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PREFACE

Feedback circuits and their related properties have been extensively

investigated since the early days of electronics. From the time scientific and

industrial communities started talking about and working with active

elements like vacuum tubes or transistors, until today, much literature and

many scientific results have been published which reinforce the importance

of feedback. Improved features have been implemented in integrated

circuits, novel techniques of analysis have been proposed which deeply

improve our understanding of the resulting layouts, and new design

strategies have been developed to optimise performance. Nevertheless, the

genuinely complex subject of feedback and its applications in analog

electronics remain obscure even for the majority of graduate electronics

students.

To this end, the main focus of this book will be to provide the reader with

a real and deep understanding of feedback and feedback amplifiers.

Whenever possible and without any loss of generality, a simple and intuitive

approach will be used to derive simple and compact equations useful in

pencil-and-paper design. Complex analytical derivations will be used only

when necessary to elucidate fundamental relationships. Consequently, the

contents of the book have been kept to a reasonably accessible level.

The book is written for use both by graduate and postgraduate students

who are already familiar with electronic devices and circuits, and who want

to extend their knowledge to cover all aspects of the analysis and design of

analog feedback circuits/amplifiers. Although the material is presented in a

formal and theoretical manner, much emphasis is devoted to a design

perspective. Indeed, the book can become a valid reference for analog IC

designers who wish to deal more deeply with feedback amplifier features

and their related design strategies, which are often partially –or even

incorrectly– presented in the open literature. For this purpose (and despite
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maturity of the subject), novel formalisms, approaches, and results are

described in this book. For instance, a generic small-signal model applicable

to a variety of different transistor types operating in the active region is

introduced. A new comprehensive approach for the frequency compensation

of two-stage and three-stage amplifiers is adopted. Novel and insightful

results are reported for harmonic distortion in the frequency domain.

The outline of the text is as follows:

Chapter 1 provides a brief introduction to the operating principles of

Bipolar and MOS transistors together with their small-signal models. This

chapter is an invited contribution by Dr. Ginaluca Giustolisi.

A general small-signal model for transistors in the active region of

operation is derived in Chapter 2. The resulting model helps the reader to

acquire a uniform view of the designer’s tasks and sidesteps the impractical

distinction traditionally practised between Bipolar and MOS devices. This

model is then thoroughly utilised in the rest of the chapter and the book

itself. The three basic single-transistor configurations, which are the

common-emitter, common-collector, common-base, for the bipolar transistor

and common source, common-drain, common-gate for the MOS transistor,

are subsequently revisited. General relationships, for both these active

components, valid at low and high frequencies are accordingly developed.

Feedback is introduced in Chapter 3. Feedback features are discussed in

detail with particular emphasis on achievable advantages (and corresponding

disadvantages) from a circuit perspective. Moreover, after an overview of

the numerous techniques proposed until now to analyse feedback circuits,

the two techniques which are the most useful in the authors’ opinion are

presented together with Blackman’s theorem which is concerned only with

the impedance level change due to feedback. Both techniques, namely the

Rosenstark and the Choma methods, lead to exact results, but provide

information only from a behavioural and approximated point of view. In
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fact, it is also demonstrated that these methods can bestow a deeper

understanding of feedback properties.

Chapter 4 analyses the frequency and step response of transfer functions

characterised by different combinations of poles (and zeros) that are

commonly found in real practice. From this starting point, useful definitions

will be given to help designers derive fundamental relations which ensure

closed-loop stability with adequate margins.

Frequency compensation is a fundamental step in feedback amplifier

design. Chapter 5 gives a classification of the most commonly employed

compensation techniques. The traditional approaches such as dominant-pole

compensation and Miller compensation are presented in detail with emphasis

being devoted not only to the theoretical viewpoint, but also to a strong

design perspective. Improved zero compensation techniques, which allow

the frequency response of the resulting amplifier to be optimised, are then

presented. In addition, the nested Miller approaches, which are becoming

more and more important given the trend to reduce power supply, are also

included..

Chapter 6 combines the knowledge introduced in the previous three

chapters. The fundamental feedback amplifier architectures (Series-Shunt,

Shunt-Series, Shunt-Shunt, and Series-Series topologies) are discussed

assuming they are made with the general transistor introduced previously.

Then practical applications are given for the two analysis and frequency

compensation approaches.

Chapter 7 focuses on harmonic distortion in feedback amplifiers. Static

non-linearity is analysed in a theoretical and exact manner. Moreover, the

study of distortion versus frequency is carried out in a simple fashion and the

results applied to the main frequency compensation techniques. We avoid

traditional approaches such as the Volterra or Wiener series, which are

computationally heavy, by exploiting considerations deriving from

frequency compensation, which are mandatory in feedback amplifiers.
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Chapter 8 deals with noise performance. Methods of analysis are

illustrated and practical considerations and approximations which arise in

real amplifiers, are included.

Chapter 9 looks at some examples taken from modern microelectronics

which locally involve feedback or which are used in feedback

configurations. The objective of the chapter is not only to show further

practical examples, but also to outline some typical features inherent to these

selected circuits. Thus a dual goal is achieved: acquiring more knowledge

about the items treated in previous chapters, and gaining greater insight into

some of the properties exhibited by well-known and useful circuits, strongly

related to the topic of the book.

Lastly the Appendix summarises useful results related to the analysis of

transfer functions of RC networks.



Chapter 1

INTRODUCTION TO DEVICE MODELING
Gianluca Giustolisi

This chapter will deal with the operation and modeling of semiconductor
devices in order to give the reader a basis for understanding, in a simple and
efficient manner, the operation of the main building blocks of
microelectronics.

1.1 DOPED SILICON

A semiconductor is a crystal lattice structure with free electrons and/or
free holes or, which is the same, with negative and/or positive carriers. The
most common semiconductor is silicon which, having a valence of four,
allows its atoms to share four free electrons with neighboring atoms thus
forming the covalent bonds of the crystal lattice.

In intrinsic silicon, thermal agitation can endow a few electrons with
enough energy to escape their bonds. In the same way, they leave an equal
number of holes in the crystal lattice that can be viewed as free charges with
an opposite sign. At room temperature, we have carriers of each
type per This quantity is referred to as and is a function of
temperature as it doubles for every 11 °C increase in temperature [1]-[2].

This intrinsic quantity of free charges is not sufficient for the building of
microelectronic devices and must be increased by doping the intrinsic
silicon. This means adding negative or positive free charges to the pure
material. Several doping materials can be used to increase free charges.
Specifically, when doping pure silicon with a pentavalent material (that is,
doping with atoms of an element having a valence of five) we have almost
one extra free electron that can be used to conduct current for every one
atom of impurity. Likewise, doping the pure silicon with atoms having a
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valence of three, gives us almost one free hole for every impurity atom. A
pentavalent atom donates electrons to the intrinsic silicon and is known as a
donor. In contrast, a trivalent atom accepts electrons and is known as an
acceptor. Typical pentavalent impurities, also called n-type dopants, are
arsenic, As, and phosphorus, P, while the most used trivalent impurity, also
called p-type dopant, is boron, B. Silicon doped with a pentavalent impurity
is said to be n-type silicon, while silicon doped with a trivalent impurity is
called p-type silicon.

If we suppose that a concentration of donor atoms (greater than the
intrinsic carrier concentration, is used to dope the silicon, the
concentration of free electrons in the n-type material, can be assumed as
equal to

In fact, this is an approximation, since some of the free electrons of the
doping material recombine with the holes, but it is sufficient for as long as
condition is true.

The fact that some free electrons recombine with holes, also reduces the
concentration of holes in the n-type material, to

Similarly, if we dope the silicon with a concentration of acceptor
atoms, the concentration of free holes in the p-type material, is equal to

while the electron-hole recombination reduces the concentration of free
electrons in the p-type material, to

1.2 DIODES

A diode, or pn junction, is made by joining a p-type to an n-type material
as in Fig. 1.1. The p-side terminal is called anode (A) while the n-side
terminal is called cathode (K).
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Note that the p-type section is denoted with      meaning that this side is
doped more heavily (in the order of than its n-type
counterpart (in the order of that is This is not
a limitation since most pn junctions are built with one side more heavily
doped than the other.

Close to the junction, free electrons on the n side are attracted by free
positive charges on the p side so they diffuse across the junction and
recombine with holes. Similarly, holes on the p side are attracted by
electrons on the n side, diffuse across the junction and recombine with free
electrons on the n side.

This phenomenon leaves behind positive ions (or immobile positive
charges) on the n side, and negative ions (or immobile negative charges) on
the p side, thus creating a depletion region across the junction where no free
carriers exist. Moreover, since charge neutrality obliges the total amount of
charge on one side to be equal to the total amount of charge on the other, the
width of the depletion region is greater on the more lightly doped side, that
is, in our case where

Due to immobile charges, an electric field appears from the n side to the p
side and generates the so-called built-in potential of the junction. This
potential prevents further net movement of free charges across the junction
under open circuit and steady-state conditions. It is given by [1]-[2]
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being the thermal voltage defined as

where T is the temperature in degrees Kelvin at room temperature),
k is the Boltzmann’s constant and q is the charge of an
electron At room temperature, is approximately equal to
26 mV. Typical values of the built-in potential are around 0.9 V.

Under open circuit and steady-state conditions, it can be shown that the
widths of depletion regions are given by the following equations

where is the permittivity of free space and is the
relative permittivity of silicon (equal to 11.8).

Dividing (1.7a) by (1.7b) yields

which justifies the fact that is greater than if Moreover,

under this condition, we can further simplify (1.7) in

The charge stored in the depletion region, per unit device area, is found
by multiplying the width of the depleted area by the concentration of the
immobile charge, which can be considered equal to q times the doping
concentration. So for both the sides of the device we have
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Note that the charge stored on the n side equals the charge stored on the p
side, as is expected due to the charge neutrality.

In the case of a more heavily doped side, as in our example where
we can simplify (1.10) to

1.2.1 Reverse Bias Condition

By grounding the anode and applying a voltage to the cathode, we
reverse-bias the device. Under such a condition the current flowing through
the diode is mainly determined by the junction area and is independent of
In many cases this current is considered negligible and the device is modeled
as an open circuit. However, the device also has a charge stored in the
junction that changes with the voltage applied and causes a capacitive effect,
which cannot be ignored at high frequencies. The capacitive effect is due to
the so-called junction capacitance.

Specifically, when the diode is reverse biased as in Fig. 1.2, free electrons
on the n side are attracted by the positive potential and leave behind
positive immobile charges. Similarly, free holes in the p region move
towards the anode leaving behind negative immobile charges. This means
that the depletion region increases and that the built-in potential increases
exactly by the amount of applied voltage,

Given that the built-in potential is increased by both the width and the
charge of the depletion region can be found by substituting the term
to in (1.7) and (1.10), respectively. In particular the charge stored results
as
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This charge denotes a non-linear charge-voltage characteristic of the
device, modeled by a non-linear capacitor called a junction capacitance.

For small changes in the applied voltage around a bias value, the
capacitor can be viewed as a small-signal capacitance, whose expression
is found by differentiating1 (1.12) with respect to

where

is a capacitance per unit of area and depends only on the doping
concentration.

1.2.2 Graded Junctions

All the above equations are valid in the case of abrupt junctions. For
graded junctions, that is where the doping concentration changes smoothly

1 All the derivatives are evaluated at the quiescent operating point.
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from p to n, a better model for the charge can be described by changing the
exponent in (1.12) as follows [4]

where m is a technology dependent parameter (typical m  values are around
1/3).

In this case, the junction capacitance per unit of area turns into

where

1.2.3 Forward Bias Condition

With reference to Fig. 1.3, by grounding the cathode and applying a
voltage to the anode, we forward-bias the device. Under this condition
the built-in potential is reduced by the amount of voltage applied.
Consequently, the width of the depletion region and the charge stored in the
junction are reduced, too.

If is large enough, the reduction in the potential barrier ensures the
electrons in the n side and the holes in the p side are attracted by the anode
and the cathode, respectively, thus crossing the junction. Once free charges
cross the depletion region, they become minority carriers on the other side
and a recombination process with majority carriers begins. This
recombination reduces the minority carrier concentrations that assume a
decreasing exponential profile. The concentration profile is responsible for
the current flow near the junction, which is due to a diffusive phenomenon
that is called diffusion current. On moving away from the junction, some
current flow is given by the diffusion current and some is due to majority
carriers that, coming from the terminals, replace those carriers recombined
with minority carriers or diffused across the junction. This latter current is
termed a drift current.
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This process causes a current to flow through the diode that is
exponentially related to voltage as follows

where is the junction area and the scale current density which is
inversely proportional to the doping concentrations. The product is
often expressed in terms of a scale current and denoted as

As far as the charge stored in the device is concerned, we have two
contributions under the forward bias condition. The first is given by the
charge stored in the depletion region, that can be evaluated by
substituting for in (1.12), assuming there is an abrupt junction. In the
same manner, this charge yields a small signal junction capacitance that can
be expressed by (1.13) and (1.14). In any case, since this contribution is
negligible, the junction capacitance is often modeled with a capacitive value

diffusion current. This component yields a diffusion capacitance, which
is proportional to the current as follows [1]-[2]

of where is expressed by (1.14) or (1.17), depending on whether the
junction is assumed to be abrupt or not.

The second contribution takes into account the charge due to minority
carrier concentrations close to the junction that are responsible for the
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where is a technology parameter known as the transit time of the diode.
The total capacitance, is the sum of the diffusion capacitance, and

the junction capacitance, that is

1.2.4 Diode Small Signal Model

In the case of reverse bias, the diode can be simply modeled with the
junction capacitance defined by (1.13) and (1.14) or by (1.15) and (1.17),
depending on whether the junction is abrupt or graded.

In the case of forward bias a small signal resistor, models the current-
voltage relationship. Specifically, from (1.18) we have

The capacitive contribution is taken into account by adding the capacitor
in (1.20) in parallel to Diode small signal models are depicted in Fig.

4.

1.3 MOS TRANSISTORS

Currently, Metal-Oxide-Semiconductor Field-Effect Transistors
(MOSFETs or simply MOS transistors) are the most commonly used
components in integrated circuit implementations since their characteristics
make them more attractive than other devices such as, for example, BJTs.
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Specifically, their simple realization and low cost, the possibility of having a
complementary technology with the same characteristics for both
complementary devices, their small geometry and, consequently, the
feasibility of integrating a large number of devices in a small area, their
infinite input resistance at the gate terminal and the faculty of building
digital cells with no static dissipation, all motivate the great success of MOS
transistors in modern technologies.

A simplified cross section of an n-channel MOS (n-MOS) transistor is
shown in Fig. 1.5. It is built on a lightly doped p type substrate (p-) that
separates two heavily doped n type regions (n+) called source and drain. A
dielectric of silicon oxide and a polysilicon gate are grown over the
separation region. The region below the oxide is the transistor channel and
its length, that is the length that separates the source and the drain, is the
channel length, denoted by L. In present MOS technologies the channel
length is typically between and In a p-channel MOS (p-
MOS) all the regions are complementary doped.

There is no physical difference between the source and the drain as the
device is symmetric, the notations source and drain only depend on the
voltage applied. In an n-MOS the source is the terminal at the lower
potential while, in a p-MOS, the source is the terminal at the higher
potential.

1.3.1 Basic Operation

To understand the basic operation of MOS transistors we shall analyze
the behavior of an n-MOS depending on the voltages applied at its terminals.

If source, drain and substrate are grounded, the device works as a
capacitor. Specifically, the gate and the substrate above the interface
are two plates electrically insulated by the silicon oxide.
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If we apply a negative voltage to the gate, negative charges will be stored
in the polysilicon while positive charges will be attracted to the channel
region thus increasing the channel doping to p+. This situation leads to an
accumulated channel. Source and drain are electrically separated because
they form two back-to-back diodes with the substrate. Even if we positively
bias either the source or the drain, only a negligible current (the leakage
current) will flow from the biased n+ regions to the substrate.

By applying a positive voltage to the gate, positive charges will be stored
in the gate. Below the silicon oxide, if the gate voltage is small, positive free
charges of the p- substrate will be repelled from the surface thus depleting
the channel area. A further increase in the gate voltage leads to negative free
charges being attracted to the channel that thereby becomes an n region. In
this condition the channel is said to be inverted.
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The gate-source voltage for which the concentration of electrons under
the gate equals the concentration of holes in the p- substrate far from the gate
is said to be the transistor threshold voltage,

At a first approximation, if the gate-source voltage, is below the
threshold voltage, no current can exist between the source and the drain and
the transistor is said to be in the cutoff region. In contrast, if the gate-source
voltage is greater than the threshold voltage, an n channel joins the drain and
the source and a current can flow between these two electrically connected
regions.

Actually, for gate voltages around the charge does not change
abruptly and a small amount of current can flow even for small negative
values of This condition is termed weak inversion and the
transistor is said to work in subthreshold region.

When the channel is present, as in Fig. 1.6, the accumulated negative
charge is proportional to the gate source voltage and depends on the oxide
thickness, since the transistor works as a capacitor. Specifically, the
charge density of electrons in the channel is given by [1]-[2]

where is the gate capacitance per unit area defined as

and is the relative permittivity of the is approximately 3.9)
The total capacitance and the total charge are obtained by multiplying

both the equations (1.22) and (1.23) by the device area, as follows

1.3.2 Triode or Linear Region

Increasing the drain voltage, causes a current to flow from the drain
to the source through the channel. A drain voltage different from zero will
modify the charge density but for small the channel charge will not
change appreciably and can be expressed by (1.22) again. Under this
condition, the device operates as a resistor of length L, width W with a
permittivity proportional to Therefore, the relationship between voltage

and the drain-source current, can be written as [7]
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where is the mobility of electrons near the silicon surface.
Substituting (1.22) in (1.25) yields

Larger drain voltages modify the charge density profile in the channel.
Specifically, referring to Fig. 1.7, we can express the channel charge density
as a function of channel length. For x = 0, that is, close to the source, (1.22)
holds, while for x = L, that is, close to the drain, we have

Assuming a linear profile, the charge density has the following
expression

The current can be expressed in a form similar to (1.25) but with a
different charge expression. If the charge density profile is linear, the
average charge density can be used instead. The average charge density
results in
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and substituting this value in (1.25) leads to

The current is linearly related to and has a quadratic dependence
on Under this condition the device is said to operate in triode or linear
region. Note also that (1.30) is reduced to (1.26) for small values of

1.3.3 Saturation or Active Region

A further increase of can lead to the condition of a gate-drain voltage
equal to In this case the charge density close to the drain,
becomes zero and current reaches its maximum value. This condition is
shown in Fig. 1.8.

At a first approximation, the current does not change over this point with
since the charge concentration in the channel remains constant and the

electron carriers are velocity saturated. Under this condition the transistor is
said to work in saturation or linear region.

Denoting as the drain source voltage when the charge density
becomes zero, we can find an equivalent relationship that expresses the
pinch-off condition by substituting into
Specifically, we get

where
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Substituting the value defined in (1.32) into (1.30) gives the
current expression in the pinch-off case and results as

As mentioned above, (1.33) is valid at a first approximation. In fact,
increasing yields an increase in the pinch-off region as well as a decrease
in channel length. This effect is commonly known as channel length
modulation. To take this effect into account, a corrective term is used to
complete (1.33) which becomes

The parameter is referred to as the channel length modulation factor
and, at a first approximation, it is inversely proportional to the channel
length, L.

1.3.4 Body Effect

All the equations derived above were based on the assumption that the
source and the substrate (or the bulk) were connected together. Although this
is a rather common condition, in general the voltage of these two terminals
can be different. In this event a second order effect occurs commonly
referred to as the body effect [6]. A different voltage between the source and
the bulk is modeled as an increase in the threshold voltage, which assumes
the following expression [6]-[8]

with being the source-bulk voltage, the threshold voltage with zero
the Fermi potential of the substrate and a constant referred to as the

body-effect constant. The Fermi potential is defined as [1]
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while the value of depends on the substrate doping concentration as
follows [1]

1.3.5 p-channel Transistors

For a p-channel transistor we can use the same equations derived in the
previous sections, provided that a negative sign is placed in front of every
voltage variable.

Therefore, becomes becomes becomes and so
on. Note that in a p-MOS transistor the threshold voltage is negative. The
condition for a p-MOS to be in saturation region is now
Current equations (1.30) and (1.34) still hold but the current now flows from
the source to the drain.

1.3.6 Saturation Region Small Signal Model

The low-frequency small signal model for a MOS transistor operating in
the active region is shown in Fig. 1.9.

The most important small signal component is the dependent current
generator, whose transconductance, isdefined as

Solving (1.33) for  yields
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and substituting this value in (1.38) we get the well-known expression for
the transconductance

Another useful expression for can be found by comparing (1.38) with
(1.33) thus obtaining

The second dependent current source, accounts for the body effect
and its transconductance is defined as

The first derivative in (1.42) results as

while the second one comes out by deriving (1.35) with respect to thus
yielding

Therefore, substituting (1.43) and (1.44) in (1.42) we get
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Note that this value is nonzero even if the quiescent value of equals
zero. Specifically, the body effect arises only if a small signal, is present
between the source and the bulk terminals. In general is 0.1–0.2 times
and can be neglected in a non-detailed analysis.

The last model parameter is the resistor which takes into account the
channel length modulation or, which is the same, the dependence of the
drain current on It is related to the large signal equations by

Substituting in (1.46) the current expression in (1.34) results as

and finally

The high-frequency model of a MOS transistor, which includes the
capacitive effects, is shown in Fig. 1.10.
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Each capacitive contribution has its own physical meaning that can be
understood by analyzing the detailed n-MOS cross section in Fig. 1.11.

The second term that contributes to the gate-source capacitance is given by
the overlap that exists between the gate and the source n+ region. This
overlap is unavoidable and results from the fact that during the fabrication
process the doping element also spreads horizontally. Naming the overlap
diffusion length, the resulting parasitic capacitor, is given by

Hence, the capacitor in Fig. 1.9 is expressed by the sum of (1.49) and
(1.50), that is

The most important capacitor is the gate-source capacitor whose value is
given by two different terms. The first term takes into account the capacitive
effect between the gate and the channel, which is electrically connected to
the source. At a first approximation, the corresponding capacitor, is a
linear capacitor that depends on the oxide thickness as well as on the device
area. It can be demonstrated that its value is approximately given by [4], [7]
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Since the capacitor is mainly determined by the gate-channel
capacitance and the overlap effect can be neglected in many cases.

The same boundary effect that determines the gate-source overlap
capacitance yields the gate-drain capacitance that is given by

This capacitor makes a strong contribution when the transistor is used as a
voltage amplifier and a large voltage gain exists between the drain and the
gate. In all other cases its contribution is negligible.

The second largest capacitor is the source-bulk capacitor, which can be
split into three contributions all of them given by the depletion capacitances
of reverse biased pn junctions. The first,          takes into account the junction
capacitance between the n+ source area and the bulk. Its expression is
similar to (1.13) or (1.16) depending on whether the junction can be
considered as abrupt or graded. Assuming a graded junction we have

The second contribution is responsible for and takes into account the
depletion region between the channel and the bulk. Even in this case we
have an expression similar to (1.53) that is

where is the area of the channel which can be evaluated as WL.
The third term is referred to as the source-bulk sidewall capacitance and is
denoted as This capacitance is due to the presence of a highly p+
doped region (field implant) that exists under the thick field oxide (FOX)
and prevents the leakage current from flowing between two adjacent
transistors. The value of can be particularly large if the field implant is

where is the area of the source junction and is defined as the source
junction capacitance per unit area.

heavily doped as in modern technologies. The expression of  is then
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where is the perimeter of the source junction, excluding the side adjacent
to the channel. Both and are capacitances per unit length.
Consequently, the source-bulk capacitance is given by the sum of (1.53),
(1.54) and (1.55), that is

The fourth capacitor in the model in Fig. 1.9 is the drain-bulk capacitor,
This is similar to the source-bulk capacitance except for the fact that the

channel does not make any contribution. Therefore equations similar to
(1.53) and (1.55) can be written as follows

and the drain-bulk capacitance results as

1.3.7 Triode Region Small Signal Model

The low frequency small signal model for a MOS in triode region is a
resistor whose value can be determined by deriving (1.39) with respect to

that is

If is small (1.59) is often approximated by
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The high-frequency model is not easy to determine because the channel is
directly connected to both the source and drain resulting in a distributed RC
network over the whole length of the device. Moreover, because of the
capacitive nature of junction capacitances, the capacitive elements are highly
non-linear. This is another factor making the model quite complicated for
management by hand analysis.

A simplified model, which is quite accurate for small can be
obtained by evaluating the total channel charge contribution and by
assuming half of this contribution to be referred to the source and half to the
drain [7].

Specifically, since the total gate-channel capacitance is given by

gate-source and gate-drain capacitances can be modeled as

where the overlap contribution has been included.

In the same way, the channel-bulk contribution is shared between the
source and the drain thus yielding for  and the following
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The resulting high-frequency small signal model is depicted in Fig. 1.12

1.3.8 Cutoff Region Small Signal Model

In the cutoff region the resistance is assumed to be infinite so the
equivalent model is purely capacitive.

Since the channel is not present, both and are due only to the
overlap contribution, that is

Source-bulk and drain-bulk capacitances are similar to those given in
(1.62) with the difference that the channel does not make any contribution,
that is

The fact that no channel exists, generates a new capacitor, which
connects the gate and the bulk. Its value is given by the oxide capacitance
multiplied by the device area, that is
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The resulting small signal model is shown in Fig. 13.

1.3.9 Second Order Effects in MOSFET Modeling

The main second order effects that should be taken into account when
determining a MOS large signal model are reported in this section. Their
effects are always present but are especially prominent in short-channel
devices and, often, cannot be ignored.

In the following we shall neglect the subscript n, which referred to n-
MOS transistors.

1.3.9.1 Channel length reduction due to overlap

Referring to Fig. 1.11, we see that designed channel, L, is reduced due to
the overlap. Assuming a symmetric device with equal overlap, at both
the source and the drain, the amount of reduction is equal to that is, the
effective channel length, is equal to

Obviously, the influence of the overlap is greater in short channel devices
as it strongly affects the real channel. As a consequence, in all the previous
equations, (1.66) should be used for the channel length.

A similar equation holds for the width, W, as well
However, this effect is less frequent since minimum MOS widths are hardly
chosen especially in analog designs. Thus we can assume
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1.3.9.2 Channel length modulation

The channel length modulation was discussed in previous sections and
was modeled by the channel length modulation factor, in (1.34). In this
model, the pinch-off point was assumed to be close to the drain end.

A more effective modeling would take into consideration the fact that, in
practice, the pinch-off point moves towards the source as increases due
to the variation in the drain depletion region. As a consequence, the effective
channel length, is further reduced as shown in Fig. 1.14. Defining
as the distance between the drain end and the pinch-off point we get

The value of is a function of and the doping
concentration of the channel. Substituting, for example, (1.67) in (1.33) we
observe that, due to a shorter channel, the drain current increases with
Obviously, this effect is particularly evident in short-channel devices [8].

1.3.9.3 Mobility reduction due to vertical electric field

As known, the mobility, relates the electrical field, E, to the drift
velocity of carriers, vd, as [1]-[2]

In our previous model we assumed the mobility to be a constant. Actually
the value of this parameter depends on several physical factors, the most
important of which is related to the carrier-scattering mechanisms.

The carrier scattering in the channel is greatly influenced by the vertical
electric field induced by the gate voltage. Consequently mobility changes
with A semi-empirical equation used to model the mobility reduction
due to vertical fields is [6]

where is now the new mobility (or better the new surface mobility), is
the mobility in the case of low fields and is the mobility degradation factor
whose value can be related to oxide thickness as

It can be shown that this effect can be modeled as a series resistance,
in the source of the MOS where
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1.3.9.4 Mobility reduction due to lateral electric field

Mobility is further reduced due to the high lateral electric field. Since, at
a first approximation, the electric field is proportional to this effect
is more pronounced in short-channel devices.

The linear relationship (1.68), which relates the drift velocity to the
electric field, no longer holds for high fields because the mobility strongly
depends on the field itself and decreases as the field increases. Specifically,
at high electric fields, the drift velocity of carriers deviates from the linear
dependency in (1.68) and even saturates. To account for this physical
phenomenon, the mobility, in (1.69) is corrected as follows [6]

where is the effective mobility, represents the lateral field and the
term is the maximum drift velocity of the carriers. A typical value of

is in the order of a
This velocity limitation can be responsible for the saturation in MOS

transistors since a MOS can enter the active region before reaches the
value of Consequently, (1.32) must be adjusted to account for the
carrier saturation velocity.

1.3.9.5 Drain Induced Barrier Lowering (DIBL)

This effect is due to the strong lateral electric field and affects the
threshold voltage. The principal model assumes the channel is created by the
gate voltage only. Actually, a strong lateral field from the drain can also help
to attract electrons towards the surface. Strictly speaking, the drain voltage
influences the surface charge and helps the gate voltage to form the channel.
This effect is modeled with a reduction in the threshold voltage (that is, a
barrier lowering) and is also modeled by modifying (1.35) as [6], [8]

where is a corrective factor responsible for the dependence of the
threshold voltage on



Feedback Amplifiers 27

Also the DIBL is more pronounced in short-channel devices and its main
effect is a further reduction in the output resistance.

1.3.9.6      Threshold voltage dependency on transistor dimensions

As transistor dimensions are reduced, the fringing field at border edges
can also affect the threshold voltage [8].

Referring to Fig. 1.15 and without entering into a detailed physical
explanation, applying a voltage to the gate creates a channel. However,
due to border effects, only charges in the darker trapezoidal area are linked
to the gate voltage. The threshold voltage definition in (1.35) refers all the
charges in the rectangular area below the silicon to the gate voltage, as in
Fig. 1.6. Since the threshold voltage depends on the channel charge linked to
the gate voltage, it is apparent that the previous model overestimates the
value of This border effect is not critical in long-channel devices, but in a
short-channel transistor it can be significant.

To model this phenomenon, the threshold voltage in (1.35) is modified in

where is a corrective factor that represents the ratio between the
trapezoidal and the rectangular areas used to model the channel. As a
consequence, is less than its original value in (1.35).

In a similar way, the threshold voltage depends on transistor width if this
dimension becomes comparable to the edge effect regions, that is, in narrow-
channel (i.e., with short width) devices.
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In this case, after applying a voltage to the gate, border effects deplete a
wider region thus increasing the threshold voltage. This effect is modeled by
adding the term to the original in (1.35). is a corrective
factor that approaches zero in the case of wide channels.

Taking into account (1.72) and (1.73) the final form for the threshold
voltage becomes

1.3.9.7 Hot carrier effects

High lateral electric fields can generate high velocity carriers also called
hot carriers. In short-channel devices, due to their high velocity, electron-
hole pairs can be generated in the channel by impact ionization and
avalanching. As a consequence, in n-MOS, a current of holes can flow from
the drain to the substrate. This effect can be viewed as a finite resistance that
connects the drain to the substrate and can result in a major limitation when
realizing high impedance cascode structures.

Moreover, some hot carriers with enough energy can tunnel the gate
oxide thus causing either a dc gate current or, if trapped in the oxide, a
threshold voltage alteration. This latter phenomenon can drastically limit the
long-term reliability of MOS transistors.

A further hot carrier effect is the so-called punch-through. It happens
when the depletion regions of source and drain are so close each other that
hot carriers with enough energy can overcome the short-channel region thus
causing a current that is no longer limited by the drift equations. It is as if the
channel were no longer present in the device and both source and drain areas
were connected together. This phenomenon is limited by increasing the
substrate doping which consequently limits the depletion region extensions.
This effect not only lowers drain impedance but can also cause transistor
breakdown.

1.3.10 Sub-threshold Region

In our previous modeling we assumed that no conduction could exist if
the gate voltage is below the threshold. Actually, when the gate voltage is
increased over the threshold, there is not an abrupt transition from the cut-off
region to any of the conducting region. Specifically, a small drain current
can flow at gate voltages a few millivolts below In this condition, the
device is said to operate in sub-threshold or in weak inversion region and the
current has an exponential relationship with the voltage applied.

Assuming long channel devices, the drain current is well expressed by [9]
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where all voltages are referred to the substrate. In (1.75), is a
characteristic current whose typical value is around 20 nA and n is a slope
factor whose value is about 1.5. Specifically, n depends on the surface
depletion capacitance, as

The weak inversion condition is expressed as

Often, to be sure that a transistor is operating in sub-threshold mode,
(1.77) is roughly approximated to

Assuming and the source short-circuited to the bulk, the
drain current exponential relationship can be simplified into

Despite the exponential relationship, the drain current is very small and
so is the transconductance (equal to Therefore the device is very
slow. Moreover, it should be noted that transistor matching is very poor (due
to threshold voltage variations) and that minimum size devices are normally
avoided when working in weak inversion. This leads to large parasitic
capacitances that further decrease device speed.

1.4 BIPOLAR-JUNCTION TRANSISTORS

Bipolar transistors or BJT were widespread until the end of seventies
when MOS technology started to become popular thanks to the fact that a
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larger number of transistors could be put together in a single integrated
circuit. Today, silicon-based integrated circuits are mainly fabricated using
CMOS processes, with a small slice devoted to bipolar technologies.

With respect to MOS, bipolar transistors have the advantage of a larger
transconductance factor, and a larger output resistance, so they exhibit
better performance in terms of current driving capability and achievable
voltage gain. Unfortunately, unlike MOS transistors, their base resistance is
finite and drastically decreases at high frequencies.

Recent bipolar transistors have a unity-gain frequency in the order of 20-
50 GHz. Since MOS unity-gain frequencies are one order of magnitude less,
BJTs are mainly used in RF or high-speed digital integrated circuits.

A typical simplified BJT cross-section is shown in Fig. 1.16, where the
so-called npn vertical transistor is depicted. It can be seen as two back-to-
back diodes because it is made up of two n-regions separated by a p-region
called base. The actual base region is the gray p-region in the figure whose
width, is small with respect to the other proportions and in modern
bipolar processes is between This region has a medium doping
concentration, in the order of The emitter is the heavily
doped n+ region in the figure. It has a width of a few and its doping
concentration is in the order of Finally, the actual collector
region is the gray n- epitaxial layer in the figure. The collector doping
concentration is in the order of To reduce the resistive path
that connects the actual collector region to the collector contact, a heavily
doped buried layer is grown below the device. The gray area represents the
region where the so-called transistor effect takes place and is the actual npn
transistor. Since this area extends vertically, the transistor is said to be
vertical. Finally, note that, unlike for MOSFETs, the transistor is not
symmetric.
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1.4.1 Basic Operation

To understand the basic operation of a bipolar transistor let us consider
the simplified scheme in Fig. 1.17 where the emitter terminal is connected to
ground. The base-emitter junction acts as a diode and a current flows if the
junction is forward biased. In such a situation, that is a current of
majority carriers (holes in this case) flows from the base terminal across the
base-emitter junction. Meantime, a current of electrons flows from the
emitter across the base-emitter junction and enters the base thus diffusing
towards the base-collector junction. Due to the different doping levels
electrons that diffuse into the base are much more than just holes that diffuse
into the emitter [1]-[3].

collector region. Since the base width, is small, electrons coming from
the emitter do not have the possibility to recombine with holes in the base
and almost all are pushed into the collector.

In such a situation, the small base current is mainly determined by holes
while electrons coming from the emitter mainly determine the large collector
current. Consequently, the emitter current is the sum of those two
contributions. Under this condition the transistor is said to operate in the
active region.

The collector current, is caused by the base-emitter voltage and, as for
a diode, it has an exponential relationship that is

If is larger than 0.2-0.3 V, the excess of electrons in the base is subject
to a negative electric field imposed by the collector voltage. When those
electrons appear at the base-collector junction, they are pushed into the
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where is the emitter area and is a constant term that represents a
current density and is inversely proportional to the base width, and its
doping concentration. The product is often expressed in terms of the
current scale factor

In addition, the base current is exponentially related to the base-emitter
voltage and has an expression similar to (1.80). Consequently, at a first
approximation, the ratio between the collector and the base current is
constant and independent of both voltages and currents. This ratio is
commonly referred to as that is

Due to the small amount of base current with respect to the large collector
current, the value of is typically between 50 and 200.

The ratio between the collector current and the emitter current, is
denoted with and results as

which is close to unity for high values of

1.4.2 Early Effect or Base Width Modulation

In (1.80) the collector current is independent of the collector voltage.
However, this is true only at a first order approximation since the
dependence in fact exists. Referring to Fig. 1.17, we note that the effective
base width, that should be used for evaluating is different from the
designed base width, due to the presence of two depletion regions. The
base-emitter depletion region is caused by a forward biasing. Therefore, it is

Since the constant can be expressed in terms of that is
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small and almost independent of the voltage applied. In contrast, reverse
biasing creates the base-collector depletion region, which, consequently, is
larger and strongly depends on the voltage applied. Specifically, the
collector voltage modulates the base-collector depletion region, thus
decreasing and influencing the effective base width,

To take this effect into account, a corrective term is introduced in (1.80)
that becomes [6]

where the constant is commonly referred to as the Early Voltage and has
a typical value between 50 and 100 V. In most of the applications, especially
for large signal analysis, this effect is negligible.

1.4.3 Saturation Region

When the collector-emitter voltage, approaches the value of about
0.2-0.3 V, commonly referred to as the base-collector junction
becomes forward biased. In such a situation, holes from the base start to
diffuse into the collector, and the collector current is no longer related to the
base current by (1.81). Specifically, the base-emitter junction behaves like a
diode whose current exponentially depends on while the base-
collector junction behaves like a voltage source whose value is set to

1.4.4 Charge Stored in the Active Region

In the active region, the base-emitter junction is forward-biased so, like in
a forward-biased diode, the charge stored across this junction is derived from
two contributions. The first takes into account the charge in the small
depletion region, and can be modeled by substituting to in
(1.12). This charge leads to a junction capacitance whose value can be
approximated by where has an expression similar to (1.14) or
(1.17) depending on whether the junction is assumed to be abrupt or not.

The second contribution is given by the minority carrier concentration in
both the base and the emitter. As in a forward-biased diode, this contribution
leads to a diffusion capacitance, expressed by
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where is a technology parameter commonly referred to as the base-transit-
time constant. The total base-emitter capacitance, is then given by

In contrast, since the base-collector junction is reverse-biased, its relative
charge is stored in the depletion region. Assuming a graded junction, the
corresponding capacitance, is expressed by an equation similar to (1.16)
multiplied by the effective area of the base-collector interface, that is

1.4.5 Active Region Small Signal Model

The most commonly used small signal model is the model. This
model is similar to the small signal model for a MOSFET in saturation
region and is shown in Fig. 1.18. Note that for historical reasons, small
signal subscripts that refer to the base-emitter components, i.e. be, are
substituted by the Greek letter and small signal subscripts that refers to the
base-collector components, i.e. bc, are substituted by the Greek letter

As in the MOSFET case, the most important parameter is the dependent
current generator, whose transconductance, is defined as

The small signal resistance, is defined as

The resistor models the Early effect and is defined as
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All the above dc small-signal components are intrinsic terms of any BJT
since they depend on the npn junction itself.

The model in Fig. 1.18 also includes a base resistance, which comes
out in a real implementation. Specifically, models the resistive path that
exists between the effective transistor base region (i.e. the gray area in Fig.
1.16) and the base contact (i.e. the p+ doped region). This path presents a
small ohmic resistance of a few tens or hundreds of ohm. With respect to

has a small value and, in low frequency operations, it can be neglected
since the base-emitter voltage is practically equal to In high-frequency
circuits (i.e. in RF applications), part of the base current flows across  thus
reducing the effective impedance in the base-emitter branch. Because of the
presence of  can be significantly different from the base-emitter voltage
applied thus considerably affecting transistor properties. In practice,
cannot be neglected if a high-speed circuit is being analyzed or designed.

Note that there is also an ohmic resistance in series with the actual
collector (whose value is lowered by the n+ buried layer) but its presence is
not as crucial as the base resistance is.

As far as the capacitive contribution is concerned, we have two main
intrinsic capacitors, and as well as capacitor, which exists in
integrated implementations only.

Specifically, capacitor is the base-emitter capacitor and is expressed
by (1.86), while which represents the base-collector capacitive
contribution, is expressed by (1.87). Due to their nature, is at least one
order of magnitude smaller than and, in several cases, is neglected.
However, its contribution becomes significant when a high gain exists
between the base and the collector.

Capacitor comes out from the reverse biased pn region realized by
the collector-substrate junction. This capacitor is quite large and is modeled
by the following expression
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where is the effective collector-substrate area, is the collector-to-
substrate capacitance per unit area and is the built-in potential for the
collector-substrate junction.
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Chapter 2

SINGLE TRANSISTOR CONFIGURATIONS

2.1 THE GENERIC ACTIVE COMPONENT

In order to ensure that all analytical results derived herein are applicable
to feedback configurations realised with both BJT and MOSFET
technologies –including heterostructure bipolar transistor (HBT) and III-V
compound metal-semiconductor field effect transistor (MESFET)
technologies– we introduce the generic transistor component, whose circuit
symbol and low-frequency small-signal model are shown in Fig. 2.1a-b and
Fig. 2.1c, respectively [PC981].

This device is identified by four terminals denoted as X, Y, Z and B.
Specifically, X, Y, and Z respectively representing the emitter, base, and
collector terminals for BJTs (and HBTs) or the source, gate, and drain of
MOSFETs (and MESFETs). The fourth terminal B represents the substrate
or bulk node, it is almost always biased at a fixed potential and conducts a
negligible static current. Symbols X, Y and Z were chosen to remind us of
the functional equivalence between our generic device and the negative
second generation Current Conveyor (CCII-) [SS70], [TLH90], [PPP99].
The ideal negative1 CCII is a three-terminal device labelled by X, Y and Z
(see Fig. 2.2) and is characterized by the following port relation

1 In a positive CCII the direction of the current flow at terminal Z has an opposite
sign to a CCII-, i.e.
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The resistance at terminal Y is ideally infinite (no current flows through Y).
The current flowing into terminal Z is a replica (but with opposite sign) of
that flowing into terminal X. The voltage at terminal X is a replica of that
applied to Y. The current in X can be supplied directly through terminal X
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itself, or can be produced by copying the voltage at terminal Y acting across
an external impedance connected to terminal X.

As can be argued from Fig. 2.1b, the small-signal model of the generic
transistor is derived by merging the BJT and MOSFET models. In order to
further simplify the model, we could relate the bulk transconductance,
with transconductance via the bulk transconductance parameter, (do
not mistake this parameter for the MOS channel-length modulation
parameter,

2.2 AC SCHEMATIC DIAGRAM AND LINEAR ANALYSIS

In this book, we will be mostly interested in the small-signal properties of
(feedback) configurations rather than their bias details. Thus, to simplify our
description and analysis, and to focus only on the performance of interest,
we will regularly make use of the AC schematic diagram, i.e., a circuit
diagram in which biasing details are not shown.

Although small-signal analysis could be performed directly on the
original schematic diagram (experienced designers do this), in this chapter
we will not follow this procedure. For the sake of clarity (and for educational

MOSFETs and is equal to zero for BJTs. Thus, since resistance, is infinite
for MOSFETs, the following relationship always holds

An important parameter, not shown in the model, is the current gain,
equal to

Its value is usually in the range of 50 to 200 for BJTs, and, of course, is
infinitely large for MOSFETs.

for the sake of completeness, we will include in ouranalytical derivations.

Parameter is always much lower than 1. Its value is around 0.2-0.3 for

Resistance is for any kind of transistor large enough to justify its
neglect in discrete realisations employing discrete (load) resistors, while it
must be often considered in IC applications. Hence, when appropriate and
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purposes) we will derive from the small-signal equivalent circuit from an AC
schematic by replacing each transistor with its small-signal model and
evaluating the circuit parameters. Later in the book, we can briefly refer to
the results obtained below without requiring further investigations.

The small-signal equivalent circuit is obtained by linearising the circuit
around its operating point. Figure 2.3 depicts a linear two-port network,
whose output is terminated by a load resistance The output signals,
voltage or current are generated in response to an input port signal
whose equivalent voltage and resistance are respectively, and Thus, a
voltage and a current gain can be defined between and and and

Important parameters of this system are the input and output resistances seen
at the input and output ports, which are responsible for a signal loss at the
input and output when coupled with resistances and We will denote
these two resistances with and respectively. The use of lowercase
variables and subscripts is to remind us that these are small-signal
resistances. Note that in general they depend on the load and source
resistances, respectively.

In the rest of the chapter we wil l analyse the four basic single-transistor
configurations. Since these schemes are covered in many electronic circuit
textbooks, we will assume that the reader is familiar with their complete
analysis (including biasing techniques, AC coupling, etc). Here we will
recall only their salient small-signal features.
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2.3    COMMON X (EMITTER/SOURCE) CONFIGURATION

Fig. 2.4a depicts the AC schematic diagram of the common X (CX)
configuration. This circuit is used to provide voltage and current gain. The
figure also includes resistance which would not be strictly necessary, to
render the analysis a more general one. It can account for the distributed
base resistance of bipolar devices or the internal resistance of the signal
generator. The small-signal circuit is illustrated in Fig. 2.4b. By defining the
input and the output resistances of the common X configuration as illustrated
in Fig. 2.4a, we can simply see by inspection that these are and
respectively.

Voltage gain between terminal Y and Z can be evaluated considering that
equals and taking into account the input coupling between and

leading to the overall voltage gain
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The voltage gain is inverting, and neglecting the input loss, is reduced to
when the device output resistance, is much higher than the load

resistance, Conversely, it achieves its maximum value, which
depends only on bias conditions and technological parameters, when the load
resistance is much higher than the transistor output resistance. Also for this
reason, quantity is said to be the intrinsic voltage gain of the
configuration.

The current gain is defined as the ratio between the current flowing into
the Y terminal and that flowing in the load resistor to ground. It has a finite
value only for bipolar devices and is strictly related to parameter in (2.4).

2.4  COMMON X WITH DEGENERATIVE RESISTANCE

The common X configuration with a local resistive feedback is shown
in Fig. 2.5a.

Although the main concern of this book is feedback, for the moment we
will not consider the effects of resistance from a feedback point of view,
but analyse it directly from the small-signal circuit illustrated in Fig. 2.5b.
To find the input resistance of the CX configuration we apply the KCL at
terminal X

By considering that and solving (2.7) for we get

Its magnitude decreases to a value lower than when the output resistance
cannot be considered much higher than the load resistance
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Finally, the input resistance, can be expressed in terms of

Observing that has an infinite value for MOS devices, we can avoid
considering the term which accounts for the bulk transconductance in (2.8).
Thus, (2.9a) can be usefully rewritten as
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Assuming and are lower than the input resistance is accurately
approximated by the well-known relation

The equivalent output resistance is evaluated by setting the input node to
ground. Hence, the small-signal circuit in Fig. 2.6 results.

By applying a test voltage, at terminal Z, we note that equals so
can be expressed as

Since

and
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the output resistance is

It is apparent that resistance has increased compared to the pure CX
configuration. In particular, for MOS transistors the expression simplifies to

Note that the body effect contributes to the output resistance growth. For
bipolar devices we find the well-known result given in (2.11c), evaluated
assuming resistance lower than

which tends to if  is greater than

To determine the voltage and current gain of the CX configuration, we
make use of the Norton equivalent at the output of the circuit, as shown in
Fig. 2.7a. The expression of the Norton resistance is exactly the same as
given in (2.11). Then we only have to calculate the short-circuit output
current. We prefer to perform this calculation in two steps:
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First we evaluate the voltage partition between and

Since we must set the node Z to ground, this is equivalent to setting to
zero. Using this condition in (2.9b) we obtain

Then we evaluate the equivalent transconductance, by considering the
short-circuit current flowing into terminal Z, which is expressed by

Thus, the equivalent transconductance is found to be

where (2.8) with has been used.
Compared with the simple CX configuration, the degeneration reduces the
transconductance value, although it provides higher input and output
resistances.

The above expression is further simplified if it is possible to neglect
resistance Moreover, for bipolar transistors, or neglecting the body effect
in MOS transistors, we get the well-known result
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which is lastly approximated by if Observe, as a special
case, that if equals is approximated by

Finally, the voltage gain is

The above discussion is helpful in developing a simple model of the
configuration considered, which is similar to the pure CX configuration,
without explicitly including resistance The model is shown in Fig. 2.7b,
with its parameters already defined in (2.11), (2.13), and (2.15). It can be
used to simplify the analysis of complex circuits including, as building
blocks, CX stages with degeneration. In particular, it provides exact voltage
and current gains and output resistance. Note, however, that the input

from the actual input resistance, which depends instead on Of course,
is very well approximated by if the condition is met.

The current gain is related to the equivalent parameter,

which is nearly equal to It is further reduced by the output coupling loss,
so that

Except for the lower loss at the output, it is similar to that of CX without the
degenerative resistance.

resistance is evaluated with the output short-circuited. It (slightly) differs
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2.5 COMMON Y (BASE/GATE)

The common Y (CY) configuration is generally exploited for its current
following capability. In this configuration the X terminal is the input and Z
is the output. Figure 2.8a depicts a general common Y topology where
resistance which is not strictly necessary, is again included to generalise
the analysis.

The input resistance, seen by input generator, in Fig. 2.8a, can be
found by replacing the transistor with its model and writing the KCL at node
X (we can simplify calculation by ideally removing resistance and
considering its effect later)
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Since

and

remembering relationship (2.2), we obtain

The above relation can be simplified if condition is verified. In such a
case we can distinguish two often encountered sub-cases

1) (simple load)

2) (e.g., cascode load)
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The output resistance is the same as in the previous configuration and is
given by (2.11).

As for the CX configuration with degeneration, we develop an alternative
model useful for simplifying gain calculation in more complex circuits.
Again, due to the current-out nature of the configuration, it is convenient to
represent the circuit at its output node with its Norton equivalent circuit.
Figure 2.8b illustrates this model. The output resistance is given in (2.11),
and the input resistance evaluated with the output shorted to ground) can
be derived directly by setting in (2.20a) and can be rewritten as

The inner current gain, between the current flowing into the grounded
terminal Z and the current is

As expected, its value is very close to one. If we assume that a load

Assuming an ideally unitary inner current gain and a load resistance,
which is much lower than the equivalent out resistance, (2.23a) can be
approximated as

resistance, is connected to the output node, the current gain of the
complete amplifier is given by

and the voltage gain is simply
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2.6 COMMON Z (COLLECTOR/DRAIN)

The common Z amplifier, shown in Fig. 2.9a, is used as voltage follower
(or as level shifter). Its input is located at the Y terminal and the output is at
the X terminal. The usual topology of the common Z amplifier is
implemented without resistance but to develop general relationships we
include this resistance and only in the final step do we simplify the equations
by eventually setting its value to zero.

Except for the different designation of resistances at terminals X and Z,
the calculation of the input resistance leads to exactly the same relationship
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as for the common X topology with a degenerative resistance. Here we
report for the sake of completeness the expression given in (2.9a) rearranged
for this case

The output resistance is similar (again, with different resistor names) to
the input resistance of the common Y amplifier. Rearranging (2.20a) yields

Due to the voltage following function exhibited by this configuration, the
alternative model, using which it is convenient to represent the circuit, is
illustrated in Fig. 2.9b. In the model the output resistance is given in
(2.25), and the input resistance evaluated with the output open) can be
derived directly by making infinitely large in (2.24). In this case, we are
interested in finding the Thévenin equivalent of the circuit at the output, then
the model exploits a voltage-controlled voltage source as a dependent
source. To evaluate the equivalent voltage gain, which represents the
intrinsic voltage gain (i.e., without the source and load resistance) of the
common Z amplifier, we use KCL at terminals X and Z

and

By substituting (2.26b) into (2.26a) and solving for we get
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By remembering that the value of is finite only for the bipolar
transistor we can set to zero. Using (2.27) and the relation
after some manipulation we get

As expected, the voltage gain is close to one. In particular, in bipolar
technology the inaccuracy is due to the ratio between the bias resistance
and resistance Indeed, relationship (2.28a) becomes

On the other hand, in MOS implementations the loss is due to the bulk
transconductance as shown below

The total voltage gain of the common Z amplifier including input and
output loss is equal to
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The current gain is finite only for the bipolar technology, and it is given
by

If we assume an ideally unitary inner voltage gain, and a much higher
input resistance than the source resistance, the current gain can be
approximated as

2.7 FREQUENCY RESPONSE OF SINGLE TRANSISTOR
CONFIGURATIONS

To evaluate the frequency response of a circuit comprising the generic
active component, we have to consider the transistor high-frequency small-
signal model. This model is depicted in Fig. 2.10 and includes capacitors

and It generally applies to all transistor types although, as
discussed in Chapter 1, for each kind of device the capacitances have a
different physical meaning.
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Of course, this is not the only possible model, more accurate models can
be developed in particular to better approximate the behavior of the device
for frequencies higher than its transition frequency. However, except for RF
circuits, the model in Fig. 2.10 is sufficiently adequate to allow frequency
behavior analysis and feedback amplifier compensation to be performed.
Moreover, in the following we shall neglect the effect of the capacitance
for simplicity, because it is not responsible for any substantial effect.

2.7.1 Common X Configuration

The AC schematic of the common X configuration is shown in Fig. 2.11 a
and the corresponding high-frequency small-signal model is depicted in Fig.
2.11b.

The circuit voltage gain transfer function can be written as



56 Chapter 2: Single Transistor Configurations

where the DC voltage gain is given by (2.5). The coefficients and
can be found by applying the procedure described in the Appendix or

through a direct analysis of the circuit. They are given by

We see that the contribution of to coefficient (which approximately
determines the first pole) can become dominant for high values of the
voltage gain, The magnification of is predicted by the well-

known Miller theorem.
It is worth noting that coefficient related to the (positive) zero can be

evaluated by inspection of Fig. 2.11b [MG91]. Indeed, at the complex
frequency of the zero (i.e. the output voltage must be zero and all
the current of the controlled source, flows through the capacitor
Thus, after equating the two currents we get

which gives the frequency of the zero.

2.7.2 Common X with a Degenerative Resistance

Consider now the common X configuration with a degenerative resistance at
node X, and its small-signal model shown in Fig. 2.12a and 2.12b,
respectively.
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We again have a transfer function in the form of equation (2.31), where the
DC voltage gain is now given by (2.16). By applying the method explained
in the Appendix, the coefficients are given by
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Alternatively, coefficients and can be obtained directly from (2.32) and
(2.33) if we consider that we have to substitute and with and
respectively, to evaluate the equivalent resistance seen by capacitors and

Besides, the equivalent resistance seen by capacitance after
neglecting transconductance and resistance is equal to

In fact, considering the small-signal circuit in Fig. 2.13, we get

and

Coefficient can be obtained directly from (2.34) by substituting the
transconductance with its equivalent in the common X configuration
with a degenerative resistance
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Similarly to the DC analysis, it would be useful to develop an equivalent
model of the common X configuration with a degenerative resistance for the
high-frequency analysis. The schematic of the model, which recalls that of a
common X configuration without resistance is shown in Fig. 2.14.

It is apparent that to account for frequency behavior, we have introduced the
new capacitor while the other two capacitors, and are those
intrinsic to the device model. After replacing the transistor and in Fig.
2.12a with the above equivalent model, coefficients and of the transfer
function become

Equating (2.42) and (2.43) with (2.36) and (2.38), respectively, under the
assumption that and hence are much greater than we obtain the
condition for the equivalence of the two models

Hence, after some algebraic manipulation we get
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By neglecting and with respect to inside the square brackets of
the denominator, the equivalent capacitance can be approximated to

As expected, (2.46) shows a reduction of the equivalent capacitance seen at
node Y. In reality, this bootstrapping effect is predicted by the well-known
Miller theorem for those cases where the voltage gain across the capacitor
tends to be unitary.

A more accurate evaluation of the zeros can be achieved by using the
nodal admittance matrix as proposed in [R85]. The nodal admittance matrix
can be written by inspection of the circuit in Fig. 2.12b in terms of the
Laplace transform variable s. The device under consideration is identified by
the four terminals X, Y, Z and B, where node B is connected to the reference
node. Hence, the nodal admittance matrix can be defined as

Evaluating the admittance terms inside the matrix [DK69] and neglecting
resistance and transconductance we get

where terms represent the conductance (i.e. the inverse of the resistance
of the i-th element. Of course, elements and can be simply included

in the matrix but at the cost of more complex expressions. Neglecting term
with respect to the nodal admittance matrix can be rewritten as

As known from linear circuit theory, the transfer function numerator
polynomial is an invariant characteristic of a circuit, while the denominator
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polynomial depends on the specific input and output terminals. In particular,
it is analytically given by the determinant of the minor defined by the input
and output node. Hence, for the common X configuration with degenerative
resistance we get

It is apparent that in the case where degenerative resistance is equal to
zero we find the same positive zero in (2.41), which also coincides with the
approximated dominant zero obtained through (2.50).

2.7.3 Common Y and Common Z Configurations

Both the common Y and the common Z configurations can be represented
by the transfer function

where the DC gain has already been derived in Sections 2.5 and 2.6. The
coefficients and that identify the system poles are the same as in the
common X configuration with the degenerative resistance. Indeed, the small-
signal network is the same as the one in Fig. 2.12b after short-circuiting the
voltage source. Regarding the numerator, we can again use the nodal
admittance matrix (2.48). In particular, for the common Y configuration we
get

which shows two zeros that can be complex and conjugated.
For the common Z configuration the numerator of (2.51) is equal to

which shows two real and negative zeros.
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Chapter 3

FEEDBACK

Feedback, whether intentional or parasitic, is pervasive in all electronic
circuits and systems. Usually, a feedback network includes a subcircuit that
allows a fraction of the output signal to modify the effective input signal, in
such a way as to produce a circuit response that can differ substantially from
the response produced in the absence of such feedback. If the magnitude and
the relative phase angle of the fed back signal decreases the magnitude of the
signal applied to the input, the feedback is said to be negative or
degenerative. Otherwise, the feedback is said to be positive or regenerative.
Because negative feedback tends to produce stable1 circuit responses, it is
used in most applications. Note, however, that the parasitic feedback
incurred by the energy storage elements associated with circuit layout,
circuit packaging, and second order high frequency device phenomena often
degrades an otherwise negative feedback circuit into a potentially
regenerative or severely underdumped network. In contrast, positive
feedback often enhances an inclination towards unstable behavior. This
property proves useful when designing oscillators. Moreover, small amounts
of positive feedback can be useful even in linear applications. For instance,
to reduce component spreads and/or Nevertheless,
positive feedback is always applied with some caution [WH95], [SPJT98],
[LG98], [PP994].

Feedback has been exploited in the design of amplifiers since the early
days of vacuum-tube electronics. Feedback theory was developed by
electronic engineers to satisfy the demand for amplifiers and repeaters
exhibiting stable performance for telephone applications. In particular,
Black, who was an electronic engineer at Bell Laboratories, is credited as the
revolutionary inventor of the feedback amplifier in 1927 [B34]. Since then,

1 The definition of stability and related issues are presented in the next chapter.
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feedback has become a key design issue both in analog and digital electronic
circuits and systems.

Feedback applied around an analog network allows gain to be stabilised
(desensitised) with respect to variations in circuit elements, and active device
model parameters. This desensitisation property is crucial in view of
parametric uncertainties caused by device parameters spreads, power supply
variations, temperature changes, aging phenomena, and so on. Feedback
allows the input and output resistances of a given circuit to be suitably
modified in any fashion desired. It improves the linearity of the output signal
by reducing dependence on the parameters of inherently nonlinear active
devices used to implement the open loop circuit. Finally, it can lead to an
increase in the closed-loop bandwidth.

However, all these features are paid for in terms of a proportional
reduction in gain. This is usually a small price to pay, particularly in
applications using operational amplifiers whose dc open-loop voltage gain is
very large (60 dB, at least). Besides, as already mentioned, (negative)
feedback can determine oscillation, hence, frequency compensation is
usually mandatory2.

3.1 METHOD OF ANALYSIS OF FEEDBACK CIRCUITS

There are several approaches for analysing feedback circuits [H92],
[PC981]. The most straightforward one is to directly analyse the circuit by
writing the Kirchhoff equations on the small-signal circuit and deriving the
circuit characteristics. However, this approach is computationally tedious, it
does not allow one to disclose the general properties of feedback circuits
which can greatly simplify the analysis and, perhaps more importantly, it
gives no insight into circuit behavior and hardly provides useful design
equations. Thus, alternative approaches have been developed.

Most of the traditional techniques used to analyse feedback amplifiers
start from the idealised block diagram in Fig. 3.1 [G85], [SS91], [C91],
[LS94], where blocks A and f are the open-loop network (that we may
identify as the open-loop amplifier) and the feedback network, respectively.
Then parameter A represents the gain of the open-loop amplifier and f is the
feedback factor, i.e. the portion of the output signal fed back to the input.
Signals and represent source, output, feedback and error signals,
respectively. This representation gives only approximate results when
applied to real amplifiers, principally because it assumes unidirectional
blocks. Moreover, it is difficult to take into account the loading effects of the

2 Frequency compensation is treated in Chapter 5 of this book.
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feedback network on the basic amplifier, and the determination of A and f is
usually a non-trivial task (especially because A is rarely independent of f in
practical electronics). Nevertheless, this scheme is suitable for a simple
focus on the main feedback properties.

Assuming blocks A and f are linear and unidirectional, the transfer
function of the feedback amplifier is given by

where is the closed-loop gain and quantity fA is called the loop gain.
Note that for negative feedback, the loop gain must be positive. Therefore,
the closed-loop gain is smaller than the open-loop gain (by a factor 1+ fA). If
fA < 0 the feedback is positive. If fA is much greater than 1, the closed-loop
transfer function falls to 1/f, which is independent of the open-loop gain. To
better represent this concept we can rewrite (3.1a) as

If the feedback network contains circuit elements that are not susceptible
to uncertainties we can achieve a closed-loop gain which is desensitised to
parameter variations of the open-loop function. This property can be
formally expressed by evaluating the sensitivity of the closed-loop gain
versus the open-loop one
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which shows that a relative variation in the open-loop system A corresponds
to a relative variation in the closed-loop system (1+fA) times lower.

In real cases, unfortunately, blocks A and f are made up of active and
passive components, and generally they cannot be assumed to be
unidirectional. Of course, to take into account the electrical nature of real
amplifiers a straightforward nodal analysis can be applied, but the approach
is tedious because it requires the simultaneous solution of numerous
equations even for medium-complexity circuits. A commonly used approach
models the amplifier and the feedback network with their proper two-port
models, each having as their input and output variables both the port voltage
and port current [G85]. This leads to an explosion of cases that depend on
the specific kind of amplifier and feedback network implemented. The
approach can also take into account the non-unidirectional nature of real
blocks, but in this case the two-port model increases in complexity and the
final analysis, though accurate, becomes extremely elaborate [GM93]. As a
result, there are several limitations to this approach. The two-port network
which models the block must be selected judiciously. The computation of
closed-loop parameters (transfer function and input and output resistances) is
tedious, especially if block A is a multistage amplifier or a multi-loop
feedback is implemented. Moreover, the method is straightforwardly
applicable to only those circuits that implement a global feedback (a
feedback between the input and the output) [PG981], whereas many
feedback amplifiers exploit only local feedback3.

Other methods to analyse feedback amplifiers are based on Mason’s
signal flow graph (SFG) theory [M53], [M56], [MZ60], [C91], [MG91]:
they can either be derived from it, or related to it [R74], [C90], [B91],
[MG91]. The implicit drawback of the uncritical application of the classical
signal flow analysis is that we almost completely lose our understanding of
circuit behavior, and as a consequence, we have greater difficulties in
carrying out the design. This drawback is overcome by approaches that can
be derived from signal flow analysis, such as the Rosenstark method [R74],
the Choma method [C90], and the Blackman theorem [B43]. The Rosenstark
and the Choma methods primarily focus on the evaluation of the closed-loop
transfer function. The Blackman theorem –intrinsic to the other two
methods– involves the computation of the input and output resistance of a
feedback amplifier. Both the Rosenstark and Choma procedures together
with the Blackman theorem give circuit designer a very powerful tool for the
analysis and design of feedback amplifiers. Indeed, not only do they achieve
exact relationships by describing the closed-loop amplifier efficiently and in

3 Local feedback occurs when the input and output terminals of the feedback
network do not coincide respectively with the output and input terminals of the
amplifier.
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a very simple manner, but also provide useful design guidelines by
highlighting the properties and limitations implicit in specific types of
feedback configurations.

3.2 SIGNAL FLOW GRAPH ANALYSIS

Classical SFG techniques have never gained popularity not only in circuit
design but even for analysis. This is mainly due to uncertainties in
transcribing circuit diagrams into their SFG equivalents. Mason himself
recognized that the construction of a SFG is somewhat obscure, and that “A
link in the chain of dependency is limited in extent only by one’s perception
of the problem.” Although some of these drawbacks have been overcome
[K00], the method still remains less direct than those proposed by
Rosenstark and Choma, which will be the only one comprehensively
considered in this text and described in the following sections. However,
since these methods descend from SFG through which they can easily be
demonstrated, we need to introduce some elementary concepts of SFG
analysis.

A signal flow graph allows us to graphically represent a circuit (or more
generally, a system) through the links between system variables. The nodes
on the graph represent variables and the relations among them consist in the
branches between the nodes with their associated weights. As a result, a
variable is the linear superposition of the node variables at the source of
incoming branches.

A general linear circuit can be represented by the signal flow graph
shown in Fig. 3.2. Variables and represent the input and output signals,
moreover, two other generic variables, and linked together through the
control (or critical) parameter P, are explicitly shown. Parameters are the
weight branches. Variables and the control parameter, P, can model a
controlled generator, or the relation between voltage and current across two
nodes of the circuit. This representation is particularly suited to feedback
circuits.
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as a function of the two other independent or source variables, and

and by substituting (3.4) into (3.3a), the transfer function of the closed-loop
amplifier results

Of course, to evaluate we have to relate weights with circuit
elements. Term can be found by setting the control parameter to zero and
evaluating the transfer function between input and output under this
condition. Term is the transfer function between the output and the
controlled variable, setting the input source, to zero. Term can be
computed via the transfer function between the source variable and the inner
variable, when the controlled variable, is set to zero, which in other
words means setting control parameter, P, equal to zero. Term gives the
relation between the independent and the controlled inner variables setting
control parameter, P, and input variable, to zero. Finally, it is worth
noting that, as apparent from Fig. 3.2, product represents the loop gain
of the network, also more properly termed the return ratio.

Equation (3.5) is only one of the many mathematical representations of a
linear circuit, which also depends on the particular choice of parameter P.
Note, however, that unless P is selected as feedback factor f, which is not
always transparent in feedback architectures, expressions for the loop gain
and the open loop gain of the feedback amplifiers remain obscure. In the
following we utilise (3.5) as a starting point to derive the Rosenstark,
Choma, and Blackman procedures.

Since solving for yields

Assuming and as dependent or output variables we can express them
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3.3 THE ROSENSTARK METHOD

Now we will try to express the transfer function obtained by
considering the signal flow analysis, in a form which is more similar to the
result given in (3.1b). Indeed, (3.5) can be rewritten as

This form is exactly that found by Rosenstark and allows us to elaborate its
procedure. Except for term in the numerator, it is similar to relationship
(3.1b).

The Rosenstark method is based on the calculation of the return ratio, T,
the asymptotic term, and the direct transmission term, All these
quantities, must be calculated with respect to one and only one controlled
source within the feedback amplifier. Moreover, they are a function of the
specific input and output conditions, which means they depend on the input
source resistance, and output load resistance, The exact input-output
transfer function of the feedback amplifier is thus given by [R74]

The three quantities in (3.7) are directly related to the weights and
parameter P of the flow graph through the following relationships obtained
by comparing (3.6) and (3.7)

Hence, to evaluate the three terms, we have to refer a controlled source
quantity, to a controlling quantity, by a parameter P and follow the
steps given below:
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1. Switch off the critical controlled source setting P = 0.To achieve the
direct transmission term, compute the transfer function between the
input and output Condition P = 0 requires an open circuit
(short circuit) to replace the branch containing the controlled source if P is
associated with a controlled current (voltage) source.

2. Set the input source to zero. This means short-circuiting the voltage
source or opening the current source. Replace the critical controlled voltage
(current) source by an independent voltage (current) generator of value P.
The return ratio, T, coincides with the resulting controlling quantity changed
in sign, (i.e., evaluate and mul t ip ly it to P).

3. Set the critical parameter to infinitely large Since the
controlled variable must be finite, this is equal to setting The
asymptotic gain, is the transfer function between the input and the
output under this special condition.

A comparison of (3.1) with (3.7) suggests that, for those cases where the
direct transmission term, is negligible, the return ratio equals the product
between the amplifier gain and the feedback factor (i.e., T = fA). For this
reason we will use the terms return ratio and loop gain almost
interchangeably, although this is not exactly true. The term in (3.7)
can be viewed as a corrective term, which modifies (3.1) when the loop gain
is not very large compared to unity. Under this condition, (3.1) and its
consequences are no longer valid. Thus (3.7) is a more general, and
insightful relation, for computing the closed-loop gain than (3.1). The
asymptotic gain equals the reciprocal of the feedback factor

circuits, exhibiting low values of and high values of T, the transfer
function of the feedback circuit is well approximated by The reader can
recognise in this observation the basis for the customary paper-and-pencil
analysis of feedback configurations employing ideal operational amplifiers.

In order to illustrate the use of the Rosenstark theory and to give an idea
of its strength and simplici ty, let us apply the method to a common Z
configuration whose load determines an intr insic feedback. The circuit,
reported in Fig. 3.3a, is the same as that analysed in Chapter 2 (the source
and the load resistances are coincident with resistance and
respectively). The small signal model, in which for simplicity the bulk
transconductance, and the transistor output resistance,        have been
neglected, is shown in Fig. 3.3b.

Term represents the transfer function of a feedback amplifier under the
ideal condition of infinite loop gain. Thus, for well-designed feedback
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Assume as control parameter P the transconductance of the transistor,
Hence, the controlling variable (denoted before as is voltage and the
controlled variable is the current of the controlled generator. Setting
parameter P equal to zero means switching off the controlled current source.
By evaluating under this condition the transfer gain of the amplifier we
found the direct gain In particular, the voltage at node X is due to a
partition of the input signal,

Consider the controlled current source an independent current source, P =
and set to zero (i.e. shorting) the input signal generator. Now evaluate the

voltage due to the independent current source, P,

Hence, changing the sign and multiplying for the transconductance value we
obtain the return ratio

Finally, set control parameter, P, equal to inf ini ty. The controlled current
source is finite, and this means that the control variable, must be equal to
zero. Hence, and the asymptotic gain results



72 Chapter 3: Feedback

Substituting (3.9), (3.11) and (3.12) in (3.7), we get

which gives exactly the same result found directly in paragraph 2.6. To
immediately verify this assertion set in (3.13) and compare it with

(2.28a).
Besides the simplicity of the procedure, the Rosenstark method, gives

precise information on the ideal behavior of the common Z amplifier through
the asymptotic gain and illuminates how an increase in the loop-gain, T,
moves the final transfer function close to its ideal value

3.4 THE CHOMA METHOD

Like the Rosenstark method, the one proposed by Choma starts from the
signal flow representation expressed by relationship (3.6), but adopts as
reference the relation in (3.1a), according to

In this case, only the denominator is expressed in terms of loop gain, T. The
whole function is multiplied for weight which represents the Direct
Transmission Term, and the numerator now depends on a novel
parameter termed the null return ratio, Thus the exact input-output
transfer function of the feedback amplifier is given by [C91]

where, of course, (3.8a) and (3.8b) hold, and
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Like for the Rosenstark method we have to choose a controlled source P
inside the feedback circuit. To calculate the Return Ratio, T, and the Direct
Transmission Term, we can follow the same steps described in point 1)
and 2). But now, we have to change step 3) to evaluate the nu l l return ratio.
The new point 3) is

3. Replace the critical controlled source by an independent source of
value P (like in the second point of the previous paragraph), without

with the resulting controlling quantity changed in sign, assuming the
output voltage is equal to zero. It is worth noting that the input source is not
independent, but its value must guarantee the zero condition at the output.

To demonstrate point 3), set in eq. (3.3a), yielding

and after substituting eq. (3.17) in (3.4) we get

Like the asymptotic gain, also the n u l l return ratio gives interesting
information from a circuit/design point of view. Moreover, it helps to
identify the nature of the feedback. The ratio between the return ratio and the
nu l l return ratio, quantifies the degree to which the local feedback
approaches global feedback [C91]. When it is the feedback is global.

Of course, both Rosenstark and Choma methods give the same results,
and comparing (3.7) with (3.15) we obtain

To evaluate the n u l l return ratio, consider again the small-signal model of
the common Z amplifier in Fig. 3.3b. Since voltage at node X must be
assumed to be zero, this means that the current of the critical generator P

all flows through resistances and Hence the n u l l return
ratio is given by

nullifying the input source. The Null Return Ratio, will be coincident
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3.5 THE BLACKMAN THEOREM

Feedback not only modifies the closed-loop network transfer function,
but also determines a change in the input/output resistances (impedances).
Specifically, as demonstrated in many classical textbooks such as [MG91],
the input resistance increases (decreases) by a factor 1+T when the signal
mixed at the input is a voltage (current). In contrast, the output resistance
increases (decreases) by a factor 1+T when the sensed signal is a current
(voltage). This conforms to the well-known rule that a series (shunt)
feedback connection in either the input or output increases (decreases) the
associated port resistance. However, in practical circuits there is not often a
sharp separation between the above mentioned cases. In other words, there
are situations that do not match either of the canonical configurations, and
hence a more general technique is needed to derive resistance relations.

Input and output resistances can be efficiently evaluated by using the
Blackman theorem [B43]. It was introduced in 1943 and rediscovered by
Rosenstark [74] and Grabel [MG91], and was also independently developed
through signal flow analysis by Choma [C90].

The signal flow scheme in Fig. 3.2 and related equations (3.3) and (3.4)
are general and, hence, can be used to represent the relation between the
voltage and the current at the input or the output port. Let variables and
be the voltage and the current of the considered port respectively. Eqs. (3.3)
and (3.4) can be rewritten as

Following the same procedure which leads to the Choma representation
we get

To interpret this result observe that term is the ratio between V and I,
when the controlled variable is zero. In other words, this means that term
is the resistance level without feedback (i.e., P = 0). Term is the loop
gain, which is computed by setting variable      and, hence, I equal to zero.
This means evaluating the loop gain with the considered port unloaded.
Finally, as derived in the Choma approach, term is the
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loop gain setting the output variable to zero. This means that the n u l l return
ratio is the loop-gain after short-circuiting the port considered.

From the above discussion, and representing the loop gain as an explicit
function of and we can specify (3.22) to represent the closed-loop
input and output resistances, and as follows

where and are the corresponding driving point input and output
resistances with the critical parameter P equal to zero, and

and are the return ratios under the specific conditions for
the source resistance, and load resistance,

We have already discussed the abil i ty of feedback to provide gain
desensitisation. However, such desensitisation of the inpu t and output
resistances cannot be achieved. In fact, it can be shown through relations
(3.23) and (3.24) that I/O resistances depend on open loop parameters.

The application of Blackman theorem to the common Z amplifier in Fig.
3.3 is now described. Assume transconductance as the control parameter
P. The input and output4 resistances with are

Both and are equal to zero, whereas and
result

Hence, input and output resistances are given by

4 As usual, the output resistance is calculated excluding resistor



76 Chapter 3: Feedback

Of course the two results found here are the same as those obtained by
simplifying (2.24) and (2.25).



Chapter  4

STABILITY
FREQUENCY AND STEP RESPONSE

In the previous chapter we enunciated the basic feedback concepts and
described efficient techniques for analysing feedback amplifiers.
Particularly, we defined the open-loop gain, the loop-gain (or return ratio),
and other quantities, all as DC values. However, these quantities are in
general a function of frequency and they should be better referred to as
transfer functions instead of gains. Moreover, the feedback factor could also
be frequency dependent (to this end, the best example is perhaps the well-
known RC-active integrator made up of an op-amp and a feedback network
constituted by a resistor and a capacitor). Thus, all these effects should be
taken into account in the Rosenstark and Choma relationships, (3.8) and
(3.16), which allow us to accurately obtain the closed-loop transfer function.
In addition, for a first-order model, they should also be considered in (3.1).
Similarly, in the Blackman equations, (3.23) and (3.24), we need to use the
appropriate return ratio transfer function to obtain input and output
impedances instead of resistances.

For the sake of simplicity, in this chapter we will assume that the
feedback factor is constant, at least in the frequency range of interest. In
addition, we will assume that the feedback network is designed so as to not
introduce further poles in the loop gain. Such a condition is fortunately often
verified in feedback amplifiers with a purely resistive feedback network.

It should be well known to the reader that an electronic circuit and system
are said to be stable if all bounded excitations yield bounded responses.
Otherwise, if bounded excitations produce an unbounded response the
system is said to be unstable. Passive RLC circuits are by nature stable.
Active networks contain internal energy sources that can combine with the
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input excitation to cause the output to increase indefinitely or sustain
oscillations. Note, however, that in practice the output of an unstable circuit
cannot diverge indefinitely, since a l imit is set by the power supply rails.

It should also be well known that stability is ensured if all the poles of a
given circuit/system lie in the left-half of the s-plane. Thus, we could check
the stability of a feedback amplifier by evaluating the closed-loop transfer
function and determining the locations of its poles. This procedure, however,
does not provide design insides and does not specify the margins by which
stability is achieved. In fact, circuit components are affected by
manufacturing tolerances, temperature and ageing phenomena, etc., which
cause a parameter to deviate from its nominal value. Under this scenario, we
need to introduce safety stability margins, which are the phase margin and
gain margin. Moreover, even stable amplifiers, hence that have a bounded
response, can take too much time to reach a steady state. For this purpose,
the classical feedback circuit analysis technique derived from the well-
known Bode disclosures can be utilised [B45].

In the following paragraphs we wi l l examine the frequency response of
transfer functions characterised by different combinations of poles (and
zeros) that are found usually in real practice. Starting from this, useful
definitions will be given which help designers to derive fundamental
relations to ensure closed-loop stability with adequate margins. The closed-
loop step response in the time domain, for each typology of transfer
function, is also derived.

4.1 ONE-POLE FEEDBACK AMPLIFIERS

Among the feedback properties, the closed-loop bandwidth extension to
the original open-loop amplifier is often included [G85], [SS91]. We wi l l
show that this property applies only to one-pole amplifiers, but is not
effective in multi-pole amplifiers.

Let us consider an open-loop amplifier having the fol lowing transfer
function including a single (negative) pole, whose angular frequency is

Now connect the amplifier in feedback with a pure resistive network,
whose feedback factor is f, as shown in Fig. 4 .1.
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Returning to (3.1a), the closed-loop transfer function results as

where is the DC closed-loop gain and is the closed-loop pole, each
given by

The foregoing approximations hold for large loop gains which are
required for an adequate desensitisation of the closed-loop response with
respect to open-loop parameters. It is seen that increasing from zero shifts
the pole along the negative real axis, as illustrated in Fig. 4.21. Since the pole
is located in the negative s-plane for any value of f, the system is termed
absolutely or unconditionally stable. This denotes an attractive condition
indicating that a one-pole amplifier is stable under al l input signal conditions

1 This plot is called the root locus diagram. Its construction can become tedious for
higher order systems and we do not make use of this tool to examine stability. The
interested reader is referred to [SS91], [G85], or any feedback control text e.g.
[FPE94],
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and for all ranges of component values. Unfortunately, this is not a realistic
case, since real amplifiers have more than one pole.

Returning to (4.3b), we see that the closed-loop pole has been shifted to a
higher frequency by a factor equal to (that is, approximately the DC
loop gain), which is the same amount of reduction experienced by the
closed-loop DC gain with respect to the open-loop gain. Thus, a gain
bandwidth trade-off exists between the open- and closed-loop transfer
functions, indicating that in a one-pole amplifier we can apply feedback to
obtain higher bandwidth where amplifier gain reduction is allowed. This
trade-off is represented by the gain-bandwidth product, which is the
product of the DC open-loop gain, and its –3-dB angular frequency
Note also that the gain-bandwidth product of a single-pole function exactly
equals its unity-gain frequency, (i.e., the frequency at which the module
of the gain becomes unitary, for this reason it is also called the transition
frequency). Moreover, is an invariant amplif ier parameter, since its
value is the same for the open-loop and closed-loop amplifier, as illustrated
in Fig. 4.3, showing the open-loop, closed-loop and loop-gain transfer
functions. Of course, the gain-bandwidth product of A(s) is independent of
the degree of feedback applied and is equal to the maximum bandwidth
achieved with the unitary feedback factor, f = 1 (i.e., with the amplifier in
unity gain feedback configuration). More interestingly, (4.3b) predicts that
the gain-bandwidth product of the loop-gain transfer funct ion w i l l equal the
closed-loop pole. Thus, when studying the stability of a feedback amplifier,
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it is usually convenient to analyse the frequency response of the loop-gain
rather than that of the open-loop transfer function. This is because the loop-
gain transfer function gives information on most of the closed-loop
properties.

The closed-loop characteristics of an amplifier can be also investigated in
the time domain, by evaluating the response, to a unitary input step

u(t). The step response gives important specifications for applications (such
as instrumentation, control, and sample data systems) sensitive to the
amplifier’s transient response.

Let us consider a closed-loop configuration comprising the single-pole
amplifier with the transfer function shown in (4.1). The step response is
easily found to be

The output steady state value is and is reached exponentially with time
constant

The reader should know that the settling time, is the time interval
required for the output response to settle to some specified percentage of the
final value. For a single-pole amplifier the settling time is then proportional
to Usually, the settling time needed to reach 1% or 0.1% of the final
value is considered. In these two cases, the settling time results and
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4.2 TWO-POLE FEEDBACK AMPLIFIERS

The loop-gain transfer function of real amplifiers includes more than one
single pole. In the absence of suitable compensation, this can cause
instability phenomena even under negative feedback. To demonstrate these
instability problems, and the related importance of a sufficiently large
separation between the two lowest poles of the loop-gain transfer funct ion,
consider now an open-loop amplifier with two real negative poles. As
already mentioned, and as wi l l be further explained in the following
chapters, it is more convenient to analyse the loop gain instead of the
amplifier open-loop gain.

Assume that the amplifier operating within the given feedback network
gives rise to the following two-pole loop-gain function

It should now be observed that for second-order and higher-order transfer
functions, the gain-bandwidth product, does not necessarily
coincide with the unity-gain frequency However, this is stil l a good
approximation if the second pole is greater than This observation is
graphically explained in Fig. 4.4, where two loop-gain functions (with
different pole separation) are plotted.

Note that hereinafter and unless differently indicated, we wi l l denote the
gain-bandwidth product of the loop-gain transfer function with

Using (3.la), the closed-loop transfer function becomes

where and are the parameters called pole frequency and damping

factor, respectively, and are expressed as functions of the loop-gain poles by
[SS91]
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The last identity in (4.6) is an alternative expression of with and
as the closed-loop amplifier poles given by

These poles are either real or complex conjugate pairs, depending on the
value of (or parameter Q equal to sometimes used instead of and
called the pole Q factor). The location of the closed-loop poles, as the DC
loop-gain is increased from zero, is illustrated in Fig. 4.5 showing that a
second-order feedback system is absolutely stable. However, the design of a
second-order system having a specific and well-defined frequency and
transient response requires careful consideration of where the poles are to be
located.
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By normalising the module of the closed-loop transfer function and the
angular frequency to and respectively, we obtain the frequency
responses plotted in Fig. 4.6.

This figure helps to visualise that when is lower than a critical value

an overshoot in the frequency domain arises at a frequency,
with the (peak) amplitude, both given below [MG91]

It is apparent that the relative amplitude of the overshoot depends only on

the damping factor, For it can be shown that the module of the
frequency response is maximally flat (which is often referred to as the
Butterworth condition). Specifically, this condition yields the largest
possible closed-loop 3-dB bandwidth within the constraint of a monotone
decreasing frequency response.
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The expression of the step response of the closed-loop two-pole amplifier
is

If the closed-loop poles are complex conjugate –a condition which arises
when the value of is lower than 1– the step response exhibits an
underdamped behavior (conversely, an overdamped closed-loop response
requires In such cases the step response is better expressed by the
following relationship
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Underdamped amplifiers are not unstable systems, but nonetheless they
are usually unacceptable, because overshoot arises in the time domain which
is responsible for slow settling behaviour.

Normalising the step response to u(t), we can draw the plots in Fig. 4.7,
illustrating the step response of a two-pole feedback amplifier for different

desired value, parameter must be properly set. To this end, relationship
(4.8) implicitly provides the required relation between the two (open-loop)

values of       versus

To maintain peaking in both the frequency and step responses below a

poles for a given value of and In order to avoid excessive
underdamping, open-loop amplifiers must be designed with a dominant pole
and a second pole at a frequency higher than the gain-bandwidth product of
the loop gain Thus, to analyse and design feedback
amplifiers, it is useful to introduce a new parameter called the separation
factor, K, which is the ratio between the second pole and the gain-bandwidth
product of the return ratio T(s)
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The separation factor is strictly related to a parameter of the loop gain
commonly used to measure the degree of stability of a feedback system
namely, the phase margin2, Indeed, the phase margin is defined as 180°

plus the phase of the return ratio evaluated at the transition frequency,
Figure 4.8 illustrates how the phase margin is determined on the Bode plots3

of a second-order transfer function.

For a second-order system with negative poles we have

In a well-designed amplifier is larger than unity and the condition
must also hold. Thus, is about equal to the transition

frequency, and Then (4.14) is reduced to

2 Another parameter, less frequently utilised by electronic designers, is the gain
margin, defined as the difference between the gain 20 log   and 0 dB,

where is the frequency at which the phase equals –180°.
3 We assume that the reader is familiar with the Bode plot technique. For a review of
this method see for instance [SS91], [G85].
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indicating that in a two-pole amplifier K is almost equal to the trigonometric
tangent of the phase margin. In other words, for a target phase margin, we
obtain through (4.16) the value of the separation factor required during the
compensation design step.

From the above it derives that to design and analyse feedback amplifiers
it is more convenient to represent the closed-loop transfer function, as
a function of the gain-bandwidth product, and the separation factor, K
[PP982]. Indeed, the conventional parameters, and (or parameter Q)
traditionally used in feedback systems, have been found very useful in
designing and analysing filters, but are less effective in the context of
feedback amplifiers. This because, unlike  and K, which are parameters
of the loop gain, and are parameters related to the closed-loop amplifier.
But designer effort is mainly (if not exclusively) focused on properly setting
the open-loop amplifier parameters in order to achieve the closed-loop
specifications. In addition, the new representation provides a simple vehicle
for characterising feedback systems. Indeed, the pole frequency and the
damping factor can be expressed as

Upon inserting (4.17) and (4.18) into (4.6), the closed-loop transfer
function becomes

or equivalently
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where the complex frequency is the complex frequency s normalised to

The normalised overshoot frequency and correspondent peak (as
functions of and K) are now determined to be

The magnitude of the frequency response normalised to versus
for different values of K, is plotted in Fig. 4.9. It can be noted that

condition means a maximally flat frequency response.
Moreover, for a given the bandwidth diminishes for decreasing values
of K.

The poles of the closed-loop amplifier can be also expressed as

and the response to an input unitary step (assuming underdamped behaviour)
is
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The step response versus time normalised to for different values of
K, is plotted in Fig. 4.10.

To optimise the closed-loop amplifier step response, useful information
for the designer are the time, when the first peak occurs (i.e., the time at
which the first time derivative of becomes zero) and its overshoot, D,
[YA90], that are given by
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Like for the peaking amplitude in the frequency domain, the overshoot
amplitude in the time domain depends only on the value of K. Relationships
(4.23) and (4.24) are useful for optimising design in the time domain.
Equation (4.24) gives the value of K for a specified settling error, and from
(4.23) we determine the gain-bandwidth product needed by the settling time
required. For instance, obtaining a step response to within 1% means K =
2.73. From (4.16) this value corresponds to a phase margin of about 70°.
Then, if 1% settling is to be achieved within a time period not greater than
100 ns, the required gain-bandwidth product is

It should now be pointed out that in real amplifiers the second pole is
generally fixed by design and topology constraints. Subsequently, the
requirement on parameter K (or equivalently on the phase margin) indicates
the gain-bandwidth we must provide to the loop-gain transfer function to
ensure an adequate stability margin. To this end, as shall be discussed in
detail in the next chapter, we have to properly reduce the dominant pole of
the open-loop amplifier. This mandatory operation drastically reduces the
high-frequency capability of the feedback amplifier, which, if operated in
open-loop conditions, is characterised by a high-sensitive gain, but has its
maximum bandwidth potential limited by the frequency of the second pole.
As a consequence, the bandwidth improvement caused by the feedback is
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effectively achieved only in one-pole amplifiers. However, these are
somewhat an abstraction, since real architectures –even single-stage ones–
exhibit multiple poles. Bandwidth extension is, therefore, not such a general
and effective property as commonly reported. Actually, amplifiers with the
highest frequency performance (e.g., RF amplifiers) al l adopt open-loop
topologies.

TWO-POLE FEEDBACK AMPLIFIERS WITH A POLE-ZERO
DOUBLET

The loop gain of real amplifiers can include a pole-zero doublet beside
two significant poles. Usually, a doublet arises from imperfect pole-zero or
feed-forward compensation due to process tolerances [KM74], [BAR80],
[PP95], or is caused by the frequency limitation of current mirrors when they
are used to provide a differential-to-single conversion [GPP99].

The degradation in the settling performance of a one-pole amplifier with
a pole-zero doublet was first discussed in [KMG74]. The effect of the
doublet in a class AB one-pole amplifier was then analysed for both the
settling and slewing time periods in [S91], [SY94]. However, extending the
results in [KMG74] to two-pole amplifiers is not as straightforward as
sometimes reported [GM74], [LS94], [EH95].

A simpler representation of a two-pole amplifier with a pole-zero doublet
was proposed in [PP992]. The approach is based on the consideration that, in
practice, the pole and the zero forming the doublet are often very close. In
addition, they are usually located at a frequency around or greater than
Thus, such a doublet leaves the loop-gain unity-gain frequency almost
unchanged, but can considerably alter the phase margin. We now
demonstrate that a two-pole amplifier with such a pole-zero doublet can be
modeled by an equivalent pure two-pole amplifier with a modified second
pole.

Consider an amplifier whose loop-gain transfer function includes two
poles and a pole-zero doublet as given below

Without loss generality, assume to be the lowest frequency pole
(remember that a dominant-pole behavior is mandatory to achieve stability).
Phase margin evaluation of (4.25) gives

4.3
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From the considerations regarding the location of and made above,
the transition frequency, can be assumed to be equal to the gain-
bandwidth product, (which formally represents the unity-gain
frequency of a one-pole amplifier) so that (4.26) can be rewritten as

Nevertheless, if we want to accurately evaluate the deviation of from
we can use the following results.

By using parameter K defined in (4.14), and the trigonometric identity

from relationship (4.27) we get

where parameter is the spacing of the doublet normalised to its pole and
is the doublet average frequency (evaluated as the geometric mean

Normalising the doublet frequency, to

between and respectively, defined by
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relationship (4.29) can be written

By inspection of (4.33) we note that the second term in square brackets
represents the change caused by the doublet in the tangent of the phase
margin. Of course, if pole perfectly matches zero and (4.33)
simplifies to (4.16). Moreover if is greater (lower) than is negative
(positive), and the effect of the doublet is to decrease (increase) the phase
margin compared to the same two-pole system without the doublet.

From the above it derives that we can model the two-pole amplifier with
a pole-zero doublet by using an equivalent pure two-pole amplifier having
the same gain-bandwidth product (i.e., gain and dominant pole) and a second
pole, which guarantees the same phase margin given by (4.33). Hence,
(4.25) is approximated by

where

The second term within square brackets in (4.35) gives the deviation of
the equivalent second pole with respect to the actual second pole, which
depends on both and It can be easily shown that the deviation is at a
maximum when for a fixed value of (and K), that is when the
average doublet frequency is equal to the gain-bandwidth product. In
contrast, with and K given, the influence of the doublet is highest in
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correspondence to the value of which nullifies the denominator of (4.35),
that is

For instance, assuming K = 2 and
In [PP992] the model was validated for values of in a range from –1 to

0.5, meaning a doublet with its pole and zero spaced by a factor of two.
The time-domain closed-loop step response can be also approximately

represented through that of a pure two-pole amplifier. To evaluate the effect
of a pole-zero doublet, we calculate the relative deviation of and D in a
two-pole amplifier given by (4.23) and (4.24)

For those cases in which is small, such as when a doublet arises from
process tolerances in a pole-zero compensation [BAR80], [PP95],
relationships (4.37) and (4.38) can be approximated to

The approximate relationships show that the relative variations of and
D are linearly related to the spacing of the doublet. It can be seen that for
phase margins greater than 50° (i.e. K > 1.2) the variation in D is much
greater than that of Besides, when the zero is lower than the pole, the
doublet has the effect of reducing overshoot (both in the frequency and in the
time domain).
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As discussed in section 4.3, the second pole is often already defined and
the compensation task requires setting the dominant pole or, better, the gain-
bandwidth product, Relationship (4.29) can be written as

hence, the required implies having to solve the following third-order
equation

As particular cases, first consider the one where the pole-zero doublet is
derived from differential-to-single conversion. In this event doublet spacing,

is exactly equal to –1. By developing (4.42) in Taylor series around the
point truncated to the second term, we get

which is sufficiently simple to be solved with pencil-and-paper.
In contrast, when the second pole can be moved to guarantee stability,

such as in the design strategy for cascode amplifiers proposed in [MN89],
from (4.41) noting that

we have to set according to
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THREE-POLE FEEDBACK AMPLIFIERS WITH REAL
POLES

Some amplifier architectures have three separate poles [P99], one of
which must be dominant to allow stability. Consider then the third-order
loop-gain transfer function given below

The phase margin of the loop gain is equal to (approximating with

Since

and

relationship (4.47) can be rewritten as

Thus, assuming the non-dominant poles to be definitely set, the required
gain-bandwidth for a given phase margin can be achieved from (4.50). In
particular, we get

4.4



98 Chapter 4: Stability – Frequency and Step Response

It is worth noting that the frequency compensation of a three-pole
amplifier can be performed following the same procedure as for an
equivalent two-pole amplifier with a loop gain given by

The time constant of the equivalent second pole equals the sum of the
second and third pole time constants of the three-pole amplifier. In other
words, the equivalent pole is

and the frequency and time-domain behaviour of the closed loop amplifier
can be approximated with those developed in section 4.2.

THREE-POLE FEEDBACK AMPLIFIERS WITH A PAIR OF
COMPLEX AND CONJUGATE POLES

Another common situation for a three-pole amplifier is when a dominant
pole occurs in conjunction with a pair of complex conjugate poles. We use
the symbolism introduced in section 4.3 to express such a loop-gain transfer
function

4.5
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This representation can be particularly useful when the complex poles derive
from two indented feedback loops (such as in three-stage amplifiers with
nested-Miller4 compensation). In this case, term is the gain-bandwidth
product of the inner loop-gain and is the ratio between the second pole

and the gain-bandwidth product in this inner loop. The phase margin of the
whole amplifier is given by

hence from (4.55) we get

and we can determine the gain-bandwidth required for a fixed phase margin
when the higher poles are fixed

Like the case of three separate poles, now we can define an equivalent
second pole and, if the quantity within the square roots is close to one, which
means

the equivalent second pole is approximated by The frequency and
time domain behaviour of the closed loop amplifier are hence equal to those
of the closed loop amplifier whose open loop transfer function is

4 See Sec. 5.5 of this book.
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4.6 TWO-POLE FEEDBACK AMPLIFIERS WITH A ZERO

Often the loop gain of a feedback amplifier has a zero which can heavily
affect the transfer function of the closed-loop amplifier. Indeed, if the loop
gain is

the closed-loop transfer function exhibits the same zero and is given by

where in the denominator is still given by (4.7) and the damping factor is
modified with respect to (4.8) according to

The phase margin of the feedback amplifier, under the assumption of a
dominant-pole behaviour whose pole and zero is higher than the transition
frequency, is given by

which shows that a negative zero helps stability, but a positive zero can
drastically reduce the phase margin. Therefore, during compensation
particular care must be taken to avoid or minimise the effect of positive
zeros.

Although it is seldom used, the step response of a feedback amplifier with
the closed-loop transfer function in (4.61) is
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where and are the poles given in (4.9). For an underdamped amplifier
(4.64) can be expressed more profitably as



This page intentionally left blank



FREQUENCY COMPENSATION TECHNIQUES

In the previous chapter we demonstrated the necessity, in a feedback
network, to achieve an open loop dominant-pole frequency response whose a
phase margin is greater than 45° (or K > 1). Indeed, this condition not only
ensures closed-loop stability but also avoids unacceptably underdamped
closed-loop responses. Unfortunately, many amplifiers, and particularly
broadbanded amplifiers, earmarked for use as open-loop cells are not
characterised by dominant-pole frequency responses. The loop-gain
frequency response of these amplifiers must be therefore properly optimised
in accordance with standard design practices known as frequency
compensation techniques [SS91], [GM93], [LS94]. These methods imply the
inclusion of compensation RC networks in the uncompensated circuit to
introduce additional poles or to modify the original loop-gain poles so as to
provide a given phase margin.

Referring to Fig. 4.8, it is easily understood that the simplest way to
achieve stability is to reduce the loop gain. If the frequency of the poles
remain unchanged, the unity-gain frequency is decreased by the same
amount as the loop gain reduction and consequently the ratio between the
second pole and the gain-bandwidth product is increased. The loop gain can
be reduced via the feedback factor f or by decreasing the amplifier open-loop
gain. However, neither are practical design choices because changing the
loop gain may conflict with closed-loop performance such as gain, accuracy,
etc. Moreover, it is worthwhile noting that compensation must be ensured for
all the possible feedback configurations. If the feedback factor is not
specified, compensation should be performed in the worst-case condition,
that corresponds to the unitary feedback (i.e., with the highest loop gain and
gain-bandwidth product, f = 1 and

Chapter 5



In the following three paragraphs we will study the engineering methods
and related tradeoffs underlying the key issue of the frequency compensation
for a two-pole open loop transfer function. Of course, the discussion is easily
extended to multi-pole functions with two dominant poles. The last two
paragraphs deal with the frequency compensation of three-stage amplifiers.

5.1 DOMINANT-POLE COMPENSATION

Let us consider the two-pole amplifier in Fig. 5.1 whose open-loop
transfer function is

The two poles are determined by the parasitic capacitances associated with
node A and B. Assuming these poles are widely separated with the
tangent of the phase margin becomes
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where
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Conversely, if we would have

To guarantee a phase margin greater than 45°, must be greater than
unity. Hence, from (5.5a) and (5.5b), we must ensure that the ratio between
the two time constants is in the order of the DC gain. For example, assuming
the two equivalent resistances to be equal and a typical gain of 30 one of the
capacitances should be more than 30 times the other, to guarantee stability
within proper margins.

At this point, the most intuitive way to provide stability is to add a
capacitance in parallel to (or thus setting the dominant pole at the
input or the output. If we adopt this strategy, the choice of where to insert the
compensation capacitor depends on convenience in terms of lower added
capacitance. This simple compensation approach is called dominant-pole
compensation, which is rarely used, except in single-stage (cascode)
amplifiers, because it requires large compensation capacitors and leads to
feedback amplifiers with very low bandwidth. To show the reduction in
bandwidth, without loss of generality consider the amplifier as being in
unitary feedback and set the dominant pole at the input by adding the
compensation capacitor to Thus (5.5b) turns out to be

and the dominant pole after compensation, which defines the open-loop
bandwidth

must be lower than the second pole (which remains unchanged to
reduced by the DC gain times the tangent of the phase margin (always higher
than 1)
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To conclude, the bandwidth of the dominant-pole compensated amplifier is
defined by the second pole and the DC open-loop gain. As we shall see in
the next paragraph this condition does not hold for the Miller compensation
strategy.

5.2 MILLER (POLE-SPLITTING) COMPENSATION

The well-known Miller effect can be efficiently exploited to perform
frequency compensation that for this reason is called Mil ler compensation or
pole splitting compensation. To understand its properties and design issues
consider the small-signal model in Fig. 5.2, which but for the presence of the
interstage capacitance coupling the first and second stage, is equal to the
one in Fig. 5.1.

Neglecting for the moment capacitor depicted in dashed lines, the
subject open-loop transfer function is

where the DC gain is still given by (5.2) whose the coefficients are
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Thus, assuming the poles are widely separated their approximate expressions
become:

Capacitor provides a path for feedback and for feedforward. The
feedforward leakage produces a real zero in the right-half plane (RHP) given
by

The effect of this zero is neglected here for simplicity (the zero may be
either at a very-high frequency or be compensated with one of the methods
described in the next paragraph).

In (5.13) and (5.14), term accounts for the Miller effect
[MG87]. In practical cases it is the dominant term because capacitance is

multiplied by a factor as high as a stage gain, In such cases the
expressions of the two poles (5.13) and (5.14) simplify to
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From equations (5.15) to (5.17) the pole spli t t ing due to Mi l l e r effect
becomes apparent. In fact, an increase in the internal feedback capacitance,

shifts the dominant pole and the second pole to a lower and higher

frequency, respectively (and also decreases the RHP zero). For this purpose,
to improve the separation of the two poles it is very efficient to multiply

Thus, pole-splitting compensation entails connecting a capacitor between
two phase inverting nodes of the open-loop amplifier. With reference to the
equivalent circuit in Fig. 5.2, the electrical impact of this additional element
is the replacement of the internal interstage capacitance, by the
capacitance sum,

Letting (5.16) and (5.17) can be further simplified to

where capacitance is usually significantly larger than and has also been
assumed to be greater than either or Note that the value of the
compensated second pole given by (5.19) encounters an intuitive
justification. In fact, at the frequency at which it occurs (i.e. after the
transition frequency or equivalently the gain-bandwidth product),

output of the voltage-controlled current-source are shorted, and are in
parallel and the equivalent resistance seen at their terminals is approximately

In contrast, the expression of the zero (5.15) becomes

Although  can exert a significant influence on the high-frequency response
of the compensated amplifier, the following discussion presumes tacitly that

Hence, the gain-bandwidth product and the phase margin are

capacitance can be considered as short-circuited. Hence, the input and the
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and the required compensation capacitance must be set according to

For a fixed phase margin is proportional to the ratio between the
transconductance of the first and second stage. Moreover, it is proportional
to the total (input-output) capacitance. Note also that for a given DC gain
and phase margin, the gain-bandwidth product is set by the frequency of
second pole. Consequently, to compare the Miller and dominant-pole
compensations we can compare only the second poles, and it is apparent that
the second pole resulting from the Miller compensation is much higher (due
to pole-splitting) than that of a dominant-pole compensated amplifier. In
addition, Miller magnification allows us to use lower capacitance values.

For these reasons the Miller compensation technique is extensively used
to design IC amplifiers. Compensation capacitor can be fabricated as a
part of the amplifier (in this case the amplifier is said to be internally
compensated) or can be externally applied to pins reserved for this purpose
on the (uncompensated) opamp package.

By comparing (5.20) and (5.21), we find that we can neglect the right-
half plane zero when the transconductance gain of the second stage is much
higher than that of the first stage. This condition is seldom satisfied in
CMOS transconductance amplifiers and especially when low-power
dissipation is required, so that a specific strategy to compensate the zero
must be applied.

5.3 COMPENSATION OF THE MILLER RHP ZERO

In the previous paragraph we showed that the pole-splitting technique is a
convenient vehicle for achieving the desired pole separation in an open-loop
phase-inverting amplifier. Unfortunately, (5.20) indicates that the larger the

,the lower the RHP zero. In bipolar technologies the transconductance
is invariably large enough to ensure that the frequency of the zero is

greater than the compensated unity-gain frequency, thereby rendering the
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impact of on the compensated frequency response inconsequential. But
for MOS and CMOS technologies, the transconductance is small, and as a
result, the effects of the RHP zero evidenced in the forward transfer function
of a phase inverting amplifier may not be negligible. When the transmission
zero is significant, its primary effect is to incur excess phase lag (phase lag
in addition to that produced by the two open-loop poles), while prohibiting a
uniform 20 dB-per-decade frequency response roll-off rate at high
frequencies. The stability problems caused by the resultant deterioration in
phase margin justifies the implementation of compensation techniques that
neutralise the effects of the RHP zero.

Various compensation schemes have been proposed for two-stage MOS
opamps. They are based on the concept of breaking the forward path through
the compensation capacitor by using active or passive components. The first
of these was applied in a NMOS opamp [TG76] and then in a CMOS opamp
[SHG78]. It breaks the forward path by introducing a voltage buffer in the
compensation branch. Next, a compensation technique was proposed which
uses a nu l l ing resistor in series with the compensation capacitor [A83].
Another solution works like the former but uses a current buffer to break the
forward path [A83]. Final ly, both current and voltage buffers can be adopted
to compensate the right half-plane zero [MT90].

5.3.1 Nulling Resistor

The most widely used compensation technique is the one based on the
nu l l i ng resistor. It entails the incorporation of a resistor, in series with

the Miller compensation capacitor as shown in Fig. 5.3.

The popularity of th i s scheme stems from the fact that it can be
implemented monoli thical ly with a MOS transistor biased in its triode
regime (which approximates a linear resistor). Moreover, its highpass nature
does not reduce the low-frequency dynamic range of the imcompensated
configuration. By using this compensation branch in the equivalent circuit in
Fig. 5.2, and neglecting capacitance (usually much lower than ), the
zero is now at frequency
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and is moved to infinite frequency by setting equal to Thus, the
RHP zero originally ignored in the process of arriving at the pole-splitting
results has effectively been eliminated.

If is greater than a left-hand zero is created because becomes
positive. Ideally, this zero can be exploited to offset or even cancel the
effects of the second compensated pole, thereby leading to an open-loop
amplifier with an increased gain-bandwidth product as first proposed in
[BAR80].

By imposing the condition

a new second pole arises which is given by as can be found by
directly analysing the equivalent circuit. This pole does not depend on the
load capacitance. However, this optimised approach has a quite worse

than the other optimised compensation strategies for equal power
consumption and area of the amplifier including the compensation network
(i.e., global transconductance in the amplifier) as demonstrated in [PP95]
and [PP97].

5.3.2 Voltage Buffer

Figure 5.4 shows the compensation branch with a voltage buffer. It
eliminates feedforward through the compensation capacitance
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Unfortunately, unl ike the passive compensation strategy discussed above,
the buffer utilised attenuates the achievable output swing of the amplifier.
The adoption of an ideal voltage buffer (i.e., with inf ini tely large input
impedance, zero output impedance, and unitary gain) gives the same
dominant pole as in (5.18) and the same second pole as in (5.19) without
depending on capacitance But by eliminating capacitive feedforward, the
troublesome RHP zero incurred by the internal interstage capacitance, is
not decreased by the compensation element In other words, the effective
feedback capacitance is while the feedforward capacitance is

The foregoing discussion presumes an ideal voltage buffer. Practical
buffers have small, but not zero, output impedance and large, but not
infinite, input impedance (see Fig. 5.5).

The resistive component of the buffer output impedance, establishes a
left-half plane zero with capacitance As for the case with the nulling
resistor, this zero can be exploited to increase the amplif ier gain-bandwidth
[PP95]. Following this last compensation strategy and with some
approximations, the poles and zeros become [PP95]
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Now the right-half plane zero, is placed at a very high frequency and can
be neglected. Moreover, as proposed in [AH87] and developed in [PP95], a
pole-zero compensation can be performed to increase the gain bandwidth
product. In particular, we can properly design the voltage buffer to ensure
the output resistance is equal to

which sets The new second pole is now the old third pole in (5.28)
which by using (5.31) becomes

The phase margin is given by

which yields the required compensation capacitance

After substituting the value found in the gain bandwidth product we get
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The resulting has a higher value than that given by (5.21), and is
inversely dependent on the geometric media of and

5.3.3 Current Buffer

Consider now the ideal compensation branch using the current buffer
depicted in Fig. 5.6. This solution is very efficient both for the gain-
bandwidth [C93], [RK95] and PSRR performance [A83], [RC84], [SS90],
[SGG91]. Moreover, it does not have the drawback exhibited by the voltage
buffer of reducing the amplifier output swing.

With an ideal current buffer, the second pole is given by

and the phase margin is by

By solving for the compensation capacitance we found
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Generally the output capacitance, is much higher than the inner

have to guarantee that the input resistance of the current buffer, is equal to
or lower than half Moreover, the condition

represents an optimum to maximise the gain-bandwidth product. Under
condition (5.40) the required compensation capacitor is

where

Usually, relationship (5.41) can be further approximated

capacitance, and relationship (5.38) can be further simplified to

Hence, for a given phase margin, the required compensation capacitance is
slightly lower than the value required by the optimised compensation with
voltage buffer in (5.34), while the resulting gain bandwidth product is
slightly higher.

However, compensation with a real current buffer (and specifically, with
finite input resistance) is not as straightforward as the other compensation
approaches. As shown in reference [PP97], to achieve compensation we
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and the gain bandwidth product results as

For practical phase margin values, the gain bandwidth product in (5.44) is
even higher than that obtained with a ideal current buffer. It is also higher
than the one obtained using a real voltage buffer. However, compensation
with a real current buffer is a less efficient strategy because, as demonstrated
in [PP97], it needs more area and/or power for equal gain bandwidth product
than compensation based on a real voltage buffer.

5.4 NESTED MILLER COMPENSATION

The compensation of multistage amplifiers (i.e., with a number of gain
stages higher than two) requires iteration of the simple Mil ler compensation
described previously [C78], [C821], [C96], [HL85], [EH95]. Typically,
three- and even four-stage amplifiers are found in CMOS implementations
including an output power stage for driving heavy off-chip loads [C822],
[OA90], [PD90], [TGC90], [CN91], [PNC93]. Moreover, given the decrease
in supply voltages, cascoding is not a suitable technique for IC applications
demanding both high gain and swing. Hence, cascading three or more
simple stages is the only viable option. Consequently, multistage amplifiers
and their frequency compensation issues have become increasingly
important in modern microelectronics [FH91], [EH92], [NG93], [PPS99],
[GPP00]. In the following we will discuss in detail compensation of three-
stage amplifiers, which are the most common architectures, but the results
obtained can also be adapted (although often not very directly) to
architectures with a higher number of stages.

5.4.1 General Features

Among the possible ways of exploiting Miller compensation in
multistage amplifiers, the so-called nested Miller (NM) compensation is one
of the most widely used. It can be utilised when only the final gain stage is
voltage-inverting.
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The small-signal equivalent circuit of a three-stage amplifier including
nested Miller compensation is depicted in Fig. 5.7. Parameters and are
the i-th stage transconductance and output resistance, respectively.
Capacitors represent the equivalent capacitance at the output of each

Hence, the gain-bandwidth product, of the amplifier is equal to

stage, are the compensation capacitors, and is the equivalent load
capacitor.

In the following we neglect the effects of the parasitic capacitances since
they are generally one order of magnitude lower than the compensation
capacitances. Neglecting second-order terms, the open-loop transfer function
of the circuit in Fig. 5.7 is expressed by

where is the DC open-loop gain equal to

and is the frequency of the dominant pole
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Equation (5.45), in addition to a dominant pole, also includes two other
higher poles and two zeros. Moreover, since the coefficients of the s and
terms in the numerator are both negative, a RHP zero is created, which is
located at a lower frequency than the other LHP zero. In analogy to the
discussion of the previous paragraph, using voltage followers or current
followers can nominally eliminate both zeros. Another solution is the
multipath Miller approach proposed in [YES97] that, according to Fig. 5.8,
provides a zero cancellation due to the effect described in [EH95]. In brief,
the forward path contribution is ideally nullified by setting equal to

When using any of these techniques, or in the case of a very large
such as in power amplifiers (whose output stage is biased with large
quiescent currents and is realised with large devices), relationship (5.45)
simplifies to
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Equation (5.49) allows an interesting interpretation of the compensation
process. We will show that assuming a dominant-pole frequency response,
the second and third stage can be considered as closed in a unity-gain
feedback configuration by capacitor acting as a short circuit for
frequencies above

Consider now the open-loop gain of the second and third stage alone
(which we also refer to as the inner amplifier), its DC gain, the
dominant  pole due to the Miller effect on and the second pole at
the output terminal. They are given by

If now we assume in unity-gain feedback connection, the resulting
closed-loop transfer function is characterised by exactly the same second-
order polynomial as in the denominator of (5.49). This consideration justifies
the representation utilised in equation (4.54) and allows, in turn, the
straightforward compensation technique discussed below.

For a well designed (i.e., with appropriate stability margins) inner
amplifier, the second pole must be located well beyond the unity-gain
frequency which, under the dominant-pole behaviour assumption, is
approximately equal to and given by

In order to avoid overshoot in the module of the inner amplifier
frequency response, a proper ratio, between and has to be set as
described in paragraph 4.5. A fairly optimum value of is 2 (i.e. an inner
phase margin of about 64°) which is the minimum value guaranteeing
monotonic behaviour in the frequency response module. This leads to the
expression of capacitor
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In other words, we have an external feedback loop through and an
inner one through The stability of the inner loop must first be
established so that we can proceed to the external one. Any design attempt
not providing a proper phase margin for the inner loop would inevitably
require an extremely high value of or even not achieve stability at all.

Now we return to the frequency response of the whole open-loop
amplifier, which can be rewritten as in (4.54) and is here reported for clarity

Evaluation of the phase margin yields (see (4.55))

Solving (5.56) for and combining with (5.48) and (5.53) gives the
expression of capacitance as a function of the required phase margin

Equations (5.54) and (5.57), are very similar to those in [EH95], where a
third-order Butterworth frequency response in unity-gain configuration is
assumed. However, (5.57) is more general because allows to set
compensation capacitor for the desired phase margin.

5.4.2 RHP Cancellation with Nulling Resistors

Now we extend the considerations on the n u l l i n g resistor network
reported in 5.3.1, to the three-stage nested-Miller compensated amplifier.
Figure 5.9 illustrates the RC compensation network which includes two
nulling resistors and to be used in the amplifier of Fig. 5.2.
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With the introduction of these two resistors the open-loop gain given in
(5.45) changes to

Observe that only modifies the denominator because changes the
zero of the inner amplifier. It is also clear that the numerator of (5.58) is
greatly different from that of (5.45) and now depends on and By
inspection of (5.58), it is possible to nullify the term and to make the s
term positive by choosing

In this manner, the residual LHP zero can be exploited to increase the phase
margin. However, we shall not further develop this approach because better
ones have been elaborated.
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A simpler technique based on a single nulling resistor and illustrated in
Fig. 5.10 was proposed in [LM99]. When applied to the amplifier in Fig. 5.7,
it gives the following loop-gain expression

In this case the term in the numerator can be simply set equal to zero
by choosing

and the loop-gain only has a negative zero which can be used to increase the
phase margin.

Now equation (5.54) cannot be used, but the same procedure can still be
adopted to achieve simple new equations for and for a given value
of phase margin. After having substituted (5.61) in (5.60) and assuming

we can set and evaluate the phase margin
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where z is the zero and comparing (5.55) with (5.60) and
using (5.62), is Solving (5.63) for and combining with

and (5.61) gives the value of capacitance

where

By considering that is lower than for the phase margin of interest
the above equation can be approximated as

which is more suitable for pencil and paper design, and provides the same
results as (5.57) for Compared to (5.57), relationship (5.66) gives
lower values of for the same phase margin.

It is interesting to note that we assumed no constraint for
transconductances except otherwise in (5.62) would be
negative. This allows the power consumption to be optimised since low
quiescent currents can be used and, perhaps more importantly, we are free to
choose the input and output transconductances and Unfortunately,
like for classic NM compensation, this method still requires large
compensation capacitors for heavy capacitive loads. For instance, if

and for a target phase margin of 70°, the required compensation
capacitor equals

An alternative and efficient compensation technique is based on the
compensation network shown in Fig. 5.11 [PP02]. The previous single-
resistor compensation network is here modified by adding another resistor,

in series with capacitor Although this change may appear of
marginal significance, it turns out to be very attractive because it allows
pole-zero compensation to be achieved by using reduced compensation
capacitor values. This in turn leads to an improvement in terms of gain-
bandwidth product, slew-rate and settling time.
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The transfer function of the amplifier in Fig. 5.7, using the compensation
network in Fig. 5.11 becomes

The above shows that the zeros can both be made negative and their
values adjusted to exactly cancel the two higher poles. Hence, by setting

and equating the coefficients of the second-order polynomials we get

The transfer function of the amplifier in (5.67) now has a single pole.
This means that a suitable value of can be chosen to maximise the gain-
bandwidth product, allowing it to reach the same order of magnitude as an
optimised two-stage Miller-compensated amplifier. Again must be
higher than so that the compensation elements will be positive.
Moreover, it is worth noting that relations (5.68)-(5.70) are independent of

and, ideally, the compensation capacitors are also independent of the
load capacitor.
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Of all the possible solutions that reduce (5.67) to a single-pole function,
the one chosen also has the property of providing an inherent pole-zero
cancellation for the (open-loop) transfer function of the amplifier containing
only the second and third stage. Indeed, by denoting their second pole and
(negative) zero as and respectively, these are given by

whose expressions perfectly match if equations (5.68)-(5.70) are used.
However, note that the inner amplifier, which is closed in the feedback loop
by capacitor is now comprised between the input of the second stage
and the common node of and Therefore, according to our design
methodology, we firstly have to check the stability of this feedback loop.
The open-loop transfer function of the inner amplifier is

where is given by (5.50). From (5.73) and using (5.68) and (5.70) we
derive the expressions of the unity-gain frequency and those of the second
pole and zeros of the inner amplifier
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indicating that the second pole and the first zero remain very close provided
that In this case, the second (RHP) zero tends to and must
be higher than the unity-gain frequency given in (5.74). to ensure stability.
Setting the inner phase margin greater than 64° yields The above
relation establishes a lower limit for the ratio between and Under
this condition, any value of ideally ensures the stability of the
inner amplifier. A minimum usable value for exists in reality.
Compensation capacitors must be greater than the parasitic capacitances at
the high-impedance nodes to be valid for development. Besides, and usually
more importantly, slew-rate considerations posit the fundamental limit for
the minimum value of [PP02], [PPP01].

5.5 REVERSED NESTED MILLER COMPENSATION

When the amplifier is made up of three gain stages and the inner stage is
the only inverting one, reversed nested Miller compensation (RNMC)
becomes the most suitable technique [EH95].

5.5.1 General Features

Figure 5.12 shows a three-stage amplifier small-signal circuit including
reversed nested Miller compensation performed by   capacitors and
As usual, parameters and are the i-th stage transconductance and
output resistance, respectively. Capacitors represent the equivalent
capacitance at the output of each stage, while is the equivalent load
capacitor. Since capacitor has no connection with the load capacitor (but
only with parasitic capacitor inner loop stability is virtually achieved for
all practical values, and wi l l not be examined. For the same reason, this
technique has an inherent bandwidth advantage over other multistage
compensation approaches based on the Miller effect.
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Neglecting second-order terms, the open-loop gain of the circuit in Fig.
5.12 is given by

where is the DC open-loop gain equal to and is the
dominant pole due to compensation capacitor Therefore, the dominant
pole and the gain-bandwidth product are equal to those of the nested Miller
compensation in (5.47) and (5.48), respectively. Moreover, again as for the
NMC, we have two other higher poles (usually complex and conjugates) and
two zeros, the lower one on the right-half plane and the other on the left-half
plane.

Unlike in the NMC, large values of do not facilitate the task of
compensation. If is much higher than except when considering
parasitic capacitances, a pole-zero cancellation occurs which modifies (5.78)
into a single pole transfer function. But the pole and the zero involved in this
compensation are positive, a condition which is critical for stability.
Therefore, we must provide viable compensation procedures also for large
values of

First observe that both zeros can be eliminated by using two voltage or
current buffers in series with compensation capacitors to break the forward
paths, as illustrated in Fig. 5.13 and 5.14, respectively.
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In these two cases (5.78) respectively becomes

It is worth noting that the above expressions have exactly two poles thanks
to the action of the ideal buffers. Both second poles are also negative. The
second pole in (5.79) can be simply interpreted by analysing the circuit in
Fig. 5.15, where the inner amplifier, through the capacitive network, acts
as a multiplier by a factor equal in module to The  same
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considerations hold for the second pole of (5.80). The only difference is that
and are now in parallel.

The specified phase margin for the two cases respectively is given by

Since is set by the required unity-gain bandwidth, and assuming
and to be already set, (5.81) and (5.82) give the needed value of

Although it has been demonstrated here that ideal buffers provide a
conceptually simple vehicle for the cancellation of the zeros, we will not
stress these approaches any further because of the second-order effects of
real buffers. In fact, the two approaches, as described above, prove to be
inefficient especially in a low-voltage low-power context. Actually, the use
of real voltage buffers unacceptably limits the output swing, while real
current buffers –matching the requirement of very low input resistance– are
expensive in terms of area and power consumption. Fortunately, we wi l l
show in 5.5.3 and 5.5.4 that both approaches can be simply modified so as to
become suitable for practical applications.

For the sake of completeness, we shall first deal with the nulling resistor
technique, which unfortunately is rather difficult to accomplish in a RNMC.
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5.5.2 RHP Cancellation with Nulling Resistors

Figure 5.16 shows the compensation network including two nulling
resistors, as customarily employed.

By using this network in the circuit in Fig. 5.7, the numerator of the open-
loop gain in (5.78) becomes

in which, as usual, only dominant terms are considered.
It can be shown that (5.83) provides real and negative zeros only with

complex matching between and (by setting one of the two
resistances equal to zero, it also is easy to verify that the RHP zero cannot be
eliminated as the coefficient is always negative).

A more effective solution is that shown in Fig. 5.17, which uses only one
resistor and leads to the following expression of N(s)
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Setting (5.84) becomes

yielding only one negative zero. Of course, the denominator of the open-loop
gain is s t i l l the same as in (5.78). In this case, it is convenient to have

As we shall show, this choice allows a pole-zero cancellation to be
achieved. Indeed, assuming that also

meaning that the determinant of the second order factor of (5.78) is positive,
it follows that all poles are real and thus (5.78) becomes

For a given phase margin we get

Now, by substituting (5.88) in (5.86), condition (5.86) is satisfied if
Since a phase margin of about 60° is generally required,

it follows that the transconductance of both the second and third stage must
be at least seven times greater than the transconductance of the first stage.
Since transconductances are usually set by other kinds of specifications, the
application of this technique is implicit ly l imited.

5.5.3 RHP Cancellation with One Real Voltage Buffer

To achieve RHP cancellation, we can efficiently make use of only one
voltage buffer in the inner loop, as shown in Figure 5.18.
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By adopting this compensation network the output swing turns out to be
completely preserved. In addition, we shall exploit the finite output
resistance of the voltage follower to perform some simplifications as
described below. Denoting this output resistance as the loop-gain transfer
function is modified to

Relationship (5.89) includes one dominant LHP zero and a RHP zero that
is now shifted to a very high frequency (since it is multiplied by the stage
gain Moreover, there are two non-dominant poles which are real and
negative under the condition (in practice usually met) These
two poles are well approximated by the terms inside the square brackets in
the second expression of (5.89). We can use the output resistance of the
voltage follower to obtain some forms of simplification, and among the
possible alternatives, we can set the value of this resistance equal to the
transconductance of the last stage
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Substituting (5.90) in (5.89) the non-dominant poles and the two zeros result
as

It is apparent that and are at a very high frequency
and their contribution to the phase margin can be neglected. Moreover

assures a monotonic behaviour for the loop gain module. The phase
margin is then given by

from which we get

where parameter is equal to
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Equation (5.96) can be simplified by observing that for the auspicious

If we consider the finite input resistance of the current follower, the
loop gain wi l l include another pole and two zeros, as shown below

in which the two zeros have a negative real part. Besides, they are real if

condition parameter is lower than 1/3 and for practical phase
margin values around 60°-70° we have

indicating that the zero can also be neglected when evaluating the phase
margin. In conclusion, (5.96) can be approximated by (5.82).

5.5.4 RHP Cancellation with One Real Current Buffer

As can be deduced by returning to Fig. 5.14, the overall feedback current
is given by the sum of the currents flowing into the two compensation
capacitors. Thus, we need to use only one current buffer in the loop to break
the forward path, as shown in Fig. 5.19, simplifying design and reducing
power and area consumption. Since the overall feedback current is still the
same, the loop-gain transfer function is again given by equation (5.80) and
(5.82) still holds.
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that gives a higher limit for the current follower input resistance. If this
condition is met, the expressions of the two zeros become

Choosing the highest value of defined by equality in (5.100), it can be
shown that is four times greater than Moreover, we have that if

which is a condition easily met in practice. Thus

the second zero and the third pole in (5.99) are allocated well above the
second pole, and do not appreciably modify the phase margin.

Finally, if we have that This means that the first zero
does not modify but must be considered when evaluating the phase
margin which is

and is reduced to (5.82) if
Thanks to the action of the negative zero, the approach adopting a current

buffer is preferable to the one using a voltage buffer.
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Chapter 6

FUNDAMENTAL FEEDBACK CONFIGURATIONS

In this chapter we will consider the four basic types of feedback
amplifier: the series-shunt, the shunt-series, the shunt-shunt and the series-
series configurations. These are used to realise voltage, current,
transresistance and transconductance closed-loop amplifiers, respectively,
and are capable of significantly reducing the dependence of forward transfer
characteristics on the ill-controlled parameters implicit to the open-loop
gain. Particularly, this chapter analyses first the low-frequency performance
of these architectures, which are normally realised by multi-stage topologies,
and subsequently gives frequency compensation guidelines. At this purpose,
the results derived in Chapter 2 and Chapter 5 are extensively exploited.

6.1 SERIES-SHUNT AMPLIFIER

The AC schematic diagram of a series-shunt feedback amplifier is
depicted in Fig. 6.1. In this circuit, the output voltage, is sampled by
feedback network composed of the resistances and The sampled
voltage is fed back in such a way that the closed-loop input voltage, is
the sum of (the voltage across the input port of the amplifier) and
(developed across in the feedback subcircuit). Since the
output port of the feedback configuration can be viewed as connected in
series with the amplifier input port. On the other hand, output voltage
sampling constraints the net load current, to the algebraic sum of the
amplifier output port  current, and the feedback network input current,
Accordingly, the output topology is indicative of a shunt connection of the
feedback subcircuit to the amplifier output port. The fact that the voltage is
fed back to a voltage-driven input port renders the driving point input
resistance, of the closed-loop amplifier large, whereas the output
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resistance, is small. The resultant closed-loop amplifier is therefore best
suited for voltage amplification, in the sense that the closed-loop voltage
gain can be made approximately independent of source and load resistances.
For large loop gain, this voltage loop gain is nominally determined by only
the feedback subcircuit parameters.

The small signal model of the amplifier in Fig. 6.1 is shown in Fig. 6.2,
where the model developed in section 2.4 and depicted in Fig. 2.7 has been
used for the degenerated common X transistor T2.

As a practical rule, evaluation of the terms needed both in the Rosenstark
and Choma methods or in the Blackman equations becomes simpler if one
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node of the controlled source is at ground potential. This means that for
multi-transistor amplifiers we can profitably choose the controlled source
among those associated to a common X transistor. According to this
heuristic rule, in the small-signal model of the series-shunt amplifier we
choose as controlled source P the transconductance and apply the
Rosenstark method as described in the steps below. Observe that whenever
possible we prefer evaluating the circuit parameters directly on the AC
schematic. In our opinion, this is essential to develop the indispensable skills
required to an analog circuit designer.

1) To evaluate the direct transmission term, we set
This, unless a load effect on terminal Z of T1, means eliminating transistor
T2 and leading to the AC schematic diagram depicted in Fig. 6.3. It clearly
represents a voltage follower whose transfer gain was derived in paragraph
2.6 and is expressed by relationships (2.28a) and (2.29). Then, substituting

and to and respectively, and including term

which takes into account the voltage partition at the output of

the voltage buffer (resistance has been considered much higher than
we get the gain, under the special condition of zero feedback

Resistance is the resistance seen at the Yl terminal of circuit in Fig. 6.3.
In common cases, where and the intrinsic voltage gain of the
common Z configuration is close to the unity, relationship (6.1) can be
further simplified into

which shows that this contribution is always lower than one. Thus, the direct
transmission term, can be neglected without introducing appreciable
errors in the evaluation of the closed-loop gain.

Under the same condition of controlled source set to zero, we can
evaluate the driving point input and output resistances, and by
using (2.24) and (2.25), respectively. We rearrange below the simplified
expressions of and by considering
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2) To evaluate the return ratio, we set to zero and replace the original
controlled current generator, with an independent current source, i.
Again, transistor T2 can be eliminated while transistor T1 is in common Y
configuration as illustrated in Fig. 6.4.

The circuit can be simplified by considering the Norton equivalent of
generator i and resistors  and shown in Fig. 6.5
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where is given by

and in which is assumed in the approximation.
From (2.22), which expresses the current gain of a common Y

configuration, assuming the input and output loss negligible (or in other
words directly from (2.21)) we get (assuming

Thus the return ratio, T, with respect to the critical parameter is

3) Evaluate now the closed loop asymptotic gain, by setting the

the controlled current generator, is stil l finite, the voltage must
be zero and this holds only if current is zero. The KCL at node Z1 implies

parameter infinitely large. By inspection of Fig. 6.2, since the current of
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and the LKV at the input port gives

Combining (6.8) with (6.9) we get

in which the approximation presumes In conclusion, unless a small
loss, the whole input voltage, is transferred across resistance
According to Fig. 6.6, which derives from this consideration, we get

Therefore, neglecting the contribution of in the closed loop gain, the
feedback factor, f, results



Feedback Amplifiers 143

The final closed loop gain expression is obtained by substituting T,
and into the Rosenstark relationship (3.7), which gives

In the case we want to apply the Choma method, according to Section 3.4
we have to evaluate the null return ratio, instead of the asymptotic gain,

In particular, consider again the AC schematic diagram in Fig. 6.4 in
which the input voltage source has not been null if ied, as shown in Fig. 6.7a.

Since we must consider the output voltage to be zero, a l l the current, i, of
the current generator (which replaces the critical controlled source) flows
trough resistance and sets the voltage at node X1 , to be
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By inspection of Fig. 6.7b we see that the current which sets voltage is
equal to the sum of the currents which flow through resistances and
minus the current supplied by the input voltage source Neglecting this
last component, voltage is approximated by

which means that the n u l l return ratio is

Of course, a more accurate result can be achieved by using relationships
reported in Section 2.5, but at the expense of s implici ty and clearness.
Moreover, (6.17) could be achieved through relationship (3.19), which
relates the n u l l return ratio with the parameters impl ic i t in the Rosenstark
method.

To evaluate the closed-loop input and output resistances we have firstly
to calculate and which are the return
ratios under the specific conditions for the source resistance, and load
resistance, The approximate expression of the return ratio derived in
(6.7) does not include resistance since we neglected the input loss.
Therefore, (6.7) is representative of the condition

On the other hand, when is equal to infinite, in the equivalent model in
Fig. 6.5 we must n u l l i f y the current flowing through Thus, to evaluate

we can use the circuit in Fig. 6.8 with and being
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Neglecting the effect of current current gain is

and hence we get

After substi tuting (6.3), (6.17) and (6.20) into (3.23) we find the input
resistance. However, since is generally lower than can be
approximated to
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It is apparent that for MOS transistor implementations is infinite since
is infinite. Parameters and can be directly evaluated

from (6.7) and are given by

Thus, according to (3.24) the output resistance is

and, as expected, compared to its open-loop value is reduced by
approximately the loop gain.

6.1.1 Series-shunt Amplifier with Buffer

When practical design constraints lead to a feedback resistance, too
much higher than load resistance, the loop gain could become too low,
and we get a proportional reduction of the feedback benefits. This problem
can be circumvented by inserting a voltage follower between the output port
of transistor T2 and the node to which the load termination and the input
terminal of the feedback subcircuit are incident. The resultant circuit
diagram, is shown in Fig. 6.9.
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Transistor T3, highly reduces the open-loop output resistance,
which becomes quite independent of feedback resistance, The foregoing
improvement can be confirmed through an analysis of the small-signal
model of the modified amplifier in Fig. 6.9. To this end, assume transistor
T3 a quite ideal voltage follower with unitary gain and with an input
resistance much higher than resistance The loop gain of the circuit in
Fig. 6.9 can be evaluated by using the small signal model in Fig 6.10, which
can be further simplified by using a Norton equivalent current generator.
After some approximations the ultimate circuit model is that shown in Fig.
6.11.

Consequently, (6.6) can now be rewritten as



148 Chapter 6: Fundamental Feedback Configurations

and, the return ratio with respect to the critical parameter is

The fundamental difference with the previous case is that instead of
factor which introduces open loop gain reduction, we have

now factor which can be simply made greater than one. Moreover,
asymptotic gain, is unchanged, while forward gain, is further
reduced. Indeed, resistance in (6.2) is now replaced by the parallel
between itself and the resistance seen at node X of transistor T3 (i.e.,

It is apparent that since the circuit now exhibits

a higher open loop gain and a lower forward gain, the closed loop gain,
tends to be more close to Of course, the improved topology provides
also advantages in terms of input resistance, increased by the greater loop
gain

and in terms of output resistance, which is reduced both for the greater loop
gain and for the lower open loop output impedance provided by voltage
buffer T3

6.2 SHUNT-SERIES AMPLIFIER

While the series-shunt feedback circuit well behaves as a voltage
amplifier, the shunt-series configuration, whose AC schematic diagram is
depicted in Fig. 6.12, is best suited for implementing a current amplifier. In
the subject circuit, the current on node X of transistor T2, equal to the output
signal current, (approximately equal for BJT’s), is sampled by the
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feedback network formed by resistors and The sampled current is fed
back to a current-driven input port. Thus, the resultant driving point output
resistance is large, and the driving point input resistance is small. These
characteristics allow for a closed loop current gain, that is
relatively independent of source and load resistances as well as insensitive to
transistor parameters.

To analyse the circuit in Fig. 6.12, consider its small-signal model
illustrated in Fig. 6.13, where the model of the common X configuration
with a degenerative resistance (see Fig. 2.4) has been used for transistor T2,
and assume the transconductance as critical parameter P.
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1) To evaluate the direct transmission term, we set
This means switching off transistor T1, then taking into account the load
effects of T1 we can consider the circuit AC schematic diagram depicted in
Fig. 6.14, and its small-signal model in Fig. 6.15

Resistance and current in Fig. 6.15 are given by
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Since circuit in Fig. 6.15 represents a common Y configuration, it can be
analysed by using its equivalent model in Fig. 6.16, in which and are
defined in (2.21) and (2.11).

Then using relationships developed in paragraph 2.5 we obtain

which is a quantity always lower than one. Moreover, we can easily evaluate
the input and output resistance, and by using the results in (2.20a)
and (2.11), respectively. Note that to evaluate the input resistance we have to
consider the circuit scheme in Fig. 6.13

2) To evaluate the return ratio we set to zero and replace the original
controlled current generator, with an independent one, i. Now, as
can be deduced from the equivalent circuit shown in Fig. 6.17, transistor T2
works as a voltage follower, and voltage is a portion of the voltage at
node X of T2.
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To simplify calculation, assume that is much higher than and
and that is the lower resistance at node Y of transistor T2. Using
equation (2.38c), expressing the voltage gain of a common Z transistor, the
loop gain results to be

which, neglecting the voltage loss between terminals Y and X of T2, lastly
simplifies to

3) Now we evaluate the closed loop asymptotic gain. By inspection of
Fig. 6.13, we realise that setting the parameter infinitely large leads
to equal zero, which in turn means that all the input current, flows into
feedback resistance,  In addition, since a finite value of current
would cause to be different from zero, term itself must equal
zero. With these considerations, we can model the circuit with that in Fig.
6.18.
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By inspection of fig. 6.18 we easily find that the current entering into
terminal X of transistor T2 is equal to

hence, neglecting resistance we get

Therefore, substituting (6.32), (6.35) and (6.37) into the Rosenstark
relationship, exact expression of the closed loop gain of shunt-series
feedback amplifier can be found. For practical cases where the loop gain is
much greater than one, the closed loop gain is very well approximated by the
asymptotic one.

Finally, we have to calculate the resultant input and output resistances
through terms and From (6.35) we can
simply calculate and whose expressions are
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Moreover, the expression of is exactly as given by (6.35). Indeed
this equation was calculated assuming negligible compared to
However, in the opposite case of infinitely large we have to evaluate
under this hypothesis the voltage gain of the common Z in Fig. 6.17 and the
general result in (2.29) becomes1

Thus, term results to be

Now we are able to apply Blackman equations to obtain the closed-loop
input and output resistance expressions. The input resistance is reduced by
the specific loop gain in (6.39)

The output resistance although reduced by term (6.41) is also heavily
increased by the loop gain (6.35)

1 From the exact equation (2.28a) assuming we get and

neglecting the input and output voltage loss in (2.29) we obtain
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thus, as clearly indicated by the approximated relation (6.44) we globally get
the expected increase in the output resistance

6.3 SHUNT-SHUNT AMPLIFIER

The AC schematic diagram of the third type of single loop feedback
amplifier, the shunt-shunt amplifier, is drawn in Fig. 6.19. A cascade
interconnection of three transistors, T1, T2 and T3, forms the open loop,
while the feedback subcircuit comprises a single resistance, The output
voltage, is sampled by and converted into a current which is fed back
to the input port. Therefore, both the driving point input and output
resistance are very small. Accordingly, the circuit operates best as a
transresistance amplifier in that its closed loop transresistance,

is nominally invariant with source resistance, load resistance and
transistor parameters.

Considering the equivalent small-signal model of shunt-shunt circuit
shown in Fig. 6.20, we can arbitrarily choose transconductance as
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parameter P (but other different choices do not lead to any fundamental
difference).

1) We set then taking into account the load effects (input
resistance of T1 and output resistance of T3), the circuit small-signal model
depicted in Fig. 6.21 is considered. The feedforward transresistance and the
corresponding input and output resistances are

2) Set to zero and replace the controlled current generator with an
independent current source, i. Transistor T1 can be considered switched off,
and the resulting AC model is that in Fig. 6.22, which leads to the small-
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signal model in Fig. 6.23. The return can be immediately evaluated from Fig.
6.23, or even directly from Fig. 6.22, and is given by

where and was assumed for simplicity

3) Set the parameter the parameter infinitely large. By inspection of
Fig. 6.20, since the voltage is still finite, the voltage must be zero.
This means that all the input current flows through feedback resistance
thus setting the output voltage to The asymptotic transresistance
results to be

Hence, substituting T and into the Rosenstark relationship (3.7), we
get the closed loop transresistance that, in general, due to the very high
loop gain is almost coincident with the asymptotic gain
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To calculate the closed-loop input and output resistances we can derive
and directly from (6.48). Thus we have

and the input and output resistances are

6.4 SERIES-SERIES AMPLIFIER

Fig. 6.24 depicts the AC schematic of the series-series feedback
amplifier. Three transistors, T1, T2, and T3, are embedded in the open loop
amplifier and the feedback subcircuit is provided by resistor combined
with local feedback resistors and The feedback network samples the
output current, and compares it with the input voltage. Therefore, both
the driving point input and output resistance are very high, and, accordingly,
the circuit operates best as a transconductance amplifier in that its closed
loop transresistance, is nominally invariant with source
resistance, load resistance and transistor parameters.
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From a comparison of series-series feedback circuit in Fig. 6.24 with
series-shunt feedback amplifier with output buffer in Fig. 6.9, it is apparent
that the only difference between the two amplifiers is the load resistance at
node Z of transistor T3. Therefore, unless some minor differences we can
follow the same analysis we have previously developed for the series-shunt
amplifier with output buffer. In particular choose as controlled source P the
transconductance and proceed with the following steps.

1) Set Assuming transistor T1 implementing an ideal
voltage buffer and transistor T3 implementing an ideal current buffer, the
feedforward transconductance can be directly derived by inspection of Fig.
6.24, and results to be

Moreover, the open-loop input and output resistances are about equal to

2) Replace the controlled current generator with an independent current
source, i, and set the input voltage source to zero. In this case, neglecting the
effect of load resistance on the accuracy of the voltage follower implemented
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by transistor T3, we get the same return ratio as the series-shunt feedback
amplifier with output buffer in Fig. 6.9. Hence, it is about equal to (6.27)

Consider the transconductance    infinitely large. Since the voltage is
st i l l finite, the voltage must be zero. This implies that the current
provided by terminal Z of transistor Tl must be zero, and hence the voltage

and the associated current given by the voltage source must be zero. In
conclusion, the asymptotic transconductance can be evaluated on the
equivalent AC model in Fig. 6.25.

In particular, the voltage at terminal X of transistor T1 (node X1 in Fig.
6.25) is equal to the source voltage. Furthermore, transistor T1 does not
supply current. The current through resistance          (i.e., is thus
equal to that flowing through resistance Besides, the voltage on node X3,
which defines the current of resistance is

and the current which flows into node X3 is equal to
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which leads to

The closed-loop transconductance is given combining (6.57), (6.60) and
(6.62) in (3.7), and since the loop gain is generally very large, the closed
loop transconductance is quite equal to the asymptotic one

The assumption of ideal voltage and current buffer for Tl and T3,
respectively, in the evaluation of the return ratio, means that we are
neglecting the load effect of resistance and Hence, the return ratios
calculate nu l l i fy ing the source or the load resistance are almost equal to the
value given by relationship (6.60)

Besides, we have to evaluate the other two specific return ratios and
To do this, return to Fig. 6.24. To calculate assume again

that transistor T3 is an ideal voltage buffer. Thus voltage which is equal
to appears unchanged at terminal X3, and the voltage at node Y2
can be found by considering two voltage partitions in X1 and Y2
respectively

Thus is
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which is usually lower than 1.
To calculate consider transistor T1 working as an ideal current

buffer having an input resistance at terminal X to be ideally zero. Thus,
current is partitioned, and the part which flows through resistance is
found also at terminal Z of T1. After some calculation we get

In conclusion, combining (6.64), (6.65) and (6.66) in the Blackman
relationships we get

6.5 A GENERAL VIEW OF SINGLE-LOOP AMPLIFIERS

From the cases discussed in the previous paragraphs of this chapter, it
clearly turns out that the Rosenstark method, and in particular the use of the
asymptotic gain, leads to a simplified description of a feedback amplifier in
terms of an ideal one with infinite loop gain. As the reader should well
know, a particular form of this approximation is common practice in opamp
analysis and design. This conducts to the well-known principle of virtual
short circuit. This approximation is of course adequately verified in feedback
circuits with large loop-gain, and allows to a calculation of the circuit
closed-loop gain that is considerably simpler then in the original circuit and
particularly suited for pencil-and-paper computation.

As a conclusion of this part of the chapter, we want to show that the four
classes of feedback amplifiers above analysed can be ultimately represented
with a circuit in which the transistor network is substituted by an ideal
differential amplifier having infinite voltage gain, infini te input resistance,
zero output resistance, and eventually an output current-controlled current
source.
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From this point of view, the ideal series-shunt feedback amplifier is
illustrated in Fig. 6.26. It is implemented by the differential amplifier in non-
inverting configuration. Its transfer function is coincident with the
asymptotic term previously obtained in (6.11) given by

The ideal shunt-series feedback amplifier is illustrated in Fig. 6.27. It is
implemented with and ideal differential amplifier and a current-controlled
current source with a gain, All the input current goes through the
feedback resistance, and sets the differential amplifier output voltage.

The output current, i, provided by the differential amplifier is sensed and
delivered through the current-controlled generator at the load resistance. The
complete transfer function is
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and is equivalent to (6.37).

The ideal shunt-shunt feedback amplifier is depicted in Fig. 6.28. It
performs the current to voltage conversion thanks to the virtual ground
exhibited by the differential amplifier. Its transfer function is

The ideal series-series feedback amplif ier is shown in Fig. 6.29. It
performs a voltage to current conversion. Indeed, due to the virtual short
circuit, the input voltage appears at the inverting node of the differential
amplifier, thus generating a current through resistance, which is also
equal to that through resistance, The differential amplifier output voltage
is then set by and the current through This, divided by sets the
differential amplifier output current, i, that is replicated at the output of the
series-series feedback amplifier through the current-controlled crrent source
of gain The ideal transfer function of the series-series feedback amplifier
is hence given by
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It is apparent that by using the virtual short circuit principle, transfer
functions of the ideal feedback amplifiers can straightforwardly be evaluated
without the need of feedback theory. Of course, finite gain and finite
resistances of the differential amplifier can be used to better model a real
feedback amplifier, but the use of more accurate models can lead to a loss in
simplicity of the circuit analysis. Sometimes, the analysis of a network
containing even only one such a “real” differential amplifier is so difficult
that is more efficient to apply the Rosenstark method.

The ideal feedback amplifiers presented in this paragraph have the
purpose of giving more insight into the feedback amplifiers performance.
Their use allows both to improve the intuitive perception of the four basic
feedback circuit topology as well as their inherent performance and to
quickly achieve approximate input-output transfer functions.

6.6 FREQUENCY COMPENSATION OF THE FUNDAMENTAL
CONFIGURATIONS

As discussed in the two previous chapters, an amplifier operated in
feedback configuration requires compensation. To be more precise, we have
to guarantee an adequate phase margin within the specific portion of the
circuit that, closed in feedback, provides the system loop gain. This key
point means that, to provide stability, we have to consider soley the circuit
path utilised to evaluate the return ratio and subject it to the compensation
techniques described in Chapter 5.

In the following, we shall present simple guidelines for the compensation
of the fundamental configurations which are amenable to pencil-and-paper
evaluation. To this end, we will reduce multi-pole systems into two-pole
ones. Of course, this constitutes a rough simplification that, nevertheless,
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affords a deep understanding of the most s ignif icant elements associated
wit2h the compensation step. More accurate results involving second-order
effects that are required to further refine the compensation process are
achieved by using circuit simulators like SPICE [VNP80].

6.6.1 Frequency Compensation of the Series-Shunt Amplifier

The schematic shown in Fig. 6.30 is the high-frequency small-signal
equivalent circuit of the series-shunt amplifier in Fig. 6.1. In the scheme, the
load capacitance includes the output capacitance, of transistor T2.

To evaluate the return ratio we must set voltage source to zero. By
i n i t i a l circuit inspection we find that the loop gain is made up of the gain-
stage provided by transistor T2, closed in loop through the feedback resistors

and and transistor T1. In particular, transistor T1 is in common Y
configuration and works as a current buffer.

Since inside the loop we have only one inverting gain stage with both
input and output high-resistance nodes, to compensate the circuit we can
profitably exploit the Miller approach by connecting the compensation
capacitor, across terminals Y and Z of transistor T2.

This generates a dominant pole at node Y2. The second pole is due to the
output capacitance, and we neglect the other high-frequency poles within the
loop. Now, to perform compensation we have to simply follow the procedure
developed in Chapter 5, on the equivalent circuit in Fig. 6.31, also equivalent
to the one in Fig. 5.2 except for the additional capacitor Note however,
that since is a large capacitor, the parasitic capacitor can be neglected.
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Of course, to avoid positive zeros we must use one of the techniques
discussed in the same chapter.

By comparing the circuit in Fig. 6.31 and the one in Fig. 6.30, we find
that the transconductance of the second stage coincides with
transconductance

Moreover, the second-stage output resistance accounts for the feedback
resistors according to

where is evaluated according to (2.20f) and is a low-valued resistance.
Thus, (6.74) generally simplifies to

The equivalent transconductance can be evaluated by applying a test
voltage, at node Z of transistor T2, and evaluating the short circuit
current, at node Z of transistor T1 . Since transistor T1 is in a common Y
configuration, the current through terminal Z1 is approximately equal to that
flowing into terminal X1 . Consequently, transconductance is found by
analysing the circuit model in Fig. 6.32, which implies
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Resistance     is that found at node Z1-Y2, and is equal to

where is evaluated by short-circuiting node Z of transistor T2. Hence
from (2.11) it is equal to

which is usually a large resistance and can be neglected in (6.77).
Finally, we  evaluate capacitors and The first capacitance is equal

to but, as already mentioned, it is redundant because of the
dominant contribution given by the compensation capacitor. The second
capacitance is equal to the load capacitance(usually much greater than the
intrinsic capacitances). This is an important contribution as it determines the
second pole. Once all the circuit parameters in Fig. 6.31 have been
identified, the compensation steps straightforwardly follow those given in
Chapter 5.

The compensation of a series-shunt feedback amplifier with an output
buffer is achieved in a substantially similar manner.

Observe that the approach described above is implici t ly equivalent to the
one customarily used by circuit designers, that requires breaking the
feedback loop and suitably updating the impedance levels. This approach is
pictorially described in Fig. 6.33. It is also worth mentioning that analytical
methods like the one described in [T92] have been developed to find the
loop gain without breaking the loop. These techniques are particularly
efficient if associated with circuit simulation programs.
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6.6.2 Frequency Compensation of the Shunt-Series Amplifier

The schematic shown in Fig. 6.34 is the high-frequency small-signal
circuit of the series-shunt amplifier already depicted in Fig. 6.12. Note that
load capacitance includes the output capacitance, of transistor T2.

For the shunt-series amplifier, the circuit path for evaluating the return
ratio comprises the gain stage (provided by transistor T1) closed in unitary
loop by transistor T2 (which is in common Z configuration and works as a
voltage buffer) and the feedback resistors. It is worth noting that the load
impedance is outside the loop, and, hence, does not play any role in the
compensation process.
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Again, like the series-shunt amplifier, we have only one inverting gain
stage with high-resistance input and output nodes, which correspond to the Y
and Z nodes, respectively, of transistor T1. Thus Miller compensation can be
usefully applied (although dominant-pole compensation could in principle be
performed at node Z1 or even at Y1).

By using the equivalent circuit in Fig. 6.31, the transconductance of the
second stage now coincides with the equivalent transconductance of
transistor T1

and the second-stage output resistance is

where is the input resistance (at terminal Y2) of the common Z transistor.
It can be calculated using the expressions in Chapter 2, however, it is large
and can be generally neglected.

The transconductance of the first stage, is evaluated by applying a
test voltage source at node Y2, calculating the short-circuit current at node
Y1, and then taking their ratio. If we approximate the voltage gain between
Y2 and X2 to be exactly unitary, we get

where node X of transistor T2 is assumed to have an output resistance small
enough to be considered as a ground connection.

Finally, we calculate the equivalent capacitor which is given by the
capacitive contribution at node Z1-Y2

Resistance is the equivalent one at node Y of transistor T1, and is
equal to
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in which can be evaluated by suitably modelling transistor T2
according to the method described in section 2.7.2 and using equation (2.46),
which yield

6.6.3 Frequency Compensation of the Shunt- Shunt Amplifier

To analyse the compensation of the shunt-shunt amplifier, for simplicity,
we will refer to the circuit in Fig. 6.35 instead of using the one in Fig. 6.19.
It exhibits only one amplifying stage (transistor T2) within two voltage
buffering stages provided by transistor T1 and T3. Thus, the equivalent
resistance at the gain stage input is low (that of terminal X1) and Miller
compensation becomes impractical. Instead, we have to use, dominant-pole
compensation at node Y3 which is the only high-impedance node. The
equivalent resistance which, associated with the compensation capacitor, sets
the dominant pole is

The second pole arises at the output terminal, as is associated with the
usually large load capacitance.

It is worth noting that the original scheme in Fig. 6.19 was made up of three
(inverting) gain stages. This structure usually includes three low-frequency
poles (two at the high-resistance internal nodes, Y2 and Y3, and one at the
output due to the high load capacitance). In this case, the most suitable
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compensation technique is a variant of the nested-Miller one and is called
hybrid nested Miller. We shall not discuss this technique here, for details
interested readers are referred to [EH95].

6.6.4 Frequency Compensation of the Series-Series Amplifier

Drawing the high-frequency small-signal circuit of the series-series
amplifier in Fig. 6.24 is left to the reader.

For the series-series amplifier, the circuit path for evaluating the return
ratio includes the gain stage provided by transistor T2, transistor T3 (which
acts as a voltage buffer), the feedback resistors, and transistor T1 which acts
as a current follower. Again, the load impedance is outside the loop, and
hence does not play any role in the compensation process. Given the
presence of an inverting gain stage with both input/output high-resistance
terminals, Miller compensation is the most suitable technique.

Thus, transconductance of the equivalent model in Fig. 6.31 must be
assumed to be the equivalent transconductance of transistor T2

and resistors and are given by

In (6.90) the loading effect of the feedback network can be neglected
because of the buffering operation of transistor T1.

Finally, assuming T1 and T3 to be ideal current and voltage follower,
respectively, we get
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HARMONIC DISTORTION

Semiconductor devices are inherently nonlinear. For example, Bipolar
transistors in forward active region exhibit an exponential relationship
between the collector current and the base-emitter voltage, while in saturated
MOS transistors the drain current approximately depends on the square of
the gate-source voltage. Therefore, circuits made up with transistors or, more
generally, with real active components exhibit a certain amount of
nonlinearity, and this means that the relationship between their input and the
output variables is not so ideally linear as assumed in the previous chapters.
Usually, active devices used for analog signal processing applications are
operated in a quasi-linear region. Thus the linearity assumption is almost
verified especially when signals with small amplitude are processed.
However, designers are asked to evaluate the limits of the linear
approximation or to characterise the effects of nonlinear distortion in circuits
and systems used as linear blocks [S99]1. To achieve these targets harmonic
distortion analysis is customary employed.

Consider the open loop amplifier in Fig. 7.1 with its DC nonlinear
transfer characteristic When nonlinearities are small, that is the
transcharacteristic is characterised by gradual slope changes, the circuit is
said to operate under low-distortion conditions2. This implies, in other
words, that transistors do not leave the active region, and small-signal
analysis can be used to produce meaningful results. Harmonic distortion in
this case is usually calculated with the series expansion of the nonlinear DC

1 Linear distortion arises in a linear amplifier which has a non constant frequency
response in the frequency domain [S99].

For a rigorous definition of the low-distortion condition see [OS93].2
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transfer characteristic. Let us assume that it is well represented by the first
three power terms

Assuming now the incremental input voltage be a pure sinusoidal tone
the output signal becomes3

where terms are

Due to the amplifier nonlinearity, the ideal sinusoid at the input changes
its shape at the output. Indeed, the output signal is a superposition of a
constant term, represented by the coefficient a sinusoidal waveform with
a frequency equal to that at the input multiplied by the coefficient

Remember that and3
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(fundamental component), and two other sinusoidal waveforms having a
frequency twice and three times greater than that of the input signal,
multiplied by the coefficients and respectively (second and third
harmonic components). To outline the weight of the harmonics, the
harmonic distortion factors are defined as given below [S70]

where the gain compression [MW95], which arises in term and is due to
coefficient have been neglected. It is worth noting that the harmonic
factors increase with the input amplitude.

In order to allow a simple comparison with the closed-loop cases that will
be developed in the following paragraphs, the harmonic distortion factors
can be also referred to the amplitude of the output fundamental component,

Of course, the two above equations can be used to compare the linearity
performance of two different amplifiers but at the same (fundamental) output
signal level.

Alternatively, we can represent the input signal by the

expression and the output signal, through (7.1), becomes

Thus, to

obtain the same distortion factors as in (4) we have to define

and As we will show this representation is useful to

characterise nonlinear systems in the frequency domain.
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7.1 HARMONIC DISTORTION AT LOW FREQUENCY

In this section we shall analyse the influence of feedback on harmonic
distortion for low-frequency input signals. In other words, we consider the
input signal frequency lower than the cut-off frequency of the loop gain,
which can be therefore assumed constant, i.e.

7.1.1 Nonlinear Amplifier with Linear Feedback

The classical theory of feedback amplifiers asserts that negative feedback
reduces harmonic distortion by the loop-gain [GM93], [LS94]. Let us
consider the same amplifier in Fig. 7.1 characterised by the same nonlinear
function given in (7.1), and feed a fraction f of the output signal back to the
input, as shown in Fig. 7.2. This means to close the amplifier in loop with a
linear feedback, f, and obtaining a return ratio equal to It is well
known that the harmonic distortion terms given by (7.7a) and (7.7b) are

reduced by the factors and , respectively. Alternatively, we

obtain a reduction by a factor on the harmonic distortion factors
referred to the output signal magnitude.

Following the approach described in [PM91], a more accurate result of
the harmonic distortion factors of a closed-loop amplif ier can be obtained.
Indeed, for the feedback amplifier in Fig. 7.2 we have
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hence relationship (7.1) can be rewritten as

The output signal can be expressed as a new power series with the source
signal as independent variable

where coefficients and can be obtained by interpreting the power
series as a Taylor’s series

Taking the derivatives of (7.10) and considering that when we
obtain

that through relationships (7.7) and (7.8) lead to
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in which subscript “fl” stands for linear  feedback.
By inspection of (7.17) we see that for ampl i f ie r s where coefficient is

negligible, the third harmonic is still determined by Moreover, the third
harmonic distortion can be minimised if

and for (7.17) and (7.18) s implify to

7.1.2  Nonlinear Amplifier with Nonlinear Feedback

When also the feedback network is made up of active components (for
instance, when MOS transistors working in triode region are employed as
feedback elements instead of pure linear resistances, [IF94]), the feedback
network cannot be considered ideally linear as previously done. Evaluation
of the distortion of a feedback amplifier where both the amplifier and the
feedback network introduce substantial nonlinearities was carried out in
[PP981], and is developed in the following.

First, consider the nonlinear behaviour of the feedback path according to

The input signal, can be written as
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hence, after substituting (7.1) into (7.20), and again substituting the resulting
equation into (7.21), we get

We can invert a nonlinear function, represented by a power series
up to the third-order term

into

by using the conversion formulas [KO91], [WM95] reported below

Therefore, is given by

and combining (7.28) with (7.1), taking only the first three power terms, we
get
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In conclusion, being the second and third harmonic distortion
factors are

A more compact form of the second and third harmonic distortion
coefficients can be obtained considering that the return ratio, is usually
much greater than one. Hence, after normalising the amplifier terms to
the amplifier gain and the feedback terms to the feedback linear
term, (by defining and we get

By inspection of (7.32) and (7.33), it is apparent that feedback does not
reduce the nonlinearity of the feedback network. Thus, we cannot obtain an
amplifier having a nonlinearity lower than that of the feedback network, and
even small nonlinearity terms of the feedback networks cannot be neglected,
but they must be taken into account.
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In order to evaluate the different weight between the nonlinearity of the
amplifier and that of the feedback network, it is useful to write the two
coefficients when the amplifier is linear (i.e., with and

As expected, comparison of (7.34) and (7.35) with (7.16) and (7.17),
which refer to the case of nonlinear amplifier with linear feedback, shows
that the feedback path is more critical than the forward path. Indeed,
assuming the nonlinearity for both the amplifier and the feedback network to
be equal, which means and for the same output magnitude,

relationship (7.16) is lower than (7.34) by a factor and relationship

(7.17) is lower than (7.35) by about Moreover, it is worth noting that for
negative feedback, distortion due to the feedback network has an opposite
sign to that due to the amplifier.

A more compact and clear representation of the harmonic distortion in a
nonlinear amplifier with nonlinear feedback is

In conclusion, the second and third harmonic distortion terms can be
compactly represented by relationships (7.36) which are only a simple
function of the second and third harmonic distortion of the whole feedback
network evaluated in two particular cases:

a nonlinear amplifier with linearised feedback network
a linearised amplifier with nonlinear feedback network.

This consideration can be particularly interesting from a design point of
view, since other than allowing us to get more insight into the circuit
behaviour and its final performance, permits to evaluate all the harmonic
distortion factors through separate calculation (or simulation) of the two
couples of terms and [PP981].
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7.2 HARMONIC DISTORTION IN THE FREQUENCY DOMAIN

In the previous paragraphs, both the amplifier and the feedback network
were assumed to be frequency independent. This hypothesis is clearly a
rough approximation. Transistors have parasitic capacitances which cause
the gain and even the nonlinear amplifier coefficients to vary with
frequency. Yet, high-gain feedback circuits must be frequency compensated
to ensure closed-loop stability, while the feedback network can include
reactive (usually capacitive) components. Therefore, the previous
expressions can be used with reasonable accuracy only under the hypothesis
of low-frequency input signals.

In general, evaluation of harmonic distortion of a dynamic system
requires complex calculation involving Volterra series or even Wiener series
[BR71], [MSE72], [NP73], [WG99]. Nevertheless, under the assumption of
low-distortion conditions –which means in practice, that the amplifier output
is not saturated and transistors do not leave their active region of operation–
we can use the usual small-signal analysis to produce accurate results. Let us
start our discussion by considering amplifiers in open-loop configuration.

7.2.1 Open-loop Amplifiers

To render the analysis sufficiently general, we will refer to two-stage
amplifiers, that adequately model real amplifiers (the obtained results could
then be extended also to multi-stage topologies, as well). Besides, we
simplify analysis by separating the effect of nonlinearities of the first and
second stage. These two cases are illustrated in Fig. 7.3a and 7.3b. Of
course, in real amplifiers both the two phenomena coexist as nonlinearity
can contemporarily come from the input and the output sections.
Nevertheless, this simplification is instructive and even representative of
actual cases. Indeed, the first scheme (Fig. 7.3a) exemplifies a conventional
op-amp or a CMOS OTA with a nonlinear output stage. In this event the
output section operates in large-signal conditions and its nonlinear behaviour
is hence exacerbated. The second scheme (Fig. 7.3b) seems uncommon.
Later, we will demonstrate that this case models the high-frequency
distortion in single-stage amplifiers. Besides, it can exemplify amplifiers
operated under large common-mode input signals, responsible for the
generation of nonlinearities in the input stage.
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Evaluation of harmonic distortion factors for the amplifier schematised in
Fig. 7.3a is straightforward. We can use (7.7) and (7.8) after noting that the
input signal of the nonlinear block is now Hence, the distortion
factors are

Harmonic distortion referred to the amplitude of the output signal
fundamental component are formally identical to the last equations in (7.7)
and (7.8) except that now these expressions must be evaluated at the
frequency of the input signal (fundamental). Note that this also holds for
i.e., also the output signal must be calculated at the fundamental frequency.
Consequently, when we have to evaluate the frequency behaviour of
and it is easier to refer to their formulations in terms of the input signal

The above equations give the magnitude of and as this is the
most common information required by designers. However, in their general
form these equations can be used to obtain also information on phase
distortion. In the following we will consider only the magnitude of distortion
factors.
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The second basic case considered is that of a nonlinear amplifier followed
by a linear stage, as shown in Fig. 7.3b. Assuming, as usual, that the
incremental input voltage is a pure sinusoidal tone, the
intermediate output is

where coefficients are again given by (7.3)-(7.6) in which have
to be used instead of constant values Then, the output signal is

In the above equations the phase contribution of to the components
and that of to has been neglected. Finally, from (7.7) and (7.8) we
get

Comparing the above expressions with (7.7) we see that the harmonic
distortion factors are now multiplied by the ratio of the transfer function
magnitudes evaluated at the frequency of the considered harmonics and at
the fundamental frequency.

As a particular case, assume that coefficients are constant, and that the
transfer function has a single pole (the pole of the amplifier and also
of the loop gain)

Accordingly, (7.41) and (7.42) become



Feedback Amplifiers 185

The above equations show reduction of the second and third harmonic
distortion factors with respect to their low-frequency values. Indeed, at
frequencies respectively equal to and the asymptotic diagrams of

and start to linearly decrease. Then, the distortion factors

become constant at the cut-off frequency. This behaviour is qualitatively
shown in Fig. 7.4.

7.2.2 Closed-loop Amplifiers

Consider now the same feedback amplifier in Fig. 7.2, but where the
transfer functions of blocks and f are now frequency dependent.
Specifically, let block be characterised by the frequency-dependent
nonlinear coefficients and and denote as the
transfer function of linear feedback block f, as schematised in Fig. 7.5.
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To derive the distortion factors of the system in Fig. 7.5, we wi l l now
develop an intuitive method which requires s imple algebraic manipulations.
The approach leads to expressions of distortion factors that are a direct
extension of those in (7.16) (7.17) found at low frequency.

As usual, we assume a sinusoidal input tone and that it is

possible to write the output signal as a power series of the source signal

The problem is to find the expression of the closed-loop nonlinear
coefficients

The first coefficient which is responsible for the linear

behaviour, can be simply found. It is equal to the forward-path transfer
function divided by 1 plus the loop-gain transfer function,

Equation (7.47) implies computation of and at the frequency of
the input tone (i.e., the fundamental frequency).

To evaluate the higher-order coefficients we have to follow a simple, but
not trivial reasoning. Concentrate our attention to derive the second
harmonic component at the output. It is produced by the nonlinear block
when a signal at the fundamental frequency is presented to its input. Now
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observe that the second harmonics is proportional to If the circuit is

perfectly linear (i.e., would be equal to

Therefore, the nonlinear block produces a second harmonic

component with amplitude equal to This

component can be viewed as a spurious signal injected at the output of the
nonlinear block, as depicted in Fig. 7.6. It is subsequently processed by the
feedback loop and appears at the output terminal decreased by the loop gain
but evaluated at the frequency of the harmonic considered, i.e.,

From the above discussion it follows that the nonlinear term is
equal to

The nonlinear coefficient can be evaluated by following a

similar procedure. Neglecting the contribute due to we get
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Taking into account also the effect of an expression similar to
(7.15) can be deduced. At this purpose, we consider the schematisation
depicted in Fig. 7.7 which leads to

Substituting (7.47), (7.48) and (7.49b) into (7) and (8) we get
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Of course, the above equations adhere with (7.16), (7.17) and (7.19a)
found in the case of frequency-independent loop gain, or that is the same, for
low-frequency input signals, in the present case, distortion of a feedback
network in terms of the output fundamental is reduced of a quantity s t i l l
equal to the return ratio but evaluated at the considered harmonic.

It is useful to extend these results to a more general model in which we
put the nonlinear block between two linear blocks in the forward path, as
shown in Fig. 7.8a. This system includes as particular cases the closed-loop
version of both occurrences, depicted in Fig. 7.3a and 7.3b, in which
distortion appears after or before a linear stage.

To obtain distortion factors of the system in Fig. 7.8, we can follow the
same procedure described above. Let us first evaluate the nonlinear
coefficients that relate to The first-order coefficient is

where
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To obtain the second-order coefficient it is convenient to refer to Fig. 7.9,
which illustrates the second-order component injected at the output of the
nonlinear block

A similar procedure can be applied to the third-order coefficient, yielding

Then, the harmonic distortion factors are expressed by
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7.3 HARMONIC DISTORTION AND COMPENSATION

In this paragraph we will study the effect of the different types of
frequency compensation on harmonic distortion. To this end, we will first
apply the above results to two-stage amplifiers and then a typical single-
stage amplifier will be considered. Dominant-pole and Miller techniques for
a two-stage amplifier are treated in sections 7.3.1 and 7.3.2, respectively.
Under the assumption that the second stage is the principal responsible for
nonlinear behaviour, we will demonstrate the better linearity performance of
Miller-compensated amplifiers. Linearity performance of a single-stage
architecture with dominant-pole compensation will be treated in section
7.3.3.

Linear and, unless specified, frequency-independent feedback is thorough
considered for simplicity.

7.3.1 Two-stage Amplifier with Dominant-Pole Compensation

The analysis carried out in the previous paragraph can be now directly
applied to two-stage amplifiers compensated with the dominant-pole
technique.

We can use the same model in Fig. 7.8, and assume and
to be a single-pole transfer function given by (7.43) and here reported again

This means that the nonlinearity is caused by the second stage. Assume also
for simplicity the nonlinear coefficients being independent of frequency.

From (7.50) and (7.51), being and we get

immediately
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Second- and third-order harmonic distortion factors start to linearly
increase (from their low-frequency values) at a frequency equal to

and respectively. Moreover, they become constant at frequencies

equal to and respectively. At they begin to

decrease.

A final observation concerns the distortion caused by the first amplifier
stage. Nonlinear contributions of the input stage are reduced by the loop gain
at low frequencies, and by the compensation capacitor at high frequencies
(compensation tends to shunt the output of the first stage). Therefore,
assuming the output stage as a principal source of nonlinearity is very well
justified both for low and high frequencies. We will show in the following
that this assumption is inadequate for Miller-compensated amplifiers.
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7.3.2 Two-stage Amplifier with Miller Compensation

Another important case study is the evaluation of distortion for a two-
stage Miller-compensated amplifier. Let us first analyse the open-loop
amplifier in Fig. 7.10a, in which the second stage is nonlinear. In the figure,
R and are the output resistance and the output voltage of the first stage,
whose transconductance is The second stage, instead, is modeled by a
voltage-controlled voltage source, to preserve simplicity. To this end,
we can also model the first stage with its Thévenin equivalent. The open-
loop output voltage is then expressed by

The return ratio and the asymptotic gain of the amplifier in Fig. 7.10 are

Given the Miller effect, we can consider the pole as being placed at the
output of the first stage. Thus to analyse the circuit, we can use an equivalent
block diagram similar to the one in Fig. 7.8 and depicted in Fig. 7.11 in
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which the nonlinear amplifier is characterised by the same nonlinear
coefficients in (7.60).

By comparing the general model in Fig. 7,8 with that in Fig. 7.11 we can
utilise (7.52)-(7.54) to obtain the expression of the nonlinear closed-loop

coefficients, where and

In addition, the closed-loop gain results

which, despite the different sign (inessential in evaluating distortion), equals
the transfer function obtained by a direct inspection of the circuit in Fig.
7.10. Then, from relationship (7.52)-(7.54) we get the equivalent nonlinear
coefficients and which relate to in Fig. 7.11
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The closed-loop Miller-compensated amplifier can then be modeled as
depicted in Fig. 7.12, where the amplifier studied above is closed in a loop
with feedback block f. Note that to further simplify the scheme, Fig. 6.12b
includes the new nonlinear block with its nonlinear coefficients

and defined above. Moreover, for conformity
with the notation used in the previous section, we define the gain of the first
block, h, as equal to

Gain h in Fig. 7.12b is equal to and coefficients are defined in

(7.65-(7.67).

From relationships (7.50)-(7.51a), and given that we get the
second and third harmonic distortion factors
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where in (7.69) we have only considered the dominant terms.
To better compare the above results with those obtained in the case of

dominant pole compensation we must express (7.68)-(7.69) in terms of
that is now equal to and equal to
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Starting from their low-frequency values, second- and third-order harmonic
distortion factors linearly increase at a frequency equal to and

respectively. Compared to dominant-pole compensation, we

see that the frequency band where distortion factors remain equal to their
low-frequency values is greater in the Miller-compensated amplifier by a
factor equal to

Equations (7.70) and (7.71) also predict that and become
constant at frequencies equal to and respectively. At

they begin to decrease. This behaviour was already found appropriate
in two-stage amplifiers compensated with a dominant pole. In contrast, when
using Miller compensation it is unrealistic. Indeed, the local feedback
operated by the Miller capacitor causes coefficients to decrease with
frequency. At high frequencies, distortion of the first stage becomes
dominant and a nonlinear model of the first stage should then be included to
accurately predict harmonic distortion.

The use of nonlinear models for both the first and second stage
considerably complicates distortion evaluation. However, since the two
distortion mechanisms are dominant over different frequency ranges
(distortion due to the input stage is effective at high frequencies, whilst
distortion due to the output stage is dominant at low frequencies) we can
separately study the two cases with our distortion models4. We shall not use
this approach now, because it can be shown that fairly good approximation
for distortion factors valid up to the gain-bandwidth product is found simply

4 An example of how to treat distortion coming from two cascaded stages is
described in the next section, 7.3.2.
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by eliminating the poles in (7.70) and (7.71) respectively at
and at

As a result, and for a two-stage amplifier compensated with
Miller technique are expressed by

To qualitatively illustrate the improvement in linearity of Mil ler
compensation over dominant-pole compensation, Figure 7.13 shows the

achieved in both cases. A similar plot can be drawn for
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7.3.3 Single-stage Amplifiers

The last case we shall study is that of the single-stage amplifiers. These
architectures are frequently employed in IC applications (for instance in
switched-capacitor circuits) for their high-frequency performance. Indeed, a
single-stage amplifier exhibits only an (output) high-resistance node.
Moreover, this output node often exploits cascoding, allowing a voltage gain
similar to that of two-stage amplifiers to be achieved. Of course, these
amplifiers are used in closed-loop configurations and, due to the internal
structure, output dominant-pole compensation is invariably utilised.

The small-signal model of a (open-loop) single-stage amplifier is
illustrated in Fig. 7.13, in which C is the output compensation capacitor.

In general, there are two sources of harmonic distortion in such
amplifiers. The first is due to the nonlinear V-I conversion accomplished by
the input transconductance stage. The second is due to the nonlinear I-V
characteristic exhibited by the output devices.

Let us first analyse the effect on linearity of the nonlinear output
resistance. Observe that this case does not fall into the category of any of
those already studied because both pole and distortion are generated at the
same circuit node (i.e., the output) by the same nonlinear element. Hence a
specific analysis must be performed.

For easy calculation express the input signal as Moreover, it
is better to characterise the nonlinear resistance in terms of (nonlinear)
conductance

where and are nonlinear coefficients normalised to the linear part of
the output conductance 1/R. These cause harmonic distortion components to
appear in the output voltage, according to
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in which only the first three terms are taken. Then, the current through the
capacitor is

From the KCL at the output node

using (7.74) and the current through the nonlinear resistor found by
substituting (7.73) in (7.72), and equating all the harmonic components with
the same frequency, we can derive the expression of coefficients

and Thus, considering only the dominant terms we get

Normalising the second and third coefficient to and given that
we get
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Hence, the feedback circuit can then be schematised by the block diagram in
Fig. 7.14, where the blocks inside the shadowed area represent the linear and
nonlinear contributes of the RC output node, with the nonlinear coefficients
given by

To evaluate the closed-loop harmonic distortion factors we can employ
the results found at the end of section 7.2.2. After applying (7.55) and (7.56)
we get the following equations in which and
(expressions in terms of only are reported for compactness).
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Distortion due to the nonlinear output conductance is effective at low
frequencies. Indeed, so long as the loop gain is high, signal (the error
signal) is small, and distortion is mainly due to nonlinearities arising in the
output resistance R which is operated under large-signal conditions. For
increasing frequencies the compensation capacitor shunts the output
impedance to ground thereby reducing the weight of nonlinearities due to the
output resistance. Moreover, signal increases (due to the reduction in the
loop gain) and the nonlinear effects of the input transconductance become
more pronounced. Thus at high frequencies the ampl i f ier is more adequately
modeled by the block diagram in Fig. 7.15, which includes normalised
nonlinear coefficients of the input transconductance and and
assumes the output resistance to be linear.
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This scheme is equivalent to the one analysed in Fig. 7.8 by properly
updating the block transfer functions. Hence, uti l ising (7.55) and (7.56) we
get

Both the above distortion factors increase for frequencies higher than the
amplifier pole. As a consequence, their effects can be significant at high
frequencies.

To qualitatively compare the effects on output distortion due to the output
resistance and the input transconductance, let us consider the plots in Fig.
7.16. They illustrate the typical behaviour of second harmonic distortion

factors due to the nonlinear output resistance, and due to the input

transconductance, The frequency determining which contribution is
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dominant is located between and and is close to if

approaches

Similar plots can also be deduced for the third harmonic distortion
factors.

As a final analysis step, we consider the two distortion mechanisms together
in the same block scheme as depicted in Fig. 7.17

The exact resolution of this system is difficult, but can fortunately be
avoided by considering that the two distortion mechanisms are dominant
over different frequency ranges, as previously stated. Consequently,
expressions of complete distortion factors and which provide
asymptotic approximation can be found by combining (7.83) with (7.85) and
(7.84) with (7.86)
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The above relationships have simply been obtained by algebraically

adding, before taking their modules, with and with

7.4 AN ALTERNATIVE FREQUENCY ANALYSIS

In this paragraph we describe a simple analytical procedure to calculate
the closed-loop harmonic distortion factors in the frequency domain, already
found in section 7.2.2 through an euristic demonstration, and used in this
chapter. Refer again to Fig. 7.5 and express the source signal as

Due to the nonlinear block in the direct path the output signal will include
harmonic components. Assume it is given by

where coefficients and have to be determined.
The error signal, is the difference of the source signal and the output

signal times the value of the feedback factor evaluated at the appropriate
frequency
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then it is processed by the nonlinear block whose output is

After substituting (7.90) in (7.92) and equating the terms with the same
frequency component in the exponential factor, we get

Solving the above system for and yields the same
results as in (7.47), (7.48) and (7.49a).
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NOISE

Electronic noise is caused by small spontaneous fluctuations of currents
and voltages associated with circuit components. For this reason noise
cannot be predicted exactly, nor completely eliminated, but only can be
minimised. Under this definition we explicitly exclude all the disturbance
and interference (e.g. electrostatic and electromagnetic couplings) coming
from sources external to the system being studied, most of which are
deterministic and can be completely eliminated by adequate shielding,
filtering, or by changing the system physical location.

Noise in electronic circuits is originated by resistors (which generate
thermal, or white, noise) and by active devices. For instance, bipolar
transistors contain different sources of noise: thermal noise, 1/f noise, and
shot noise [M88].

In this chapter, after recalling some basic definitions, we shall
concentrate our study on the effect of noise in feedback amplifiers. We will
show that the noise properties of closed-loop amplifiers are not influenced
(in any sense) by feedback. However, an added feedback network, when
made up of resistive elements, wi l l add noise.

8.1 BASIC CONCEPTS

We shall now recall some definitions associated with noise. For a broader
coverage of the subject of noise in electronic system design, the interested
reader is referred to [MC93], [GM93], [L94], [LS94], and [F88].
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Noise is random and its average value over a certain period of time T is
zero. Consequently, it is characterised and measured in the mean-square or
root-mean-square (rms). If we denote with x(t) a generic time-dependent
noise variable that can either be a voltage or a current, its mean-square value

is symbolised by and its rms value by The rms definition is

based on the equivalent heating effect

For electronic circuits, rms noise voltages and currents are usually expressed
in the  n and ranges, respectively.

The frequency spectrum of noise extends from nearly zero to frequencies

up to However, it is measured by instruments with limited
bandwidth. Therefore, it is often convenient to express noise and particularly
its mean square value in a 1-Hz unit of bandwidth

Since power is proportional to the square of voltage (current), is called the
power spectral density (PSD) of x and measured in . Note that

the square root of (symbolised by is also a quantity of interest

and its unit is
Spectral density is a narrowband noise. In order to obtain the total

wideband noise, (8.2) can be used only if is constant with frequency.

Otherwise the general relation between and is

In evaluating the output noise due to a single noise source, the usual rules
used for networks in a sinusoidal steady state apply.
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In contrast, when we have different uncorrelated1 noise sources, the
output noise is calculated as the root of the sum of the mean square values of
each component. To better illustrate this concept, let us consider a generic
network containing L noise voltage sources and M noise current sources.
Here the total PSD of the output noise, is

where and are the magnitudes of the voltage and current

transfer functions respectively from the noise voltage and current sources to
the specified output variable. Note that since these transfer functions depend
on the angular frequency, the total PSD of the output noise in (8.4) is also
function of Using (8.3) we can express the total output rms noise as

where division by is made necessary by the change in the integration
variable from f to

8.2 EQUIVALENT INPUT NOISE GENERATORS

Consider the noisy two-port linear network in Fig. 8.la. In order to
compare the noise generated by the network to the incoming signal (and to
its associated noise) we define equivalent input-referred noise generators.
These generators, when applied to the same network, but considered
noiseless (i.e., without internal noise sources) wi l l produce the same output
noise. Specifically, we need one voltage generator in series with the input, a
current generator in parallel with the input, and a correlation coefficient
which can have any value between -1 and +1. The latter takes into account
the presence of common phenomena that contributes to both the two
generators. As stated in note 1 of this chapter, this correlation can be usually

1Two noise quantities are said to be uncorrelated if they are produced independently
and there is no relationship between their instantaneous values. Under a wide variety
of actual situations ( including active devices and operational amplifiers) the
correlation between the different noise sources is zero or can be neglected.
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neglected, otherwise it is simpler to return to the original network with
internal noise sources. If correlation is neglected, the noise model simplifies

to only and as illustrated in Fig. 8.1b. Note the use of generator
symbols with unspecified polarity and characterised by rms values.

Now we explain how to evaluate these two equivalent sources. To calculate
the equivalent input noise voltage, we equate the output noise of the original
network to that of the noiseless network with input-referred noise generators,
both under the condition of input shorted (thus the equivalent input noise
current is shorted to ground and can be left out). Conversely, the equivalent
input noise current can be found by equating the output noise of the two
networks with the input left open (now it is the equivalent input noise
voltage that can be left out). Note that for an N -input-port network we need,
for each port, two noise generators, and noise is adequately modeled by 2N
generators in total.

A particular example of a two-port network is an open-loop amplifier.
Figure 82 shows a voltage amplifier, with gain and input impedance
and its associated equivalent input noise generators. An input signal source
is connected at the input-port with a noisy series resistance This

contribution is modeled with the voltage generator2

We are now interested in the evaluation of the PSD of the output noise
voltage, due to the combined action of the amplifier and the input
source.

By defining the system gain as the gain from the input signal source to
the output (different from the open-loop gain

2 Noise models of circuit components are briefly described in paragraph 8.3.
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after simple calculations we get

where and are the PSD of and , respectively.
The above equation shows that both input referred generators are required

to model the noise of the amplifier for any value of In fact, if we used

only no output noise due to the amplifier would be generated so
long as is zero (infinite). Therefore, the value of determines which of
the two noise generators is dominant.

The PSD of the output noise divided by the square of the magnitude of
the system gain gives the expression of the equivalent input noise voltage
PSD,

Thus, if the value of the source resistance is specified, the three noise
sources may be modeled by only one noise generator of PSD as shown
in Fig. 8.3
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8.3 NOISE MODELS OF CIRCUIT COMPONENTS

In the previous paragraph we modeled the noise of an input signal source
as a noise voltage associated to its series resistance. Actually, for noise
calculations it is advantageous to have noise models for each active and
passive circuit component. These models are derived in detail in standard
textbooks like [GM93], here we summarise some results useful for our
ensuing discussion.

Resistor
A resistance R generates thermal noise voltage whose PSD is given by

in which k is the Boltzmann's constant and T is the absolute temperature
In Fig. 8.4a this noise is modeled by a voltage

generator in series with the resistor. In some circuit configurations it is more
convenient to represent this noise by a parallel current generator (see Fig.
8.4b) whose PSD is
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Transistor
Transistors contain several independent sources of noise. These sources

can be referred to the input port (terminals Y-X of the generalised transistor)
in order to be modeled by two noise generators according to the procedures
described in the previous paragraph. Thus, the generalised transistor model
introduced in Chapter 2 is now modified to include the equivalent input

noise generators, and as depicted in Fig. 8.5

It can be shown that noise magnitude depends on the transistor operating
point, and that both the noise sources are important for BJTs, while the
voltage source is dominant in FETs at low frequencies. However, the FET
noise voltage is higher than that of the BJTs.

Operational Amplifier
Operational amplifiers can be arranged in inverting, noninverting, and

differential closed-loop configurations. Thus all of these configurations must
be adequately represented by an opamp noise model. Opamps exhibit two
input ports and consequently they must be modeled by four noise generators,

as illustrated in Fig. 8.6. Since virtually any opamp input
stage is implemented by a differential amplifier which is characterised by a
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highly symmetrical topology, the rms values of the voltage (current)
generators are equal.

If operated under negative feedback, the well-known virtual short circuit
exists between the two input terminals. It allows the two noise voltage
sources to be summed, indeed, they appear as connected in series. Therefore,
the ultimate opamp noise model is that depicted in Fig. 8.6b in which the
PSD is given by the sum of each component,

Finally, observe that in all those configurations in which the noninverting
input terminal is grounded (e.g., the inverting opamp configuration), the

noise current has no effects and can be left out of the circuit.

More details on operational amplifiers noise can be found in [TO89],
[XDA00], [L95], and [A95].

8.4 EFFECT OF FEEDBACK

To see how noise is affected by feedback, consider the block diagram
shown in Fig. 8.7, representing a two-stage amplifier. Gains H1 and H2 are
the gain of the amplifier stages and f is the feedback factor. The input signal

is and the are noise voltages injected at various critical nodes, with

PSD
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Let us first evaluate the total output noise of the amplifier without feedback
(i.e., with f = 0). This is

Then evaluate the total output noise in closed-loop conditions. We get

The output PSD noise voltage is lower in the latter case. Indeed, every
component is divided by the square of the loop gain. This is not
a surprising result since the closed-loop gain is smaller than the open-loop
gain by just the same quantity. Since the two systems have different gains,
the output noise cannot be used for meaningful comparison. Instead, we can
use the equivalent input noise for this purpose. It is found for the open- and
closed-loop configuration by dividing the output PSD noise by the square of
the system gain. We get the following results for the two cases
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Observe that each noise source, when referred to the input, is reduced by the
(squared) gain between the input and the point where noise has been
injected. This means that the principal noise contribution in cascaded
amplifiers is due to the first stage, provided that the gain of this stage is
sufficiently large. This fact also justifies the use of low-noise preamplifiers
to improve the performance of noisy amplifiers (for example, in power audio
amplifiers affected by power-supply hum). In addition, comparison of
(8.12a) and (8.12b) allows important considerations to be made. First, if
noise is added to the amplif ier’s inpu t or w i t h i n the direct ampl i f i e r path,
feedback does not have any effect on the equivalent input noise. Second,
noise injected before or after the feedback summing node has the same
effect. In contrast, the effect of noise injected at the output (for instance due
to the noise of an additional load element) depends on whether or not
feedback is applied. Finally, it should be pointed out that if the feedback
block is implemented with noisy components, the additional source of noise,
which is absent in the original open-loop amplif ier , contributes to increasing
the equivalent input noise. This aspect is better explained by considering the
effect of feedback in an amplifier model with real feedback networks, as
discussed below.

Consider the circuit in Fig. 8.8. It shows a voltage amplifier
(characterised by input impedance and by a large open-loop gain with
parallel-mixing feedback at the input . Amplifier noise is modeled via

generators and , and accounts for the resistor noise.
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The equivalent noise representation of the closed-loop amplifier using the

input-referred noise generators, and is illustrated in Fig. 8.9.

To find the expressions of and (with PSD values and

respectively) we can follow the procedure described in Paragraph 8.2.

Specifically, to calculate we equate the output noise of the two circuits

with their inputs shorted to ground. Under this condition, the amplifier input

voltage of the circuit in Fig. 8.8 (8.9) is solely determined by and

is independent of the output voltage (this means that feedback is made
ineffective by grounding the input). Consequently, the PSD of the output
noise voltage for the two circuits is respectively

and by equating (8.13a) and (8.13b) we obtain

We repeat the computation to evaluate but now with the inputs left

open. In this case feedback is effective, as the amplifier input voltage also
depends on To simplify gain expressions, we evaluate their asymptotic
values (i.e., assuming to be infinitely large). In particular, the input-output
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transresistance closed-loop gain is The PSD of the output noise voltage
for the two circuits is respectively

Thus we get

Equations (8.14) and (8.16) although derived for a particular circuit, are
general in their essence. They show that the equivalent input noise voltage of
an amplifier is unmodified by the application of parallel-mixing feedback,
whilst the noise current of the feedback network is added directly to the
closed-loop input-referred noise current. Moreover, when the amplifier noise
voltage contributes to the equivalent closed-loop input noise current, this

contribution is usually negligible. Otherwise, correlation between and

is introduced.

Consider now the circuit in Fig. 8.10 which shows a voltage amplifier
with series-mixing feedback at the input. Resistors noise is modeled via the

two voltage generators and
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The equivalent noise representation of the closed-loop amplifier using the
input-referred noise generators, and is illustrated in Fig. 8.11.

Again, to calculate we equate the output noise of the two circuits with
the input shorted to ground. Assuming the amplifier open-loop gain to be
infinitely large, the input-output closed-loop gain will be  and the
PSD of the output noise voltage for the two circuits will be respectively

from which we get
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where in the last expression we defined and used equations

(8.9a)-( 8.9b).

To evaluate we now leave the input open. Under this condition, the

amplifier input voltage for the circuit in Fig. 8.10 (8.11) is solely determined

by and is independent of the output voltage. Hence, the PSD of the

output noise voltage for the two circuits is respectively

and by equating the two above equations we get

Equations (8.18) and (8.20) show that the equivalent input noise current of
an amplifier is unmodified by the application of series-mixing feedback,
while the noise voltage of the feedback network adds directly to the closed-
loop input-referred noise voltage.



Chapter 9

EXAMPLES OF FEEDBACK IN INTEGRATED
CIRCUITS

In this chapter we will describe some selected examples in which the
concepts developed previously are applied. These examples are select in the
sense that they are related to special aspects of feedback circuits which are
only marginally or never treated in standard textbooks. The aim is hence not
to repeat analyses that can be found elsewhere, but to stimulate the reader
with a number of case studies covering not only traditional IC analog circuits
(such as the differential amplifier and current mirrors) but also analog state-
of-the-art topologies (such as the current-feedback operational amplifier).

9.1 THE OUTPUT RESISTANCE OF A DIFFERENTIAL
AMPLIFIER WITH CURRENT-MIRROR LOAD

The differential amplifier is a fundamental building block in analog
integrated circuits. It is used in the implementation of the input stage of
operational amplifiers and its features are assumed here to be well known to
the reader. In the discussion to follow, we will consider a differential
amplifier with a current-mirror active load and, specifically, we evaluate its
output resistance.

The schematic diagram of the differential amplifier with current mirror
active load implemented with generic transistors is illustrated in Fig. 9.1. It
is made up of transistor couples T1-T2 and T3-T4, which compose the
differential pair and the active load, respectively, and the constant current
generator Observe that the bulk terminal has been omitted to preserve
simplicity.
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The circuit exhibits a local feedback (through the current mirror T3-T4)
which must be taken into account to accurately evaluate its output resistance

To this end, we present the simplified AC diagram in Fig. 9.2, where the
current mirror is modelled with a unitary controlled current source, i and its
associated output resistance, equal to the output resistance of transistor
T4 (the mirror input resistance, approximately equal to has been
neglected as it is connected in series to the high-impedance Z terminal of
transistor T1). Finally, resistor models the output resistance of the current
source

The output resistance is due to the parallel combination of the up and
down contributions,

where is exactly the same as the output resistance seen at terminal Z of
transistor T4,
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In contrast to what a superficial analysis could show, the down resistance
is not simply equal to the resistance seen by looking into terminal Z of
transistor T2. The down resistance is affected by the feedback provided by
the current mirror which injects almost the same current flowing through
resistance into the output node Hence, a unitary loop gain (T = 1) is
experienced by the down resistance which is reduced by a factor of two
compared to its open-loop value. We can calculate this open-loop value by
setting the controlled current generator to zero, and recognising that
transistor T2 is in common Y configuration with an equivalent degenerative
resistance  given by

which is much smaller than
Thus, the open-loop resistance is

Substituting (9.2) into (9.3) we obtain

and the close-loop value is
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Finally, we find the well-known result for the output resistance of a
differential stage [GM93], [LS94], [JM97]

9.2 THE WILSON CURRENT MIRROR

Among the several current mirror topologies, the Wilson current mirror is
a high-performance solution which is heavily based on a negative-feedback
configuration, [W90], [W901]. The AC schematic diagram of the Wilson
current mirror is depicted in Fig. 9.3 (again, bulk connections are omitted for
simplicity). Note that although the circuit is described using the generic
transistor, in common practice it is more frequently encountered in its
bipolar implementation. In fact, as transistors T1 and T2 work with
substantially different Z-to-X voltages, this can cause offset and gain error
especially with MOS processes in which the channel length modulation is
more significant than the corresponding Early effect of bipolar transistors.

The feedback mechanism can simply be explained as follows: the output
current, is collected into the input of current mirror T2-T1, and is then
fed back to the mirror input so it can be subtracted from the input signal,
(negative shunt-series feedback)

To simplify the analysis, consider the mixed model of the circuit under
consideration shown in Fig. 9.4, where small-signal models of transistors T1
and T2 are drawn. Note also that the diode-connected transistor T2 is
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equivalent to the parallel of resistance and Since resistance is
always much lower than both resistances and the mixed model can be
further simplified as shown in Fig. 9.5.

Now we use the Rosenstark/Blackman equations to find the asymptotic
gain and the input and output resistances, assuming that the controlled
generator characterised by transconductance is the critical parameter. Of
course, setting this parameter to zero means switching off transistor T1
allowing the direct transmission term to be evaluated from Fig. 9.6. The
output current can be simply calculated by considering the equivalent
transconductance,  of transistor T3 in a common X configuration with a
degenerative resistance equal to Assuming all the transistors with
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equal small-signal parameters, this equivalent transconductance is about
equal to (see (2.15b)), and is

which is greater than unity.

To evaluate the return ratio we set to zero and replace the original
controlled current generator, with an independent current source, i, as
shown in Fig 9.7. Aside from the opposite flow direction of the independent
current generators, Fig. 9.5 and 9.6 are identical. Therefore, the return ratio
exactly equals the direct transmission term (i.e.,
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Now we set parameter infinitely large to calculate the closed-loop
asymptotic gain. Returning to Fig. 9.5, this means that voltage must be
zero, as this condition holds only if the output current is zero. Thus
and, as expected in a current mirror, the closed loop transfer function
(current gain) is very close to one

The driving point input and output resistances, and are
calculated using the results in Chapter 2. They are given by

Finally we evaluate and to find the
input and output resistances

with the input and output resistances equal to

In conclusion, for a bipolar Wilson current mirror we get
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and

9.3 THE CASCODE CURRENT MIRROR

The cascode current mirror avoids the drawbacks of the Wilson mirror by
realising a symmetrical topology which sets the Z-to-X voltages of
transistors T1 and T2 almost equal, thereby minimising errors due to the
finite transistor output resistance [AH87], [GT86]. The AC schematic of the
cascode current mirror is shown in Fig. 9.8. Note that in this case, the circuit
behaviour is not based on feedback. Rather, its improved performance is
achieved thanks to the current-buffering action of the cascode transistor T4.
In this manner, the accuracy of the current gain and the output resistance are
increased. In the following we will not analyse these characteristics, as they
seem self-evident. Instead, we will concentrate our attention on a special
effect due to a local feedback that arises only in a bipolar implementation.
As we will see, this effect slightly reduces the achievable output resistance.
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From the AC schematic diagram we derive the small-signal circuit of the
cascode current mirror shown in Fig. 9.9.

The output resistance of the cascode current mirror is that of the common
Y transistor T4, which is almost equal to

By superficial analysis of the circuit in Fig. 9.9 we could erroneously
assume to be about equal to the parallel between and (where the
series contribution to given by has been neglected).
However, if resistance is finite, there is a feedback loop that reduces this
value. Indeed, by choosing transconductance as a critical parameter, we
find that term is much lower than one and can be neglected.
Otherwise, is almost equal to one. Hence, resistance is equal to
its value assuming transconductance to be equal to zero divided by two

9.4 THE CURRENT FEEDBACK OPERATIONAL AMPLIFIER
AND ITS HIGH-LEVEL CHARACTERISTICS

Recently, we have witnessed the affirmation of a novel op-amp
architecture now available from several of the specialist analogue
semiconductor manufacturers. These op-amps are generally referred to as
Current-Feedback Operational Amplifiers (CFOAs) [S911], [TLH90],
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[G93], [B93], [SKW94], and represent an evolution in the architecture of the
voltage-mode op-amps (VOAs), which have otherwise remained much the
same over the years. Implementations of high-performance CFOAs have
become possible thanks to the availability of high quality complementary
bipolar transistors provided by advanced BJT processes. However, the low
transconductance of MOS transistors, does not make this component suitable
for implementing CFOAs. The internal architecture of a CFOA is
exemplified in Fig. 9.10. It is made up of a CCII-based input stage –that
performs a voltage following action between terminal Y to X and a current
following action between X and Z– and an output stage with a voltage
buffering function which properly drives the load and isolates it from the
internal high-resistance, at node Z. The amplifier is hence characterised

by an inverting low-impedance terminal and by a transresistance gain

equal to (this is the reason for the name “transimpedance ampl i f ie r”a lso

used when referring to this opamp).

The CFOA circuit symbol is not different from that of a conventional
single-ended VOA, as can be deduced from Fig. 9.11. The same figure also
explicitly shows in a dotted line, the input voltage follower and the output
current-controlled voltage source. Observe that the voltage follower will
operate outside the feedback loop (which involves the output and the
inverting input terminal, but not the noninvert ing inpu t ) . This fact can result
in a source of harmonic distortion especially in noninverting configurations
in which the CFOA is operated under large common mode signal swings.
Nevertheless, it must be observed that although the internal structure of the
CFOA differs greatly from that of a traditional VOA, the external feedback
circuitry and its applications are similar to those of a VOA [S96], [S911]
[SKW94], [TL94], Hence, a variety of configurations with their respective
performance parameters have been directly derived from traditional ones,
without requiring any further study.



Feedback Amplifiers 231

CFOAs have become popular because of their inherent advantages:
excellent small-signal and large signal performance and, under proper
operating conditions, a closed-loop bandwidth independent of gain. In fact,
thanks to the low-impedance input terminal, the typical closed-loop
bandwidth is in the range of 50 to 100 MHz and a very high slew rate
capability in the range of 500- to [B90], [S911], [SS92], [G93],
[B93], [SKW94], [B97] has been reported. The high slew rate performance
derives from the use of a class AB topology for both the input and output
stages. Although the differential stages with class AB capability, reported in
the literature [SW87], [BW83], [C93], [CMPP93], could be used in
conventional opamps to provide a high slew-rate, this option is rather
unusual and expensive.

The closed-loop constant-bandwidth property offered by a CFOA can be
easily explained by considering the closed-loop configuration shown in Fig.
9.12.

The asymptotic gain and the loop gain of the circuit can be found using
the Rosentark method, choosing the dependent output voltage generator as
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According to the architecture in Fig. 9.9, a CFOA is made up of three
main blocks: two voltage buffers and one current buffer. More specifically,
the first voltage buffer is located at the input and its output current is
replicated by the current buffer into a high-impedance internal node. The
other voltage buffer is at the output with the purpose of properly driving the
output load.

The simplified circuit schematic of a typical CFOA is represented in Fig.
9.13, where bipolar transistors are used [HR80], [TLH90]. The Load and
compensation capacitors, and and the feedback network made up of
resistors and are also included. The input voltage buffer is
implemented with transistors T1-T4 and associated bias current generators

Two current mirrors T5-T6 and T7-T8 implement the current buffer,
while transistors T9-T11 and generators form the output voltage buffer.

critical source. Since is made infinitely large, current i tends to zero.
Thus the same current flows into and and since voltage appears at
the inverting terminal (thanks to the input voltage follower) a virtual short-
circuit appears between the inverting and the non inverting terminals. The
asymptotic closed loop gain is hence

which is the same result we would have obtained using a VOA in place of
the CFOA.

In addition, the loop gain is

showing that the loop gain depends on the transresistance gain, and on
only one of the two external resistances, Since the closed-loop bandwidth
is proportional to the loop gain, and the closed-loop gain can be set by
changing only a closed-loop constant bandwidth behavior is achieved.

TRANSISTOR-LEVEL ARCHITECTURE, SMALL-SIGNAL
MODEL, AND FREQUENCY COMPENSATION OF CFOAs

9.5

Capacitor provides dominant-pole compensation. Nearly all monolithic
complementary bipolar high-speed CFOAs are a variation of this
architecture [B97].

232
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It is worth noting that the input voltage buffer is outside the feedback
loop and hence does not affect the frequency response and stability of the
amplifier. The feedback loop of the amplifier includes the output voltage
buffer (T9-T12), resistances and transistors T3 and T4, which work as
simple common-base amplifiers, and the two current mirrors T5-T6 and T7-
T8.

A simple small-signal model of the CFOA is shown in Fig. 9.14 where
is the equivalent resistance at gain node Z. The output resistance of the input
voltage buffer, is the input resistance at inverting node, and the input
resistance of the input buffer, is the input resistance of the noninverting
node. The output resistance of the output voltage buffer, is the output
resistance. Controlled  generators and h model the transfer functions

of the input and output voltage buffer, and the complementary current
mirror, respectively, and are usually almost unitary in module.

By inspection of Fig. 9.13, we get
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Stability and related frequency compensation issues of CFOAs have been
treated in [MT96], but the approach adopted is not simple from a design
point of view and leads to unnecessary conditions being placed on the
feedback network. Moreover, this analysis neglects a fundamental
contribution that arises when the CFOA load is capacitive, which is an usual
circumstance.

In order to apply the compensation procedures described in Chapters 4
and 5, we need to evaluate the return ratio. After substituting the CFOA
small signal model in the circuit in Fig. 9.13 we choose the voltage gain of
buffer as the critical parameter. Setting the input source to zero and
representing the critical controlled voltage source with v’ we get the
equivalent circuit in Fig. 9.15.
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The DC open loop gain results as

and if resistance is much greater than it simplifies to

This shows that unlike for voltage-mode operational amplifiers, resistance
if properly dimensioned, must not be considered as a component of the

feedback network.
The dominant pole is created at the high resistance node, Z. It is simply

expressed by

and the gain-bandwidth product is

Equation (9.26) shows the well-known property of CFOAs: the closed-
loop bandwidth is independent of the closed-loop gain provided that
resistance is maintained constant. It is apparent that we have the highest
gain-bandwidth product when which means the CFOA is in unity-
gain configuration. Thus, in order to guarantee stability with safe margins,
we have to compensate the CFOA in the unity-gain configuration as for the
traditional voltage operational amplif ier . Moreover, compensation can be
achieved by adopting the dominant pole approach, which requires a suitable



Chapter 9: Examples of Feedback in Integrated Circuits236

increase in capacitance at the high-resistance node, Z. In order to provide
a given phase margin, the relationship

holds, where is the equivalent second pole generally due to load
capacitance [P99]

Even if there is no load capacitor outside the chip, there is a contribution
internal to the IC caused by the bounding pad and pin capacitances.

Other frequency limitations are due to the transfer functions and
h(s) characterised by high-frequency poles given that they arise at low
resistance nodes. They can therefore be neglected in a first-order analysis.
Observe, however, that those poles associated with the output voltage buffer
transfer function are much higher than those of the current mirrors.

In conclusion, using (9.26), with set to zero, in relationship (9.27) we
get

9.6 INTEGRATORS AND DIFFERENTIATORS WITH CFOAs

As a useful application we shall now consider the implementation of a
simple integrator and differentiator using the CFOA. These circuits are
shown in Figs. 9.16 and 9.17, respectively.
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The loop-gain transfer function of the integrator in Fig. 9.16, can be
obtained from that of a CFOA with a resistive feedback as calculated in the
previous section, by replacing with

At frequencies higher than the two dominant poles, remembering the
expression of the transfer function (9.30a) can be simplified into

Assuming a safely compensated CFOA with pole higher than the
transition frequency, we get the same gain-bandwidth product given by
(9.26) setting As a consequence, the compensation procedure is equal
to the one already studied for a purely resistive feedback. This is simple to
understand: for high frequencies such as those in the vicinity of the transition
frequency we can assume the feedback capacitance, to be short-circuited,
and the CFOA in unity gain configuration.

To evaluate the loop-gain transfer function of the differentiator in Fig.
9.17, we have to substitute resistor with capacitor in the CFOA with
resistive feedback. In an ideal CFOA, whose resistance at the inverting input
is also nominally equal to zero, capacitance would be outside the loop
gain, and would not play any part. However, real CFOAs have a finite buffer
output resistance. Moreover, capacitance determines another high-
frequency pole in the loop-gain transfer function. It can be shown that the
loop-gain transfer function becomes
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and the gain-bandwidth product is

Hence the compensation task requires that

It is worth noting that we can compensate the CFOA with a capacitance
much lower than This is a very different condition from that required in a
traditional opamp, where a high capacitance value, often impractical with IC
technologies, is needed to compensate the differentiator configuration
[WHK92], [A88], [P99].

9.7 CFOA VERSUS VOA

In this Section we make a brief comparison between the bipolar CFOA
and VOA in regard to static and frequency response performance [PP01].
The comparison assumes that actual CFOA behavior is characterized by a
dominant pole and a second equivalent pole, l imit ing the amplifier gain-
bandwidth product. The comparison is with a VOA of comparable topology,
thus providing similar features. The same power consumption is assumed for
both amplifiers.

The VOA topology chosen is the folded cascode one shown in Fig. 9.18.
The main characteristic of this topology is, like the CFOA in Fig. 9.13,

having only one high-gain stage, since it achieves the high voltage gain
thanks to the high equivalent resistance at node A. Moreover, the full
transconductance of the input differential stage is gained by using the Wilson
current mirror T4-T6, that performs a differential-to-single conversion.
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The equivalent small-signal model of the VOA considered is shown in
Fig. 9.19, where and are the equivalent resistance and the
compensation capacitance at the gain node, respectively, and is the
equivalent resistance at the input of the differential stage T1-T2. The
transconductance gain, is equal to that of the input transistors T1-T2,
with the other parameters being previously defined.

Applying a resistive feedback as shown in Fig. 9.12, the DC loop gain
becomes
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after substituting and for and Thus, the gain-bandwidth product
results

For VOA, too, the second pole of the loop-gain can be assumed at the
output and is given by

Hence, to achieve phase margin under the worst condition of unity-gain
loop, the compensation capacitance

is needed.
Since a trade-off exists between frequency performance and power

dissipation (and sometimes between gain and power dissipation), we assume,
without loss of generality, the same power consumption for both the CFOA

Moreover, the VOA resistance is in the range (it is equal
to if a cascode current mirror is used in the VOA instead of a Wilson
current mirror).

Comparing the open-loop gain of the CFOA with that of the VOA, we get

where is defined in (9.19).
The dominant pole of the open-loop amplifier is again given by (9.25)

and VOA by setting (of VOA in Fig. 9.18) equal to (of CFOA in
Fig. 913). Consequently, the transconductance of the VOA input stage
results equal to the input resistance at the inverting terminal of the CFOA
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which is always much lower than 1. It is reduced by decreasing the closed-
loop gain and tends to when the amplifiers are used in unity-gain

configuration. This means that for the same amount of power consumption,
the accuracy of a bipolar CFOA is worse than that achieved with a VOA.
However, if we compare the resulting bandwidth of the CFOA and VOA we
get

which shows that the CFOA is superior to the VOA for the same power
consumption by about one order of magnitude. This advantage in terms of
speed is achieved in an open-loop configuration. But to really evaluate the
speed benefit we have to compare the frequency response in a closed-loop
configuration. Since the closed-loop bandwidth is equal to the gain-
bandwidth product of the open-loop gain, we can simply compare the gain-
bandwidth product of the two amplifiers

The above equation reveals that when the amplifiers are used in unity-
gain configuration (with equal to zero), the CFOA gain-bandwidth
product is only twice as great as that of the VOA considered. Moreover, the
bandwidth improvement is not so marked for closed-loop gains greater than
1, since term must be greater than 1 (the CFOA gain-bandwidth is

greater than the VOA’s only if condition is met).
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Appendix

FREQUENCY ANALYSIS OF RC NETWORKS

In this book we have studied numerous configurations whose small-signal
equivalent circuits are made up of only three components, namely resistors,
capacitors, and controlled sources. The evaluation of fundamental circuit
parameters such as voltage and current gain transfer functions, but also input
and output impedances, is then placed in the context of the study of
generalised RC networks.

A.1 TRANSFER FUNCTION OF A GENERIC RC NETWORK

Consider the RC network in Fig. A.1, which includes n independent
capacitors. The transfer function between two generic network ports, as a
function of the complex frequency s, can be expressed in the general form

where m < n. Transfer function G(s) can be determined by applying
Kirchhoff’ s laws to the network. But when the order, n, is high, or in other
words, when there is a large number of reactive components, we have to
solve a system with a great number of equations. Because of this, it would be
more practical to have a systematic method by which coefficients and
could be directly determined. This approach would also have the advantage
of allowing an approximate transfer function of reduced order, defined by
the user, to be derived.



Coefficients can be evaluated by using the time constant method
demonstrated in [CG73]

where
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In relationships (A.3), is the equivalent resistance seen from capacitor
whilst the other capacitors are assumed to be open (i.e., with a zero

value). The equivalent resistance is the one seen from capacitor

when capacitors are short circuited (i.e., with an infinite value) and
the others are assumed to be open.

Coefficients are evaluated by using the methods in [DM80] which give

where coefficients are those in (A.3) and parameters are the DC

transfer functions between the input and the output when capacitors
are short circuited.

In order to exemplify the procedure, consider the RC network in Fig. A.2
which includes three capacitors. The goal is to find its transfer function in
the same form as expressed in (A.1)
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The DC gain is found by opening all the capacitors. It is equal to

Coefficients and are found using (A.2)-(A.4)

The order of the transfer function is 2 because only two of the capacitors
in Fig. A.2 are independent (indeed, and form a loop of capacitors).
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A.2 APPROXIMATED POLES

In many practical circumstances it is useful to approximate the complete
transfer function with a second-order one

and when the two poles are real, which holds for we can rewrite

relationship (A.6) as shown below

By adding the condition of dominant-pole behaviour, which means
relationships (A.8) lead to a simple and useful relation between

poles and coefficients

The approach can be extended to higher-order functions with real and
well spaced poles [MG87].
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where and  the  poles  are  related  to  coefficients    through [MG87]
[GT86],
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Recently, an interesting approximation of the roots of a second-order
equation, that can be profitably used to find poles and zeros of transfer
functions, has been proposed [R02].

The approximations of equation are derived in ranges of
parameter x defined as

and hence are different for different values of x. The roots summarised in
Table A.1, show an error always lower than 10%.
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