000).

If there are a number of independent ‘reasons’ i for an observer noticing

the presence of a distortion, each having probability Pi respectively, the

overall probability P of the observer noticing the distortion is

P ¼ 1�
Y
i

ð1� PiÞ: ð4:25Þ

This is the probability summation rule. The dependence of Pi on the

distortion strength xi can be described by the psychometric function

Pi ¼ 1� e�x
�i
i : ð4:26Þ

This is one version of a distribution function studied by Weibull (1951) and

first applied to vision by Quick (1974). � determines the slope of the

function. Under the homogeneity assumption that all �i are equal (Nachmias,

1981), equations (4.25) and (4.26) can be combined to yield

Pi ¼ 1� e�
P

x
�
i : ð4:27Þ

The sum in the exponent of this equation is in itself an indicator of the

visibility of distortions. Therefore, models may postulate a combination of

mechanism responses before producing an estimate of detection probability.

This is referred to as vector summation or Minkowski summation:

x ¼
X

x
�
i : ð4:28Þ

This principle is also applied in the PDM. Its detection and pooling stage

combines the elementary differences between N sensor outputs of the

contrast gain control stage for the reference sequence s ¼ sðt; c; f ; ’; x; yÞ
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and the distorted sequence ~ss ¼ ~ssðt; c; f ; ’; x; yÞ over several dimensions by

means of a Minkowski distance:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
s� ~ssj j��

r
: ð4:29Þ

Often this summation is carried out over all dimensions in order to obtain a

single distortion rating for an image or sequence, but in principle, any subset

of dimensions can be used, depending on what kind of result is desired. For

example, pooling over pixel locations may be omitted to produce a distortion

map for every frame of the sequence (examples are shown in section 4.2.7

below). The combination may be nested as well: pooling can be limited to

single frames first to determine the variation of distortions over time, and the

total distortion can be computed from the values for each frame.

4.2.6 Parameter Fitting

The model contains several parameters that have to be adjusted in order to

accurately represent the human visual system (see Figure 4.13). Threshold

data from contrast sensitivity and contrast masking experiments are used for

this procedure. In the fitting process, the inputs to the metric imitate the

stimuli used in these experiments, and the free model parameters are adjusted

in such a way that the metric approximates these threshold curves by

determining the stimulus strengths for which the output of the metric remains

at a given constant.

Contrast sensitivity is modeled by setting the gains of the spatial and

temporal filters in such a way that the model predictions match empirical

threshold data from spatio-temporal contrast sensitivity experiments for both

color and luminance stimuli. For the W-B channels, the weights are chosen

so as to match contrast sensitivity data from Kelly (1979a,b). For the R-G

and B-Y channels, similar data from Mullen (1985) or Kelly (1983) are used.

As an example, the fit to contrast sensitivity data for blue-yellow gratings is

shown in Figure 4.14(a). The individual decomposition filters used in the

approximation by the model can be clearly distinguished. The parameters

obtained in this manner for the sustained (low-pass) and transient (band-pass)

mechanisms are listed in Table 4.1 for a typical television viewing setup.

The parameters k, p and b of the contrast gain control stage from equation

(4.24) are determined by fitting the model’s responses to masked gratings;

the inhibitory exponent is fixed at q ¼ 2 in this implementation, as it is

mainly the difference p� q which matters (Watson and Solomon, 1997). For
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(a) Contrast sensitivity approximation

(b) Contrast masking approximation

Figure 4.14 Model approximations (solid curves) of psychophysical data (dots).

(a) Contrast sensitivity data for blue-yellow gratings from Mullen (1985). (b) Contrast

masking data for red-green gratings from Switkes et al. (1988).

Table 4.1 Filter weights

Level 0 1 2 3 4

W-B, LP 5.0 19.2 139.5 478.6 496.5

W-B, BP 112.8 141.0 179.4 205.7 120.0

R-G, LP 154.2 354.0 404.0 184.6 27.0

B-Y, LP 125.6 332.7 381.4 131.5 28.6
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the W-B channel, empirical data from several intra- and inter-channel

contrast masking experiments conducted by Foley (1994) are used. For the

R-G and B-Y channels, the parameters are adjusted to fit similar data

presented by Switkes et al. (1988), as shown in Figure 4.14(b) for the R-G

channel. The parameters obtained in this manner for all three color channels

are listed in Table 4.2 for a typical television viewing setup.

The choice of the exponent � in the pooling stage is less obvious. Different

exponents have been found to yield good results for different experiments

and implementations. � ¼ 2 corresponds to the ideal observer formalism

under independent Gaussian noise, which assumes that the observer has

complete knowledge of the stimuli and uses a matched filter for detection.

The sensor outputs can be considered as the mean values of noisy sensors.

Assuming an additive, independent, identically distributed Gaussian noise

with zero mean and a standard deviation independent of the sensor outputs, a

squared-error norm detection stage gives the probability that the ideal

observer detects the distortion (Teo and Heeger, 1994a). In a study of

subjective experiments with coding artifacts, � � 2 yielded the best results

(de Ridder, 1992). Intuitively, a few strong distortions may draw the viewer’s

attention more than many weak ones. This behavior can be emphasized with

larger exponents. In the PDM, pooling over channels and over pixels is

carried out with � ¼ 2, whereas � ¼ 4 is used for pooling over frames. This

combination was found to give good results in the fitting process.

The fitting results shown in Figures 4.14(a) and 4.14(b) demonstrate that

the overall quality of the fits to the above-mentioned empirical data is quite

good and close to the difference between measurements from different

observers. Most of the effects found in the psychophysical experiments are

captured by the model. However, two drawbacks of this modeling approach

should be noted. Because of the nonlinear nature of the model, the

parameters can only be determined by means of an iterative least-squares

fitting process, which is computationally intensive. Furthermore, the model is

not very flexible: once a good set of parameters has been found, it is only

valid for a particular viewing setup (i.e. viewing distance and resolution).

Table 4.2 Contrast gain control parameters

b k p q

W-B 6.968 0.29778 2.1158 2

R-G 21.904 0.11379 2.3447 2

B-Y 13.035 0.07712 2.2788 2
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4.2.7 Demonstration

The basketball sequence is used to briefly demonstrate the internal proces-

sing of the proposed distortion metric. This sequence contains a lot of spatial

detail, a considerable amount of fast motion (the players in the foreground),

and slow camera panning, which makes it an interesting sequence for a

spatio-temporal model.

The frame size of the sequence is 704
 576 pixels. It was encoded at a

bitrate of 4 Mb/s with the MPEG-2 encoder of the MPEG Software Simula-

tion Group.{ A sample frame, its encoded counterpart, and the pixel-wise

difference between them are shown in Figure 4.15. The W-B, R-G and B-Y

components resulting from the conversion to opponent color space are shown

in Figure 4.16. Note the emphasis of the ball in the R-G channel as well as

the yellow curved line on the floor in the B-Y channel. The W-B component

{The source code is available at http://www.mpeg.org/	tristan/MPEG/MSSG/

Figure 4.15 Sample frame from the basketball sequence. The reference, its encoded

counterpart, and the pixel-wise difference between them are shown.

Figure 4.16 The W-B, R-G and B-Y components resulting from the conversion to

opponent color space.
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looks different from the gray-level image in Figure 4.15 because the trans-

form coefficients differ and because of the gamma-correcting nonlinearity

that has been applied as part of the color space conversion.

The color space conversions are followed by the perceptual decomposi-

tion. The results of applying the temporal low-pass and band-pass filters to

the W-B channel are shown in Figure 4.17. As can be seen, the ball virtually

disappears in the low-pass channel, while it is clearly visible in the band-pass

channel. As mentioned before, the R-G and B-Y channels are subjected only

to the low-pass filter. The decomposition in the spatial domain increases the

total number of channels even further; only a small selection is shown in

Figure 4.18, namely the first, third and fifth level of the pyramid at an

orientation of 45� constructed from the low-pass filtered W-B channel. The

images are downsampled in the pyramid transform and have been upsampled

Figure 4.17 The temporally low-pass and band-pass filtered W-B channels.

Figure 4.18 Three levels at an orientation of 45� of the pyramid constructed from the

low-pass filtered W-B channel.
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to their original size in the figure. They show very well how different features

are emphasized in the different sub-bands, for example the lines on the floor

in the high-frequency channel, the players leaning to the left in the medium-

frequency channel, and the barricades around the field in the low-frequency

channel.

Figure 4.19 shows the output of the PDM as separate distortion maps for

each color and temporal channel. Note that these distortion maps also include

temporal aspects of the distortions, i.e. they depend on the neighboring

frames. It is evident that all four distortion maps are very different from the

simple pixel-wise difference between the reference frame and the encoded

frame shown in Figure 4.15. Most of the visible artifacts appear in the W-B

band-pass channel around the silhouettes of the players currently in motion.

The distortions in the color channels are small compared to the other

channels, but they have been normalized in the figures to reveal more spatial

detail. Note that the distortions in the R-G and B-Y channels show a distinct

block structure. This is due to the subsampling in the pyramid transform and

Figure 4.19 Distortion maps of the sample frame for the low-pass and band-pass W-B

channels, the R-G channel and the B-Y channel. The images are normalized to better

show the spatial structure; the absolute distortion values in the color channels are much

smaller than in the W-B channels.
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shows that the model correctly emphasizes low-frequency distortions in the

color channels. Compared to the pixel-wise frame difference shown in Figure

4.15, much less weight is given to the distortions in the top half of the frame,

where they are masked by the high spatial detail. Instead, the distortions of

the well-defined players moving on the relatively uniform playing field are

emphasized, which is in good agreement with human visual perception.

4.3 SUMMARY

Two models of different vision aspects were presented in this chapter:

� An isotropic local contrast measure was constructed from the combination

of analytic directional filter responses. The proposed definition is the first

omnidirectional, phase-independent measure of local contrast that can be

applied to natural images and corresponds very well to perceived contrast.

� A perceptual distortion metric (PDM) for digital color video was

described. It is based on a model of the human visual system, whose

design and components were discussed. The model takes into account

color perception, the multi-channel architecture of temporal and spatial

mechanisms, spatio-temporal contrast sensitivity, pattern masking and

channel interactions. The PDM was shown to accurately fit data from

psychophysical experiments on contrast sensitivity and pattern masking.

The metric’s output is consistent with human observation.

The performance of the PDM will now be analyzed by means of extensive

data from subjective experiments using natural images and sequences in

Chapter 5. The isotropic contrast will be combined with the PDM in

section 6.3 in the form of a sharpness measure to improve the accuracy of

the metric’s predictions.
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5
Metric Evaluation

I have had my results for a long time,

but I do not yet know how I am to arrive at them.

Carl Friedrich Gauss

Subjective experiments are necessary in order to evaluate models of human

vision, and subjective ratings form the benchmark for visual quality metrics.

In this chapter, the perceptual distortion metric (PDM) introduced in Chapter

4 is evaluated with the help of data from subjective experiments with natural

images and video. The test images and sequences as well as the experimental

procedures are presented, and the performance of the metric is discussed.

First the PDM is validated with respect to threshold data from natural

images. The remainder of this chapter is then devoted to analyses based on

data obtained in the framework of the Video Quality Experts Group (VQEG,

2000). The prediction performance of the PDM for numerous test sets is

analyzed in comparison to subjective ratings and to competing metrics.

Finally, various implementation choices for the different stages of the PDM

are evaluated, in particular the choice of the color space, the decomposition

filters, and the pooling algorithm.

5.1 STILL IMAGES

5.1.1 Test Images

The database used for the validation of the PDM with respect to still images

was generously provided by van den Branden Lambrecht and Farrell (1996).

Digital Video Quality - Vision Models and Metrics Stefan Winkler
# 2005 John Wiley & Sons, Ltd ISBN: 0-470-02404-6



It consists of distorted versions of a color image of 320� 400 pixels in size,

showing the face of a child surrounded by colorful balls (see Figure 5.1(a)).

To create the test images, the original was JPEG-encoded, and the coding

noise was determined in YUV space by computing the difference between

the original and the compressed image. Subsequently, the coding noise was

scaled by a factor ranging from �1 to 1 in the Y, U, and V channel separately

and was then added back to the original in order to obtain the distorted

images. A total of 20 test conditions were defined, which are listed in

Table 5.1, and the test series were created by varying the noise intensity

along specific directions in YUV space in this fashion (van den Branden

Lambrecht and Farrell, 1996). Examples of the resulting distortions are

shown in Figures 5.1(b) and 5.1(c).

5.1.2 Subjective Experiments

Psychophysical data was collected for two subjects (GEM and JEF) using a

QUEST procedure (Watson and Pelli, 1983). In forced-choice experiments,

the subjects were shown the original image together with two test images,

Figure 5.1 Original test image and two examples of distorted versions.

Table 5.1 Coding noise components and signs for all 20 test conditions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Y þ þ þ þ þ þ þ � � � � � � �
U þ þ þ þ þ � � � � � þ þ � �
V þ þ þ þ � þ � � � � þ � þ �
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one of which was the distorted image, and the other one the original. Subjects

had to identify the distorted image, and the percentage of correct answers

was recorded for varying noise intensities (van den Branden Lambrecht and

Farrell, 1996). The responses for two test conditions are shown in Figure 5.2.
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Figure 5.2 Percentage of correct answers versus noise amplitude and fitted psycho-

metric functions for subjects GEM (stars, dashed curve) and JEF (circles, solid curve) for

two test conditions. The dotted horizontal line indicates the detection threshold.

STILL IMAGES 105



Such data can be modeled by the psychometric function

PðCÞ ¼ 1� 0:5 e�ðx=�Þ� ; ð5:1Þ

where PðCÞ is the probability of a correct answer, and x is the stimulus

strength; � and � determine the midpoint and the slope of the function

(Nachmias, 1981). These two parameters are estimated from the psychophy-

sical data; the variable x represents the noise amplitude in this procedure.

The resulting function can be used to map the noise amplitude onto the

‘% correct’-scale. Figure 5.2 also shows the results obtained in such a

manner for two test conditions.

The detection threshold can now be determined from these data. Assuming

an ideal observer model as discussed in section 4.2.6, the detection threshold

can be defined as the observer detecting the distortion with a probability of

76%, which is virtually the same as the empirical 75%-threshold between

chance and perfection in forced-choice experiments with two alternatives.

This probability is indicated by the dotted horizontal line in Figure 5.2.

The detection thresholds and their 95% confidence intervals for subjects

GEM and JEF computed from the intersection of the estimated psychometric

functions with the 76%-line for all 20 test conditions are shown in Figure 5.3.

Even though some of the confidence intervals are quite large, the correlation

between the thresholds of the two subjects is evident.
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Figure 5.3 Detection thresholds of subject GEM versus subject JEF for all 20 test

conditions. The error bars indicate the corresponding 95% confidence intervals.

106 METRIC EVALUATION



5.1.3 Prediction Performance

For analyzing the performance of the perceptual distortion metric (PDM)

from section 4.2 with respect to still images, the components of the metric

pertaining to temporal aspects of vision, i.e. the temporal filters, are removed.

Furthermore, the PDM has to be tuned to contrast sensitivity and masking

data from psychophysical experiments with static stimuli.

Under certain assumptions for the ideal observer model (see section 4.2.6),

the squared-error norm is equal to one at detection threshold, where the ideal

observer is able to detect the distortion with a probability of 76% (Teo and

Heeger, 1994a). The output of the PDM can thus be used to derive a

threshold prediction by determining the noise amplitude at which the output

of the metric is equal to its threshold value (this is not possible with PSNR,

for example, as it does not have a predetermined value for the threshold of

visibility). The scatter plot of PDM threshold predictions versus the esti-

mated detection thresholds of the two subjects is shown in Figure 5.4. It can

be seen that the predictions of the metric are quite accurate for most of the

test conditions. The RMSE between the threshold predictions of the PDM

and the mean thresholds of the two subjects over all conditions is 0.07,

compared to an inter-subject RMSE of 0.1, which underlines the differences

between the two observers. The correlation between the PDM’s threshold
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Figure 5.4 Detection thresholds of subjects GEM (stars) and JEF (circles) versus PDM

predictions for all 20 test conditions. The error bars indicate the corresponding 95%

confidence intervals.
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predictions and the average subjective thresholds is around 0.87, which is

statistically equivalent to the inter-subject correlation. The threshold predic-

tions are within the 95% confidence interval of at least one subject for nearly

all test conditions. The remaining discrepancies can be explained by the fact

that the subjective data for some test conditions are relatively noisy (the data

shown in Figure 5.2 belong to the most reliable conditions), making it almost

impossible in certain cases to compute a reliable estimate of the detection

threshold. It should also be noted that while the range of distortions in this

test was rather wide, only one test image was used. For these reasons, the still

image evaluation presented in this section should only be regarded as a first

validation of the metric. Our main interest is the application of the PDM to

video, which is discussed in the remainder of this chapter.

5.2 VIDEO

5.2.1 Test Sequences

For evaluating the performance of the PDM with respect to video, experi-

mental data collected within the framework of the Video Quality Experts

Group (VQEG) is used. The PDM was one of the metrics submitted for

evaluation to the first phase of tests (refer to section 3.5.3 for an overview of

VQEG’s program). The sequences used by VQEG and their characteristics

are described here.

A set of 8-second scenes comprising both natural and computer-generated

scenes with different characteristics (e.g. spatial detail, color, motion) was

selected by independent labs. 10 scenes with a frame rate of 25 Hz and a

resolution of 720� 576 pixels as well as 10 scenes with a frame rate of

30 Hz and a resolution of 720� 486 pixels were created in the format

specified by ITU-R Rec. BT.601-5 (1995) for 4:2:2 component video. A

sample frame of each scene is shown in Figures 5.5 and 5.6. The scenes were

disclosed to the proponents only after the submission of their metrics.

The emphasis of the first phase of VQEG was out-of-service testing

(meaning that the full uncompressed reference sequence is available to the

metrics) of production- and distribution-class video. Accordingly, the test

conditions listed in Table 5.2 comprise mainly MPEG-2 encoded sequences

with different profiles, levels and other parameter variations, including

encoder concatenation, conversions between analog and digital video, and

transmission errors. In total, 20 scenes were encoded for 16 test conditions

each.
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Before the sequences were shown to subjective viewers or assessed by the

metrics, a normalization was carried out on all test sequences in order to

remove global temporal and spatial misalignments as well as global chroma

and luma gains and offsets (VQEG, 2000). This was required by some of the

metrics and could not be taken for granted because of the mixed analog and

digital processing in certain test conditions.

5.2.2 Subjective Experiments

For the subjective experiments, VQEG adhered to ITU-R Rec. BT.500-11

(2002). Viewing conditions and setup, assessment procedures, and analysis

Figure 5.5 VQEG 25-Hz test scenes.
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Figure 5.6 VQEG 30-Hz test scenes.

Table 5.2 VQEG test conditions

Number Codec Bitrate Comments

1 Betacam N/A 5 generations

2 MPEG-2 19-19-12Mb/s 3 generations

3 MPEG-2 50 Mb/s I-frames only,

7 generations

4 MPEG-2 19-19-12Mb/s 3 generations with

PAL/NTSC

5 MPEG-2 8-4.5 Mb/s 2 generations

6 MPEG-2 8 Mb/s Composite PAL/NTSC

7 MPEG-2 6 Mb/s

8 MPEG-2 4.5 Mb/s Composite PAL/NTSC

9 MPEG-2 3 Mb/s

10 MPEG-2 4.5 Mb/s

11 MPEG-2 3 Mb/s Transmission errors

12 MPEG-2 4.5 Mb/s Transmission errors

13 MPEG-2 2 Mb/s 3/4 resolution

14 MPEG-2 2 Mb/s 3/4 horizontal resolution

15 H.263 768 kb/s 1/2 resolution

16 H.263 1.5 Mb/s 1/2 resolution



methods were drawn from this recommendation.{ In particular, the Double

Stimulus Continuous Quality Scale (DSCQS) (see section 3.3.3) was used for

rating the sequences. The mean subjective rating differences between

reference and distorted sequences, also known as differential mean opinion

scores (DMOS), are used in the analyses that follow.

The subjective experiments were carried out in eight different laboratories.

Four labs ran the tests with the 50-Hz sequences, and the other four with the

60-Hz sequences. Furthermore, each lab ran two separate tests for low-

quality (conditions 8–16) and high-quality (conditions 1–9) sequences. The

viewing distance was fixed at five times screen height. A total of 287 non-

expert viewers participated in the experiments, and 25 830 individual ratings

were recorded. Post-screening of the subjective data was performed in

accordance with ITU-R Rec. BT.500-11 (2002) in order to discard unstable

viewers.

The distribution of the mean rating differences and the corresponding 95%

confidence intervals are shown in Figure 5.7. As can be seen, the quality

range is not covered very uniformly; instead there is a heavy emphasis on

low-distortion sequences (the median rating difference is 15). This has

important implications for the performance of the metrics, which will be

discussed below. The confidence intervals are very small (the median for the

95% confidence interval size is 3.6), which is due to the large number of

viewers in the subjective tests and the strict adherence to the specified

viewing conditions by each lab. For a more detailed discussion of the

subjective experiments and their results, the reader is referred to the

VQEG (2000) report.

5.2.3 Prediction Performance

The scatter plot of subjective DMOS versus PDM predictions is shown in

Figure 5.8. It can be seen that the PDM is able to predict the subjective

ratings well for most test cases. Several of its outliers belong to the lowest-

bitrate (H.263) sequences of the test. As the metric is based on a threshold

model of human vision, performance degradations for such clearly visible

distortions can be expected. A number of other outliers are due to a single

50-Hz scene with a lot of movement. They are probably due to inaccuracies

in the temporal filtering of the submitted version.

{See the VQEG subjective test plan at for details, http://www.vqeg.org/
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The DMOS-PDM plot should be compared with the scatter plot of DMOS

versus PSNR in Figure 5.9. Because PSNR measures ‘quality’ instead of

visual difference, the slope of the plot is negative. It can be observed that its

spread is generally wider than for the PDM.

To put these plots in perspective, they have to be considered in relation to

the reliability of subjective ratings. As discussed in section 3.3.2, perceived
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Figure 5.7 Distribution of differential mean opinion scores (a) and their 95%

confidence intervals (b) over all test sequences. The dotted vertical lines denote the

respective medians.
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visual quality is an inherently subjective measure and can only be described

statistically, i.e. by averaging over the opinions of a sufficiently large number of

observers. Therefore the question is also how well subjects agree on the quality

of a given image or video (this issue was also discussed in section 3.5.4).
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Figure 5.8 Perceived quality versus PDM predictions. The error bars indicate the 95%

confidence intervals of the subjective ratings (from S. Winkler et al. (2001), Vision and

video: Models and applications, in C. J. van den Branden Lambrecht (ed.), Vision Models

and Applications to Image and Video Processing, chap. 10, Kluwer Academic Publishers.

Copyright # 2001 Springer. Used with permission.).
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Figure 5.9 Perceived quality versus PSNR. The error bars indicate the 95% confidence

intervals of the subjective ratings.
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As mentioned above, the subjective experiments for VQEG were carried

out in eight different labs. This suggests taking a look at the agreement of

ratings between different labs. An example of such an inter-lab DMOS

scatter plot is shown in Figure 5.10. Although the confidence intervals are

larger due to the reduced number of subjects, there is a notable difference

between it and Figures 5.8 and 5.9 in that the data points come to lie very

close to a straight line.

These qualitative differences between the scatter plots can now be

quantified with the help of the performance attributes described in section

3.5.1. Figure 5.11 shows the correlations between PDM predictions and

subjective ratings over all sequences and for a number of subsets of test

sequences, namely the 50-Hz and 60-Hz scenes, the low- and high-quality

conditions as defined for the subjective experiments, the H.263 and non-

H.263 sequences (conditions 15 and 16), the sequences with and without

transmission errors (conditions 11 and 12), as well as the MPEG-only and

non-MPEG sequences (conditions 2, 5, 7, 9, 10, 13, 14). As can be seen, the

PDM can handle MPEG as well as non-MPEG kinds of distortions equally

well and also behaves well with respect to sequences with transmission

errors. Both the Pearson linear correlation and the Spearman rank-order

correlation for most of the subsets are around 0.8. As mentioned before, the

PDM performs worst for the H.263 sequences of the test.
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Figure 5.10 Example of inter-lab scatter plot of perceived quality. The error bars

indicate the corresponding 95% confidence intervals.
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Comparisons of the PDM with the prediction performance of PSNR and

the other metrics in the VQEG evaluation are given in Figure 5.12. Over all

test sequences, there is not much difference between the top-performing

metrics, which include the PDM, but also PSNR; in fact, their performance is

statistically equivalent. Both Pearson and Spearman correlation are very

close to 0.8 and go as high as 0.85 for certain subsets. The PDM does have

one of the lowest outlier ratios for all subsets and is thus one of the most

consistent metrics. The highest correlations are achieved by the PDM for the

60-Hz sequence set, for which the PDM outperforms all other metrics.

5.2.4 Discussion

Neither the PDM nor any of the other metrics were able to achieve the

reliability of subjective ratings in the VQEG FR-TV Phase I evaluation. A

surprise of this evaluation is probably the favorable prediction performance

of PSNR with respect to other, much more complex metrics. A number of

possible explanations can be given for this outcome. First, the range of

distortions in the test is quite wide. Most metrics, however, had been

designed for or tuned to a limited range (e.g. near threshold), so their

prediction performance over all test conditions is reduced in relation to

PSNR. Second, the data were collected for very specific viewing conditions.
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The PDM, for example, can adapt if these conditions are changed, whereas

PSNR cannot. Third, PSNR is much more likely to fail in cases where

distortions are not so ‘benignly’ and uniformly distributed among frames and

color channels. Finally, the rigorous normalization of the test sequences

with respect to alignment and luma/chroma gains or offsets may have given

an additional advantage to PSNR. This will be investigated in depth in

section 6.3 through different subjective experiments and test sequences.

While the Video Quality Experts Group needed to go through a second

round of tests for successful standardization (see section 3.5.3), the value of
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Figure 5.12 Comparison of the metrics in the VQEG evaluation with respect to three

performance attributes (see section 3.5.1) for different subsets of sequences (optimal: high

correlations, low outlier ratio). In every subset, each dot represents one of the ten

participating metrics. The PDM is additionally marked with a circle, and PSNR is denoted

with a star.
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VQEG’s first phase lies mainly in the creation of a framework for the reliable

evaluation of video quality metrics. Furthermore, a large number of sub-

jectively rated test sequences, which will also be used extensively in the

remainder of this book, have been collected and made publicly available.{

5.3 COMPONENT ANALYSIS

5.3.1 Dissecting the PDM

The above-mentioned VQEG effort and other comparative studies have

focused on evaluating the performance of entire video quality assessment

systems. Hardly any analyses of single components of visual quality metrics

have been published. Such an evaluation, which is important for achieving

further improvements in this domain, is the purpose of this section. A number

of implementation choices are analyzed that have to be made for most of

today’s quality assessment systems based on a vision model. These different

implementations are equivalent from the point of view of simple threshold

experiments, but can produce differing results for complex test sequences.

An example is the implementation of masking phenomena. Contrast gain

control models such as the one used in the PDM (see section 4.2.4) have

become quite popular in recent metrics. However, these models can be rather

awkward to use in the general case, because they require a computation-

intensive parameter fit for every change in the setup. Simpler models such as

the so-called nonlinear transducer modelz are often more ‘user-friendly’, but

are also less powerful. These and other models of spatial masking are

discussed and compared by Klein et al. (1997) and Nadenau et al. (2002).

Another aspect of interest is the inclusion of contrast computation.

Contrast is a relatively simple concept, but for complex stimuli a multitude

of different mathematical contrast definitions have been proposed (see

section 4.1.1). The importance of a local measure of contrast for natural

images was shown in section 4.1, but which definition and which filter

combination should be used to compute it?

Within the scope of this book, only a limited number of components can be

investigated. Using the experimental data from the VQEG effort described

above, the color space conversion stage, the perceptual decomposition, and

{See http://www.vqeg.org/
zThis three-parameter model divides the masking curve into a threshold range, where the target

detection threshold is independent of masker contrast, and a masking range, where it grows with a

certain power of the masker contrast.
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the pooling and detection stage of the PDM (see Figure 4.6) are analyzed by

comparing a number of different color spaces, decomposition filters, and

some commonly used pooling algorithms in the following sections (Winkler,

2000). A similar evaluation of decomposition and pooling methods for an

image quality metric was carried out recently by Fontaine et al. (2004).

5.3.2 Color Space

As discussed in section 4.2.2, the color processing in the PDM is based on an

opponent color space proposed by Poirson and Wandell (1993, 1996). This

particular color space was designed to separate color perception from pattern

sensitivity, which has been considered an advantage for the modular design

of the metric. However, it was derived from color-matching experiments and

does not guarantee the perceptual uniformity of color differences, which is

important for visual quality metrics. Color spaces such as CIE L�a�b� and

CIE L�u�v� on the other hand (see Appendix for definitions), which have

been used successfully in other metrics, were designed for color difference

measurements, but lack pattern–color separability. Even simple YUV=YCBCR

implements the opponent-color idea (Y encodes luminance, CB the difference

between the blue primary and luminance, and CR the difference between the

red primary and luminance) and provides the advantage of requiring no

conversions from the digital component video input material (see, for

example, Poynton (1996) for details about this color space), but it was not

designed for measuring perceptual color differences.

The above-mentioned color spaces are similar in that they are all based on

color differences. Therefore, they can be used interchangeably in the PDM

by doing the respective color space conversion in the first module and

ensuring that the threshold behavior of the metric does not change. In

addition to evaluating the different color spaces, the full-color version of

each implementation is also compared with its luminance-only version.

The results of this evaluation using the VQEG test sequences (see section

5.2.1) are shown in Figure 5.13. As can be seen, the differences in correlation

are quite significant. Common to all color spaces is the fact that the

additional consideration of the color components leads to a performance

increase over the luminance-only version, although this improvement is not

very large. In fact, the slight increases may not justify the double computa-

tional load imposed by the full-color PDM. However, one has to bear in mind

that under most circumstances video encoders are ‘good-natured’ and

distribute distortions more or less equally between the three color channels,

therefore a result like this can be expected. Certain conditions with high
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color saturation or unusually large distortions in the color channels may well

be overlooked by a simple luminance metric, though.

Component video YCBCR exhibits the worst performance of the group.

This is unfortunate, because it is the color space of the digital video input, so

no further conversion is required. However, the conversions from YCBCR to

the other color spaces incur only a relatively small penalty on the total

computation time (on the order of a few percent) despite the nonlinearities

involved. Furthermore, it is interesting to note that both CIE L�a�b� and CIE

L�u�v� slightly outperform the Poirson–Wandell opponent color space (WB/

RG/BY) in the PDM. This may be due to the better incorporation of

perceived lightness and perceptual uniformity in these color spaces. The

Poirson–Wandell opponent color space was chosen in the PDM because of its

design for optimal pattern–color separability, which was supposed to facil-

itate the implementation of separate contrast sensitivity for each color

channel. In the evaluation of natural video sequences, however, it turns out

that this particular feature may only be of minor importance.

5.3.3 Decomposition Filters

Following the multi-channel theory of vision (see section 2.7), the PDM

implements a decomposition of the input into a number of channels based

on the spatio-temporal mechanisms in the visual system. As discussed in
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color spaces. PSNR is shown for comparison.
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section 4.2.3, this perceptual decomposition is performed first in the temporal

and then in the spatial domain.

First the temporal decomposition stage is investigated (see section 4.2.3).

It was found that the specific filter types and lengths have no significant

impact on prediction accuracy. Exchanging IIR filters with linear-phase FIR

filters yields virtually identical PDM predictions. The approximation accu-

racy of the temporal mechanisms by the filters does not have a major

influence, either. In fact, IIR filters with 2 poles and 2 zeros for the sustained

mechanism and 4 poles and 4 zeros for the transient mechanism as well as

FIR filters with 5 and 7 taps for the sustained and transient mechanism,

respectively, leave the predictions of the PDM practically unchanged. This

permits a further reduction of the delay of the PDM response. Finally, even

the removal of the band-pass filter for the transient mechanism only reduces

the correlations by a few percent.

The spatial decomposition in the PDM is taken care of by the steerable

pyramid transform (see section 4.2.3). Many other filters have been proposed

as approximations to the decomposition of visual information taking place

in the human visual system, including Gabor filters (van den Branden

Lambrecht and Verscheure, 1996), the Cortex transform (Daly, 1993), the

DCT (Watson, 1998), and wavelets (Bolin and Meyer, 1999; Bradley, 1999;

Lai and Kuo, 2000). We have found that the exact shape of the filters is not of

paramount importance, but the goal here is also to obtain a good trade-off

between implementation complexity, flexibility, and prediction accuracy. For

use within a vision model, the steerable pyramid provides the advantage of

rotation invariance, and it minimizes the amount of aliasing in the sub-bands.

In the PDM, the basis filters have octave bandwidth and octave spacing; five

sub-band levels with four orientation bands each plus one low-pass band

are computed in each of the three color channels. Reduction or increase of

the number of sub-band levels to four or six, respectively, does not lead to

noticeable changes in the metric’s prediction performance.

5.3.4 Pooling Algorithm

It is believed that the information represented in various channels of the

primary visual cortex is integrated in higher-level areas of the brain. This

process can be simulated by gathering the data from these channels accord-

ing to rules of probability or vector summation, also known as pooling

(Quick, 1974). However, little is known about the nature of the actual

integration in the brain, and pooling mechanisms remain one of the most

debated and uncertain aspects of vision modeling.
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As discussed in section 4.2.5, mechanism responses can be combined by

means of vector summation (also known as Minkowski summation or Lp-

norm) using equation (4.29). Different exponents � in this equation have

been found to yield good results for different experiments and implementa-

tions. � ¼ 2 corresponds to the ideal observer formalism under independent

Gaussian noise, which assumes that the observer has complete knowledge of

the stimuli and uses a matched filter for detection (Teo and Heeger, 1994a).

In a study of subjective experiments with coding artifacts, � ¼ 2 was found

to give good results (de Ridder, 1992). Intuitively, a few high distortions may

draw the viewer’s attention more than many lower ones. This behavior can be

emphasized with higher exponents, which have been used in several other

vision models, for example � ¼ 4 (van den Branden Lambrecht, 1996b). The

best fit of a contrast gain control model to masking data was achieved with

� ¼ 5 (Watson and Solomon, 1997).

In the PDM, pooling over channels and pixel locations is carried out with

� ¼ 2, whereas � ¼ 4 is used for pooling over frames. We take a closer look

at the latter part here. First, the temporal pooling exponent is varied between

0.1 and 6, and the correlations of PDM and subjective ratings are computed

for the same set of sequences as in section 5.3.2. As can be seen from Figure

5.14(a), the maximum Pearson correlation rP ¼ 0:857 is obtained at � ¼ 2:9,
and the maximum Spearman correlation rS ¼ 0:791 at � ¼ 2:2 (for compar-

ison, the corresponding correlations for PSNR are rP ¼ 0:72 and rS ¼ 0:74).
However, neither of the two peaks is very distinct. This result may be

explained by the fact that the distortions are distributed quite uniformly over

time for the majority of the test sequences, so that the individual predictions

computed with � ¼ 0:1 and � ¼ 6 differ by less than 15%.

As an alternative, the distribution of ratings over frames can be used

statistically to derive an overall rating. A simple method is to take the

distortion rating that separates the lowest 80% of frame ratings from the

highest 20%, for example. It can be argued that such a procedure emphasizes

high distortions which are annoying to the viewer no matter how good the

quality of the rest of the sequence is. Again, however, the specific histogram

threshold chosen is rather arbitrary. Figure 5.14(b) shows the correlations

computed for different values of this threshold. Here the influence is much

more pronounced; the maximum Pearson correlation is obtained for thresh-

olds between 55% and 75%, and the maximum Spearman correlation for

thresholds between 45% and 65%, leading to the conclusion that a threshold

of around 60% is the best choice overall for this method.

In any case, the pooling operation need not be carried out over all pixels in

the entire sequence or frame. In order to take into account the focus of
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attention of observers, for example, pooling can be carried out separately for

spatio-temporal blocks of the sequence that cover roughly 100 milliseconds

and two degrees of visual angle each (van den Branden Lambrecht and

Verscheure, 1996). Alternatively, the distortion can be computed locally for

every pixel, yielding perceptual distortion maps for better visualization of

the temporal and spatial distribution of distortions, as demonstrated in
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Figure 4.19. Such a distortion map can help the expert to locate and identify

problems in the processing chain or shortcomings of an encoder, for

example. This can be more useful and more reliable than a global measure

in many quality assessment applications.

5.4 SUMMARY

The perceptual distortion metric (PDM) introduced in Chapter 4 was

evaluated using still images and video sequences:

� First, the PDM has been validated using threshold data for color images,

where its prediction performance is very close to the differences between

subjects.

� With respect to video, the PDM has been shown to perform well over the

wide range of scenes and test conditions from the VQEG evaluation.

While its prediction performance is equivalent or even superior to other

advanced video quality metrics, depending on the sequences considered,

the PDM does not yet achieve the reliability of subjective ratings.

� The analysis of the different components of the PDM revealed that visual

quality metrics which are essentially equivalent at the threshold level can

exhibit significant differences in prediction performance for complex

sequences, depending on the implementation choices made for the color

space and the pooling algorithm used in the underlying vision model. The

design of the decomposition filters on the other hand only has a negligible

influence on the prediction accuracy.

In the following chapter, metric extensions will be discussed in an attempt

to overcome the limitations of the PDM and other low-level vision-based

distortion metrics and to improve their prediction performance.
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6
Metric Extensions

The purpose of models is not to fit the data but to sharpen the questions.

Samuel Karlin

Several extensions of the PDM are explored in this chapter.

The first is the evaluation of blocking artifacts. The PDM is combined with

an algorithm for blocking region segmentation to predict the perceived

degree of blocking distortion. The prediction performance of the resulting

perceptual blocking distortion metric (PBDM) is analyzed using data from

subjective experiments on blockiness.

The second is the combination of the PDM with object segmentation. The

necessary modifications of the metric are outlined, and the performance of

the segmentation-supported PDM is evaluated using sequences on which face

segmentation was performed.

Finally, the addition of attributes specifically related to visual quality

instead of just visual fidelity are investigated. Sharpness and colorfulness are

identified among these attributes and are quantified through the previously

defined isotropic local contrast measure and the distribution of chroma in the

sequence, respectively. The benefits of using these attributes are demon-

strated with the help of additional test sequences and subjective experiments.

6.1 BLOCKING ARTIFACTS

6.1.1 Perceptual Blocking Distortion Metric

Some applications require more specific quality indicators than an overall

rating or a visual distortion map. For instance, it can be useful to assess the

Digital Video Quality - Vision Models and Metrics Stefan Winkler
# 2005 John Wiley & Sons, Ltd ISBN: 0-470-02404-6



quality of certain image features such as contours, textures, blocking

artifacts, or motion rendition (van den Branden Lambrecht, 1996b). Such

specific quality ratings can be helpful in testing and fine-tuning encoders, for

example. In particular, compression artifacts (see section 3.2.1) such as

blockiness, ringing, or blur deserve a closer investigation. It is of interest to

measure the perceived distortion caused by these different types of artifacts

and to determine their influence on the overall quality degradation. Due to

the popularity of the MPEG standard in digital video compression (see

section 3.1.4), blocking artifacts are of particular importance. So far,

however, metrics for blocking artifacts have focused mainly on still images

(Miyahara and Kotani, 1985; Karunasekera and Kingsbury, 1995; Fränti,

1998).

Based on a modified version of the NVFM (Lindh and van den Branden

Lambrecht, 1996) and the PDM (see section 4.2), a perceptual blocking

distortion metric (PBDM) for digital video is proposed (Yu et al., 2002). The

underlying vision model has been simplified in that it works exclusively with

luminance information (the chroma channels are disregarded), and the

temporal part of the perceptual decomposition employs only one low-pass

filter for the sustained mechanism (the transient mechanism is ignored).

Furthermore, the mean value is subtracted from each channel after the

temporal filtering. Another important difference is that no threshold data

from psychophysical experiments are used to parameterize the model.

Instead, the filter weights and contrast gain control parameters (see sec-

tion 4.2.6) are chosen in a fitting process so as to maximize the Spearman

rank-order correlation with part of the subjective data from the VQEG

experiments (see section 5.2.2).

The PBDM relies on the fact that blocking artifacts, like other types of

distortions, are dominant only in certain areas of a frame. These regions

largely determine perceived blockiness. Therefore, the estimation of the

distortion in these regions can serve as a measure of blocking artifacts. Based

on this observation, the PBDM employs a segmentation stage to find regions

where blocking artifacts dominate (see Figure 6.1).

Blocking region segmentation is carried out in the high-pass band of the

steerable pyramid decomposition, where blocking artifacts are most pro-

nounced. It consists of several steps (Yu et al., 2002): First, horizontal and

vertical edges are detected by looking for the specific pattern that block

edges produce in the high-pass band. This edge detection is conducted

both in the reference and the distorted sequence, and edges that exist in

both are removed, because they must be due to the scene content. Likewise,

edges shorter than 8 pixels are removed because of the DCT block size of
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8�8 pixels in MPEG, as are immediately adjacent parallel edges. From this

edge information, a blocking region map is created by extending the detected

edges to the blocks most likely responsible for them. Finally, a ringing region

map is created by looking for high-contrast edges in the reference sequence,

which is then excluded from the blocking region map so that the final

blocking region map represents only the areas in the sequence where

blocking artifacts dominate. These segmentation steps make use of three

thresholds, which are adjusted empirically such that the resulting blocking

regions coincide with subjective assessment.

6.1.2 Test Sequences

Ten 60-Hz test scenes with a resolution of 720�486 pixels were selected

from both the set described in ANSI-T1.801.01 (1995) and the VQEG test set

(see section 5.2.1). The five ANSI scenes include disgal (a woman, mainly

head and shoulders), smity1 (a man in front of a more detailed background),

5row1 (a group of people at a table), inspec (a woman giving a presentation),

and ftball (a high-motion football scene); they comprise 360 frames

(12 seconds) each. The five VQEG scenes are the first five of Figure 5.6.

Each of the ANSI scenes was compressed with the MPEG-2 encoder of

the MPEG Software Simulation Group (MSSG){ at bitrates of 768 kb/s,

1.4 Mb/s, 2 Mb/s and 3Mb/s (the ftball scene was compressed at 5 Mb/s

instead of 768 kb/s). For the VQEG scenes, the VQEG test conditions 9

(MPEG-2 at 3 Mb/s) and 14 (MPEG-2 at 2 Mb/s, 3/4 horizontal resolution)

from Table 5.2 were used. This yielded a total of 30 test sequences.

Reference
Sequence

Distorted
Sequence

Perceptual
Decomposition

Perceptual
Decomposition

Detection
& Pooling

Blocking
Distortion
Measure

Contrast
Gain Control

Contrast
Gain Control

Blocking Region
Segmentation

Figure 6.1 Block diagram of the perceptual blocking distortion metric (PBDM).

{The source code is available at http://www.mpeg.org/home/�tristan/MPEG/MSSG/
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6.1.3 Subjective Experiments

Five subjects with normal or corrected-to-normal vision participated in the

experiments (Yu et al., 2002). They were asked to evaluate only the degree of

blockiness in the sequence. Because of this specialized task, expert observers

were chosen. Sequences were displayed on a 20-inch monitor, and the

viewing distance was five times the display height.
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Figure 6.2 Perceived blocking impairment versus PBDM predictions (a) and PSNR-

based ratings (b).
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The testing methodology adopted for the subjective experiments was

variant II of the Double Stimulus Impairment Scale (DSIS-II) as defined in

ITU-R Rec. BT.500-11 (2002). Its rating scale is the same as for the regular

DSIS method, shown in Figure 3.8(b); the main difference is that the

reference and the test sequence are repeated.

6.1.4 Prediction Performance

The scatter plot of perceived blocking distortion versus PBDM predictions is

shown in Figure 6.2(a). The five-step DSIS rating scale was transformed to

the numerical range from 1 (very annoying) to 5 (imperceptible) to compute

the subjective mean opinion scores (MOS) on blocking, and the PBDM

predictions � were transformed into the same range using the empirical

formula 5��0:6. As can be seen, there is a very good agreement between

the metric’s predictions and the subjective blocking ratings. The correlations

are rP ¼ 0:96 and rS ¼ 0:94 (see section 3.5.1), which is as good as the

agreement between different groups of observers discussed in section 5.2.3.

It is also interesting to note that the commercial codecs used to create the

VQEG test sequences are much better at minimizing blocking artifacts than

the MSSG codec used for the ANSI sequences, but they produce noticeable

blurring and ringing. The results show that the PBDM can successfully

distinguish blocking artifacts from these other types of distortions.

For comparison, the scatter plot of perceived blocking distortion versus

transformed PSNR-based ratings is shown in Figure 6.2(b). Here, the

correlations are much worse, with rP ¼ 0:49 and rS ¼ 0:51. PSNR is thus

unsuitable for measuring blocking artifacts, whereas the proposed perceptual

blocking distortion metric can be considered a very reliable predictor of

perceived blockiness.

6.2 OBJECT SEGMENTATION

While the previous sections were concerned mostly with lower-level aspects

of vision, the cognitive behavior of people when watching video cannot be

ignored in advanced quality metrics. However, cognitive behavior may differ

greatly between individuals and situations, which makes it very difficult to

generalize. Nevertheless, two important components should be pointed out,

namely the shift of the focus of attention and the tracking of moving objects.

When watching video, we focus on particular areas of the scene. Studies

have shown that the direction of gaze is not completely idiosyncratic to

individual viewers. Instead, a significant number of viewers will focus on the
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same regions of a scene (Stelmach et al., 1991; Stelmach and Tam, 1994;

Endo et al., 1994). Naturally, this focus of attention is highly scene-

dependent. Maeder et al. (1996) as well as Osberger and Rohaly (2001)

proposed constructing an importance map for the sequence as a prediction

for the focus of attention, taking into account various perceptual factors such

as edge strength, texture energy, contrast, color variation, homogeneity, etc.

In a similar manner, viewers may also track specific moving objects in a

scene. In fact, motion tends to attract the viewers’ attention. Now, the spatial

acuity of the human visual system depends on the velocity of the image on

the retina: as the retinal image velocity increases, spatial acuity decreases.

The visual system addresses this problem by tracking moving objects with

smooth-pursuit eye movements, which minimizes retinal image velocity and

keeps the object of interest on the fovea. Smooth pursuit works well even for

high velocities, but it is impeded by large accelerations and unpredictable

motion (Eckert and Buchsbaum, 1993; Hearty, 1993). On the other hand,

tracking a particular movement will reduce the spatial acuity for the back-

ground and objects moving in different directions or at different velocities.

An appropriate adjustment of the spatio-temporal CSF as outlined in sec-

tion 2.4.2 to account for some of these sensitivity changes can be considered

as a first step in modeling such phenomena (Daly, 1998; Westen et al., 1997).

Among the objects attracting most of our attention are people and

especially human faces. If there are faces of people in a scene, we will

look at them immediately. Furthermore, because of our familiarity with

people’s faces, we are very sensitive to distortions or artifacts occurring in

them. The importance of faces is also underlined by a study of image appeal

in consumer photography (Savakis et al., 2000). People in the picture and

their facial expressions are among the most important criteria for image

selection. Furthermore, bringing out the structure and complexion of faces

has been mentioned as an essential aspect of photography (Andrei, 1998,

personal communication).

For these reasons, it makes sense to pay special attention to faces in visual

quality assessment. Therefore, the combination of the PDM with face

segmentation is explored. There exist relatively robust algorithms for face

detection and segmentation (Gu and Bone, 1999), which are based on the fact

that human skin colors are confined to a narrow region in the chrominance

(CB;CR) plane, and their distribution is quite stable (Yang et al., 1998).

This greatly facilitates the detection of faces in images and sequences. It

can then be followed by other object segmentation and tracking techniques

to obtain reliable results across frames (Salembier and Marqués, 1999;

Ziliani, 2000).
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To take into account object segmentation with the PDM, a segmentation

stage is added to find regions of interest, in this case faces. The output of the

segmentation stage then guides the pooling process. The block diagram of

the resulting segmentation-supported PDM is shown in Figure 6.3.

6.2.1 Test Sequences

Three test scenes shown in Figure 6.4 were selected. All contain faces at

various scales and with various amounts of motion. Because of the small

number of scenes, face segmentation was carried out by hand. For fries and

harp, all 16 conditions from the VQEG experiments listed in Table 5.2 as

well as the 8 conditions listed in Table 6.1 from the experiments described in

section 6.3.4 were used. For susie, only the VQEG conditions were used,

because this scene was not included in the other experiments. This yielded a

total of 64 test sequences.

6.2.2 Prediction Performance

To evaluate the improvement of the prediction performance due to face

segmentation, the ratings of the regular full-frame PDM are compared with

those of the segmentation-supported PDM for the selection of test sequences

described above in section 6.2.1. Using the regular PDM, the overall correla-

tions for these sequences are rP ¼ 0:82 and rS ¼ 0:79 (see section 3.5.1).

When the segmentation of the sequences is added, the correlations rise to

rP ¼ 0:87 and rS ¼ 0:85. The segmentation leads to a better agreement

between the metric’s predictions and the subjective ratings. As expected, the

improvement is most noticeable for susie, in which the face covers a large

part of the scene. Segmentation is least beneficial for harp, where the faces

Table 6.1 Test conditions

Number Codec Version Bitrate Method

1 Intel Indeo Video 3.2 2 Mb/s Vector quantization

2 Intel Indeo Video 4.5 2 Mb/s Hybrid wavelet

3 Intel Indeo Video 5.11 1 Mb/s Wavelet transform

4 Intel Indeo Video 5.11 2 Mb/s Wavelet transform

5 MSSG MPEG-2 1.2 2 Mb/s MC-DCT

6 Microsoft MPEG-4 2 1 Mb/s MC-DCT

7 Microsoft MPEG-4 2 2 Mb/s MC-DCT

8 Sorenson Video 2.11 2 Mb/s Vector quantization
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are quite small and the strong distortions of the smooth background intro-

duced by some test conditions are more annoying to viewers than in other

regions. Obviously, face segmentation alone is not sufficient for improving

the accuracy of PDM predictions in all cases, but the results show that it is

an important aspect.

6.3 IMAGE APPEAL

6.3.1 Background

As has become evident in Chapter 5, comparing a distorted sequence with its

original to derive a measure of quality has its limits with respect to prediction

accuracy, even if sophisticated and highly tuned models of the human visual

system are used. It was shown also in section 5.3 that further fine-tuning of

such metrics or their components for specific applications can improve the

prediction performance only slightly. Human observers, on the other hand,

seem to require no such ‘tuning’, yet are able to give much more reliable

quality ratings.

An important shortcoming of existing metrics is that they measure image

fidelity instead of perceived quality. This difference was discussed in section

3.3.2. The accuracy of the reproduction of the original on the display, even

considering the characteristics of the human visual system, is not the only

indicator of quality.

In an attempt to overcome the limitations that have been reached by

fidelity metrics, we therefore turn to more subjective attributes of image

quality, which we refer to as image appeal for better distinction. In a study of

image appeal in consumer photography, Savakis et al. (2000) compiled a list

of positive and negative influences in the ranking of pictures based on

experiments with human observers. Their results show that the most

Figure 6.4 Segmentation test scenes.
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important attributes for image selection are related to scene composition

and location as well as the people in the picture and their expressions. Due to

the high semantic level of these attributes, it is an extremely difficult and

delicate task to take them into account with a general metric, however (see

section 6.2).

Fortunately, a number of attributes that greatly influence the subjects’

ranking decisions can be measured physically. In particular, colorful, well-lit,

sharp pictures with high contrasts are considered attractive, whereas low-

quality, dark and blurry pictures with low contrasts are often rejected

(Savakis et al., 2000). The depth of field, i.e. the separation between subject

and background, and the range of colors and shades have also been

mentioned as contributing factors (Chiossone, 1998, personal communica-

tion). The importance of high contrast and sharpness as well as colorfulness

and saturation for good pictures has been confirmed by studies on naturalness

(de Ridder et al., 1995; Yendrikhovskij et al., 1998) and has also been

emphasized by professional photographers (Andrei, 1998, personal commu-

nication; Marchand, 1999, personal communication).

6.3.2 Quantifying Image Appeal

Based on the above-mentioned studies, sharpness and colorfulness are among

the subjective attributes with the most significant influence on perceived

quality. In order to work with these attributes, it is necessary to define them

as measurable quantities.

6.3.2.1 Sharpness

For the computation of sharpness, we propose the use of a local contrast

measure. The reasoning is that sharp images exhibit high contrasts, whereas

blurring leads to a decrease in contrast. We employ the isotropic local

contrast measure from section 4.1, which is based on the combination of

analytic oriented filter responses. Because of its design properties, it is a

natural measure of contrast in complex images.

For the computation of the isotropic local contrast according to equa-

tion (4.11), the filters described in section 4.1.4 are used. The remaining

parameter is the level of the pyramidal decomposition. The lowest level is

chosen here, because it contains the high-frequency information, which

intuitively appears most suitable for the representation of sharpness. An

example of the resulting isotropic local contrast is shown in Figure 6.5(a).
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To reduce the contrast values at every pixel of a sequence to a single

number, pooling is carried out similar to the PDM (see section 4.2.5) by

means of an Lp-norm. Several different exponents were tried, but best results

were achieved with p ¼ 1, i.e. plain averaging. Therefore, the sharpness

rating of a sequence is defined as the mean isotropic local contrast over the

entire sequence:

Rsharp ¼ �CI
0
: ð6:1Þ

6.3.2.2 Colorfulness

Colorfulness depends on two factors (Fedorovskaya et al., 1997): the first

factor is the average distance of image colors from a neutral gray, which may

be modeled as the average chroma. The second factor is the distance between

individual colors in the image, which may be modeled as the spread of the

distribution of chroma values. If lightness differences between images are

neglected, chroma can be replaced by saturation.

Conceptually, both saturation and chroma describe the purity of colors.

Saturation is the colorfulness of an area judged in relation to its own

brightness, and chroma is the colorfulness of an area judged in relation to

the brightness of a similarly illuminated white area (Hunt, 1995). CIE L�u�v�

color space (see Appendix) permits the computation of both measures.

Saturation is defined using the u0 and v0 components from equation (4.3):

Suv ¼ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0 � u00Þ2 þ ðv0 � v00Þ2

q
; ð6:2Þ

and chroma is defined as:

C�
uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�2 þ v�2

p
¼ SuvL

�: ð6:3Þ
These quantities are shown for a sample frame in Figures 6.5(b) and 6.5(c).

Figure 6.5 Luminance contrast CI
0 (a), saturation Suv (b) and chroma C�

uv (c) for a frame

of the mobile scene (cf. Figure 6.7(a)).
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Several other color spaces with a saturation component exist. Examples

are HSI (hue, saturation, intensity) (Gonzalez and Woods, 1992), HSV (hue,

saturation, value) and HLS (hue, lightness, saturation) (Foley et al., 1992).

The saturation components in these color spaces are computed as

follows:

SHSI ¼ 1� 3minðR;G;BÞ
Rþ Gþ B

; ð6:4Þ

SHSV ¼ maxðR;G;BÞ �minðR;G;BÞ
maxðR;G;BÞ ; ð6:5Þ

SHLS ¼
maxðR;G;BÞ�minðR;G;BÞ

2L
; if 0 � L � 0:5;

maxðR;G;BÞ�minðR;G;BÞ
2ð1�LÞ ; if 0:5 � L � 1;

8<
: ð6:6Þ

where lightness L ¼ ½maxðR;G;BÞ þminðR;G;BÞ�=2. The saturation of pure
black is defined as S ¼ 0 in all three color spaces, and S ¼ 1 for pure colors

red, green, blue, magenta, yellow, cyan.

SHSI , SHSV , and SHLS are very similar and easy to compute. Chroma could

also be defined as the product of saturation and lightness as in equation (6.3).

However, these color spaces suffer from the fact that they are not percep-

tually uniform, and that they exhibit a singularity for black. Their saturation

components were also used as a measure of colorfulness in the experiments

described below, but the results obtained were generally better with satura-

tion and chroma based on CIE L�u�v� color space from equations (6.2)

and (6.3).

The best overall colorfulness ratings are obtained using the distribution of

chroma values. This significantly reduces the number of outliers. According

to the dependence of colorfulness on the chroma distribution parameters

discussed above, the colorfulness rating of a sequence is thus defined as the

sum of mean and standard deviation of chroma values over the entire

sequence as suggested by Yendrikhovskij et al. (1998):

Rcolor ¼ �C� þ �C� : ð6:7Þ

The underlying premise for using the sharpness and colorfulness ratings

defined above as additional quality indicators is that a reduction of sharpness

or colorfulness from the reference to the distorted sequence corresponds to a

decrease in perceived quality. In other words, these differences �sharp ¼
Rsharp � ~RRsharp and �color ¼ Rcolor � ~RRcolor may be combined with the HVS-
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based distortion �PDM for potentially more accurate predictions of overall

visual quality. The benefits of such a combination will be investigated

below.

A great advantage of these image appeal attributes is that they can be

computed on the reference and the distorted sequences independently. This

means that it is not necessary to have the entire reference sequence available

at the testing site, but only its sharpness and colorfulness ratings, which can

easily be transmitted together with the video data. They can thus be

considered reduced-reference features.

6.3.3 Results with VQEG Data

The sharpness and colorfulness ratings were computed for the VQEG test

sequences described in section 5.2.1. The results are compared with the

overall subjective quality ratings from section 5.2.2 in Figure 6.6. As can be

seen, there exists a correlation between the sharpness rating differences and

the subjective quality ratings (rP ¼ 0:63, rS ¼ 0:58). The negative outliers

are due almost exclusively to condition 1 (Betacam), which introduces noise

and strong color artifacts, leading to an unusual increase of the sharpness

rating.

Keep in mind that the sharpness rating was not conceived as an indepen-

dent quality measure, but has to be combined with a fidelity metric such as

the perceptual distortion metric (PDM) from section 4.2. This combination is

implemented as �PDM þ wmaxð0;�sharpÞ, so that negative differences are

excluded, and the sharpness ratings are scaled to a range comparable to the

PDM predictions. Using the optimum w ¼ 486, the correlation with sub-

jective quality ratings increases by 5% compared to PDM-only predictions

(see final results in Figure 6.13). This shows that the additional consideration

of sharpness by means of a contrast measure improves the prediction

performance of the PDM.

The colorfulness rating differences, on the other hand, are negative for

most sequences, which is counter-intuitive and seems to contradict the

above-mentioned premise. Furthermore, they exhibit no correlation at all

with subjective quality ratings (see Figure 6.6(b)), not even in combination

with the PDM predictions. This can be explained by the rigorous normal-

ization with respect to global chroma and luma gains and offsets that was

carried out on the VQEG test sequences prior to the experiments (see

section 5.2.1). When this normalization is reversed, the colorfulness rating

differences become positive for most sequences, as expected. However, the

normalization cannot be undone for the VQEG subjective ratings, which
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were collected using the normalized sequences. Therefore, no conclusion

about the effectiveness of the colorfulness rating can be drawn from the

VQEG data. Additional subjective experiments with unnormalized test

sequences are necessary, which are described in the following.
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Figure 6.6 Perceived quality versus sharpness (a) and colorfulness (b) rating differences.
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6.3.4 Test Sequences

For evaluating the usefulness of sharpness and colorfulness ratings, sub-

jective experiments were conducted with the test scenes shown in Figure 6.7

and the test conditions listed in Table 6.1.

The nine test scenes were selected from the set of VQEG scenes (see

section 5.2.2) to include spatial detail, saturated colors, motion, and synthetic

sequences. They are 8 seconds long with a frame rate of 25 Hz. They were

de-interlaced and subsampled from the interlaced ITU-R Rec. BT.601-5

(2000) format to a resolution of 360� 288 pixels per frame for progressive

display. It should be noted that this led to slight aliasing artifacts in some of

the scenes. Because of the DSCQS testing methodology used (see sec-

tion 6.3.5), this should not affect the results of the experiment, however.

Figure 6.7 Test scenes.
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The codecs selected for creating the test sequences (see Table 6.1) are all

implemented in software. Except for the MPEG-2 codec of the MPEG

Software Simulation Group (MSSG),{ they are DirectShow and QuickTime

codecs. In contrast to the VQEG test conditions with a heavy focus on MPEG

(see Table 5.2), these codecs use several different compression methods.

Adobe Premierez was used for interfacing with the Windows codecs. A

keyframe (I-frame) interval of 25 frames (1 second) was chosen. Two of the

six codecs were operated at two different bitrates for comparison, yielding a

total of eight test conditions and 72 test sequences. No normalization or

calibration was carried out.

6.3.5 Subjective Experiments

The basis for the subjective experiments was again ITU-R Rec. BT.500-11

(2002). A total of 30 observers (23 males and 7 females) participated in the

experiments. Their age ranged from 20 to 55 years; most of them were

university students. The observers were tested for normal or corrected-to-

normal vision with the help of a Snellen chart,$ and for normal color vision

using three Ishihara charts.#

A 19-inch ADI PD-959 MicroScan monitor was used for displaying the

sequences. Its refresh rate was set to 85 Hz, and its screen resolution was set

to 800� 600 pixels, so that the sequences covered nearly one-quarter of the

display area. A black level adjustment was carried out for a peak screen

luminance of 70 cd/m2. The monitor gamma was determined through

luminance measurements for different gray values y, which were approxi-

mated with the following function:

LðYÞ ¼ �þ �
Y

255

� ��

; ð6:8Þ

with � ¼ �0:14 cd/m2, � ¼ 73:31 cd/m2, and � ¼ 2:14 (see Figure 6.8).

The Double Stimulus Continuous Quality Scale (DSCQS) method (see

section 3.3.3) was selected for the experiments. The subjects were introduced

to the method and their task, and training sequences were shown to

demonstrate the range and type of impairments to be assessed.

{The source code is available at http://www.mpeg.org/home/�tristan/MPEG/MSSG/
z
See http://www.adobe.com/products/premiere/main.html for more information.
$Available at http://www.mdsupport.org/snellen.html
#Available at http://www.toledo-bend.com/colorblind/Ishihara.html
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The actual test sequences were presented to each observer in two sessions

of 36 trials each. Their order was individually randomized so as to minimize

effects of fatigue and adaptation. Windows Media Player 7{ with a hand-

written ‘skin’ (a uniform black background around the sequence) was used to

display the sequences on the monitor. The viewing distance was 4–5 times

the height of the active screen area.

After the experiments, post-screening of the subjective data was performed

as specified in Annex 2 of ITU-R Rec. BT.500-11 (2002) to determine

unstable viewers, but none of the subjects had to be removed.

The resulting differential mean opinion scores (DMOS) and their 95%

confidence intervals for all 72 test sequences are shown in Figure 6.9. As can

be seen, the entire quality range is covered quite uniformly (the median of

the rating differences is 38), as was the intention of the test, and in contrast to

the VQEG experiments (cf. Figure 5.7). The size of the confidence intervals

is also satisfactory (median of 5.6). As a matter of fact, they are not much

wider than in the VQEG experiments.

Figure 6.10 shows the subjective DMOS and confidence intervals, sepa-

rated by scene and by condition. The separation by test scene reveals that

scene 2 (barcelona) is the most critical one with the largest distortions

averaged over conditions, followed by scenes 1 (mobile) and 3 (harp). Scenes 7

( fries) and 8 (message) on the other hand exhibit the smallest distortions.
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Figure 6.8 Screen luminance measurements (circles) and their approximation (curve).

{Available at http://www.microsoft.com/windows/windowsmedia/en/software/Playerv7.asp
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Several subjects mentioned that scene 8 (a horizontally scrolling message)

actually was the most difficult test sequence to rate, and this is also where

most confusions between reference and compressed sequence (i.e. negative

rating differences) occurred.

It is instructive to compare the compression performance of the different

codecs and their compression methods. The separation by test condition in

Figure 6.10(b) shows that condition 5 (MPEG-2 at 2 Mb/s) exhibits the

(a) DMOS histogram

(b) Histogram of confidence intervals
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Figure 6.9 Distribution of differential mean opinion scores (a) and their 95%

confidence intervals (b) over all test sequences. The dotted vertical lines denote the

respective medians.
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highest quality over all scenes, closely followed by condition 7 (MPEG-4 at

2 Mb/s). At 1 Mb/s, the MPEG-4 codec (condition 6) outperforms conditions

1, 3, and 8. It should be noted that the Intel Indeo Video codecs and the

Sorenson Video codec were designed for lower bitrates than the ones used in

this test and obviously do not scale well at all, as opposed to MPEG-2 and

MPEG-4. Comparing Figures 6.10(a) and 6.10(b) reveals that the perceived

quality depends much more on the codec and bitrate than on the particular

scene content in these experiments.

6.3.6 PDM Prediction Performance

Before returning to the image appeal attributes, let us take a look at the

prediction performance of the regular PDM for these sequences. This is of

interest for two reasons. First, as mentioned before, no normalization of the

test sequences was carried out in this test. Second, the codecs and compres-

sion algorithms described above used to create the test sequences and the

resulting visual quality of the sequences are very different from the VQEG

test conditions (cf. Table 5.2). The latter rely almost exclusively on MPEG-2

and H.263, which are based on very similar compression algorithms (block-

based DCT with motion compensation), whereas this test adds codecs based

on vector quantization, the wavelet transform and hybrid methods. One of the

advantages of the PDM is that it is independent of the compression method

due to its underlying general vision model, contrary to specialized artifact

metrics (cf. section 3.4.4).

The scatter plot of perceived quality versus PDM predictions is shown in

Figure 6.11(a). It can be seen that the PDM is able to predict the subjective

ratings well for most test sequences. The outliers belong mainly to conditions

1 and 8, the lowest-quality sequences in the test, as well as the computer-

graphics scenes, where some of the Windows-based codecs introduced strong

color distortions around the text, which was rated more severely by the

subjects than by the PDM. It should be noted that performance degradations

for such strong distortions can be expected, because the metric is based on a

threshold model of human vision. Despite the much lower quality of the

sequences compared to the VQEG experiments, the correlations between

subjective DMOS and PDM predictions over all sequences are above 0.8 (see

also final results in Figure 6.13).

The prediction performance of the PDM should be compared with PSNR,

for which the corresponding scatter plot is shown in Figure 6.11(b). Because

PSNR measures ‘quality’ instead of distortion, the slope of the plot is

negative. It can be observed that its spread is wider than for the PDM, i.e.

144 METRIC EXTENSIONS



there is a higher number of outliers. While PSNR achieved a performance

comparable to the PDM in the VQEG test, its correlations have now

decreased significantly to below 0.7.

6.3.7 Performance with Image Appeal Attributes

Now the benefits of combining the PDM quality predictions with the image

appeal attributes are analyzed. The sharpness and colorfulness ratings are
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Figure 6.11 (a) Perceived quality versus PDM predictions (a) and PSNR (b). The error

bars indicate the 95% confidence intervals of the subjective ratings.
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computed for the test sequences described above in section 6.3.4. The results

are compared with the subjective quality ratings from section 6.3.5 in

Figure 6.12. The correlation between the subjective quality ratings and

the sharpness rating differences is lower than for the VQEG sequences

(see section 6.3.3). This is mainly due to the extreme outliers pertaining
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Figure 6.12 (a) Perceived quality versus sharpness (a) and colorfulness (b) rating

differences.
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to conditions 1 and 8. These conditions introduce considerable distortions

leading to additional strong edges in the compressed sequences, which

increase the overall contrast.

On the other hand, a correlation between colorfulness rating differences

and subjective quality ratings can now be observed. This confirms our

assumption that the counter-intuitive behavior of the colorfulness ratings

for the VQEG sequences was due to their rigorous normalization. Without

such a normalization, the behavior is as expected for the test sequences

described above in section 6.3.4, i.e. the colorfulness of the compressed

sequences is reduced with respect to the reference for nearly all test

sequences (see Figure 6.12(b)).

We stress again that neither the sharpness rating nor the colorfulness rating

was designed as an independent measure of quality; both have to be used in

combination with a visual fidelity metric. Therefore, the sharpness and

colorfulness rating differences are combined with the output of the PDM

as �PDM þ wsharpmaxð0;�sharpÞ þ wcolormaxð0;�colorÞ. The rating differ-

ences are thus scaled to a range comparable to the PDM predictions, and

negative differences are excluded. The results achieved with the optimum

weights are shown in Figure 6.13.

It is evident that the additional consideration of sharpness and colorfulness

improves the prediction performance of the PDM. The improvement with the

sharpness rating alone is smaller than for the VQEG data. Together with the
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results discussed in section 6.3.3, this indicates that the sharpness rating is

more useful for sequences with relatively low distortions. The colorfulness

rating, on the other hand, which is of low computational complexity, gives a

significant performance boost to the PDM predictions.

6.4 SUMMARY

A number of promising applications and extensions of the PDM were

investigated in this chapter:

� A perceptual blocking distortion metric (PBDM) for evaluating the effects

of blocking artifacts on perceived quality was described. Using a stage for

blocking region segmentation, the PBDM was shown to achieve high

correlations with subjective blockiness ratings.

� The usefulness of including object segmentation in the PDM was dis-

cussed. The advantages of segmentation support were demonstrated with

test sequences showing human faces, resulting in better agreement of the

PDM predictions with subjective ratings.

� Sharpness and colorfulness were identified as important attributes of

image appeal. The attributes were quantified by defining a sharpness

rating based on the measure of isotropic local contrast and a colorfulness

rating derived from the distribution of chroma in the sequence. Extensive

subjective experiments were carried out to establish a relationship between

these ratings and perceived video quality. The results show that a

combination of PDM predictions with the sharpness and colorfulness

ratings leads to improvements in prediction performance.
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7
Closing Remarks

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T. S. Eliot

7.1 SUMMARY

Evaluating and optimizing the performance of digital imaging systems with

respect to the capture, display, storage and transmission of visual information

is one of the biggest challenges in the field of image and video processing.

Understanding and modeling the characteristics of the human visual system

is essential for this task.

We gave an overview of vision and discussed the anatomy and physiology

of the human visual system in view of the applications investigated in this

book. The following aspects can be emphasized: visual information is

processed in different pathways and channels in the visual system, depending

on its characteristics such as color, frequency, orientation, phase, etc. These

channels play an important role in explaining interactions between stimuli.

Furthermore, the response of the visual system depends much more on the

contrast of patterns than on their absolute light levels. This makes the visual

system highly adaptive. However, it is not equally sensitive to all stimuli.

We discussed the fundamentals of digital imaging systems. Image and

video coding standards already exploit certain properties of the human visual

Digital Video Quality - Vision Models and Metrics Stefan Winkler
# 2005 John Wiley & Sons, Ltd ISBN: 0-470-02404-6



system to reduce bandwidth and storage requirements. Lossy compression as

well as transmission errors lead to artifacts and distortions that affect video

quality. Guaranteeing a certain level of quality has thus become an important

concern for content providers. However, perceived quality depends on many

different factors. It is inherently subjective and can only be described

statistically.

We reviewed existing visual quality metrics. Pixel-based metrics such as

MSE and PSNR are still popular despite their inability to give reliable

predictions of perceived quality across different scenes and distortion types.

Many vision-based quality metrics have been developed that provide a better

prediction performance. However, independent comparison studies are rare,

and so far no general-purpose metric has been found that is able to replace

subjective testing.

Based on these foundations, we presented models of the human visual

system and its characteristics in the framework of visual quality assessment

and distortion minimization.

We constructed an isotropic local contrast measure by combining the

responses of analytic directional filters. It is the first omnidirectional phase-

independent contrast definition that can be applied to natural images and

agrees well with perceived contrast.

We then described a perceptual distortion metric (PDM) for color video.

The PDM is based on a model of the human visual system that takes into

account color perception, the multi-channel architecture of temporal and

spatial mechanisms, spatio-temporal contrast sensitivity, pattern masking,

and channel interactions. It was shown to accurately fit data from psycho-

physical experiments.

The PDM was evaluated by means of subjective experiments using natural

images and video sequences. It was validated using threshold data for color

images, where its prediction performance is close to the differences between

subjects. With respect to video, the PDM was shown to perform well over a

wide range of scenes and test conditions. Its prediction performance is on a

par with or even superior to other advanced video quality metrics, depending

on the sequences considered. However, the PDM does not yet achieve the

reliability of subjective ratings.

The analysis of the different components of the PDM revealed that visual

quality metrics that are essentially equivalent at the threshold level can

exhibit differences in prediction performance for complex sequences,

depending on the implementation choices made for the color space and the

pooling algorithm. The design of the decomposition filters on the other hand

only has a negligible influence on the prediction accuracy.
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We also investigated a number of promising metric extensions in an

attempt to overcome the limitations of the PDM and other vision-based

quality metrics and to improve their prediction performance. A perceptual

blocking distortion metric (PBDM) for evaluating the effects of blocking

artifacts was described. The PBDM was shown to achieve high correlations

with perceived blockiness. Furthermore, the usefulness of including object

segmentation in the PDM was discussed. The advantages of segmentation

support were demonstrated with test sequences showing human faces,

resulting in better agreement of the PDM predictions with subjective ratings.

Finally, we identified attributes of image appeal that contribute to per-

ceived quality. The attributes were quantified by defining a sharpness rating

based on the measure of isotropic local contrast and a colorfulness rating

derived from the distribution of chroma in the sequence. Additional sub-

jective experiments were carried out to establish a relationship between these

ratings and perceived video quality. The results show that combining the

PDM predictions with sharpness and colorfulness ratings leads to improve-

ments in prediction performance.

7.2 PERSPECTIVES

The tools and techniques that were introduced in this book are quite general

and may prove useful in a variety of image and video processing applica-

tions. Only a small number could be investigated within the scope of this

book, and numerous extensions and improvements can be envisaged.

In general, the development of computational HVS-models itself is still in

its infancy, and many issues remain to be solved. Most importantly, more

comparative analyses of different modeling approaches are necessary. The

collaborative efforts of Modelfest (Carney et al., 2000, 2002) or the Video

Quality Experts Group (VQEG, 2000, 2003) represent important steps in the

right direction. Even if the former concerns low-level vision and the latter

entire video quality assessment systems, both share the idea of applying

different models to the same set of carefully selected subjective data under

the same conditions. Such analyses will help determine the most promising

approaches.

There are several modifications of the vision model underlying the

perceptual distortion metric that can be considered:

� The spatio-temporal CSF used in the PDM is based on stabilized

measurements and does not take into account natural unconstrained eye
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movements. This could be remedied using motion-compensated CSF

models as proposed by Westen et al. (1997) or Daly (1998). This way,

natural drift, smooth pursuit and saccadic eye movements can be inte-

grated in the CSF.

� The contrast gain control model of pattern masking has a lot of potential

for considering additional effects, in particular with respect to channel

interactions and color masking. The measurements and models presented

by Chen et al. (2000a,b) may be a good starting point. Another example is

temporal masking, which has not received much attention so far, and

which can be taken into account by adding a time dependency to the

pooling function. Pertinent data are available that may facilitate the fitting

of the corresponding model parameters (Boynton and Foley, 1999; Foley

and Chen, 1999).Watson et al. (2001) incorporated certain aspects of temporal

noise sensitivity and temporal masking into a video quality metric.

� Contrast masking may not be the optimal solution. With complex stimuli

as are found in natural scenes, the distortion can be more noise-like, and

masking can become much larger (Eckstein et al., 1997; Blackwell, 1998).

Entropy masking has been proposed as a bridge between contrast masking

and noise masking, when the distortion is deterministic but unfamiliar

(Watson et al., 1997), which may be a good model for quality assessment

by inexperienced viewers. Several different models for spatial masking are

discussed and compared by Klein et al. (1997) and Nadenau et al. (2002).

� Finally, pattern adaptation has a distinct temporal component to it and is

not taken into account by existing metrics. Ross and Speed (1991)

presented a single-mechanisms model that accounts for both pattern

adaptation and masking effects of simple stimuli. More recently, Meese

and Holmes (2002) introduced a hybrid model of gain control that can

explain adaptation and masking in a multi-channel setting.

It is important to realize that incremental vision model improvements and

further fine-tuning alone may not lead to quantum leaps in prediction

performance. In fact, such elaborate vision models have significant draw-

backs. As mentioned before, human visual perception is highly adaptive, but

also very dependent on certain parameters such as color and intensity of

ambient lighting, viewing distance, media resolution, and others. It is

possible to design HVS-models that try to meticulously incorporate all of

these parameters. The problem with this approach is that the model becomes

tuned to very specific situations, which is generally not practical. Besides,

fitting the large number of free parameters to the necessary data is

computationally very expensive due to iterative procedures required by the
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high degree of nonlinearity in the model. However, when looking at the

example in Figure 3.9, the quality differences remain, even if viewing

parameters such as background light or viewing distance are changed. It is

clear that one will no longer be able to distinguish them from three meters

away, but exactly here lies an answer to the problem: it is necessary to make

realistic assumptions about the typical viewing conditions, and to derive from

them a good model parameterization, which can actually work for a wide

variety of situations.

Another problem with building and calibrating vision models is that most

psychophysical experiments described in the literature focus on simple test

stimuli like Gabor patches or noise patterns. This can only be a makeshift

solution for the modeling of more complex phenomena that occur when

viewing natural images. More studies, especially on masking, need to be

done with complex scenes and patterns (Watson et al., 1997; Nadenau et al.,

2002; Winkler and Süsstrunk, 2004).

Similarly, many psychophysical experiments have been carried out at

threshold levels of vision, i.e. determining whether or not a certain stimulus

is visible, whereas quality metrics and compression are often applied above

threshold. This obvious discrepancy has to be overcome with supra-threshold

experiments, otherwise the metrics run the risk of being nothing else than

extrapolation guesses. Great care must be taken when using quality metrics

based on threshold models and threshold data from simple stimuli for

evaluating images or video with supra-threshold distortions. In fact, it may

turn out that quality assessment of highly distorted video requires a

completely new measurement paradigm.

This possible paradigm shift may actually be advantageous from the point

of view of computational complexity. Like other HVS-based quality metrics,

the proposed perceptual distortion metric is quite complex and requires a lot

of computing power due to the extensive filtering and nonlinear operations in

the underlying HVS-model. Dedicated hardware implementations can alle-

viate this problem to a certain extent, but such solutions are big and

expensive and cannot be easily integrated into the average user’s TV or

mobile phone. Therefore, quality metrics may focus on specialized tasks or

video material instead, for example specific codecs or artifacts, in order to

keep complexity low while at the same time maintaining a good prediction

performance. Several such metrics have been developed for blockiness

(Winkler et al., 2001; Wang et al., 2002), blur (Marziliano et al., 2004),

and ringing (Yu et al., 2000), for example.

Another important restriction of the PDM and other HVS-model based

fidelity metrics is the need for the full reference sequence. In many
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applications the reference sequence simply cannot be made available at the

testing site, for example somewhere out in the network, or a reference as such

may not even exist, for instance at the output of the capture chip of a camera.

Metrics are needed that rely only on a very limited amount of information

about the reference, which can be transmitted along with the compressed

bitstream, or even none at all. These reduced-reference or no-reference

metrics would be much more versatile than full-reference metrics from an

application point of view. However, they are less general than vision model-

based metrics in the sense that they have to rely on certain assumptions about

the sources and types of artifacts in order to make the quality predictions.

This is the reason reduced-reference metrics (Wolf and Pinson, 1999; Horita

et al., 2003) and especially no-reference metrics (Coudoux et al., 2001;

Gastaldo et al., 2002; Caviedes and Oberti, 2003; Winkler and Campos,

2003; Winkler and Dufaux, 2003) are usually based on the analysis of certain

predefined artifacts or video features, which can then be related to overall

quality for a specific application. The Video Quality Experts Group has

already initiated evaluations of such reduced- and no-reference quality

metrics.

Finally, vision may be the most essential of our senses, but it is certainly

not the only one: we rarely watch video without sound. Focusing on visual

quality alone cannot solve the problem of evaluating a multimedia experi-

ence, and the complex interactions between audio and video quality have

been pointed out previously. Therefore, comprehensive audio-visual quality

metrics are required that analyze both video and audio as well as their

interactions. Only little work has been done in this area; the metrics

described by Hollier and Voelcker (1997) or Jones and Atkinson (1998)

are among the few examples in the literature to date.

As this concluding discussion shows, the future tasks in this area of

research are challenging and need to be solved in close collaboration of

experts in psychophysics, vision science and image processing.
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Appendix: Color Space Conversions

Conversion from CIE 1931 XYZ tristimulus values to CIE L�a�b� and CIE

L�u�v� color spaces is defined as follows (Wyszecki and Stiles, 1982). The

conversions make use of the function

gðxÞ ¼ x1=3 if x > 0:008856;

7:787xþ 16
116

otherwise:

(
ðA:1Þ

Both CIE L�a�b� and CIE L�u�v� space share a common lightness component

L�:

L� ¼ 116gðY=Y0Þ � 16: ðA:2Þ

The 0-subscript refers to the corresponding unit for the reference white being

used. By definition, L� ¼ 100, u� ¼ v� ¼ 0, and a� ¼ b� ¼ 0 for the refer-

ence white.

The two chromaticity coordinates u� and v� in CIE L�u�v� space are

computed as follows:

u� ¼ 13L�ðu0 � u00Þ; u0 ¼
4X

X þ 15Y þ 3Z
;

v� ¼ 13L�ðv0 � v00Þ; v0 ¼
9Y

X þ 15Y þ 3Z
;

ðA:3Þ

and the CIE L�u�v� color difference is given by

�E�
uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�L�Þ2 þ ð�u�Þ2 þ ð�v�Þ2

q
: ðA:4Þ
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The two chromaticity coordinates a� and b� in CIE L�a�b� space are

computed as follows:

a� ¼ 500½gðX=X0Þ � gðY=Y0Þ�;
b� ¼ 200½gðY=Y0Þ � gðZ=Z0Þ�;

ðA:5Þ

and the CIE L�a�b� color difference is given by

�E�
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�L�Þ2 þ ð�a�Þ2 þ ð�b�Þ2

q
: ðA:6Þ
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